le® 321 00

0000000

MICROPROCESSOR
INFORMATION MANUAL

MAXICOMPUTING

IN

MICROSPACE

<l|llllh»
5

UNIX™ MICROSYSTEM

WE® 32100
MICROPROCESSOR

INFORMATION MANUAL

451-000

ATsrl

(i

ACKNOWLEDGEMENTS

Prepared and published by
Document Development Organization — Microelectronics Projects Group
AT&T Technologies, Inc., Morristown

for the

Microsystem Product Management
AT&T Technologies, Inc.

and the

4516 Microsystems Laboratory
AT&T Bell Laboratories, Holmdel

A WORD ABOUT TRADEMARKS . ..

The following trademarks are mentioned in this manual:
WE® 32100 Microprocessor

WE® 32101 Memory Management Unit

WE® 32102 Clock

WE® 321AP Microprocessor Analysis Pod

WE® 321DS Microprocessor Development System

WE® 321EB Microprocessor Evaluation Board

WE® 321SD Development Software Programs

WE® 321SE Software Evaluation Program

WE® 321SG Software Generation Programs

are registered trademarks of AT&T Technologies, Inc.

AT&T 3B20S Computers is a trademark of AT&T.
UNIX™ Operating System is a trademark of AT&T Bell Laboratories.

PDP™ 11/70 Computer and ¥AX™ 11/780 Computer are trademarks of Digital
Equipment Corporation.

IBM® 370 Computer is a registered trademark of the IBM Corporation.

AT&T Technologies, Inc., reserves the right to make changes to the products(s) or circuit(s) described herein
without notice. No liability is assumed as a result of their use or application. No right under any patent
accompany the sale of any such product or circuit.

© 1985 AT & T Technologies, Inc. All Rights Reserved. 104287958
Printed in the United States of America IM232100CPU0115

(il

ATsl

January 1985

WE® 32100 Microprocessor

Information Manual

The information contained herein is subject to change.

FOREWORD

This manual contains information on the WE 32100 Microprocessor that is essential
to computer designers, software architects, and system design engineers. The support
software and development tools available simplify system integration for this complex
32-bit microprocessor. This issue contains a description of the version SVR2.0 of the
WE 321SG Software Generation Programs.

Additional information is available in the form of data sheets, application notes, and
on-line documentation from the UNILX Operating System.

For additional information contact your Sales Account Representative or call:
0O Commercial sales: 1-800-372-2447
O AT&T and Associated Company sales: (215) 770-3204 or (CORNET) 8+624-3204.

To obtain additional copies of this manual, Select Code 451-000, call:
0 1-800-432-6600.

iii

WE 32100 MICROPROCESSOR INFORMATION MANUAL

CONTENTS

CHAPTER 1. INTRODUCTION

L. INETOQUCHION ...etiutiiitiiiiieee ettt ettt e ae s st st sbe b e sbesensnesnensensenee 1-1
L1 OVEIVIEW wneniieiiiieiieiieiettesestetete st eaetebaesa e ta s e et e tasseesaassesaessesasssasteseassessasensessessennes 1-1
1.2 ATCRILECIUTE ..eevinieuiieceteteieie ettt sa et sa et b ettt saesebe e s ansesasaans 1-2
1.3 INSEIUCLION SEL...eeviiiieeiirieirieneerienieeieetesteeste s esteesteseseesasssesseesaassesasessansssssnensennnns 1-4
1.4 Operating SYSLEImM SUPPOIt......eceuereruriireerieieriertnrerteesteseeretreesaesetareseesessssesesaessesassens 1-4
1.5 Software Generation Programs........ccocecerueririererirerisenieenieessesesessesseessesesessesaesassens 1-5

CHAPTER 2. ARCHITECTURE AND BUS OPERATION

2. WE 32100 MICROPROCESSOR OVERVIEWccoccceviinmeennernenennerncnennenes 2-1
2.1 USER REGISTERScccccniiincineccreieeneenes . 23
2.1.1 General-Purpose Registers (r0—r8) 2-4
2.1.2 Frame Pointercccccccevvvevncccnnnecnenen. . 24
2.1.3 Argument Pointer 2-4
2.1.4 Processor Status Word..... . 24
2.1.5 Stack Pointer.......ccccoecenirnrrenenenns e 27
2.1.6 Process Control Block POINter........cceoueuirueriiuicieinenienenieenieeneeseeeeneeeeneeneeneseene 2-7
2.1.7 Interrupt Stack POINLET.....ccooueviiiieiiirieierieriereneeesesteteee e saesessesse e s sassessessasseses 2-7
2.1.8 Program Counter 2-8
2.2 DATA HANDLING.. . 2-8
2.2.1 Data Types.....c.ccceuu.e . 2-8
2.2.2 Data in Memory 2-10
2.2.3 Memory Managementccce... . 2-10
2.3 SIGNAL SAMPLING POINTS 2-11
2.4 READ AND WRITE OPERATIONS. 2-12
2.4.1 Read Transaction Using SRDY............... . 2-13
2.4.2 Read Transaction Using DTACKccccoevveresiariuecncnee . 2-15
2.4.3 Read Transaction With Wait Cycle Using SRDY.... . 2-16
2.4.4 Read Transaction With Two Wait Cycles Using DTACK. . 2-17
2.4.5 Write Transaction Using SRDYccccceceverernecneenieneenenenuennens . 2-18
2.4.6 Write Transaction Using DTACKcccecurveeeuranenne 2-18
2.4.7 Write Transaction With Wait Cycle Using SRDY... oo 2-18
2.4.8 Write Transaction With Wait Cycle Using DTACK.......cccececevnerinrenvinrereraeninnees 2-22
2.5 READ INTERLOCKED OPERATION.......cceccoiuriirerienercnnnneieneeenenreeeseerensensees 2-22
2.6 BLOCKFETCH OPERATION..................

2.6.1 Blockfetch Transaction Using SRDY

2.6.2 Blockfetch Transaction Using DTACK

2.6.3 Blockfetch Transaction Using DTACK With Wait Cycle On Second Word...... 2-28
2.6.4 Blockfetch Transaction Using SRDY With Wait Cycles On Both Words.......... 2-29

2.7 BUS EXCEPTIONSccoiiiiiiniiiicinecctn ettt enssessssnenens 2-30

vi

2,71 FAUIES..eeierit st cteeiteeee ettt ettt st aa e b saeeneen

Fault With SRDY........

Fault After DTACKc.icoiiervierieeneeneenenreeeneesteetesreesseessesesessessnsessaessesssessesssssneenes
2.7.2 Retry.ovevrerneeneenireeenns
2.7.3 Relinquish and Retryccccocveircrnininciiincniiceetctreeereeeeesr e
2.8 BLOCKFETCH SPECIAL CASES.......c.ccooritiriirereeereeeesteeneeeeresenneesesennenens
2.8.1 Fault on First Word of Blockfetch With Status Code Other Than Prefetch
2.8.2 Fault on First Word of Blockfetch With Status of Prefetch.........cccoeeeneiiiicns
2.8.3 Retry on First Word of BIOCKfetChccccerueverueiiiineriiniiincnerecerececceeeeccanens
2.8.4 Retry on Second Word of BIoCKfetch........c.ccvuruirievcrienieinieieereccceerceeccneenens
2.8.5 Relinquish and Retry of BIOCKfetChccoevurieeriieiiriiiieenicieniereseicienceeee
2.9 INTERRUPTS ...cc.cooiiriercccenrennee
2.9.1 Interrupt ACKNOWIEAEEcccveeveivureeiiieriieiiencereeiereeniee ettt eene et eneene
2.9.2 Auto-vector Interrupt.......
2.9.3 Nonmaskable INtErTUPL...c..cccevirieriririirieretrieieteieseetestesresteseesseriessessesressessesesnens
2.9.4 Quick INEITUPL c.cviviiiiniiiiiiiiicic e
2.10 BUS ARBITRATIONooiiiiiieiieienicet ettt et sesesne et e neeesesesaeesnenes
2.10.1 Bus Request During a Bus Transactionc..cccceceeereenereeneeniencneneesennnssenennens
L10.2 DMA OPETation .cc..ceueeeueineeenieeieereeierieacereeeesse e e eeat et e saneseesae s e e s sennevens
.11 RESETcocoiceninns
1.1 SYStEM RESEE ..euiieiiiieieieicecici sttt sae s s
1.2 Internal Resct
11,3 RESEL SEQUEICE. ...cuverirerieeierenieeierienierese ettt e sbebestesaessessesstosessessesstssensene
.12 ABORTED MEMORY ACCESSES........cccoimirnentiireenteeneiscsnenseinns
.12.1 Aborted Access on PC Discontinuity With Instruction Cache Hit....................
.12.2 Alignment Fault Bus ACHVIEY...oovveveerereeiieneninecenteeeiesre st secteseeseesaeeenenne
.13 SINGLE-STEP OPERATIONccooiitretiiinreenieerenieeeeseeeesetnnestsrenesnesseneneene
.14 COPROCESSOR OPERATIONSccoiiiieieinitrenieenrentete st seeeseeseseeeseesenenee
.14.1 Coprocessor Broadcastccoeeeeeireeiicennrnicnineniiniieeiccssinie s
.14.2 Coprocessor Operand FetCh........cccoevvreiirieiineninecnecciieencetee e
.14.3 Coprocessor Status FetCh.........cccciiiiiiiiininininiiinrccenens
14.
.15
.16
17
18
.18.
.18.
.18.
.19

4 Coprocessor Data Write...................
EXCEPTIONAL CONDITIONS ..
TRACE MECHANISM ...ccooiviniiiiiinitniinneestnssesisssnseissseesesssissssseenssesens
PIN ASSIGNMENTS ..ottt
MICROPROCESSOR OPERATING REQUIREMENTScccooouvvviniinnininns
1 Electrical REQUITEMENTS . ..cc.overuirieuireerereerietreree e cseeeres e eressesessesresseseesess
2 Clocking REQUITEMENTS ...c..cueeveuieueeriirereeeerieieereeereteee et sseneeseseesaessssessnens
3 Thermal REQUITEMENLSccovcieririirimiiiieenienrecn e
SUPPLEMENTARY PROTOCOL DIAGRAMS........ccocevvinriiirniireanne.

RPN
e T b e et e b e e

CHAPTER 3. INSTRUCTION SET AND ADDRESSING MODES

3. INSTRUCTION SETceoeiiiireiririneieieiesseiseneessssisnssssssssnsasssssssssssssssssssessssssans
3.1 DATA TYPES .ottt ssas e sasane
3.1.1 Sign and Zero EXtension........c.coviviviiiinieiinnniniiiiiincei s
3.2 REGISTERS ..ottt ss s ben e
3.2.1 Writing and Reading RegiStersccovvuerniirienninincnniiicicinceeiiees
3.3 INSTRUCTION FORMATc.coortimiiiieciininnisiininssiisssses s eneaesssnns
33
3.4

.1 Data Embedded in Operands........c..cocceiveererninenneeieeneeneneneneeneeineesessessessesneenne
ADDRESS MODBES ..ottt sieestsesienesetsesiestsessesesesessesssesesassesesessnine

3.4.1 Absolute Address MOAESccveereerreereerreereeieeeteeereeeeeeeeeeereeeseeereeeseeaseseesseeaeeesen 3-10
AADSOIULE.eiveeeeiieete ettt ettt ettt et et et eteereetseenesaseseesaeeneesaesentesserneenteenrs 3-10

ADSOIULE DEfErred....cuiuiuiviniiiiiiiecireniceet ettt s 3-11
3.4.2 Displacement MOGEScccovureiiieeeirienineneceteieereeiese et se et esse b seseereseeae 3-11
Byte DISPIaCCMENtc.cueiviiiiiiiiiiiiiiiccr ettt ee e 3-11

Byte Displacement Deferred.........cocoricieinrenininieineinieenecsrese e 3-12
Halfword DiSplacementc.covceveeveiniieiinereiniieinesesieseisessesnassessessesseeseesseessessens 3-12

Halfword Displacement Deferred..........covveviveeiriseeneeniniereneninieiesennesssesesesannes 3-13
WOrd DiSplacement......c.uvueereruerieniiueeiiirieieseennerieeeseestsssessenesseesesesesensssassesssens 3-14
Word Displacement Deferred........oeiverriiernineeieenineeeniereeseeeniseeseseesesesseseneenes 3-14
AP Short OffSEL.....cucirieieieieerieeiiecertnreree ettt ettt bseste e eeeseaas 3-15
FP SHOTt OffSELuvveieniirieniireeieeisteeeresieteie sttt ssieese st es et v be st esesesesesesanan 3-15
3.4.3 Immediate Modes.......coeivirerineriniirtenieieiesesiestestseessesteseesseseesessessesaesessassssseeses 3-16
Byte IMMEdIiate......cocciiiiiiniiriiiiiiiiie e 3-16
Halfword Immediate.coeoueerieirenieireii ettt 3-17
WOrd IMMmEAIALEccueveeiriiieiieiiie ettt st sae e sttt r s seeaens 3-17
POSItIVE LItCIal ...ovireeieieiiiricieiretce ettt sae e s s tebes e reerasaens 3-18
NEgaAtiVe LItEral.....c.civeoiririiirieieireirictrie ettt ettt 3-18
3.4.4 ReZISTEr MOMES «ouveceivieiiuieiiieiente ettt sttt seesa s es e sbes e ssaebasseesessansesansnesnnns 3-19
REGISLEr MOGE......coiiiieiiieiicieicecec ettt sttt sttt 3-19
Register Mode Deferredoeoiveerinininnnenee et 3-19
3.4.5 Expanded-Operand Type MOde.......ccccvrveerereueemirenrernieneerenseeeneeseeseesesesseeens 3-20

3.5 CONDITION FLAGSccooirtriteirienininretstesesaeistsassestete e e ssesessesesseasssssessesessenes 3-22
3.6 FUNCTIONAL GROUPS ...ttt esee et aessenesnene 3-23
3.6.1 Data Transfer INStruCtiONScccevveririiriirieerenieieereeeseseeseenteteee s sesse e ssreennenes 3-23
3.6.2 Arithmetic INStIUCHONSoveoiiiirmiiecricicrccecce ettt 3-25
3.6.3 Logical INStrUCHIONS.....covectruerteireeiercneeiecenie ettt st sae sttt se e se st esaaes 3-26
3.6.4 Program Control INSTIUCLIONScccvuevtruererreneirieienieesteeeetesteestee e sisessessenassasnes 3-28

SUDBTOUINE TTANSTET ..ecveetiereeriirieiestictieiseeteeteree et be s esrereese e e sesssesesaeesserees 3-28
Procedure Transferc..cveciicieieeecieciccecc ettt et e s et reesaeesaeere e 3-28
3.6.5 Coprocessor INStIUCHIONSccceveviivcrerieierierreeeictrreteeeseee e sesee st sebe e seeeeene 3-32
3.6.6 Stack and Miscellaneous INStrUCIONSc.eeevvevvereeeereeireereecreeeeere ettt ere v 3-32
3.7 INSTRUCTION SET LISTINGS.....cotoerertetsesrerertertereeevessesaessesseesseeveessennens 3-33
3701 INOLALIOM. 1. uveeuieerieieeienieesteeeeeseesteeerresteesessaeessesssensesssessesssssssasssessesnseensassessessssessens 3-34
ASSEMDBIET SYNEAK .evveueririrriireereeririeieeer ettt ettt st te st sese st be e saesens 3-34
OPCOAECS ..ottt ettt et ettt ettt besa s e e ae et ss e ebesaesesbans 3-34
OPEIALION. ettt sttt 3-34
AAAress MOAES ..c..ceverueiiinieeiineeiieieiesiesiesresseeressesessessessassessestassessasssrsessessassansanse 3-34

Condition FIags ...c.ccoveoeerireiiiiciicieiiecss sttt 3-34

EXCEPLIONS ...vvivviiiiisiesieieeeteetesteseseereeresseeeesestesseereesesaesseessesassesssessasensessesensens 3-34
EXAMPLES ...ceoiviiiiiiiiiiicetcr ettt eaes 3-34
INOtes (OPLIONAL .eovuvieriereiiereereietee ettt reas e ae st en e b s ssnensens 3-34
3.7.2 Instruction Set DesCriptions........ccocvuiirecirecrienerenieeneeeeeieeesenneeeceeseeeseesesnennes 3-36

Add (ADDB2, ADDH2, ADDW2)ooiieeiieeeeieeeeeeeeeeestesesseereessesseseessensesenee 3-37
Add, 3 Address (ADDB3, ADDH3, ADDWS3) ...oouooiimiireieieeeeeseeeeeerereeeeeeeeseeens 3-38
Arithmetic Left Shift (ALSW3) ...ooioiiiiceeciieseiieee et seetseese st esesesesessenens 3-39
AND (ANDB2, ANDH2, ANDW2) ...coovetieteeeeieriereeeeesteeeeereeesteneesessesseesensens 3-40
AND, 3 Address (ANDB3, ANDH3, ANDW3)...ccocooetrereeerereererereseereeeeeeeens 3-41

Arithmetic Right Shift (ARSB3, ARSH3, ARSW3)ccooeimieerrieeeeeeneennns 3-42
Branch on Carry Clear (BCCB, BCCH)cecoveiieierrerererercreeereseeessesessneseneins 3-43
Branch on Carry Set (BCSB, BCSH)c.ccovevrirrreiriniieiisssessensassnssasssssnnns 3-44
Branch on Equal (BEB, BEH)cocovceuiiieniiiernincenee et sesssssenssenasseseesenans 3-45

vii

viii

Branch on Greater Than (Signed) (BGB, BGH)ccecceveverirerieneerenreneereeanes 3-46

Branch on Greater Than or Equal (Signed) (BGEB, BGEH).........cccccvvevuennnene 3-47
Branch on Greater Than or Equal (Unsigned) (BGEUB, BGEUH) 3-48
Branch on Greater Than (Unsigned) (BGUB, BGUH).......ccccceeeueureuecmeercrrencnne 3-49
Bit Test (BITB, BITH, BITW)ooooeriieeerieereereeeresenenssnsesassesesnssresesesesesssesesenes 3-50
Branch on Less Than (Signed) (BLB, BLH)ccceovveverreesrerreereneseesesesssessnenes 3-51
Branch on Less Than or Equal (Signed) (BLEB, BLEH)cc.ccecvveerrunccuennnnen 3-52
Branch on Less Than or Equal (Unsigned) (BLEUB, BLEUH)ccccconeueee. 3-53
Branch on Less Than (Unsigned) (BLUB, BLUH).......cccecevveevcenennnne e 3-54

Branch on Not Equal (BNEB, BNEH)
Breakpoint Trap (BPT)
Branch (BRB, BRH)ccooveveverererennnen. .
Branch to Subroutine (BSBB, BSBH)ccouiiviireriiereneeerererennraereressseeseseneans
Branch on Overflow Clear (BVCB, BVCH)
Branch on Overflow Set (BVSB, BVSH)ccevvviiveiieererserererene
Call Procedure (CALL)cccoevverererererenen.
Cache Flush (CFLUSH)coooevvuenenene.
Clear (CLRB, CLRH, CLRW).............

Compare (CMPB, CMPH, CMPW)
Decrement (DECB, DECH, DECW)

Divide (DIVB2, DIVH2, DIVW2)ccceovverivenene

Divide, 3 Address (DIVB3, DIVH3, DIVW3)

Extract Field (EXTFB, EXTFH, EXTFW)ccccvueuneee. . 3-68
Extended Opcode (EXTOP).......c.ceeirereivemirernereesesesssessesssessessessessssesessessssessssns
Increment (INCB, INCH, INCW)

Insert Field (INSFB, INSFH, INSFW)

Jump (UMP)..oeiicirireiereisieeeeseneenees

Jump to Subroutine (JSB).....cooveevereremeerenerenens

Logical Left Shift (LLSB3, LLSH3, LLSW3)ccoovieerrereresinereeeeeeesesessenens 3-74
Logical Right Shift (LRSW3)cccoevirerirreerereeeieteneesiesesssesssssssessssssesessesssesens 3-75
Move Complemented (MCOMB, MCOMH, MCOMW)cocooerrrimrererensenrenns 3-76
Move Negated (MNEGB, MNEGH, MNEGW)coccooemvenineeniennenneeiesensennnns 3-77
Modulo (MODB2, MODH2, MODW?2) ...t eeerenseeseesesssenesssensnnns 3-78
Modulo, 3 Address (MODB3, MODH3, MODW3).....ccooevurvrerrieereererereenenenes 3-79
Move (MOVB, MOVH, MOVW)cooviiiereriiieeenesesseessassesessesesssessssosssssssns 3-80
Move Address, Word (MOVAW)ooovuiuiieerierircsce et sinssesessssssssssssesensas 3-82
Move Block (MOVBLW)................... . 3-83
Multiply (MULB2, MULH2, MULW2) 3-85
Multiply, 3 Address (MULB3, MULH3, MULW3)cccoeeovrrvrrrnirenenneennnnnas 3-86

Move Version Number (MVERNO)
No Operation (NOP, NOP2, NOP3)
OR (ORB2, ORH2, ORW2) ..ot eresesreersssssssssesssssssssssssssesesensans
OR, 3 Address (ORB3, ORH3, ORW3)......ccceeererererernnenrcseerensannene
Pop (Word) (POPW)ccvuvrnenrenrnnnrenn.
Push Address (Word) (PUSHAW)
Push (Word) (PUSHW)ccocoverrrrnnce

Return on Carry Clear (RCO)........oovveverrerererreneerrenrennns
Return on Carry Set (RCS)....
Return on Equal (REQL, REQLU)
Restore Registers (RESTORED)cccooveiieieneeisesssnnsssessesssessssssssssssssssssssssssses

Return from Procedure (RET) ...ccccoiviveririieseniesseniriessssssssnsesssssssessssssssesssnsns
Return on Greater Than or Equal (Signed) (RGEQ)..............

Return on Greater Than or Equal (Unsigned) (RGEQU) ..
Return on Greater Than (Signed) (RGTR)coeivererercrvnriniereiesssiesssiesesenens
Return on Greater Than (Unsigned) (RGTRU)
Return on Less Than or Equal (Signed) (RLEQ)ccouovervvevururenrvrenirceereverenns
Return on Less Than or Equal (Unsigned) (RLEQU)..
Return on Less Than (Signed) (RLSS)cccovvvvevernennene
Return on Less Than (Unsigned) (RLSSU)
Return on Not Equal (RNEQ, RENQV))oouiireriiririeiererseeseeesseseeseseseneene
ROtate (ROTW) .eoviierieieericesireeisesesesesessssssssssssssasssssssssssssssssssensessssssssssssssnssssns
Return from Subroutine (RSB)
Return on Overflow Clear (RVC)....
Return on Overflow Set (RVS)........
Save Registers (SAVE)ccocouevereeererseeerennneenns
Coprocessor Operation (no operands) (SPOP)cccoovueerrrennne
Coprocessor Operation Read (SPOPRS, SPOPRD, SPOPRT)........ccccovureneen. 3-114
Coprocessor Operation, 2-Address (SPOPS2, SPOPD2, SPOPT2).........ccccouu.... 3-115
Coprocessor Operation Write (SPOPWS, SPOPWD, SPOPWT)............ccu..... 3-116
String Copy (STRCPY) ..ottt eessseses st sessesesesessessssssesssanees 3-117
String End (STREND) ..ottt sesssssse e sssssessssessssssssssssssssnssenes 3-119
Subtract (SUBB2, SUBH2, SUBW2)coooirerereeeerereeeeesesessssesessesssassessenes 3-120

Subtract, 3 Address (SUBB3, SUBH3, SUBW3)coceviiierieceeeeeeneneens 3-121
Swap (Interlocked) (SWAPBI, SWAPHI, SWAPWD)cccoveimmcnennrrrcrnenns 3-122
Test (TSTB, TSTH, TSTW) ...oovtriiririrrertrerenssrsssssssssessssssssesssssssssssssssssssssens 3-123
Exclusive Or (XORB2, XORH2, XORW?2)c.cocemrmirrrrerinererresireessessessasssssnsnns 3-124
Exclusive Or, 3 Address (XORB3, XORH3, XORW3)coooveurreereeerererenenens 3-125

3.7.3 Instruction Set Summary by Function..........cccecceeueune

3.7.4 Instruction Set Summary by Mnemonic....

3.7.5 Instruction Set Summary by Opcodecccvereemreerieerrincninirenrinerineecneererescseeenees

CHAPTER 4. OPERATING SYSTEM CONSIDERATIONS

4. OPERATING SYSTEM CONSIDERATIONS.......ccccvceierrrereererenrenennreensresaeseens 4-1
4.1 FEATURES OF THE OPERATING SYSTEM reeeeaeetete s 4-1
4.1.1 Memory Management Considerations for Virtual Memory Systems 4-4
4.2 STRUCTURE OF A PROCESSccoirtitrinrrisenietreresenssssesessssssssesassesssseses 4-4
4.2.1 EXeCution PriVIIEEe......ccurvuinieiiiriieiietecieeteee e ettt ee e s e ressessessesnaeenesnnes 4-5
4.2.2 EXECULION STACK....ccuiiiemiiieieirteiteireeteientscnie et n et e sae ettt asesrnssssesesesaesaesaseens 4-5

4.2.3 Process Control Block eeeeteer e ere e et e e et e e ba e e st e e e be e et et eerte et e eaaebeanres 4-6
Initial Context fOr @ PrOCESS.....cecvueieeeeeetieetiecteeeteeeee ettt eeae s se e eresseeseeeneessnens 4-9
Saved Context fOr @ PrOCESS ...c..cceicerieeteieeciteceeceeetesrese et et ceneesesesseseeaneenes 4-9
Memory SPECIfiCAtIONSceuiccviverireivircirerreetsieeere ettt sseseseseenesesaesesenesens 4-9

4.2.4 Processor Status WOTdcccecveeervenieiereenrieeniierenteeeseereseesoseesesssessessesessessesesonns 4-10

4.3 SYSTEM CALL.....eooeeeeseeeeteete e cteeete ettt e eaessasessesssesssssssssssessesssasesssessesns 4-10
4.3.1 Gate MEChAMISINccueiiiiieeriieeieteeeecee ettt eeeeeaeeeve et eseesseeessesasensessesssenseesnen 4-13
POINEET TADIE.....uecuieiieeieeeeeeteee ettt te et e eaeesee e eteessensenseessebesanes 4-13

ix

4.3.2 GATE Instruction.........cccceeun.. . . 4-14

First Entry POINt...c..cocoiviiniiiiiniinecncicicicsicneccnienc e ctssesstse s saesaesessaess 4-14
Second Entry Point — The Gate Mechanism.........ccceceeeeercemenerscnieenerseneeeeesvennes 4-15
4.3.3 Return-From-Gate INStructionccccceiiiiininiincniiniicnniiicciiniinecesenencnenns 4-16
4.4 PROCESS SWITCHING . ettt bes 4-16
4.4.1 Context SWItChINE StTAtERYcovverrrrerrererereerertrresrestssesesressessssessesessosessesessesssassens 4-17
R Bit et ettt ettt e ettt bene s st ere e ne 4-17
I Bt ottt b e et e 4-17
4.4.2 Call Process INSIUCLIONc..ccueeiruirriiereiniicnniinetriet ettt esesaesessssesaens 4-20
4.4.3 Return-to-Process Instruction.... reereresaete et eeeeneas reereerereeeenee 4-22
4.5 INTERRUPTSccoiniiiiiriiiciiitntsnisssiesissnssesesssssesessssesestssssssssesesssssssssssens 4-23
4.5.1 Interrupt-Handler Model...........cccoocun... 4-23
4.5.2 Interrupt MEChAnISINceveeirvurrierierirenrienieneeseesreeetsneneesesstssensessessessessesesseesesnssnes 4-24
Full-Interrupt Handler’s PCBcccoviiniiiinincniciccnninenn 4-25
Interrupt Stack and ISP
Interrupt-Vector Table.......cccocvevevrenecirarereneenene
4.5.3 On-Interrupt Microsequence
4.5.4 Returning From an INtEITUPLcccerirvieicniniiiniiineniccccnicnrseescesesesaessssenes 4-29
FUll INtEITUPLS ...ciueiveieitieititieetetnnereeneestesasstessestessessessassesssesessesaessessesessasasnsases 4-29
QUICK INEEITUPLS....c..comieiriiirieentiietniecneeeeesessseseesnaseeseestasesssessonsessessessesessessasses 4-29
4.6 EXCEPTIONS ettt et eneas . 429
4.6.1 Levels of EXCEPLION SEVETItY.......ccoeiviiriririniiuicnineriinsiinniniessieeisssnenesesesesseenene 4-30
4.6.2 Exception Handlercooviivninineniiinininciiiiiieniceenieesstssssessscassessaseessaes 4-30
4.6.3 ExXception MICTOSEQUEINCESc.couvurereiriecsrimeeisterereseetsussiaesessescssssesseseesessssssessassens 4-32
Normal EXCeptions.......ccceevevervrcrerereesecresersesseseneane ettt bt nenes 4-32
Stack EXCEPLIONScvecvivuiciiriirietinieneieenenienenenesstscetstsstsssenes 4-33
Process Exceptions . . 4-35
RESEt EXCEPLIONS ...uviviiureeiierinietrreiesieesesnentesseesesessessssnesssessessossessesassasstonsossssens 4-35
4.7 MEMORY MANAGEMENT FOR VIRTUAL MEMORY SYSTEMS 4-36

4.7.1 Initializing the Memory Management Unit
Defining Virtual Memory
Peripheral Mode.........coiieiiiiniiiiiincnniciiccss s

4.7.2 MMU Interactions..........ccceureererercruerreerennens
MMU EXCEPLONS.....c.cruirerecerereeceeneenrereeeerecneenens
FIUShING ..ot s

4.7.3 Efficient Mapping Strategies

4.7.4 ODJECt TTAPS....ccuecreierreceerrentereenessensestsessessesasssesesseesassssssessesssssessesessessassess

4.7.5 Indirect Segment Descriptorscececueeueenes

4.7.6 Using the Cacheable Bit

4.7.7 Using the Page-Write Fault

4.7.8 Access Protection ettt te ettt ettt st et esr e s ba s e s b e e e e sresae s aneseesns

4.7.9 Using the Software Bits.......cccoccoceeerrevirennrneereresernenn

4.8 OPERATING SYSTEM INSTRUCTIONS

4.8.1 Notation.......ceevevvecrerecsensenenne

4.8.2 Privileged INStructions.........c.ceceveevveerrveerenrenenesreerersnens

4.8.3 Nonprivileged Instructions

4.8.4 MicCrosequencesceeerreenns

CHAPTER 5. SOFTWARE GENERATION PROGRAMS

5. INTRODUCTION TO THE SOFTWARE GENERATION
PROGRAMS (SGP) ..ottt ettt bbbt sasansene
Distinctive SGP FEAtULES. ..c.ceuevveiiieriiirierieieiesietertetc ettt ae e e sessens
HOSt COMPULETS ...ttt et sttt e se st e e
5.1 COMPILER AND THE C LANGUAGEcceoeiiiienieenteeesereseniseeeeeeenens
S.1LT COMPIIET ottt
ComPilEr OPLIONScuvieiiiiiieerreeee ettt st et bebe e s neeseene
REZISLET USAZE .eouverueeieeiiiieeeieeriieitertestere ettt et e set e e st e s e e baesbessesneessnannen
5.1.2 € LANGUABE .veueeeeiiireeeetente ettt sttt ettt ss et ss et e bt sbe e s estsnceseseeseenen
FLEXNAIMES ...c.euiiiiriiiiiccieieete sttt st sttt et et b e s b s se e e e esaens
ENUMETAtIONS ..coviviiiiiiiiieiieiteicee ettt et e eesaessasnean
Structure ASSIZNIMENTecevveeirverieienieiereieeteeete e terseeeaeeese e seseseresesassesseses
Nonunique Structure Member Names........coeveverieirieuineinieereecnene e
Former Member Name ReStrictionscccceecvieinieenienenereneneeeiesiesienienae
New Flexibility for Member Namescocevcveereriniererenineneniecreeeereesseenas
Complete Structure and Union Member Reference Qualifications...................
Nonunique Tag Names AlloWedcccevevienierineneenecnieneieieeevenens
Vertical Tab Character Literal
In-Line Procedure EXpansionc.cccceevevvenvereennens
5.2 ASSEMBLER AND ASSEMBLY LANGUAGE......cccoovninirinetreccireceeieeenes
5.2.1 ASSCINDIET cecviuiiiiiiiiieciereiiereettetete ettt ettt ettt ettt et st e et nee st
ASSEMDBIEd FILES....cviieiiieirieiiieteriee ettt et st seve st nes
DIAZNOSTICS .vvvevieuiieriierieiietenteniesieeieetete sttt eesteat e e s e aeesesbeeaeesesseesesaeseeneansensanes
Macro Processing FacCilitiescceceveriririiieriein ettt

Interface Macros.....c.ccoevueeenen.

Function Interface Macros .
Scratch Register Macros
Stack Frame MaCrOS......cccrurieerirueriinreieririreeieiestnieteeieesteee et sesestssaneeseseseesens
RESETICHIONS ...ttt ettt et st sa st e et et e ae b e nens
Using Predefined MacCros........ccoceeriiiierinincncniccetei ettt
EXAMPIES .ooviniiiiiiiiciiiciiitet ettt bbb
M4 ReServed WOTdSc.coerieiriniiirenieiniseie sttt ses s aess e aeseas
5.2.2 AsSSemMDIY LANGUALEccvvviiiiiieiiiicicterectctets et ee et a e e asaese st e sa s sneeas
SEALEIMEIIES ...ttt ettt ettt sttt ettt st e st s et s et e e etaeens
SYMDOIS L.ttt ettt e et st a st s et n et e b saaens
Values and TYPEScoucuevuiereieiiteirenrecrete ettt eseest et st be e sere et seeneas
Assigning Values and Types to Symbols.........ccccoeveinrinnienircnneneseneeereeeenes
COMSLANES .. cueveiueereieeteeteteseee st ettt st st eaeeh e te st et et etesea e et et e s et esesesenseneetesessssensanansens
L0CAtION COUNLETcueevirireerieieierteieieeterieitste e esese et st esasaesaesesessasaseesensesessesens
REGISTETS weeurviietiieierteriecttet ettt ettt e et s et s esbasaasbesaeesaetesseseassentasen
Executable INStructions.......cccveerieeeeiirinicieneiee ettt et
OPCIANAS ...ttt ettt ettt ettt e e e e aaebe e e sasastesenseseesenes
EXPIESSIONS ..uvvviieiieietiesitneeiter et sttt ee e e et esesene st saeseseanse s bessassesstesenenseen
AsSemMDbIEr DIFECiVES......cueoveiiiiriiiiirieieirece ettt sttt sttt
Section Control Pseudo Operations..... rereereerrneaene
Pseudo Operations Dealing with Symbols.
Assignment Pseudo OpPerationc.cecvveeiverieuisieenieeninesiesassessesesssessessesessennas
Assignment to Dotc....... .
Alignment Pseudo Operation..........c.cooecevrererrennreneneieeseeenesseeteseesieseeeeseeneas
Data Generation Pseudo Operationscocovvcieervirierenceineneerneneeneenniererisseenens

xi

xii

Symbolic Debugging Pseudo Operations.........cc.cocevciceeenerirecrenercenerenneneresenernenes
File Name Pseudo Operation
Line Number Pseudo Operation..
Function Calling Sequence..............
Stack Frame.......ccccecvvuevucnnne.
Actions of Calling Function...... e eteet ettt et esaeebesaeebesaeenbe b e aeteaaers
Actions of Called Function................. ettt nenes
5.2.3 Exception Conditions
5.2.4 Programming Examplec.cccovueneen.
5.2.5 Machine Independent Instruction Set ..
5.3 LINK EDITORoociiiiiiiieeeetne ettt ettt s se s re sttt svesee e b e ne s
5.3.1 Link Editor Command..........cocceeeeinerrineniiiecniinieeiieeeseceneeereseeessesnesessesessessene
Command Line Options..................
5.3.2 Link Editor Command Language..
EXPIESSIONS 1.eeuviireiirierieriteeecrtteeeete et esreseesstebeesaensesaeseneesesasesmnesasessnssnsesneessnes
ASSIZNMENT STALEMENLS...ccueireereerrirreereerterierteriertesieesresseseessesessessessaessessessassessessense
Memory Configurations...........
Section Definition Directives
Virtual Address and Bindings...
File Specificationsccccvveeverveeivereeruenne
Load a Section at a Specified Address..
Aligning an Output Section........ccceueucee
Grouping Sections Togetherccc...
Creating Holes Within Output Sections ...
Creating And Defining Symbols at Link-Edit Time..
Allocating a Section Into Named Memory................
Initialized Section Holes or BSS Sections ...
Notes on the Use of m321d.......ccoeviiirireninieieeeeececteeecreee et
Changing the Entry Point.........ccccvevirininiinienenienieineeneceecceneeseesee e saeenes
Use of Archive Librariesccccceeveencnee.
Dealing With Holes In Physical Memory.
Allocation Algorithmcccccocevviininicniennns
Subsystems (Incremental) Link Editing ...
Nonrelocatable Input Filesccccc..e.....
DSECT, COPY and NLOAD Sections.....
Output File Blocking.........ccoceveeerreeerenuennns
5.3.3 EITOT MESSAZES...ccueiueiiiririiiniericteeereerieste st sseettsbetestesesstsseesaestesuessesnessasnsesnansenne
Corrupt INPut Filesccouvviiviniiriiriiciicicctnentcectcctesere e eesaseestenssesenesesaes
Errors During Output ...
Internal Errors
Allocation Errors........ccoeeveveeceennenne
Misuse of Link Editor Directives
Misuse of Expressions.........ccecueueen.
Misuse of Options.........
Space Restraints.........
MiSCEllaneous EITOTS......cccoviiiiiereirceiinienienteiieneeeesesiesteessrestessesressesieesesaessessansens
5.3.4 Syntax Diagram for Input Dir€CtiVes........ccceveervrreerereriereesenesrensenreessessessessessessens
5.4 OBJECT FILE FORMAT.........ccoueucee.
5.4.1 Definitions.......ccccceeevureneane
5.4.2 File Header...
Flags ccccooveveeriieeenieeseneeneeeeenees
Optional Header Information.............
Standard UNIX System a.0ut Headercccouvveverevenireenireneinnsiereeeseeceesenennns

5.4.3 Section Header Tableccoveiiiieciiiieiececeeceese e e tnene s 5-81

Flags ccovveevverrennieeieeeeenen. 5-82
.bss Section Header... 5-82
5.4.4 Sections........cccovereereruereanns 5-82
5.4.5 Relocation Information.... ... 5-83
5.4.6 Line Numbers 5-84
5.4.7 Symbol Table 5-84
Special Symbols . e 5-84
INNET BIOCKS vttt s 5-86
Symbols FOr FUNCLIONSocerrieriirieriiieeiiniiiiieeieeeee ettt et ssesesseeaeeeensenns 5-89
Symbol Table Entriesc.o....... 5-89
Symbol Name Field (n_name)cccoocevevrverruerrenennns e 5290
Symbol Value Field And Storage Classes (n_value)cceveveveenereerenenenenn. 5-90
Section Number Field (n_scnum) 5-93
Type Field (n_type) ...cooeevvrrrnerennns 5-94
Structure for Symbol Table Entry . e 5-97
Auxiliary Table Entriescccceeenene e 5297
File Names......cccccevveuene. e 5-98
Sections.......... 5-98
Tag Names.............. 5-99
End of Structures.... e 5-99
FUNCLIONS ..cviiieictci ettt et et 5-99
Arrays
End of Blocks and Functions............. ... 5-100
Beginning of Blocks and Functionsc.ccoceevevverveirirceennnee. ... 5-100
Names Related to Structures, Unions, and Enumerations.........cccoveeevvvrernveennnes 5-100
5.4.8 String TabIE ..ccuevvieeeiieiieeirerceetceeserere e ae v ene ... 5-101
5.5 UTILITIES AND LIBRARY ROUTINES.. 5-102
5.5.1 Utility Programs.......c.ecccevevurreerercreerereereenennnes
m32ar ...cccecevnene
m32convert
IN32CPIS cuvererireerueeriientiereeseeeereseestessaessessesssesssesssesssesssasseesssessesnsesnsesensresseessaennes
m32dis
m32dump
m32list........
m32lorder ...
m32nm........
m32size...
m32Strip...ccciiniennnne
5.5.2 ACCESSING LIDTATY .ueoiiiiiiirierieierienieiieteteteresresresrese e eecsreseenese et tssessesresnassens 5-117
Use of the Accessing Libraryc.cccoecvecineneenteinerenecieineeeneeeecnseneenneseeennenes 5-117
Library Functions And Macros........cc.c.ceceneneee .. 5-118
Functions That Open or Close Object Files.......cocevevurirerenernmieernccenecnerenenen 5-118
Functions That Readcc.ooeceviiincrennnnnnne e 5-120
Functions That Seekcoccoerevriennvinenneineneereeeceeeens .. 5-120
Function That Returns the Index of a Symbol Table Entryccoccccvvvvercunenen.
IMACTOS ..ttt et ettt st sttt ese s et e e seee et eneene
5.5.3 General-Purpose Libraryc..c.cccucee.
Use of the General Purpose Librarycocveeeincenenercnninecnniccineeceeees
Routines in the General Purpose Librarycccccecveninenvncninnininicninnennnnne
Routines Required When Using printf and scanf
5.6 SGP MANUAL PAGESooiiitrriininineeeneetniecntste et seseaesestseessesesseseressessans

xiii

GLOSSARY AND ACRONYMS

INDEX

Figure 1-1.
Figure 1-2.
Figure 1-3.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.

Figure 2-10.

Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.

Figure 2-15.
Figure 2-16.
Figure 2-17.

Figure 2-18.
Figure 2-19.

Figure 2-20.
Figure 2-21.
Figure 2-22.
Figure 2-23.
Figure 2-24.
Figure 2-25.

Figure 2-26.

Figure 2-27.
Figure 2-28.
Figure 2-29.
Figure 2-30.
Figure 2-31.
Figure 2-32.
Figure 2-33.
Figure 2-34.
Figure 2-35.
Figure 2-36.
Figure 2-37.

LIST OF FIGURES
The WE 32100 Microprocessor ettt s saesrene 1-1
WE 321AP Microprocessor Analysis Podccccooeveercnrereeceneenenscninnne 1-3
WE 321EB Microprocessor Evaluation Board.........cccoceeverueveveecccerennncne 1-3
WE 32100 Microprocessor Block Diagram.........cccceceevererrercenrenerrersrenseneas 2-2
Programmer’s Model for User RegiSters......cocecvvververenreneererenreeereereesensens 2-3
Processor Status Word
Bit Order of Data...........
Bit Field Data Type....
Signal Sampling Points...................

Read Transaction (Using SRDY)
Read Transaction (Using DTACK)

Read Transaction with One Wait Cycle (Using SRDY)cc.ceoevevvennen.
Read Transaction With Two Wait Cycles (Using DTACK)

Write Transaction (Using SRDY)cvureerevennnrerenenenns

Write Transaction (Using DTACK)ovun...

Write Transaction With Two Wait Cycles (Usmg SRDY)
Write Transaction With One Wait Cycle (Using DTACK) ...
Read Interlocked Transaction (Using DTACK)......ccoo.omvveeerremereesssnesrens
Blockfetch Transaction (Using SRDY)cccvveerreeeriniernrnnsesnmsnsessensseseees
Blockfetch Transaction (Using DTACK)
Blockfetch Transaction (Using DTACK)
Blockfetch Transaction (Using SRDY) ..

Asynchronous Fault Without DTACK and SRDY (Read Transactlon) . 2-31

Fault with Synchronous Ready (SRDY); i.e., Synchronous Fault 2-32
Fault After Assertion of DTACK (Write Transaction is Shown) 2-33
Retry of Transaction (Read Transaction is Shown)ccccceeevereeevrennne 2-35
Relinquish and Retrycccccoeveiieinnineneieneeeeeteeecreeseeeeeieneeese e 2-36
Fault on First Word of Blockfetch Transaction

With Access Status Code (Not Instruction Prefetch)cocvvevevennnnes 2-38
Fault on First Word of Blockfetch Transaction

With Access Status Code of PrefetCh........ccoovueirecienninencninneeeceecinnene 2-39
Retry on First Word of Blockfetch Transaction..........ccocecevevererveseeerunnnns 2-40
Retry on Second Word of BIOCKfetCh........ccveverveerrerreenereneeerinreenneerennnes
Interrupt Acknowledgec..cocccvvneennnen.
Auto-Vector Interrupt Acknowledge.....
Nonmaskable Interrupt Acknowledge

Bus Request During a Transaction

RESEt SEQUENCE.....ucviririiiriririiririittieentee st seestnee s ssesseaeaeas
Aborted Access on I-Cache Hit with PC Discontinuityccceceevvveeruennene 2-55
Alignment Fault Bus Activity (Write Transaction is Shown) 2-56
Start of Single-Step OPerationcecovveveereverrereerereresreseeresesreressssessssenaes 2-57

Single-Step OPEration.......c.cocureeeeeetreeseriestrieniereneeteescseessesessesesesessessesenns 2-58

Figure 2-38.
Figure 2-39.

Figure 2-40.
Figure 2-41.
Figure 2-42.
Figure 2-43.
Figure 2-44.
Figure 2-45.

Figure 2-46.
Figure 2-47.
Figure 2-48.

Figure 2-49.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.

Figure 5-1.
Figure S5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.

Coprocessor Command and ID Transfer.......cc.cooeeveveeiinivnncninncnecnennee, 2-59
Coprocessor Command and ID Transfer

(INO COpProCessor PIESENL)oecevereeeerreesrersersrenssssassnssssssesssssssensssssssenes 2-62™
Coprocessor Operand Fetch.......cc.ccuevveeneee e 2-63
Coprocessor Status Fetch (Using SRDY)ccccvrueveeeeeremnemersenesseeseacnenns 2-64
Coprocessor Data Write........cocccevcnueinnnucnas e 2-65
WE 32100 Microprocessor Pin Configuration.........cccececevvueniininininiiennns 2-71
Read Transaction Followed by a Read Transaction........c..ccccecvueeverueencnne 2-88

Read Transaction Followed by a Write Transaction
(USING DTACK) ..oucvevtrectieeeeceete st sses s s s s sassssansesessnsns

Write Transaction Followed by a Write Transaction...

Write Transaction Followed by a Read Transaction...........occccceeerieuennnne
Double-Word Program Fetch Without Blockfetch

Transaction (USing DTACK)ccceuviueininceeerenceneereneieneesesesessessesessacsenes 2-92
Bus Arbitration During Relinquish and Retry.......ccooeevevcrincicncccnncne. 2-93
Bit Order of Data......ccooeiveieiiieecceeceree e 3-2
Bit Order in a Bit Field........ e 32
Extending Data to 32 Bits.......... 3-5
Register as a Source Operand 3-5
General Instruction Format........ e 37
Data Embedded in an Operand.........ccocoevueeeeennemrcnncinneniiceiiceenins 3-7
Expanded-Operand Type DesCriptorccccocevererenenrencnienicnennrcniennenne 3-21
Condition FIAZS ..cc.e.eeverieerieinierteteeeie ettt ettt ne e sessssentens 3-22
Stack After CALL-SAVE Sequence.........coviiiminnninicinnninneeinnes 3-31
A Typical Process Control BlocK.......ccccooeeuerinverenenenincnencniniciicnnene, 4-8
Tables for the Gate MechanisSmcccccvererermeccnreinieinicnienincenees 4-15
A PCB on an Initial Process Switch to a Process.........cccooeeuevviniiiiininnnns 4-19
A PCB on a Process Switch During Execution of a Process.......c.ccc.c..... 4-20
An Interrupt Stack........coeviininiiniii e 4-26
Interrupt Vector Tables 4-27
Exception-Vector Tablecccoevvviriiciininicniinnns e 4-31
Virtual Address Fields for a Contiguous Segmentc.coccevenieeveniinennns 4-37
Virtual Address Fields for a Paged Segment.......c.cccvverincrininnicnicnnnnns 4-37
Virtual to Physical Translation for Contiguous Segments..........c.ccoueeucnee. 4-38
Virtual to Physical Translation for Paged Segments.........cccccoovuverininuens 4-39
Major Steps in the SGP......ccoeevieinrciicreenecc e 5-2
Mapping Program Sections e 5-16
Typical Stack Frame for a Function Call........cccocoeviiiniinininiinninniinnnins 5-41
Stack Frame Following a Call Instruction..........ccccecveveenirecvucnniscricecnne 5-42
Stack Frame After Three Registers are Saved..

Object File FOrmat.......coouevuieiinirnienieniriiieiinecieeresiesiesietene e seesinsesessnenne 5-78
COFF Symbol Table.........cceererienenieiinieeniereeeieicenieceieesteie e 5-85

Xy

Xvi

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.

Table 2-10.
Table 2-11.
Table 2-12.
Table 2-13.
Table 2-14.
Table 2-15.
Table 2-16.
Table 2-17.
Table 2-18.
Table 2-19.
Table 2-20.
Table 2-21.

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.

Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.
Table 3-14.
Table 3-15.
Table 3-16.
Table 3-17.
Table 3-18.
Table 3-19.

Table 4-1.
Table 4-2.
Table 4-3.

LIST OF TABLES

Processor Status Word Fieldsccoeeuvneunnieniniecicvcniincnncceccnneecnnns 2-5

Memory Write SUMMATYcoceiiieereeieenentrieseetereeseeseesseseeesessesseseeeenes 2-10
Simultaneously Asserted Exception Conditions.................... e 2-30
Interrupt Level Code Assignmentsccccceeveuneee 2-44
Interrupt Acknowledge SUMMATY.....cccccevvvieveeeeeerieeceeeeeeeeeae e .. 2-50
Output Signal States after DMA Request is Acknowledged....... e 2-51
Output States on ReSetccoeeiveviiinecicnneniierieceenceenens .. 2-53

Exception Conditions........cccccueverieieiiieniiinieinieienecneesresteeeesee e esnenens 2-66
Truth Table for Trace Trap......cccccevevercrunnenes . 2-69
WE 32100 Microprocessor Pin Descriptions .. e 2-72
Address and Data Signals.........cccccceeververeenee. v 2-75

Interface and Control Signals....
Access Status SigNalSccceceviiiiiniiiiiieniee et 2-77
INterrupt SigNalS.....ccoieeiiieiiieiirienerreeesere et e e 2-79
Arbitration SigNalsccccevivieviniiiiniiiniiic e 2-80
Bus Exception Signalscccccevevieieniinieniiineienieiceenieceentneeeene e 2-81
Development System Support Signals ..
Clock Signalsc.cccevevveveeeneerenuecnincnnae .. 2-83
Operating Requirements 2-85
Output Electrical Specifications.
Input Electrical Specificationsccccouvveruruercrnennee s 2-86

REGISLET St ...oviuiiiiiiiiiiiecicc ettt s
Addressing MOAESc.eeeeeirieriirieiiiicrininnine ettt senesenes
Options for type in Expanded-Operand Mode ..
Data Transfer Instruction Group.......ccoeccevueeeriveniiinininiineseenieeenesenaens
Arithmetic InStruction Groupcccceevveveirererieneneneeseesesiesesesesseeeeseenes
Logical Group.....ccceeveeeveecveeenen
Program Control Instructions..
Coprocessor Instructions..........cccceeeuenee.
Stack and Miscellaneous Instructions..
Condition Flag Code Assignments.....................
Assembly Language Operators and Symbols....
Data Transfer Instruction Group.......ccccecevveveneee
Arithmetic Instruction Group
Logical Group.....cccceceevereenennen
Program Control Instructions..
Coprocessor Instructions..........cccccceveeenee
Stack and Miscellaneous Instructions......
Instruction Set Summary by Mnemonic..
Instruction Set Summary by Opcode.......ccccoceeereiiniiiniiiiniiccniciieine

Operating System INStruCtIONS......c.covevveruerriiesrererereeeesrenieneseereeseereeseenes 4-2
PCBP LOCAtIONS...c..utiriiriiriieieenieneeneieseeeieniesreeessessesnessreessaessessaesssesseesneees 4-7
Processor Status Word Fieldscccoeveviniieenenenenenenieieeneseeeeeeene 4-11

Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.

Table 5-1.

Table 5-2.

Table 5-3.

Table 5-4.

Table 5-5.

Table 5-6.

Table 5-7.

Table 5-8.

Table 5-9.

Table 5-10.
Table 5-11.
Table 5-12.
Table 5-13.
Table 5-14.
Table 5-15.
Table 5-16.
Table 5-17.
Table 5-18.
Table 5-19.
Table 5-20.
Table 5-21.
Table 5-22.
Table 5-23.
Table 5-24.
Table 5-25.
Table 5-26.
Table 5-27.
Table 5-28.
Table 5-29.
Table 5-30.
Table 5-31.
Table 5-32.
Table 5-33.
Table 5-34.
Table 5-35.
Table 5-36.
Table 5-37.
Table 5-38.
Table 5-39.

Severity Levels for EXCEptionscocovreiveenieinenineeneriseseeeseeeeens 4-30
Normal Exceptions (ET=3)...... e 4-33

Stack Exceptions (ET=2) 4-34
Process Exceptions (ET=1) ... e 4-35
Reset Exceptions (ET=0)c.cccccervurrrererrerererereererereseseesesessaeseseesessssesesanns 4-36
SGP TOOIS ..ttt sttt ettt ettt sae e sttt bbb naeeen 5-3
m32cc Command Line Options..... v 5-5
m32as Command Line Options.... 5-16
Address Modescoeeeevninenneciiencniene 5-29
Alphabetical List of Pseudo-Operations . e 5-32
Machine Independent Instruction Set..... .o 5-46
m32ld Command Line Options........... e 5-50
File Header Contentsc....... e 5-79
File Header Flags............... 5-80
Optional Header Contents.. 5-80
Section Header Contents.... 5-81
Section TYPeS...cecveverererererenrerereninenaens 5-82
Special Symbols in the Symbol Table..... v 5-85
Symbol Table Entry Format..........cc....... .. 5-89
n_name Entry Formats........... .. 5-90
Symbol Values................. 5-91
Dummy Storage Classes......... 5-92
Restricted Special Symbols.... 5-92
Restricted Storage Classes..... 5-92
Section Numberscocecueene. we. 5-93
Restricted Storage Classescocevcrrirerueueriruererisenenesireeiesereneseesessseeresesennes 5-94
Fundamental TYPES «..coccevueeueirriririrenienieeteiesiesesreesesreseeeseesnesessesaesseseeneens 5-95
Derived Types....ccoceevverreeenenne. e 595
Storage Class TyPe BENLIIES ..ouveeieeeieereeieneereteieeetesessesesseseesaesesessnes 5-96
Auxiliary Symbol Table Entriescoceceenieieeneieneneieneeeencsecsecne 5-98
Section Format

Tag Name FOrmat......c.coceirveninenieneneneninntesiesesesteseeseeste e e ssessennens 5-99
End of Structure FOrmat.......c.ocoeveeneeneneennineccrecnecenee e 5-99
Function Format
ATTay FOrmat....cooiviiiiiiiiiiieieccteetec ettt

End of Block and Function FOrmatccccovevieneeirenieenneniccnneccneene
Beginning of Block and Function Format

Structure, Union, and Enumeration Formatcccccooveevvvenieniineirneeennen. 5-101
m32ar Command Line Keysccccecveriiirniineneninininircncee e
m32convert Target Machines
m32dis Command Line Options........ccccoeriervererierivesierenenesseesesesessessones 5-109
m32dump Command Line Options........c.ccceeveerreeeirenrereeereeniennnereereeeens 5-112
m32nm Command Line Options

SGP Manual Pagescccoeurueeereenerinerieriereneenenieeeseesssesesesesesesssesessesaseesens

Xvii

Chapter 1

Introduction

CHAPTER 1. INTRODUCTION

CONTENTS
L. INEEOQUCHION .c.rivvirecererrirreeerinnetiseeseesesecancrearesessesasnnrsensenssesessennssssessesensenssensensensssnanens 1-1
1.1 OVEIVIEW cecreirireieeierieseaceeeeeenreraeessessastesasessaseessasnessnssssessassnssasassssassassarssasnsssnstersonsanes 1-1
1.2 ATCRILECLUTE ..ovuviieierreereiincrresrises etssaecaerassaesnssessessessessesaesraressesnsssssensessarssensosnosessessanss 1-2
1.3 INSLIUCLION SEL...vvvericrrrereerniinieiieesiesiensernessesensersnsaeessssecssesesssssesessessssssesseseessssssasensnss 1-4
1.4 Operating SYSteI SUPPOTt......ccoviirimimiriniinircresecssioseeseosssasessssestesesasessenssossosisss 1-4
1.5 Software Generation Programs........ccceeoirreirisinsercriineasassmorasssersassonasssessesens 1-5

INTRODUCTION

Overview

1. INTRODUCTION

This chapter introduces the WE 32100 Microprocessor and summarizes the support
products available for it. The chapters describing the WE 32100 Microprocessor
architecture, instruction set, operating system considerations, and software generation
programs are also introduced.

1.1 Overview

The WE 32100 Microprocessor is a high-performance, single-chip, 32-bit central processing
unit designed for efficient operation in a high-level language environment. The WE 32100
Microprocessor represents a state-of-the-art concept in microprocessor architecture,
providing one of the most powerful and extensive instruction sets available with any
microprocessor. The WE 32100 Microprocessor, packaged in a 132-pin ceramic pin array,
is shown on Figure 1-1.

Figure 1-1. The WE 32100 Microprocessor

The system memory space is addressed over a full 32-bit address bus using either physical
or virtual addresses. The 32-bit address bus produces a vast memory space of more than
four billion bytes which increases the flexibility of memory organization and provides
ample space for the storage of software and data. Data can be read or written over the
separate 32-bit data bus in byte (8-bit), halfword (16-bit), or word (32-bit) lengths.

The WE 32100 Microprocessor is an efficient execution vehicle for operating systems and
high-level languages. The operating system instructions included in the instruction set
establish an environment that permits process switching and interrupt handling with a
minimum of operating system support. Other instructions allow the use of coprocessors
and provide the necessary signals for interfacing with the WE 32101 Memory Management
Unit for virtual memory systems.

1-1

INTRODUCTION
Architecture

1-2

Software support for the WE 32100 Microprocessor is available through the WE 321SG
Software Generation Programs (SGP). This collection of programs and utilities provides
everything necessary for rapid development of software. The high-level development
language is the C language, and the entire SGP resides in the UNLX Operating System.
The SGP includes a C compiler, an assembler, a link editor, and various utility programs.

Development support is available through the WE 321DS Microprocessor Development
System. The development system is a powerful development tool that can expedite the
integration of hardware and software into a finished application. It permits the debugging
of hardware and software to occur in parallel. The development system components
include the WE 321AP Microprocessor Analysis Pod, the WE 321SD Development
Software Programs, a UNIX System Host, and a logic analyzer. The modular design of
the development system enables the user to configure the system for maximum productivity
from initial hardware debug through the final stage of hardware and software integration.
The WE 321AP Microprocessor Analysis Pod is shown on Figure 1-2.

Prototyping and performance evaluation support is available through the WE 321EB
Microprocessor Evaluation Board. The evaluation board is a single-board microcomputer
evaluation system that provides a prototyping vehicle to evaluate the hardware and
software capabilities and performance of the WE 32100 Microprocessor in an application
environment. The board is supplied with a WE 32100 Microprocessor as the CPU, a

WE 32101 Memory Management Unit, a WE 32102 Clock, a ROM-based monitor,
read/write memory (RAM), and sockets for additional memory. Also included are address
decoding circuitry, RS-232C ports, programmable parallel I/0 lines, programmable
interval timers, and an interrupt controller. The WE 321EB Microprocessor Evaluation
Board is shown on Figure 1-3.

1.2 Architecture

The WE 32100 Microprocessor performs all the system address generation, control,
memory access, and processing functions required in a 32-bit microcomputer system.
Execution speed is enhanced by its unique pipelined architecture. Using this architecture,
the microprocessor overlaps the execution of instructions while tracking each separately. In
addition, as each instruction is fetched from memory it is cached in an internal instruction
cache, resulting in even greater operating efficiency.

The CPU utilizes a combination of address and data strobes and interface and control
signals to provide the bus protocol required for efficient transfer of data. The protocol
facilitates interfacing to commercial memories and peripherals, as well as providing wait-
state generation for handshaking with slow peripherals. In addition, the CPU also provides
special coprocessor signals for a high throughput coprocessing environment.

The architecture and a bus protocol for the WE 32100 Microprocessor is discussed in
Chapter 2. ARCHITECTURE AND BUS OPERATION.

INTRODUCTION

Architecture

]

Pvemina
conmimeaton

[Ce—>1

Figure 1-2. WE 321AP Microprocessor Analysis Pod

SesveweuEs o

CCLELLEL

FUTRRRERRN

Figure 1-3. WE 321EB Microprocessor Evaluation Board

INTRODUCTION
Instruction Set

1.3 Instruction Set

The WE 32100 Microprocessor supports a powerful instruction set that includes standard
data transfer, arithmetic, and logical operations for microprocessors, plus several unique
operations. Its many program control instructions (branch, jump, return) provide
flexibility for altering the sequence of execution. Other instructions are designed to aid in
process switching for operating systems by manipulating the context of the processor with a
minimum of code. In addition, special coprocessor instructions are included in the
instruction set to implement a high-speed interface with special purpose coprocessors
planned for the WE 32100 Microprocessor.

Eighteen addressing modes are provided that include special high-level language support
modes such as frame pointer short offset and argument pointer short offset. These modes
are designed for referring to local variables of high-level functions and function arguments.

Chapter 3. INSTRUCTION SET AND ADDRESSING MODES contains a detailed
description of the WE 32100 Microprocessor Instruction Set.

1.4 Operating System Support

The WE 32100 Microprocessor is designed for high-level language and operating system
support. To aid in the design of process-oriented systems, it provides:

e four execution privilege levels: kernel, executive, supervisor, and user
e flexible transfer of execution control between privilege levels

e capability to have the operating system contained within the address space of every
process

e support of explicit process switching by a scheduler
e implicit switching of processes through the interrupt structure

e layered exception handling structure, with different mechanisms used for different
exceptions.

The processor groups all of the switchable process context into a compact area in memory
called the process control block. This feature, plus the use of the special operating system
instructions and microsequences, provides the programmer with an excellent tool for the
creation and support of process-oriented systems.

Chapter 4. OPERATING SYSTEM CONSIDERATIONS discusses the techniques for
efficient operating system design using the WE 32100 Microprocessor and also describes
the use of the WE 32101 Memory Management Unit in a virtual memory operating
system.

