

•

Prepared and Published by
the Technical Publication Department

NOTICE
Not for use or disclosure outside the Bell
System except under written agreement.

ACKNOWLEDGMENTS

Symposium Sponsor

The Microprocessor Steering Committee

W. E. Danielson - Chairperson
R. M. Allen (WE)

R. C. Fletcher

G. L. Hermansen (WE)

J. W. Schaefer

D. G. Thomas

R. L. Wagner

Symposium Chairperson

R. B. Hawkins

Symposium Assistant Chairperson

C. L. Semmelman

Technical Program Chairperson

Session Chairpersons

Technical Arrangements

Graphic Arts

J. R. Mc Eowen

C. R. Baugh

A. H. Bobeck

F. H. Henig

W. N. Toy

C. D. Weiss

M. J. Krumm
D. Manolio

Technical Publication Department

J. A. Walker - Coordinating Editor

iii

CONTENTS

SESSION 1 - INTRODUCTION

SESSION 2 - IN-HOUSE MICROCOMPUTERS

A MAC-8 status Report

MAC-8 Device Description

Design and Fabrication of the MAC-8 Microprocessor Chip

Testing and Debugging of MAC-8 Systems

The MAC-8 in a User Environment

MAC-4

SESSION 3 - SUPPORT FACILITIES

The Programming Languages of MAC-8

A Support System for the Intel 8080

UNIX on the LSI-11

Manufacturing Micro computer- Based Systems

SWAT - A Debugging System for the DlMENSION® PBX

SE SSION 4 - APPLICATIONS I

The Loop Switching System

TASI-E Software Development

A Microcomputer Test Facility for a
Mobile Telecommunications System

The Design of a Self-Checking Microcomputer

Design of an LSI Microprocessor

v

1-1

2-1

3-1

4-1

5-1

6-1

7-1

8-1

9-1

10-1

11-1

12-1

13-1

14-1

15-1

16-1

CONTENTS (Continued)

SESSION 5 - APPLICATIONS II

Speech Output From a Microprocessor 17-1

A Small Digital Time Division Switch Using Microprocessor Control 18-1

A Microprocessor- Controlled Switching System for L5E -
DeSigns, Lessons, and Experiences 19-1

The 32A Communication System 20-1

The Business Switching System 21-1

A PROCON- Based Peripheral Controller 22-1

A Mi cro computer- Controlled Single- Line Telephone System 23-1

SESSION 6 - PERIPHERAL TECHNOLOGY

Some Power Considerations for Microprocessor Systems

A Survey of Small Tape Peripherals

Serial Bubble Store

A ROM-RAM-I/O Device for the MAC-8

A 4K Random- Access Memory

vi

24-1

25-1

26-1

27-1

28-1

INTRODUCTION

Speaker: I. M. Ross
Executive Vice President

Microcomputer Symposium

The intent of the symposium is to present the latest Bell System
experience and expertise in microcomputer applications, to encourage
communication among microcomputer users, and to stimulate engi­
neers and designers with the potential of this new te chnology.

IN-HOUSE MICROCOMPUTERS

A MAC-8 STATUS REPORT

L. C. Thomas, BTL Dept 4391, HO, NJ

ABSTRACT

This report describes the current status and future direction of the
components of the MAC-8 development project: the devices, support
software and hardware, and user training. The Symposium presenta­

tion of this paper will include current schedules and pricing informa­
tion. This information has not been included here because of the
publication deadline.

INTRODUCTION

The purpose of this paper is to describe the development and interaction of the
components that are essential for providing a Bell System microprocessor capa­
bility. These components are: the MAC-8 microprocessor, software support,
hardware interfaces, and user education and application support.

MAC-8 MICROPROCESSOR

Complementary metal oxide semiconductor (CMOS) technology has been used to
implement the MAC-8 chip. One of the advantages of this technology is that

p- channel and n- channel devices can be used on the same chip. The combination

of these devices has produced a variety of innovative circuit configurations that

provide the MAC-8 chip n-channel density (about 8000 transistors on a 220- by
220-mil chip) with the low-power dissipation associated with CMOS (less than 150
m W). The details of this design approach are covered in the paper by Cooper and
Krambeck. 1

1-1

Another reason for the choice of CMOS technology involves its track record in
previous development projects. In a company whose large scale integration

(LSI) experience is limited, judgments of track records must be extremely sub­

jective. However, after a 1-1/2 year involvement with the MAC-S project, we in

the Systems Area continue to feel that we have chosen a technology and circuit
implementation that promise to become industry standards.

SOFTWARE SUPPORT

In the software development for the MAC-S microprocessor, two aspects have
been emphasized. The first of these is the development of an efficient high-level
language to describe applications to the MAC-S. The second item of emphasis is

to develop debugging tools in this same high-level language. Possibly a hardware
analogy is appropriate here. Obviously, it is much simpler to design logic cir­

cuits with medium scale integration (MSI) deVices, such as counters and multi­
plexers, rather than quad gates. A high-level language brings the same advan­

tages to software development. Similarly, a system designed with MSI devices
would be difficult to debug on a gate-by-gate basis. Thus, a high-level language

should be debugged in its own symbolic, human-oriented terms, not at a lower
level. As obvious as these concepts appear, they have not been incorporated into
commercial support software. While the high-level language PL/M has been
implemented for some commercial microprocessors, it is notoriously inefficient

in byte proceSSing and execution time. Its usefulness is restricted to those cases
that must emphasize short schedules. The design philosophy regarding software
aids, emphasized in papers by Kirby and Rovegno 2 and Shupe, Johnson, and
Hofmann,3 translates directly to reduced development costs and an increased
ability to respond to competitive pressures in minimum time. Maintenance and

current engineering costs should also be substantially reduced.

HARDWARE INTERFACES

The hardware interface between the MAC-S dual in-line package (DIP) and the
outside world is described in the papers by Blahut 4 and Torres. 5 In these papers,
instruction timing, control signal timing, andthe utilization of commercially
available memories and peripheral devices have been emphasized. The only

in-house peripheral device being specifically developed for the MAC-S is a device

1-2

containing read-only memory (ROM), random-access memory (RAM), and input/

output (I/O) on a single DIP. This device is described in a paper by Ukeiley and
Slemmer. 6 With the exception of this device, emphasis has been placed on

developing the central processing unit (CPU) and the user support facilities de­
scribed in this paper. The demand for any additional members of a MAC-8 family

of devices will be determined by system requirements over the next 12 to 24

months. The successful development of a MAC-47 device would provide an ideal
building block for MAC-8 peripheral devices of all types.

USER EDUCATION AND APPLICATION SUPPORT

The MAC-8 project is confronting the user education and application support pro­

blems in a variety of ways.

• Users Manual: A Users Manual will be written by the various hard­
ware and software designers involved in the project and edited
by E. J. Angelo. This manual will be available originally in a loose­
leaf format; when documentation on all phases of the project becomes
complete, a hard-bound version will be published.

• Conventional Courses: MAC-8 courses will be presented in-hours,
out-of-hours, in short-course format, and in self-teaching formats
beginning in the spring of 1977.

• User Group Application Notes: A MAC-8 user group will be formed
and supported. This group will facilitate the exchange of information
among MAC-8 users via specific application notes, as well as hard­

ware and software exchanges.

• The MAC-TUTOR: The hardware keystone of the MAC-8 education
and applications support effort will be the MAC-TUTOR apparatus.

This apparatus will consist of a complete MAC-8 microcomputer sys­
tem at an objective cost of $350. This system will include a MAC-8
CPU, RAM, a programmable ROM (PROM) debug monitor system

coupled with a 20-button keyboard, and I/O capability. The power
supply will be included with the apparatus as well as an RS-232

connection for more elaborate program development. A self-teaching
booklet will accompany the MAC- TUTOR. The MAC- TUTOR apparatus
will be supplied to each student in in-hours, out-of-hours, and short

courses to be given at Bell Laboratories. The apparatus will be

1-3

considered as the textbook for these courses, and will be paid for by
the student's department. For self-teaching purposes, they may be
purchased separately. Initial availability of the MAC-TUTOR is
expected in the spring semester 1977, with full production quantities
expected in June 1977.

1-4

REFERENCES

1. J. A. Cooper and R. H. Krambeck, "Design and Fabrication of the
MAC-8 Microprocessor Chip, 11 paper presented at Microcomputer

Symposium, Bell Telephone Laboratories, Holmdel, New Jersey, 1976.

2.· D. B. Kirby and H. D. Rovegno, "The Programming Languages of
MAC- 8, " paper presented at Microcomputer Symposium, Bell
Telephone Laboratories, Holmdel, New Jersey, 1976.

3. B. B. Hofmann, K. W. Johnson, and C. F. Shupe, "Testing and

Debugging of MAC- 8 Systems, "paper presented at Microcomputer

Symposium, Bell Telephone Laboratories, Holmdel, New Jersey, 1976.

4. D. E. Blahut, "Mac- 8 Device Description, " paper presented at Micro­

computor Symposium, Bell Telephone Laboratories, Holmdel, New

Jersey, 1976.

5. F. B. Torres, "The MAC-8 in a User Environment, "paper presented

at Microcomputor Symposium, Bell Telephone Laboratories, Holmdel,
New Jersey, 1976.

6. R. L. Ukeiley and W. C. Slemmer, "A ROM-RAM-I/O Device for the

MAC- 8, " paper presented at Microcomputer Symposium, Bell

Telephone Laboratories, Holmdel, New Jersey, 1976.

7. D. C. Stanzione, "MAC-4," paper presented at Microcomputer

Symposium, Bell Telephone Laboratories, Holmdel, New Jersey,
1976. .

1-5

IN-HOUSE MICROCOMPUTERS

MAC-8 DEVICE DESCRIPTION

D. E. Blahut, BTL Dept 4391, HO, NJ

ABSTRACT

The MAC-8 microprocessor is a single-chip, bus-structured, 8-bit
microprocessor. A single 16-bit address bus accesses memory and
input/output (I/O), including the sixteen 16-bit working registers and
the pushdown stack contained in the random- access memory (RAM).
Other features include interrupt, direct memory access (DMA) , and
reset capabilities.

This paper provides a review of the internal MAC-8 architecture and
a detailed description of various input and output signals that will be
useful to the hardware designer when interconnecting the 40-pin MAC-8
dual in-line package (DIP) with memory and I/O and peripheral hard­
ware in general.

The Symposium presentation of this paper will include final electrical
characteristics and timing waveforms. This information has not been
included here because of the publication deadline.

INTRODUCTION

With its innovative arChitecture, the MAC- 8 microprocessor is a powerful device

when compared to outside alternatives; however, a detailed description of this
structure, its salient and powerful capabilities, and the generous set of instruc­
tions and memory accessing modes will not be presented here. 1 The purpose of
this paper is to provide a device description primarily for the hardware system
deSigners. Only a brief review of the architecture will be presented in order to
more easily describe the interaction between the MAC-8 and its peripherals.

2-1

ARCHrrECTURE

The MAC-8 is partitioned into four major functional blocks. See Figure 2-l.
The control logic array is the nucleus of the microprocessor. It performs the
task of directing the circuitry through the sequence of states required to execute
each of its instructions and functions. A second logic array controls the function
to be performed by the arithmetic and logic unit (ALU), if called upon during the
course of each sequence. It also controls the operation of the condition register
in latching the flags generated by the ALU. A separate address arithmetic unit
(AAU) is provided to expedite the many required address calculations. The last
major portion of the microprocessor contains four 16-bit pointers: the program
counter (PC), the stack pointer (SP), a temporary register (T16), and the register
pointer (RP). The RP pOints to the location in the 65K memory space allocated
to working registers.

One of the advantages of off- chip registers is that a large number of registers
(16 in the case of the MAC-8) may be used. Other advantages are not so obvious.
For example, a time-critical routine might push the RP and load a new RP value,
which, in essence, pushes all registers in one operation. Upon completion of the
routine, popping RP returns the original registers to the main program, leaving
the registers of the routine untouched until next called upon. Also , a new RP
might be selected that partially overlaps the previous set, providing a convenient

DATA
BUS

CONTROL OPCODE

PC ALU

SP

RP

T16

ADDRESS BUS

Figure 2-1 - MAC-8 Block Diagram

2-2

A
L
U
C
o
N
T
R
o
L

method for passing parameters and a simplified procedure for deep nesting of
calls. The point to be noted is that both the RP and SP might vary over a large
range, the extremes of which might be difficult if not impossible to predict. Off­
chip knowledge of these pointer values might be fundamental to the administration
of proper memory allocation.

A typical MAC-8 instruction consists of two bytes: the first byte defines the in­
struction; the second byte provides the four bits required to specify the source
register and the four bits that specify the destination. These 4-bit nibbles and
the RP are combined by the AAU to form the appropriate memory pointers.

PINOUTS

The MAC-8 is capable of accessing 65K of memory or I/o via its 16-bit address
bus and its 8-bit data bus. Table 2-1 shows the pinouts. The microprocessor is
equipped with DMA, one interrupt, and a reset. Two clock inputs are provided,
and a resonator connected between them will activate an internal clock. One of the
pins serves as the clock input if an external clock is used. A third pin (clock
output) provides a clock for use by peripheral hardware. The data ready lead is
instrumental in providing wait states for accessing slow memory or 1/0. Finally,
three status outputs determine the status of internal components of the chip, such
as the values of RP and SP. These status signals are described in more detail in
a subsequent se ction of this paper.

ELECTRICAL CHARACTERISTICS

The MAC-8 is a static microprocessor capable of operating at clock frequencies
in the 0 to 2 MHz range. All pins are transistor-transistor logic (TTL) compati­
ble' with each output capable of driving one standard TTL load. Total power con­

sumption is below 200 m W at 2 MHz.

TIMING

Preliminary timing waveforms are shown in Figure 2- 2. The address bus and
read signal are updated at the start of each machine cycle, which for sufficiently
fast memory is a single clock cycle. The read Signal specifies the direction of
data flow on the data bus and, therefore, remains low for two successive read
cycles. The data bus is strobed at the end of each read cycle.

2-3

TABLE 2-1

MAC-8 DIP PINOUT

Function

Address a15
a14
a13
a12
all
a10
a09
a08
a07
a06
a05
a04
a03
a02
a01

Data
aOO
d7
d6
d5
d4
d3
d2
d1
dO

!Read Clock
!Write Clock
Data Ready

! DMA Request
! DMA Acknowledge
! Interrupt Request
!Reset

Clock
Clock
Clock
Status
Status
Status
Vcc
Vdd
Vss

Out
Resonator Pin 0
Resonator Pin 1 or In
s2
sl
sO
+5V
+12V
OV

Pin No.

12
11
10

9
8
7
6
4
3
2
1

40
39
38
37
36
14
15
16
17
18
19
20
21
22
23
35
33
34
24
25
32
31
30
28
29
27

5
26
13

! is logical negation, indi cating active low signal.

2-4

rTeK ~500NS~ r- TCOl -t-TCOH1
ClKOUT ~ V ta.~ __ ~' _~ __ .-.' L

~ j4- TeA :
ADDRESS -~~=-=-=:-==::""":"':"'::-:-:=--r::>l:or-------:==::-:-:-~:-------,~
BUS WI ADDRESS VALID fAA ADDRESS VALID ®J

: : -+I \.- TRye

DATA ~~'~'~~~~~~~~~~~~~~ READY .i %*itif@ ~
:: .

READ

WRITE

DATA
BUS

II

.' READ -+11+ TeA

~

WRITE

READ ::J' ,
~Tew-.l ~ j4- Twe

WRITE =:w ~r:ocA... __ ..IIW' ~
-.I Teo ~

DATA BUS ~

~ ASSUMED INVALID OR DON'T CARE

Figure 2- 2 - Preliminary Timing Waveforms

A write access cycle includes a write pulse that is activated after the address
has stabilized and returns high 50 ns (nominal) before the end of the cycle. Both
write and nonaccess cycles have a high-logic level on the read pin, indicating that
the on- chip data bus drivers are activated.

Slow memory or I/o ports are accessed via the data ready input. Prior to each
midcycle, the data ready input is strobed by the chip. Detection of a lOW-logic
level causes the machine cycle to be extended until a high level is strobed. The
machine cycle is terminated during the second half of that clock cycle. It

should be noted that the data ready input is ignored during nonaccess clock cycles.

DMA, interrupt, and reset inputs can be changed at any time, and are appropri­
ately strobed into the MAC-8. Interrupt and reset inputs are strobed at the start'
of the last machine cycle of each instruction or function. A low level on either
input begins a sequence of states that pushes the control register (CR) and PC onto

2-5

the stack, clears the interrupt enable flip-flop, and applies address X(FFFF) to
the address bus. If interrupting, the peripheral hardware should respond to this
address with a vector on the data bus that, when combined with a high byte of
X(OO), forms the pointer to the interrupt handler. Reset automatically vectors
to address X(OOOO). The similarity of the reset and interrupt operations is
intentional, allowing the reset to be used as a nonmaskable interrupt.

The logic level on the DMA request lead is monitored at the beginning of each
machine cycle. If a request is detected, a low-going DMA acknowledgment is
generated as the read and write drivers and the address bus and data bus drivers
are switched to their high-impedance states.

STATUS

The remaining MAC-8 pins are the status outputs. These signals indicate when

the address and/or data bus contains information about internal status (such as
RP and SP) or if an internal condition of special significance exists. Since the
above situations cannot always exist, one of the status indications represents "no
other reportable status." Seven other independent internal events are each
asSigned a 3-bit status code. See Table 2- 2 .•

TABLE 2-2

STATUS ASSIGNMENTS

status
Function (S2, Sl, SO)

PCT Opcode Fetch 000
PC Opcode Fetch 001
RP Change 010
PCF Opcode Fetch 011
No Reportable status 100
Halt 101
SP Change 110
Trap 111

The RP and SP codes indicate that, during the next machine cycle, the RP or SP,
respectively, will appear on the address bus. Each instruction that can result in

2-6

a change in either pointer will contain at least one appropriate status signal. The
last SP or RP status signal of any instruction or function will correspond to the
final correct internal pointer value.

Similarly, status signals PCT, PC, and PCF indicate that an operation code
(opcode) fetch is scheduled for the next cycle. As mentioned previously, this is
also the cycle in which the interrupt and reset inputs are strobed. If the machine
cycle following one of these status indications is a read access cycle, the follow­
ing statements are true.

• A new instruction has begun.
• The address bus contains the pointer (PC) to the opcode.
• The data bus contains the opcode.

If it is not a read access cycle, the beginning of an interrupt-reset sequence is

indicated.

The PCT Signal differs from the other two indications because it indicates when
the fetch causes a discontinuity in the program flow. This makes it useful for
program tracing. The PC and PCF signals correspond to in-line fetches (i. e.,
no discontinuity). The PCF signal is unique in that it indicates when the other­
wise idle data bus is used to output the condition register.

One of the MAC-8 instructions is the HALT instruction, which switches the bus
drivers to the high-impedance state and puts out the halt status indication. The
status signal remains as long as the state is maintained. The halt state can be
terminated only by a reset or an interrupt.

The final status output is trap. The Signal is generated when the control logic
array gets lost in the execution of an instruction. The only predictable use is
when an unassigned or illegal opcode is encountered. A trap results in the chip
going through the same sequence of states as an interrupt or reset (the CR and PC
are pushed) until the interrupt acknowledge. At this point, control is transferred
to address X(0008). Interrupt-reset acknowledge is not generated. The interrupt
enable flip-flop, however, is reset.

The unassigned opcodes, of which there are 53, can be used with their functions
defined by the trap handler. For example, one-byte calls can be implemented

2-7

easily. One application already in use is the insertion of one-byte break points.
It should be noted that the value of PC pushed on the stack is two past the 10 cation
of the invalid opcode.

SUMMARY

The MAC-8 is a bus-structured microprocessor having access to a 65K 8-bit
memory space. The simple bus structure makes the accessing of commercially
available medium and large scale integration (MSI and LSI) peripherals, includ­
ing memories, straightforward. The microprocessor is equipped with DMA,
interrupt, and reset features. In addition, power-on reset, static operation, low
power, and a single-phase internal clock make the microprocessor a viable candi­
date for a broad spectrum of applications. The memory accessing modes and in­
structions are generous compared to outside alternatives. 2 A convenient set of
status outputs is not only attractive from a hardware point of view for applica­
tions such as trace tables, memory allocation administration, sanity logic, and
usable unassigned opcodes; but also contributes significantly to the testability
(in reasonable detail) of the chip.

2-8

REFERENCES

1. D. E. Blahut and R. C. Brainard, MAC-8 Microprocessor

Hardware Manual, TM-76-4391-3, TM-76-1353-7, June 17,

1976.

2. S. T. Campbell, MAC-8 Microprocessor Summary, Memorandum for

File, Case 38565- 2, March 8, 1976.

2-9

IN-HOUSE MICROCOMPUTERS

DESIGN AND FABRICATION OF THE MAC-8 MICROPROCESSOR CHIP

J. A. Cooper, Jr., and R. H. Krambeck, BTL Dept 2261, MH, NJ

ABSTRACT

The MAC-8 microprocessor chip was designed and fabricated using
silicon-gate complementary metal oxide semiconductor (CMOS) tech­

nology. However, many of the circuits are not CMOS, but n-channel
metal oxide semiconductor (NMOS) with p- channel load devices. These
circuits, called pseudo-NMOS, dissipate more power than CMOS but
have layout advantages for gates having more than four inputs. The
performance characteristics of CMOS versus pseudo- NMOS as used in
the MAC-8 are discussed first.

Next, an overview of the major circuits in the MAC-8 is presented.

Internal timing waveforms are derived from CMOS delay elements
which partially compensate for processing variations. Control is ac­
complished primarily by a programmed logic array (PLA), imple­

mented in dynamic pseudo-NMOS. The PLA sequences the micropro­

cessor through the state diagram and provides internal control signals.
The control Signals produced by the PLA are encoded and must be de­

coded by CMOS gates which control the register, arithmetic, and logic

unit (RALU) section. The RALU contains an 8-bit arithmetic logic unit
(ALU), implemented in static pseudo-NMOS, a 4- by 16-bit static CMOS
random-access memory (RAM), a 16-bit CMOS address arithmetic unit

(AAU) , and a master multiplexer implemented with complementary

transmission gates.

3-1

INTRODUCTION

The object of the MAC-8 microprocessor program is to produce a microprocessor
uniquely suited to Bell System needs. The development of the architecture an~
proposed program set, therefore, involved inputs from many parts of the Bell
System. Similarly the choice of a technology to implement the MAC-8 was based
upon inputs from several Bell Laboratories departments.

The technology that was chosen was CMOS. The main reason for this choice is
the great flexibility in cir cuit design that is possible when both p- and n- channel
transistors are present on the same chip. For example, simple one- and two­
input gates, such as those found in the latches and on-chip registers, are made
with complementary circuitry. Thus a great advantage in power consumption,
compared with NMOS, is gained without using Significantly more area. Mean­
while, highly complex combinational gates found in the ALU and PLA are
implemented using pseudo- NMOS, just as in NMOS except that the load tran­
sistors are p- channel. As a result the areas of these circuits are also compar­
able to those of their NMOS counterparts. Moreover, since the outputs of these
circuits are transferred to static latches, they need not consume static power.
Therefore, overall chip power is still comparable to the power consumed by an
all- CMOS chip.

Consequently, the gate density of the chip is comparable to NMOS but has a power
consumption more typical of CMOS. Flexibility in supply voltages is also typical
of CMOS. The chip is expected to operate at 2 MHz with a supply of 12V and with
supply voltages of between 4. 5 and 13V. A second 5V power supply is required
to operate the on- chip transistor-transistor logic (TTL) interface circuitry. Some
special features of the chip are TTL- compatible inputs and outputs and a crystal
oscillator circuit.

CIRCUIT DESIGN

The flexibility of CMOS permits the use of different kinds of circuits for different
parts of the microprocessor. Figure 3-1 shows how the area of the chip is occu­
pied and the kind of circuit used in each section. There are three: CMOS for
registers and simple gates, dynamic pseudo- NMOS for the PLA, and static
switched psuedo-NMOS for the ALU. These circuits have been chosen for the
following reasons.

3-2

TIMING
(CMOS)

-

~

PLA
DYNAMIC

(PSEUDO NMOS)

FLAG
REGISTER

T I LATCHES (CMOS) I
~ C INTERCONNECT

NM

G ~ DECODERS (CMOS)

'--- A
D
DL
RA
ET
SC
SH

E
S

~CMOS

RAM
AAU AND

(CMOS) MULTIPLEX
(CMOS)

ALU
SWITCHED

(PSEUDO NMOS)

OUTPUT DRIVERS AND PADS

Figure 3-1 - Block Diagram of Chip

0
U
T
P
U
T

D
R
I
V
E
R
S

T
A
N

A D
T P
B A
C D
M S
0
S

A substantial part of the chip area holds registers for storing data and drivers
for providing buffering. Figure 3-2(a) shows the circuit used for a pair of cross­
coupled inverters using CMOS. The corresponding circuit for NMOS is shown in
Fig. 3-2(b). As can be seen, both require four transistors and would take about
the same area. However, although both are static, only the NMOS circuit re­
quires Significant current to hold its data. It is therefore advantageous to use
CMOS for making inverters and registers. There is little penalty in area and
negligible static power consumption. For most of the random logic in the control
part of the chip, CMOS is also used. A two-input NAND or NOR gate uses four
transistors in CMOS, compared with three in NMOS, so some additional area is
used, but overall impact on chip area is slight. CMOS is also used for the AA U
where most of the gates are also relatively simple.

The gates in the ALU were not well suited to CMOS because of their great com­
plexity. Figure 3-3(a) shows a typical ALU gate using CMOS and Figure 3-3(b)
the corresponding circuit using pseudo-NMOS. The CMOS has almost twice as

3-3

many transistors and would take about twice the area. However, the pseudo­
NMOS circuit has two important disadvantages. First, it consumes power when

its output is low. Second, the requirement that the output be low when any n­
channel path is in use forces the choice of a poorly conducting load transistor.
As a result pullups are much slower than pulldowns. The static NMOS circuit
would therefore be relatively tardy.

To alleviate the first problem, a switch was added to the pseudo- NMOS circuit
so that it could be turned off when not being accessed. An n-channel transistor

(a) (b)

Figure 3- 2 - CMOS and NMOS Memory Elements

P CHANNEL

P CHANNEL Cj

N CHANNEL

Cj Y4

Y5
X7

Y4
Xs

Y5 X7 Ys

Ys
Y7

~

Y7
(b)

-=
(a)

Figure 3-3 - CMOS ALU and Pseudo-NMOS Gates

3-4

was used between the circuit and ground. Since the ALU is accessed only once
about every six cycles, most of the power drain has been eliminated in this way.
The problem of slow pullups is handled by arranging the circuit so that all
pseudo- NMOS nodes are pre charged high during the intervals between accesses
and no pullups ever occur during access. Such an arrangement is illustrated in
Figure 3-4. The first stage is turned on only after all inputs are stable. There­
fore, its output either stays high or is pulled down. The CMOS inverter driven by
the first stage converts the output to a rising Signal. (CMOS pullups are fast so
this pullup does not significantly increase access time.) As a result, the inputs
to the second stage are either fixed or make a low-to-high transition. Therefore,
the second-stage output, like the first, stays high or is pulled down. The inputs
to the third stage make high-to-Iow transitions. Therefore, third-stage turnon
is delayed until all of its inputs are stable. Finally, the output of the third stage
is buffered by a CMOS circuit for delivery to other parts of the chip. The result
is a circuit with the area of NMOS but with a small power drain and speed con­
siderably faster than a standard NMOS circuit.

The PLA presents a somewhat different problem. It must be accessed every cycle,
so the circuit used for the ALU would not be suitable. Its gates are quite complex,
so CMOS would waste considerable area. For the PLA the slow pull-up problem
was eliminated by the clocking arrangement shown in Figure 3-5. The p-channel

r-

I
I
I
I
I
I
I
I
L

A

N CHANNEL
NETWORK

BLOCK 1

B C

BLOCK2- -,

I
I
I

OUT I
I

N N
CHANNEL I CHANNEL I
NETWORK NETWORK

I I
____ ...L ____ J

CLOCK I r H
IL..--
· _-------I DELAY _ (LOW = . .

PRECHARGE) • _

Figure 3-4 - ALU Block Diagram

3-5

load is on only when the n- channel switch is off. Each stage is precharged by a
low clock signal and accessed by a high clock signal. The delay in access of the
second stage is necessary to ensure that its inputs are stable before access begins.
The result is a circuit with the area of NMOS but with no static power drain. As

in the ALU, speed is maximized by the elimination of pullups during access.
Since the outputs are dynamic, each is fed into a latch which is strobed after the
second-stage outputs are correct and before precharge for the next cycle begins.

CHIP REALIZATION

The chip was fabricated on the Murray Hill CMOS line. A photograph is shown in
Figure 3-6. The chip is 5. 9 by 5. 55 mm and contains approximately 7500 tran­
sistors of which over 80 percent are n-channel. It is shipped in a 40-pin dual

in-line package (DIP).

The chip and its constituent parts were tested extensively both on the bench and
on the Murray Hill automatic test system, the Sentry 600. Data on access times
of various circuits were gathered as an example. Figure 3-7 is a histogram of
AAU access time for 16-bit increment. The maximum allowed value is also
shown. A sequence of test vectors developed by R. Gallant is also part of the
Sentry test and, when complete, will exercise all transistors on the chip. The
oscillator circuit has been successfully operated with crystals of 1, 2, 3, and 6
MHz, showing wide margins with respect to actual demands. The power re-

CLOCK IN

INPUTS

N
CHANNEL

ARRAY

N
CHANNEL

ARRAY

Figure 3-5 - PLA Block Diagram

3-6

LATCH
OUT

Figure 3-6 - The MAC-8 Microprocessor Chip

quirements as a function of frequency and applied voltage are presented in Figure
3-8. Packaged samples are now available or soon will be, and Bell Laboratories

design information (LDI) transmittal is scheduled for January, 1977.

3-7

en
a.
::I:
<.>
LL
0

0:::
W
III
~
::::>
z

80

60 l-

40 I-

20 l-

o
10-7

I I I I
1 ALLOWED

MAXIMUM

4 x10-7

AAU DELAY

Figure 3-7 - AAU Delay for 16-Bit Increment for 196 Functionally Good Chips

3-8

a::
w
~
o
a..

.1

,01
/

.001

FREQUENCY -Hz

TYPICAL

WORST
CASE
CUT OFF

/
/

/7
/ I

/ 19V
/ I

1.5 /
MHzl

I
/

/
)

* 10V, 100mW

t

Figure 3-8 - Power VS. Frequency, Showing Worst Case and

Typical Frequency Cutoffs

3-9

IN-HOUSE MICROCOMPUTERS

TESTING AND DEBUGGING OF MAC-8 SYSTEMS

C. F. Shupe, BTL Dept 8623, HO, NJ
K. W. Johnson, BTL Dept 4391, HO, NJ

B. B. Hofmann, BTL Dept 4393, HO, NJ

Testing shows the presence, not the absence, of bugs.
E. W. Dijkstra

A debugged program is one for which you have not yet found the condi­

tions that make it fail.
J. Ogdin

Debugging is an art.
E. Yourdon

ABSTRACT

The main objective in designing the MAC-8 microprocessor software

testing tools was to give the MAC-8 user the ability to test at the

source code, as opposed to the object code, level. The goal was achieved

by using modern software testing techniques from the data processing
industry.

The MAC-8 software testing tools are (1) the MAC-8 software simulator

(m8sim) and (2) the program logic aid (PLAID) development system.

This paper describes the high-level functional design of m8sim/PLAID
and its implications for the MAC-8 user. An important aspect of the

design is the compatibility between m8sim and PLAID in spite of the

differences in their host environments.

4-1

INTRODUCTION

The testing of any piece of software is apt to be slowed by the discovery of an
error. The discovery of the error's cause (the bug) is termed debugging.
Correcting the bug allows testing to resume.

Testing, debugging, and correcting are facts of life in any software project. The
confusing aspect of microprocessor software is the obvious hardware nature of
the processor itself. After all, when we program a large computer in a high­
level language we don't worry about the interrupt pending bit or other real-time
considerations. We also tend to think of a microprocessor plus software in terms
of its hardware equivalent. But the reality remains that to have a microprocessor
perform useful work, we must write, test, debug, and correct software. Any
real-time aspects of the application only make these tasks more challenging.

This paper describes the high-level techniques and capabilities that have been
designed for the testing, debugging, and correcting of software for the MAC-S
microprocessor. Some features will not be implemented by the time of
publication.

In the MAC-S support system (see Figure 4-1), software source code is first
written in the C and/or assembly language and is then compiled and linked into
object code. An example of source code is "A=B;" and its corresponding object
code is a numerically coded MAC-S move instruction which includes the absolute
addresses for symbols A and B. MAC-S object code is tested interactively by the
software simulator mSsim 1 or, in a hardware environment, by PLAID. The mSsim
and PLAID are the MAC-S debugging aids and the components of the simulator/
PLAID (S/P) subsystem for the MAC-S.

Software testing consists of varying certain conditions (such as inpu~ data), ob­
serving how the software reacts, and comparing this behavior with the expected
behavior. With m8sim all inputs to the program are contrived by the user, and

the behavior of the program is monitored solely through the output that mSsim
provides. In PLAID the user program runs in its intended real-time environment
in which the user can modify the inputs and monitor the behavior of the program.
The user by means of either debugging aid seeks the cause of erroneous software
behavior. Once the cause is found and a cure is devised, the user makes the
correction at the source level and obtains new object code. Testing then resumes

4-2

C
SOURCE

CODE

SIMULATOR
[M8SIM)

14-___ ~ASSEMBLY
SOURCE

CODE

PROGRAM
LOGIC AID
[PLAID)

Figure 4-1 - MAC-8 Support System

on the now- modified program. It is important to note that the user software is
exercised at the object code level whereas the user is thinking in source code
throughout the pro cess.

THE ASPECTS OF HIGH-LEVEL DEBUGGING

Our knowledge of high-level debugging, developed and refined in the large­
computer environment, has been applied to the MAC-8 microprocessor. 2

The Sour ce Code Philosophy

Early in the development of the MAC-8 support system (see Figure 4-1), the
source code of the user was defined as the basic unit of the system. This
philosophy resulted in the following features •

• The editor, which is used to enter and change the source code,
is line-number driven as well as context driven .

• Compiler and assembler diagnostics reference the line number
of offensive sour ce code.

4-3

• All user'software changes are made at the source code level,
ensuring that source and object are always in agreement .

• The m8sim and PLAID allow the user to debug using the
symbolic names in the source code, in addition to providing
a line-number mapping between source and object.

The Command Language

The second aspect of high-level debugging is the necessity for a command lan­
guage with the following characteristics. First, interactive aids, which require
a command language for communication of requests, are necessary for efficient
debugging. Second, when there is more than one debugging aid (as is common in
microprocessor applicatiOns) a single command language is desirable for the sake

of user sanity. And finally, the high-level command language for the debugging
aid must be consistent with the environment in which it is used.

Of these three requirements, matching the command language to the user's needs
as well as to the operating environment is the most difficult. The user acquires a
worldng knowledge of the C language, used in both the MAC-8 C compiler and the
assembler and of the UNIX operating system, host of the MAC- 8 support system
(auxiliary support for PLAID). As m8sim and PLAID are in a UNIXIC environment
with which the user is familiar, we deduce that the command language for these
debugging aids must somehow be consistent. But since neither the C language nor
the UNIX command language alone was suitable as a debugging aid command lan­
guage, an sip command language was purposely designed to incorporate the best
features of each: the conventions for entering m8sim and PLAID commands,
plus the underlying command syntax, are in agreement with UNIX; the C influence
appears most obviously in the expreSSions and value assignments as written in the
command language.

Let's consider the C language text "A=B+2*D;", which in English reads: "AsSign
the value of the expression B+2*D to the symbol A." This is a typical C statement
which a user might write for a MAC-8 application in which A, B, and D are sym­
bols known to the C compiler. However, expressions and value assignments are
also essential for displaying and changing values in the debugging process. As a
result of the sip command language design, the statement "A=B+2*D;" is also a
valid command for both m8sim and PLAID and has the same meaning for them as

4-4

it does for the C compiler. Thus a MAC-8 user need know only one way of ex­
pressing" A=B+2*D;" to be immediately able to evaluate proposed source-level
changes in either m8sim or PLAID.

The sip command language allows the user to enter explanatory comments in C
syntax, along with the commands themselves. Comments are as useful in the
debugging process as in the writing of source code and the command language is
consistent in this respect with C.

By providing a generalized based-number representation which permits the user

to express quantities in any reasonable number base the sip command language
has surpassed even the C language. There are additional important Similarities,
which we will not discuss, between C and the command language. In summary
the consistency of the sip command language with the source languages and
operating system is an important aspect of high-level debugging.

Functions

The third and most Significant aspect of high-level debugging is the collection of
functions which the debugging aid can perform for the user. In this regard the
techniques of large- computer debugging can serve the particular needs of the
microprocessor user.

In practice the user enters a command which causes m8sim or PLAID to perform
a particular function, the selection and sequence of which must always be under
user control. The m8sim and PLAID functions fall into one of the following
categories: basiC, Simulation/execution, or auxiliary functions •

• Basic Functions: The underlying power of m8sim and PLAID is de­
rived from the user's ability to converse symbolically, as well as in
absolute terms. The symbols are defined in the source code of the
user, by the MAC-8 architecture (including the on- chip registers,
such as the program counter, and the user registers in random-access
memory [RAM]), or by the user within m8sim or PLAID. The latter
type of symbol includes timers and pseudovariables, which are
treated like user program symbols but reside outside of the program

memory space; the actual use of timers and pseudovariables will be

4-5

discussed later. Numerical quantities may be expressed using a
based-number convention, which is supported for bases 2 through 36.

Symbols and numbers may be combined into expressions using a sub­
set of the C language arithmetic operators. Examples are the famil­
iar addition and subtraction, the logical operators, and the ever­
useful "address of" and "pointed to" operators. In fact, m8sim and
PLAID are great based-number calculators because of their ex­
pression- evaluation capability, but their power and flexibility really
become evident during the simulation (in m8sim) or execution (in
PLAID) phase of a user program.

There is, of course, the necessary function for displaying values of
symbols, registers, and expressions. Just as important is the value

assignment, mentioned previously, by which the user can change the
registers, symbols, or pseudovariables. Another function lists all
registers .

• Simulation/Execution Functions: The simulation/execution monitoring
functions for a user program are concerned with (1) memory manage­
ment, (2) simulation/execution control, (3) breakpoints, and
(4) timers.

Memory management functions allow the user to define the memory
space, i. e., to specify read-only addresses and input/output (I/O) ports,
and to load user programs into the simulated or real memory. The
control functions cause actual simulation or execution to begin.
Breakpoint functions allow the user to define and remove interruptions
of simulation/execution. Breakpoint definitions are classified as con­
ditions and actions. Conditions are written as expressions, with the
ability to specify user memory read and/or write accesses as operands.
The actions are sets of sip commands, to be executed whenever the
conditional expression is true. In addition to the traditional break-
point sequence in which control is always returned to the user,
simulation! execution may continue automatically if the user desires.
A pseudovariable, for example, can be automatically incremented
into a subroutine; the user may later interrogate this quantity as
an indication of subroutine usage.

4-6

There are two types of timers: range timers, which are active only

when the program counter is in a specified address range, and extent
timers, which are turned on or off under explicit user control. Range
timers are particularly useful for measuring code efficiency, whereas
extent timers are more useful for real-time debugging and critical

path evaluation.

A noteworthy feature of the simulation/execution function is the

ability to inform the user of how simulation/execution is progressing
by printing out the source code which corresponds to the simulated/
executed instructions. This code is extracted from the original

sour ce file of the user and includes comments made in the

sour ce language.

Traces, the past history of simulation/execution, are most useful in

PLAID where a program may be run in real time, stopped, and then
diagnosed. There are two types of traces. One is a list of recently
simulated/executed instructions, and the other gives a history of
program control transfers .

• Auxiliary Functions: A high-level function lets the user avoid the
typing of repetitious command sequences. The user defines a named

set (a block) of sip commands; instead of a regular command, the
user can then enter the block name to execute the set of commands.

Another high-level feature allows the user conditionally to execute an
sip command. This option is useful for establishing a decision se­
quence within breakpoint actions. The presence of a conditional in

the command language, incidentally, is another similarity to the
C language.

The help function, as its name implies, is designed to give the user
reference information about the sip on demand. It is essentially a
built- in reference manual which can easily be updated to make the

latest information available to the user.

Other functions offer the user the ability to: (1) interrupt, and later
resume, a debugging session with no loss of effort; (2) exercise

control over the content and format of the m8sim/PLAID output; and

4-7

(3) draw command input from a file. There are other functions

which we will not discuss here.

THE SIMULATOR AND PLAID ENVmONMENTS

The high-level debugging features, just described, are available in both the MAC-8
simulator m8sim and. PLAID (when connected to UNIX). The rationale for using
both m8sim and PLAID is, of course, based on (1) the wide availability and low
cost of m8sim and its utility in debugging logical programming errors, and
(2) the ability of the PLAID user to diagnose real-time, software, and hardware
problems and to verify real-world operation. Of necessity, then, there are some
differences in the environments and uses of m8sim and PLAID.

The MAC-8 Simulator (m8sim) Environment

The host for the MAC-8 support system (see Figure 4-1) is the UNIX operating
system, which provides time-shared computing for multiple users. Each user
accesses UNIX through a remotely located ASCII terminal a la modem. In pre­
paring a software program for the MAC-8 the user builds a source code file using
the UNIX text editor. The source code is compiled, assembled, and linked, re­
sulting in an object code file. At this point the user may invoke m8sim and evalu­
ate the functioning of the application program. Initially, in the testing phase the
incidence of bugs is high, requiring numerous iterations of debugging and correct­
ing the source. Although the user leaves m8sim to make source corrections and

to construct a new object file the overhead time involved is minimal. At some
later point the user becomes confident that the m8sim testing has revealed most
logical programming errors and is thus ready to test in the hardware environment.

The PLAID Environment

Before actually discussing the PLAID environment we first need to mention its

architecture and options. PLAID is itself a hardware unit to which the user con­
nects a standard ASCII terminal in order to communicate with PLAID and, through
PLAID, with UNIX. There is a built-in modem for establishing the phone line tie
with UNIX. Although PLAID may be operated with reduced capabilities without
UNIX, we assume in the following discussion that the PLAID- UNIX connection has

4-8

been established. An external microprocessor access and control (MAC) cable
enables connection to be made with the user application system hardware. (The
free end of the cable clamps onto the processor dual in-line package [DIP] socket
in that system.) Finally, as an option a floppy disc may be attached for the local
storage of object code and object code symbol tables. The user may thus minimize
the transmission time of new object code from the UNIX system and utilize the
local linker for the object software.

