
UNIX™ MICROSYSTEM

WE® 32100
MICROPROCESSOR
INFORMATION MANUAL

MAXI COMPUTING
IN

MICROSPACE

451-000
-AYlaY
~

~-:-~==========================:::;;---:;:..;.J

UNIX™ MICROSYSTEM

WE® 32100
MICROPROCESSOR
INFORMATION MANUAL

451-000

---~

ACKNOWLEDGEMENTS

Prepared and published by
Document Development Organization - Microelectronics Projects Group
AT&T Technologies, Inc., Morristown

for the

Microsystem Product Management
AT&T Technologies, Inc.

and the

4516 Microsystems Laboratory
AT&T Bell Laboratories, Holmdel

A WORD ABOUT TRADEMARKS

The following trademarks are mentioned in this manual:

W£® 32100 Microprocessor

W£® 32101 Memory Management Unit

W£® 32102 Clock

W£® 321AP Microprocessor Analysis Pod

W£® 321DS Microprocessor Development System

W£® 321EB Microprocessor Evaluation Board

W£® 321SD Development Software Programs

W£® 321SE Software Evaluation Program

W£® 321SG Software Generation Programs

are registered trademarks of AT&T Technologies, Inc.

AT&T 3B20S Computers is a trademark of AT&T.

UNIX™ Operating System is a trademark of AT&T Bell Laboratories.

PDp™ 11170 Computer and V AXTM 111780 Computer are trademarks of Digital
Equipment Corporation.

IBM® 370 Computer is a registered trademark of the IBM Corporation.

AT & T Technologies, Inc., reserves the right to make changes to the products(s) or circuit(s) described herein
without notice. No 6ahiJity is assumed as a result of their use or app6cation. No right under any patent
accompany the sale of any such product or circuit.

@ 1985 AT&T Technologies, Inc. AU Rights Reserved.
Printed in the United States of America

104287958
IM23210OCPU01l5

_ ATSaT

WE® 32H)0 Microprocessor

KmformatioHll MamliaR

The information contained herein is subject to change.

January 1985

FOREWORD

This manual contains information on the WE 32100 Microprocessor that is essential
to computer designers, software architects, and system design engineers. The support
software and development tools available simplify system integration for this complex
32-bit microprocessor. This issue contains a description of the version SVR2.0 of the
WE 321SG Software Generation Programs.

Additional information is available in the form of data sheets, application notes, and
on-line documentation from the UNIX Operating System.

For additional information contact your Sales Account Representative or call:
o Commercial sales: 1-800-372-2447
o AT&T and Associated Company sales: (215) 770-3204 or (CORNET) 8+624-3204.

To obtain additional copies of this manual, Select Code 451-000, call:
o 1-800-432-6600.

iii

WE 32100 MICROPROCESSOR INFORMATION MANUAL

CONTENTS

CHAPTER 1. INTRODUCTION

1. Introduction ... 1-1
1.1 Overview .. 1-1
1.2 Architecture .. 1-2
1.3 Instruction Set... 1-4
1.4 Operating System Support.. 1-4
1.5 Software Generation Programs... 1-5

CHAPTER 2. ARCHITECTURE AND BUS OPERATION

2. WE 32100 MICROPROCESSOR OVERVIEW .. 2-1
2.1 USER REGISTERS ... 2-3
2.1.1 General-Purpose Registers (rO-r8) .. 2-4
2.1.2 Frame Pointer ... 2-4
2.1.3 Argument Pointer ... 2-4
2.1.4 Processor Status Word.. 2-4
2.1.5 Stack Pointer ... 2-7
2.1.6 Process Control Block Pointer .. 2-7
2.1.7 Interrupt Stack Pointer ... 2-7
2.1.8 Program Counter .. 2-8
2.2 DATA HANDLING ... 2-8
2.2.1 Data Types .. 2-8
2.2.2 Data in Memory ... 2-10
2.2.3 Memory Management .. 2-10
2.3 SIGNAL SAMPLING POINTS ... 2-11
2.4 READ AND WRITE OPERATIONS .. 2-12
2.4.1 Read Transaction Using SRDY .. 2-13
2.4.2 Read Transaction Using DTACK ... 2-15
2.4.3 Read Transaction With Wait Cycle Using SRDY ... 2-16
2.4.4 Read Transaction With Two Wait Cycles Using DTACK 2-17
2.4.5 Write Transaction Using SRDY ... 2-18
2.4.6 Write Transaction Using DTACK .. 2-18
2.4.7 Write Transaction With Wait Cycle Using SRDY.. 2-18
2.4.8 Write Transaction With Wait Cycle Using DTACK ... 2-22
2.5 READ INTERLOCKED OPERATION ... 2-22
2.6 BLOCKFETCH OPERATION .. 2-25
2.6.1 Blockfetch Transaction Using SRDY ... 2-25
2.6.2 Blockfetch Transaction Using DTACK .. 2-27
2.6.3 Blockfetch Transaction Using DTACK With Wait Cycle On Second Word 2-28
2.6.4 Blockfetch Transaction Using SRDY With Wait Cycles On Both Words 2-29
2.7 BUS EXCEPTIONS ... 2-30

v

vi

2.7.1 Faults.. 2-30
Fault With SRDy... 2-32
Fault After DTACK.. 2-33

2.7.2 Retry ... 2-34
2.7.3 Relinquish and Retry ... 2-34
2.8 BLOCKFETCH SPECIAL CASES .. .,.. 2-37
2.8.1 Fault on First Word of Blockfetch With Status Code Other Than Prefetch 2-37
2.8.2 Fault on First Word of Blockfetch With Status of Prefetch 2-37
2.8.3 Retry on First Word of Blockfetch ... 2-37
2.8.4 Retry on Second Word of Blockfetch.. 2-37
2.8.5 Relinquish and Retry of Blockfetch .. 2-42
2.9 INTERRUPTS ... 2-42
2.9.1 Interrupt Acknowledge .. 2-42
2.9.2 Auto-vector Interrupt... 2-45
2.9.3 Nonmaskable Interrupt.. 2-45
2.9.4 Quick Interrupt .. 2-48
2.10 BUS ARBITRATION ... 2-48
2.10.1 Bus Request During a Bus Transaction .. 2-48
2.10.2 DMA Operation ... 2-51
2.11 RESET .. 2-52
2.11.1 System Reset .. 2-52
2.11.2 Internal Reset ... 2-52
2.11.3 Reset Sequence... 2-54
2.12 ABORTED MEMORY ACCESSES .. 2-54
2.12.1 Aborted Access on PC Discontinuity With Instruction Cache Hit.................... 2-55
2.12.2 Alignment Fault Bus Activity.. 2-56
2.13 SINGLE-STEP OPERATION .. 2-57
2.14 COPROCESSOR OPERATIONS .. 2-58
2.14.1 Coprocessor Broadcast ... 2-58
2.14.2 Coprocessor Operand Fetch... 2-63-
2.14.3 Coprocessor Status Fetch... 2-64
2.14.4 Coprocessor Data Write... 2-65
2.15 EXCEPTIONAL CONDITIONS ... 2-66
2.16 TRACE MECHANISM .. 2-69
2.17 PIN ASSIGNMENTS ... 2-70
2.18 MICROPROCESSOR OPERATING REQUIREMENTS 2-83
2.18.1 Electrical Requirements ... 2-84
2.18.2 Clocking Requirements .. 2-85
2.18.3 Thermal Requirements .. 2-85
2.19 SUPPLEMENTARY PROTOCOL DIAGRAMS ... 2-87

CHAPTER 3. INSTRUCTION SET AND ADDRESSING MODES

3. INSTRUCTION SET .. 3-1
3.1 DATA TyPES.. 3-1
3.1.1 Sign and Zero Extension .. 3-3
3.2 REGISTERS .. 3-3
3.2.1 Writing and Reading Registers ... 3-6
3.3 INSTRUCTION FORMAT .. 3-6
3.3.1 Data Embedded in Operands ... 3-6
3.4 ADDRESS MODES .. 3-6

3.4.1 Absolute Address Modes ... 3-10
Absolute.. 3-10
Absolute Deferred .. 3-11

3.4.2 Displacement Modes .. 3-11
Byte Displacement.. 3-11
Byte Displacement Deferred.. 3-12
Halfword Displacement 3-12
Halfword Displacement Deferred.. 3-13
Word Displacement.. 3-14
Word Displacement Deferred 3-14
AP Short Offset.. 3-15
FP Short Offset .. 3-15

3.4.3 Immediate Modes... 3-16
Byte Immediate.. 3-16
Halfword Immediate .. 3-17
Word Immediate .. 3-17
Positive Literal... 3-18
Negative Literal... 3-18

3.4.4 Register Modes .. 3-19
Register Mode.. 3-19
Register Mode Deferred 3-19

3.4.5 Expanded-Operand Type Mode... 3-20
3.5 CONDITION FLAGS ... 3-22
3.6 FUNCTIONAL GROUPS .. 3-23
3.6.1 Data Transfer Instructions .. 3-23
3.6.2 Arithmetic Instructions .. 3-25
3.6.3 Logical Instructions.. 3-26
3.6.4 Program Control Instructions .. 3-28

Subroutine Transfer ... 3-28
Procedure Transfer .. 3-28

3.6.5 Coprocessor Instructions .. 3-32
3.6.6 Stack and Miscellaneous Instructions ... 3-32
3.7 INSTRUCTION SET LISTINGS.. 3-33
3.7.1 Notation.. 3-34

Assembler Syntax .. 3-34
Opcodes .. 3-34
Operation.. 3-34
Address Modes... 3-34
Condition Flags .. 3-34
Exceptions .. 3-34
Examples .. 3-34
Notes (Optional) .. 3-34

3.7.2 Instruction Set Descriptions... 3-36
Add (ADDB2, ADDH2, ADDW2) .. 3-37
Add, 3 Address (ADDB3, ADDH3, ADDW3) .. 3-38
Arithmetic Left Shift (ALSW3) ... 3-39
AND (ANDB2, ANDH2, ANDW2) ... 3-40
AND, 3 Address (ANDB3, ANDH3, ANDW3) ... 3-41
Arithmetic Right Shift (ARSB3, ARSH3, ARSW3) .. 3-42
Branch on Carry Clear (BCCB, BCCH).... 3-43
Branch on Carry Set (BCSB, BCSH) .. 3-44
Branch on Equal (BEB, BEH) .. 3-45

vii

Branch on Greater Than (Signed) (BGB, BGH) ... 3-46
Branch on Greater Than or Equal (Signed) (BGEB, BGEH) 3-47
Branch on Greater Than or Equal (Unsigned) (BGEUB, BGEUH) 3-48
Branch on Greater Than (Unsigned) (BGUB, BGUH) 3-49
Bit Test (BITB, BITH, BITW) .. 3-50
Branch on Less Than (Signed) (BLB, BLH) ... 3-51
Branch on Less Than or Equal (Signed) (BLEB, BLEH) 3-52
Branch on Less Than or Equal (Unsigned) (BLEUB, BLEUH) 3-53
Branch on Less Than (Unsigned) (BLUB, BLUH) ... 3-54
Branch on Not Equal (BNEB, BNEH) .. 3-55
Breakpoint Trap (BPT) ... 3-56
Branch (BRB, BRH) ... 3-57
Branch to Subroutine (BSBB, BSBH) .. 3-58
Branch on Overflow Clear (BVCB, BVCH) ... 3-59
Branch on Overflow Set (BVSB, BVSH) ... 3-60
Call Procedure (CALL) .. 3-61
Cache Flush (CFLUSH) ... 3-62
Clear (CLRB, CLRH, CLRW) .. 3-63
Compare (CMPB, CMPH, CMPW) .. 3-64
Decrement (DECB, DECH, DECW) ... 3-65
Divide (DIVB2, DIVH2, DIVW2) ... 3-66
Divide, 3 Address (DIVB3, DIVH3, DIVW3) ... 3-67
Extract Field (EXTFB, EXTFH, EXTFW) 3-68
Extended Opcode (EXTOP) .. 3-69
Increment ONCB, INCH, INCW) .. 3-70
Insert Field ONSFB, INSFH, INSFW) .. 3-71
Jump (JMP) ... 3-72
Jump to Subroutine (JSB) ... 3-73
Logical Left Shift (LLSB3, LLSH3, LLSW3) .. 3-74
Logical Right Shift (LRSW3) .. 3-75
Move Complemented (MCOMB, MCOMH, MCOMW) 3-76
Move Negated (MNEGB, MNEGH, MNEGW) .. 3-77
Modulo (MODB2, MODH2, MODW2) .. 3-78
Modulo, 3 Address (MODB3, MODH3, MODW3) .. 3-79
Move (MOVB, MOVH, MOVW) .. 3-80
Move Address, Word (MOV A W) .. 3-82
Move Block (MOVBLW) .. 3-83
Multiply (MULB2, MULH2, MUL W2) ... 3-85
Multiply, 3 Address (MULB3, MULH3, MULW3) ... 3-86
Move Version Number (MVERNO) .. 3-87
No Operation (NOP, NOP2, NOP3) ... 3-88
OR (ORB2, ORH2, ORW2) .. 3-89
OR, 3 Address (ORB3, ORH3, ORW3) .. 3-90
Pop (Word) (POPW) .. 3-91
Push Address (Word) (PUS HAW) .. 3-92
Push (Word) (PUSHW) ... 3-93
Return on Carry Clear (RCC) .. 3-94
Return on Carry Set (RCS) .. 3-95
Return on Equal (REQL, REQLU) ... 3-96
Restore Registers (RESTORE) .. 3-97

viii

Return from Procedure (RET) ... 3-98
Return on Greater Than or Equal (Signed) (RGEQ) ... 3-99
Return on Greater Than or Equal (Unsigned) (RGEQU) 3-100
Return on Greater Than (Signed) (RGTR). .. 3-101
Return on Greater Than (Unsigned) (RGTRU) ... 3-102
Return on Less Than or Equal (Signed) (RLEQ) ... 3-103
Return on Less Than or Equal (Unsigned) (RLEQU) .. 3-104
Return on Less Than (Signed) (RLSS) ... 3-105
Return on Less Than (Unsigned) (RLSSU) .. 3-106
Return on Not Equal (RNEQ, RENQV» ... 3-107
Rotate (ROTW) .. 3-108
Return from Subroutine (RSB) .. 3-109
Return on Overflow Clear (RVC) ... 3-110
Return on Overflow Set (R VS) 3-111
Save Registers (SAVE) ... 3-112
Coprocessor Operation (no operands) (SPOP) .. 3-113
Coprocessor Operation Read (SPOPRS, SPOPRD, SPOPRT) 3-114
Coprocessor Operation, 2-Address (SPOPS2, SPOPD2, SPOPT2) 3-115
Coprocessor Operation Write (SPOPWS, SPOPWD, SPOPWT) 3-116
String Copy (STRCPY) .. 3-117
String End (STREND) ... 3-119
Subtract (SUBB2, SUBH2, SUBW2) .. 3-120
Subtract, 3 Address (SUBB3, SUBH3, SUBW3) ... 3-121
Swap (Interlocked) (SWAPBI, SWAPHI, SWAPWI) 3-122
Test (TSTB, TSTH, TSTW) .. 3-123
Exclusive Or (XORB2, XORH2, XORW2) .. 3-124
Exclusive Or, 3 Address (XORB3, XORH3, XORW3) 3-125

3.7.3 Instruction Set Summary by Function .. 3-126
3.7.4 Instruction Set Summary by Mnemonic ... 3-132
3.7.5 Instruction Set Summary by Opcode .. 3-136

CHAPTER 4. OPERATING SYSTEM CONSIDERATIONS

4. OPERATING SYSTEM CONSIDERATIONS .. 4-1
4.1 FEATURES OF THE OPERATING SYSTEM ... 4-1
4.1.1 Memory Management Considerations for Virtual Memory Systems 4-4
4.2 STRUCTURE OF A PROCESS .. 4-4
4.2.1 Execution Privilege... 4-5
4.2.2 Execution Stack.. 4-5
4.2.3 Process Control Block 4-6

Initial Context for a Process 4-9
Saved Context for a Process .. 4-9
Memory Specifications ... 4-9

4.2.4 Processor Status Word... 4-10
4.3 SYSTEM CALL ... 4-10
4.3.1 Gate Mechanism .. 4-13

Pointer Table.. 4-13
Handling-Routine Tables... 4-13

ix

x

4.3.2 GATE Instruction .. 4-14
First Entry Point .. 4-14
Second Entry Point - The Gate Mechanism ... 4-15

4.3.3 Return-From-Gate Instruction .. 4-16
4.4 PROCESS SWITCHING .. 4-16
4.4.1 Context Switching Strategy 4-17

RBit ... 4-17
I Bit .. 4-17

4.4.2 Call Process Instruction ... 4-20
4.4.3 Return-to-Process Instruction .. 4-22
4.5 INTERRUPTS ... 4-23
4.5.1 Interrupt-Handler Model... 4-23
4.5.2 Interrupt Mechanism ... 4-24

Full-Interrupt Handler's PCB ... 4-25
Interrupt Stack and ISP .. 4-26
Interrupt-Vector Table... 4-27

4.5.3 On-Interrupt Microsequence.. 4-28
4.5.4 Returning From an Interrupt .. 4-29

Full Interrupts .. 4-29
Quick Interrupts... 4-29

4.6 EXCEPTIONS ... 4-29
4.6.1 Levels of Exception Severity.. 4-30
4.6.2 Exception Handler ... 4-30
4.6.3 Exception Microsequences ... 4-32

Normal Exceptions... 4-32
Stack Exceptions .. 4-33
Process Exceptions ... 4-35
Reset Exceptions .. 4-35

4.7 MEMORY MANAGEMENT FOR VIRTUAL MEMORY SYSTEMS 4-36
4.7.1 Initializing the Memory Management Unit.. .. 4-40

Defining Virtual Memory .. 4-40
Peripheral Mode..................................... .. 4-40

4.7.2 MMU Interactions... 4-40
MMU Exceptions... 4-41
Flushing.. 4-41

4.7.3 Efficient Mapping Strategies ... 4-41
4.7.4 Object Traps... 4-42
4.7.5 Indirect Segment Descriptors .. 4-42
4.7.6 Using the Cacheable Bit .. 4-42
4.7.7 Using the Page-Write Fault .. 4-42
4.7.8 Access Protection ... 4-43
4.7.9 Using the Software Bits... 4-43
4.8 OPERATING SYSTEM INSTRUCTIONS ... 4-43
4.8.1 Notation.. 4-43
4.8.2 Privileged Instructions.. 4-44
4.8.3 Nonprivileged Instructions... 4-56
4.8.4 Microsequences 4-64

CHAPTER 5. SOFTW ARE GENERATION PROGRAMS

5. INTRODUCTION TO THE SOFTWARE GENERATION
PROGRAMS (SGP) ... 5-1

Distinctive SGP Features.. 5-1
Host Computers .. 5-2

5.1 COMPILER AND THE C LANGUAGE ... 5-3
5.1.1 Compiler ... 5-3

Compiler Options ... 5-4
Register Usage ... 5-6

5.1.2 C Language .. 5-7
Flexnames... 5-7
Enumerations ... 5-7
Structure Assignment .. 5-9
Nonunique Structure Member Names .. 5-9

Former Member Name Restrictions ... 5-10
New Flexibility for Member Names ... 5-10

Complete Structure and Union Member Reference Qualifications 5-11
Nonunique Tag Names Allowed ... 5-12
Vertical Tab Character Literal... 5-13
In-Line Procedure Expansion .. 5-13

5.2 ASSEMBLER AND ASSEMBLY LANGUAGE ... 5-13
5.2.1 Assembler ... 5-14

Assembled Files.. 5-15
Diagnostics ... 5-15
Macro Processing Facilities ... 5-16
Interface Macros .. 5-17

Function Interface Macros .. 5-18
Scratch Register Macros ... 5-19
Stack Frame Macros.. 5-19
Restrictions... 5-19

Using Predefined Macros... 5-20
Examples .. 5-21

M4 Reserved Words .. 5-22
5.2.2 Assembly Language ... 5-22

Statements .. 5-23
Symbols .. 5-24

Values and Types ... 5-24
Assigning Values and Types to Symbols ... 5-25

Constants .. 5-25
Location Counter ... 5-25
Registers ... 5-26
Executable Instructions.. 5-27
Operands .. 5-28
Expressions ... 5-30
Assembler Directives.. 5-31

Section Control Pseudo Operations ... 5-31
Pseudo Operations Dealing with Symbols... 5-33
Assignment Pseudo Operation ... 5-33
Assignment to Dot ... 5-34
Alignment Pseudo Operation... 5-35
Data Generation Pseudo Operations ... 5-35

xi

xii

Symbolic Debugging Pseudo Operations... 5-36
File Name Pseudo Operation .. 5-37
Line Number Pseudo Operation.. 5-37

Function Calling Sequence .. 5-37
Stack Frame... 5-38
Actions of Calling Function... 5-39
Actions of Called Function.. 5-39

5.2.3 Exception Conditions ... 5-43
5.2.4 Programming Example .. 5-43
5.2.5 Machine Independent Instruction Set ... 5-45
5.3 LINK EDITOR .. 5-48
5.3.1 Link Editor Command ... 5-48

Command Line Options 5-50
5.3.2 Link Editor Command Language .. 5-51

Expressions ... 5-52
Assignment Statements.. 5-53
Memory Configurations ... 5-53
Section Definition Directives ... 5-55

Virtual Address and Bindings.. 5-56
File Specifications .. 5-56
Load a Section at a Specified Address.. 5-57
Aligning an Output Section... 5-57
Grouping Sections Together .. 5-58
Creating Holes Within Output Sections ... 5-59
Creating And Defining Symbols at Link-Edit Time... 5-60
Allocating a Section Into Named Memory ... 5-61
Initialized Section Holes or BSS Sections .. 5-61
Notes on the Use of m32ld.. 5-62
Changing the Entry Point.. 5-62
Use of Archive Libraries ... 5-63
Dealing With Holes In Physical Memory ... 5-64
Allocation Algorithm ... 5-65
Subsystems (Incremental) Link Editing ... 5-66
Nonrelocatable Input Files .. 5-67
DSECT, COPY and NLOAD Sections .. 5-67
Output File Blocking.. 5-68

5.3.3 Error Messages... 5-68
Corrupt Input Files .. 5-68
Errors During Output .. 5-69
Internal Errors 5-70
Allocation Errors.. 5-70
Misuse of Link Editor Directives .. 5-71
Misuse of Expressions .. 5-72
Misuse of Options .. 5-72
Space Restraints..... 5-73
Miscellaneous Errors.. 5-73

5.3.4 Syntax Diagram for Input Directives .. 5-74
5.4 OBJECT FILE FORMAT ... 5-77
5.4.1 Definitions... 5-78
5.4.2 File Header... 5-79

Flags ... 5-79
Optional Header Information .. 5-80

Standard UNIX System a.out Header .. 5-80

5.4.3 Section Header Table .. 5-81
Flags ... 5-82
.bss Section Header.. 5-82

5.4.4 Sections... 5-82
5.4.5 Relocation Information .. 5-83
5.4.6 Line Numbers .. 5-84
5.4.7 Symbol Table ... 5-84

Special Symbols ... 5-84
Inner Blocks ... 5-86
Symbols For Functions .. 5-89

Symbol Table Entries .. 5-89
Symbol Name Field (n name) .. 5-90
Symbol Value Field And Storage Classes (n_value) .. 5-90
Section Number Field (n scnum) ... 5-93
Type Field (n_type) -::... 5-94
Structure for Symbol Table Entry.. 5-97

Auxiliary Table Entries ... 5-97
File Names ... 5-98
Sections.. 5-98
Tag Names... 5-99
End of Structures ... 5-99
Functions 5-99
Arrays... 5-99
End of Blocks and Functions 5-100
Beginning of Blocks and Functions.. 5-100
Names Related to Structures, Unions, and Enumerations 5-100

5.4.8 String Table ... 5-101
5.5 UTILITIES AND LIBRARY ROUTINES ... 5-102
5.5.1 Utility Programs... 5-103

m32ar ... 5-103
m32convert ... 5-105
m32cprs .. 5-107
m32dis .. 5-108
m32dump.. 5-111
m32list .. 5-113
m32lorder ... 5-114
m32nm.. 5-114
m32size... 5-116
m32strip.. 5-116

5.5.2 Accessing Library .. 5-117
Use of the Accessing Library.. 5-117
Library Functions And Macros 5-118

Functions That Open or Close Object Files .. 5-118
Functions That Read ... 5-120
Functions That Seek .. 5-120
Function That Returns the Index of a Symbol Table Entry 5-120
Macros .. 5-121

5.5.3 General-Purpose Library ... 5-121
Use of the General Purpose Library ... 5-121
Routines in the General Purpose Library ... 5-122
Routines Required When Using printf and scanf.. ... 5-123

5.6 SGP MANUAL PAGES ... 5-124

xiii

GLOSSARY AND ACRONYMS

INDEX

LIST OF FIGURES

Figure 1-1. The WE 32100 Microprocessor ... 1-1
Figure 1-2. WE 321AP Microprocessor Analysis Pod ... 1-3
Figure 1-3. WE 321EB Microprocessor Evaluation Board .. 1-3

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.
Figure 2-17.
Figure 2-18.
Figure 2-19.
Figure 2-20.
Figure 2 -21.
Figure 2-22.
Figure 2-23.
Figure 2-24.
Figure 2-25.

Figure 2-26.

Figure 2-27.
Figure 2-28.
Figure 2-29.
Figure 2-30.
Figure 2-31.
Figure 2-32.
Figure 2-33.
Figure 2-34.
Figure 2-35.
Figure 2-36.
Figure 2-37.

WE 32100 Microprocessor Block Diagram .. .
Programmer's Model for User Registers .. .
Processor Status Word .. .
Bit Order of Data .. .
Bit Field Data Type .. .
Signal Sampling Points
Read Transaction (Using SRDY)
Read Transaction (Using DT ACK) .. .
Read Transaction with One Wait Cycle (Using SRDY)
Read Transaction With Two Wait Cycles (Using DTACK)
Write Transaction (Using SRDY) .. .
Write Transaction (Using DTACK)
Write Transaction With Two Wait Cycles (Using SRDY)
Write Transaction With One Wait Cycle (Using DTACK)
Read Interlocked Transaction (Using DTACK)..
Blockfetch Transaction (Using SRDY)
Blockfetch Transaction (Using DT ACK)
Blockfetch Transaction (Using DTACK)
Blockfetch Transaction (Using SRDY) .. .
Asynchronous Fault Without DTACK and SRDY (Read Transaction) .. .
Fault with Synchronous Ready (SRDY); i.e., Synchronous Fault
Fault After Assertion of DTACK (Write Transaction is Shown)
Retry of Transaction (Read Transaction is Shown)
Relinquish and Retry .. .
Fault on First Word of Blockfetch Transaction
With Access Status Code (Not Instruction Prefetch)

Fault on First Word of Blockfetch Transaction
With Access Status Code of Prefetch

Retry on First Word of Blockfetch Transaction
Retry on Second Word of Blockfetch
Interrupt Acknowledge
Auto-Vector Interrupt Acknowledge .. .
Nonmaskable Interrupt Acknowledge .. .
Bus Request During a Transaction .. .
Reset Sequence .. .
Aborted Access on I-Cache Hit with PC Discontinuity
Alignment Fault Bus Activity (Write Transaction is Shown)
Start of Single-Step Operation
Single-Step Operation

2-2
2-3
2-4
2-9
2-9
2-11
2-14
2-15
2-16
2-17
2-19
2-20
2-21
2-23
2-24
2-26
2-27
2-28
2-29
2-31
2-32
2-33
2-35
2-36

2-38

2-39
2-40
2-41
2-43
2-46
2-47
2-49
2-54
2-55
2-56
2-57
2-58

Figure 2-38. Coprocessor Command and ID Transfer... 2-59
Figure 2-39. Coprocessor Command and ID Transfer

(No Coprocessor Present) .. 2-62"
Figure 2-40. Coprocessor Operand Fetch ... 2-63
Figure 2-41. Coprocessor Status Fetch (Using SRDY) ... 2-64
Figure 2-42. Coprocessor Data Write... 2-65
Figure 2-43. WE 32100 Microprocessor Pin Configuration... 2-71
Figure 2-44. Read Transaction Followed by a Read Transaction 2-88
Figure 2-45. Read Transaction Followed by a Write Transaction

(Using DTACK) .. 2-89
Figure 2-46. Write Transaction Followed by a Write Transaction 2-90
Figure 2-47. Write Transaction Followed by a Read Transaction 2-91
Figure 2-48. Double-Word Program Fetch Without Blockfetch

Transaction (using DTACK) .. 2-92
Figure 2-49. Bus Arbitration During Relinquish and Retry .. 2-93

Figure 3-1. Bit Order of Data... 3-2
Figure 3-2. Bit Order in a Bit Field ... 3-2
Figure 3-3. Extending Data to 32 Bits ... 3-5
Figure 3-4. Register as a Source Operand ... 3-5
Figure 3-5. General Instruction Format ... 3-7
Figure 3-6. Data Embedded in an Operand ... 3-7
Figure 3-7. Expanded-Operand Type Descriptor ... 3-21
Figure 3-8. Condition Flags .. 3-22
Figure 3-9. Stack After CALL-SAVE Sequence... 3-31

Figure 4-1. A Typical Process Control Biock "................................... 4-8
Figure 4-2. Tables for the Gate Mechanism .. 4-15
Figure 4-3. A PCB on an Initial Process Switch to a Process 4-19
Figure 4-4. A PCB on a Process Switch During Execution of a Process 4-20
Figure 4-5. An Interrupt Stack... 4-26
Figure 4-6. Interrupt Vector Tables ... 4-27
Figure 4-7. Exception-Vector Table ... 4-31
Figure 4-8. Virtual Address Fields for a Contiguous Segment 4-37
Figure 4-9. Virtual Address Fields for a Paged Segment.. 4-37
Figure 4-10. Virtual to Physical Translation for Contiguous Segments 4-38
Figure 4-11. Virtual to Physical Translation for Paged Segments 4-39

Figure 5-1. Major Steps in the SGP... 5-2
Figure 5-2. Mapping Program Sections.. 5-16
Figure 5-3. Typical Stack Frame for a Function Call ... 5-41
Figure 5-4. Stack Frame Following a Call Instruction .. 5-42
Figure 5-5. Stack Frame After Three Registers are Saved ... 5-42
Figure 5-6. Object File Format... 5-78
Figure 5-7. COFF Symbol Table.. 5-85

xv

xvi

LIST OF TABLES

Table 2-1. Processor Status Word Fields ... 2-5
Table 2-2. Memory Write Summary .. 2-10
Table 2-3. Simultaneously Asserted Exception Conditions : 2-30
Table 2-4. Interrupt Level Code Assignments ... 2-44
Table 2-5. Interrupt Acknowledge Summary ... 2-50
Table 2-6. Output Signal States after DMA Request is Acknowledged 2-51
Table 2-7. Output States on Reset ... 2-53
Table 2-8. Exception Conditions... 2-66
Table 2-9. Truth Table for Trace Trap .. 2-69
Table 2-10. WE 32100 Microprocessor Pin Descriptions .. 2-72
Table 2-11. Address and Data Signals ... 2-75
Table 2-12. Interface and Control Signals ... 2-76
Table 2-13. Access Status Signals .. 2-77
Table 2-14. Interrupt Signals .. 2-79
Table 2-15. Arbitration Signals .. 2-80
Table 2-16. Bus Exception Signals ... 2-81
Table 2-17. Development System Support Signals .. 2-83
Table 2-18. Clock Signals ... 2-83
Table 2-19. Operating Requirements ... 2-85
Table 2-20. Output Electrical Specifications .. 2-86
Table 2-21. Input Electrical Specifications .. 2-86

Table 3-1. Register Set 3-4
Table 3-2. Addressing Modes ... 3-9
Table 3-3. Options for type in Expanded-Operand Mode ... 3-21
Table 3-4. Data Transfer Instruction Group.. 3-24
Table 3-5. Arithmetic Instruction Group ... 3-25
Table 3-6. Logical Group.. 3-27
Table 3-7. Program Control Instructions.. 3-29
Table 3-8. Coprocessor Instructions.. 3-33
Table 3-9. Stack and Miscellaneous Instructions... 3-33
Table 3-10. Condition Flag Code Assignments .. 3-34
Table 3-11. Assembly Language Operators and Symbols ... 3-36
Table 3-12. Data Transfer Instruction Group .. 3-126
Table 3-13. Arithmetic Instruction Group ... 3-126
Table 3-14. Logical Group.. 3-128
Table 3-15. Program Control Instructions .. 3-129
Table 3-16. Coprocessor Instructions.. 3-131
Table 3-17. Stack and Miscellaneous Instructions... 3-131
Table 3-18. Instruction Set Summary by Mnemonic ... 3-132
Table 3-19. Instruction Set Summary by Opcode .. 3-136

Table 4-1. Operating System Instructions .. 4-2
Table '4-2. PCBP Locations... 4-7
Table 4-3. Processor Status Word Fields ... 4-11

Table 4-4. Severity Levels for Exceptions .. 4-30
Table 4-5. Normal Exceptions (ET=3) .. 4-33
Table 4-6. Stack Exceptions (ET=2) ... 4-34
Table 4-7. Process Exceptions (ET=I) .. 4-35
Table 4-8. Reset Exceptions (ET=O) ... 4-36

Table 5-1. SGP Tools .. 5-3
Table 5-2. m32cc Command Line Options... 5-5
Table 5-3. m32as Command Line Options ... 5-16
Table 5-4. Address Modes .. 5-29
Table 5-5. Alphabetical List of Pseudo-Operations ... 5-32
Table 5-6. Machine Independent Instruction Set... 5-46
Table 5-7. m321d Command Line Options ... 5-50
Table 5-8. File Header Contents .. 5-79
Table 5-9. File Header Flags .. 5-80
Table 5-10. Optional Header Contents... 5-80
Table 5-11. Section Header Contents ... 5-81
Table 5-12. Section Types... 5-82
Table 5-13. Special Symbols in the Symbol Table .. 5-85
Table 5-14. Symbol Table Entry Format... 5-89
Table 5-15. n_name Entry Formats .. 5-90
Table 5-16. Symbol Values ... 5-91
Table 5-17. Dummy Storage Classes.. 5-92
Table 5-18. Restricted Special Symbols ... 5-92
Table 5-19. Restricted Storage Classes .. 5-92
Table 5-20. Section Numbers ... 5-93
Table 5-21. Restricted Storage Classes .. 5-94
Table 5-22. Fundamental Types ... 5-95
Table 5-23. Derived Types .. 5-95
Table 5-24. Storage Class Type Entries ... 5-96
Table 5-25. Auxiliary Symbol Table Entries ... 5-98
Table 5-26. Section Format .. 5-98
Table 5-27. Tag Name Format... 5-99
Table 5-28. End of Structure Format... 5-99
Table 5-29. Function Format.. 5-99
Table 5-30. Array Format... 5-100
Table 5-31. End of Block and Function Format.. 5-100
Table 5-32. Beginning of Block and Function Format .. 5-100
Table 5-33. Structure, Union, and Enumeration Format .. 5-101
Table 5-34. m32ar Command Line Keys ... 5-104
Table 5-35. m32convert Target Machines.. 5-107
Table 5-36. m32dis Command Line Options .. 5-109
Table 5-37. m32dump Command Line Options ... 5-112
Table 5-38. m32nm Command Line Options ... 5-115
Table 5-39. SGP Manual Pages ... 5-124

xvii

Chapter 1

Introduction

CHAPTER 1. INTRODUCTION

CONTENTS

1. Introduction.. 1·1
1.1 Overview ... 1·1
1.2 Architecture 1·2
1.3 Instruction Set.. 1·4
1.4 Operating System Support... 1·4
1.5 Software Generation Programs.. 1·5

INTRODUCTION
Overview

I. INTRODUCfION

This chapter introduces the WE 32100 Microprocessor and summarizes the support
products available for it. The chapters describing the WE 32100 Microprocessor
architecture, instructiun set, operating system considerations, and software generation
programs are also introduced.