INTRODUCTION

Software Generation Programs

1.5 Software Generation Programs

The WE 321SG Software Generation Programs (SGP) is a package of support tools used
to create and test programs for the WE 32100 Microprocessor. The SGP runs under the
UNIX Operating System and uses many features of the UNIX System shell. The SGP
allows the programmer to generate code in the high-level C language and test programs at
the source level. This improves productivity and program accuracy by freeing
programmers from the details of the hardware architecture associated with assembly
language programming.

The SGP contains a C compiler that converts C language programs into assembly language
programs. The assembly language programs are ultimately translated into object files by
the SGP assembler for the WE 32100 Microprocessor and link-edited into executable load
modules by the link editor (also contained in the SGP). Each of these tools preserves all
symbolic information necessary for meaningful symbolic testing at the source level. The
SGP also provides a variety of utilities that read and manipulate object files.

The SGP is described in detail in Chapter 5. SOFTWARE GENERATION PROGRAMS.

Chapter 2

Architecture and
Bus Operation

CHAPTER 2. ARCHITECTURE & BUS OPERATION

CONTENTS

2. WE 32100 MICROPROCESSOR
OVERVIEW ...

2.1 USER REGISTERS

2.1.1 General-Purpose Registers

(FO=18) vt eeenns 2-4
2.1.2 Frame Pointer 2-4
2.1.3 Argument Pointer.......ccocenernennns 2-4
2.1.4 Processor Status Word................ 2-4
2.1.5 Stack Pointer......ccccocevvervevrnecnnns 2-7
2.1.6 Process Control Block Pointer 2-7
2.1.7 Interrupt Stack Pointer 2-7
2.1.8 Program Counter.........c.ccorcreneen. 2-8
2.2 DATA HANDLING.ccccevvvrene 2-8
2.2.1 Data TYPeSs .ccccevervrerrernereneencsranen 2-8
2.2.2 Data in Memory ...ccococvecrvcnriencenne 2-10
2.2.3 Memory Management................. 2-10
2.3 SIGNAL SAMPLING
POINTS ..ottt ceeeeeenns 2-11
2.4 READ AND WRITE
OPERATIONS.....cooververiiriienienens 2-12
2.4.1 Read Transaction
Using SRDY ..cccovervenrcnicnnvorvoneane 2-13
2.4.2 Read Transaction
Using DTACKcoveveenveneresenens 2-15
2.4.3 Read Transaction With Wait
Cycle Using SRDY...cococvccnrvinrenene 2-16
2.4.4 Read Transaction With Two
Wait Cycles Using DTACK 2-17
2.4.5 Write Transaction
Using SRDY .ooeeeeirceenrrareraenaeenns 2-18
2.4.6 Write Transaction
Using DTACK ...ccovevverreveeinenene 2-18
2.4.7 Write Transaction With
Wait Cycle Using SRDY 2-18
2.4.8 Write Transaction With Wait
Cycle Using DTACK.....c.covvcuenne 2-22
2.5 READ INTERLOCKED
OPERATIONcocvvrierirrerirnnnens 2-22

2.6 BLOCKFETCH OPERATION 2-25
2.6.1 Blockfetch Transaction

UsIng SRDY .cvevvevvicenrvecrenvererenne 2-25
2.6.2 Blockfetch Transaction
Using DTACK ..c.covvvevinmcnveriennan 2-27

2.6.3 Blockfetch Transaction Using
DTACK With Wait
Cycle On Second Word. 2-28

2.6.4 Blockfetch Transaction Using
SRDY With Wait
Cycles On Both Words................ 2-29
2.7 BUS EXCEPTIONS
2.7.1 Faults .ooooooveriveininnnees
Fault With SRDY
Fault After DTACK .
2.7.2 Retry oo
2.7.3 Relinquish and Retry
2.8 BLOCKFETCH SPECIAL

2.8.1 Fault on First Word of

Blockfetch With Status

Code Other Than Prefetch 2-37
2.8.2 Fault on First Word

of Blockfetch With

Status of Prefetchccccovuennne 2-37
2.8.3 Retry.on First Word of

Blockfetchoeviveeerirccroneneincnns 2-37
2.8.4 Retry on Second Word of

Blockfetchc.ccovvevevarecvenierannee 2-37
2.8.5 Relinquish and Retry of

BIoCKfetCh ..vvvvevnerirnccsiincenennes 2-42

2.9 INTERRUPTSc.cooevn . 2-42

2.9.1 Interrupt Acknowledge................ 2-42
2.9.2 Auto-vector Interrupt..........co.c.. 2-45
2.9.3 Nonmaskable Interrupt............... 2-45
2.9.4 Quick Interruptccoocvvviriernernrans 2-48
2.10 BUS ARBITRATION........c.ce.... 2-48
2.10.1 Bus Request During a

Bus Transactionc..ovceeeveenennee 2-48
2.10.2 DMA Operationc.ccccoeveveveen 2-51
2.11 RESET ..cocvevecrirane e 2-52
2.11.1 System Resetccoevceveenrcrenennns 2-52
2.11.2 Internal Reset.....ccoocovvcrvivernnnnes 2-52
2.11.3 Reset Sequence.......vrunernes 2-54
2.12 ABORTED MEMORY

ACCESSES.......cccvmiimirinrnnen. 2-54

2.12.1 Aborted Access on PC
Discontinuity With
Instruction Cache Hit................. 2-55
2.12.2 Alignment Fault Bus Activity...
2.13 SINGLE-STEP OPERATION...
2.14 COPROCESSOR
OPERATIONS.....ccoevieririeeanena 2-58

CONTENTS

2.14.1 Coprocessor Broadcast 2-58
2.14.2 Coprocessor Operand Fetch...... 2-63
2.14.3 Coprocessor Status Fetch.......... 2-64
2.14.4 Coprocessor Data Write............ 2-65
2.15 EXCEPTIONAL

CONDITIONS. ..ot 2-66
2.16 TRACE MECHANISM 2-69
2.17 PIN ASSIGNMENTS 2-70

2.18 MICROPROCESSOR
OPERATING
REQUIREMENTSc.ccoevnenee

8.1 Electrical Requirements

8.2 Clocking Requirements

8.3 Thermal Requirements..............

9 Supplementary Protocol
Diagramsc.cceveevereenericrenreeneennns 2-87

ARCHITECTURE & BUS OPERATION

Overview

2. WE 32100 MICROPROCESSOR OVERVIEW

The WE 32100 Microprocessor is the first 32-bit microprocessor with separate 32-bit
address and data buses. Using either physical or virtual addresses, the 32-bit address

bus can access over four billion (2*?) bytes of system memory or peripherals. Data is read
or written over the 32-bit bidirectional data bus in either byte (8-bit), halfword (16-bit), or
word (32-bit) lengths and is processed internally over 32-bit internal data paths.

The execution speed of the microprocessor is enhanced by an internal instruction queue and
an internal instruction cache that store prefetched instructions. Also, the microprocessor’s
extensive use of pipelining allows overlapping of the execution of instructions while
tracking each one individually. Should a fault or interrupt occur during instruction
execution, the instruction that caused it can be easily determined and execution restarted.
This feature is essential for systems with demand-paged memory management.

Using a group of address and data strobes and interface and control signals, the
microprocessor controls information flow over the address and data buses. These signals
provide the timing required for transfer of data and facilitate interfacing to commercial
memories and peripherals. The microprocessor also accommodates wait-state generation to
allow handshaking with slow peripherals.

The WE 32100 Microprocessor consists of the four major sections shown on Figure 2-1.
These are the main controller, the fetch unit, the execute unit, and the bus interface
control. The main controller is responsible for acquiring and decoding instruction opcodes
and directing the action of the fetch and execute controllers as the specified instruction is
executed. The main controller also has the responsibility of responding to and directing the
handling of interrupts and exception conditions.

The fetch unit handles the instruction stream and performs memory-based operand
accesses. [t consists of a fetch controller, an instruction cache, an instruction queue, an
immediate and displacement extractor, and an address arithmetic unit (AAU). The fetch
controller directs the action of the elements in the fetch unit. The instruction cache is a 64
by 32-bit on-chip cache which is used to increase the microprocessor’s performance by
reducing external memory reads for instruction fetches. When an instruction fetch from
memory occurs, instruction data is placed in the cache and in the instruction queue. If
that instruction data is needed again, it is fetched from the cache rather than from external
memory, which improves performance. The instruction queue is an 8-byte first-in-first-out
queue that stores prefetched instructions. Instructions are taken from the queue for
execution, and the fetch controller fills it asynchronously with respect to instruction
execution. The immediate and displacement extractor provides address calculation data to
the AAU for its use in calculating 32-bit addresses.

The execute unit performs all arithmetic and logic operations, performs all shift and rotate
operations, and computes condition flags. It consists of:

o an execute controller that directs the actions of the elements in the execute unit

2-1

ARCHITECTURE & BUS OPERATION

Overview

e sixteen 32-bit registers that are user-accessible and include:
O nine general-purpose registers (r0—r8)
O seven dedicated registers (r9—r15)

e working registers that are used exclusively by the microprocessor and are not user-
accessible

© a 33-bit ALU that performs arithmetic operations on 32-bit data, with an extra bit that
is used whenever an operation requires a carry or borrow beyond 32 bits.

The bus interface control provides all the strobes and control signals necessary to
implement the interface with peripherals.

The WE 32100 Microprocessor pin assignments are summarized in 2.17 Pin Assignments.

MAIN CONTROLLER
FROM INSTRUCTION
QUEUE
aooress < 32
ke FETCH CONTROLLER EXECUTE CONTROLLER
T0 MAIN l
CONTROLLER
32-BIT
REGISTERS
I
64-WORD 8-BYTE :
INSTRUCTION —a(%—a INSTRUCTION = VORKING
CACHE QUEUE
BUS r REGISTERS[¥]
oaa "7 > merrace T
CONTROL T
r
! ;
FP
AP
IMMEDIATE | PSW | ARITHMETIC
& SP LOGIC
DISPLACEMENT |_Pcep | UNIT
EXTRACTOR ISP
PC
ADDRESS
INTERFACE ARITHMETIC
& .‘E’ UNIT
CONTROL
32 32 32 32 32 32
32 ABUS ® 32 CBUS
j= FETCH UNIT —— et EXECUTE UNIT ——pf

Figure 2-1. WE 32100 Microprocessor Block Diagram

2-2

ARCHITECTURE & BUS OPERATION

User Registers

2.1 USER REGISTERS

Figure 2-2 shows the programming model for the microprocessor’s sixteen 32-bit registers
(r0—r15). This register set is designed for efficient support of high-level language
program execution. All of these registers, except for the program counter (r15) and the
processor status word (r11), may be accessed in any addressing mode. The processor
status word (r11), process control block pointer (r13), and interrupt stack pointer (r14) are
privileged registers. These may be read at any time, but may be written only when the
microprocessor is in kernel mode (i.e., the operating system is in control). The other
registers may be read or written in any of the four execution levels.

31 161 15 87 0
r1s PROGRAM COUNTER (PC)
r14| INTERRUPT STACK POINTER (ISP)*
r13| PROCESS CONTROL BLOCK POINTER (PCBP)*
ri2 STACK POINTER (SP)
rii PROCESSOR STATUS WORD (PSW)*
ri0 ARGUMENT POINTER (AP)
r9 FRAME POINTER (FP)
r8 I l
] 1
T I
< I | o
r0 | |
31 18] 15 8|7 0
BYTE
\
HALFWORD
\- /
WORD

* KERNEL LEVEL PRIVILEGED

Figure 2-2. Programmer’s Model for User Registers

ARCHITECTURE & BUS OPERATION

General-Purpose Registers

2.1.1 General-Purpose Registers (r0—r8)

The nine general-purpose registers may be used for high-speed accumulation, for
addressing, or for temporary data storage. The first three registers (rO—r2) are the
microprocessor’s scratch registers. These three registers are used by the C compiler to
store temporary values during expression evaluation. They also pass and return specific
values during procedure calls. For example, r0 should always be used to return the value
of a procedure. If a floating point double value is returned from a procedure, it is stored in
r0 and rl. If a procedure returns a structure, then the pointer to that structure should be
returned to r2. In addition, registers rO0—r2 are implicitly used by the data transfer
instructions MOVBLW (move block of words), STRCPY (string copy), and STREND
(string end) and also by the MVERNO (move version number), INTACK (interrupt
acknowledge), ENBVJMP (enable virtual pin and jump), DISVIMP (disable virtual pin
and jump), GATE (system-call), and CALLPS (call process) operating system
instructions.

2.1.2 Frame Pointer

The frame pointer (FP), r9, points to the beginning location in the stack of a function’s
local variables. It is affected implicitly only by the save register (SAVE) and the restore
register (RESTORE) instructions.

2.1.3 Argument Pointer

The argument pointer (AP), r10, points to the beginning location in the stack where a set
of arguments for a function has been pushed. The AP is affected implicitly only by the
procedure call (CALL) and return (RET) instructions.

2.1.4 Processor Status Word

The processor status word (PSW), r11, contains status information about the
microprocessor and the current process. It is divided into 14 fields, as shown on Figure
2-3. Although the PSW is a privileged register, the microprocessor may alter some of its
fields at any execution level. Most instructions alter the N, Z, V, and C bits (condition
flags) in the PSW. In general, the PSW changes as a whole only when a process switch
occurs. The final values of the PSW bits are based on the result of the last calculation and
are latched into the PSW at the end of the instruction. The PSW may not be referenced
in some addressing modes.

Table 2-1 contains a description of each of the processor status word fields.

Bit |31 26| 25| 24| 23| 22|21 18] 17|16 13|12 11{10 9|8}7| 3| 2|10
Field |Unused [CFD |QIE |CD|OE|NZVC |TE| IPL | CM |PM |R|I|ISC|TM|ET

I

Figure 2-3. Processor Status Word

ARCHITECTURE & BUS OPERATION
Processor Status Word

Table 2-1. Processor Status Word Fields

Bit(s) | Field | Contents Description
0—1 ET Exception | This read-only field indicates the type of exception
Type generated during operations and is interpreted as:
Code Description
Bit 1 Bit 0
0 0 On Reset Exception
0 1 On Process Exception
1 0 On Stack Exception
1 1 On Normal Exception
(See 2.12 Exceptional Conditions.)
2 ™ Trace The read-only TM field enables masking of a trace trap.
Mask This bit masks the trace enable (TE) bit for the duration

of one instruction to avoid a trace trap. The TM bit is
set (1) at the beginning of every instruction and cleared
(0) as part of every microsequence that performs a
context switch or a return from gate (RETG) or when
any fault or interrupt is detected and responded to.

3—6 ISC Internal | This 4-bit code distinguishes between exceptions of the

State same exception type. The ISC is a read-only field. (See
Code 2.15 Exceptional Conditions.)

7-8 RI Register- | These bits control the context switching strategy. The I
Initial bit (bit 7) determines if a process executes from initial

Context or intermediate saved context. The R bit (bit 8, read
only) determines if the registers of a process should be
saved during a process switch. It also controls block
moves to change map information. (See Chapter 4.)

9—10 |PM Previous | This field defines the previous execution level. The code
Execution | is interpreted as:
Level Code Description
Bit 10 Bit 9
0 0 Kernel level
0 1 Executive level
1 0 Supervisor level
1 1 User level

11—-12 | CM Current | This field defines the current execution level. The code
Execution | for bits 11 and 12 is interpreted in the same manner as
Level that of bits 9 and 10 of the PM code, respectively.
Changes to the CM field via instructions with the PSW
as an explicit destination may affect the XMD pins
during a prefetch access. Therefore, only microsequence
instructions should be used to change the CM field state.

ARCHITECTURE & BUS OPERATION

Processor Status Word

Table 2-1. Processor Status Word Fields (Continued)

Bit(s)

Field

Contents

Description

13—16

IPL

Interrupt
Priority
Level

The IPL field represents the current interrupt priority
level. Fifteen levels of interrupts are available. An
interrupt, unless it is a nonmaskable interrupt, must have
a higher priority level than the current IPL in order to
be acknowledged. Therefore, level 0000 indicates that
any of the fifteen interrupt priority levels (0001 through
1111) can interrupt the microprocessor. Level 1111, the
highest interrupt priority level, indicates that no
interrupts (except a nonmaskable interrupt) can
interrupt the microprocessor.

17

TE

Trace
Enable

This bit enables the trace function. When TE is set (1),
it causes a trace trap to occur after execution of the next
instruction. Debugging and analysis software use this
facility for single-stepping a program. Changes to the
TE field via instructions with the PSW as an explicit
destination may cause unpredictable trace trap behavior
(i.e., the instruction that changed the TE field in the
PSW may or may not cause a trace trap). Therefore,
only microsequence instructions should be used to change
the TE field state.

18—21

NZVC

Condition
Codes

The condition codes reflect the resulting status of the

most recent instruction execution that affects them.

These codes are tested using the conditional branch
instructions and indicate the following when set (1):

N - Negative (bit 21) V - Overflow (bit 19)
Z - Zero (bit 20) C - Carry (bit 18)

22

OE

Enable
Overflow
Trap

This bit enables overflow traps when set (1). It is
cleared (0) whenever an overflow trap is detected and
handled.

23

CD

Cache
Disable

This bit enables and disables the instruction cache.
When the CD bit is cleared (0), the cache is used to
store and read text. When the CD bit is set (1), the
cache is not used. The instruction cache should only be
disabled when its use could cause problems, e.g., when
self-modifying code is executing. Changes to the CD
field via instructions with the PSW as an explicit
destination may corrupt the contents of the instruction
cache. Therefore, only microsequence instructions
should be used to change the CD field state.

ARCHITECTURE & BUS OPERATION
Interrupt Stack Pointer

Table 2-1. Processor Status Word Fields (Continued)
Bit(s) | Field | Contents Description

24 QIE | Quick- The QIE enables and disables the quick-interrupt
Interrupt | facility. If QIE is set (1), an interrupt is handled via the
Enable | quick-interrupt sequence. If QIE is cleared (0), the
interrupt causes a process switch (full-interrupt

sequence).
25 CFD | Cache When set (1), bit 25 disables instruction cache flushing
Flush (emptying of the cache’s contents) when a new process is

Disable | loaded via the XSWITCH_TWO microsequence (see
4.8.4 Microsequences). When cleared (0), the contents
of the cache are flushed when a new process is loaded
via the XSWITCH_TWO microsequence.

26—31 Unused | These bits are not used and must always be cleared (0).

2.1.5 Stack Pointer

The stack pointer (SP), r12, contains the current 32-bit address of the top of the execution
stack; i.e., the memory address of the next item to be stored on (pushed on) the stack or
the last item retrieved (popped) from the stack. The stack pointer and the related
instructions implement a LIFO (last-in-first-out) queue that supports efficient subroutine
linkage and local variable storage.

2.1.6 Process Control Block Pointer

The process control block pointer (PCBP), r13, points to the starting address of the process
control block for the current process. The process control block is a data structure in
external memory that contains the hardware context of a process when the process is not
running. This context consists of the initial and current contents of the processor status
word, program counter, and stack pointer; the last contents of registers rO through r10;
boundaries for an execution stack; and block move specifications (and possibly memory
specifications) for the process. The PCBP may only be written when the microprocessor is
in kernel mode.

2.1.7 Interrupt Stack Pointer

The interrupt stack pointer (ISP), r14, contains the 32-bit memory address of the top of
the interrupt stack. This stack is used when an interrupt request is received and also by
the call process (CALLPS) and return to process (RETPS) instructions. The ISP may

only be written when in kernel mode.

ARCHITECTURE & BUS OPERATION

Program Counter

2-8

2.1.8 Program Counter

The program counter (PC), r15, contains the 32-bit memory address of the instruction
being executed or, upon completion, the starting address of the next instruction to be
executed. The PC may not be referenced in some addressing modes and is usually
implicitly referenced by all program control instructions and all function calls and returns.

2.2 DATA HANDLING

All operations within the microprocessor are performed on 32-bit quantities, but data may
be read or written as a byte, halfword, or word. Bits are numbered from right to left,
starting at 0, and are right-adjusted on the address/data bus. The microprocessor
automatically extends a byte or halfword to 32 bits before performing an operation. Zeros
fill the high-order bits for unsigned operations, while the sign bit (bit 7 for bytes, bit 15 for
halfwords) fills the high-order bits for signed operations. See Chapter 3 for a detailed
description of data handling.

2.2.1 Data Types
The WE 32100 Microprocessor supports the following integer data types:

® byte A byte is an 8-bit quantity that may appear at any address. Bits are
numbered from right to left starting with 0, the least significant bit (LSB),
and ending with 7, the most significant bit (MSB). (See Figure 2-4.)

® halfword A halfword is a 16-bit quantity that may appear at any address that is
divisible by 2. Bits are numbered from right to left starting with 0, the
LSB, and ending with 15, the MSB.

® word A word is a 32-bit quantity. A word may appear at any address that is
divisible by 4. Bits are numbered right to left starting with 0, the LSB,
and ending with 31, the MSB.

A bit field data type is also supported by the WE 32100 Microprocessor. A bit field is a
sequence of 1 to 32 bits contained in a base word. The field is specified by the address of
its base word, a bit offset, and a width. The bit offset ranges from 0 to 31 and identifies
the starting bit of the field. The offset is numbered from the LSB of the base word and
corresponds to the number of the bit in the word. That bit becomes bit 0, the LSB, of the
field. The width ranges from 0 to 31 and specifies the size of the field. (Width plus one is
the number of bits in the field.) The width is numbered from right to left in the field and
corresponds to the bit number of the field’s MSB. Fields do not extend across word
boundaries and will wrap around from the MSB to LSB when the word boundary is
reached. Figure 2-5 illustrates a bit field located at address a, with an offset of 6, and a
width of 9. (Notice that the field contains 10 bits, one bit more than the width.)

ARCHITECTURE & BUS OPERATION

BITS 7 0
MsB LSB
A. BYTE DATA
BITS 15 817 0
I | |
l
nsB LSB

B. HALFWORD DATA

Data Types

BITS 31 24,23 16,15 8,7 0
I | | | I
| | | 1\
MSB LSB
C. WORD DATA

Figure 2-4. Bit Order of Data

MSB LSB
31 24123 1G|15 8|7 0

lXoooX:Xaoo X]|01111D11:01X000X]

:6—— WIDTH —9:6—-5
|

| OFFSET

BASE WORD AT ADDRESS a———f

MSB LSB

9 0

LEGEND: 0t 11101101
BASEWORD ADDRESS = a
OFFSET = 6
WIDTH = 8

Figure 2-5. Bit Field Data Type

229

ARCHITECTURE & BUS OPERATION

Data in Memory

2.2.2 Data in Memory

Memory locations consist of a series of 8-bit (byte) locations for storing data. Halfwords
occupy two consecutive memory locations and words occupy four consecutive memory
locations. Boundary restrictions apply to the starting location of halfwords and words.
Halfwords may only appear at addresses divisible by 2, and words may only appear at
addresses divisible by 4. The microprocessor generates a fault if these boundaries are

violated.

During memory reads the memory system must provide a word of data. The memory
system must ignore the two lowest address bits (ADDRO00 and ADDROI1) and provide the
word data beginning at this resulting word address.

Memory writes require that the memory system be set up in byte format, i.e., each byte
must be writable independent of all other bytes. During memory writes, only the byte or
bytes the CPU wants to write are to be changed. The remaining byte or bytes of the same
word, if any, must not be altered. The CPU informs the memory system which byte(s)
should be written based on the contents of the data size bits (DSIZEO and DSIZE1) and
the lower two address bits (ADDROO and ADDRO1). Table 2-2 indicates which byte(s)
should be written based on the following byte addressing.

Data | 31

24

23 16

15 8

7 0

Byte Byte 0

Byte 1

Byte 2

Byte 3

!

Increasing Addresses

Table 2-2. Memory Write Summary

Memory Byte(s) Written

DSIZE1 DSIZEO ADDRO1 ADDROO| Byte 0 Byte 1 Byte 2 Byte 3
0 0 (Word) 0 0 Written |Written {Written | Written
1 0 (Halfword) 0 0 Written Written Unchanged | Unchanged
1 0 Unchanged | Unchanged | Written Written
1 1 (Byte) 0 0 Written |Unchanged |Unchanged |Unchanged
0 1 Unchanged | Written Unchanged | Unchanged
1 0 Unchanged | Unchanged | Written Unchanged
1 1 Unchanged | Unchanged | Unchanged | Written

Note: For write transactions, any combination of DSIZE1—DSIZE0O and ADDRO1—ADDROO not
indicated in the table generates an alignment fault.

2.2.3 Memory Management

Memory management enables the operating system to efficiently manage the memory
space for single and multiple processing applications. The memory management concepts
are implemented with an external memory management unit (MMU) interfaced directly to
the microprocessor. The MMU manipulates the microprocessor’s vast address space by

2-10

ARCHITECTURE & BUS OPERATION
Signal Sampling Points

accepting virtual addresses from the microprocessor and translating them into physical
addresses (the physical address of the data). Therefore, the MMU can provide a vast
address space per process (over four billion bytes of virtual or physical address space).

2.3 SIGNAL SAMPLING POINTS

The WE 32100 Microprocessor utilizes two phase-shifted input clocks (CLK23 and
CLK34) as depicted on Figure 2-6. The CPU samples all inputs at the points indicated on
this figure. This figure can be used as a reference for the protocol diagrams in the sections
that follow.

SYNCHRONOUS
POINT SAMPLING
POINT
CLK23
CLK34 0 1]\ 2 /3 5
BUSRQ IPLO-IPL3 DTACK FAULT* DATAOO-DATA3I

BRACK (cPU NMINT FAULT RETRY*

NOT MASTER) AVEC . RETRY RRREG*
DONE gg%gT RRREQ SRDY
BLKFTCH
RESETR

* double latched

Notes:

1. BUSRQ, BRACK, IPLO—IPL3, NMINT, AVEC, INTOPT, STOP, RESETR are
sampled repetitively one CLK34 cycle apart (i.e., on every clock cycle).

2. After DTACK is asserted, FAULT, RETRY, RRREQ and BLKFTCH are sampled once

at the synchronous sampling point. If FAULT, RETRY, or RRREQ are asserted prior

to or at the same time as DTACK, then they are sampled once and double latched. If

SRDY is asserted, then FAULT, RETRY, RRREQ and BLKFTCH are sampled once at

the synchronous sampling point.

BLKFTCH must remain asserted until negation of data strobe (DS).

4. DSHAD is not latched and can be asserted at any time subject to the following
conditions: DSHAD should only be asserted during a CPU-initiated transaction while
AS is active and DTACK, SRDY, and FAULT are inactive. Unless RETRY or RRREQ
is active, DSHAD should only be negated while AS is still active and DTACK, SRDY
and FAULT are inactive. If RETRY or RRREQ is active, then DSHAD should be
negated one cycle after AS is negated.

hed

Figure 2-6. Signal Sampling Points

2-11

ARCHITECTURE & BUS OPERATION
Read & Write Operations

The bus transactions that are described in the upcoming sections share the following
attributes. The read/write (R/W) output remains in its mode (high, logic 1, for read
transactions and low, logic 0, for write transactions) for the entire transaction. The cycle
initiate (CYCLEI output goes active for two clock cycles at the beginning of each
transaction. The CPU asserts the data ready (DRDY) output at the end of the transaction
if there are no bus exceptions (fault, FAULT; retry, RETRY; or relinquish and retry
(RRREQ) during the transaction.

The address bus (ADDR0O0—ADDR31) is driven for the entire transaction if the CPU is
operating in physical mode. If the CPU is operating in virtual mode, the CPU only drives
the address bus during the first and second clock states. (One clock state is half a clock
cycle.) The CPU 3-states its address bus during the third clock state so that the MMU
can drive the translated physical address onto the bus.

The data size bits (DSIZE0—DSIZE]) indicate the size of the transaction (byte, halfword,
word, or double word) and are driven for the entire transaction. The access status code
(SAS0—SAS3) is driven one clock cycle before the transaction starts and remains active
for two additional cycles during the transaction. This 4-bit code indicates the type of
transaction being performed. At clock state four, the access status code is changed to
reflect the next operation (if the next operation is a bus transaction) or to "no operation"
(if the next operation is not a bus transaction). The leading edge of CYCLEI can be used
to latch the access status code.

2.4 READ AND WRITE OPERATIONS

The WE 32100 Microprocessor performs zero wait-state read and write accesses in three
clock cycles. These accesses are performed in two stages. The microprocessor first outputs
the address and the control signals necessary for the given operation. Once these signals
have had time to settle, the data transfer takes place. All accesses are followed by a
vestigial cycle to allow enough time for a memory management unit to release the shared
address bus.

Two inputs that allow handshaking between the CPU and slow slave devices are provided.
External devices can cause the CPU to insert wait cycles during a bus transaction through
the use of the synchronous ready (SRDY) input and the data transfer acknowledge
(DTACK) input. Wait cycles prolong a bus transaction which allows slave devices more
time to place data on the bus during a read transaction and more time to pick up data
from the bus during a write transaction.

During bus transactions the CPU samples the DTACK and SRDY inputs at their respective
sampling points, as shown on Figure 2-6. If either input is active (low) at its sampling
point, no wait cycles are inserted and the transaction completes in three clock cycles.
However, if neither DTACK nor SRDY is sampled active, wait cycles are inserted, and the
CPU samples each input at cycle intervals from its respective sampling point until either
input is sampled active. At this point no more new wait cycles are generated and the bus
transaction completes one clock cycle after the completion of the current wait cycle.

ARCHITECTURE & BUS OPERATION
Read Transaction Using SRDY

In the following read and write operation descriptions, the term "asserted” means that a
signal is driven to its active state either by the microprocessor (outputs) or by an external
device (inputs). The term "negated" means that the signal is driven to its inactive state. A
bar over a signal name (e.g., AS) indicates that the signal is active low, logic 0.

2.4.1 Read Transaction Using SRDY

Figure 2-7 illustrates a read transaction with zero wait cycles (3 cycle access) using SRDY
to terminate the access. The read transaction starts with the CPU driving the address bus
(ADDR00—ADDR31) and the data size outputs (DSIZEO—DSIZE1), negating the
read/write (R/W) output to indicate that a read operation is being performed, and
asserting the cycle initiate (CYCLEID output at the beginning of clock state zero.

For read operations the address strobe (AS) and data strobe (DS) have the same timing.
The CPU latches data driven onto the data bus by the addressed device at the end of clock
state four, when the CPU negates AS and DS. Data can be driven onto the bus while AS
and DS are active.

The transaction illustrated on Figure 2-7 is terminated by the assertion of SRDY by the
addressed device. SRDY is the acknowledgement that the addressed device is putting the
data onto the data bus and that the CPU can latch the data and terminate the transaction.

SRDY is synchronously sampled at the end of clock state three.

The read transaction depicted on Figure 2-7 completes in three clock cycles (zero wait
cycles) because SRDY is active when sampled at the end of the clock state three.

2-13

ARCHITECTURE & BUS OPERATION
Read Transaction Using SRDY

CLK23

CLK34

SASO-
SAS3

DSIZEO-
DSIZEI

ADDROO-
ADDR3I

S, DS

w0

2-14

HVARNYARNYVARNVARNS
e/ N2/ \k L/V A EYER
CURRENIT VALID| X NTXT VAL|1D

_ (X)

_]

LG v) 3 - STATE IF VIRTUAL

R NNANY Y i

: { vap YO0

- X OGO
OOUUOXXX) AR

~ AN\ 7774

(77

) 7777

Note: Zero Wait Cycles.

Figure 2-7. Read Transaction (Using SRDY)

ARCHITECTURE & BUS OPERATION
Read Transaction Using DTACK

2.4.2 Read Transaction Using DTACK

The read transaction using DTACK is identical to the read transaction using SRDY, except
that the addressed device asserts DTACK to acknowledge that it is putting data on the data
bus instead of SRDY (see Figure 2-8). DTACK is asynchronously sampled at the end of
clock state two and is double latched to avoid metastability.

The read transaction shown on Figure 2-8 completes in three clock cycles because the CPU
samples DTACK active at the end of clock state two. Upon sampling DTACK active, the
CPU latches the data and terminates the transaction.

cLK23 —_ _/— N /TN /TN |/ _|

et et O E
Rt curReNT vaLD X ((([NexT vaLp
|| N

o~ (0 >
[[[[]

)

ADDROO- (LK vaun) 3 - STATE IF VIRTUAL
S, 05 AN £//f
vaun OO00)

-

wn

DATA00-
DATA3I

AN

3
-
£
-

3
2
o
=
=
=
/
>
N
§
~d

v =TT
CYCLE j\: W\ \ // 4/

Note: Zero Wait Cycles.

Figure 2-8. Read Transaction (Using DTACK)

2-15

ARCHITECTURE & BUS OPERATION
Read Transaction With Wait Cycle Using SRDY

2.4.3 Read Transaction With Wait Cycle Using SRDY

The CPU inserts wait cycles during bus transactions if it does not sample DTACK active at
the end of clock state two or SRDY active at the end of clock state three, and no bus
exceptions occur. As illustrated on Figure 2-9, the CPU inserts one wait cycle because
DTACK is not active at the end of clock state two and SRDY is not active at the end of
clock state three. Only one wait cycle is inserted during the transaction because SRDY is
active when sampled at the end of the wait cycle. The CPU then latches the data and
terminates the transaction.

VANV ARNIVERNVARIVARNI
ewse N\ o /N2 e s xS
g EEETRTT CEAL T VA
e _ (K — —
S e i E— e ——

S, 0 AN Y
vaup YOOOOOOO()

o
>
=
>
o
=1

1

AN

o YO

swov OO | N

w7 /7777

wn = TTI]
)

NARA L1

JSE
:
:
2

CYCLEI

Figure 2-9. Read Transaction With One Wait Cycle (Using SRDY)

2-16

ARCHITECTURE & BUS OPERATION
Read Transaction With Two Wait Cycles Using DTACK

2.4.4 Read Transaction With Two Wait Cycles Using DTACK

The CPU can insert multiple wait cycles during bus transactions, as illustrated on Figure
2-10. In this figure the CPU does not receive an acknowledge (DTACK or SRDY) for two
clock cycles. Neither DTACK nor SRDY is active during clock states two and three or the
first wait cycle. DTACK is sampled active in the middle of the second wait cycle, causing
the termination of wait cycle generation. The CPU then latches the data and terminates
the transaction.

was | /TN T\ ARV ARNYARNI
cLK34 r\ o /1 \ 2 s\ w /w\Xw/w\Nae/s \x /[x
S CURRENT VALID (({{ NEXT VALDD
_ L 7]
Pern _ LK
_ L 1 1 [1 T |
A K vao) 3 - STATE IF VIRTUAL)
7S, DS AN (/7]

oK%, o 00
o Y00 \

DRDY \ / 7
R/W __zy Jr
TYCLE r\< N /

Figure 2-10. Read Transaction With Two Wait Cycles (Using DTACK)

2-17

ARCHITECTURE & BUS OPERATION
Write Transaction Using SRDY

2.4.5 Write Transaction Using SRDY

During write transactions the R/W output is held low (logic 0) for the entire transaction.
The CPU drives the data bus with the data to be written from clock state two until the end
of the transaction. The access status code at the beginning of a write transaction is "write"
(SAS3—SAS0 = 1010).

Unlike read transactions wﬁre AS and DS have the same timing, the CPU asserts DS one
cycle after it has asserted AS, allowing the addressed device to latch the data with either
the leading or trailing edge of DS.

Figure 2-11 illustrates a write transaction with the addressed device using SRDY as the
acknowledgement. By asserting SRDY the addressed device indicates to the CPU that it is
ready to latch the data on the data bus. SRDY is synchronously sampled at the end of
clock state three. On Figure 2-11, the CPU sampled DTACK inactive at the end of clock
state two; however, it sampled SRDY active at the end of clock state three. As a result, the
CPU terminates the transaction.

2.4.6 Write Transaction Using DTACK

The write transaction using DTACK is identical to the write transaction using SRDY,
except that the addressed device asserts DTACK to indicate that it is ready to latch the
data on the data bus. DTACK is sampled asynchronously at the end of clock state two.

On Figure 2-12,the CPU samples DTACK active at this time and proceeds to terminate the
transaction.

2.4.7 Write Transaction With Wait Cycle Using SRDY

Wait cycle insertion for write transactions is similar to wait cycle insertion for read
transactions. Just as in read transactions, the CPU inserts wait cycles if DTACK is not
active when sampled at the end of clock state two, SRDY is not active when sampled at the
end of clock state three, and no bus exceptions occur.

Figure 2-13 illustrates a write transaction with two wait cycles. The CPU begins wait
cycle insertion because DTACK is not active at the end of state two and SRDY is not active
at the end of state three. A second wait cycle is inserted because, again, neither input was
active when sampled during the first wait cycle. The addressed device finally asserts
SRDY at the end of the second wait cycle, and the CPU terminates the transaction.

2-18

ARCHITECTURE & BUS OPERATION
Write Transaction With Wait Cycle Using SRDY

CLK34 '

CLK23LIKFXFL_I_L_
/3) /5 [x
)

. _2_/ "/ _X_/ \
*hsa CURRENT VALID ((C{{ NexT vaD
s ~ (0 — —
ofses _ (LK VAu|D) | 3 | sme|m v.RTlAL |

S JNRANY /1
N NN\ A

P DATAS (K vaLD)

srov_ ROCCRXCKO00 AXRXOCROCUO

evare _ \\\ 111/

Note: Zero wait cycles.

Figure 2-11. Write Transaction (Using SRDY)

2-19

ARCHITECTURE & BUS OPERATION
Write Transaction With Wait Cycle Using SRDY

CLK23

CLK34

SASO-
SAS3

DSIZEO-
DSIZEI

ADDROO-
ADDR3I

AS

DS

DATAOO-
DATA3I

R/W

2-20

i anNVanNVanuVanV
REVEARCY EACNERCYE
cumen vap Y (vt wao

_ I]

_

" (X T e

T [T777

B o\ /7777

= e
VORI 0N LTI
X

_ /777

Ty

EARNNY L7777

Note: Zero wait cycles.

Figure 2-12. Write Transaction (Using DTACK)

ARCHITECTURE & BUS OPERTEON
Write Transaction With Wait Cycle Usin SRDY

VAR VA RNVARNVARUVARSVERN

CLK34 \

) /w \ 4 5

N©° /!

\ 2 / 3 \ W w h w

SASO-

Shes CURRENT VALID L NEXT VALID
|| N
e _ (K

| [] [1T [

ADDRO% KL vaup) 3 - STATE IF VIRTUAL)

__/ /!

sy €« vaLD)

v Y
T, L7777

Figure 2-13. Write Transaction With Two Wait Cycles (Using SRDY)

2-21

ARCHITECTURE & BUS OPERATION
Wrie Transaction With Wait Cycle Using DTACK

2.4.8 Write Transaction With Wait Cycle Using DTACK

The write transaction shown on Figure 2-14 is another example of wait cycle insertion. In
this transaction the addressed device asserts DTACK to indicate that it is ready to latch the
lata, and that therefore, no more wait cycles are to be inserted.

Neither DTACK nor SRDY is active at its initial sampling point and, as a result, the CPU
inserts a wait cycle. When the CPU samples DTACK a second time during the wait cycle,
DTACK is now active. The CPU can then terminate the transaction.

Additional protocol diagrams for read and write operations are included in
2.19 Supplementary Protocol Diagrams.

2.5 READ INTERLOCKED OPERATION

Read interlocked operation consists of a memory fetch (read access) and one or more
internal microprocessor operations, followed by a write access to the same memory
location. Once the read access has been completed, the read interlocked operation may not
be preempted other than by a reset. This prevents another process from altering data in
memory which is being operated on by the current process. If a fault occurs during the
read access, the read interlocked operation terminates without going through the write
access.

Figure 2-15 illustrates a read interlocked transaction. Note that the access status code is
"read interlocked” (SAS3—SASO = 0111) for both transactions and that the address
remains the same for both transactions. The read portion and the write portion of the
transaction are standard read and write transactions.

2-22

ARCHITECTURE & BUS OPERATION
Read Interlocked Operation

CLK23 —__/____/

VARNVARNVARN
CLK34 —\ 0 /l_\ [w ;X//T\

]
)
)

—_ _2 / " / _4 / 5 W \
%6383 CURRENT VALID ((NEXT VALID
_ L]
Poemm _ LK I -H
ADDROOS : (K van) 3 - STATE IF VIRTUAL

= PARNA L/
N AN 1/

P/OATA (o f vauD)

Ry
N,
=|
I /l
—

NRRA
v T\ 7777

”

Figure 2-14. Write Transaction With One Wait Cycle (Using DTACK)

2-23

Tt

CLK23

CLK34

SASO-
SAS3

DSIZEO-
DSIZEI

ADDROO-
ADDR3I

DRDY

READ INTERLOCKED

NEXT VALID

N I

| |

~
8
1~
=

N N N A N N N I

3 - STATE IF VIRTUAL D((({ vap) 3 - STATE IF VIRTUAL

R R NN

(///)

/ S AN\

[/

VALID }

XX

QUGN

XXX

(7 Ty 77

Notes:

1. Number of cycles between the read transaction and write transaction is four for swap word interlocked (SWAPWI) and

six for swap halfword interlocked (SWAPHI) and swap byte interlocked (SWAPBI) instructions.

2. Zero wait cycles.

Figure 2-15. Read Interlocked Transaction (Using DTACK)

uonerdQ paydopdju] peay

NOILVIddO SNd ¥® HINLIOALIHOAY

ARCHITECTURE & BUS OPERATION
Blockfetch Transaction Using SRDY

2.6 BLOCKFETCH OPERATION

The CPU can fetch two words of instruction code in one bus transaction via a blockfetch
operation. The CPU generates one address, and the memory provides two words of
instruction code. This reduces the number of cycles that it takes to fetch two words. The
CPU starts the transaction with the DSIZE of double word, which indicates that it is ready
to perform a blockfetch.

If the memory is designed to handle blockfetch, it will respond with the blockfetch
(BLKFTCH) signal and an acknowledge signal, either SRDY or DTACK.

2.6.1 Blockfetch Transaction Using SRDY

After the memory issues BLKFTCH and SRDY, the CPU latches the data being sourced by
the memory during clock state four, removes DS, and keeps AS in the active state. One
cycle later the CPU reissues DS and is ready to latch the second word.

The memory drives the data bus with the second word and a SRDY. The CPU samples the
SRDY at the end of clock state seven, then latches the data during clock state eight and
terminates the transaction. This operation is shown on Figure 2-16.

AS stays low for both words fetched. DS goes inactive for one cycle in between the first
and second words. DSIZE changes from double word to word at clock state six. R/W is
held in the read mode for the entire transaction. Only one CYCLEI is issued for this
transaction. Two DRDY’s are issued, one for each word. The BLKFTCH pin is sampled
only with the first SRDY. It is not used during the second word. The SAS code for the
first word can be "instruction fetch," "instruction fetch after PC discontinuity,"” or
"prefetch.” SAS for the second word is always "prefetch.” If the memory does not issue a
BLKFTCH with the acknowledgement on the first word then the CPU will latch the data
and terminate the transaction by removing both AS and DS. It will then precede to start
up a second read with SAS of "prefetch" and issue a new address.

For a blockfetch transaction, the CPU issues only one address. If it is in virtual mode the
CPU 3-states the address during clock state two which allows the MMU to drive the
physical address for fetching both words. Also note that the CPU is fetching the two
words from a double word address block. It will ask for either the even or odd address
first, as indicated by the value on the address bus. For the second word it expects the
memory to provide the data corresponding to the address location with ADDR02
complemented. This is the other corresponding word from the double word block.

For example, assuming physical addressing, the CPU drives ADDR with 0003C000.
Memory provides data for the first word corresponding to location 0003C000. Memory
provides data for the second word corresponding to location 0003C004.

As another example of physical mode, consider the CPU driving ADDR with 00078004.
Memory provides data for the first word corresponding to location 00078004. Memory
provides data for the second word corresponding to location 0007800.

2-25

ARCHITECTURE & BUS OPERATION
Blockfetch Transaction Using SRDY

je—————— FIRST WORD FETCH ———bje—— 2ND WORD FETCH —]
awes | /] RNVARNVAREYE

\ / \ / \
CLK34_PO(1 2 3 a /s 6 f 1\ 8 f o x [x
/t— INSTRUCTION FETCH/PREFETCH
sa%0: 4 (L st prereten XC(((NEXT VALID

_ [j’< | |
DSIZED- k_{((DOUBLE WORD X (L WORD j

_ 1T T
ADDRO% L van) 3 - STATE IF VIRTUAL

% AARARY L7777
BRI RN 777 o

L
3
N

%ér
:
-

—
DATA3I {_WORD |

DTAR QG UOQUUOCRY | XX
A

// /

(=)
cl
=<
]
_
-
e
N
N
~
]
P
L

Note: Zero wait cycles.

Figure 2-16. Blockfetch Transaction (Using SRDY)

2-26

ARCHITECTURE & BUS OPERATION
Blockfetch Transaction Using DTACK

2.6.2 Blockfetch Transaction Using DTACK

This transaction (see Figure 2-17) is the same as Figure 2-16 except the acknowledgement
used by the memory is DTACK. On the first word DTACK is sampled by the CPU at the
end of clock state two. BLKFTCH is sampled at the end of clock state three which is the
same as on Figure 2-16. For the second word, DTACK is sampled at the end of clock state
six.

je————— FIRST WORD FETCH —————sla—— 2ND WORD FETCH —]

- |
wo /MMMl
x N

CLK34)

5 \ 6 7 8 4 9 X

0 1
\ / 2 3 4 \
—— INSTRUCTION FETCH/PREFETCH

0% ¥ (O wst.prereren X (C(next valo
|

_ L
psizeo- (¢ DOUBLE WORD)(<< (WORD
_ L] L 1 []

A _ << < VALID) 3 - STATE IF VIRTUAL
B AN\ 17777
0 AN\ 4 R \ /
DA : @ORD | @orzo 2

DTATK XX SEEEELN AN
sov_ QCOOCOGROOCRKOOUOUUOOOC AR

sxeen_OQUGRCOCRIOO0AN. | AQOGRXOCRIXOOCROOUOOCURXX)

ovore \ 7

Note: Zero wait cycles.

Figure 2-17. Blockfetch Transaction (Using DTACK)

2-27

ARCHITECTURE & BUS OPERATION
Blockfetch Transaction Using DTACK With Wait Cycle on Second Word

2.6.3 Blockfetch Transaction Using DTACK With Wait Cycle on Second Word

In this case (see Figure 2-18), during the fetch of the second word there was no DTACK
during clock state six nor SRDY during clock state seven. Therefore, the CPU inserted a
wait cycle. It sampled DTACK during the first clock state "W," then latched the data and
terminated the transaction.

waes _ | /7] VARNVARNVARNVARNVE
NN R

CLK34 j 0 | 3\ 4 /[s 6 7 W 9 X
INSTRUCTION FETCH/PREFETCH
e 4 (L wst. prereten X(((NEXT VALID
psizEo : ({(DOUBLE WORD ({{ WORD
ADOROO. : (Y vaun) 3 - STATE IF VIRTUAL

a
\
\

DATAOO- am v
DATAS — — WORD | {_WorD 2

]
:
=
B
=
=
5
=
:

oY _ B g N\ A
R/ _ZZZ’
BrRrre XOOOCOCOCOOOOON

2
=
=
=
=

Note: Wait cycle on second word.

Figure 2-18. Blockfetch Transaction Using DTACK With Wait Cycle on Second Word

2-28

ARCHITECTURE & BUS OPERATION
Blockfetch Transaction Using SRDY With Wait Cycles on Both Words

2.6.4 Blockfetch Transaction Using SRDY With Wait Cycles on Both Words

During the fetch of the first word in this transaction, the CPU did not sample a DTACK
during clock state two nor a SRDY during clock state three (see Figure 2-19). It inserted
a wait cycle. During the second clock state "W," it sampled SRDY and BLKFTCH, then
latched the data and terminated DS. The CPU proceeded to the second fetch. During
clock state six it did not sample DTACK nor a SRDY during clock state seven. The CPU
inserted a wait cycle. During the second clock state "W," it sampled SRDY, then latched
the data and terminated the transaction.

CLK34 _-—\ h
saso- 4 —— & {{{ INST. PREFETCH X {{{ NEXT VALID
_ T |] | I
osizeo. _ < (< (DOUBLE WORD ((< WORD
- I I I
ABDROO- B <<<(VALID) 3 - STATE IF VIRTUAL)
i " 4
oS _ A _/ (///]
oA = (oo (om0 2
TR XXX KXY N0 RO
smo7 _ QOQGROCOROCCRY | OO QOO0 | XX LXK
oY \ \\
R/W __/77
arerren . O00CROOCROOC LOOOROOOKRIXXEXXOONAXXK

Note: Wait cycle on both words.

Figure 2-19. Blockfetch Transaction (Using SRDY)

2-29

ARCHITECTURE & BUS OPERATION

Bus Exceptions

2.7 BUS EXCEPTIONS

Bus exceptions cause the termination of the current memory access and result when an
access retry is required or when a fault occurs during an access. The three bus exceptions
are fault, retry, and'relinquish and retry.

A fault is the result of an error condition during a bus cycle. An external device reports
errors to the CPU (such as address translation and memory faults) by asserting the fault
input (FAULT). This causes the CPU to terminate the access and perhaps execute a fault
handling routine. The WE 32101 Memory Management Unit uses the FAULT input when
it detects that a virtual address corresponds to data that is not presently in physical
memory. The MMU also generates a fault if it detects an error condition when it attempts
to translate the virtual address. A retry causes the CPU to retry the access. An external
device requests a retry by asserting the RETRY input. A relinquish and retry causes the
microprocessor to give up its bus and retry the preempted access once the bus has been
returned to its control. An external device requests a relinquish and retry by asserting the
RRREQ input.

Table 2-3 describes how the microprocessor handles the simultaneous assertion of two or
more bus exceptions. The term negated indicates the signal is driven to its inactive state.
2.7.1 Faults

A bus transaction can be terminated by a bus exception: in this case, FAULT without a
DTACK or SRDY (see Figure 2-20). On Figure 2-20, the CPU inserted two wait cycles

Table 2-3. Simultaneously Asserted Exception Conditions*

Simultaneously

Asserted Signals Behavior

RRREQ, RETRY, | The relinquish and retry request (RRREQ) is honored first. The
FAULT microprocessor acknowledges this request by relinquishing the bus and
then asserting the relinquish and retry request acknowledge (RRRACK)
output. The access is retried once RRREQ and RETRY are negated by

the requesting devices. If the fault (FAULT) input is still asserted
during the retried access, the fault will be honored (recognized). The
fault input will be recognized only during the retried access.

RRREQ, RETRY | The relinquish and retry request (RRREQ) is honored first. The
microprocessor 3-states the appropriate signals and then asserts the
relinquish and retry acknowledge output (RRRACK). The access is
retried once RRREQ and RETRY are negated.

RRREQ, FAULT | Same as in behavior for RRREQ, RETRY, and FAULT simultaneously
asserted.

RETRY, FAULT | The RETRY request is honored first. The FAULT will be recognized on
the retried access if it is still asserted.

* Table 2-3 applies only when the microprocessor is the bus master.

2-30

ARCHITECTURE & BUS OPERATION
Faults

because it did not receive an acknowledge or a bus exception. During the third clock state
"W," the CPU asynchronously sampled FAULT and terminated the transaction. Note that
if a DTACK was also sampled with the FAULT during the third clock state "W," the figure
would still look identical.

Upon the faulted transaction, the CPU will proceed to the fault handler to process the
exception. However, for a faulted prefetch, the CPU ignores the data, continues with its
current instruction execution, and does not enter the fault handler. If the CPU needs this
instruction later, it will do an instruction fetch, and if this is also faulted, the CPU will
proceed with the fault handler. At the end of the transaction, DRDY is not issued starting
with clock state five because the CPU sampled the FAULT. If this bus transaction is a
write, the CPU will sample FAULT the same way as in a read case. There are some
differences for a blockfetch which can be seen in 2.8 BLOCKFETCH SPECIAL CASES.

k23 /— —_ ’_/_‘ ___/—‘__ _/_ __I
cu<34r\o,| 2 f 3 A W w{‘z,s X X
Sshes € NEXT VALID
_ |]
e _ (K
_ [N I
ADDROO _ (K van) 3 - STATE IF VIRTUAL
7S, 0% __L

CXQORIKOCRCOOOUXOCROUOORNO0

CYCLE

Figure 2-20. Asynchronous Fault Without DTACK and SRDY (Read Transaction)

ARCHITECTURE & BUS OPERATION
Fault With SRDY

FAULT With SRDY

The CPU can sample FAULT synchronously if it has a SRDY with it. Figure 2-21 shows
both SRDY and FAULT being sampled during the last clock state "W." The CPU then
terminates the transaction and does not issue a DRDY. For reads and writes, the CPU
samples the SRDY and FAULT in the same way.

VA RNVARNVARNIVARNVAREVARN
s N o ST N2 /3N /N S s xS
%5AS3 ALK NEXT VALID
S _ (LK — e
R VAUfl’) —— 31- sml G vulun ———)
N R AN\ | V77T
Poatas ARG XXX IKOOIXEXXKEIN
orack QOO NEALRXRHORXIKEXXKK
w7 _ ROV | Y | KRN | AN XXX

ot XXXXRRXXEN AL AROKOXXK)

4

everer _ YA\ Y

Figure 2-21. Fault with Synchronous Ready (SRDY); i.e., Synchronous Fault

2-32

ARCHITECTURE & BUS OPERATION
Fault After DTACK

FAULT After DTACK J

The CPU can also sample FAULT synchronously if it has sampled a DTACK
asynchronously in the same clock cycle. Figure 2-22 shows DTACK sampled during clock
state three and FAULT sampled during clock state four. The CPU then terminates the bus
and does not issue DRDY. This sampling of STACK and FAULT is the same for reads.

oKz | _/ _ _/ \ |/ |\ /_ —__
R X\

CLK34 \

_\0 3 4 5

N2

558 K

|| ||
"o _ (LK
I

st _ (w0) 7 5 smure v
s T (// Jl
% N 777
R = (X /

orack__ OQUOOCCON AXOCOORXG
s __ OOOCROOQRGOCRNY | XXRXOOOCRKXK

A
|

-
:
=

[=]
2
O
=

CYeLE —‘P A\) L///f

Note: FAULT must meet setup time with respect to CLK34 edge
after assertion of DTACK.

Figure 2-22. Fault After Assertion of DTACK (Write Transaction is Shown)

2-33

ARCHITECTURE & BUS OPERATION
Retry

2.7.2 Retry

RETRY is sampled the same way the FAULT is sampled. The previous figures on how
FAULT is sampled can have the words FAULT replaced by RETRY as far as the sampling
is concerned. Figure 2-23 shows a retry for a read transaction.

When the CPU samples the RETRY, it terminates the transaction and does not issue a
DRDY. The CPU continues to asynchronously sample RETRY. After RETRY is removed,
the CPU will redo the entire transaction. The SAS code will be the same as the first
transaction as well as the address, DSIZE, and R/W.

RETRY operates on reads and writes in the same way. There are some differences if the
transaction is a blockfetch, and these can be seen in the RETRY with blockfetch figures in
2.8 BLOCKFETCH SPECIAL CASES.

2.7.3 Relinquish and Retry

RRREQ is sampled the same way that the other two bus exceptions (FAULT and RETRY)
are sampled. An example is shown on Figure 2-24.

When the CPU samples RRREQ, it terminates the transaction and does not issue a DRDY.
After the second clock state "X," the CPU 3-states the address and data buses as well as
most of the control signals in order to allow some other device to use the bus. A cycle later
the CPU issues RRRACK. This indicates that the device that had issued RRREQ can get
onto the bus and do its bus transaction. The CPU will continue to asynchronously sample
RRREQ. When the device using the bus is finished, it should remove RRREQ. When the
CPU sees that RRREQ is removed, it will take back the bus and redo the entire
transaction. As in the RETRY case, the SAS code, address, DSIZE, and R/W will be the
same on both transactions.

RRREQ operates on reads and writes in the same way. There are some differences if the
transaction is a blockfetch, and these can be seen in the blockfetch with relinquish and
retry figure in 2.8. BLOCKFETCH SPECIAL CASES.

2-34

S€-T

AR VANV ANV VAR VARNYARNYARNYARN!
CLK34 r\ o /1 \ 2 3\ 4/ s \ X / x) o /v Nz /3 N4/ s \x/[xw\
SA%Q: NTH ACCESS { ((({ o access & NTH ACCESS) S N.+ ACCESS
_ L | N |
2 G
_ R R
ADDROO. _ (((Z(VALID) 3 - STATE IF VIRTUAL) I ((VALID 2 3 - STATE IF VIRTUAL j
RS.05 _ \\\\\ /£ ARRRAN g

ouAcD; = o YOO

=

g
=
=

4
XK CROOCRIOUANCRXK AQUQUCROCOCRIOORKCORK
\

RETRY
o~ AN 777
R :.ZV/ j

e 1\ N 7 AR (777

Figure 2-23. Retry of Transaction (Read Transaction is Shown)

NOILVIIdO SNg ¥ HINLIOALIHOAV

Anay » ysmbuipy

9¢-T

aes T | ST/

CLK34

SASO-
SAS3

DSIZEO-
DSIZEI

ADDROO-
ADDR3!

S,

wi

DATAOO-
DATA3I

L/

RN SREY SR RN WY W A VY 7\ o
o access X (((< (O waceess

_ | | 1]

~ - €«

- (T T

= \ [/} * \

OO, X ORISR
OO OOy, X OO

N0 s, N0

_ \ e

_ PR

=/ ~

=y

=5 AN 77) AN

Figure 2-24. Relinquish and Retry

Andy » ysmbuipy

NOILVYHdO SNd ¥ HINLIOALIHOAY

ARCHITECTURE & BUS OPERATION
Retry on Second Word of Blockfetch

2.8 BLOCKFETCH SPECIAL CASES

As indicated in the descriptions of the bus exceptions, a fault, retry, or relinquish and retry
of a blockfetch transaction is a special case of bus exception. The following descriptions
address these special cases.

2.8.1 Fault on First Word of Blockfetch With Status Code Other Than Prefetch

If the CPU samples FAULT on the first word of a blockfetch where the SAS code is
"instruction fetch" or "instruction fetch after PC discontinuity," the blockfetch transaction is
altered as on Figure 2-25. The CPU sampled FAULT in clock state two and BLKFTCH in
clock state three. Note that to sample BLKFTCH, the CPU needs a DTACK, SRDY, or a
bus exception. Upon seeing blockfetch and fault, the CPU removes DS at clock state five.
It holds AS low and continues to hold it until the end of the first clock state X. The
address bus, if in physical mode, is driven until the second clock state X. DRDY is not
issued at all during this transaction.

2.8.2 Fault on First Word of Blockfetch With Status of Prefetch

As in other prefetch transactions, when the CPU is faulted, it ignores the data and just
continues on with its current execution. This is illustrated on Figure 2-26. On clock state
two, the CPU sampled FAULT and on clock state three, it sampled BLKFTCH. The CPU
terminated the first word fetch by removing DS (not issuing DRDY), and continuing on to
the second transaction. The second transaction operates normally.

2.8.3 Retry on First Word of Blockfetch

The CPU samples RETRY during clock state three and the BLKFTCH during clock state
four. The CPU then terminates the transaction by removing DS at clock rate state five
and the AS at the second clock state X. At this point the CPU waits for RETRY to go
away. When it does the CPU retries the entire blockfetch transaction. This process is
illustrated on Figure 2-27.

2.8.4 Retry on Second Word of Blockfetch

In this case (see Figure 2-28), the CPU sampled BLKFTCH and DTACK, clocked the data
from the data bus, issued a DRDY, and continued on to the second word. During the first
clock state W, the CPU samples RETRY. It then terminates the transaction, does not issue
a DRDY, and waits for the RETRY to be removed. Since the second word of a blockfetch
is always a prefetch, the CPU faults this transaction internally rather than retrying the
entire blockfetch transaction. When the RETRY signal is removed, the CPU continues on
with its current execution. If the CPU wants to do a new bus transaction it will proceed
with this one since it will not retry the blockfetch.

2-37

ARCHITECTURE & BUS OPERATION
Retry on Second Word of Blockfetch

/

L/

\

/

\

2 /

{ 1)

2 /

(3

4 /

/TN T\

/1 \

_8 /

/g

NON-PREFETCH

)

LK

INSTRUCTION PREFETCH

DSIZEO- —
DSIZEI

ADDROO-
ADDR3I

||

|

L

DOUBLE WORD)

WORD

| 1]

|
(<<<|(

|

LCCC va)

w

- STATE IF VIRTUAL

AN

AN

(///]

K

AN

OGO

Figure 2-25. Fault on First Word of Blockfetch Transaction With Access Status

2-38

Code (Not Instruction Prefetch)

ARCHITECTURE & BUS OPERATION
Retry on Second Word of Blockfetch

awas | TN/ TN/ TN T\
CLK34 :—_O_JV-I_ _z_/b3— _4/ 5 \ 6 4/ 7 8 /V 3 Xﬂl X\
sAso- PREFETCH (({{ preFercH X (((
_ S |
sz~ (X DOUBLE WORD X (¢ WORD
_ IR]
ADDROO _ CCCCC vau) 3 - STATE IF VIRTUAL
AS '__\ \ // /

o—s'_'\iigk 7Y

OOUROC0OC
LOQUROUORXK

g
£
c
-
-
=
g
,§§%rw\\

IJ{L]I
:
:
=
-
-
-
-
-
%

0\ 777

Figure 2-26. Fault on First Word of Blockfetch Transaction With Access Status Code
of Prefetch

2-39

(1] 4

CLK23

CLK34

SASO-
SAS3

DSIZEO-
DSIZE!

ADDROO-
ADDR3I

As

b

DATA00-
DATA3I

DTACK

BLKFTCH

CYCLE

®
1/ VA RNVARN /] h
s SV AR EY e 3\;/5679x
7 (e XL Q
~ (X s e —— o —
- [T T 1 [1 [T T 1
I CCC(7T ST (CCETTD)} s v v
I \NNN Y L1114 IANRNNY /
I \NANY (/11 A /R [/}
= (oo | (om0 2
QAR COOORAOCQCOOOCRXOCACOOOCKXN SEEEIN O
COTOLO OZOTOO OLOTHL® OZOTOT® OLOTOL® SLOTOTH SLOTHTH SLOTOTH CLOTOTH SLOLOTH SLOLOTO SOLOTH OO0 SO0 0T 0N XXX
OOOROCUUN f
- /amw\y
4
OQCOOOCON AXRXXRQCCOOOCRXXXACROOCRKXN ALOORKORKXRXX RO
RRNNS i, \ //

Note: If RRREQ is asserted instead of RETRY, the CPU 3-states the bus at A and asserts RRRACK one clock cycle later at B.