PLAID has an internal master subsystem, which performs executive and command
processing functions, and a slave subsystem, which can be used in a variety of
useful ways. The slave has a bus to which are connected the MAC cable, a MAC-8
microprocessor, a 65K RAM, and 36 I/o ports. Any combination of IK RAM seg­
ments can be overlaid by 1K programmable read-only memories (PROMs), the
procedure followed in the later stages of the development of an application. The
slave I/O ports can be enabled or disabled in groups of 12.

PLAID may be operated in the basic mode in which case it functions very much
like m8sim. With the slave processor executing the user program from the
slave RAM and the program I/o directed through the slave I/o ports, the user
will find few functional differences between m8sim and PLAID. The basic mode
is typically employed during the initial implementation of a system when hardware
development and software development are proceeding simultaneously. The fact
that the three components of the slave - the processor, memory, and I/O ports -
can be independently substituted for the user processor, memory, and I/o ports
gives the user very powerful hardware prototyping capabilities. In a typical
situation the user program in slave RAM will be executed by the user processor
with a mixture of slave and user I/O ports, while execution is monitored by the
PLAID master via the MAC cable. As the user hardware grows during develop­
ment, less and less of the slave hardware is used, until such time as the system
is complete. After completion PLAID is also quite useful in mOnitoring system
operation and diagnOSing hardware and software failures. Consequently, through­
out the life of the user system, PLAID allows the user to test in real time (with
the possible exception of breakpoints) with real I/O activity.

SUMMARY

The MAC-8 support system has proven the initial assumption that state-of-the-art
techniques drawn from the large-computer environment can be successfully applied

4-9

to microprocessors. Specifically, the high-level facilities in m8sim and PLAID
are designed to ease the testing, debugging, and correcting burden by providing
the necessary interfaces between the user and the user object code. We empha­

size the advantages of a single command language for both m8sim and PLAID. In
addition the combination of m8sim for simulation and PLAID for execution moni­
toring and hardware prototyping gives the user maximum flexibility in the testing
and debugging of MAC-8 systems.

We would like to acknowledge the many people who, through their suggestions and
criticisms, have contributed to the design and implementation of both m8sim and

PLAID. steve Campbell, in particular, deserves recognition for his participation
in the original design pro cess. 2

4-10

REFERENCES

1. C. F. Shupe, MAC-8 Simulator (m8sim) User Manual, Version 1. 2,

Memorandum for File, Case 39898-14, June 30, 1976.

2. S. T. Campbell and C. F. Shupe, MAC-8 Simulator/PLAID Design

Specification, Memorandum for File, Case 39898-14, June 30, 1976.

4-11

IN-HOUSE MICROCOMPUTERS

THE MAC-8 IN A USER ENVIRONMENT

F. B. Torres, BTL Dept 4391, HO, NJ

ABSTRACT

The first bona fide application of MAC-8 in a true working environment
is the PLAID console. A wire-wrap version of PLAID, which has been
built and tested, demonstrates the relative ease with which MAC-8
works with a variety of peripheral devices, including the following:

• Intel 2116, 16K by 1 dynamic random-access memory (RAM)
with associated 3242 address multiplexer/refresh counter.

• Intel 2708, 1K by 8 programmable read-only memory (PROM).

• Intel 8255, programmable peripheral interface.

• Intel 8251, universal synchronous/asynchronous receiver­
transmitter (USART) •

• Intel 8253, programmable interval timer .

• Intel 8259, programmable interrupt controller .

• Vectron external clock oscillator.

PLAID has also shown that MAC-8 functions harmoniously with external
circuits providing such features as direct-memory access (DMA) capa­
bility, programmable wait state generation for slow memories, write
protection for selected RAM locations, and overlay of RAM locations by
PROM and input/output (I/O). In addition it has been demonstrated that
MAC-8 can indeed be used in a multiprocessor environment.

5-1

Other characteristics of the MAC-S which have been brought to light by
PLAID arethe ability to latch the contents of the on-chip registers from
the address and data buses, to recognize when the off-chip registers
are being accessed, and to snapshot the old and new values of the pro­
gram counter (PC) in cases of such PC discontinuities as JUMP or
CALL.

The purpose of this paper is to present selected circuits used in PLAID
which illustrate some of these features.

INTRODUCTION

The PLAID console contains two MAC-S microprocessors and numerous periph­
eral circuits. The processors work together as master and slave. The periph­
eral circuits perform functions such as dynamic RAM, PROM, I/O, wait states,
write protection, DMA, interrupt priority, user system monitoring, and links to
a terminal and UNIX. PLAID demands that the MAC-S be capable of functioning
with a wide variety of peripheral devices, including another MAC-S. The wire­
wrap version of PLAID demonstrates that these demands have been met with
relative ease.

This paper discusses several circuits controlled by MAC-S which are used in
PLAID.

RAM

The RAM circuit uses the Intel 2116, 16K dynamic RAM and the Intel 3242 ad­
dress multiplexer and refresh counter. Since timing constraints at a 2- MHz

clock rate prohibit both memory refresh and access in the same cycle, another
method of refresh had to be used. Because it slows down the processor, cycle
stealing was ruled out in favor of memory quadrant rotation, a scheme which
causes the MAC-S to access successive quadrants of memory on incremental PC
values (see Figure 5-1). While one quadrant is being accessed, the other three
are being refreshed. Address bits Ao and A1 are decoded to indicate to the four
Intel 3242s which quadrant is being accessed. The Intel 3242s apply address
bits A2 through A15 in two groups of seven bits to the quadrant being accessed
and the internal counter addresses to the quadrants being refreshed. During

5-2

MAC
8

A2- A 15

AO

DECODE

A1

65K OF READ-WRITE MEMORY

9""" 21165 9"""" 21165 9 '" 21165

0000 0001 0002
0004 0005 0006
0008 0009 OOOA
OOOC 0000 OOOE
0010 0011 0012

MEMA~ ~ ~
MQO MQl MQ2

CE (FROM
BACKPLANE)

~-
.. ~ .. ~ .. ~

ALO R R
ADDR(7) AHI

... ... MEM

MOO ... CNTL I"-

MOl'" INCLUDES ...
M02" 4 ...
M03" 32425

Figure 5-1 - Memory Quadrant Rotation

9""" 21165

[)OO (J
~OOO

000 ~-1 B
COOO (J
J-0Q!.

~
3--1

I MQ

I
I
L :4r

I
3 I

I
I

---J

R

clock cycles when RAM is not being accessed, all four quadrants are refreshed.
This method of refresh control permits operation of the MAC-S at frequencies
well below 2 MHz without danger of losing RAM data. We recognize the fact that
successive PC values are not always continuous, and occasionally the same quad­
rant may be accessed several times in succession. The chip enable (CE) input to
the memory control allows RAM to be placed in a high impedance state, permitting
PROM and I/O to overlay portions of the 65K available memory space.

Figure 5- 2 shows one quadrant of the actual circuit used in PLAID for RAM con­
trol. Row address select (RAS), column address select (CAS), row enable
(ROWEN), and COUNT are derived from the MAC-S clock on the central process­
ing unit (CPU) board. The write pulse (WR) is taken directly from the MAC-S.
The memory quadrant 0 (MQO) being accessed is derived from the two' least
Significant address bits. These signals provide the Intel 3242 with the informa­
tion it needs to control the RAM devices in quadrant 0 in either a memory access
or refresh operation.

PROM

The PROM circuit (see Figure 5-3) uses the Intel 270S, IK by S PROM. Address
bits An through A9 select the appropriate word in PROM, bits A10 through A13
select which of the 16 PROMs to access, and bits A14 and A15 are compared with
the quadrant select switches to determine if, in fact, PROM is being accessed.
The PROM present switches are also checked to see if the desired PROM is in
its socket and not turned off. If all conditions are met, the PROM circuit is
given access to the MAC-S databus, and the CE signal is forced low to keep the
RAM circuit turned off.

WAIT STATE GENERATOR

Figure 5-4 illustrates a wait state circuit that can be used with MAC-S. The de­
coder selects the addresses at which wait states are required. In this example a
single wait state is provided by the DE LAY flip-flop when the address falls in
quadrant 0 or quadrant 3.

Assume that, prior to cycle N, A15 is high and A14 is low. This arrangement
forces DCD low and the DATA READY signal high. DELAY is high since the

5-4

01
I

01

CPU RAM

H::
A,

",
"
"
"

~ A.

:;: A3

, A,I----
'::: Al

RAM

TIMING

..... CONTROL
A,

+5V~
A,

~ All

" I: :;: DATA READY

"

(4-ICs)

A10

A"

" I :! ~ H_O_LD_AC_KN_OWlEOGE
rl~~_*\L-_-_-'~:~~::~~~:O~E~=~E~ST ______ ~ ______________ ~ __ ~

~A12
All

A"
+ ~Dh ~ RESONATOR =-' J

,-_A_15~V~"-'-"~L---.-.:M=3=55=-3 -...1r ~ 5,

~ 07 52

0,

0,

O. MAC

~+12V

~-~---

l:: 8 ~ -REA-O-ClO-CK

0, ;::'L-___ ----"~-DO-

ROWEN . ..

CAS
~ ...

QUADRANT

CLK GATING ..
r

lY2 ICs

MQO
~~

po

AO .. MQl
--.. 74139

Al
~ DECODER MQ2

MQ3

COUNT r
RAS

WR

DO-OS
,

Figure 5- 2 - RAM Control

CASO

ROWENO.
po

INTEL INTEL
~-Os AL/AH/AR ..

3242 ... 2116

REFENO ..
COUNTO .. .

.
po

~

..
~ r

A, ~~,
A,

")
A,

"

AS
"
"

Vee '"

"
" A, ':
" AIO
"

" All ,
" AI2 _IL __

AU +
A14

AI5
M3553 Vss .:;

0,

0,

0,

0, MAC
03 8
D,

D,

A,

A3

A,

A,

AD

HOLD ACKNOWLEDGE

0 . '0

" V"

INTERRUPT REQUEST

CPU PROM
AO-A9

AlO-A13

QUADRANT
SELECT
SWS

Figure 5- 3 - PROM Control

16

27085
CS

INTEL
3205

DECODER

00-0 7

---r ~~,
A,

")
A,

" A. " ,I
Vee

"
" A, ':
" A"

All :!
A" r--IL--i
A" l __ ~_J A"
A"

Vss .: M3553

0,

0,

0,

o. MAC
D, 8
0,

0,

,

l-A,

" A,

" A,

, A,

CPU WAIT STATE
GENERATOR
A15

DCD

.....,OATA READY A B C 0

" ,

HOLD ACKNOWLEDGE

BRW ~ 74 19 3

"
"
" V"

Do

LOAD

DELAY

CLK Q Q

0

DATA READY

CL~ ___ ---,

A15

A~

D~ CPU INTERNAL STROBE 1 ______ _

DATAII.-----.l....I!i- - - - - - -1,------,'---_--__ t --
READY

DELAY

CPU INTERNAL
WAIT STATE

Figure 5-4 - Fixed Wait states

value of DATA READY is clocked into the flip-flop. After the start of cycle N,
assume that A14 goes high, forcing DCD high and DATA READY low. At mid­
cycle the MAC-8 strobes the DATA READY signal, finds it low, and sets its in­
ternal wait level. DELAY is cleared at the positive clock transition, and DATA

READY goes high again. During cycle N+l the strobe finds DATA READY high
and, clears its internal wait level. DELAY is again set, forcing DATA READY
low. If, in cycle N+2, the new address falls in quadrant 1 or 2, as depicted in
this example, DATA READY is restored to its high state and remains there until
the next time a wait state is required. If the new address is still in quadrant 0
or 3, the cycle is repeated. In this example the memory access called for by the
MAC-8 in cycle N was delayed until cycle N+l, hence a single wait state.

If more than one wait state is required for slower memory applications, a
counter may be inserted into the circuit. Here the number of wait states is de­
termined by the value loaded into the counter, plus one for the DELAY flip-flop.
The example shows two wait states being generated, but larger values may be
used. The number of wait states may be variable for different address locations
and may indeed be under program contro1.

PLAID uses a wait state generator which is under program control. The circuit
shown in Figure 5-5 uses a Fairchild 93L422, 256 by 4 RAM. Three of the four
bits are used to provide from zero to seven wait states for each of the 256 loca­
tions and are loaded into the counter discussed above. Since the control RAM
locations are accessed by the slave MAC-8 with its eight high-level address bits,
each location represents a page (block of 256 bytes) of MAC-8 memory locations.
The control RAM, which is initialized by the master MAC-8 under control of
software, also contains a memory disable bit which is used to turn off preselected
pages of slave memory. This feature can be used to implement write protection
or to allow the user to simply replace part or all of the slave memory with that
of the user's own.

DMA

DMA in PLAID is mainly used for the exchange of data between master and slave
memories. The circuit, illustrated in Figure 5-6, makes use of the National
DM8542 I/O register and two counters. The counters, preloaded by the master
with the starting addresses of master and slave, may be allowed to autoincrement

5-8

MASTER WAIT STATE
CPU GENERATOR

AS ~~, .. ~ A,
")

A,

A,

"

A,

A,
,I

A, ,I

"
AO

" A, ':
" A"
\ ~

HOLD ACKNOWLEDGE

All ,
" A" i _lL --

A" l __ ~_ A" 00-03
A\5 , So

VSS.::; M3553 , AO-A1S 5,

~'
5,

D, V"

DS
MASTER

D, MAC
D3 8
D,

D,
-00---,

C]1 RAM
I

to SLAVE CPU

AS ~:,
A,

"
A,

"

)

A,
" ,I Vet V' ,I IN
" A, ':

A" "
WAIT COUNT

"
.~ All ':

A" " CE 74193
A"

:-_IL __

+
A"

A\5
L ____ , So (TO RAM)

Vss .:; M3553 , 5,

D, 5,

D, V"

D, SLAVE
0, MAC
D, 8
D, ~

D, Do

Figure 5-5 - Programmable Wait states

c:.n
I

......
o

NATIONAL 8542 ,--------,
I I I
I I LATCH I
I i I
I " I
I I DA ~~:US DEMUX I I
I ~~ ~~ J I
I I
L -- - -r-- - -- - - - ~

MASTER SLA VE
DO -07 00-07

A,

A J

"

~
AS

+5V AS Vee

A,
A10

A"
-A12

All

A"

0,

Os

..... -----10.
03

0,

SLAVE
MAC

8

"

: ::]1-
'-: Al

:; AO

~ DATA READY

~ RESET

DMA

SLAVE
CPU

DO -07

~ CONTROL L n BITS ~

MASTER
ADDRESS
COUNTER
4-741935

WRITE --. ...
SLAVE

ADDRESS
COUNTER
4-741935

~:~Er/---+--"'~sJy

MASTER
CPU

MASTER SLAVE
AO-A15 AO-A15

~,

,.~ H" ~~, · A, •
") · A3

AJ • ,I · A,

A8 •
" " A,

" +5V Vee"

" " AO

" A, ': " DATA READY

A"
'I

" HOlD ACKNOWLEDGE
:r

A" ,i HOLiiREOurn
'-- A" i_1L __ ~ CLOCK OUT

A" l __ ~_J ~O~l A"

AIS · So
Yss" M3553

" s,

~
OJ ~ 52

0,

MASTER
~+12V

Os " RESET

0, MAC , INTERRUPT REQUEST

03 8 :::.,~

0, " READ CLOCK

0, ,
0-'-00,

Figure 5-6 - DMA Control

with each transfer, or one may be held stationary while the other is incremented.
Having these operations under program control permits the user a large degree
of flexibility. For instance, by holding the slave address fixed at an I/O port,
data transfer between the master and the I/O device can take place.

Data transfer occurs through the multiplexer- demultiplexer-latch circuitry of the
DMS542. The latch is necessary since timing constraints require two clock cy­

cles per word transfer between master and slave. Control signals are decoded
in a 74139 device to direct the mode of operation and to generate the appropriate
master and slave write and read signals.

MONITORING MAC-S REGISTERS

The contents of the on- chip registers appear on the data and address buses at
certain times during MAC-S operation. In order to know what is present on
the buses at any given time, it is necessary to know the status of the CPU
during the current clock cycle when the operation is under control of the
interrupt handler (IH) and a subroutine return (SUBRET) instruction is being
executed. In the circuit illustrated in Figure 5-7, CPU status is determined
by decoding the three status bits from the MAC-S. IH control begins when the
expected read signal from the CPU is not received in the cycle following an
IR fetch status. IR fetch status includes PC change, m fetch with condition
register (IRFC), and IR fetch without condition register (IRFC'). m control
ends with the reception of the next PC status. A SUBRET is detected by
decoding each instruction that appears on the data bus during the cycle
following an m fetch status. The instruction ends with the next PC or IRFC
status indication.

The contents of the RP or SP registers appear on the address bus during the cycle
following the RP or SP change status indication. The contents of the PC register
appear on the address bus during the cycle following an m fetch status, prOVided
control has not been transferred to the m. The contents of the condition register
are present on the data bus under the following conditions:

• During the same cycle that an IRFC status is received.

• During the same cycle that a PC status is received, prOVided that con­

trol is not transferred to m and a SUBRET is not being executed.

• During the cycle preceding that in which a PC status has been re­
ceived if a SUBRET is being executed.

5-11

SLAVE
AO -A 15

r :: ------1
~> -v

A,
)

"
AS ::

+5V~ \:

"9 I:
"

.A,~

::: rl ~-Ll..l!n~_~ h : ::~: ::~E:~LEDGE
.... ____ __1 A12 _\L__ ~,ClOCKOUT

A 13 ~ RHONATOR I Jh
A" + \J.L,~D·I

r-_A_"~V'~"~L~M=3=~-~3_JO' 5~~ ___ ~
-=E 01 ~ :~ J

Os ~+12V
Os SLAVE

...-----1 0, MAC
0, 8
0,

::: WRITE CLOCK

tJ.::: ... ~

H" A,

A,

A.

+SV~
A,

Am

A"

L..--- A"

A"

A"

A"
VSS;:;

~ 0,

0,

Os

- 0,

0,

0,

0, ,

~~,
~ , A,

') · A,

" · A, f---

" " A,

"
" · A,

"
"

, DATA READY

1 __ , HOLD ACKNOWLEDGE , ~ , CLOCK OUT

+ ~1]1 tJ-L-, RESONATOR 0
---- , 5,
M3553 , 5,

:::: S2

MASTER
~+T2V , -

RESET

MAC , ~
8

, ~
~ ... ~
::!-Do

0, '~~_O~~ 1
~-r-~-------------------------~

SLAVE
0 0 -0 7

LATCHES \, ---~ DATA (74273) h
I _ ~j.-..-~~----I~

.. .. 551
DECODE

GATE

1 SLAVE

f~lSTATUS

74138 {PC

I DEC~ /~ ~fFC
'----f----. ~ IRFC

SUBRET

SLAVE SLAVE

CLOCK " ,p + READ

LATCH ---.. ~ __ C_R_(;....2_-7_4_2_9_8-=.5)--I"" STROBES

~--__I"" SP (2-742735) fiIIIL..t---- 1--------------1 CONTROL
551

~--__I~.. RP (2-7 42735) fiIII~""""-- 9-IC5
....... ----------ll... L-----l... PC (2-742735) I0Il""'1----

I

~
RI / MASTER READ

STA~T)/~E-------------M-A-S-TE-R-A-D-D-RE-S-S-------_____ ~-~
MASTER DO -0 7

Figure 5-7 - Snapshotting MAC-8 Registers

In order to handle the last condition the data bus is latched at each clock cycle.
One other operation affects the condition register monitor: each time an rn
operation is detected, the interrupt enable (INTE) bit must be cleared.

The monitor registers are updated each time a change is indicated in the on-chip
registers and, if enabled, the circuit interrupts the master when a change occurs.
The contents of the monitor registers can be read by the master at any time.

CONCLUSION

I would like to acknowledge the work of D. E. Blahut, R. L. Ferch, and
H. B. Greene with whom I shared the circuit design for the PLAID console.
Clearly, there are many other interesting circuits in PLAID not covered in this
paper. Please call upon us at any time for further discussion of PLAID circuitry.
It is our feeling that the MAC-8 microprocessor is not only a device with power­
ful capabilities but also one that is interesting and enjoyable to work with.

5-13

IN- HOUSE MICROCOMPUTERS

MAC-4

D. C. Stanzione, BTL Dept 4391, HO, NJ

ABSTRACT

As the sophistication of our microprocessor technology increases and
our skill in the use of that technology matures, we are finding that the
benefits of memory-based large scale integration (LSI), customized
with software, are applicable to a wide range of Bell System products.
In particular, applications which require relatively few semiconductor
devices and have previously been considered either too cost sensitive
or lacking the complexity to justify use of a microprocessor are now
candidates for a single- chip microprocessor system - a single- chip
device containing central processing unit (CPU), memory, and input/
output (I/O).

The internal structure and characteristics of such a system contain­
ing CPU, program memory, data memory, and a sophisticated I/O
structure are discussed in this paper.

INTRODUCTION

A phenomenal growth in the development of integrated circuit technology has
occurred over the last several years. A familiar statistic is the yearly doubling
of the number of components on a single silicon chip and the forecast that this
rate of growth will be maintained for at least the next five years. 1 Confronted

with this capability in LSI, system designers are preSSing to define functional
blocks which will utilize it. The identification of the blocks is not simple. The high

developmental expense for LSI circuits requires that there be substantial justi­
fication for a particular device. Development of a device for a specific customer,

usually referred to as custom LSI, normally offers an implementation which

6-1

provides the lowest device cost for a given function, but it is accompanied by
lengthy development times and changing system specifications. These problems
become more acute as improved technology provides the opportunity for even
greater circuit complexity. Ideally, an LSI circuit would be catalog or off-the­
shelf, rather than custom, so that it might have a wider market base and be more
adaptable to changes in device requirements. Some early examples of successful
catalog LSI were memory components and calculator devices.

ENTER THE MICROPROCESSOR

As integrated circuit technology evolved, a revolutionary, rather than evolution­
ary, phase in the utilization of the technology occurred. The advent of the micro­
processor solved the LSI dilemma of lengthy development times versus changing
system requirements and also permitted the use of cost-effective LSI in products
with relatively low production volumes. The devices used in a microprocessor
system were still customized but based on an entirely different concept: software­
as opposed to hardware-customized LSI. The microprocessor system was now
tailored to a particular function by altering its program memory instead of con­
figuring hardware. Designs could be rapidly implemented and easily changed.

With the change in design technique to software- customized systems, real
innovation in hardware development shifted from the design of controller logic to
that of sophisticated I/O interfaces to the processor and system memory. Most
of the difficult problems in microprocessor design involve the application of
sequential, stored-program logic in areas where we have traditionally used
parallel logic. Most of the solutions to these problems are found in innovative
I/O interfaces.

SINGLE-CHIP SYSTEMS

As LSI maintained its seemingly unimpeded rate of growth, processors became
more complex; memory sizes continued to increase; and I/O devices gained in
sophistication. As the capability of the technology increased, it became apparent
that an entire system (CPU, read-only memory [ROM], random-access memory
[RAM], and I/O) could be combined on a single chip. The first devices of this
type, available about mid-1975, were revisions of existing calculator chips.

6-2

Instruction sets had a strong orientation toward binary coded decimal (BCD)
arithmetic with little emphasis on program control and I/O capability. The I/O
structures of these devices were slanted toward keyboard input and light- emitting
diode (LED) output. We are beginning to see newer systems with strong emphasis
on increased processor capability but with still fairly simple I/O structures. The
trends in commercial, single- chip systems are toward increased processor capa­
bility (more efficient instruction sets, higher speed, etc.) and larger program
and/ or data memory, but I/O architecture continues to be neglected despite the
significance of I/O in system implementation. The importance of I/O in single­
chip systems is emphasized since adding additional devices will Significantly im­
pact system cost.

The solution to the I/O probem is not an obvious one. While systems may have
commonality in the controller implementation of the system (CPU, ROM, RAM),
the I/O interfaces normally differ from system to system. The customization
that has been obtained through programmability for controller logic has not been
achieved for I/O interfaces.

MAC-4

The MAC-4 is a single- chip microprocessor device and is designed to extend
the design commonality of the microprocessor beyond controller architecture
and into the I/O structure of a system. The I/O structure of the MAC-4 pro­
vides a wide range of flexibility and programmability which has not previously
been achieved. This capability is coupled with a powerful CPU and an instruc­
tion set which is optimized for memory efficiency in control-intensive applica­
tions. (In the preliminary description of the MAC-4 device and architecture
which follows, the target specifications which were available when this paper
was written are discussed. The paper is based upon work done by the Low End
Microprocessor Study Group. 2)

CHARACTERISTICS

The MAC-4 architecture is structured around a 4-bit internal bus and 4-bit
memories. However, data operands may be any widths which are multiples of

4-bit nibbles. Arithmetic and logic operations are performed in nibble-serial
fashion within the processor. The operand length is determined by an internal
register which is set by the user program.

6-3

The MAC-4 instruction set is optimized for 1/0- and control-intensive applica­

tions. Particular attention has been given to memory efficiency since memory

space is an especially critical parameter in single- chip systems. Memory

efficiency is enhanced by various memory address modes, including several

memory-to-memoryoperations. The standard device has a 2K by 4 program

memory and a 64 by 4 data memory, excluding internal registers. The total

available address space is 4K by 4 bits.

The MAC-4 will be fabricated in Si gate, AI metal, complementary metal oxide

semiconductor (CMOS) technology. Target characteristics for the device include

a required supply voltage of 3 to lOY; an operating power of approximately 6 mW

to permit line powering of the device; a standby current (for retention of RAM

data) of 50 nA at 2Y; and a clock rate of 2 MHz at lOY operation and 400 kHz at

3. 5Y operation. The standard MAC-4 device will be packaged in a 40-pin dual

in-line package (DIP).

I/O ARCHITECTURE

The I/O architecture of the MAC-4 is designed to permit a wide range of flexi­

bility and to minimize package count in many types of applications. Features

within the I/O subsystem make possible data rates in the megabit range and allow

responses to input stimuli to occur in less than a microsecond. The capability of

the MAC-4 I/O subsystem impacts significantly on applications which previously

would have required either discrete logic or custom LSI.

One of the most innovative features of the MAC-4 is a programmable logic array

(PLA) (see Figure 6-1). In this configuration the state of the PLA is determined

by the user program and is a part of the PLA inputs. The other inputs are clocked

directly from device input pins. PLA outputs are latched every clock cycle, there­

by achieving submicrosecond response times to input signals. The contents of the

DEVICE INPUTS
... DEVICE OUTPU TS

T I/O PlA
STATE INPUTS ~~

C
H

"""-

~r

CPU DATA BUS

.... ...

Figure 6-1 - MAC-4 II 0 PLA Structure

6-4

PLA are programmed when the device is fabricated in the same mask step that

determines the contents of the system ROM.

Since a PLA may be used to implement specific logic functions {the CPU control­

ler logic is implemented with a PLA}, a user may program custom combinatorial
logic for a specific I/O function. This feature may then be coupled with the state
input provided by the CPU to achieve complex sequential logic functions tailored
to a specific application under program control.

A direct-memory access {DMA} capability is also provided in the I/o subsystem.
The ability to perform DMA operations allows the MAC- 4 to send and receive
bursts of data at megabit rates with no external hardware. The interrupt feature
on the MAC- 4 is implemented using the system DMA capability.

II 0 transfers may also be made under program control. These transfers can be
accomplished in either of two ways: special bit manipulation instructions provide
I/O capability at the bit level, or data may be moved in parallel using standard
data transfer instructions.

APPLICATIONS: SHORTCUT TO CUSTOM LSI

It is antiCipated that in most applications the standard MAC-4 device will be used.
Those in which high-volume production is expected will also use the standard de­
vice for prototyping, field trial, and initial production. However, the MAC-4 has
been designed so that it may be optimized for cost-sensitive products with high­
production volumes, a course which may be followed with relatively small, addi­
tional development effort.

Since approximately one-half of the standard chip is occupied by program and data
memory, reduction of memory for simpler applications is an excellent area for
possible cost reduction. Other areas include changes in I/O circuitry, the use of
smaller packages when changes in the I/O make this appropriate, and even opti­
mization of the CPU instruction set. These cost reduction techniques, coupled
with the flexible system architecture of the MAC-4, compare favorably with
device costs achievable with custom LSI. However, the problems of extensive
chip development and changing system requirements, associated with the latter,
have been dispensed with.

6-5

SUMMARY

As LSI technology continues to evolve, complete microprocessor systems are be­
coming single chips. The tailoring of a catalog LSI device by means of software,
rather than hardware, offers a number of substantial advantages. The MAC-4 is
a single-chip microprocessor system which provides an extremely sophisticated,
flexible I/O structure not previously available. This structure is combined with a
powerful CPU which has been optimized for memory efficiency and is especially
well-suited for 1/0- and control-intensive applications. The introduction of this
and similar devices into Bell Laboratories will allow deSigners to take full ad­
vantage of the rapidly advancing LSI technology.

6-6

REFERENCES

1. Gordon E. Moore, "Progress in Digital Integrated Electronics, "
Proceedings of ELECTRO 76, Boston, Massachusetts, May 11, 1976.

2. Final Report of the Low End Microprocessor Study Group (D. E.

Blahut, I. A. Cermak, W. F. Chow, J. A. Copeland, D. H. Copp,

J. I. Frederick, R. C. Hansen, V. K. L. Haung, C. A. Merk,

J. R. McEowen, D. R. Morgan, P. O. Schuh, D. C. stanzione, and
L. C. Thomas), Bell Telephone Laboratories, Holmdel, New Jersey,
May 28, 1976.

6-7

SUPPORT FACILITIES

THE PROGRAMMING LANGUAGES OF MAC-S

H. D. Rovegno and D. B. Kirby, BTL Dept 4393, HO, NJ

ABSTRACT

The MAC-S hardware design and software design have proceeded in
parallel, with strong interaction between the two groups. Each has in­
fluenced the other. The result is a total package of well integrated
parts, which have been designed to work together.

There are two C-based "languages being offered with the MAC-S: a

compiler language and an assembly language. Unlike other micropro­
cessor code development, it is anticipated that the compiler language
will be the primary language used for MAC-S. This is possible because
the compiler is capable of generating very efficient code, even though

it is designed to handle code generation in a systematic way. For the

unusual cases where some advantage can be gained, the assembler is
available. In appearance, the assembly language resembles the compiler

language, and offers some compiler-like features.

As the hardware and software have been designed together, so have the
software languages been designed to form an integrated family of s~ft­
ware support. This paper briefly describes the two MAC-S program­

ming languages.

INTRODUCTION

The rapid evolution of microprocessors has ~esulted in the availability of in­
creasingly sophisticated hardware without the corresponding sophistication in the

7-1

software support systems. Initial software offerings from commercial vendors
included only absolute assemblers and primitive simulators. Although several
vendors now offer compilers and some also feature relocatable code generation,
the microprocessor industry is only now starting to appreciate the impact of good
software support tools.

The MAC-8 has been designed from the beginning as a system in both hardware
and software aspects. The software subsystem consists of an integrated set of
tools featuring a compiler, assembler, linker, simulator and various utilities.
These UNIX-based1 tools all feature UNIX or C-based2 languages as user input.
This paper discusses the use of two of the tools: the compiler3 and the
assembler. 4

COMPILER

Even though microprocessor users tend to avoid using high-level languages be­
cause of apparent "inefficiencies, " surveys show that use of an appropriate high­
level language dramatically increases programmer productivity. 5 The high-level
language, "C", is a good tool for microprocessor users because it gives them
more control over the resources of the machine, as well as the power of high­
level constructs.

C gives the user more control over the machine by allowing specification of the
following primitive types of variables:

• Character variables which allow the user to manipulate
8-bit portions of memory easily.

• Pointer variables which enable the user to do manipulations
with addresses.

• Register variables which enable the user to specify which
variables are important in a given subroutine, so the com­
piler can allocate storage for these variables in registers.

C also allows the user to allocate storage for high-level data aggregates such as
arrays and structures; these are essential in all types of table lookup. An

example of a structure and an array is contained in Figure 7-1.

7-2

/*
* ,Structure used to input data on a port

*/
struct port {

};
/*

char status;
char *buffptr;
char next char;

* Table of port entries

*/
struct port intable [9];

Figure 7-1 - Input Data Structure

The structured programming constructs, such as "switch", "do", and "while" are
also part of the C language. These constructs are fundamental to the formation
of a well structured program, easy to read and debug. Constructs such as
switches are very useful in table lookup. The compiler uses special techniques
depending on the nature of the switch. For example, the switch in Figure 7-2
would generate code that would directly calculate an index based on "d" and use
it in a jump table. The switch in Figure 7-3, on the other hand, would generate
a short linear search of a table containing the possible values of d. The resultant
index would be used in another jump table.

In switches with a large number of cases and a large spread in values, hashing is
used to identify a short subtable. This subtable is linearly searched to generate
an index into a jump table.

Boolean, shift, and rotate operators, as well as the usual arithmetic operators,
can be used in C. These operators make bit manipulations easier in a high­
level language, as demonstrated in Figure 7-4.

7-3

rain ()

}

register int d;

~Witch (d)

case 31:

break;
case 28:

break;
case 30:

break;
case 27:

}
break;

Figure 7-2 - Switch 1

main ()
{

}

register int d;

switch (d)
{
case 27:

break;
case 122:

break;
case 124:

break;
case 211:

}
break;

Figure 7-3 - Switch 2

7-4

/*
* Input character from port 5, saves the low order 2
* bits, shifts them left 2 positions, and uses the
* result to index into a table.

*/
char data, table [50];
data = table [(in(5) & 03) « 2];

Figure 7-4 - C Bit Manipulation

Even though the features of C, as mentioned above, give the user more control
over the machine resources, C has all the advantages of a high-level language:

• Allocation of various types of storage, such as automatic,
static, external, and register.

• Evaluation of expreSSions which includes mode converSiOns,
register assignment, and code generation.

• Passing of arguments, saving registers upon function invo­
cation, and restoring of registers and return values upon
function return.

Since a compiler must handle code generation in a general and systematic way,
it must of necessity build inefficiencies into the code. However, by following
the few general rules below one can minimize these inefficiences without sacri­
ficing the_ benefits of a high level language:

• Declare as many variables as possible to be register variables.
Registers are a more efficient type of memory with respect to
an instruction set, so by maximizing the use of register variables,
the compiler will produce more efficient code. The compiler
assigns the indicated register variables to registers as it
encounters them. If there are more register variables than
available registers, the compiler gives the remaining register
variables an automatic storage class.

7-5

• Use character variables whenever possible. (This pertains to
the MAC-8 version of the C compiler only.) The MAC-8 is a byte
(8-bit) oriented machine. Though the MAC-8 contains many l6-bit
oriented instructions, they are not as efficient with respect to time.

• Use pOinters and the four operators - post/pre increment/decrement -
to avoid array calculations. There are several ways to write code to
.initialize an array, as illustrated in Figures 7-5 and 7-6.

/*
* Initializes an array of 10 elements to 5
*/

rain ()

char c(lO 1;
register cnar i;
for (i=O;i<lO;i++)

c (i] = 5;
}

Figure 7-5 - Array Initialization by Subscript Calculation

/*
* Initializes an array of 10 elements to 5
*/

main ()
{

}

char c(lO 1;
register cnar *p, i;
p = c;
for (i=O;i<lO;i++)

*p++ = 5;

Figure 7-6 - Array Initialization by Pointers

In Figure 7-5, the array is initialized by calculating an index each step of the
way. In Figure 7-6, on the other hand, the array is serially swept one element
at a time, using the pointer variable "p". Use of p as a pointer is indicated by
the unary operator "*". More calculations have to be performed by the compiler
in Figure 7-5 than in Figure 7-6 to implement the code sequence. When these
two cases were run through the MAC-8 compiler, Figure 7-6 required 3 percent
less memory and executed 24 percent faster.

To illustrate the "efficiency" in the compiler-generated code, a bubble sort
routine6 was coded both in C and MAC-8 assembly language. The C version is

7-6

shown in Figure 7-7 and the MAC-S assembly language version in Figure 7-S.
Not only is the byte count for both versions approximately the same, but the
compiler version was coded in a much shorter time and is easier to modify.

/*
* Bubble sort in C

*/
bubble (v, n)
char *v, n;
{

}

register char *pi, *pj, k;
register char *w;

w = v;
for (pi=w+n-l;pi>w;--pi)

for (Pj=w;pj<pi;++pj)
if (*pj > *(pj+l))

{
k = *pj;
*pj = * (Pj+l);

*(pj+l) = k;
}

Figure 7-7 - C Bubble Sort

Situations will arise in which ineffiencies, however minimal, are not tolerable.
For these cases, the assembler can be used to generate code at the machine

level.

ASSEMBLER

The assembler gives complete control over the MAC-S instruction set and archi­
tecture, while offering most of the high-level constructs available in C. The
assembly language for the MAC-S has purposely been fashioned after the com­

piler language. The inherent addressing modes of the MAC-S have made this
unified approach easy and natural. The major advantage of having similar
assembler and compiler languages is that the time needed to master one, when

7-7

the other is known, will be at a minimum. As an example of the similarity of
the two languages, the assembly language version of the bubble sort of Figure
7-7 is shown in Figure 7-8. As a further illustration, an assembly language
version of the array initialization of Figure 7-6 is shown in Figure 7-9.

/*
* Bubble Sort In MAC- 8 Assembly Language

*/
bubble ()
{

extern char *v, n;
a3 = n;

do

{
a2 = a3;
--a3;
if (zero) return;
b5 = v;

sl: --a2;

}

}
while (z ero) ;

if (*(b5+0) > * (b5+1))
{
a4 = *b5;
*(b5+0) = *(b5+1);
*(b5+1) = a4;
}

++b5;
goto sl;

Figure 7 - 8 - Assembler Bubble Sort

7-8

/*
* Initialize an array of 10 elements to 5

*/
main ()

{

}

char c[10];

bO = &c;

for (aO = 0; aO < 10; ++aO) *bO++ = 5;

Figure 7-9 - Assembler Array Initialization

Although the syntax of the assembly language resembles C, it is a true assembly
language. That is, there exists one assembly language statement for one machine
instruction. Every machine instruction, and every addressing mode for each in­
struction, is completely specifiable in the assembly language. So for those cases
in which every byte and cycle are important, the assembly language - with its
consistent syntax - is available.

In addition to the traditional one-for-one nature of an assembly language, this
assembler offers compiler-like facilities not generally found in traditional assem­
blers. For example, it allows high-level constructs which have become popular
in structured programming. They tend to make a program more readable and
easier to debug. Also, data layout and data initialization are completely speci­
fiable by the user. The language for handling this task, however, is in the form
of C declaration statements. The necessity for assembler pseudo-ops disappears
with this approach. As in C, the assembler forces the structure of every program
to be a collection of functions (or subroutines) which eases and encourages modular
progr am stru cture.

As has been implied by the above examples, both the compiler and assembler
produce relocateable code. The MAC-8 linking-loader serves to tie together all
of the separately developed routines and assign absolute origins to the final
product.

So, regardless of the source language chosen for an application on the MAC-8, all
of the facilities for good programming practices are available. In addition, by

7-9

adhering to some simple conventions, it is possible to call an assembly language
routine from a C program, and vice-versa. Therefore assembly language can be
used in a critical routine while compiler language can be used in less critical
ones.

SUMMARY

The programming languages available for the MAC-S microprocessor have been
designed to cover all the needs of microprocessor code development. The high­
level compiler language, C, will be the primary programming language for the
MAC-S. Programming productivity, the usual advantage of a compiler language,
is evident in the MAC-S along with code generation efficiency and machine resource
control. The MAC-S assembler language provides total access to the MAC-S in­
struction set as well as providing a high-level statement syntax and high-level
programming constructs. Both languages facilitate the production of readable,
well documented, and easy-to-debug programs.

7-10

REFERENCES

1. K. Thompson and D. M. Ritchie, "The UNIX Time-Sharing
System," Communications of ACM, July,1974, P 365.

2. D. M. Ritchie, C Reference Manual, TM-74-1273-1, 1974

3. H. D. Rovegno, Microprocessor C for Beginners, Bell
Telephone Laboratories unpublished work.

4. D. B. Kirby, MAC-8 Assembler User's Manual, TM-76-4393-16,

November, 1976.

5. E. A. Nelson, "System Development Corp. Report TM-3225, "
Management Handbook for the Estimation of Computer Program­

ming Costs, pp 66-67.

6. B. W. Kernighan and P. J. Plauger, Software Tools, Addison­
Wesley, p 105.

7-11

SUPPORT FACILITIES

A SUPPORT SYSTEM FOR THE INTEL 8080

D. J. Hunsberger and J. J. Molinelli, BTL Dept 3231, HO, NJ

ABSTRACT

This paper describes a comprehensive set of development tools for
developing and debugging the hardware and software for the Intel 8080
family of microprocessors.

For software designers, the set offers tools for the description (a struc­
tured assembly language), construction (link editors, library facility),
testing (symbolic debugger), production (programmable read-only mem­
ory [PROM J writer), and do cumentation (text formatting macros) of the
target software system. The tools are particularly well suited for pro­
ject implementation by a group of designers, facilitating as they do the
partitioning of the system into many small independent pieces.

For the hardware designers, the set includes a single-board utility
system which is plugged into the target system, enabling the software
tools to manipulate the target hardware. Further development will al­
low this capability to be transported into the field via a field test unit
(FTU).

For the most part, the software tools are project independent and would
be applicable to any Intel 8080-based development; they are available in
an interactive mode under the UNIX operating system. The hardware
development tools interface the target system to the minicomputer;
hence, they tend to be more project oriented.

8-1

MOTIVATION

Recently Laboratory 323 at Holmdel undertook the development of an Intel 8080
microprocessor-based electronic key telephone system designated the 32A
Communications System. 1 This application has some characteristics unusual in
the current microprocessor software art. It is large, about 20Kto 30K bytes of
program, ten people are developing the program, and it is very sensitive to real­
time usage.

Good programming requires good tools. Vendor- supplied tools tend to be primi­
tive and oriented towards small applications. For example, assemblers do not
generate relocatable code; debuggers tend to be at the bit level; higher level
languages are usually very inefficient; development support systems are geared
toward a Singler user.

This paper describes a comprehensive set of 8080 development tools designed
for a complex application. They rely on interfacing the target application with a
PDP-11 minicomputer, operating under the UNIX time-sharing system. In this
manner, the designers have access to their development tools in an interactive
mode.

SOFTWARE TOOLS

This section outlines the tools available to the software designer. They are or­
ganized in a sequence corresponding to the order of software dt..'velopment:
design, code, test, and document.

structured Assembly Language

All of the 32A programs are written in SMAL2. It is a structured assembly lan­
guage which combines the ease of use of a compiler with the efficiency of assem­
bly language. The compiler features of SMAL2 allow the user to describe the
algorithm in "natural" notations.; the language also contains a rich set of control
structures .~if-else, while, do-while, switch). SMAL2 has the syntax of the pro­
gramming language C. As an assembly language, its machine registers may be
manipulated directly; it can be used in a mode in which one SMAL2 statement

generates one machine language instruction.