1.1 Overview

The WE 32100 Microprocessor is a high-performance, single-chip, 32-bit central processing
unit designed for efficient operation in a high-level language environment. The WE 32100
Microprocessor represents a state-of-the-art concept in microprocessor architecture,
providing one of the most powerful and extensive instruction sets available with any
microprocessor. The WE 32100 Microprocessor, packaged in .a I 32-pin ceramic pin array,
is shown on Figure I-I.

Figure 1-1. The WE 32100 Microprocessor

The system memory space is addressed over a full 32-bit address bus using either physical
or virtual addresses. The 32-bit address bus produces a vast memory space of more than
four billion bytes which increases the flexibility of memory organization and provides
ample space for the storage of software and data. Data can be read or written over the
separate 32-bit data bus in byte (S-bit), halfword (16-bit), or word (32-bit) lengths.

The WE 32100 Microprocessor is an efficient execution vehicle for operating systems and
high-level languages. The operating system instructions included in the instruction set
establish an environment that permits process switching and interrupt handling with a
minimum of operating system support. Other instructions allow the use of coprocessors
and provide the necessary signals for interfacing with the WE 32101 Memory Management
Unit for virtual memory systems.

1-1

INTRODUCTION
Architecture

1-2

Software support for the WE 32100 Microprocessor is available through the WE 321SG
Software Generation Programs (SGP). This collection of programs and utilities provides
everything necessary for rapid development of software. The high-level development
language is the C language, and the entire SGP resides in the UNIX Operating System.
The SGP includes a C compiler, an assembler, a link editor, and various utility programs.

Development support is available through the WE 321DS Microprocessor Development
System. The development system is a powerful development tool that can expedite the
integration of hardware and software into a finished application. It permits the debugging
of hardware and software to occur in parallel. The development system components
include the WE 321AP Microprocessor Analysis Pod, the WE 321SD Development
Software Programs, a UNIX System Host, and a logic analyzer. The modular design of
the development system enables the user to configure the system for maximum productivity
from initial hardware debug through the final stage of hardware and software integration.
The WE 321AP Microprocessor Analysis Pod is shown on Figure 1-2.

Prototyping and performance evaluation support is available through the WE 321EB
Microprocessor Evaluation Board. The evaluation board is a single-board microcomputer
evaluation system that provides a prototyping vehicle to evaluate the hardware and
software capabilities and performance of the WE 32100 Microprocessor in an application
environment. The board is supplied with a WE 32100 Microprocessor as the CPU, a
WE 32101 Memory Management Unit, a WE 32102 Clock, a ROM-based monitor,
read/write memory (RAM), and sockets for additional memory. Also included are address
decoding circuitry, RS-232C ports, programmable parallel 110 lines, programmable
interval timers, and an interrupt controller. The WE 321EB Microprocessor Evaluation
Board is shown on Figure 1-3.

1.2 Architecture

The WE 32100 Microprocessor performs all the system address generation, control,
memory access, and processing functions required in a 32-bit microcomputer system.
Execution speed is enhanced by its unique pipelined architecture. Using this architecture,
the microprocessor overlaps the execution of instructions while tracking each separately. In
addition, as each instruction is fetched from memory it is cached in an internal instruction
cache, resulting in even greater operating efficiency.

The CPU utilizes a combination of address and data strobes and interface and control
signals to provide the bus protocol required for efficient transfer of data. The protocol
facilitates interfacing to commercial memories and peripherals, as well as providing wait­
state generation for handshaking with slow peripherals. In addition, the CPU also provides
special coprocessor signals for a high throughput coprocessing environment.

The architecture and a bus protocol for the WE 32100 Microprocessor is discussed in
Chapter 2. ARCHITECTURE AND BUS OPERATION.

., .
•• "IS' _ _ ,

.,
.... ., 0 '

Figure 1-2. WE 321AP Microprocessor Analysis Pod

Figure 1-3. WE 321EB Microprocessor Evaluation Board

INTRODUCTION
Architecture

1-3

INTRODUCTION
Instruction Set

1-4

1.3 Instruction Set

The WE 32100 Microprocessor supports a powerful instruction set that includes standard
data transfer, arithmetic, and logical operations for microprocessors, plus several unique
operations. Its many program control instructions (branch, jump, return) provide
flexibility for altering the sequence of execution. Other instructions are designed to aid in
process switching for operating systems by manipulating the context of the processor with a
minimum of code. In addition, special coprocessor instructions are included in the
instruction set to implement a high-speed interface with special purpose coprocessors
planned for the WE 32100 Microprocessor.

Eighteen addressing modes are provided that include special high-level language support
modes such as frame pointer short offset and argument pointer short offset. These modes
are designed for referring to local variables of high-level functions and function arguments.

Chapter 3. INSTRUCTION SET AND ADDRESSING MODES contains a detailed
description of the WE 32100 Microprocessor Instruction Set.

1.4 Operating System Support

The WE 32100 Microprocessor is designed for high-level language and operating system
support. To aid in the design of process-oriented systems, it provides:

• four execution privilege levels: kernel, executive, supervisor, and user

• flexible transfer of execution control between privilege levels

• capability to have the operating system contained within the address space of every
process

• support of explicit process switching by a scheduler

• implicit switching of processes through the interrupt structure

• layered exception handling structure, with different mechanisms used for different
exceptions.

The processor groups all of the switchable process context into a compact area in memory
called the process control block. This feature, plus the use of the special operating system
instructions and microsequences, provides the programmer with an excellent tool for the
creation and support of process-oriented systems.

Chapter 4. OPERATING SYSTEM CONSIDERATIONS discusses the techniques for
efficient operating system design using the WE 32100 Microprocessor and also describes
the use of the WE 32101 Memory Management Unit in a virtual memory operating
system.

INTRODUCTION
Software Generation Programs

1.5 Software Generation Programs

The WE 321SG Software Generation Programs (SGP) is a package of support tools used
to create and test programs for the WE 32100 Microprocessor. The SGP runs under the
UNIX Operating System and uses many features of the UNIX System shell. The SGP
allows the programmer to generate code in the high-level C language and test programs at
the source leveL This improves productivity and program accuracy by freeing
programmers from the details of the hardware architecture associated with assembly
language programming.

The SGP contains a C compiler that converts C language programs into assembly language
programs. The assembly language programs are ultimately translated into object files by
the SGP assembler for the WE 32100 Microprocessor and link-edited into executable load
modules by the link editor (also contained in the SGP). Each of these tools preserves all
symbolic information necessary for meaningful symbolic testing at the source level. The
SGP also provides a variety of utilities that read and manipulate object files.

The SGP is described in detail in Chapter 5. SOFfWARE GENERATION PROGRAMS.

1-5

Chapter 2

Architecture and

Bus Operation

CHAPTER 2. ARCHITECTURE & BUS OPERATION

CONTENTS

2. WE 32100 MICROPROCESSOR
OVERVIEW 2-1

2.1 USER REGISTERS...................... 2-3
2. J.l General-Purpose Registers

(rO-r8) 2-4
2.1.2 Frame Pointer 2-4
2.1.3 Argument Pointer 2-4
2.1.4 Processor Status Word 2-4
2.1.5 Stack Pointer 2-7
2.1.6 Process Control Block Pointer.... 2-7
2.1. 7 Interrupt Stack Pointer 2-7
2.1.8 Program Counter 2-8
2.2 DATA HANDLING 2-8
2.2.1 Data Types 2-8
2.2.2 Data in Memory 2-10
2.2.3 Memory Management................. 2·10
2.3 SIGNAL SAMPLING

POINTS ... 2-11
2.4 READ AND WRITE

OPERATIONS 2-12
2.4.1 Read Transaction

Using SRDY 2-13
2.4.2 Read Transaction

Using DTACK 2-15
2.4.3 Read Transaction With Wait

Cycle Using SRDY 2-16
2.4.4 Read Transaction With Two

Wait Cycles Using DTACK 2-17
2.4.5 Write Transaction

Using SRDY................................ 2·18
2.4.6 Write Transaction

Using DTACK 2-18
2.4.7 Write Transaction With

Wait Cycle Using SRDY 2-18
2.4.8 Write Transaction With Wait

Cycle Using DTACK 2-22
2.5 READ INTERLOCKED

OPERATION 2-22
2.6 BLOCKFETCH OPERATION 2-25
2.6.1 Blockfetch Transaction

Using SRDY................................ 2-25
2.6.2 Blockfetch Transaction

Using DTACK 2-27
2.6.3 B10ckfetch Transaction Using

DTACK With Wait
Cycle On Second Word 2-28

2.6.4 Blockfetch Transaction Using
SRDY With Wait
Cycles On Both Words 2-29

2.7 BUS EXCEPTIONS 2-30
2.7.1 Faults ... 2-30

Fault With SRDY........................ 2-32
Fault After DTACK 2·33

2.7.2 Retry .. 2-34
2.7.3 Relinquish and Retry 2-34
2.8 BLOCKFETCH SPECIAL

CASES ... 2-37
2.8.1 Fault on First Word of

Blockfetch With Status
Code Other Than Prefetch 2-37

2.8.2 Fault on First Word
of Blockfetch With
Status of Prefetch 2·37

2.8.3 Retry on First Word of
Blockfetch 2-37

2.8.4 Retry on Second Word of
Blockfetch 2-37

2.8.5 Relinquish and Retry of
Blockfetch 2·42

2.9 INTERRUPTS 2·42
2.9.1 Interrupt Acknowledge 2-42
2.9.2 Auto-vector Interrupt.. 2-45
2.9.3 Nonmaskable Interrupt.. 2-45
2.9.4 Quick Interrupt 2-48
2.10 BUS ARBITRATION 2-48
2.10.1 Bus Request During a

Bus Transaction 2-48
2.1 0.2 DMA Operation 2-51
2.11 RESET ... 2-52
2.11.1 System Reset 2-52
2.11.2 Internal Reset 2·52
2.11.3 Reset Sequence 2-54
2.12 ABORTED MEMORY

ACCESSES.................................. 2-54
2.12.1 Aborted Access on PC

Discontinuity With
Instruction Cache Hit................. 2-55

2.12.2 Alignment Fault Bus Activity ... 2·56
2.13 SINGLE-STEP OPERATION ... 2-57
2.14 COPROCESSOR

OPERATIONS 2·58

CONTENTS

2.14.1 Coprocessor Broadcast 2-58
2.14.2 Coprocessor Operand Fetch 2-63
2.14.3 Coprocessor Status Fetch 2-64
2.14.4 Coprocessor Data Write 2-65
2.15 EXCEPTIONAL

CONDITIONS 2-66
2.16 TRACE MECHANISM 2-69
2.17 PIN ASSIGNMENTS 2-70

2.18 MICROPROCESSOR
OPERATING
REQUIREMENTS 2-83

2.18.1 Electrical Requirements 2-84
2.18.2 Clocking Requirements 2-85
2.18.3 Thermal Requirements 2-85
2.19 Supplementary Protocol

Diagrams 2-87

ARCHITECTURE & BUS OPERATION
Overview

2. WE 32100 MICROPROCESSOR OVERVIEW

The WE 32100 Microprocessor is the first 32-bit microprocessor with separate 32-bit
address and data buses. Using either physical or virtual addresses, the 32-bit address
bus can access over four billion (232) bytes of system memory or peripherals. Data is read
or written over the 32-bit bidirectional data bus in either byte (8-bit), halfword (16-bit), or
word (32-bit) lengths and is processed internally over 32-bit internal data paths.

The execution speed of the microprocessor is enhanced by an internal instruction queue and
an internal instruction cache that store prefetched instructions. Also, the microprocessor's
extensive use of pipelining allows overlapping of the execution of instructions while
tracking each one individually. Should a fault or interrupt occur during instruction
execution, the instruction that caused it can be easily determined and execution restarted.
This feature is essential for systems with demand-paged memory management.

Using a group of address and data strobes and interface and control signals, the
microprocessor controls information flow over the address and data buses. These signals
provide the timing required for transfer of data and facilitate interfacing to commercial
memories and peripherals. The microprocessor also accommodates wait-state generation to
allow handshaking with slow peripherals.

The WE 32100 Microprocessor consists of the four major sections shown on Figure 2-1.
These are the main controller, the fetch unit, the execute unit, and the bus interface
control. The main controller is responsible for acquiring and decoding instruction opcodes
and directing the action of the fetch and execute controllers as the specified instruction is
executed. The main controller also has the responsibility of responding to and directing the
handling of interrupts and exception conditions.

The fetch unit handles the instruction stream and performs memory-based operand
accesses. It consists of a fetch controller, an instruction cache, an instruction queue, an
immediate and displacement extractor, and an address arithmetic unit (AAU). The fetch
controller directs the action of the elements in the fetch unit. The instruction cache is a 64
by 32-bit on-chip cache which is used to increase the microprocessor's performance by
reducing external memory reads for instruction fetches. When an instruction fetch from
memory occurs, instruction data is placed in the cache and in the instruction queue. If
that instruction data is needed again, it is fetched from the cache rather than from external
memory, which improves performance. The instruction queue is an 8-byte first-in-first-out
queue that stores prefetched instructions. Instructions are taken from the queue for
execution, and the fetch controller fills it asynchronously with respect to instruction
execution. The immediate and displacement extractor provides address calculation data to
the AAU for its use in calculating 32-bit addresses.

The execute unit performs all arithmetic and logic operations, performs all shift and rotate
operations, and computes condition flags. It consists of:

• an execute controller that directs the actions of the elements in the execute unit

2-1

ARCHITECTURE & BUS OPERATION
Overview

• sixteen 32-bit registers that are user-accessible and include:

o nine general-purpose registers (rO-r8)

o seven dedicated registers (r9-r15)

• working registers that are used exclusively by the microprocessor and.are not user­
accessible

• a 33-bit ALU that performs arithmetic operations on 32-bit data, with an extra bit that
is used whenever an operation requires a carry or borrow beyond 32 bits.

The bus interface control provides all the strobes and control signals necessary to
implement the interface with peripherals.

The WE 32100 Microprocessor pin assignments are summarized in 2.17 Pin Assignments.

,---

I j MAIN CONTROLLER

I I FROM INSTRUCTION

~
QUEUE

H FETCH CONTROLLER I EXECUTE CONTROLLER

J

ADDRESS

1 f TO MAIN CONTROLLER
32-8IT

REGISTERS

rO -'---

DATA

B-BYTE r1 S4-WORD
r2 INSTRUCTION H9-'> INSTRUCTION r--
r3 CACHE QUEUE WORKING

~
BUS r' REGISTERS

INTERFACE r5
~ CONTROL r6

1 r7
rB
FP

I

I-

r:r AP
IMMEDIATE I-- PSW

~Iif} G SP LOGIC
DISPLACEMENT PCBP UNIT

EXTRACTOR ISP

rJ

2-2

INTERFAC
G

CONTROL
E~

PC

\ ADDRESS j
ARITHMETIC

UNIT

32 32 32 32

32 ABUS JO,. 32
~

"------ 1+----· --- FETCH UNIT - - ----- '*'

Figure 2-1. WE 32100 Microprocessor Block Diagram

32 32

CBUS

EXECUTE UNIT -------bj

ARCHITECTURE & BUS OPERATION
User Registers

2.1 USER REGISTERS

Figure 2-2 shows the programming model for the microprocessor's sixteen 32-bit registers
(rO-r15). This register set is designed for efficient support of high-level language
program execution. All of these registers, except for the program counter (r15) and the
processor status word (r11), may be accessed in any addressing mode. The processor
status word (r1l), process control block pointer (r13), and interrupt stack pointer (r14) are
privileged registers. These may be read at any time, but may be written only when the
microprocessor is in kernel mode (i.e., the operating system is in control). The other
registers may be read or written in any of the four execution levels.

31 16J 15 SI7 0

r15 PROGRAM COUNTER (PC)

r14 INTERRUPT STACK POINTER (ISP)*

r13 PROCESS CONTROL SLOCK POINTER (PCSP)*

r12 STACK POINTER (SP)

r1 1 PROCESSOR STATUS WORO (PSW)*

r10 ARGUMENT POINTER (AP)

r9 FRAME POINTER (FP)

rB I I

; ; "i

rO 1 1
31 16115 BI7 o

''--'''s y""T:-E--'

HALFWORD

WORD

* KERNEL LEVEL PRIVILEGED

Figure 2-2. Programmer's Model for User Registers

2-3

ARCHITECTURE & BUS OPERATION
General-Purpose Registers

2-4

2.1.1 General-Purpose Registers (rO-rS)

The nine general-purpose registers may be used for high-speed accumulation, for
addressing, or for temporary data storage. The first three registers (rO-r2) are the
microprocessor's scratch registers. These three registers are used by the C compiler to
store temporary values during expression evaluation. They also pass and return specific
values during procedure calls. For example, rO should always be used to return the value
of a procedure. If a floating point double value is returned from a procedure, it is stored in
rO and rl. If a procedure returns a structure, then the pointer to that structure should be
returned to r2. In addition, registers rO-r2 are implicitly used by the data transfer
instructions MOVBLW (move block of words), STRCPY (string copy), and STREND
(string end) and also by the MVERNO (move version number), INTACK (interrupt
acknowledge), ENBVJMP (enable virtual pin and jump), DISVJMP (disable virtual pin
and jump), GATE (system-cal!), and CALLPS (call process) operating system
instructions.

2.1.2 Frame Pointer

The frame pointer (FP), r9, points to the beginning location in the stack of a function's
local variables. It is affected implicitly only by the save register (SAVE) and the restore
register (RESTORE) instructions.

2.1.3 Argument Pointer

The argument pointer (AP), rIO, points to the beginning location in the stack where a set
of arguments for a function has been pushed. The AP is affected implicitly only by the
procedure call (CALL) and return (RET) instructions.

2.1.4 Processor Status Word

The processor status word (PSW), r1l, contains status information about the
microprocessor and the current process. It is divided into 14 fields, as shown on Figure
2-3. Although the PSW is a privileged register, the microprocessor may alter some of its
fields at any execution level. Most instructions alter the N, Z, V, and C bits (condition
flags) in the PSW. In general, the PSW changes as a whole only when a process switch
occurs. The final values of the PSW bits are based on the result of the last calculation and
are latched into the PSW at the end of the instruction. The PSW may not be referenced
in some addressing modes.

Table 2-1 contains a description of each of the processor status word fields.

Figure 2-3. Processor Status Word

Bit(s) Field

0-1 ET

2 TM

3-6 ISC

7-8 RI

9-10 PM

11-12 CM

ARCHITECTURE & BUS OPERATION
Processor Status Word

Table 2-1. Processor Status Word Fields

Contents Description

Exception This read-only field indicates the type of exception
Type generated during operations and is interpreted as:

Code Description
Bit I Bit 0
0 0 On Reset Exception
0 1 On Process Exception
1 0 On Stack Exception
I I On Normal Exception

(See 2.12 Exceptional Conditions,)

Trace The read-only TM field enables masking of a trace trap.
Mask This bit masks the trace enable (TE) bit for the duration

of one instruction to avoid a trace trap. The TM bit is
set (1) at the beginning of every instruction and cleared
(0) as part of every microsequence that performs a
context switch or a return from gate (RETG) or when
any fault or interrupt is detected and responded to.

Internal This 4-bit code distinguishes between exceptions of the
State same exception type. The ISC is a read-only field. (See
Code 2.15 Exceptional Conditions,)

Register- These bits control the context switching strategy. The I
Initial bit (bit 7) determines if a process executes from initial
Context or intermediate saved context. The R bit (bit 8, read

only) determines if the registers of a process should be
saved during a process switch. It also controls block
moves to change map information. (See Chapter 4,)

Previous This field defines the previous execution level. The code
Execution is interpreted as:
Level Code Description

Bit 10 Bit 9
0 0 Kernel level
0 1 Executive level
1 0 Supervisor level
1 1 User level

Current This field defines the current execution level. The code
Execution for bits II and 12 is interpreted in the same manner as
Level that of bits 9 and 10 of the PM code, respectively.

Changes to the CM field via instructions with the PSW
as an explicit destination may affect the XMD pins
during a prefetch access. Therefore, only microsequence
instructions should be used to change the CM field state.

2-5

ARCHITECTURE & BUS OPERATION
Processor Status Word

Table 2-1. Processor Status Word Fields (Continued)

Bit(s) Field Contents Description

13-16 IPL Interrupt The IPL field represents the current interrupt priority
Priority level. Fifteen levels of interrupts are available. An
Level interrupt, unless it is a nonmaskable interrupt, must have

a higher priority level than the current IPL in order to
be acknowledged. Therefore, level 0000 indicates that
any of the fifteen interrupt priority levels (0001 through
1111) can interrupt the microprocessor. Level 1111, the
highest interrupt priority level, indicates that no
interrupts (except a nonmaskable interrupt) can
interrupt the microprocessor.

17 TE Trace This bit enables the trace function. When TE is set (1),
Enable it causes a trace trap to occur after execution of the next

instruction. Debugging and analysis software use this
facility for single-stepping a program. Changes to the
TE field via instructions with the PSW as an explicit
destination may cause unpredictable trace trap behavior
(i.e., the instruction that changed the TE field in the
PSW mayor may not cause a trace trap). Therefore,
only microsequence instructions should be used to change
the TE field state.

18-21 NZVC Condition The condition codes reflect the resulting status of the
Codes most recent instruction execution that affects them.

These codes are tested using the conditional branch
instructions and indicate the following when set (1);
N - Negative (bit 21) V - Overflow (bit 19)
Z - Zero (bit 20) C - Carry (bit 18)

22 OE Enable This bit enables overflow traps when set (1). It is
Overflow cleared (0) whenever an overflow trap is detected and
Trap handled.

23 CD Cache This bit enables and disables the instruction cache.
Disable When the CD bit is cleared (0), the cache is used to

store and read text. When the CD bit is set (l), the
cache is not used. The instruction cache should only be
disabled when its use could cause problems, e.g., when
self-modifying code is executing. Changes to the CD
field via instructions with the PSW as an explicit
destination may corrupt the contents of the instruction
cache. Therefore, only microsequence instructions
should be used to change the CD field state.

2-6

ARCHITECTURE & BUS OPERATION
Interrupt Stack Pointer

Table 2-1. Processor Status Word Fields (Continued)

Bit(s) Field Contents Description

24 QIE Quick- The QIE enables and disables the quick-interrupt
Interrupt facility. If QIE is set ([), an interrupt is handled via the
Enable quick-interrupt sequence. If QIE is cleared (0), the

interrupt causes a process switch (full-interrupt
sequence).

25 CFD Cache When set (I), bit 25 disables instruction cache flushing
Flush (emptying of the cache's contents) when a new process is
Disable loaded via the XSWITCH_TWO microsequence (see

4.8.4 Microsequences). When cleared (0), the contents
of the cache are flushed when a new process is loaded
via the XSWITCH TWO microsequence.

26-31 Unused These bits are not used and must always be cleared (0).

2.1.5 Stack Pointer

The stack pointer (SP), rl2, contains the current 32-bit address of the top of the execution
stack; i.e., the memory address of the next item to be stored on (pushed on) the stack or
the last item retrieved (popped) from the stack. The stack pointer and the related
instructions implement a LIFO Oast-in-first-out) queue that supports efficient subroutine
linkage and local variable storage.

2.1.6 Process Control Block Pointer

The process control block pointer (peBP), rl3, points to the starting address of the process
control block for the current process. The process control block is a data structure in
external memory that contains the hardware context of a process when the process is not
running. This context consists of the initial and current contents of the processor status
word, program counter, and stack pointer; the last contents of registers rO through rlO;
boundaries for an execution stack; and block move specifications (and possibly memory
specifications) for the process. The PCBP may only be written when the microprocessor is
in kernel mode.

2.1.7 Interrupt Stack Pointer

The interrupt stack pointer (ISP), rl4, contains the 32-bit memory address of the top of
the interrupt stack. This stack is used when an interrupt request is received and also by
the call process (CALLPS) and return to process (RETPS) instructions. The ISP may
only be written when in kernel mode.

2-7

ARCHITECTURE & BUS OPERATION
Program Counter

2-8

2.1.8 Program Counter

The program counter (PC), r15, contains the 32-bit memory address of the instruction
being executed or, upon completion, the starting address of the next instruction to be
executed. The PC may not be referenced in some addressing modes and is usually
implicitly referenced by all program control instructions and all function calls and returns.

2.2 DATA HANDLING

All operations within the microprocessor are performed on 32-bit quantities, but data may
be read or written as a byte, halfword, or word. Bits are numbered from right to left,
starting at 0, and are right-adjusted on the address/data bus. The microprocessor
automatically extends a byte or halfword to 32 bits before performing an operation. Zeros
fill the high-order bits for unsigned operations, while the sign bit (bit 7 for bytes, bit 15 for
halfwords) fills the high-order bits for signed operations. See Chapter 3 for a detailed
description of data handling.

2.2.1 Data Types

The WE 32100 Microprocessor supports the following integer data types:

• byte

• halfword

• word

A byte is an 8-bit quantity that may appear at any address. Bits are
numbered from right to left starting with 0, the least significant bit (LSB),
and ending with 7, the most significant bit (MSB). (See Figure 2-4.)

A halfword is a 16-bit quantity that may appear at any address that is
divisible by 2. Bits are numbered from right to left starting with 0, the
LSB, and ending with 15, the MSB.

A word is a 32-bit quantity. A word may appear at any address that is
divisible by 4. Bits are numbered right to left starting with 0, the LSB,
and ending with 31, the MSB.

A bit field data type is also supported by the WE 32100 Microprocessor. A bit field is a
sequence of 1 to 32 bits contained in a base word. The field is specified by the address of
its base word, a bit offset, and a width. The bit offset ranges from 0 to 31 and identifies
the starting bit of the field. The offset is numbered from the LSB of the base word and
corresponds to the number of the bit in the word. That bit becomes bit 0, the LSB, of the
field. The width ranges from 0 to 31 and specifies the size of the field. (Width plus one is
the number of bits in the field.) The width is numbered from right to left in the field and
corresponds to the bit number of the field's MSB. Fields do not extend across word
boundaries and will wrap around from the MSB to LSB when the word boundary is
reached. Figure 2-5 illustrates a bit field located at address a, with an offset of 6, and a
width of 9. (Notice that the field contains 10 bits, one bit more than the width.)

BITS

BITS

BITS

ARCHITECTURE & BUS OPERATION
Data Types

7 a

Fi
MSB LSB

A. BYTE OAT A

15 81 7 a

I
t

:
t
I

MSB LSB

B. HALFWORD DATA

31
24: 23 16: 15 8: 7

a

I l
t t

MSB LSB
C. WORD DATA

Figure 2-4. Bit Order of Data

MSB LSB

t t
31 24: 23 16 15 8 7 a

x : a 1 1 1 1 a 1 1! D 1 X 0 0 0 xl

~ ~ WIDTH~ I I OFFSET
BASE WORD AT ADDRESS a

LEGEND:
BASEWORD ADDRESS = a

OFFSET = 6
WIDTH = 9

MSB LSB

t t
9 a

101 1 1 101 1011

Figure 2-5. Bit Field Data Type

2-9

ARCHITECTURE & BUS OPERATION
Data in Memory

2.2.2 Data in Memory

Memory locations consist of a series of 8-bit (byte) locations for storing data. Halfwords
occupy two consecutive memory locations and words occupy four consecutive memory
locations. Boundary restrictions apply to the starting location of halfwords and words.
Halfwords may only appear at addresses divisible by 2, and words may only appear at
addresses divisible by 4. The microprocessor generates a fault if these boundaries are
violated.

During memory reads the memory system must provide a word of data. The memory
system must ignore the two lowest address bits (ADDROO and ADDROl) and provide the
word data beginning at this resulting word address.

Memory writes require that the memory system be set up in byte format, i.e., each byte
must be writable independent of all other bytes. During memory writes, only the byte or
bytes the CPU wants to write are to be changed. The remaining byte or bytes of the same
word, if any, must not be altered. The CPU informs the memory system which byte(s)
should be written based on the contents of the data size bits (DSIZEO and DSIZEl) and
the lower two address bits (ADDROO and ADDROI). Table 2-2 indicates which byte(s)
should be written based on the following byte addressing.

DSIZEI DSIZEO

0 0
I 0

I I

Data
Byte

(Word)
(Halfword)

(Byte)

•
Increasing Addresses

Table 2-2. Memory Write Summary

Memory Byte<s) Written
ADDROI ADDROO Byte 0 Byte 1 Byte 2

0 0 Written Written Written

0 0 Written Written Unchanged
I 0 Unchanged Unchanged Written
0 0 Written Unchanged Unchanged
0 I Unchanged Written Unchanged
I 0 Unchanged Unchanged Written
I I Unchanged Unchanged Unchanged

Byte 3

Written
Unchanged
Written
Unchanged
Unchanged
Unchanged
Written

Note: For write transactions, any combination of DSIZEI-DSIZEO and ADDROI-ADDROO not
indicated in the table generates an alignment fault.

2.2.3 Memory Management

Memory management enables the operating system to efficiently manage the memory
space for single and multiple processing applications. The memory management concepts
are implemented with an external memory management unit (MMU) interfaced directly to
the microprocessor. The MMU manipulates the microprocessor's vast address space by

2-10

ARCHITECTURE & BUS OPERATION
Signal Sampling Points

accepting virtual addresses from the microprocessor and translating them into physical
addresses (the physical address of the data). Therefore, the MMU can provide a vast
address space per process (over four billion bytes of virtual or physical address space).

2.3 SIGNAL SAMPLING POINTS

The WE 32100 Microprocessor utilizes two phase-shifted input clocks (CLK23 and
CLK34) as depicted on Figure 2-6. The CPU samples all inputs at the points indicated on
this figure. This figure can be used as a reference for the protocol diagrams in the sections
that follow.

CLK23

CLK34

* double latched

Notes:

ASYNCHRONOUS
SAMPLING SYNCHRONOUS
POINT SAMPLING

BUSRO IPLO-IPL3
BRACK (CPU NMINT
NOT MASTER) AVEC
DONE INTOPT

STOP
RfSITR

POINT

F AUL T* DA T AOO-DA T A31
RETRY*
RRREO*
SRDY
BLKFTCH

1. BUSRQ, BRACK, IPLO-IPL3, NMINT, AVEC, INTOPT, STOP, RESETR are
sampled repetitively one CLK34 cycle apart (i.e., on every clock cycle).