Figure 2-27. Retry on First Word of Blockfetch Transaction

[213Jd0[g JO PIOAA PUOIIS U0 A1)y

NOILVYAdO SNd ¥ TINLIALIHOYV

I¥-7

CLK23 | ____/_ __

CLK34

/]
o /

SASO-

SAS3 NEXT VAL

D

Ds[n)zSIEZoE-| < ¢ < DOUBLE WORD u Q L HoRD

| 1 T] | | 1 T [1

A RboRs <((VALID) - STATE If VIRTUAL

w

.

:

NEXT ADDRESS

s \ /

AN

5 AN / \ L/

DATAOO-

AN

i~

VALID

AN

DATA3I

O

OO0

RETRY \

R/W

scxeren._OQQDCOCRORC00 | AX000COROOAROOOCRXOOOCRXIKXROOURXA XXX

SNV Y \

Notes:

1. On RRREQ, the follo“ﬂlg pins are 3-stated betwein points A and B. ADDR00— ADDR31, DATA00—DATA32,
AS, CYCLEI, DRDY, DS, DSIZE0—-DSIZE1, R/W, SASO—SAS3.

2. If RRREQ or RETRY is asserted during the first word, then the entire blockfetch access is retried.

Figure 2-28. Retry on Second Word of Blockfetch

\

NOILVYddO SNd » TINLDALIHDAV

O1OPII0[g JO PIOA\ PUOIIS UO Aoy

ARCHITECTURE & BUS OPERATION
Relinquish & Retry on Blockfetch

2.8.5 Relinquish and Retry on Blockfetch

Figures 2-27 and 2-28 can be used to illustrate the RRREQ bus exception for the first and
second word of a blockfetch.

The timing and bus transaction for Figure 2-27 will look the same if the bus exception is
RRREQ rather than RETRY. However, the CPU will release the bus before doing the
retried transaction. Additionally, the CPU will 3-state the bus at the end of the second
clock state X (indicated by A on the diagram). One cycle later it will issue a relinquish
and retry request acknowledge (RRRACK) to tell the requesting device that it can now use
the bus. When RRREQ is removed, the CPU will continue with the retried transaction
starting at point B.

The same explanation applies for a RRREQ on the second word of a blockfetch (Figure
2-28). As above, the CPU will 3-state the bus at point A and issue a RRRACK. Once the
RRREQ is removed, the CPU will continue with the next bus transaction starting at point
B and would not retry the blockfetch.

2.9 INTERRUPTS

The microprocessor accepts fifteen levels of interrupts. An interrupt request is made to the
microprocessor by placing an interrupt request value on the interrupt priority level pins
(IPLO—IPL3) or by requesting a nonmaskable interrupt by asserting NMINT. Pending
interrupts are not acknowledged until the currently executing instructions are completed.
The exceptions to this are multiply, divide, modulo, move block word, string copy, and
string end instructions which abort upon a pending interrupt.

The pending interrupt value input on IPLO—IPL3 is internally inverted and compared to
the value contained in the interrupt priority level (IPL) field of the processor status word
(PSW). In order for the pending interrupt to be acknowledged, its inverted value must be
greater than the IPL field value. Pending interrupts whose inverted values are equal to or
less than the IPL field value are ignored. However, if the pending interrupt is
nonmaskable, it will always interrupt the microprocessor regardless of the IPL field value.

The microprocessor also provides autovector, nonmaskable, and quick-interrupt facilities.
The following describes these facilities.

2.9.1 Interrupt Acknowledge

The microprocessor acknowledges an interrupt by transmitting the inverted interrupt value
on bits 2 through 5 of the address bus. In addition, the value placed on the interrupt
option (INTOPT) pin is inverted and transmitted on bit 6 of the address bus. (The
INTOPT input has no effect on the microprocessor; however, it could be used to indicate,
for example, whether the interrupt was hardware- or software-generated.) The
microprocessor then fetches the interrupt vector number from the interrupting device on
bits 0 through 7 of the data bus and begins execution of the interrupt handling routine.
The interrupt acknowledge transaction is illustrated by Figure 2-29 which depicts the case
where a value placed on the IPLO—IPL3 inputs causes an interrupt. In this case, the
interrupt acknowledge is issued in response to the application of the IPL pins and INTOPT

2-42

ARCHITECTURE & BUS OPERATION
Interrupt Acknowledge

pin with no AVEC and NMINT active. During the interrupt acknowledge transaction, the
CPU reads in an 8-bit offset provided by the interrupting device and used by the CPU as
an offset to a table. The SAS code is "interrupt acknowledge.” The DSIZE is a byte. The
address corresponding to the interrupt acknowledge is indicated at the bottom of the figure.
The interrupting device drives the data bus with the 8-bit offset and a memory
acknowledge; in this case a DTACK. The bus exceptions are accepted during this bus
transaction. The IPL input values should be removed once the corresponding interrupt
acknowledge has occurred.

- —
we | /10 /TN T\
TN A U an Y anuY SRWD A CY &
—_ @
IPLO-IPL3 N Xﬁ
— ’_e P,
‘AVEC _ ¢
T ~ ? ¢
Séig' ‘: D INTERRUPT ACKNOWLEDGE ‘)(f (i NEXT VALID
D [| L]
o X T
C T g
AoSoRs:) R X7 3-STATE IF VIRTUAL
=S vt
oA : ? ¢ {_vaup e
5ROY B ? ¢ /
RAW ? ¢
e _ ¢l WY

Note: During the interrupt acknowledge the address bus (ADDR0O0—ADDR31)
contains the following data.

3 7 6| 514132 0o
INVERTED INVERTED
0.uuvnn 0 |—— i
INTOPT INPUT|IPL3]IPL2]IPLI[IPLO

Figure 2-29. Interrupt Acknowledge

2-43

ARCHITECTURE & BUS OPERATION
Interrupt Acknowledge

Table 2-4 summarizes how the interrupt priority levels are to be interpreted and shows the
corresponding acknowledge for each level.

Table 2-4. Interrupt Level Code Assignments
Interrupt Interrupt Interrupt Priority
Request Option Acknowledge Level
Input Input Output
IPLO—-IPL3 INTOPT ADDR02—ADDRO06
Bits: Bits:

3 2 1 0 06 05 04 03 02
0[O0 00O 0 1 1 1 1 1 Highest
0)]0]01|O 1 0 1 1 1 1 Priority
0[O0 0] 1 0 1 1 1 1 0
olofo]1 1 ol 1| 1] 1]o0 2nd
0|]0|] 1[0 0 1 1 1 0 1 3rd
0] 0 110 1 0 1 1 0 1
001 1 0 1 1 1 0 0
oo 11 1 ol 1] 1]ofo 4th
0oj1]0]0 0 1 1 0 1 1
ol1]0]o0 1 o 1] o] 1] 1 Sth
01 011 0 1 1 0 1 0
ol1]ol1 1 ol 1ol 1] o 6th
011 1{0 0 1 1 0 0 1
ol1|1]o0 1 ol 1]lo] o] 1 7th
01 1 1 0 1 1 0 0 0
o1)11 1 ol1lo]lo]o 8th
1{0}]10]0O0 0 1 0 1 1 1
1lolo]o 1 olol] 1] 1]1 Oth
1|10f{0]1 0 1 0 1 1 0
1{o]o]1 1 olol1]|1]o 10th
10 110 0 1 0 1 0 1
1lol1]o 1 olo|1]o0]1 1t
110111 0 1 0 1 0 0
1lof1]1 1 olo|l1|o]o 12th
1111010 0 1 0 0 1 1
1l1]o]o 1 olofo]|1]1 13th
1 11011 0 1 0 0 1 0
1l1]o]1 1 olofjo|1]o 14th
1 1 110 0 1 0 0 0 1 Lowest
1 {1 1|0 1 0 0 0 0 1 Priority
11|11 0 X X X X x | No Interrupt
1 {1 {1]1 1 X X X X X Pending

x signifies no value placed on address bus.

2-44

ARCHITECTURE & BUS OPERATION

Nonmaskable Interrupt

2.9.2 Auto-vector Interrupt

If the auto-vector (AVEC) input is active during an interrupt request, the microprocessor
will not fetch a vector number from the interrupting device. Instead, the microprocessor
provides the interrupt vector by treating the inverted INTOPT input, concatenated with the
interrupt priority level input (IPLO—IPL3), as a vector number. The auto-vector facility
reduces hardware costs in smaller, less complex systems because the interrupt vector is
supplied by the microprocessor instead of by external hardware.

Refer to Figure 2-30 for an illustration of the auto-vector interrupt acknowledge
transaction. In this transaction, an auto-vector acknowledge is issued in response to the
application of the IPL pins and INTOPT pin with AVEC active and no NMINT. Since the
CPU does not need to read in an external value, it does an auto-vector interrupt
acknowledge without looking for a memory acknowledge or a bus exception. The
transaction goes through the clock states without inserting wait cycles. This transaction is
used to tell the interrupting device that it should remove the IPL and AVEC input values.
No DRDY is issued because there is no latching of data.

2.9.3 Nonmaskable Interrupt

The nonmaskable interrupt facility is provided to satisfy reliability and recoverability
requirements of various systems. As previously mentioned, a nonmaskable interrupt can
interrupt the microprocessor regardless of the current priority level in the IPL field. A
nonmaskable interrupt occurs if the nonmaskable interrupt input (NMINT) is asserted.
The interrupt is then treated as an autovector interrupt with vector number 0. During the
interrupt acknowledge cycle of a nonmaskable interrupt, address bus bits ADDR00—
ADDR31 contain zeros. This distinguishes a nonmaskable interrupt from all other
interrupts.

Figure 2-31 illustrates the nonmaskable interrupt acknowledge transaction. Here, a
nonmaskable interrupt acknowledge is issued in response to the application of the NMINT
input. For a nonmaskable interrupt, the CPU uses an internal offset corresponding to an
IPL of zero. Since the CPU does not need to read in data, it performs the transaction
without looking for a memory acknowledge or a bus exception. The transaction goes
through the clock states without inserting wait cycles. Again, the interrupting device
should release NMINT when it sees the acknowledge. The SAS code is "auto-vector
acknowledge," but the interrupt vector is 0. ADDROO can be used to determine the
difference between the AVEC and NMINT interrupts. It is a 1 for auto-vector and a 0 for
nonmaskable interrupt.

2-45

ARCHITECTURE & BUS OPERATION

Nonmaskable Interrupt

- -
s | /7] NVARNVARNVARNVARSVARI
CLK34 _ﬂ# /_e a_\ f Nof v N2/ 3\ /5 \x [«x \
IPLO-IPL3 X ‘: ‘:
e —__\—-e ¢ /
e 4 ¢
-) — AUTO-VECTOR INTERRUPT ACKNOWLEDGE T
45 __|_; X(F — >f<<<< T
L XX e
N posepore | | [|
. N i XK #) 3-STATE IF VIRTUAL)(

S 05 hANANY 4/
XK X IO AN
XK KKXRXOCRKX XXX XNKS
XXX AKX ORI XXX

3

:
et T

:

:

-~

-~

R/W

CYCLEI)) \\\\\ // / / /

L

Note: During the interrupt acknowledge the address bus (ADDR00—ADDR31) contains the following data.

3 7 6| 5] 4al3]2]p o
o o | _NVERTED INVERTED |~
""" INTOPT INPUT|IPL3IPL2]IPLI]IPLO)

Figure 2-30. Auto-vector Interrupt Acknowledge

2-46

ARCHITECTURE & BUS OPERATION
Nonmaskable Interrupt

VAN VA RNIVARNIVARNIVARN VAR
woe N7 N e e e e
5% F)«< 7 — ﬂf X 2R
s Y XX X
NN = omovomee ||
oSS, M XTCF D AT ¢
S ARRM [7777
W %, X SOV O]
o 0GR, R R R
v OO0 SRR R oo
o~ N
ereme to! AN 7777

Note: The address bus ADDR0O0—ADDR31 contains all zeroes during the acknowledge of a
nonmaskable interrupt.

Figure 2-31. Nonmaskable Interrupt Acknowledge

2-47

ARCHITECTURE & BUS OPERATION
Quick Interrupt

2.9.4 Quick Interrupt

The quick-interrupt facility enchances the performance of systems that do not require the
functionality of the "full interrupt." Its handling routine (a microsequence that stores the
PSW and PC) requires less time than that of a "full interrupt.”" All interrupts are serviced
via the quick-interrupt facility if the quick-interrupt enable (QIE) bit in the PSW is set
(1). Table 2-5 summarizes how the microprocessor handles the various interrupt requests.
See Chapter 4 for more information on full and quick interrupts.

2.10 BUS ARBITRATION

The microprocessor’s bus may be requested in two ways. External devices may request the
bus by asserting the relinquish and retry request input (RRREQ), as explained previously,
or by asserting the bus request input (BUSREQ).

The relinquish and retry request has priority over a bus request. The microprocessor will
only acknowledge a relinquish and retry request during bus transactions; however, it will
ignore the request during the write portion of a read interlocked transaction.

A bus request during a CPU bus transaction is not acknowledged until the end of a bus
transaction or until the end of the write portion of a read interlocked transaction.

2.10.1 Bus Request During a Bus Transaction

BUSRQ is sampled independently of bus transactions at the beginning of every clock cycle.
On Figure 2-32 it is sampled for the first time at the beginning of clock state two. After
sampling BUSRQ, the CPU continues the current bus transaction. After the transaction is
completed, the CPU 3-states the address and data buses and some control signals just after
the last clock state X. A cycle later it issues the bus request acknowledge, BRACK. At
this point the device requesting the bus can perform its operations. When finished, the
device drops the BUSRQ. After seeing this drop, the CPU removes BRACK and takes back
the bus. Note that if the bus request occurred during an active retry request or relinquish
and retry request it would not be acknowledged until after the current transaction had been
retried. Refer to 2.19 SUPPLEMENTARY PROTOCOL DIAGRAMS for an example.

For a bus request that does not occur during a bus transaction, the CPU will 3-state the
bus a cycle after sampling BUSRQ and issue BRACK a cycle after that.

2-48

6v-7

/AR YVARN VAR VAR

r

CLK23 /_ . _ _/_ F_
CLK34 r\ o f v\ 2/ 3\ 4 4ﬁ 5)\ x /_x_/— \, e_/— ___/_—\ L0 /
55353 READ XLCC . K
_ L L L |
5 S I (<
_ I N
Ao ((¢ VALD) 3-STATE IF VIRTUAL 2 P ({{
A NN\ Vg 1 F hNRRNY
oA = {_vawn OO0 N
s Y Ty, ! LR
oveee. _JO0CC00000 LTy, OO TONN O NN
DROY — A LI77- T F
B _ \ -

Figure 2-32. Bus Request During a Transaction

\,

NOILVYAdO SNd ¥ TdNLOALIHOIVY

uondesuel], sng & unn(isanbay sng

ARCHITECTURE & BUS OPERATION

Bus Request During a Bus Transaction

Table 2-5. Interrupt Acknowledge Summary
Interrupt
Interrupt | Acknowl-
Priority edge AVEC | NMINT | QIE Result

Less than No X 1 x | Interrupt is not acknowledged.

PSW

IPL field

priority

Equal to No X 1 x | Interrupt is not acknowledged.

PSW

IPL field

priority

Greater Yes 1 1 0 | Interrupt is acknowledged and

than PSW serviced via the full-interrupt

IPL field sequence. Microprocessor fetches

priority vector number from interrupting
device.

Greater Yes 0 1 0 | Interrupt is acknowledged and

than PSW serviced via the full-interrupt

IPL field sequence. Microprocessor supplies

priority the vector number.

Any level Yes X 0 0 | Interrupt is acknowledged and

compared serviced via the full-interrupt

to PSW sequence. It is treated as an auto-

IPL field vector at vector number 0. The

priority address bus contains all zeros during
the acknowledge.

Greater Yes 1 1 1 | Interrupt is acknowledged and

than PSW serviced via quick-interrupt sequence.

IPL field Microprocessor fetches vector number

priority from interrupting device.

Greater Yes 0 1 1 | Interrupt is acknowledged and

than PSW serviced via quick-interrupt sequence.

IPL field Microprocessor supplies the vector

priority number.

Any level Yes X 0 1 | Interrupt is acknowledged and

compared serviced via quick-interrupt sequence.

to PSW It is treated as an auto-vector

IPL field interrupt at vector number 0. The

priority address bus contains all zeros during
the acknowledge.

2-50

ARCHITECTURE & BUS OPERATION
DMA Operation

2.10.2 DMA Operation

The microprocessor provides the support for direct memory access (DMA) and shares bus

control responsibilities with the system DMA controller. To initiate a DMA operation, the
controller requests the microprocessor bus by asserting (BUSRQ). Recall that this request

is not acknowledged until the end of a bus transaction or until the end of the write portion

of a read interlocked transaction. However, if the CPU is not using the bus, the request is
acknowledged immediately. Once the microprocessor recognizes the request, it 3-states the
following signals:

ABORT DATA00—DATA31 R/W
ADDR00—ADDR31 DRDY SAS0—SAS3
AS DS VAD

CYCLEI DSIZE0—DSIZEI XMDO0—XMDI

After the microprocessor has 3-stated the above signals, it acknowledges the DMA request
by asserting the bus request acknowledge output (BRACK). Table 2-6 summarizes the
output signal states once the DMA has been acknowledged.

Terminating a DMA operation reverses the start of DMA. The DMA controller removes
the request by negating BUSRQ (drives the input high). The microprocessor then negates
the acknowledge (BRACK), and, finally, the 3-stated signals are returned to the
microprocessor’s control. The next operation may then begin.

Table 2-6. Output Signal States After DMA Request is Acknowledged
Output Signal Signal State Output Signal Signal State
ABORT z DSIZE0—DSIZEI V4
ADDRO0—ADDR31 Z R/W z
AS z RESET Logic 1
BRACK Logic 0 RRRACK Logic 1
CYCLEIL z SAS0—SAS3 z
DATA00—DATA3I1 V4 VAD V4
DRDY z XMD0—XMDI Z
DS z
Where:

Z High impedance state.
Z’ High impedance. Held at logic 1 with external passive hold resistor.

2-51

ARCHITECTURE & BUS OPERATION
Reset

2.11 RESET

The microprocessor handles two types of reset requests: system and internal. A reset has
the highest priority and will preempt any ongoing microprocessor operation.

2.11.1 System Reset

A system reset is initiated when the system drives the reset request input (RESETR) low.
This double-latched input must be active on three consecutive latchings before being
recognized. This ensures noise immunity. After recognizing the reset request, the
microprocessor sends a reset acknowledge to the system by asserting RESET. All
microprocessor outputs are then driven to a temporary state that prevents control signal
and bus conflicts while the system responds to the reset acknowledge.

Once the system has responded to the acknowledge, it negates RESETR. The
microprocessor continues to hold RESET active for 128 clock cycles after RESETR has
been negated, allowing the external system to go through its own initialization sequence.
At the end of this period the microprocessor negates RESET and begins executing the
internal reset sequence. Table 2-6 indicates the states of the microprocessor’s output pins
once RESET is negated. During this sequence, the microprocessor performs the following
register initialization to restart the operation.

e The microprocessor changes to physical addressing mode.

e The microprocessor fetches a word at location 80 hexadecimal and stores it in the
process control block pointer (PCBP). This word is the beginning address of the reset
process control block, PCB.

e The microprocessor fetches a word at the PCB address and stores it in the processor
status word.

e The microprocessor fetches a word at the location four bytes from the PCB address and
stores it in the program counter (PC). This word is the PC value for initial execution.

o The microprocessor fetches a word at the location eight bytes from the initial PCB
address and stores it in the stack pointer.

e If the PSW I bit is set (1), the microprocessor clears the bit (0), fetches a word at the
location twelve bytes from the initial PCBP, and stores it as the new PCBP.

e The microprocessor begins execution at the address specified by the PC.

2.11.2 Internal Reset

An internal reset sequence is like a system reset sequence except there is no external reset
request signal. The request is generated internally. Note that the RESET line will still go
active for 128 clock cycles after RESETR is released.

2-52

ARCHITECTURE & BUS OPERATION

Internal Reset

Table 2-7. OQutput States on Reset

Signal State

Output CPU* is CPU* is Not

Signal Bus Arbiter Bus Arbiter
ABORT Logic 1 High Impedance
ADDR0O0—ADDR31 High Impedance High Impedance
AS Logic 1 High Impedance
BRACK Logic 1 -
BUSRQ - Logic 1
CYCLEI Logic 1 High Impedance
DATA00—DATA31 High Impedance High Impedance
DRDY Logic 1 High Impedance
DS Logic 1 High Impedance
DSIZEO, DSIZE1 Logic 0 High Impedance
1QS0, IQS1 Logic 1 Logic 1
R/W Logic 1 High Impedance
RRRACK High Impedance, (a) | High Impedance, (a)
SAS0—SAS3 Logic 1 High Impedance
So1 Logic 1 Logic 1
VAD (b) High Impedance
XMDO, XMDI1 (©) High Impedance

*CPU is the WE 32100 Microprocessor.

Notes:

a Open drain output not actively driven under

this condition.

b Not guaranteed to be logic 1 (i.e., physical
address) until approximately 38 clock

cycles after RESET is negated.

¢ Not guaranteed to be in kernel mode until

approximately 18 clock cycles after RESET is

negated.

2-53

ARCHITECTURE & BUS OPERATION
Reset Sequence

RESETR \ ‘) %—/F

2<CLOCK CYCLES<3 128 CLOCK CYCLES

RESET \
RESET
- N— —_— —/ /
INTERNAL RESET SEQUENCE
BEGINS

Note: RESETR must be asserted for at least two clock cycles to be recognized.
RESET is negated 128 clock cycles after negation of RESETR.

Figure 2-33. Reset Sequence

2.11.3 Reset Sequence

The reset sequence is depicted on Figure 2-33. As previously stated, after RESETR is
sampled for at least two consecutive clock cycles, the CPU issues the reset acknowledge
(RESET). While RESETR is active, the CPU holds RESET active. Once RESETR is
removed by the requesting device, the CPU counts 128 clock cycles and then removes
RESET. At this point the CPU enters the internal reset sequence (see Chapter 4).

Note that if the CPU receives a fault during certain high-level bus transactions it can enter
a reset exception (see 2.15 EXCEPTIONAL CONDITIONS). This exception goes through
a simulated system reset and includes issuing RESET for 128 clock cycles.

2.12 ABORTED MEMORY ACCESSES

There are two events that cause the CPU to abort a memory access; when the CPU has a
program counter (PC) discontinuity with an instruction cache hit, and when an alignment
fault occurs. These two events are illustrated next.

2-54

ARCHITECTURE & BUS OPERATION
Aborted Access on PC Discontinuity With Instruction Cache Hit

2.12.1 Aborted Access on PC Discontinuity With Instruction Cache Hit

Figure 2-34 depicts the protocol associated with this event. When the CPU does a PC
discontinuity it starts to fetch the next instruction word from memory. The SAS code is
"instruction fetch after PC discontinuity." If there is a hit in the cache for this instruction
fetch, the CPU cancels the external instruction fetch by terminating the transaction. The
CPU ignores memory acknowledges and bus exceptions during this transaction. To
indicate that it is terminating the transaction, the CPU issues ABORT for two cycles,
starting with clock state four. No DRDY is issued and the CPU ignores the data bus. The
CPU uses the instruction word that it obtained from the instruction cache.

wes | /N [\ T\ [
Y [x

F 0 3 0\ 4 5)
SASO-

SAS3 > J((L NexT vaLo

NSTRUCTION FETCH ON PC DISCONTINUITY ‘
N | |

CLK34.:\ \ 2 / \X4

] o S——
ADDROO- : (K vaup) 3 - STATE IF VIRTUAL
w05 LAY 1///
RBORT AN Yo
DRDY

777y
NRRM (1777

I/l L;I

Note: BLKFTCH, DATA00—DATA31, DTACK, FAULT, RETRY, RRREQ, and SRDY
are ignored.

Figure 2-34. Aborted Access on I-Cache Hit With PC Discontinuity

2-55

ARCHITECTURE & BUS OPERATION
Alignment Fault Bus Activity

2.12.2 Alignment Fault Bus Activity

If the CPU detects an alignment fault on an intended CPU-generated bus transaction, it
will terminate the transaction and proceed to the fault handler. The write transaction on
Figure 2-35 started with the address bus, as well as the DSIZE, SAS, R/W, and CYCLEI
being driven by the CPU. The CPU detects the alignment fault and does not issue AS and
DS. It issues ABORT, starting at clock state three, to indicate that it is terminating the
transaction. The CPU ignores memory acknowledges and bus exceptions during this time
(see note Figure 2-35). DRDY is not issued.

VARV RN VA RNYARW)
)

CLK34)

/ 5 \

_° / _°4 /

SShs3 WRITE ALK
"ere _ LK)

ADDROO : K((({ vao) 3 - STATE IF VIRTUAL)
AS, DS _
ABORT _ AN L7777
DRDY _
RAR j\? W\
CYCLE :‘5 N\ V7777
Notes:

1. DATA00—DATA31, DTACK, FAULT, RETRY, RRREQ, and
SRDY are ignored.
2. Protocol is the same for a read transaction.

Figure 2-35. Alignment Fault Bus Activity (Write Transaction Is Shown)

2-56

ARCHITECTURE & BUS OPERATION
Single-Step Operation

2.13 SINGLE-STEP OPERATION

Hardware single-step can be performed by use of the stop input (STOP). This input halts
the execution of instructions beyond the ones already started by the microprocessor.
Because of the pipelined architecture, the CPU may execute, at most, one more instruction
beyond the instruction during which STOP was asserted. The microprocessor then remains
in a halt state until the STOP input is released.

A bus request (BUSREQ) is honored while the microprocessor is halted. Additionally,
interrupts are acknowledged upon release of STOP, but not while STOP remains asserted.

Figure 2-36 depicts the start of single-step operation. The operation is started by the
assertion of STOP. The CPU will complete the current instruction and execute, at most,
one more instruction. After this the CPU stops execution and issues the SAS code "stop
acknowledge." The CPU will remain in this state until STOP is released.

-~

wa — |\ / T\ /[/T \ L,
N/

A\
CLK34 :_[—_/— /Al —\ /e
D

/|
—

N/ R R N R |
o ()
STOP ACKNOWLEDGE

sToP \

- A T
o T\ — A o

- \ 4 |/
Notes:

1. At most, one full assertion of SOI may appear before STOP is acknowledge.

2. BARB = 0 and BRACK = 1 in order to see stop acknowledge access status code.

Figure 2-36. Start of Single-Step Operation

2-57

ARCHITECTURE & BUS OPERATION

Coprocessor Operations

s TN\ / T\ L/ T\ U/ /" BRSVARSYE
N

- \ /— \ — \ —\ — — —
CLK34 _/ (‘J
sAso. STOP ACKNOWLEDGE X ’ ‘ (

‘) STOP IACKNOWIl_EDGE -
STOP / \) l :
5o \ ¢

- P_____/
Note: BARB = 0 and BRACK = 1 in order to see stop acknowledge access status code.

Figure 2-37. Single-Step Operation

After the CPU has stopped, and until a start of instruction output (SO is issued,
instruction by instruction execution can be performed by releasing STOP. At this point,
immediate application and holding of STOP will prevent a second instruction from starting.
With STOP asserted, the CPU will complete the instruction and issue the stop acknowledge
SAS code. To resume normal execution, STOP must be completely released. The single-
step operation is shown on Figure 2-37.

2.14 COPROCESSOR OPERATIONS

The WE 32100 Microprocessor provides a coprocessor interface consisting of ten
instructions and the associated pinout and bus transactions. The coprocessor interface
assures high performance and system throughput. When a coprocessor instruction is
executed by the CPU, a series of bus transactions occur. The following details the process
and provides the associated protocol.

2.14.1 Coprocessor Broadcast

This transaction notifies the coprocessor of the action the CPU wants performed. To
prevent memory from being selected, AS is not issued during this transaction. Since this is
a write operation, R/W is in write mode and the timing of DS is for a write. The CPU
drives the data bus with the information that it wants to send to the coprocessor. The
coprocessor responds with a memory acknowledge. The CPU then terminates the
transaction and goes on to the next one. The CPU will insert up to two wait cycles while it

2-58

ARCHITECTURE & BUS OPERATION
Coprocessor Broadcast

waits for the memory acknowledge from the coprocessor. This gives the coprocessor a
limited time to respond to this transaction. Figure 2-38 shows the zero, one, and two wait
cycle cases before the coprocessor responds with a memory acknowledge (in this case,
SRDY).

CLK23 —__ _/__\ /——\ /_—__
(%)

cu<34r\o 1.2(3.4/5\x, \
C- COPROCESSOR BROADCAST
Séts(gi i)(< Q((NEXT VALID
E —
s _ NN\
AT : (((f COMMAND/ID)

oraek_ OUOUROOUXY | ORCOOROOUOCOCX
s XQUOCOOROO0UN | AXOOUROOURX

R/W j\L\ \M

CYCLEl :\ \\\

.

’/4’

A. Zero Wait Cycles

Notes:
1. Zero, one, and two wait cycles using SRDY.
2. Greater than two wait cycles causes internal CPU memory fault.

Figure 2-38. Coprocessor Command and ID Transfer (Sheet 1 of 3)

2-59

ARCHITECTURE & BUS OPERATION
Coprocessor Broadcast

CLK23 /

REVARNYARNVARNYAR!
U ER =B

cu<34:\o, \ 2 VAR ERARY \
C- COPROCESSOR BROADCAST
SA%0: >)(<(NEXT VALID
A_S —
Be _ \\\ \ y / Z /Jf
oug0; = K)

oTack 000000 NQOOOOUXOOROOGOO
sroY QXU N | AO0OOQOOOOOO
DROY _ W\ A

GEE A NN\ L

B. One Wait Cycle

Notes:
1. Zero, one, and two wait cycles using SRDY.
2. Greater than two wait cycles causes internal CPU memory fault.

Figure 2-38. Coprocessor Command and ID Transfer (Sheet 2 of 3)

2-60

ARCHITECTURE & BUS OPERATION

Coprocessor Broadcast

e VanN VanVasuVanuvanVu!

CLK34 :\ o/ v N2 s\ wfwXw /S w4/ \LX /x \
C- COPROCESSOR BROADCAST
SSaes — XL NEXT VALID
AS
0s \ \ / /
OH19% = X J

oAk OO0 RGO
o OUCOGOUINY | NI | RN | AROOCROOUR)

OROY _ W\ A
R/W
TYerE —\ \ //
C. Two Wait Cycles
Notes:

1. Zero, one, and two wait cycles using SRDY.
2. Greater than two wait cycles causes internal CPU memory fault.

Figure 2-38. Coprocessor Command and ID Transfer (Sheet 3 of 3)

2-61

2.14.2 Coprocessor Operand Fetch

After doing a broadcast, the CPU will perform from zero to three coprocessor operand
fetch transactions, depending on which coprocessor instruction is being executed. For this
transaction, the CPU goes through the motions of doing a read from the memory, but the
coprocessor latches the data as it sees it on the bus. The SAS is "coprocessor data fetch,"
and DSIZE is a word. The memory is issuing the acknowledge for this transaction.
Figure 2-40 shows the protocol for a single coprocessor operand fetch.

CLK23

CLK34

SASO-
SAS3

DSIZEO-
DSIZE!

ADDROO-
ADDR3I

AS, DS

DATAOO-
DATA3I

=]
D
(=]
=<

ARCHITECTURE & BUS OPERATION
Coprocessor Operand Fetch

nany anU eVl
__\\.0_/ -_4_/W 5 _x_/ X \}\
C(-):ROCESEOR DATLA F CL)(<<<(L

_ |]

_ K WoRD

_ I

_ ((< <(VALID) 3 - STATE IF VIRTUAL

— AN (/)] [

: { vaup) DOX)
QOOCROOCON LXO0CROOCOOON)
QOOUROOUOOOUON | AXOOCROOGRO00

- W\ 7

77

___V\L \\ / //

Note: Zero wait cycles use of DTACK or SRDY

Figure 2-40. Coprocessor Operand Fetch

2-63

ARCHITECTURE & BUS OPERATION
Coprocessor Status Fetch

2.14.3 Coprocessor Status Fetch

After processing the data latched during the coprocessor operand fetch transaction, the
coprocessor indicates that it is finished by asserting the coprocessor done input (DONE) of
the CPU. Approximately two clock cycles later, the CPU initiates the coprocessor status

fetch transaction shown on Figure 2-41. This is a read type transaction where the

coprocessor drives the data bus with status information. There is no AS issued to keep the

memory from being accessed. The SAS code is "coprocessor status fetch."

we T | /T ML
wse N\ o /N2 s N
COPROCESSOR STATUS FETCH
6383 C‘’ X ({{X o operaTion
AR KOOI X KX
B
= T (777
sre CCOCOCOCC(vao
orack QOGN LRI
seov__ LOQUCOUOOCN QU
oY _ _ [/
v _ [/
w0 Y 17777

2-64

Note: Coprocessor status fetch begins approximately two clock
cycles after the microprocessor’s processor done input (DONE)
has been driven low.

Figure 2-41. Coprocessor Status Read (Using SRDY)

2.14.4 Coprocessor Data Write

After doing the coprocessor status fetch, the CPU will perform from zero to three
coprocessor data write transactions, depending on what coprocessor instruction is being
executed. For this transaction the CPU goes through the motions of doing a write to the
memory but the coprocessor drives the data bus with the results that it wants to send to the
memory. The CPU does not drive the data bus during this transaction. The SAS is
"coprocessor data write," and DSIZE is a word. The memory is issuing the acknowledge
for this transaction. Figure 2-42 shows the protocol for a single coprocessor data write.

CLK23 f

CLK34 _\ [CY

SOR DATA WRITE

ARCHITECTURE & BUS OPERATION
Coprocessor Data Write

COPROCES
. saso- (o

SAS3

‘ NEXT VALID

l

i

D

| |

l

g (G)

3 - STATE IF VIRTUAL

5 \

// /|

hNNNAN

A

CYCLEI

R/W ___1 /J
—

A

//

Notes:

1. Zero wait cycles using SRDY.

2. DATA00—DATA31 supplied by coprocessor.

Figure 2-42. Coprocessor Data Write

2-65

ARCHITECTURE & BUS OPERATION

Exceptional Conditions

2.15 EXCEPTIONAL CONDITIONS

2-66

In addition to interrupts and reset requests, several types of events may interrupt the
execution of a program. The four events, called exceptional conditions, are: normal
exceptions, stack exceptions, process exceptions, and reset exceptions. When an exception
occurs, the microprocessor sets the 4-bit internal state code (ISC) field and the 2-bit
exception type (ET) field in the processor status word to identify the exception. (Table 2-8
lists the exception conditions and their respective ISC codes.) The microprocessor also
executes the appropriate microsequence before passing control to the operating system.
These sequences save the context of the current process and give the operating system
information it needs to locate the correct exception handler. The saved context enables the
program to resume execution after the exception is handled.

Table 2-8. Exception Conditions

Exception Type

Exception

Internal
State
Code Bit
5| 4

Normal Exception
(ET=11)

Integer zero-divide
Trace trap

Illegal opcode
Reserved opcode

Invalid descriptor
External memory fault
Gate vector fault
Illegal level change

Reserved data type
Integer overflow
Privileged opcode
Breakpoint trap
Privileged register

Stack Exception
(ET=01)

Stack bound
Stack fault
Interrupt ID fetch

Process Exception
(ET=10)

Old PCB fault
Gate PCB fault
New PCB fault

Reset Exception
(ET=00)

Old PCB fault
System data
Interrupt stack fault
External reset

New PCB fault
Gate vector fault

COO0CO0OO0O0O0O0OQ0|COO IR~ =IOO0O0OO0|COCOCO |

—_—_- 0000|0000 |m OO0~ H,HIOOOO
—_ O = -~ O OO0 OO0~ = ~O0OO|m~OO|~—=OO0O

OO~ O —OIO—O—m OO0 ~O|ImO=O—mO—O| W

* These exceptions reset the processor status word flags.

ARCHITECTURE & BUS OPERATION

Exceptional Conditions

The exceptions increase in levels of severity, with normal exceptions being the least severe
and reset exceptions being the most severe. An exception (but not reset exceptions which
require restarting the system) can ripple up through levels of exception severity if its
handling routine cannot resolve the condition that caused the exception.

1. Normal Exception. The microprocessor generates this class of exception when it
detects a condition such as trap, invalid opcode, incorrect address mode, or illegal
operation. Most normal exceptions occur during the translation or execution of an
instruction.

2. Stack Exception. This exception may occur during a process switch or a GATE
sequence (see Chapter 4).

3. Process Exception. This exception may occur during a process switch (see Chapter 4).

4. Reset Exception. This exception is triggered by an error condition in accessing critical
system data and requires restarting of the system. Since exceptions can ripple up to
higher levels of severity, reset exceptions may occur during reset and also during
process and normal exceptions. The microprocessor reacts as if an external reset
occurred when a reset exception is detected. (See 2.11 Reset and Chapter 4.
OPERATING SYSTEM CONSIDERATIONS.)

Normal exceptions consist of two types of events generated by the microprocessor - traps
and exceptions. When a trap is generated, the instruction that caused the trap is executed
completely, and the program counter (PC) points to the next executable instruction.
(Integer overflows may not behave this way due to pipelining; see part b under Integer
Overflow.) When an exception is generated, the PC points to the opcode of the instruction
that caused the exception; this instruction may have been executed partially or not at all.
Each different trap or exception uses a different trap vector to branch to the corresponding
trap or exception-handling software.

There are three kinds of traps:

1. Breakpoint Trap (BPT). This trap is invoked whenever the breakpoint trap (BPT)
instruction is executed.

2. Integer Overflow. This trap is enabled when the enable overflow trap (OE) bit in the
processor status word is set. Overflow trapping behaves as follows:

a. When an overflow trap occurs, the OE bit is cleared before the PSW is saved.

b. When an overflow trap occurs, the instruction following the instruction that
caused the overflow trap may or may not be executed before the microsequence is
entered. Consequently, the saved PC may point to the instruction following the
trapped instruction or to the next instruction after that one. If the instruction
following the trapped instruction is completed, it may not set the PSW flags.

c. If two consecutive instructions cause overflow traps, only one overflow trap
occurs.

d. An overflow trap occurs if the OE bit is set and the execution of an instruction
causes the V (overflow) bit in the PSW to be set (1) after the instruction is
completed. In particular, this can be caused by the return from gate (RETG)
and return to process (RETPS) instructions or by an explicit move to the PSW.

2-67

ARCHITECTURE & BUS OPERATION
Exceptional Conditions

3.

Trace Trap. Trace trapping is enabled when the trace enable (TE) bit in the PSW is
set. This causes a trace trap to occur after each instruction is executed (except for the
RETPS, CALLPS, and RETG instructions).

There are ten types of exceptions:

1.

10.

2-68

External Memory Fault. This exception occurs if alignment requirements are violated,
if an external device asserts the FAULT input on an access, if a fault occurs during a
coprocessor status fetch, or if no coprocessor responds to a support processor
broadcast. Alignment fault behavior has the following properties:

No alignment fault ever occurs on a byte access.
b. No alignment fault ever occurs on an instruction fetch access.

c. An alignment fault occurs if the access is a data access of word length and if
address bit 1 (ADDRO1) or address bit 0 (ADDROQO) is 1.

d. An alignment fault occurs if the access is a data access of halfword length and
address bit 0 (ADDROO) is 1.

Gate Vector Fault. This exception is caused by a memory fault when reading gate
tables during a gate (GATE) instruction.

Illegal Level Change. This exception is caused when attempting to increase the current
execution privilege on a return from gate (RETG) instruction.

Illegal Opcode. The opcode is not defined for the microprocessor.

Integer Zero-divide. This exception is caused by an attempt to divide by zero and is
always enabled. This exception resets the PSW flags.

Invalid Descriptor. The address mode generated cannot be used in the specified way.
This exception resets the PSW flags and may result from the following causes:

a. Literal or immediate used as destination.
b. Effective address requested of literal or immediate.
c. Effective address requested of a register.

Privileged Opcode. The opcode is defined for kernel execution level only. An attempt
to execute it in another execution level causes this exception.

Privileged Register. An attempt to write the three privileged registers (process status
word, process control block pointer, and interrupt stack pointer) in an execution level
other than kernel causes this exception. This exception resets the PSW flags.

Reserved Data Type. The operand type described by the expanded operand-type
descriptor is not implemented in the microprocessor. This exception resets the PSW
flags.

Reserved Opcode. The opcode is not implemented on the microprocessor, but is
reserved for future use.

ARCHITECTURE & BUS OPERATION

Trace Mechanism

2.16 TRACE MECHANISM

Every instruction for the WE 32100 Microprocessor consists of an interruptible and a

noninterruptible portion. Because a trace trap is detected in the noninterruptible portion,

trace traps have priority over interrupts. The microprocessor’s trace trap mechanism uses ‘
two bits in the processor status word: trace enable (TE) and trace mask (TM).

Trace traps are enabled if TE is set (1), but a trace trap is generated only if TM is also set
(see Table 2-9). In the table:

o TE-beg is the value of the TE bit at the start of an instruction.
o TE-end is the value of the TE bit at the time the trace trap is detected.
o TM-end is the value of the TM bit at the same instant the trace trap is detected.

The microprocessor detects a trace trap before the next instruction starts. Any of the
following actions may change the values of the TE and TM bits at the end of an
instruction:

o An instruction, other than an operating system instruction or microsequence, writes to
the PSW and changes TE. However, this method of changing TE causes inconsistent
trace behavior and should be avoided.

o A return from gate (RETG) instruction restores the PSW from the stack.
o A context switch to a process loads the PSW from the process control block.
Because of the way a return to process (RETPS), call process (CALLPS), or return from

gate (RETG) instruction changes TE and TM when it overwrites the PSW, these
instructions cannot be traced.

Table 2-9. Truth Table for Trace Trap

TE-beg | TE-end TM-end | Trap
0 0 Oorl No
0 1 0 No
0 1 1 Yes
1 0 Oorl No
1 1 0 No
1 1 1 Yes

Note: This table is valid only if an operating
system instruction or microsequence is used
to alter the TE bit of the PSW.

2-69

ARCHITECTURE & BUS OPERATION

Pin Assignments

The TM bit cannot be set by software. However, the microprocessor changes TM
automatically by:

e Setting TM to 1 at the beginning of every instruction.
e Clearing TM to 0 as part of every microsequence that performs a context switch.
e Clearing TM to 0 as part of the return from gate microsequence.

o Clearing TM to 0 when it detects and responds to a fault or interrupt.

The TM bit masks the TE bit for the duration of one instruction. The user’s trace-trap
handler should use TM to prevent a trace trap when a return from gate instruction returns
control to a process. Similarly, the microprocessor uses the TM bit to prevent a trace trap
from occurring in the context of a newly switched process when the previous process is
being traced.

2.17 PIN ASSIGNMENTS

The WE 32100 Microprocessor contains 107 active pins, ten power pins, and eleven ground
pins. Figure 2-43 illustrates the WE 32100 Microprocessor pin-array package as viewed
from both the top and bottom. The top view shows the scratch pad test points and the 700
mil square heat sink attachment area. The scratch pads provide test points for each pin.
The heat sink is user-supplied and is used in applications that require additional cooling.
The following tables list the pins both in numerical order and by functional groups.

In the following pin function descriptions the term asserted means that a signal is driven to
its active state either by the microprocessor (outputs) or an external device (inputs). The
term negated means that the signal is driven to its inactive state. A bar over a signal name
(e.g., AS) indicates that the signal is active low, logic 0. The 0 bit is the least significant
bit for signals which occupy two or more pins (e.g., DSIZEO—DSIZE1). The signal type
column is interpreted as input (I), output (0), or bidirectional (I/0).

2-70

ARCHITECTURE & BUS OPERATION

Pin Assignments

A1 B11 ci1 D11 E11 F11 G11 H11 Jit K11 L M11 N11 P11 Q1 R11 St T utt Vit Wit

O 0O oo 0o O0oo0oooooooooooaoao
A0 B10 C10 D10 E10 F10 G610 HI0 JI0 K10 L10 MI0 N1 P10 Qi0 R10 S10 T10 UI0 VIO W10
O 0O o d 0o 0oo0ooooboooqooooaoaoao
A8 B8 C8 D8 E8 FB RE S8 18 U8 V8 W8
O

A7 BT C7T DT ET FT7 R7T ST 17 U7 N1 W7
[}

AS BS €5 D5 E5 FS5 RS S5 15 US V4 WS

O
A4 B4 c4 04 E4 F4 E s4 T4 u4 va W4

O 0O g O 0o O 0 O o o o
A2 B2 c2 D2 E2 F2 62 H2 J2 K2 L2 M2 N2 P2 Q2 R2 S2 T2 u2 v2 w2
O o 0o oo o0oo0oo g g O 0O o O o o0 o o
IYE:E ct D1 E1 F1 61 Al J K1 oM N1 P at Ri st T Ui V1 W
Top View

Wit Vit utt T S11 R11 Q11 P11 N1t M1 ()] K11 Ji1 H11 611 F11 Ef1 D11 ci1 B11 A1

W10 V10 U0 Ti10 S10 RI0O Q10 P10 N10 M10 L10 K10 J10 H10 G610 F10 E10 D10 C10 B1G A10

O O O O O O

W ve U8 T8 S8 Rs F8 E8 D8 C8 B8 A8
o O O O O

woovroowr o TT ST RT F1 E7 07 ¢cT BT A7
©) o O O ©]

W5 Vs U5 15 S5 RS F5 E5 D5 C5 BS A5
o O O o O O ©) @)
We V4 U4 T4 sS4 R4 F4 E4 D4 C4 B4 A

Bottom View

Figure 2-43. WE 32100 Microprocessor Pin Configuration

2-71

ARCHITECTURE & BUS OPERATION

Pin Assignments

2-72

Table 2-10. WE 32100 Microprocessor Pin Descriptions

Pin Name Type Description

Al DATAI18 170 Microprocessor Data 18
A2 ADDR17 (0] Microprocessor Address 17
A4 DATA17 170 Microprocessor Data 17
AS DATA14 170 Microprocessor Data 14
A7 ADDRI12 (6] Microprocessor Address 12
A8 ADDRI11 (0] Microprocessor Address 11
A10 DATAO08 170 Microprocessor Data 08
All ADDRO6 (o) Microprocessor Address 06
Bl DATA19 170 Microprocessor Data 19
B2 GRD - Microprocessor Ground

B4 DATAI16 170 Microprocessor Data 16
BS ADDRI13 (0] Microprocessor Address 13
B7 ADDRI10 (0] Microprocessor Address 10
B8 ADDRO9% (0] Microprocessor Address 09
B10 ADDROS5 (o) Microprocessor Address 05
B11 ADDRO4 (0] Microprocessor Address 04
C1 DATA22 /0 Microprocessor Data 22
C2 DATA20 170 Microprocessor Data 20
C4 DATAI1S 1/0 Microprocessor Data 15
Cs +5V - Microprocessor Power

C7 DATAO09 170 Microprocessor Data 09
C8 +5V - Microprocessor Power

C10 DATAO04 170 Microprocessor Data 04
Cl11 DATAO3 170 Microprocessor Data 03
D1 ADDR23 (o) Microprocessor Address 23
D2 +5V - Microprocessor Power

D4 GRD - Microprocessor Ground
D5 DATAO5 1/0 Microprocessor Data 05
D7 GRD - Microprocessor Ground
D8 ADDRO7 (0] Microprocessor Address 07
D10 GRD - Microprocessor Ground
D11 DATAO02 1/0 Microprocessor Data 02
El DATAI12 170 Microprocessor Data 12
E2 DATAL11 1/0 Microprocessor Data 11
E4 ADDROS8 (o) Microprocessor Address 08
ES DATAO06 170 Microprocessor Data 06
E7 ADDRO3 (6] Microprocessor Address 03
E8 ADDRO1 (0] Microprocessor Address 01
E10 IPL1 I Interrupt Priority Level 1
Ell DATAO1 1/0 Microprocessor Data 01

ARCHITECTURE & BUS OPERATION

Pin Assignments

Table 2-10. WE 32100 Microprocessor Pin Descriptions (Continued)

Pin Name Type Description

F1 ADDRI14 (0] Microprocessor Address 14

F2 DATA13 170 Microprocessor Data 13

F4 DATAI10 1/0 Microprocessor Data 10

F5 DATAOQ7 1/0 Microprocessor Data 07

F7 ADDRO02 (6] Microprocessor Address 02

F8 ADDRO0 (6] Microprocessor Address 00

F10 +5V - Microprocessor Power

F11 DATAO00 1/0 Microprocessor Data 00

Gl ADDRI15 O Microprocessor Address 15

G2 GRD - Microprocessor Ground

G10 IPL3 I Interrupt Priority Level 3

Gl1 VAD (0] Virtual Address

H1 ADDRI18 (0] Microprocessor Address 18

H2 ADDRI16 (0] Microprocessor Address 16

H10 AVEC I Auto-vector

HI11 IPLO I Interrupt Priority Level 0

J1 ADDR19 o Microprocessor Address 19

J2 +5V Microprocessor Power

J10 IPL2 I Interrupt Priority Level 2

J11 INTOPT I Interrupt Option

K1 ADDR20 o Microprocessor Address 20

K2 DATA21 1I/0 Microprocessor Address 21

K10 NMINT I Nonmaskable Interrupt

K11 — - WARNING: This pin is for
manufacturing use only and must be
tied high (+5 Vdc).

L1 ADDR21 (6] Microprocessor Address 21

L2 ADDR22 (6] Microprocessor Address 22

L10 ABORT (0] Access Abort

L1l DRDY (0] Data Ready

M1 DATA23 1/0 Microprocessor Data 23

M2 DATA2S 1I/0 Microprocessor Data 25

M10 CLK34 I Input Clock 34

M1l AS 0] Address Strobe

N1 DATA24 1I/0 Microprocessor Data 24

N2 GRD - Microprocessor Ground

N10 CLK23 I Input Clock 23

N11 DS (0] Data Strobe

Pl DATA26 1/0 Microprocessor Data 26

P2 ADDR28 (0] Microprocessor Address 28

P10 FAULT I Fault

P11 RESETR I Reset Request

2-73

ARCHITECTURE & BUS OPERATION

Pin Assignments

2-74

Table 2-10. WE 32100 Microprocessor Pin Descriptions (Continued)

Pin Name Type Description

Q1 ADDR27 6] Microprocessor Address 27

Q2 +5V - Microprocessor Power

Ql0 RESET 0 Reset Acknowledge

Ql1 BLKFTCH I Block (Double Word) Fetch

R1 ADDR?29 (0] Microprocessor Address 29

R2 ADDR30 (0] Microprocessor Address 30

R4 DATA3! 1/0 Microprocessor Data 31

RS IQS1 (0] Instruction Queue Status 1

R7 SAS2 (0} Access Status Code 2

R8 SRDY I Synchronous Ready

R10 RETRY I Retry

R11 DTACK I Data Transfer Acknowledge

S1 ADDR24 (6] Microprocessor Address 24

S2 ADDR31 (0] Microprocessor Address 31

S4 DATA30 1I/0 Microprocessor Data 30

S5 XMDI1 (0] Execution Mode 1

S7 BRACK 1I/0 Bus Request Acknowledge

S8 DSIZE1 (o) Data Size 1

S10 GRD - Microprocessor Ground

S11 STOP I 32100 Stop

Tl ADDR25 (0] Microprocessor Address 25

T2 GRD - Microprocessor Ground

T4 +5V - Microprocessor Power

TS XMDO o Execution Mode 0

T7 +5V - Microprocessor Power

T8 SASO o Access Status Code 0

T10 DSHAD I Data Bus Shadow

T11 CYCLEI (0] Cycle Initiate

Ul ADDR26 (o) Microprocessor Address 26

U2 DATA27 1/0 Microprocessor Data 27

U4 IQS0 (0] Instruction Queue Status 0

us GRD — Microprocessor Ground

u7 R/W [6) Read/Write

Us GRD - Microprocessor Ground

uUl10 +5V - Microprocessor Power

Ull No Connect — WARNING: This pin must be
left unconnected.

\2! DATA28 I/0 Microprocessor Data 28

V2 +5V - Microprocessor Power

V4 SoI (0] Start of Instruction

V5 BUSRQ 1I/0 Bus Request

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-10. WE 32100 Microprocessor Pin Descriptions (Continued)
Pin Name Type Description
\%i DSIZEO (6] Data Size 0
V8 HIGHZ I High Impedance
V10 RRREQ I Relinquish and Retry Request
Vil BARB 1 Bus Arbiter
w1 GRD - Microprocessor Ground
w2 DATA29 I/0 Microprocessor Data 29
w4 SAS3 (0] Access Status Code 3
W5 SAS1 O Access Status Code 1
w7 DONE I Coprocessor Done
%4 RRRACK (0] Relinquish and Retry
Request Acknowledge
wio, No Connect - WARNING: These pins must be
W11 left unconnected.
Table 2-11. Address and Data Signals
Name Pin(s) Type Description
ADDRO00—ADDR31 | F8,E8,F7,E7, O | Address. These pins are used by the
B11,B10,Al1, microprocessor to issue 32-bit addresses
D8,E4,B8,B7, for off-chip accesses. They also convey
A8,A7,B5,F1, the interrupt acknowledge level on bits 2
G1,H2,A2,H1, through 6 during an interrupt
J1,K1,L1,L2, acknowledge operation.
D1,S1,T1,Ul,
QI1,P2,R1,R2,
S2
DATA00—-DATA31 | F11,E11,D11, I/0 | Data. These bidirectional pins are used to
C11,C10,D5, convey data to and from the
E5,F5,A10, microprocessor. This data may be an
C7,F4,E2,E1, interrupt vector (bits O through 7).
F2,A5,C4,B4,
A4,A1,B1,C2,
K2,C1,MI1,N1,
M2,P1,U2,V1,
W2,S4,R4

2-75

ARCHITECTURE & BUS OPERATION

Pin Assignments

Table 2-12. Interface and Control Signals

Name

Pin(s)

Type

Description

AS

Mi11

o

Address Strobe. When low (0), this signal indicates the
presence of a valid physical address on the address pins. If
the address is virtual, the falling edge of AS indicates a valid
address, and the address pins are 3-stated subsequent to the
falling edge of AS.

CYCLEI

T11

Cycle Initiate. This signal is asserted at the beginning of a
bus transaction and negated two clock cycles later. CYCLEI
is asserted in both the read and write halves of an
interlocked read transaction.

DONE

w17

Coprocessor Done. This input is recognized during a
coprocessor instruction. It informs the microprocessor that a
slave processor has completed its operation.

DRDY

L11

Data Ready. When asserted, this signal indicates that the
microprocessor_has not detected any bus exceptions (FAULT,
RETRY, RRREQ signals) during the current bus cycle. The
trailing edge of this signal indicates the end of a bus
transaction which has no bus exceptions.

N11

Data Strobe. During a read operation this signal, when low,
indicates that a slave device can place data on the data bus.
During a write operation, this signal, when low, indicates
that the microprocessor has placed valid data on the data
bus.

DTACK

R11

Data Transfer Acknowledge. This signal is used to
handshake between the microprocessor and a slave device.
During a read operation, the microprocessor latches data
present on the data bus and terminates the bus transaction
one cycle after DTACK is driven low by a slave device.
During a write operation, the transaction is terminated when
a slave device drives DTACK low. If DTACK is high, wait
states are inserted in current cycle. DTACK is ignored if the
data bus shadow (DSHAD) input is asserted. The DTACK
input can be returned asynchronously and is double latched
to avoid metastability.

SRDY

R8

Synchronous Ready. When asserted, this signal is a
synchronous input that begins the termination of a read or
write operation. It is sampled only once on the leading edge
of the fifth clock state during read and write operations. If
SRDY is not asserted at this time and DTACK was not
asserted during the previous cycle, then wait-state cycles are
inserted until either signal is asserted. SRDY is ignored if
the data bus shadow (DSHAD) input was previously
asserted.

2-76

ARCHITECTURE & BUS OPERATION

Pin Assignments

Table 2-13. Access Status Signals

Name

Pin(s)

Type

Description

BLKFTCH

Qll

I

Block (Double-Word) Fetch. This input indicates to the
microprocessor that the memory system can perform a
double-word (eight byte) program block fetch. On all
instruction fetches, the data size (DSIZEO and DSIZE1)
pins will show a double-word access. If the memory system
can handle a double-word access, it can activate this input.
Otherwise, the input is left inactive, and the microprocessor
fetches a block of instructions by two consecutive reads.

DSIZEO—
DSIZE1

V7,58

Data Size. This two-bit output is used to indicate whether
the microprocessor is transferring byte, halfword, word, or
double-word data in the current bus transaction. On all
instruction fetches, the DSIZEO—DSIZE]1 pins will have the
value for double word.
DSIZE1 DSIZEO Description

0 0 Word transaction

0 1 Double-word transaction

1 0 Halfword transaction

1 1 Byte transaction

R/W

u7

Read/Write. This signal indicates whether the bus
transaction is a read or a write. When low (0), the
operation is a write. When high (1), the operation is a read.
This pin is valid during the time the address strobe (AS) is
active.

SASO—
SAS3

T8,WS
R7,W4

Access Status Codes. These pins describe the type of bus
transaction being executed. SASO is the least significant bit
of the access status codes.

SAS3 SAS2 SAS1 SASO Description

0 0 0 0 Move translated word

0 0 0 1 Coprocessor data write

0 0 1 0 Auto-vector interrupt
acknowledge

0 0 1 1 Coprocessor data fetch

0 1 0 0 Stop acknowledge

0 1 0 1 Coprocessor broadcast

0 1 1 0 Coprocessor status fetch

0 1 1 1 Read interlocked

1 0 0 0 Address fetch

1 0 0 1 Operand fetch

1 0 1 0 Write

1 0 1 1 Interrupt acknowledge

1 1 0 0 Instruction fetch after PC

discontinuity

1 1 0 1 Instruction prefetch
1 1 1 0 Instruction fetch
1 1 1 1 No operation

2-77

ARCHITECTURE &

Pin Assignments

2-78

BUS OPERATION

Table 2-13. Access Status Signals (Continued)

Name

Pin(s)

Type

Description

VAD

Gl11

o)

Virtual Address. When low, this signal indicates that the
address is virtual. When VAD is high, the address is a
physical address. VAD is a level signal. It is asserted by
execution of the enable virtual pin and jump
(ENBVJMP) instruction and negated by execution of
the disable virtual pin and jump (DISVIMP)
instruction.

Note: This output is the only indication of the CPU’s
mode of operation.

XMD0—-XMD1

TS,S5

Execution Mode. These two outputs indicate the present
execution mode of the microprocessor.

XMD1 XMDO Description
0 0 Kernel mode
0 1 Executive mode

1 0 Supervisor mode

1 1 User mode
If a memory management unit (MMU) is present in the
system, it may latch and use a spurious execution mode
value if XMDO0—XMD1 changes during an access.
Since XMDO0—XMDI1 reflect the state of the current
execution level (CM) bits in the PSW, changes to the
CM field via non-microsequence instructions must be
avoided. See Chapter 4 for a more detailed explanation
of the execution modes.

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-14. Interrupt Signals

Name Pin(s) | Type Description

AVEC H10 I | Auto-vector. When this input is asserted with the
interrupt priority level input, the microprocessor
supplies its own vector. The vector number value is
the inverted interrupt option input (INTOPT)
concatenated with the interrupt priority level value.
When auto-vector is not asserted, the interrupting
device supplies the vector (see 2.9 Interrupts).

INTOPT J11 1 Interrupt Option. This asynchronous input is latched
along with interrupt priority level inputs IPLO—
IPL3. It is then inverted and output on ADDRO6
during an interrupt acknowledge transaction.

IPLO—IPL3 | H11,E10, 1 | Interrupt Priority Level. These asynchronous inputs
J10,G10 indicate the level of the pending interrupt. The code
is based on a decreasing priority scheme with 0000
having the highest priority and 1110 the lowest.
Level 1111 indicates no interrupts pending. To be
acknowledged, the inversion of the requesting level
on the pins must be greater than the present
interrupt priority level (IPL field) in the process
status word. The exception to this is a nonmaskable
interrupt which can interrupt the microprocessor
regardless of the present IPL field priority level.
IPLO is the LSB of the interrupt priority level code.
(See 2.9 Interrupts.)

NMINT K10 I Nonmaskable Interrupt. When asserted, this
asynchronous input indicates that a nonmaskable
interrupt is being requested. The microprocessor
acknowledges this interrupt with an auto-vector
interrupt acknowledge cycle (see 2.9 Interrupts).
During the acknowledge cycle the microprocessor
address bus contains all zeros.

2-79

ARCHITECTURE & BUS OPERATION

Pin Assignments

Table 2-15. Arbitration Signals

Name | Pin(s)

Type

Description

BARB Vi1

Bus Arbiter. When this input is strapped low, the
microprocessor is the arbiter of the bus. As arbiter, the
microprocessor need not request access to the bus. When the
pin is strapped high, the microprocessor is not the arbiter and
must request bus access to use the bus. When the
microprocessor is not the bus arbiter the following outputs are
3-stated until the CPU does a bus transaction:

ABORT DATA00—DATA31 SAS0—SAS3
ADDRO00— DRDY VAD
_ADDR3I DS XMD0—XMD1
AS DSIZE0—DSIZEI1

CYCLEI R/W

BRACK | S7

1/0

Bus Request Acknowledge. This signal is an output if the
microprocessor is the arbiter of the bus and an input if it is not.
As an output, this pin indicates that the bus request (BUSRQ)
has been recognized, and the microprocessor has 3-stated the
bus for the requesting bus master. The bus signals which are
3-stated when the BRACK is issued are:

ABORT DATA00—DATA31
ADDRO0O— DRDY

_ADDR31 bs

AS DSIZE0—DSIZE!1
CYCLEI R/W

As an input, this pin indicates that the microprocessor’s bus

request has been recognized and the microprocessor may take
possession of the bus.

SAS0—SAS3
VAD
XMD0—-XMD1

BUSRQ | V5

170

Bus Request. This asynchronous signal is an input if the
microprocessor is the arbiter of the bus and an output if it is
not. As an input, this signal indicates that an external device is
requesting the bus. As an output, the signal indicates that the
microprocessor is requesting the bus.

2-80

ARCHITECTURE & BUS OPERATION

Pin Assignments

Table 2-16. Bus Exception Signals

Name

Pin(s)

Type

Description

ABORT

L10

O

Access Abort. This pin is asserted on an access that is to be
ignored by the memory system. This occurs when the
microprocessor has a program counter discontinuity with an
instruction cache hit or an alignment fault.