8-2

Standard Assembly Language

The 8080 assembler available to our designers uses mnemonics and instruction
formats similar to those of other 8080 assemblers. It differs from most others
in the following ways:

Link Editor

• It generates relocatable code.
• The programmer has three relocation counters available.
• The programmer can declare the existence of undefined

names within the assembly.
• Temporary labels are available.

The link editor is used to combine object modules generated by different assem­
blies (or SMAL2 compiles). Hence, it relocates object files and resolves exter­
nal references. The link editor can also search libraries of object modules; such
libraries are created and maintained with the standard archive facility available
on UNIX.

Symbolic Debugger

The symbolic debugger allows the programmer to control both the state and the
operation of the 32A microprocessor via a hardware interface between it
and the host minicomputer. The function and design of this hardware is
described under HARDWARE; we concentrate here on the capabilities of the
debugger itself.

The debugger allows the programmer to initialize, save, restore, and verify
the contents of the 8080 memory. That is, the programmer can load a program,
verify that a program has not been mutilated (by a bug), save the current state of
the microprocessor (e. g., to go to lunch), and restore a previously saved state.

The programmer can control the execution of the 8080 in a number of ways: by
resetting the processor, causing the processor to commence running from any
memory address, halting or holding the processor, or causing the processor to
continue from the halt or hold location.

8-3

The program-testing features of the debugger include the ability to examine and
modify memory, to initialize the registers, and to set up address and data
breakpoints.

In each function of the debugger, the programmer communicates memory ad­
dresses and register names symbolically, so there is not the constant shuffling
between the bit level and the programming language level. Indeed, the debugger
is capable of disassembling the contents of memory into SMAL2 statements.

Intellec MDS Interface

For smaller projects not requiring interface between the target microprocessor
and the PDP-ii, tools are available to interface with the Intellec MDS develop­
ment system. Specifically, it is possible to transmit an object module to the MDS
system via a dial-up data link. This capability requires that a small monitor be
resident in the MDS; its function is to check the incoming data for consistency and
to load memory.

PROM Writing Tool

A Data 110 PROM programmer V is interfaced to the minicomputer system. This
programmer is capable of writing a wide variety of PROM devices. A software
tool allows the user to select and write individual PROMs from any object module.
This software is capable of handling many PROM types; it can also generate stand­
ard Western Electric (WE) PROM map (PK) documentation.

Do cumentation

A number of tools exist to extract and print information from object modules.
The size of an object module can be obtained as well as the contents of the symbol
table.

Finally, a set of instructions for the UNIX text formatting program (NROFF) is
available to our deSigners. These macros enable them to generate standard WE
program listings (PRs) from source code. The macros also permit the extrac­
tion of information relevant to the program descriptions (PDs) required by WE.

8-4

HARDWARE

Three hardware developments were undertaken to provide development and de­
bugging capabilities for our designers:

-A utility system designed specifically for software development.
-A single-board utility system for hardware debugging which may be

plugged into any 32A.
- An FTU designed to remote the utility system functions for use in

the factory or on customer premises.

Software utility System

The software utility system interfaces the PDP-II minicomputer with the 32A
microprocessor. This approach allows the connection of the 32A periphery as it
appears in the field, enabling software development to occur on an exact model of
the final product.

As shown in Figure 8-1, the software utility system is interfaced to the PDP-II
through a standard PDP-II interface. The hardware consists of a system control
unit, the writable program store (WPS) and some specialized debugging logic.
The control unit allows the PDP-II to initialize and control both the execution of
the microprocessor and the special debugging hardware. The 32K-byte WPS is
accessible by both processors. The hardware debugging logic includes matchers,
transfer trace memory, and an elapsed time counter.

CNTL
UTILITY

LAB 323 DR DOUT DEBUGGING
MINICOMPUTER SYSTEM AIDS llC DIN

+ CONTROL ~
SOFTWARE -

" DEVELOPMENT
A 0

TOOLS A 0 , ,
MUX It- ..

~

A 0 ~ 32A
PROCESSOR

32K WPS

32A
PERIPHERY

Figure 8-1 - Software Utility System

8-5

The minicomputer has direct control of the reset, hold, and ready inputs of the
microprocessor, as well as two of its interrupts. By manipulating these signals,
the minicomputer can load, save, and modify the WPS and cause the microproces­
sor to run, halt, reset, and single-step at will. Additional capabilities provided
by the debugging aids include,:

• Two maskable address matchers which, upon access to a program­
med memory address, can hold the microprocessor, cause it to
enter a wait state, or supply a trigger pulse to an external device.

• A maskable data matcher capable of halting the microprocessor or
supplying a trigger pulse when a specific data word is read or
written.

• A transfer address stack operating under control of the matchers to
provide the last eight program branch addresses.

• An elapsed time counter, also operating under control of the
matchers, to provide an indication of the time required to execute
a segment of code.

Single-Board utility System

The 32A system will be installed throughout the Bell System as the next genera­
tion key telephone system. For such a product, maintainability is a major con­
cern. Hence, a separate connector, the FTU slot, is an integral part of all 32A
systems and allows access to major control and data points within the system.

A single-board utility system, which plugs into the FTU slot, was designed to
provide a means by which any 32A system can interface with the PDP-11. This
facility was developed to assist hardware designers in debugging initial versions
of the 32A backplane, memory, and processor boards. Figure 8- 2 is a block
diagram of this utility. It differs from the software utility system in two ways:

• It does not have the hardware debugging aids .
• It uses tristate buffers to interface with the 32A memory boards.

Hence, it has direct access to the actual memory of the 32A
system.

The single-board system has local memory (IK random-access memory [RAM],
lK PROM) to control the 32A microprocessor. The board is powered by its own
power supply, and thus places no load on the 32A power supply.

8-6

CSRO

CSRt
READ

DRt1C WRITE

INTERFACE

TO DO 8
PDP-t1/70

DI

UTILITY
SYSTEM
CONTROL

TRI-STATE 32A
ADDRESS

BUFFERS BUS

32A
DATA
BUS

32A
t-------~ PROCESSOR

Figure 8- 2 - Single-Board Utility System

Field Test Unit (FTU)

The FTU, a portable tester, provides a remote utility system in the factory or
on customer premises. Its users require only limited reeducation since it is
consistent with the laboratory utility systems.

The FTU is a microprocessor- controlled test set which connects to the 32A
through two 50-wire nat cables and an interface board plugged into the 32A
FTU slot. The FTU supplies power for the interface board, and thus prevents
any drain on the 32A power supply. The FTU has two serial data ports, the
first of which connects to a local terminal for user interaction. The second port
links the FTU with the laboratory minicomputer for transfer of test programs.

Figure 8-3 is a block diagram of the FTU. The interface board and the sanity
control and receiver board contain the high-speed buffers required to send bi­
directional addresses, data, and control signals over the 5 feet of cable
connecting the two boards. The matcher, elapsed time clock, and transfer trace
functions are enhanced versions of those provided on the software utility system.
There are four data and/or address matchers in the FTU, and the transfer ad­
dress stack is 128 locations deep.

8-7

SANITY
CONTROL

+
RECEIVER

DATA LINK I/O

TO LAB 323 tI---+-....., ME;ORY-_--'
PDP-ll /70 CONTROL

Figure 8- 3 - Field Test Unit

The II 0 and memory control board controls 8K of RAM which is accessible by
either the 32A microprocessor or the FTU microprocessor. This RAM is
used to store the software required to implement the utility system functions and
to store test programs transferred to the FTU by the laboratory minicomputer.
Patches to the 32A PROMs can be implemented in this memory by using matcher
control of the high-priority interrupt line and a software link to the code to be
patched.

The PROM writing circuit in the FTU enables remote programming of Intel 2708-
type PROMs. The PDP-II controls this process to ensure adequate documenta­
tion before a new version of PROM is used.

The processor used in the FTU is on a general-purpose 8080 microprocessor
board. The board contains the 8080, 8224, and 8228 chip set along with an
8-level priority interrupt structure, IK of RAM, 8K of PROM, and a serial I/O
port.

SUMMARY

All of the previously described development tools are operated in the Laboratory
323 minicomputer system. The software tools are also available on Department

8-8

4393 microprocessor support machine. Most are exportable with no changes
to any UNIX-based machine. The symbolic debugger requires that the auxiliary

hardware be available on the PDP-I1. The design is available for replication.

The PROM writing utility would require a compatible PROM writer. Finally,
both the PROM writing program and the MDS system transmit functions require
special teletype modes on the corresponding ports of the PDP-II.

CONCLUSION

The combination of PDP-I! resident software tools with three hardware utility
systems has produced a comprehensive set of tools for microprocessor system
development. The ability to transport these tools to the field will simplify the
difficult task of maintaining a complex, stored program system in the field.

ACKNOWLEDGMENTS

The authors are acting as reporters for the work of many individuals. David H.
Copp wrote the SMAL2 compiler, which is based on a previous language by
Popper. 2 The assembler is a modified version of a previous 8080 assembler by
Bayer. 3 The link editor is based on the UNIX link editor and was implemented by
John J. Molinelli. The symbolic debugger was written by Robert C. Radcliff and
based on earlier work by Molinelli. The Intellec MDS interface was designed and
interfaced by stuart Tartarone. Robert J. Council implemented the PROM utility
and the text formatting macros. Dennis Hunsberger designed the FTU and the
utility system hardware. Dana Runyon designed the specialized debugging hard­
ware. Finally, James H. VanOrnum did the original system design work for
the entire utility system.

8-9

REFERENCES

1. W. M. Johnson, et al, "32A Communications System, "
paper presented at Microcomputer Symposium, Bell
Telephone Laboratories, Incorporated, Holmdel, New
Jersey, 1976.

2. C. Popper , "A structured Macro-Assembly Language for

a Microprocessor," COMPCON 74 Fall, IEEE Computer

Society, International Fall Conference, 9th, 1974,

Washington, D. C., pp 147-151.

3. P. Bayer, Assembler User's Manual, Bell Telephone

Laboratories unpublished work.

8-10

SUPPORT FACILITIES

UNIX ON THE LSI-11

H. Lycklama, BTL Dept 1352, MH, NJ

ABSTRACT

The LSI-11 microcomputer1 has many potential applications in Bell
System projects. The LSI-UNIX system (LSX system), 2 with 20K words
of memory and floppy discs for secondary storage, is a modified ver­
sion of the UNIX system that has been written to run on the LSI-11
microcomputer. This system allows most of the UNIX user programs
to run on the LSI-11 microcomputer. The main programming language
used is the higher-level C language. 3 Otherfeatures of the LSX system
are: a background process may be runas well as foreground processes;
a set of subroutines interfaces with the file system on the floppy discs;
asynchronous read and write routines are available; currently, a 2-
dimensional text editor is being written for a TV terminal interfaced
with the LSI-11 microcomputer; total system cost is less than $7000,
which makes the system appealing as a stand-alone system for dedi­
cated applications. Also, the total system can be utilized as an intelli­
gent terminal.

INTRODUCTION

The LSX system is a modified version of the UNIX operating system that runs on
the LSI-11 microcomputer. It uses 20K words of primary memory and floppy
discs for secondary storage. This configuration permits most of the UNIX user
programs to run on the LSI-11 microcomputer.

The purpose of this paper is to describe some of the objectives of the LSX system

as well as some of its more important features. Its capabilities are compared

9-1

with the powerful UNIX, time-sharing system that runs on the PDP-ll/40, 11/45,
and 11/70 computers. A number of current and planned applications are de­
scribed in some detail. A summary and some thoughts on future directions are
also presented.

WHY UNIX ON A MICROPROCESSOR?

There are several reasons that support the development of a microprocessor­
based UNIX system. The hardware costs of a computer system have decreased
substantially over the last few years (even over the past few months). Micro­
processors on a chip are a reality. The cost of primary memory (e. g., dynamic
metal oxide semiconductor [MOS] memory) is decreasing rapidly as 4K-bit chips
are being replaced by 16K-bit chips. There is a large amount of expertise in
PDP-II hardware interfacing, and the similarity of the Q-bus of the LSI-II micro­
computer to the UNIBUS of other members of the PDP-II family of computers
makes this expertise available.

The increasing cost of software development has dominated the total cost of a
computer system. With the LSX system, this cost has been minimized because,
as mentioned previously, the system supports most of the UNIX user programs
that run under UNIX time-sharing 4 and, therefore, most of the software is
already available.

It is conceivable that, in approximately 5 years, the power of a minicomputer
system will be available in a microcomputer. When this occurs, it will be pos­
sible for a user to have access to a dedicated microcomputer instead of a mini­
computer time-sharing system. The LSX system is a step in this direction. This
system provides the user with a cost-effective, interactive, and powerful com­
puter system with an instantaneous response time to requests. There are no
unpredictable time-sharing delays. Also, the system has applications in areas
where security is important. Access to the data is physically limited to the area
in which the system is located.

The LSX system has provisions for local text editing and text processing. Other
features can be added easily. Special input/output (I/O) equipment can be inter­
faced with the Q-bus for dedicated experiments. Using floppy discs as secondary
storage gives the user a rather small data base; however, a link to a larger

9-2

machine can provide access to a larger data base. Interfaces such as the DLV-11
(serial interface) and the DRV-11 (parallel interface) can provide access to other
computers.

One of the main benefits of using the UNIX software base is that the C compiler
is available for writing application programs in the structured higher-level C
language. The use of the powerful command interpreter (sh) is a great asset, and
a general hierarchical file system is available.

The LSX system has two main areas of application:

• Control of dedicated experiments.

• Intelligent terminal.

Using the LSX system as a dedicated experiment controller, special 110 equip­
ment can be interfaced with the Q-bus and the experiment can be supported and
controlled within the system.

The apPlications of the LSX system as an intelligent terminal are:

• Development system.
• General text processor.
• Form editor.
• Two- dimensional cursor- controlled text editor.

HARDWARE CONFIGURATION

The hardware required to build a useful LSX system is minimal. The absolute
requirements are:

• LSI-11 microcomputer (with 4K memory).
• 16K memory (e. g., dynamic MOS).
• Extended instruction set (EIS) chip.
• Floppy disc controller with one drive.
• DLV-11 serial interface.
• Terminal (e. g., TTY-33).

• Power supply.

A more flexible and powerful system is shown in Figure 9-1. As illustrated, the
floppy disc controller may contain up to four drives. Another serial or parallel

9-3

interface is often useful for connection to a larger machine that provides software
support. The system terminal may be either a TTY-33 teletypewriter or an in­
expensive cathode ray tube (CRT) terminal. Various types of memory (core, MOS
or random-access memory [RAM J) are available either from DEC or from other
outside vendors (16K boards are available from Monolithic Memories, Incorpo­
rated). The floppy disc controller may be bought either from DEC (no direct­
memory access [DMA] capability) or from other outside vendors, e. g., Advanced
Electronics Design, Incorporated (AED) (with DMA capability). The actual floppy
disc controller (one controller per disc5) used in the LSX system has been built
to satisfy specific Bell System requirements. DEC floppy diskettes are formatted
according to IDM standards. The comparative data for floppy diskettes are:

Q-8US

Features
Sector Size (Bytes)
Sectors per Track
Number of Tracks
Total Capacity (Bytes)
DMA Capability

16K

DEC

128
26
77

256256

no

DYNAMIC
LSI-l1

MICRO-COMPUTER
(4K MOS) MOS MEMORY

SPECIAL
I/O

INTERFACE

DLV-ll
SERIAL

INTERFACE

BTL
512

8

77
315392

yes

TERMINAL

/ /

rr) I
/-- -- -- ~ -- - ~

DLV-l1
SERIAL

INTERFACE

AED
512

16
77

630784
yes

UP TO 4 DRIVES

FLOPPY
DISK

CONTROLLER

DRV -11
PARALLEL

INTERFACE

~ONNECTION TO

PDP-ll/45
COMPUTER

Figure 9-1 - LSI-II Configur ation

9-4

The outside vendor (AED Systems) supplies dual-density drives for an increase in
storage capacity.

If necessary, a bus extender may be used to interface special devices with the
Q-bus. One such device that has been interfaced with the Q-bus is a special­
purpose TV terminal with cursor control and user-labeled buttons. 6 Applications
of this terminal are discussed in later sections. Other systems are interfacing
special signal processing equipment with the Q-bus. Additional applications will
be developed when DEC provides more of the interfaces for standard I/O
peripherals.

LSX CAPABILITIES

The total system occupies 8K words of memory and has room for six system buf­
fers. The C compiler requires up to 12K words of user address space; therefore,
the C compiler can run using 20K words of total memory. The system size may
be increased if more capabilities are required since the total memory space
available to the system and user is actually 28K words. More system buffers can
be provided.' If the system is kept to 8K words, a 20K-word user _program can be
run; however, this requires more swap space, which is at a premium.

Although the LSX system is a dedicated, single-user system, a process may fork
up to two levels deep, giving rise to a total of three active foreground processes.
The last process forked will run to completion first. Pipes are not supported in
the system, but pseudopipes are supported in the command shell. This is accom­
plished by expanding the shell syntax I to> ._pf;< ._pf. If sufficient disc space
exists, the pipe implementation is transparent to the user.

The hierarchical file structure of UNIX is maintained; however, there is no read
and write protection on files. File protection is strictly the user's responsibility.
Essentially, the user is given superuser permisSions. Only execute and directory
protection is given on files. Group IDs are not implemented. File system space
is limited to the capacity of the diskette in use. Each file system contains only
96 files (i. e., six inode blocks each). The list of available inodes is not dynam­
ically created by the system, but is created when the file system itself is created
or salvaged. The system automatically mounts a user file system on a second

diskette, if desired. The mount and unmount commands are not available to the
user. Thus, a reboot of the system is necessary to mount a new user diskette.
Normally, the system diskette is configured with swap space and temporary file

9-5

space. User programs and files may reside on the system diskette if a user
diskette is not mounted.

The size of available memory and the lack of memory protection (i. e., memory
segmentation unit) have put some restrictions on the capabilities of the LSX
system; however, these are not severe in the single-user environment. Profiling
is not provided in the system. Timing information only becomes available if a
clock interrupt is provided on the LSI-II event line at 60 times per second. At
present, only one character device driver and one block device driver are allowed.
No physical I/O is provided for. There is also no read-ahead on file I/O. Only
six system buffers are provided, and the buffering algorithm is much Simpler
than in UNIX. All user programs must be relocated to begin execution at 8K in
memory. This requires modifications to the UNIX link edit (~d) and debugger
(db) programs. Most other differences between LSX and UNIX systems are
transparent to the user.

BACKGROUND PROCESS

It is possible to run a background process on the LSX system while running a
number of foreground processes. The background process is run only while the
current foreground process is in an input wait state. The system calls bground
and kill have been added to the LSX system to enable the user to run and remove
a background process. Only one background process is allowed to run and it is
not allowed to fork another child process; however, it may execute another pro­
gram. The background process may be compute-bound or may perform some
I/O functions, such as outputting to a hard- copy terminal.

STAND-ALONE ROUTINES

Under the LSX system it is possible to run a dedicated program (less than 12K
words) in real time, using all of the conveniences of the UNIX system calls to
communicate with the file system. For programs that require more than 12K
words of memory or that require more flexibility, a set of subroutines has been

written to provide a UNIX-compatible interface with the file system without using
the LSX system calls. 7 With this set of subroutines, the user is given more con­
trol over the program. Disc I/O issued by the user is buffered using the read-

9-6

ahead and write-behind features of standard UNIX. More system buffers are
available. Eight of the standard file system interface routines are provided. The
arguments required for each routine and the calling sequence are identical to those
required by the UNIX system C interface routines. These include read, write,
open, close, creat, sync, unlink, and seek. Three unique routines, saread,
sawrite, and statio, enable the user to perform asynchronous I/O directly into
buffers in the user area rather than into system buffers. These additional
routines allow a user to start multiple I/Os to and from multiple files concur­
rently, do some computation, and when convenient, wait for completion of a par­
ticular outstanding II 0 transfer. A load program under LSX enables the user to
load the stand-alone program, which must start execution at location 0 in memory.

A DEVELOPMENT SYSTEM

One system disc has been configured to contain a fairly complete program de­
velopment system. The development programs include:

• Editor.

• Assembler.

• C compiler.

• Link editor.

• Debugger.

• Command interpreter .

• Dump.

Also, a number of libraries are included that contain routines frequently used by
the link editor. Thus, it is possible to compile, run, and debug application pro­
grams completely on-line without access to a larger machine. In a typical
application, the contents of the system disc remain quite stable, whereas all
user programs are maintained on a permanently mounted user diskette. For
minimal systems, it is possible to run with only one diskette. Due to the lack of
protection, it is possible for the system to crash. In practice, however, the use
of the higher level C language minimizes the number of fatal bugs that actually
occur, since the stack frame and program counter are quite well controlled.

9-7

In the particular installation described here, it is often convenient to use the
satellite processor system8 to aid in the running and debugging of new user pro­
grams. This is possible since programs running in the LSI-11 satellite micro­

computer behave as if they are running on the central machine with access to its
file system. This emulates the environment on LSX quite closely. Thus, a pro­
gram may be compiled on a central machine supporting the C compiler and run on

the LSI-11 microcomputer and debugged. When the program has been completely
debugged, it is possible to load the program onto the floppy file system using the

stand-alone routines (described previously) and the satellite processor system.
The program may then be run under the LSX system.

TEXT PROCESSING SYSTEM

When the LSX system is used as a personal computer system for text processing,
files may be prepared using the editor program and run off, using the UNIX nroff

command, on a hard-copy device. This system disc includes programs such as:

• editor

• cat
•. pr

• od
• roff

• nroff

• negn

(Output ASCn Files)

(Print ASCII Files)
(Octal Dump Files)

(Mathematical Equation Formatter)

The file transfer program referred to previously provides the ability to transfer
files to and from a machine with a larger data base. User files may be maintained
on a personally mounted diskette. If a hard- copy device, as well as the user
interactive terminal, is attached to the computer, hard- copy output can be ob­
tained using a background process while editing another file in the foreground.

FORM EDITOR PROGRAM

When a special-purpose TV terminal is interfaced with the Q-bus, the LSX system

can be used for the entry and retrieval of data records by computer-naive users.

The terminal6 has some advanced features particularly suitable for this applica­

tion. It has scrolling capabilities, cursor control, and user-labeled buttons

below the TV screen. The buttons can be used for cursor positioning as well as

9-8

other dedicated functions defined by the user program. This terminal is suited
for the input of data into computer-displayed forms. Protected fields are imple­
mented in software rather than in hardware as for the TTY-40 terminal. A
general-purpose form entry program has been written for this terminal. 9
Another program, mkform, is available to enable a user to compose a form on
the TV screen interactively. The form is then used with the fentry program to
create" update" and delete entries in a data base whose record structure depends
only on the structure of the form but is independent of the fentry program. The
LSX system provides the underlying support and file system for these programs.
The programs are designed to be easy to use.

TWO- DIMENSIONAL SCOPE TEXT EDITOR

The TV terminal described previously can perform also as a 2-dimensional text
editor. The interactive 2- dimensional cursor- control features allow the cursor
to be moved anywhere on the face of the TV screen. The editor available on the
UNIX system has some very powerfulfeatures, and it is desirable to use these in
the scope editor as well; therefore, the scope editor features have been imbedded
in the existing UNIX text editor. This allows the user to go back and forth be­
tween the standard UNIX editor features and the additional scope editing features.
The labels on the buttons below the TV screen tell the user what the mode is and
what functions are available. Complete cursor control is available. A window
into the file being edited is displayed on the TV screen. The user has the ability
to insert, remove, and replace a character at the current cursor pOSition or
delete the remainder of the line to the right of the cursor on a per-line basis.
The user may also insert or delete whole lines or break a line in two. Block
deletes, copies, and moves are also available by means of three marks that may
be set in a file. A position command is available to move any section of the file
onto the TV screen window (26 lines).

SUMMARY

The LSX system is being used currently in Center 135 for research in intelligent
terminals and in stand-alone dedicated systems. There are plans to use this
system in other areas of Bell Laboratories. Hard-copy features have yet to be
incorporated into the system. Currently, the system is connected to a larger
machine using the satellite processor system. Additional connections to larger

9-9

machines, or possibly to a network of machines, have to be investigated. Also,

the LSX system has potential uses in multiterminal or cluster- control terminal
systems where multitasking features are important. These applications have
been studied only superficially and warrant further investigation.

ACKNOWLEDGMENTS

The author is deeply indebted to H. G. Alles for designing and building the
initial PERTEC floppy disc controller and the TV terminal. These two pieces
of hardware have provided much of the motivation for developing the LSX system
and for doing research in the area of intelligent terminals. Many of the applica­
tion and support programs described here were written by two summer employees,
G. A. Gladney and E. W. stark. The driver for the AED disc was written by
J. S. Thompson. The author is grateful to J. C. Swartzwelder and D. R. Weller
for their efforts in building the first LSX system.

9-10

REFERENCES

1. DEC LSI-11 Processor Handbook, Digital Equipment

Corporation, 1976.

2. K. Thompson and D. M. Ritchie, "The UNIX Time- Sharing

System, " Communications of ACM" July, 1974, P 365.

3. D. M. Ritchie" C Reference Manual, TM-74-1273-1,
January 15, 1974.

4. K. Thompson and D. M. Ritchie, UNIX Programmer's

Manual - 6th Edition, Bell Telephone Laboratories,
May, 1975.

5. H. G. Alles, "An LSI-11 Controller for the PERTEC Floppy
Disk, " private communication.

6. H. G. Alles, "A TV Terminal for the LSI-11 Microcomputer, "
private communication.

7. E. W. Stark, LSI-UNIX Information, Bell Telephone

Laboratories unpublished work.

8. H. Lycklama and C. Christensen, Emulation of UNIX on
Peripheral Processors, TM-75-1352-2, January 9, 1975.

9. E. W. Stark, System for Entering Data Through Computer­

Displayed Forms, Bell Telephone Laboratories unpublished
work.

9-11

SUPPORT FACILITIES

MANUFACTURING MICROCOMPUTER- BASED SYSTEMS

L. A. 0 'Neill, BTL Dept 4393, HO, NJ

ABSTRACT

CADRE (computer aided design for reliability and economy) has been
used to simplify assembly of the program logic aid (PLAID) prototype
console for the MAC-8 microprocessor. CADRE automatically wires

models that verify performance and testability before layout is started.
Go/no-go and diagnostic tests are developed with a simulator. The test
results are passed to an automatic tester in executable form. Com­

puter-generated schematics can be obtained from the same circuit de­

scription used for models and simulation. If performed on the Applicon
system, layout, which must be in agreement with the schematic, can be
verified by audit of a computer with the same circuit description, since

layout and testing data are available in machine-readable form. The
time needed to develop manufacturing information is reduced, accuracy

is ensured, and expensive redesign is avoided. By developing a fully
integrated system for printed wiring board (PWB) layout and documen­

tation for both BTL and WE, maximum benefit will be achieved.

INTRODUCTION

One of the primary advantages of the MAC-8 microprocessor is its ability to re­
duce the time involved in designing a new product by replacing complex hardware
with software. Its full benefit can only be realized, however, if the time re­
quired to assemble the microprocessor components and interface circuits to the
rest of the system is also shortened. One of the most important considerations
in the PLAID1 project was reaching the potential users of the MAC-8 as soon as

possible. The marketing of the MAC-8 is considerably enhanced by the

10-1

availability of the prototype console, PLAID, because software development can
now be coordinated easily with the hardware design of the system. Although funds
were limited, we sought means of reducing the elapsed development time within
BTL, as well as simplification of information transfer to WE in order to com­
press their schedule.

CADRE OVERVIEW

The CADRE system for integrated design of PWBs satisfied the above objectives.
CADRE is an interconnected set of computer aids, shown in Figure 10-1, that
provides the following capabilities:

• Simplified construction of wired models.
• Logic simulation for verification and test evaluation.
• Generation of acceptance and diagnostic tests.
• Machine-drawn schematics.
• Verification of machine-aided PWB layout.

WIRED

BREADBOARD
MODEL

CIRCUIT
SCHEMATICS

ACCEPTANCE
TESTS

GUIDED PROBE
DIAGNOSTIC

TESTS

VERI FlED
CONNECTIVITY

AND
CLEARANCE

Figure 10-1 - CADRE System for Logic Circuit Pack Design

10-2

CADRE has been used by the echo suppressor terminal (EST) project at Holmdel
and is thus a proven process, requiring a minimum of training. The programs
are used jointly by engineering and drafting so that each is able to work in an
efficient manner; yet communication is simplified by maintaining a single data
base.

When the development schedule for PLAID was adopted, it was assumed that
high-confidence wiring (HIWIRE)3 would be used to construct the prototype system
from wired breadboard models, rather than PWBs, saving five or six weeks of
time and drafting effort. When CADRE, which depends on early and frequent
interaction between engineering and drafting to reduce redundant effort, was
chosen, the estimates of drafting cost were reduced by an additional 25 percent.
We are a long way into the schedule, and costs are running even lower than
estimates. To understand how CADRE could have this much effect on a project,
one must be familiar with the system philosophy and the details of individual
capabilities.

MODULAR CAP ABILITIES

Computer aids, in order to be useful to a project with a new technology and a close

schedule, must be able to be easily modified so as to accommodate new devices
and programmed capabilities. This flexibility is available in CADRE because
existing programs are interconnected through interface routines that can be
changed readily to provide for new programs. In fact, the system was assembled
originally from programs that had been written for other applications and new
programs were added only when no alternative existed. In addition, all unique
information, such as device codes and board descriptions, was put into libraries,
which form the heart of the system. It was a relatively simple operation to add
the many new devices needed for PLAID. The coordination, maintenance, and
documentation of these libraries are Simplified by the structure and data for­
mats which were chosen to facilitate maintenance.

The libraries are defined for those items that are used repeatedly in the design
process but which change with the technology or the application:

• Component Library: One entry per device code (e. g., TI7400) .

• Package Library: One entry for each pin configuration (e. g., I6-pin
dual in-line package [DIP]).

10-3

• Board Library: One entry for each board type (breadboard or PWB) •

• Function Library: One entry for each nonatomic logic function
(e. g., D flip-flop, counter, etc.).

Entries for most of these libraries are obtained in a routine manner from data
sheets. Only the function library, which contains simulation models, requires
significant effort when adding a new device. Since it is needed only for simula­
tion, the time for developing these models does not delay breadboarding.

The contents of these libraries are determined by the data transformations and
mappings that must occur in the design process. For example, functional inter­
connections must be converted to a set of commands for an automated wiring
machine. The engineer indicates on the schematic what functions are to be
interconnected, and the draftsman translates them into machine-readable form,
partitioning each function to a DIP and placing the DIPs on a board. The HIWIRE
program, using the library information, determines from the functional data
the connections needed and then calculates the corresponding DIP pins and the
location of the board pins into which the DIPs will be inserted. For each connec­
tion the program issues the commands necessary to drive the wiring machine to
the correct locations and make the connections. In this manner, tedious, error­
prone, manual operations are eliminated, saving not only the time spent on input­
ting data but also on locating the errors that would have occurred.

DESIGN VERIFICATION

At each step in the design process, the data must be verified either manually or
by machine. Verification ensures that the data is correct and complete, thereby
minimizing repeated passes through the design pro cess. The interface programs
in CADRE are used to reformat the data so that its error-prone reentry is re­
duced. It is possible to accumulate a complete circuit,pack description in a
series of steps. First, the interconnection of functions is encoded. Then the
physical design information is added and, finally, the testing data. The outputs
of the system are: (1) a machine-readable description of the board layout, (2) a
schematic drawing, and (3) testing data that can be used without change at the
manufacturing location.

10-4

Of course, the full benefit of this information can only be realized if the manu­
facturing location is able to verify this consistency and eliminate extensive manual
checking. For this reason, it is important to establish a working relationship
with the manufacturing location as early as possible in the project so that the
verification equipment will be available when needed. With regard to PLAID, we
have worked closely with Western Electric-Merrimac Valley (WE- MV) to make
sure that efforts are not duplicated. To that effect, WE engineers have been
working with us to generate the test information during our design phase. By
establishing a joint schedule, it has been possible to send information to WE as
it becomes aVailable, instead of waiting until all data are complete in the Bell
Laboratories design information (LDI). We are hoping to have the first tool-made
sample produced only 4 months after the release of the last specification to WE.
This initial work is being performed on a Bell Laboratories experimental (BLX)

order so that the usual review of product potential is not needed. Justification of
potential market to obtain funding for a small project like PLAID is inappropriate
and would have unnecessarily delayed its introduction.

SIMULATION

The construction of wired breadboard models, a step performed to avoid repeat­
ing the layout process, is a physical simulation of the actual PWBs. Simulation
is very important in the design verification process because the sooner a problem
is detected, the fewer the operations that must be repeated to correct the error.
Computer simulations are the fastest means of verifying the operation of, and
obtaining test data for, each circuit pack. The CADRE function begins with the en­
coding of circuit connectivity into a language that is used as input to the logic

analyzer for maintenance planning (LAMP) simulation program.

There are three distinct phases in the use of the simulation capability of
LAMP. 4, 5 In the first phase the nominal behavior of the circuit is verified. This
step can be performed concurrently with the initial design so that as each section
is completed it may be checked. The simulation can be performed either at the
gate level, using detailed models of the components, or at a functional level, us­
ing Simplified models of complex functions and memory units. The functional
simulator was used to model the MAC-8 chip at a register transfer level to
evaluate the completeness of the design before the chip was available. In a
second phase, timing simulation can be used to ensure that, in addition to proper

10-5

logical behavior, the sequence of operations will be correct. This step is par­
ticularly important for sequential circuits where several functions may have to
occur simultaneously to obtain the proper operation. A third phase, fault
simulation, is used to evaluate a set of tests so that any incorrect operation can
be detected at the terminals of a circuit pack. This simulation should be per­
formed as soon as possible after a circuit design is complete because otherwise
it may be impossible to detect some faulty components without providing addi­
tional test terminals in the layout.

MODEL CONSTRUCTION

To wire a breadboard, the partitiOning of functions to DIPs and their placement
on the board are added to the circuit connectivity previously encoded for simula­
tion. Then, as described earlier. the data are transformed into the commands
necessary to direct a wiring machine. The library capability of HIWIRE also
gener ates the power and ground wir ing for the DIPs that are not expli citly in­
cluded in the LAMP input.

Wired breadboard models are used to avoid the long delays encountered in routing
the paths and fabricating the boards for PWBs. Early in the design process,
models are provided that can be checked out in the laboratory and easily modified
if the design intent is not realized. Furthermore, the PWB routing, when per­
formed, is less likely to require extensive modification. It is the reduction in
this change activity that allowed the drafting estimates for PLAID to be reduced
by 25 percent.

In addition, a complete set of board models can be assembled and tested as a
system. The time necessary to assemble a complete system using prototype
PWBs is extremely long because of queues encountered in the graphical layout
and fabrication process. Thus, even system level problems can be detected and
corrected before the PWB layout process is begun.

The paper tapes or cards that drive standard semiautomatic or fully automatic
wire-wrapping machines are automatically produced. Several companies will
wire boards directly from this data. PLAID uses an in-house semiautomatic
wire-wrapping machine. Other projects have used commercial, fully automatic
machines with an elapsed time of one week from coding until a wired board was

10-6

available. PLAID also generates manual wiring lists that can be used for hand­
wiring or checking the models.

TESTING

The philosophy of microcomputer testing is undergoing rapid change; the amount
of testing that can and should be done at the board level versus the amount done
with self-diagnostic programs is particularly being questioned. The CADRE
system is capable of generating both acceptance and diagnostic board level tests.
It has been used with PLAID, assuming that the chips would be pretested and that
most memory tests would be programmed on PLAID itself.

The acceptance and diagnostic tests were developed with the LAMP fault simula­
tor, which uses the breadboard circuit description as input. In the first step a
sequence of input test vectors is generated that will allow all classical faults to
be detected at the outputs. The fault simulator aids in evaluating the complete­
ness of the tests, but the design engineer is responsible for chOOSing the test
patterns.

The manufacturing pro cess must not only detect bad packs but also diagnose and
repair them. The diagnostic approach used in PLAID depends on a guided probe
that can access internal nodes on a pack. The probing operation is performed
under computer direction until the bad device is found. The additional data needed
for the probing program is obtained from LAMP (the internal state) and HIWIRE
(the physical location of all components). The flexible interface for testing
program (FLINT) 6 is used to reformat and combine the data with the commands
needed to operate the Datatron 7 automatic test equipment. Identical Datatron
equipment is available at BTL and WE, permitting engineers to develop tests at
BTL and see that they are run correctly at WE. The tests can therefore be gener-
ated during the design phase and used directly at WE with no duplication of effort.

AUDITING

Once the system operation has been verified using wired boards, the layout of the
PWBs can begin. In our system the most important auditing of circuit connectiv­
ity occurs at this point. In the layout process the circuit schematic is manually
converted into a physical layout and then digitized into the Applicon8 graphical

10-7

editing system. The connectivity audit ensures that the layout corresponds to the
data for wiring the model and that a working circuit will be manufactured. Of

course, the audit should be used each time the layout is edited to make certain
that no errors have been introduced inadvertently.

An audit may be a simple comparison of two similar data sets; however, the one
in the APPRAISE9 set of programs is more sophisticated. It will accept data
prepared by different programs and recognize logically equivalent, though not
physically identical, circuits. Before the audit is performed a program is run
on the Applicon interactive editing station to extract the connectivity and write an
output tape for comparison with the reference data. This extraction program
also performs a metal-to- metal clearance check10 to make sure that manufactur­
ing tolerances are maintained. The output of this clearance check is put into a
file which indicates individual errors to the Applicon operator so that they may be
corrected by editing. In addition to the connectivity data which is furnished,
geometric data accounts for differences in library specifications b~tween the two
sources. By including data necessary to map one set of component geometries
into the other libraries, it is unnecessary to maintain identical data in each
library. They can then be constructed to satisfy a particular application, and

the different programs easily be accommodated in the audit process. In the lay­
out process, the draftsman is usually permitted to interchange equivalent input
or output leads as well as equivalent functions. These changes do not affect the
operation of the circuit but do require a more complicated audit capability in
order to recognize that the changed connections are not errors. When equivalent
changes are made, it is necessary to repeat the test data preparation step to
achieve a manufacturing test that corresponds to the actual layout.

Although we have not yet reached the auditing step on PLAID, it was found in the
EST project that none of the 30 boards audited had any errors when checked by
WE. In addition, each connectivity audit replaced 7-1/2 to 10 hours of meticulous
manual checking. The cost of the audit is low. It requires (1) about 5 minutes
of Applicon editing, (2) that the extraction program run unattended on the mini­
computer (approximately 40 minutes), and (3) 1 minute of main frame computer
time for the actual audit. The auditing process thus provides a relatively in­
expensive way to improve the quality of information transferred. WE can also
use the program to verify consistency.

10-8

MACHINE-DRAWN SCHEMATICS

The engineer's hand-drawn schematic is adequate for much of the design process
but it must be redrawn and standardized for use in WE and the telephone com­
panies. The object of much of WE checking is to determine whether the man­
ually drawn circuit pack schematics (CPSs) agree with the layout of the PWBs.
In the EST project, errors on the manual schematics accounted for the only in­
consistencies since the audit was used on the boards. It is difficult to extract
connectivity from a schematic for auditing, but machine-generated schematics
from the same source as the audit ensure consistency.

The automatic circuit pack schematics (AUTo-CPS)11 program will be tried on
PLAID to generate schematics on the computer from the HIWIRE input data. The
schematic is divided into pages, and the aesthetics are applied interactively, but
the connectivity is maintained. The editing takes about 4 hours, and computer
costs are under $100 for each schematic, considerably less expensive than the
week of drafting effort required for a manual schematic. Thus a less expensive
means of obtaining schematics which are consistent with the audited layout may
prove to be effective.

CONCLUSION

The development of PLAID on a close schedule at low cost has been greatly aided
by the CADRE system. The various components of the system have saved signifi­
cant amounts of time by reducing manual operations and eliminating redundant
work. Moreover, costs have been kept low by -ensuring that repeated passes
through the more expensive operations, e. g., PWB layout, are kept to a mini­
mum. The close cooperation with WE-MW throughout the project promises a
smooth transition from development to manufacture. It appears that CADRE can
greatly enhance our chances of realizing the full potential of the MAC-8, as well
as getting the product to the market in the shortest possible time.

ACKNOWLEDGMENT

The author wishes to acknowledge the work of all those who have contributed to
the development of CADRE. They include not only the writers of the various pro-

10-9

grams listed in the references but all the users whose suggestions have made it
an effective system. In particular, the contributions of J. Van Zweden, who co­
ordinated the physical design of PLAID, are gratefully acknowledged.

10-10

REFERENCES

1. C. F. Shupe, K. W. Johnson, and B. B. Hofmann, "Testing and
Debugging of MAC-8 Systems, If paper presented at Microcomputer

Symposium, Bell Telephone Laboratories, Holmdel, New Jersey

1976.

2. D. S. Evans and L. A. 0 Neill, CADRE: An Integrated System for
the Design of Printed Wiring Boards, TM-76-4393-15,

September 8, 1976.

3. D. S. Evans and L. C. Thomas, HIWmE User's Manual, Memo­
random for File, Case 39898-13, October 12, 1976.

4. C. H. Elmendorf and R. B. Schmidt, LS LAMP System User's
Manual, TM-74-5334-1, TM-74 .. 5331-2, July 22, 1974.

5. S. G. Chappell, P. R. Menon and A. M. Schone, Functional Simula­
tion in the LAMP System - User's Manual - Version 1, TM-75-5331-5,
June 19, 1975.

6. D. S. Evans and F. W. Kerfoot, FLINT D User's Manual, TM-76-4393-
12, TM-76-4392-10, July 30, 1976.

7. Digital Module Tester Operator's Manual (Model 4400-128), Datatron,

Incorporated, Santa Ana, California, January 26, 1973.

8. Computerized Graphic Processing Systems User's Manual, Applicon

Incorporated, Burlington, Massachusetts, September, 1973.

9. R. M. Allgair, Connectivity Audit User's Manual for Version A,
Memorandum for File, Case 39898-13, January 26, 1976.

10. R. C. Fairbrother, Field Trial Release of Printed Circuit Metal-to­

Metal Clearance Checldng Programs, Memorandum for File, Case
36361-7, August 6, 1976.

11. Solar Flare No.1, Bell Telephone Laboratories, Dept 8623,

July, 1976.