2. After DTACK is asserted, FAULT, RETRY, RRREQ and BLKFTCH are sampled once
at the synchronous sampling point. If FAULT, RETRY, or RRREQ are asserted prior
to or at the same time as DTACK, then they are sampled once and double latched. If
SRDY is asserted, then FAULT, RETRY, RRREQ and BLKFTCH are sampled once at
the synchronous sampling point.

3. BLKFTCH must remain asserted until negation of data strobe (Os).
4. DSHAD is not latched and can be asserted at any time subject to the following

conditions: DSHAD should only be asserted during a CPU-initiated transaction while
AS is active and DTACK, SRDY, and FAULT are inactive. Unless RETRY or RRREQ
is active, DSHAD should only be negated while AS is still active and DTACK, SRDY
and FAULT are inactive. If RETRY or RRREQ is active, then DSHAD should be
negated one cycle after AS is negated.

Figure 2-6. Signal Sampling Points

2-11

ARCHITECTURE & BUS OPERA nON
Read & Write Operations

The bus transactions that are described in the upcoming sections share the following
attributes. The read/write (R/m output remains in its mode (high, logic 1, for read
transactions and low, logic 0, for write transactions) for the entire transaction. The cycle
initiate (CYCLEI) output goes active for two clock cycles at the beginning of each
transaction. The CPU asserts the data ready (DRDY) output at the end of the transaction
if there are no bus exceptions (fault, FAULT; retry, RETRY; or relinquish and retry
(RRREQ) during the transaction.

The address bus (ADDROO-ADDR3I) is driven for the entire transaction if the CPU is
operating in physical mode. If the CPU is operating in virtual mode, the CPU only drives
the address bus during the first and second clock states. (One clock state is half a clock
cycleJ The CPU 3-states its address bus during the third clock state so that the MMU
can drive the translated physical address onto the bus.

The data size bits (DSIZEO-DSIZEI) indicate the size of the transaction (byte, halfword,
word, or double word) and are driven for the entire transaction. The access status code
(SASO-SAS3) is driven one clock cycle before the transaction starts and remains active
for two additional cycles during the transaction. This 4-bit code indicates the type of
transaction being performed. At clock state four, the access status code is changed to
reflect the next operation (if the next operation is a bus transaction) or to "no operation"
(if the next operation is not a bus transaction). The leading edge of CYCLEI can be used
to latch the access status code.

2.4 READ AND WRITE OPERA nONS

The WE 32100 Microprocessor performs zero wait-state read and write accesses in three
clock cycles. These accesses are performed in two stages. The microprocessor first outputs
the address and the control signals necessary for the given operation. Once these signals
have had time to settle, the data transfer takes place. All accesses are followed by a
vestigial cycle to allow enough time for a memory management unit to release the shared
address bus.

Two inputs that allow handshaking between the CPU and slow slave devices are provided.
External devices can cause the CPU to insert wait cycles during a bus transaction through
the use of the synchronous ready (SRDY) input and the data transfer acknowledge
(DTACK) input. Wait cycles prolong a bus transaction which allows slave devices more
time to place data on the bus during a read transaction and more time to pick up data
from the bus during a write transaction.

During bus transactions the CPU samples the DTACK and SRDY inputs at their respective
sampling points, as shown on Figure 2-6. If either input is active (low) at its sampling
point, no wait cycles are inserted and the transaction completes in three clock cycles.
However, if neither DTACK nor SRDY is sampled active, wait cycles are inserted, and the
CPU samples each input at cycle intervals from its respective sampling point until either
input is sampled active. At this point no more new wait cycles are generated and the bus
transaction completes one clock cycle after the completion of the current wait cycle.

2-12

ARCHITECTURE & BUS OPERA nON
Read Transaction Using SRDY

In the following read and write operation descriptions, the term "asserted" means that a
signal is driven to its active state either by the microprocessor (outputs) or by an external
device (inputs). The term "negated" means that the signal is driven to its inactive state. A
bar over a signal name (e.g., As) indicates that the signal is active low, logic O.

2.4.1 Read Transaction Using SRi5Y
Figure 2-7 illustrates a read transaction with zero wait cycles (3 cycle access) using SRDY
to terminate the access. The read transaction starts with the CPU driving the address bus
(ADDROO-ADDR3t) and the data size outputs (DSIZEO-DSIZEt), negating the
read/write (R/W) output to indicate that a read operation is being performed, and
asserting the cycle initiate (CYCLEI) output at the beginning of clock state zero.

For read operations the address strobe (As) and data strobe (DS) have the same timing.
The CPU latches data driven onto the data bus by the addressed device at the end of clock
state four, when the CPU negates AS and DS. Data can be driven onto the bus while AS
and DS are active.

The transaction illustrated on Figure 2-7 is terminated by the assertion of SRDY by the
addressed device. SRDY is the acknowledgement that the addressed device is putting the
data onto the data bus and that the CPU can latch the data and terminate the transaction.

SRDY is synchronously sampled at the end of clock state three.

The read transaction depicted on Figure 2-7 completes in three clock cycles (zero wait
cycles) because SRDY is active when sampled at the end of the clock state three.

2-13

ARCHITECTURE & BUS OPERATION
Read Transaction Using SRDY

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADD ROO­
ADDR31

DATAOO­
DATA31

Riw

- Lr ~ Lr -
~

I~ ~ I~

CURRENT VALID

-
- ,< «
- \\(-

VALID 1

- \\ \ \
-
-

-

X£l X£l m

-
-

'ilL

- ~\

Note: Zero Wait Cycles.

~ Lr ~ Lr ~r
~ ~ ~ I~ ~ [\

J «< NEXT VALID

3 - STATE IF VIRTUAL

'11/

J VALID :XXX :XXX

'\X :XXX :XXX :XXX :XXX

M IX :XXX :XXX :XXX

,\ \ \ 'iLL

'I I /

Figure 2-7. Read Transaction (Using SRDY)

2-14

ARCHITECTURE & BUS OPERATION
Read Transaction Using DTACK

2.4.2 Read Transaction Using DTACK

The read transaction using DTACK is identical to the read transaction using SRDY, except
that the addressed device asserts DTACK to acknowledge that it is putting data on the data
bus instead of SRDY (see Figure 2-8). DTACK is asynchronously sampled at the end of
clock state two and is double latched to avoid metastability.

The read transaction shown on Figure 2-8 completes in three clock cycles because the CPU
samples DTACK active at the end of clock state two. Upon sampling DTACK active, the
CPU latches the data and terminates the transaction.

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADD ROO­
ADDR31

AS,l5S

DATAOO­
DATA31

Riiii

- Lr ~ J" ~ Lr ~ Lr ~ -
~

~ ~ ~ ~ ~ ~ I~ ~ - \

CURRENT VALID <<< NEXT VALID

-
<<< -

-
<<< VALID) 3 - STATE IF VIRTUAL -

,\\\ 'III, -
-

VALID XIX XXX -

:XXX: :XXX :X\ 'XXX: :XXX :XXX

m XXX XIX XXX XIX XIX XIX XIX

,\ \\ ~7
-
-

'ill

,\\\ '/ / / -

Note: Zero Wait Cycles.

Figure 2-8. Read Transaction (Using DTACK)

2-15

ARCHITECTURE & BUS OPERATION
Read Transaction With Wait Cycle Using SRDY

2.4.3 Read Transaction With Wait Cycle Using SRDY

The CPU inserts wait cycles during bus transactions if it does not sample DTACK active at
the end of clock state two or SRDY active at the end of clock state three, and no bus
exceptions occur. As illustrated on Figure 2-9, the CPU inserts one wait cycle because
DTACK is not active at the end of clock state two and SRDY is not active at the end of
clock state three. Only one wait cycle is inserted during the transaction because SRDY is
active when sampled at the end of the wait cycle. The CPU then latches the data and
terminates the transaction.

2-16

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADD ROO­
ADDR31

DATAOO­
DATA31

R/w

- J ~ J ~ Lr I\-J \..:. Lr '---
---.
~ 'I' L!....J '3' Ir--yj' '5' r----\

~ ~ ~ X
\

CURRENT VALID <<< NEXT VALID

- <<< -
- : <<< VALID) 3 - STATE IF VIRTUAL -

\\ \ \ - 'III
-

VALID - :XXX :XXX

:XXX :XXX :xy '<X :XXX :XXX :XXX

~XXX ~ :XXX :xy '\X: ::0.. IX :XXX :XXX :XXX

- ,\\\ 777
-

'ill

\\\\' 'I I / -

Figure 2-9. Read Transaction With One Wait Cycle (Using SRDY)

ARCHITECTURE & BUS OPERATION
Read Transaction With Two Wait Cycles Using iITACK

2.4.4 Read Transaction With Two Wait Cycles Using DTACK

The CPU can insert multiple wait cycles during bus transactions, as illustrated on Figure
2-10. In this figure the CPU does not receive an acknowledge (DTACK or SRDY) for two
clock cycles. Neither DTACK nor SRDY is active during clock states two and three or the
first wait cycle. DTACK is sampled active in the middle of the second wait cycle, causing
the termination of wait cycle generation. The CPU then latches the data and terminates
the transaction.

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

Riw

- J ~ J ~ If ~ J ~ If ~ J ~ -
~
~ t-"i' ~ ''3"'

I~ ~ ~ ~ I~ ~ ~ ~ -
CURRENT VALID (<< NEXT VALID

- (<< -
-

<<< VALID) 3 - STATE IF VIRTUAL -

\\ \ \' 'II/, -

- \
VALID ~XXX XXX

:XXX: :XXX: :xy :XXX .XXX :XXX

:XXX :XXX :XXX :XY \(X :XXX: :XXX :XXX

- ,\ \ \' 777/
- 'I I I,

- \\ \ \' 'II/,

Figure 2-10. Read Transaction With Two Wait Cycles (Using DTACK)

2-17

ARCHITECfURE & BUS OPERATION
Write Transaction Using SiIDY

2.4.5 Write Transaction Using SRDY

During write transactions the R/w output is held low (logic 0) for the entire transaction.
The CPU drives the data bus with the data to be written from clock state two until the end
of the transaction. The access status code at the beginning of a write transaction is "write"
(SAS3-SASO = 10lD).

Unlike read transactions where AS and DS have the same timing, the CPU asserts DS one
cycle after it has asserted AS, allowing the addressed device to latch the data with either
the leading or trailing edge of DS.

Figure 2-11 illustrates a write transaction with the addressed device using SRDY as the
acknowledgement. By asserting SRDY the addressed device indicates to the CPU that it is
ready to latch the data on the data bus. SRDY is synchronously sampled at the end of
clock state three. On Figure 2-11, the CPU sampled DTACK inactive at the end of clock
state two; however, it sampled SRDY active at the end of clock state three. As a result, the
CPU terminates the transaction.

2.4.6 Write Transaction Using DTACK

The write transaction using DTACK is identical to the write transaction using SRDY,
except that the addressed device asserts DTACK to indicate that it is ready to latch the
data on the data bus. DTACK is sampled asynchronously at the end of clock state two.
On Figure 2-12,the CPU samples DTACK active at this time and proceeds to terminate the
transaction.

2.4.7 Write Transaction With Wait Cycle Using SiiW
Wait cycle insertion for write transactions is similar to wait cycle insertion for read
transactions. Just as in read transactions, the CPU inserts wait cycles if DTACK is not
active when sampled at the end of clock state two, SRDY is not active when sampled at the
end of clock state three, and no bus exceptions occur.

Figure 2-13 illustrates a write transaction with two wait cycles. The CPU begins wait
cycle insertion because DTACK is not active at the end of state two and SRDY is not active
at the end of state three. A second wait cycle is inserted because, again, neither input was
active when sampled during the first wait cycle. The addressed device finally asserts
SRDY at the end of the second wait cycle, and the CPU terminates the transaction.

2-18

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

R/IY

- Lr ~ Lr -
--""'1 1'1"' 0 ~ I~

CURRENT VALID

- -(~ (
-
- «< VALID) -

,\ \ \ -

-
- <<< -

-

~XXX YXX X'!Y

-

\\\ -

.\\\ -

Note: Zero wait cycles.

ARCHITECTURE & BUS OPERATION
Write Transaction With Wait Cycle Using SillY

~ Lr ~ Lr ~~
~ 1'5' I~

~ ~ X 1\

«< NEXT VALID

3 - STATE IF VIRTUAL

'I I lV

\\ \ \ 'I I I

VALID

\X :XXX ~XXX :XXX :XXX

~ IX ~XXX :XXX :XXX

,\ \ \ 'III

'Ill

Figure 2-11. Write Transaction (Using SRDY)

2-19

ARCHITECTURE & BUS OPERATION
Write Transaction With Wait Cycle Using SRDY

CLK23
- Lr ~ if ~ -

CLK34 ---'\
~ '7' ~ '3'

Lr ~ Lr ~-
~ ~ ~ ~ 1\

SASO­
SAS3 CURRENT VALID <<< NEXT VALID

2-20

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

R/W

- <<< -
-

<<< VALID) 3 - STATE IF VIRTUAL -

.\\\ 'Ill -

,\\\ 'Ill -
-

<<< VALID -

XXX :XXX X\ 'XXX' :XXX :XXX

:XXX :XXX :XXX :XXX :XXX :xxx :XXX XXX

.\\\ 'ill -

,\ \ \

- ,\\\ '/ / /

Note: Zero wait cycles.

Figure 2-12. Write Transaction (Using DTACK)

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

R/W

CYCLEI

-
-
~

-
-
-
-

-

-
-
-

-

-

-

V ~ J I\-,r
~ ~ ~ ~ I~

CURRENT VALID «(

«<

<<< VALID)

,\ \ \

,\ \ \

((<

XXX XXX ~Xf

:XXX :XXX: :XXX: :XY \X:

.\ \ \

.\\\ 'I I I.

ARCHITECTURE & BU,; OPER{][,ION
Write Transaction With Wait Cycle Usil1 SRDY

l\-V ~ ,r l\-V ~
v--;:;---
~

r--;;-' 4
1'-----1

1'5"
~ ~

NEXT VALID

3 - STATE IF VIRTUAL

I
'I I I. !

'I II

VALID

'0(J<XX X£i XIX' XIX

W '<X: :XA IX :XXX :XXX :XXX

.\\\ m7:17

Figure 2-13. Write Transaction With Two Wait Cycles (Using SRDY)

2-21

AR:HITECTURE & BUS OPERATIO.R­
Wri:e Transaction With Wait Cycle Using DTACK

ZA.S Write Transaction With Wait Cycle Using DTACK

[he write transaction shown on Figure 2-14 is another example of wait cycle insertion. In
this transaction the addressed device asserts DTACK to indicate that it is ready to latch the
i1ata, and that therefore, no more wait cycles are to be inserted.

N"either DTACK nor SRDY is active at its initial sampling point and, as a result, the CPU
inserts a wait cycle. When the CPU samples DTACK a second time during the wait cycle,
DTACK is now active. The CPU can then terminate the transaction.

Additional protocol diagrams for read and write operations are included in
2.19 Supplementary Protocol Diagrams.

2.5 READ INTERLOCKED OPERATION

Read interlocked operation consists of a memory fetch (read access) and one or more
internal microprocessor operations, followed by a write access to the same memory
location. Once the read access has been completed, the read interlocked operation may not
be preempted other than by a reset. This prevents another process from altering data in
memory which is being operated on by the current process. If a fault occurs during the
read access, the read interlocked operation terminates without going through the write
access.

Figure 2-15 illustrates a read interlocked transaction. Note that the access status code is
"read interlocked" (SAS3-SASO = 0111) for both transactions and that the address
remains the same for both transactions. The read portion and the write portion of the
transaction are standard read and write transactions.

2-22

CLK23

CLK34

SA SO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

RiW

- Lr ~ Lr ~ -
~

I~ '7' ~
r-:;-"

CURRENT VALID

-
- «(
- «(VALID) -

,\ \ \ -

- l\\i
-
- «(

:XXX :XXX :yy

:XXX :XXX: :XXX :xy

-

- l\ \\

- ,\ \ \'

ARCHITECTURE & BUS OPERATION
Read Interlocked Operation

f ~ f ~ Lr r'L
~ ~ ~ ~ ~ ~ \

«(NEXT VALID

3 - STATE IF VIRTUAL

/ / / /

,///

VALID

:XXX :XXX :XXX

\X XXX :XXX :XXX :XXX :'IJ\A

,\\\ ,///

'11/

Figure 2-14. Write Transaction With One Wait Cycle (Using DTACK)

2-23

N
I
N

"'"
CLK23

CLK34

SASO-
SAS3

DSIZEO-
DSIZEI

ADDROO-
ADDR31

AS

os

OATAOO-
DATA31

DTACK

SRDY

DRDY

R/W

CYCLEl

I - V l\-f ~ V l\-V I\-- r ~ V I\-~ ~ J l\-V I\-
---, ~ '3' ~ ~ 0 ~ ~ x

~ 1'---' '---'
~
I~ ~ ~

r-;-' 10 Lr--n"' X ~
'---' 1'---'

READ INTERLOCKED READ INTERLOCKED _\ « NEXT VALID

-
, < < < - 1

I-.

t"

- ,(« VALID) 3 - STATE IF VIRTUAL
- :« < VALID) 3 - STATE IF VIRTUAL

1.\ \ \ '11/ - ,\ \\ '11/

1.\ \\ 'I I / 1.\ \ \ 'I II -

VALID XXX :XXX ~ ill VALID
-'

XXX W\X 0A XXX XIX 0CO(0: X XXX W\X ()Q XXX XIX \;\IX

XXX :J\M ~XXX ::XXX :XXX :XXX: (XXX (XM (X X ~XXX ~XXX W\X W\X :xf.x XXX KXXX KXXX

ID (XM ::XM ~XXX :XM: KxM t(X KXXX, oo:x ::iJ:L ~ ~ ~
- 'II I

h t\\\

.\\ \ 'I I I, -
h t\\\ r I I I

Notes:

I. Number of cycles between the read transaction and write transaction is four for swap word interlocked (SW APWI) and
six for swap halfword interlocked (SW APHO and swap byte interlocked (SW APBO instructions.

2. Zero wait cycles.

Figure 2-15. Read Interlocked Transaction (Using DTACK)

~>
IE 1:1:1
Q-("'l

;'=
;-:=i
:::!.t"'i
g("'l
~...,
Q-C:
01:1:1
16t"'i
a~
o· t:I:I =c:

rJl

o
~
1:1:1

g
Z

ARCHITECTURE & BUS OPERATION
Blockfetch Transaction Using SRDY

2.6 BLOCK FETCH OPERATION

The CPU can fetch two words of instruction code in one bus transaction via a blockfetch
operation. The CPU generates one address, and the memory provides two words of
instruction code. This reduces the number of cycles that it takes to fetch two words. The
CPU starts the transaction with the DSIZE of double word, which indicates that it is ready
to perform a blockfetch.

If the memory is designed to handle blockfetch, it will respond with the blockfetch
(BLKFTCH) signal and an acknowledge signal, either SROY or OTACK.

2.6.1 Blockfetch Transaction Using SRDY

After the memory issues BLKFTCH and SROY, the CPU latches the data being sourced by
the memory during clock state four, removes OS, and keeps AS in the active state. One
cycle later the CPU reissues OS and is ready to latch the second word.

The memory drives the data bus with the second word and a SROY. The CPU samples the
SROY at the end of clock state seven, then latches the data during clock state eight and
terminates the transaction. This operation is shown on Figure 2-16.

AS stays low for both words fetched. OS goes inactive for one cycle in between the first
and second words. DSIZE changes from double word to word at clock state six. R/w is
held in the read mode for the entire transaction. Only one CYCLEr is issued for this
transaction. Two OROY's are issued, one for each word. The BLKFTCH pin is sampled
only with the first SROY. It is not used during the second word. The SAS code for the
first word can be "instruction fetch," "instruction fetch after PC discontinuity," or
"prefetch." SAS for the second word is always "prefetch." If the memory does not issue a
BLKFTCH with the acknowledgement on the first word then the CPU will latch the data
and terminate the transaction by removing both AS and OS. It will then precede to start
up a second read with SAS of "prefetch" and issue a new address.

For a blockfetch transaction, the CPU issues only one address. If it is in virtual mode the
CPU 3-states the address during clock state two which allows the MMU to drive the
physical address for fetching both words. Also note that the CPU is fetching the two
words from a double word address block. It will ask for either the even or odd address
first, as indicated by the value on the address bus. For the second word it expects the
memory to provide the data corresponding to the address location with ADDR02
complemented. This is the other corresponding word from the double word block.

For example, assuming physical addressing, the CPU drives ADDR with 0003COOO.
Memory provides data for the first word corresponding to location 0003COOO. Memory
provides data for the second word corresponding to location 0003C004.

As another example of physical mode, consider the CPU driving ADDR with 00078004.
Memory provides data for the first word corresponding to location 00078004. Memory
provides data for the second word corresponding to location 0007800.

2-25

ARCHITECTURE & BUS OPERATION
Blockfetch Transaction Using SRDY

I<rIE --- FIRST WORD FETCH -----!l~oi<!IE- 2ND WORD FETCH -4

CLK23
- Lr ~ V ~ J ~ Lr ~ V ~ J -

CLK34
---,
~ ~ I~ '3' ~ ~ I~ lr"7' I~

;--g'I
~

;-r-- INSTRUCTION FETCH/PREFETCH

~
~

I'

SASO­
SAS3

pi I < « INST. PREFETCH «(NEXT VALID

2-26

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

R/W

-
~(i DOUBLE WORD <<< WORD -

- <<< VALID) 3 - STATE IF VIRTUAL -

- .\\\ 'Ill

- \\ \ \ 'I I /. .\~' 'LLL
-

I WORD I WORD 2

XXX :xxx 'XI \{X 'XXX ~XXX :XY '\x :XXX XIX

:XXX: ,xxx :xxx :x\ tX ,xxx :xxx :X\ tX :xxx

- .\\\ 'Ill .\ \ \
- ilL

:XXX: :XXX: :XXX :X\ tX xxx :xxx :XXX :XXX :XXX:

- .\\\ 'Ill

Note: Zero wait cycles.

Figure 2-16. Blockfetch Transaction (Using SRDY)

:xxx XXX

:XXX: :XXX

f'777:7

:XXX :XXX

ARCHITECTURE & BUS OPERATION
Blockretch Transaction Using DTACK

2.6.2 Blockfetch Transaction Using iITAcK
This transaction (see Figure 2-17) is the same as Figure 2-16 except the acknowledgement
used by the memory is iITAC'K. On the first word DT ACK is sampled by the CPU at the
end of clock state two. BLKFfCH is sampled at the end of clock state three which is the
same as on Figure 2-16. For the second word, DTACK is sampled at the end of clock state
six.

I«ls--- FIRST WORD FETCH ----t>~l«ls- 2ND WORD FETCH --;.j

- V ~ V ~ V l\-V l\-V I\-Lr I\--CLK23

1,------,
CLK34

~

~ f"""I' ~
r--;-'
~ ~ I~ ~ I~

1'9'
~ x ~

SA SO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

R/Yi

/ -INSTRUCTION FETC~(PREFETCH

;{ I«(K INST. PREFETCH <<< NEXT VALID

- <((DOUBLE WORD <<< WORD -
- «< VALID) 3 - STATE IF VIRTUAL -

,\ \ \' '11/ -

- ,\ \ \' 'III ,\\\ 'I I /

WORD I \ WORD 2 -
XXX XXX :xA :XXX :X\ ~XXX: (XXX :XXX:

XXX: XXX; :XXX: :XXX; :XXX: :XXX :XXX: :XXX :XXX: :XXX: :XXX :XXX:

\\\ '/ / / \ \ \ rm:f7 -
- '11/

(XXX: (XXX :XXX: (XA 'YYX (XXX YJ:I (XXX YYJ ~XXX (XXX

1.\\\ 'I I I -
Note: Zero wait cycles.

Figure 2-17. Blockretch Transaction (Using DTACK)

2-27

ARCHITECTURE & BUS OPERATION
Blockretch Transaction Using DTACK With Wait Cycle on Second Word

2.6.3 Blockfetch Transaction Using DTACK With Wait Cycle on Second Word

In this case (see Figure 2-18), during the fetch of the second word there was no DTACK
during clock state six nor SRDY during clock state seven. Therefore, the CPU inserted a
wait cycle. It sampled DTACK during the first clock state "W," then latched the data and
terminated the transaction.

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

--
-,

--
--
--
--

--

--

J ~ Lr ~ Lr ~ Lr ~ Lr ~
I~

1'1'
I~ ~ ~ ~ I~ ~ ~

r-;;-'

j+---INSTRUCTION FETCH/PREFETCH

,I X (UK INST. PREFETCH U(

«(DOUBLE WORD «(

«(VALID) 3 - STATE IF VIRTUAL

\\\ \

,\\\ '11/ ,\\\

WORD I

~XXX ~XXX (X\ (XXX '<x: J<\

(XXX (XXX (XXX (XY '\X (XXX (XXX (XY '\X: :XXX:

J ~ J ~
,.---. 'X" B 9 -.2J ~

NEXT VALID

WORD

'/LI...

'11/

WORD 2

J<XX: XIX ~

:XXX: :XXX: :XXX: :XXX.

I'

,\\\ '11/ ,\ \ \ m~ --
--

R/W '11/

xxx xxx :xxx :X\ :xxx :xxx :xxx ~xxx xxx xxx xxx ~xxx. ~xxx

\\ \ \ 'IIIJ --

Note: Wait cycle on second word.

Figure 2-18. Blockfetch Transaction Using DTACK With Wait Cycle on Second Word

2-28

ARCHITECTURE & BUS OPERATION
Blockfetch Transaction Using SRDY With Wait Cycles on Both Words

2.6.4 Blockfetch Transaction Using SRDY With Wait Cycles on Both Words

During the fetch of the first word in this transaction, the CPU did not sample a DTACK
during clock state two nor a SRDY during clock state three (see Figure 2-19). It inserted
a wait cycle. During the second clock state "W," it sampled SRDY and BLKFTCH, then
latched the data and terminated DS. The CPU proceeded to the second fetch. During
clock state six it did not sample DTACK nor a SRDY during clock state seven. The CPU
inserted a wait cycle. During the second clock state "W," it sampled SRDY, then latched
the data and terminated the transaction.

CLK23

CLK34

SASO­
SAS3

DSIZED­
DSIZEI

ADDROD­
ADDR31

DATAOO­
DATA31

-
-
-.,

-

-
-
-
-

-

-
-

V ~ J f\--V \..-
''1""' ~ r--;;-' ,~ 2 W

'---' 1'---'
/+-- INSTRUCTION FETCH/PREFETCH

pi X((r

ill DOUBLE WORD

ill VALID 2

~

,\ \ \

IX KXY

V f\--V \..-V ~ V l\-V
V""""s' 6 ~ W ir--;;-' B v--;-; x I~ I'---.J 1'---' 1'---' ,~

INST. PREFETCH ill NEXT VALID

ill WORD

3 - STATE IF VIRTUAL

'.U.J...

'I I I \\ \ \ 'I I I.

~-------
r- _______

WORD I WORD 2
-r---- -r----

\ IX XX (XXX KXxx - r----

\..-
r-x-'

~XXx

(XXX (XXX rxxx (XY '0(KX\ IX (XX IlV'V'I rJ,j '<X ~ .£t, ~ KXXX KXXX

- \\\\ ~LLI. ~ I"ZZZ
-Riw 'Ill

('fJ.X (xXX KXXX (XA. ~ KXL<.X 0SX>i ~ ~ ~ IX6l LML ~

- \\ \ \ 'III

Note: Wait cycle on both words.

Figure 2-19. Blockfetch Transaction <Using SRDY)

2-29

ARCHITECTURE & BUS OPERATION
Bus Exceptions

2.7 BUS EXCEPTIONS

Bus exceptions cause the termination of the current memory access and result when an
access retry is required or when a fault occurs during an access. The three bus exceptions
are fault, retry, and' relinquish and retry.

A fault is the result of an error condition during a bus cycle. An external device reports
errors to the CPU (such as address translation and memory faults) by asserting the fault
input (FAULT). This causes the CPU to terminate the access and perhaps execute a fault
handling routine. The WE 32101 Memory Management Unit uses the FAULT input when
it detects that a virtual address corresponds to data that is not presently in physical
memory. The MMU also generates a fault if it detects an error condition when it attempts
to translate the virtual address. A retry causes the CPU to retry the access. An external
device requests a retry by asserting the RETRY input. A relinquish and retry causes the
microprocessor to give up its bus and retry the preempted access once the bus has been
returned to its control. An external device requests a relinquish and retry by asserting the
RRREQ input.

Table 2-3 describes how the microprocessor handles the simultaneous assertion of two or
more bus exceptions. The term negated indicates the signal is driven to its inactive state.

2.7.1 Faults

A bus transaction can be terminated by a bus exception: in this case, FAULT without a
DTACK or SRDY (see Figure 2-20). On Figure 2-20, the CPU inserted two wait cycles

Table 2-3. Simultaneously Asserted Exception Conditions·

Simultaneously
Bebavior

Asserted Signals

RRREQ, RETRY, The relinquish and retry request (RRREQ) is honored first. The
FAULT microprocessor acknowledges this request by relinquishing the bus and

then asserting the relinquish and retry request acknowledge (RRRACK)
output. The access is retried once RRREQ and RETRY are negated by
the requesting devices. If the fault (FAULT) input is still asserted
during the retried access, the fault will be honored (recognized). The
fault input will be recognized only during the retried access.

RRREQ,RETRY The relinquish and retry request (RRREQ) is honored first. The
microprocessor 3-states the appropriate signals and then asserts the
relinquish and retry acknowledge output (RRRACK). The access is
retried once RRREQ and RETRY are negated.

RRREQ,FAULT Same as in behavior for RRREQ, RETRY, and FAULT simultaneously
asserted.

RETRY, FAULT The RETRY request is honored first. The FAULT will be recognized on
the retried access if it is still asserted.

* Table 2-3 applies only when the microprocessor is the bus master.

2-30

ARCHITECTURE & BUS OPERATION
Faults

because it did not receive an acknowledge or a bus exception. During the third clock state
"W," the CPU asynchronously sampled FAULT and terminated the transaction. Note that
if a DTACK was also sampled with the FAULT during the third clock state "W," the figure
would still look identical.

Upon the faulted transaction, the CPU will proceed to the fault handler to process the
exception. However, for a faulted prefetch, the CPU ignores the data, continues with its
current instruction execution, and does not enter the fault handler. If the CPU needs this
instruction later, it will do an instruction fetch, and if this is also faulted, the CPU will
proceed with the fault handler. At the end of the transaction, DRDY is not issued starting
with clock state five because the CPU sampled the FAULT. If this bus transaction is a
write, the CPU will sample FAULT the same way as in a read case. There are some
differences for a blockfetch which can be seen in 2.8 BLOCKFETCH SPECIAL CASES.

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR3

AS,iiS

DATAOO­
DATA3

R/W

- V -
~

~

- «(-
- «(-

- ,\ \ \

~XXX

~

~XXX

:XXX

-
- 'Ill

- ,\\\

l\-V l\-f
~
~ ~ ~

,~((

VALID)

~XXX ~XXX: :XXX: :XXX:

~ 'JV

~XXX (yy

:XXX :XY

'11/,

~ J ~ J "-J I\-
r-;-' r-;-' '5" ~ W 4 ~ ~ ~ I'

NEXT VALID

3 - STATE IF VIRTUAL

'III

:XXX: :XXX: :XXX: :XXX: :XXX: (XXX :XXX

J\IX, (XXX (XXX

:XXX: (XXX (XXX:

\ YXX :XXX :XXX

Figure 2-20. Asynchronous Fault Without DTACK and SRDY (Read Transaction>

2-31

ARCHITECTURE & BUS OPERATION
Fault With SRDY

FAULT With Siij)y

The CPU can sample FAULT synchronously if it has a SRDY with it. Figure 2-21 shows
both SRDY and FAULT being sampled during the last clock state "W." The CPU then
terminates the transaction and does not issue a DRDY. For reads and writes, the CPU
samples the SRDY and FAULT in the same way.

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

R/Vi

2-32

- J l"-V I"-Lr l\-V ~ V ~ J I\--
~
~

:~ I']' r----\ v--;;-- '5' Ir----\
~ ~ w ~ ~ ~ x I'

«(NEXT VALID

- «(-
- «(VALID) 3 - STATE IF VIRTUAL -

\\ \ \ - 'I I I

~XXX (XXX (xYX (X'lJ m :J:lX (XXX (XXX :XXX :XXX (XXX XIY

:XXX ~XXX (XY 'XX :XXX ~XXX ~XXX (XXX

:XXX: YJY: (XYX XI '<X rtf \X :X\ AX :XXX :XXX :XXX

:XXX ~XXX :XY j)(:XXX (XXX m

-
- 'I I I.