DSHAD

T10

Data Bus Shadow. This input is used by the memory
management unit (MMU) to remove the microprocessor
from the data bus. The DATAO0—DATA31, DRDY,
DSIZE0—DSIZEI, and R/W pins are 3-stated when this
input is asserted. When DSHAD is asserted, the DTACK,
SRDY, and FAULT inputs are ignored.

FAULT

P10

Fault. This input notifies the microprocessor that a fault
condition has occurred. It is a double-latched,
asynchronous input prior to the assertion of DTACK, and
synchronous after the assertion of DTACK (latched once).
FAULT is ignored if DSHAD is asserted.

RESET

Q10

Reset Acknowledge. This signal indicates that the
microprocessor has recognized an external reset request, or

The microprocessor executes its reset routine once it negates
RESET (see 2.11 Reset).

that it has generated an internal reset (e.g., reset exception).

RESETR

P11

Reset Request. This asynchronous signal is used to reset the
microprocessor. RESETR must be active for three clock
cycles in order to be acknowledged. The microprocessor
acknowledges the request by immediately asserting RESET.

RETRY

R10

Retry. When this signal is asserted, the microprocessor
terminates the current bus transaction and retries it when
RETRY is negated.

RRRACK

w8

Relinquish and Retry Request Acknowledge. This output is
asserted in response to a relinquish and retry bus exception

It is negated when the bus transaction terminated by the
relinquish and retry bus exception is retried.

when the microprocessor has relinquished (3-stated) the bus.

2-81

ARCHITECTURE & BUS OPERATION

Pin Assignments

2-82

Table 2-16. Bus Exception Signals (Continued)

Name

Pin(s)

Type

Description

RRREQ

V10

I

Relinquish and Retry Request. This signal is used to
preempt a bus transaction so that the microprocessor bus
may be used. The signal causes the microprocessor to
terminate the current bus transaction and 3-state the
following pins:

ABORT DATA00—DATA31 SASO—SAS3
ADDRO0— DRDY VAD

_ADDR31 DS XMD0—XMD1
AS DSIZE0—DSIZE1

CYCLEI R/W

The RRRACK signal is asserted after all the above listed
pins are 3-stated. During this 3-state phase, the bus master
requesting the relinquish and retry may take possession of
the bus. No external bus arbitration signals are
acknowledged during the assertion of a relinquish and retry
request. When RRREQ is negated, the preempted bus
transaction is retried.

STOP

Sl11

Stop. When asserted, this asynchronous signal halts the
execution of any further instructions beyond those already
started. Before the microprocessor comes to a halt, there
may be one more instruction beyond the instruction during
which STOP was asserted.

ARCHITECTURE & BUS OPERATION

Microprocessor Operating Requirements

Table 2-17. Development System Support Signals

Name

Pin(s)

Type

Description

HIGHZ

V8

I

High Impedance. When asserted, this signal puts all output
pins on the microprocessor into the high-impedance state.
This pin is intended for testing purposes.

IQS0—-1QS!

U4,R5

Instruction Queue Status. This two-bit code indicates the
activity on the microprocessor instruction queue. 1QSO0 is
the least significant bit of the instruction queue status code.

Value Description

00 Discard 4 bytes
01 Discard 1 byte
10 Discard 2 bytes
11 No discard this cycle

sor

V4

Start of Instruction. When asserted, this signal indicates
that the microprocessor’s internal control has fetched the
opcode for the next instruction from the internal instruction
queue. Since the instructions are pipelined, it does not
always mean the end of the previous instruction execution.

Table 2-18. Clock Signals

Name

Pin(s)

Type

Description

CLK34

M10

Input Clock 34. The falling edge of this clock signifies the
beginning of a machine cycle. This clock input has the same
frequency as CLK23 and lags it by 90°.

CLK23

N10

Input Clock 23. This clock input has the same frequency as
CLK34 and leads it by 90°.

2.18 MICROPROCESSOR OPERATING REQUIREMENTS

The WE 32100 Microprocessor operates at a frequency of 10 MHz and requires only a
single +5 volt supply. The operating requirements are summarized in Table 2-18. The
following describes the microprocessor’s electrical (inputs und outputs), clocking, and

thermal requirements.

Note: Voltage level specifications are referenced to as either VCC (power supply input to
the microprocessor) or GRD (microprocessor ground).

2-83

ARCHITECTURE & BUS OPERATION

Electrical Requirements

2.18.1 Electrical Requirements

The WE 32100 Microprocessor provides four classes of outputs: Classes 1, 2, 3, and 4.
All classes can support TTL input voltage levels and are capable of driving loads of 130

pF.

Class 1: These outputs are capable of driving one TTL load or eight PNP Schottky TTL
loads and have current allowance for an external holding resistor employed in
3-state buffers. The minimum holding resistor value is 2.7 kilohms. The Class 1
outputs are:
ABORT Access abort
AS Address strobe
BRACK Bus request acknowledge
BUSRQ Bus request
CYCLEI Cycle initiate
DRDY Data ready
DS Data strobe
DSIZE0O—DSIZE1 Data size
1QS0—-IQS1 Instruction queue status
R/W Read/write
RESET Reset acknowledge
SAS0—SAS3 Access status codes
so1 Start of instruction
VAD Virtual address
XMD0—-XMD1 Execution mode

Class 2: This class has the same driving capabilities as Class 1, but does not have the
current allowance for a holding resistor. The Class 2 outputs are:
ADDRO0O—ADDR31 Address bus
DATA00—DATA31 Data bus

Class 3: The signal in this class is an open drain output used for wired-logic operations,
allowing more than one device to drive a node without conflict. An external
resistor is required to pull this signal high. The minimum pull-up resistor value
is 510 ohms. The Class 3 output is:
RRRACK Relinquish and retry request acknowledge

Class 4: This class is the same as Class 1; however, its minimum holding resistor value is

2-84

1.8 kilohms.

SAS0—SAS3 Access status codes

ARCHITECTURE & BUS OPERATION
Thermal Requirements

Table 2-19 contains the electrical specifications for the four classes of outputs.

The microprocessor has two types of inputs. The two clock inputs are CMOS inputs with
CMOS voltage levels. The remaining inputs are CMOS with TTL voltage levels. The
electrical specifications for both input types are given in Table 2-19.

2.18.2 Clocking Requirements

The microprocessor requires two input clocks (CLK34 and CLK23), both operating at a
maximum frequency of 10 MHz. This frequency should not vary by more than +0.02% for
all temperature and power supply conditions. CLK34 lags CLK23 by 90 degrees, and its
falling edge indicates the beginning of a machine cycle. The WE 32102 Clock is
specifically designed for the CPU. The electrical specifications for the two clocks are given
in Table 2-20.

2.18.3 Thermal Requirements

The ambient temperature at the microprocessor pins must be in the range of 0 °C to

70 °C. The microprocessor package provides a 700 mil square metalized pad for
attachment of a heat sink for applications which require additional cooling. The heat sink
must be supplied and attached by the user.

Table 2-19. Operating Requirements

Parameter Symbol | Min | Nom | Max | Unit

Supply Voltage Vcc 475 5.00 | 5.25| Vdc

Input Load TTL Inputs CIN - - 12 pF

Capacitance CMOS Clocks - - 7 pF

Total Output Class 1 - - 130 pF

Load Capacitance Class 2 CL - - 130 pF

Class 3 - - 130 pF

Class 4 - - 130 pF

Ambignt Tcmperaturf: at TA 0 _ 70 °C
the Microprocessor Pins

Humidity Range - 5% — | 95% —

Power Dissipation P - = 0.8 W

Operating Frequency F - 10 | MHz

2-85

ARCHITECTURE & BUS OPERATION
Thermal Requirements

Table 2-20. Output Electrical Specifications

Outputs Min | Nom { Max | Units
Output Sink Current (IOL): Class 1 - - 5.5 | mAdc
(VoL < 0.4 V)
Class 2 - - 3.5 | mAdc
Class 3* — - 10.0 | mAdc
Class 4 — - 6.5 | mAdc
Output Source Current (IOH): | Class 1 - - —5.5 | mAdc
(VOH = 2.4 V)
Class 2 - - —3.5 | mAdc
Class 3* - — | —10.0 | uAdc
Class 4 - - —5.5 | mAdc
Output Logic Levels High Level | 2.4 - - Vdc
Low Level | — - 0.4 | Vdc
* See explanation of Class 3 in 2.15.1 Electrical Requirements.
Table 2-21. Input Electrical Specifications
Inputs Min Nom Max Units
TTL Input Voltage High Level 20 — |Vcc+0S5 Vdc
Low Level -05| — 0.8 Vdc
CMOS Clock High Level | VcC— 13| — |Vcc+05| Vde
Input Voltage
Low Level 0| — 0.8 Vdc
TTL Input
Loading Current: High Level 0| — 0.01 | mAdc
(20 V < VIH = Vco)
TTL Input
Loading Current: Low Level —-0.01 - mAdc
OV=VIL=08V)
CMOS Clock Input
Loading Current: High Level 0 — 0.01 | mAdc
(Vcc—1.3 V < VIH =< Vce)
CMOS Clocks Input
Loading Current: Low Level -0.01| — mAdc
OV =VIL=08YV)

2-86

ARCHITECTURE & BUS OPERATION

Supplementary Protocol Diagrams

2.19 SUPPLEMENTARY PROTOCOL DIAGRAMS

The following supplementary protocol diagrams are provided:

Figure 2-44. Read Transaction Followed by a Read Transaction.

Figure 2-45. Read Transaction Followed by a Write Transaction (Using DTACK).

Figure 2-46. Write Transaction Followed by a Write Transaction.

Figure 2-47. Write Transaction Followed by a Read Transaction.

Figure 2-48. Double-Word Program Fetch Without Blockfetch Transaction (Using DTACK).

Figure 2-49. Bus Arbitration During Relinquish and Retry.

2-87

88-C

CLK23

CLK34

SASO-
SAS3

DSIZEO-
DSIZEI

ADDROO-
ADDR3I

S, DS

DATAQO-
DATA3I

_:\ 0 i R E 0 _x_/_x_-
" -— INSTRUCTION FETCH/PREFETCH __ 1L

_ L1 |

_ (<)

_ | I |

B (OO van) 3 - STATE IF VIRTUAL X 3 - STATE IF VIRTUAL)

_ \ / M \

= OO0
QOO0 OO0 0 UK
OO OOUXIRXXIAX KK O

_ (/1 (/7]

j\\L \ \ \\

Note: Zero wait cycles.

Figure 2-44. Read Transaction Followed by a Read Transaction

sweigei(] [020)01d Areyusurjddng

NOILVIHdO SNg ¥» FIANLOALIHOAY

68-7

CLK23

CLK34

SASO-
SAS3

DSIZEO-
DSIZEI

ADDROO-
ADDR3I

IS

DS

DATA00O-
DATA3I

(%]
0]
(=]
=

R/W

HV VAN VAN VanuVaN VAR VanuVanu|

RUVERGYERED U ERNY S EDER SN S i
READ X (¢ WRITE ({{ NEXT VALID

_ ’ L L 1]

_ ¢)

_ | L[[] RN

_ (L vaun) 3 - STATE F VIRTUAL XL van) 3 - STATE IF VIRTUAL

— N A

- N N / \\

: (var YOO ({{ VALID)

DOOUROOX

~ Ry

Note: Zero wait cycles.

Figure 2-45. Read Transaction Followed by a Write Transaction (Using DTACK)

NOLLVYHIdO SNd ® TANLOHALIHOAV

suieidei(y (0903014 Arejuourdjddng

06-T

/

s Vs

CLK34 5 x Y o / 5 X

6% WRITE NEXT VALD)
g — —

[[

l

1 L1 1

Ao _ (LK van)

s-state Foveual X ({((¢

VALID

T
)

3 - STATE IF VIRTUAL

AS A\

\

4

//

VALID

_ //

«

VALID)

(X

XOURXXXAO

oY _ [/}) /7
R \NN\ N
BLKFTCH —_
overe |\ AN /]

Note: Zero wait cycles.

Figure 2-46. Write Transaction Followed by a Write Transaction

sweidei(q (0903014 Areyudujddng

NOILVIYAdO SNgd ¥ JINLOALIHOAY

167

CLK23

CLK34

SASO-
SAS3

DSIZEO-
DSIZE!

ADDROO-
ADDR3!

xS

Bs

DATAOQO-
DATA3I

R/W

BLKFTCH

o
=<
o
=
jul

/]
_*

/]

NI

WRITE

Ne

(«

READ

e

NEXT VALID

||

|

|

il

(¢

X(((

[|

L1 [1

11 |

(@ Y s v vn CCC(ST IR G
\. XL A v/ A N
N \\ A Wx /7 A
€« (0 —

U0

(7

Note: Zero wait cycles.

Figure 2-47. Write Transaction Followed by a Read Transaction

NOILVIHdO SNd ¥ TINLIALIHOAV

sureagel(] [090301J Arejuourdjddng

76T

CLK23

CLK34

SASO-
SAS3

DSIZEO- —

DSIZE!

ADDROO-
ADDR3I

S

wnl

DATAQO-
DATA3I

l

DTACI

=

R/W

BLKFTCH

CYCLE!

/] va
__\;o/ i 3 4 5 X 0 | 4 [5
4 *{T INSTRUCTION PREFETCH (L next vaup
L L 1
i e DOUBLE WORD ({{ WORD
- [L 1 1]
_ (O vam) 3 - STATE IF VIRTUAL XV vam) 3 - STATE IF VIRTUAL
|\ [///] AN /
: {woro 1 YOO { woro 2 YOOOOOO0K)
QOO (XX YN OO0
OGO OO OO0
_ /) AN [
__l
OO LRGN SO0,
~ f NN /

Note: Zero wait cycles.

Figure 2-48. Double-Word Program Fetch Without Blockfetch Transaction (Using DTACK)

swieigei(] [090301J Areyudurjddng

NOILVYHdO SN9 ¥® TIANLIALIHDYV

€6-T

s | L/ o '——_l VauUVa Fan¥ VanVUN _/J—_J_
axss Y o /7 N N N o S o /T e N s
a0y NTH ACCESS {{{ N+2 ACCESS {{{ NTH ACCESS X {{{X_no operation T
_ Lonmoaccess wooress | | A wth access aooress [
AOROoRs D) 3-STATE F VIRTUAL 4 ¢ (D) 3 - STATE IF VRTUAL
.55 = T & 4L/ ?
L OO0 SR T\ /TG0, G
srov | NGOG0, 7 YOG, MO OO0, LR
e = 7777 < -
R I o T
RRRICR = T\, —
BUSRO \ 4 -+
e = = A e

Note: The same protocol diagram applies for retry and bus arbitration except that the address bus, data
bus, and control signals are not 3-stated during the time RETRY is active and RRRACK is not issued.

Figure 2-49. Bus Arbitration During Relinquish and Retry

NOILVIddO SN9 ® TINLIOHLIHOYV

sweldel(q [090301g Arejusudjddng

Chapter 3

Instruction Set and
Addressing Modes

CHAPTER 3. INSTRUCTION SET AND ADDRESSING MODES

CONTENTS

3. INSTRUCTION SET......ccocuruee. 3-1 3.6.5 Coprocessor Instructions 3-32

3.1 DATA TYPES ...t 3-1 3.6.6 Stack and Miscellaneous

3.1.1 Sign and Zero Extension.......... 3-3 InStructions.....cocovvevenrncoreveenens 3-32

3.2 REGISTERS.....coovvrreirrennenne 3-3 3.7 INSTRUCTION SET

3.2.1 Writing and Reading LISTINGS.covveecreerirenn 3-33

Registers....oovmererecnenenneene 3-6 3.7.1 Notation

3.3 INSTRUCTION FORMAT...... 3-6 Assembler Syntax......oconeeeenne 3-34

3.3.1 Data Embedded in Operands... 3-6 Opeodesc.oovveiencninneiinnens

3.4 ADDRESS MODES........cccceeen. 3-6 Operation..............

3.4.1 Absolute Address Modes.......... 3-10 Address Modes
ADSOIULE c..oovrienrrrerirce s Condition Flags........ccccevcenunnes

~ Absolute Deferred..........occovunee. EXCeptions......ocmevererneienneenne

3.4.2 Displacement Modes Examplescoeereens
Byte Displacement Notes (Optional)

Byte Displacement Deferred 3-12 3.7.2 Instruction Set Descriptions..... 3-36

Halfword Displacement............ 3-12 Add (ADDB2, ADDH?2,

Halfword Displacement ADDW2) ...ooirrrirrncerenranns 3-37
Deferredcocourvemvveennerereeiennne 3-13 Add, 3 Address (ADDBS3,

Word Displacement 3-14 ADDH3, ADDW3) 3-38

Word Displacement Deferred... 3-14 Arithmetic Left Shift

AP Short Offseteceoeeunceuneenn. 3-15 (N 307) J 3-39

FP Short Offset AND (ANDB2, ANDH?2,

3.4.3 Immediate Modes........co.coorn.... ANDW2) ...ooooiirnrircrensernns 3-40
Byte Immediate.........coerrrrrnenee. AND, 3 Address (ANDB3,
Halfword Immediate ANDH3, ANDW3I).....covuunee 3-41
Word Immediate........c.coccounenee Arithmetic Right Shift
Positive Literal......ccoccevecvvunene. (ARSB3, ARSH3, ARSW3). 3-42
Negative Literal.....coccevvveeeirenene Branch on Carry Clear

3.4.4 Register Modes (BCCB, BCCH) ...ccoverernaree. 3-43
Register Mode........coverviinnaneee. Branch on Carry Set
Register Mode Deferred........... 3-19 (BCSB, BCSH)covvvererennne 3-44

3.4.5 Expanded-Operand Type Branch on Equal

MOode oo 3-20 (BEB, BEH) ...cccorvvvrerrarrerrnnns 3-45

3.5 CONDITION FLAGS............... 3-22 Branch on Greater Than

3.6 FUNCTIONAL GROUPS 3-23 (Signed) (BGB, BGH) 3-46

3.6.1 Data Transfer Instructions....... 3-23 Branch on Greater Than

3.6.2 Arithmetic Instructions............ 3-25 or Equal (Signed)

3.6.3 Logical Instructions.................. 3-26 (BGEB, BGEH)ceuvuan.. 3-47

3.6.4 Program Control Instructions.. 3-28
Subroutine Transfer....
Procedure Transfer

Branch on Greater Than
or Equal (Unsigned)
(BGEUB, BGEUH)ccco.e. 3-48

Branch on Greater Than
(Unsigned) (BGUB,

BGUH) ..o 3-49
Bit Test (BITB, BITH,

BITW) ..o 3-50
Branch on Less Than

(Signed) (BLB, BLH)............ 3-51
Branch on Less Than or

Equal (Signed)

(BLEB, BLEH)cccoeueenu.e. 3-52
Branch on Less Than or

Equal (Unsigned)

(BLEUB, BLEUH) 3-53

Branch on Less Than
(Unsigned) (BLUB, BLUH).. 3-54
Branch on Not Equal

(BNEB, BNEH)ccccorvennnee. 3-55
Breakpoint Trap (BPT)............ 3-56
Branch (BRB, BRH)................ 3-57
Branch to Subroutine

(BSBB, BSBH)cccecuveerreenne 3-58
Branch on Overflow Clear

(BVCB, BVCH)ccoovvevvennee 3-59
Branch on Overflow Set

(BVSB, BVSH)ccccesreernen. 3-60
Call Procedure (CALL)........... 3-61
Cache Flush (CFLUSH).......... 3-62
Clear (CLRB, CLRH,

CLRW) .t reeeran, 3-63
Compare (CMPB, CMPH,

CMPW) oo 3-64
Decrement (DECB, DECH,

DECW) ..ot 3-65
Divide (DIVB2, DIVH2,

DIVW2) coireeeeeeeeeeeeveesnaes 3-66
Divide, 3 Address

(DIVB3, DIVH3, DIVW3).... 3-67
Extract Field (EXTFB,

EXTFH, EXTFW)....coveuee. 3-68
Extended Opcode (EXTOP) 3-69
Increment (INCB, INCH,

INCW) oovereceeeeeeeereaans 3-70
Insert Field INSFB,

INSFH, INSFW) ...covemrecrenen 3-71
Jump (JMP) ... 3-72
Jump to Subroutine (JSB) 3-73

CONTENTS

Logical Left Shift

(LLSB3, LLSH3, LLSW3) ...

Logical Right Shift

(LRSW3) ..o

Move Complemented
(MCOMB, MCOMH,

MCOMW)coeirmrrrrerercannne

Move Negated (MNEGB,

MNEGH, MNEGW)............

Modulo (MODB2, MODH2,

Modulo, 3 Address (MODB3,
MODH3, MODW3)...............

Move (MOVB, MOVH,

Move Address (Word)

(MOVAW) ..oovveriiecireerenns
Move Block (MOVBLW)

Multiply (MULB?2,

MULH2, MULW2)
Multiply, 3 Address (MULB3,
MULH3, MULW3)

Move Version Number

(MVERNO)cccovvvrvervrrcrnnans

No Operation (NOP,

NOP2, NOP3)convurvircinne

OR (ORB2, ORH2,

ORW2) .conirirnncrenenscnenennes

OR, 3 Address (ORB3,

ORH3, ORW3) ..cccvvurvrrernenn.

Pop (Word) (POPW)
Push Address (Word)

(PUSHAW) ..ooovvrveerierieenns
Push (Word) (PUSHW)

Return on Carry Clear

(RCC) coreererreeerrsenrereneneenees

Return on Carry Set

(RCS) crrerrenerencieneerscranens

Return on Equal

(REQL, REQLU)ccccernecn.

Restore Registers

(RESTORE)ccovcvmuriniennnn

Return from Procedure

16235 1 T

Return on Greater Than

or Equal (Signed) (RGEQ) ...

Return on Greater Than
or Equal (Unsigned)

(027672761 6) R 3-100
Return on Greater Than

(Signed) (RGTR)......couuu..... 3-101
Return on Greater Than

(Unsigned) (RGTRU) 3-102

Return on Less Than
or Equal (Signed) (RLEQ).... 3-103
Return on Less Than or Equal

(Unsigned) (RLEQU)............ 3-104
Return on Less Than

(Signed) (RLSS)...cccccovvvveeennee 3-105
Return on Less Than

(Unsigned) (RLSSU)............. 3-106
Return on Not Equal

(RNEQ, RNEQU)ccoueuuue. 3-107

Rotaie (ROTW)
Return from Subroutine

(02557) 10T 3-109
Return on Overflow Clear
(RVO) e 3-110

Return on Overflow Set
(RVS) e,
Save Registers (SAVE)
Coprocessor Operation
(no operands) (SPOP)............ 3-113
Coprocessor Operation
Read (SPOPRS, SPOPRD,
SPOPRT)cvurrrereenernerennenns 3-114

CONTENTS

Coprocessor Operation,

2-Address (SPOPS2,

SPOPD2, SPOPT2)........cc.ccc... 3-115
Coprocessor Operation

Write (SPOPWS, SPOPWD,

SPOPWT) ..o 3-116
String Copy (STRCPY)........... 3-117
String End (STREND) 3-119
Subtract (SUBB2,

SUBH2, SUBW2)ccoc...... 3-120

Subtract, 3 Address

(SUBB3, SUBH3, SUBW3).. 3-121
Swap (Interlocked)

(SWAPBI, SWAPHI,

SWAPWD) ..o 3-122
Test (TSTB, TSTH, TSTW) ...
Exclusive Or (XORB2,

XORH2, XORW2) ..o 3-124
Exclusive Or, 3 Address

(XORB3, XORH3,

XORW3) c.verririnreeeirennnens 3-125
3.7.3 Instruction Set Summary by
Functioncecceeevvevccceneennnns 3-126
3.7.4 Instruction Set Summary by
Mnemonic......coooeereerierrecneenen. 3-132
3.7.5 Instruction Set Summary by
OpCode....vivreeinirrrereirieaereens 3-136

INSTRUCTION SET & ADDRESSING MODES
Data Types

3. INSTRUCTION SET

The WE 32100 Microprocessor has a powerful instruction set that includes the standard
data transfer, arithmetic, and logical operations for microprocessors, plus some unique
operating system operations. Its many program control instructions (branch, jump, return)
provide flexibility for altering the sequence in which instructions are executed. Some of
these instructions check the setting of the processor’s condition flags before execution. For
operating systems, the processor has instructions to establish an environment that permits
other processes to take control of the processor. The special instructions dedicated to
operating system use are discussed in Chapter 4.

The microprocessor instructions are mnemonic-based assembly language statements.
However, programs may be written in C language and translated into assembly language
by its C compiler.

A mnemonic defines the operation an instruction performs. For most arithmetic or logical
operations, the mnemonic also defines one of the data types:

O byte - 8-bit data
O halfword - 16-bit data
o word - 32-bit data.

Some instructions perform operations on a bit field, a sequence of 1 to 32 bits contained in
a word, or on a block (or string) of data locations.

3.1 DATA TYPES

The data types supported by the WE 32100 Microprocessor instruction set are illustrated
on Figure 3-1 and are defined as:

byte - An 8-bit quantity that may appear at any address in memory. Its bits are numbered
from right to left starting with 0, the least significant bit (LSB), and ending with 7, the
most significant bit (MSB).

halfword - A 16-bit quantity that may appear at any address in memory divisible by 2. Its
bits are numbered from right to left starting with 0, the LSB, and ending with 15, the
MSB.

word - A 32-bit quantity that may appear at any address in memory divisible by 4. Its bits
are numbered from right to left starting with 0, the LSB, and ending with 31, the MSB.

Each of these types may be interpreted as a signed or unsigned quantity. A signed
quantity is represented in 2’s complement form. Therefore, for a signed quantity, the MSB
indicates the sign of the quantity; O for a positive quantity and 1 for a negative quantity.

A bit field is a sequence of 1 to 32 bits contained in a base word. The field is specified by
the address of its base word, a bit offset, and a width. The bit offset ranges from 0 to 31

INSTRUCTION SET & ADDRESSING MODES

Data Types

BITS

BITS

BITS

7 0
MsB LSB
A. BYTE DATA
15 8|7 0
I ' l
A
MsB LSB
B. HALFWORD DATA
31 24I23 16, 15 317 0
I | I | I
1 |] §
MSB LSB
C. WORD DATA
Figure 3-1. Bit Order of Data
MSB LSB
31 24, 23 16,15 87 0

|x... x:x... x:01111011=01x...x

| |
tt— WIDTH —pd——5f
| | OFFSET

BASE WORD AT ADDRESS a——
MSB LSB

9 0
01 11101101

LEGEND:

BASEWORD ADDRESS = a
OFFSET = 6
WIDTH = 9

Figure 3-2. Bit Order in a Bit Field

INSTRUCTION SET & ADDRESSING MODES

Registers

and identifies the starting bit of the field. The offset count starts at the LSB of the base
word and corresponds to the number of the bit in the word. That bit becomes bit 0, the
LSB of the field. The width ranges from O to 31 and specifies the size of the field. Width
plus one is the number of bits in the field. The width is numbered from right to left in the
field and corresponds to the bit number of the field’s MSB. Fields do not extend across
word boundaries. Fields wrap around from MSB to LSB at the word boundary. Figure
3-2 illustrates a bit field located at address a, with an offset of 6, and a width of 9. Notice
that the field contains 10 bits, one bit more than the width.

3.1.1 Sign and Zero Extension

All operations are performed only on 32-bit quantities even though an instruction may
specify a byte or halfword operand. The WE 32100 Microprocessor reads in the correct
number of bits for the operand and extends the data automatically to 32 bits. It uses sign
extension when reading signed data or halfwords and zero extension when reading
unsigned data or bytes (or bit fields that contain less than 32 bits). The data type of the
source operand determines how many bits are fetched and what type of extension is
applied. Bytes are treated as unsigned, while halfwords and words are considered signed.
The type of extension applied can be changed using the expanded-operand type mode as
described in 3.4.5 Expanded-Operand Type Mode. For sign extension, the value of the
MSB or sign bit of the data fills the high-order bits to form a 32-bit value. In zero
extension, zeros fill the high order bits. The microprocessor automatically extends a byte
or halfword to 32 bits before performing an operation. Figure 3-3 illustrates sign and zero
extension.

An arithmetic, logical, data transfer, or bit field operation always yields an intermediate
result that is 32 bits in length. If the result is to be stored in a register, the processor
writes all 32 bits to that register. The processor automatically strips any surplus high-
order bits from a result when writing bytes or halfwords to memory.

3.2 REGISTERS

A processor register may contain the operand for an instruction or may be used when
computing an address of an operand. Therefore, most address modes, other than absolute,
immediate, or literal, reference a processor register. In general, any of the sixteen
processor registers may be used as an operand in all of the address modes. Table 3-1 lists
the registers and assigned functions.

General-purpose registers r0 through r8 may be used for accumulation, addressing, or
temporary data storage. The remaining processor registers are special purpose and are
usually referenced with different names. Three of these registers are pointers to data
stored on an execution stack: the frame pointer (FP), register 9 (r9), the argument pointer
(AP), register 10 (r10), and the stack pointer (SP), register 12 (r12). Function calls and
returns affect the AP, FP, and SP implicitly. The FP identifies the starting location of
local variables for the function, while the AP identifies the beginning of the set of
arguments passed to the function. The SP always points to the next available word
location on the stack. Note that the stack grows upward to higher memory addresses.

33

INSTRUCTION SET & ADDRESSING MODES

Registers
Table 3-1. Register Set
Assembler
Register | Name Syntax Assigned Function
0 r0 %r0 General-purpose (Note 1)
1 rl %rl General-purpose (Note 1)
2 r2 %or2 General-purpose (Note 1)
3 r3 %r3 General-purpose
4 r4 %ord General-purpose
5 rS %r5 General-purpose
6 r6 %or6 General-purpose
7 r7 %17 General-purpose
8 r8 %18 General-purpose
9 FP %fp or %r9 Frame pointer
10 AP %ap or %rl0 Argument pointer
11 PSW %psw or %rll Processor status word (Note 2)
12 SP %sp or Jer12 Stack pointer
13 PCBP %opcbp or %rl3 Processor control block
pointer (Note 2)
14 ISP %isp or %rl4 Interrupt stack pointer (Note 2)
15 PC %pc or %rl5 Program counter (Note 3)
Notes:

34

1. Block or string instructions may use this register as an implied argument
for indexing or addressing. Operating system instructions also use these
registers.

2. Privileged register. Writing to this register when the processor is not in
kernel execution level causes a privileged-register exception (see 4.2.1
Execution Privilege).

3. Registers 11 and 15 may not be used in some address modes (see 3.4

Address Modes).

Some of the registers have restrictions on usage in instructions. Because registers 11, 13,
and 14 (r11, r13, and r14) are privileged, these may be written only when kernel execution

level is in effect. Register 11, the processor status word (PSW), contains status

information about the current instruction and process. Register 13, the process control
block pointer (PCBP), identifies a block of status information and pointers for a process.
Register 14, the interrupt stack pointer (ISP), functions as a stack pointer for the interrupt

stack.

The last register is the program counter, register 15 (r15). This register and register 11
may not be referenced in some address modes (see 3.4 Address Modes). In addition, it is
referenced implicitly in all program-control instructions and for all function calls and

returns.

INSTRUCTION SET & ADDRESSING MODES
Registers

BYTE DATA HALFWORD DATA

7 0 15 gl7 0
1Xe o o X1 lUX000X1{0Xoo-X1

MSB MSB

A. VALUE READ IN

31 8|7 0 31 16| 15 8|7 0
$S T S T T
l1<——1|1X000X1| |D<———0IUX°ooX1IDXoooX1|
[d (4
T 7

B. AFTER SIGN EXTENSION

31 8|7 0 31 16| 15 817 0
S5 T S S

D<—0|1Xooox1] |D<—0:0X000X11'6(000X1|
[4 <

C. AFTER ZERO EXTENSION

Figure 3-3. Extending Data to 32 Bits

31 16 15 8|7 0
<

REGISTER X o o o Xl10110011:10111001|

< < I
>y

31 18] 15 8|7 l 0

[
EXTENDED |[]<,‘ I 0'10111001'
(I‘! I L
A. AS BYTE OPERAND

31 18]15 8|7 0
£ <
i I I I
REGISTER [X oe o X 10110011 10111001
L - ’
A\ /
31 16|15 8|7 0

£ ¢
27
EXTENDED |1<——- 1lL1011ﬂD11r10111001|

€ ¢ l
>y

B. AS HALFWORD OPERAND

Figure 3-4. Register as a Source Operand

INSTRUCTION SET & ADDRESSING MODES
Writing & Reading Registers

3-6

3.2.1 Writing and Reading Registers

A write to a register always affects all 32 bits. When a destination operand is a register,
the processor ignores the data type of the operand and copies all 32 bits of a result to that
register.

When reading from a register, the data type of the source operand determines how many
bits are fetched and what type of extension is applied (see Figure 3-4). If a register is a
byte operand, bits 0 through 7 of the register are fetched, and zero extension produces the
32-bit value required internally. If a register is halfword operand, bits O through 15 are
fetched, but sign extension forms the 32-bit value.

3.3 INSTRUCTION FORMAT

Instructions may appear at any byte address. An instruction consists of a one- or two-byte
opcode followed by zero or up to four operands. In assembly language, the mnemonic
replaces the opcode and is followed by its operands. This is represented as

mnemonic opndl,opnd2,...,opnd4

where the mnemonic is separated from the operands by a white space and commas are used
to separate operands.

Part A of Figure 3-5 shows the general format of an instruction in memory. Each operand
may consist of a descriptor byte followed by up to four bytes of embedded data. Part B of
Figure 3-5 shows the general format of the operand. During execution, the program
counter always points to the starting address (opcode byte) of the instruction.

3.3.1 Data Embedded in Operands

Figure 3-6 illustrates the format for operands with embedded word, halfword, and byte
data. The first byte is the operand descriptor that defines which address mode and register
the operand uses. The descriptor is divided into two 4-bit fields. Bits O through 3 define
the register field; bits 4 through 7 define the address mode. The register field and address
mode combinations are shown in Table 3-2.

There are two cases of operands with embedded data that do not have operand descriptors.
First, when the operand is used as a target in a branch instruction, the operand is used as
an 8- or 16-bit displacement from the program counter and no descriptor is needed.
Second, there is no descriptor when a command word appears in a coprocessor instruction.

3.4 ADDRESS MODES

The WE 32100 Microprocessor recognizes the commonly used address modes such as
immediate, register, absolute, and displacement or offset from the content of a register.
Some modes involve a pointer, the address of a word location in memory that contains the
address of the operand, and are known as deferred modes.

INSTRUCTION SET & ADDRESSING MODES
Address Modes

ke~ UP TO 4 OPERANDS — |
|

! p
l | OPERAND 1 I OPERAND 4 I
22
I OPCODE |
(12 BYTEST]
INCREASING ADDRESS —p
A. INSTRUCTION
0 3 7
£ ¢
2T
BYTE 0 [7 | BYTE 3]
L
 DESCRIPTOR | > |
I oy ~BI———— UP T0 4 DATA BYTES —
| |

INCREASING ADDRESS — &

B. OPERAND FORMAT

Figure 3-5. General Instruction Format

gITs INCREASING ADDRESS —&>
0 7,0 7,8 15 16 23,24 31
)
rerrimmmmi o BYTE 0 BYTE 4

A. EMBEDDED WORD DATA

BITS
0 3 7,8 15y 16 23

T
rrrr:mmmm BYTE O BYTE 1 J

B. EMBEDDED HALFWORD DATA

BITS 0 3 7,8 15
rrrr:mmmm J
1
| | .
BYTE DAT LEGEND:
Fa Ai? mmmm = ADDRESS MODE (0-15)
rrrr = REGISTER (0-15)

C. EMBEDDED BYTE

Figure 3-6. Data Embedded in an Operand

INSTRUCTION SET & ADDRESSING MODES
Address Modes

In assembly language, the syntax of the operand defines the operand and its address mode.
Each address mode description in this section includes an example using a move instruction
(MOVB, MOVH, or MOVW) to be described later. Because each example includes two
operands, only the first operand demonstrates the address mode being described. The
second operand uses the register mode.

Table 3-2 lists the address modes and gives the syntax for each. The descriptions and the
table use the following notation:

Oxnnn

ap

expr

fp

imm8
imml6
imm32
lit
opnd

%rn

SO

type

Hexadecimal number nnn, where n is a hexadecimal digit 0 to 9 or a to f (or A to
F); may also be written 0Xnnn

Argument pointer (AP); contains the starting location on the stack of a list of
arguments for a function

User-supplied expression that yields a byte, halfword, or word

Frame pointer (FP); contains the starting location on the stack of local variables
for a function

Signed integer in the range —128 to +127 (ie., =27 to +27—1)
Signed integer in the range —32768 to +32767; i.e., —215 ¢ (+215—1)
Signed integer in the range —231 to (+2°1-1)

Signed integer in the range —16 to +63

An operand that uses a mode other than the expanded-operand type

References a processor register; use the syntax shown in Table 3-1 for the desired
register

Short offset; an integer in the range 0 to 14

Data type: sbyte (for signed byte), byte or ubyte (for unsigned byte), half or shalf
(for signed halfword), uhalf (for unsigned halfword), word or sword (for signed
word), uword (for unsigned word); see 3.4.5 Expanded-Operand Type Mode for
more details.

In machine language, a descriptor defines all source or destination operands and occupies
one or more bytes in the instruction stream.

The first byte of the operand, called the descriptor byte, defines the address mode. (The
expanded-operand type mode uses two descriptor bytes and is discussed later in this

section.) Bytes that follow the descriptor byte contain any data required by the address
mode for that operand. Table 3-2 identifies the total bytes in memory required for each

mode.

INSTRUCTION SET & ADDRESSING MODES

Table 3-2. Addressing Modes

Mode Register Total
Mode Syntax | ‘gl Field Bytes | \otes
Absolute
Absolute Sexpr 7 15 51 —
Absolute deferred *Sexpr 14 15 5 -
Displacement (from a register)

Byte displacement expr(%rn) 12 [0—10,12—15 2| —
Byte displacement

deferred *expr(%rn) 13 [0—10,12—15 2| -
Halfword displacement | expr(%rn) 10 | 0—10,12—15 3] -
Halfword displacement

deferred *expr(%rn) 11 [0—-10,12—15 3| -
Word displacement expr(%rn) 0—10,12—15 5| —
Word displacement

deferred *expr(%rn) 910-—10,12—15 5| —
AP short offset so(%ap) 7 0—14 1 1
FP short offset s0(%fp) 6 0—14 1 1

Immediate
Byte immediate &imm8 6 15 2 2,3
Halfword immediate &imml6 5 15 3 2,3
Word immediate &imm32 4 15 5 2,3
Positive literal &lit 0-3 0—15 1 2,3
Negative literal &lit 15 0—15 1 2,3
Register
Register %rn 4 0—14 1 1,3
Register deferred (%rn) 5]10-—10,12—14 1 1
Special Mode

Expanded-operand

type {type}opnd 14 0—14 | 2—6 4

Notes:

1. Mode field has special meaning if register field is 15; see absolute or

immediate mode.

2. Mode may not be used for a destination operand.
3. Mode may not be used if the instruction takes effective address of the

operand.

4. type overrides instruction type; type determines the operand type,

except that it does not determine the length for immediates or literals
or whether literals are signed or unsigned. opnd determines actual

address mode. For total bytes, add 1 to byte count for address mode
determined by opnd.

Address Modes

39

INSTRUCTION SET & ADDRESSING MODES
Address Modes

As described before, the descriptor byte has two 4-bit fields:

7 4 3 0
Immmm| TIIr |

The register field rrrr, bits O through 3, contains the number of a register, O through 15.
The mode field mmmm, bits 4 through 7, contains an address-mode number, O through 15.
Table 3-2 lists the value in the mode field and the possible values in the register field for
each address mode. If the register field contains 15, the mode field may be interpreted
differently.

In the following examples for the address modes, the first operand illustrates the mode
while the second operand uses the register mode. For assembly language programming,
values follow the C language conventions:

e Leading Ox or 0X denotes a hexadecimal value
e Leading O followed by the digits O through 7 is octal

o Digits 0 through 9, but no leading zero is decimal.

The byte boxes illustrating the instruction stream in the following examples contain
hexadecimal values.

3.4.1 Absolute Address Modes

In this mode, an absolute address is embedded in the operand. This may be the address of
the operand or of a pointer.

Absolute

The operand is accessed by an absolute address computed from the expression expr.
Syntax: $expr

mmmm; 7
rrrr: 15
Total bytes: 5

Example: MOVB $0x100,%r0

87 Opcode

7F First Operand
00
01
00
00
40 Second Operand

INSTRUCTION SET & ADDRESSING MODES
Byte Displacement

This instruction moves the byte at location 100 to register 0(r0). %r0 is the syntax for the
register mode. In the instruction stream, the four bytes that follow the descriptor byte
form the 32-bit absolute address of the operand. The bytes follow the order shown on
Figure 3-6 for word data.

Absolute Deferred

The operand is accessed through the absolute address of a pointer, a location in general
memory that contains the address of the operand. The absolute address of this pointer is
computed from the expression expr.

Syntax: *$expr

mmmm: 14
rrrr: 15
Total bytes: 5

Example: MOVB *$0x2E00,%r1

87 Opcode

EF First Operand
00
2E
00
00
41 Second Operand

This example moves a byte from memory to register 1 (r1). However, it uses a pointer
(the word starting at location 0x2E00) to locate the byte in memory. In the instruction
stream, the four bytes that follow the descriptor byte form the 32-bit absolute address of a
word location in memory. That location contains the address of the operand. The 32-bit
absolute address in the instruction follows the byte order shown on Figure 3-6 for word
data.

3.4.2 Displacement Modes

For these modes, a displacement contained in the operand added to a register forms the
address of the operand or a pointer to the operand. Sign-extension expands the
displacement of 32 bits before the addition occurs.

Byte Displacement

A byte displacement added to a register forms the address of the operand. The
displacement, computed from the expression expr, ranges from —128 to +127, and n ranges
from O to 10 and 12 to 15 (use the syntax given in Table 3-1).

INSTRUCTION SET & ADDRESSING MODES
Byte Displacement Deferred

Syntax: expr(%rn)

mmmm: 12
rrrr: 0 to 10, 12 to 15
Total bytes: 2

Example: MOVB 6(%r1),%r0

87 Opcode

C1 First Operand
06

40 Second Operand

This example moves a byte from memory to register 0. This byte in memory is located by
adding the displacement 6 to register 1. The displacement is the byte that follows the
descriptor byte in the instruction stream. This displacement is sign extended and added to
the contents of the register 1. The sum is the address of the operand.

Byte Displacement Deferred

A byte displacement added to a register forms a pointer. The word location identified by
the pointer contains the address of the operand. The displacement computed from the
expression expr ranges from —128 to +127, and n ranges from 0 to 10 and 12 to 15 (use
the syntax given in Table 3-1).

Syntax: *expr(%rn)

mmmm: 13
rrrr: 0 to 10, 12 to 15
Total bytes: 2

Example: MOVB*0x30(%r2),%r3

87 . | Opcode

D2 First Operand
30

43 Second Operand

This example adds the byte displacement 0x30 to the contents of register 2 (r2) to form
the starting address of a pointer in memory. The pointer is the address of a byte in
memory. After zero extension of the byte, the value is written to register 3 (r3). The
displacement is the byte that follows the descriptor byte in the instruction stream. This
byte is sign extended and added to the contents of register 2. The sum is the address of a
word location in memory that contains the address of the operand.

Halfword Displacement

A halfword displacement added to a register forms the address of the operand. The
displacement is computed from the expression expr and ranges from —2!% to (+2'5—1.)

3-12

INSTRUCTION SET & ADDRESSING MODES
Halfword Displacement Deferred

Syntax: expr(%rn)

mmmm: 10
rrrr: 0 to 10, 12 to 15
Total bytes: 3

Example: MOVB 0x1101(%r2),%r8

87 Opcode
A2 First Operand
01

11
48 Second Operand

This example adds the halfword displacement 0x1101 to the contents of register 2. The
result is the address of a byte in memory. This byte is written to register 8 after zero
extension. In the instruction stream, the halfword that follows the descriptor byte is the
displacement. This displacement is sign extended and added to the contents of register 2.
The sum is the address of the operand. The displacement stored in the instruction follows
the byte ordering shown on Figure 3-6 for halfword data.

Halfword Displacement Deferred

A halfword displacement added to a register n forms a pointer. The word location
identified by the pointer contains the address of the operand. The displacement computed
from the expression expr ranges from —2'° to (+2'°~1), and n ranges from 0 to 10 and 12
to 15 (use the syntax given in Table 3-1).

Syntax: *expr(%rn)

mmmm: 11
rrrr: 0 to 10, 12 to 15
Total bytes: 3

Example: MOVB *0x200(%r2),%r6

87 Opcode

B2 First Operand
00

02

46 Second Operand

This instruction adds the halfword displacement 0x200 to the contents of register 2,
forming the address that locates a pointer in memory. The pointer locates a byte in
memory that is written to register 6 after zero extension. In the instruction stream, the
halfword that follows the descriptor byte is the displacement. This displacement is sign
extended and added to the contents of register 2. The sum is the address of a word
location in memory that contains the address of the operand. The displacement in the
instruction stream follows the byte order shown on Figure 3-6 for halfword data.

3-13

INSTRUCTION SET & ADDRESSING MODES
Word Displacement

Word Displacement

A word displacement added to a register forms the address of the operand. The
displacement computed from the expression expr ranges from —2' to (+2°'—1), and n
ranges from 0 to 10 and 12 to 15 (use the syntax given in Table 3-1).

Syntax: expr(%rn)

mmmm: 8
rrrr: 0 to 10, 12 to 15
Total bytes: 5

Example: MOVB 0x112234(%r2),%r4

87 Opcode

82 First Operand
34
22
11
00
44 Second Operand

The word displacement 0x112234 added to the contents of register 2 forms the address of a
byte. The byte is stored in register 4 (r4) after zero extension. In the instruction stream,
the byte that follows the descriptor byte is the displacement. This displacement is sign
extended and added to the contents of the register 2. The sum is the address of the
operand. The displacement stored in the instruction follows the byte ordering shown on
Figure 3-6 for word data.

Word Displacement Deferred

A word displacement added to a register forms the address of a pointer. The pointer is the
address of the operand in memory. The displacement computed from the expression

expr ranges from —2°' to +2°'—1, and » ranges from 0 to 10 and 12 to 15 (use the syntax
given in Table 3-1).

Syntax: *expr(%rn)

mmmm: 9
rrrr: 0 to 10, 12 to 15
Total bytes: 5

3-14

INSTRUCTION SET & ADDRESSING MODES
FP Short Offset

Example: MOVB *0x20304050(%r2),%r0

87 Opcode

92 First Operand
50
40
30
20
40 Second Operand

The word displacement 0x20304050 added to the contents of register 2 forms an address of
a pointer in memory. That pointer identifies the location of a byte to be written to register
0 after zero extension. In the instruction stream, the word that follows the descriptor byte
is the displacement. This displacement is sign extended and added to the contents of
register 2. The sum is the address of a word location in memory that contains the address
of the operand. The displacement in the instruction stream follows the byte order shown
on Figure 3-6 for word data.

AP Short Offset

This mode applies a short offset to the argument pointer (referenced as %ap) to locate an
argument to a function. The offset so ranges from 0 through 14 and is added to AP to
form the address of the argument.

Syntax: so(%ap)

mmmm: 7
rrrr: O through 14 (see text that follows)
Total bytes: 1

Example: MOVW 4(%ap),%r3

84 | Opcode
74 First Operand
43 Second Operand

The offset 4 added to the contents of AP locates a word that is written to register 3. In the
instruction stream, the 4-bit register field serves as the offset (a literal ranging from 0
through 14). This offset is sign extended and added to the contents of AP to locate a word,
or argument, on the stack.

FP Short Offset
This mode applies a short offset to the frame pointer, referenced as %fp, to locate a local

variable for a function. The offset so ranges from O through 14 and is added to FP to form
the address of the variable.

3-15

INSTRUCTION SET & ADDRESSING MODES
Immediate Modes

Syntax: so(%fp)

mmmm: 6
rrrr: O through 14 (see text that follows)
Total bytes: 1

Example: MOVW 12(%fp),%r0

84 Opcode
6C First Operand
40 Second Operand

The offset 12 added to the contents of FP locates a word (a local variable) that is written
to register 0. In the instruction stream, the 4-bit register field serves as the offset (a literal
ranging from O through 14). This offset is sign extended and added to the contents of FP.

3.4.3 Immediate Modes

For these modes, the instruction stream contains the operand data. The type of the
mnemonic does not affect the width of an operand that uses these address modes.

Byte Immediate
The operand is the signed 8-bit immediate value imm8 that ranges from —128 to +127.

Note: This address mode may not be used as a destination or for an effective address.
Either usage causes an illegal-operand exception.
Syntax: &imm8

mmmm: 6
rrrr: 15
Total bytes: 2

Example: MOVW &40,%r6

84 Opcode

6F First Operand
28

46 Second Operand

The byte value 40 replaces the contents of register 6. The mnemonic specifies a word
operation, but the immediate value remains a byte. In the instruction stream, the byte that
follows the descriptor byte contains an 8-bit immediate value that ranges from —128 to
+127.

3-16

INSTRUCTION SET & ADDRESSING MODES
Word Immediate

Halfword Immediate

Thelc;pcr)and is the signed 16-bit immediate value immI6 that ranges from —2'° to
(+2"-1.

Note: This address mode may not be used as a destination or for an effective address.
Either usage causes an illegal-operand exception.
Syntax: &imml6

mmmm: 5
rrrr: 15
Total bytes: 3

Example: MOVW &0x1234,%r2

84 Opcode

SF First Operand
34

12

42 Second Operand

Here, the halfword value 0x1234 replaces the contents of register 2. In the instruction
stream, the halfword that follows the descriptor byte contains a 16-bit immediate value
that ranges from —2'° to (+2'°~1). This immediate value is stored in the byte order shown
on Figure 3-6 for halfword data.

Word Immediate

The operand is the signed 32-bit immediate value imm32 that ranges from —2*' to
(+2%-1).

Note: This address mode may not be used as a destination or for an effective address.
Either usage causes an illegal-operand exception.
Syntax: &imm32

mmmm: 4
rrrr: 15
Total bytes: 5

3-17

INSTRUCTION SET & ADDRESSING MODES

Positive Literal

Example: MOVW &0x12345678,%r3

84 Opcode

4F First Operand
78
56
34
12
43 Second Operand

In this example, the word value 0x12345678 replaces the contents of register 3. In the
instruction stream, the word that follows the descriptor byte contains a 32-bit immediate
value that ranges from —2*' to +2*'—1. This immediate value is stored in the byte order
shown on Figure 3-6 for word data.

Positive Literal
The operand is the unsigned 6-bit literal value /it that ranges from 0 to 63.

Note: This address mode may not be used as a destination or for an effective address.
Either usage causes an illegal-operand exception.

Syntax: <&lit

mmmm: 0 to 3

rrrr: 0 to 15
Total bytes: 1

Example: MOVB &4,%r4

87 Opcode
04 First Operand
44 Second Operand

Here, the positive literal 4 replaces the contents of register 4. Zeros fill the high-order bits
in the register. In the instruction stream, the descriptor byte provides an unsigned 6-bit
literal that ranges from O to 63. It is formed by concatenating the 4-bit register (rrrr) field
with the two low-order bits of the mode (mmmm) field; i.e., bits O through 5 of the
descriptor byte form the literal.

Negative Literal
The operand is the signed 8-bit literal value /it that ranges from —1 to —16.

Note: This address mode may not be used as a destination or for an effective address.
Either usage causes an illegal-operand exception.

3-18

INSTRUCTION SET & ADDRESSING MODES
Register Mode Deferred

Syntax: &lit

mmmm: 15
rrrr: 0 to 15
Total bytes: 1

Example: MOVB &—1,%r0

87 Opcode
FF First Operand
40 Second Operand

In the instruction stream, the descriptor byte provides a signed 8-bit literal that ranges
from —1 to —16. It is formed by concatenating the 4-bit register (rrrr) field with the 4-bit
mode (mmmm) field; i.e., the 8-bit descriptor byte forms the literal.

3.4.4 Register Modes

These modes use the contents of a register as the operand or as a pointer to the operand.

Register Mode
In this mode, the register n, which ranges from 0 to 14, is the operand.

Note: This mode may not be used if the opcode takes the effective address of the operand.
Syntax: %rn

mmmm: 4
rrrr: O to 14
Total bytes: 1

Example: MOVB %r0,%ap

87 Opcode
40 First Operand
4A Second Operand

This example moves a byte from one register to another. It reads bits O through 7 of
register 0, extends a zero through 32 bits, and writes the result to register 10, the argument
pointer. In the instruction stream, the register specified in the register field is the operand.

Register Mode Deferred

The register n, which ranges from 0 to 10 and 12 to 14, contains a pointer to the operand.

3-19

INSTRUCTION SET & ADDRESSING MODES
Expanded-Operand Type Mode

Syntax: (%rn)

mmmm: 5
rrrr: 0 to 10, 12 to 14
Total bytes: 1

Example: MOVH (%r2),%r1

86 Opcode
52 First Operand
41 Second Operand

Here, register 2 contains the address of a halfword that is read. The halfword is sign
extended through 32 bits, and the result is written to register 1. In the instruction stream,
the register specified in the register field contains a pointer to a word location in memory
that is the operand.

3.4.5 Expanded-Operand Type Mode

Normally, the opcode controls the type of all operands for the instruction. This mode
changes the type of an operand and those that follow it in an instruction.

Note: The expanded-operand type mode does not affect the length of immediate operands,
but does affect whether they are treated as signed or unsigned. The expanded-operand
mode does not affect the treatment of literals.

In assembly language, the syntax of this mode is
{typelopnd

where opnd is an operand descriptor that uses any address mode other than the expanded-
operand type mode.

When the expanded-operand type mode is used, zype overrides the type for this operand,
except as noted above, and opnd becomes the real address mode for the operand. The new
type remains in effect for the operands that follow in the instruction unless another
expanded-operand mode overrides it. Table 3-3 lists the syntax for type.

This mode requires two descriptor bytes (see Figure 3-7). The first byte identifies the
expanded-operand mode and the new type, while the second is the descriptor byte for the
address mode.

The type field zz¢¢ contains the value of the new type (see Table 3-3). The second byte
contains the mode field (nmmm) and the register field (rrrr) for the address mode. This
byte is the descriptor byte for the new address mode.

For example, the following instruction converts a signed byte into an unsigned halfword:

MOVB {sbyte}%r0,{uhalf}4 (%r1)

3-20

INSTRUCTION SET & ADDRESSING MODES
Expanded-Operand Type Mode

The first operand’s real mode is register, the second operand is byte displacement. The
instruction reads bits O through 7 from register 0, extends the sign through 32 bits, and
writes an unsigned halfword. In the instruction stream, the bytes contain the following:

87 Opcode

E7 First Operand
40

E2 Second Operand
Cl

04

Note: Expanded-operand type mode is illegal with coprocessor instructions with operands
CALL, SAVE, RESTORE, SWAP INTERLOCKED, PUSHW, PUSHAW, POPW, and
JSB instructions and will generate an illegal operand fault.

Table 3-3. Options for type in Expanded-Operand Mode
tttt Field
Type Syntax (See Note)
Signed byte shyte 7
Signed halfword half or shalf 6
Signed word word or sword 4
Unsigned byte byte or ubyte 3
Unsigned halfword | uhalf 2
Unsigned word uword 0

Note: Types are not defined for the values 1, 5, and 8
through 14; using these generates a reserved-data-type
exception.

b——— REAL ADDRESS MODE

|

7 3 07 3 0
T T

mmmm: rrrrl 1110: tttj

N'S

<
b4

< ¢
l-0-4 DATA BYTES-o|
i | 4— INCREASING ADDRESS

LEGEND

mmmm = ADDRESS MODE (0-13, 15)

rrrr = REGISTER (0-15)
tttt = NEW TYPE

Figure 3-7. [Expanded-Operand Type Descriptor

321

INSTRUCTION SET & ADDRESSING MODES
Condition Flags

3.5 CONDITION FLAGS

Bits 21 to 18 of the processor status word (PSW) contain four condition flags (N, Z, V,
and C) that are set by most instructions. The order is shown on Figure 3-8. The
conditional program-control instructions check one or more of these flags before executing
the branch, jump, or return. In general, these flags reflect the result of the most recent
instruction that affects them. Most instructions set the flags according to standard criteria.
Before defining that criteria, the following terms are defined:

® Result refers to the internal result of the operation as if it were performed in an
infinite-precision machine. The microprocessor operates on 32-bit data internally and
uses a 33-bit space for the internal result. Bytes and halfwords read in are extended to
32 bits before the operation. The destination operand determines the type (i.e., signed or
unsigned, and size: byte, halfword, or word) of this result.

o Output value refers to the data written to the destination location. The size of this data,
8, 16, or 32 bits, corresponds to the data type of the destination operand: byte, halfword,
or word, respectively.

The following conditions cause the appropriate flag bit to be altered:

N Negative (PSW bit 21) - Logical instructions change N to the setting of the output
value of the MSB: bit 31 for words, bit 15 for halfwords, and bit 7 for bytes. For all
other instructions, N is set if the sign of the result is negative. If truncation occurs,
the N flag may be set even though the sign bit of the output value is zero. Zero is
considered positive.

Z Zero (PSW bit 20) - Logical instructions set Z if the output value is zero. For all
other instructions Z is set if the result is equal to zero. If truncation occurs, the Z flag
may not be set even though all bits of the output value are zero.

V. Overflow (PSW bit 19) - For instructions with a signed destination, V is set if the sign
bit of the output value is different from any truncated bit of the result. For
instructions with an unsigned destination, V is set if any truncated bit is a 1. The
arithmetic left shift operation sets the V bit only if a truncation error occurs. Bit,
compare, and test instructions always reset V.

Figure 3-8. Condition Flags

3-22

INSTRUCTION SET & ADDRESSING MODES

Data Transfer Instructions

C Carry/Borrow (PSW bit 18) - Logical instructions clear this bit. For all other
instructions, the type of the result determines the state of the C bit. C is set if a carry
occurs into the 33rd bit for word operations, into the 17th bit for halfword operations,
or into the 9th bit for byte operations. The C bit is set if a borrow occurs from these
bits for subtract, negate, and decrement. For example, consider A minus B where A
and B are unsigned. If A > B after both are extended to 32 bits, then C is cleared.
Otherwise, the C flag is set.

Note: If a memory-write fault occurs, the flags are set as if the instruction was completed
normally.

The instruction descriptions later in this chapter include the effect that each instruction has
on the condition flags.

3.6 FUNCTIONAL GROUPS

The WE 32100 Microprocessor instruction set may be separated into six functional groups:
data transfer instructions, arithmetic instructions, logical instructions, program control
instructions, coprocessor instructions, and stack and miscellaneous instructions. This
section contains a description of each group, along with an instruction listing of each group.
The conditions column in the instruction listing refers to the condition flag code assignment
cases listed in Table 3-10. (For more details of individual instructions see

3.7 INSTRUCTION SET LISTINGS.)

3.6.1 Data Transfer Instructions

These instructions transfer data to and from registers and memory. Most of them have
three types (indicated by the last character of the mnemonic): byte (B), halfword (H),
and word (W). A mnemonic’s type determines the type of each operand in the instruction,
unless the expanded-operand type mode changes an operand’s type. The type of the
destination operand (dst) determines how the condition flags are set (see 3.5 CONDITION
FLAGS). The instructions have a read-only source operand (src) and a read/write
destination operand.

3-23

INSTRUCTION SET & ADDRESSING MODES

Data Transfer Instructions

3-24

Table 3-4. Data Transfer Instruction Group

Instruction Mnemonic | Opcode | Conditions*
Move:
Move byte MOVB 0x87
Move halfword MOVH 0x86
Move word MOVW 0x84
Move address (word) MOVAW | 0x04 Case 1
Move complemented byte MCOMB | 0x8B
Move complemented halfword | MCOMH | 0x8A
Move complemented word MCOMW | 0x88
Move negated byte MNEGB 0x8F
Move negated halfword MNEGH | Ox8E Case 2
Move negated word MNEGW | 0x8C
Move version number MVERNO | 0x3009 [Unchanged
Swap (Interlocked):
Swap byte interlocked SWAPBI | CxIF
Swap halfword interlocked SWAPHI | O0x1E Case 1
Swap word interlocked SWAPWI | 0x1C
Block Operations:
Move block of words MOVBLW | 0x3019 [Unchanged
Field Operations:
Extract field byte EXTFB 0xCF
Extract field halfword EXTFH 0xCE
Extract field word EXTFW 0xCC Case 1
Insert field byte INSFB 0xCB
Insert field halfword INSFH 0xCA
Insert field word INSFW 0xC8
String Operations:
String copy STRCPY | 0x3035
String end STREND | 0x301F | Urehanged

* Refer to Table 3-10 for condition flag code assignments.

INSTRUCTION SET & ADDRESSING MODES

Arithmetic Instructions

3.6.2 Arithmetic Instructions

Arithmetic instructions perform arithmetic operations on data in registers and memory.
Most of these instructions have three types (specified by the last character of the
mnemonic): byte (B), halfword (H), and word (W). This type specification applies to
each operand in the instruction, unless the expanded-operand type mode changes an
operand’s type. The type of the destination operand (dst) determines how the condition
flags are set (see 3.5 CONDITION FLAGS).

Many arithmetic operations are available as two- or three-address instructions. A two-
address instruction has a read-only source operand (src) and a read/write destination
operand. Three-address instructions have two read-only source operands (srcl, src2) and a
write-only destination operand. A few instructions also have a read-only count operand
(count).

If the result of an arithmetic operation is too large to be represented in 32 bits, the high-
order bits are truncated and the processor issues an integer-overflow exception.

Table 3-5. Arithmetic Instruction Group

Instruction Mnemonic | Opcode | Conditions*
Add:
Add byte ADDB2 0x9F
Add halfword ADDH2 0x9E
Add word ADDW2 | 0x9C
Add byte, 3-address ADDB3 0xDF
Add halfword, 3-address ADDH3 0xDE
Add word, 3-address ADDW3 | 0xDC
Subtract:
Subtract byte SUBB2 0xBF
Subtract halfword SUBH2 0xBE Case 2
Subtract word SUBW2 0xBC
Subtract byte, 3-address SUBB3 OxFF

Subtract halfword, 3-address | SUBH3 0xFE
Subtract word, 3-address SUBW3 0xFC

Increment:

Increment byte INCB 0x93
Increment halfword INCH 0x92
Increment word INCW 0x90
Decrement:

Decrement byte DECB 0x97
Decrement halfword DECH 0x96
Decrement word DECW 0x94

* Refer to Table 3-10 for condition flag code assignments.