10-11

SUPPORT FACILITIES

SWAT - A DEBUGGING SYSTEM FOR THE DIMENSION PBX

T. B. Cannon, BTL Dept 3222, DR, CO

ABSTRACT

The CSS 201 switch analysis tool (SWAT) is a debugging system de­
signed to aid in the development of the DIMENSION private branch ex­
change (PBX) product line. The development of SWAT is discussed,
and the advantages of using a stored program controller, i. e. micro­
computer, to provide a sophisticated portable test system on a short
schedule are demonstrated. Several concepts which allowed a smooth
evolution of SWAT while encompassingthe ever-present new and chang­
ing requirements are described.

SWAT is a debugging system, designed to aid in the development of the

DIMENSION family of stored program control PBX systems. SWAT is biased
toward the testing and debugging of software in real time, but it is also a powerful

tool for debugging firmware (microprograms) and hardware.

The major SWAT features are:

- READ/WRITE

Memory, registers, input/output (I/O), flags.

- PROCESSOR CONTROL

Halt, go, single-step, multistep.

-MATCHERS

Four programmable hardware matchers.

- TRACE MEMORY

Programmable, real-time history memory.

11-1

• REAL-TIME MEASUREMENT

Two programmable timers/counters.

SWAT users may reference the CSS 201 memory in an absolute, relative, or in­
dexed addressing mode. Eight tables are provided for storage of user-defined
base address, offset, block length, and reference tag, allowing quick and easy
display of different tables and programs stored in memory. When registers are
read, the contents are displayed along with a mnemonic header for easy referenc­
ing.

The matchers monitor the CSS 201 system for user-specified operations. The
user may stipulate that a match should occur on any combination of the following
operations: memory read, memory write, I/O read, I/O write, or instruction
fetch. In addition, the user may require that the address bus, data bus, and
miscellaneous flags have any specific bit pattern including don't cares. Thus,
the user can specify complex events, such as writing a 1 in bit 6 of memory
location 0121F 16' The user may also designate the match response mode to halt
the processor operation, enable/disable automatically any of the four matchers,
execute a programmable task queue, or pass. The pass mode blinks a light­
emitting diode (LED) indicator and provides a pulse to synchronize an oscillo­
scope, etc.

The trace memory provides a 255- by 20-bit memory array which will store up to
255 program addresses in real time. When it is used as a program trace memory,
the address of the last 255 instructions executed, the address of the last 255
branch instructions executed, or the last 127 branched from-to program address
pairs may be stored. For conditional branch instructions, only those which take
the branch are saved. When it is used as an event trace memory, anyone of the
matchers may be used to specify an event to be traced, i. e., the program address
of the last 255 instructions writing a 1 in bit 6 of memory location 0121F 16 may
be stored. The user may also specify when the trace memory should function.
Normally, it does so continuously, and its contents are displayed after a match
event halts the processor operation. Alternatively, the user may specify a start
trace event and a stop trace event with the matchers in order to take a snapshot
trace without altering the CSS 201 operation.

The real-time measurement option provides two 7-digit decade counters plus a
passes counter for averaging. Any event which can be specified by the matchers
can be measured. Thus the execution time of a single instruction or an entire

11-2

task may be measured. The user may also specify a master/slave mode to allow
subtracting time spent on other tasks such as the interrupt handler. The clock for
each counter may be specified as an internal10-MHz crystal or an external clock

for measuring time, or as a matcher output for counting the number of match
events up to 9999999.

The CSS 201 family utilizes two different processors. Each is microprogrammed

and executes a similar dialect of the 3A language. The MC3 processor , used in
CSS 201 VS and CSS 201S systems is designed with medium scale integration
(MSI) transistor-transistor logic (TTL) technology and has a 24-bit micro­
instruction, a 16-bit address bus, a 16-bit data bus and a typical microcycle of
1. 2 J.Ls. The 201CC processor, used in CSS 201L systems, is designed around the
Intel 3000 series microprocessor chip set and has a 32-bit microinstruction, a
20-bit address bus, a 16-bit data bus , and a microcycle of 225 ns.

A SWAT system, shown in Figure 11-1, interfaces the CSS 201 system buses,

internal processor microbuses, and control leads via an interface circuit board.
The interface board plugs into a dedicated test slot in the CSS 201 control carrier.
A different interface board is provided for each of the two differe~ CSS 201
processors.

• 8080 MI CRO COMPUTER

\

• MATCHERS
• TRACE MEMORY
• REAL-TI ME MEASURE MENT

USER ' S TERMINAL

Figure 11-1 - CSS 201 Switch Analysis Tool (SWAT)

11-3

The typical user interface is via a cathode ray tube (CRT) terminal, but in general,
any RS- 232C compatible terminal may be used. A simple and easy-to-use com­
mand language provides communication with the SWAT functions and CSS 201 sys­
tem. This language is common to all of the CSS 201 systems since any differences
between the two processors are automatically rectified by SWAT.

At the heart of the SWAT system is a microcomputer based on the Intel 8080A
microprocessor. 1 This microcomputer has been laid out on a printed wiring
board (PWB), approximately 8-1/2 by 11 inches, which has a 100-pin edge con­
nector. This general-purpose, single-board microcomputer provides the follow­
ing features:

• Intel8080A microprocessor, system controller, and clock.

• Programmable read-only memory (PROM)/ROM, 8K words
in lK-word increments (Intel 8708/8308).

• Random access memory (RAM), IK words in 256-word
increments (Intel 8101).

• Priority interrupt structure, 8 levels, programmable.

• Programmable serial interface, 7 selectable baud rates,
RS- 232C compatible.

The circuits are partitioned so that each feature may be optional on the PWB, and
many other options are provided for each feature via the wiring of the edge con­

nector.

The internal bus structure of SWAT is shown in Figure 11-2. Normally, the CSS
201 address, data, and control buses are tristated onto a 44-bit (multiplex) bus.
Along with timing signals, the matchers, trace memory, and real-time measuring
features can then monitor the CSS 201 operation. Microaddress and microdata
buses are read by tristating them onto this multiplex bus under control of the 8080
microcomputer. The registers in the CSS 201 processors are realized through
medium scale integration (MSI) and large scale integration (LSI) devices and are
not directly accessible. SWAT reads (writes) the registers by cycle stealing from
the microprogram. SWAT halts the CSS 201 processor, takes control of the pro­
cessor microinstruction bus, executes microinstructions to move the register con­
tents to the address or data bus where they are accessible, and then restores the
CSS 201 processor. Memory, flags, and I/o are handled in a similar fashion.

11-4

CSS-201
SYSTEM

ADDRESS

INTERFACE
CIRCUIT BOARD
CP-8

MUX. &
BUFFER
CP-3

Figure 11-2 - SWAT Bus Structure (CSS 201L Interface)

SWAT development began in July of 1975 and ran concurrently with the develop­
ment of the CSS 201L system. A breadboard SWAT system with simple read/
write and processor control features was operating in October. The breadboard
only required two of the circuit boards shown in Figure 11-2, the interface
(CP-8) and the multiplex/buffer (CP-3). An Intel Microcomputer Development
System, MDS-800, was used as the central proceSSing unit (CPU), providing
read/write program store, monitor program for debugging SWAT software, and
time to design the SWAT CPU later in the schedule. The matchers, trace memory,
and real-time measurement circuits and software drivers were added in November,
January, and February, respectively. The SWAT CPU design was also completed
in January, and the first two CSS 201L SWAT systems were delivered in April.
The interface circuit (CP-7) and software for the CSS 201S systems were com­
pleted and the first CSS 201S SWAT system delivered in May.

CONCLUSIONS AND SUMMARY

A very powerful and portable test and debugging system was designed and tested
in a short time by using stored program control, i. e., a microcomputer. An

estimated two EMTS years of effort were expended, divided approximately equally
between hardware and software.

The decision to use a standard CRT terminal as the user interface contributed
to achieving the short schedules. Considerable design effort was eliminated by
not integrating this function directly into SWAT, especially for a limited-produc­
tion test system.

11-5

Throughout the development of SWAT, a basic design philosophy was used: If it
can be done in software, it shall be. This proved to be an important decision
when incorporating the ever-present changes in the requirements, features, and
the CSS 201 itself.

An Intel MDS-800 with the in-circuit emulator, ICE-80 option, was used for

debugging software and testing the design of the SWAT CPU during the second
half of the SWAT development. It is the author's opinion that the money spent
was re covered many times over in saved time and effort.

The structured macro assembly language (SMAL)2 was used to write the SWAT
software. This saved considerable effort over writing in assembly language.
Much more time would have been saved if SMAL had generated relocatable pro­
gram modules or had been able to handle large programs (10K bytes). Software
support and choice of language are very important in the development of micro­
computer-based systems.

11-6

REFERENCES

1. Intel 8080 Microcomputer Systems User's Manual, Intel
Corporation, Santa Clara, California, September, 1975.

2. C. Popper, SMAL-A Structured Macro-Assembly Language
for a Microprocessor, TM-74-3233-3, August 1, 1974.

11-7

APPLICATIONS I

THE LOOP SWITCHING SYSTEM

N. G. Avaneas and J. M. Brown, BTL Dept 4533, WH, NJ

ABSTRACT

A new line concentrator, the Loop Switching System (LSS), has been

developed. It uses PROCON, a programmable controller, to control

the call processing, traffic measurement and display, system mainte­

nance, and manual testing.

INTRODUCTION

The LSS concentrates 96 subscriber lines onto 32 voice-frequency trunk pairs by

means of a graded multiple space-division switching network at the remote ter­

minal (RT). The trunks connect with a central office terminal (COT) which ex­

pands the trunks into the individual line appearances. An additional 96 lines and

32 trunks can be added, either at the same RT or at a second RT on a different

cable route, using the same COT common control equipment.

In addition to the trunk pairs, each RT requires two standard voice-frequency

pairs for a full-duplex data link. This 4-wire data link, operating at 1250 bls,
is used to transmit concentrator connection orders from the COT to the RT and

to transmit service request information from the RT to the COT.

The LSS system configuration for 1- and for 2-RT operation is illustrated in

Figures 12-1 and 12-2, respectively.

12-1

TO
SUBSCRIBER
LINE CKT
(T,R,S)

t: AS PER VF ENGINEERING

2800A. MAX FOR
CO POWERING OF RT

1----+---1 OPTION AL
VF RANGE VF TRUN K S (32)

1----+---1 EXTENDERS 1----------+-,

I--::---+---IOPTIONAL
VF RANGE VF TRUNKS (32)

~':"--+---I EXTENDERSI---------+--t

RULES------1

~I?~_~~.~.~.d
VF DISTRIBUTION

CENTRAL OFFICE TERMINAL

(COT)

REMOTE TERMINAL
(RTl

TO
SUBseRI BER
LINE CKT

IT,R,S)

Figure 12-1 - Typical LSS System Layout - One RT

CENTRAL OFFICE TERMINAL

h:
AS PER VF ENGINEERING RULES ~

\+1700.1\..
r-------------, MAX

2800..n.. MAX FOR -----.t ~___c"-t----~
CO POWERING OF RT -~

REMOTE TERMINAL 2

Figure 12-2 - Typical LSS System Layout - Two RTs

12-2

SWITCHING NETWORK

The LSS uses a graded multiple switching network to minimize common equip­
ment, and hence minimize getting-started costs and spare plug-in unit stocking
costs. The graded multiple is less costly but less efficient in terms of traffic
than a 1- or 2-stage network; 32 trunks are required instead of 28 for the same
traffic handling capability.

Each of four lines, in the graded multiple network, has full access to only seven
trunks. These seven trunks are multipled to other groups in an appropriate
manner to minimize trunk commonality between line groups, and to maximize
traffic capacity. Thus the entire switching network is available on a per-line
basis and is added as a function of lines loaded on the concentrator.

The Western Electric (WE) BL7 multi co ntact, magnetically latching, miniature,
wire-spring relay is used as the switching element. A latching switching element
is deSirable to minimize power drain. This is a particularly important consider­
ation for a batteryless, simplex-powered RT which is constrained to consume
less than lOW of power. As shown in Figure 12-3, three of these multicontact
relays (Kl, K2, K3), wired in a tree configuration, provide each line with access
to one of seven trunks. The eighth port on this tree network is connected to a
per-line service request detector at the RT and to a ring trip and overflow circuit
at the COT. Overflow is applied to a line in the COT when all of the seven acces­
sible trunks are busy. A fourth relay (K4), a nonlatching, miniature, flat-spring
relay, isolates the line from the switching network during the switching of the
three per-line relays. This will avoid objectionable transients on the line and
on the working trunks. Contacts on the K4 relays at the RT and COT are also
used to check the trunk and the switching network for leakage and continuity just
before the relays cut through the line. This preconnection trunk testing ensures
that a defective trunk is not assigned to a subscriber.

CALL PROCESSING

The chief constituent of the concentrator is a stored program controller at the
COT. This controller implements the call proceSSing algorithm and communi­
cates t via the data link, with a relatively Simple wired logic processor at the RT.

The common control circuitry connects a trunk in accordance with the results of

12-3

both an RT scan of the service request detectors and a COT scan of the sleeve
lead status. A trunk is disconnected only when a sleeve lead is ungrounded.

The processor transmits scan, network, and activate orders to the RT. The
response of the RT to each of these orders is discussed below.

Upon receiving a scan order, the RT transmits the number of the line requesting
service and, for redundancy, its binary complement. If differences occur be­
tween the line number and its complement, the COT rejects the scan result and
initiates another s can order.

When a network order is received by the RT, it is stored in a register and is also
returned to the COT for comparison with the original transmission. If no errors
are present, the COT transmits an activate order to the RT. This triggers the

7 7

3 6

5 5

LINE
KI

I TRUNK TRUNK 4
K3

LINE
(TIP) (TIP) (RING) (RING)

6 3

2 2

4

0 0

NOTE: WHEN NO TRUNK IS CONNECTED. THE KI • K2, AND K3 RELAYS ARE LATCHED:

T
LINE

R

I.E .• MAKE CONTACTS ARE CLOSED

..... -

..... -

NETWORK
ISOLATION RELAY

I

K4*

* ,
TO TRUNK TEST

CIRCUITRY

TRUNKS
7

Ir- - - - - - ----II

RELAY TREE CONTACTS OF

KI I K2 I K3

Figure 12-3 - Relay Tree

12-4

SERVICE REQUEST

LEVEL DE TECTOR AT RT

0 OR
RING TRIP, OVER-

FLOW AT COT

RT to implement the network order, e. g., connect a trunk to a line. The acti­
vate order must be received by the RT within 20 ms of the network order so that
the network order is implemented.

After the trunk is connected to a line, the RT returns the confirmation answer,
which indicates the actual trunk level connected to the line, to the COT. The
confirmation answer is compared with the original network order for consistency,
and corrective action is initiated if differences exist.

If two RTs are connected with one COT via two separate data links, the COT scans
one RT and then the other for call originations. If an origination is discovered in
one RT, the necessary network order is transmitted to that RT only. Scanning
then resumes with the other RT.

Data transmission between the COT and RT is asynchronous, i. e., information
is not transmitted in predetermined and regular time slots. Instead, orders and
answers to orders are recognized by a unique series of information bits. These
orders and answers are shown in Figure 12- 4.

SCAN
ORDER il
SCAN
ANSWER

NETWORK
ORDER OR
CON FIRMATI ON
ANSWER

ACTIVATE
ORDER

LEAD-IN

I I I I I I

COMPLEMENTED
a-BIT LINE NO. LINE NO.

a-BIT LINE NO. 4-BIT 3-BIT
TYPE TRK
CODE LEVEL

\ I

CODE I - NETWORK ORDER

CODE 2 - CONFIRMATION

CODE "3 - RT NET. CONT. FAILURE

CODE 4 - RT LINE LEAKAGE

CODE 5 - RT SE.RVICE REQUEST

DETECTOR FAILURE

Figure 12-4 - Data Organization for Orders and Answers

12-5

The timing associated with the LSS call processing algorithm is shown in
Figure 12-5. For a terminating call, a trunk is connected within 275 to 335 ms
after the sleeve lead is grounded. For an originating call, a trunk is connected
within 375 to 435 ms after a station set goes off-hook. Originating call times
include 100 ms for the service request detector, which is heavily filtered to re­
ject 60-Hz longitudinal signals.

PROCESSOR

The LSS is controlled by PROCON, a programmable controller manufactured by
WE. The PROCON used in LSS is an 8-bit data, 24-bit instruction, nonself­
checking unit with multiparity checking and a 500-kHz clock. Every instruction
is fetched and executed in one clock period (2 fJS).

To control LSS, 5000 words of read-only memory (ROM) (instructions) and 500
words of random-access memory (RAM) (data) are required. Approximately
2000 words of program instruction are used for basic call processing, and
3000 words are used for automatic trouble locating, manual testing, and traffic
measurements.

RTI SCAN (30)

COT SCAN (30)

CONN/DISC TRK (275/250) ~-------'

NOTE: ALL NUMBERS IN MILLISECONDS (MS)

CONNECTION TIME* 275 - 335

DISCONNECT TIME 250 - 310

* FOR CALLS ORIGINATING AT THE RT. ADD APPROXIMATELY lOOMS FOR

THE TIME DELAY OF THE SERVICE REQUEST DETECTOR.
IF TRUNKS ARE DERIVED FROM SLC- 40 OR USE THE 5A RANGE
EXTENDER. ADD THE TIME DELAY CONTRIBUTED BY THESE UNITS.

RT2 SCAN (30)

COT SCAN (30)

CONN/DISC TRK (275/250) ~-----'

Figure 12-5 - Call Processing Times

12-6

As shown in Figure 12-6, the separate 8-bit input and output buses of PROCON
are combined into an 8-bit I/O data bus using hardware external to PROCON.
Data is transferred between PROCON and the peripheral units by means of this

I/O bus.

Thirty-two output control signals are used to selectively transfer data via the
I/O bus from PROCON to various other peripheral units. The PROCON destina­

tion signals DO and D2 and four device selection signals INi (i=O, 1, 2, 3), are used

to generate these 32 control lines by means of a decoder external to PROCON.

A different set of 32 input control signals is used to selectively transfer data
from the peripheral units to PROCON via the I/O bus. These control signals are

generated from the PROCON source signals S1 and S2, and from the same four
device selection signals INi used for the output control.

The 512-word RAM is divided into an upper and lower half, corresponding to the

ninth bit of the 9-bit RAM address. As long as successive RAM addresses are
confined to either the upper or lower half of the RAM, the RAM can be addressed
with eight bits (one PROCON instruction) plus the ninth bit previously stored. But,
if the RAM address changes from one half of the RAM to the other, two instruc­
tions are required to generate the 9-bit RAM address. Mter the RAM address
is stored in the RAM address register, the RAM is accessed in one instruction

which enables either the SO read control signal or the D1 write control signal.

A timing signal generator external to PROCON generates all of the timing signals

necessary for the operation of LSS. This generator is driven by the PROCON

clock and is controlled by the stored program.

MAINTENANCE FEATURES

The LSS processor controls a number of maintenance features such as continuous
monitoring of performance, alarm displays at the COT - which indicate system
status and defective plug-in units, automatic troubleshooting procedures - which
aid in maintaining and restoring service, and manual maintenance procedures.
Some of the routine maintenance functions performed automatically by LSS in­
clude the following:

12-7

• Each time a trunk is assigned to a line, the trunk assignment
is verified, and the trunk and switching network are tested
for leakage (less than 30 KQ) and continuity.

• Data transmission between the COT and the RT is checked
for accuracy.

• Performance of the alternate data link pairs is tested
periodically.

• All relays are operated and released once a day.

• Much of the per-line and common control circuitry is tested
for proper performance on a routine basis.

The following troubleshooting procedures are implemented automatically by the
LSS processor, on a selective basis, when the routine maintenance tests show a
failure:

• When the LSS is unable to process a call, a means is provided
to transfer automatically from the main data link pairs to an
alternate set of pairs. If it is not possible to communicate with
the RT via the main or alternate data link pairs, all of the critical
common control plug- in units in the COT are tested automatically,
and the appropriate plug-in and CO alarms are raised.

• When COT power is restored after a failure or a critical plug-in
unit is replaced, the LSS automatically reinitializes itself by dis­
connecting all idle lines and reconnecting all active lines (sleeve
grounded).

• When a line unit is plugged in at the COT or at the RT" all idle
lines are disconnected in order to ensure that the switching
network is in a known state.

The COT is equipped with an alarm plug-in unit containing 20 indicator lights
which display the status of the LSS as well as indicate which plug-in units are
defective. A COT test and display plug-in unit contains numeric displays and
indicator lights which show LSS traffic, the number of the line and trunk being
manually tested and the results of the tests, the number of busy trunks, and the
number of the trunk connected to a particular line. Pushbuttons are used to
select a particular display. Two lever-wheel switches select a particular line
number for test and display.

12-8

SO-READ
CONTROL

..
500 WORDS

RAM

14-- ADDRESS

DATA

01 '-----------' 9 - BIT S

WRITE
CONTROL l RAM ADDRESS REG JIoII~I-------

03
STORE
ADDRESS

I
I
I
I
I
I
I
I
I

- - - - - - -PER~E;;:L ~I~ - 1

~-

TRUNK
TEST

CALL
LSS

COT
MAINT

TRAFFIC
TO
C.O.

TRK BUSY
AND

OVER FLOW

I
I

~----~~------------~
,_--.J

1 1
PSU'S
5000
WORDS

ROM

PROCON

24- BIT

INSTRUCTION"

13 - BIT

A DDR ESS

DMU
AND
CU8

CLOCK

~~

TIMING SIGNALS
GENERATOR

(/) (J) (J)

::1..:E<.J~:E<.J
o <XI ~ (J) 0 ~
~ ~ 10 IO/Q -

\ (.

PROGRAM
RESETTABLE

OUT-BUS

8-BITS - I/O

IN - BUS

I 8 - BITS

00,02

OUTPUT ..
CONTROL

DATA-BUS
GEN

DECODER

I/O BUS

8-BITS

I

Ir~$
I SWITCHING
I NETWORK

I ~_---'

TESTa ALARM
DISPLAY UNIT

UNIT

32 C~NTROL~~ - - - - - ---I
FOR TRANSFERRING I
DATA FROM PROCON I
Tf PERIPHERAL UNITS I

~~I_.. I

OUTPUT
INTERFACE

OUT
DATA

INPUT
INTERFACE

MODEM

IN;
L...-_---' I I ~

DATA
(1=0,1,2,3)

DEVICE
SELECT ~

S I, S2 DECODER

IN PUT CONTROL-

~
I

32 CONTROL LINES
FOR TRANSFERRING DATA
FROM PERIPHERAL UNITS
TO PROCON

I ,
'----~~

I LINK

: I R: J
L ______ ~

Figure 12-6 - Block Diagram Showing Communication Paths

Between PROCON, COT Units, and the RT

A maintenance plug- in unit at the RT initiates line-trunk tests from the RT and
indicates the results of these tests. Four other indicator lights show system
status and plug- in failures at the RT.

PHYSICAL DESIGN

As shown in Figure 12-7, the COT of the LSS requires a maximum of 61 inches
of vertical space on a 23- inch wide miscellaneous bay and consists of up to four
assemblies. The 17-inch common control assembly consists of a fuse and alarm
panel, two power units, PROCON, and an 8-inch shelf for 13 common control
plug- in units.

The common control assembly for RT2, required whenever a second RT is pro­
vided, consists of a 4- inch high shelf which accommodates a power unit and a
modem.

The 20-inch line unit assembly consists of a 14-inch high tray, which accommo­
dates up to twelve 8 -line line units, and a 6- inch high field of terminals whi ch
provides test access to the line, trunks, and other pairs.

A second line unit assembly is used for a second set of 96 lines.

As shown in Figure 12-8, the RT of the LSS is mounted in a cabinet 48 inches

high, 29 inches wide, and 13 inches deep, and consists of up to four assemblies.

The common control assembly consists of an 8- inch high shelf for eight common
control plug-in units.

The line unit assembly consists of a 14-inch high shelf which accommodates up
to twelve 8-line line units. It is equipped with gas tube protectors for the trunks,
lines, data link, and order-wire pairs.

A second line unit assembly is added for a second set of 96 lines.

A 3-inch panel contains a thermostatically controlled heater and a duplex power
outlet. It is required only when it is necessary to control the humidity level
within the cabinet.

12-10

Figure 12-7 - Central Office Terminal

12-11

Figure 12-8 - Remote Terminal

12-12

SUMMARY

The Loop Switching System described in this paper utilizes the PROCON stored

program controller, which permits a wide variety of operational features to be
included in the system. This flexibility would not have been possible if a hard

wired logic approach had been used. By storing the history of system perform­
ance, a more accurate and thorough diagnosis of system trouble is possible, and
a more flexible call pro cessing algorithm can be implemented. In addition, the

turnaround time for correcting system bugs and adding features is greatly re­

duced when such changes are implemented by software modifications.

The LSS field trial began during August, 1976 near San Diego, California. Pro­

duction systems will be available from Western Electric during 1977.

12-13

APPLICATIONS I

TASI-E SOFTWARE DEVELOPMENT

J. C. Selbo, BTL Dept 4393, HO, NJ

ABSTRACT

This paper discusses software development for the microprocessor
controller for the experimental time assignment speech interpolation
(TASI-E) terminal. TASI-E is a system which takes advantage of nor­
mal pauses in telephone conversations to increase the circuit capacity
of existing domestic analog transmission facilities. The overall system
design and the functions performed by the microprocessor are out­
lined. Various factors affecting the organization of the software for
this interrupt-driven system are explained. Memory and real-time re­
quirements are discussed as well as the decision to exploit memory in
order to save real time. The use of such development tools as Intel
PL/M compiler, Simulator, microprocessor development system (MDS),
and in-circuit emulator (ICE) equipment to meet a tight schedule is also
explored.

INTRODUCTION

TASI- E is a system which takes advantage of normal pauses in human speech
during a telephone conversation to increase the circuit capacity of existing do­

mestic analog transmission facilities. I, 2,3 When speech activity ceases on any
one of 120 trunks, its particular channel, 1 of 48, may be taken away and given
to another trunk which has become active. All processing of speech is done in
sampled digital form and all trunk- channel assignments are made under control
of the microprocessor.

13-1

SYSTEM OVERVIEW

The primary functions performed by the microprocessor at the transmitting end
include obtaining data from the trunk status detector, making new trunk- channel
assignments, directing the time slot interchange (TSI) to connect a specific trunk
to its assigned channel, and signaling the assignment to the far end. The receiv­
ing microprocessor then processes the incoming signal and directs the receiving
TSI to make the corresponding connection. A block diagram of the microproces­
sor interfaces is presented in Figure 13-1.

The microprocessor also performs such secondary functions as updating noise
and volume for each trunk, gathering traffic information which is the output of a
thermal printer, and mOnitoring overload and failure conditions. The test panel
displays the status of the system and permits craftspersons to interact with it.

TRUNKS TIME SLOT CHANNELS
""-
2 INTERCHANGE ..,
:: DSI

~
UNIT H DSl "' ~ - INTERFACE INTERFACE

,..,
I' ,

;;. -transmit
5 DSI -receive 2 DSl

I~

" TRUNK
STATUS SIGNALING
DETECTOR MICROPROCESSOR UNIT

~ ~ ~
=speech detector -transmit I' .,
-tone detector CONTROLLER -receive
-trunk status
cfrcuit

l
TEST PANEL

-display
-control

Figure 13-1 - TASI-E Microprocessor Interfaces

13-2

MICROPROCESSOR HARDWARE

TASI-E uses the Intel 8-bit single-board computer (SBC) 80/10 with the 8080A
central proces~ing unit (CPU). This 80/10 board is expanded with an additional
SBC-416 programmable read-only memory (PROM) board, an SBC-016 random­
access memory (RAM) board, an SBC- 508 input/output (I/O) board, and an inter­
rupt board. The present system has a capacity of 15K PROM and 17K RAM. The
current version of the program requires 13. 5K PROM and 4K RAM.

REAL-TIME REQUIREMENTS

T ASI- E is a completely interrupt- driven, real-time system with four priority
interrupt levels:

• Channel A receive.
• Channel A transmit.
• Test panel.
• One-second clock.

The real-time pace of the system is set by the rate of the signaling channel. The
microprocessor receives a transmit interrupt from the signaling channel every
6.7 ms. The system objective is to prepare a new- connect or an update signal
to be the output during the appropriate window for each transmit interrupt. This
signal preparation process may also be interrupted by a higher priority receive
signaling channel whose information must be processed immediately. Therefore,
real-time requirements are immediate and critical.

PROGRAM ORGANIZATION AND USE OF A HIGH-LEVEL LANGUAGE

Because of a tight 5-month software development schedule for the experimental
TASI- E terminal, the decision was made to use PL/M, the Intel high-level
language, to write the microprocessor software. Its high-level constructions
(if-then-else, do case, do while, etc.) facilitate the writing of structured code
which, with in-line comments, is self-documenting and easily maintained and
modified. With the continuous evolution of the system throughout the development
interval, numerous system changes and additions were made. Ease of software
modification was essential.

13-3

Typically, one line of high-level code results in more machine processing than
one line of assembly language code; however, both take the same amount of pro­
gramming time. 4 Therefore, the necessary system code can be written in a
much shorter time using a high-level language such as PL/M.

Code produced by a compiler tends to be less efficient than that written by a
skilled assembly language programmer. This inefficiency must be weighed
against a longer development time which might cause the schedule to be missed
completely. One way to help alleviate the problem is to develop the system soft­
ware using a high-level language, then identify time- critical paths and recode
these as assembly language routines. Perhaps an even more effective course is
to consider alternate algorithms or structures which would require less execu­
tion time.

With T ASI- E it was possible to meet the real-time requirements using PL/M by
careful organization of the system. The decision was made to exploit memory in
order to save real time. Table look-up techniques were used to avoid on-line
computations. For example, a table of total noise (combined trunk and channel
noise) was created and stored in PROM. During real-time system operation, the
trunk noise bits are logically ORed with the channel noise bits and the result used
as the entry address into the total noise table. A similar table was used to per­
form gray-to-binary code conversion. Additional RAM was also utilized to save
real time. Much of the input to the microprocessor consists of several para­
meters packed into a single byte. The individual parameters are isolated by the
software and stored in RAM in separate machine bytes. They are then available
for use without requiring the repeated bit manipulation of a packed byte for each
parameter reference.

During preliminary studies of system performance it was discovered that real­
time limits were being exceeded during system overload. Because the only var­
iable factor dependent on system load was the size of the queues, the queue struc­
ture was reorganized from a simple linear list to a doubly linked list. It is fre­
quently necessary during system operation to remove an element from the middle
of a queue. This process becomes time- consuming for a long linear list. The
doubly linked list required more memory but greatly reduced the processing time
for the removal of an internal element. It made the time independent of queue
size because it eliminated the need for searching and for sliding elements to
close the gap.

13-4

The software functions were organized, as much as possible, to minimize the
time periods during which interrupts are completely disabled. Operations in­
volving queue handling, for example, are performed sequentially within one
priority interrupt level. Therefore, the queue-processing routines are inter­
ruptable, but the system organization ensures that the interrupting procedure
cannot be one which will also require queue operations. Therefore, the need for
reentrant code is eliminated, and such problems as the possible destruction of
the chains of a doubly linked list (which could occur if nested interrupts attempt
to process the same queue) are also prevented.

LIMITATIONS IMPOSED BY INTEL SYSTEMS

It was discovered that the Intel SBC 80/10 board has only one CPU interrupt level.
The priority interrupt structure required was achieved by adding an interrupt
controller on the interrupt interface board and modifying the SBC 80/10 board to
make the necessary CPU Signal available for connection to the interrupt con­
troller. Still, only one restart level is sent into the CPU; therefore, it was
necessary to write an assembly language utility to save the processor status, to
read the interrupt level from the input port of the interrupt controller, and to
transfer control to the appropriate service routine. This process added

approximately' 30 J1.s to the execution time required to honor an interrupt. Under
these conditions it was not appropriate to utilize the interrupt procedure facility
available in PL/M.

Another limitation encountered involved the layout of PROM and RAM in the sys­
tem. The SBC 80/10 board contains 4K PROM and lK RAM both with fixed ad­
dress ranges. The PROM and RAM boards have restricted selectable base
addresses. It is advantageous to make full use of the memory on the 80/10 board
because it can be accessed by the CPU without the additional wait states associ­
ated with off-board memory references. Also, the present version of the PL/M
compiler does not allow the placement of a segment of RAM between two segments
of PROM. Therefore, the only configuration possible is the placement of the
PROM board so that it overlaps the address range of the PROM and RAM on the
80/10 board, as shown in Figure 13- 2, thus making these portions of the PROM
board unusable and limiting the available system PROM to 15K. An attempt was
made to arrange the program so that critical, frequently used portions of memory
reside on the faster SBC 80/10 board.

13-5

7FFF

I
sac 016

til
rz:I

16K RAM til
til

I
sac 80/10 lK RAM :/

~
I

sac 416

rz:I
IX<
Q
Q
ICC

...:I 4000
ICC 3COO ~
H
U
rz:I
Q
ICC
><
rz:I
::c

16K PROM

I sac 80/10 4K PROM
V

1000

0000

Figure 13-2 - TASI-E Microprocessor Memory Map

SYSTEM DEVELOPMENT AND TESTING

The use of the PL/M language for program development has already been dis­

cussed. This code was stored and compiled on the Control Data Corporation
(CDC) Cyber 72 machine, the in-house Division 40 computer. During the course

of program development it was necessary to expand the resident version of pass 2

of the compiler to increase the size of the symbol table to handle the 330 symbols

used in the T ASI-E program and also to increase the amount of memory available

for assembled code from 12K to 15K bytes.

All initial testing of software algorithms was performed using the Intel simulator
INTERP/80, which is also available on the CDC computer. It provided an ap­

proximation of the real processing time required, thereby allowing the compari­

son of timing requirements for alternate algorithms. Also, the use of the simu­

lator permitted the correction of most software bugs without the necessity of

numerous transfers of the program to the Intel MDS- ICE system for testing.

Considerable handling time was thus eliminated because no direct link was avail­

able from the CDC to the MDS-ICE. The only means of transfer required the

punching and reading of a large paper tape.

13-6

The software was checked with each hardware interface individually, using the
MDS- ICE system to monitor performance with the program residing in the RAM
of the MDS. For complete real-time system testing it was necessary, of course,
to write the program into PROMs and run the entire system with all hardware
interfaces and interrupts. The ICE umbilical cord was used to study performance
and detect problems. With the individual software paths already tested, it was
much easier to isolate problems in the integrated system. The software also
proved to be very useful in debugging the hardware. Once a working version of
the software exists it is more reliably reproducible than hardware components
which are susceptible to numerous physical conditions.

CONCLUSION

The Intel SBC 80/10 computer board has been used successfully as the heart of the
experimental T ASI- E terminal. The use of a microprocessor controller has
greatly reduced the amount of hardware required for the system.

Through careful program design the real-time requirements of the system have
been met using a high-level programming language. Use of available develop­
ment tools has made it possible to design, construct, and test the entire system
software in less than 5 months from its inception and has facilitated any system
modifications recommended as a result of performance evaluations.

13-7

REFERENCES

1. R. B. Robrock, TASI-E - A Domestic TASI for Analog Carrier,
Memorandum for File, Case 38723-20, December 29, 1975.

2. V. I. Johannes, A Domestic TASI Proposal - TASI-E, Memorandum
for File, Case 38723-20, February 20, 1976.

3. R. B. Robrock, An Experimental TASI-E Terminal - Overview,
Memorandum for File, Case 38723-20, August 17, 1976.

4. W. M. Taliaffero, "Modularity. The Key to System Growth
Potential," Software Practice and Experience, Vol 1, No.3,
July, 1971, pp 245-257.

13-8

APPLICATIONS I

A MICROCOMPUTER TEST FACILITY FOR A
MOBILE TELECOMMUNICATIONS SYSTEM

S. A. Tartarone, BTL Dept 3141, HO, NJ

ABSTRACT

The design of a facility to exercise the call processing algorithms of
the high-capacity mobile telecommunications system (HCMTS) mobile
logic unit is presented. The system architecture, the use of a finite
state machine model for the test-planning activity, and the resulting
software design structure are explored.

INTRODUCTION

It is becoming quite apparent that the facilities required to test microcomputer­
based designs thoroughly are as complex as the very systems that they are test­
ing. The mobile logic system exerciser (MOLOSEX) sustains this basic maxim.
It is a system designed to test a microcomputer-based logic unit which will be the
master controller for the mobile telephone equipment to be used during the techni­
cal trial of HCMTS. 1, 2 The mobile logic unit, 3 designed around an Intel 8080
microprocessor, must execute a complex set of call processing sequences to set
up, monitor, and release calls. As Figure 14-1 displays, it must communicate
over a 10-kb/ s data channel, respond to inputs and drive call status in-
dicators associated with the user console, and control certain functions of the
transceiver section. Testing of this design required several steps: (1) strip
testing of small pieces of software, (2) string testing of conglomerate pieces of
software, and (3) system testing of the integrated hardware/software design to
determine if it was meeting its call processing requirements. The purpose of
this paper is to report on this final stage of system testing and the design of
the equipment required to undertake it.

14-1

BINARY
CONTROL

WIDEBAND
DATA

MODEM

WORD
SYNCH
DETECTOR

,z------><-----''"-t

BINARY
r--------. CON TROLS

USER
CONSOLE

DIAL
CODE a
CLOCK

MAIN
CONTROLLER

INTEL
8080

BINARY CONTROLS

1---------.tTRANSCEIVER
UNIT

SIGNAL
STRENGTH

BINARY
CONTROL

Figure 14-1 - Mobile Logic System

SYSTEM ARCHITECTURE

Figure 14- 2 illustrates the architecture of the testing facility. The plan is to
~imulate the external environment of the main controller using a driver processor
which will communicate with the logic unit through a hardware interface.

The requirements for the driver processor were that it be relatively inexpensive
and portable, that it provide rather simple interfacing capability, and most im­
portant, that it have a short procurement lead time to meet the tight development
schedules. The Intel INTELLEC MDS closely met these requirements and was
selected as the driver processor.

The hardware interface was designed around the I/O port structure of the
INTELLEC. Two universal synchronous/asynchronous receiver-transmitters
(USARTs) were employed to provide the 10-kb! s data transmission-reception
capabilities. A third USART was used to provide the dial code stream from
the user console. Latches were used to establish the interfaces with the
binary controls, and a digital-to':'analog (D-A) converter was chosen to serve as
the input to the signal strength measurement device.

14-2

TEST PLANNING

(USER CONSOLE
INTFC)

DIAL CODE
AND CLOCK

MAIN

CONTROLLER

INTEL

8080

(TRANSCEIVER
INTFC)

SIGNAL STRENGTH

BINARY
CONTROL

(DIVERSITY LOGIC
INTFC)

Figure 14-2 - Test Facility Design

The test planning and subsequent software design are based on a finite state
machine implementation of the logic unit call processing requirements. A sim­
plified model is illustrated in Figure 14-3. It consists of a number of states
which represent break periods during which outside stimuli designated as inputs
may occur. An input will cause a response specified by a transition routine to be
executed before transferring to the next state. The detailed call processing model
was formulated using the invaluable finite state support software (FS3), developed
in Department 5331. 4 The resulting model consists of some 40 states, 30 inputs,
and 60 transition routines linked by over 300 arcs which interconnect the various
states.

The test plan was to attempt to cover the finite state machine model by a judicious
selection of sequences which would walk through enough arcs of the model to vali­
date the integrity of the design of the logic unit. Once the sequences were se-

14-3

lected, test vectors based upon the finite state machine definitions were carefully
specified in detail in a high-level PL/I-like language.

APPLY POWER

®1'--_IN_IT __ --'HL---S-CA-N---'~ 002

RES CAN

RESCAN

TIME-OUT

ALERT
USER

TIME - OUT

XMIT
ORIGINATION

TIME-OUT

XMIT
RESPONSE

PROCESS
RELEASE

Figure 14-3 - Simplified state Diagram

SOFTWARE

Software Structure

TUNE 006

TUNE 005

RESCAN 002

The software structure is based upon the finite state machine concept with the in­
herent capability of automatically linking together arcs of the state table model to
perform the required tests. Figure 14-4 illustrates the software structure .

• The operating system provides communication with the system console,
monitors commands, handles test errors, provides data examination
and parameter change facilities, and stores library functions for
lower level routines.

14-4

• The test sequence generator (TSG) receives arc number inputs from
the test operator to build a test sequence. This module is the master
linker which pages arc controller programs into a load module and
generates a master driver program.

• The test sequence driver (TSD), created by the TSG, receives control
from the operating system to initiate a test and sequences through the
selection of arcs by calling the appropriate arc controller programs.

• An arc controller is created for each arc and contains the necessary
calls to the lower level stimuli generators and response detectors to

process an arc.

• The interface drivers are called by the higher level routines to inter­
act with the hardware interface and perform the required communica­
tion with the logic unit for transmission-reception of the lO-kb!s
data stream and control of the binary leads.

UNIX

USER INPUTS
(ARC NUMBERS)

INTELLEC

TEST
OPERATING SEQUENCE ~----------

GENERATOR SYSTEM

I DIALED-UP CONNECTION T I
I TEST L ____________ ..

SEQUENCE
DRIVER

~
+ ~

ARC CONTROLLER ARC CONTROLLER ...
1 n

~ +
I I I r I I

STIMULI RESPONSE RESPONSE STIMULI RESPONSE RESPONSE
GENERATOR DETECTOR ... DETECTOR GENERATOR DETECTOR ... DETECTOR

11 11 1n n 1 n1 nn

I I I 1 I I
~

INTERFACE

DRIVERS

Figure 14-4 - Software Structure

14-5

System Interaction

To perform a test, a sequence of arcs, each designated by an arc number, is
chosen. Certain arcs have variable parameters and these too must be preselected.
A dial-up connection is then established with UNIX and the TSG program is
executed. Inputs to this program consist of arc numbers and parameter values.

Up to 10 individual tests may be specified. The TSG builds up a complete load
module, including the master driver program, for each test. The dial-up connec­
tion is then temporarily maintained while the MOLOSEX operating system con­
tained in the INTELLEC is entered. Control is passed to a loading program, and
the TSG load module is retrieved over the dialed-up link. Communication with
UNIX is no longer needed. A test start command is entered to commence execu­
tion of a test and control is passed to the TSD. It calls the arc controllers for
each arc. They, in turn, call the stimuli generators (SG) to provide the external
i.nputs to the logic unit and the response detectors (RD) to determine if the logic
unit has properly processed the stimulus. The SG and RD programs depend upon
the interface drivers (ID) to establish the necessary communication with the logic
unit.