- ,\ \ \ 'I II

Figure 2-21. Fault with Synchronous Ready (SRDY); i.e., Synchronous Fault

ARCHITECTURE & BUS OPERATION
F;ill After DTACK

FAULT After DTACK

The CPU can also sample FAULT synchronously if it has sampled a DTACK
asynchronously in the same clock cycle. Figure 2-22 shows DTACK sampled during clock
state three and FAULT sampled during clock state four. The CPU then terminates the bus
and does not issue DRDY. This sampling of STACK and FAULT is the same for reads.

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

- V l\-V l\-V l\-V ~ -
~

~ ~ I~ ~ ~ ~ ~
I'X'

-

<<<
- «(-
- <<< VALID) 3 - STATE IF VIRTUAL -

,\ \ \ 'I I I -
.\\\ 'III -

- <<< VALID -

XXX; XXX JO.. ':Xxy ~y.y.y. :XXX

XXX XXX: :XXX .XY ~ YXX m 'JY'X.

':XXX :XXX :XXX -

-
,\\\ 'III, -

Note: FAULT must meet setup time with respect to CLK34 edge
after assertion of DTACK.

Figure 2-22. Fault After Assertion of DTACK (Write Transaction is Shown)

2-33

ARCHITECTURE & BUS OPERATION
Retry

2.7.2 Retry

RETRY is sampled the same way the FAULT is sampled. The previous figures on how
FAULT is sampled can have the words FAULT replaced by RETRY as far as the sampling
is concerned. Figure 2-23 shows a retry for a read transaction.

When the CPU samples the RETRY, it terminates the transaction and does not issue a
DRDY. The CPU continues to asynchronously sample RETRY. After RETRY is removed,
the CPU will redo the entire transaction. The SAS code will be the same as the first
transaction as well as the address, DSIZE, and R/w.

RETRY operates on reads and writes in the same way. There are some differences if the
transaction is a blockfetch, and these can be seen in the RETRY with blockfetch figures in
2.8 BLOCKFETCH SPECIAL CASES.

2.7.3 Relinquish and Retry

RRREQ is sampled the same way that the other two bus exceptions (FAULT and RETRY)
are sampled. An example is shown on Figure 2-24.

When the CPU samples RRREQ, it terminates the transaction and does not issue a DRDY.
After the second clock state "X," the CPU 3-states the address and data buses as well as
most of the control signals in order to allow some other device to use the bus. A cycle later
the CPU issues RRRACK. This indicates that the device that had issued RRREQ can get
onto the bus and do its bus transaction. The CPU will continue to asynchronously sample
RRREQ. When the device using the bus is finished, it should remove RRREQ. When the
CPU sees that RRREQ is removed, it will take back the bus and redo the entire
transaction. As in the RETRY case, the SAS code, address, DSIZE, and R/w will be the
same on both transactions.

RRREQ operates on reads and writes in the same way. There are some differences if the
transaction is a blockfetch, and these can be seen in the blockfetch with relinquish and
retry figure in 2.8. BLOCKFETCH SPECIAL CASES.

2-34

CLK23
- J -

CLK34
,

0
'----J

SASO-
SAS3

DSIZEO-
DSIZEI

- i«
ADDROO-

ADDR31
- ii(

AS. os \\\ -
DATAOO-

DATA31

DTACK :XXX:

SRDY :XXX.

RETRY -
DRDY -

-
R/w 'I I I,

CYCLEI
- \\\ \'

N
I
~
U\

~ V~JL~JL~J~V~V~
~ ~ lr"3' 4 r-;-'o X ~

,--...
~

r-;-"
~ ~ ,~ ~ I~ ~ '-----J 1'---' ~ [\

NTH ACCESS «< N.+I ACCESS (((NTH ACCESS (< (N.+I ACCESS

VALID) 3 - STATE IF VIRTUAL ((VALID) 3 - STATE IF VIRTUAL

'11/ ,\\\ '11/

VALID :XXX: :XXX)

~XXX: :XY XXX :XXX :XXX :XXX :XXX :XXX :XXX :X\ :XXX: :XXX: :XXX:

:XXX :XXX :XXX :XXX :;:xx YJX XXX J0(X :XXX :XXX :XXX ,X!)(:XXX :XXX :XXX :XXX :XXX

,\ \ \' 1(117/

'IIIJ .\ \ \ 'III

Figure 2-23. Retry of Transaction (Read Transaction is Shown)

;;
Q
::3 q
c:
~
trJ

~

1:1:1 i:lCc:
~rIl

Io
S.~
"'trJ
=-~
~>
i:IC~
ao
.:!Z

N
I
W

CLK23 Q\
- V '-J ~ V ~ V '-J ~ - f--i

r

CLK34
-, ~ r---\ 1'5' ~ r---\

~ 2 3 ~ 0 ['-T '---J '---J ~

SASO-
SAS3 NTH ACCESS JiC

-OSIZEO-
OSIZEI «< -

-AOOROO-
AOOR31 <<< VALID) 3 STATE IF VIRTUAL -
AS,TIS - ,\\i '//l -

OATAOO-
OAT A31 XXX '\XX ~XXX ~XXX :XXX 'XXX X~X ~XXX ~XXX :XXX :x: X

OTACK :XXX ''IJX y;j XXX .xXX ; XXX xtX JM A. 'X

SROY :XXX :XXX :XXX: :XXx: :XXX XXX '\XX ~XXX ~XXX XXX X X

RRREQ - ~

RRRACK - ['-T
-

OROY -
-.J

-
Riii 'j j I.

CYCLEI - ,\\\ 'ill
I

Figure 2-24, Relinquish and Retry

~ V '-
l,r---"\ r---\

~

,XXX :XXX ~XXX

'XXX YXX XIX

:XXX :XXX ~XXX

J ~ V ~
l,r---"\ ~

'---J ~ ~

«(NTH ACCESS

<<<

<<<

~
I

~XXX :XXX ,XXX ,XXX

:XXX XXX XXX XXX

:XXX :XXX :XXX :XXX

i
I

,\ \\
I

~>
~~
5' C"'l
~:I: -,
~....,

~~
~...., toe
=t~
'<t"J

~

0= e
'J1

~
~, o z

2.8 BLOCKFETCH SPECIAL CASES

ARCHITECTURE & BUS OPERATION
Retry on Second Word of B10ckfetch

As indicated in the descriptions of the bus exceptions, a fault, retry, or relinquish and retry
of a blockfetch transaction is a special case of bus exception. The following descriptions
address these special cases.

2.8.1 Fault on First Word of Blockfetch With Status Code Other Than Prefetch

If the CPU samples FAULT on the first word of a blockfetch where the SAS code is
"instruction fetch" or "instruction fetch after PC discontinuity," the blockfetch transaction is
altered as on Figure 2-25. The CPU sampled FAULT in clock state two and BLKFTCH in
clock state three. Note that to sample BLKFTCH, the CPU needs a DTACK, SRDY, or a
bus exception. Upon seeing blockfetch and fault, the CPU removes DS at clock state five.
It holds AS low and continues to hold it until the end of the first clock state X. The
address bus, if in physical mode, is driven until the second clock state X. DRDY is not
issued at all during this transaction.

2.8.2 Fault on First Word of Blockfetch With Status of Prefetch

As in other prefetch transactions, when the CPU is faulted, it ignores the data and just
continues on with its current execution. This is illustrated on Figure 2-26. On clock state
two, the CPU sampled FAULT and on clock state three, it sampled BLKFTCH. The CPU
terminated the first word fetch by removing DS (not issuing DRDY), and continuing on to
the second transaction. The second transaction operates normally.

2.8.3 Retry on First Word of Blockfetch

The CPU samples RETRY during clock state three and the BLKFTCH during clock state
four. The CPU then terminates the transaction by removing DS at clock rate state five
and the AS at the second clock state X. At this point the CPU waits for RETRY to go
away. When it does the CPU retries the entire blockfetch transaction. This process is
illustrated on Figure 2-27.

2.8.4 Retry on Second Word of Blockfetch

In this case (see Figure 2-28), the CPU sampled BLKFTCH and DTACK, clocked the data
from the data bus, issued a DRDY, and continued on to the second word. During the first
clock state W, the CPU samples RETRY. It then terminates the transaction, does not issue
a DRDY, and waits for the RETRY to be removed. Since the second word of a blockfetch
is always a prefetch, the CPU faults this transaction internally rather than retrying the
entire blockfetch transaction. When the RETRY signal is removed, the CPU continues on
with its current execution. If the CPU wants to do a new bus transaction it will proceed
with this one since it will not retry the blockfetch.

2-37

ARCHITECTURE & BUS OPERATION
Retry on Second Word of B10ckfetch

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

R!W

-
-
~

-
-
-
-

-

-

-
-

J
0

'----I

<<<

~l({

~XXX

~XXX

~XXX

~XXX

'/ / /

':!.XX

~ V ~ ~
r-;-'
~ V3' 4

1'----1

NON-PREFETCH ill

DOUBLE WORD

VALID 1

,\ \ \

,\ \ \

XXX 'YXX XXX 'YXX

~XXX :XXX :XXX ~XXX

':!.XX ':!.XX 'YXX 'YXX

~XXX ~XA

:fiX M J:A

~ J ~ V ~ ~
1;-;-,

6 r---:r" I~ ~ ~ '----I

INSTRUCTION PREFETCH

«< WORD

3 - STATE IF VIRTUAL

'ilL

~XXX :iXi :£'IX XI)(m m
~XXX ~XXX ~XXX :XXX (XXX (XXX

'YXX :iXi :£'IX XI)(m m
(XXX ~XXX ~XXX ~XXX ~XXX :XXX

~XXX m m 'YXX m m

Figure 2-25. Fault on First Word of B10ckfetch Transaction With Access Status
Code (Not Instruction Prefetch)

2-38

~r-
~

1\

'lLL

~

(XXX

~

~

m

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DAT~31

R/W

-
-

~

-
-
-
-

-

-
-
-

-
-

-

J

I~

< < <

< (~

\\ \ \

,\ \ \'

:XXx:

XXX

:xxx

ill

:XXX:

,\ \ \'

I\-J ~ J
Ir--;-'
~ f""""""3' ~

PREFETCH «(

DOUBLE WORD

VALID 2

:XXX :X\

XXX :xxx XXX XXX

:xxx x\

:XXX :X\ :XXX

'Ill

ARCHITECTURE & BUS OPERATION
Retry on Second Word of Blockfetch

~ V ~ J ~ ~ ~
'5' ~ rg-'I r---\

~ ~ ~ X

PREFETCH (((

< ((WORD

3 - STATE IF VIRTUAL

'I I l

'Ill ,\\ \ 'Ill
J

:XXX :X\ IX :XXX :XXX :XXX

Xi)(:tJ\X ,xxx XXX xxx xxx xxx

:XXX XXX :xxx :xxx :xxx :xxx :xxx
\\~ \ il/'

:XXX :XXX XXX :XXX :XXX :xxx :xxx

Figure 2-26. Fault on First Word of Blockfetch Transaction With Access Status Code
of Prefetch

2-39

I-J
J;.
0= o ®

CLK23
- f ~ V l\-f ~ ~ l\-V l\-f ~ f l\-V ~ f ~ ~ ~ -

CLK34
~ ~ ~ '5' I~ lr"-'\ r---I ~ r------I r---I Ir---I
~ 2 ~ X ~ I 2 4 5 6 7 B 9

1'-----' '-----' 1'-----' '-----' 1'-----' '-----' ,'-----'
!---INSTRUCTION FETCH OR INSTRUCTION PREFETCH - 1\

SA SO-
SAS3 I I < «K NEXT VALID <<< ~ : (« NEXT VALID

-DSIZEO-
DSIZEI ~ < < < DOUBLE WORD <<< DOUBLE WORD <<< WORD

-ADDROO-
ADDR31 : < « VALID) 3 - STATE IF VIRTUAL «< VALID) 3 - STATE IF VIRTUAL -

AS ,\ \ \' 'I I I. ,\ \ \' 'I I I. -

os - ,\ \ \' 'iiI, \\\ \' 'I I I ,\ \ \' 'I I I.

DATAOO-
DATA31

- ~
WORD I WORD 2
~~

DTACK
I~ "'"" :xxx :xxx co. :xxx :xxx :xxx 0\XA JY.A :xxx :xxx co. JY.A ~A (XXX

SRDY :XXX :XXX :XXX :XXX :XXX :XXX :XXX: :XXX, :XXX :XXX :XXX :XXX: :XXX :XXX :XXX :XXX :XXX :XXX' :XXX :XXX

RETRY :xxx '0AA, ~

DRDY - ~~ 'JiIJ ,\\\'
-

Rii'i 'III

BLKFTCH :xxx :xxx co. IX :xxx '0AA, '0AA, '0AA, JY.A JY.A '0AA, co. IX :xxx JY.A :xxx :xxx :XXX
CYCLEI ,\ \ \' 'I I I ,\ \ \' 'I I I.

Note: If RRREQ is asserted instead of RETRY, the CPU 3-states the bus at A and asserts RRRACK one clock cycle later at B.

Figure 2-27. Retry on First Word of BIockfetch Transaction

V ~
r------I

X X
1'-----'

:XXX :XXX

:XXX :XXX

rm;

\'/XA JY.A

!:lei>
~~ .. ("")
'<::J:: g
00--3
tD t"l
"'("")
Q --3
is.~
~~
Q t"l ..
~I'(o
Q
.... 0=
$!~
~ 00
il'l"0
it""d
'" t"l =-~

>
--3
o z

N
J,..

CLK23

CLK34

SASO­
SAS3

DSIZED­
DSIZEI

ADDRDD­
ADDR31

As

os

OAT ADO­
OAT A31

DTACK

SROY

RETRY

DRDY

R/W

BLKFTCH

CYCLEI

@ ®
- Lr l\-V ~ V ~ V I\-Lr l\-V ~ V I\-Lr l\-V ~ Lr -
- ~ Ir-- Ir-- 1'7' ~ 1,-- ITX' rr---. 1,--

~ ~ 3 I~ 5 ~ ~ I~ 9 ~ ~ I~ j\--

~ < \ < PREFETCH : « < NEXT VALID

-
: < \ < DDUBLE WDRD :« \ WORD

-
-

: < (< VALID) 3 - STATE IF VIRTUAL -
~ \ \ \ r; / / -

l \ \ \ '/ / / \\ \ \ r; / / -

VAllO KXXX (XXX

KXXX ~XXX (X\ KXXX (XXX KXXX KXXX (XXX KXXX KXXX (XXX KXXX KXXX (XXX (XXX

KXXX (XXX (XXX (XXX (XXX (XXX ~XXX (XXX ,XXX (XXX (XXX KXXX (XXX (XXX KXXX (XXX KXXX KXXX

\ -

,\ \ \ '/ / / -

-
KXXX (XXX ('/XX KX\ AX XIX (XXX (XXX (XXX (XXX (XXX KXXX KXXX (XXX :XXX (xXX (Xxx xxx

- ,\ \\ '/ / /

Notes:
I. On RRREQ, the following pins are 3-stated between points A and B. ADDROO- ADDR31, DATAOO-DATA32,

AS, CYCLEI, DRDY, DS, DSIZEO-DSIZE1, R/W, SASO-SAS3.
2. If RRREQ or RETRY is asserted during the first word, then the entire blockfetch access is retried.

Figure 2-28. Retry on Second Word of Blockfetcb

~ ((\

: (\ \

(XXX

(}JY\

(Xxx

\\ \ \

f\-
~

NEXT

~

~

(XXX

~

~xxx

DDRESS

>
~
("")
:t

~>-3
to M
SQ
Q L: = ~
l{lM
S ~ = Q.I:C
::ilL:
Q rn
aO
Q ~
'"'M
e!~
Q >
~>-3
~S
g.Z

ARCHITECTURE & BUS OPERATION
Relinquish & Retry on Blockfetch

2.8.5 Relinquish and Retry on Blockfetch

Figures 2-27 and 2-28 can be used to illustrate the RRREQ bus exception for the first and
second word of a blockfetch.

The timing and bus transaction for Figure 2-27 will look the same if the bus exception is
RRREQ rather than RETRY. However, the CPU will release the bus before doing the
retried transaction. Additionally, the CPU will 3-state the bus at the end of the second
clock state X (indicated by A on the diagram). One cycle later it will issue a relinquish
and retry request acknowledge (RRRACK) to tell the requesting device that it can now use
the bus. When RRREQ is removed, the CPU will continue with the retried transaction
starting at point B.

The same explanation applies for a RRREQ on the second word of a blockfetch (Figure
2-28). As above, the CPU will 3-state the bus at point A and issue a RRRACK. Once the
RRREQ is removed, the CPU will continue with the next bus transaction starting at point
B and would not retry the blockfetch.

2.9 INTERRUPTS

The microprocessor accepts fifteen levels of interrupts. An interrupt request is made to the
microprocessor by placing an interrupt request value on the interrupt priority level pins
(IPLO-IPL3) or by requesting a nonmaskable interrupt by asserting NMINT. Pending
interrupts are not acknowledged until the currently executing instructions are completed.
The exceptions to this are multiply, divide, modulo, move block word, string copy, and
string end instructions which abort upon a pending interrupt.

The pending interrupt value input on IPLO-IPL3 is internally inverted and compared to
the value contained in the interrupt priority level (IpL) field of the processor status word
(PSW). In order for the pending interrupt to be acknowledged, its inverted value must be
greater than the IPL field value. Pending interrupts whose inverted values are equal to or
less than the IPL field value are ignored. However, if the pending interrupt is
nonmaskable, it will always interrupt the microprocessor regardless of the IPL field value.

The microprocessor also provides autovector, nonmaskable, and quick-interrupt facilities.
The following describes these facilities.

2.9.1 Interrupt Acknowledge

The microprocessor acknowledges an interrupt by transmitting the inverted interrupt value
on bits 2 through 5 of the address bus. In addition, the value placed on the interrupt
option (INTOPT) pin is inverted and transmitted on bit 6 of the address bus. (The
INTOPT input has no effect on the microprocessor; however, it could be used to indicate,
for example, whether the interrupt was hardware- or software-generated.) The
microprocessor then fetches the interrupt vector number from the interrupting device on
bits 0 through 7 of the data bus and begins execution of the interrupt handling routine.
The interrupt acknowledge transaction is illustrated by Figure 2-29 which depicts the case
where a value placed on the IPLO-IPL3 inputs causes an interrupt. In this case, :,:th:::-e~=
interrupt acknowledge is issued in response to the application of the IPL pins and INTOPT

2-42

ARCHITECTURE & BUS OPERATION
Interrupt Acknowledge

pin with no AVEC and NMINT active. During the interrupt acknowledge transaction, the
CPU reads in an 8-bit offset provided by the interrupting device and used by the CPU as
an offset to a table. The SAS code is "interrupt acknowledge." The DSIZE is a byte. The
address corresponding to the interrupt acknowledge is indicated at the bottom of the figure.
The interrupting device drives the data bus with the 8-bit offset and a memory
acknowledge; in this case a DTACK. The bus exceptions are accepted during this bus
transaction. The IPL input values should be removed once the corresponding interrupt
acknowledge has occurred.

CLK23

CLK:34

IPLO-tPL3

SASO. -t---y
SAS3 -t---ri

DSIZED·
DSIZEI -+--ri

ADDROD. -t---y
ADDR31 -t---ri

R/Vi

r-J
i--""I

'---J

X .XXX

X (XXX

l\-V ~ J rL
Ir---""' r-;--' 2 ~ ~ '---J

INTERRUPT ACKNOWLEDGE

: <<<
A-- SEE NOTE

lH I)

,\ \ \'

,XXX XXX. :X\.

,AM .A :X :XXX (XXX :XXX

0.\~

J rL J ~I
4 ~ ~

'---J ~

ll(NEXT VALID

BYTE

3-STATE IF VIRTUAL

'III,

VALID '.JJJv '.JJJv

:XXX .XXX :XXX.

XX ,XM (XXX: :XXX

,\ \ \ vm

'Ill

Note: During the interrupt acknowledge the address bus (ADDROO-ADDR31)
contains the following data.

Figure 2-29. Interrupt Acknowledge

2-43

ARCHITECTURE & BUS OPERATION
Interrupt Acknowledge

Table 2-4 summarizes how the interrupt priority levels are to be interpreted and shows the
corresponding acknowledge for each level.

Table 2-4. Interrupt Level Code Assignments

Interrupt Interrupt Interrupt Priority
Request Option Acknowledge Level

Input Input Output

IPLO-IPL3 INTOPT ADDR02-ADDR06
Bits: Bits:

3 2 1 0 06 05 04 03 02

0 0 0 0 0 1 1 1 1 1 Highest
0 0 0 0 1 0 1 1 1 1 Priority
0 0 0 1 0 1 1 1 1 0

2nd
0 0 0 1 1 0 1 1 1 0
0 0 1 0 0 1 1 1 0 1

3rd
0 0 1 0 1 0 1 1 0 1
0 0 1 1 0 1 1 1 0 0

4th
0 0 1 1 1 0 1 1 0 0
0 1 0 0 0 1 1 0 1 1

5th
0 1 0 0 1 0 1 0 1 1
0 1 0 1 0 1 1 0 1 0

6th
0 1 0 1 1 0 1 0 1 0
0 1 1 0 0 1 1 0 0 1

7th
0 1 1 0 1 0 1 0 0 1
0 1 1 1 0 1 1 0 0 0

8th
0 1 1 1 1 0 1 0 0 0
1 0 0 0 0 1 0 1 1 1

9th
1 0 0 0 1 0 0 1 1 1
1 0 0 1 0 1 0 1 1 0

10th
1 0 0 1 1 0 0 1 1 0
1 0 1 0 0 1 0 1 0 1

11th
1 0 1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 1 0 0

12th
1 0 1 1 1 0 0 1 0 0
1 1 0 0 0 1 0 0 1 1

13th
1 1 0 0 1 0 0 0 1 1
1 1 0 1 0 1 0 0 1 0

14th
1 1 0 1 1 0 0 0 1 0
1 1 1 0 0 1 0 0 0 1 Lowest
1 1 1 0 1 0 0 0 0 1 Priority
1 1 1 1 0 x x x x x No Interrupt
1 1 1 1 1 x x x x x Pending

x signifies no value placed on address bus.

2-44

ARCHITECTURE & BUS OPERATION
Nonmaskable Interrupt

2.9.2 Auto-vector Interrupt

If the auto-vector (A VEe) input is active during an interrupt request, the microprocessor
will not fetch a vector number from the interrupting device. Instead, the microprocessor
provides the interrupt vector by treating the inverted INTOPT input, concatenated with the
interrupt priority level input (IPLO-IPL3), as a vector number. The auto-vector facility
reduces hardware costs in smaller, less complex systems because the interrupt vector is
supplied by the microprocessor instead of by external hardware.

Refer to Figure 2-30 for an illustration of the auto-vector interrupt acknowledge
transaction. In this transaction, an auto-vector acknowledge is issued in response to the
application of the IPL pins and INTOPT pin with A VEe active and no NMINT. Since the
CPU does not need to read in an external value, it does an auto-vector interrupt
acknowledge without looking for a memory acknowledge or a bus exception. The
transaction goes through the clock states without inserting wait cycles. This transaction is
used to tell the interrupting device that it should remove the IPL and A VEe input values.
No DRDY is issued because there is no latching of data.

2.9.3 Nonmaskable Interrupt

The nonmaskable interrupt facility is provided to satisfy reliability and recover ability
requirements of various systems. As previously mentioned, a nonmaskable interrupt can
interrupt the microprocessor regardless of the current priority level in the IPL field. A
nonmaskable interrupt occurs if the nonmaskable interrupt input (NMINT) is asserted.
The interrupt is then treated as an autovector interrupt with vector number O. During the
interrupt acknowledge cycle of a nonmaskable interrupt, address bus bits ADDROO­
ADDR31 contain zeros. This distinguishes a nonmaskable interrupt from all other
interrupts.

Figure 2-31 illustrates the nonmaskable interrupt acknowledge transaction. Here, a
nonmaskable interrupt acknowledge is issued in response to the application of the NMINT
input. For a nonmaskable interrupt, the CPU uses an internal offset corresponding to an
IPL of zero. Since the CPU does not need to read in data, it performs the transaction
without looking for a memory acknowledge or a bus exception. The transaction goes
through the clock states without inserting wait cycles. Again, the interrupting device
should release NMINT when it sees the acknowledge. The SAS code is "auto-vector
acknowledge," but the interrupt vector is O. ADDROO can be used to determine the
difference between the A VEe and NMINT interrupts. It is a 1 for auto-vector and a 0 for
nonmaskable interrupt.

2-45

ARCHITECTURE & BUS OPERATION
Nonmaskable Interrupt

CLK23
l- f ~

CLK34
~ v----;

'----J

IPLO-IPL3

f

~

~ Lr ~ f ~ Lr ~
~ ~ ~ ~ '5' ~ ~

"
~ AUTO-VECTOR INTERRUPT ACKNOWLEDGE

SASO­
SAS3 -t---ri

DSIZEO­
DSIZEI -t---ri

ADDROO­
ADDR31 -I---rl

OAT AOO- ---<:I'II-7<:"7I""7I-rn-i
OAT A31 --'-~~.fl4

R/W

~

'X

'X

X

«< II

«<
«<

.xxx :XXX: :XXX'

.xxx :xxx :xxx

:XXX :XXX: :XXX

,\ \ \'

1< «K NEXT VALID

BYTE

;\-- SEE NOTE

p() 3-ST A TE IF VIRTUAL

,\\\ 'Ill

:XXX :XXX :XXX: :XXX: :XXX: :XXX :xxx

:XXX :XXX :XXX: :XXX: :XXX' :XXX :XXX

:XXX :XXX :XXX: :XXX: :XXX :XXX :XXX

'I I I.

~

1\

1\

Note: During the interrupt acknowledge the address bus (ADDROO-ADDR31) contains the following data.

Figure 2-30. Auto-vector Interrupt Acknowledge

2-46

CLK23
~ f 0-

CLK34

'""'
II"---;

~

r
SASO­

SAS3 ---1_-+~ «< 0<
t-

DSIZEO­
DSIZEI ---I---r~

ADDROO­
ADDR31 ---I---r~

DATAOO­
DA TA31 --"+~~'-f X :XXX :XXX:

X :XXX :XXX:

X :XXX :XXX:

V
0
~

ARCHITECTURE & BUS OPERATION
Nonmaskable Interrupt

"-V 0-f 0-V 0-
~ ~

r--;--' 4
~

lr""S' x
~
~

1\

AUTO-VECTOR INTERRUPT ACKNOWLEDGE

;(<<< NEXT VALID

<<< BYTE
'/

\

)- ADDROO-ADDR31=O

<<< I > 3-S TATE IF VIRTUAL
I

,\ \ \ 'I I I.

:XXX :XXX: :XXX :XXX :XXX: :XXX :XXX: :XXX

~XXX :XXX' ~XXX :XXX :XXX: ~XXX :XXX: ~XXX

:XXX :X'M X£X XIX XJX ::!XL XJX XJX

,\\\ 'Ill

Note: The address bus ADDROO-ADDR31 contains all zeroes during the acknowledge of a
nonmaskable interrupt.

Figure 2-31. Nonmaskable Interrupt Acknowledge

2-47

ARCHITECTURE & BUS OPERATION
Quick Interrupt

2.9.4 Quick Interrupt

The quick-interrupt facility enchances the performance of systems that do not require the
functionality of the "full interrupt." Its handling routine (a microsequence that stores the
PSW and PC) requires less time than that of a "full interrupt." All interrupts are serviced
via the quick-interrupt facility if the quick-interrupt enable (QIE) bit in the PSW is set
(1). Table 2-5 summarizes how the microprocessor handles the various interrupt requests.
See Chapter 4 for more information on full and quick interrupts.

2.10 BUS ARBITRATION

The microprocessor's bus may be requested in two ways. External devices may request the
bus by asserting the relinquish and retry request input (RRREQ), as explained previously,
or by asserting the bus request input (BUSREQ).

The relinquish and retry request has priority over a bus request. The microprocessor will
only acknowledge a relinquish and retry request during bus transactions; however, it will
ignore the request during the write portion of a read interlocked transaction.

A bus request during a CPU bus transaction is not acknowledged until the end of a bus
transaction or until the end of the write portion of a read interlocked transaction.

2.10.1 Bus Request During a Bus Transaction

BUSRQ is sampled independently of bus transactions at the beginning of every clock cycle.
On Figure 2-32 it is sampled for the first time at the beginning of clock state two. After
sampling BUSRQ, the CPU continues the current bus transaction. After the transaction is
completed, the CPU 3-states the address and data buses and some control signals just after
the last clock state X. A cycle later it issues the bus request acknowledge, BRACK. At
this point the device requesting the bus can perform its operations. When finished, the
device drops the BUSRQ. After seeing this drop, the CPU removes BRACK and takes back
the bus. Note that if the bus request occurred during an active retry request or relinquish
and retry request it would not be acknowledged until after the current transaction had been
retried. Refer to 2.19 SUPPLEMENTARY PROTOCOL DIAGRAMS for an example.

For a bus request that does not occur during a bus transaction, the CPU will 3-state the
bus a cycle after sampling BUSRQ and issue BRACK a cycle after that.

2-48

CLK23
- 'f ~ 'f -

CLK34
,
i~ ~ I~

SASO-
SAS3 READ

-DSIZEO-
DSIZEI <<<

-ADDROO-
ADDR31 < < < VALID) -

AS,DS - \\\ -
-DATAOO-

DATA31 -
SRDY YXX XIX :XXX

DTACK :XXX :XXX X)"

DRDY --
R/w -

BLKFTCH

-
BUSRQ -
BRACK

N -
.L
~

~ f ~ f ~ 'f ~ f-l
r-
~ f

~ ~ r-s'-~ r---x-' ~
I\.-..J fY

r----\

~ ~

,< < <

3-STATE IF VIRTUAL

'III

VALID XI)(XI)(:xxx
XXX XXX xxX :XXX: :XXX :XXX :XXX :x.)(:XXX :XXx.

:XXX :XXX :XXx. XXx. :XXx. X)(:XXX :XXx.

,\ \ \ IJl1}'\

l-J

~

Figure 2-32, Bus Request During a Transaction

~ 'f ~Lr
~ ~

~ I\.-..J

<<<

<<<

<<<

:XXx. :XXx. :XXX :XXX

:XXx. :XXX :XXX ,XXX

~

'I'

~

:XXX

)(XX:

;..­
~
("')

:I:
0= = ~
"'t"l
i:I:I("')
,g~
= c::: .. ~
~t"l

;'r<o
S't=
I1QC
~OO

~O
'" ""1:1
>-3t"l .. ~
§;..­
~~ '" ::-,0
§z

ARCHITECTURE & BUS OPERATION
Bus Request During a Bus Transaction

Table 2-5. Interrupt Acknowledge Summary

Interrupt
Interrupt Acknowl- -- ---
Priority edge AVEC NMINT QIE Result

Less than No x 1 x Interrupt is not acknowledged.
PSW
IPL field
priority
Equal to No x 1 x Interrupt is not acknowledged.
PSW
IPL field
priority
Greater Yes 1 1 0 Interrupt is acknowledged and
than PSW serviced via the full-interrupt
IPL field sequence. Microprocessor fetches
priority vector number from interrupting

device.
Greater Yes 0 1 0 Interrupt is acknowledged and
than PSW serviced via the full-interrupt
IPL field sequence. Microprocessor supplies
priority the vector number.
Any level Yes x 0 0 Interrupt is acknowledged and
compared serviced via the full-interrupt
to PSW sequence. It is treated as an au to-
IPL field vector at vector number O. The
priority address bus contains all zeros during

the acknowledge.
Greater Yes 1 1 1 Interrupt is acknowledged and
than PSW serviced via quick-interrupt sequence.
IPL field Microprocessor fetches vector number
priority from interrupting device.
Greater Yes 0 1 1 Interrupt is acknowledged and
than PSW serviced via quick-interrupt sequence.
IPL field Microprocessor supplies the vector
priority number.
Any level Yes x 0 1 Interrupt is acknowledged and
compared serviced via quick-interrupt sequence.
to PSW It is treated as an auto-vector
IPL field interrupt at vector number O. The
priority address bus contains all zeros during

the acknowledge.

2-50

ARCHITECTURE & BUS OPERATION
DMA Operation

2.10.2 DMA Operation

The microprocessor provides the support for direct memory access (DMA) and shares bus
control responsibilities with the system DMA controller. To initiate a DMA operation, the
controller requests the microprocessor bus by asserting (BUSRQ). Recall that this request
is not acknowledged until the end of a bus transaction or until the end of the write portion
of a read interlocked transaction. However, if the CPU is not using the bus, the request is
acknowledged immediately. Once the microprocessor recognizes the request, it 3-states the
following signals:

ABORT
ADDROO-ADDR31
AS
CYCLEI

DATAOO-DATA31
DRDY
DS
DSIZEO-DSIZEI

R/w
SASO-SAS3
VAD
XMDO-XMDI

After the microprocessor has 3-stated the above signals, it acknowledges the DMA request
by asserting the bus request acknowledge output (BRACK). Table 2-6 summarizes the
output signal states once the DMA has been acknowledged.

Terminating a DMA operation reverses the start of DMA. The DMA controller removes
the request by negating BUSRQ (drives the input high). The microprocessor then negates
the acknowledge (BRACK), and, finally, the 3-stated signals are returned to the
microprocessor's control. The next operation may then begin.