3-25

INSTRUCTION SET & ADDRESSING MODES
Logical Instructions

Table 3-5. Arithmetic Instruction Group (Continued)
Instruction Mnemonic | Opcode | Conditions*

Multiply:
Multiply byte MULB2 0xAB
Multiply halfword MULH2 | 0xAA | Case 3
Multiply word MULW2 | 0xA8
Multiply byte, 3-address MULB3 0xEB
Multiply halfword, 3-address MULH3 | 0xEA | Case 4
Multiply word, 3-address MULW3 | OxE8
Divide:
Divide byte DIVB2 0xAF
Divide halfword DIVH2 OxAE [Case 3
Divide word DIVW2 0xAC
Divide byte, 3-address DIVB3 O0xEF
Divide halfword, 3-address DIVH3 0xEE Case 4
Divide word, 3-address DIVW3 0xEC
Modulo:
Modulo byte MODB2 | 0xA7
Modulo halfword MODH2 | 0xA6 Case 3
Modulo word MODW2 | 0xA4
Modulo byte, 3-address MODB3 O0xE7
Modulo halfword, 3-address MODH3 | 0xE6 Case 4
Modulo word, 3-address MODW3 | 0xE4
Arithmetic Shift:
Arithmetic left shift word ALSW3 |oxco | Cases
Arithmetic right shift byte ARSB3 0xC7
Arithmetic right shift halfword | ARSH3 0xC6 Case 3
Arithmetic right shift word ARSW3 | 0xC4

* Refer to Table 3-10 for condition flag code assignments.

3.6.3 Logical Instructions

Logical instructions perform logical operations on data in registers and memory. Most of
these instructions have three types (specified by the last character of the mnemonic):

byte (B), halfword (H), and word (W). A mnemonic’s type determines the type of each
operand in the instruction, unless the expanded-operand type mode changes an operand’s
type. The type of the destination operand (dst) determines how the condition flags are set
(see 3.5 CONDITION FLAGS).

Many logical operations are available as two- or three-address instructions. A two-address
instruction has a read-only source operand (src) and a read/write destination operand
(dst). Three-address instructions have two read-only source operands (srcl, src2) and a
write-only destination operand. A few instructions have a read-only count operand (count).

3-26

INSTRUCTION SET & ADDRESSING MODES

Logical Instructions

Table 3-6. Logical Group

Instruction Mnemonic | Opcode | Conditions*
AND:
AND byte ANDB2 0xBB
AND halfword ANDH?2 0xBA
AND word ANDW?2 | 0xB8
AND byte, 3-address ANDB3 0xFB
AND halfword, 3-address ANDH3 0xFA
AND word, 3-address ANDW3 | OxF8
Exclusive OR (XOR):
Exclusive OR byte XORB2 0xB7
Exclusive OR halfword XORH2 0xB6
Exclusive OR word XORW2 | 0xB4 Case 1
Exclusive OR byte, 3-address XORB3 0xF7
Exclusive OR halfword, 3-address | XORH3 0xF6
Exclusive OR word, 3-address XORW3 | 0xF4
OR:
OR byte ORB2 0xB3
OR halfword ORH2 0xB2
OR word ORW?2 0xB0O
OR byte, 3-address ORB3 0xF3
OR halfword, 3-address ORH2 OxF2
OR word, 3-address ORW3 OxF0
Compare or Test:
Compare byte CMPB 0x3F
Compare halfword CMPH 0x3E Case 2
Compare word CMPW 0x3C
Test byte TSTB 0x2B
Test halfword TSTH 0x2A Case 6
Test word TSTW 0x28
Bit test byte BITB 0x3B
Bit test halfword BITH 0x3A Case 1
Bit test word BITW 0x38
Clear:
Clear byte CLRB 0x83
Clear thfword CLRH 0x82 Case 2
Clear word CLRW 0x80
Rotate or Logical Shift:
Rotate word ROTW 0xD8
Logical left shift byte LLSB3 0xD3 Case 1
Logical left shift halfword LLSH3 0xD2
Logical left shift word LLSW3 0xDO
Logical right shift word LRSW3 0xD4

* Refer to Table 3-10 for condition flag code assignments.

3-27

INSTRUCTION SET & ADDRESSING MODES

Program Control Instructions

3.6.4 Program Control Instructions

Program control instructions change the program sequence, but generally do not alter the
condition flags.

Branch instructions have two types specified by the last character of the mnemonic: byte
displacement (B) and halfword displacement (H). A mnemonic’s type determines if an

8- or a 16-bit displacement is embedded in the instruction. This displacement (disp8,
displ6) is read, its sign is extended through 32 bits, and the result is added to the program
counter (PC) to compute the target address. Jump instructions have a read-only, 32-bit
destination (ds?) operand that replaces the contents of the PC.

Jump instructions are always unconditional, but both conditional and unconditional branch
and return instructions are provided. Unconditional transfers change the contents of the
PC to the value specified. Conditional transfers first examine the status of the processor’s
condition flags to determine if the transfer should be executed.

Subroutine and procedure-call (function) transfer instructions save or restore registers so
execution can transfer to the subroutine or function and then return to the original
program sequence.

Subroutine Transfer. A subroutine transfer is different from a normal transfer. Before
transferring to a subroutine, it is necessary to save the address of the next instruction.

Branch, jump, and return instructions for subroutines always implicitly affect the stack
pointer (SP). For subroutines, branch and jump save the address of the next instruction on
the stack at the location identified by the SP, increment the SP by 4, and then alter the
PC. Return from subroutine decrements the SP by 4, retrieves the saved address from the
stack, and writes it to the PC.

Procedure Transfer. For procedure transfers it is necessary to save other registers. These
instructions establish the environment for a function in a high-level language. Call and
save instructions automatically save the calling function’s pointers, set up pointers to the
new function’s environment, call the function, and save registers for local variables.
Restore and return instructions remove that environment and return to the calling function.

A stack frame provides reserved space, including a register-save area, for each function.
The register-save area stores the calling function’s FP, AP, PC, and registers 3 through 8
(r3 through r8), if requested. Saving r3 through r8 gives the new function space for up to
six register variables. The SP is not saved because its value is always implicit.

All function calls have a fixed-size register-save area, even though some of it may not be
used. Save and restore control how many of the six user registers r3 through r8 will be
saved and restored. A return from a function retrieves the saved pointers and registers to
restore the original function’s environment.

3-28

INSTRUCTION SET & ADDRESSING MODES

Program Control Instructions

Table 3-7. Program Control Instructions

Instruction Mnemonic | Opcode | Conditions
Unconditional Transfer:
Branch with byte (8-bit) displacement BRB 0x7B
Branch with halfword (16-bit) displacement BRH 0x7A
Jump JMP 0x24
Conditional Transfers:
Branch on carry clear byte BCCB 0x53*
Branch on carry clear halfword BCCH 0x52*
Branch on carry set byte BCSB 0x5B*
Branch on carry set halfword BCSH 0xSA*
Branch on overflow clear, byte displacement BVCB 0x63
Branch on overflow clear, halfword displacement BVCH 0x62
Branch on overflow set, byte displacement BVSB 0x6B
Branch on overflow set, halfword displacement BVSH 0x6A
Branch on equal byte (duplicate) BEB 0x6F
Branch on equal byte BEB 0x7F
Branch on equal halfword (duplicate) BEH 0x6E
Branch on equal halfword BEH 0x7E
Branch on not equal byte (duplicate) BNEB 0x67
Branch on not equal byte BNEB 0x77
Branch on not equal halfword (duplicate) BNEH 0x66 Unchanged
Branch on not equal halfword BNEH 0x76
Branch on less than byte (signed) BLB 0x4B
Branch on less than halfword (signed) BLH 0x4A
Branch on less than byte (unsigned) BLUB 0x5B*
Branch on less than halfword (unsigned) BLUH 0xSA*
Branch on less than or equal byte (signed) BLEB 0x4F
Branch on less than or equal halfword (signed) BLEH 0x4E
Branch on less than or equal byte (unsigned) BLEUB 0x5F
Branch on less than or equal halfword (unsigned) BLEUH 0xSE
Branch on greater than byte (signed) BGB 0x47
Branch on greater than halfword (signed) BGH 0x46
Branch on greater than byte (unsigned) BGUB 0x57
Branch on greater than halfword (unsigned) BGUH 0x56
Branch on greater than or equal byte (signed) BGEB 0x43
Branch on greater than or equal halfword (signed) BGEH 0x42
Branch on greater than or equal byte (unsigned) BGEUB 0x53*
Branch on greater than or equal halfword (unsigned) | BGEUH 0x52*
Return on carry clear RCC 0x50*
Return on carry set RCS 0x58%*

* Indicates that opcode matches another instruction but operation is the same.

3-29

INSTRUCTION SET & ADDRESSING MODES

Program Control Instructions

3-30

Table 3-7. Program Control Instructions (Continued)

Instruction Mnemonic | Opcode | Conditions
Conditional Transfers (Continued):
Return on overflow clear RVC 0x60
Return on overflow set RVS 0x68
Return on equal (unsigned) REQLU 0x6C
Return on equal (signed) REQL 0x7C
Return on not equal (unsigned) RNEQU 0x64
Return on not equal (signed) RNEQ 0x74
Return on less than (signed) RLSS 0x48
Return on less than (unsigned) RLSSU 0x58*
Return on less than or equal (signed) RLEQ 0x4C
Return on less than or equal (unsigned) RLEQU 0x5C Unchanged
Return on greater than (signed) RGTR 0x44
Return on greater than (unsigned) RGTRU 0x54
Return on greater than or equal (signed) RGEQ 0x40

Return on greater than or equal (unsigned) RGEQU 0x50*

Subroutine Transfer:

Branch to subroutine, byte displacement BSBB 0x37
Branch to subroutine, halfword displacement | BSBH 0x36
Jump to subroutine JSB 0x34
Return from subroutine RSB 0x78
Procedure Transfer:

Save registers SAVE 0x10
Restore registers RESTORE | 0x18
Call procedure CALL 0x2C
Return from procedure RET 0x08

* Indicates that opcode matches another instruction but operation is the same.

Program control instructions explicitly manipulate four registers:

1.

PC - The call instruction saves the old PC as the return address (RA) and sets PC to
the first executable instruction of the function being called. The return instruction
restores PC to the RA (the next executable instruction of the calling function).

SP - These instructions adjust SP automatically to point to the top of the stack
whenever they store or retrieve items.

FP - The save instruction sets FP to the address just above the saved registers. The
FP accesses a region on the stack that stores temporary (or automatic) variables for
the function.

AP - The call instruction adjusts AP to the beginning of a list of arguments for the
function.

On a function call, the calling function contains a call instruction; the save instruction
should be the first statement of the called function. For a return, a restore and a return

appear in the function being exited.

INSTRUCTION SET & ADDRESSING MODES

Program Control Instructions

Figure 3-9 shows the stack after the CALL-SAVE sequence:

PUSHW argl
PUSHW arg2
PUSHW arg3

CALL —(3*4) (%sp) funcl

funcl: SA;VE %r3

First, three arguments are pushed onto the stack; each push increments SP. Then CALL
automatically saves the old pointers. It uses its first operand to set AP to the beginning of
the three arguments and its second operand to call the function. Next, SAVE, the first
statement in the function, is executed, automatically saving registers r3 through r8. It also

adjusts SP and FP for each push.

/*push three arguments*/

/*call function*/

/*other instructions*/

/*save r3 through r8*/

SP, FP—p»
(FP-4) r8
(FP-8) r7
(FP-12) ré
(FP-16) rs
(FP-20) r4 REGISTER
(FP-24) 3 SAVE AREA
(FP-28) OLD FP
(FP-32) OLD AP
(FP-36) RA (OLD PC)
arg3
arg2 ‘1‘
AP —p argl INCREASING
ADDRESS

Figure 3-9. Stack After CALL-SAVE Sequence

3-31

INSTRUCTION SET & ADDRESSING MODES

Coprocessor Instructions

To return to the original sequence, the function funcl contains the following instructions:
funcl: SAVE %r3 /*save r3 through r8*/
/*other instructions*/

RESTORE %r3 /*restore r3 through r8*/
RET /*return to main function*/

The restore instruction retrieves registers r8 through r3 from the stack. It must have the
same operand as the original SAVE; otherwise, the return (RET) cannot restore the
correct AP and PC. Both instructions decrement SP as they pop the register contents from
the stack.

3.6.5 Coprocessor Instructions

These instructions implement the interface with coprocessors. All coprocessor instructions
have an 8-bit opcode followed by one word. This word is transmitted on the data bus and
interpreted by the coprocessor. The word is not used by the CPU. If no coprocessor
responds to the transmitted word, an external memory fault occurs.

After the word following the opcode is transmitted, the source operands, if any, are fetched
from memory. The CPU then waits until the “coprocessor done” signal is asserted, after
which the CPU attempts to read a word. If this access is faulted, an external memory
fault occurs. If this access is not faulted, bits 18 through 21 of the word are copied into
bits 18 through 21 (condition flags) of the PSW. The resulting operand, if any, is then
written to memory.

Coprocessor instructions can have from zero to two operands. The operands may be of
three data types (specified by the last character of the mnemonic): single-word (S),
double-word (D), and triple-word (T). All operands must start on an address evenly
divisible by four (a word boundary).

3.6.6 Stack and Miscellaneous Instructions

The stack instructions are used to manipulate the stack. The push and pop instructions
always process a word and alter the SP. They have a read-only source operand src or a
write-only destination operand dsz.

Miscellaneous instructions include those that alter the machine state or have an effect on
the cache memory. The breakpoint instruction causes a breakpoint-trap exception.

Control transfers to the operating system for the appropriate exception handler. The NOP
instructions come in three lengths: 1, 2, or 3 bytes. If an instruction, other than a
conditional transfer, reads the PSW, the ‘assembler m32as inserts a NOP before that
instruction. This allows time for the PSW codes to settle before the new instruction tries
to access them. Cache flush makes the instruction cache invalid.

3-32

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Listings

Table 3-8. Coprocessor Instructions

Instruction Mnemonic | Opcode | Conditions*
Coprocessor operation SPOP 0x32
Coprocessor operation read single SPOPRS | 0x22
Coprocessor operation double SPOPRD | 0x02
Coprocessor operation triple SPOPRT | 0x06

Coprocessor operation single 2-address | SPOPS2 | 0x23 Case 10
Coprocessor operation double 2-address | SPOPD2 | 0x03
Coprocessor operation triple 2-address | SPOPT2 | 0x07

Coprocessor operation write single SPOPWS | 0x33
Coprocessor operation write double SPOPWD | 0x13
Coprocessor operation write triple SPOPWT | 0x17

* Refer to Table 3-10 for condition flag code assignments.

Table 3-9. Stack and Miscellaneous Instructions

Instruction Mnemonic | Opcode | Conditions*

Stack Operations:
Push address word PUSHAW | OxEO0

Push word PUSHW 0xA0 Case 1

Pop word POPW 0x20

Miscellaneous:

No operation, 1 byte | NOP 0x70

No operation, 2 byte | NOP2 0x73

No operation, 3 byte | NOP3 0x72

Breakpoint trap BPT 0x2E Unchanged
Cache flush CFLUSH 0x27

Extended opcode EXTOP 0x14

* Refer to Table 3-10 for condition flag code assignments.

3.7 INSTRUCTION SET LISTINGS

Section 3.7.2 Instruction Set Descriptions presents descriptions of each member of the
instruction set for the WE 32100 Microprocessor. The descriptions are in alphabetical
order, and any instructions that operate on more than one type of operand, byte, halfword,
or word are listed on the same page. (For quick reference to the instructions by function,
mnemonic, or opcode see Sections 3.7.3 Instruction Set Sumary by Fuction,

3.7.4 Instruction Set Summary by Mnemoic, and 3.7.5 Instruction Set Summary by
Opcode.)

3-33

INSTRUCTION SET & ADDRESSING MODES

Notation

3.7.1 Notation

Each instruction description contains several parts: assembler syntax, opcode operation,
address modes, condition flags, exceptions, examples, and notes (optional).

Assembler Syntax. Presents the assembly language syntax for the instruction, including
any required spacing and punctuation. The user-specified elements appear in italics. All
operands must appear in the order shown. If an instruction has byte, halfword, and word
forms, all three forms are presented.

The syntax uses the following symbols to denote operands that may be written in the
address modes shown in Table 3-2: count, dst, offset, src, width. Program control
instructions use disp8 or displ6 as a displacement operand. The operand does not use an
address mode, but is written as an 8- or 16-bit literal.

Opcodes. Lists each opcode with the appropriate mnemonic and function.

Operation. Describes the operation performed. The description generally uses C language
syntax and the operators and symbols shown in Table 3-11.

Address Modes. Identifies the valid address modes for each operand. Refer to Table 3-2
for address mode syntax and to Table 3-1 for the syntax for referencing registers.

Condition Flags. Identifies the effect of the instruction on each of the condition flags.

Exceptions. Identifies any error conditions that may result in illegal operands, opcodes, or
operations.

Examples. Presents examples of the instruction written in assembly language. In some
cases, it will give the contents of registers before and after execution. Register bytes are
read from right to left and their contents are given as hexadecimal values.

Notes (Optional). Explains other parts of the description when necessary.

Table 3-10. Condition Flag Code Assignments

Condition Flags
Case Special Conditions*
N(Negative) Z(Zero) C(Carry) | V(Overflow)

1 MSB of dst lifdst=0 0 0 V flag is set when
expanded operand
type mode is used,
and the result is
truncated when
represented in
destination.

2 1if result < 0| 1ifresult =0 |1 on carry | 1 on integer -

or borrow | overflow

3-34

INSTRUCTION SET & ADDRESSING MODES
Notation

Table 3-10. Condition Flag Code Assignments (Continued)

Condition Flags

Case

N(Negative)

Z.(Zero)

C(Carry)

V(Overflow)

Special Conditions*

1ifdst <0

1ifdst=0

0

1 on integer
overflow

lif dst <0

1ifdst=0

0

1 on integer
overflow

V flag may not set
when dst is signed
word type, bit 31 of
absolute value of the
result is 1, and while
bits 32—63 of the
absolute value of the
result are Os.

l1ifdst <0

1ifdst=0

V flag is set if
expanded-operand type
mode changes the type
of dst and integer
overflow occurs.

lifsre <0

1ifsre=0

N flag is affected if src
is signed integer.

MSB of word
returned

1 if word
returned = 0

All flags determined by
new PSW.

All flags determined by
restored PSW.

10

When coprocessor
status word is accepted,
bits 18 —21 of the word
read are put into bits
18—21 of the PSW,
respectively.

Notes:

MSB - Most Significant Bit
dst - destination
src - source

* For cases 1 through 6, when the PSW is used as a source the condition flags are
unaffected; when the PSW is used as a destination, the condition flags assume the value
of bits 18—21 of the result of the operation performed.

3-35

INSTRUCTION SET & ADDRESSING MODES

Instruction Set Descriptions

Table 3-11. Assembly Language Operators and Symbols
Symbol Description
*X Indirection; value pointed to by x
&x Address of x
x Not x
++x Increment x
——X Decrement x
~X Complement x
—X Negate x; form two’s complement of x
x+y Add y to x
X—y Subtract y from x
x*y Multiply x by y
x/y Divide y into x
x%y Modulo x and y (remainder of x/y)
x&y Bitwise AND x and y
xly Bitwise inclusive OR x and y
XAy Bitwise exclusive OR (XOR) x and y
x< <y Shift x to the left y bits
x> >y Shift x to the right y bits
x<y x less than y
x>y x greater than y
x==y Equality; x equal to y
x!=y X not equal to y
- Assigns the value on the right to the location identified on the left
(same as the C language assignment operator ’=’)
AP Argument pointer; register 10 (r10)
count Count operand
dst Destination operand
FP Frame pointer; register 9 (r9)
PC Program counter; register 15 (r15)
PSW Processor status word; register 11 (r11)
SEXT(x) Function that returns x, sign extended through 32 bits.
SP Stack pointer; register 12 (r12)
*(——SP) A pop from the stack; decrement SP by 4 before removing data ()
from the stack
*(SP++) A push onto the stack; store data and increment SP by 4
sre Source operand
0xn Hexadecimal value where n is the digits O through 9 and a through
f (or A through F); may also be written 0Xn
/*comment*/ A comment, not an operation
{operation} An operation other than an instruction

3.7.2 Instruction Set Descriptions

The instruction set is described in detail on the following pages.

3-36

ADDB2
ADDH2
ADDW2

ADD

Assembler
Syntax

Opcodes

Operation
Address
Modes

Condition
Flags

Exceptions

Examples

ADDB2
ADDH2
ADDW?2

ADDB2 sre,dst Add byte
ADDH2 src,dst Add halfword
ADDW2 src,dst Add word

0x9F ADDB2
0x9E ADDH2
0x9C ADDW2

dst ~— dst + src
src all modes
dst all modes except literal or immediate

N «— 1, if (dst + sre) < 0

Z — 1, if (dst + src) ==

C « 1, if carry out of sign bit of dst

V < 1, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.

ADDB2 $0x100,%r0

ADDH2 %r10,%r3
ADDW2 4(%r3),*$0x110

3-37

ADDB3 ADDB3
ADDH3 ADDH3
ADDW3 ADDW3
ADD, 3 Address
Assembler ADDB3 srcl,src2,dst Add byte, 3 address
Syntax ADDH3 srcl,src2,dst Add halfword, 3 address
ADDWS3 srecl,src2,dst Add word, 3 address
Opcodes 0xDF ADDB3
0xDE ADDH3
0xDC ADDW3
Operation dst — srcl + src2
Address srcl all modes
Modes
src2 all modes
dst all modes except literal or immediate
Condition N «— 1, if (srel + src2) < 0
Flags Z — 1, if (srcl + src2) ==
C < 1, if carry out of sign bit of dst
V «— 1, if overflow
Exceptions Illegal operand exception occurs if-literal or immediate mode is used for
dst.
Integer overflow exception occurs if there is truncation.
Examples ADDB3 %r0,%r3,%r5

ADDH3 4(%r2),*$0x110,%r3
ADDW3 *$0x1F0,4(%r1),%r0

3-38

ALSW3

ALSW3

ARITHMETIC LEFT SHIFT

Assembler
Syntax

Opcode
Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

ALSW3 count,src,dst Arithmetic left shift word

0xCO ALSW3

dst — src << (count & Ox1F) bits
count all modes

src all modes

dst all modes except literal or immediate

— 1,if dst < 0O
1, if dst ==

— 0

+~ 0 (see Note)

< 0N Z
1

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: r0 | 8F | OF | DF | FD |

~—increasing bits

ALSW3 &2,%r0,%r0

After: 10 [3C[3F[7F [F4 |

All operands are of type word. However, only the five low-order bits of
count are used; the upper bits are ignored. No bits are shifted past the
sign bit, so integer overflow cannot occur. However, the V bit can be
set if an expanded-operand type mode changes the type of dst. Zeros
replace bits that are shifted out. The sign bit is not changed.

3-39

ANDB2
ANDH2
ANDW2
AND

Assembler
Syntax

Opcodes

Operation
Address
Modes

Condition
Flags

Exceptions

Examples

3-40

ANDB2
ANDH2
ANDW2

ANDB2 src,dst AND byte
ANDH2 src,dst AND halfword
ANDW2 src,dst AND word

0xBB ANDB2
0xBA ANDH2
0xB8 ANDW2
dst «— dst & src
src all modes

dst all modes except literal or immediate

~— MSB of dst
— 1, if dst ==

~— 0

< O N Z

+« 1, if result must be truncated to fit dst size

Illegal operand exception occurs if literal or immediate mode is used for
dst.

ANDB2 &7,6(%r1)
ANDH2 %r0,*$result
ANDW2 (%r1),%r4

ANDB3 ANDB3
ANDH3 ANDH3
ANDW?3 ANDW?3

AND, 3 ADDRESS

Assembler ANDB3 srcl,src2,dst AND byte, 3 address
Syntax ANDH3 srcl,src2,dst AND halfword, 3 address
ANDW3 srcl,src2,dst AND word, 3 address

Opcodes 0xFB ANDB3
0xFA ANDH3
0xF8 ANDW3

Operation dst «— src2 + srcl

Address srcl all modes

Modes

src2 all modes

dst all modes except literal or immediate

Condition N — MSB of dst
Flags Z — 1, if dst ==
C+~—0

V « 1, if result must be truncated to fit dst size

Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.
Examples ANDB3 &0x27,*$0x300,%r6

ANDH3 0x31(%r5),%r0,%r1
ANDW3 %r2,%r1,%r0

3-41

ARSB3 ARSB3
ARSH3 ARSH3
ARSW3 ARSW3

ARITHMETIC RIGHT SHIFT

Assembler ARSB3 count,src,dst Arithmetic right shift byte
Syntax ARSH3 count,src,dst Arithmetic right shift halfword
ARSW3 count,src,dst Arithmetic right shift word

Opcodes 0xC7 ARSB3
0xC6 ARSH3
0xC4 ARSW3
Operation dst «— srcl >> (count & O0xI1f) bits
Address count all modes
Modes

src all modes

dst all modes except literal or immediate

Condition N —1,ifdst <0

Flags Z — 1, if dst ==
C+~—0
V0

Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.

Examples Before: 10 |OF [OF | 77 | AF |

+~increasing bits

ARSH3 &2,%r0,%r0

After: 10 [00][00 [1D [EB |

Note All operands are of type word. However, only the five low-order bits of
count are used; the upper bits are ignored. The sign bit (MSB) of src is
copied as bits are shifted out. The type of src does not affect sign
extension.

3-42

BCCB
BCCH

BCCB
BCCH

BRANCH ON CARRY CLEAR

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BCCB disp8 Branch on carry clear, byte displacement
BCCH displ6 Branch on carry clear, halfword displacement

0x53 BCCB
0x52 BCCH

if (C == 0)
PC — PC + SEXT(disp)

None valid
disp8

signed 8-bit value

displ6

signed 16-bit value

Unchanged

None

BCCB 0x9
BCCH 0xFF23

3-43

BCSB BCSB
BCSH BCSH

BRANCH ON CARRY SET

Assembler BCSB disp8 Branch on carry set, byte displacement
Syntax BCSH displ6 Branch on carry set, halfword displacement
Opcodes 0x5B BCSB
0x5A BCSH

Operation if (C ==1)

PC «— PC + SEXT(disp)
Address None valid
Modes disp8 = signed 8-bit value

displ6 = signed 16-bit value
Condition Unchanged
Flags
Exceptions None
Examples BCSB 0xFF

BCSH 0x1234

3-44

BEB
BEH

BEB
BEH

BRANCH ON EQUAL

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BEB disp8 Branch on equal, byte displacement
BEH displ6 Branch on equal, byte displacement

0x7F
0x6F
0x7E
0x6E

if (Z

BEB
BEB
BEH
BEH

== 1)

PC ~— PC + SEXT(disp)

None valid

disp8

displ6

signed 8-bit value

signed 16-bit value

Unchanged

None

BEB 0xF1
BEH 0x4221

3-45

BGB BGB
BGH BGH

BRANCH ON GREATER THAN (SIGNED)

Assembler BGB disp8 Branch on greater than, byte displacement
Syntax (signed)
BGH displ6 Branch on greater than, halfword displacement
(signed)
Opcodes 0x47 BGB
0x46 BGH
Operation if (N|2) == 0)
PC — PC + SEXT(disp)
Address None valid
Modes disp8 = signed 8-bit value

displ6 = signed 16-bit value

Condition Unchanged

Flags

Exceptions None

Examples BGB more
BGH less

3-46

BGEB
BGEH

BGEB
BGEH

BRANCH ON GREATER THAN OR EQUAL (SIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BGEB disp8 Branch on greater than or equal, byte
displacement (signed)

BGEH displ6 Branch on greater than or equal, halfword
displacement (signed)

0x43 BGEB
0x42 BGEH

if (N ==0)[(Z==1))
PC — PC + SEXT(disp)

None valid
disp8

signed 8-bit value

displ6

signed 16-bit value

Unchanged

None

BGEB again
BGEH 0xF102

3-47

BGEUB BGEUB
BGEUH BGEUH

BRANCH ON GREATER THAN OR EQUAL (UNSIGNED)

Assembler BGEUB disp8 Branch on greater than or equal, byte
Syntax displacement (unsigned)
BGEUH displ6 Branch on greater than or equal, halfword
displacement (unsigned)

Opcodes 0x53 BGEUB
0x52 BGEUH
Operation if (C == 0)
PC «— PC + SEXT(disp)
Address None valid
Modes disp8 = signed 8-bit value

displ6 = signed 16-bit value

Condition Unchanged
Flags

Exceptions None
Examples BGEUB 0xAl

BGEUH ahead

3-48

BGUB
BGUH

BGUB
BGUH

BRANCH ON GREATER THAN (UNSIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BGUB disp8

BGUH displ6

0x57 BGUB
0x56 BGUH

if ((C|z) ==

0)

Branch on greater than, byte displacement
(unsigned)

Branch on greater than, halfword displacement
(unsigned)

PC — PC + SEXT(disp)

None valid
disp8

displ6

Unchanged

None

BGUB 0xDE
BGUH 0xF123

signed 8-bit value

signed 16-bit value

3-49

BITB
BITH
BITW

BIT TEST

Assembler
Syntax

Opcodes

Operation
Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-50

BITB srcl,src2 Bit test byte
BITH srcl,src2 Bit test halfword
BITW srcl,src2 Bit test word

0x3B BITB
0x3A BITH
0x38 BITW

temp +« src2 & srcl
srcl all modes
src2 all modes

N — MSB of temp
Z — 1, if temp ==
C«~o0

V<0

None

BITB %r0,{uhalf}%r1

BITH *$0xFF,%r3
BITW bit (%r3),(%r0)

BITB
BITH
BITW

The final value of temp, a temporary register, determines the setting of

the condition codes. Temp is discarded upon completion of the

instruction.

BLB
BLH

BLB
BLH

BRANCH ON LESS THAN (SIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BLB disp8 Branch on less than, byte displacement

(signed)

BLH displ6 Branch on less than, halfword displacement
(signed)

0x4B BLB

0x4A BLH

if (N ==1) & (Z ==0))
PC — PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

displ6 = signed 16-bit value

Unchanged

None

BLB Ox1F
BLH back

3-51

BLEB
BLEH

BLEB
BLEH

BRANCH ON LESS THAN OR EQUAL (SIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-52

BLEB disp8 Branch on less than or equal, byte displacement
(signed)

BLEH displ6 Branch on less than or equal, halfword
displacement (signed)

0x4F BLEB
0x4E BLEH

if (N|Z) ==1)
PC «— PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

displ6 = signed 16-bit value

Unchanged

None

BLEB 0x6
BLEH O0xFFF

BLEUB

BLEUH

BRANCH ON LESS THAN OR EQUAL (UNSIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BLEUB disp8 Branch on less than or equal, byte

displacement (unsigned)

BLEUH displ6 Branch on less than or equal, halfword

displacement (unsigned)
0xSF BLEUB
0x5E BLEUH

if ((Cl2) == 1)
PC «— PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

displ6 = signed 16-bit value

Unchanged

None

BLEUB 0x14
BLEUH back

3-53

BLUB
BLUH

BRANCH ON LESS THAN (UNSIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-54

BLUB disp8 Branch on less than byte displacement

(unsigned)

BLUH displ6 Branch on less than halfword displacement

(unsigned)
0x5B BLUB
0x5A BLUH

if (C==1)
PC — PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

displ6 = signed 16-bit value

Unchanged

None

BLUB 0x12
BLUH 0xFF12

BNEB
BNEH

BNEB
BNEH

BRANCH ON NOT EQUAL

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BNEB disp8 Branch on less than, byte displacement
BNEH displ6 Branch on less than, halfword displacement

0x77 BNEB
0x67 BNEB
0x76 BNEH
0x66 BNEH

if (Z == 0)
PC — PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

displ6 = signed 16-bit value

Unchanged

None

BNEB OxFE
BNEH 0xFF13

3-55

BPT

BREAKPOINT TRAP

Assembler BPT Breakpoint trap

Syntax

Opcodes 0x2E BPT

Operation /*BPT executes the following processor operation*/
{breakpoint trap}

Address None

Modes

Condition Unchanged

Flags

Exceptions Generates breakpoint trap exception.

Examples BPT

3-56

BPT

BRB
BRH

BRANCH
Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BRB disp8 Branch with byte displacement
BRH displ6 Branch with halfword displacement

0x7B BRB
0x7A BRH
PC — PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

displ6 = signed 16-bit value

Unchanged

None

BRB 0xA
BRH O0xFAA

BRB
BRH

3-57

BSBB BSBB
BSBH BSBH
BRANCH TO SUBROUTINE
Assembler BSBB disp8 Branch to subroutine, byte displacement
Syntax BSBH displ6 Branch to subroutine, halfword displacement
Opcodes 0x37 BSBB

0x36 BSBH
Operation *(SP++) < address of next instruction

PC — PC + SEXT(disp)
Address None valid
Modes disp8 = signed 8-bit value

displ6 = signed 16-bit value

Condition Unchanged
Flags
Exceptions None
Examples BSBB sub2

BSBH subl

3-58

BVCB
BVCH

BRANCH ON OVERFLOW CLEAR

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BVCB disp8 Branch to subroutine, byte displacement
BVCH displ6 Branch to subroutine, halfword displacement

0x63 BVCB
0x62 BVCH

if (V==0)
PC — PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

displ6 = signed 16-bit value

Unchanged

None

BVCB 0x7E
BVCH 0x8F21

3-59

BVSB

BVSB disp8 Branch on overflow set, byte displacement
BVSH displ6 Branch on overflow set, halfword displacement

BVSH
BRANCH ON OVERFLOW SET
Assembler
Syntax
Opcodes 0x6B BVSB
0x6A BVSH
Operation if (V==1
PC — PC + SEXT(disp)
Address None valid
Modes disp8 = signed 8-bit value
displ6 = signed 16-bit value
Condition Unchanged
Flags
Exceptions None
Examples BVS 0xFl1

3-60

BVSB 0xFF77

CALL

CALL

CALL PROCEDURE

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

CALL src,dst Call procedure

0x2C CALL

tempa — &src
tempb «— &dst
*(SP+4) — AP

*SP +— address of next instruction
SP «— SP+8
PC +— tempb
AP < tempa

src all modes except literal, register, or immediate

dst all modes except literal, register, or immediate

Unchanged

Illegal operand exception occurs if literal, register, expanded-operand
type, or immediate mode is used for src or dst.

CALL —(3*4) (%sp) funcl (see Figure 3-9)

Both operands are effective addresses. Temp is a temporary register.
CALL sets up the protocol for a C language function call. (Also see

Return from procedure.) CALL sets AP to first of the word arguments
that the calling function pushed on the stack before executing the call.

3-61

CFLUSH CFLUSH

CACHE FLUSH

Assembler CFLUSH Cache flush

Syntax

Opcode 0x27 CFLUSH

Operation /*CFLUSH executes the following processor operation*/

{all entries in instruction cache are marked invalid}

Address None

Modes

Condition Unchanged

Flags

Exceptions None

Examples CFLUSH

Notes CFLUSH is a nonprivileged instruction.

This instruction operates identically whether the instruction cache is
enabled (PSW <CD>==0) or disabled (PWS<CD>==1).

3-62

CLRB CLRB

CLRH CLRH
CLRW CLRW
CLEAR

Assembler CLRB dst Clear byte

Syntax CLRH dst Clear halfword

CLRW dst Clear word

Opcodes 0x83 CLRB
0x82 CLRH
0x80 CLRW
Operation dst — 0
Address dst all modes except literal or immediate
Modes
Condition N ~0
Flags
Z—1
C+~—0
V—0
Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.
Examples CLRB *&0x300
CLRH %rl

CLRW (%r0)

3-63

CMPB
CMPH
CMPW

COMPARE

Assembler
Syntax

Opcodes

Operation
Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-64

CMPB
CMPH
CMPW

CMPB srcl,src2 Compare byte
CMPH srcl,src2 Compare halfword
CMPW srcl,src2 Compare word

0x3F CMPB

0x3E CMPH

0x3C CMPW

src2 ~— srcl

srcl all modes

src2 all modes

N — 1, if src2 < srcl (signed)
Z — 1, if src2 == srcl

C «~ 1, if src2 < srcl (unsigned)
V—0

None

CMPB &10,%r0

CMPH (%r0),(%r1)

CMPW *$0x12F7,%r2

This instruction sets the condition flags N, Z, and C as if a subtract had
been executed. Neither operand is altered. (Also see Test.)

DECB DECB

DECH DECH
DECW DECW
DECREMENT

Assembler DECB st Decrement byte

Syntax DECH dst Decrement halfword

DECW dst Decrement word

Opcodes 0x97 DECB
0x96 DECH
0x94 DECW
Operation dst «— dst — 1
Address dst all modes except literal or immediate
Modes
Condition N «—1,if dt -1 <0
Flags
Z — 1, if (dst — 1) ==
C « 1, if borrow into sign bit of dst
V «— 1, if overflow
Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.
Integer overflow exception occurs if there is truncation.
Examples DECB 4(%fp)

DECH $result
DECW *§last

3-65

DIVB2

DIVH2
DIVW2
DIVIDE

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-66

DIVB2
DIVH2
DIVW2

DIVB2 src,dst Divide byte
DIVH2 src,dst Divide halfword
DIVW2 src,dst Divide word

0xAF DIVB2

0xAE DIVH2

0xAC DIVW2

dst — dst [src

src all modes

dst all modes except literal or immediate
N — 1,if (dst / sro) <0

Z ~— 1, if (dst / src) ==

C<0

V < 1, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer zero-divide exception occurs if src is equal to 0.
Integer overflow exception occurs if there is truncation.
DIVB2 &40,%r6

DIVH2 4(%r3),(%r4)
DIVW2 $first,$last

DIVB3
DIVH3
DIVW3

DIVB3
DIVH3
DIVW3

DIVIDE, 3 ADDRESS

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

DIVB3 srcl,src2,dst Divide byte, 3 address
DIVH3 srcl,src2,dst Divide halfword, 3 address
DIVW3 srcl,src2,dst Divide word, 3 address

O0xEF DIVB3

OxEE DIVH3

0xEC DIVW3

dst — src2 / srcl

srcl all modes

src2 all modes

dst all modes except literal or immediate
N — 1, if (re2 / srcl) < 0
Z — 1, if (src2 / srcl) ==
C—0

V « 1, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer zero-divide exception occurs if srcl is equal to 0.
Integer overflow exception occurs if there is truncation.
DIVB3 &0x30,%r3,12(%ap)

DIVH3 &0x3030,(%r2),5(%r2)
DIVW3 &0x304050,(%r1),4(%r1)

3-67

EXTFB
EXTFH
EXTFW

EXTFB
EXTFH
EXTFW

EXTRACT FIELD

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-68

EXTFB width,offset,src,dst Extract field from byte
EXTFH width,offset,src,dst Extract field from halfword
EXTFW width,offset,src,dst Extract field from word

0xCF EXTFB
0xCE EXTFH
0xCC EXTFW

dst — FIELD (offset,width,src)

width all modes
offset all modes
src all modes

dst all modes except literal or immediate

N <« high-order bit of dst

Z — 1, if dst ==

C+—0

V — 0 (see Note)

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: Location L1 = 0x01234567

EXTFW &10,&4,1.1,%r0

After: 0 [00 [00 | 04 | 56 |

<+ increasing bits

The field extracted starts at bit 4 of location L1, skipping bits O through
3, and extends through bit 14 of L1. These eleven bits are written to
bits O through 10 of r0; zeros fill the remaining bits of r0.

Only the low-order five bits of width and offset are examined. If the
sum width plus offset is greater than 32 (bits), then the field wraps
around through bit 0 of the base word. The field specified by width,
offset, and src is stored, right adjusted, in dstz. The remaining bits of
dst are set to 0. If the field is too large for the size of dst, the excess
high-order bits are discarded and the V flag is set.

EXTOP

EXTOP

EXTENDED OPCODE

Assembler
Syntax

Opcode
Operation
Address
Modes

Condition
Flags

Exceptions
Examples

Note

EXTOP byte Extended opcode

0x14 EXTOP

/*EXTOP executes the following processor operation*/
{reserved-opcode exception}

None valid
byte = 8-bit value

Unchanged

Generates reserved opcode exception. See Note.
EXTOP 0x2F

The EXTOP opcode is an escape to form additional instructions. The
processor does not access byte when executing this instruction. Instead,
it generates a reserved-opcode exception after decoding the opcode. The
operating system’s exception handler should access byte.

3-69

INCB
INCH
INCW

INCREMENT

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-70

INCB
INCH
INCW

INCB dst Increment byte
INCH dst Increment halfword
INCW dst Increment word

0x93 INCB
0x92 INCH
0x90 INCW
dst «— dst + 1

dst all modes except literal or immediate

—1Lifdst +1 <0

— 1, if (dst + 1) ==

O N Z

«— 1, if carry into sign bit of dst
V « 1, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if truncation takes place.
INCB 4(%r2)

INCH %r0
INCW (%r1)

INSFB INSFB

INSFH INSFH
INSFW INSFW
INSERT FIELD
Assembler INSFB width,offset,src,dst Insert field from byte
Syntax INSFH width,offset,src,dst Insert field from halfword
INSFW width,offset,src,dst Insert field from word
Opcodes 0xCB INSFB
0xCA INSFH
0xC8 INSFW
Operation FIELD (offset,width,dst) — src
Address width all modes
Modes offset all modes
src all modes
dst all modes except literal or immediate
Condition N « bit 31 of dst
Flags Z — 1, if dst ==
C+—0
V «— 0 (see Note)
Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.
Examples Before: 0 [ABJCD [EF |01]
rl [0000]05][67)
«— increasing bits
INSFW &11,&8,%r1,%r0
After: 10 | AB]C5]67 [01]
The field insertion starts at bit 8 of r0, skipping bits 0 through 7, and
extends through bit 19. Therefore, bits 8 through 19 of r0 now contain
the same value as bits O through 11 of rl.
Note Only the low-order five bits of width and offset are examined. If the

sum width plus offset is greater than 32 (bits), the field wraps around to
bit 0 of the destination. Starting with bit 0 of src, (width+1) bits are
placed into dst beginning at the bit designated by offset. If dst is a byte
or halfword and (width+offset) specifies a field that extends beyond dst,
no bits beyond dst are altered but the V flag is set.

3-71

JMP JMP

JUMP

Assembler JMP dst Jump

Syntax

Opcode 0x24 JMP

Operation PC — &dst

Address dst all modes except literal, register, or immediate

Modes

Condition Unchanged

Flags

Exceptions Illegal operand exception occurs if literal or immediate mode is used for |
dst. ‘

Examples JMP .L12 |

Note The operand dst is an effective address; i.e., the 32-bit address of dst is

used as the destination rather than the word stored at that address.

3-72

JSB JSB

JUMP TO SUBROUTINE

Assembler JSB dst Jump to subroutine

Syntax

Opcode 0x34 JSB

Operation *(SP++) « address of next instruction
PC «— &dst

Address dst all modes except literal, register, or immediate

Modes

Condition Unchanged

Flags

Exceptions Illegal operand exception occurs if literal, expanded-operand type, or
immediate mode is used for dsz.

Examples JSB error

Note The operand dst is an effective address; i.e., the 32-bit address of dst is

used as the destination rather than the word at that address.

3-73

LLSB3 LLSB3
LLSH3 LLSH3
LLSW3 LLSW3
LOGICAL LEFT SHIFT
Assembler LLSB3 count,src,dst Logical left shift byte
Syntax LLSH3 count,src,dst Logical left shift halfword
LLSW3 count,src,dst Logical left shift word
Opcodes 0xD3 LLSB3
0xD2 LLSH3
0xDO LLSW3
Operation dst — src << (count & Ox1F) bits
Address count all modes
Modes
src all modes
dst all modes except literal or immediate
Condition N < MSB of dst
Flags
Z — 1, if dst ==
C+~—0
V < 0, if result must be truncated to fit dst size
Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.
Examples Before: r0 [OF [OF [DF [FD |
+ increasing bits
LLSH3 &2,%r0,%r0
After: 10 | FF|FF [7F [F4 |
Note Only the five low-order bits of count are used; the high-order bits are

3-74

ignored. Zeros replace the bits shifted out of the low-order bit position
(bit 0).

LRSW3

LRSW3

LOGICAL RIGHT SHIFT

Assembler
Syntax

Opcode
Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

LRSW3 count,src,dst Logical right shift word

0xD4 LRSW3

dst «— src >> (count & Ox1F) bits

count all modes

src all modes

dst all modes except literal or immediate

N +— MSB of dst

Z — 1, if dst ==

C—0

V « 1, if result must be truncated to fit dst size

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: 0 [C3[C0[00]00 |

+~ increasing bits

LRSW3 &0x11,%r0,%r0

After: 0 [00] 00 [61]E0)]

All operands are type word. However, only the five low-order bits of
count are used; the high-order bits are ignored. Zeros replace the bits
shifted out of the high-order bit position (bit 31).

3.75

MCOMB MCOMB

MCOMH MCOMH
MCOMW MCOMW
MOVE COMPLEMENTED

Assembler MCOMB src,dst Move complemented byte

Syntax MCOMH src,dst Move complemented halfword

MCOMW src,dst Move complemented word

Opcodes 0x8B MCOMB
0x8A MCOMH
0x88 MCOMW

Operation dst «— ~src
Address src all modes
Modes
dst all modes except literal or immediate
Condition N <« MSB of dst
Flags
Z — 1, if dst ==
C+—<0

V « 1, if result must be truncated to fit dst size

Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.
Examples Before: 10 [12 [34 [56 [78]

+ increasing bits

MCOMW %r0,%r1

After: r1 [ED|[CB[A9][87]

Note dst is the one’s complement of src

3-76

MNEGB MNEGB
MNEGH MNEGH
MNEGW MNEGW

MOVE NEGATED

Assembler MNEGB src,dst Move negated byte
Syntax MNEGH src,dst Move negated halfword
MNEGW src,dst Move negated word

Opcodes 0x8F MNEGB
0x8E MNEGH
0x8C MNEGW

Operation dst — —src
Address src all modes
Modes
dst all modes except literal or immediate
Condition N «— MSB of dst
Flags
Z — 1, if dst ==
C+~0

V « 1, if integer overflow

Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.
Examples Before: 0 [01 [23 [45]67)]

+— increasing bits

MNEGB %r0,%r1

After: rl | FF]FF|FF[99]

Note dst is the two’s complement of src.

3-77

MODB2

MODH2
MODW2
MODULO

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-78

MODB2
MODH2
MODW2

MODB2 src,dst Modulo byte
MODH2 src,dst Modulo halfword
MODW?2 src,dst Modulo word

0xA7 MODB2
0xA6 MODH2
0xA4 MODW2

dst «— dst % src

src all modes

dst all modes except literal or immediate
N «— 1, if (dst % src) < 0

Z — 1, if (dst % src) == 0

C+~0

V «— 1, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer zero-divide exception occurs if src is equal to 0.
Integer overflow exception occurs if there is truncation.
MODB2 &40,%r3

MODH2 4(%r3),%r3
MODW?2 %r0,*$result

MODB3 MODB3
MODH3 MODH3
MODW?3 MODW3

MODULO, 3 ADDRESS

Assembler MODBS3 srcl,src2,dst Modulo byte, 3 address
Syntax MODH3 srcl,src2,dst Modulo halfword, 3 address
MODWS3 srcl,src2,dst Modulo word, 3 address

Opcodes 0xE7 MODB3
0xE6 MODH3
0xE4 MODW3

Operation dst — srcl % src2

Address srcl all modes

Modes

src2 all modes

dst all modes except literal or immediate
Condition N «— 1, if (srel % src2) < 0
Flags

Z — 1, if (srcl % src2) ==

C+~—o0

V « 1, if overflow

Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer zero-divide exception occurs if srcl is equal to 0.
Integer overflow exception occurs if there is truncation.
Examples MODB3 &40,%r3,0x1101 (%r2)

MODH3 %r3,$real,%r3
MODW3 4(%r2),*$0x34,%r0

3-79

MOVB
MOVH
MOVW

MOVE

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-80

MOVB
MOVH
MOVW

MOVB src,dst Move byte
MOVH src,dst Move halfword
MOVW sre,dst Move word

0x87 MOVB
0x86 MOVH
0x84 MOVW

dst — src

src all modes

dst all modes except literal or immediate

N «— MSB of dst

Z — 1, if dst ==

C+~—0

V « 1, if result must be truncated to fit dst size
See Note

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: 10 [01 [23 [45 | 67 |

rl [AB[AB |[AB]AB|

+—increasing bits

MOVW %r0,%r1
After: 10 [01 [23 [45]67]

rl [01]23]45]67|
NZCV = 0000

MOVB
MOVH
MOVW

Notes

If the expanded-type mode is used for dst or for both operands, this
instruction can convert data from one type to another. The src operand
determines the type of extension performed: if src is signed byte or
halfword, sign extension occurs; if src is byte or unsigned halfword, zero

extension occurs.

Use the following instructions for conversions if the destination is not a

register.
Instruction

MOVB ({sbyte}src,{shalf}dst
MOVB (sbyte}src,{sword}dst
MOVH sre,{sword}dst
MOVB sre,{shalf}dst
MOVB sre,{sword}dst
MOVH {uhalf}src,{sword}ds?
MOVH src,{sbyte}dst
MOVW src,{sbyte}dst
MOVW sre,{shalf}dst

MOVB
MOVH
MOVW

Conversion

Signed byte to signed halfword
Signed byte to signed word

Byte to signed word

Byte to signed halfword

Byte to signed word

Unsigned halfword to signed word
Halfword to signed byte

Word to signed byte

Word to signed halfword

If the destination is a register, use the following instructions for

conversions:
Instruction

ANDH3 &O0xff,src,{byte}dst
ANDW3 &O0xff,src,{byte}dst

MOVW sre,dst; MOVH dst,dst

Conversion

Halfword to byte
Word to byte
Word to halfword

The instructions 'MOVW — %psw’ and "MOVW %psw,—’ do not

change the condition flags.

3-81

MOVAW MOVAW

MOVE ADDRESS (WORD)

Assembler MOVAW src,dst Move address (word)
Syntax
Opcode 0x04 MOVAW
Operation dst — &src
Address src all modes except literal, register, or immediate
Modes
dst all modes except literal or immediate
Condition N «— MSB of dst
Flags
Z — 1, if dst ==
C+~—0
V<0
Exceptions Illegal operand exception occurs if literal, register, or immediate mode

is used for src, or if literal or immediate mode is used for dst.

Examples Before: 10 LOO | 00 UO | 10]

r1 |AB |AB|AB[AB]|

<+ increasing bits

MOVAW 4(%r10),%r1

After: 11 [00] 0010] 14 |

Note Source operand type is effective address.

3-82

MOVBLW MOVBLW

MOVE BLOCK
Assembler MOVBLW Move block of words
Syntax
Opcode 0x3019 MOVBLW
Operation while (R2 > 0) {

*R1 = *RO0;

{disable interrupts}

——R2;

RO=R0+4;

R1=R1+4;

{enable interrupts}

}

Address None
Modes
Condition Unchanged
Flags
Exceptions External memory fault may occur in the middle of an iteration.
Examples Before: 0 [00[00[01]00 |

r1 [00[o0o]o02][00 |

r2 [00[o00]o0]03 |

+<— increasing bits

Assume three word locations starting at 0x100 contain the word values
0x5, 0x10 and 0x20, respectively.

MOVBLW

After: 10 [00]00[o01]o0C|

r1 [00][00 02]oC|

r2 [00]00]oo] 00|

3-83

MOVBLW MOVBLW

Three word locations starting at 0x200 now also contain 0x5, 0x10 and
0x20, respectively.

Notes Opcode occupies 16 bits. All operands are implicitly defined in the
registers (10, r1, and r2) and are 32-bit words. These registers must be
preset with the following information before executing MOVBLW:

r0 Address of source
rl Address of destination
r2 Number of words to be moved.

The instruction may be interrupted only at the end of an iteration. A
memory fault may occur in the middle of an iteration. To restart the
instruction after a fault, execute MOVBLW again; the registers are
updated after the only memory access that could cause the fault. At
each iteration, r0 and rl are incremented by 4, and r2 is decremented
by 1. Execution of MOVBLW is finished when r2 is 0.

3-84

MULB2
MULH2
MULW2

MULTIPLY

Assembler
Syntax

Opcodes

Operation
Address
Modes

Condition
Flags

Exceptions

Example

MULB2
MULH2
MULW2

MULB?2 src,dst Multiply byte
MULH2 src,dst Multiply halfword
MULW?2 src,dst Multiply word

0xAB MULB2

0xAA MULH2

0xA8 MULW2

dst «— dst * src

src all modes

dst all modes except literal or immediate
N «— 1, if (dst * sre) < 0

Z — 1, if (dst * src) ==

C—<0

V «— 1, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.

MULBH2 %r2,{sbyte}4(%r6)

3-85

MULB3 MULB3
MULH3 MULH3
MULW3 MULW3

MULTIPLY, 3 ADDRESS

Assembler MULBS3 srcl,src2,dst ~ Multiply byte, 3 address
Syntax MULH3 srcl,src2,dst Multiply halfword, 3 address
MULWS3 srcl,src2,dst Multiply word, 3 address

Opcodes 0xEB MULB3
O0xEA MULH3
0xE8 MULW3

Operation dst «— srcl * src2

Address srcl all modes

Modes

src2 all modes

dst all modes except literal or immediate
Condition N «— 1, if Grel * sre2) < 0
Flags

Z — 1, if (srcl * sr¢2) == 0

C+~0

V <« 1, if overflow

Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.

Examples MULH3 %r3,*$0x1004,%r4

3-86

MVERNO MVERNO
MOVE VERSION NUMBER

Assembler MVERNO Move processor version number

Syntax

Opcode 0x3009 MVERNO

Operation r0 + processor version number

Address None

Modes

Condition Unchanged

Flags

Exceptions None

Example MVERNO

Note Opcode occupies 16 bits. Version number is the version of the processor

and may range from —128 to +127.

3-87

NOP NOP
NOP2 NOP2
NOP3 NOP3
NO OPERATION
Assembler NOP No operation, 1 byte
Syntax NOP2 No operation, 2 bytes
NOP3 No operation, 3 bytes
Opcodes 0x70 NOP
0x73 NOP2
0x72 NOP3
Operation None
Address None
Modes
Condition Unchanged
Flags
Exceptions None
Examples NOP
NOP2
NOP3
Notes The assembler inserts a NOP before instructions (other than branch)

3-88

that read the PSW. This NOP allows the conditions bits to stabilize.
The bytes following NOP2 and NOP3 are generated by the assembler
and are ignored by the processor. They may be any value.

ORB2
ORH2
ORW2

OR

Assembler
Syntax

Opcodes

Operation
Address
Modes

Condition
Flags

Exceptions

Examples

ORB2
ORH2
ORW2

ORB2 src,dst OR byte
ORH2 src,dst OR halfword
ORW2 src,dst OR word

0xB3 ORB2

0xB2 ORH2

0xBO ORW2

dst — dst|src

src all modes

dst all modes except literal or immediate

N — MSB of dst

Z «— 1, if dst ==

C+—0

V « 1, if result must be truncated to fit dst size

Illegal operand exception occurs if literal or immediate mode is used for
dst.

ORB2 &12,4(%fp)
ORH2 %r0,4(%r0)
ORW2 %r3,$result

3-89

ORB3 ORB3
ORH3 ORH3
ORW3 ORW3
OR, 3 ADDRESS
Assembler ORB3 srcl,src2,dst OR byte, 3 address
Syntax ORH3 srcl,src2,dst OR halfword, 3 address
ORWS3 srcl,src2,dst OR word, 3 address
Opcodes 0xF3 ORB3
0xF2 ORH3
0xFO ORWS3
Operation dst — src2|srcl
Address srcl all modes
Modes
src2 all modes
dst all modes except literal or immediate
Condition N < MSB of dst
Flags
Z ~— 1, if dst ==
C+~—0
V « 1, if result must be truncated to fit dst size
Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.
Examples ORB3 &16,*$0x304,%r0

3-90

ORH3 %r1,4(%r1),%r1
ORW3 %r2,%r3,%r1

POPW

POP (WORD)

Assembler
Syntax

Opcode
Operation

Address
Modes

Condition
Flags

Exceptions

Example

Note

POPW

POPW dst Pop (word)

0x20 POPW
dst — *(——SP)

dst all modes except literal or immediate (see Note)

— MSB of dst
— 1, if dst ==

— 0

< O N Z

~— 0

Illegal operand exception occurs if literal, expanded-operand type, or
immediate mode is used for dst.

POPW (%r2)

If dst is the stack pointer (%sp), the results are indeterminate.

391

PUSHAW PUSHAW

PUSH ADDRESS (WORD)

Assembler PUSHAW src Push address (word)
Syntax
Opcode 0xE0 PUSHAW
Operation *(SP++) — &sre
Address src all modes except literal, register, or immediate
Modes
Condition N — MSB of address of src
Flags
Z — 1, if src ==
C+—0
V—o0
Exceptions Illegal operand exception occurs if literal, register, expanded-operand
type, or immediate mode is used for src.
Example PUSHAW 0x14(%r6)
Note Source operand type is effective address. This instruction is the same as

a move address (MOVAW) instruction, except that the destination for
PUSHAW is an implied stack push.

3-92

PUSHW

PUSHW

PUSH (WORD)

Assembler
Syntax

Opcode
Operation

Address
Modes

Condition
Flags

Exceptions

Example

PUSHW src Push (word)

0xA0 PUSHW
*(SP++) — src

src all modes

N «— MSB of src
Z — 1, if src == 0
C+~—0

V<0

Illegal operand exception occurs if expanded-operand type addressing
mode is used.

PUSHW (%r2)

3-93

RCC RCC

RETURN ON CARRY CLEAR
Assembler RCC Return on carry clear
Syntax
Opcode 0x50 RCC
Operation if (C==0)

PC «— *(—-SP)
Address None
Modes
Condition Unchanged
Flags
Exceptions None
Example RCC

3-94

RCS

RETURN ON CARRY SET

Assembler
Syntax

Opcode
Operation
Address
Modes

Condition
Flags

Exceptions

Example

RCS Return on carry set

0x58 RCS

if (C==1)
PC «— *(——SP)

None

Unchanged

None

RCS

3-95

REQL
REQLU

RETURN ON EQUAL

Assembler REQL Return on equal (signed)
Syntax REQLU Return on equal (unsigned)
Opcodes 0x7C REQL

0x6C REQLU
Operation if (Z==1)

PC «~ *(—-SP)

Address None
Modes
Condition Unchanged
Flags
Exceptions None
Example REQL

3-96

REQL
REQLU

RESTORE

RESTORE

RESTORE REGISTERS

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions
Example

Notes

RESTORE %rn Restore registers

0xt8 RESTORE

tempa — FP — 28;
tempb — *(FP — 28);
tempc ~— FP — 24;
?hile (n = FP){

register[n] — (tempc)+;
n+=1;

}

FP — tempb;

SP «~ tempa

Register mode, where n ranges from O through 9
Unchanged

See Notes.
RESTORE %r3

If the operand is not register mode or » is not in the range O through 9,
the results are indeterminate. Although the results are determinate if n
is 0, 1 or 2, the effect is not that of a register restore in a function-
calling sequence.

RESTORE is the inverse of SAVE and should precede a return from
procedure (RET). (Also see SAVE and CALL.) The operand %rn
should be the same as in the corresponding SAVE, where n specifies the
number of registers (9 — n) to be restored for the original function.

RESTORE implements a stack frame for use in the C language
function-calling sequence. The instruction can restore up to six registers
(from register 8 through register 3) for use by the function. While
restoring these registers, it also adjusts SP and FP.

Illegal operand exception occurs if expanded-operand type address mode
is used.

3-97

RET RET

RETURN FROM PROCEDURE

Assembler RET Return from procedure
Syntax
Opcode 0x18 RET
Operation tempa — AP;
tempb — *(SP—4);
tempc — *(SP-8);
AP +— tempb;
PC < tempc;
SP < tempa;
Address None
Modes
Condition Unchanged
Flags
Exceptions None
Example RET
Note The return (RET) is the inverse of the call (CALL) instruction. A

restore should precede a return (RET) inside the function being exited.
RESTORE sets up the protocol for a C language return from function.
RET restores AP, PC, and SP to the values saved on the stack with the
corresponding CALL.

3-98

RGEQ

RETURN ON GREATER THAN OR EQUAL (SIGNED)

Assembler
Syntax

Opcode
Operation
Address
Modes

Condition
Flags

Exceptions

Example

RGEQ Return on greater than or equal (signed)

0x40 RGEQ

if (N==0)|(Z==1))
PC — *(—-SP)

None

Unchanged

None

RGEQ

RGEQ

3-99

RGEQU

RETURN ON GREATER THAN OR EQUAL (UNSIGNED)

Assembler RGEQU Return on greater than or equal (unsigned)
Syntax
Opcode 0x50 REGEQU
Operation if (C==0)
PC «~ *(—-SP)
Address None
Modes
Condition Unchanged
Flags
Exceptions None
Example RGEQU

3-100

RGEQU

RGTR

RETURN ON GREATER THAN (SIGNED)

Assembler
Syntax

Opcode
Operation
Address
Modes

Condition
Flags

Exceptions

Example

RGTR Return on greater than (signed)

0x44 RGTR

if ((N]|Z2)==0)
PC — *(—-SP)

None

Unchanged

None

RGTR

RGTR

3-101

RGTRU

RETURN ON GREATER THAN (UNSIGNED)

Assembler RGTRU Return on greater than
Syntax
Opcode 0x54 RGTRU
Operation if ((C|z)==0)
PC ~ *(——SP)
Address None
Modes
Condition Unchanged
Flags
Exceptions None
Example RGTRU

3-102

RGTRU

RLEQ

RETURN ON LESS THAN OR EQUAL (SIGNED)

Assembler
Syntax

Opcode
Operation
Address
Modes

Condition
Flags

Exceptions

Example

RLEQ Return on less than or equal

0x4C RLEQ

if (N|2)==1)
PC ~ *(—-SP)

None

Unchanged

None

RLEQ

RLEQ

3-103

RLEQU

RETURN ON LESS THAN OR EQUAL (UNSIGNED)

Assembler RLEQU Return on less than or equal (unsigned)
Syntax
Opcode 0x5C RLEQU
Operation if ((C|2)==1)
PC — *(—~-SP)
Address None
Modes
Condition Unchanged
Flags
Exceptions None
Example RLEQU

3-104

RLEQU

RLSS

RETURN ON LESS THAN (SIGNED)

Assembler
Syntax

Opcode
Operation
Address
Modes

Condition
Flags

Exceptions

Example

RLSS Return on less than (signed)

0x48 RLSS

if (N==1) & (Z==0))
PC — *(—-SP)

None

Unchanged

None

RLSS

RLSS

3-105

RLSSU RLSSU

RETURN ON LESS THAN (UNSIGNED)

Assembler RLSSU Return on less than (unsigned)
Syntax
Opcode 0x58 RLSSU
Operation if (C==1)
PC «— *(—-SP)
Address None
Modes
Condition Unchanged
Flags
Exceptions None
Example RLSSU

3-106

RNEQ

RNEQU

RNEQ
RNEQU

RETURN ON NOT EQUAL

Assembler
Syntax

Opcode
Operation
Address

Modes

Condition
Flags

Exceptions

Example

RNEQ Return on not equal (signed)
RNEQU Return on not equal (unsigned)

0x74 RNEQ
0x64 RNEQU

if (Z==0)
PC ~— *(—-SP)
None

Unchanged

None

RNEQ

3-107

ROTW

ROTATE

Assembler
Syntax

Opcode
Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-108

ROTW

ROTW count,src,dst Rotate word

0xD8 ROTW

dst «— src rotated right (count & O0x1F) bits
count all modes

src all modes

dst all modes except literal or immediate
N < MSB of dst

Z —1,if dst == 0

C—0

V<0

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: O [OF][00 [00]7E |

+— increasing bits

ROTW &0x404,%r0,%r0

After: r0 [E0 [FO[00]07]

All operands are type word. However, only the five low-order bits of
count are used; the high-order bits are ignored.