Software Design and Coding

The design activity was centered around structured techniques using high-level
languages and macros to ease the development of the application programs, and
mask the complicated interfacing with the hardware. Early in the development it
became apparent that the high-level language capabilities (SMAL2), link-editing
facilities, and powerful support facilities provided by UNIX5 made it the optimal
environment for program development. Furthermore, the other capabilities of
UNIX, in particular the high-level C language, were instrumental in allowing cer­
tain functions of the test facility, such as the complex TSG, to be performed off­
line on UNIX. The operating system was written in SMAL2 and provides several
system macros and subroutines to be called by the lower level programs which
interface with the hardware. The arc controllers, stimuli generator, and re­
sponse detector programs were also written in SMAL2 with judicious use of
macros to call the lower level interface drivers written in the Intel assembler.

14-6

CONCLUSIONS

The use of a unique testing model embodied in the finite state machine concept,
coupled with structured programming techniques making use of high-level
languages and sophisticated program development facilities, produced a powerful
system testing facility for exercising the technical trial HCMTS logic unit. The
facility was used to detect software errors and requirement miSinterpretations.
Extension of this type of equipment to testing of successive generations of mobile

telephone equipment is expected with this facility as a prototype. In addition, the
general concepts illustrated here could be extended to test hardware other than

the HCMTS mobile logic unit.

ACKNOWLEDGMENT

Joseph E. Lencoski was most instrumental in the advancement of this system by
contributing Significantly to its hardware and software design. steven M.
Silverstein and David L. Sobin provided the author with many useful suggestions

which are reflected in the system deSign. David H. Copp and John J. Molinelli
provided most valuable assistance in the development of powerful Intel software
development tools and, in particular, in their response to the specific needs of
this project.

14-7

REFERENCES

1. R. H. Frenkiel, "A High- Capacity Mobile Radio Telephone System
Model Using a Coordinated Small Zone Approach, " IEEE Transactions
on Vehicular Technology, May, 1970, pp 173-177.

2. Z. C. Fluhr and E. Nussbaum, "Switching Plan for a Cellular Mobile
Telephone System," IEEE Transactions on Communications
November,1973, pp 1281-1286.

3. M. R. Karim, "A Controller for the Mobile Logic Unit in the Bell
Laboratories High- Capacity Mobile Telecommunications System, "

Proceedings of the 26th Annual Conference of the IEEE Vehicular
Technology Group, March 24-26, 1976, Cat. No. 76CH1056-1VT.

4. H. Y. Chang et al, FS3 (Finite State Support Software) System Overview,

Bell Telephone Laboratories unpublished work.

5. D. J. Hunsberger and J. J. Molinelli, "A Support System for the

Intel 8080," paper presented at Microcomputer Symposium,
Bell Telephone Laboratories, Incorporated, Holmdel, New Jersey,
1976.

14-8

APPLICATIONS I

THE DESIGN OF A SELF-CHECKING MICROCOMPUTER

M. Liron, BTL Dept 5317, IH, IL

ABSTRACT

The high availability requirements dictated by the No. 1 ESS environ­
ment make it necessary for a continuously on-line microcomputer to
be self- checking. A microcomputer architecture which is capable of
providing immediate fault detection and high-fault location resolution
is presented. Because of the continuous reduction of hardware costs,
selective hardware duplication becomes increasingly more attractive.
The method employed is based on duplicating a subset of the micro­
computer, called the hard core, which is used to bootstrap diagnostics
from the hard core to the nonself- checking hardware. In order to meet
the availability requirements, a spare microcomputer is used which is
switched on-line upon detection of faults in the active on-line micro­

computer.

INTRODUCTION

A microcomputer syst em (J1.c) is currently being designed for use in the No. 1

E SS periphery. The incorporation of an intelligent stored pro graIn controller as

an integral part of a peripheral frame marks a deviation from the traditional cen­
tralized control approach to a more distributed control approach. The first pe­
ripheral system to utilize a p.c for its control will be the digital carrier trunk

(DCT) with other p.c-based peripheral frames expected to follow.

The wired-logic controllers currently in use are sufficiently simple to be fully
maintained by the ESS central control (CC). The fJ.c on the other hand, being con­
siderably more complex, cannot be maintained by the CC in real time, and must
therefore be capable of autonomously carrying out the various maintenance

15-1

functions. These maintenance functions can be classified as: fault detection,
fault location, reconfiguration, recovery, and in the case of a duplicated and
matched pc, the capability to initialize a repaired pc before the transition from a
simplex to a duplex mode (i. e., the update process).

The pc, a continuously on-line unit, must be fully operational for the entire 40-
year lifetime expected of the E SS machine. Even in a pc of moderate complexity
(on the order of 150 dual in-line packages [DIPs J), hardware faults are likely to
ocCUr long before the mission time is completed (probability of 0.99). In order
to' meet the continuous availability requirement in the presence of hardware
faults, a spare pc is used, thus increasing reliability (i. e., the probability that
at least one J.1.c will be operational) to above O. 999.

This paper presents the duplex pc architecture currently being implemented for
the DCT system that is designed to meet the maintenance and availability re­
quirements necessary in the ESS environment.

OVERALL ARCHITECTURE

The duplex J.1.c system integrated into a No. 1 ESS peripheral frame is depicted in
Figures 15-1 and 15-2. CC of the input/output (I/O) units is indirect, via the
active on-line J.1.c. The Jlc receives and translates the relatively high-level CC
orders into the primitive control signals necessary to control the operation of the
wired-logic I/O units. The CC orders are received over the peripheral unit bus
(PUB), while data to the CC is transferred to a memory unit scanned by the CC
via the scanner answer bus (SCAB). In the DCT system the I/O units represent
20 T-carrier units, called digroups, used to encode and to multiplex 480 analog
channels for transmission over 20 T-1 digital trunks. The digroups also perform
the receiving functions of de multiplexing and decoding the digital trunks into ana~
log channels.

Hardware techniques make each pc partially self- checking; hardware techniques
augmented by internal diagnostic routines make each pc fully self-checking. Al­
though one pc is used to control the peripheral system (the active unit), both
active and spare J.1.Cs run in a fully synchronized and matched mode simultaneously
executing the identical instruction sequence. Those faults not detected internally
by the Jlcs will be recognized (within microseconds) by a mismatch between the
two J.1.Cs. The internal diagnostic routines resident in each J.1.c are triggered by

15-2

TO CENTRAL ~
CONTROL ICc) U
TO SCANNER (
(SC) r " I-

"
I-

TO [CENTRAL PULSE
DISTRIBUTOR
(CPO) .cu=

- I-- I-

V
ESSIIlC INTERFACE

U()()U
MICROCOMPUTER- 0

" j

~

~
~

..:::::
0

'" -<
'" -4

~
0:11
c
If'
0

K

~

~

~

PERIPHERAL UNIT BUS

SCANNER ANSWER BUS

MAINTENANCE DATA

MAINTENANCE ORDERS

>

~/ .J
BUS SELECTOR

1/0-1

l J
BUS SELECTOR

1/0-2

•
• •

\, J
BUS SELECTOR

I/O-N

-,..
~

"
\, \J

ESSI pC INTERFACE

,..J

0
~ TO OTHER J PERIPHERALS

U()()U
MICROCOMPUTER-l

" .
~

~

..:::::
0

'" -<
'" -4
m
~
0:11
C

~

~

~

"
Figure 15-1 - Peripheral Frame Block Diagrams

15-3

PERIPHERAL UNIT BUS (ORDERS)

SCANNER ANSWER BUS (DATA)

I
~ 'A~ ________ ~~I~ _________ ~~ ~
c HARDCORE K SYNC ;; HARDC9RE §

~ ~ '~~----'I G i ~l~-----'~ ~
- ~ ~ ~ SACNASNWNEERR kJ~g: ,... _______ ---. I ,... ________ __, S;~~;:: ~ ~ ~ ~

- ~ S; ~ MEMORY I "'"" ;00 I ~ ..,,/ MEMORY f---,../ ~ S; f----

: I~~ I <=~ :
~ ~ r-"'" RAM I RAM Z ~

~ ~ ;: --... .A.- 0;: ;00 ~

n
n

~

r--­
~

-
~r­
l>
Z
-I

Z
l>
Z
Q

~ ~ ~ ~ INT:~:ACE r<:: ~m -("""'----------..... I ~ ~m-::> INT:~:ACE C ~ ~ ,:'1--__ -'
~':.:.:.:.::: "'~ : '-----------:-:'=:-::'~I ~~::::_--------...... I ;00 ~ K:

- ;: UPDATE CHANNEL ;00 _.,------~
c c

~~ : u=~
I

)

DATA I DATA

;~~~ _____ ~~~_~_M=A_M_~:~_~::=:=~=E~~ ___ ~ ___ :~M~:~~:~~~::~:_~_E:_~~~ _____ r~~'
r.::::============:::IJ

t--------' I "'-------f It:::::============::::l
~ I =00 -

..::::: m - n C ~ ~ C n - m -Z'- 0 l> l> O'-Z'-0 l> 0
~

-I l> l> -I Z 0 ~ 0

'" ~
l> Z ~ l>

Z ;00 -I -I m r- '" ~ !2 ~ Z Z ~
;00 Z m -I

l> S; C ~ ~ < l>
-I ;;; -I
C ~ l> l> '" C

'" ;00 Z Z ~ ~ '" ;; n Q
\ -< m I \ -< I
I/O SYSTEM BUS I/O SYSTEM BUS 1

Figure 15-2 - Duplicated Microcomputer Block Diagram

the mismatch and are responsible for isolating the fault to the specific failing J1.C.
It should be pointed out that, although it is theoretically possible to implement a
fully self-checking computer entirely with hardware techniques, it is not economi­
cal for systems of this type which utilize standard off-the-shelf large scale inte­
gration (LSI) building blocks.

In order to keep the spare J1.C fully synchronized with the active unit, all input in­
formation is received and simultaneously acted upon by both J.LCs. (The input in­
formation consists of orders from the CC and data from the I/O units.) Output
information, though generated by both J.LCS (data to the CC and orders to the I/O
units), is selected from the active J1.C only. The fully synchronized mode of opera­
tion, in addition to enabling a continuous matching by the hardware, also forces
the spare J.LC to be completely updated as to the status of the I/o units. Hence, in
the event of an active J.LC failure, the reconfiguration to a simplex mode (i. e. ,
spare switched to active) is accomplished within milliseconds, thus enabling rapid
recovery.

Faults internally detected by the J.LC reveal which of the two J.LCs is to be switched
off-line, and in many cases, the specific faulty circuit pack (i. e., fault location).
However, isolation of a failing J.LC detected by a mismatch and the fault 10 cation
pro cess are implemented through software self- diagnosis.

Since the correct execution of the diagnostic routines depends on the correct
operation of the J.LC hardware, the internal hard core (HC), a fully self- checking
subset of the J.LC, is used to bootstrap the diagnostic routines from the HC to the
nonself- checking hardware. The interrelationships among the various mainte­
nance functions are depicted in Figure 15-3.

THE HARD CORE

Theoretically, only a minimal set of functions, tho se sufficient in bootstrapping
the diagnostics from the HC to the rest of the system, need be assigned to the
hard core. In practice, however, it is advantageous to implement an additional
set of functions (e. g., self- checking which, therefore, can be considered as part
of the HC) for the sake of fewer and Simpler diagnostic programs. The continu­
ous reduction of hardware cost and the increasing functional density of LSI com­
ponents (hence the difficulty of their diagnosis) make hardware duplication

15-5

CIRCUIT-PACK X

INf-LCj FAULTY

NORMAL DUPLEX MODE

NORMAL DUPLEX MODE

NOTE

THE FLOWCHART NOTATION:

IS USED TO INDICATE

TWO PARALLEL PROCESSES

A AND a EXECUTED BY

f-L C j AND f-L C j RESPECTIVELY

Figure 15- 3 - Maintenance Functions

15-6

increasingly more attractive. The criteria adopted in assigning functions to the
HC, in addition to those needed for diagnostics bootstrapping, is based on the
tradeoffs between the diagnosability of a function and the cost of duplicating the
function. The term diagnosability is used here rather loosely and is meant to
serve as a measure of the effort required to design the diagnostic program, its
memory space needs, the fault location resolution it can achieve, the execution
time, additional hardware needed to make the function diagnostic, etc.

The functions implemented in the HC are shown in Figure 15-4. Self-checking is
achieved through duplication and matching. The lab model system utilizes the
Intel 8080 microprocessor (IlP); the final production version will utilize the
MAC-8. Because of an insufficient number of internal IlP registers (none in the
MAC-8), a local 256 by 8 random-access memory (RAM) is added to each IlP.

This local RAM space is used for the general purpose registers and temporary
storage locations needed in the diagnostic process. The 8K bytes of read-only
memory (ROM) are used to store the application and diagnostic programs; an
additional 8K bytes of address space are reserved for future ROM growth.

The real-time clocks are used for task scheduling and are initialized by the IlPs
(under program control) to generate interrupts at requested points in time. Six­
teen priority-interrupt levels are used for normal program execution and for fault
identification. The assignment of different interrupt levels to different fault in­
dications eliminates polling, thereby speeding up and simplifying the fault location
process (e. g., an interrupt at the level assigned to RAM parity faults automati­
cally reveals the faulty circuit paCk). All modules transmitting data to the HC
generate a parity bit, along with the data, which is checked at the HC during a
read cycle. The parity check detects faults in non- HC modules as well as in the

J1C internal data bus shared by all modules. Internal HC buses are buffered from
the J1C internal bus to avoid J1C bus faults from propagating into the HC.

HC - CLOCK CIRCUITS

As stated previously, matching is performed on two levels: between J1C0 and 1J.C1,
and internally in the HC of each J.LC. To enable a continuous matching, ~ four
J1Ps '(two in each HC) are driven by the same clock. However, a clock fault will
not cause both IJ.Cs to fail. Figure 15-5 depicts the clocking circuitry which is

distributed over each of the HCs.

15-7

......
c.n
I
~

CLK IN

CLKOUT ~ ~

MASTER
CLOCK

PRIORITY
INTERRUPT

REAL TIME
CLOCKS

PARITY
GEN/CH

BUFFERS

PROGRAM
ROM

LOCAL
RAM

PROGRAM
ROM

LOCAL
RAM

MATCHER

DATA, ADDRESS, CONTROL, EXTERNAL INTERRUPTS

Figure 15-4 - Hard Core Block Diagram

BUFFERS

SLAVE
CLOCK

PRIORITY
INTERRUPT

REAL TIME
CLOCKS

PARITY
GEN/CH

MODE-O MODE-1

r-____ ~------------_4~--__ C~~~-O~ rC~~~-l __________ -. ____ ~~ ______________ ~

CLK-O CLK-1 1--.... -.

FCLK-O

}lP01

HCoo

HC-O(p.C-O) HC-1(p. C-1)

Figure 15-5 - Hard Core Clocks

The MODE is an input controlled by the CC declaring the J.1C status as active or
spare. The clock fault detectors, CFD-O and CFD-l, are retriggerable mono­
stable multivibrators used to detect faults in CLK-O and CLK-l, respectively.

The clock, which has a cycle period Tl, triggers a monostable adjusted to gener­
ate a pulse of duration T2 = Tl + Llt. Since T2 > Tl, the output F of the mono­
stable will be at 1 for as long as the clock is functional. Upon a clock fault, the
monostable will not be retriggered, resulting in F = O. Typical waveforms of a

clock stuck-at-l and of the F signal are shown in Figure 15-6.

A clock selector (one associated with each fJP) selects either CLK-O or CLK-l
to drive its respective f.LC. The clock selection is controlled by the MODE,

F CLK-O and F CLK-l Signals, in accordance with the following logical statements:

in HCOO or HC01 :

If [MODE-O A F CLK-l A F CLK-O]' then CLK-l else CLK-O

If [MODE-l A F CLK-l A F CLK-O l, then CLK-O else CLK-l.

where:

MODE-i = 1 means f1.c-i is active. F CLK-i = 1

means no faults detected in CLK-i.

Under normal conditions, with no clock faults, MODE-O = MODE-l and the active
J.Lc clock drives all four J.Lps. If any clock fault is detected, the selectors in HC-i
will switch to their own clock CLK-i, regardless of the MODE input.

All inputs receiving the same clock Signal (selectors and CFDs) are isolated from
each other with a high-input impedance buffer gate in series with a resistor. This
buffering avoids stuck-at-O or stuck-at-l inputs from affecting all other inputs
(see Figure 15-7).

15-10

A failing CFD, clock selector, or input buffer can affect only one MP. Faults of
this type, however, will induce a mismatch within the HC containing the failing
component, and will lead to an immediate detection and location of the failing HC.

The same buffering technique is used in other cases where an input stuck-at-1 or

stuck-at-O fault would lead to faults not resolvable to a specific circuit pack.

elK

F

Figure 15-6 - Clock Fault Detection

R

TRANSMITTER t---~~=-=--....

R

Figure 15-7 - Isolation of Input Faults

THE RAM MODULE

The RAM module is organized in blocks of 4K 9-bit words, with each word con­
taining eight data bits and one parity-check bit. RAM blocks are bit sliced using
4K by 1 static RAM DIPs; consequently, the parity check is highly effective in de­

tecting most typical RAM faults (i. e., only one bit of a word is changed by a fail­

ing RAM DIP therefore., the fault is immediately detected by the parity check).
Since the control circuitry is byte oriented, faults not detectable by the parity
check may occur (e. g., an even number of bits failing in a data buffer). These
faults however are easily recognized by the diagnostiC program.

15-11

A general purpose bidirectional I/o port is provided on each RAM block. The I/O
port on the first RAM block, the update channel, is the only one used in DCT. It

provides a communication link for data transfers between the JLCs (Figure 15- 2)
to update the volatile storage locations of a repaired JLC reinstalled into service
prior to the reconfiguration from the simplex to the duplex mode (Figure 15-3).
The I/o port serves as a mail box into which the on-line flc inserts the data, and
from which the repaired JLC retrieves the data. This update approach provides a
loose coupling between the JLCs (as opposed to direct-memory access [DMA J),
and prevents fault modes which could cause both flcs to fail Simultaneously,
(i. e., a functional JLC can simply ignore a faulty J.lc attempting to access it via
the update channel).

MICROCOMPUTER INTERFACES

The Peripheral Unit Bus Interface

The peripheral unit bus interface (PUBI) is the module that receives the 24-bit
CC orders over the PUB via a set of bus receivers. Reception of an order is ac­
knowledged by returning a verification signal to the CC. Since orders could arrive
at a rate higher than the JLC execution rate, a first-in!first-out (FIFO) circuit is
used to store the orders, forming an execution queue for the J.lcs. A validity
check by the JLCs precedes the execution phase of the orders read from the FIFO,
which checks the parity and the legality of the received order. Legality is
checked by verifying that the order received does correspond to one of the orders
existing in the CC I/O instruction repertoire. If the check passes, an all-seems­
well Signal is reported to the CC, and the execution phase starts. A failure to
return the all-seems-well signal within 25 ms of receiving the order triggers a
CC resident diagnostic program that checks the PUBI and orders the JLC to per­
form self-diagnosis.

Scanner Answer Memory

The scanner answer memory module (SCAM) is a 128 by 16 dual-port memory
used as a buffer for returning data to the CC. The J.lc writes data into the memory
in 8-bit words, while the CC autonomously retrieves the data in 16-bit words.
The CC and J.lc access priority to the memory is on a "first-come/first-served"
basis. The JLC reports to the CC, via the memory, the current state of each I/O

15-12

unit, the execution state of the CC orders, and the maintenance-related data such
as diagnostic results. In addition, this module contains drivers which set the .
ESS scan points (i. e., magnetic ferrods) to report severe fault conditions (e. g. ,
HC fault). These scan points are automatically set upon detection of such faults
and are not under program control.

I/o Unit Interface

The I/O interface module (Figure 15-2), interfaces the I/O units to the J.1.C via an
8-bit bidirectional common data bus. The I/O module also interfaces the various
control signals needed to address and access the I/O units. A handshaking pro­
cedure is used in all I/O instruction transfers to the I/O units to protect the in­
tegrity of communication in the noisy environment. When an order from the J.1.C
is loaded into an I/O unit input buffer, the addressed unit returns an order re­
ceived status bit. Each I/O unit has its own data-ready status bit which signals
the J.1.C that data in the I/o unit output buffer is to be unloaded. The data, along
with a parity bit, is simultaneously returned to both f1£,S on their respective I/O
system data bus, and is matched for consistency. I/O unit addressing is im­
plemented with a separate enable line to each unit. The I/o address generated
by the J.1.CS is decoded in the I/O interface module by a l-out-of-N decoder whose
outputs are reencoded and checked for consistency with the p.c-generated address.

DIAGNOSTICS

The diagnostic program isolates faults detected by a mismatch to one of the
two flcs, and locates the faulty circuit pack within the failing flc. The macro-test
is used for rapid fault isolation, while the micro-test is used in the fault location
process.

In the macro-test, large portions of the hardware are tested for the presence or
the absence of faults. It has the logical structure of a maze with one legal exit,
and returns a pass/no pass-type result. The maximum testing period is on the
order of 5 ffiS, but testing is terminated if an intermediate result indicates a
fault. If both f1£,s pass the macro-test, the fault causing the mismatch is attri­
buted to noise and the event is reported to the CC. However, if the number of
unresolved faults per unit time exceeds a predetermined threshold, the detailed
micro-test (normally used for fault location) is executed.

15-13

The micro-test uti1izes a bootstrap approach, where the first test starts with the
smallest amount of circuitry possible. Each additional test adds a small incre­
ment to the circuitry tested. When a given test fails, the assumption is that the
failing circuit is within the group of circuits added by that test. Figure 15-8
illustrates the general test flow starting at the self-checking HC (for which diag­
nostics are not needed), and gradually bootstrapping the tests to all modules
accessible by the f1.c. Tests are designed to che ck the actual hardware and the
functions provided by the hardware. Fault detection hardware is checked by
purposely injecting faults (e. g., forcing a mismatch in a matching circuit) and
verifying that the simulated faults are actually detected.

Bus bits stuck-at-zero could be a result of stuck-at-zero faults in the bus inter­
face hardware of any circuit pack sharing the common bus. These faults, though
rapidly detected by the parity check or the macro-test, cannot be isolated to the
specific faulty circuit pack. The method usually employed to locate such faults is
manual removal of the circuit packs from the bus one at a time until the fault is
removed. Essentially, the same approach is used in the micro-test but at elec­
tronic speed. The equivalent of removing a circuit pack is achieved by breaking
the ground lead of the bus interface circuit of each circuit pack with a transistor­
transistor logic (TTL) compatible DIP relay. These relays are located on the
circuit packs and are controlled by the HC during the diagnostics. This approach
is used to isolate faults in the I/o system bus and the internal MC buses.

SUMMARY

A microcomputer architecture has been presented which is capable of immediate
fault detection through hardware techniques, and high-fault location resolution
through software self-diagnosis. The architecture is implemented with standard
building blocks and is sufficiently general to be applicable to any microcomputer

system requiring high availability.

15-14

----
.""" ---- ESS INTERFACE '""""-

"", " /
pC DIAGNOSTICS BOUNDARY

/ " / ,
/ \

/ \
/ \
I \
I \
I I
\ I
\ I
\ I
\ /
\ / , / , /

" / " // '.......-.. ."",,""
~-----

Figure 15-8 - fJ.C Bootstrap Diagnostics

15-15

APPLICATIONS I

DESIGN OF AN LSI MICROPROCESSOR

J. C. Moran, BTL Dept 3222, DR, CO

ABSTRACT

The design of a processor which emulates the No. 3 language is de­

scribed. The design is based on Motorola's MI0800 family of emitter
coupled logic (ECL), large scale integration (LSI) circuits, which is a
microprogrammable processor family of 4-bit slice circuits. The
principal design goals were the execution of the No.3 language and high
throughput. The throughput required was a minimum of twice that of
the No.3. A description is given of the basic system architecture and
the more Significant design decisions. In addition, the MI0800 family
is evaluated for suitability in emulati~ the No. 3 language.

INTRODUCTION

The DIMENSION family of stored program private branch exchanges (PBXs) con­

sists of the DIMENSION 100, 400, 2000, and Custom (4000 lines), the number
designating the approximate maximum number of lines controlled by each system.

All four systems execute the No. 3A language; however, the DIMENSION 100 and

400 use the MC-3 processor, and the DIMENSION 2000 and Custom use the 201CC
processor. A fifth member of the DIMENSION family, capable of handling up to
10,000 lines, is also presently being considered. The unit for this proposed
10, OOO-line system is designated the 201VL processor.

The basic goal of the 201 VL is to achieve a minimum of twice the throughput of
the 3A processor. Two conditions must be realized to reach this goal. First,
the bandwidth· of the memory system which stores the program must be improved.
This improvement is accomplished by using a pseudo cache memory. Second, the

16-1

microinstruction execution time must be less than half tnat of the 201CC (225 ns).

The reduced time is attained by using Motorola's MECL MI0800 family of LSI
circuits.

GENERAL DESCRIPTION

A block diagram of the 201VL processor, memory system, and input/output (I/O)

structure is shown in Figure 16-1. The system architecture utilizes the fact that
the parts of the program and data which affect real time can be placed in the
pseudocache memory, which has a cycle time of 200 ns. The main memory has a
cycle time of 600 ns. Although a true cache memory is dynamically loaded, the

program and data in the pseudocache memory (capacity: 16,384 words) are per­
manently aSSigned.

MI0800 FAMILY

0r
ADDRESS BUS

10 CONTROL BUS \ llO CONTROLLER

1 \ DATA BUS

I
PROCESSOR

EMORY /
ONTROl BUS

M
C

, PSEUDO

CACHE

MEMORY

MAIN
MEMORY

Figure 16-1 - System structure

The M10800 is a 4-bit slice family, consisting of four basic parts: (1) arithmetic

logic unit (ALU) (MC10800), (2) microprogram control function (MC10801),
(3) timing function (MC10802), and (4) memory interface function (MC10803).

The MC10800 (see Figure 16- 2) is capable of performing logic operations, binary
arithmetic, and binary coded decimal (BCD) arithmetic on combinations of one,

two, or three variables. The A, 0, and I buses are the input buses for this cir-

16-2

cuit. The A bus is unilateral; however, the 0 and I buses are bilateral. The
MC10800 can be disconnected internally from either the 0 or I bus. The latch and
accumulator provide on- chip storage. Much of the power of the MC10800 is pro­
vided by the latch, A-input MUX, mask MUX, Y-input MUX, and complementor

sections. They provide a great deal of flexibility in the operation of the MC10800
with regard to both internally stored variables and those coming in on the A and 0

buses. For example, note the number of paths from the accumulator into the
basic adder section.

The MC10800 provides the following arithmetic and status outputs: group propa­

gate, group generate, carryout sign, zero detect, parity of carries, parity of
results, and overflow. The two parity outputs permit parity checking of ALU
operations. The outputs also can be used for parity generation of the result.

The MC10801 is shown in Figure 16-3. CRO holds the address of the word being

fetched from the microstore. The output of CRO can be disabled by the CS5 input.

CR1 is best used for repeating microinstructions or for calling subroutines. The
section labeled INC is a fast incrementor for CRO. CR2 is normally used as the

macroinstruction register, and CR3 is a status register which can be selectively
loaded from the DIN line. The output of the CR3 register is available in parallel
on the CR3 bus. CR4, 5, 6, and 7 form a last-in first-out (LIFO) push-pop stack,
used for subroutine calls. The IB, OB, CRO, CR3, and NA inputs are 4-bit buses.
The remaining input lines are one bit.

Inputs ICO, 1, 2, and 3 determine which microinstruction will be executed by
!Controlling the next address logic section, which selects the address to be jammed
into CRO. These microinstructions include increment, branch, jump, and sub­

routine call. In addition, microinstructions are provided to decode the macro­
instruction.

The features of the MC10802 are a programmable number of phases (timing

pulses), selectable double-width duration of a particular phase, output enable,
master reset, cycle- complete output, single-phase stepping, and single- cycle
stepping. The MC10802 is also cascadable.

A programmable number of phases allows a microinstruction to determine its own
timing and also allows multiple cascaded 10802s to give numbers of phases which

are not multiples of four. The ability to select a double width for a particular

16-3

phase is very useful when there is a worst case timing path in the system. By
using this capability, the system need only be slowed when the worst case path
is executed. The initial prototyping and maintenance operations are aided by the
single-phase and single- cycle stepping capabilities.

AS16(LC)

AS2

AS3

ASlO

ASll

AS12
cOUT

PG

GG

PAR CAR

OF

R4

AS7
AS13

AS14

ZD

PAR RES

! , , ~
~.

I A-INPUT I~ ~ LATCH
MUX -....

I

01N

H ! " +
.~ I V-INPUT I:
~ MUX MUX I':

XIN ...
OUTPUT

~ COMPLE-
BUS ...

CONTROL
....

L:
MENTER

~~

~
YIN

~ ADDER/ED
....

I ACCUMULATOR
...

FOUT
....

~I MUX
...

4 + " ~ U~ ~ t
~ SHIFT NETWORK

• J I I ,

1 .. , ,
INPUT

BUS CONTROL -...
,
4~

I BUS

Figure 16-2 - Arithmetic LogiC Unit

16-4

./
.....

_ A BUS

o BUS

. ..

ASO
ASl
AS4

ASS

AS6

CLK

AS9
AS1S

R-l

ASS

The MC10803 (see Figure 16-4), the most powerful part in the family, contains
the logic for both data-routing and memory-addressing operations. All data paths
and data storage elements are four bits wide. Data information and address in­
formation are transmitted to the memory system or 11o system via the data and
address buses, respectively. The I and ° buses transmit and receive data from
the rest of the processor. The pointer inputs are used for mask and arithmetic
functions by the ALU. The MC10803 is comprised of two main functional sections,
the data matrix and the ALU, capable of independent operation. Note that the I
bus, the ° bus, and the output of the register file (RF) connect directly with the
ALU and do not go through the data matrix section.

CSO-.

CS1 ---+
CS2 ---+
CS3 ---+

DIN Xs NA ICO-IC3

1
~ ,

1 41'-
~,

STATUS
CONTROL NEXT ADDRESS LOGIC

LOGIC r+
.. ~ .. ~ ... A ~

~ .. _t • , I I
....

CR4 CR1 INC
,

CRS
CR6 AI'-
CR7

~ , ~, "II> ~,

CR3 I
I t, CRO

.. I
BUS

I
CR2 I B CONTROL

l LOGIC

"I'- ..

· 1 ~,

~,
.. . ~

~

CR3 BUS I BUS
CS6 CS7 CS8 o BUS CRO BUS

Figure 16-3 - Microprogram Control Function

.... BRANCH

.... , CS4

---. ..

CS5

The RF is a 4-word file in which RO, the program address (p A) register, has
special functions. The DR register stores information to be used predominantly
on the data bus. The AR MUX block selects the data to be loaded into the AR.

The AR MUX can select the data bus, the output of RO, the output of the ALU, the

16-5

output of the RF, or the output of the AR. The selection decoding is provided by
the microfunction and designation decode section. The clock signal times all of
the above registers.

PROCESSOR DESCRIPTION

A block diagram of the 201VL processor is shown in Figure 16-5. There are four
main buses: address, data, I, and O. These four bilateral buses are 20 bits wide.
The address and data buses are used to interface with I/O devices as well as with
the memory system. The I and 0 buses are the internal data buses. The A bus
allows data movement from the constant memory (CM) to the AL U block.

The memory interface block is composed primarily of MC10803s. All address
manipulation is performed in this block, allowing the generation of 20-bit ad­
dresses to be handled in a straightforward manner in a 16 data-bit machine. An

example of such manipulation is a branch relative (BY in 3A, code) with respect to
the P A register, which is a one-word instruction. The eight least Significant bits
(LSBs) of the instruction are the bits to be added or subtracted from the PA.
When the BY instruction is fetched from memory, it is stored in the DR register
of the MC10803s. The PAis the RO register of the MC10803s. RO and DR (with
the pointer inputs masking out the 12 most significant bits [MSBsJ are added or
subtracted in the ALU of the MCI0803. The result of the operation is moved to
the address register (AR) which controls the address bus.

The CM, a 64 by 16 memory, contains constants used by the microprogram.
The CM can be addressed either directly by a microinstruction or by the 6-bit
L register. The L register can be loaded either directly from the micro­
instruction or from the I bus.

The register· memory (RM) contains the 16 general-purpose registers used by the
3A instruction set. These registers are 20 bits wide; however, only registers 13
and 15 are used by the 3A instruction set as full 20-bit registers. The others are
used as 16-bit registers. The design of the RMs is very similar to the random-
access memory (RAM) of the 201CC processor. In both processors the microcode
has the capacity to deal with the 4 MSBs of the memory without affecting the 16
LSBs and vice versa. This capacity enables the microcode to form the 20-bit
addresses.

16-6

MS4, MSI4

1
ADDRESS BUS

DATA BUS

MICRO FUNCTION
&DESTINATION

DECODE

f
MSS-MSll

REGISTER FILE
r----------,
I I ---+: ~ R3j R2/ Rl ROI14~------------
I I
L ________ .J

~ CLOCK ..
DR

1
DATA

+--
MATRIX MSO- 3

1
.. ~ , ~

ALU
ALU .- MUX I BUS

I~----------~-----------~---~~~~

C PG G C
OUT G IN

P
INPUTS

Figure 16-4 - Memory Interface Function

, -
o BUS

The ALU block is mainly comprised of MC10800s. This unit performs only the
logic and arithmetic operations on data, all address operations being performed
by the memory interface block. The ALU blockis 16 bits wide.

The temporary memory (TM) is a 16 by 20 memory which stores data used by the
microcode. The TM is addressed directly by a microinstruction.

The timing sequencer primarily made up of three MC10802s, provides all the tim­
ing for the processor. During operations with the main memory system, the
execution of microinstructions and memory access can be overlapped. However,
the test for memory complete is performed by hardware in the timing sequencer
rather than by a microinstruction. The processor does not execute micro­
instructions during the test for memory complete, so it runs efficiently with
memory systems whose access time is not a multiple of the micro cycle.

ADDRESS
4 • A o

MEMORY
DATA INTERFACE

44--------------~.~ID I ~ / I BUS

TM ~U
ALU

"

10
CONTROL

4

1 ~ OBUS

CONTROL
FF'S & ERRORI .. 41--"""".~1 MICRO 1 ... 41----I.~1 TIMING

.... .. DETECT! ON CONTROL SEQUENCER

",~--------------r~ MEMORY
CONTROL

Figure 16-5 - 201VL Processor

16-8

The microcontrol block consists of the microstore (2048 words), microlatches,
and MC10801s (which control microaddress generation). Most of the decoding of
the microinstructions is done internally in the MC10800s, MC10801s, MC10802s,
and MC10803s. The microinstruction is a 61-bit word with an execution cycle of
100 ns. Figure 16-6 shows the relationship of the microstore, the MC10801s,
and the microlatches. Three MC10801s are used. When the microinstruction is
fetched from the microstore (the microaddress is generated by the MC10801s),
it is stored in the microlatches. The MC10801s then initiate the fetch of the next
sequential microinstruction. Hence, the fetching and execution of micro­
instructions overlap.

The manner in which a macrointerrupt and macroinstruction fetch is handled is
shown in Figure 16-6. When the first word of a macroinstruction is fetched in a
microprogrammed processor, it is necessary to jump to the first step of the
emulation routine for that macroinstruction in an efficient way so that minimal
delay is introduced. The method used here is as follows. When the first word
of the macroinstruction is fetched, the INST enable signal (from the timing
sequencer) is made true, which disables the output of the MC10801s and enables
the output of the OP programmable read-only memory (PROM). The OP code of
the macroinstruction addresses the OP PROM. The output of the OP PROM ad­
dresses the microstore and is loaded into the CRO of the MC10801s. The OP PROM
output is the starting address of the emulation .,routine for the macroinstruction.

INST
ENABLE

T2

INTERRUPT
REQUEST

OP CODE

INTER
I

CS5

CLK
Q ~

r--+ MC ..
4~ ...

MICROSTORE
10801'S

D

~
- MICRO LATCHESI

~
OP

l PROM

MICROINSTRUCTION

Figure 16-6 - Microstore structure

16-9

Macrointerrupts are recognized when a macroinstruction is fetched. If the INTER
flip-flop is set when a macroinstruction fetch occurs, the output of the INTER
flip-flop causes a word to be accessed from the upper half of the OP PROM. This
word contains the starting address for the macrointerrupt handler routine. Micro­
interrupts are handled by initializing the timing sequencer to the proper state.

CONCLUSIONS

The 201 VL processor, including the microstore, would be contained on five multi­
layer, printed wiring boards and would consist of apprOximately 140 integrated
circuits with a maximum power diSSipation of 106W. Because of the long micro­
word and the availability of only 4096-bit PROMs to implement the microstore,
the latter would be contained on two multilayer, printed wiring boards with a
maximum power diSSipation of 41W.

The cost of the components for the processor based on a low-volume procurement
would be approximately $ 5000. The microstore accounts for $ 2800 of this figure.
Hence, it becomes the dominating factor with respect to cost, as well as to
physical space and power dissipation.

Based on the instruction mix of the DIMENSION 2000 call processing program, in
addition to its software architecture which allows the use of the pseudocache
memory, the performance of the 201VL is 2.0 to 2.6 times faster than that of
the 3A processor. Other applications, however, may be able to duplicate the
performance produced with the DIMENSION.

16-10

APPLICATIONS II

SPEECH OUTPUT FROM A MICROPROCESSOR

M. Baumwolspiner, BTL Dept 4391, HO, NJ

ABSTRACT

This report presents several techniques which can be used to produce
microprocessor output in the form of human speech. Speech output,
unlike display (visual) output, can easily be transmitted over phone
lines and directed to multiple users. Particular emphasis is placed on
the formant generation and waveform generation techniques. The micro­
processor software algorithms, processing time, and hardware con­
straints are also discussed.

INTRODUC-TION

Advances in technology along with strides in the understanding of the speech pro­
duction process have made voice output from microcomputers increasingly
practical.

Utilizing voice output to replace or complement display output has many advan­
tages. One of these is that voice output is generally easier to transmit and can
easily be directed to multiple locations. Another advantage is practicality. For
example, while craftspersons are working their sight is usually directed toward
the task at hand and not available to observe a visual output. Their hearing,
however, can be utilized to receive the computerized information.

There has been much concern over whether the advantages of the synthetic voice
mentioned above can match the clarity and unambiguity offered by display output.
The purpose of this paper is to describe several techniques used to perfect the
synthetic voice. These range from the high bit rate and high quality techniques

17-1

(based on the digital encoding of the actual speech waveform) to the low bit rate
techniques (based on the reproduction of speech in terms of fundamental models
of the voicing process).

WIDEBAND SYNTHESIS

Wideband synthesis techniques are based on a digital encoding of the actual
speech waveform. The three techniques belonging to this category are pulse­
code modulation (PCM), differential pulse-code modulation (DPCM), and delta
modulation (DM). Each of these methods approximates the time-domain wave­
form without regard to the fundamental parameters of speech reproduction
derived from the voice generating organs. These methods produce good quality
voice output"with low coder complexity at the cost of a high bit rate.

Adaptive versions of these coding techniques (APCM, ADPCM, ADM) have also
been investigated. They offer improved performance but at the cost of increasing
coder complexity.

Further improvement is possible by the use of logarithmic quantization - generally
referred to as companding. Through companding, toll quality speech can be
attained with 7 levels of quantization; a uniform quantizer would need 11 bits for
similar performance.

The bit rate required in all of these techniques ranfes from 12 to 48 kb/s.
Figure 17-1 compares the best of these techniques in terms of signal-to-noise
ratio (SNR).

In terms of hardware the synthesis method is relatively simple but has expensive
memory requirements. The microprocessor using this method can control and
select the required sections of memory containing the given sentence. Through
the use of stored articulation algorithms, the microprocessor can also organize
complete sentences by selecting different versions of the same word. The se­
lected version depends upon sentence placement. In the adaptive versions of wide­
band synthesis, the microprocessor can be used to implement in software the
adaptive algorithms which would normally be implemented in hardware.

17-2

Floppy disc systems are well suited for wideband synthesis applications. Recent
advances in magnetic bubble technology, however, may provide a significant cost
improvement.

Further information on the specifics of these techniques may be obtained from
references 2 through 4.

30

lD 20
~
0::
Z
(f)

10

OL-----~----~------~----~------~----~
o 10 20 30 40 60

BIT RATE (KBPS)

Figure 17-1 - Wideband Coding Comparisons

FORMANT SYNTHESIS

The formant synthesis technique simulates the vocal tract and associated vocal
organs through an electrical equivalent circuit. Comprised of a set of resonant
(formant) networks, this circuit is excited by a variable pulse (pitch) generator ..
The formant trajectories in time are of great importance in recognizing a word
or phrase. However, time-localized breaks are often needed to perceive con­
sonant sounds such as "b" or "d. "

17-3

Voice spectograms reveal two sources of excitation: voiced and unvoiced sounds.
The voiced sounds are produced by the glottis when it emits pulses having a base
frequency of 60 to 250 Hz. The unvoiced sounds, e. g., the "s" and "f" sounds,
are synthesized by passing a noise source through a variable pole-zero network.

Although many parameters are required in a formant synthesizer, they are
nevertheless relatively constant during short time intervals. As a result the bit
rate required is approximately 700 b/s. This compares favorably with PCM
systems requiring 24 to 64 kb/s.

A microprocessor can be employed to interpolate and interpret the basic para­
metric data stored in read-only memory (ROM). The microprocessor can then
output this information, through a multiplexed bus structure, to the formant
networks, pitch generator, and output attenuator.

A block diagram of a formant voice syntheSizer linked to a microprocessor is
shown in Figure 17-2. The analog section (or voice channel) contains a set of
second-order, variable-frequency, active filters driven by a pulse generator.
This section realizes the "voiced" sounds. A simple noise generator followed by
a second-order pole-zero network can be switched into the signal path to realize
the "unvoiced" sounds. The microprocessor controls the analog section through
"memory mapped I/O." That is, part of memory space is reserved for the voice
channel outputs; a transfer to memory at those locations will output the desired
information. The microprocessor ROM can contain a user application pro-

gram in addition to the voice synthesis program. Hence, a user may employ the
microprocessor for an independent task and call as a subroutine the voice syn­
thesis program whenever a voiced output is required.

A call to the synthesis program requires the word or phrase number (ID) to be
passed along through one of the registers. The voice synthesis program will
look up in the "word dictionary" the starting and ending locations of ROM where
the actual parametric data are contained. The microprocessor will decode and
interpolate this data and control the appropriate analog elements. When the
word or phrase is completed it will return to the user program.

Most microprocessor based systems can be augmented to provide voice output
through the addition of software and a voice channel card. An Intel 8008-1 sys­
tem can accommodate one real-time voice channel whereas an Intel 8080A system

17-4

can handle up to eight real-time voice channels. The software requirements typi­
cally consist of O. 5K to 1K bytes for the synthesis algorithm and 1K bytes per 18

words of voice storage.