Table 2-6. Output Signal States After DMA Request is Acknowledged

Output Signal Signal State Output Signal Signal State

ABORT Z' DSIZEO-DSIZEI Z

ADDROO-ADDR31 Z R/W Z'

AS Z' RESET Logic I

BRACK Logic 0 RRRACK Logic I

CYCLE I Z' SASO-SAS3 Z'

DATAOO-DATA31 Z VAD Z

DRDY Z' XMDO-XMDI Z

DS Z'

Where:
Z High impedance state.
Z' High impedance. Held at logic I with external passive hold resistor.

2-51

ARCHITECTURE & BUS OPERATION
Reset

2.11 RESET

The microprocessor handles two types of reset requests: system and internal. A reset has
the highest priority and will preempt any ongoing microprocessor operation.

2.11.1 System Reset

A system reset is initiated when the system drives the reset request input (RESETR) low.
This double-latched input must be active on three consecutive latchings before being
recognized. This ensures noise immunity. After recognizing the reset request, the
microprocessor sends a reset acknowledge to the system by asserting RESET. All
microprocessor outputs are then driven to a temporary state that prevents control signal
and bus conflicts while the system responds to the reset acknowledge.

Once the system has responded to the acknowledge, it negates RESETR. The
microprocessor continues to hold RESET active for 128 clock cycles after ~R=E==SE=T=R::- has
been negated, allowing the external system to go through its own initialization sequence.
At the end of this period the microprocessor negates RESET and begins executing the
internal reset sequence. Table 2-6 indicates the states of the microprocessor's output pins
once RESET is negated. During this sequence, the microprocessor performs the following
register initialization to restart the operation.

• The microprocessor changes to physical addressing mode.

• The microprocessor fetches a word at location 80 hexadecimal and stores it in the
process control block pointer (PCBP). This word is the beginning address of the reset
process control block, PCB.

• The microprocessor fetches a word at the PCB address and stores it in the processor
status word.

• The microprocessor fetches a word at the location four bytes from the PCB address and
stores it in the program counter (PC). This word is the PC value for initial execution.

• The microprocessor fetches a word at the location eight bytes from the initial PCB
address and stores it in the stack pointer.

• If the PSW I bit is set (1), the microprocessor clears the bit (0), fetches a word at the
location twelve bytes from the initial PCBP, and stores it as the new PCBP.

• The microprocessor begins execution at the address specified by the PC.

2.11.2 Internal Reset

An internal reset sequence is like a system reset sequence except there is no external reset
request signal. The request is generated internally. Note that the RESET line will still go
active for 128 clock cycles after RESETR is released.

2-52

ARCHITECTURE & BUS OPERATION
Internal Reset

Table 2-7. Output States on Reset

Signal State

Output CPU· is CPU· is Not
Signal Bus Arbiter Bus Arbiter

ABORT Logic 1 High Impedance

ADDROO-ADDR31 High Impedance High Impedance

AS Logic 1 High Impedance

BRACK Logic 1 -
BUSRQ - Logic 1

CYCLEI Logic 1 High Impedance

DATAOO-DATA31 High Impedance High Impedance

DROY Logic 1 High Impedance

OS Logic 1 High Impedance

DSIZEO, DSIZEI Logic 0 High Impedance

IQSO, IQSl Logic 1 Logic 1

R/W Logic 1 High Impedance

RRRACK High Impedance, (a) High Impedance, (a)

SASO-SAS3 Logic 1

SOl Logic 1

VAO (b)

XMDO, XMDI (c)

·CPU is the WE 32100 Microprocessor.

Notes:
a Open drain output not actively driven under

this condition.
b Not guaranteed to be logic 1 (i.e., physical

address) until approximately 38 clock
cycles after RESET is negated.

c Not guaranteed to be in kernel mode until
approximately 18 clock cycles after RESET is
negated.

High Impedance

Logic 1

High Impedance

High Impedance

2-53

ARCHITECTURE & BUS OPERATION
Reset Sequence

2" CLOCK CYCLES < 3 128 CLOCK CYCLES

INTERNAL RESET SEQUENCE
BEGINS

Note: RESETR must be asserted for at least two clock cycles to be recognized.
RESET is negated 128 clock cycles after negation of RESETR.

Figure 2-33. Reset Sequence

2.11.3 Reset Sequence

The reset sequence is depicted on Figure 2-33. As previously stated, after RESETR is
sampled for at least two consecutive clock cycles, the CPU issues the reset acknowledge
(RESET). While RESETR is active, the CPU holds RESET active. Once RESETR is
removed by the requesting device, the CPU counts 128 clock cycles and then removes
RESET. At this point the CPU enters the internal reset sequence (see Chapter 4).

Note that if the CPU receives a fault during certain high-level bus transactions it can enter
a reset exception (see 2.15 EXCEPTIONAL CONDITIONS). This exception goes through
a simulated system reset and includes issuing RESET for 128 clock cycles.

2.12 ABORTED MEMORY ACCESSES

There are two events that cause the CPU to abort a memory access; when the CPU has a
program counter (PC) discontinuity with an instruction cache hit, and when an alignment
fault occurs. These two events are illustrated next.

2-54

ARCHITECTURE & BUS OPERATION
Aborted Access on PC Discontinuity With Instruction Cache Hit

2.12.1 Aborted Access on PC Discontinuity With Instruction Cache Hit

Figure 2-34 depicts the protocol associated with this event. When the CPU does a PC
discontinuity it starts to fetch the next instruction word from memory. The SAS code is
"instruction fetch after PC discontinuity." If there is a hit in the cache for this instruction
fetch, the CPU cancels the external instruction fetch by terminating the transaction. The
CPU ignores memory acknowledges and bus exceptions during this transaction. To
indicate that it is terminating the transaction, the CPU issues ABORT for two cycles,
starting with clock state four. No DRDY is issued and the CPU ignores the data bus. The
CPU uses the instruction word that it obtained from the instruction cache.

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

R/W

- J ~ J ~ J ~ V ~ -

~ 0 ~ ~ ~ I~ ~ I~ ~ - '----J ~

C:=;~RUCTION FETCH ON PC
,< < < NEXT VALID

DISCONTINUITY
-
- ,< « DOUBLE WORD

-
- ,< « VALID) 3 - STATE IF VIRTUAL

1.\ \ \ - '/1/

- 1.\ \ \ mzv
-
-

'/ / /

- lli 'iLL

Note: BLKFTCH, DATAOO-DATA3J, DTACK, FAULT, RETRY, RRREQ, and SRDY
are ignored.

Figure 2-34. Aborted Access on I-Cache Hit With PC Discontinuity

2-55

ARCHITECTURE & BUS OPERATION
Alignment Fault Bus Activity

2.12.2 Alignment Fault Bus Activity

If the CPU detects an alignment fault on an intended CPU-generated bus transaction, it
will terminate the transaction and proceed to the fault handler. The write transaction on
Figure 2-35 started with the address bus, as well as the DSIZE, SAS, R/w, and CYCLE I
being driven by the CPU. The CPU detects the alignment fault and does not issue AS and
DS. It issues ABORT, starting at clock state three, to indicate that it is terminating the
transaction. The CPU ignores memory acknowledges and bus t;xceptions during this time
(see note Figure 2-35). DRDY is not issued.

2-56

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

R/w

- J ~ Lr ~ Lr ~ Lr ~--
--'" ~ ~ .'5' Ir---'I
~ ~ ~ ~ X -

WRITE «<
- «< -
- «< VALID) 3 - STATE IF VIRTUAL -

-
,\ \ \ 711 -

-
,\ \ \' -

- ,\ \ \' 'Ill

Notes:
1. DATAOO-DATA31, DTACK, FAULT, RETRY, RRREQ, and

SRDY are ignored.

2. Protocol is the same for a read transaction.

Figure 2-35. Alignment Fault Bus Activity (Write Transaction Is Shown)

ARCHITECTURE & BUS OPERATION
Single-Step Operation

2.13 SINGLE-STEP OPERATION

Hardware single-step can be performed by use of the stop input (STOP). This input halts
the execution of instructions beyond the ones already started by the microprocessor.
Because of the pipelined architecture, the CPU may execute, at most, one more instruction
beyond the instruction during which STOP was asserted. The microprocessor then remains
in a halt state until the STOP input is released.

A bus request (BUSREQ) is honored while the microprocessor is halted. Additionally,
interrupts are acknowledged upon release of STOP, but not while STOP remains asserted.

Figure 2-36 depicts the start of single-step operation. The operation is started by the
assertion of STOP. The CPU will complete the current instruction and execute, at most,
one more instruction. After this the CPU stops execution and issues the SAS code "stop
acknowledge." The CPU will remain in this state until STOP is released.

CLK23

CLK34

SASQ­
SAS3

STOP ACKNOWLEDG~
- H

h, V-t
-

Notes:
I. At most, one full assertion of SOl may appear before STOP is acknowledge.
2. BARB = 0 and BRACK = 1 in order to see stop acknowledge access status code.

Figure 2-36. Start of Single-Step Operation

2-57

ARCHITECTURE & BUS OPERA nON
Coprocessor Operations

CLK23

CLK34

SASO­
SAS3 STOP ACKNOWLEDGE

STOP ACKNOWLEDG~

Note: BARB = 0 and BRACK = 1 in order to see stop acknowledge access status code.

Figure 2-37. Single-Step Operation

After the CPU has stopped, and until a start of instruction output (SOU is issued,
instruction by instruction execution can be performed by releasing STOP. At this point,
immediate application and holding of STOP will prevent a second instruction from starting.
With STOP asserted, the CPU will complete the instruction and issue the stop acknowledge
SAS code. To resume normal execution, STOP must be completely released. The single­
step operation is shown on Figure 2-37.

2.14 COPROCESSOR OPERATIONS

The WE 32100 Microprocessor provides a coprocessor interface consisting of ten
instructions and the associated pinout and bus transactions. The coprocessor interface
assures high performance and system throughput. When a coprocessor instruction is
executed by the CPU, a series of bus transactions occur. The following details the process
and provides the associated protocol.

2.14.1 Coprocessor Broadcast

This transaction notifies the coprocessor of the action the CPU wants performed. To
prevent memory from being selected, AS is not issued during this transaction. Since this is
a write operation, R/w is in write mode and the timing of DS is for a write. The CPU
drives the data bus with the information that it wants to send to the coprocessor. The
coprocessor responds with a memory acknowledge. The CPU then terminates the
transaction and goes on to the next one. The CPU will insert up to two wait cycles while it

2-58

ARCHITECTURE & BUS OPERATION
Coprocessor Broadcast

waits for the memory acknowledge from the coprocessor. This gives the coprocessor a
limited time to respond to this transaction. Figure 2-38 shows the zero, one, and two wait
cycle cases before the coprocessor responds with a memory acknowledge (in this case,
SRDY).

CLK23

CLK34

SASO­
SAS3

DATAOO­
DATA31

Riw

- f rL Lr ~ J rL J ~ -

"' 0 Vi' !~ f3\ 4 ~ I~ ~ - L.:........J ~ \

E
COPROCESSOR BROADCAST

-&- <((NEXT VALID

-

,\ \ \' '/ / /, -
- «< COMMAND liD -

x:M XIX Y1 '\X x:M XIX XIX 'XIX

:XXX :XXX :XXX :X\ IX :XXX :XXX :XXX

.\ \ \' '/ / I. -
- ,\\\

- ,\ \ \' '/ / I.

A. Zero Wait Cycles

Notes:
1. Zero, one, and two wait cycles using SRDY.
2. Greater than two wait cycles causes internal CPU memory fault.

Figure 2-38. Coprocessor Command and ID Transfer (Sheet 1 of 3)

2-59

ARCHITECTURE & BUS OPERATION
Coprocessor Broadcast

CLK23

CLK34

SASO­
SAS3

DATAOO­
DATA31

RiW

2-60

- V l\-V l\-V l\-V I\-'f -,
~ Vi' ~ ~ ~ VW"' ~ ~ ~

E
COPROCESSOR BROADCAST

~ <<< NEXT VALID

-

- \\ \ \' 'I I I
-
- <<< COMMAND/ID

:XXX: :XXX :XY '<X :XXX :XXX :XXX

:XXX: XXX :XXX XI 'XX M IX :XXX :XXX

.\\\ -
-

,\ \ \' 'Ill -

B. One Wait Cycle

Notes:
1. Zero, one, and two wait cycles using SRDY.
2. Greater than two wait cycles causes internal CPU memory fault.

Figure 2-38. Coprocessor Command and ID Transfer (Sheet 2 of 3)

I\-
~

1\

XXX

yyy

'I I I

CLK23

CLK34

SASO­
SAS3

DATAOO­
DATA31

RiVi

ARCHITECTURE & BUS OPERATION
Coprocessor Broadcast

- Lr ~ Lr ~ Lr ~ Lr ~ Lr ~ Lr ~ -
, ~ ~ ~ 'r-;{' r---"I ~ ~ ~ ~ ~ 4 5 ~ '----...) 1\

E
COPROCESSOR BROADCAST

~ <<< NEXT VALID

-

,\ \ \ '/ // -
-

<<< COMMAND/ID -

:XXX :XXX :xy '<X XXX Xtl 'XXX 'XXX

:XXX :XXX :XXX. :XY \& W '<X :XA IX XXX XXX XXX

,\\'\ 'l17:7
-
-

.\\\ '///, -

C. Two Wait Cycles

Notes:
1. Zero, one, and two wait cycles using SRDY.
2. Greater than two wait cycles causes internal CPU memory fault.

Figure 2-38. Coprocessor Command and ID Transfer (Sheet 3 of 3)

2-61

ARCHITECTURE & BUS OPERATION
Coprocessor Operand Fetch

2.14.2 Coprocessor Operand Fetch

After doing a broadcast, the CPU will perform from zero to three coprocessor operand
fetch transactions, depending on which coprocessor instruction is being executed. For this
transaction, the CPU goes through the motions of doing a read from the memory, but the
coprocessor latches the data as it sees it on the bus. The SAS is "coprocessor data fetch,"
and DSIZE is a word. The memory is issuing the acknowledge for this transaction.
Figure 2-40 shows the protocol for a single coprocessor operand fetch.

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

Riw

- Lr r'L Lr r'L V r'L Lr -
~

~ ~ ~ G' 4 lrS'" ~ - I'---J
~~ROCESSOR DATA FETCH

(((NEXT VALID

- <<< WORD -
-
- <<< VALID _L 3 - STATE IF VIRTUAL

- ,\ \ \ 'j/~

- J VALID :XXX: \. -
::!XX m ~ ~ XM:

:XXX :XXX :XXX :X\ IX 'Xf.:A :XXX

- @

-
'II L

- \\ \ \ III

Note: Zero wait cycles use of DTACK or SRDY

Figure 2-40. Coprocessor Operand Fetch

r'L
~

1\

:XXX

:'IJ.X

:XXX

1711

2-63

ARCHITECTURE & BUS OPERATION
Coprocessor Status Fetch

2.14.3 Coprocessor Status Fetch

After processing the data latched during the coprocessor operand fetch transaction, the
coprocessor indicates that it is finished by asserting the coprocessor done input (DONE) of
the CPU. Approximately two clock cycles later, the CPU initiates the coprocessor status
fetch transaction shown on Figure 2-41. This is a read type transaction where the
coprocessor drives the data bus with status information. There is no AS issued to keep the
memory from being accessed. The SAS code is "coprocessor status fetch."

2-64

CLK23

CLK34

SASO­
SAS3

ADDROO­
ADDR31

DATAOO­
DATA31

R/W

I

- Lr f\-Lr f\-Lr f\-Lr f\--
---,

I~ ~ I~ lr3"' I~ ~ ~ v--x--' 1\
~~ROCESSOR STATUS FETCH

,< « NO OPERA TlON

'JJJ\ XIX ~ 'J1,X :XXX: :XXx: :XXx: xxx:

-

ill '/ / / -
-

~Ui _lU « VALID -

m m XI \X y.'f'A m XIX m
m m m ~ IX m ~ ~XXX

,\ \ \ '/ / / -
-

'i1L

- ~ '.I.J.L

Note: Coprocessor status fetch begins approximately two clock
cycles after the microprocessor's processor done input (DONE)
has been driven low.

Figure 2-41. Coprocessor Status Read (Using SRDY)

ARCHITECTURE & BUS OPERATION
Coprocessor Data Write

2.14.4 Coprocessor Data Write

After doing the coprocessor status fetch, the CPU will perform from zero to three
coprocessor data write transactions, depending on what coprocessor instruction is being
executed. For this transaction the CPU goes through the motions of doing a write to the
memory but the coprocessor drives the data bus with the results that it wants to send to the
memory. The CPU does not drive the data bus during this transaction. The SAS is
"coprocessor data write," and DSIZE is a word. The memory is issuing the acknowledge
for this transaction. Figure 2-42 shows the protocol for a single coprocessor data write.

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

DATAOO­
DATA31

Riii

CYCLEI

- V ~ f "--V ~ V ~ -

---- ~ '3' ~ ~ 0 ~ 4 I~ - ~ I~ I'
r COPROCESSOR DATA WRITE

'=+ ,« < NEXT VALID

- «< WORD -
-

(((VALID) 3 - STATE IF VIRTUAL -

- ,\ \ \' '11/,

,\ \ \ 'I I I. -
-
-

:XXX :XXX. :xy '0(.xxx :XXx. :XXx. :XXx.

XXX :'IX;(:ro X\ IX :'IX;(XIX XIX

-

- ,\ \ \' rm
-

'ill

,\\\ '/ / / -

Notes:
1. Zero wait cycles using SRDY.
2. DATAOO-DATA31 supplied by coprocessor.

Figure 2-42. Coprocessor Data Write

2-65

ARCHITECTURE & BUS OPERATION
Exceptional Conditions

2.15 EXCEPTIONAL CONDITIONS

In addition to interrupts and reset requests, several types of events may interrupt the
execution of a program. The four events, called exceptional conditions, are: normal
exceptions, stack exceptions, process exceptions, and reset exceptions. When an exception
occurs, the microprocessor sets the 4-bit internal state code (ISC) field and the 2-bit
exception type (ET) field in the processor status word to identify the exception. (Table 2-8
lists the exception conditions and their respective ISC codes.> The microprocessor also
executes the appropriate microsequence before passing control to the operating system.
These sequences save the context of the current process and give the operating system
information it needs to locate the correct exception handler. The saved context enables the
program to resume execution after the exception is handled.

Table 2-8. Exception Conditions

Internal
State

Exception Type Exception Code Bit
6 5 4 3

Normal Exception Integer zero-divide 0 0 0 0
(ET=l1) Trace trap 0 0 0 1

Illegal opcode 0 0 1 0
Reserved opcode 0 0 1 1
Invalid descriptor 0 1 0 0
External memory fault 0 1 0 1
Gate vector fault 0 1 1 0
Illegal level change 0 1 1 1
Reserved data type 1 0 0 0
Integer overflow 1 0 0 1
Privileged opcode 1 0 1 0
Breakpoint trap 1 1 1 0
Privileged register 1 1 1 1

Stack Exception Stack bound 0 0 0 0
(ET=01) Stack fault 0 0 0 1

Interrupt ID fetch 0 0 1 1
Process Exception Old PCB fault 0 0 0 0
(ET=10) Gate PCB fault 0 0 0 1

New PCB fault 0 1 0 0
Reset Exception Old PCB fault 0 0 0 0
(ET=OO) System data 0 0 0 1

Interrupt stack fault 0 0 1 0
External reset 0 0 1 1
New PCB fault 0 1 0 0
Gate vector fault 0 1 1 0

* These exceptions reset the processor status word flags.

2-66

ARCHITECTURE & BUS OPERATION
Exceptional Conditions

The exceptions increase in levels of severity, with normal exceptions being the least severe
and reset exceptions being the most severe. An exception (but not reset exceptions which
require restarting the system) can ripple up through levels of exception severity if its
handling routine cannot resolve the condition that caused the exception.

1. Normal Exception. The microprocessor generates this class of exception when it
detects a condition such as trap, invalid opcode, incorrect address mode, or illegal
operation. Most normal exceptions occur during the translation or execution of an
instruction.

2. Stack Exception. This exception may occur during a process switch or a GATE
sequence (see Chapter 4).

3. Process Exception. This exception may occur during a process switch (see Chapter 4).

4. Reset Exception. This exception is triggered by an error condition in accessing critical
system data and requires restarting of the system. Since exceptions can ripple up to
higher levels of severity, reset exceptions may occur during reset and also during
process and normal exceptions. The microprocessor reacts as if an external reset
occurred when a reset exception is detected. (See 2.11 Reset and Chapter 4.
OPERATING SYSTEM CONSIDERATIONS'>

Normal exceptions consist of two types of events generated by the microprocessor - traps
and exceptions. When a trap is generated, the instruction that caused the trap is executed
completely, and the program counter (PC) points to the next executable instruction.
(Integer overflows may not behave this way due to pipelining; see part b under Integer
Overflow.) When an exception is generated, the PC points to the opcode of the instruction
that caused the exception; this instruction may have been executed partially or not at all.
Each different trap or exception uses a different trap vector to branch to the corresponding
trap or exception-handling software.

There are three kinds of traps:

1. Breakpoint Trap (BPT). This trap is invoked whenever the breakpoint trap (BPT)
instruction is executed.

2. Integer Overflow. This trap is enabled when the enable overflow trap (OE) bit in the
processor status word is set. Overflow trapping behaves as follows:

a. When an overflow trap occurs, the OE bit is cleared before the PSW is saved.

b. When an overflow trap occurs, the instruction following the instruction that
caused the overflow trap mayor may not be executed before the microsequence is
entered. Consequently, the saved PC may point to the instruction following the
trapped instruction or to the next instruction after that one. If the instruction
following the trapped instruction is completed, it may not set the PSW flags.

c. If two consecutive instructions cause overflow traps, only one overflow trap
occurs.

d. An overflow trap occurs if the OE bit is set and the execution of an instruction
causes the V (overflow) bit in the PSW to be set (1) after the instruction is
completed. In particular, this can be caused by the return from gate (RETG)
and return to process (RETPS) instructions or by an explicit move to the PSW.

2-67

ARCHITECTURE & BUS OPERATION
Exceptional Conditions

3. Trace Trap. Trace trapping is enabled when the trace enable (TE) bit in the PSW is
set. This causes a trace trap to occur after each instruction is executed (except for the
RETPS, CALLPS, and RETG instructions).

There are ten types of exceptions:

1. External Memory Fault. This exception occurs if alignment requirements are violated,
if an external device asserts the FAULT input on an access, if a fault occurs during a
coprocessor status fetch, or if no coprocessor responds to a support processor
broadcast. Alignment fault behavior has the following properties:

a. No alignment fault ever occurs on a byte access.

b. No alignment fault ever occurs on an instruction fetch access.

c. An alignment fault occurs if the access is a data access of word length and if
address bit 1 (ADDROI) or address bit 0 (ADDROO) is 1.

d. An alignment fault occurs if the access is a data access of halfword length and
address bit 0 (ADD ROO) is 1.

2. Gate Vector Fault. This exception is caused by a memory fault when reading gate
tables during a gate (GATE) instruction.

3. Illegal Level Change. This exception is caused when attempting to increase the current
execution privilege on a return from gate (RETG) instruction.

4. Illegal Opcode. The opcode is not defined for the microprocessor.

5. Integer Zero-divide. This exception is caused by an attempt to divide by zero and is
always enabled. This exception resets the PSW flags.

6. Invalid Descriptor. The address mode generated cannot be used in the specified way.
This exception resets the PSW flags and may result from the following causes:

a. Literal or immediate used as destination.

b. Effective address requested of literal or immediate.

c. Effective address requested of a register.

7. Privileged Opcode. The opcode is defined for kernel execution level only. An attempt
to execute it in another execution level causes this exception.

8. Privileged Register. An attempt to write the three privileged registers (process status
word, process control block pointer, and interrupt stack pointer) in an execution level
other than kernel causes this exception. This exception resets the PSW flags.

9. Reserved Data Type. The operand type described by the expanded operand-type
descriptor is not implemented in the microprocessor. This exception resets the PSW
flags.

10. Reserved Opcode. The opcode is not implemented on the microprocessor, but is
reserved for future use.

2-68

2.16 TRACE MECHANISM

ARCHITECTURE & BUS OPERATION
Trace Mechanism

Every instruction for the WE 32100 Microprocessor consists of an interruptible and a
non interruptible portion. Because a trace trap is detected in the noninterruptible portion,
trace traps have priority over interrupts. The microprocessor's trace trap mechanism uses
two bits in the processor status word: trace enable (TE) and trace mask (TM).

Trace traps are enabled if TE is set (1), but a trace trap is generated only if TM is also set
(see Table 2-9). In the table:

o TE-beg is the value of the TE bit at the start of an instruction.

o TE-end is the value of the TE bit at the time the trace trap is detected.

o TM-end is the value of the TM bit at the same instant the trace trap is detected.

The microprocessor detects a trace trap before the next instruction starts. Any of the
following actions may change the values of the TE and TM bits at the end of an
instruction:

o An instruction, other than an operating system instruction or microsequence, writes to
the PSW and changes TE. However, this method of changing TE causes inconsistent
trace behavior and should be avoided.

o A return from gate (RETG) instruction restores the PSW from the stack.

o A context switch to a process loads the PSW from the process control block.

Because of the way a return to process (RETPS), call process (CALLPS), or return from
gate (RETG) instruction changes TE and TM when it overwrites the PSW, these
instructions cannot be traced.

Table 2-9. Truth Table for Trace Trap

TE-beg TE-end TM-end Trap

0 0 o or I No

0 I 0 No

0 1 1 Yes

1 0 o or 1 No

1 1 0 No

1 1 1 Yes

Note: This table is valid only if an operating
system instruction or microsequence is used
to alter the TE bit of the PSW.

2-69

ARCHITECTURE & BUS OPERATION
Pin Assignments

The TM bit cannot be set by software. However, the microprocessor changes TM
automatically by:

• Setting TM to 1 at the beginning of every instruction.

• Clearing TM to 0 as part of every microsequence that performs a context switch.

• Clearing TM to 0 as part of the return from gate microsequence.

• Clearing TM to 0 when it detects and responds to a fault or interrupt.

The TM bit masks the TE bit for the duration of one instruction. The user's trace-trap
handler should use TM to prevent a trace trap when a return from gate instruction returns
control to a process. Similarly, the microprocessor uses the TM bit to prevent a trace trap
from occurring in the context of a newly switched process when the previous process is
being traced.

2.17 PIN ASSIGNMENTS

The WE 32100 Microprocessor contains 107 active pins, ten power pins, and eleven ground
pins. Figure 2-43 illustrates the WE 32100 Microprocessor pin-array package as viewed
from both the top and bottom. The top view shows the scratch pad test points and the 700
mil square heat sink attachment area. The scratch pads provide test points for each pin.
The heat sink is user-supplied and is used in applications that require additional cooling.
The following tables list the pins both in numerical order and by functional groups.

In the following pin function descriptions the term asserted means that a signal is driven to
its active state either by the microprocessor (outputs) or an external device (inputs). The
term negated means that the signal is driven to its inactive state. A bar over a signal name
(e.g., As) indicates that the signal is active low, logic O. The 0 bit is the least significant
bit for signals which occupy two or more pins (e.g., DSIZEO-DSIZEI). The signal type
column is interpreted as input (I), output (0), or bidirectional (110).

2-70

ARCHITECTURE & BUS OPERATION
Pin Assignments

Atl 811 elt 011 Elt Fl1 G11 Hll Jl1 Kl1 Ll1 Ml1 Ntl Pt1 all Rtt S11 Ttl U11 Vl1 10111

o 0 0 0 0 DOD 0 0 0 0 0 0 0 0 0 0 DOD
AtD 810 eta 010 EtO FtO Gl0 Hl0 Jl0 Kl0 LtD M1D Nl0 PtO 010 Rl0 510 110 UtO Vl0 10110

DOD 0 0 0 DOD 0 0 0 0 0 0 0 0 0 0 0 0

AS Ba CB 08 E8 FB ~ ~ n ~ n ~

o 0 0 0 0 0 DOD DOD
u ~ ~ ~ u n ~ ~ n ~ ~ ~

o 0 0 0 0 0 DOD DOD

U H ~ ~ ~ ~ ~ . ~ ~ " ~

o 0 0 0 0 0 00000 0
u ~ ~ M ~ ~ ~ M " " " ~
DOD 0 0 0 DOD 0 0 0

o 0 0 0 0 DOD 0 0 0 0 0 0 0 0 0 0 0 0 0
u " ~ " ~ ~ " ~ ~ H U ~ ~ ~ " U H " " n ~

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DOD
Al B1 Cl 01 El Fl 81 Hl Jl Kl II Ml Nt Pl at Rt 81 11 U1 Vt Wl

Top View

o 0 0 000 000 0 0 0 0 0 0 0 000 0 ~
10111 Vl1 U11 Tl1 S11 Rtt all Pt1 Ntl Ml1 l11 Kl1 Jl1 Hl1 G11 Fl1 Elt all elt Bl1 Att

000 000 0 0 0 0 0 0 0 0 0 0 0 0 000
\.rIl0 Vl0 Ul0 110 810 RtO Ql0 pta NtO M10 L 10 Kl0 Jl0 Hl0 Gl0 FtO Eta 010 eto 810 AtO

o 0 0 0 0 0 o 0 0 0 0 0
~ n ~ m ~ ~ ~ ~ M ~ ~ ~

o 0 0 0 0 0 000 0 0 0
~ ~ ~ n ~ ~ n u ~ ~ " u

o 0 0 0 0 0 o 0 0 0 0 0
~ " ~ ~ . ~ ~ ~ ~ ~ H U

o 0 0 0 0 0 000 0 0 0
~ " " " M ~ ~ ~ M ~ ~ u

00000 000 0 0 0 0 0 0 0 000 0 0 0
~ n " " un" ~ ~ ~ U H ~ ~ " ~ ~ " ~ " u

o 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0
.1011 Vl U1 11 S1 Rt at Pl Nt Ml II Kl Jl Hl 61 Fl Et 01 Cl 81 At

Bottom View

Figure 2-43. WE 32100 Microprocessor Pin Configuration

2-71

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-10. WE 32100 Microprocessor Pin Descriptions

Pin Name Type Description

Al DATAl 8 I/O Microprocessor Data 18
A2 ADDR17 0 Microprocessor Address 17
A4 DATAI7 I/O Microprocessor Data 17
AS DATAI4 I/O Microprocessor Data 14

A7 ADDR12 0 Microprocessor Address 12
A8 ADDRII 0 Microprocessor Address II
AIO DATA08 1/0 Microprocessor Data 08
All ADDR06 0 Microprocessor Address 06

BI DATAI9 I/O Microprocessor Data 19
B2 GRD - Microprocessor Ground
B4 DATAI6 I/O Microprocessor Data 16
BS ADDRI3 0 Microprocessor Address 13

B7 ADDRIO 0 Microprocessor Address 10
B8 ADDR09 0 Microprocessor Address 09
BIO ADDROS 0 Microprocessor Address 05
B11 ADDR04 0 Microprocessor Address 04
CI DATA22 I/O Microprocessor Data 22
C2 DATA20 I/O Microprocessor Data 20
C4 DATAIS 1/0 Microprocessor Data IS
CS +SV - Microprocessor Power
C7 DATA09 I/O Microprocessor Data 09
C8 +SV - Microprocessor Power
CIO DATA04 1/0 Microprocessor Data 04
CII DATA03 I/O Microprocessor Data 03
DI ADDR23 0 Microprocessor Address 23
D2 +SV - Microprocessor Power
D4 GRD - Microprocessor Ground
DS DATAOS I/O Microprocessor Data 05
D7 GRD - Microprocessor Ground
D8 ADDR07 0 Microprocessor Address 07
DIO GRD - Microprocessor Ground
D11 DATA02 I/O Microprocessor Data 02
EI DATAI2 I/O Microprocessor Data 12
E2 DATA 11 I/O Microprocessor Data II
E4 ADDR08 0 Microprocessor Address 08
E5 DATA06 I/O Microprocessor Data 06
E7 ADDR03 0 Microprocessor Address 03
E8 ADDROI 0 Microprocessor Address 01
EIO IPLl I Interrupt Priority Level I
Ell DATAOI I/O Microprocessor Data 01

2-72

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-10. WE 32100 Microprocessor Pin Descriptions (Continued)

Pin Name Type Description

F1 ADDR14 0 Microprocessor Address 14
F2 DATA13 I/O Microprocessor Data 13
F4 DATAIO I/O Microprocessor Data 10
F5 DATA07 I/O Microprocessor Data 07
F7 ADDR02 0 Microprocessor Address 02
F8 ADDROO 0 Microprocessor Address 00
FlO +5V - Microprocessor Power
F11 DATAOO I/O Microprocessor Data 00
01 ADDR15 0 Microprocessor Address 15
G2 GRD - Microprocessor Ground
GIO IPL3 I Interrupt Priority Level 3 --
Gil VAD 0 Virtual Address

HI ADDRI8 0 Microprocessor Address 18
H2 ADDR16 0 Microprocessor Address 16 --HIO AVEC I Auto-vector
HII IPLO I Interrupt Priority Level 0

11 ADDRl9 0 Microprocessor Address 19
J2 +5V Microprocessor Power
110 IPL2 I Interrupt Priority Level 2
111 INTOPT I Interrupt Option

K1 ADDR20 0 Microprocessor Address 20
K2 DATA21 I/O Microprocessor Address 21 ---
K10 NMINT I Nonmaskable Interrupt
K11 - - WARNING: This pin is for

manufacturing use only and must be
tied high (+5 Vdc).