RSB

RETURN FROM SUBROUTINE

Assembler
Syntax

Opcode
Operation

Address
Modes

Condition
Flags

Exceptions

Example

RSB Return from subroutine (unconditional)

0x78 RSB
PC ~— *(—-SP)

None

Unchanged

None

RSB

RSB

3-109

RVC RVC

RETURN ON OVERFLOW CLEAR

Assembler RVC Return on overflow clear
Syntax
Opcode 0x60 RVC
Operation if (V==0)
PC «— *(—-SP)
Address None
Modes
Condition Unchanged
Flags
Exceptions None
Example RVC

3-110

RVS

RETURN ON OVERFLOW SET

Assembler
Syntax

Opcode
Operation
Address
Modes

Condition
Flags

Exceptions

Example

RVS Return on overflow set

0x68 RVS

if (V==1)
PC «~ *(—-SP)

None

Unchanged

None

RVS

RVS

3-111

SAVE

SAVE

SAVE REGISTERS

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions
Example

Notes

3-112

SAVE %rn Save registers

0x10 SAVE

temp «— SP

*(SP++) — FP

while (n !=FP){
*(SP++) «— register[n]
n+=1,

)

SP «~temp + 28;

FP «— SP;

Register mode, where n ranges from O through 9

Unchanged

See Notes.
SAVE %r3 (see Figure 3-9)

If the operand is not register mode or » is not in the range 0 to 9, the
results are indeterminate. However, if nis 0, 1, or 2, the results are
determinate, but SP and FP will not point beyond the register-save area.

Temp is a temporary register, and n specifies the number of registers
(9 — n) to be saved for the calling function.

SAVE implements a stack frame for use in the C language function-
calling sequence. It should be the first statement in the called function.
(Also see Restore and Return from Procedure instructions.) SAVE can
save up to six registers, from register 8 (r8) through register 3 (r3),
freeing them for the new function. After saving these registers, SAVE
adjusts SP and FP to point beyond the end of a fixed-size register-save
area. Figure 3-9 shows the stack after executing 'SAVE %r3’.

Illegal operand exception occurs if expanded-operand type addressing
mode is used.

SPOP SPOP

COPROCESSOR OPERATION (no operands)

Assembler SPOP word Coprocessor operation

Syntax

Opcode 0x32 SPOP

Operation /* coprocessor operation executes the following

processor operations */
{ "word" is written out with an access status of
"coprocessor broadcast" }
{ wait for "coprocessor done" }
{ a word is written into PSW with an access status of
"coprocessor status fetch" }

Address None valid, word = 32-bit value
Modes

Condition Unchanged

Flags

Exceptions External memory fault may occur.
Example SPOP OXFFFFFFFF

3-113

SPOPRS SPOPRS
SPOPRD SPOPRD
SPOPRT SPOPRT

COPROCESSOR OPERATION READ

Assembler SPOPRS word,src Coprocessor operation read single
Syntax SPOPRD word,src Coprocessor operation read double
SPOPPT word,src Coprocessor operation read triple

Opcode 0x22 SPOPRS
0x02 SPOPRD
0x06 SPOPRT

Operation /* coprocessor operation read executes the following
processor operations */

{ "word" is written out with an access status of
"coprocessor broadcast" }

{ "src" is read with an access status of
"coprocessor data fetch" }

{ wait for "coprocessor done" }

{ a word is written into PSW with an access status of
"coprocessor status fetch" }

Address word none valid, 32-bit value

Modes src all modes except register, literal, or immediate
Condition Determined by the coprocessor status

Flags

Exceptions External memory fault may occur.

Example SPOPRS 0xF379FFFF,*$0xFF37

SPOPRD OxFFFFFFFF,%r3
SPOPRT 0x00000000,(%r4)

3-114

SPOPS2
SPOPD2
SPOPT2

COPROCESSOR OPERATION, 2-ADDRESS

Assembler SPOPS2 word,src,dst Coprocessor operation single,
Syntax 2-address
SPOPD2 word,src,dst Coprocessor operation double,
2-address
SPOPT2 word,src,dst Coprocessor operation triple,
2-address
Opcode 0x23 SPOPWS

0x03 SPOPWD
0x07 SPOPWT

Operation /* coprocessor operation executes the following
processor operations */
"word" is written out with an access status of
"coprocessor broadcast" }
{ "src" is read with an access status of "coprocessor
data fetch" }
{ wait for "coprocessor done" }
{ a word is written into PSW with an access status of
"coprocessor status fetch" }
{ "dst" is written with an access status of
coprocessor data write" }

Address word none valid, 32-bit value

Modes src all modes except register, literal, or immediate
dst all modes except register, literal, or immediate

Condition Determined by the coprocessor status

Flags

Exceptions External memory fault may occur.

Example SPOPS2 0xFF,4(%r0)

SPOPD2 O0xFFF,%r3
SPOPT2 OxFE,(%r0)

SPOPS2
SPOPD2
SPOPT2

3-115 -

SPOPWS
SPOPWD
SPOPWT

COPROCESSOR OPERATION WRITE

Assembler SPOPWS word,dst Coprocessor operation write single
Syntax SPOPWD word,dst Coprocessor operation write double
SPOPWT word,dst Coprocessor operation write triple

Opcode 0x33 SPOPWS
0x13 SPOPWD
0x17 SPOPWT

Operation /* coprocessor operation write executes the following
processor operations */
"word" is written out with an access status of

"coprocessor broadcast" }

{ wait for "coprocessor done" }

{ a word is written into PSW with an access status of
coprocessor status fetch” }

{ "dst" is written with an access status of
coprocessor data write" }

Address word none valid, 32-bit value

Modes dst all modes except register, literal, or immediate
Condition Determined by the coprocessor status.

Flags

Exceptions External memory fault may occur.

Example SPOPWS 0x00,%r0

SPOPWD 0xOF,(%r1)
SPOPWT 0x1000,4(%r2)

3-116

SPOPSW
SPOPWD
SPOPWT

STRCPY

STRING COPY

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

STRCPY

STRCPY String copy

0x3035 STRCPY

while ((*r1 = *r0)!=0) {
{disable interrupts}
r0++;

rl++;
{enable interrupts}

None
Unchanged

External memory fault may occur in the middle of an iteration.

Before: r0 [00 [00]01[00 |

rl [00]00[40]00]

« increasing bits

The byte locations starting at 0x100 contain the values 0x01, 0x24,
0xE6, 0x7F, 0x11, and 0x00 (location 0x105).

STRCPY

After: r0 [00]00]01]05]

r1 [00 0040705

The byte locations from 0x4000 through 0x4005 now contain the same
values as locations 0x100 through 0x105.

3-117

STRCPY

Notes

3-118

STRCPY

Opcode occupies 16 bits. All operands are defined implicitly in the
registers, r0 and rl, that function as byte pointers. These registers must
be preset with the following information before executing STRCPY:

r0 Address of source string
rl Address of destination string

STRCPY implements the string-copy function commonly used in C
language. The instruction may be interrupted only at the end of an
iteration. A memory fault may occur in the middle of an iteration. To
restart the instruction after a fault, execute STRCPY again; the
registers are updated after the only memory access that could cause the
fault. The assignment is a byte move, and both RO and R1 are
incremented by 1 at each iteration. Execution of STRCPY is finished
when a null (zero) byte is reached. The null byte is always copied.

STREND

STRING END

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Notes

STREND

STREND String end
0x301F STREND
while (*r0 !=0){

r0++;
}
None

Unchanged

External memory fault may occur in the middle of an iteration.

Before: 10 [00 00]04]00 |

+— increasing bits

The byte locations 0x400 through 0x404 contain the values 0x44, 0x55,
0x01, 0x22, 0x00, respectively.

STREND

After: 0 [00]00]04]04]

Opcode occupies 16 bits. The operand is defined implicitly in the
register 10, a byte pointer that must be preset with the starting address
of the source C language string. STREND moves the pointer to the
end of the string and could be used as part of a string-length or string-

concatenation function. The instruction may be interrupted at any time.
A memory fault may occur in the middle of an iteration. To restart the

instruction after a fault, execute STREND again; the register is
updated after the only instruction that could cause the fault. Each
iteration tests a byte and increments the pointer r0 by 1. Execution of
STREND terminates when a null (zero) byte is found. r0 will be left
with the address of the null byte.

3-119

SUBB2
SUBH2
SUBW2
SUBTRACT

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-120

SUBB2
SUBH2
SUBW2

SUBB2 src,dst Subtract byte
SUBH2 src,dst Subtract halfword
SUBW?2 src,dst Subtract word

0xBF SUBB2

O0xBE SUBH2

0xBC SUBW2

dst «— dst — src

src all modes

dst all modes except literal or immediate
N — 1, if (dst — src) < 0

Z + 1, if (dst — src) ==

C « 1, if borrow from sign bit of dst

V « 1, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.
SUBB2 %r6,*$0x30(%r2)

SUBH2 %r0,$resulth
SUBW2 %r3,$resultw

SUBB3 SUBB3
SUBH3 SUBH3
SUBW3 SUBW3

SUBTRACT, 3 ADDRESS

Assembler SUBB3 srcl,src2,dst Subtract byte, 3 address
Syntax SUBHS3 srcl,src2,dst Subtract halfword, 3 address
SUBW3 srcl,src2,dst Subtract word, 3 address

Opcodes 0xFF SUBB3
0xFE SUBH3
0xFC SUBW3

Operation dst «— src2 — srcl

Address srcl all modes

Modes

src2 all modes

dst all modes except literal or immediate
Condition N «— 1, if (src2 — srel) < 0
Flags

Z «— 1, if (src2 — srcl) ==

C « 1, if carry out of sign bit of dst

V +« 1, if overflow

Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.
Examples SUBB3 %r3,*$0x1005,%r2

SUBH3 %r1,%r3,%r0
SUBW3 $N1,$N2,$result

3-121

SWAPBI SWAPBI
SWAPHI SWAPHI
SWAPWI SWAPWI

SWAP (INTERLOCKED)

Assembler SWAPBI dst Swap byte (interlocked)
Syntax SWAPHI dst Swap halfword (interlocked)
SWAPWI dst Swap word (interlocked)

Opcodes 0x1F SWAPBI
0x1E SWAPHI
0x1C SWAPWI

Operation {set interlock]}
tempa — dst
dst «— r0
r0 <« tempa
Address dst all modes except register, literal, or immediate
Medes
Condition N «— MSB of r0
Flags
Z — 1, if 10 ==
C+~—0
V—0
Exceptions Illegal operand exception occurs if register, literal, expanded-operand

type, or immediate mode is used for dsz.

Examples The swap instruction can manipulate interlocks for multiprocessors.
Suppose location A is the interlock for a critical section of code, and a
nonzero means the lock is busy. Then, the following instructions
provide a busy-waiting loop:

MOVW &1,%r0

Ll: SWAPWI A
BNEB L1

Note Final value of r0 sets the condition codes. The SAS code is read
interlocked (7) for both the read and write bus transactions.

3-122

TSTB
TSTH
TSTW

TEST

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions
Examples

Note

TSTB
TSTH
TSTW

TSTB src Test byte
TSTH src¢ Test halfword
TSTW src¢ Test word

0x2B TSTB
0x2A TSTH
0x28 TSTW
src — 0

src all modes

— 1, if src < 0 (signed)
1, if src ==

—0

< 0O N Z
t

—0
None
TSTH 14(%r2)

This instruction only sets condition codes. Its action is the same as a
compare instruction, where the first operand is zero, such as

CMPB &O0,src2

However, test is faster because it is one byte shorter.

3-123

XORB2 XORB2

XORH2 XORH2
XORW2 XORW2
EXCLUSIVE OR

Assembler XORB2 src,dst Exclusive OR byte

Syntax XORH?2 src,dst Exclusive OR halfword

XORW2 src,dst Exclusive OR word

Opcodes 0xB7 XORB2
0xB6 XORH2
0xB4 XORW2

Operation dst «— dst ~ src

Address src all modes

Modes
dst all modes except literal or immediate

Condition N < MSB of dst

Flags
Z — 1, if dst ==
C+—<0

V « 1, if result must be truncated to fit dst size

Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.
Examples XORB2 &40,4(%r4)

XORH2 %r1,$result
XORW2 4(%r1),$result

3-124

XORB3 XORB3
XORH3 XORH3
XORW3 XORW3

EXCLUSIVE OR, 3 ADDRESS

Assembler XORB3 mask,src,dst Exclusive OR byte, 3 address
Syntax XORH3 mask,src,dst Exclusive OR halfword, 3 address
XORW3 mask,src,dst Exclusive OR word, 3 address

Opcodes 0xF7 XORB3
0xF6 XORH3
0xF4 XORWS3

Operation dst — src “mask

Address mask all modes

Modes

src all modes

dst all modes except literal or immediate

Condition N «— MSB of dst
Flags
Z — 1, if dst ==
C+~—0

V « 1, if result must be truncated to fit dst size

Exceptions Illegal operand exception occurs if literal or immediate mode is used for
dst.
Examples XORB3 &4,*12(%r3),*$0x400

XORH3 %r1,4(%r1),%r0
XORW3 %r0,%r1,%r13

3-125

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

3.7.3 Instruction Set Summary by Function

3-126

Table 3-12. Data Transfer Instruction Group

Instruction Mnemonic | Opcode
Move:
Move byte MOVB 0x87
Move halfword MOVH 0x86
Move word MOVW 0x84
Move address (word) MOVAW 0x04
Move complemented byte MCOMB 0x8B
Move complemented halfword | MCOMH 0x8A
Move complemented word MCOMW | 0x88
Move negated byte MNEGB 0x8F
Move negated halfword MNEGH 0x8E
Move negated word MNEGW 0x8C
Move version number MVERNO | 0x3009
Swap (Interlocked):
Swap byte interlocked SWAPBI 0x1F
Swap halfword interlocked SWAPHI Ox1E
Swap word interlocked SWAPWI 0x1C
Block Operations:
Move block of words MOVBLW | 0x3019
Field Operations:
Extract field byte EXTFB 0xCF
Extract field halfword EXTFH 0xCE
Extract field word EXTFW 0xCC
Insert field byte INSFB 0xCB
Insert field halfword INSFH 0xCA
Insert field word INSFW 0xC8
String Operations:
String copy STRCPY 0x3035
String end STREND 0x301F

Table 3-13. Arithmetic Instruction Group

Instruction Mnemonic | Opcode
Add:
Add byte ADDB2 0x9F
Add halfword ADDH2 0x9E
Add word ADDW?2 0x9C

Add byte, 3-address
Add halfword, 3-address
Add word, 3-address

ADDB3 0xDF
ADDH3 0xDE
ADDW3 0xDC

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

Table 3-13. Arithmetic Instruction Group (Continued)
Instruction Mnemonic | Opcode
Subtract:
Subtract byte SUBB2 0xBF
Subtract halfword SUBH2 0xBE
Subtract word SUBW2 0xBC
Subtract byte, 3-address SUBB3 OxFF
Subtract halfword, 3-address SUBH3 O0xFE
Subtract word, 3-address SUBW3 0xFC
Increment:
Increment byte INCB 0x93
Increment halfword INCH 0x92
Increment word INCW 0x90
Decrement:
Decrement byte DECB 0x97
Decrement halfword DECH 0x96
Decrement word DECW 0x94
Multiply:
Multiply byte MULB2 0xAB
Multiply halfword MULH2 0xAA
Multiply word MULW2 0xA8
Multiply byte, 3-address MULB3 0xEB
Multiply halfword, 3-address MULH3 0xEA
Multiply word, 3-address MULW3 0xE8
Divide:
Divide byte DIVB2 0xAF
Divide halfword DIVH2 OxAE
Divide word DIVW2 0xAC
Divide byte, 3-address DIVB3 0xEF
Divide halfword, 3-address DIVH3 0xEE
Divide word, 3-address DIVW3 0xEC
Modulo:
Modulo byte MODB2 0xA7
Modulo halfword MODH2 0xA6
Modulo word MODW2 0xA4
Modulo byte, 3-address MODB3 0xE7
Modulo halfword, 3-address MODH3 0xE6
Modulo word, 3-address MODW3 0xE4
Arithmetic Shift:
Arithmetic left shift word ALSW3 0xCO0
Arithmetic right shift byte ARSB3 0xC7
Arithmetic right shift halfword | ARSH3 0xC6
Arithmetic right shift word ARSW3 0xC4

3-127

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

Table 3-14. Logical Group

Instruction Mnemonic | Opcode
AND:
AND byte ANDB2 0xBB
AND halfword ANDH?2 0xBA
AND word ANDW2 0xB8
AND byte, 3-address ANDB3 0xFB
AND halfword, 3-address ANDH3 0xFA
AND word, 3-address ANDW3 0xF8
Exclusive OR (XOR):
Exclusive OR byte XORB2 0xB7
Exclusive OR halfword XORH2 0xB6
Exclusive OR word XORW2 0xB4
Exclusive OR byte, 3-address XORB3 O0xF7
Exclusive OR halfword, 3-address | XORH3 0xF6
Exclusive OR word, 3-address XORW3 0xF4
OR:
OR byte ORB2 0xB3
OR halfword ORH2 0xB2
OR word ORW2 0xBO0
OR byte, 3-address ORB3 0xF3
OR halfword, 3-address ORH2 OxF2
OR word, 3-address ORW3 OxF0
Compare or Test:
Compare byte CMPB 0x3F
Compare halfword CMPH 0x3E
Compare word CMPW 0x3C
Test byte TSTB 0x2B
Test halfword TSTH 0x2A
Test word TSTW 0x28
Bit test byte BITB 0x3B
Bit test halfword BITH 0x3A
Bit test word BITW 0x38
Clear:
Clear byte CLRB 0x83
Clear halfword CLRH 0x82
Clear word CLRW 0x80
Rotate or Logical Shift:
Rotate word ROTW 0xD8
Logical left shift byte LLSB3 0xD3
Logical left shift halfword LLSH3 0xD2
Logical left shift word LLSW3 0xDO0
Logical right shift word LRSW3 0xD4

3-128

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

Table 3-15. Program Control Instructions
Instruction Mnemonic | Opcode

Unconditional Transfer:
Branch with byte (8-bit) displacement BRB 0x7B
Branch with halfword (16-bit) displacement BRH 0x7A
Jump JMP 0x24
Conditional Transfers:
Branch on carry clear byte BCCB 0x53*
Branch on carry clear halfword BCCH 0x52*
Branch on carry set byte BCSB 0x5B
Branch on carry set halfword BCSH OxSA*
Branch on overflow clear, byte displacement BVCB 0x63
Branch on overflow clear, halfword displacement BVCH 0x62
Branch on overflow set, byte displacement BVSB 0x6B
Branch on overflow set, halfword displacement BVSH 0x6A
Branch on equal byte (duplicate) BEB Ox6F
Branch on equal byte BEB 0x7F
Branch on equal halfword (duplicate) BEH 0x6E
Branch on equal halfword BEH Ox7E
Branch on not equal byte (duplicate) BNEB 0x67
Branch on not equal byte BNEB 0x77
Branch on not equal halfword (duplicate) BNEH 0x66
Branch on not equal halfword BNEH 0x76
Branch on less than byte (signed) BLB 0x4B
Branch on less than halfword (signed) BLH 0x4A
Branch on less than byte (unsigned) BLUB 0x5B*
Branch on less than halfword (unsigned) BLUH 0x5A*
Branch on less than or equal byte (signed) BLEB 0x4F
Branch on less than or equal halfword (signed) BLEH 0x4E
Branch on less than or equal byte (unsigned) BLEUB 0xSF
Branch on less than or equal halfword (unsigned) BLEUH 0x5E
Branch on greater than byte (signed) BGB 0x47
Branch on greater than halfword (signed) BGH 0x46
Branch on greater than byte (unsigned) BGUB 0x57
Branch on greater than halfword (unsigned) BGUH 0x56
Branch on greater than or equal byte (signed) BGEB 0x43
Branch on greater than or equal halfword (signed) BGEH 0x42
Branch on greater than or equal byte (unsigned) BGEUB 0x53*
Branch on greater than or equal halfword (unsigned) | BGEUH 0x52*

* Indicates that opcode matches another instruction but operation is the same.

3-129

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

Table 3-15. Program Control Instructions (Continued)
Instruction Mnemonic | Opcode

Conditional Transfers (Continued):
Return on carry clear RCC 0x50*
Return on carry set RCS 0x58*
Return on overflow clear RVC 0x60
Return on overflow set RVS 0x68
Return on equal (unsigned) REQLU 0x6C
Return on equal (signed) REQL 0x7C
Return on not equal (unsigned) RNEQU 0x64
Return on not equal (signed) RNEQ 0x74
Return on less than (signed) RLSS 0x48
Return on less than (unsigned) RLSSU 0x58*
Return on less than or equal (signed) RLEQ 0x4C
Return on less than or equal (unsigned) RLEQU 0x5C
Return on greater than (signed) RGTR 0x44
Return on greater than (unsigned) RGTRU 0x54
Return on greater than or equal (signed) RGEQ 0x40
Return on greater than or equal (unsigned) RGEQU 0x50*
Subroutine Transfer:
Branch to subroutine, byte displacement BSBB 0x37
Branch to subroutine, halfword displacement BSBH 0x36
Jump to subroutine JSB 0x34
Return from subroutine RSB 0x78
Procedure Transfer:
Save registers SAVE 0x10
Restore registers RESTORE | 0x18
Call procedure CALL 0x2C
Return from procedure RET 0x08

* Indicates that opcode matches another instruction but operation is the same.

3-130

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

Table 3-16. Coprocessor Instructions
Instruction Mnemonic | Opcode
Coprocessor operation SPOP 0x32
Coprocessor operation read single SPOPRS 0x22
Coprocessor operation read double SPOPRD 0x02
Coprocessor operation read triple SPOPRT 0x06
Coprocessor operation single 2-address SPOPS2 0x23
Coprocessor operation double 2-address SPOPD2 0x03
Coprocessor operation triple 2-address SPOPT?2 0x07
Coprocessor operation write single SPOPWS 0x33
Coprocessor operation write double SPOPWD 0x13
Coprocessor operation write triple SPOPWT 0x17

Table 3-17. Stack and Miscellaneous Instructions
Instruction Mnemonic Opcode
Stack Operations:
Push address word PUSHAW 0xEOQ
Push word PUSHW 0xA0
Pop word POPW 0x20
Miscellaneous:
No operation, 1 byte NOP 0x70
No operation, 2 bytes NOP2 0x73
No operation, 3 bytes NOP3 0x72
Breakpoint trap BPT 0x2E
Extended opcode EXTOP 0x14
Cache flush CFLUSH 0x27

3-131

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Mnemonic

3.7.4 Instruction Set Summary by Mnemonic

Table 3-18. Instruction Set Summary by Mnemonic

Mnemonic | Opcode Instruction

ADDB2 0x9F Add byte

ADDB3 0xDF | Add byte, 3-address
ADDH2 0x9E Add halfword

ADDH3 0xDE | Add halfword, 3-address
ADDW2 | 0x9C Add word

ADDW3 0xDC | Add word, 3-address

ALSW3 0xCO Arithmetic left shift word

ANDB2 0xBB | AND byte

ANDB3 0xFB AND byte, 3-address
ANDH2 | 0xBA | AND halfword

ANDH3 0xFA | AND halfword, 3-address
ANDW2 | 0xB8 AND word

ANDW3 | OxF8 AND word, 3-address

ARSB3 0xC7 | Arithmetic right shift byte
ARSH3 0xC6 | Arithmetic right shift halfword
ARSW3 0xC4 | Arithmetic right shift word

BCCB 0x53* | Branch on carry clear byte
BCCH 0x52* | Branch on carry clear halfword

BCSB 0x5B* | Branch on carry set byte

BCSH 0x5A* | Branch on carry set halfword

BEB 0x6F | Branch on equal byte (duplicate)
BEB 0x7F Branch on equal byte

BEH 0x6E Branch on equal halfword (duplicate)
BEH 0x7E | Branch on equal halfword

BGB 0x47 Branch on greater than byte (signed)

BGEB 0x43 Branch on greater than or equal byte (signed)
BGEH 0x42 | Branch on greater than or equal halfword (signed)
BGEUB | 0x53* | Branch on greater than or equal byte (unsigned)
BGEUH | 0x52* | Branch on greater than or equal halfword (unsigned)
BGH 0x46 Branch on greater than halfword (signed)

BGUB 0x57 Branch on greater than byte (unsigned)

BGUH 0x56 Branch on greater than halfword (unsigned)

BITB 0x3B | Bit test byte

BITH 0x3A | Bit test halfword

BITW 0x38 Bit test word

BLB 0x4B Branch on less than byte (signed)

BLEB 0x4F Branch on less than or equal byte (signed)

BLEH 0x4E Branch on less than or equal halfword (signed)

* Indicates that opcode matches another instruction but operation is the same.

3-132

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Mnemonic

Table 3-18. Instruction Set Summary by Mnemonic (Continued)
Mnemonic | Opcode Instruction
BLEUB 0x5F Branch on less than or equal byte (unsigned)
BLEUH 0x5E Branch on less than or equal halfword (unsigned)
BLH 0x4A Branch on less than halfword (signed)
BLUB 0x5B* Branch on less than byte (unsigned)
BLUH 0x5A* Branch on less than halfword (unsigned)
BNEB 0x67 Branch on not equal byte (duplicate)
BNEB 0x77 Branch on not equal byte
BNEH 0x66 Branch on not equal halfword (duplicate)
BNEH 0x76 Branch on not equal halfword
BPT 0x2E Breakpoint trap
BRB 0x7B Branch with byte (8-bit) displacement
BRH 0x7A Branch with halfword (16-bit) displacement
BSBB 0x37 Branch to subroutine, byte displacement
BSBH 0x36 Branch to subroutine, halfword displacement
BVCB 0x63 Branch on overflow clear, byte displacement
BVCH 0x62 Branch on overflow clear, halfword displacement
BVSB 0x6B Branch on overflow set, byte displacement
BVSH 0x6A Branch on overflow set, halfword displacement
CALL 0x2C Call procedure
CFLUSH | 0x27 Cache flush
CLRB 0x83 Clear byte
CLRH 0x82 Clear halfword
CLRW 0x80 Clear word
CMPB 0x3F Compare byte
CMPH 0x3E Compare halfword
CMPW 0x3C Compare word
DECB 0x97 Decrement byte
DECH 0x96 Decrement halfword
DECW 0x94 Decrement word
DIVB2 0xAF Divide byte
DIVB3 OxEF Divide byte 3-address
DIVH2 0xAE Divide halfword
DIVH3 0xEE Divide halfword, 3-address
DIVW2 0xAC Divide word
DIVW3 0xEC Divide word, 3-address
EXTFB 0xCF Extract field byte
EXTFH 0xCE Extract field halfword
EXTFW 0xCC Extract field word
EXTOP 0x14 Extended opcode
INCB 0x93 Increment byte
INCH 0x92 Increment halfword
INCW 0x90 Increment word
INSFB 0xCB Insert field byte

* Indicates that opcode matches another instruction but operation is the same.

3-133

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Mnemonic

3-134

Table 3-18. Instruction Set Summary by Mnemonic (Continued)
Mnemonic Opcode Instruction
INSFH 0xCA Insert field halfword
INSFW 0xC8 Insert field word
JMP 0x24 Jump
JSB 0x34 Jump to subroutine
LLSB3 0xD3 Logical left shift byte
LLSH3 0xD2 Logical left shift halfword
LLSW3 0xDO0 Logical left shift word
LRSW3 0xD4 Logical right shift word
MCOMB 0x8B Move complemented byte
MCOMH 0x8A Move complemented halfword
MCOMW 0x88 Move complemented word
MNEGB 0x8F Move negated byte
MNEGH 0x8E Move negated halfword
MNEGW 0x8C Move negated word
MODB2 0xA7 Modulo byte
MODB3 OxE7 Modulo byte, 3-address
MODH?2 0xA6 Modulo halfword
MODH3 0xE6 Modulo halfword, 3-address
MODW2 0xA4 Modulo word
MODW3 0xE4 Modulo word, 3-address
MOVAW 0x04 Move address (word)
MOVB 0x87 Move byte
MOVBLW 0x3019 Move block of words
MOVH 0x86 Move halfword
MOVW 0x84 Move word
MULB2 0xAB Multiply byte
MULB3 O0xEB Multiply byte, 3-address
MULH2 0xAA Multiply halfword
MULH3 0xEA Multiply halfword, 3-address
MULW2 0xA8 Multiply word
MULW3 OxE8 Multiply word, 3-address
MVERNO 0x3009 Move version number
NOP 0x70 No operation, 1 byte
NOP2 0x73 No operation, 2 bytes
NOP3 0x72 No operation, 3 bytes
ORB2 0xB3 OR byte
ORB3 0xF3 OR byte, 3-address
ORH2 0xB2 OR halfword
ORH3 0xF2 OR halfword, 3-address
ORW2 0xB0O OR word
ORW3 0xFO0 OR word, 3-address
POPW 0x20 Pop word
PUSHAW 0xEO0 Push address word
PUSHW 0xA0 Push word

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Mnemonic

Table 3-18. Instruction Set Summary by Mnemonic (Continued)
Mnemonic Opcode Instruction
RCC 0x50* Return on carry clear
RCS 0x58* Return on carry set
REQLU 0x6C Return on equal (unsigned)
REQL 0x7C Return on equal (signed)
RESTORE 0x18 Restore registers
RET 0x08 Return from procedure
RGEQ 0x40 Return on greater than or equal (signed)
RGEQU 0x50* Return on greater than or equal (unsigned)
RGTR 0x44 Return on greater than (signed)
RGTRU 0x54 Return on greater than (unsigned)
RLEQ 0x4C Return on less than or equal (signed)
RLEQU 0x5C Return on less than or equal (unsigned)
RLSS 0x48 Return on less than (signed)
RLSSU 0x58* Return on less than (unsigned)
RNEQU 0x64 Return on not equal (unsigned)
RNEQ 0x74 Return on not equal (signed)
ROTW 0xD8 Rotate word
RSB 0x78 Return from subroutine
RVC 0x60 Return on overflow clear
RVS 0x68 Return on overflow set
SAVE 0x10 Save registers
SPOP 0x32 Coprocessor operation
SPOPRS 0x22 Coprocessor operation read single
SPOPRD 0x02 Coprocessor operation read double
SPOPRT 0x06 Coprocessor operation read triple
SPOPS2 0x23 Coprocessor operation single 2-address
SPOPD2 0x03 Coprocessor operation double 2-address
SPOPT?2 0x07 Coprocessor operation triple 2-address
SPOPWS 0x33 Coprocessor operation write single
SPOPWD 0x13 Coprocessor operation write double
SPOPWT 0x17 Coprocessor operation write triple
STRCPY 0x3035 String copy
STREND 0x301F String end
SUBB2 0xBF Subtract byte
SUBB3 0xFF Subtract byte, 3-address
SUBH2 0xBE Subtract halfword
SUBH3 OxFE Subtract halfword, 3-address
SUBW2 0xBC Subtract word
SUBW3 0xFC Subtract word, 3-address

* Indicates that opcode matches another instruction but operation is the same.

3-135

INSTRUCTION SET & ADDRESSING MODES

Instruction Set Summary by Opcode

Table 3-18. Instruction Set Summary by Mnemonic (Continued)
Mnemonic Opcode Instruction
SWAPBI 0x1F Swap byte interlocked
SWAPHI Ox1E Swap halfword interlocked
SWAPWI 0x1C Swap word interlocked
TSTB 0x2B Test byte
TSTH 0x2A Test halfword
TSTW 0x28 Test word
XORB2 0xB7 Exclusive OR byte
XORB3 0xF7 Exclusive OR byte, 3-address
XORH2 0xB6 Exclusive OR halfword
XORH3 0xF6 Exclusive OR halfword, 3-address
XORW2 0xB4 Exclusive OR word
XORW3 0xF4 Exclusive OR word, 3-address

3.7.5 Instruction Set Summary by Opcode

Table 3-19. Instruction Set Summary by Opcode
Menemonic Opcode Instruction
SPOPRD 0x02 Coprocessor operation read double
SPOPD2 0x03 Coprocessor operation double, 2-address
MOVAW 0x04 Move address (word)
SPOPRT 0x06 Coprocessor operation read triple
SPOPT2 0x07 Coprocessor operation triple, 2-address
RET 0x08 Return from procedure
SAVE 0x10 Save registers
SPOPWD 0x13 Coprocessor operation write double
EXTOP Ox14 Extended opcode
SPOPWT 0x17 Coprocessor operation write triple
RESTORE 0x18 Restore registers
SWAPWI 0x1C Swap word interlocked
SWAPHI O0x1E Swap halfword interlocked
SWAPBI O0x1F Swap byte interlocked
POPW 0x20 Pop word
SPOPRS 0x22 Coprocessor operation read single
SPOPS2 0x23 Coprocessor operation single, 2-address
JMP 0x24 Jump
TSTW 0x28 Test word
TSTH 0x2A Test halfword
TSTB 0x2B Test byte
CALL 0x2C Call procedure
BPT 0x2E Breakpoint trap
MVERNO 0x3009 Move version number
MOVBLW 0x3019 Move block of words
STREND 0x301F String end
STRCPY 0x3035 String copy

3-136

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Opcode

Table 3-19. Instruction Set Summary by Opcode (Continued)
Mnemonic | Opcode Instruction
SPOP 0x32 Coprocessor operation
SPOPWS | 0x33 Coprocessor operation write single
JSB 0x34 Jump to subroutine
BSBH 0x36 Branch to subroutine, halfword displacement
BSBB 0x37 Branch to subroutine, byte displacement
BITW 0x38 Bit test word
BITH 0x3A Bit test halfword
BITB 0x3B Bit test byte
CMPW 0x3C Compare word
CMPH 0x3E Compare halfword
CMPB 0x3F Compare byte
RGEQ 0x40 Return on greater than or equal (signed)
BGEH 0x42 Branch on greater than or equal halfword (signed)
BGEB 0x43 Branch on greater than or equal byte (signed)
RGTR 0x44 Return on greater than (signed)
BGH 0x46 Branch on greater than halfword (signed)
BGB 0x47 Branch on greater than byte (signed)
RLSS 0x48 Return on less than (signed)
BLH 0x4A Branch on less than halfword (signed)
BLB 0x4B Branch on less than byte (signed)
RLEQ 0x4C Return on less than or equal (signed)
BLEH 0x4E Branch on less than or equal halfword (signed)
BLEB 0x4F Branch on less than or equal byte (signed)
RCC 0x50* Return on carry clear
RGEQU 0x50* Return on greater than or equal (unsigned)
BCCH 0x52* Branch on carry clear halfword
BGEUH 0x52* Branch on greater than or equal halfword (unsigned)
BCCB 0x53* Branch on carry clear byte
BGEUB 0x53* Branch on greater than or equal byte (unsigned)
RGTRU 0x54 Return on greater than (unsigned)
BGUH 0x56 Branch on greater than halfword (unsigned)
BGUB 0x57 Branch on greater than byte (unsigned)
RCS 0x58* Return on carry set
RLSSU 0x58* Return on less than (unsigned)
BCSH OxSA* Branch on carry set halfword
BLUH OxSA* Branch on less than halfword (unsigned)
BCSB 0x5B* Branch on carry set byte
BLUB 0x5B* Branch on less than byte (unsigned)
RLEQU 0x5C Return on less than or equal (unsigned)
BLEUH 0x5E Branch on less than or equal halfword (unsigned)
BLEUB 0xSF Branch on less than or equal byte (unsigned)

* Indicates that opcode matches another instruction but operation is the same.

3-137

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Opcode

3-138

Table 3-19. Instruction Set Summary by Opcode (Continued)

Mnemonic Opcode Instruction

RVC 0x60 Return on overflow clear

BVCH 0x62 Branch on overflow clear, halfword displacement
BVCB 0x63 Branch on overflow clear, byte displacement
RNEQU 0x64 Return on not equal (unsigned)

BNEH 0x66 Branch on not equal halfword (duplicate)
BNEB 0x67 Branch on not equal byte (duplicate)
RVS 0x68 Return on overflow set

BVSH 0x6A Branch on overflow set, halfword displacement
BVSB 0x6B Branch on overflow set, byte displacement
REQLU 0x6C Return on equal (unsigned)

BEH 0x6E Branch on equal halfword (duplicate)
BEB 0x6F Branch on equal byte (duplicate)

NOP 0x70 No operation, 1 byte

NOP3 0x72 No operation, 3 bytes

NOP2 0x73 No operation, 2 bytes

RNEQ 0x74 Return on not equal (signed)

BNEH 0x76 Branch on not equal halfword

BNEB 0x77 Branch on not equal

RSB 0x78 Return from subroutine

BRH 0x7A Branch with halfword (16-bit) displacement
BRH 0x7B Branch with byte (8-bit) displacement
REQL 0x7C Return on equal (signed)

BEH 0x7E Branch on equal halfword

BEB 0x7F Branch on equal byte

CLRW 0x80 Clear word

CLRH 0x82 Clear halfword

CLRB 0x83 Clear byte

MOVW 0x84 Move word

MOVH 0x86 Move halfword

MOVB 0x87 Move byte

MCOMW 0x88 Move complemented word

MCOMH 0x8A Move complemented halfword

MCOMB 0x8B Move complemented byte

MNEGW 0x8C Move negated word

MNEGH 0x8E Move negated halfword

MNEGB 0x8F Move negated byte

INCW 0x90 Increment word

INCH 0x92 Increment halfword

INCB 0x93 Increment byte

DECW 0x94 Decrement word

DECH 0x96 Decrement halfword

DECB 0x97 Decrement byte

ADDW?2 0x9C Add word

ADDH2 0x9E Add halfword

ADDB2 0x9F Add byte

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Opcode

Table 3-19. Instruction Set Summary by Opcode (Continued)
Mnemonic Opcode Instruction
PUSHW 0xA0 Push word
MODW?2 0xA4 Modulo word
MODH?2 0xA6 Modulo halfword
MODB2 0xA7 Modulo byte
MULW2 0xA8 Multiply word
MULH2 0xAA Multiply halfword
MULB?2 0xAB Multiply byte
DIVW2 0xAC Divide word
DIVH2 0xAE Divide halfword
DIVB2 0xAF Divide byte
ORW2 0xBO OR word
ORH2 0xB2 OR halfword
ORB2 0xB3 OR byte
XORW2 0xB4 Exclusive OR word
XORH2 0xB6 Exclusive OR halfword
XORB2 0xB7 Exclusive OR byte
ANDW?2 0xB8 AND word
ANDH2 0xBA AND halfword
ANDB2 0xBB AND byte
SUBW2 0xBC Subtract word
SUBH2 0xBE Subtract halfword
SUBB2 0xBF Subtract byte
ALSW3 0xCO Arithmetic left shift word
ARSW3 0xC4 Arithmetic right shift word
ARSH3 0xC6 Arithmetic right shift halfword
ARSB3 0xC7 Arithmetic right shift byte
INSFW 0xC8 Insert field word
INSFH 0xCA Insert field halfword
INSFB 0xCB Insert field byte
EXTFW 0xCC Extract field word
EXTFH 0xCE Extract field halfword
EXTFB 0xCF Extract field byte
LLSW3 0xDO0 Logical left shift word
LLSH3 0xD2 Logical left shift halfword
LLSB3 0xD3 Logical left shift byte
LRSW3 0xD4 Logical right shift word
ROTW 0xD8 Rotate word
ADDW3 0xDC Add word, 3-address
ADDH3 0xDE Add halfword, 3-address
ADDB3 0xDF Add byte, 3-address

3-139

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Opcode

3-140

Table 3-19. Instruction Set Summary by Opcode (Continued)
Mnemonic Opcode Instruction
PUSHAW 0xEQ Push address word

MODW3 O0xE4 Modulo word, 3-address
MODH3 0xE6 Modulo halfword, 3-address
MODB3 OxE7 Modulo byte, 3-address
MULW3 0xES8 Multiply word, 3-address
MULH3 0xEA Multiply halfword, 3-address
MULB3 0xEB Multiply byte, 3-address
DIVW3 0xEC Divide word, 3-address
DIVH3 0xEE Divide halfword, 3-address
DIVB3 0xEF Divide byte, 3-address

ORW3 0xFO0 OR word, 3-address

ORH3 0xF2 OR halfword, 3-address
ORB3 0xF3 OR byte, 3-address

XORW3 0xF4 Exclusive OR word, 3-address
XORH3 0xF6 Exclusive OR halfword, 3-address
XORB3 0xF7 Exclusive OR byte, 3-address
ANDW3 0xF8 AND word, 3-address
ANDH3 0xFA AND halfword, 3-address
ANDB3 0xFB AND byte, 3-address
SUBW3 0xFC Subtract word, 3-address
SUBH3 0xFE Subtract halfword, 3-address
SUBB3 0xFF Subtract byte, 3-address

Chapter 4

Operating System
Considerations

CHAPTER 4. OPERATING SYSTEM CONSIDERATIONS

CONTENTS

4. OPERATING SYSTEM 4.5.3 On-Interrupt Microsequence....... 4-28
CONSIDERATIONSccoovnce. 4-1 4.5.4 Returning From an Interrupt...... 4-29
4.1 FEATURES OF THE Full Interrupts....cococcorvvrreeveresuene 4-29
OPERATING SYSTEM 4-1 Quick Interrupts.....c.corevererrucenn. 4-29
4.1.1 Memory Management 4.6 EXCEPTIONS......cccoovervunireriannns 4-29
Considerations for Virtual 4.6.1 Levels of Exception Severity....... 4-30
Memory Systems....c.oeceerorees 4-4 4.6.2 Exception Handler......c.cccoocurninns 4-30
4.2 STRUCTURE OF A PROCESS.. 4-4 4.6.3 Exception Microsequences 4-32
4.2.1 Execution Privilege......cccoevrurun 4-5 Normal Exceptionsc.c.coue. 4-32
4.2.2 Execution StacK.......cccvevvrnirecnnnns 4-5 Stack Exceptions.......cccovrvecnnnnnen 4-33
4.2.3 Process Control Block 4-6 Process Exceptions........coveirine 4-35
Initial Context for a Process....... 4-9 Reset Exceptions.......coceevcrucenee 4-35

Saved Context for a Process....... 4-9 4.7 MEMORY MANAGEMENT

Memory Specifications
4.2.4 Processor Status Word

4.3 SYSTEM CALL..............

4.3.1 Gate Mechanismcccvereverenenenne
Pointer Table......ccvevincrevennecvneenn.
Handling-Routine Tables............ 4-13

4.3.2 GATE Instructionc.coveveveennne 4-14
First Entry Point........covveinienns 4-14
Second Entry Point -

The Gate Mechanism 4-15

4.3.3 Return-From-Gate Instruction.... 4-16

4.4 PROCESS SWITCHING 4-16

4.4.1 Context Switching Strategy 4-17
R Bituvivreereereecenererereneeranens 4-17
I Bit reererenes e 4-17

4.4.2 Call Process Instruction 4-20

4.4.3 Return-to-Process Instruction..... 4-22

4.5 INTERRUPTSoovvvmvrvriernncnns 4-23

4.5.1 Interrupt-Handler Model............ 4-23

4.5.2 Interrupt Mechanismc.e.cou... 4-24

Full-Interrupt Handler’s PCB.....
Interrupt Stack and ISP
Interrupt-Vector Table

FOR VIRTUAL MEMORY

SYSTEMS....coociririrnrcecrrarnnans 4-36
4.7.1 Initializing the Memory

Management Unit........cc.ccouevennns 4-40

Defining Virtual Memory 4-40

Peripheral Modecoeeercmvunnnee

4.7.2 MMU Interactions

MMU Exceptions

Flushing.....cooveverereceniornainsecninenns
4.7.3 Efficient Mapping Strategies....... 4-41
4.7.4 Object Traps.....c..coevrvvcrnvvrvervanans 4-42
4.7.5 Indirect Segment Descriptors...... 4-42
4.7.6 Using the Cacheable Bit 4-42
4.7.7 Using the Page-Write Fault........ 4-42
4.7.8 Access Protectioncccovueeenenns

4.7.9 Using the Software Bits
4.8 OPERATING SYSTEM

INSTRUCTIONSooeirvircns 4-43
4.8.1 NoOtation.....co.coevceeeveneeneeereernernrins 4-43
4.8.2 Privileged Instructions..........ceee. 4-44
4.8.3 Nonprivileged Instructions.......... 4-56
4.8.4 MiCrosequences.ooeoeeneerrerne 4-64

OPERATING SYSTEM CONSIDERATIONS
Features of the Operating System

4. OPERATING SYSTEM CONSIDERATIONS

The WE 32100 Microprocessor allows cost-effective design of operating systems by
providing the system designer with special purpose operating system instructions and an
architecture that supports process-oriented operating system design. In general, a process
is a separately scheduled, independently executed unit of activity. It generally consists of
routines (functions) that perform a major task (such as a program manager, a file
manager, or a memory manager). To make full use of the power of the WE 32100
Microprocessor as an execution vehicle for today’s efficient process-oriented operating
systems, this chapter presents the operating system considerations important to the system
designer.

The typical operating system for the WE 32100 Microprocessor schedules and initiates all
processes, handles error conditions (exceptions to normal processing), provides system
security, and resets the microprocessor when appropriate. Processes are scheduled through
common scheduling algorithms and are initiated through a process switch. A process
switch is an explicit or implicit request that changes the process controlling the
microprocessor. An explicit process switch is invoked by execution of one of the special
operating system instructions. An implicit process switch occurs as a result of a reset
request, some interrupt requests, or certain exception conditions. In theory, the
microprocessor can handle an unlimited number of processes, but real limits are imposed
by the operating system design (i.e., limiting the size of the interrupt stack). System
security is enforced by the microprocessor and by the WE 32101 Memory Management
Unit (MMU), an integral part of a virtual memory-based operating system using the

WE 32100 Microprocessor. The microprocessor is reset by the operating system through a
reset exception handler process. This handler should initialize the system hardware and
reload the operating system.

4.1 FEATURES OF THE OPERATING SYSTEM

As part of its architecture the microprocessor provides four execution or access levels for
processes. This allows each process to have functions that operate at different levels to
provide the proper levels of system protection. These levels range from the most privileged
(level 0) to the least privileged (level 3). Through built-in microprocessor safeguards, the
privilege level serves as a protection level. One of the functions of the MMU is to ensure
that code and data in any particular level are accessed only by code or processes that have
the right permissions. The four execution levels are defined as:

o Kernel (level 0) - The most privileged level; it contains the operating system’s most
privileged services (e.g., device drivers and interrupt handlers).

o Executive (level 1) - This level is provided for greater flexibility in the operating system
design.

e Supervisor (level 2) - Common library routines can operate at this level and be safe from
corruption by the level 3 activities.

o User (level 3) - The least privileged level; most user programs can run in this level.

4-1

OPERATING SYSTEM CONSIDERATIONS
Features of the Operating System

4-2

Table 4-1 lists the powerful WE 32100 Microprocessor instructions provided for operating
systems. These instructions have two levels of hierarchy: privileged and nonprivileged.
Privileged instructions may be executed only if the processor is in kernel level, and they are
used to perform process switches, to enable or disable the MMU, or to suspend fetching of
instructions. Nonprivileged instructions do not depend on the execution level (i.e., they can
be executed at any level) and are used to switch between execution levels (in ways
restricted by the operating system) or to convert a virtual address to a physical address.

The processor automatically executes the appropriate microsequence (a built-in sequence of
actions) when an interrupt is requested or an exception occurs. These microsequences and
many operating system instructions can call functions (also microsequences) that do the
context switching (changing the hardware context for the new process to be executed).
This feature takes the requirements of context switching out of the operating system,
allowing for quicker and more efficient operating system design and execution. The
operating system instructions and microsequences are described in 4.8 OPERATING
SYSTEM INSTRUCTIONS.

Table 4-1. Operating System Instructions

Privileged Instructions

Instruction Assembly Hex Description
Syntax Opcode
Enable virtual ENBVJIJMP 300D Enables the MMU to translate addresses.
pin and jump The virtual address of the first instruction to

be executed after the MMU is enabled must
be stored in register r0 before this instruction
is executed.

Disable virtual DISVIMP 3013 Disables the MMU from translating

pin and jump addresses. The physical address of the first

instruction to be executed after the MMU is
disabled must be stored in register r0 before
this instruction is executed.

Call Process CALLPS 30AC | Performs an explicit process switch.

Return to process | RETPS 30C8 Restores a process from an interrupted state.

Wait for interrupt | WAIT 2F Stops the CPU from fetching instructions.
Fetching resumes after an interrupt is
encountered.

Interrupt INTACK 302F Stores interrupt id in r0.

Acknowledge

Move translated MOVTRW sre,dst | 0C The MMU converts the virtual address

word specified by src to a physical address. The

result is stored in dst. Can be used to obtain
physical address to send to an 1/0 device.

OPERATING SYSTEM CONSIDERATIONS
Features of the Operating System

Table 4-1. Operating System Instructions (Continued)

Nonprivileged Instructions

Instruction | Assembly | Hex Description
Syntax | Opcode
Gate GATE 3061 Mechanism used to transfer control between

different execution levels.

Return from | RETG 3045 Returns control to the function which called
Gate the gate. Linear ordering of execution levels
is enforced by RETG (i.e., new execution
level may not be more privileged than the
current level).

Other features of the microprocessor’s architecture that are provided for operating system
design are summarized as follows:

o The microprocessor supports different levels of execution privilege and enforces linear
ordering of these levels only on a return-from-gate (RETG) instruction, as discussed in
4.3.3 Return-From-Gate Instruction.

o The microprocessor provides flexibility in transferring execution control between
privilege levels. Control is transferred through the gate mechanism, as discussed in
4.3 SYSTEM CALL.

A scheduler may explicitly switch processes (CALLPS or RETPS instructions), but part
of the interrupt structure and certain exception conditions involve implicit switching of
processes. This provides some of the interrupt structure and some of the exception
handler advantages of a process switch.

(]

o The processor supports a layered exception-handling structure that uses different
mechanisms (process switching or gate mechanism), depending on the severity of the
exception.

o The processor supports full and quick interrupt handlers that use different mechanisms
(process switching or gate mechanism). A full interrupt is handled as an implicit
process switch, while a quick interrupt is handled as an implicit gate. See
2.8 INTERRUPTS for details on determining how interrupts are to be handled (.e., as
full or quick interrupts).

o Address space of each process may include the space that contains the operating system;
i.e., the user may pass and address arguments across system calls efficiently, but need
not switch memory map information across such calls.

o The processor supports memory management, permitting users to believe the system has
4 Gbytes of memory. However, the operating system must provide the information
required by a memory management unit (MMU) to translate virtual addresses (i.e.,
memory descriptors) or disable the MMU for physical addressing. Systems without an
MMU use only physical addressing.

4-3

OPERATING SYSTEM CONSIDERATIONS
Memory Management Considerations for Virtual Memory Systems

4-4

4.1.1 Memory Management Considerations for Virtual Memory Systems

A memory management unit (MMU) is required for virtual memory (storage) systems.
The primary function of an MMU is to translate virtual address into physical addresses
and implement the protection of each process’ data. The features that support a virtual
memory operating system are:

e Support of contiguous segments and paged segments. Segments, or blocks of memory,
are defined by memory descriptors. The WE 32101 Memory Management Unit uses
segment descriptors to define contiguous segments (i.e., a block of memory defined up to
128 Kbytes in length) and segment and page descriptors to define paged segments (i.e., a
block of memory defined to contain up to sixty-four 2 Kbyte pages).

Present bits to indicate whether or not a segment is currently in main memory.

Referenced and modified bits to aid implementation of a least recently used (LRU)
algorithm in the operating system.

e An indirection feature that allows segments to be given different access permissions
(e.g., read or write), yet still be shared by different routines running at the same
execution level (see 4.7.5 Indirect Segment Descriptors).

e Access fields contained in segment descriptors are used to provide protection so that
segments are accessed in the appropriate way by the appropriate execution level. An
access exception is generated if access is disallowed.

e An object-trap feature provides a mechanism where 1/0 devices or external processors
appear as normal segments from the user-software point of view.

e Segment marking as cacheable or not cacheable using a cacheable bit. This can be used
to aid the use of an external data cache in the system main memory (see 4.7.6 Using the
Cacheable Bit).

o A unique exception (page-write) that can be issued on any attempt to write a given page
(see 4.7.7 Using the Page-Write Fault).

4.2 STRUCTURE OF A PROCESS
Each process executing in the WE 32100 Microprocessor consists of the following elements:

o A processor status word (PSW) - the CPU register that contains status information
about the instruction just executed and the current process.

e A process control block (PCB) - a process data structure in external memory that
contains the hardware context of a process when the process is not running. This context
consists of the initial and current contents of control registers; PSW, program counter
(PC), and stack pointer (SP); the last contents of the general-purpose registers r0
through r8, frame pointer (FP), and argument pointer (AP); boundaries for an execution
stack; and block-move specifications for the process.

OPERATING SYSTEM CONSIDERATIONS
Execution Stack

® A process control block pointer (PCBP) - the CPU register that identifies the starting
location of the PCB for the process currently executing.

e Memory address space (the areas in memory allocated for the process). This space can
be defined by memory management specifications in the PCB block-move area.

o Segment and page descriptors and MMU SRAMs register contents, if the system uses
an MMU. This information can be defined in the PCB block-move area for automatic
transfer to the MMU during a process switch.

4.2.1 Execution Privilege

As stated previously, the processor recognizes four execution modes: kernel (most
privileged level), executive, supervisor, and user (least privileged level). Controlled entry
to an execution mode does not assume a particular order of the levels, but controlled return
does. Controlled return enforces a four-level privilege hierarchy going from most privileged
to least privileged; from kernel to executive to supervisor to user. See 4.3 SYSTEM CALL
for a description of controlled transfers across privilege levels. The operating system design
may use the four execution modes to manage layers of control. However, further
protection for memory access must be built into a memory management system.

To protect against an unwanted process switch, privileged operating system instructions
may be executed only in kernel mode. The other operating system instructions and the
instruction set may be executed in any of the four modes. Thus, only a two-level privilege
hierarchy exists for instruction execution.

Information associated with a process is protected by the restriction that the processor be
in kernel mode when writing the following registers:

1. Processor status word (PSW) - provides information about the current process. The
microprocessor implicitly alters the condition flags after most instructions. In
addition, some PSW fields change their contents to identify the type and severity of an
exception and help the operating system select the appropriate exception handler.

2. Process control block pointer (PCBP) - contains the starting address of the PCB for
the current process. Because the PCB for a process is assigned to a fixed starting
location, the PCBP content changes only during a process switch.

3. Interrupt stack pointer (ISP) - points to a stack which is used to store the PCBP for
interrupted processes and restores the PCBP when a process returns from its
interrupted state. Generally, the ISP is altered only on a process switch.

If the processor is not in kernel mode, it generates a normal exception (privileged register)
when an instruction tries to write to one of them. The use of privileged registers is
discussed later.

4.2.2 Execution Stack

During the execution of a process, the CPU SP register identifies the address of the next
available location on an execution stack. Conventionally, such a stack could be used for

4-5

OPERATING SYSTEM CONSIDERATIONS
Process Control Block

linking functions and passing arguments between:

o Functions that execute at the same level

o A privileged function and its less privileged caller

e An exception handler and the function that caused the exception

e An interrupt handler and the interrupted function.
An execution stack also provides temporary storage for local variables.

Unlike other architectures that require at least two stacks, the WE 32100 Microprocessor
has only one execution stack per process. In some other processors, one stack serves the
most privileged execution levels, while the other is used in less privileged levels. Other
processors generally use a stack for each privilege level. A privileged stack in other
architectures is protected from errors in less privileged levels that could destroy its
contents.

In the WE 32100 Microprocessor architecture, a process uses one stack in all execution
modes. Each process stack is protected through maintenance of its upper and lower bounds
in the process control block (the data area that stores the hardware context) for the process
and checking of the bounds during a gate operation. Thus, each execution level is
protected from stack errors by other execution levels. In addition, using only one stack
reduces the overhead for stack allocation and simplifies the management of process stacks.

Before executing a transfer to a more privileged level through a system call or gate, the
processor checks the current SP against the stack bounds. The transfer occurs if the SP
falls within bounds. Otherwise, a stack exception (stack-bound) is generated.

Using the execution stack for the process, the processor handles normal exceptions within
the process in which they occurred. Before transferring to the appropriate exception
handler, it checks the current SP against the stack bounds.

Because an interrupt other than a quick interrupt causes a process switch, the processor
interrupt structure uses a different execution stack for each interrupt handler. Therefore,
the sanity of the interrupted process execution stack does not have to be checked. In
addition, the processor stores the PCBP of each interrupted process on one system-wide
interrupt stack and retrieves it from that stack when the process resumes execution. Quick
interrupts save the PC and PSW context on the execution stack of the active process and
are handled in the same manner as normal exception.

4.2.3 Process Control Block

Each process has a process control block (PCB). Elements in the PCB are accessed
through the process control block pointer (PCBP). This privileged register contains the
starting address in memory of the PCB for the process that is currently executing.
Although PCBs can be stored anywhere in memory, Table 4-2 identifies where the PCBP
must be stored for various processes.

OPERATING SYSTEM CONSIDERATIONS
Process Control Block

Table 4-2. PCBP Locations

Process Location (See note)

Full interrupt handler Vectors start at location 140 (0x8C). Each interrupting
device has an 8-bit Interrupt-ID; the PCBP for the
appropriate interrupt handler should be at location
140+4* Interrupt_ID.

Reset exception Physical location 128 (0x80)

Process exception Location 132 (0x84)

Stack exception Location 136 (0x88)

Call process (CALLPS) PCBP taken from register r0; must be stored in r0

before CALLPS instruction is executed

Return to process (RETPS) | PCBP taken from top of interrupt stack when RETPS
instruction is executed

Note: All locations are virtual addresses in virtual mode and physical addresses in physical
mode. Locations are given as decimal values (hexadecimal values).

Because only one process executes at a time in a multiprogramming system, the PCB of a
process retains its hardware context when that process is not running. The PCB, illustrated
on Figure 4-1, contains:

o Initial context. The three control registers (PC, PSW, and SP) are loaded with initial
values when a process starts executing for the first time. First time execution is
indicated by the I bit in the PSW being set (1).

o Control register save area. When a process is interrupted, the current contents of its
control registers are saved here. These values are loaded when that process resumes
execution and the I bit in the PSW is clear (0).

Note: If the I bit in the PSW of a process is initially set (1), execution starts from its
initial-context values. If the bit is clear (0), execution resumes from an intermediate
context. See 4.4.1 Context Switching Strategy for more information on the I bit.

e Stack bounds. The upper and lower stack bounds define the area allocated to the
execution stack for this process.

o General register save area. This area is reserved for saving the contents of register r0
through r10. Registers r9 and r10 are the frame pointer (FP) and argument pointer
(AP), respectively. These are used to specify the location of variables or arguments.
The FP locates local variables for a function, while the AP locates arguments passed to
the function.

® One or more block-move areas. If a process does not require any block moves (usually
used to perform a change in memory management specifications), only the null block is
required in the PCB. Otherwise, it contains a block-move area for each move to be
performed.

4-7

OPERATING SYSTEM CONSIDERATIONS
Process Control Block

Note: The R bit of the PSW must be set (1) if the general registers are to be saved for
the old process or loaded for the new process and if the block moves are to be executed for
the new process. See 4.4.1 Context Switching Strategy for more information on the R bit.

In general, the PC and SP values and block addresses stored in a PCB may be physical or
virtual addresses. If they are virtual addresses, the MMU must be enabled to translate
them into physical addresses. Two operating system instructions, enable virtual pin and
jump (ENBVJMP) and disable virtual pin and jump (DISVIMP), enable or disable the
processor’s virtual address pin to tell the MMU it is generating virtual (enable) or physical
(disable) addresses. Before the instruction ENBVJMP or DISVIMP is executed, the
virtual or physical, respectively, address of next instruction to be executed must be stored
in r0.

31 0
INIT PSW li— PCBP | (PSW<I> = 1)
THE "INITIAL' [~ — — — — — — — — — — —]
contEXT | Iffj_fc ______ PCBP +4
INIT SP PCBP +8
PSW —— PCBP, (PSWCI> = 0)
"SAVE' AREA }— — — —]
FOR CONTROL PC PCBP+4
REGISTERS. |- — — — — — — — — — — —
SP PCBP,+8
_____ S —
STACK LOWER BOUND
STACK BOUNDS }— — — — — — — — —]
STACK UPPER BOUND
10 T
"SAVE' AREA r9 PeBPo*20
FOR GENERAL r0
REGISTERS.
_______________rB____ PCBP2+BO
BLOCK SIZE PCBP,+64
EIRST - BLOCK ADDRESS
BLOCK MOVE - —-I _______
BLOCK DATA
____________ l_ — — — C— — ——
BLOCK SIZE
N,
NEXT B BLOCK ADDRESS
BLOCK MOVE [— — — — — — T T T T
BLOCK DATA
|
__________________]
b o A
~" e ~
[)
NULL BLK MOVE BLOCK SIZE = 0
31 0

Figure 4-1. A Typical Process Control Block

OPERATING SYSTEM CONSIDERATIONS
Memory Specifications

Initial Context for a Process

The initial context of the executing process is set up as follows:
o The PCBP, stored in memory, points to the initial-context area of its PCB.

e The initial PSW occupies the first PCB location, and its I bit should be set (1) to
identify that the process starts executing from its initial context. (The R bit should be
set if this process will use general registers.) See 4.2.4 Processor Status Word and
4.4.1 Context Switching Strategy for more details about the R and I bits.

o The second PCB word, the initial PC, is the address of the first instruction that process
executes.

o The third PCB word contains the initial SP (the address of the first location on the
execution stack).

e The seventh and eighth PCB words define the upper and lower limits of the execution
stack.