Additional information on formant synthesis techniques may be obtained from

references 5 through 7.

fL7r

8080

CPU VOICE CHANNELS

L - -+ TO OTHER VOICE CHANNELS

Figure 17-2 - Voice Synthesizer

WAVEFORM SYNTHESIS

2 8

The waveform synthesis technique is based on a time-domain realization of the
speech waveform. A set of basis functiens in the time domain serves as the
primary waveforms on which the entire synthesis strategy is based. This set
of basis functions, in conjunction with a time-compression (and expansion)
operati0n, spans the parameter space of the vocal tract model.

17-5

The vocal tract can be represented5 in the complex frequency domain by the
infinite product:

H(s) =

When the different sound patterns are produced, the formant frequencies (w m)
and to a lesser extent their bandwidths (bm) attain differing. values. Hence, if we
revert to the time domain and select a wide enough span of formant frequencies
we obtain a set of basis functions which can be used to approximate the speech
waveform.

Given

-1 where L = Inverse Laplace transform

then
00

g(t) = L fk(ant-cn)
n=l

where g(t) is an arbitrary speech waveform and k is some function of n (see
Figure 17-3 for a pictorial representation of this equation).

The Significance of this last equation is that the summation over the basis func­
tions fk does not involve a weighted summation. The operation involved is a
time compression or expansion which is easily accomplished in a micropro­
cessor realization.

The variable cn in the last equation represents the pitch period interval. That is,
the vocal tract - which gets excited periodically by the glottis - will produce a
new additive component to the output waveform at time cn. It is interesting to
note that the basis functions generally decay in two, or at most three, pitch
cycles. Hence, the addition in the last equation involves only two or three basis
functions. We can more directly visualize this synthesis technique by drawing
the vowel formant trajectories in the log F1-F2 plane, as in Figure 17-4. In the
conventional formant synthesis the first and second formants are independent and
have a fixed range associated with each parameter; hence, they can attain any
value within the upright rectangle as shown in Figure 17-4.

17-6

As an alternative, for each given set of formant locations, we can derive the
pulse response for the formant network and store away the corresponding time
function. As a result, a speech pattern can be produced in the time domain by
reading out the appropriate time function at each pitch period interval, as in
Figure 17-3. Since the time function may be longer than a pitch period, the
trailing edge of this time function is superimposed upon the next pitch period.
This is easily achieved, for it is an additive process without multiplications.
The difficulty with this synthesis strategy is that it requires a large amount of
storage to store the time functions corresponding to all the combinations of
allowable formant frequencies.

By employing a well known Laplace transform operation namely,

l/a f(t/a) <----> F(as),

we can significantly reduce the number of basis functions required. This equa­
tion indicates that by time compression (and time expansion) we can linearly
scale the frequency domain; hence, the formant frequenCies can be scaled up or
down.

fl(t+cll ~I\ I'\. 1\1\1\1\1\1\1\.,..
FIRST BASIS FUNCTION VVV v\)1I V \y¥V'¥

fl (olt + C I 1
TIME EXPANSION

A f\ n r\. ~ A "'" fs(t + czl V V\}V",,~SECOND BASIS FUNCTION

-4-______ ~.r.~fl_4_+-n_+_lO__+_+_"lr_P,..~-~,I---- f s(° zt + czl rv V V \TV<Y TIME COMPRESSION

Figure 17-3 - Waveform Construction

17-7

WAVEFORM
GENERATION

3K~---'------~----~--'--7~------------'

5001L---------------------~--~--~

400L----L----------~~--~----~--------~

200 250 1K

FORMANT
SYNTHESIZER

Figure 17-4 - Frequency Span of Formants One and Two
in Vowels and Diphthongs

Thus, by employing this technique, we choose a sloping rectangle as shown in
Figure 17-4. The basis functions are chosen along a negative sloping line. By
time-scaling, the formant positions are varied along a positive sloping line;
hence, a rectangle can be spanned.

It is noteworthy that from typical vowel trajectories, more efficient coverage is
attained by a sloping rather than an upright rectangle. Figure 17-4 shows the
central regions of variation for the Fl and F2 formants for diphtongs. With the
exception of the "u" vowel the region is efficiently covered by a sloping rectangle.

17-8

The synthesis strategy for the third formant is also simplified. In conventional
synthesizers it is essential that the third formant network be variable in its
resonant-frequency position. If it is not variable an objectionable tone effect
will be perceived by the listener when the second formant approaches the fixed
position of the third formant. According to the strategy, the time-scaling will
automatically shift the third format as well as the first and second formants.
From listening tests, this seems to be a valid assumption.

From a physical viewpoint, time expansion or compression within a pitch period
can be interpreted as lengthening or shortening the effective length of the vocal
tract. It is well known that the resonant nodes of a straight pipe are:

f = (2m-1) :v /4J. m

where v is the velocity of sound and t is the length of the straight pipe. As shown
in this equation, all the formant frequencies are inversely proportional to the
length of the tube. Henc,e, the basis functions depict the different shapes which
the physical vocal tract can attain and the time-scaling depicts the variations in
the effective length of the vocal tract.

The waveform synthesis method can also be used to generate "unvoiced" sounds.
Only one basis function of approximately 20 to 30 ms is needed. This basis
function is the white noise response of a fricative, pole-zero network. By time­
scaling the above basis function, we can achieve the effect of a variable pole­
zero network and are thus able to generate the different frication sounds such as
"s" and "f".

The overall scheme of this waveform synthesis technique is to generate the time
domain waveform for each pitch period. It is a synchronous technique in which
the waveform is initiated in the beginning of the pitch period. The appropriate
basis function is applied to a digital-to- analog (D - A) converter at a sampling rate
which corresponds to the basic sampling rate (10 kHz) multiplied by the time­
scaling parameter. At the end of the pitch period interval the new basis function
is superimposed onto the remaining portion of the first basis function as shown
in Figure 17-3. In addition, the waveform may be amplitude-scaled on a long­
term basis to accommodate normal variations in amplitude level. This can be
accomplished through a multiplying D-A converter or digitally, through scaling
by factors of two.

17-9

Memory and Hardware Requirements

Twelve basis functions of 15-ms duration each and eight levels of time-scaling are
necessary to span the voiced sounds. Another basis function of 20- to 30-ms
duration is needed for the unvoiced sounds. We will assume that each basis func­
tion is stored in PCM format at a rate of 48 kbl s. Thus, to store the entire set
of basis functions, O. 210 second is required for a total bit count of 10,080 bits.

In addition, for each word synthesized the following are required in a 20-ms
frame rate:

No. of Bits bls

Basis Function 4 200
Time Scale 3 150
Amplitude 4 200
Pitch Period 4 200

Total Bit Rate 750 bls

A microprocessor is needed to decode the information, provide the time-scaling,
select the appropriate basis function from ROM, and produce the pitch cycle. Ex­
ternal to the microprocessor, a D-A converter and a programmable timer are
needed. Time-scaling can easily be achieved by outputting to the timer the time
interval to the next interrupt. In this manner, the microprocessor can be free
to perform the other control tasks while the timer performs the time interval
count.

CONCLUSION

Several techniques which can be utilized for voice synthesis have been briefly
introduced here.

The wideband synthesis techniques (12 to 48 kbl s) offer high quality and simple
circuitry but have expensive memory requirements. On the other hand, low-band

synthesis techniques (400 to 2000 b/s) offer an order of magnitude reduction in
memory but also degrade the quality of speech.

17-10

Among the low-band synthesis techniques, the formant synthesizer (500 to 1000
bl s has been widely investigated and can be produced at relatively low cost - $ 50
to $300 for a 45-word vocabulary. The linear predictive coder (LPC) technique
(not mentioned earlier in this paper) produces better quality but requires more
expensive hardware and a bit rate of 1800 to 3600 bl s.

The relatively recent waveform synthesis technique (500 to 1000 b/s) is particu­
larly well suited for microprocessor implementation and has the potential of
producing good quality sound. The use of time compression or expansion in the
synthesis strategy makes this technique viable and cost effective.

17-11

REFERENCES

1. N. S. Jayant, "Digital Coding of Speech Waveforms, "
Proc. IEEE, Vol 62, pp 611-632, May, 1974.

2. H. R. Schindler, "Delta Modulation, " IEEE Spectrum,

Vol 7, pp 69-78, October, 1970.

3. H. S. Black, Modulation Theory, Princeton, New Jersey,
Van Nostrand, 1953.

4. P. Cummiskey, et al" "Adaptive Quantization in Differential
PCM Coding of Speech," BSTJ, pp 1105-1118, September, 1973.

5. G. Fant, Acoustic Theory of Speech Production, Manton
and Company, 1960.

6. L. R. Rabiner, et al, "A Hardware Realization of a Digital

Formant Speech Synthesizer, IEEE Trans. Comm. Tech.,

Vol COM-19, No.6, December, 1971.

7. M. Baumwolspiner, A Microprocessor Controlled Voice
SyntheSizer, TM-76-4391-4, June 24, 1976.

17-12

APPLICATIONS II

A SMALL DIGITAL TIME DIVISION SWITCH USING
MICROPROCESSOR CONTROL

W. L. Aranguren and R. E. Langseth, BTL Dept 1344, HO, NJ

ABSTRACT

We describe a small digital time division switch which could be used in
future digital satellite systems. The switch is designed to interface

with up to 30 T-carrier systems on the terrestrial side. Its archi­

tecture is that of a common- control, bus-oriented switch, using a com­
mon time-slot inter changer for simultaneous switching of up- and down­

links. The controller is implemented as two Motorola M6800 micro­
computer chips and associated memory. The switch can communicate
with a variety of terrestrial originating switches, including those using
either register-sender or cut-through operation. Withproper software,

a simultaneous mix of such originating switches can be handled, and
either delay-dial, wink- start, or dial tone- start outpulse control can be
utilized in either direction of call setup (i. e., to or from a terrestrial

switch connected to the satellite earth station).

INTRODUCTION

Recently there has been considerable effort in Department 1344 to develop system
concepts for a second generation domestic communication satellite system. The
model system would utilize digital transmission and operate in the 12- to 14-GHz
bands. Current thinking tends to place this system in the 1980s private line
environment. Because of the digital transmission, it would be desirable to per­
form as much of the terrestrial interfacing as possible in a digital fashion and
thereby enjoy advantages of time-shared interface proceSSing.

18-1

In this paper we discuss work designed to demonstrate the feasibility of a small
(approximately 700 circuits) digital interface which could be useful in an envisioned
private line satellite system serving the large tandem tie trunk network (TTTN)
customers among others. The interface was conceived for the purpose of accept­
ing several T-carrier terrestrial inputs and switching the circuits (8-bit bytes)
on them to the proper output buffer for transmission to the desired destination.
Control is performed by multiple (currently two) microprocessors, permitting a
very compact controller. The entire interface could be mounted in a corner of the
customer's premises. Such an interface could be the building block for a satel­
lite system in which many relatively small earth stations share the satellite ca­
pacity via time division and/or frequency division multiple access.

Because there may be more than one customer sharing an earth station, efficient
utilization of each satellite circuit is improved if the satellite-terrestrial inter­
face can provide a switching function. This function also makes efficient use of
those T-carrier circuits available to a given customer. No prededication of the
destination of terrestrial access circuits is required, thus permitting maximum
employment of the satellite circuits asSigned to a particular destination. (The
number of the latter can, of course, vary on a demand-asSignment basis to
accommodate diurnal demand peaks.)

We will now describe briefly the basic operation of the earth station. In
essence, the output bit stream is a time division, multiplexed collection of
digital trunk circuits. On a short-term basis, at least, these satellite circuits
will be grouped by destination, meaning another specific earth station. The
earth station will contain a set of buffers corresponding to each of the possible
destinations. (Of course, there will be separate sets for transmit and receive

functions.)

The essential function of the interface will be to sort or switch input circuits
from the T carriers into the proper output buffer. The proper buffer will be
determined by customer- dialed digits, using appropriately defined codes for all
of the possible locations in a given customer's network. In this way a TTTN
customer can dial all the necessary digits at once, and the interface, operating
essentially as a register-sender common-control switch, will automatically
complete the connection through the satellite to a similar interface at the other
end.

18-2

ARCHITECTURE AND OPERATION

Figure 18-1 shows the overall block diagram of the interface. Customer T1 lines

are multiplexed by bytes (8-bit words) onto an 8-bit wide data bus. This method

of multiplexing permits use of slower, smaller power logic families than would
have been required by an equivalent serial multiplexer. Because of the particular
configuration of the time-slot interchange (TSI) hardware, the data corresponding
to the two directions of a given circuit appear on the up-link and down-link buses
simultaneously. Such an architecture is a prerequisite for digital common-control
echo suppressors. In addition to customer T1 lines, the multiplexer also re­
ceives two equivalent T lines which carry telemetry information for call setup,
breakdown, and satellite switch control in the case of a switched multibeam
system. This total of 32 equivalent T lines must be brought into synchronization
before multiplexing takes place.

The TSI control is simply a map stored in the random-access memory (RAM),

which is capable of being altered or updated by the controller. The map relates
terrestrial to satellite circuits, i. e., it relates a T1 and time-slot number to its

deSired satellite TDM burst number and time- slot number within that burst. It

may also map a given terrestrial to a desired service circuit. The mapping con­
trols boxes are labeled TSI & DESTINATION SORTING. The three boxes taken to­

gether can connect any terr~strial circuit to any service or satellite circuit. Note
that both path directions are mapped simultaneously by the single TSI controller.

During the last frame of the 12-unit framing sequence on the T1 lines, the least
significant bit of the 8-bit pulse code modulation (PCM) byte is replaced with a

Signaling bit which carries on-hook, off-hook information pertaining to the corres­

ponding voice circuit. Dial pulse information, because it is simply a series of
on-hook, off-hook pulses, is also carried by the signaling bit. The line scanner

extracts these Signaling bits from the bus and passes them to the controller,
which will be des cribed in more detail later. The controller maintains status of
all T lines and checks each new signaling bit for a change in state.

Let us trace through a telephone call setup with particular emphasis on hardware
activity. We will begin at a private branch exchange (PBX) using cut-through
operation. The PBX, in response to a request for serVice, seizes a circuit on
the T1 line, which causes the appropriate signaling bit to be set. The controller

recognizes this request and updates the TSI controller so that a digitally generated

18-3

~
00
I
~

30
TILINES

FROM
CUSTOMERS

t ,.

30
TI LINES

TO
CUSTOMERS

SYNC
a

MUX

UP LINK
8 BIT DATA BUS

MULTI
PROCESSOR

CONTROLLER

SYNC
a

MUX DOWN LINK

8 BIT DATA BUS

TSI
a DESTINATION

SORTING

UP DATE ---.
TSI

CONTROL

RESULTS

TSI
a DESTINATION

SORTING

(ELASTIC STORE)

o
NO.II BUFFER

DETECTION SERVICE CKTS.
TOUCH TONE
MF

DIAL TONE

GENERATING SERVICE CKTS.

MF, DP OUTPULSERS
ON-HOOK,OFF-HOOK

DIAL TONE, BUSY

o

(ELASTIC STORE)

Figure 18-1 - Interface Architecture

TO
SATELLITE

FROM
SATELLITE

dial tone is connected to the return half of the seized voice circuit. The customer,
upon receipt of the dial tone, dials the appropriate digits. Upon receipt of the
first digit the dial tone ceases. When the remaining digits have been received,
the controller determines whether a valid access code was dialed. If not, a
digitally generated, fast busy signal is returned to the customer. A valid code is
translated into an output buffer number, and a satellite circuit is chosen. The
request - the number dialed and the number of the satellite circuit chosen - is
forwarded to the desired terminating earth terminal via the forward-error­
corrected telemetry channel.

The terminating controller now locates the appropri~e T1 line and seizes a cir­
cuit on it by changing its outgoing signaling bit. The bit is changed by removing
the on-hook generating service circuit and connecting the off-hook generating cir­
cuit (assuming E&M or loop-type Signaling interfaces at the PBX). Upon detection
of the returning go-ahead signal from the PBX (either dial tone-start, wink-start,
or delay-dial), a loaded digital outpulser is connected to the line via the TSI.

Finally, after outpulsing, the TSI is updated once again to complete the circuit.
If no circuit is available, a message is sent back to the originating earth station

instructing it to return the trunks-busy signal to the originating customer. Note
that the busy Signal is not returned directly from the terminating earth station
due to a unique characteristic of the service circuits, namely, that a generating
service circuit can not only be connected to any T line, but it may be connected to
all T1 circuits simultaneously (thus, all customers connected to a given
ground station could receive a busy tone simultaneously). Further, any up-link
telemetry circuit may be directed to any single satellite circuit, but it may go to
only one such circuit at a time. Therefore, if we wanted to return a busy or dial
tone over the satellite path it would have to be generated on as many up-link
telemetry circuits at the T1 side as would be required to satisfy demand. Con­
sequently, we have chosen to return any terrestrial trunk- busy responses to a
particular satellite request as messages over the telemetry link and take ad­
vantage of the one-to- many service capability at the originating end.

MICROPROCESSOR CONTROLLER

As has been mentioned, the control function of the satellite-terrestrial interface
is performed by multiple Motorola M6800 microprocessors. We will now de­

scribe the operating mode of these processors. Operating in the environment
described earlier, signaling information appears on the input T lines every 12th

18-5

frame; in certain other special services offered by the Bell System, additional
signaling states appear during an alternate 12th frame sequence, offset by 6
frames from the first 12-frame sequence. The line-scanning portion of the pro­
cessor sketched in Figure 18-1 is actuated by a 12th frame interrupt pulse from
the synchronizing circuitry; since a frame is 125 J.1S long, the interrupt interval
is 1. 5 ms.

At each interrupt, signaling bits which correspond to one of the 24 time slots are
read from each of the 30 input T lines. Because of the synchronization, the same
time slot is present on all input T lines at a given interrupt. Thus, a given time
slot on each T line is scanned every 36 ms (24 by 1. 5). This rate appears to be
fast enough to follow 10-p/s dialing. Thus, the line-scanning processor also col­
lects dialing information from rotary dial customers. It also maintains status
for all input circuits, performs time-out for customers who wait too long to dial,
detects wink-start or delay-dial signal, assigns terrestrial circuits in response

to requests fro m other earth stations, et c.

The TSI is controlled by a second processor, P2, which has limited 2-way
communication with the first processor, Pl, via a 64-byte mailbox. Since the
TSI is also involved in providing dial tone to an originating customer, P2 partici­
pates in call setup rather early, responding to requests from Pl for dial tone.
The second processor also interprets customer-dialed digits, selects satellite
circuits, controls terrestrial outpulsers, forms messages for telemetering to
the desired terminating earth station, and requests that Pl assign a terrestrial
circuit when necessary.

®
In the case of TOUCH-TONE customers, we plan to provide digital receiver cir-
cuitry connected as shown in Figure 18-1. In this application Pl would inform
P2 of the seizure of an incoming circuit; P2 would then connect an available re­
ceiver and process the digits as before.

At this point on the learning curve, we have not provided a completely fail-safe
system deSign. Certain obvious software steps have been taken to guard against
occasional false signaling bits. Guarding against processor or memory failure
would require additional, redundant hardware together with the appropriate soft­
ware. Our primary goal here is a feasibility demonstration. To this end, a
hardware model of the interface sketched in Figure 18-1 is being built. Much of
the peripheral apparatus shown has been completed. In addition the essential

18-6

software for P1 has 'been written and burned into type 2708 programmable read­
only memories (PROMs). The processor itself has been constructed on two cir­
cuit cards, which include the mailbox for communicating with P2. The physical
layout is shown in Figure 18-2. Software for P2 is currently under development.
P1 software occupies about 2500 'PROM bytes, and about 6000 bytes of read-write
memory are used to store status information for the terrestrial circuits as well
as other temporary data. This memory uses the EMM SEMI 4200 4K static RAM.
Additional information for each circuit tells P1 whether it is a delay-dial, wink­
start, or dial tone-start circuit and whether it requires multifrequency (MF) or
dial-pulse outpulsing.

Therefore, it is comparatively simple to provide the capacity for working into a
variety of signaling-outpulsing arrangements. In effect, trunk Signaling inter­
faces have been replaced (at the earth stations) by a common T- carrier interface
together with the appropriate software.

CONCLUSIONS

We have described a small, single-stage, bus-oriented time division digital
switch suitable for use in a postulated digital satellite system. The switch uses
multiple microprocessor common control, with a single TSI memory simultane­
ously switching up- and down-link circuits. On the terrestrial Side, provisions
are made for accepting and synchronizing up to 30 T1 lines. Of the two pro­
cessors in the present design, P1 is primarily involved in scanning for on-hook
and off-hook changes on the terrestrial circuits so as to keep track of call pro-
gress and in collecting dial-pulse information. P2 controls the TSI and as­
sembles and disassembles signaling messages, which are utilized to establish
and break down calls over the satellite link. Under software control, the switch
can communicate with originating switches using either delay- dial, wink-start,
or dial tone-start outpulse control (the latter in the case of TTTN customers).
Additionally, it can respond to seizure of an input circuit with either delay-dial
or wink-start Signals in the case of register-sender PBXs or with digitally
generated dial tone in the case of. cut-through PBX operation as in TTTNs.

18-7

Figure 18-2(c) - Processor "One": CPU Board .

18-9

Figure 18-2(a) - Processor "One": Overview

Figure 18-2{b) - Processor "One": RAM Board

18-8

APPLICATIONS II

A MICROPROCESSOR-CONTROLLED SWITCHING SYSTEM FOR L5E -
DESIGNS, LESSONS, AND EXPERIENCES

P. G. St. Amand, BTL Dept 4225, MV, MA

ABSTRACT

A microprocessor-based terminal protection switching system
(TPSS-1), to be used on the L5E coaxial cable routes, has recently

been designed. The protection switching monitors 2 sets of 20 multi­
mastergroup translators (MMGTs), and in the event of a failure of 1
MMGT, switches a protection MMGT unit into service. A fully loaded
TPSS-1 may be responsible for up to 96, 000 voice channels. The hard­
ware contains a variety of fail-safe features, including parity and
sanity timing. Self- checking diagnostics are included in the program.
In the paper special emphasis is placed on the microprocessor game

as seen from the user's view:

• What new design talents are needed?

• What support tools are nice and what support tools
are necessary?

• What new problems does a designer face?

• What new pleasures does a designer enjoy?

The experiences gained on TPSS-1 may prove useful to a new micro­
processor user about to enter a sea of spec sheets, coding forms, and
design decisions.

19-1

HARDWARE

The L5E, 22 mastergroup, coaxial cable system will have multiplex equipment,

MMGT, that carries up to eight mastergroups. The present AT&T policy is that
any active unit carrying more than one mastergroup (600 voice channels) be auto­
matically protected. The previous generation of L carrier multiplex, JMX, pro­
vided duplicate hardware to achieve protection; with the arrival of microproces­

sors an inexpensive, common control terminal protection switching system
(TPSS-1) could be designed for the MMGT cable. The TPSS-1 uses only one pro­
tection unit to safeguard service on up to 20 regular MMGT units, and thus a fully
equipped TPSS-1 system may be responsible for up to 96,000 voice channels.

The heart of the TPSS-1 is the microprocessor-based controller. Previous con­
trollers, such as LPSS-3 for L5E or 400A for radiO, employed hard-wired logic.
The minicomputer alternative would have been too costly. The TPSS-1 has two
identical 6-inch shelves, housing input/output (I/O) interface circuits, which are

mounted above and below the central processing unit (CPU) shelf (see Figure 19-1).

Each I/O shelf holds up to 21 interface printed wiring boards (PWBs) consisting of

one protection MMGT I/O card and from 1 to 20 MMGT I/O cards. Each of the
cards in the I/O shelf holds the drive circuits and data input circuits associated
with a single MMGT. The regular MMGT I/O card controls the coaxial switches,
lights all indicators, monitors the MMGT pilot detector output, and senses the
pushbutton of one MMGT unit. Initially, a TPSS-1 system is equipped with

only one working MMGT and one protection MMGT. As the office call- carrying
needs increase, additional MMGTs are added, and for each MMGT added, an
MMGT I/O card is added to the shelf. This per-channel interface strategy gives

a simultaneous display of the condition of all MMGTs. Since a typical TPSS-1
system may take over 20 years to achieve full growth, the delayed purchase of

interface cards is an economic advantage.

The center shelf is a small, self- contained microcomputer with CPU, random­
access memory (RAM), programmable read-only memory (PROM), peripheral
I/O, and power supplies. Two dc-to.;.dc converters transform the -24 Vdc office
power to +5 and ±12V. The outputs of the converters are fused on this shelf.
There are three I/O circuits on the center shelf: relay I/O, carrier supply I/O,
and diagnostic display I/O.

19-2

Figure 19-1 - TPSS-1 Controller

The relay I/o card simply provides 8-bit input and output ports which connect
the office relay alarm system.

The carrier supply I/o interfaces with the MMGT carrier supply. Although the
MMGT carrier supply is a protected one-for-one subsystem, with its own hard­
wired logic control, the CPU can monitor the supply, and in the event of a failure,
can override the dumb logic control. The separate logic control was provided be­
cause of the need for instantaneous switching of the supply in the event of failure
of the working side, and for independence from a microprocessor which is down.

The diagnostic display I/O evolved from an auxiliary set of light-emitting diodes
(LEDs) and thumbwheel switches into a universal synchronous/asynchronous
receiver-transmitter (USART) link to a remote microcomputer that is used for
system troubleshooting. This I/O is a 2400-baud asynchronous interface to the
L5E multitask maintenance set (MTMS). The MTMS was designed for a separate
application and is equipped with a printer and keyboard. By simply providing a
cable connection of a few wires between the TPSS-1 and MTMS, the TPSS-l has
access to the MTMS hardware and can eliminate all of its own on the diagnostic
display board, thus achieving simultaneous cost reduction and feature addition.

A conventional 2K by 8 static transistor-transistor logic (TTL) RAM card is pro­
vided, along with a 12K by 8 erasable PROM (EPROM) using the Intel 8708 inte­
grated circuits. The CPU card contains the standard Intel chip set of 8080A,
8228, and 8224, and it also holds a set of bus driver circuits. Eight levels of
interrupt and a 25-ms sanity timer are provided on the interrupt control board.
The sanity timer must be reset with an lOW command at least every 25 ms; if
not, an interrupt is generated, and the software commands the CPU to halt. The
software generated HALT command was chosen, instead of a direct hardware
gating of the clocks, in order to allow flexibility. In the future it. may be de­
sirable to halt the CPU only after the second occurrence of timer runout or
another algorithm. The present method should allow for this.

Memory-mapped I/o was chosen for the TPSS-l. Each I/o card has an on-board
address comparator circuit, using two quad exclusive or integrated circuits,
which enables that particular card when the present CPU address matches the
wire-wrapped connector address. All pOSitions are wired at the factory so that
MMGT I/o cards can be added to the controller with no on-board switch options
necessary. As a fail-safe feature, a separate address decoder card also

19-4

provides a unique enable lead to each I/O position. Thus both the on-board ad­
dress comparator and the separate enable lead must be simultaneously active to
operate the I/O card. Parity generation and checking is also done to further en­
sure proper operations.

The conventional means of remotely controlling a piece of transmission equipment
is through a bank of relay contacts, which can be quite costly; the LPSS-3 has over
500 relay contacts. While such remote control and telemetry is not provided for
now, TPSS-1 could be equipped with this capability quite easily and economically.
New E2APR equipment has been designed to control the office relays; this equip­
ment too has a microprocessor. It is possible to provide a direct, serial inter­
face between the E2APR and the TPSS-1 microprocessors. From the TPSS-1
standpoint, such interface would reduce the hardware requirement from 500 re­
lays (at a cost of over $10,000) to one board (at a cost of under $100), and in
addition, it would allow much greater alarm interface capability and flexibility.

The controller design is a flexible unit that is only half the cost of a hard-wired
logic design and yet allows a variety of additional features (see Figure 19-2).

SOFTWARE

The TPSS-1 program was written entirely in assembly language with the use of a
macro assembler. A higher level language, such as PL/M, was not used because
the program is I/O-intensive, and very little number crunching or data manipula­
tion is involved. Within the limits of assembly language the program is struc­
tured through the free use of macros and subroutines. The program was con­
ceptualized in a top-down manner, and written in a top-down and "do what's
needed now, first" fashion. The program length is under 4K bytes.

EXPERIENCES

The remark was made that "Engineers can't program." The corollary is
"Programmers can't engineer." Assuming one person calU10t do the entire job,
who should do the work on a large microprocessor system? In TPSS-1 an en­
gineer was assigned overall responsibility, while an intern programmer was
assigned to write the program. Assigning overall responsibility to the

19-5

I/O CARDS

0 0 0< MMGT

) + I '," I
t t t EE+l2V I CPU I POWER -24V) . +lSV

-12V RAM EPROM

Jooo4

/ I ~ co
I

a"

D 0 0
E]/.EUYI/O DIAGNOST~ CARRIER I/O

1
DISPLAY

/
MTMS

E2 01 CONTROL ~ • REMOTE
') j.J Il-

, " }

ALARM
SYSTEM

CARRIER SUPPLY

Figure 19- 2 - TPSS-1 System

engineer implied that the engineer should be able to read and write programs and
make comments; it also meant that the software was tailored to the hardware.
This arrangement seems to have worked well. Because TPSS-1 is a piece of
hardware and has definite manufacturing dates, the rule of hardware over soft­
ware allowed the hardware to remain fairly fixed but forced the program to be
flexible and nonoptimum. This hierarchy would not work as well with a system
that has very simple hardware but involved programming.

The TPSS-1 development system consists of an MDS-800 with PROM programmer,
cathode ray tube (CRT) terminal, diskette, acoustic coupler to the BTL Control
Data Corporation computer, and an in- circuit emulator. Is this extravagant? We
found that every penny spent on support hardware was justified. If you wait 45
minutes for a paper tape to load, you not only waste time but lose patience and
sometimes even forget why you wanted to load the tape in the first place. A
"luxury" system might cost $15K, but if you save months of debugging time or if
you meet your Bell Laboratories design information (LDI) date, it is justified.

Microprocessor design is all that it is touted to be. The worker finds changes
easy to incorporate, new features easy to add, and the finished product an all­
around better design. After striving hard to convince management of the micro­
processor's advantages, the designer's propaganda sometimes backfires. The
chip cannot do everything, and the designer must resist the pressure from others
to toss tasks into the processor's lap. The "since you're so smart, here, you do
it! " attitude can force the processor beyond its capabilities. The engineer must
admit that the processor is limited in its capabilities and keep the design empire
at a manageable size.

While there is a new set of pitfalls and problems with every micropro cessor de­
sign, many advantages and pleasurable new experiences await today's logic de­
signer turned programmer. The TPSS-1 project was completed on time, with
a low ulcer quotient, and is a better system than could have been produced with
conventional logic circuitry.

19-7

APPLICATIONS IT

THE 32A COMMUNICATION SYSTEM

W. N. Johnson, J. J. Shanley, J. H. Van Ornum,
T. L. Wang, BTL Dept 3231, HO, NJ

ABSTRACT

The 32A Communication System (32A CS) is a new electronic key tele­
phone system for installations requiring up to 79 telephones. The sys­
tem utilizes the new multibutton electronic telephones (METs), the
Intel 8080A microprocessor, and a PNPN solid-state, space-division
switching network. This paper highlights the hardware, software,
maintenance, and administration aspects of the 32A CS.

INTRODUCTION

The 32A CS is a new electronic business communications system for installations
requiring up to 79 telephones. It is a self- contained system using stored program
control and, primarily, METs. TOUCH-TONE telephones are used entirely,
with TOUCH-TONE-to-dial pulse conversion provided for rotary central offices

(COs). A large complement of button-oriented features is provided beyond
those available with existing key systems; most of these features are found
in COM KEY, * PBX, centrex, and DIMENSION custom telephone services in
varying degrees.

Processor-enhanced maintenance and administration techniques and a 4-pair
wiring plan facilitate low labor involvement. An economical implementation is
achieved by retaining the system software in read-only memories (ROMs).

As mentioned previously, many unique features are possible when METs, soft­

ware-determined feature operation, and a SOlid-state, space-division network

* Trademark of AT&T.

20-1

are combined. For example, the new 5- and 10-button electronic telephones will
accommodate multiline users through single-button access to outgoing facilities
(e. g., CO/PBX, WATS, FX lines). Light-emitting diodes (LEDs) associated with
these buttons indicate the busy conditions of the facilities, thus retaining the vis­
ual monitoring advantage of key service. Five-way unassisted conference calling
with selective deletion of parties is a standard system feature. The conference
is established with essentially no transmission loss. In addition, improved
transmission level performance is provided on CO connections. Optional call
coverage allows multibutton pickup service within a group on a single button per
group per telephone basis. This feature can be optionally enhanced with busy,
no-answer, and all-calls conditions redirected to a designated station. 1

HARDWARE

The hardware of the 32A CS is composed of five basic parts:

- Processor.
- Memory complex.
- Switching network and associated control.
-:MET input/output (I/O) interface.
-Individual network ports.

The "heart" of the system is the processor, which controls the 32A hardware in
response to stimuli from the peripheral network. The processor fetches in­
structions and data from the memory complex, translates them into system com­
mands, and transmits these commands to the network control unit and MET I/O
interface. These two modules interpret the commands to provide switching and
control functions for the various network ports.

The "brain" of the 32A processor is the Intel 8080A microprocessor. Most sup­
port functions for the microprocessor are handled by medium scale integration
(MSI) devices from the Intel 8080 family in an effort to reduce the amount of in­
tegrated circuits. A memory-referenced I/O strategy is employed to save real
time and memory space. Separate data buses are used for memory and I/o
communication to solve loading problems and increase noise isolation. The
priority-encoded interrupt scheme utilizes restart vectors to provide inputs for
the real-time clock (10- and 25-ms interrupts for call processing) and the error
logic that detects and reports memory failures. Independent hardware is added

20-2

to monitor the sanity of the processor-memory complex. A cycle timer checks
that the 8080A instruction cycle is of the proper duration, while the software
sanity timer verifies that the scheduled software routines are completed within a
reasonable time interVal. A failure in either of these sanity tests will cause the
system to take corrective action.

The 32A memory complex contains the program and data segments that govern
system functions. The program is stored in 16K-bit ROMs (although 8K pro­
grammable ROMs [PROMs] are being substituted for initial system introduc­
tion), while translation and status information is being stored in 1K-bit comple­
mentary metal oxide semiconductor random-access memories (CMOS RAMs).
The RAM power supply is backed up by a battery to ensure nonvolatility of the
translation information. The error detection and protection schemes used to
enhance system reliability include even-parity checks, translation data write
protection, memory-access boundary tests, and functional error checks (such as
attempts to write into ROM or execute from RAM).

The solid-state, space-division network of the 32A CS consists of a matrix of
PNPN crosspoint switches, with a maximum of 120 ports sharing 24 communica­
tion links. These links are used to establish colUlections between ports. Most
control and maintenance functions are centralized on a common board that inter­
faces with the processor. The PNPN array, however, is distributed over the
port boards, with each board containing its own cOlUlections to the 24 common
links. This configuration allows the addition or deletion of ports according to
network requirements.

The MET I/O hardware interfaces the parallel data stream of the processor with
the serial data stream used to communicate with the METs. Hardware process­
ing of the I/O data is used to relieve the processor of demands on its real time.

The network ports vary in type and function, yet all possess a universal inter­
face with the network and the network control logiC. Present port types include
loop-start line circuits, MET station circuits, standard (2500 type) station cir­
cuits, special-purpose trunk circuits (FX, tie, etc.), auxiliary circuits for pag­
ing, and music-on-hold and tone plant TOUCH-TONE receivers.

20-3

SOFTWARE

The 32A software has been designed in structured program blocks. A structured
macro assembly language (SMAL2)2 supports a standardized program module
format, permitting greater readability. This format includes:

• A prologue summarizing the module, including entry and exit
parameters.

• Block comments in preference to line comments.

• A statement of entry and exit parameters at each call to a
subroutine.

In addition, individUal module listings have been limited (ideally to 2 to 3 pages)
to facilitate understanding of the module. The average 32A object module con­
tains 46 bytes (there are 1 to 3 bytes per 8080A instruction). Less than 100 bytes
of program storage are required by 90 percent of the object modules. The average
source module that produces these object modules contains 102 lines of comments
and SMAL2 code.

Program structure for the 32A CS is similar to other electronic switching sys­
tems, such as the No.2 ESS3 and the DIMENSION PBX. 4,5 An interrupt pro­
cessor, which is activated every 10 ms, collects digits from the TOUCH-TONE
receivers and controls rotary outpulsing. A second interrupt processor, acti­
vated every 25 ms, resets the task dispensing supervisor and sets a relinquish
flag. This flag requests the return of control to the task dispenser when the in­
terrupted process reach~ a convenient termination point. The task dispenser
sequentially passes control to the peripheral line and station s can routines, the
line and station change handling routines, and, finally, to the base-level mainte­
nance routines, if the relinquish flag has not been set in the meantime.

Time-critical events are detected via polling performed in the scan routines.
These events are recorded in the appropriate change buffers. The change han­
dling routines can then, at a more leisurely rate, poll and process any changes
found in the change buffers. It is anticipated that the peripheral change rate will
be significantly less than 1 change per 25 ms and that the change handling time
will be about 10 ms per change.

20-4

MAINTENANCE AND ADMINISTRATION

The maintenance and administration objectives of the 32A CS include depend­
ability, maintainability, ease of operation, low first-costs, and low annual
maintenance costs. First-cost considerations lead to system constraints such as
no redundancy, no resident off-line diagnostic programs, and a limited program
allocation for maintenance and administration. particular attention has been
given to keeping the system operational during trouble periods or during change
of customer services, and, in addition, to providing built-in fault locating pro­
cedures that decrease repair time.

Maintenance

Trouble detection is performed via high-level progress checks (software sanity
checks), hardware tests, hardware-software consistency checks, audits, and
error interrupts (hardware sanity checks). The progress checks are used to
verify that the system is not stuck in a loop. Some of the hardware tests used
for fault detection (network connection tests) are made during call processing;
however, most of them are regularly scheduled during base-level time. The
hardware-software consistency checks are used to update the hardware states to
agree with the software records when transient faults occur. The software audits
check for inconsistencies within the software records, and when transient errors
occur, the associated call is aborted. It is left to the customer to place the call
again.

Trouble reporting is accomplished via error counters, fault records, LED in­
dicators, and alarms. The error counters contain peg counts of the various
system errors that have been detected. The fault records contain a listing of
the current hard faults and the previous five transient faults. The LEDs are
processor controlled and identify the faulty circuit pack. A local alarm (LED)
is displayed at the central answering pOSition when any fault has been detected.
The system provides for remoting alarms, and, in this case, all the information
in the fault records and counters can be transmitted and displayed at a remote
center.

Trouble locating is executed using the components of trouble detection and re­
porting, as well as by customer trouble reports and test calls. The test calls are
used to reserve and set up facilities for manual testing in conjunction with trouble

20-5

verification and repair procedures. Trouble location is the circuit pack level in
most instances, using a LED per circuit pack to identify the defective pack.
This is possible because a complete function is contained on a single plug-in unit.
For the cases where the trouble is not identified to a single circuit pack, fault
records point to a craft procedure that locates the defective unit without resorting
to circuit pack swapping.

Trouble recovery is achieved by aborting troubled calls and busying out the
faulty facilities. The busied-out facilities are reexamined periodically. When
errors are extensive, a cold-start initialization (which drops all calls) returns
the system to normal operation. Finally, if all attempts fail, the system
switches to power-failure-backup service.

Repair procedures, conSisting of step-by-step details for repair and verification
of system operation, are contained in two fault directories, one for alarmed
troubles and the other for customer reported troubles that are not alarmed.
Procedures are simple, compatible with today's craft procedures whenever
pOSSible, and minimize disturbing effects during the repair process.

Administration

The system is administered primarily through a portable service access unit
(SAU) under control of software resident in the 32A. Its purpose is to read and
write translation memory. Data are written either via a keyboard or tape. A
4-bit numeric display is provided for readout.

Translation changes can be made while the system is operational without affect­
ing the other stations. These changes are performed locally by the customer or
the craftsperson.

CONCLUSIONS

The first 32A CS will be placed in service at the end of 1976. It is the latest,
and the smallest, member of the Bell System electronic switching systems.
No. 1 ESS, the oldest member, is controlled by a maxicomputer; the DIMENSION
PBX, the next to the youngest member, is controlled by a minicomputer. Now,
in the 32 CS, the progress of electronic technology has allowed the use of the
microcomputer as the controller.

20-6

ACKNOWLEDGMENTS

The Bell Laboratories 32A CS project has engaged more than 40 people. It is
difficult to properly acknowledge the individual contributions of everyone in­
volved; thus, acknowledgments are summarized by recognizing the following
supervisory groups:

• M. R. Dungan and group - EM! measurements.

• C. E. Nahabedian and group - project control and support tools.

• C. R. Lindemulder and group - physical design.

• J. A. Miller and group - administration hardware and
maintenance philosophy.

• D. C. Trimble and group - system hardware.

• C. D. Weiss and group - system software.

20-7

REFERENCES

1. 32A Communication System, DL Special Systems No. 682,
Development Letter to AT&T, June 28, 1976.

2. D. H. Copp, User's Guide to the SMAL2 Language for the
Intel 8080 Microprocessor, Memorandum for File,
August 2, 1976.

3. R. J. Andrews, J. J. Driscoll, J. A. Herndon, P. C. Richards,
and L. R. Roberts, "Service Features and Call Processing
Plan," The Bell System Technical Journal, Vol 48, No.8,

Oct, 1969, pp 2713-2764.

4. Call Processing - Description, BSP 554-101-105.

5. General Software Description, BSP 554-102-100.

20-8

APPLICATIONS II

THE BUSINESS SWITCHING SYSTEM

R. M. Smith, BTL Dept 3233, HO, NJ

ABSTRACT

The Business Switching System (BSS) switches a maximum of 16 multi­
button electronic telephones (METs) and 8 central office (CO) lines. An

Intel 8080 microprocessor controls all BSS functions, including the
switching network. It recognizes MET button depressions, detects line
ringing, light~ MET lamps, controls MET ringers, and implements the
BSS feature set. The BSS employs switching circuits and techniques
compatible with processor speeds and data accessing methods. As a
result, the BSS can be packaged in an overnight- size suitcase for easy
installation.

The BSS program is written in a structured macro assembly language
(SMAL)I, 2 for the Intel 8080 microprocessor. The BSSprogram struc­
ture mirrors the logical structure of call processing familiar to key
telephone system designers. By calling various combinations of func­
tional modules that control the physical facilities, a deSigner can imple­
ment different feature sets without changing the main body of code.
This paper describes the functional hardware layout and the program
structure for the BSS.