LI ADDR21 0 Microprocessor Address 21
L2 ADDR22 --- 0 Microprocessor Address 22
LlO ABORT 0 Access Abort --
Lli DRDY 0 Data Ready
M1 DATA23 I/O Microprocessor Data 23
M2 DATA25 I/O Microprocessor Data 25
M10 CLK34 I Input Clock 34

-
Mll AS 0 Address Strobe
N1 DATA24 I/O Microprocessor Data 24
N2 GRD - Microprocessor Ground
N10 CLK23 I Input Clock 23

-
Nil DS 0 Data Strobe
PI DATA26 1/0 Microprocessor Data 26
P2 ADDR28 --- 0 Microprocessor Address 28
P10 FAULT I Fault
P11 RESETR I Reset Request

2-73

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-10. WE 32100 Microprocessor Pin Descriptions (Continued)

Pin Name Type Description

QI ADDR27 0 Microprocessor Address 27
Q2 +SV - Microprocessor Power ---QIO RESET 0 Reset Acknowledge
Qll BLKFTCH I Block (Double Word) Fetch
RI ADDR29 0 Microprocessor Address 29
R2 ADDR30 0 Microprocessor Address 30
R4 DATA31 I/O Microprocessor Data 31
RS IQSI 0 Instruction Queue Status 1
R7 SAS2 0 Access Status Code 2 --
R8 SRDY I Synchronous Ready ---
RIO RETRY I Retry ---
Ril DTACK I Data Transfer Acknowledge
SI ADDR24 0 Microprocessor Address 24
S2 ADDR3I 0 Microprocessor Address 31
S4 DATA30 I/O Microprocessor Data 30
SS XMDI 0 Execution Mode 1
S7 BRACK I/O Bus Request Acknowledge
S8 DSIZEI 0 Data Size 1
SIO GRD - Microprocessor Ground --Sll STOP I 32100 Stop

TI ADDR2S 0 Microprocessor Address 2S
T2 GRD - Microprocessor Ground
T4 +SV - Microprocessor Power
TS XMDO 0 Execution Mode 0
T7 +SV - Microprocessor Power
T8 SASO 0 Access Status Code 0 ---
TIO DSHAD I Data Bus Shadow
TIl CYCLEI 0 Cycle Initiate
UI ADDR26 0 Microprocessor Address 26
U2 DATA27 I/O Microprocessor Data 27
U4 IQSO 0 Instruction Queue Status 0
US GRD - Microprocessor Ground
U7 R/W 0 Read/Write
U8 GRD - Microprocessor Ground
UIO +SV - Microprocessor Power
Ull No Connect - WARNING: This pin must be

left unconnected.
VI DATA28 I/O Microprocessor Data 28
V2 +SV - Microprocessor Power -
V4 SOl 0 Start of Instruction
VS BUSRQ I/O Bus Request

2-74

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-10. WE 32100 Microprocessor Pin Descriptions (Continued)

Pin Name Type Description

V7 DSIZEO 0 Data Size 0 ---VS HIGHZ I High Impedance
VIO RRREQ I Relinquish and Retry Request
VII BARB I Bus Arbiter
WI GRD - Microprocessor Ground
W2 DATA29 110 Microprocessor Data 29
W4 SAS3 0 Access Status Code 3
WS SASI 0 Access Status Code I
W7 DONE I Coprocessor Done
WS RRRACK 0 Relinquish and Retry

Request Acknowledge
WIO, No Connect - WARNING: These pins must be
WII left unconnected.

Table 2-11. Address and Data Signals

Name Pin(s) Type Description

ADDROO-ADDR3I FS,ES,F7,E7, 0 Address. These pins are used by the
BII,BlO,All, microprocessor to issue 32-bit addresses
DS,E4,BS,B7, for off-chip accesses. They also convey
AS,A7,BS,FI, the interrupt acknowledge level on bits 2
Gl,H2,A2,Hl, through 6 during an interrupt
J1,KI,Ll,L2, acknowledge operation.
DI,SI,Tl,Ul,
Q I ,P2,R I ,R2,
S2

DATAOO-DATA3I Fll,Ell,Dll, 110 Data. These bidirectional pins are used to
CII,ClO,DS, convey data to and from the
ES,FS,AIO, microprocessor. This data may be an
C7,F4,E2,EI, interrupt vector (bits 0 through 7).
F2,AS,C4,B4,
A4,AI,BI,C2,
K2,CI,MI,NI,
M2,PI,U2,VI,
W2,S4,R4

2-75

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-12. Interface and Control Signals

Name Pines) Type Description

AS Mll 0 Address Strobe. When low (0), this signal indicates the
presence of a valid physical address on the address pins. If
the address is virtual, the falling edge of AS indicates a valid
address, and the address pins are 3-stated subsequent to the
falling edge of AS.

CYCLEI Til 0 Cycle Initiate. This signal is asserted at the beginning of a
bus transaction and negated two clock cycles later. CYCLEI
is asserted in both the read and write halves of an
interlocked read transaction.

DONE W7 I Coprocessor Done. This input is recognized during a
coprocessor instruction. It informs the microprocessor that a
slave processor has completed its operation.

DRDY LII 0 Data Ready. When asserted, this signal indicates that the
microprocessor has not detected any bus exceptions (FA UL T ,
RETRY, RRREQ signals) during the current bus cycle. The
trailing edge of this signal indicates the end of a bus
transaction which has no bus exceptions.

DS NIl 0 Data Strobe. During a read operation this signal, when low,
indicates that a slave device can place data on the data bus.
During a write operation, this signal, when low, indicates
that the microprocessor has placed valid data on the data
bus.

DTACK Rll I Data Transfer Acknowledge. This signal is used to
handshake between the microprocessor and a slave device.
During a read operation, the microprocessor latches data
present on the data bus and terminates the bus transaction
one cycle after DTACK is driven low by a slave device.
During a write operation, the transaction is terminated when
a slave device drives DTACK low. If DTACK is high, wait
states are inserted in current cycle. DTACK is ignored if the
data bus shadow (DSHAD) input is asserted. The DTACK
input can be returned asynchronously and is double latched
to avoid metastability.

SRDY R8 I Synchronous Ready. When asserted, this signal is a
synchronous input that begins the termination of a read or
write operation. It is sampled only once on the leading edge
of the fifth clock state during read and write operations. If
SRDY is not asserted at this time and DTACK was not
asserted during the previous cycle, then wait-state cycles are
inserted until either signal is asserted. SRDY is ignored if
the data bus shadow (DSHAD) input was previously
asserted.

2-76

Name

BLKITCH

DSIZEO­
DSIZEI

R/w

SASO­
SAS3

Pin(s}

QII

V7,S8

U7

T8,W5
R7,W4

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-13. Access Status Signals

Type

o

o

Description

Block <Double-Word} Fetch. This input indicates to the
microprocessor that the memory system can perform a
double-word (eight byte) program block fetch. On all
instruction fetches, the data size (DSIZEO and DSIZEJ)
pins will show a double-word access. If the memory system
can handle a double-word access, it can activate this input.
Otherwise, the input is left inactive, and the microprocessor
fetches a block of instructions by two consecutive reads.

Data Size. This two-bit output is used to indicate whether
the microprocessor is transferring byte, halfword, word, or
double-word data in the current bus transaction. On all
instruction fetches, the DSIZEO-DSIZEI pins will have the
value for double word.

DSIZEI DSIZEO Description
o 0 Word transaction
o I Double-word transaction
I 0 Halfword transaction
1 I Byte transaction

ReadIWrite. This signal indicates whether the bus
transaction is a read or a write. When low (0), the
operation is a write. When high (J), the operation is a read.
This pin is valid during the time the address strobe (AS) is
active.

o Access Status Codes. These pins describe the type of bus
transaction being executed. SA SO is the least significant bit
of the access status codes.

SAS3
o
o
o

o
o
o
o
o
1
1
1
I
I

SAS2
o
o
o

o
I
I
I
I
o
o
o
o
I

SASI
o
o
I

1
o
o
I
1
o
o
I
I
o

o
1
I

SASO
o
I
o

1
o
1
o
1
o
1
o
1
o

I
o
I

Description
Move translated word
Coprocessor data write
Auto-vector interrupt
acknowledge

Coprocessor data fetch
Stop acknowledge
Coprocessor broadcast
Coprocessor status fetch
Read interlocked
Address fetch
Operand fetch
Write
Interrupt acknowledge
Instruction fetch after PC
discontinuity

Instruction prefetch
Instruction fetch
No operation

2-77

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-13. Access Status Signals (Continued)

Name Pines) Type Description

VAD GIl 0 Virtual Address. When low, this signal indicates that the
address is virtual. When V AD is high, the address is a
physical address. V AD is a level signal. It is asserted by
execution of the enable virtual pin and jump
(ENBV JMP) instruction and negated by execution of
the disable virtual pin and jump (DISVJMP)
instruction.

Note: This output is the only indication of the CPU's
mode of operation.

XMDO-XMDI T5,S5 0 Execution Mode. These two outputs indicate the present
execution mode of the microprocessor.

XMDl XMDO Description
0 0 Kernel mode
0 1 Executive mode
1 0 Supervisor mode
1 1 User mode

If a memory management unit (MMU) is present in the
system, it may latch and use a spurious execution mode
value if XMDO-XMDI changes during an access.
Since XMDO-XMDI reflect the state of the current
execution level (CM) bits in the PSW, changes to the
CM field via non-microsequence instructions must be
avoided. See Chapter 4 for a more detailed explanation
of the execution modes.

2-78

Name Pin(s)

AVEC HIO

INTOPT 111

IPLO-IPLJ Hl1,ElO,
110,G10

NMINT K10

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-14. Interrupt Signals

Type Description

I Auto-vector. When this input is asserted with the
interrupt priority level input, the microprocessor
supplies its own vector. The vector number value is
the inverted interrupt option input (INTOPT)
concatenated with the interrupt priority level value.
When auto-vector is not asserted, the interrupting
device supplies the vector (see 2.9 Interrupts).

I Interrupt Option. This asynchronous input is latched
along with interrupt priority level inputs IPLO-
IPLJ. It is then inverted and output on ADDR06
during an interrupt acknowledge transaction.

I Interrupt Priority Level. These asynchronous inputs
indicate the level of the pending interrupt. The code
is based on a decreasing priority scheme with 0000
having the highest priority and 1110 the lowest.
Level 1111 indicates no interrupts pending. To be
acknowledged, the inversion of the requesting level
on the pins must be greater than the present
interrupt priority level (IPL field) in the process
status word. The exception to this is a nonmaskable
interrupt which can interrupt the microprocessor
regardless of the present IPL field priority level.
IPLO is the LSB of the interrupt priority level code.
(See 2.9 Interrupts.)

I Nonmaskable Interrupt. When asserted, this
asynchronous input indicates that a nonmaskable
interrupt is being requested. The microprocessor
acknowledges this interrupt with an auto-vector
interrupt acknowledge cycle (see 2.9 Interrupts).
During the acknowledge cycle the microprocessor
address bus contains all zeros.

2-79

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-15. Arbitration Signals

Name Pin(s) Type Description

BARB Vll I Bus Arbiter. When this input is strapped low, the
microprocessor is the arbiter of the bus. As arbiter, the
microprocessor need not request access to the bus. When the
pin is strapped high, the microprocessor is not the arbiter and
must request bus access to use the bus. When the
microprocessor is not the bus arbiter the following outputs are
3-stated until the CPU does a bus transaction:

ABORT DATAOO-DATA31 SASO-SAS3 -- --
ADDROO- ORDY VAO

ADDR31 OS XMDO-XMDI -
AS DSIZEO-DSIZEI
CYCLE I R/W

BRACK S7 110 Bus Request Acknowledge. This signal is an output if the
microprocessor is the arbiter of the bus and an input if it is not.
As an output, this pin indicates that the bus request (BUSRQ)
has been recognized, and the microprocessor has 3-stated the
bus for the requesting bus master. The bus signals which are
3-stated when the BRACK is issued are:

ABORT DATAOO-DATA31 SASO-SAS3 -- --
ADDROO- OROY VAO -

ADDR31 OS XMDO-XMDI -
AS DSIZEO - DSIZE 1
CYCLEI R/W

As an input, this pin indicates that the microprocessor's bus
request has been recognized and the microprocessor may take
possession of the bus.

BUSRQ V5 110 Bus Request. This asynchronous signal is an input if the
microprocessor is the arbiter of the bus and an output if it is
not. As an input, this signal indicates that an external device is
requesting the bus. As an output, the signal indicates that the
microprocessor is requesting the bus.

2-80

Name Pines) Type

ABORT LlO 0

DSHAD TIO I

FAULT PIO I

RESET QlO 0

RESETR PII I

RETRY RIO I

RRRACK W8 0

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-16. Bus Exception Signals

Description

Access Abort. This pin is asserted on an access that is to be
ignored by the memory system. This occurs when the
microprocessor has a program counter discontinuity with an
instruction cache hit or an alignment fault.

Data Bus Shadow. This input is used by the memory
management unit (MMU) to remove the microprocessor
from the data bus. The DATAOO-DATA31, DRDY,
DSIZEO-DSIZEI, and R/w pins are 3-stated when this
input is asserted. When DSHAD is asserted, the DTACK,
SRDY, and FAULT inputs are ignored.

Fault. This input notifies the microprocessor that a fault
condition has occurred. It is a double-latched,
asynchronous input prior to the assertion of DTACK, and
synchronous after the assertion of DTACK (latched once).
FAULT is ignored if DSHAD is asserted.

Reset Acknowledge. This signal indicates that the
microprocessor has recognized an external reset request, or
that it has generated an internal reset (e.g., reset exception).
The microprocessor executes its reset routine once it negates
RESET (see 2.11 Reset).

Reset Request. This asynchronous signal is used to reset the
microprocessor. RESETR must be active for three clock
cycles in order to be acknowledged. The microprocessor
acknowledges the request by immediately asserting RESET.

Retry. When this signal is asserted, the microprocessor
terminates the current bus transaction and retries it when
RETRY is negated.

Relinquish and Retry Request Acknowledge. This output is
asserted in response to a relinquish and retry bus exception
when the microprocessor has relinquished (3-stated) the bus.
It is negated when the bus transaction terminated by the
relinquish and retry bus exception is retried.

2-81

ARCHITECTURE & BUS OPERATION
Pin Assignments

Table 2-16. Bus Exception Signals (Continued)

Name Pines) Type Description

RRREQ VI0 I Relinquish and Retry Request. This signal is used to
preempt a bus transaction so that the microprocessor bus
may be used. The signal causes the microprocessor to
terminate the current bus transaction and 3-state the
following pins:

ABORT DATAOO-DATA31 SASO-SAS3 --- --
ADDROO- DRDY VAD -

ADDR31 DS XMDO-XMDI
AS DSIZEO- DSIZEI
CYCLE I R/w

The RRRACK signal is asserted after all the above listed
pins are 3-stated. During this 3-state phase, the bus master
requesting the relinquish and retry may take possession of
the bus. No external bus arbitration signals are
acknowledged during the assertion of a relinquish and retry
request. When RRREQ is negated, the preempted bus
transaction is retried.

STOP Sil I Stop. When asserted, this asynchronous signal halts the
execution of any further instructions beyond those already
started. Before the microprocessor comes to a halt, there
may be one more instruction beyond the instruction during
which STOP was asserted.

2-82

Name

HIGHZ

IQSO-IQSl

SO!

Name

CLK34

CLK23

ARCHITECTURE & BUS OPERATION
Microprocessor Operating Requirements

Table 2-17. Development System Support Signals

Pines) Type Description

V8 I High Impedance. When asserted, this signal puts all output
pins on the microprocessor into the high-impedance state.
This pin is intended for testing purposes.

U4,R5 0 Instruction Queue Status. This two-bit code indicates the
activity on the microprocessor instruction queue. IQSO is
the least significant bit of the instruction queue status code.

Value Description

00 Discard 4 bytes
01 Discard I byte
10 Discard 2 bytes
II No discard this cycle

V4 0 Start of Instruction. When asserted, this signal indicates
that the microprocessor's internal control has fetched the
opcode for the next instruction from the internal instruction
queue. Since the instructions are pipelined, it does not
always mean the end of the previous instruction execution.

Table 2-18. Clock Signals

Pines) Type Description

MIO I Input Clocl, 34. The falling edge of this clock signifies the
beginning of a machine cycle. This clock input has the same
frequency as CLK23 and lags it by 90° .

NIO I Input Clock 23. This clock input has the same frequency as
CLK34 and leads it by 90°.

2.18 M][ClROPROCESSOR OPERATING REQUIREMENTS

The WE 32100 Microprocessor operates at a frequency of 10 MHz and requires only a
single +5 volt supply. The operating requirements are summarized in Table 2-18. The
following describes the microprocessor's electrical (inputs .md outputs), clocking, and
thermal requirements.

Note: Voltage level specifications are referenced to as either vee (power supply input to
the microprocessor) or GRD (microprocessor ground).

2-83

ARCHITECTURE & BUS OPERATION
Electrical Requirements

2.18.1 Electrical Requirements

The WE 32100 Microprocessor provides four classes of outputs: Classes 1,2,3, and 4.
All classes can support TTL input voltage levels and are capable of driving loads of 130
pF.

Class 1: These outputs are capable of driving one TTL load or eight PNP Schottky TTL
loads and have current allowance for an external holding resistor employed in
3-state buffers. The minimum holding resistor value is 2.7 kilohms. The Class 1
outputs are:

ABORT
AS
BRACK
BUSRQ
CYCLEI
DRDY
DS
DSIZEO - DSIZE I
IQSO-IQSI
R/W
RESET
SASO-SAS3
SOl
VAD
XMDO-XMDI

Access abort
Address strobe
Bus request acknowledge
Bus request
Cycle initiate
Data ready
Data strobe
Data size
Instruction queue status
Read/write
Reset acknowledge
Access status codes
Start of instruction
Virtual address
Execution mode

Class 2: This class has the same driving capabilities as Class 1, but does not have the
current allowance for a holding resistor. The Class 2 outputs are:

ADDROO-ADDR31 Address bus
DATAOO-DATA31 Data bus

Class 3: The signal in this class is an open drain output used for wired-logic operations,
allowing more than one device to drive a node without conflict. An external
resistor is required to pull this signal high. The minimum pull-up resistor value
is 510 ohms. The Class 3 output is:

RRRACK Relinquish and retry request acknowledge

Class 4: This class is the same as Class 1; however, its minimum holding resistor value is
1.8 kilohms.

SASO-SAS3 Access status codes

2-84

ARCHITECTURE & BUS OPERATION
Thermal Requirements

Table 2-19 contains the electrical specifications for the four classes of outputs.

The microprocessor has two types of inputs. The two clock inputs are CMOS inputs with
CMOS voltage levels. The remaining inputs are CMOS with TTL voltage levels. The
electrical specifications for both input types are given in Table 2-19.

2.18.2 Clocking Requirements

The microprocessor requires two input clocks (CLK34 and CLK23), both operating at a
maximum frequency of 10 MHz. This frequency should not vary by more than ±0.02% for
all temperature and power supply conditions. CLK34 lags CLK23 by 90 degrees, and its
falling edge indicates the beginning of a machine cycle. The WE 32102 Clock is
specifically designed for the CPU. The electrical specifications for the two clocks are given
in Table 2-20.

2.18.3 Thermal Requirements

The ambient temperature at the microprocessor pins must be in the range of 0 0 C to
70 0 C. The microprocessor package provides a 700 mil square metalized pad for
attachment of a heat sink for applications which require additional cooling. The heat sink
must be supplied and attached by the user.

Table 2-19. Operating Requirements

Parameter Symbol Min Nom Max Unit

Supply Voltage Vee 4.75 5.00 5.25 Vdc
Input Load TTL Inputs CIN - - 12 pF
Capacitance CMOS Clocks - - 7 pF
Total Output Class 1 - - 130 pF
Load Capacitance Class 2 CL - - 130 pF

Class 3 - - 130 pF
Class 4 - - 130 pF

Ambient Temperature at TA 0 - 70 DC
the Microprocessor Pins
Humidity Range - 5% - 95% -
Power Dissipation P - - 0.8 W
Operating Frequency F - 10 MHz

2-85

ARCHITECTURE & BUS OPERATION
Thermal Requirements

Table 2-20. Output Electrical Specifications

Outputs Min Nom Max

Output Sink Current (IOL): Class 1 - - 5.5
(VOL::; 0.4 V)

Class 2 - - 3.5
Class 3* - - 10.0
Class 4 - - 6.5

Output S(;lUree Current (IOH): Class 1 - - -5.5
(VOH 2: 2.4 V)

Class 2 - - -3.5
Class 3* - - -10.0
Class 4 - - -5.5

Output Logie Levels High Level 2.4 - -
Low Level - - 0.4

* See explanation of Class 3 in 2.15.1 Electrical Requirements.

Table 2-21. Input Electrical Specifications

Inputs Min Nom

TTL Input Voltage High Level 2.0 -
Low Level -0.5 -

CMOS Cloek High Level Vee - l.3 -
Input Voltage

Low Level 0 -
TTL Input
Loading Current: High Level 0 -
(2.0 V ::; VIH ::; Vee)

TTL Input
Loading Current: Low Level -0.01 -
(0 V ::; VIL ::; 0.8 V)

CMOS Cloek Input
Loading Current: High Level 0 -
(Vee-1.3 V ::; VIH ::; Vee)

CMOS Cloeks Input
Loading Current: Low Level -0.01 -
(0 V ::; VIL ::; 0.8 V)

2-86

Units

mAde

mAde
mAde
mAde
mAde

mAde
uAde

mAde
Vde

Vde

Max Units

Vee + 0.5 Vde

0.8 Vde

Vee + 0.5 Vde

0.8 Vde

0.01 mAde

0 mAde

0.01 mAde

0 mAde

ARCHITECTURE & BUS OPERATION
Supplementary Protocol Diagrams

2.19 SUPPLEMENTARY PROTOCOL DIAGRAMS

The following supplementary protocol diagrams are provided:

Figure 2-44. Read Transaction Followed by a Read Transaction.

Figure 2-45. Read Transaction Followed by a Write Transaction (Using DTACK).

Figure 2-46. Write Transaction Followed by a Write Transaction.

Figure 2-47. Write Transaction Followed by a Read Transaction.

Figure 2-48. Double-Word Program Fetch Without Blockfetch Transaction (Using DTACK).

Figure 2-49. Bus Arbitration During Relinquish and Retry.

2-87

N
clo
00 CLK23

CLK34

SASO--
SAS3

DSIZEO--
DSIZEI

ADDROO--
ADDR31

AS,OS

DATAOO--
DATA31

DTACK

SRDY

DRDY

R/W

BLKFTCH

CYCLEI

=-J~Lr~Lr~ J ~ Lr ~ J ~ 0 ~Lr ~
--"'\ ~ ~ ~ IX' T!' ~ r--s' ~ ,~ ~ 3 ~

X ~ 2 ~ I~ '------' '------'
/+--- INSTRUCTION FETCH/PREFETCH

I READ f« <
READ ~(i NEXT VALID

-- «< <<< --
-- < < < VALID) 3 -- STATE IF VIRTUAL < <((VALID) 3 -- STATE IF VIRTUAL
--

,\ \ \ '11/ ,\\ \' 'I I I, --
--

VALID XX :XXX :XXX (VALID XX .xXX :XXX: --

.xXX XIX :XA YiX YJ(i XiX :XXX :XXX :XX :XXX :XXX :XXX

XXX :XXX XJ0{ Xi)()\;\L XiX XXX :XXX :XXX :XXX :XXX: :XXX :XXX :XXX :XXX :XXX

,\ \ \ '/ / / ,\ \ \ V777/ --

I

--
I

--

.\\\ '/ / / .\\\ '/ / /
--

Note: Zero wait cycles.

Figure 2-44. Read Transaction Followed by a Read Transaction

CJl> = ~ :g("l
;"X
3
'" ..-j iat"'l
~ ("l
.:l..-j
"CL: ., ~
8-t"'l
e.~
Oe=
i>r L:
~rJl
~O
~ "C

t"'l
~

d o z

CLK23

CLK34

SASO-
SAS3

DSIZEO-
DSIZEI

ADDROO-
ADDR31

AS

OS

DATAOO-
DATA31

DTACK

SRDY

DRDY

R/W

BLKFTCH

CYCLEI

N

do
~

- Lr ~ Lr l\-f l\-f "'--Lr ~ Lr ~ Lr l\-f I\--
~ ~ v---;--. ~ 'X' ~ ~ ~ ~ ~ I~ 4

~ I~ ~ I~ x
'------J '------J

READ (((WRITE (((NEXT VALID

-
(((«(-

- «(VALID) 3 - STATE IF VIRTUAL («(VALID) 3 - STATE IF VIRTUAL
- I

I I

- ,\\\ 'I I I. ,\\\ f I I I.
I

- ,\ \ \ '///. .\\\ U I 1.1
VALID XX :XXX XIX «(VALID

I I
X'M XIX J(\ 'XM ~XXx: ~XXX: ~XXX :MX X" ,~XXX :XXXI ;XX\'

:XXX :XXX: :XXX :XXX XIX XIX YXX XIX X'M y;j){ XM 'XXX XXX ~XXX :XXX)(AI\ \

mr - ,\\\ 'I I I. ,\\\
-

'I I I. ,\ \ \

-

- ,\ \ \ 'I I I ,\ \ \ 'I I I

Note: Zero wait cycles.

Figure 2-45. Read Transaction Followed by a Write Transaction (Using DTACK)

;;
(""l

::t
::3
t"l

m(""l = ..-j :gL:
;"::r::l
3t"l
to

s-S<o
<:It=
~L:
8 m
"'0 ~ ~
e.t"l
O::r::l _.>
~..-j
~ 0
~ Z

N

~
0

CLK23

CLK34

SASO-
SAS3

DSIZEO-
DSIZEI

ADDROO-
ADDR31

AS

os

DATAOO-
DATA31

DTACK

SRDY

DRDY

R/W

BLKFTCH

CYCLEI

- f ~ U-l\-f ~ f ~ U-l\-f ~ 'J ~ U-I\--
-,

0
.~

2 ~ ~ ~ X .r---;-' 0 ~ ~ f""'3' 4 !r---s-'
I~

v--;:--;
~ I~ ~ I~ '---'

WRITE <<< WRITE < < < NEXT VALID

-
.\ < ~ <<<

- «< VALID) 3 - STATE IF VIRTUAL x< <<< VALID) 3 - STATE IF VIRTUAL -

,\ \ \ '/ / /, ,\ \ \' '/ / I. -

- &\ 'I I I. ,\ \ \' 'I I I.

<<< VALID : <<< VALID

(XXX :XXX)(\ XXX XXX XXX :XXX :XXX: :XA :XXX XIX :XXX

(XXX :XXX :XXX :XXX (XXX (XXX: :XXX :XXX :XXX :XXX :XXX (XXX :XXX. :XXX :XXX (XXX

,\ \ \' 'I I I. ,\ \,i rm -

- ,\ \ \

-
~ ill 'I I / ,\ \ \ 'I I I.

Note: Zero wait cycles.

Figure 2-46. Write Transaction Followed by a Write Transaction

00> = ~ :g(j ;;"= 3
... ,...;j
::"t"l
'" (j ~,...;j
~c:: .. ~
~t"l
e..~
Ot=
~r c::
~00
"'0
~ ~
~
>
~
o z

N
~

CLK23

CLK34

SASO­
SAS3

DSIZEO­
DSIZEI

ADDROO­
ADDR31

AS

os

DATAOO­
DATA31

DTACK

SRDY

iiRiiY

R/W

BLKFTCH

CYCLEI

- v '-- f ~ V ~ V ~ f ~ V ~ V ~ f ~ -

--- r---'I '3" ~ ~ '7' Ir-----\ Irs-' 'Y.'
~

I ~ ~ ~ ~ I~ 3 I~ ~

VlRITE ,\ \ \ READ ,\ \\ NEXT VALID

- : <<< <<< -
- : \ \\) 3 - STATE IF VIRTUAL (\ \\ VALID) 3 - STATE IF VIRTUAL

,\\\ 'III, ,\ \ \' 'III, -
,\ \ \' 'Ill ,\ \ \' 'Ill -

\\\ VALID VALID XX: :XXX: (X)--

(XXX: (XXX' (X\ ~XXX :XXX: (XXX' (XXX :XXX :X\ :XXX (XXX: (XXX:

~XXX, \'IX/: (xXX :XXX :XXX :X~ ~XXX, ~XXX, ~XX. :XXx. :XXX ~XX :XXX :XX7v ~XXX, ,XXX,

,\\\ 'II/, ,\ \\ rm; -

- ,\ \ \' 'III,

-
,\ \ \' 'II I ,\ \ \' 'Ill -

Note: Zero wait cycles.

Figure 2-47. Write Transaction Followed by a Read Transaction

,

I

>
~
::t:
:=3
t"l

oo(""l
=~ :gc:::
iO::e
3t"l
'" s-~
~=
"'=c::: .. 00
S.o
:; "tj
S2.t"l
t:;;~ -->
Jg~
~S
~ z

N
I
~
N

CLK23
- v ~ f l\-f ~ V ~ U-~ f l\-V ~ V ~ -

CLK34
---, '7' ~ '5' r--;:' ~ ~ ,--.. t;'
~ 2 ~ ~ 0 2 I~ 5 I~ '----' '----' '----'

,rt--INSTRUCTION FETCH/PREFETCH

SASO-
SAS3

DSIZEO-
DSIZEI

I XU, < K INSTRUCTION PREFETCH «(NEXT VALID

T I -
(((I « (DOUBLE WORD WORD -

-ADDROO-
ADDR31 : « (VALID) 3 - STATE IF VIRTUAL X(((VALID) 3 - STATE IF VIRTUAL -
AS,DS \\\ \ '\ '/ / I. ,\ \ \ 'I/l -

I
DATAOO-

DATA31 WORD I :XXX :XXX: WORD 2 (XXX :XXX

DTACK :XXX :XXX: :XA (XXX :XXX :XXX: :XXX :XXX :XA :XXX :XXX :XXX

SRDY :XXX. :XXX :XXX :XXX :XXX :XXX :XXX :XXX· :XXX :XXX :XXX: :XXX :XXX :XXX :XXX :XXX

DRDY - \\ \ \' '// / \\ \ \' mz
-

R/il '//1.

BLKFTCH :XXX: :XXX :Xf '(X :XXX :XXX :XXX :XXX: :XXX :XXX :XXX :XXX .XXX :XXX :XM

CYCLEI - \\ \ \' '// I. \\ \ \ 'j j /

Note: Zero wait cycles.

Figure 2-48. Double-Word Program Fetch Without Blockfetch Transaction (Using DTACK)

00> = ~ :g('j
to:::
8
~ ~ -t"i
~('j
~~
'tiC:: .. ~
St"i
~~
O~
5' c::
~oo
~O
~'tI

t"i

~
~
~

N ,:c, ...,

CLK23

ClK34

SASO­
SAS]

ADDROO­
AODR]!

AS, OS

OlACK

SRD'!'

CYCLEI

R'R"R'Ea OR
mlf1

ARRACK

BO"SR5

BRACK

=-~ v ~Lr ~ l\-V 1\-"
r-:;-' 4

1,------, Ir---;

='~ I~ 1'----'
X

1'----' j'-;

I--~ J I\-V ~ V I\-JW

*
I\-

I r---I if- ,--,
a I", ~[t ~

;-J ~ I~ I~

NTH ACCESS N+2 ACCESS NTH ACCESS NO OPERA liON

+ NTH ACCESS iA.DDRESS I Ii- NTH ACCESS lODRESS

= T<I
;I) 3-5TAT£ IF VIRTUAL ~W ,i 1 J - STATE IF VIRTUAL

=1
I
I

filiI

'(X' X. X IX' X XfX, X •
I

, KXA)(Y(JX (J X < KX: In x
I - rill, I

I
- l\ \ \ 'I I If

;-J

-

""'
-

\ I -
-- I

Note: The same protocol diagram applies for retry and bus arbitration except that the address bus, data
bus, and control signals are not 3-stated during the time RETRY is active and RRRACK is not issued.

Figure 2-49. Bus Arbitration During Relinquish and Retry

xxx

I
I

J ~~
,--,

~ ~

' XX X '

r'-'

r-V ~c-
h ,.........,
I~ \...