The values in the initial-context area and the stack bounds never change during normal
execution.

Saved Context for a Process

When a process switch occurs, the processor uses the current PCBP to save the context of
Process A (the executing process) in the current PCB. Using offsets from PCBP to access
the correct PCB location for Process A, the processor stores PC, PSW, SP, and if the PSW
R bit is set to 1, the general registers. It then reads in a new PCBP value for Process B
(the incoming process) and loads the Process B context from its PCB.

Memory Specifications

On each process switch, if the R bit in the PSW is set (1), the processor, using information
in the process PCB, performs a series of block moves. The PCB provides three elements
for each block move (see Figure 4-1):

1. Block size - This word value specifies the length of the block (number of words to be
moved) and implicitly identifies the starting location of the next block-move area.

2. Block address - This word value is the destination address where the processor starts
writing the block data.

3. Block data - This series of words represents the data to be moved. If the system has
an MMU, it could be the information written to MMU registers (or tables) to set up
the memory context for the new process.

The processor executes a move block (MOVBLW) instruction for each block until a zero-
length block (Block size = 0) is reached.

OPERATING SYSTEM CONSIDERATIONS
Processor Status Word

A memory management scheme does not alter the way the processor performs the block
moves or how many block moves occur. However, memory management may affect block
addresses. Systems with an MMU should use a virtual address for each block when the
MMU is enabled and physical addresses when the MMU is disabled. For a system
without an MMU, a block address must be a physical address.

4.2.4 Processor Status Word

The processor maintains a 32-bit processor status word (PSW) register which defines the
state of a currently running process. Table 4-3 identifies its contents.

The read-only fields of the PSW cannot be altered by software regardless of the execution
mode. An exception or process switch always directly affects the ET, ISC, and TM fields.
The ET and ISC fields, which identify the type and cause of an exception, are part of the
exception mechanism described in 4.6 EXCEPTIONS. The TE and TM fields are part of
the trace-trap mechanism.

An instruction may read the PSW at any time, but may write it explicitly only when the
process is in kernel mode. However, the processor implicitly alters some fields during
normal execution at other levels. In particular, most instructions change the condition
flags.

4.3 SYSTEM CALL

The system-call (gate) mechanism provides a means of controlled entry into a function by
installing a new PSW and PC value. If the new PSW has a different privilege level than
the current PSW, a transition to a different execution level occurs.

On simpler processors, a trap or supervisor call instruction picks up a new PC and PSW
from a fixed location. Then the software has to perform further indirection based on the
"trap number " The gate mechanism, embodied in its gate (GATE) instruction,
automatically performs this second level of indirection for the user. The gate mechanism is
described 4.3.1 Gate Mechanisms.

4-10

OPERATING SYSTEM CONSIDERATIONS
Processor Status Word

Table 4-3. Processor Status Word Fields

Bit(s) | Field | Contents Description

0—1 ET Exception | This read-only field indicates the type of exception
Type generated during operations and is interpreted as:
Code Description

00 On Reset Exception

01 On Process Exception

10 On Stack Exception

11 On Normal Exception

2 ™ Trace The read-only TM field enables masking of a trace
Mask trap. This bit masks the trace enable (TE) bit for
the duration of one instruction to avoid a trace trap.
The TM bit is set (1) at the beginning of every
instruction and cleared (0) as part of every
microsequence that performs a context switch or a
return from gate.

3—6 ISC Internal | This 4-bit code distinguishes between exceptions of

State the same exception type. The ISC is a read-only
Code field.

7-8 RI Register- | These bits control the context switching strategy.
Initial The I bit (bit 7) determines if a process executes

Context from initial or intermediate context. The R bit (bit
8, read only) determines if the registers of a process
should be saved. It also controls block moves to
change map information.

9—10 (PM Previous | This field defines the previous execution level. The
Execution | code is interpreted as:

Level Code Description

00 Kernel level

01 Executive level

10 Supervisor level

11 User level

11-12 |CM Current | This field defines the current execution level. The
Execution | CM code is interpreted the same way as the PM
Level code. Changes to the CM field via instructions with
the PSW as an explicit destination may cause the
XMD pins to change in the middle of a memory
access, which could cause a spurious exception or
system problem. Therefore, only microsequence
instructions should be used to change the CM field
state.

OPERATING SYSTEM CONSIDERATIONS

Processor Status Word

Table 4-3. Processor Status Word Fields (Continued)
Bit(s) | Field | Contents Description
13—16 | IPL Interrupt | The IPL field represents the current interrupt priority level.
Priority Fifteen levels of interrupts are available. An interrupt,
Level unless it is a nonmaskable interrupt, must have a higher
priority level than the current IPL in order to be
acknowledged. Therefore, level 0000 indicates that any of
the fifteen interrupt priority levels (0001 through 1111) can
interrupt the microprocessor; level 1111, the highest
interrupt priority level, indicates that no interrupts (except a
nonmaskable interrupt) can interrupt the microprocessor.
17 TE Trace This bit enables the trace function. When TE is set (1), it
Enable causes a trace trap to occur after execution of the next
instruction. Debugging and analysis software use this
facility for single-stepping a program. Changes to the state
of the TE bit via instructions with the PSW as an explicit
destination may cause unpredictable trace behavior.
Therefore, only microsequence instructions should be used to
change the TE bit state.
18—21 | NZVC | Condition | The condition codes reflect the resulting status of the most
Codes recent instruction execution that affects them. These codes
are tested using the conditional branch instructions and
indicate the following when set (1):
N - Negative (bit 21) V - Overflow (bit 19)
Z - Zero (bit 20) C - Carry (bit 18)
22 OE Enable This bit enables overflow traps. It is cleared (0) whenever
Overflow | an overflow trap is detected and handled.
Trap
23 CD Cache This bit enables and disables the instruction cache. When
Disable | the CD bit is set (1), the cache is not used. Changes to the
state of the CD bit via instructions with the PSW as an
explicit destination may corrupt the contents of the
instruction cache. Therefore, only microsequence
instructions should be used to change the CD bit state.
24 QIE Quick- The QIE enables and disables the quick-interrupt facility. If
Interrupt | QIE is set (1), an interrupt is handled via the
Enable quick-interrupt sequence.
25 CFD | Cache When this bit is set (1), it disables cache flushing (emptying
Flush of the instruction cache contents) during the
Disable XSWITCH_TWO microsequence.
26—31 Unused | These bits are not used and are always cleared (0).

OPERATING SYSTEM CONSIDERATIONS
Handling-Routine Tables

4.3.1 Gate Mechanism

The CPU contains a microsequence program that locates the handling routine for the gate
mechanism. To use this mechanism, the operating system must provide the following gate
mechanism tables:

e Pointer table - Contains the 32-bit starting addresses for a set of handling-routine tables.
The processor assumes address O as the beginning of the table. The table contains
thirty-two 4-byte (word) addresses, one for each handling-routine table.

Note: Use of kernel level is forced whenever this table is accessed during execution of the
GATE instruction.

o Handling-routine tables - Each table in the set contains the entry points (PSW and PC
values) for a group of functions. A table is limited to 4096 two-word entries; one a new
PSW and the other a new PC (in that order) for a controlled transfer.

Two indexes, obtained from a GATE instruction’s implied operands, locate the appropriate
PC and PSW pair for the controlled transfer.

Pointer Table

This table contains thirty-two entries and starts at location 0. It must be contained in
secure memory (write permission for kernel level only) to prevent unwarranted access. The
first entry is reserved for normal-exception handling. Therefore, address 0 must locate the
handling-routine table (entry point set) for the normal-exception handlers.

The rest of the addresses in the pointer table may define sets of entry points for controlled
transfers. For example, one entry can be used to locate the handling-routine table for
kernel level entries, one entry for executive level entries, one for supervisor level entries,
and one for user level entries.

All thirty-two entries in the pointer table must be defined. A typical use for the remaining
entries is to define all unused pointer table entries to point to a dummy handling-routine
table. The dummy table is typically used to prevent an exception from occurring should an
offset into the pointer table result in locating an undefined handling-routine table.

Handling-Routine Tables

A handling-routine table stores a maximum of 4096 entry points (PSW and PC pairs) and
may be placed anywhere in memory (virtual memory if the system has an MMU that is
enabled; physical memory if it does not). However, each must start at an address that is a
multiple of eight. In a typical system, the handling-routine tables for entry into kernel
level reside in a section of memory that is shared by all processes.

Note: Sections of memory do not imply execution level. The GATE instruction forces
kernel level before it accesses any handling-routine tables. To preserve table security, these
tables should be protected so only the kernel level can write to them.

4-13

OPERATING SYSTEM CONSIDERATIONS
GATE Instruction

4.3.2 GATE Instruction

The GATE instruction is modeled after the jump to subroutine (JSB) instruction rather
than the call procedure (CALL) instruction which calls a function. In the typical system
environment (e.g., UNIX System, C compiler), the compiler generates a call to an
assembly-language function which then executes the gate instruction. GATE needs only to
execute a simple jump since the ‘call frame’ already exists.

Although GATE may be executed at any privilege level, the CPU forces and releases
kernel level for memory access. The gate instruction has two entry points. GATE starts
execution at the first entry point, while the on-normal exception microsequence enters at
the second (see 4.6 EXCEPTIONS). The second entry point is also the start of the gate
mechanism.

Before a GATE instruction is executed, two registers must be loaded:

e Register 0 (r0) must be loaded with the offset for constructing index! (the index into
the pointer table). Index! identifies the starting address of the appropriate handling-
routine table. Only five bits of rQ are used.

o Register 1 (r1) must be loaded with the offset for constructing index2 (the index into
the handling-routine table). Index2 locates the new PSW and PC.

The on-normal exception microsequence is modelled after a GATE. On a normal
exception, the CPU supplies all appropriate information needed to execute a GATE-like
sequence.

The GATE instruction executes the following tasks in sequence (see Figure 4-2).

First Entry Point

1. GATE forces kernel level on memory accesses and checks the current SP against the
upper- and lower-stack bounds in the currently executing process PCB. A memory
exception on accessing either of the stack bounds from the PCB causes a process
exception (GATE-PCB). If SP is outside either boundary, a stack exception (stack
bound) is generated. GATE then releases kernel level for memory accesses.

2. GATE writes 1, 0, 2 to the ISC, TM, and ET fields, respectively, of PSW. Then it
saves the address of the next instruction (PC + 2) and the current PSW on the
execution stack. If a memory exception occurs on the stack accesses, the processor
generates a stack exception (stack).

3. GATE computes index1 for the pointer table by masking the contents of rQ with 0x7C
and places the result in tempa. It then masks the contents of r1 with 0x7FF8 for
index2 and stores the result in tempb. (Special registers tempa and tempb are used in
later steps for accessing the handling-routine tables.)

4-14

OPERATING SYSTEM CONSIDERATIONS
Second Entry Point

Second Entry Point - The Gate Mechanism
1. GATE again forces kernel execution level for memory accesses.

2. GATE uses tempa as a pointer to read the starting address of a handling-routine table
from the pointer table and write it to tempa. It then adds tempa and tempb (the
offset into the handling-routine table) and stores the result, index2, in tempb. This is
the address of the new PSW and entry point PC for the GATE jump.

3. GATE uses index2 to get new values for PSW fields OE, NZVC, TE, CM, R, and 1.
It then sets PSW fields ISC, TM, and ET to 7, 0, and 3, respectively.

4. GATE uses index2 to locate and load the new PC.

5. GATE adjusts SP to a location above the saved PC and PSW (thus completing a push
of the PC and PSW onto the stack) and releases kernel level for memory accesses.

The processor then begins executing the handling routine. When the routine finishes, a
return from gate (RETG) instruction returns to the function that issued the system call.

Note: If the GATE instruction is invoked directly, a memory exception that occurs during
the remaining steps causes a normal exception (gate-vector). A normal-exception
microsequence entering here will already have kernel level in effect and values in tempa
and tempb. Entering at this point from a normal-exception microsequence means that a
memory exception for any step generates a reset exception (gate-vector).

POINTER HANDLING-ROUTINE
TABLE TABLE

ADDRESS 0
INDEX1 / INDEX2
1 1 | _NEWPSW ONE ENTRY
o— NEW PC

r0 & 0x7C
rl & Ox7FF8
(Address Pointed to by index1) + index2

index1
index2
Entry Address for Handler Routine

Figure 4-2. Tables for the Gate Mechanism

4-15

OPERATING SYSTEM CONSIDERATIONS
Return-From-Gate Instruction

4.3.3 Return-From-Gate Instruction

The return-from-gate (RETG) instruction is modeled after a return-from-subroutine
(RSB) instruction rather than after a return-from-procedure (RET) instruction. Unlike
the gate instruction, RETG enforces linear ordering of execution levels, which means the
new execution level may not be more privileged than the current level. During an RETG,
the microsequence forces and releases kernel level as required for memory access.

The return-from-gate instruction performs the following sequential actions to return to the
calling function.

1. Retrieves the old PSW and next-instruction address (stored on the execution stack by
the corresponding GATE) and places these in tempa and tempb, respectively.

2. Sets the trace mask (TM) bit in PSW to zero.

3. Compares the CM field in the current PSW to the CM field of the old PSW (in
tempa) to verify that the new execution level is less than or equal to the current level.
If this test fails, the microprocessor issues a normal exception (illegal-level change).

4. Writes the PSW fields OE, NZVC, TE, CM, PM, R, and I using the values in tempa
(the saved PSW).

5. Loads PC from tempb.

6. Adjusts SP to the location below the saved PSW and PC (thus completing a pop of
the PSW and PC from the stack).

7. Writes 7, 0, and 3 to PSW fields ISC, TM, and ET, respectively.
The function that called the GATE then starts executing its next instruction.

Note: If a memory exception occurs on a stack access during these steps, a stack
exception is issued.

4.4 PROCESS SWITCHING

Using its PCB, the WE 32100 Microprocessor explicitly invokes a process by automatically
saving or restoring its context. However, a PCB only defines hardware context (as
described in 4.2.3 Process Control Block), not software-maintained information (.e.,
variables and arguments pointed to by the argument pointer and frame pointer) for the
process. The PCBP register always contains the address of the PCB of the current process.

To avoid destroying the PCB content on a process switch, the call process (CALLPS)
instruction performs both the save of the previous context and load of the new process
context. The processor does not accept interrupts until the CALLPS instruction is
completed. This prevents an undefined state between a save and a load. In this state, a
PCBP would still point to the PCB for the old (exiting) process. If the system completes a
save just as an interrupt occurs, then the interrupt-handling scheme causes the saved PCB
context to be overwritten. This cannot happen with the WE 32100 Microprocessor.

4-16

OPERATING SYSTEM CONSIDERATIONS
I Bit

4.4.1 Context Switching Strategy

The process-switch mechanism uses two PSW parameter bits, R and I, to control the
context-switching strategy:

e The R bit determines if the CPU general registers used by a process should be saved. It
also controls block moves.

e The I bit determines if a process executes from an initial context or intermediate context.
It also affects the setting of the PCBP register.

To save or load the appropriate information on a process switch, the processor uses the R
and I bits in the PSW of the new or incoming process. The use of the R and I bits is
explained next.

R Bit

The use of the R bit is explained by considering two processes: Process A as the current or
old process, and Process B as an incoming process. If Process B’s PSW R bit is set, this
signifies that Process B wants to use the general registers, and thus the CPU’s general
registers are saved in Process A’s PCB save area for general registers when the process
switch occurs. Later, on return to Process A, the general registers will be restored for
Process A. If Process B requires block moves, the R bit must be set. On a process switch,
where a CALLPS (call process instruction) or simulated CALLPS is performed, the
processor saves general registers for Process A and performs block moves contained in
Process B if the R bit of Process B’s PSW is set. When a process switch occurs as a result
of the RETPS instruction, the general registers are restored if Process A’s PSW R bit is
set. (This value was copied from Process B’s PSW when CALLPS occurred.)

To generalize, set the R bit in the initial-context PSW of any process that uses the general
registers or requires block moves. The R bit setting never changes, even though a process
switches in and out many times.

I Bit

The I bit function identifies whether a process is to start from an initial or intermediate
context. It also affects the PCBP register.

Consider two processes: Process A, the current or old process, and Process B, the incoming
or new process. The function of the I bit is explained as follows:

o On leaving Process A, the microprocessor always writes the PC, SP, and PSW values
starting at the location pointed to by Process A’s PCBP and then saves Process A’s
PCBP on the interrupt stack. On entry to Process B, the microprocessor always reads
the PSW, PC, and SP values starting from the location pointed to by the Process B’s
PCBP. These operations are the same for the CALLPS instruction, full interrupts, and
exceptions that perform a process switch.

4-17

OPERATING SYSTEM CONSIDERATIONS
I Bit

e If the I bit is set (1) in Process B’s PSW, Process B’s PCBP is incremented by twelve
bytes (three words) after the PSW, PC, and SP are loaded, and the I bit is set to zero.
Incrementing the PCBP guarantees that the initial context loaded in the first step will
not be overwritten if Process B is interrupted or executes a CALLPS instruction.
Clearing the I bit ensures that the adjustment of the PCBP is done only once. (If this
was not done and the I bit was to remain set, and if Process B was repeatedly
interrupted and resumed, Process B’s PCBP would be incremented by twelve on each
RETPS instruction.)

o When Process B executes a RETPS instruction, Process A’s PC, SP, and PSW context is
loaded from the locations pointed to by PCBP popped off the interrupt stack.

The main idea is that the effect of the I bit of a given process is not seen until that process
is itself interrupted and then returned to by another process.

If the I bit of a process is set when it is entered initially, the process’ initial context will be
preserved if it is interrupted or if it calls another process. The saved context will be
written to and retrieved from the twelve bytes adjacent to the initial context. Otherwise, if
the I bit is zero initially, the initial context (if writable) will be overwritten in the course of
servicing the interrupt or CALLPS instruction.

Another way to look at the I bit is that if the PSW I bit feature did not exist, and the user
wanted to modify the PCBP via software to save the initial process context, it could not be
guaranteed that the PCBP would be adjusted before another interrupt was taken. Since
the I bit adjustment is done in a CPU microsequence, it guarantees that the PCBP
adjustment is made while the CPU is immune to interrupts.

The following describes the effects on the PCBP and the initial- and saved-context areas
during process switches.

When Process A is called initially by the CALLPS instruction (an explicit process switch),
the processor loads the PCBP register with the starting address (Address A) of the
Process A PCB (see part A of Figure 4-3). It then loads the PSW, the program counter
(PC), and the stack pointer (SP) with their initial context. Next, if the I bit in the PSW
is set (1), the processor clears the I bit and increments the PCBP register by twelve bytes
to the saved-context area (Address B) of the Process A PCB (see part B of Figure 4-3).
This will cause any later process switch to save PSW, PC, and SP values in the
intermediate context area instead of overwriting the initial-context values. The Process A
initial-context area and its PCBP stored in memory are not affected on this process switch.

Part A of Figure 4-4 shows the effect on the PCBP and the Process A PCB if a process
switch occurs before Process A is finished. Here, the processor uses the adjusted PCBP
(assuming the I bit was set when Process A was initiated) to save the intermediate context
of the control registers and stores the PCBP on the interrupt stack. This time, the PSW I
bit will be clear and the PC points to the next Process A instruction.

When the processor restores Process A (see part B of Figure 4-4), the processor retrieves
the PCBP from the interrupt stack. Remember that the PCBP points to the saved-context

4-18

OPERATING SYSTEM CONSIDERATIONS
I Bit

area (if the initial I bit value was zero, then the saved-context area overwrote the initial-
context area) and the I bit of the PSW is clear. The processor then loads the control
registers with their intermediate context and Process A resumes execution with its next
instruction. If the initial value of the I bit for Process A was clear (0), then the initial-
context area becomes the save area since the PCBP was never adjusted to point to the
saved-context area. That is, the Address B in Figures 4-3 and 4-4 is the same as Address
A, and the initial-context area no longer exists.

The initial context of a process never changes, provided the initial I bit setting is one.

Also, the PCBP stored in memory always points to the initial context. This enables an
interrupt-handler process to get its PCBP from memory without going through a scheduler.
A suspended process restarts from an intermediate context on a return from a full-interrupt
handler, certain exception handlers, or the RETPS (return-to-process) instruction. Also, a
process that had an initial I bit value of zero is restarted from an intermediate context on
any subsequent CALLPS instruction after it was first switched to. A process starts from
its initial context (initial I bit value is set) whenever a CALLPS instruction is executed.

pcB

MEMORY ADDRESS A | INITIAL PSW |je— PCBP
INITIAL PC
(PCBP FOR PROCESS A) INITIAL SP
ADDRESS B SAVE AREA

A. Context at Start of Switch to Process A

PCB
MEMORY ADDRESS A | INITIAL Psu
INITIAL PC
(PCBP FOR PROCESS A) INITIAL SP
ADDRESS B SAVE AREA |a— pCBP

B. Context After Switch to Process A

Figure 4-3. A PCB on an Initial Process Switch to a Process

4-19

OPERATING SYSTEM CONSIDERATIONS
Call Process Instruction

MEMORY PCB
ADDRESS A ADDRESS A INITIAL PSW
(PCBP FOR PROCESS A) INITIAL PC
INITIAL SP
INTERRUPT STACK ADDRESS B SAVED PSW
SAVE AREA
SAVED PC (INTERMEDIATE CONTEXT)
SAVED SP
ADDRESS B .
J N R . L
j S b AU |

A. Context After Switch to Some Other Process

PCB
ADDRESS A | INITIAL PSW
MEMORY INITIAL PC
INITIAL SP
(PCBP FOR PROCESS A) ADDRESS B | OBSOLETE PSW |e— PCBP

OBSOLETE PC
OBSOLETE SP

B. Context After Process A Is Switched Back to and Restored

Figure 4-4. A PCB on a Process Switch During Execution of a Process

4.4.2 Call Process Instruction

The call process (CALLPS) instruction, mentioned in the discussion of the R and I bits, is
the process analog of the call procedure (CALL) and save registers (SAVE) instructions
that carry out a function call. To execute CALLPS, the processor must be in kernel mode.
In addition, r0 must be preloaded with the new PCBP (address of the PCB for the new

process).

4-20

OPERATING SYSTEM CONSIDERATIONS

Call Process Instruction

The call process instruction performs an explicit process switch. Using Process A as the
current (old) process and Process B as the incoming (new) process, CALLPS performs the
following sequential steps:

1.

Places the content of r0 (Process B PCBP) into register tempa and forces kernel
execution level on memory accesses.

Saves Process A PCBP on the interrupt stack (see Interrupt Stack and ISP under
4.5.2 Interrupt Mechanism). If a memory exception occurs when accessing this stack,
the processor issues a reset exception (interrupt stack).

Adjusts PC to the address of the instruction that Process A would have executed next
(PC + 2).

Calls the function XSWITCH_ONEQ) to save Process A context. (All writes are
made to the saved-context area of process PCB because the I bit of an executing
process PSW is always clear.) If a memory exception occurs on a PCB access, the
processor issues a process exception (old PCB).

XSWITCH_ONE does the following:

a. Using tempa as a pointer to the Process B PCB, copies the R bit from the new
PSW into the R bit of the current PSW. (The R bit will be used later.)

b. Stores the current PSW in the Process A PCB and writes 0, 0, 1 to the ISC, TM,
and ET fields, respectively, of the saved PSW.

Saves PC (address of the next instruction) and SP in the Process A PCB.

d. Writes r0 through r10 to the general register area of the Process A PCB if the R
bit of the Process B PSW is set. Otherwise, these registers are not saved.

e. Returns control to CALLPS.
Calls the function XSWITCH_TWOQ) to load the Process B context. If a memory

exception occurs when accessing its PCB, the processor issues a process exception (new
PCB).
XSWITCH_TWO does the following:

Loads PCBP from tempa (which contains Process B’s PCBP value).

b. Reads in the new PSW and sets its TM bit to 0. Next, it loads the new PC and
SP. PC now contains the address of the first instruction for Process B.

c. Tests the PSW I bit. If the I bit is set, the I bit is cleared, and the PCBP is
adjusted to the saved-context area of the Process B PCB.

d. Returns control to CALLPS.

4-21

OPERATING SYSTEM CONSIDERATIONS

Return-to-Process Instruction

Writes 7, 0, 3 to the ISC, TM, and ET fields, respectively, of the PSW.
Calls the function XSWITCH_THREE() for block moves.

XSWITCH_THREE does the following:
a. . Tests the R bit in the PSW.

e If the R bit is set, it loads the block-move information from the block-move
areas of the Process B PCB. For each block to be moved, it preloads r0 with
the starting address of the block-move area, rl with the size of the block
(number of words to be moved), and r2 with the destination of the move. Then
it executes a move block (MOVBLW) instruction.

e If the R bit is clear (0), no block moves are performed.
b. Returns control to CALLPS.

Releases kernel execution level on memory accesses and Process B begins executing.

4.4.3 Return-to-Process Instruction

The RETPS instruction restores a process from its interrupted state and may be executed
only when the processor is in kernel mode. RETPS is the process analog of a function
return that uses the restore registers (RESTORE) and return-from-procedure (RET)
instructions. Again, the R and I bits in the PSW determine the context-switching strategy.

The CALLPS and RETPS instructions act similarly, except the RETPS does not save the
context of the exiting process. For this discussion, Process A is the returned-to-process.
RETPS performs the following sequential steps:

1.

4-22

Forces kernel execution level on memory access and moves the Process A PCBP from
the interrupt stack into register tempa. If a memory exception occurs on the stack
access, the processor issues a reset exception (interrupt-stack).

Loads the PSW R bit with R bit from tempa.

Calls XSWITCH_TWOQ) to restore the Process A context. If a memory exception
occurs when accessing its PCB, process exception (new PCB) is issued. (The PCBP
for Process A is still at the top of the interrupt stack.)

XSWITCH_TWO does the following:
Loads PCBP from tempa.

b. Loads PSW from the PCB, writes a 0 to the TM bit, and then loads PC and SP.
Because this is a return process, the I bit is clear and all control registers are
loaded from the saved-context area of its PCB.

c. Returns control to RETPS.
Writes 7, 0, 3 to the ISC, TM, and ET fields, respectively, of PSW.
If R bit is set (1), calls XSWITCH THREEQ to perform any block moves.

OPERATING SYSTEM CONSIDERATIONS
Interrupt-Handler Model

XSWITCH_THREE does the following:
a. Tests the R bit in the PSW.

e If the R bit is set (1), it does the block moves in the block-move areas of the
Process A PCB. For each block to be moved, r0O gets the starting address of a
block-move area in the PCB, rl gets the size of the block (number of words to
be moved), and r2 gets the destination of the move. Then the function executes
a move block instruction (MOVBLW).

e If the R bit is clear (0), no block moves are performed.
b. Returns control to RETPS.

6. If the R bit is set (1), RETPS loads rO—r10 from general register save area of
Process A PCB.

7. Releases kernel execution level on memory accesses and Process A resumes executing.

4.5 INTERRUPTS

When an external device requests an interrupt, a processor temporarily stops its current

execution and jumps to code that services the interrupt. On completion of the interrupt

handler code, execution resumes at the point where the interrupt occurred. An interrupt
mechanism performs the execution switch.

4.5.1 Interrupt-Handler Model

An interrupt handler may be modeled after a gate (system call) or process switch. In most
existing architectures, an interrupt handler is a function that is invoked on an interrupt.
The function executes as part of the interrupted process context or as part of a system-wide
context. Although easy to implement, the function call does not isolate interrupt handlers,
execute them at any level, or return from them to a different process.

The WE 32100 Microprocessor uses either the process switch or gate switch. In the
process switch model, an interrupt (called a full interrupt in this case) causes an implicit
process switch to a new process. In the gate switch model, an interrupt (called a quick
interrupt in this case) causes an implicit gate to a handler function. When full interrupts
are used, the processor interrupt mechanism meets the isolation and execution-level
requirements because each interrupt handler is a separate process with its own execution
stack. The processor tracks full-interrupt nesting in such a way that a full-interrupt
handler at any priority level may preempt the original process, thus meeting the return
requirement. With the quick-interrupt feature, interrupts can be handled as described
above for most existing architectures.

For efficient operation, the implicit process switch on a full interrupt does the following:
e Minimizes the loading and saving of an interrupt handler’s context

e Allocates only one stack to each interrupt-handler.

4-23

OPERATING SYSTEM CONSIDERATIONS

Interrupt Mechanism

4.5.2 Interrupt Mechanism
There are three functions of the interrupt mechanism:
o Determining whether or not there will be an interrupt.

e Determining how an interrupt request will be acknowledged and what the interrupt-ID
value is.

o Saving the old context and bringing in a new context.

The first part involves checking the NMINT and IPL[3—0] pins, and the IPL field of the
PSW. The next part involves the NMINT, AVEC, IPL[3—0] and INTOPT pins, and an
interrupt acknowledge or auto-vector interrupt acknowledge bus cycle. The final part
involves the QIE field of the PSW and a quick-interrupt (gate-like) sequence or a full-
interrupt (process-switch) sequence.

The following algorithm describes the interrupt behavior. The notation used is:
e]==1] if there is to be an interrupt
o ID is the value used as the interrupt-ID in the on-interrupt microsequence

o NMI, INTOPT, and AVEC represent the complements of the values of the nonmaskable
interrupt (NMINT), interrupt option (INTOPT), and auto-vector (AVEC) pins,
respectively.

1=0;

if(NMI==1) {
I=1;
ID=0;

else if ((requested_interrupt_level) > (PSW <IPL>)) {
I=1;
if(AVEC==1)
ID=(INTOPT concatenated with interrupt request level);
else ID=(value fetched in interrupt acknowledge cycle);

}
if(0==1) {
call on-interrupt microsequence;

else {

no interrupt;
}

An interrupt occurs if the priority level requested is greater than the priority level in the
'IPL field of the PSW. Thus, if PSW <IPL>==15, no interrupts will be acknowledged
(except for nonmaskable interrupt).

4-24

OPERATING SYSTEM CONSIDERATIONS
Full-Interrupt Handler’s PCB

After acknowledging an interrupt (full or quick as determined from Table 2-4), the
processor performs its on-interrupt microsequence (an implicit process or gate switch). Its
actions are similar to a call process (CALLPS) instruction for a full interrupt and a gate
(GATE) instruction for a quick interrupt, but with a few differences.

When a full interrupt activates an interrupt-handler process, the interrupt handler starts
from its initial state. However, unlike ordinary processes, this initial context consists of
only the three registers and the stack bounds; general registers are not loaded for any
process starting from an initial context.

A higher priority interrupt may interrupt the current interrupt-handler process. When this
happens, its intermediate context is stored in the save area of the PCB, rather than the
initial-context area. Thus, the interrupted interrupt handler can resume execution from that
point later.

The I bit in the process PSW controls which starting point and context to use (see 4.4.1
Context Switching Strategy).

To return from a full interrupt, an interrupt-handler process executes a return-to-process
(RETPS) instruction. This process switch does not save the state of the exiting interrupt-
handler process (see 4.4.3 Return-to-Process Instruction).

When a quick interrupt activates an interrupt handler, the current PC and PSW values are
stored on the execution stack. A simulated gate is then performed to load the PC and
PSW registers with the initial information for the interrupt handler. A quick-interrupt
gate does not perform any stack bounds check; therefore, quick interrupts should not occur
in processes where the stack may be bad (e.g., a user process with a stack that is
unreliable). Also, a quick-interrupt gate sets the PSW interrupt priority level (IPL) field
to 15, thus disabling all interrupts except a nonmaskable interrupt.

Only a nonmaskable interrupt may interrupt the current quick-interrupt handler. When
this happens, the PC and PSW values of the interrupted interrupt handler are stored on the
execution stack and another simulated gate is performed. Thus, the interrupted interrupt
handler can resume execution from its interrupted state.

To return from a quick interrupt, an interrupt handler should restore the IPL field in the
PSW and then execute a return from gate (RETG) instruction (see 4.3.3 Return-From-
Gate Instruction).

Full-Interrupt Handler’s PCB

Before an interrupt handler is activated, its PCBP points to the initial-context area of its
PCB, which contains initial values for the PSW, PC, and SP. The IPL field in this PSW
is usually set at least as high as the priority level of the device associated with the interrupt
handler. (Interrupt-priority levels range from 0, the lowest, to 15, the highest, which
indicates "no interrupts.”) In addition, the I bit in this PSW should contain 1. If the
interrupt handler wants to use the general registers, the PSW R bit should be 1.

4-25

OPERATING SYSTEM CONSIDERATIONS
Interrupt Stack and ISP

If the new PSW has its I bit set when an interrupt handler is activated, the I bit in the
PSW register is cleared and the PCBP register is adjusted to the saved-context area of the
handler’s PCB. The save area is used to store the handler’s control registers if another
interrupt occurs.

If the PSW’s I bit is set, an interrupt-handler process always starts from the same initial
state whenever it is initially activated because its initial-context values never change.
However, after being interrupted, the saved-context area always reflects its state at the
time of the interrupt. Thus, the restored interrupt handler starts from the appropriate
intermediate state.

An interrupt handler’s MMU map specification, if maintained in the PCB block-move
areas, is used when loading an initial context or restoring an intermediate context.
Therefore, the user must ensure that the operating system restores the map data to its
initial state before a return-from-interrupt. This can be done by maintaining appropriate
R bit values in the PCBs involved.

Interrupt Stack and ISP

The user must design the operating system to allocate memory space for one interrupt
stack. This system data structure enables the processor to track the nesting of interrupt
handlers and active processes and is never used as an execution stack.

The processor uses its interrupt stack pointer (ISP) register to access the interrupt stack.
This privileged register always contains the address of the top of the stack. When it saves
the current PCBP, a CALLPS or on-interrupt microsequence automatically increments ISP
by four. A RETPS decrements ISP by four when it restores the PCBP. An attempt to
write this register other than in kernel level causes a normal exception privileged register.

At any level of full-interrupt handling, the interrupt stack contains the PCBPs for all lower
priority interrupt handlers that were interrupted while executing. The entry at the bottom

of the stack is the PCBP for the process that was interrupted by the first interrupt handler

(see Figure 4-5).

INTERRUPT STACK

<— ISP

PCBP PROCESS N+1
PCBP PROCESS N
NS RS

~ o

PCBP PROCESS B
PCBP PROCESS A

PROCESS B INTERRUPTED PROCESS A.
PROCESS N+1 IS LAST PROCESS INTERRUPTED.

Figure 4-5. An Interrupt Stack

4-26

OPERATING SYSTEM CONSIDERATIONS
Interrupt-Vector Table

Because a return-from-process (RETPS) restores the process that was interrupted, the
process at the bottom of the stack is eventually restored. However, any interrupt handler
whose PCBP is on this stack may force a return to a different process. If any interrupt
handler does this, be sure that it overwrites the normal-process PCBP at the bottom of this
stack with the PCBP of the desired process.

Interrupt-Vector Table

The user must provide interrupt-vector tables for full and quick interrupts, depending on
how interrupts are to be handled (process switches and/or gates). Figure 4-6 shows the
memory locations where interrupt PCBPs and PC/PSW pairs must be stored. If the
nonmaskable and auto-vector interrupts are not used, those locations can be used to store
the PCBPs for device-interrupt handlers. The full-interrupt-vector table starts at location
140 (8C hex) to store the PCBP (up to 256 PCBPs) for each interrupt handler and the
quick-interrupt-vector table starts at location 1164 (48C hex) to store PC/PSW pairs (up
to 256 pairs) for each interrupt handler. Commonly, each device that requests an interrupt
may require a different handling routine. The processor locates the appropriate interrupt
handler by using an 8-bit code (interrupt-ID) as an offset into the vector tables. The code
is used to form the address (140 + 4*interrupt-ID) to obtain the PCBP for a full-interrupt
handler or the address (1164 + 8*interrupt-ID) to obtain the PC/PSW pair for a quick-
interrupt handler.

Hex Hex
Address Address
8C 48C
Nonmaskable Interrupt Nonmaskable Interrupt
Handler PCBP Handler PC/PSW Pair
8F (1 word) 493 (2 word)
90 494
Auto-vector Auto-vector
Interrupt Interrupt Handler
Handler PCBPs PC/PSW Pairs
(31 words) (62 words)
10B 58B
10C 58C
Device Interrupt Device Interrupt
Handler PCBPs Handler
(224 words) PC/PSW Pairs
48B (448 words)
C8B
A. Full-Interrupt Vector Table B. Quick-Interrupt Vector Table

Figure 4-6. Interrupt Vector Tables

4-27

OPERATING SYSTEM CONSIDERATIONS
On-Interrupt Microsequence

4.5.3 On-Interrupt Microsequence

The on-interrupt microsequence is a sequence of actions built into the WE 32100
Microprocessor that responds to interrupts. The on-interrupt microsequence handles both
full and quick interrupts. For full interrupts, the processor performs an implicit process
switch. For quick interrupts, the processor performs a GATE-like PSW/PC switch. Here,
Process A is the interrupted process and Process B is the interrupt handler. (See 4.4.2 Call
Process Instruction for descriptions of the XSWITCH functions.)

The microsequence performs the following sequential steps:

1.

s e

10.

11.

12.
13.

4-28

Writes the interrupt-ID to register tempa. If a memory exception occurs, the
processor generates a stack exception (interrupt-ID fetch).

Forces kernel level on memory accesses.
Skips to step 12 if it is a quick interrupt (the PSW’s QIE field is set to 1).
Performs steps 5 through 11 for a full interrupt.

Forms an index 140+4*tempa, which is written to tempa. This index is used to
locate the PCBP of the appropriate interrupt handler.

Stores the Process A PCBP on the interrupt stack. If a memory exception occurs on
this stack operation, the processor generates a reset exception (interrupt stack).

Calls XSWITCH_ONEQ) to store the Process A context in the saved-context area of
its PCB and then writes 0, 0, 1 to the ISC, TM, and ET fields, respectively, of the
saved PSW. If any of these operations causes a memory exception, the processor
generates a process exception (old-PCB).

Calls XSWITCH_TWOQ) to load the Process B PCBP and new PC, PSW, and SP
values from the initial-context area of its PCB. A memory exception on any
XSWITCH_TWO operation causes a process exception (new-PCB). If it is set, the
PSW I bit will be cleared and PCBP adjusted to the saved-context area of Process B
PCB.

Writes 7, 0, 3 to the PSW’s ISC, TM, and ET fields, respectively.

Calls XSWITCH_THREE(Q to make any necessary block moves. A memory
exception here causes a process exception (new-PCB).

Releases kernel level on memory accesses. For full interrupts, this is the last step of
the on-interrupt microsequence.

Resumes quick interrupt here.

Forms an index, 1164+tempa*8, which is written to tempa. This index is used to
locate the PSW and PC of the appropriate interrupt handler.

Releases kernel level on memory accesses.

OPERATING SYSTEM CONSIDERATIONS

Exceptions

15. Pushes the PSW and PC of Process A onto the execution stack.
16. Forces kernel level on memory accesses.

17. Sets the PSW with value indexed by tempa, and PC with value indexed by 4+tempa.
Some fields in the PSW are unchanged. Also, the IPL field is set to 15 to mask any
subsequent interrupts. If a memory exception occurs, a normal exception (gate
vector) is generated.

18. Releases kernel level on memory accesses. For quick interrupts this is the last step of
the on-interrupt microsequence.

Process B (the interrupt handler) takes its priority level from the PSW that was just
loaded and starts executing. Execution may be interrupted only by a higher priority
" interrupt (higher than the IPL value of the PSW).

4.5.4 Returning From an Interrupt

Full Interrupts

A full-interrupt handler may restore the interrupted process or may return to another
process after servicing the interrupting device. To accomplish either process switch, the
full-interrupt handler must contain a return-to-process (RETPS) instruction. Unlike the
call process, RETPS does not save the exiting process (interrupt handler) context.

Note: If a full-interrupt handler is not to return to the process interrupted, the interrupt-
handler routine must alter the interrupt stack before a RETPS instruction. The PCBP for
the process returned to must replace the PCBP that was saved for the interrupted process.

The PCBP of the process to which the return-from-interrupt occurs is removed from the
interrupt stack. The full context of the returning process is restored from its PCB, and any
required map changes are made (block moves are performed).

Quick Interrupts

A quick-interrupt handler returns to the function that was interrupted (i.e., restores the PC
and PSW registers with the values popped off the execution stack). To return from a
quick-interrupt handler, the handler must execute a return-from-GATE (RETG)
instruction. Also, before returning from a quick interrupt, the IPL field of the PSW
should be set to the previous state of the interrupted process.

4.6 EXCEPTIONS

An exception is an error condition, other than an interrupt, that requires special processing
for recovery. That is, an exception mechanism is needed to correct the error condition so

4-29

OPERATING SYSTEM CONSIDERATIONS
Levels of Exception Severity

that normal processing can continue. Exceptions are caused by the following three types of
events:

e Internal faults - error conditions detected by the processor during instruction execution.
The fault handler for such events may restart the instruction that caused the fault.

e External faults - error conditions detected outside the processor and conveyed to it over
its fault input. The processor recognizes the fault during instruction execution and the
appropriate fault handler may then restart the execution.

e Traps - internal error conditions detected by the processor at the end of an instruction.
After the trap is handled, execution may resume with the next instruction.

The exception mechanism for the WE 32100 Microprocessor is implemented through
microsequences. Depending on the level of exception severity, the microprocessor responds
with the appropriate microsequence to facilitate correction of the condition.

4.6.1 Levels of Exception Severity

The processor recognizes four levels of exception severity, with zero (0) as the highest
level. It uses the ET (exception type) and ISC (internal state code) fields of the PSW to
identify the severity and type of exception, respectively. Because all exception
microsequences preserve the ET and ISC values in the current PSW, the incoming
exception handler may use them. The ET value gives the class of exception and
corresponds to its severity level, while ISC distinguishes among error conditions of the
same class. During normal program execution, ET is 3 and ISC is 7. Table 4-4 identifies
the severity levels, giving the ET value in decimal. The meaning of the ISC values for
each exception severity level is identified later.

4.6.2 Exception Handler

On-stack, on-process, and on-reset exception microsequences do not use the ET and ISC
values, but preserve them for an incoming exception handler. The on-normal exception
microsequence uses them to locate the appropriate handling routine, as well as preserving
them.

Table 4-4. Severity Levels for Exceptions
ET Level Processor Response
0 Reset Executes on-reset microsequence; highest severity level
1 Process | Executes on-process exception microsequence
2 Stack Executes on-stack exception microsequence
3 Normal | Executes on-normal exception microsequence; lowest
severity level

4-30

OPERATING SYSTEM CONSIDERATIONS
Exception Handler

The ET and ISC values help identify the task an exception handler must perform. What
an exception handler should do with the ET and ISC values or how it should handle the
error depends on the needs of the system. In general, if computation can continue,
resumption of the process may be chosen. However, if an error is too serious for the
original process to continue its computations, the exception handler should ask the
scheduler to terminate the bad process.

The operating system designer must provide exception-vector tables. Figure 4-7 shows the
addresses where the vector tables reside. All locations must be filled with either PCBPs or
the address of the handling-routine table (for normal exceptions).

Hex
Address
00
Normal Exception
Pointer Table Entry
03 (1 word)
04
Gate Pointer
Table
(31 words)
(Not Used by
Exception
Handler)
7F
80 Reset Exception
Handler PCBP
83 (1 word)
84
Process Exception
Handler PCBP
87 (1 word)
88
Stack Exception
Handler PCBP
8B (1 word)

Figure 4-7. Exception-Vector Table

4-31

OPERATING SYSTEM CONSIDERATIONS
Exception Microsequences

4.6.3 Exception Microsequences

The processor’s microsequences enable it to execute an appropriate sequence of actions
when it detects an exception. By design, an exception that occurs during one of these
microsequences has a higher severity level. Such an exception, therefore, stops the current
microsequence, and the processor starts performing a higher level microsequence. Thus,
the processor can ripple up levels of exception severity.

Any exception during an on-reset sequence (the severest exception level) causes the
processor to restart the on-reset sequence. Trying to recover from the exception, the
processor goes into an infinite loop and consequently can recover from transient faults.

The sections that follow describe the error conditions for each class of exception and the
response of the microsequence. When describing this response, Process A is the process
that caused the exception and Process B is the exception handler. In general, a normal
exception results in a simulated gate instruction, but a stack, process, or reset exception
causes an implicit process switch. Descriptions of microsequences follow the operating
system instructions at the end of this chapter.

Normal Exceptions

This group of exceptions includes most of those that occur in other microprocessor
architectures. Table 4-5 identifies the ISC and the cause of each normal exception.

When a normal exception occurs, the processor executes the on-normal exception
microsequence. After some set up operations, the microsequence enters the gate instruction
at its second entry point (see 4.3.2 Gate Instruction). Using the ISC code, this simulated
GATE finds the appropriate exception-handler function and transfers control to it. Both
the microsequence and the exception handler execute within the process that caused the
error condition.

To locate the exception handler, GATE requires two implied operands that serve as indexes
into the pointer table and the correct handling-routine table. (See 4.3.1 Gate Mechanism
for a description of these tables.) For GATE index1, the microsequence supplies the value
of 0. For GATE index2, it uses the internal-state code (ISC) in the saved PSW, shifted
three bits toward the most significant bit. This shifted ISC value forms an index into the
handling-routine table. Thus, a normal exception results in a controlled transfer to the
corresponding exception handler. On completion of the on-normal exception
microsequence, the ISC, TM, and ET fields of the PSW presented to the exception handler
will contain 7, 1, 3, respectively.

Because a normal-exception handler executes as part of Process A, it uses the same
execution stack. After handling the error condition, a normal-exception handler must
execute a return from gate instruction to restore control to Process A.

4-32

OPERATING SYSTEM CONSIDERATIONS
Stack Exceptions

Table 4-5. Normal Exceptions (ET=3)
ISC Exception Cause
0 Integer zero divide | An attempt to divide by zero. This exception is
(Internal fault) always enabled. (Note 1)
1 Trace Normal response to the end of an instruction if the
(Trap) TE bit is set in the PSW.
2 Illegal opcode Use of an undefined opcode.
(Internal fault)
3 Reserved opcode Use of an opcode reserved for future implementation.
(Internal fault) This is also the normal response to the extended
opcode (EXTOP) instruction.
4 Invalid descriptor Use of literal or immediate address mode for a
(Internal fault) destination operand; instruction’s opcode requests
the effective address of a literal, immediate, or
register operand. (Note 1)
5 External memory A exception when accessing external memory.
(External fault)
6 Gate vector A memory exception when accessing the gate tables as
(External fault) part of a GATE.
7 Illegal level change | An attempt to increase the current execution
(Internal fault) privilege level on a RETG.
8 Reserved data type | Use of an operand type that is not defined for the
(Internal fault) expanded-operand type address mode. (Note 1)
9 Integer overflow An attempt to write data into a destination that is
(Internal fault) too small. This exception is enabled when the OE
bit is set in the PSW. (Note 2)
10 Privileged opcode An attempt to execute an opcode defined for kernel
(Internal fault) level at a different execution level.
11—13 | Unused -
14 Breakpoint Normal response to a breakpoint trap (BPT)
(Trap) instruction.
15 Privileged register An attempt to write the ISP, PCBP, or PSW
(Internal fault) when not in kernel level. (Note 1)
Notes:

1. This exception sets the condition flags as if the instruction was successfully completed.
2. Before the overflow trap occurs, the processor may execute the next instruction after
the one that caused the overflow.

Stack Exceptions

Table 4-6 lists the ISC and the cause of each stack exception. A stack-bound exception
occurs when the stack-bound check fails on a system call (a gate instruction or on-normal
exception microsequence). A stack fault occurs on an execution stack access to save the

OPERATING SYSTEM CONSIDERATIONS
Stack Exceptions

current PC and PSW. An interrupt-ID-fetch exception occurs during the on-interrupt
microsequence if an exception occurs during the acknowledge access.

On a stack fault, the memory exception occurs when SP is used as an operand. Thus, the
processor first detects a normal ¢xception and then detects the stack exception while
executing the implicit GATE (system call). In effect, the processor automatically ripples
up to a stack exception from a normal exception.

A stack exception occurs because Process A (the process at fault) cannot use its execution
stack. As a result, a stack exception cannot be handled as part of Process A (unlike
normal exceptions). Instead, the processor performs the on-stack exception microsequence,
which performs a process switch and thus provides the exception handler with a new
execution stack.

The interrupt-ID-fetch exception does not involve the stack, but it is treated as a stack
exception since it is systemwide. Thus, no context information is lost.

The on-stack exception microsequence saves the Process A PCBP on the interrupt stack,
stores the control registers in its PCB, and loads a new PCBP (for Process B) from location
136 (88 hex). Then it carries out an implicit process switch to the stack-exception handler,
Process B. Although the microsequence does not use the ISC value, it preserves this value
across the process switch. On completion of the microsequence, the ISC field in the PSW
saved for Process A still contains the code for the stack exception, and the TM and ET
fields contain 0 and 3, respectively. When Process B starts executing, the PSW’s ISC,
TM, and ET fields contain 7, 0, 3, respectively.

Because a stack-exception handler is implemented as a process, the user may want to
prevent interrupts from entering the handler. Entry prevention is accomplished by raising
the interrupt priority level (the IPL field of its PSW) to 15 and thus disabling all
interrupts except a nonmaskable interrupt. Such a stack-exception handler should execute
only a few instructions.

A stack-exception handler can correct a stack-bound or stack-fault problem by:
e Growing the stack of the process

o Bringing in a missing page of the stack (in demand-paging systems).

Table 4-6. Stack Exceptions (ET=2)
ISC Exception Cause

0 | Stack bound An SP value outside the upper or lower stack bound
(Internal fault) on a system call.

1 | Stack A memory exception when storing the PC or PSW on
(External fault) the execution stack during a system call.

3 | Interrupt ID fetch | A memory exception during the interrupt acknowledge
(External fault) access during an interrupt sequence.

4-34

OPERATING SYSTEM CONSIDERATIONS
Reset Exceptions

Process Exceptions

A process exception is generated if the process receives a memory exception signal on a
PCB access. The exception is local to Process A (the process that caused it) and implies a
severe error condition. The ISC field of the Process A PSW is presented to the exception
handler (Process B) and identifies the condition that caused the exception. Table 4-7 lists
the ISC and the cause for each process exception.

When a process exception occurs, the processor executes its on-process exception
microsequence, an implicit process switch. Because the error condition signifies that the
Process A PCB cannot be accessed, its context cannot be saved. The microsequence stores
the Process A PCBP on the interrupt stack and loads the Process B PCBP from location
132 (84 hex). Then it loads the Process B context, preserving the ISC value from the
Process A PSW. When Process B begins executing, its PSW contains the code for the
exception condition, and the TM and ET fields contain 0 and 3, respectively.

Because the processor could not save the Process A hardware context, Process B normally
kills Process A. However, it can identify an old (good) process from its PCBP on the
interrupt stack. If the exception is a new PCB exception, the Process A PCBP is at the top
of the interrupt stack. If it is an old PCB exception and a process switch from a third
process (Process C) had been made previously, then the Process C PCBP is the second
element from the top of the stack. In either case, Process B could restart the last good
process because its context was not lost.

Reset Exceptions

A reset exception implies an error condition in accessing critical system data and requires
restarting of the system. On a reset exception, the processor acts as if an external reset
occurred. The ISC field in the PSW of the current process identifies if the condition is an
internal error or external request for a system reset. Table 4-8 lists the ISC and cause of
the reset exceptions.

Table 4-7. Process Exceptions (ET=1)
ISC Exception Cause

0 |Old PCB A memory exception when accessing the PCB for the
(External fault) | exiting process on a process switch.

1 | Gate PCB A memory exception when accessing the PCB for a stack
(External fault) | bounds check during a GATE.

4 | New PCB A memory exception when accessing the PCB for the new
(External fault) | process during a process switch.

4-35

OPERATING SYSTEM CONSIDERATIONS

Memory Management for Virtual Memory Systems

On a reset exception, the processor performs an implicit process switch. It executes the
On-Reset microsequence after first disabling the memory management unit. The
microsequence picks up a new PCBP from physical address location 128 (80 hex) and
loads the reset-handler process (Process B). When Process B begins executing, its PSW
contains the code corresponding to the condition that caused the reset exception, and its
TM and ET fields contain 0 and 3, respectively.

Process B should restart the system (i.e., reinitialize the system), possibly after checking
the validity of system data.

Table 4-8. Reset Exceptions (ET =0)
ISC Exception Cause
0 Old PCB A memory exception when accessing the PCB of a process-
(External fault) | exception handler.
1 System data A memory exception when accessing an interrupt vector
(External fault) | or while processing an exception.
2 Interrupt stack A memory exception when accessing the interrupt stack
(External fault) | while processing an exception.
3 External reset Normal response to an external (system) reset signal.
(External fault)
4 New PCB A memory exception when accessing the PCB of an
(External fault) | exception-handler process.
6 Gate-vector A memory exception when accessing a gate table while
(External fault) | processing a normal exception. (Here, the PSW ET
field contains 0. If ET is 3, a gate-vector exception
is treated as a normal exception because it occurred
during a GATE instruction, rather than as part of
the on-normal exception microsequence.)

4.7 MEMORY MANAGEMENT FOR VIRTUAL MEMORY SYSTEMS

When a virtual memory system is used for a WE 32100 Microprocessor based system, a
memory management unit (MMU) is required. The main function of an MMU is to
translate virtual addresses into physical addresses. The MMU has the additional
responsibility of providing protection for the system memory space.

The virtual address space is divided into a number of sections by the MMU. Each section
is in turn subdivided into segments. Segments may either be contiguous or paged and are
mapped into physical address space by the MMU.

The WE 32101 Memory Management Unit (MMU) was developed to complement the
WE 32100 Microprocessor for creation of a virtual memory system. This section describes
the features of the MMU that are important for system design. A complete technical
summary of the MMU is provided in the WE 32101 Memory Management Unit Data
Sheet.

4-36

OPERATING SYSTEM CONSIDERATIONS

Memory Management for Virtual Memory Systems

The WE 32101 Memory Management Unit divides the virtual address space into four
sections and provides both contiguous and paged segments for the system. A contiguous
segment can be as large as 128 Kbytes and a paged segment can contain up to sixty-four
2 Kbyte pages.

The MMU divides virtual addresses into three fields for contiguous segments and four
fields for paged segments. A virtual address referencing a contiguous segment is divided
into three fields: a section ID (SID) field, a segment select (SSL) field, and a segment
offset (SOT) field. The SID field specifies the section of virtual address space, the SSL
field specifies the segment within the section, and the SOT field specifies the byte within
the segment. The format of these virtual addresses is shown on Figure 4-8.

For paged segments, the SOT field is subdivided into a page select (PSL) field and a page
offset (POT) field. The PSL field specifies which page within the segment and the POT
field specifies which byte within the page. The format of these virtual addresses is shown
on Figure 4-9.

The MMU performs address translation using descriptors that contain the information
necessary for segment and page mapping. The MMU has two types of descriptors:
segment descriptors (SD) for mapping contiguous and paged segments and page descriptors
(PD) for mapping pages within paged segments. An SD contains a segment base address
that is added to an offset (from the virtual address SOT) to form the physical address.

The PD contains a page base address that is concatenated with a page offset (from the
virtual address POT) to form the physical address.

Other fields contained in SDs and PDs provide functions other than address translation.
For example, the access fields in the SDs are used by the MMU to enforce protection of
system memory. This field and other fields are described later in this section.

The SDs for each of the four sections of virtual memory are located in physical memory in
segment descriptor tables (SDTs). There is one SDT associated with each section. The
PDs for each paged segment are located in physical memory in page descriptor tables
(PDTs), and there is one PDT associated with each paged segment. Contiguous segments
are represented by an SDT entry, while paged segments are represented by both an SDT
entry and an entire PDT (the SDT entry contains the physical base address of the PDT).

31 30 29 17 16 0
[SID | ssL [soOT |

Figure 4-8. Virtual Address Fields For a Contiguous Segment

31 30 29 17 16 11 10 0
[siD | ssL | pSL | poOT |

Figure 4-9. Virtual Address Fields For a Paged Segment

4-37

OPERATING SYSTEM CONSIDERATIONS
Memory Management for Virtual Memory Systems

Figure 4-1C is a model showing how a virtual address is translated to a physical address for
a contigucus segment. The SID field is used to find the base address of the required SDT.
(The base address of the SDT for each section is stored in the MMU.) This address and
the SSL field are combined to index an SD within the SDT. The starting physical address
of the contiguous segment is contained in the indexed SD. This address is added to the

SOT field to form the required physical address.

Figure 4-11 shows the paged segment model. This translation is identical to the contiguous
segment address translation up to the point where the SD is indexed. For paged segments,
the address in the SD is used as the base address of a PDT. This address is combined with
the PSL field to index a PD. This PD contains the starting address of the paged segment

that is concatenated with the POT field to form the required physical address.

SDT
BASE
ADDRESS
TABLE
(SRAMA)

4-38

VIRTUAL ADDRESS

SID| SSL | SOT
BASE
ADDRESS
SDT 0
+) oF sot
A
ssL
5D
INDEXED
SEGMENT
DESCRIPTOR SOT 1
SOT 2
SOT 3
SEGMENT
DESCRIPTOR
TABLES

+

STARTING
ADDRESS OF
CONTIGUOUS

SEGMENT =
soT

TRANSLATED
PHYSICAL
ADDRESS

PHYSICAL
MEMORY

Figure 4-10. Virtual to Physical Translation for Contiguous Segments

CONTIGUOUS
SEGMENT

(3% 4

VIRTUAL ADDRESS

510 Gl
BASE
i AL .
BASE °
SSL ADDRESS °
=5 OF PDT
ST INDEXED pEL
A;gﬁggs SEGMENT STARTING
PD ADDRESS
TABLE DESCRIPTOR SDT 1 INDEXED OF PAGE o
(SRAMA) PAGE
DESCRIPTOR | Po [poT] POT
M v
TRANSLATED
PHYSICAL
ADDRESS
ST 2
-]
o
o
SDT 3
PAGE
DESCRIPTOR
TABLES
SEGMENT
DESCRIPTOR
TABLES

Figure 4-11. Virtual to Physical Translation for Paged Segments

PHYSICAL
MEMORY

PAGE

SWRISAS AIOUISJA] [ENMIIA 10§ JUIUIISeUBIA] AJOWIIA!
SNOILLVIHUISNOD IWHLSAS ONILVIAdO

-

OPERATING SYSTEM CONSIDERATIONS
Initializing the Memory Management Unit

4.7.1 Initializing the Memory Management Unit

The operating system is required to initialize the MMU. Typical MMU initialization
consists of:

e Defining physical memory with segment descriptor tables and page descriptor tables for
each process

o Writing SDT addresses and length into MMU section RAMs.

The operating system should also set up the block-move area of the process control block
(PCB) for each process in the system. Block moves can be used to set the MMU section
RAMs, if desired, when process switches occur. Setting the section RAMs causes the
MMU to flush its caches.

Defining Virtual Memory

The operating system must define the way virtual memory is to be configured. In systems
using an MMU this requires that segment and page descriptor tables be set up in physical
memory. The way these tables are set up determines which segments in virtual memory
are to be contiguous or paged and where the segments and pages reside in physical
memory.

Peripheral Mode

The peripheral mode of the MMU is used by the operating system in several ways. One
use is to initialize some of the internal elements of the MMU. The elements that require
initialization are the section RAMs and the configuration register (CR). Section RAMs
are loaded with the SDT’s base addresses and length. The descriptor caches may be
preloaded to avoid miss-processing (for a real-time process or other special case).

Other uses of the peripheral mode by the operating system include:
e Setting or clearing the configuration register referenced and/or modified bits

o Reading the fault code register (FLTCR) and fault address register (FLTAR) in order
to handle MMU-generated exceptions

e Reading the cache contents in the case of serious exceptions (e.g., double-page-hit).

4.7.2 MMU Interactions

The MMU interacts with the operating system through address translation, miss-
processing, exception detection, and other events. Once the MMU is initialized, it
translates virtual addresses by using the SDs and PDs. It caches descriptors from the
SDTs and PDTs to minimize translation time. The MMU handles the transfer of
descriptors between its caches and physical memory during miss-processing without
operating system intervention. The MMU also checks for violations (e.g., address or
access) without operating system action. If violations occur, exceptions are issued and the
operating system’s exception handler can respond accordingly.

4-40

OPERATING SYSTEM CONSIDERATIONS
Efficient Mapping Strategies

MMU Exceptions

Operating system action is required when the MMU signals to the CPU that an exception
(external fault) has occurred. The MMU detects several exceptions that relate to errors
(such as memory exceptions when the MMU does not correctly read an SDT or PDT) and
places the corresponding code in the fault code register (FLTCR) and the fault address
register (FLTAR).

Other exceptions signal that data is not present in physical memory. In these cases, the

MMU tells the CPU that a required page or segment is not in physical memory and must
be brought into physical memory. The operating system is responsible for these activities;
it must do any I/O that is necessary and adjust the appropriate SDT and/or PDT values.

The MMU provides hardware support for operating system page- or segment-replacement
algorithms by setting the R and M bits in the segment and page descriptors whenever a
segment or page is referenced or modified. If the operating system periodically clears all
of the R bits, for example, it can use the R bits to implement a variation of the least
recently used (LRU) replacement algorithm. It could choose to replace segments or pages
that still have their R bits clear when an exception occurs, reasoning that those segments or
pages have been referenced less recently than the ones with the R bits set.

Flushing

The operating system occasionally alters the contents of the descriptor tables in memory.
For example, it must do this to set and clear bits that indicate whether a page or segment
is present whenever they are swapped in and out of physical memory. Any alteration of
the table contents must be followed by some type of flushing of the MMU caches to
prevent the chaos that would result if tables and caches contained conflicting information.
If the operating system alters a table entry for one page or segment, it must flush the
cache entry for that page or segment, if there is such a cache entry. If the operating
system alters or deletes many entries in a table, it may be more efficient to flush an entire
section than to flush several cache entries one at a time.