INTRODUCTION

The BSS furnishes key telephone service for installations requiring from 2 to 16
telephones and from 1 to 8 CO lines. The BSS uses METs, which receive and
transmit serial data at high rates. See Figure 21-1. Direct station selection
(DSS) is provided, which permits intrasystem calls. The DSS buttons are located

on the upper faceplate. Station calls appear on intercom (I/C) buttons. LINE

21-1

* DENOTES BUTTONS
USED ON 5B-MET

I-USE -0 PRIME
STATUS ___ 0 LINE

8B
8B
8B
8B
O~*
O~

§ I lie I *} INTERCOM

o I1C *

88*
8B*

Figure 21-1 - 10-Button MET

buttons pick up CO lines. The +/- button adds or removes lines or stations from
conferences.

An Intel 8080A processor controls the BSS in a standard processor configuration.
An overnight-size suitcase houses all BSS electronics except the METs. The
Intel8080A microprocessor-based system, power supply, and mother board for
station and line circuits form the floor of the suitcase. Figure 21-2 shows the
physical arrangement of the printed circuit cards. The processor and its periph­
eral circuits fill the upper right-hand corner of the suitcase floor. The read­
only memory (ROM) board and the random-access memory (RAM) board (located
below the ROM board) plug into the processor board. Immediately below the
memories, the power supply occupies the lower right-hand corner. The pro­
cessor plugs into the edge of the backplane, which covers the left two-thirds of
the floor space. Also, the station, line, and tone boards plug into the backplane.

The BSS schematic is shown in Figure 21-3. The audio Signal enters the system
at the tip and ring of the battery feed circuit, which feeds the monobus circuit. 3

The monobus circuit converts the audio signal to a current that flows along the
station horizontal to the connected vertical and down the vertical through the ter-

21-2

minating resistor. Solid-state crosspoints cormect verticals to the station and
line horizontals. Idle lines and stations cormect to the ground vertical, the quiet
bus, to prevent monobus oscillation.

Data controlling the system flow through a 16-bit wide parallel data bus that ex­
tends from a latch on the processor board, along the backplane, to all circuit
boards. MET serial data travel to all station boards on a 2- conductor bus and
from all station boards on another 2- conductor bus. The 16-bit control bus
selects the station to receive the serial data. Data from peripheral circuits re­
turn to the processor via an 8-bit data bus.

Figure 21-2 - Printed Circuit Card Arrangement

21-3

MET SET

~I ~ 6 ~ID::~ ~ BATT. FEED MONO BUS _: 'V, /, V , V'\ /' /' /' V, 1/, V, 11''\ /, / " ./ ~ ./ I' / '\ / ~ / I' / I' / I' ./ I' ./ 1'./

I I " -W LDR NET. MEM

I
I DIPSW H IIO

500 SET

Lro\\TaR <I I ,/~ V' /' 1/ '\ /'\ /', V , V, /, V, 1/,

Ot"" I BATT. FEED MONO BUS
I ./" ./ I' ./ " ./ I' ./ '\ ./ '\./ ~ ./ 1'\ ./ " ./ I' ./ I" ./

TONE I l I RING I
RING NET. MEM

I
I DIPSW IIO

<I TaR : LINE IFACE MONO BUS : 'I' '\ 1/, v , 11''\ /' '\ /'\
/ "" V~ ~'\ It- '" V_"

/ '\ ./ I' ./ I' / I' / , / '\/ , / I' / I' / 1'/ I' ./
TO
C.O.

I NET. MEM I
I

I I/O
l

MET DATA------ KI I IIO TONES I 'I' , ./ , V , 1/'\ / '\ /' / '\ /' , 1./'\
/ '" /' _'\

I /'\ / '\ / '\ / 1'/ , / 'I' '\ / I' / 1'/ , / 'I'
:~ c ~ < ; : ~ : :. > ~

:. ~ < ~ < ~ c
:. -:.::-

I > : :. = > -

I I
c> : > ~ > < > < > < > "i > < > ~ > ~ > : > Q

I POWER I
MP IIO

I I -.=
I ROM I I RAM I

Figure 21-3 - BSS Schematic

One disadvantage of processor-driven customer systems has been the difficulty
of entering station features, identities, and restrictions into the system memory.
The BSS implements feature programming through switches located on the station
boards. See Figure 21-2. The switches for each of two stations can be seen on
each of the two station cards. The schematic layout of the switches can be seen
in Figure 21-4. The buttons on a MET appear on the left; switch fields appear
on the right. Typical switch settings, with the resulting line-button identifica­
tions, are represented by the line numbers next to the buttons and ON dots on the

3

o

4

6

7

13

PRIME UNE
OO~~PRIME

UNE
0 4

OTHER
PU
UNES

B}=-
D
D

PIIV.
RESIR.

Figure 21-4 - 10-Button MET Translations

21-5

switches. Every 6 seconds the program reads these switches and updates tables

that define station and line assignments and features. The slot into which a sta­

tion is plugged defines the access number of that station. The feature switches

and station and line board slot addressing provide a convenient way to administer

the station and line assignments and features. No other memory-entry interface

is needed.

SOFTWARE

Software in BSS has been implemented in SMAL, which translates into 8080

assembly code. Approximately 8500 bytes of ROM and 500 bytes of RAM drive

the BSS with the present feature complement.

BASIC PROGRAM STRUCTURE

A definite structure characterizes BSS call processing. The top level of BSS code

defines the basic tasks performed in each 25- ms cycle as follows:

EKSEC: /* THE MAIN LOOP, RUNNING EVERY 25 MS */
CALL STIME; /* UPDATE SYSTEM CLOCKS */
CALL SSCAN; /* SCAN STATIONS FOR STATE CHANGES */
CALL CGSET; /* PROCESS STATION CHANGES */
CALL LSCAN; /* SCAN THE LINE RING DETECTORS */
CALL QSCAN; /* SCAN THE EVENT BLOCKS */

WHILE (A <= IN (8» ZERO

/* WHILE THERE IS TIME LEFT IN THE 25 MS CYCLE */
DO;

/* CALL THE SYSTEM MONITOR */
CALL IMNTR;

END;

M(800AH) <= A; /* CLEAR THE CLOCK */
GOTO EKSEC; /* BEGIN ANOTHER CYCLE */

Each call executes a segment of the total job as described below.

STIME exists as a subroutine. See Figure 21-5. The system variables indicated

in the figure change with each 25- ms invo cation of STIME.

21-6

25 ms CYCLE

RING PHASE

FLASH

TI ME OF DAY WARBLE WINK

Figure 21-5 - System Timing

Station scanning is illustrated in Figure 21-6. The station scan transmits 25 bits
to the station set and receives 15 bits from the station. Transmitted and received
bit functions appear in Figure 21-7. The output of the station scan resides in the

scan table (SCTAB) last-look words. The last-look words give the station state
just before a station state change (for example, a button push, receiver off-hook,

etc.) and just after a change. When a state change occurs on two successive
scans, the station scan sets an activity bit, which signals an active change to
CGSET.

/

B station scon routine

/ /
/ /

,; /
",/ /

/

/
//SCAN TABLE-SCTAB:

RING STATE
LAMP 1
LAMP 2

•
•
•

LAMP 20

{

LAST LOOK 1
LAST LOOK 2

ACTIVITY BIT
~

Figure 21-6 - Station Scan

21-7

HEADER

POSITION

POSITION

2

POSITION
N

DATA TRANSMITTED TO MET SET DATA RECEIVED FROM MET SET

BIT CONTROLS STATES BIT INDICATES STATES

RINGER BIT 1 1] 01

I-------i 0 g~iESCENT1 ON
2 RINGER BIT 2

01]OFFI-_1~I--S~W~I~T~C~H~_0 ___ 0_N_H_0_0_K ________ 1-_0_F_F __ H_O_O_K ______________ ~ HOOK

01

2

3 RINGER TONE 0-750Hz i-1500Hz

3

4 RINGER VOLUME 0- FULL i-REDUCED

BUTTON
DOWN O-NO BUTTON DOWN i-BUTTON DOWN

CONTROL
(ACTIVITY) O-NO ACTIVITY i-ACTIVITY

4 DSD OR
DSS 0- BUTTON DATA 1- BITS 6-15 DIAL OR DSS INFO

CONTROL
5 (VOICE SIGNAL) 0 - OFF 1- ON

[: I-U~~~~~P 1 1 LAMPS

[

STATUS 0 - OFF

9

8 LAMP 2 1 - ON

1- USE LAMP 2

RECALL O-NO RECALL 5 1- RECALL

BUTTON ACTIVITY:

6

SEE NOTES 1 AND 2
SEE NOTE 1

BUTTON 1 1
STATUS O-NO BUTTON PRESSED

[

2N+41-__ L_A_M __ P_N __ -4 ______________________ ~-7--rB-U-T-T-0-N--2~--1---B_U_T_TO_N __ P_R_E_S_S_E_D ____________________ ~ N+5 BUTTON N

2N+5 1- USE LAMP N

NOTES:

1) IF THE SET IS EQUIPPED WITH DSS, AND IF THE DSS BIT (BIT4) IS A ONE,
THEN THE BUTTON BIT THAT IS A ONE IS TO BE INTERPRETED AS THE
CORRESPONDING DSS BUTTON.

2) BD = 1 ON ALL BUTTON PUSHES (INCL DSS, RECALL)

3) BUTTON DN = 1 WITH DSS OR OTHER BUTTONS

Figure 21-7 - Data Formats

Following the station scan, CGSET scans the SCTAB for set activity bits that in­
dicate a station change. See Figure 21-8. When CGSET finds a set activity bit,
it resets the bit, exclusive ORs the new station state word (last look 2) with the
old one, and calls the station change routine (SCHNG), which compares this state
change word with a table of valid changes. When SCHNG matches the change with
a valid change in its station branch table (SBTAB), the entry address to the cor­
rect call processor lies in the two bytes following the matched change word.
SCHNG then transfers control to the call processing routine entry.

Three call processing modules perform most of the call processing; five call pro­
ceSSing modules perform all call processing. If a LINE button is pushed, the
line button module (or line processor module) receives the transfer from SCHNG.
The nss module receives intercom calls activated by the nss buttons. The inter­
com module receives any intercom button indications. In addition, the off-hook
and on-hook modules receive control on the off-hook and on-hook state changes.
These two modules usually transfer control to the other modules, except when
processing is trivial or not possible with the other modules.

The line button, nss, and intercom modules have the same structure; therefore,
only one, the line button module, will be described. See Figure 21-9. SCHNG

SCTAB:

@
scan
table

CD chg

@no chg

CD

SBTAB

scan for
changes

CHNG 1 : ENTRY 1
CHNG 2 : ENTRY 2

• •
• •
• •

CHNG 20: ENTRY 20

CGSET

STATION STATE
LAST LOOK

NEW LOOK

LAST LOOK XOR
NEW LOOK = CHANGED BITS

SCHNG
find correct
entry point
for change

GO TO ENTRY i.

Figure 21-8 - station Set Change

21-9

ENTRYL'

169 BYTES

HOLD
MODULE
(170B)

748

• •• ENTRY R:

parameters
fixed by entry
~

LBTAB

line no., station no.
keyword

55B
RING

MODULE

96B

STATW 1 : KEYWD 1
STATW 2 : KEYWD 2

• •
• •
• •

STATW14 : KEYWD 14

57B 111B

Figure 21-9 - LINE Button Push Schedule

transfers control to an entry (top of the figure). These entries fix the correct
parameters in the B register. For example, if the prime line is line 3, the B
register contains a 3 after the PRIlVIE LINE button is pushed and the program
enters the line button module. The B register contains this line number through­
out this call processing sequence. Similarly, the C register contains the station
number, the HL register pair contains table indexes, the D register contains sub­
routine indexes, and the A register passes values into and out of subroutines.

The station number (in register C) and the line number (in register B) allow for­
mation of a status word that describes the station and line states. Figure 21-10
shows the only parameters necessary for call processing of a LINE button. Seven
bits encode these states, which are compared to a table of all valid states in the
line branch table (LBTAB). When a match of the actual state with an LBTAB state
is found, the byte following the LBTAB state (the keyword) indicates the line
primitives to be executed. Line primitives perform basic tasks in call processing;
for example, DRPLN drops an active or ringing line, while LPKUP picks up an

21-10

inactive or held line. The required primitives are executed, and then control is
returned to CGSET. CGSET restores all registers saved before calling SCHNG
and continues scanning for activity bits.

The line scan routine (LSCAN) reads ring detectors on the line boards. See
Figure 21-11. When ringing is detected on two successive scans, an event block
is set, which checks the ring detectors in 0.3 second. If the line is still ringing,
ringing of all stations on the common audible list of the line is initiated.

QSCAN schedules six events. Figure 21-12 describes these events and shows the
flow of control. Basically, an active event block contains a time of day when one
of the six routines (also encoded in the block) must be executed. When the time

+/- bit

/

\1' if I/ine busy on station

spare

I
b7 b6 b5 b4 b3

\ '1' if ~tion is busy

switch hook state

b2 b1 bO
''----,1---''/

Line call state
O-IDLE

1 - BUSY

2 - RINGING

3 - HELD, OPE N

5-BUSY-PRIVATE

Figure 21-10 - LINE Button Push status Word

ring
detectors

SET A BLOCK
TO RING

A LINE IN
0.3 SEC IF

STILL RINGING

LCHNG
call

one of three
event block pgms

SCHEDULE
A RING

TIME OUT
(ring stops)

last look

DE-SCHEDULE
A RING

TIME OUT
(ring re-starts)

Figure 21-11 - Line Scanning

21-11

EVENT
BLOCK 1

parms
TIME UP

•
•
•

EVENT
BLOCK 25
TIME UP

1
RING LINE

IF LAST LOOK
IS "1"
(26B)

QSCAN

SCAN BLOCKS. compare
time of day time of day

STOP A
STATION
RINGING

(11B)

to block
time up

call on match

QCHNG RETURN call change
TO oS'CAN routine

I I I
... ...

CANCEL LINE STOP RINGING
PRESELECT

(25B)

CLOSE LINE
RELAY

(FLASH)
(9B)

ON A LINE
(16B)

FLIP A TONE
OFF (OR ON)

a RESCHEDULE
ON (OR OFF)
(102 BYTES)

Figure 21-12 - Event Blocks

of day (from STIME) matches the scheduled time, the queue change routine
(QCHNG) executes the required program. SKED activates an event block and
DSKED deactivates one.

BASIC TABLES

BSS data structures center around the six basic tables shown in the Figure 21-13.
All of these tables are written and read by buffering routines called with para­
meters in the D register, lines (or called stations) in the B register, active
stations in the C register, and data written or read in the A register. Beginning
at the top of Figure 21-13, LITES and RNGST set all lamps and ringers in the
SCT AB. The station scan translates this table, with system clocks, into lamp
and ringer station data. station definition, station type, line assignments, line
preference, etc., reside in STDEF. The station definition routine (SDEF) reads
this table, and the switches input routine (SWIN) writes this table every 6 seconds.
The auxiliary line of definition table (LNDEF) defines the common audible list for
each line, and is composed in SWIN from station board switch inputs. The station

21-12

data table (SDAT) contains all station dynamic data, such as call state, vertical
number, button states, etc. Initially, SDAT contains all Os. The SDATA routine
writes SDAT, and the SINFO routine reads SDAT. The STDEF, LNDEF, and
SDAT tables contain the program-station interface.

Line data reside in the line data table (LDAT). The LDAT A routine writes LDAT,
and the LINFO routine reads LDAT. When LDAT is written, LDATA automati­
cally calls the routine that sets the line relay. LSTAT, which contains the ringer
status, is written by LSCAN. The LDAT and LSTAT tables define the line­
program interface.

The switching network or vertical information resides in VDAT. The VDATA
routine writes VDAT, and the VINFO routine reads VDAT. When VDATA writes
VDAT, indicating a horizontal connection (i. e., a line or station to a vertical),
the network setting routine is called automatically by VDATA and the network
connections are established as dictated by the written data in VDAT.

Call proceSSing programs interface with hardware through table buffers only.
Thus, the call processing programmer must keep tables up to date. This prac­
tice minimizes programming errors and ensures system consistency. In addi­
tion, if the hardware, for example, the switching network, is ever changed, only
the interfacing routines need be changed; call processing remains the same.

The BSS supports most desirable key telephone features, including a 30-button
attendant station, in approximately 8500 bytes of ROM code. This system has
been performing for approximately 8 months as a test vehicle with an in- circuit
emulator support system and as a demonstrator with a version of the program in
the programmable ROM (PROM). Microprocessor speeds adequately serve the
timing requirements.

21-13

STATIONS STATION DATA
~ .;

LAMPS
KSCAN OUTPUT

RINGER
K LITES RNGST I

RINGER LAMPS
"-

SWHOOK LAST WORD RCD
BUTTON SCAN INPUT .> LAST VALID
PUSHES , RCD WORD

~

SWHK, + 1-BIT K SDATA I CALL STATE
BUTT CALL

.........
STATION STATES

SINFO
SWITCHES VERT NO. ,

.......

SWITCH READ .:> STATION
SDEF

DEFN , ,
LINES LINE DATA

~ ~

LINE K RELAY SET
CALL STATE K LDATA I RELAYS VERTICAL NO.

"- LAST LOOKS
....

RING
......... STATION

DETECTORS
LSCAN ;;; COMMON LlNFO

" AUDIBLE LIST ,

SWITCHES VERTICAL DATA
...,- .."

DK,NETSET BUSY/IDLE K VDATA I STATIONS
a

......
.......

LINES
VINFO

CONNECTED

"
Figure 21-13 - System Data Buffering

21-14

w
u
it
0:::
W
f­
Z
H

:E
<!
0:::
(!)
o
0:::
a..

ltEFERENCES

1. C. Popper, SMAL - A structured Macro-Assembly Language
for a Microprocessor, TM-74-3233-3, August 1, 1974.

2. C. Popper, SMAL User's Manual, TM-74-3233-5, October 24,
1974.

3. C. K. Liu, Network Circuit and Logic Control of the EKSII
Laboratory Model, Memorandum for File, Case 40128,
April 18, 1976

21-15

APPLICATIONS II

A PROCON-BASED PERIPHERAL CONTROLLER

J. L. Haase; R. J. Jakubek, S. M. Silverstein, BTL Dept 3234, HO, NJ

ABSTRACT

This paper describes the architectural considerations for the control
of customer premises peripheral equipment used in the Phase II offer­
ing of the automatic call distributor/electronic switching system (ACD/
ESS) service. The implications of connecting a microcomputer, simi­
lar to the Western Electric (WE) PROCON, to a No. 1 ESS, via a data
link, to control and monitor a variety of complex peripherals are con­
sidered. This is a high-throughput, real-time application where relia­
bility and maintenance are of prime importance. The system design is
presented with an attempt to highlight those concerns involved in achiev­
ing a proper balance between software and hardware implementation
alternatives.

INTRODUCTION

The flexibility of stored program controlled central offices makes it possible to
provide the business customer with many new features and services. 1 One of
the newest to be offered from the No. 1 ESS is ACD/ESS service. The basic func­
tion of the ACD/ESS is to distribute incoming calls to groups or splits of agents,
with the distribution determined by factors such as call origin, call type, order of
arrival, etc. The 60B Customer Premises System (CPS), with No. 1 ESS, pro­
vides this service to the business customer.

The 60B CPS contains a subsystem designated the remote data interface (RDI).
The subsystem controls console lamps, alphanumeric displays, a cathode ray

22-1

tube (CRT), and other peripheral circuits, via a programmable controller
(PROCON) based on information transmitted over the centrex data link between
the ESS and the customer's premises. The control information received from
ESS by PROCON is decoded, processed, and communicated to the peripherals
by channels with serial data links.

Translation capability is available within the microprocessor random-access
memory (RAM) to allow the definition of agent splits. With this capability, a
single data link message can be used to control groups of lamps and displays
defined via these translations.

Information gathered by the microprocessor and transmitted to the ESS central
office includes console key depressions, CRT keyboard activity, and station
equipment status.

SYSTEM ARCHITECTURE

In order to provide the required data multiplexing and de multiplexing between the
customer premises peripheral units and the ESS under program control, the
architecture shown in Figure 22-1 has been adopted. The E SS data link is con­
nected through a special modulator- demodulator (modem) to a data buffer
(DBFR). The .data buffer is an independently operating unit that provides message
buffering in both directions. It also contains fault indicators and some logic,
which, under ESS command, controls the microprocessor (run, reset, and halt
operations). An 8K- by 24-bit read-only memory (ROM) program storage unit
(PSU) contains all the system programs and is interfaced with the instruction bus.
The rest of the microprocessor complex is interfaced with the system bus. This
bus contains a 4K- by 16-bit RAM used to hold translation and status information
and four input/output (I/O) channels that provide serial-parallel conversion and
data link control functions. The channels drive steering units that multiplex the
channel data to and from 32 data links that control consoles and lamp displays
directly. Also included on the bus is a clock that records real time in 1-p.s steps.
This clock is used to schedule processor tasks. Finally, there is a display for
diagnostic results. Some customer equipment requires special data link interface
circuits; for example, the scanner-distribution unit is used to interface with cir­
cuits that require parallel data, while an EIA interface card is provided for the
CRT terminal.

22-2

DATA
BUFFER a

FAULT REG

INSTRUCTION
BUS

PSU
BKX 24BIT

ROM

16BIT
SELF CHECKED

PROCESSOR

SYSTEM
BUS

BUS

CONTROL

CLOCK
a

DISPLAY

PROCESSOR
BUS

Figure 22-1 - RDI Hardware Configuration

PARALLEL

SCANNER

a

300
BAUD HALF
DUPLEX

A well thought-out architecture should show consideration of flexibility, reliability,
maintainability, throughput, and cost factors, with the right tradeoffs being made
to yield a good overall system design. Flexibility is achieved largely through the
inherent features of a microprocessor by placing as many functions as possible
in the software without adversely affecting the other factors. Maintainability is
obtained by separating the processor bus from the system bus to yield more re­
liable communication between the ESS and PROCON. Here, reliability is impor­
tant for maintainability, since the PROCON, upon command from the ESS, is
responsible for diagnosing and isolating faults for everything located on the system
bus. A fault in a unit on the system bus, or of the bus itself, will not prevent the

22-3

ESS from communicating with the PROCON. Good fault isolation is obtained by
providing a software diagnostic routine for each major unit on the system bus.
These include: the system bus, RAM, channels, and real-time clock. The result
of each diagnostic is a pass-fail on the unit or circuit pack in question. Thus, the
only real cost incurred in accomplishing good maintainability is the added expense
to enable the ROM to store the diagnostics.

The choice of PROCON as the processor can be attributed to three considerations:
speed, maintainability, and in-house availability. Since the application is one of
real-time processing, the speed of PROCON results in increased throughput over
other processors. The problem of diagnosing the processor for proper operation
is accomplished through the self-checking features of PROCON, resulting in an
easily maintained unit.

Perhaps the most important tradeoff affecting cost and throughput is the decision
to delegate a function to either hardware or software. In this application, a very
time- consuming task is the exchange of button and lamp information between the
RAM and the numerous consoles. If this is left completely to the software, the
throughput of the system is vastly reduced, resulting in a much smaller number
of consoles per RDI, therefore increasing greatly the cost of ACD service. By
delegating this job to the semiautonomous channels, throughput increases, allow­
ing more consoles per RDI. Even though additional cost is incurred per RDI by
adding the channel hardware, it results in a lower cost per console on a system
basis.

SOFTWARE ARCHITECTURE

The software is responsible for providing lamp and alphanumeric control upon
ESS command, driving the special interfaces, and detecting and reporting status
changes (i. e., button operations) to the ESS. Related to these tasks are such
functions as translation management, ESS message processing, data link I/O,
timing, and maintenance. The strategy used to implement these functions is
periodic data link service under program control. To support this structure, a
special-purpose, real-time operating system has been developed for the micro­
processor. Figures 22- 2 and 22- 3 depict a flow diagram of the system. The
system can be viewed as a finite state machine. The states are quescient (Q),

echo (E), maintenance (M), and active (A).

22-4

...

~ESETa RUN

E

ECHO N
ESS

MESSAGES

-"- J ...

~ j ~

WAIT FOR
AN ESS

MESSAGE
I

DECODE
THE

M~SAGE

j I
EXECUTE

THE
COMMAND

I
t T ,

INITIALIZE
HARDWARE HARDWARE DATA

EXERCISES DIAGNOSTICS STORAGE

I I
SEND 0 RESULT TO
ESS

.. ... I

Figure 22- 2 - RDI Software Flow Diagram

In the Q state, the processor is idle and can be stopped or reset by ESS command

through the DBFR. Upon the reset and run command, the processor goes into the
E state. Here, ESS messages are echoed by the software to check the communi­
cation link and the sanity of the processor through its self- checking capabilities.
Mter a fixed number of messages, the processor switches into the M state.

In the M state, the processor waits for ESS messages. Upon receipt of a message,
the processor decodes it and executes the order, if it is accepted in the M state.
These messages include diagnostics (bus, RAM, clock, and I/O channels),

22-5

exercises (processor self-checking and system fault detection), and state tran­
sition messages (go quiescent, go active, and initialize and go active).

In the A state, all call processing tasks are executed on a cyclic basis. From
here the processor can be commanded to reenter the M or the Q state. Thus,
typical operation is to bring the processor into the E state by a reset and run
order to check the link and the processor. Then, it enters the M state and the
surrounding hardware is checked. If the results are reasonable, the ESS issues
an initialize and go active command. The processor clears the data base and is

PERIPHERAL ESS

1/0 1/0

RESET
CLOCK

RUN ALL
HIGH PRIORITY

TASKS

MESSAGE RATE
PRO- GEN-

CESSOR ERATOR

CRT
CHAR
D QER

SLOW CHANGE TONE
TASK

SCANNER CONTROL DISPENSER

1 sec

LAMP BUTTON
DISPLAY ACTIVITY

1/0 MONITOR
CHEDULER

WAIT FOR '----..o ___ ~ RUN NEXT LOW

PRIORITY TASK T= 25 ms

MEMORY LIST

EXERCISE CHECKS

RANGE a
CONSIS­
TANCY
CHECKS

Figure 22- 3 - RDI Software Flow Diagram

22-6

ready to begin normal call processing. Later, ESS can order the system back
into the M state and run diagnostics and exercises to verify operation. After
this, the system can be restored to the A state, leaving the translation intact
(using the go active order) so call processing can resume.

In the A state, the task dispenser software schedules tasks at two priorities: PI,
tasks whose periodic execution is guaranteed, and PO, tasks that are executed on

a time-permitting, round-robin basis. The dispatcher schedules six tasks at a
25-ms rate, one at a 50-ms rate, one at a IOO-ms rate, and one at a I-second
rate. The tasks run on level PO are nonessential, such as audits and RAM
exercises.

The first task run in an active cycle (peripheral 1/0) experiences the least time
jitter. It performs data link 110 exchange operations with customer premises
peripherals, based upon entries in channel lists. These entries direct the pro­
gram to control words and a set of data buffers on a per-peripheral basis. The
program must know the state of the peripheral so it can select the proper 1/0
operation. One of the features of this module is that the processor handles
multiple channels Simultaneously, withI/O overlapped between channels.
While some channels are transferring data, the processor services another chan­
nel to increase throughput.

A central office data link driver (ESS 1/0) is incorporated in the system. It
samples the DBFR for messages and buffers any orders for the message pro­
cessor. It also maintains a 3-level priority queuing structure of messages to be
sent to the central office.

The message processor decodes orders from the central office and executes them
by updating data entries in the RAM. Messages are of three classes: transla­
tion, call processing, and system status.

The rate generator maintains two software clocks and updates lamp bits in output
buffers as specified in the system rate lists. The lists are updated by the mes­
sage processor and the tone control routine.

The change scanner scans the buffers returned from consoles and reports fil­
tered button operations to the ESS via one of the queues. It also provides alpha­
numeric control and lamp test features. For the EIA data terminal, it provides

22-7

adaptive error checking and recovery and maintains character input queues and
editing facilities.

The tone control program provides software timers, on a per- console basis, to
control the duration of audible signals at the consoles.

The CRT character dequeuer moves characters from a CRT queue to the output
buffer for the EIA interface unit at a 50-ms rate. The message processor, upon
ESS command, places characters on the queue, while peripheral I/O actually
sends the characters to the terminals.

The lamp display I/O scheduler schedules I/O operations for lamp displays at a
IOO-ms rate by updating the I/O status in the control words used by the peripheral
I/O program for lamp displays.

The button activity monitor program prevents console activity from tying up the
microprocessor, the data link, and the ESS.

As can be seen from the preceding discussion, structured prog;ramming techni­
ques and modular design result in cooperating tasks implementing system features.

Also, each task only utilizes a subset of the system resources. For example,
the message processor works only with certain data structures, while the pe­
ripheral I/O program accesses only I/O buffers and control words in RAM and
the channel hardware. These approaches eased the software implementation and
debugging stages of the development.

ADDITIONAL MAINTENANCE CONSIDERATIONS

A combination of hardware and software components is used to achieve a 4-
faceted maintenance plan. The strategy consists of automatic fault detection,
automatic fault isolation, fault indications to the central office and the customer
premises, and automatic correction of soft failures.

The ESS communication is checked by data link parity, an all-seems-well signal,
and a modem loop-around state. PROCON has multiple parity bits to check the
integrity of the PSU. The microprocessor also performs an instruction sequenc­
ing check, via other bits in the PSU, and data matching checks via duplicated
data manipulation units.

22-8

The global behavior of the system is monitored by periodic communication checks
from the central office and by the fault detection circuitry of the DBFR (time out,
all seems well, link blockage, etc.).

The system also runs auditing programs on its RAM data base to minimize errors.
1"hese audits include translation consistency checks, pointer and index range
checks, list transversal checks, and traveling block memory 'exercises. The
software automatically recovers its work cycle on most soft failures.

UTILITY SUPPORT

The use of proper support tools that facilitate efficient software development is of
paramount importance in the development of a microprocessor-based system. A
good support package provides an easy method of source code generation and ad­
ministration as well as facilitating the assembly and loading of object modules.
A mechanism for providing tracing, address halts, register access, and code
disassembly facilitates the debugging of programs. A support package called
PDT (PROCON development toolS), based upon the UNIX operating system and
SWAP assembler, has been developed specifically for use with PROCON. This
system served as the foundation for the design of software aides to develop the
Intel 8080 code for the 32A Communications System project. 2

CONCLUSIONS

In reviewing this paper, seve'1;'al concepts are worth emphasizing. First, the
concept of providing centralized features by multiplexing information over data
links is very effective. Second, stored program control and the microprocessor
concept form an excellent and flexible basis for providing a wide spectrum of
features to a variety of peripherals. Finally, hardware-software tradeoffs are
fundamental to the efficient design of microprocessor-based real-time systems.

22-9

REFERENCES

1. R. J. Jakubek and S. M. Silverstein, "Microprocessor
Control of Customer Premises Telecommunications
Equipment," Proceedings of the Annual Conference of
the ACM, Houston, Texas, October, 1976.

2. D. J. Hunsberger and J. J. Molinelli, "A Support System
for the Intel 8080," paper presented at Microcomputer
Symposium, Bell Telephone Laboratories, Holmdel,
New Jersey, 1976.

22-10

APPLICATIONS II

A l\fiCROCOMPUTER- CONTROLLED SINGLE- LINE
TELEPHONE; SYSTEM

S. W. Lye, BTL Dept 3313, IN, IN

ABSTRACT

A Texas Instruments TMS-1099 microcomputer has been used as the
controller of a single-line key telephone system offering pickup, hold,
illumination, tone ringing, intercom, and voice signaling via the 4-

conductor wiring common to most residences. The flexibility of the
microcomputer was fully exploited by simultaneous system design,
program development, and preparation of the hardware for a market
trial.

The single- chip microcomputer is an attractive alternative to custom
large scale integration (LSI) for small systems having anticipated fea­
ture changes or options and relatively low production volumes. Of

prime concern in the selection of such a device for production design

are the power requirements and the circuits necessary to interface the
computer chip to the real world.

INTRODUCTION

In a computer age dominated by news about 8080 and 6800 systems offering in­
creased speed, expanded architectures, and complex resident operating system
software, one must seek out application data on the smaller 4-bit microcom­
puters which actually introduced this new technology. While there has been a
reduction in the cost and the complexity of the 8- and 16-bit systems, it is the
Single-package machine that can now compete with custom logic in control appli­

cations within automobiles, appliances, and Bell System station apparatus.

23-1

Considerable effort on the part of the semiconductor industry has been directed
towards this potential market where efficient, economic, single-package control­
lers are expected to find large market volumes. Though few in number now,
many 4-bit microcomputers will reach the commercial market in 1977.

The first application of the single- chip microcomputer technology in Bell System
station apparatus is in the Single-line telephone system (SLS). This system
evolved as the vehicle for an AT&T market trial of single-line intrapremise com­
munication service for residences and small businesses. The system provides
pickup, hold, illumination, tone ringing, intercom, and voice signaling features
comparable to those of some business systems. The system, as shown in
Figure 23-1, consists of a locally-powered control unit mounted at the protector
block and a speaker adjunct associated with each telephone set. Also, special
one-piece telephone sets incorporating the speaker and controls within a modern
housing have been designed for use with the SLS system. The system is inter­
connected with standard 4-conductor inside wire arranged in any home-run or
daisy- chain scheme.

The challenge in designing a small key telephone system of this type is to make it
economical yet compatible with general purpose telephone sets and with the 4-
conductor wiring. Economics demand that all functions be performed by the con­
trol unit rather than be duplicated in each of the attached telephones or adjuncts.
Since two of the four wires are dedicated to the normal speech transmission mode,
the additional key button, lamp, ringing, and paging signals must be carefully
distributed on the remaining two.

THE SLS SWITCHING SYSTEM

A magnified view of the switching portion of the control unit is shown in Figure
23-2. The system consists of a loop current sensor, a hold bridge, an intercom
current source, and an intercom transfer relay. These elements allow the con­
nection of all telephones to either the central office or the intercom line while
holding the central office line or monitoring it for an incoming call. The magni­
tude of the current drawn from the intercom talk battery is monitored for local
supervisory purposes, 1. e., it is used to select and release the paging system
from an intercom connection. Voice and tone signals are selectively mixed by

an analog switch before amplification and distribution to the system speakers.

23-2

C.O.
LINE

LINE PROTECTOR
BLOCK

LOCAL POWER

ACTIVATED SERVIC

Figure 23-1 - SLS Block Diagram

LOOP
CURRENT
DETECTOR

POWER
SUPPLY

HOLD
RELAY

X-FER
RELAY

CURRENT
DETECTOR

IN'fE'RCoM TONE

CURRENT LOGIC LEVEL __

~------- T TO SET

t--------- R

..... __ CUSTOMER
PROVIDED

VOICE
COUPLER

MIXER

LAMP CONTROL

MUSIC

Figure 23-2 - SLS Controller Block Diagram

23-3

Also connected to the speaker distribution system is an amplifier identical to the
paging amplifier but employed to switch the station light emitting diode (LED)
status indicators. The slew rate of the lamp amplifier is controlled to allow the
LEDs to flash without generating audible clicks in the speaker system.

An adjunct circuit is shown in Figure 23-3. The circuit contains a diode-coupled
LED, a speaker with a bipolar blocking capacitor, a volume control and muting
contact, and momentary customer input switches. The hold and intercom switches
break and short the tip and ring conductors of the talking circuit, thus super­
imposing the system control signals on top of the central office supervisory
currents.

When idle, the switching system connects the station sets to the intercom battery
and the ac line termination to the central office line. The controller then monitors
the central office line for ringing voltage and the station sets for either an off-hook
current (30 mA) or an intercom selection current (80 mA). An intercom call is
originated by a momentary operation of the intercom key. The control system
responds by lighting the LEDs for a 3-second period. Lifting the handset during
the 3-second period causes the controller to connect a O. 5-second Signaling tone
(750 Hz) to the paging amplifier. A paging message may be initiated after this
alerting tone. The paging amplifier is disconnected from the speakers if a
second station answers the paging call, or it is connected to a 20-Hz modulated
tone if ringing is detected on the central office line.

The central office line hold function is somewhat more critical than the intercom
sequence described above. With a single off-hook phone connected through the
loop current sensor to the central office, the controller has only one active input
bit - the presence or absence of current in the central office loop. The hold but­
ton (like the rotary dial pulsing contact, the switchhook, and the central office
switching equipment) generates an interruption in loop current when operated. It
is the task of the controller to measure the duration of all central office line open
intervals and determine the source of those exceeding 100 ms. This is
accomplished by:

• Breaking the loop into two parts at the control unit.

• Testing for current in the central office and the station set
circuits.

23-4

FROM
CONTROL

UNIT

B

SPEAKER
LED VOLUME

CONTROL8-.... --4~

HOLD

R

HOLD

G

327K

Figure 23- 3 - SLS Adjunct Schematic

• Attempting to reestablish station current by reclosing the
hold button circuit through a relay op~erated by a momentary
reversal of the lamp signal polarity.

The return of station current within a selected interval following this sequence is
sufficient to assure a valid hold request. While the validity check is being per­
formed, the line remains terminated by the hold bridge, and the controller re­
turns a steady signal tone to the handset of the user generating the hold request.
When assured that a hold condition exists, the controller monitors the intercom
current for a hangup on hold, an intercom-paging request, or a reconnect request
from a station set.

When all the combinations of ringing, winking, flashing, holding, and paging are
considered, there are as many as seven simultaneous or overlapping events which
must be monitored and timed by the control logic.

THE lY.1ICROCOMPUTER

In August 1975, with only a transistor-transistor logic (TTL) breadboard to verify
the feasibility of the rather unusual control methods just described, a request for
model shop design information for a trial system was received. Many questions
regarding final features, human factors, requirements, and packaging of the
system had to be answered quickly in order to meet the January Laboratories
design information (LDI) deadline.

23-5

Texas Instruments' introduction of the TMS 1000 microcomputer provided an
attractive alternative to the 38 TTL packages of the existing SLS system. The use
of the programmable read"';only memory (PROM) driven computer controller al­
lowed the physical design to proceed without the final answers to some rather
basic operational questions. With only the interface circuits to define, drafting
of the printed circuit boards of the control unit was nearly complete before any
TMS 1000 code was generated.

The TMS 1000 series is a family of p- channel metal oxide semiconductor (MOS) 4-
bit microcomputers with a read-only memory (ROM), a random-access memory
(RAM), an arithmetic logic unit (ALU), a clock, and input/output (I/O) logic on a
single semiconductor chip. The TMS 1099 used in the SLS control system is iden­
tical to the single chip system when it is connected to the PROM instruction mem­
ory. The logic diagram of Figure 23-4 shows the architecture of the TMS 1000
system. Note the direct-only ROM addressing, the single-level subroutine stack,
the two full-length general purpose registers, and the x-y RAM addressing system.

Vs

Vo

KINPUTS
(4BITSI

s_

D_

~
¢

PROGRAM COUNTER
~8 ,

SUBROUTINE RETURN
REGISTER

~8

~4
PAGE ADDRESS ,

REGISTER

PAGE BUFFER
~4 ~4

REGISTER
7 ,

,4 ,
OSCILLATOR

~4 ,

ROM
'024 WORDS

8 BITSIWORD

.!'8

1
-f8

INSTRUCTION
DECOOER

1 •
ARITHMETIC

LOGIC
UNIT

!' f

,2 ,

~4

R OUTPUTS
(110R13BITSI

1 r

R-OUTPUT
LATCH

• BUFFER

:. 4

,4

"\
-;7

,4
7

,.

RAM
84 WORDS I--

4BITSIWORD

~

,41' U f2 114

I' H X·REGISTER

j

I'!"\ ,4

I
;:f V·REGISTER

[,4 '1 ACCUMULATOR ~
REGISTER ,. I I O·OUTPUT LATCHES. PLA COOE CONVERTER r ,

o OUTPUTS
(8BITSI

Figure 23-4 - TMS 1000 Computer Block Diagram

23-6

~4

Also of interest are the single parallel input port, the single output port (5 bits,
expandable to 8-bit codes), and the 11 individually addressable R-output bit latches.
Examination of the 43 instructions in the standard TMS 1000 instructions set shows
an abundance of decimal arithmetic functions with adequate logic and bit manipu­
lation functions. The effectiveness of the computer in calculator applications is
demonstrated by the addition of two 15-digit BCD numbers with a subroutine of
18 instructions.

THE SLS COMPUTER CONTROLLER

The inputs to the TMS 1000 microcomputer in the SLS system are a digital and an
analog current signal as described in the discussion of the switching system.
Interfacing the contact closure of the loop current sensor is straightforward.
Determination of the magnitude of the intercom current is accomplished by a
complementary metal-oxide semiconductor (CMOS) Schmitt input inverter pack­
age. The averaged voltage is scaled by resistor dividers to fit the positive
threshold level of the inverter inputs. Three separate inverters respond to 20-,
40-, and 80-mA inputs. Decoding of the actual level from multiple bit inputs and
elimination of the hysteresis effects of the Schmitt inputs are accomplished by the
program logic.

The CMOS signals of the input logic must be level shifted for compatibility with
the inputs of the microcomputer. This is hampered by on-chip load devices pro­
vided for keyboard interface applications.

The p- channel outputs of the microcomputer are used to drive NPN relay drivers,
the CMOS analog switch of the paging mixer, and an n- channel buffer which
modulates the CMOS tone oscillator. In several cases, the absence of load de­
vices on the TMS 1099 necessitates extra resistors to sink the output leakage
current.

SOFTWARE

The SLS software flowcharts were modeled closely after the hardware logic they
were to replace. Special care was taken to avoid latch-up conditions \\hich might
be generated by single-bit errors or improper reentry after a power interruption.

23-7

The absence of any interrupt capability requires that the inputs be continually
polled for active data. This is accomplished by program loops which continually
check system flag bits, set the output status, and count valid intervals of active
data in six 3-byte counters. Only 81 of the 256 bits of RAM are used.

The program consists of 468 instructions stored in two Intel 1702A PROMs. The
program was edited and assembled on the Murray Hill time sharing network. The
CODEGEN assembler was used to generate a paper tape ROM list which was
loaded with a Pro- Log programmer. The present version of the software, now
six months old, followed seven earlier editions which represent a total of five
weeks programming effort.

PRODUCT CONSIDERATIONS

While one has little trouble justifying a $75 microcomputer with PROM program
storage for a small volume trial vehicle, the question of a moderate volume pro­
duct design must be examined separately. If the results of the trial forecast
sufficient sales, custom logic must be considered. A custon1 chip, with tailored
inputs and outputs, is most likely less expensive than a mask programmed micro­
computer. However, the TMS 1000, with a present cost of less than $5, is cer­
tainly competitive at lower volumes. When all the costs of system development,
manufacturing, and current engineering are evaluated, a microcomputer may be
justifiable on the basis of development costs alone. The microcomputer ability
to accomplish new tasks, features, or options within the same logic package will
ensure its competitiveness and extend its economic life.