X X

I

r-V -c-

r

>
::0
(j

::e
~
l'!'l

Vll'J. = 0-3 ::ge
.. ::0
~l'!'l
~St:o

.:ltX'

~5i
S"O .., ~
g.,l'!'l
t;I::O ;.>

IJQ..-..j = 0
~Z

Chapter 3

Instruction Set and

Addressing Modes

CHAPTER 3. INSTRUCTION SET AND ADDRESSING MODES

CONTENTS

3. INSTRUCTION SEL 3·1
3.1 DATA TyPES 3·1
3.1.1 Sign and Zero Extension 3·3
3.2 REGISTERS 3·3
3.2.1 Writing and Reading

Registers 3·6
3.3 INSTRUCTION FORMAT 3-6
3.3.1 Data Embedded in Operands ... 3·6
3.4 ADDRESS MODES 3-6
3.4.1 Absolute Address Modes 3·10

Absolute 3-10
Absolute Deferred..................... 3·11

3.4.2 Displacement Modes 3-11
Byte Displacement 3-11
Byte Displacement Deferred 3·12
Halfword Displacement 3-12
Halfword Displacement

Deferred 3-13
Word Displacement 3-14
Word Displacement Deferred ... 3-14
AP Short Offset 3·15
FP Short Offset.. 3-15

3.4.3 Immediate Modes 3-16
Byte Immediate 3-16
Halfword Immediate................. 3·17
Word Immediate 3-17
Positive LiteraL....................... 3-18
Negative LiteraL 3-18

3.4.4 Register Modes 3-19
Register Mode... 3-19
Register Mode Deferred 3-19

3.4.5 Expanded-Operand Type
Mode 3-20

3.5 CONDITION FLAGS 3-22
3.6 FUNCTIONAL GROUPS 3-23
3.6.1 Data Transfer Instructions 3·23
3.6.2 Arithmetic Instructions 3-25
3.6.3 Logical Instructions 3-26
3.6.4 Program Control Instructions .. 3-28

Subroutine Transfer 3·28
Procedure Transfer 3·28

3.6.5 Coprocessor Instructions 3-32
3.6.6 Stack and Miscellaneous

Instructions............................. 3-32
3.7 INSTRUCTION SET

LISTINGS 3-33
3.7.1 Notation 3-34

Assembler Syntax.................... 3-34
Opcodes 3-34
Operation 3-34
Address Modes 3-34
Condition Flags 3-34
Exceptions................................ 3-34
Examples 3-34
Notes (Optional) 3-34

3.7.2 Instruction Set Descriptions 3-36
Add (ADDB2, ADDH2,
ADDW2) 3-37

Add,3 Address (ADDB3,
ADDH3, ADDW3) 3-38

Arithmetic Left Shift
(ALSW3) 3-39

AND (ANDB2, ANDH2,
ANDW2) 3-40

AND, 3 Address (ANDB3,
ANDH3, ANDW3) 3-41

Arithmetic Right Shift
(ARSB3, ARSH3, ARSW3). 3-42

Branch on Carry Clear
(BCCB, BCCR) 3-43

Branch on Carry Set
(BCSB, BCSH) 3·44

Branch on Equal
(BEB, BEH) 3-45

Branch on Greater Than
(Signed) (BGB, BGH) 3-46

Branch on Greater Than
or Equal (Signed)
(BGEB, BGEH) 3-47

Branch on Greater Than
or Equal (Unsigned)
(BGEUB, BGEUH) 3·48

Branch on Greater Than
(Unsigned) (BGUB,
BGUH) 3-49

Bit Test (BITB, BITH,
BITW) 3-50

Branch on Less Than
(Signed) (BLB, BLH) 3-51

Branch on Less Than or
Equal (Signed)
(BLEB, BLEH) 3-52

Branch on Less Than or
Equal (Unsigned)
(BLEUB, BLEUH) 3-53

Branch on Less Than
(Unsigned) (BLUB, BLUH).. 3-54

Branch on Not Equal
(BNEB, BNEH) 3-55

Breakpoint Trap (BPT) 3-56
Branch (BRB, BRH) 3-57
Branch to Subroutine

(BSBB, BSBH) 3-58
Branch on Overflow Clear

(BVCB, BVCH) 3-59
Branch on Overflow Set

(BVSB, BVSH) 3-60
Call Procedure (CALL) 3-61
Cache Flush (CFLUSH) 3-62
Clear (CLRB, CLRH,

CLRW) 3-63
Compare (CMPB, CMPH,

CMPW) 3-64
Decrement (DECB, DECH,
DECW) 3-65

Divide (DIVB2, DIVH2,
DIVW2) 3·66

Divide, 3 Address
(DIVB3, DIVH3, DIVW3).... 3-67

Extract Field (EXTFB,
EXTFH, EXTFW) 3·68

Extended Opcode (EXTOP) 3·69
Increment (INCB, INCH,

INCW) 3-70
Insert Field (INSFB,

INSFH, INSFW) 3-71
Jump (JMP) 3·12
Jump to Subroutine (JSB) 3-73

CONTENTS

Logical Left Shift
(LLSB3, LLSH3, LLSW3) ... 3-74

Logical Right Shift
(LRSW3) 3-75

Move Complemented
(MCOMB, MCOMH,
MCOMW) 3-76

Move Negated (MNEGB,
MNEGH, MNEGW) 3·77

Modulo (MODB2, MODH2,
MODW2) 3-78

Modulo, 3 Address (MODB3,
MODH3, MODW3) 3·79

Move (MOVB, MOVH,
MOVW) 3-80

Move Address (Word)
(MOV A W) 3-82

Move Block (MOVBLW) 3-83
Multiply (MULB2,

MULH2, MULW2) 3-85
Multiply, 3 Address (MULB3,
MULH3, MUL W3) 3·86

Move Version Number
(MVERNO) 3·87

No Operation (NOP,
NOP2, NOP3) 3·88

OR (ORB2, ORH2,
ORW2) 3-89

OR, 3 Address (ORB3,
ORH3, ORW3) 3-90

Pop (Word) (POPW) 3-91
Push Address (Word)

(PUSHA W) 3·92
Push (Word) (PUSHW) 3-93
Return on Carry Clear

(RCC) 3-94
Return on Carry Set

(RCS) 3-95
Return on Equal

(REQL, REQLU) 3·96
Restore Registers

(RESTORE) 3·97
Return from Procedure

(RET) 3-98
Return on Greater Than
or Equal (Signed) (RGEQ)... 3·99

Return on Greater Than
or Equal (Unsigned)
(RGEQU) 3·100

Return on Greater Than
(Signed) (RGTR) 3·101

Return on Greater Than
(Unsigned) (RGTRU) 3·102

Return on Less Than
or Equal (Signed) (RLEQ) 3-103

Return on Less Than or Equal
(Unsigned) (RLEQU) 3-104

Return on Less Than
(Signed) (RLSS) 3-105

Return on Less Than
(Unsigned) (RLSSU) 3-106

Return on Not Equal
(RNEQ, RNEQU) 3-107

Rotate (ROTW) 3-108
Return from Subroutine

(RSB) 3-109
Return on Overflow Clear

(RVC) 3-110
Return on Overflow Set

(RVS) 3·111
Save Registers (SAVE) 3-112
Coprocessor Operation

(no operands) (SPOP) 3-113
Coprocessor Operation
Read (SPOPRS, SPOPRD,
SPOPRT) 3-114

CONTENTS

Coprocessor Operation,
2-Address (SPOPS2,
SPOPD2, SPOPT2L 3-115

Coprocessor Operation
Write (SPOPWS, SPOPWD,
SPOPWT) 3-116

String Copy (STRCPY) 3-117
String End (STREND) 3-119
Subtract (SUBB2,

SUBH2, SUBW2) 3-120
Subtract, 3 Address

(SUBB3, SUBH3, SUBW3) .. 3-121
Swap (Interlocked)

(SW APBI, SW APHI,
SWAPWI) 3-122

Test (TSTB, TSTH, TSTW) ... 3-123
Exclusive Or (XORB2,

XORH2, XORW2) 3-124
Exclusive Or, 3 Address

(XORB3, XORH3,
XORW3) 3-125

3.7.3 Instruction Set Summary by
Function 3-126

3.7.4 Instruction Set Summary by
Mnemonic 3-132

3.7.5 Instruction Set Summary by
Opcode 3-136

INSTRUCTION SET & ADDRESSING MODES
Data Types

3. INSTRUCTION SET

The WE 32100 Microprocessor has a powerful instruction set that includes the standard
data transfer, arithmetic, and logical operations for microprocessors, plus some unique
operating system operations. Its many program control instructions (branch, jump, return)
provide flexibility for altering the sequence in which instructions are executed. Some of
these instructions check the setting of the processor's condition flags before execution. For
operating systems, the processor has instructions to establish an environment that permits
other processes to take control of the processor. The special instructions dedicated to
operating system use are discussed in Chapter 4.

The microprocessor instructions are mnemonic-based assembly language statements.
However, programs may be written in C language and translated into assembly language
by its C compiler.

A mnemonic defines the operation an instruction performs. For most arithmetic or logical
operations, the mnemonic also defines one of the data types:

o byte 8-bit data

o halfword - 16-bit data

o word - 32-bit data.

Some instructions perform operations on a bit field, a sequence of I to 32 bits contained in
a word, or on a block (or string) of data locations.

3.1 DATA TYPES

The data types supported by the WE 32100 Microprocessor instruction set are illustrated
on Figure 3-1 and are defined as:

byte - An 8-bit quantity that may appear at any address in memory. Its bits are numbered
from right to left starting with 0, the least significant bit (LSB), and ending with 7, the
most significant bit (MSB).

halfword - A 16-bit quantity that may appear at any address in memory divisible by 2. Its
bits are numbered from right to left starting with 0, the LSB, and ending with 15, the
MSB.

word - A 32-bit quantity that may appear at any address in memory divisible by 4. Its bits
are numbered from right to left starting with 0, the LSB, and ending with 31, the MSB.

Each of these types may be interpreted as a signed or unsigned quantity. A signed
quantity is represented in 2's complement form. Therefore, for a signed quantity, the MSB
indicates the sign of the quantity; 0 for a positive quantity and I for a negative quantity.

A bit field is a sequence of I to 32 bits contained in a base word. The field is specified by
the address of its base word, a bit offset, and a width. The bit offset ranges from 0 to 31

3-1

INSTRUCTION SET & ADDRESSING MODES
Data Types

3-2

BITS 7 0

Fi
MSB LSB

A. BYTE OATA

BITS 15 81 7 0

~ :
t
I

MSB LSB
B. HALFWORD DATA

BITS 31
24: 23 16: 15 8:7

~
MSB

C. WORD DATA

Figure 3-1. Bit Order of Data

MSB LSB

t
31 24 23

IX ••• x:X •••

t
16 15 8 7 0

x : 0 1 1 1 1 0 1 1: 0 1 X. •• xl

I r- WIDTH ~ r---- BASE WORD AT ADDRESS a~

LEGEND:
BASEWORD ADDRESS = a

OFFSET = 6
WIDTH = 9

MSB LSB

t t
9 0

101 11 1011011

Figure 3-2. Bit Order in a Bit Field

0

l
t

LSB

INSTRUCTION SET & ADDRESSING MODES
Registers

and identifies the starting bit of the field. The offset count starts at the LSB of the base
word and corresponds to the number of the bit in the word. That bit becomes bit 0, the
LSB of the field. The width ranges from 0 to 31 and specifies the size of the field. Width
plus one is the number of bits in the field. The width is numbered from right to left in the
field and corresponds to the bit number of the field's MSB. Fields do not extend across
word boundaries. Fields wrap around from MSB to LSB at the word boundary. Figure
3-2 illustrates a bit field located at address a, with an offset of 6, and a width of 9. Notice
that the field contains 10 bits, one bit more than the width.

3.1.1 Sign and Zero Extension

All operations are performed only on 32-bit quantities even though an instruction may
specify a byte or halfword operand. The WE 32100 Microprocessor reads in the correct
number of bits for the operand and extends the data automatically to 32 bits. It uses sign
extension when reading signed data or halfwords and zero extension when reading
unsigned data or bytes (or bit fields that contain less than 32 bits). The data type of the
source operand determines how many bits are fetched and what type of extension is
applied. Bytes are treated as unsigned, while halfwords and words are considered signed.
The type of extension applied can be changed using the expanded-operand type mode as
described in 3.4.5 Expanded-Operand Type Mode. For sign extension, the value of the
MSB or sign bit of the data fills the high-order bits to form a 32-bit value. In zero
extension, zeros fill the high order bits. The microprocessor automatically extends a byte
or halfword to 32 bits before performing an operation. Figure 3-3 illustrates sign and zero
extension.

An arithmetic, logical, data transfer, or bit field operation always yields an intermediate
result that is 32 bits in length. If the result is to be stored in a register, the processor
writes all 32 bits to that register. The processor automatically strips any surplus high­
order bits from a result when writing bytes or halfwords to memory.

3.2 REGISTERS

A processor register may contain the operand for an instruction or may be used when
computing an address of an operand. Therefore, most address modes, other than absolute,
immediate, or literal, reference a processor register. In general, any of the sixteen
processor registers may be used as an operand in all of the address modes. Table 3-1 lists
the registers and assigned functions.

General-purpose registers rO through r8 may be used for accumulation, addressing, or
temporary data storage. The remaining processor registers are special purpose and are
usually referenced with different names. Three of these registers are pointers to data
stored on an execution stack: the frame pointer (FP), register 9 (r9), the argument pointer
(AP), register 10 (riO), and the stack pointer (SP), register 12 (rI2). Function calls and
returns affect the AP, FP, and SP implicitly. The FP identifies the starting location of
local variables for the function, while the AP identifies the beginning of the set of
arguments passed to the function. The SP always points to the next available word
location on the stack. Note that the stack grows upward to higher memory addresses.

3-3

INSTRUCTION SET & ADDRESSING MODES
Registers

3-4

Table 3-1. Register Set

Assembler
Register Name Syntax Assigned Function

0 rO %rO General-purpose (Note 1)

1 r1 %r1 General-purpose (Note 1)

2 r2 %r2 General-purpose (Note 1)
3 r3 %r3 General-purpose
4 r4 %r4 General-purpose
5 r5 %r5 General-purpose
6 r6 %r6 General-purpose
7 r7 %r7 General-purpose
8 r8 %r8 General-purpose
9 FP %fp or %r9 Frame pointer

10 AP %ap or %r10 Argument pointer
11 PSW %psw or %rll Processor status word (Note 2)
12 SP %sp or %r12 Stack pointer
13 PCBP %pcbp or %r13 Processor control block

pointer (Note 2)
14 ISP %isp or %r14 Interrupt stack pointer (Note 2)
15 PC %pc or %r15 Program counter (Note 3)

Notes:
1. Block or string instructions may use this register as an implied argument

for indexing or addressing. Operating system instructions also use these
registers.

2. Privileged register. Writing to this register when the processor is not in
kernel execution level causes a privileged-register exception (see 4.2.1
Execution Privilege).

3. Registers 11 and 15 may not be used in some address modes (see 3.4
Address Modes).

Some of the registers have restrictions on usage in instructions. Because registers 11, 13,
and 14 (r11, r13, and r14) are privileged, these may be written only when kernel execution
level is in effect. Register 11, the processor status word (PSW), contains status
information about the current instruction and process. Register 13, the process control
block pointer (PCBP), identifies a block of status information and pointers for a process.
Register 14, the interrupt stack pointer (ISP), functions as a stack pointer for the interrupt
stack.

The last register is the program counter, register 15 (r15). This register and register 11
may not be referenced in some address modes (see 3.4 Address Modes). In addition, it is
referenced implicitly in all program-control instructions and for all function calls and
returns.

31

BYTE DATA

7 a

~
MSB

a

INSTRUCTION SET & ADDRESSING MODES
Registers

HALFWORD DATA

MSB

A. VALUE READ IN

31

G ;<,---; ---'------'

81 7 16 115 81 7

1: 1X 0 0 aX11 S~ 0: ox 0 0 • X 1: ox • o 0 X11

B. AFTER SIGN EXTENSION

81 7 a 31 16 115 817 a

0: 1X 0 o 0 X11 S~ O:OX 0 o 0 X1: OX 0 • 0 X11

c. AFTER ZERO EXTENSION

Figure 3-3. Extending Data to 32 Bits

16115 8 17 a

REGISTER X: 1 a 1 100 11: 101 1 10 a 11

31 16115 817 ~
EXTENDED 10 <l ~-:--.;---- 0: 1 a 1 1 1 a a 1 1

a

A. AS BYTE OPERAND

REGISTER

31

C·:·
16 115 817

X: 1 01 100 11: 1 01 1 1 a a 11

f
31 16115 8 17 a

EXTENDED 11 <l ~ ~ 1: 1 a 1 1 a a 1 1 : 1 a 1 1 1 a a 11

B. AS HALFWORD OPERAND

Figure 3-4. Register as a Source Operand

3-5

INSTRUCTION SET & ADDRESSING MODES
Writing & Reading Registers

3-6

3.2.1 Writing and Reading Registers

A write to a register always affects all 32 bits. When a destination operand is a register,
the processor ignores the data type of the operand and copies all 32 bits of a result to that
register.

When reading from a register, the data type of the source operand determines how many
bits are fetched and what type of extension is applied (see Figure 3-4). If a register is a
byte operand, bits 0 through 7 of the register are fetched, and zero extension produces the
32-bit value required internally. If a register is halfword operand, bits 0 through 15 are
fetched, but sign extension forms the 32-bit value.

3.3 INSTRUCTION FORMAT

Instructions may appear at any byte address. An instruction consists of a one- or two-byte
opcode followed by zero or up to four operands. In assembly language, the mnemonic
replaces the opcode and is followed by its operands. This is represented as

mnemonic opndl.opnd2 opnd4

where the mnemonic is separated from the operands by a white space and commas are used
to separate operands.

Part A of Figure 3-5 shows the general format of an instruction in memory. Each operand
may consist of a descriptor byte followed by up to four bytes of embedded data. Part B of
Figure 3-5 shows the general format of the operand. During execution, the program
counter always points to the starting address (opcode byte) of the instruction.

3.3.1 Data Embedded in Operands

Figure 3-6 illustrates the format for operands with embedded word, halfword, and byte
data. The first byte is the operand descriptor that defines which address mode and register
the operand uses. The descriptor is divided into two 4-bit fields. Bits 0 through 3 define
the register field; bits 4 through 7 define the address mode. The register field and address
mode combinations are shown in Table 3-2.

There are two cases of operands with embedded data that do not have operand descriptors.
First, when the operand is used as a target in a branch instruction, the operand is used as
an 8- or l6-bit displacement from the program counter and no descriptor is needed.
Second, there is no descriptor when a command word appears in a coprocessor instruction.

3.4 ADDRESS MODES

The WE 32100 Microprocessor recognizes the commonly used address modes such as
immediate, register, absolute, and displacement or offset from the content of a register.
Some modes involve a pointer, the address of a word location in memory that contains the
address of the operand, and are known as deferred modes.

BITS

BITS

8ITS

INSTRUCTION SET & ADDRESSING MODES
Address Modes

'--___ ---''--O_P_ER_A_N_D_1--'_----<: : OPERAND 4

~ OPCODE I
I (1-2 BYTEs'ij

INCREASING ADDRESS_

A. INSTRUCTION

o 3 7

"-::-:===-'I'---_BY_T_E_D_--'-_-'>: : BYTE 3
I DESCRIPTOR I I
~ BYTE ---t>ji>'rE<lI--- UP TO 4 OAT A BYTES ---e,
I I I

INCREASING ADDRESS ----IE>,..

B. OPERANO FORMAT

Figure 3-5. General Instruction Format

INCREASING ADDRESS-+

o 710
rrrr! m m m m: BYTE 0 71

8
15

1

16 23
1

24
. BYTE 4

A. EMBEDDED WORD DATA

0
3 718

15
1

16
23

BYTE 0 I rrrr! m m mm: . BYTE 1

B. EMBEDDED HALFWORD DATA

o 3 718 15

I rrrr! mmmm

LEGEND:

31

I

~BYTE DAT~
I I m m m m ADDRESS f1DDE (O-15)

rrrr = REGISTER (D-15)
C. EMBEDDED BYTE

Figure 3-6. Data Embedded in an Operand

3-7

INSTRUCTION SET & ADDRESSING MODES
Address Modes

3-8

In assembly language, the syntax of the operand defines the operand and its address mode.
Each address mode description in this section includes an example using a move instruction
(MOVB, MOVH, or MOVW) to be described later. Because each example includes two
operands, only the first operand demonstrates the address mode being described. The
second operand uses the register mode.

Table 3-2 lists the address modes and gives the syntax for each. The descriptions and the
table use the following notation:

Oxnnn Hexadecimal number nnn, where n is a hexadecimal digit 0 to 9 or a to f (or A to
F); may also be written OXnnn

ap Argument pointer (AP); contains the starting location on the stack of a list of
arguments for a function

expr User-supplied expression that yields a byte, halfword, or word

fp Frame pointer (FP); contains the starting location on the stack of local variables
for a function

imm8 Signed integer in the range -128 to +127 (j.e., _27 to +27-0

imm16 Signed integer in the range -32768 to +32767; Le., _2 15 to (+215_1)

imm32 Signed integer in the range _231 to (+231 _1)

lit Signed integer in the range -16 to +63

opnd An operand that uses a mode other than the expanded-operand type

%rn References a processor register; use the syntax shown in Table 3-1 for the desired
register

so Short offset; an integer in the range 0 to 14

type Data type: sbyte (for signed byte), byte or ubyte (for unsigned byte), half or shalf
(for signed halfword), uhalf (for unsigned halfword), word or sword (for signed
word), uword (for unsigned word); see 3.4.5 Expanded-Operand Type Mode for
more details.

In machine language, a descriptor defines all source or destination operands and occupies
one or more bytes in the instruction stream.

The first byte of the operand, called the descriptor byte, defines the address mode. (The
expanded-operand type mode uses two descriptor bytes and is discussed later in this
section.) Bytes that follow the descriptor byte contain any data required by the address
mode for that operand. Table 3-2 identifies the total bytes in memory required for each
mode.

INSTRUCTION SET & ADDRESSING MODES
Address Modes

Table 3-2. Addressing Modes

Mode Syntax
Mode Register Total

Notes
Field Field Bytes

Absolute

Absolute $expr 7 15 5 -
Absolute deferred *$expr 14 15 5 -

Displacement (from a register)
Byte displacement expr(%rn) 12 0-10,12-15 2 -
Byte displacement

deferred *expr(%rn) 13 0-10,12-15 2 -
Halfword displacement expr(%rn) 10 0-10,12-15 3 -
Halfword displacement

deferred *expr(%rn) 11 0-10,12-15 3 -
Word displacement expr(%rn) 8 0-10,12-15 5 -
Word displacement

deferred *expr(%rn) 9 0-10,12-15 5 -
AP short offset so (%ap) 7 0-14 1 1
FP short offset so (%fp) 6 0-14 1 1

Immediate
Byte immediate &imm8 6 15 2 2,3
Halfword immediate &imm16 5 15 3 2,3
Word immediate &imm32 4 15 5 2,3
Positive literal & lit 0-3 0-15 1 2,3
Negative literal &lit 15 0-15 1 2,3

Register

Register %rn 4 0-14 1 1,3
Register deferred (%rn) 5 0-10,12-14 1

Special Mode
Expanded-operand

type {type}opnd 14 0-14 2-6

Notes:
1. Mode field has special meaning if register field is 15; see absolute or

immediate mode.
2. Mode may not be used for a destination operand.
3. Mode may not be used if the instruction takes effective address of the

operand.
4. type overrides instruction type; type determines the operand type,

except that it does not determine the length for immediates or literals
or whether literals are signed or unsigned. opnd determines actual
address mode. For total bytes, add 1 to byte count for address mode
determined by opnd.

1

4

3-9

INSTRUCTION SET & ADDRESSING MODES
Address Modes

As described before, the descriptor byte has two 4-bit fields:

7 4 3 0

I mmmm rrrr

The register field rrrr, bits 0 through 3, contains the number of a register, 0 through 15.
The mode field mmmm, bits 4 through 7, contains an address-mode number, 0 through 15.
Table 3-2 lists the value in the mode field and the possible values in the register field for
each address mode. If the register field contains 15, the mode field may be interpreted
differently.

In the following examples for the address modes, the first operand illustrates the mode
while the second operand uses the register mode. For assembly language programming,
values follow the C language conventions:

• Leading Ox or OX denotes a hexadecimal value

• Leading 0 followed by the digits 0 through 7 is octal

• Digits 0 through 9, but no leading zero is decimal.

The byte boxes illustrating the instruction stream in the following examples contain
hexadecimal values.

3.4.1 Absolute Address Modes

In this mode, an absolute address is embedded in the operand. This may be the address of
the operand or of a pointer.

Absolute

The operand is accessed by an absolute address computed from the expression expr.

3-10

Syntax: $expr

mmmm: 7
rrrr: 15
Total bytes: 5

Example: MOYB $Oxl00,%rO

87 Opcode
7F First Operand
00
01
00
00
40 Second Operand

INSTRUCTION SET & ADDRESSING MODES
Byte Displacement

This instruction moves the byte at location 100 to register O(rO). %rO is the syntax for the
register mode. In the instruction stream, the four bytes that follow the descriptor byte
form the 32-bit absolute address of the operand. The bytes follow the order shown on
Figure 3-6 for word data.

Absolute Deferred

The operand is accessed through the absolute address of a pointer, a location in general
memory that contains the address of the operand. The absolute address of this pointer is
computed from the expression expr.

Syntax: * $expr

mmmm: 14
rrrr: 15
Total bytes: 5

Example: MOVB *$Ox2EOO,%rl

87 Opcode
EF First Operand
00
2E
00

00
41 Second Operand

This example moves a byte from memory to register 1 (r1). However, it uses a pointer
(the word starting at location Ox2EOO) to locate the byte in memory. In the instruction
stream, the four bytes that follow the descriptor byte form the 32-bit absolute address of a
word location in memory. That location contains the address of the operand. The 32-bit
absolute address in the instruction follows the byte order shown on Figure 3-6 for word
data.

3.4.2 Displacement Modes

For these modes, a displacement contained in the operand added to a register forms the
address of the operand or a pointer to the operand. Sign-extension expands the
displacement of 32 bits before the addition occurs.

Byte Displacement

A byte displacement added to a register forms the address of the operand. The
displacement, computed from the expression expr, ranges from -128 to +127, and n ranges
from 0 to 10 and 12 to 15 (use the syntax given in Table 3-1).

3-11

INSTRUCTION SET & ADDRESSING MODES
Byte Displacement Deferred

Syntax: expr(%rn)

mmmm: 12
rrrr: 0 to 10, 12 to 15
Total bytes: 2

Example: MOYB 6(%rI),%rO

;]

7 Opcode
Cl First Operand
06
40 Second Operand

This example moves a byte from memory to register O. This byte in memory is located by
adding the displacement 6 to register 1. The displacement is the byte that follows the
descriptor byte in the instruction stream. This displacement is sign extended and added to
the contents of the register 1. The sum is the address of the operand.

Byte Displacement Deferred

A byte displacement added to a register forms a pointer. The word location identified by
the pointer contains the address of the operand. The displacement computed from the
expression expr ranges from -128 to + 127, and n ranges from 0 to 10 and 12 to 15 (use
the syntax given in Table 3-1).

Syntax: *expr(%rn)

mmmm:13
rrrr: 0 to 10, 12 to 15
Total bytes: 2

Example: MOYB*Ox30(%r2),%r3

;]

7. Opcode
D2 First Operand
30
43 Second Operand

This example adds the byte displacement Ox30 to the contents of register 2 (r2) to form
the starting address of a pointer in memory. The pointer is the address of a byte in
memory. After zero extension of the byte, the value is written to register 3 (r3). The
displacement is the byte that follows the descriptor byte in the instruction stream. This
byte is sign extended and added to the contents of register 2. The sum is the address of a
word location in memory that contains the address of the operand.

Halfword Displacement

3-12

A halfword displacement added to a register forms the address of the operand. The
displacement is computed from the expression expr and ranges from _215 to (+215_1.)

INSTRUCTION SET & ADDRESSING MODES
Halfword Displacement Deferred

Syntax: expr(%rn)

mmmm: 10
rrrr: 0 to 10, 12 to 15
Total bytes: 3

Example: MOVB Ox 11 0 I (%r2), %r8

87 Opcode
A2 First Operand
01
11
48 Second Operand

This example adds the halfword displacement OxllOI to the contents of register 2. The
result is the address of a byte in memory. This byte is written to register 8 after zero
extension. In the instruction stream, the halfword that follows the descriptor byte is the
displacement. This displacement is sign extended and added to the contents of register 2.
The sum is the address of the operand. The displacement stored in the instruction follows
the byte ordering shown on Figure 3-6 for halfword data.

Halfword Displacement Deferred

A halfword displacement added to a register n forms a pointer. The word location
identified by the pointer contains the address of the operand. The displacement computed
from the expression expr ranges from _is to (+is_l), and n ranges from 0 to 10 and 12
to 15 (use the syntax given in Table 3-1).

Syntax: *expr(%rn)

mmmm: 11
rrrr: 0 to 10, 12 to 15
Total bytes: 3

Example: MOVB *Ox200(%r2),%r6

87 Opcode
B2 First Operand
00
02
46 Second Operand

This instruction adds the halfword displacement Ox200 to the contents of register 2,
forming the address that locates a pointer in memory. The pointer locates a byte in
memory that is written to register 6 after zero extension. In the instruction stream, the
halfword that follows the descriptor byte is the displacement. This displacement is sign
extended and added to the contents of register 2. The sum is the address of a word
location in memory that contains the address of the operand. The displacement in the
instruction stream follows the byte order shown on Figure 3-6 for halfword data.

3-13

INSTRUCTION SET & ADDRESSING MODES
Word Displacement

Word Displacement

A word displacement added to a register forms the address of the operand. The
displacement computed from the expression expr ranges from _231 to (+il_l), and n
ranges from 0 to 10 and 12 to 15 (use the syntax given in Table 3- I).

Syntax: expr(%rn)

mmmm: 8
rrrr: 0 to 10, 12 to 15
Total bytes: 5

Example: MOVB Oxl12234(%r2),%r4

87 Opcode
82 First Operand
34
22
II
00
44 Second Operand

The word displacement Oxl12234 added to the contents of register 2 forms the address of a
byte. The byte is stored in register 4 (r4) after zero extension. In the instruction stream,
the byte that follows the descriptor byte is the displacement. This displacement is sign
extended and added to the contents of the register 2. The sum is the address of the
operand. The displacement stored in the instruction follows the byte ordering shown on
Figure 3-6 for word data.

Word Displacement Deferred

A word displacement added to a register forms the address of a pointer. The pointer is the
address of the operand in memory. The displacement computed from the expression
expr ranges from _231 to +231 _1, and n ranges from 0 to 10 and 12 to 15 (use the syntax
given in Table 3-1).

3-14

Syntax: *expr(%rn)

mmmm: 9
rrrr: 0 to 10, 12 to 15
Total bytes: 5

INSTRUCTION SET & ADDRESSING MODES
FP Short Offset

Example: MOVB *Ox20304050(%r2),%rO

87 Opcode
92 First Operand
50
40
30
20
40 Second Operand

The word displacement Ox20304050 added to the contents of register 2 forms an address of
a pointer in memory. That pointer identifies the location of a byte to be written to register
o after zero extension. In the instruction stream, the word that follows the descriptor byte
is the displacement. This displacement is sign extended and added to the contents of
register 2. The sum is the address of a word location in memory that contains the address
of the operand. The displacement in the instruction stream follows the byte order shown
on Figure 3-6 for word data.

AP Short Offset

This mode applies a short offset to the argument pointer (referenced as %ap) to locate an
argument to a function. The offset so ranges from 0 through 14 and is added to AP to
form the address of the argument.

Syntax: so(%ap)

mmmm: 7
rrrr: 0 through 14 (see text that follows)
Total bytes: 1

Example: MOVW 4(%ap),%r3

§§4 Opcode
74 First Operand
43 Second Operand

The offset 4 added to the contents of AP locates a word that is written to register 3. In the
instruction stream, the 4-bit register field serves as the offset (a literal ranging from 0
through 14). This offset is sign extended and added to the contents of AP to locate a word,
or argument, on the stack.

FP Short Offset

This mode applies a short offset to the frame pointer, referenced as %fp, to locate a local
variable for a function. The offset so ranges from 0 through 14 and is added to FP to form
the address of the variable.

3-15

INSTRUCTION SET & ADDRESSING MODES
Immediate Modes

Syntax: so (%fp)

mmmm: 6
rrrr: 0 through 14 (see text that follows)
Total bytes: I

Example: MOVW 12(%fp),%rO

§E4 Opcode
6C First Operand
40 Second Operand

The offset 12 added to the contents of FP locates a word (a local variable) that is written
to register O. In the instruction stream, the 4-bit register field serves as the offset (a literal
ranging from 0 through 14). This offset is sign extended and added to the contents of FP.

3.4.3 Immediate Modes

For these modes, the instruction stream contains the operand data. The type of the
mnemonic does not affect the width of an operand that uses these address modes.

Byte Immediate

The operand is the signed 8-bit immediate value imm8 that ranges from -128 to +127.

Note: This address mode may not be used as a destination or for an effective address.
Either usage causes an illegal-operand exception.