4.7.3 Efficient Mapping Strategies

The memory mapping defined by the operating system may have an enormous effect on the
performance of the system. There are some basic rules for efficient mapping strategies.
Large blocks that will remain in physical memory for long periods could be defined as
contiguous segments so that few entries will be needed in the descriptor tables and
descriptor caches. If physical memory is scarce, however, use of several large contiguous
blocks could result in long waits to move the blocks in and out, thus wasting the physical
memory where another large block cannot fit.

If only part of a segment need be in memory at a time, paged segments make more
efficient use of memory.

4-41

OPERATING SYSTEM CONSIDERATIONS
Object Traps

4.7.4 Object Traps

Through object traps, the operating system can invoke a process or procedure whenever
virtual addresses in a given segment are generated. The MMU can then save the virtual
address that caused the trap. This facility can be used to make I/O devices or external
processors appear as normal segments from the user-software point of view.

4.7.5 Indirect Segment Descriptors

Indirect segment descriptors provide a mechanism to create shared segments that may be
easily swapped out. The only segment descriptor that has to be modified by the operating
system when the shared segment is swapped or moved is the last one (i.e., the descriptor
that directly references the segment data).

Indirect segment descriptors are useful for shared segments where different processes
running at the same execution level are given different access permissions to the segment.
The access permissions in the last descriptor are superseded by the access permissions in
the first descriptor used in the reference.

Indirect segment descriptors can also be used to provide chains of descriptors so that the
path to the last segment descriptor can be passed on from one process to another. This is
similar to the passing of pointers in a programming language, except that here each process
that owns a descriptor that others are linked to can rewrite that descriptor, thus breaking
or redirecting the chain.

4.7.6 Using the Cacheable Bit

Cached segment and page descriptors each contain one cacheable bit (represented by $ for
the MMU). Whenever a descriptor is used for translation, the MMU reflects the value of
the $ bit in the cached descriptor through the cacheable (CABLE) output.

The § bit in the segment descriptor is copied into the cached page descriptor during miss-
processing so that (from the operating system designer’s point of view) the $ bit values are
associated with segments, not individual pages.

The MMU does not manipulate the $ bits and the CABLE output signal in any other way,
so this facility can be used in any way desired by the system designer. As an example, one
possible use (from which the name cacheable is derived) is to provide an interface to a
cache memory other than the MMU’s own descriptor caches. In this scenario, the
cacheable bit is used to indicate the contents of the associated segment that are not
cacheable.

4.7.7 Using the Page-Write Fault

The fault on write (W) bit in the MMU’s page descriptors is checked during address
translation after all other checks have been done. If the W bit is set and the access type is
a write, a page-write fault occurs. This feature can lead to increased efficiency in the
implementation of a UNIX System fork. The W bit could be set when the fork is invoked,

4-42

OPERATING SYSTEM CONSIDERATIONS
Notation

and then both the parent and child processes could continue to use those pages without
having the MMU and operating system physically copy the shared pages until one of those
pages is written. A write operation would cause a page-write fault, and the pages would be
copied and the write bits reset. In this way the system copies pages only as necessary.

4.7.8 Access Protection

Access bits contained within segment descriptors specify the access permission (no access,
execute-only, read/execute, and read/write) for each execution level (kernel, executive,
supervisor, and user). These bits provide protection so that segments are accessed on the
appropriate level. If an access permission is disallowed, an access exception occurs.

4.7.9 Using the Software Bits

Three software bits are contained in each segment and page descriptor. The MMU does
not alter the value of these bits at any time. This allows the operating system designer to
use these bits in any manner. For example, a software bit can be used to avoid allocating
any stack space until a process actually needs it. This is done by assigning the software bit
to signify that a page does not exist. Normally, a process start-up would create a
(sometimes large) stack of zeros. The software bit could be used to avoid creating the
stack until the user program references that page. Only then would the page-not-present
fault cause the operating system to allocate the stack space. If the user program never
references that page, the software bit saves memory for other processes.

4.8 OPERATING SYSTEM INSTRUCTIONS

The remainder of this chapter describes the operating system instructions (listed in Table
4-1) and the microsequences. Each description includes the assembler syntax, operation
performed, effect of address modes on condition flags, exceptions generated, and an
example.

Some operating system instructions and all microsequences call at least one XSWITCH
function to do parts of the context switch. These functions, XSWITCH_ONEOQ,
XSWITCH_TWO(), and XSWITCH_THREEQ(), are included among the microsequences.

4.8.1 Notation

Operations are described in C language where possible. In particular, the following
notation is used where a C language operator or symbol did not exist:

*x Word of register x contains the address of
(a pointer to) the operand.

*x++ Use word or register x as a pointer to the operand;
then increment x by 1, 2, or 4 for a byte, halfword,
or word operation, respectively.

4-43

OPERATING SYSTEM CONSIDERATIONS
Privileged Instructions

*oox Decrement word or register x by 1, 2, or 4 for a
byte, halfword, or word operation, respectively; then
use x as a pointer to the operand.

interrupt_ID An 8-bit value, generated on the interrupt
acknowledge access cycle, identifies the interrupt
vector to the process.

dst Replace with destination operand.
SrC Replace with source operand.
{operation} Text between braces describes an operation in

general terms.
R<a> = <x> Replace field (or bits) a of word R with the value x.
Table 4-3 lists the symbols used to define the bits fields being altered in the PSW. See
Tables 4-5 through 4-8 for the ISC values.

The following symbols are used to identify processor registers:

AP Argument pointer, r10 (assembler syntax %ap)

FP Frame pointer, r9 (assembler syntax %fp)

ISP Interrupt stack pointer, r13 (assembler syntax %isp)

PC Program counter, r15 (assembler syntax %pc)

PCBP Program control block pointer, r14 (assembler syntax
%pcbp)

PSW Processor status word, r11 (assembler syntax %psw)

Rn Register n, rn,n = 0 to 8 (assembler syntax %rn)

SP Stack pointer, r12 (assembler syntax %sp)

4.8.2 Privileged Instructions

These instructions are executed only when the process is in the kernel execution mode.
Attempting to invoke them at a lower level causes a normal exception (privileged opcode).

i

4-44

OPERATING SYSTEM CONSIDERATIONS

Privileged Instructions

Instruction Mnemonic
Call process CALLPS
Disable virtual pin and jump DISVIMP
Enable virtual pin and jump ENBVIJMP
Interrupt acknowledge INTACK
Return-to-process RETPS
Wait WAIT

The DISVIMP and ENBVJIMP instructions disable or enable the processor’s virtual
address pin and then jump to an address. ENBVJMP enables an MMU, signalling that
the processor is now supplying virtual addresses for translation. DISVIMP disables the
MMU and only physical addresses are supplied. With an ENBVJIMP instruction, a new
(virtual) address is loaded into the PC; hence the jump. For DISVIMP, a physical address
is loaded into the PC. The use of CALLPS and RETPS was previously discussed in 4.4.2
Call Process Instruction and 4.4.3 Return-to-Process Instruction, respectively. WAIT
provides a processor-level execution halt that remains in effect until an interrupt occurs.

The following descriptions provide more detail about the instructions.

4-45

CALLPS
Call Process

Assembler
Syntax

Opcode

Description

Operands

Operation

4-46

CALLPS

CALLPS

0x30AC

This instruction performs a process switch, saving the current process,
pushing its PCBP onto the interrupt stack, and entering a new process.
It:

o Saves the context (register contents) of the current process in the
current PCB (if R bit of new process is set).

e Pushes the current PCBP value onto the interrupt stack.

o Puts the new PCBP value (from register r0) into the PCBP
register.

o Sets the PSW, PC, and SP registers from the new PCB.

e Performs block moves (if any) for the new process (if R bit of
PSW is set).

o Exits, going to the new process.

r0 is an implicit source operand (it should contain the PCBP of the new
process).

if ('kernel-level)
normal-exception (privileged-opcode)

/* put new PCBP into tempa */
tempa = r0

/* push old PCBP onto interrupt stack */
{force kernel level on memory accesses)
*ISP++ = PCBP
if(memory-exception)

reset-exception (interrupt-stack)

/* Any memory exception in the first XSWITCH subroutine will cause
a process exception (old PCB). The address of the next instruction is
always PC + 2 */

PC = address of next instruction

/* set old PSW ISC/TM/ET to 0/0/1 respectively */

PSW<ISC> =0

PSW<TM> =0

PSW<ET> =1

CALLPS

CALLPS

/* save current registers in current PCB */
XSWITCH_ONE()
/* XSWITCH_ONE() performs the following operations */
*(PCBP + 4) = PC
PSW<R> = *tempa<R>
*PCBP = PSW
*(PCBP + 8) = SP
if(PSW<R>) {
*(PCBP + 20) = AP
*(PCBP + 24) = FP
*(PCBP + 28) =10
|
|

*(PCBP + 60) =18
FP = PCBP + 52
}

/* Any memory exception in the following XSWITCH subroutines will
cause a process exception (new PCB). */

/* put new PCBP in PCBP register and get new PC, PSW, and SP. */
XSWITCH_TWO(
/* XSWITCH_TWO() performs the following operations */
PCBP = tempa
PSW = *PCBP /* PSW <R/ISC/TM/ET> unchanged here */
PSW<TM> =0
PC = *(PCBP + 4)
SP = *(PCBP + 8)
if(PSW<I>) {

PSW<I> =0

PCBP = PCBP + 12

if(PSW<CFD> == ()
{flush instruction cache}

/* set new PSW ISC/TM/ET to 7/0/3 respectively */
PSW<ISC> =7

PSW<TM> = 0 /* avoid CALLPS trace trap */
PSW<ET> =3

4-47

CALLPS CALLPS

/* do block moves if PSW <R> is set (1) */
XSWITCH_THREEQ
/* XSWITCH_THREE() performs the following operations */
if(PSW<R>) {

r0 = PCBP + 64

r2 = *r0++

while(r2 = 0) {
rl = *r0++
{execute MOVBLW instruction}
r2 = *r0++

}

r0=r0+4

}

{unforce kernel level on memory accesses)
{end of operation}

Address None

Modes

Condition Set by new PSW

Flags

Exceptions normal exception (privileged opcode)

process exception (old PCB or new PCB)
reset exception (interrupt stack)

Example {load new PCBP into r0}
CALLPS
Notes Opcode occupies 16 bits. The ISC/TM/ET fields of the PSW saved

contain 0/0/1, respectively. These fields in the new process PSW
contain 7/0/3, respectively.

4-48

DISVIMP DISVIMP

Disable Virtual Pin and Jump

Assembler DISVIMP

Syntax

Opcode 0x3013

Description This instruction changes the CPU to physical addressing mode (disables

the MMU) and puts a new value in the PC (switching addressing
modes usually makes the old PC value incorrect).

Operands r0 is an implicit source operand (it should contain the new physical PC
value).
Operation if ("kernel-level)

normal-exception (privileged-opcode)
{Reset virtual address pin (VAD) to 1}
PC =10
{flush instruction cache}

Address None

Modes

Condition Unchanged

Flags

Exceptions normal exception (privileged opcode)

Example {load physical address of next instruction into r0}
DISVIMP

Notes Opcode occupies 16 bits.

4-49

ENBVIMP ENBVJMP

Enable Virtual Pin and Jump

Assembler ENBVIMP

Syntax

Opcode 0x300D

Description This instruction changes the CPU to virtual addressing mode (enables

the MMU) and puts a new value in the PC (switching addressing
modes usually makes the old PC value incorrect).

Operands r0 is an implicit source operand (it should contain the new virtual PC
value).
Operation if("kernel-level)

normal-exception (privileged-opcode)
{Set virtual address pin (VAD) to 0}
PC =10
{flush instruction cache}

Address None

Modes

Condition Unchanged

Flags

Exceptions normal exception (privileged opcode)

Example {load virtual address of next instruction into r0}
ENBVJIMP

Notes Opcode occupies 16 bits.

4-50

INTACK

INTACK

Interrupt Acknowledge

Assembler
Syntax

Opcode
Operation
Address
Modes

Condition
Flags

Exceptions
Examples

Notes

INTACK dst interrupt acknowledge

0x302F INTACK

under "interrupt acknowledge" status
10 — (Interrupt — ID) << 2

None
Unchanged

privileged-opcode exception
INTACK
This instruction is privileged.

If NMINT==0 and AVEC==0, an "interrupt acknowledge" access is
performed, fetching an 8-bit "interrupt-ID". This value is zero-extended
to a word, shifted left by two bit positions, and stored in r0. If
NMI==0, an "auto-vector-interrupt acknowledge" access is performed
(with all 1s on the address bus) and 0 is stored in 10. If NMI==1 and
AVEC==0, and "auto-vector-interrupt acknowledge" access is
performed, and the "requesting level" (inverted and put on address bus
and returned as "interrupt-ID") is indeterminate.

4-51

RETPS RETPS

Return to Process

Assembler RETPS

Syntax

Opcode 0x30C8

Description This instruction terminates the current process (its context is not saved)
and returns to the process whose PCBP is on the top of the interrupt
stack. It:

e Pops the saved (old) PCBP value from the interrupt stack.
o Puts the old PCBP value into the PCBP register.

o Sets the PSW, PC, and SP registers from the saved values in the
old PCB.

e Performs block moves (if any) for the old process (if the R bit of
the PSW is set).

o Puts the saved register values from the old PCB into the CPU
registers (if the R bit in PSW is set).

e Exits, going to the old process.
Operands None

Operation if ('kernel-level)
normal-exception (privileged-opcode)

/* pop new PCBP from interrupt stack */

{force kernel level on memory accesses)

tempa = *--ISP

if(memory_exception)
reset-exception(old-PCB)

/* Any memory exception in the following operation will cause a
process exception (old PCB).

Transfer R bit from new PSW to current PSW so block moves and
register restores will occur if needed. */
PSW<R> = *tempa<R>

/* Any memory exception in the following microsequence will cause a
process exception (new PCB).

4-52

RETPS

RETPS

Put new PCBP in PCBP register and get new PC, PSW, and SP. */
XSWITCH_TWOO
/* XSWITCH_TWOQ performs the following operation */
PCBP = tempa
PSW = *PCBP /* PSW<R/ISC/TM/ET> unchanged here */
PSW<TM> =0
PC = *(PCBP + 4)
SP = *(PCBP + 8)
if(PSW<I>) {
PSW<I> =0
PCBP = PCBP + 12
}
if(PSW <CFD> == 0)
{flush instruction cache}

/* set new PSW ISC/TM/ET to 7/0/3 respectively */
PSW<ISC> =7

PSW <TM> = 0 /* prevent RETPS trace trap */
PSW<ET> =3

/* do block moves, if R bit set */
XSWITCH_THREE(
/* XSWITCH_THREEQ performs the following operation */
if(PSW<R>) {
r0 = PCBP + 64

r2 = *r0++

while(r2 !=0) {
rl = *r0++
{execute MOVBLW instruction}
r2 = *rQ++

)

0=r0+4

}

/* if R bit set, move saved register values from new PCB into CPU
registers. */
if(PSW<R>) {

FP = *(PCBP + 24)

r0 = *(PCBP + 28)

|

|
r8 = *(PCBP + 60)
AP = *(PCBP + 20)

4-53

RETPS RETPS

{unforce kernel level on memory accesses)
{end of operation}

Address None

Modes

Condition Set by new PSW

Flags

Exceptions normal exception (privileged opcode)

process exception (old PCB and new PCB)
reset exception (interrupt stack)

Example RETPS

Notes Opcode occupies 16 bits. There is no check of the interrupt stack. Any
exception in accessing this stack causes a reset.

4-54

WAIT WAIT
Wait

Assembler WAIT

Syntax

Opcode 0x2F

Description This instruction halts the CPU, stopping instruction, fetching, and
execution until an interrupt or external reset occurs.

Operands None

Operation if(*kernel-level)

normal-exception (privilege-opcode)
{Halt CPU until an interrupt occurs}

Address None

Modes

Condition Unchanged

Flags

Exceptions normal exception (privileged opcode)
Example WAIT

Notes Opcode occupies 8 bits.

4-55

OPERATING SYSTEM CONSIDERATIONS

Nonprivileged Instructions

4.8.3 Nonprivileged Instructions

These instructions are executed in any execution level:

Instruction Mnemonic
Gate GATE
Move Translated Word MOVTRW
Return from Gate RETG

GATE and RETG were discussed previously in 4.3.2 Gate Instruction and 4.3.3 Return-
from-Gate Instruction, respectively.

MOVTRW tells an enabled MMU to intercept the virtual address sent by the processor,
translate it, and return the physical address to the destination. If no MMU is enabled and
the system treats the MT access as a read, then this instruction acts as a normal MOVW
(i.e., the source is copied into the destination).

4-56

GATE
Gate

Assembler
Syntax

Opcode

Description

Operands

Operation

GATE

GATE

0x3061

This instruction performs a system call, saving the current PSW and PC
on the execution stack and using two levels of tables to obtain new PSW
and PC values. It:

Checks to make sure that the current stack pointer is within the
stack bounds specified in the PCB. This is to insure that the
routine called by the GATE instruction starts in a guaranteed safe
stack area.

Pushes a return address (PC) and the current value of the PSW on
the execution stack. The return address insures that the GATE
instruction can be used like a subroutine call. The PSW on the
stack will be used by RETG to restore the CPU to the state it was
in before the GATE function was invoked.

Index1 is used as an offset into the first-level table, which starts at
address 0. The word selected is the address of a second-level table.

Index2 is used as an offset into the second-level table selected. It is
added to the word read from the first-level table, to obtain the
address of the PSW and PC entry in the second-level table. The
first word of the entry selected is a new PSW to be used by the
GATE-handling subroutine and the second word is the address
(starting PC) of the gate routine.

The PSW is replaced by the new PSW from the second-level table,
with the old execution level field set appropriately and some other
fields changed (see operation below).

The PC is set to the address of the GATE-handling routine.
GATE exits, going to the new PC.

r0 and r1 are implicit source operands (they should contain byte offsets
within first-level and second-level tables, respectively).

/* When reading from the PCB in the following two operations, a
memory exception causes a process exception (gate PCB).

4-57

GATE GATE

Check SP against stack bounds in PCB. */
{force kernel level on memory accesses)
if(SP >= *(PCBP + 12))
stack-exception (stack-bound)
if(SP >= *(PCBP + 16))
stack-exception (stack-bound)
{unforce kernel level on memory accesses)

/* When writing to the stack in the following two operations, a memory
exception causes a stack exception (stack).

The address of the next instruction is always PC+2.

Save old PC and PSW on execution stack. */

*SP = address of next instruction

/* set PSW ISC/TM/ET to 1/0/2, respectively */
PSW<ISC> =1

PSW<TM> =0

PSW<ET> =2

*(SP + 4) = PSW

/* mask index values and put in registers */
tempa = r0 & 0x7C /* index1 */
tempb = rl & O0x7FF8 /* index2 */

/* A memory exception from here to the end of the microsequence
causes a normal exception (gate vector).

Get new PC and PSW values from table. */
{force kernel level on memory accesses)

/* get pointer to second-level table */
tempa = *tempa

/* add offset within second-level table */
tempa = tempa + tempb

/* get new PSW from second-level table */
tempb = *tempa

/* set PM in new PSW to CM in old PSW */
tempb<PM> = PSW<CM>

/* new PSW same IPL/R values as old PSW */
tempb<IPL> = PSW<IPL>

tempb<R> = PSW<R>

/* set new PSW ISC/TM/ET to 7/1/3, respectively */
tempb<ISC> =7

tempb<TM> =1

tempb<ET> =3

4-58

GATE GATE

/* put new PC/PSW values into PC/PSW registers
get new PC from second-level table */

PC = *(tempa + 4)

PSW = tempb

/* finish push of old PC and PSW */
SP=SP + 8

{funforce kernel level on memory accesses)
{end of operation}

Address None

Modes

Condition Set by new PSW

Flags

Exceptions normal exception (gate vector)

stack exception (stack bound and stack)
process exception (gate PCB)
reset exception (gate vector)

Example GATE
Notes Opcode occupies 16 bits.

The values of r0 and rl should be byte-valued offsets. The value of
register r0 must be a multiple of 4; and the value of r1 must be a
multiple of 8. These two registers are source operands only; GATE
does not alter their contents.

4-59

MOVTRW MOVTRW
Move Translated Word

Assembler MOVTRW sre,dst

Syntax

Opcode 0x0C

Description This instruction is intended for use with a memory mangement unit

(MMU). An access using the address of the source operand and an
MT access status is performed, and it is expected that the MMU will
translate the address and return the corresponding physical address.

Operands src - contains virtual address to be translated
dst - contains the physical address after translation

Operation {under MT status}

dst = &src
Address src - all modes except immediate, literal, or register
Modes dst - all modes except immediate or literal
Condition N = Bit 31 of word returned
Flags Z =1, if word returned ==

V=0

C=0
Exceptions normal exception (invalid descriptor and external memory)
Example MOVTRW X,%r0
Notes Opcode occupies 8 bits.

When MOVTRW is executed in virtual mode with the WE 32101
Memory Management Unit present, the address is translated to the
corresponding physical address. If there is no exception, the MMU
returns the translated physical address, which is then stored at the
destination. If there is an exception, the MMU notifies the CPU in the
normal fashion.

4-60

MOVTRW

MOVTRW

When MOVTRW is executed in physical mode with the WE 32101
Memory Management Unit present, the MMU will behave as if a read
operation in physical mode is taking place.

In systems without an MMU, some other device must respond to the
MT access.

The source operand is an address of operand. The destination operand
is of the type word. If &src is not a word address, a normal exception
(external memory) will occur.

During an MOVTRW instruction, the status pins identify the memory
access as being MT.

4-61

RETG RETG

Return from Gate

Assembler RETG

Syntax

Opcode 0x3045

Description This instruction can be used to return from a GATE, normal exception,

or quick interrupt. The PC and PSW values to return to are popped
from the execution stack, the current and new execution levels are
compared to prevent a return to a higher execution level, and then the
new values are put into the PC and PSW registers.

Operands None

Operation /* get old PC/PSW values from execution stack */
tempa = *(SP - 4)
tempb = *(SP -8)
if(memory-exception)
stack-exception (stack)

/* compare execution levels to prevent return to a higher execution
level. */
if(tempa<CM> < PSW<CM>)

normal-exception (illegal-level-change)

/* New PSW keeps same IPL/CFD/QIE/CD/R values as current
PSW. */

tempa<IPL> = PSW<IPL>

tempa<CFD> = PSW <CFD>

tempa <QIE> = PSW<QIE>

tempa<CD> = PSW<CD>

tempa<R> = PSW<R>

/* set new PSW ISC/TM/ET to 7/0/3, respectively */
tempa<ISC> =7

tempa<TM> = 0 /* avoids RETG trace trap */
tempa<ET> =3

/* put new PC/PSW values into PC/PSW registers */
PSW = tempa
PC = tempb

/* finish pop of old PC and PSW */
SP =SP-8

{end of operation}

4-62

RETG

Address
Modes

Condition
Flags

Exceptions

Example

Notes

None

Set by new PSW

normal exception (illegal level change)
stack exception (stack)

RETG

Opcode occupies 16 bits

RETG

4-63

OPERATING SYSTEM CONSIDERATIONS
Microsequences

4.8.4 Microsequences

The microsequences represent built-in microprocessor functions. These are executed
automatically when the processor accepts an interrupt, generates an exception, or
acknowledges a reset request. The XSWITCH functions are called by some operating
system instructions and the microsequences.

4-64

ON-NORMAL EXCEPTION ON-NORMAL EXCEPTION

On-Normal Exception

Description

Operation

A normal exception is caused by some action of the current process,
such as execution of an illegal opcode, and it causes the CPU to
perform the following GATE-like actions. This sequence is identical to
that of GATE except that zero (instead of r0) is used as the offset into
the first-level table (index1), and the ISC value (instead of r1) is used
as the offset into the second-level table (index2).

A RETG instruction can be used to return from a normal exception.

/* When reading from the PCB in the following two operations, a
memory exception causes a process exception (gate PCB).

Check SP against stack bounds in PCB. */
{force kernel level on memory accesses)
if(SP < *(PCBP + 12))

stack-exception (stack-bound)
if(SP >= *(PCBP + 16))

stack-exception (stack-bound)
{unforce kernel level on memory accesses}

/* When writing to the stack in the following two operations, a memory
exception causes a stack exception (stack).

Save old PC and PSW on execution stack. */
*SP = PC

/* set PSW TM/ET to 0/3, respectively */
PSW<TM> =0

PSW<ET> =3 /* normal exception */
*(SP + 4) = PSW

/* set temp registers to GATE table index values */
tempa = 0
tempb = PSW<ISC> << 3

/* A memory exception from here to the end of the microsequence
causes a reset exception (gate vector).

4-65

ON-NORMAL EXCEPTION ON-NORMAL EXCEPTION

Get new PC and PSW values from table. */
{force kernel level on memory accesses}

/* get pointer into second-level table */
tempa = *tempa

/* add offset within second-level table */
tempa = tempa + tempb

/* get new PSW from second-level table */
tempb = *tempa

/* set PM in new PSW */

tempb<PM> = PSW<CM>

/* set new PSW ISC/TM/ET to 7/1/3, respectively */
tempb<ISC> =7

tempb<TM> =1

tempb<ET> =3

/* put new PC/PSW values into PC/PSW registers */
PC = *(tempa + 4) /* get new PC */
PSW = tempb

/* finish push of old PC and PSW */
SP=SP + 8

{unforce kernel level on memory accesses)
{end of operation}

Condition Set by new PSW
Flags
Exceptions stack exception (stack-bound and stack)

process exception (gate PCB)
reset exception (gate vector)

Notes The value of the ISC field of the PSW is the identity of the normal
exception. See Table 4-5 for a list of normal exceptions. The ISC field
of the saved PSW contains this code.

Some exceptions set the condition flags as if the instruction that caused
the exception was successfully completed.

4-66

ON-STACK EXCEPTION

ON-STACK EXCEPTION

On-Stack Exception

Description

Operation

A stack exception is caused by discovery of a stack-bound violation
during a GATE or normal exception. Such an event causes the CPU to
perform the following process switching action, similar to a CALLPS
instruction except that the new PCBP is obtained from a fixed address
instead of from r0.

A RETPS instruction can be used to return from the stack exception
handler process.

/* Get new PCBP value from fixed address */
{force kernel level on memory accesses}
tempa = *136 /* 88 hex */
if (memory-exception)
reset-exception (system-data)

/* push old PCBP onto interrupt stack :/
*ISP++ = PCBP
if (memory-exception)

reset-exception (interrupt-stack)

/* Any memory exception in the first XSWITCH microsequence will
cause a process exception (old PCB). */
PSW<ET> =2 /* stack exception */
PSW < ISC> = code for cause of exception
/* save current registers in current PCB */
XSWITCH_ONEQ
/* XSWITCH_ONE performs the following operation */
*(PCBP + 4) = PC
PSW<R> = *tempa<R>
*PCBP = PSW
*(PCBP + 8) = SP
if(PSW<R>) {
*(PCBP + 20) = AP
*(PCBP + 24) = FP
*(PCli’»P +28) =10

|

|
*(PCBP + 60) = 18
FP = PCBP + 52

4-67

ON-STACK EXCEPTION ON-STACK EXCEPTION

Condition
Flags

Exceptions

Notes

4-68

/* Any memory exception in the following XSWITCH
microsequence will cause a process exception (new PCB).

Put new PCBP value in PCBP register and get new PC, PSW, and
SP. */
XSWITCH_TWOQ
/* XSWITCH_TWO performs the following operation */
PCBP = tempa
PSW = *PCBP /* PSW<R/ISC/TM/ET> unchanged here */
PSW<TM> =0
PC = *(PCBP + 4)
SP = *(PCBP + 8)
if(PSW<I>) {
PSW<I> =0
PCBP = PCBP + 12
}
if(PSW<CFD> == 0)
{flush instruction cache}

/* set new PSW ISC/TM/ET to 7/0/3, respectively */
PSW<ISC> =7

PSW<TM> =0 /* prevent trace trap */
PSW<ET> =3

{unforce kernel level on memory accesses}
{end of operation}

Set by the new PSW

process exception (old PCB and new PCB)
reset exception (interrupt stack and system data)

The ISC field of the saved PSW contains the code that caused the stack
exception.

ON-PROCESS EXCEPTION ON-PROCESS EXCEPTION

On-Process Exception

Description A process exception is caused by a memory exception while accessing a
PCB. Such an event causes the CPU to perform the following process
switching action, similar to a CALLPS instruction except that there is
no attempt to save the context of the current process (except for its
PCBP value), and the new PCBP value is obtained from a fixed address
instead of from r0.

There is no automatic way to return from a process exception because
the exception is caused when there is a fatal error in the old process.
The operating system is expected to choose some other process to invoke
or return to.

Operation /* Get new PCBP from fixed address. */
{force kernel level on memory accesses}
tempa = *132 /* 84 hex */
if(memory-exception)

reset-exception(system-data)

/* push old PCBP onto interrupt stack */
*ISP++ = PCBP
if (memory-exception)

reset-exception (interrupt-stack)

/* Any memory exception in the XSWITCH microsequence will cause
a reset exception (new PCB).

Put new PCBP value in PCBP register and get new PC, PSW, and SP.
*/
XSWITCH_TWOO0
/* XSWITCH_TWO performs the following operation */
PCBP = tempa
PSW = *PCBP /* PSW <R/ISC/TM/ET> unchanged here */
PSW<TM> =0
PC = *(PCBP + 4)
SP = *(PCBP + 8)
if(PSW <I>) {
PSW<I> =0
PCBP = PCBP + 12
}
if(PSW <CFD> == 0)
{flush instruction cache}

4-69

ON-PROCESS EXCEPTION ON-PROCESS EXCEPTION

/* set new PSW TM/ET to 0/3, respectively */
PSW<TM> =0 /* prevent trace trap */
PSW<ET> =3

{unforce kernel level on memory accesses)
{end of operation}

Condition Set by new PSW

Flags

Exceptions reset exception (system data, interrupt stack, and new PCB)

Notes The ISC field of the PSW presented to the exception handling process

will contain the code corresponding to the condition that caused the
process exception.

4-70

ON-RESET EXCEPTION ON-RESET EXCEPTION

On-Reset Exception

Description

Operation

A reset exception is caused by an external reset request or by an
exception while accessing the interrupt stack, the GATE tables, or the
interrupt tables. Such an event causes the CPU to go to physical
addressing mode, obtain a new PCBP value from a fixed address, and
set the PSW, PC, and SP registers from values in the new PCB. No
information from the current (old) context is saved because the CPU
may be powering up for the first time or else the old software context
was so damaged that it caused a reset exception.

{flush instruction cache}

if (external-reset)
PSW<R> =0

{force kernel level on memory accesses}

/* force physical mode */
{Set VAD pin to one}

/* get new PCBP from fixed address */
tempa = *128 /* 80 hex */
if(memory-exception)

reset-exception (system-data)

/* Any memory exception in the XSWITCH microsequence will cause
a reset exception (new PCB).

Put new PCBP value in PCBP register and get new PC, PSW, and SP
values. */
XSWITCH_TWO(
/* XSWITCH_TWO performs the following operations */
PCBP = tempa
PSW = *PCBP /* PSW <R/ISC/TM/ET> unchanged here */
PSW<TM> =0
PC = *(PCBP + 4)
SP = *(PCBP + 8)
if(PSW <I>) {
PSW<I> =0
PCBP = PCBP + 12

if(PSW <CFD> == 0)
{flush instruction cache}

4-71

ON-RESET EXCEPTION ON-RESET EXCEPTION

Condition
Flags

Exceptions

Notes

4-72

/* set new PSW TM/ET to 0/3, respectively */
PSW<TM> =0 /* prevent trace trap */
PSW<ET> =3

{unforce kernel level on memory accesses)
{end of operation}

Set by new PSW

reset exception (system data and new PCB)

The ISC field of the PSW presented to the exception handling process
will contain the code corresponding to the condition that caused the
reset exception.

ON-INTERRUPT ON-INTERRUPT

On-Interrupt

Description

Operation

An interrupt is triggered by a request from external hardware and
causes the CPU to perform a process switch or a GATE-like action
(depending on the value of PSW <QIE>).

For full (QIE==0) interrupts, the on-interrupt microsequence
implements a process switch to the process represented by the PCBP
value stored at location (140+(4*Interrupt-1D)), where Interrupt-ID is
an 8-bit value fetched during an interrupt acknowledge access.

For quick (QIE==1) interrupts, the on-interrupt microsequence
implements a GATE-like PSW/PC switch, pushing the old PSW and
PC onto the execution stack and fetching new PSW and PC values from
locations (1164+(8*Interrupt-ID)) and (1164+(8*Interrupt-ID)+4),
respectively. However, quick interrupt does not perform any stack
bounds check, so it should not be used with an untrusted user process,
which may have a bad value in SP. Unlike GATE, quick interrupt does
update the PSW <IPL> field to act.

If an interrupt request is granted and auto-vectoring is requested (via
the AVEC pin), an auto-vector interrupt acknowledge cycle is
performed and no Interrupt-ID is fetched. The complement of the
value of the interrupt option pin concatenated with the priority level at
which the interrupt was requested is used as the Interrupt-ID. That is,
bits 0—3 of the ID correspond to the requested level, bit 4 corresponds
to the interrupt option pin, and bits 5—7 are zeros.

If a nonmaskable interrupt request is received (via the NMINT pin), an
auto-vector interrupt acknowledge cycle is performed (as if an
autovector interrupt at level 0 was being acknowledged) and no
Interrupt-ID is fetched. The value 0 is used as the ID.

{Get interrupt-ID value via interrupt acknowledge bus cycle}
tempa = interrupt-ID
if(memory-exception)

stack-exception (interrupt-1D-fetch)

/* test for full or quick interrupt */
if(PSW<QIE>==1)
goto QINT /* quick interrupt */

/* it is a full interrupt */

4-73

ON-INTERRUPT ON-INTERRUPT

/* get new PCBP from full interrupt table */
{force kernel level on memory accesses}
tempa = *(140 + tempa * 4) /* 8C+tempa*4 hex */
if (memory-exception)
reset-exception (system-data)

/* push old PCBP onto interrupt stack */

*ISP++ = PCBP
if (memory-exception)
reset-exception (interrupt-stack)

/* Any memory exception in the first XSWITCH microsequence will
cause a process exception (old PCB).

Set old PSW ISC/TM/ET to 0/0/1, respectively. */
PSW<ISC> =0
PSW<TM> =0
PSW<ET> =1

/* save current registers in current PCB */
XSWITCH_ONEQ
/* XSWITCH_ONE performs the following operations */
*(PCBP + 4) = PC
PSW<R> = *tempa<R>
*PCBP = PSW
*(PCBP + 8) = SP
if(PSW<R>) {
*(PCBP + 20) = AP
*(PCBP + 24) = FP
*(PC]IBP +28) =r0

|
*(PCBP + 60) =18
FP = PCBP + 52

/* Any memory exception in the following XSWITCH microsequences
will cause a process exception (new PCB).

474

ON-INTERRUPT ON-INTERRUPT

Put new PCBP value in PCBP register and get new PC, PSW, and
SP values. */
XSWITCH_TWOQ
/* XSWITCH_TWO performs the following operations */
PCBP = tempa
PSW = *PCBP /* PSW<R/ISC/TM/ET> unchanged here */
PSW<TM> =0
PC = *(PCBP + 4)
SP = *(PCBP + 8)
if(PSW<I1>) {
PSW<I> =0
] PCBP = PCBP + 12
if(PSW <CFD> == 0)
{flush instruction cache}

/* set new PSW ISC/TM/ET to 7/0/3, respectively */
PSW<ISC> =7

PSW<TM> =0 /* prevent trace trap */
PSW<ET> =3

/* do block moves, if R-bit set (1) */
XSWITCH_THREE(
/* XSWITCH_THREE performs the following operations */
if(PSW<R>) {

r0 = PCBP + 64

r2 = *r0++

while(r2 !=0) {
rl = *r0++
{execute MOVBLW instruction}
r2 = *r0++

)

0=10+4

}

{unforce kernel level on memory accesses}
{end of operation}

QINT: /* it is a quick interrupt */

/* Put address of new PC and PSW pair in quick interrupt table into
tempa. */

tempa = 1164 + tempa * 8 /* 48C+tempa*8 hex */

/* When writing to the execution stack in the following two operations,

a memory exception causes a stack exception (stack).

4-75

ON-INTERRUPT ON-INTERRUPT

Save old PC and PSW on execution stack.

Note: No stack bounds check. */

SP = PC / address of next instruction */

/* set PSW ISC/TMV/ET to 1/0/2, respectively */
PSW<ISC> =1

PSW<TM> =0

PSW<ET> =2

/* push PSW */

*(SP + 4) = PSW

/* A memory exception from here until the end of the microsequence
causes a normal exception (gate vector).

Get new PC and PSW values from table. */

{force kernel level on memory accesses)

tempb = *tempa

/* adjust previous execution level in new PSW */
tempb<PM> = PSW<CM>

/* set new PSW IPL to 15 */

tempb<IPL> = 15

/* new PSW ISC/TM/ET values same as old values */
tempb<ISC> = PSW<ISC>

tempb<TM> = PSW<TM>

tempb<ET> = PSW<ET>

/* put new PC/PSW values into PC/PSW registers */
PSW = tempb

PC = *(tempa + 4)

/* finish push of old PC and PSW */
SP=SP + 8

{unforce kernel level on memory accesses}
{end of operation}

Condition Set by new PSW
Flags
Exceptions normal exception (gate vector)

stack exception (stack and interrupt-ID fetch)
process exception (old PCB and new PCB)
reset exception (system data and interrupt stack)

Notes The interrupt-ID fetch is 8 bits, and is zero-extended to 32 bits in
tempa.

4-76

XSWITCH XSWITCH
XSWITCH Microsequences

Description These microsequences implement context-switching. They are used, in
various combinations, by the instructions CALLPS and RETPS and by
the implicit microsequences On-Interrupt, On-Process, On-Stack, and
On-Reset.

XSWITCH_ONE performs a context save, saving the current registers
in the current PCB. XSWITCH_TWO performs a context switch,
putting a new value in the PCBP register and reading the new PSW,
SP, and PC values from the new PCB. XSWITCH_THREE performs
block moves specified in the PCB.

The action taken when a memory exception is encountered in the
XSWITCH microsequences is determined by the calling sequence.

Operation /* Save current registers in current PCB. One argument: tempa is
expected to contain new PCBP value. */

XSWITCH_ONE:

/* save current PC in PCB */
*(PCBP + 4) = PC

/* copy R-bit from new PSW to current PSW */ -
PSW<R> = *tempa<R>

/* save current PSW and SP in PCB */
*PCBP = PSW
*(PCBP + 8) = SP

/* if R-bit==1, save current r0-r8/FP/AP in PCB */
if(PSW<R>) {
*(PCBP + 20) = AP

*(PCBP + 24) = FP
*(PCBP + 28) =r0
|

I

|
*(PCBP + 60) = r8
FP = PCBP + 52

return

4-77

XSWITCH

4-78

XSWITCH

/* Put new PCBP in PCBP register and get new PC, PSW, and SP.
One argument: tempa is expected to contain new PCBP value. */

XSWITCH_TWO:

/* put new PCBP value into PCBP register */
PCBP = tempa

/* put new PSW, PC, and SP values from PCB into registers */
PSW = *PCBP /* PSW <R/ISC/TM/ET> unchanged here */
PSW<TM> =0

PC = *(PCBP + 4)

SP = *(PCBP + 8)

/* if I-bit==1, increment PCBP past initial context area */
if(PSW<I>) {
/* clear I-bit in PSW register */
PSW<I> =0
/* increment PCBP past initial context area */
PCBP = PCBP + 12
}

/* if cache flushing not disabled, flush cache */
if(PSW<CFD> == 0)
{flush instruction cache}

return

XSWITCH XSWITCH
/* do block moves, if PSW <R>==1 */
XSWITCH_THREE:
if(PSW<R>) {

/* get address of blockO size */
r0 = PCBP + 64

/* get blockO size */
r2 = *r0++

/* while block size != 0 */

while(r2 1= 0) {
/* get destination start address */
rl = *r0++
/* do one block copy */
{execute MOVBLW instruction}
/* get size of next block */
r2 = *r0++

}

r0=r0+4
}

return

4-79

Chapter 5

Software Generation Programs
(Version SVR2.0)

CHAPTER 5. SOFTWARE GENERATION PROGRAMS
(VERSION SVR 2.0)

CONTENTS
5. INTRODUCTION TO THE 5.2.2 Assembly Languagec.ccocervienee 5-22
SOFTWARE GENERATION Statementsocoeereeveeecrievrneereannes
PROGRAMSoorceerevraenins Symbols.....ccererereenene
Distinctive SGP Features Values and Types
Host Computers......cococeeemvenvurrcrennnes Assigning Values and Types
5.1 COMPILER AND THE C t0 Symbols......ccvevereiiinniiicnnan, 5-25
LANGUAGE.....ccccovririnranenne. 5-3 Constants
5.1.1 Compiler ...oveveverrviecrrririerecnrinerinens 5-3 Location Counter........cooereersrerenne 5-25
Compiler Optionscecereeereenenne 5-4 RegiSters .oovovveivnnernerececnicnninnae 5-26
Register Usagecc.covveerneenrennns 5-6 Executable Instructions.... 5-27
5.1.2 C Languagecocccouevrerverrcsnsirnenes 5-6 Operandsc..covvereererenannne 5-28
Flexnames.......cccouvuevnverererrenanae 5-7 Expressions... v 5-30
Enumerations........c.cooveveeernnnes 5-7 Assembler Directives......cccceeueuee. 5-31
Structure Assignment................. 5-9 Section Control Pseudo
Nonunique Structure Member Operations........ceevcrvvverernsnvreenne 5-31
NameSs ...coveviiiimirnceeniieeceens 5-9 Pseudo Operations Dealing
Former Member Name With Symbolsc.ccoovveveerereneen 5-33
ReESLrCtIONS ..eveeveeveericescerrereans 5-10 Assignment Pseudo Operation... 5-33
New Flexibility for Member Assignment to Dot.......ccecevveenns 5-34
NAMES veveeeirrereeiresicenesiaenees 5-10 Alignment Pseudo Operation 5-35
Complete Structure and Union Data Generation Pseudo
Member Reference Operationscoeeeeneerverrsensuenee 5-35
Qualificationsoccceevveerernrenes 5-11 Symbolic Debugging Pseudo
Nonunique Tag Names Operationscoeeereverererueverens 5-36
Allowedo.coevveviriienninienaianns 5-12 File Name Pseudo Operation.... 5-37
Vertical Tab Character Line Number Pseudo
Literal ..cooeeirecrnncnceirncnsennes 5-13 Operationevveriirecnnns
In-Line Procedure Expansion..... 5-13 Function Calling Sequence..........
5.2 ASSEMBLER AND ASSEMBLY Stack Frame......cococerevvvirrcvencns
LANGUAGE.....ccoommimneriiiennen Actions of Calling Function.... 5-39
5.2.1 Assembler Actions of Called Function...... 5-39
Assembled Files 5.2.3 Exception Conditionsc.ceeveene
Diagnostics............ rrareneeaes 5.2.4 Programming Example
Macro Processing Facilities......... 5-16 5.2.5 Machine Independent
Interface Macros......cceveeevecrnenenes 5-17 Instruction Setcccomvrninnirnnne 5-45
Function Interface Macros........ 5-18 5.3 LINK EDITORccccoecovvvvruerrrneene 5-48
Scratch Register Macros 5-19 5.3.1 Link Editor Command................. 5-48
Stack Frame Macrosc.co.ce... Command Line Options 5-50
Restrictions......oecerererenaeen 5.3.2 Link Editor Command Language. 5-51
Using Predefined Macros.... EXPressions. ... ceeereererveesenceraeone
Examplesccocreerencnnnnn. Assignment Statements ...
M4 Reserved Words.....coccoverevne Memory Configurations

CONTENTS

Section Definition Directives....... 5-55
Virtual Address and Bindings... 5-56
File Specifications........c.cccccoeun. 5-56
Load a Section at a Specified

AdAress....ccovveirecereninrinrecienenns 5-57
Aligning an Output Section 5-57
Grouping Sections Together...... 5-58
Creating Holes Within Output

SeCtions ...ceueeveieeereereeieneerennns 5-59
Creating and Defining Symbols

at Link-Edit Time......c.ccceuuee 5-60
Allocating a Section Into

Named Memory.......cccceeverenene 5-61
Initialized Section Holes or

BSS Sections......ccccocevervevrenne 5-61

Notes on the Use of m32ld 5-62
Changing the Entry Point 5-62
Use of Archive Libraries........... 5-63
Dealing with Holes in

Physical Memorycccccoveenee

Allocation Algorithm
Subsystems (Incremental)
Link Editing.....cccooeeeevenerrennnnnne
Nonrelocatable Input Files........ 5-67
DSECT, COPY and
NLOAD Sectionscocceeruennnen
Output File Blocking
5.3.3 Error Messages.....c.coeeverirucerenennene
Corrupt Input Files.........
Errors During Output
Internal Errors.....
Allocation Errors
Misuse of Link Editor

Directivescocceveeerveccercvunceanennnns 5-71
Misuse of Expressions 5-72
Misuse of Options...........

Space Restraints.......cceeeveerevunnes

Miscellaneous Errors
5.3.4 Syntax Diagram for Input
Directives

Optional Header Information....
Standard UNILX System a.out
Header........ccccorvmvvrvrccncensennnn.

5.4.3 Section Header Table................... 5-81
Flags .ccooveviineeiniennneicnienceas 5-82

.bss Section Headerc..cevuenec. 5-82

5.4.4 SeCtiONS......ccovveeerereiierierereesraenines 5-82
5.4.5 Relocation Information................ 5-83
5.4.6 Line Numbersc.ccocovveveevvreennnenns 5-84
5.4.7 Symbol Tablecccoccrveereenannnne. 5-84
Special Symbols.......cccccerervernennen. 5-84

Inner Blocks.....cccceeveeveeivreennnnn. 5-86
Symbols for Functions............... 5-89
Symbol Table Entries................... 5-89
Symbol Name Field (n_name).. 5-90

Symbol Value Field and
Storage Classes (n_value) 5-90
Section Number Field
(n_scnum)oovevevreveenrernenn
Type Field (n_type)
Structure for Symbol Table

EDtry e 5-97
Auxiliary Table Entries............. 5-97
File Names......ccoccoeecvveeeruennenns 5-98
SeCtionsccevereereerereeresreerueraens 5-98
Tag Names.......ccocevevererervernens 5-99
End of Structures........cccocune.. 5-99
Functions......cccoeeevnverierccrenene 5-99
ATTAYS ot caeeenees 5-99
End of Blocks and Functions... 5-100
Beginning of Blocks and
Functions.......ccccveecvvcercnrecnennen 5-100

Names Related to Structures,

Unions, and Enumerations.... 5-100
5.4.8 String Tableccoevververcrenierinnen 5-101

5.5 UTILITIES AND LIBRARY
ROUTINES.......coooeeeteeeeececneeeee
5.5.1 Utility Programs.......cccoeeererueuenene
M32AT cveieieeeerreenierreierreeireaeinnenans
M32CONVETt...uereirerrerreraerrerareerananes

m32conv

m32cprs...
m32dis.........

m32size ...
M32SITIP cuovcernencercnrcesnenconeericonsens

CONTENTS

5.5.2 ACCESSING LIDTATY c.cveuiireerrereniinieetse st st cnsesaeresensassesssseseesestssensenseseseasenssesesenens 5-117
Use of the Accessing LiBIary ... 5-117

Library Functions and Macros ... 5-118
Functions That Open or Close Object Files....... . 5-118
Functions That Read.........cccovunnne. . 5-120
Functions That Seekc.oovvivniiniiiiminnieniinns .. 5-120
Function That Returns the Index of a Symbol Table Entry........coeevivninncns 5-120
MACTOS .ottt ettt b s et b R e sr b 5-121

5.5.3 General-Purpose LIDIary.....cooieiniieersincscnassesaonasies 5-121

Use of the General-Purpose Library 5-121
Routines in the General-Purpose Library e 52122
Routines Required When Using printf and scanf...
5.6 SGP MANUAL PAGES ..ottt essssaossassesssessanss 5-123

SOFTWARE GENERATION PROGRAMS
Distinctive SGP Features

5. INTRODUCTION TO THE SOFTWARE GENERATION PROGRAMS

The WE 321SG Software Generation Programs is a package of support software tools used
to create and test programs for the WE 32100 Microprocessor. The SGP runs under the
UNIX Operating System and uses many features of the UNIX System shell. The SGP
makes possible high-level program coding and source-level testing of this code. This
improves programming productivity by freeing programmers from hardware architectural
details.

Since the SGP resides on a host UNIX Operating System, almost all user interaction with
the WE 32100 Microprocessor goes through the host computer. The SGP imposes no
convention on how the host computer ultimately communicates with the target WE 32100
Microprocessor.

The SGP frees programmers from the tedious task of machine-level coding and its pitfalls.
The SGP provides symbolic programming on several levels and simplifies programming
tasks by:

o Allowing programs to be portable across systems

e Making detailed knowledge of the WE 32100 Microprocessor architecture, I/0, and the
operating system unnecessary.

Programs can be written in the lower-level assembly language, but need not be unless low-
level data representations or low-level system functions must be accessed. Assembly
language programming is used for applications requiring high levels of efficiency, or in
cases where the higher-level language prevents access to data or to functions.

The C language is used as the high-level programming language. It contains a collection
of control- and data-structuring facilities that greatly simplify programming tasks. Within
the SGP, the C compiler (m32cc) converts C programs into assembly language programs
that are ultimately translated into object files by the assembler (m32as). The link editor
(m321d) collects and merges object files into executable load files. Each of these tools
preserves all symbolic information necessary for meaningful symbolic testing at the C
language source level. The SGP also provides a variety of utilities that read and
manipulate object files.

Figure 5-1 shows the overall organization of the SGP. This organization conceptually
parallels the C language support features of the UNLX Operating System.
Distinctive SGP Features

Distinctive features of the SGP tools are:
o All are designed to create and retain symbolic debugging information.

e A standard, common object file format is used.

SOFTWARE GENERATION PROGRAMS
Host Computers

(ASSEMBLY ASSEMBLY
<C SOURCE < C SOURCE < o o o < SOURCE << SOURCE <

COMPILER ASSEMBLER

RELOCATABLE
OBJECT
FILE

RELOCATABLE
OBJECT
FILE

! v OPTIONAL

RUN-TIME Sk | [LINK EDITOR
LIBRARIES | EDITOR COMMANDS

LOAD FILE
OR
RELOCATABLE
EXECUTABLE
OBJECT FILE

Figure 5-1. Major Steps in the SGP

The SGP emphasizes the generation and retention of symbolic debugging information.
Table 5-1 lists the SGP tools described in this chapter. Also discussed are C language,
assembly language, link-editor command language, and object file format.

Host Computers

The SGP runs under the UNIX Operating System, which in turn runs on a host computer.
The host computer with the UNIX Operating System supports development of software for
a target processor; in this case, the target is the WE 32100 Microprocessor. Other possible
hosts for the UNILX Operating System and the SGP are:

e AT&T 3B20S Computer and AT&T 3B5 Computer
e Digital/Equipment Corporation ¥AX 11/780 Computer
e /BM 370 Computer running the "MAXI" version of the UNIX Operating System.

5-2

SOFTWARE GENERATION PROGRAMS
Compiler

5.1 COMPILER AND THE C LANGUAGE

The C language is used for high-level programming and contains many control and
structuring facilities that greatly simplify the task of algorithm construction. The C
compiler (m32cc) converts C programs into assembly-language programs. Outputs the
current on-line manual page for the compiler.

Table 5-1. SGP Tools

Tool Description

m32ar Combines several files into one archive file.

m32convert | Converts object and archive files into common object file format

m32cc C Compiler

m32as Assembler

m32ld Link Editor

m32conv Converts object files from one host machine format to another
host machine format.

m32cprs Compresses object files by removing duplicate structure and
union descriptors.

m32dis Disassembles object files to allow assembly-level debugging.

m32dump Dumps selected parts of the named object files.

m32list Produces a C language source list with line numbers that specify
where breakpoints can be inserted.

m32lorder Generates an ordered listing of object files suitable for link
editing in one pass, as done by m32ld.

m32nm Prints the symbol table for an object file.

m32size Reports the number of bytes of text, uninitialized data, and
initialized data (and their sum) included in an object file.

m32strip Reduces file storage overhead by removing symbolic debugging
information from an object file.

5.1.1 Compiler

The command for the compiler is m32cc. Prior to using the compiler, a file containing C
source code is created using the UNIX Text Editor. The name of the file must end with
the last two characters .c (e.g., filel.c). The command line

m32cc options file.c

is then entered to invoke the compiler on the C source file file.c with the appropriate
options selected from Table 5-2. The compilation process creates an absolute binary file
named m32a.out that reflects the contents of file.c and any referenced (user-supplied)
library routines. The file, m32a.out, can then be executed on the target system.

options control the steps in the compilation process. When none of the controlling options
are used, the m32cc compiler automatically calls the m32as assembler, and the m32ld link
editor (see Figure 5-1).

SOFTWARE GENERATION PROGRAMS
Compiler Options

5-4

The m32cc compiler also accepts input file names ending with the last two characters .s.
The .s signifies a source file in assembly language. The m32cc compiler passes this type of
file directly to m32as.

The m32cc compiler, based on a portable C compiler, translates C source files into
assembly code. Whenever the command m32cc is used, the C preprocessor is called. The
preprocessor performs file inclusion and macro substitution. The preprocessor is always
invoked by m32cc and not called directly by the programmer. The expanded files are
translated from C language to assembly code. Then, unless the appropriate flags are set,
m32cc calls the assembler, optimizer, and the link editor to produce an executable file.

Compiler Options

All options recognized by the m32cc command are listed in Table 5-2 and on the manual
page in 5.6 SGP MANUAL PAGES. The following provides additional information for
those options not completely described in Table 5-2.

By using appropriate options, compilation can be terminated early to produce one of several
intermediate translations such as relocatable object files (—c option), assembly source
expansions for C code (—S option), or the output of the preprocessor (—P option).
Generally, the intermediate files may be saved and later resubmitted to m32cc with other
files or libraries included as necessary.

When compiling C source files, the most common practice is to use the —c option to save
relocatable files. Subsequent changes to one file do not require that the others be
recompiled. A separate call to m32cc without the —c option creates the linked, executable
m32a.out file. A relocatable object file created under the —c¢ option is named by replacing
.c with .0 of the source filename.

The —W option provides the mechanism to specify options for each step that is normally
invoked from the m32cc command line. These steps are:

® Preprocessing ©® Compiler @ Optimization ® Assembly © Link editing

The most common example of the use of the —W option is
—Wa,—m

which passes the —m option to the assembler. Specifying —W/,—m passes the —m option to
the link editor.

When the —P option is used, the compilation process stops after completing only
preprocessing, with output left in file.i. This file is unsuitable for subsequent processing by
m32cc.

The —O option decreases the size and increases the execution speed of programs by
moving, modifying, merging, and deleting code. However, line numbers used for symbolic
debugging may be transposed when the optimizer is used.

SOFTWARE GENERATION PROGRAMS
Compiler Options

Table 5-2.

m32cc Command Line Options

Option

Argument

Description

—C

None

Suppress the link-editing phase of compilation and
force an object file to be produced even if only one
file is compiled.

-2

None

Produce symbolic debugging information.

—p

None

Reserved for invoking a profiler.

-D

identifierl=constant]

Define the external symbol identifier to the pre-
processor and give it the value constant (if specified).
See Note.

None

Suppress compilation and loading; i.e., invoke only
preprocessor and direct the output to the
standard output.

directory

Change the algorithm that searches for #include
files whose names do not begin with "/" to look in
the named directory before looking in the

directories on the standard list. Thus, #include files
whose names are enclosed in " " are first searched
for in the directory of the file being compiled, then
in directories named by the —I options, and last in
directories on the standard list. For #include files
whose names are enclosed in <>, the directory

of the file argument is not searched. See Note.

None

Invoke an object code optimizer.

None

Same as the —E option except output is directed to
corresponding files suffixed .i.

None

Compile the named C language programs, and
leave the assembly-language output on corre-
sponding files suffixed .s.

identifier

Undefine the named identifier to the preprocessor.
See Note.

None

Print versions of m32cc and tools it invokes.

limit

Allow user to set limit on the percent growth per
file from in-line expansion. Values for limit are: u,
allows unlimited growth; integer = 0, allows
indicated percent growth; s, suppresses in-line
procedure expansion.

cargll,arg2..]

Pass along the argument(s) argi to pass ¢, where ¢
is one of [p02all, indicating preprocessor, compiler,
or link editor, respectively. See Note.

Note:

Argument is appended to option with no embedded blanks.

SOFTWARE GENERATION PROGRAMS
Register Usage

5-6

If an asm instruction is encountered under the —O option, the optimizer suppresses
optimization of any function containing an asm.

The —g option produces information for a symbolic debugger. The SGP does not currently
support a symbolic debugger, but one may be available as part of an application.

Register Usage

With the —O option, the compiler and optimizer provide automatic global register
allocation on a procedural basis. Automatic allocation tries to move quantities to the
scratch registers that are not saved/restored during procedure call/return. Also, it
attempts to move quantities that cannot be placed in scratch registers into saved registers,
if there is a net payoff. The movement into registers is impeded by constraints that restrict
the registers’ quantities. First, quantities that can be addressed in more that one way
cannot be safely placed in registers. Second, scratch registers are changed by calls to
procedures or move block instructions. Third, the number of registers is finite. And
fourth, there is an overhead for using saved registers.

For most uses, the details of register usage or assignment are not needed by programmers.
Registers can be accessed through an assembler escape, although this practice is not
recommended. Registers have the following usage in the compiler:

® r0—r2 Scratch registers ® ap Argument Pointer @ fp Frame Pointer
® r3—r8 Saved register variables © sp Stack Pointer

Six saved register variables are allowed by m32cc and are assigned to r8—r3 in descending
order. If more than six registers are declared in a C source program, the compiler silently
assigns stack space instead.

Register 0 (r0) holds the return value from a function call. Registers 0 (r0) and 1 (r1)
hold the return value from a call to a double precision floating point function. For a
function returning a structure, r2 passes the address in which the returned structure value
should be stored. Function calls are assumed to require all scratch registers.

5.1.2 C Language

The C language used by the WE 32100 Microprocessor has features to accommodate both
systems and general-purpose programming. The version of C language used is the one
described in The C Programming Language by B. W. Kernighan and D. M. Ritchie
(Prentice-Hall, 1978), except that it includes recent enhancements to C language. This
section describes the extensions to C language not covered in Kernighan and Ritchie’s
book.

With the WE 32100 Microprocessor, C language data types map in the natural way for a
32-bit processor. That is, char maps to the processor type byte (8 bits), int and long map
to word (32 bits), and short to halfword (16 bits). The compiler also accepts floating point
data types. Codes for these data types assemble to opcodes which are illegal on the

WE 32100 Microprocessor. Applications can trap on these opcodes and provide emulation
of floating point operations.

SOFTWARE GENERATION PROGRAMS

Enumerations

C language leaves identification of the assembler escape keyword (asm) to the designer.
The asm has been implemented for m32cc with the syntax:

asm ("assembly instruction").
For example,
asm ("movw &0,% r0")

loads register r0 with a 0. The assembly language instruction within the quotation marks
is transmitted unchanged to the assembler.

The C language enhancements recognized by m32cc are:

© Flexnames ® Structure Assignments @ Functions returning structure values
© Enumarations @ Structure-valued arguments @ Nonunique structure member names

A detailed discussion of each enhancement follows. These details are not required by many
programmers, but are included to completely describe the C language used by the
processor.

Flexnames

Flexnames allow the use of arbitrary length variable names. The restriction of eight
significant characters for C language variable names is removed. To allow names of
arbitrary length, a string table was added to the object file, and the symbol table was
modified to support the string table (see 5.4 OBJECT FILE FORMAT).

Enumerations

Enumerations are unique data types with named constants. These partly replace the use of
#define constants and offer the advantage of scoped constant names and strong type
checking in the use of such names. Enumerations are analogous to the scalar types of the
Pascal language.

To the type-specifiers listed in Section 8.2 of The C Programming Language by Kernighan
and Ritchie, add:

enum-specifier
with the syntax

enum-specifier:
enum {enum—Ilist}
enum identifier {enum-list}
enum identifier

SOFTWARE GENERATION PROGRAMS

Enumerations
enum-list:
enumerator
enum-list , enumerator
enumerator:

identifier
identifier = constant-expression.

The role of the identifier in the enum-specifier is entirely analogous to that of the
structure-tag in a struct-specifier; it names a particular enumeration. For example,

enum color { red, green, yellow, blue };
enum color *cp, col;

col = yellow;
cp = & col;

if(*cp == green)...

makes color the enumeration-tag of a type describing various colors and then declares cp as
a pointer to an object of that type and col as an object of that type.

The identifiers in the enum-list are declared as constants and may appear whenever
constants are required. If no enumerators with "=" appear, then the values of the constants
begin at zero and increase by one, as the declaration is read from left to right. An
enumerator with "=" gives the associated identifier the value indicated; subsequent
identifiers continue the progression from the assigned value. For example,

enum interrupt{
halt =0,
bad_instr = 01001,
mem_fault,
div_zero = 02001,
overflow,
underflow

} icode;

if((int)icode & 02000)/* arithmetic fault */
illustrates specific value specification. In particular, the symbol overflow has the internal
value 02002.

All enumeration constants must be distinct. Unlike structure members, enumeration
constants are drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of
all other types. The compiler maps enumerations into the int storage class.

SOFTWARE GENERATION PROGRAMS

Nonunique Structure Member Names

Structure Assignment

Structure assignment was added to the C language to simplify the transferring of the value
of one structure instance to another, and to allow functions to return aggregate values.
Structure assignment permits more efficient use of the processor and also improves source
program readability.

Structures may be assigned as a unit, passed as arguments to functions, or returned by
functions. All structure operands taking part in these operations must be of the same type.
The following example demonstrates the new structure assignment features:

struct clock {

}.

struct date {

int hour, minute, second;

int year, month, day;
struct clock time;

%

struct clock now={13,2,36};

extern struct date spring();

struct date today, tomorrow;

struct date nextday(day) struct date day; {
struct date tempday;

return tempday;

}

main() {
today = spring();
tomorrow = nextday(today);
tomorrow.time = now;

Nonunique Structure Member Names

The current standard C language allows more flexibility in the reuse of structure member
and structure field names than the original. The C language now permits reuse of
structure member or field nam