The success of the TMS 1000 in this application does not imply that this particu­
lar microcomputer is the best possible for the application. While the single
power supply and low power consumption are valuable assets, the MOS logic
levels require interface circuits which cost almost as much as the computer

itself. A more flexible design, such as the MAC-4 proposed for manufacture by
Western Electric, may be especially prOfitable if it can successfully reduce this
interface cost.

23-8

PERIPHERAL TECHNOLOGY

SOME POWER CONSIDERATIONS FOR MICROPROCESSOR SYSTEMS

P. D. Fisher, BTL Dept 2424, WH, NJ

ABSTRACT

The cost of power conditioning for microprocessors is a significant
part of total system cost. Precision regulation, special current-limiting
features, overvoltage protection circuitry, and other requirements con­
tribute to the high cost of power. This paper describes ac-powered
rectifiers, small dc-to-dc converters, and switching regulators suit­
able for on- card power conditioning and discusses their economic im­
pact on the microprocessor system. A low-power switching regulator
« IW) in a thick-film, hybrid dual in-line package (DIP) configuration
that can be used as an on- card power conditioner is also discussed.

INTRODUCTION

Microprocessors and their associated memory and input/output (I/O) peripherals
pose a varied and complex power problem to the system designer. The display
and peripheral devices often dictate the power requirements of the system, since
they consume the bulk of the necessary power. Figure 24-1 is a block diagram of
a typical microprocessor system, showing some of the components to which the
conditioner must supply power. Microprocessor systems with all of their possible
applications are still too new to permit a clear- cut statement of the power­
partitiOning problem at the present time. As new systems and applications evolve,
so new power designs will be offered. Our purpose in this paper is to examine
the primary power considerations for present systems and review the economic
aspects of various power options.

24-1

AC

BATTERY

Figure 24-1 - Typical Microprocessor System

SMALL POWER CONDITIONERS

Today's microprocessor systems typically require several watts of both +12 and
+5V power and several tenths of a watt of a negative polarity voltage. The com­
plexity of the memory and I/O peripherals in microprocessor systems places
total power requirements in the 1 to 50W range. *

AC-Operated Rectifier Power Supply

The ac-operated rectifier power supply usually offers the least expensive power­
conditioning option to the microprocessor system designer. The block diagram
in Figure 24- 2 indicates the simplicity of this approach. The main disadvantage
of the line-operated rectifier is its dependence upon the commercial power
supply. Such dependence could prove unacceptable if volatile memory systems
are used or continuous operation is critical to the application. An uninterrupt­
able power source or a battery reserve system is necessary for these applica-

*Complementary-symmetry metal oxide semiconductor (MOS) or complementary
MOS structures can lower overall power in too memory, I/O, and processor
areas significantly.

24-2

tiollS. Commercial power lines are also subject to dips, surges, and electro­
magnetic interference (EMI); the rectifier must be able to condition the power
under these abnormal conditions. In addition to its low cost, the line-operated
rectifier is generally free from the spike noise of high-frequency switching. This
type of noise is associated with switching regulators and dc-to-dc converters, but
it is controllable within acceptable limits. The ac-powered supply uses diSSipa­
tive linear regulators for output voltage control. These regulators provide an
inexpensive way to obtain the mop-up regulation and ensure individual limiting of
current for the output voltages. A typical 2-output, lOW ac-operated rectifier
without any form of reserve system costs about $ 30.

Central Office or Private Branch Exchange (PBX) Battery

The central office or PBX battery system offers the microprocessor system de­
Signer a source of reliable dc power. The battery voltage, however, must be
stepped down and regulated and, in some cases, have its polarity changed.

Switching Regulator

When only one voltage is desired, a switching regulator, shown in Figure 24-3,
is the most effective technique for power conditioning. A characteristic of its de­
sign is that it has one power rail in common with the input power. The inability
to isolate input and load grounds can cause system noise problems because of
high- circulating currents in the common power path. A series of low-power
switching regulators is available from Western Electric - the 225, 226, and 227
types deliver 2, 5, and lOW of power, respectively. These units are assembled
on a printed circuit board (PCB) in a 2- by 3- by I-inch high module with pin ar­
rangements suitable for mounting on the user circuit packs. The regulators
contain no alarms, fuses, or on/Off switches, .but some codes have overvoltage
protection. The estimated bulletin cost of these devices is in the range of $15 to
$20.

The switching regulator is also applicable when a grounded dc voltage, such as

5V transistor-transistor logic (TTL) power, is available from an existing con­
verter. In this situation, the switching regulator can supply a higher or an oppo­
site polarity voltage.

24-3

DISSIPATIVE
REGULATOR

DISSIPATIVE
REGULATOR

VI !5%

Vz !5%

Figure 24-2 - AC Line-Operated Rectifier Block Diagram

BATTERY n I---t..--- vOUT :!: 5%

OUTPUT VOLTAGE
ERROR

DETECTOR

Figure 24-3 - Switching Regulator Block Diagram

Thick-Film Hybrid DIP

A thick-film hybrid DIP which contains a low-power «lW) on-card switching
regulator is under study. This unit requires no external components to operate.
A prototype, shown in Figure 24-4, produces 70 mA of +12V power from a +5V

input. This unit does not have overvoltage or short- cir cuit protection. Since the
transistor power switch is in parallel with the load, a fuse would afford adequate
short- circuit protection. In most cases, failure of the control circuit would cause
the output voltage to go to +5 or OV. This device can readily be applied to the
PCB of a microprocessor system. The estimated cost of this film regulator is
about $8.25.

DC-to-DC Converter

In situations where multiple output voltages from a central office battery are
needed, along with input-to-output isolation, a dc-to-dc converter is desirable.
Figure 24-5 shows a block diagram of this type of low-power converter. Trans­

former isolation and optically coupled feedback control signals ensure input-to-

24-4

output isolation. The Western Electric 201, 202, and 203 types supply 2, 5, and
lOW of regulated output power from a 24 or 48V battery plant. Packaged on
PCBs, the modules are suitable for mounting on the user circuit board by pin
connectors, the same mounting method used for the 225 series switching regula­
tors. Figure 24-6 is a photograph of the 20lA 2W converter. The 201 and 202
series are mounted on a PCB in a 3.3- by 3.5- by O. 9-inch high module, while the
203 lOW converters are mounted on a PCB 3. 3 by 6. 5 by 1. 25 inches. These
converters are output- current-limited and act as protectors against excessive
output voltage. As in the case of switching regulator modules, the converters
contain no fuses or switches, but have in-rush current-limiting to protect the
contacts of plug-in circuit packages. They do not require heat sinks if used with­
in their rated temperature, voltage, and current ranges. Up to three output
voltages are available from these converters, but only one output is closely regu­
lated to ±5 percent end of life (EOL) tolerance. * The remaining output voltages
are normally unregulated with tolerances of ±15 percent. If load current varia­
tions are held within ±25 percent, however, ±8 percent voltage regulation for
these nonregulated windings can be achieved. For tighter regulation and addi­
tional cost, linear dissipative regulators applied to the noncontrolled outputs can
achieve a ±5 percent tolerance. The bulletin cost of the 201A 2W 3-output con­
verter is about $24. A typical 202 series 5W converter is estimated at $30, and
a lOW 203 type at $40.

COST OF ADDITIONAL SYSTEM FEATURES

The on- card low-power switching regulator and the dc-to- dc converters described
above are all designed with minimal alarm and protection features in order to
keep their cost as low as possible. In most cases, self-protection, such as
current-limiting and overvoltage, is included. The overvoltage protection for the
switching regulator circuits consists of a crowbar circuit mounted on the module
and a user-supplied fuse; the voltage limit is usually set at 30 to 40 percent higher
than the normal output voltage. A closer tolerance would require a more precise
crowbar protection circuit at a premium of $ 5 to $8.

* EOL tolerance includes variations in line, load, temperature, initial set point,
and aging.

24-5

III III III III III III III III

1 2
Figure 24-4 - 12V 70 rnA DIP-Switching Regulator

BATTERY

TRANSFORMER
ISOLATION

OPTO­
ISOLA TEO
FEEDBACK
CONTROL

OPTO­
ISOLATED

OVERVOLTAGE
PROTECTION

VI ! 5%
Vz ! 15%

V3 ! .1 5%

Figure 24- 5 - DC-to-DC Converter Block Diagram

24-6

Figure 24-6 - 201A Power Unit

A precision reference and comparator circuit that can be set to within 20 percent
of the nominal voltage protects the 201, 202, and 203 converters. However, the

usual protection limit is 30 to 40 percent higher than the normal voltage due to
specifiC load requirements. An example of this type of requirement exists in a
5V converter designed to power TTL loads. The output voltage need only be kept
below 7V for adequate protection for this type of logic.

Alarm circuits which indicate converter failure, specifically an overvoltage or
undervoltage condition, also add to the overall system cost, generally $8 to $10,

24-7

depending upon the type of indicator required. They cover a wide range from
simple light-emitting diodes (LEDs) to complex relay-operated alarms. A
memorandum by S. F. Newton describes various circuits and techniques for
alarming the low-power converter series. 1

FUTURE DEVELOPMENT

The trend in microprocessors today appears to be toward high-speed logic cells
requiring less power. As the power level decreases, so does the cost of condi­
tioning it. Low-power conditioners for on- card mounting in the < I to 5W range
are attractive possibilities for microprocessor systems. Their development on
hybrid DIPs should result in reduced cost and size. Power- conditiOning tech­
niques, such as charge- coupled (without a coil) switching regulators, show pro­
mise of further cost reduction for these on- card switching regulator devices.

CONCLUSION

Power conditioning for the microprocessor system should be considered at the
earliest stages of design, not only by the system planner but by the microproces­
sor and memory device deSigners as well. The impact of these power devices on
cost is Significant and could become proportionately greater as the outlay for
microprocessor systems is reduced by large scale integration (LSI) techniques.
Until microprocessing systems are more fully deployed in Bell System equipment,
it will be difficult to describe a family of power supplies that have the best bal­
ance of operating features, performance, and cost. In the meantime, however, a
standard line of power supplies is available to meet many of today's needs. For
small processor systems, the modular 201, 202, and 203 series of dc-to- dc
converters can provide multiple voltage outputs in the 2, 5, and lOW power range.
For the smallest systems, lWor less, more development is needed, but it is
underway, and prototypes of DIP- mounted switching regulators should be available
soon.

24-8

REFERENCES

1. s. F. Newton, Alarm Circuits for Low Power Converters,

Memorandum for File, Case 35763-239, September 3, 1976.

24-9

PERIPHERAL TECHNOLOOY

A SURVEY OF SMALL TAPE PERIPHERALS

J. E. Williams, BTL Dept 2452, WH, NJ

ABSTRACT

The broad spectrum of microprocessor applications has generated a
variety of requirements for nonvolatile, sequential data storage. Micro­
processors can be served by magnetic tape technology in much the same
way that larger scale processors are served by more capacious tape
peripherals. An overview of small tape systE:7ms that are candidates
for use, as microprocessor peripherals is given here. Devices already
on the market and others developed recently are discussed including
the folloWing:

• 3M Company DC300 data cartridge.

• 3M Company DC100A mini- cartridge.

• Phillips cassette.

• Information Terminals Corporation mini-data cassette.

• Microvox data wafer.

• Interdyne UNIREEL.

INTRODUCTION

Magnetic tape technology may be able to satisfy a major portion of the growing de­
mand for nonvolatile, electrically alterable, sequential data storage being gener­
ated by new microprocessor applications. We have attempted to define the
spectrum of small tape systems that could reasonably be used as microprocessor
peripherals.

25-1

3M COMPANY DC300 DATA CARTRIDGE

With respect to capacity, bit rate, physical size, and medium cost ($18 per
cartridge), the upper end of the spectrum is represented by systems employing the
3M Company data cartridge, which is illustrated in Figure 25-1. This device
provides an unformatted capacity of 23 by 106 bits on 300 feet of l/4-inch
tape. The drive shown in this figure is a member of the KS-21447 minirecorder
family developed by Laboratory 245 and currently used in substantial numbers in
the DIMENSION private branch exchange (PBX) and 3A central control (CC)
based systems at data rates of 48 kb/ s.

Although one of the better commercially developed tape media, the data cartridge
has required internal modification so that it will perform adequately in Bell
System environments. The modifications were the result of detailed analysis and
extensive system testing within BTL and illustrate the need for caution in applying
off-the-shelf tape technology, regardless of its commercial acceptance and success.
The modified device is known as the KS-21439 data cartridge now procured in
quantity by WE from two suppliers.

The KS drive and cartridge designs represent a reliable and relatively mature
technology. Although generally best assigned to minicomputer tasks, the car­
tridge capacity could be suitable for microprocessor-controlled data logging­

type applications.

3M COMPANY DC100A MINI-CARTRIDGE

The standard data cartridge technology has been extended downward with the re­
cent introduction of the DC100 mini-cartridge (shown in Figure 25-2 with associ­
ated drive) offered by the 3M Company. The development of the latter was in­
stigated largely by Hewlett-Packard, which until the recent introduction of the
3M drive, was the only user of the cartridge. At a medium cost of $15 per unit
the mini- cartridge provides an unformatted capacity of 2. 6 by 10

6
bits on 140

feet of O. 15-inch tape.

Contrary to comments from the manufacturer and from Hewlett-Packard, the ini­
tial evaluation of Laboratory 245 indicates adequate tape tension stability over a

25-2

wide temperature range at the low end of the speed range (about 5 in/s), permit­
ting operation in low-data rate applications.

Fortunately, the 3M Company has incorporated in the commercial mini-cartridge
several of the features originally applied as modifications to the larger DC300A
in the KS- 21439 program.

Despite a 5-to-1 disadvantage in medium cost compared with possible alternatives ,
the demonstrated performance of the larger cartridge, the inherently simple drive
configuration, the experience gained in the BTL minirecorder program, and the
stability of the medium source suggest that this device represents a minimum-risk
approach to a medium-capacity microprocessor tape peripheral.

Figure 25-1 - 3M Data Cartridge

25-3

Figure 25-2 - 3M Mini-Cartridge

PHILLIPS CASSETTE

Historically, the Phillips cassette was first with the most. As a result, it still
enjoys wide application in the digital marketplace, especially in minicomputer

peripheral applications, and will be with us for some time. The cassette provides
an unformatted capacity of 5.7 by 106 bits on 300 feet of 0.17-inch tape, with
the better certified units priced at $7 to $8. To approach that maximum storage
capacity, however, requires use of the more expensive of the available drives.

A wide variety of drive designs and recording formats has been executed using

this medium with varying degrees of success. Typically, the drives are relatively
complex, having up to four motors , movable heads , pinch rollers , etc.

25-4

MINI-DATA CASSETTE

A downward extension of the standard Phillips cassette technology is the newly
proposed American National standards Institute (ANSI) mini-data cassette manu­
factured by Information Terminals Corporation and illustrated in Figure 25-3.
The cassette provides an unformatted capacity of 480,000 bits per side on 50 feet
of O. 15-inch tape.

The first commercial drive in this technology, shown in Figure 25-3 , is the
Raymond Engineering mini-raycorder, which is planned for use in initial models
of the service access unit (SAU) under development for the 32A Communications
System. The unit fills a typical hard- copy backup role, although its use in pro­
gram paging operations is being considered.

S.v,

Figure 25-3 - Information Terminals Corporation Mini-Data Cassette

25-5

Low medium cost ($ 5), small package volume, reasonable capacity, and operation
from +5V logic power are clearly attractive features for many applications. How­
ever, experience to date indicates that a number of problems remain to be solved;
they include extended start time, as well as tape drive difficulties after about 100
end-to-end cycles of the medium. The severity of each of these problems depends
on the specific application. Hopefully, these difficulties can be cleared. However
again they show the need for caution in regard to off-the-commercial-shelf tape
technology.

The same forces which cause the general data reliability of 3M cartridge technol­
ogy to be superior to Phillips cassette technology exist in relation to the mini­
cassette and mini- cartridge devices.

MICROVOX DATA WAFER

The Microvox digital wafer shown in Figure 25-4 represents an endless loop ap­
proach to a small tape peripheral. The single track device employs 0.07-inch
tape, back- coated to permit the required inter layer slip within the tape pack.
Tape lengths range from 5 to 55 feet" permitting a maximum unformatted capacity
of 528,000 bits. The wafer is inherently unidirectional, a characteristic which
precludes individual block reread or rewrite operations.

A $ 2 wafer cost, simple drive configuration, and minimum overall system pack­
age size motivated a basic medium evaluation. Testing revealed that the average
wafer completed an initial 625 error-free passes with an overall performance of
0.35 errors in 2000 passes. The major part of the error activity resulted from
basic drive design problems which have been eliminated to permit accurate
assessment of the wafer's potential.

The wafer is used by the New York Telephone Company in their computer- con­
trolled order receiving equipment (COMCORE) system to provide hard-copy
backup for customer alterable data. Its size permits the device to be conveniently
mounted on one standard circuit pack (using 1-inch centers) as a pluggable periph­
eral.

25-6

The wafer is relatively new to the digital marketplace and the associated drive has
experienced some growing pains. Its commercial future is less certain than that
of the 3M Company technology.

Figure 25-4 - Microvox Wafer

UNIREEL

The Interdyne UNIREEL spool (see Figure 25-5) is a relative newcomer to the
digital field and offers a number of interesting features. It has a unit cost of
about $ 2 and contains 150 feet of O. 15-inch tape (2.9 by 106 bits, unformatted
capacity) spliced to a stiff leader used by the associated drive to thread itself.
The last portion of the leader has a wide overlay of compliant material, which
seals the UNIREEL during handling and shipping. Once threaded, tape is driven

25-7

between the supply (UNlREEL) and takeup reels by a tensioned plastic belt similar
to the one found in the 3M data cartridge, although the UNlREEL belt is incorpo­

rated within the transport rather than as a part of the separable medium.

Claimed features and performance include 60- to 90-in!s search capabilities, a
tape life of several thousand passes, error rates of 10-8, and trouble-free load­

ing. The system has the same general performance level and range of features
as the 3M Company mini-cartridge with the advantage of medium cost and the
drawback of a somewhat more complex drive and loading scheme . .

Figure 25-5 - Interdyne UNIREEL

25-8

SUMMARY

Of the small tape systems mentioned, only the 3M DC300 data cartridge and the
standard Phillips cassette now represent multiple sourced tape media. For the
rest, commercial success in an expanding marketplace will ordinarily produce

alternate suppliers. With the exception of the standard cassette and UNffiEE L,
Laboratory 245 is actively engaged in programs involving these media. Its intent,
beyond providing for immediate commitments, is to evaluate a family of micro­
processor peripherals to service the whole range of microprocessor applications.

25-9

PERIPHERAL TECHNOLOGY

SERIAL BUBBLE STORE

R. J. Radner, BTL Dept 2451, WH, NJ

ABSTRACT

The specifications, interface, and operation procedures for a digital
memory system based on magnetic bubble technology are presented in
this paper.

The serial bubble store (SBS) is a transistor-transistor logic (TTL)
compatible, nonvolatile memory with a O. 27-Mb capacity and a
48-kb/ s operating data rate. User evaluation units are being supplied
by Laboratory 245.

INTRODUCTION

Laboratory 245 is developing memory subsystems based on magnetic bubble
technology. One type is a voice announcement system dubbed the 13A, which will
attain production status during 1977. Another is a digital memory utilizing the
same bubble device (M5021) as the 13A. The latter, the SBS, with its specifica­
tions, interface, and operation is the subject of this paper.

SBS is a TTL- compatible, nonvolatile memory contai:i1i.ng four serial shift re­
gisters that are separately accessible. Data can be written into, or read from,
one memory register at a time. See Table 26-1.

Each register contains 68, 121 bit locations through which data shift. Except
during the writing process, the contents of each register are recirculated. A
system clock of 960 kHz produces a serial data rate of 48 kb/s.

26-1

TABLE 26-1

SBS SPECIFICATIONS

Item

Capacity

Access time

Number of registers

Capacity of each register

System clock (user-supplied)

Data rate

Interface Signaling

Operational temperature range

storage temperature range
(memory retained)

External operational magnetic
field maximum

External nonoperational
magnetic field maximum
(memory retained)

Input power

Power dissipation
(while reading or writing)

Physical dimensions

Des cription

272,484 bits

1. 42 seconds (max)

4, accessible one at a time, by
2-line binary addressing

68, 121 bits serial

960 kHz

48 kb/ s (max) (submultiples are
possible, e. g., 24 kb/s, 4.8 kb/s

High - False - "0"
Low - True - "1"
(TTL - compatible)

0° to 50°C (ambient)

-40° to +80°C

30 oersteds

50 oersteds

+15V; +8V; -8V; +5V

3W

(1) 5. 67- by 5. 4-inch board (16
staked pins)

(2) 5. 67- by 7. 4-inch board (space
for connector)

26-2

S~S INTERFACE DEFINITION

This section defines the terminology used in Table 26- 2. The timing diagrams

shown in Figures 26-1 and 26- 2 further define this language. The logic interface

is low-power TTL with 1- or 2-gate loading for all inputs.

SYSTEM CLOCK

The controlling system must provide a clock signal to the SBS on the SYSTEM

CLOCK line. The required clock Signal is a 960-kHz ±5 percent square wave

with 50 percent duty cycle.

TABLE 26-2

SBSINTERFACE

Pin Number

Power
1 +5V ±5%, 150 mA

2 +8V ±5%, 200 mA

3 -8V tracking +8 within 5%, 200 mA

4 +15V ±5%, 40 mA

5 GROUND

Inputs

6 SYSTEM CLOCK (960 kHz)

7 STORE ENABLE

8 CLEAR

9 REGISTER SELECT 0

10 REGISTER SELECT 1

11 WRITE ENABLE

12 WRITE DATA

13 READ ENABLE

Outputs
14 SYNC (48 kHz)

15 STORE ON- LINE

16 READ DATA

26-3

THIS FIGURE SHOWS TIMING, NOT ACTUAL OPERATION.
READ AND WRITE COMMANDS SHOULD NOT BE SIMULTANEOUS.

20.8 fL sec CYCLE

SYNC u,...---
I

1 00!. i r- 1.04fLSEC :;IO!io
~~---RE-A-D-D-A-T-A--------~~

I
I

READ ENABLE

WRITE ENABLE

WRITE DATA

TRANSITION TIMES OF READ ENABLE, WRITE ENABLE AND
WRITE DATA ARE WITHIN 1fLS OF LOW TO HIGH
TRANSITION OF SYNC.

CONTROL

SYNC
11111111111111111111

STORE ENABLE
1 __ -----

STORE ON-LINE
1 ____ -

Figure 26-1 - SBS Timing

--j ~ONE CYCLE OF FIG. I
111111111111111111111111111 TTl 1"1 1""1 Irrl rrll TTl I TTl 1""'1 1-rl11""-1

CLEARI-" ~ 255 CYCLES _ .. -'-1 ______ _

--t F~l CYCLE I
REGISTER SELECT

WRITE

WRITE ENABLE

WRITE DATA

READ

READ ENABLE

--I12-BIT~
-----.1 ENTERED I

--I 1--8 CYCLES

~

I-- 68,121 CYQES~12-B1T WORD~
ACCESSED

I1111I11111111I

READ DATA I--60 CYCLES --+l12-BIT OUTPUT
III I II I
111010011001

Figure 26- 2 - SBS Register Sequencing

26-4

SYNC

The clock with which all SBS functions are synchronized appears on this line. The

low-to-high transition of this pulse should be used for synchronization of control

system functions and WRITE DATA. The high-to-Iow transition indicates that

READ DATA is valid. The SYNC rate is 48 kHz.

STORE ENABLE

A low level on the STORE ENABLE line selects SBS for operation. This level

should be brought low within 1 JLs after the low-to-high SYNC transition and

should be held for one cycle of SYNC before reading or writing is initiated.

STORE ENABLE should be held as long as the SBS is operating and should be

brought high within 1 J-Ls after the low-to-high SYNC transition. STORE ENABLE

must be high while power is being brought up. When STORE ENABLE is low, the

SBS power dissipation is 3W. When high, the power used drops to 1. 5W.

STORE ON-LINE

\Vhen the SBS has been powered, the STORE ON- LINE will come low within one

cycle after STORE ENABLE has been provided if the SBS is ready for operation.

CLEAR

In order to ensure that all four registers are initialized, a low is applied to

CLEAR. This erases all data in all four memory registers. This line must be
held low for at least· 1 J-Ls and must be brought high before a subsequent CLEAR

can be executed. No functions are valid for at least 255 cycles following the
CLEAR command.

26-5

REGISTER SELECT (RSO and RSl)

The REGISTER SELECT lines select the register to be written or read.

Register RSl RSO

RO High High

Rl High Low

R2 Low High

R3 Low Low

WRITE ENABLE

A low enables SBS to write the data on the WRITE DATA line. There is an 8-
cycle delay between the time a bit is placed on the WRITE DATA line and the time
at which that bit enters the register. Therefore, WRITE ENABLE should go low
eight cycles after the first data bit and must remain at that level eight cycles after
the last data bit. WRITE ENABLE must be a valid control between low-to-high
transitions of SYNC.

WRITE DATA

The WRITE DATA line is driven by the data to be recorded. Data should be valid

within 1 JLs of the low-to-high transition of the SYNC and remain valid until the
next such transition.

READ ENABLE

A low enables the read circuitry to access the data in the selected register. Data

will appear at READ DATA 60 cycles after READ ENABLE is applied.

READ DATA

The serial data stream being read from a register appears on this line. The
data are valid for 1 JLs after the high-to-Iow transition of SYNC.

26-6

SBS OPERATION

Figure 26- 3 shows the logic functional organization of SBS. One of the four reg­

isters, RO, has data moving along its 68K-bit shift register which is clocked by
eLK. The output of the 68K-bit shift register is returned to the input through two
gates and recirculated through the register, except when WRITE is enabled and
RO is selected.

All four 68K-bit shift registers are nonvolatile, as are the 8-bit shift registers on
the inputs. The 60-bit shift registers are partly volatile.

SBS provides no indication to the using system of current position within the re­
circulating shift registers. The using system, therefore, must provide either a
nonvolatile counter separate from SBS or must write a distinctive pattern
(preamble) into one or more of the SBS shift registers. The distinctive pattern
must then be precluded from appearance in data entries.

Although the various shift registers clo ck data at 48 kHz, the user can read or
write at lesser rates. For example, by applying WRITE ENABLE every other
cycle, data can be written at 24 kb/s and will fill a 68, 121-bit shift register since
that register contains an odd number of bits. Similarly, the register can be read
at 24 kb/s. The most convenient data rates are those in which the ratio of 48,000
to the data rate is an integer that does not share a factor with 68,121 = 34.292.

SYSTEM
CLOCK
STORE
ENABLE

REGISTER
SELECT

CLEAR

WRITE
DATA

WRITE
ENABLE

READ
ENABLE

1-------.-----------+--0 SYNC

REGISTER RO
REGISTER RI

REGISTER R2
REGISTER

Figure 26-3 - SBS Organization

26-7

READ
DATA

STORE
ON

LINE

READ

The output of the 68K-bit shift register RO will pass through a 2-input AND if
that register has been selected and if either WRITE or READ has been enabled.
The data then enter a 60-bit shift register that is clocked at the same time as
the 68K-bit register. The output of the 60-bit shift register appears at READ
DATA.

To read the memory, a low on the READ ENABLE and appropriate signals on
REGISTER SELECT lines will result in the appearance of data at the READ DATA
line. The high-to-Iow transition of SYNC indicates the time at which data are
valid. The data being read experience a 60-cycle delay, i. e., valid data will
appear 60 cycles (counting the cycle in which READ is enabled) after READ
ENABLE goes low. During READ the data in a 68K-bit register are recirculated.

In order to read registers R3 and RO in sequence without interruption of the
serial bit stream, the 60-bit shift registers must be taken into account. At a
time when the last 60 bits of R3 are in the 60-bit shift register, the register
selection should change from R3 to RO so that the 60-bit shift register associated

with RO can be filled while the 60-bit register associated with R3 is being emptied
(READ).

WRITE

In order to write data into a register, a low on the WRITE ENABLE and appropri­
ate signals on REGISTER SELECT lines permit the data on the WRITE DATA
line to be recorded into the selected register.

The data appearing on the WRITE DATA line experience a delay of eight cycles
(counting the cycle in which data is written) before entering the register.
REGISTER SELECT and WRITE ENABLE must remain as set from eight cycles
after the first data bit until eight cycles after the last data bit in order to use the
contents of the 8-bit shift register that is in series with the WRITE DATA line.
During WRITE, the data in a 68K-bit register are not recirculated.

Whenever there is a 1 on the WRITE DATA input, Is are inserted into all
four 8-bit shift registers. REGISTER SELECT will determine in which register

26-8

the 1 will be recorded. WRITE DATA must be kept at logic 0, except dur­
ing writing, because READ ENABLE permits data to be written.

It is recommended that complete rewriting with new data in all four 68K-bit
shift registers be preceded by CLEAR (CLR) which sets to 0 the contents of
all registers (including the 8- and 60-bit shift registers).

EDIT

Indexing data to be edited must take into account the 8- cycle write delay.

With this delay accounted for, the write procedure will enter new information in
the desired 10 cation, replacing the old. Note that CLEAR cannot be used when
editing. A portion of the data in memory may be erased by using the EDIT pro­
cedure and entering only Os on the WRITE DATA lead.

ACKNOWLEDGMENTS

The author wishes to acknowledge the major contributions of T. M. Burford and
J. H. Wuorinen to this document and to the SBS configuration and those of G. R.
Westerman for his circuit design.

26-9

PERIPHERAL TECHNOLOGY

A ROM-RAM-I/O DEVICE FOR THE MAC-8

R. L. Ukeiley,' BTL Dept 4391, HO, NJ
w. C. Slemmer, BTL Dept 2261, MH, NJ

ABSTRACT

The ROM- RAM-I/O device is a MAC-8 peripheral which combines read­
only memory (ROM), random-access memory (RAM), and 16 bits of
peripheral input/output (I/O) circuits on a single chip. Connected with
a MAC-8, these devices form an entire microcomputer system. The
chip contains 1024 eight-bit words of ROM, 96 eight-bit words of static

RAM, and 2 eight-bit programmable peripheral I/O ports. One of
these peripheral ports may be used to access the optional on- chip pe­
ripheral functions, including an interval timer, read/write strobes, and
an interrupt circuit. Use of these options is selected under program
control.

INTRODUCTION

USing a microprocessor can substantially reduce the IC package count in a system.
Systems that would have previously required hundreds of ICs have been reduced
to a central proceSSing unit (CPU) chip with associated memory and peripheral
devices. However, there are many small systems whose cost and size are still
excessive. For these systems it would be desirable to have a 1- or 2-chip micro­
processor system. Some manufacturers have succeeded in realizing a 1-chip
system. In order to pack all of this circuitry into a single Chip, however, they
have had to significantly reduce the capability of the CPU in order to save chip area.

As an alternative, when greater CPU capability is required, a 2-chip system

could be considered: the CPU is on one chip and the ROM-RAM-I/O is on a

27-1

second chip. As manufacturing technology advances, one can then consider in­
tegrating these two chips into a single chip without having to sacrifice CPU
capability.

The Bell System MAC-S CPU is an extremely powerful microprocessor. It would
be inadvisable to reduce the power of the MAC-S to make room for memory and
I/O circuitry on the same chip. Hence, a single chip ROM-RAM-I/O peripheral
is being designed for the MAC-S. With this device, small systems can be real­

ized with two chips. Larger systems can use more than one ROM- RAM- I/O chip
as well as other memory and I/o devices.

THE ROM-RAM-I/O DEVICE

The ROM- RAM-I/O device is a pseudo- CMOS chip containing lK bytes of ROM, 96

bytes of RAM, and 16 independent programmable peripheral I/O bits. This device

provides, in addition to the normal I/O peripheral functions, special features
which may be multiplexed onto the peripheral I/O leads. These additional on-chip
features include an interval timer, a MAC-S interrupt control flip-flop, and pe­

ripheral strobe generators. The chip will be mounted in a 40-pin dual in-line
package(DIP). The allocation of the 40 pins is shown in Table 27-1. As indicated by
this table, the pins can be divided into 3 groups: 2 pins for power connection,
16 pins for peripheral I/O devices, and 22 pins for interconnection with the MAC-S
microprocessor. The 22 pins of the third group consist of an S-bit bidirectional
data bus, an II-bit address bus, and 3 bits for timing and control.

TABLE 27-1

PIN ALLOCATION FOR THE ROM-RAM-I/O DEVICE

No. of Pins Function

2 Power and Ground

16 Peripheral I/O Pins

S Bidirectional Data Bus
11 Address Bus

1 Memory Read
1 Memory Write
1 Timing Clock

27-2

Figure 27-1 is a block diagram showing the interconnection of a single ROM-RAM­
I/O device with a MAC-8 CPU. These two chips form a complete microprocessor
system. If a system requires more than one ROM-HAM-I/O device or other
peripherals, a mask-programmable chip-enable pin is available.

Each peripheral I/O pin is capable of performing as an input, an output, or a
special function under software control. To accomplish this, the ROM-RAM-I/O

device includes three internal 8-bit registers which control the function of each
I/O pin. These registers are addressable by the microprocessor for loading the
desired control word at the beginning of a program, or altering I/O pin functions
during program execution. Two of these registers determine the direction of
data flow on each of the 16 I/O peripheral pins. When bits within this 16-bit
field are programmed high, the output function is selected. Hence, the tristate
output drivers will be enabled for the corresponding peripheral I/O pins.
The output data for these pins are obtained from the two on-chip 8-bit output re­
gisters which may be read or written by the microprocessor. Programming a
control bit low disables the tristate output driver. The input function is ac­
complished by addressing the input ports which transfer the logic state present
on the device pins to the data bus. If the I/O pins are used as simple input or
output leads, these transistor-transistor logic (TTL) compatible pins are con-

cr- "
ADDRESS BUS (11))

v
"""L-

... ...

K (8)

PERIPHERAL
"'- "- ROM-RAM I/O

MAC-8 ~ DATA BUS (8) "- -I/O PORT

"'"
/

~

A

/ (8)

"'" " PERIPHERAL
" I/O

CONTROL BUS (3)) PORT
+

SPECIAL
FEATURE

Figure 27-1 - Interconnection of a Single ROM-RAM-I/O Device

27-3

nected directly to their appropriate peripherals. However, if the special function
is elected, numerous system configurations are available.

The third control register enables the special function features. Three bits with­
in this register determine the operation mode of the interval timer. The first
bit selects the source of the timer; the options are the MAC-S clock or an external
clock source. If the latter option is selected, the appropriate I/O pin would have
to be connected to the external source. However, if the MAC-S clock is selected,
none of the I/O pins are needed to source the timer. The second special-function
bit determines if the count-complete indication is connected to one of the output
pins. The user may elect not to have this pin brought out since the timer can be
read at any time. Furthermore, the chip has a readable flip-flop which is set
when the counter has a full count. Hence, one can use the interval timer without
dedicating any I/o pins to it, or have an external source and output indication.
Any combination of the above is permissable. The third interval timer special­
function bit determines whether or not the divide-by-S prescaler is used by
the counter. If the option is selected, the timer can be programmed to count up
to 524,2SS (S times 2 to the 16th power) counts; without the option, the timer can
count up to a maximum of 65, 536 (2 to the 16th power).

The use of the interrupt flip-flop function is determined by a single bit in the
special-function register. When this bit is set, two of the I/o pins are auto­
matically connected to an on- chip edge-triggered flip-flop. The external device
requesting the interrupt would be connected to the input pin. The output pin
could be connected to the MAC-S interrupt request pin or the MAC-S could read
the status of a second on-chip interrupt latch. When the MAC-S responds to the
interrupt (this event is indicated by a read of the vector at address FFFF), the
edge-triggered flip-flop is automatically reset. The second interrupt latch is
not reset by a read of FFFF but can be reset under software control. Hence, if

more than one device requests the interrupt, the MAC-S can poll these latches to
determine the requester.

The remaining four bit.s in the special-function register determine which, if any,
of the four strobes is activated. Selecting the strobe function allows the user to
output a read/write pulse, rather than a level, on the peripheral I/O pins. When
a strobe output is addressed the selected output pin will be complemented for the
duration of the MAC-S read or write strobe. Furthermore, when the strobe oc­
curs, the HOM-HAM-I/O bus driver will enter the high-impedance state, allow-

27-4

ing communication between the MAC-8 and the peripheral. By use of these
strobes the peripheral I/O capability can be expanded from 16 to 44 bits (8 bits/
strobe times 4 strobes plus the remaining 12 I/O bits).

Finally, for protyping, the addition of a single gate is all that is required to dis­
able the on-chip ROM. By adding this gate the user can still address the RAM
and I/O sections of the chip; however, when ROM is addressed the ROM-RAM­

I/O chip will be disabled, allowing external memory to be accessed.

INTERNAL ORGANIZATION

Figure 27-2 is a block diagram showing the preliminary placement of the ROM­
RAM-I/O functions on the large scale'integrated (LSI) chip. Approximately 75
percent of the chip area is occupied by the lK bytes of ROM and the 96 bytes of

static RAM with their associated access circuits. The ROM is realized in a 128-
word by 64-bit array of n-channel ROM cells which are encoded at the thin-oxide
mask level. A desired byte is accessed by the application of 11 bits of address
from the MAC-8 address-bus. Seven of the bits are used in the 1:128 p-channel
word decoder to select the desired word line. Three bits are used by the 8-wide
1:8 n-channel bit decoder to read the desired 8 of the 64 bits on the select word
line. The remaining address bit is the ROM enable bit. The RAM is a 24-word
by 32-bit array of complimentary static cells. The conventional 6-transistor

. cell with n-channel access switches is used. In order to conserve chip area, the
word lines in the RAM array are slaved from the ROM. In this way the ROM and
RAM share a single word decoder.

Figure 27-3 is a block diagram of the internal timer function. This timer consists
of a 16-bit down counter with read and load capabilities to and from the MAC-8

data bus, a 3-bit prescaler, a zero detector, and flip-flop with an associated flag
bit. The timer is controlled by three bits in the control register. One bit controls
multiplexer A which determines if the clock input for the timer is derived from a
peripheral I/O pin or, by default, from the system clock. The second bit controls
multiplexer B which determines if the zero flip-flop is connected to the timer­
output peripheral I/O pin. The third bit controls multiplexer C which determines
if the clock input from the peripheral I/O pin is to be routed through the pre­
scaler or sent directly to the counter. Note from Figure 27-3 that the default
system clock is always routed through the pres caler .

27-5

ADDRESS
BUFFERS Ie L OC K II '-__ T_' M_E_R_----'

REGISTERS
PRECHARLS

I- 11'1
u a::
w w

~ w ROM RAM 11'1 a::
C 128 WORDS c 24 WORDS
a:: BY 64 BITS c BY 32 BITS
0 a::
~ 0
co ~
N :E .. «

a::

BIT DECODERS RAM BIT CIRCUITS

Z
0 -I-

«
Z

:E
a::
w
I-

w
Z
:::;
C
a::
0
~

w
u
«
u..
a::
w
I-
Z

o
.......
H

ADDRESS BUFFERS DATA BUS INTERFACE

Figure 27-2 - Preliminary Placement of ROM- RAM- I/o Functions on LSI Chip

OUTPUT

SCB NO.
SCB NO.

SCB NO.

INTERNAL DATA BUS

Figure 27-3 - Internal Timer Functions

27-6

SYSTEM
CLOCK

~t---INPUT

The timer is loaded by writing two 8-bit timer 10 cations in the ROM- RAM-I/O
address space. These locations are arranged so that they can be accessed via a
read-16 or write-16 instruction. Alternatively, either the lower or upper byte

of the timer can be independently accessed by any MAC-8 instruction which ac­
cesses the appropriate ROM-RAM-I/O address space. When the counter is
written, the prescaler is preset to all 1s as the starting count for the divide­
by-8 countdown. In addition, the clocking of the main counter is inhibited
when the counter is read. This prevents ambiguous data transfer resulting from
partial propagation of borrow through the counter.

The zero detection, zero flip-flop, and timer function in a manner which is com­
pletely analogous to that of the interrupt circuit. The zero detector indicates the
all Os state in the timer and sets the zero flip-flop. This flip-flop provides a
low going output level, and is reset during the MAC-8 interrupt sequence. The
timer flag bit is also set by the zero crOSSing and may be read or written via the
MAC-8 data bus.

SUMMARY

The ROM-RAM-I/O device described in this paper has been designed to operate
in conjunction with a MAC-8 microprocessor. This microprocessor peripheral
contains lK bytes of ROM, 96 bytes of RAM, and 16 independent programmable
peripheral I/O bits. This device provides, in addition to the normal I/O pe­
ripheral functions, special features '\\him may be multiplexed onto the peripheral
I/O leads. These added on- chip features include an interval timer, a MAC-8
interrupt control flip-flop, and peripheral strobe generators.

Connecting the ROM-RAM-I/O device with a MAC-8 forms a complete micro­
processor system. In other words, a 2-chip MAC-8 microprocessor system
is realizable. Larger systems can be formed by using more than one ROM- RAM­
I/O chip as well as other memory and I/O devices.

ACKNOWLEDGMENTS

The authors wish to acknowledge the contributions of D. E. Blahut, W. F. Chow,

v. K. L. Huang, and D. C. stanzione.

27-7

PERIPHERAL TECHNOLOGY

A 4K RANDOM-ACCESS MEMORY

R. Pfahl, WE Dept 7112, NIW, LE, ILL
P. Kusulas, BTL Dept 5435, ill, ILL

ABSTRACT

This paper describes the effort required to qualify an external vendor

as a supplier for a sophisticated large scale integrated (LSI) circuit­
namely th~ commercial IS-pin 4K NMOS dynamic random-access

memory (RAM). The RAM will be used in the new family of ESS pro­
cessors. The technical team and testing facilities assembled for this
project are described. The decisions made and the problems encoun­
tered in the development and production implementation of a KS speci­
fication (including reliability and parametric testing) are reviewed. It

has been observed, for instance, that commercial parts often do not

meet even the vendor's own published specifications. Also explained is
the role of the source inspector and the vendor's response to a produc­
tion "bust." The additional problems faced in qualifying second and
third sources or new deSigns from a qualified manufacturer are deline­

ated. Not only must the devices be qualified, but their performance in
each unique system environment must also be characterized. A brief
review is made of incoming inspection and field data acquired since KS
4K RAMs were first introduced into production in April, 1976. The
1976 and 1977 4K RAM requirement for Switching Equipment Division
equipment is presented and the current availability discussed.

Steps are recommended which system designers should take when uti­

lizing commercial LSI parts. These steps would ensure the procure­
ment of reliable functional devices from multiple sources. This report
concludes with a brief projection of the future evolution of semicon­
ductor memory devices for ESS processor applications.

2S-1

	000
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-09
	18-18
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	26-07
	26-08
	26-09
	27-01
	27-02
	27-03
	27-04
	27-05
	27-06
	27-07
	28-01
	xBack