Syntax: &imm8

mmmm: 6
rrrr: 15
Total bytes: 2

Example: MOVW &40,%r6 14 Opcode
6F First Operand
28
46 Second Operand

The byte value 40 replaces the contents of register 6. The mnemonic specifies a word
operation, but the immediate value remains a byte. In the instruction stream, the byte that
follows the descriptor byte contains an 8-bit immediate value that ranges from -128 to
+127.

3-16

INSTRUCTION SET & ADDRESSING MODES
Word Immediate

Halfword Immediate

The operand is the signed 16-bit immediate value imm16 that ranges from _i5 to
(+i 5-1).

Note: This address mode may not be used as a destination or for an effective address.
Either usage causes an illegal-operand exception.

Syntax: &imm16

mmmm: 5
rrrr: 15
Total bytes: 3

Example: MOVW &OxI234,%r2

84 Opcode
5F First Operand
34
12
42 Second Operand

Here, the halfword value Ox1234 replaces the contents of register 2. In the instruction
stream, the halfword that follows the descriptor byte contains a 16-bit immediate value
that ranges from _215 to (+2 15_1). This immediate value is stored in the byte order shown
on Figure 3-6 for halfword data.

Word Immediate

The operand is the signed 32-bit immediate value imm32 that ranges from _231 to
(+231_1).

Note: This address mode may not be used as a destination or for an effective address.
Either usage causes an illegal-operand exception.

Syntax: &imm32

mmmm: 4
rrrr: 15
Total bytes: 5

3-17

INSTRUCTION SET & ADDRESSING MODES
Positive Literal

Example: MOVW &OxI2345678,%r3

84 Opcode
4F First Operand
78
56
34
12

----:0- Second Operand
-

In this example, the word value Oxl2345678 replaces the contents of register 3. In the
instruction stream, the word that follows the descriptor byte contains a 32-bit immediate
value that ranges from _231 to +il_l. This immediate value is stored in the byte order
shown on Figure 3-6 for word data.

Positive Literal

The operand is the unsigned 6-bit literal value lit that ranges from 0 to 63.

Note: This address mode may not be used as a destination or for an effective address.
Either usage causes an illegal-operand exception.

Syntax: & lit

mmmm: 0 to 3
rrrr: 0 to 15
Total bytes: I

Example: MOVB &4,%r4

~7 Opcode
04 First Operand
44 Second Operand

Here, the positive literal 4 replaces the contents of register 4. Zeros fill the high-order bits
in the register. In the instruction stream, the descriptor byte provides an unsigned 6-bit
literal that ranges from 0 to 63. It is formed by concatenating the 4-bit register (rrrr) field
with the two low-order bits of the mode (mmmm) field; i.e., bits 0 through 5 of the
descriptor byte form the literal.

Negative Literal

The operand is the signed 8-bit literal value lit that ranges from -I to -16.

Note: This address mode may not be used as a destination or for an effective address.
Either usage causes an illegal-operand exception.

3-18

INSTRUCTION SET & ADDRESSING MODES
Register Mode Deferred

Syntax: &lit

mmmm: 15
rrrr: 0 to 15
Total bytes:

Example: MOVB &-I,%rO

§87 Opcode
FF First Operand

40 Second Operand

In the instruction stream, the descriptor byte provides a signed 8-bit literal that ranges
from -I to -16. It is formed by concatenating the 4-bit register (rrrr) field with the 4-bit
mode (mmmm) field; i.e., the 8-bit descriptor byte forms the literal.

3.4.4 Register Modes

These modes use the contents of a register as the operand or as a pointer to the operand.

Register Mode

In this mode, the register n, which ranges from 0 to 14, is the operand.

Note: This mode may not be used if the opcode takes the effective address of the operand.

Syntax: %rn

mmmm: 4
rrrr: 0 to 14
Total bytes:

Example: MOVB %rO,%ap

§§7 Opcode
40 First Operand
4A Second Operand

This example moves a byte from one register to another. It reads bits 0 through 7 of
register 0, extends a zero through 32 bits, and writes the result to register 10, the argument
pointer. In the instruction stream, the register specified in the register field is the operand.

Register Mode Deferred

The register n, which ranges from 0 to 10 and 12 to 14, contains a pointer to the operand.

3-19

INSTRUCTION SET & ADDRESSING MODES
Expanded-Operand Type Mode

Syntax: (%rn)

mmmm: 5
rrrr: ° to 10, 12 to 14
Total bytes: 1

Example: MOVH (%r2),%r1

§§6 Opcode
52 First Operand
41 Second Operand

Here, register 2 contains the address of a halfword that is read. The halfword is sign
extended through 32 bits, and the result is written to register 1. In the instruction stream,
the register specified in the register field contains a pointer to a word location in memory
that is the operand.

3.4.5 Expanded-Operand Type Mode

Normally, the opcode controls the type of all operands for the instruction. This mode
changes the type of an operand and those that follow it in an instruction.

Note: The expanded-operand type mode does not affect the length of immediate operands,
but does affect whether they are treated as signed or unsigned. The expanded-operand
mode does not affect the treatment of literals.

In assembly language, the syntax of this mode is

{type}opnd

where opnd is an operand descriptor that uses any address mode other than the expanded­
operand type mode.

When the expanded-operand type mode is used, type overrides the type for this operand,
except as noted above, and opnd becomes the real address mode for the operand. The new
type remains in effect for the operands that follow in the instruction unless another
expanded-operand mode overrides it. Table 3-3 lists the syntax for type.

This mode requires two descriptor bytes (see Figure 3-7). The first byte identifies the
expanded-operand mode and the new type, while the second is the descriptor byte for the
address mode.

The type field ttt! contains the value of the new type (see Table 3-3). The second byte
contains the mode field (mmmm) and the register field (rrrr) for the address mode. This
byte is the descriptor byte for the new address mode.

For example, the following instruction converts a signed byte into an unsigned halfword:

MOVB {sbyte}%rO,{uhalf}4(%r1)

3-20

INSTRUCTION SET & ADDRESSING MODES
Expanded-Operand Type Mode

The first operand's real mode is register, the second operand is byte displacement. The
instruction reads bits 0 through 7 from register 0, extends the sign through 32 bits, and
writes an unsigned halfword. In the instruction stream, the bytes contain the following:

87 Opcode

E7 First Operand

40
E2 Second Operand

Cl

04

Note: Expanded-operand type mode is illegal with coprocessor instructions with operands
CALL, SAVE, RESTORE, SWAP INTERLOCKED, PUSHW, PUSHAW, POPW, and
JSB instructions and will generate an illegal operand fault.

Table 3-3. Options for type in Expanded-Operand Mode

Type Syntax UU Field
(See Note)

Signed byte sbyte 7
Signed halfword half or shalf 6
Signed word word or sword 4
Unsigned byte byte or ubyte 3
Unsigned halfword uhalf 2
Unsigned word uword 0

Note: Types are not defined for the values 1, 5, and 8
through 14; using these generates a reserved-data-type
exception.

~ REAL ADDRESS MDDE -----e4
I I

7 3 D7 3 0 C: Immmm! rrrr 1 1110 ! tttt 1

:.s- 0-4 DATA BYTES-e>l
I I _ INCREASING ADDRESS

LEGEND
m m m m = ADDRESS MODE (0-13, 15)

rrrr = REGISTER (0-15)
tttt = NEW TYPE

Figure 3-7. Expanded-Operand Type Descriptor

3-21

INSTRUCTION SET & ADDRESSING MODES
Condition Flags

3.5 CONDITION FLAGS

Bits 21 to 18 of the processor status word (PSW) contain four condition flags (N, Z, V,
and C) that are set by most instructions. The order is shown on Figure 3-8. The
conditional program-control instructions check one or more of these flags before executing
the branch, jump, or return. In general, these flags reflect the result of the most recent
instruction that affects them. Most instructions set the flags according to standard criteria.
Before defining that criteria, the following terms are defined:

• Result refers to the internal result of the operation as if it were performed in an
infinite-precision machine. The microprocessor operates on 32-bit data internally and
uses a 33-bit space for the internal result. Bytes and halfwords read in are extended to
32 bits before the operation. The destination operand determines the type (i.e., signed or
unsigned, and size: byte, halfword, or word) of this result.

• Output value refers to the data written to the destination location. The size of this data,
8, 16, or 32 bits, corresponds to the data type of the destination operand: byte, halfword,
or word, respectively.

The following conditions cause the appropriate flag bit to be altered:

N Negative (PSW bit 21) - Logical instructions change N to the setting of the output
value of the MSB: bit 31 for words, bit 15 for halfwords, and bit 7 for bytes. For all
other instructions, N is set if the sign of the result is negative. If truncation occurs,
the N flag may be set even though the sign bit of the output value is zero. Zero is
considered positive.

Z Zero (PSW bit 20) - Logical instructions set Z if the output value is zero. For all
other instructions Z is set if the result is equal to zero. If truncation occurs, the Z flag
may not be set even though all bits of the output value are zero.

V Overflow (PSW bit 19) - For instructions with a signed destination, V is set if the sign
bit of the output value is different from any truncated bit of the result. For
instructions with an unsigned destination, V is set if any truncated bit is a 1. The
arithmetic left shift operation sets the V bit only if a truncation error occurs. Bit,
compare, and test instructions always reset V.

31 21 20 19 18 0

C 's-'-: 1 N -,---,I z I,----,-v ---,---,>C 1 ::J
/

PSW

Figure 3-8. Condition Flags

3-22

INSTRUCTION SET & ADDRESSING MODES
Data Transfer Instructions

C Carry/Borrow (PSW bit 18) - Logical instructions clear this bit. For all other
instructions, the type of the result determines the state of the C bit. C is set if a carry
occurs into the 33rd bit for word operations, into the 17th bit for halfword operations,
or into the 9th bit for byte operations. The C bit is set if a borrow occurs from these
bits for subtract, negate, and decrement. For example, consider A minus B where A
and B are unsigned. If A ~ B after both are extended to 32 bits, then C is cleared.
Otherwise, the C flag is set.

Note: If a memory-write fault occurs, the flags are set as if the instruction was completed
normally.

The instruction descriptions later in this chapter include the effect that each instruction has
on the condition flags.

3.6 FUNCTIONAL GROUPS

The WE 32100 Microprocessor instruction set may be separated into six functional groups:
data transfer instructions, arithmetic instructions, logical instructions, program control
instructions, coprocessor instructions, and stack and miscellaneous instructions. This
section contains a description of each group, along with an instruction listing of each group.
The conditions column in the instruction listing refers to the condition flag code assignment
cases listed in Table 3-10. (For more details of individual instructions see
3.7 INSTRUCTION SET LISTINGS.)

3.6.1 Data Transfer Instructions

These instructions transfer data to and from registers and memory. Most of them have
three types (indicated by the last character of the mnemonic): byte (B), halfword (H),
and word (W). A mnemonic's type determines the type of each operand in the instruction,
unless the expanded-operand type mode changes an operand's type. The type of the
destination operand (dst) determines how the condition flags are set (see 3.5 CONDITION
FLAGS). The instructions have a read-only source operand (src) and a read/write
destination operand.

3-23

INSTRUCTION SET & ADDRESSING MODES
Data Transfer Instructions

Table 3-4. Data Transfer Instruction Group

Instruction Mnemonic Opcode Conditions *
Move:
Move byte MOVB Ox87
Move halfword MOVH Ox86
Move word MOVW Ox84
Move address (word) MOVAW Ox04 Case I
Move complemented byte MCOMB Ox8B
Move complemented halfword MCOMH Ox8A
Move complemented word MCOMW Ox88
Move negated byte MNEGB Ox8F
Move negated halfword MNEGH Ox8E Case 2
Move negated word MNEGW Ox8C
Move version number MVERNO Ox3009 Unchanged
Swap (Interlocked):
Swap byte interlocked SWAPBI OxlF
Swap halfword interlocked SWAPHI OxlE Case I
Swap word interlocked SWAPWI OxiC
Block Operations:
Move block of words MOVBLW Ox30l9 Unchanged
Field Operations:
Extract field byte EXTFB OxCF
Extract field halfword EXTFH OxCE
Extract field word EXTFW OxCC Case I
Insert field byte INSFB OxCB
Insert field halfword INSFH OxCA
Insert field word INSFW OxC8
String Operations:
String copy STRCPY Ox3035 Unchanged
String end STREND Ox30lF

* Refer to Table 3-10 for condition flag code assignments.

3-24

INSTRUCTION SET & ADDRESSING MODES
Arithmetic Instructions

3.6.2 Arithmetic Instructions

Arithmetic instructions perform arithmetic operations on data in registers and memory.
Most of these instructions have three types (specified by the last character of the
mnemonic): byte (B), halfword (R), and word (W). This type specification applies to
each operand in the instruction, unless the expanded-operand type mode changes an
operand's type. The type of the destination operand (dst) determines how the condition
flags are set (see 3.5 CONDITION FLAGS).

Many arithmetic operations are available as two· or three-address instructions. A two­
address instruction has a read-only source operand (src) and a read/write destination
operand. Three-address instructions have two read-only source operands (src1. src2) and a
write-only destination operand. A few instructions also have a read-only count operand
(count).

If the result of an arithmetic operation is too large to be represented in 32 bits, the high­
order bits are truncated and the processor issues an integer-overflow exception.

Table 3-5. Arithmetic Instruction Group

Instruction Mnemonic Opcode Conditions*
Add:
Add byte ADDB2 Ox9F
Add halfword ADDH2 Ox9E
Add word ADDW2 Ox9C
Add byte, 3-address ADDB3 OxDF
Add halfword, 3-address ADDH3 OxDE
Add word, 3-address ADDW3 OxDC
Subtract:
Subtract byte SUBB2 OxBF
Subtract halfword SUBH2 OxBE Case 2
Subtract word SUBW2 OxBC
Subtract byte, 3-address SUBB3 OxFF
Subtract halfword, 3-address SUBH3 OxFE
Subtract word, 3-address SUBW3 OxFC
Increment:
Increment byte INCB Ox93
Increment halfword INCH Ox92
Increment word INCW Ox90
Decrement:
Decrement byte DECB Ox97
Decrement halfword DECH Ox96
Decrement word DECW Ox94

* Refer to Table 3-10 for condition flag code assignments.

3-25

INSTRUCTION SET & ADDRESSING MODES
Logical Instructions

Table 3-5. Arithmetic Instruction Group (Continued)

Instruction Mnemonic Opcode Conditions*
Multiply:
Multiply byte MULB2 OxAB
Multiply halfword MULH2 OxAA Case 3
Multiply word MULW2 OxA8
Multiply byte, 3-address MULB3 OxEB
Multiply halfword, 3-address MULH3 OxEA Case 4
Multiply word, 3-address MULW3 OxE8
Divide:
Divide byte DIVB2 OxAF
Divide halfword DIVH2 OxAE Case 3
Divide word DIVW2 OxAC
Divide byte, 3-address DIVB3 OxEF
Divide halfword, 3-address DIVH3 OxEE Case 4
Divide word, 3-address DIVW3 OxEC
Modulo:
Modulo byte MODB2 OxA7
Modulo halfword MODH2 OxA6 Case 3
Modulo word MODW2 OxA4
Modulo byte, 3-address MODB3 OxE7
Modulo halfword, 3-address MODH3 OxE6 Case 4
Modulo word, 3-address MODW3 OxE4
Arithmetic Shift:

Case 5 Arithmetic left shift word ALSW3 OxCO
Arithmetic right shift byte ARSB3 OxC7
Arithmetic right shift halfword ARSH3 OxC6 Case 3
Arithmetic right shift word ARSW3 OxC4

* Refer to Table 3-10 for condition flag code assignments.

3.6.3 Logical Instructions

Logical instructions perform logical operations on data in registers and memory. Most of
these instructions have three types (specified by the last character of the mnemonic):
byte (B), halfword (H), and word (W). A mnemonic's type determines the type of each
operand in the instruction, unless the expanded-operand type mode changes an operand's
type. The type of the destination operand (dst) determines how the condition flags are set
(see 3.5 CONDITION FLAGS).

Many logical operations are available as two- or three-address instructions. A two-address
instruction has a read-only source operand (src) and a read/write destination operand
(dst). Three-address instructions have two read-only source operands (srcJ. src2) and a
write-only destination operand. A few instructions have a read-only count operand (count).

3-26

INSTRUCTION SET & ADDRESSING MODES
Logical Instructions

Table 3-6. Logical Group

Instruction Mnemonic Opcode Conditions*

AND:
AND byte ANDB2 OxBB
AND halfword ANDH2 OxBA
AND word ANDW2 OxB8
AND byte, 3-address ANDB3 OxFB
AND halfword, 3-address ANDH3 OxFA
AND word, 3-address ANDW3 OxF8
Exclusive OR (XOR):
Exclusive OR byte XORB2 OxB7
Exclusive OR halfword XORH2 OxB6
Exclusive OR word XORW2 OxB4 Case I
Exclusive OR byte, 3-address XORB3 OxF7
Exclusive OR halfword, 3-address XORH3 OxF6
Exclusive OR word, 3-address XORW3 OxF4
OR:
OR byte ORB2 OxB3
OR halfword ORH2 OxB2
OR word ORW2 OxBO
OR byte, 3-address ORB3 OxF3
OR halfword, 3-address ORH2 OxF2
OR word, 3-address ORW3 OxFO
Compare or Test:
Compare byte CMPB Ox3F
Compare halfword CMPH Ox3E Case 2
Compare word CMPW Ox3C
Test byte TSTB Ox2B
Test halfword TSTH Ox2A Case 6
Test word TSTW Ox28
Bit test byte BITB Ox3B
Bit test halfword BITH Ox3A Case 1
Bit test word BITW Ox38
Clear:
Clear byte CLRB Ox83 Case 2
Clear halfword CLRH Ox82
Clear word CLRW Ox80
Rotate or Logical Shift:
Rotate word ROTW OxD8
Logical left shift byte LLSB3 OxD3 Case 1
Logical left shift halfword LLSH3 OxD2
Logical left shift word LLSW3 OxDO
Logical right shift word LRSW3 OxD4

* Refer to Table 3-10 for condition flag code assignments.

3-27

INSTRUCTION SET & ADDRESSING MODES
Program Control Instructions

3.6.4 Program Control Instructions

Program control instructions change the program sequence, but generally do not alter the
condition flags.

Branch instructions have two types specified by the last character of the mnemonic: byte
displacement (B) and halfword displacement (H). A mnemonic's type determines if an
8- or a l6-bit displacement is embedded in the instruction. This displacement (disp8.
disp 16) is read, its sign is extended through 32 bits, and the result is added to the program
counter (PC) to compute the target address. Jump instructions have a read-only, 32-bit
destination (dst) operand that replaces the contents of the PC.

Jump instructions are always unconditional, but both conditional and unconditional branch
and return instructions are provided. Unconditional transfers change the contents of the
PC to the value specified. Conditional transfers first examine the status of the processor's
condition flags to determine if the transfer should be executed.

Subroutine and procedure-call (function) transfer instructions save or restore registers so
execution can transfer to the subroutine or function and then return to the original
program sequence.

Subroutine Transfer. A subroutine transfer is different from a normal transfer. Before
transferring to a subroutine, it is necessary to save the address of the next instruction.

Branch, jump, and return instructions for subroutines always implicitly affect the stack
pointer (SP). For subroutines, branch and jump save the address of the next instruction on
the stack at the location identified by the SP, increment the SP by 4, and then alter the
PC. Return from subroutine decrements the SP by 4, retrieves the saved address from the
stack, and writes it to the PC.

Procedure Transfer. For procedure transfers it is necessary to save other registers. These
instructions establish the environment for a function in a high-level language. Call and
save instructions automatically save the calling function's pointers, set up pointers to the
new function's environment, call the function, and save registers for local variables.
Restore and return instructions remove that environment and return to the calling function.

A stack frame provides reserved space, including a register-save area, for each function.
The register-save area stores the calling function's FP, AP, PC, and registers 3 through 8
(r3 through r8), if requested. Saving r3 through r8 gives the new function space for up to
six register variables. The SP is not saved because its value is always implicit.

All function calls have a fixed-size register-save area, even though some of it may not be
used. Save and restore control how many of the six user registers r3 through r8 will be
saved and restored. A return from a function retrieves the saved pointers and registers to
restore the original function's environment.

3-28

INSTRUCTION SET & ADDRESSING MODES
Program Control Instructions

Table 3-7. Program Control Instructions

Instruction Mnemonic Opcode Conditions
Unconditional Transfer:
Branch with byte (8-bit) displacement BRB Ox7B
Branch with halfword (16-bit) displacement BRH Ox7A
Jump JMP Ox24
Conditional Transfers:
Branch on carry clear byte BCCB Ox53*
Branch on carry clear halfword BCCH Ox52*
Branch on carry set byte BCSB Ox5B*
Branch on carry set halfword BCSH Ox5A*
Branch on overflow clear, byte displacement BVCB Ox63
Branch on overflow clear, halfword displacement BVCH Ox62
Branch on overflow set, byte displacement BVSB Ox6B
Branch on overflow set, halfword displacement BVSH Ox6A
Branch on equal byte (duplicate) BEB Ox6F
Branch on equal byte BEB Ox7F
Branch on equal halfword (duplicate) BEH Ox6E
Branch on equal halfword BEH Ox7E
Branch on not equal byte (duplicate) BNEB Ox67
Branch on not equal byte BNEB Ox77
Branch on not equal halfword (duplicate) BNEH Ox66 Unchanged
Branch on not equal halfword BNEH Ox76
Branch on less than byte (signed) BLB Ox4B
Branch on less than halfword (signed) BLH Ox4A
Branch on less than byte (unsigned) BLUB Ox5B*
Branch on less than halfword (unsigned) BLUH Ox5A*
Branch on less than or equal byte (signed) BLEB Ox4F
Branch on less than or equal halfword (signed) BLEH Ox4E
Branch on less than or equal byte (unsigned) BLEUB Ox5F
Branch on less than or equal halfword (unsigned) BLEUH Ox5E
Branch on greater than byte (signed) BGB Ox47
Branch on greater than halfword (signed) BGH Ox46
Branch on greater than byte (unsigned) BGUB Ox57
Branch on greater than halfword (unsigned) BGUH Ox56
Branch on greater than or equal byte (signed) BGEB Ox43
Branch on greater than or equal halfword (signed) BGEH Ox42
Branch on greater than or equal byte (unsigned) BGEUB Ox53*
Branch on greater than or equal halfword (unsigned) BGEUH Ox52*

Return on carry clear RCC Ox50*
Return on carry set RCS Ox58*

* Indicates that opcode matches another instruction but operation is the same.

3-29

INSTRUCTION SET & ADDRESSING MODES
Program Control Instructions

3-30

Table 3-7. Program Control Instructions (Continued)

Instruction Mnemonic Opcode Conditions
Conditional Transfers (Continued):
Return on overflow clear RVC Ox60
Return on overflow set RVS Ox68
Return on equal (unsigned) REQLU Ox6C
Return on equal (signed) REQL Ox7C
Return on not equal (unsigned) RNEQU Ox64
Return on not equal (signed) RNEQ Ox74
Return on less than (signed) RLSS Ox48
Return on less than (unsigned) RLSSU Ox58*
Return on less than or equal (signed) RLEQ Ox4C
Return on less than or equal (unsigned) RLEQU Ox5C Unchanged
Return on greater than (signed) RGTR Ox44
Return on greater than (unsigned) RGTRU Ox54
Return on greater than or equal (signed) RGEQ Ox40
Return on greater than or equal (unsigned) RGEQU Ox50*
Subroutine Transfer:
Branch to subroutine, byte displacement BSBB Ox37
Branch to subroutine, halfword displacement BSBH Ox36
Jump to subroutine JSB Ox34
Return from subroutine RSB Ox78
Procedure Transfer:
Save registers SAVE OxiO
Restore registers RESTORE OxI8
Call procedure CALL Ox2C

I Return from procedure RET Ox08

* Indicates that opcode matches another instruction but operation is the same.

Program control instructions explicitly manipulate four registers:

1. PC - The call instruction saves the old PC as the return address (RA) and sets PC to
the first executable instruction of the function being called. The return instruction
restores PC to the RA (the next executable instruction of the calling function).

2. SP - These instructions adjust SP automatically to point to the top of the stack
whenever they store or retrieve items.

3. FP - The save instruction sets FP to the address just above the saved registers. The
FP accesses a region on the stack that stores temporary (or automatic) variables for
the function.

4. AP - The call instruction adjusts AP to the beginning of a list of arguments for the
function.

INSTRUCTION SET & ADDRESSING MODES
Program Control Instructions

On a function call, the calling function contains a call instruction; the save instruction
should be the first statement of the called function. For a return, a restore and a return
appear in the function being exited.

Figure 3-9 shows the stack after the CALL-SAVE sequence:

PUSHWargl
PUSHWarg2
PUSHWarg3
CALL -(3*4) (%sp),funcl

funcl: SAVE %r3

/*push three arguments* /

/*call function*/

/*other instructions * /

/*save r3 through r8 * /

First, three arguments are pushed onto the stack; each push increments SP. Then CALL
automatically saves the old pointers. It uses its first operand to set AP to the beginning of
the three arguments and its second operand to call the function. Next, SAVE, the first
statement in the function, is executed, automatically saving registers r3 through r8. It also
adjusts SP and FP for each push.

SP, FP_

(FP-4)

(FP-8)

(FP-12)

(FP-16)

(FP-20)

(FP-24)

(FP-28)

(FP-32)

(FP-36) RA

AP_

r8

r7

r6

r5

r4

r3

OLD FP

OLD AP

(OLD PC)

arg3

arg2

arg1

T
REGISTER
SAVE AREA

1
t

INCREASING
ADDRESS

Figure 3-9. Stack After CALL-SAVE Sequence

3-31

INSTRUCTION SET & ADDRESSING MODES
Coprocessor Instructions

To return to the original sequence, the function funel contains the following instructions:

funcI: SAVE %r3

RESTORE %r3
RET

I*save r3 through r8*1

I*other instructions* 1

I*restore r3 through r8 * 1
I*return to main function*1

The restore instruction retrieves registers r8 through r3 from the stack. It must have the
same operand as the original SA VE; otherwise, the return (RET) cannot restore the
correct AP and PC. Both instructions decrement SP as they pop the register contents from
the stack.

3.6.5 Coprocessor Instructions

These instructions implement the interface with coprocessors. All coprocessor instructions
have an 8-bit opcode followed by one word. This word is transmitted on the data bus and
interpreted by the coprocessor. The word is not used by the CPU. If no coprocessor
responds to the transmitted word, an external memory fault occurs.

After the word following the opcode is transmitted, the source operands, if any, are fetched
from memory. The CPU then waits until the "coprocessor done" signal is asserted, after
which the CPU attempts to read a word. If this access is faulted, an external memory
fault occurs. If this access is not faulted, bits 18 through 21 of the word are copied into
bits 18 through 21 (condition flags) of the PSW. The resulting operand, if any, is then
written to memory.

Coprocessor instructions can have from zero to two operands. The operands may be of
three data types (specified by the last character of the mnemonic): single-word (S),
double-word (D), and triple-word (T). All operands must start on an address evenly
divisible by four (a word boundary)'

3.6.6 Stack and Miscellaneous Instructions

The stack instructions are used to manipulate the stack. The push and pop instructions
always process a word and alter the SP. They have a read-only source operand src or a
write-only destination operand dst.

Miscellaneous instructions include those that alter the machine state or have an effect on
the cache memory. The breakpoint instruction causes a breakpoint-trap exception.
Control transfers to the operating system for the appropriate exception handler. The NOP
instructions come in three lengths: 1, 2, or 3 bytes. If an instruction, other than a
conditional transfer, reads the PSW, the 'assembler m32as inserts a NOP before that
instruction. This allows time for the PSW codes to settle before the new instruction tries
to access them. Cache flush makes the instruction cache invalid.

3-32

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Listings

Table 3-8. Coprocessor Instructions

Instruction Mnemonic Opcode Conditions*
Coprocessor operation SPOP Ox32
Coprocessor operation read single SPOPRS Ox22
Coprocessor operation double SPOPRD Ox02
Coprocessor operation triple SPOPRT Ox06
Coprocessor operation single 2-address SPOPS2 Ox23 Case 10
Coprocessor operation double 2-address SPOPD2 Ox03
Coprocessor operation triple 2-address SPOPT2 Ox07
Coprocessor operation write single SPOPWS Ox33
Coprocessor operation write double SPOPWD Ox13
Coprocessor operation write triple SPOPWT Ox17

* Refer to Table 3-10 for condition flag code assignments.

Table 3-9. Stack and Miscellaneous Instructions

Instruction Mnemonic Opcode Conditions*
Stack Operations:
Push address word PUS HAW OxEO
Push word PUSHW OxAO Case 1
Pop word POPW Ox20
Miscellaneous:
No operation, 1 byte NOP Ox70
No operation, 2 byte NOP2 Ox73
No operation, 3 byte NOP3 Ox72
Breakpoint trap BPT Ox2E Unchanged

Cache flush CFLUSH Ox27
Extended opcode EXTOP Ox14

* Refer to Table 3-10 for condition flag code assignments.

3.7 INSTRUCTION SET LISTINGS

Section 3.7.2 Instruction Set Descriptions presents descriptions of each member of the
instruction set for the WE 32100 Microprocessor. The descriptions are in alphabetical
order, and any instructions that operate on more than one type of operand, byte, halfword,
or word are listed on the same page. (For quick reference to the instructions by function,
mnemonic, or opcode see Sections 3.7.3 Instruction Set Sumary by Fuction,
3.7.4 Instruction Set Summary by Mnemoic, and 3.7.5 Instruction Set Summary by
Opcode.)

3-33

INSTRUCTION SET & ADDRESSING MODES
Notation

3.7.1 Notation

Each instruction description contains several parts: assembler syntax, opcode operation,
address modes, condition flags, exceptions, examples, and notes (optionaL).

Assembler Syntax. Presents the assembly language syntax for the instruction, including
any required spacing and punctuation. The user-specified elements appear in italics. All
operands must appear in the order shown. If an instruction has byte, halfword, and word
forms, all three forms are presented.

The syntax uses the following symbols to denote operands that may be written in the
address modes shown in Table 3-2: count, dst, offset, src, width. Program control
instructions use disp8 or disp16 as a displacement operand. The operand does not use an
address mode, but is written as an 8- or 16-bit literal.

Opcodes. Lists each opcode with the appropriate mnemonic and function.

Operation. Describes the operation performed. The description generally uses C language
syntax and the operators and symbols shown in Table 3-11.

Address Modes. Identifies the valid address modes for each operand. Refer to Table 3-2
for address mode syntax and to Table 3-1 for the syntax for referencing registers.

Condition Flags. Identifies the effect of the instruction on each of the condition flags.

Exceptions. Identifies any error conditions that may result in illegal operands, opcodes, or
operations.

Examples. Presents examples of the instruction written in assembly language. In some
cases, it will give the contents of registers before and after execution. Register bytes are
read from right to left and their contents are given as hexadecimal values.

Notes (Optional). Explains other parts of the description when necessary.

Table 3-10. Condition Flag Code Assignments

Condition Flags
Case Special Conditions·

N(Negative) Z(Zero) C<Carry) V <Overfiow)

1 MSB of dst 1 if dst = 0 0 0 V flag is set when
expanded operand
type mode is used,
and the result is
truncated when
represented in
destination.

2 1 if result < 0 1 if result = 0 1 on carry 1 on integer -
or borrow overflow

3-34

INSTRUCTION SET & ADDRESSING MODES
Notation

Table 3-10. Condition Flag Code Assignments (Continued)

Condition Flags
Case

N(Negative) Z(Zero)

3 1 if dst < 0 1 if dst = 0

4 1 if dst < 0 1 if dst = 0

S 1 if dst < 0 1 if dst = 0

6 1 if src < 0 1 if src = 0

7 MSB of word 1 if word
returned returned = 0

8 - -

9 - -

10 - -

Notes:

MSB - Most Significant Bit
dst - destination
src - source

C(Carry)

0

0

0

0

0

-

-

-

Special Conditions*
v (Overfiow)

1 on integer -
overflow
1 on integer V flag may not set
overflow when dst is signed

word type, bit 31 of
absolute value of the
res~lt is 1, and while
bits 32-63 of the
absolute value of the
result are Os.

0 V flag is set if
expanded-operand type
mode changes the type
of dst and integer
overflow occurs.

0 N flag is affected if src
is signed integer.

0 -

- All flags determined by
new PSW.

- All flags determined by
restored PSW.

- When coprocessor
status word is accepted,
bits 18-21 of the word
read are put in to bits
18-21 of the PSW,
respectively.

* For cases 1 through 6, when the PSW is used as a source the condition flags are
unaffected; when the PSW is used as a destination, the condition flags assume the value
of bits 18-21 of the result of the operation performed.

3-35

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Descriptions

Table 3-11. Assembly Language Operators and Symbols

Symbol Description
*x Indirection; value pointed to by x
&x Address of x
!x Not x
++x Increment x
--x Decrement x
'Ox Complement x
-x Negate x; form two's complement of x
x+y Add y to x
x-y Subtract y from x
x*y Multiply x by y
x/y Divide y into x
x%y Modulo x and y (remainder of x/y)
x&y Bitwise AND x and y
xly Bitwise inclusive OR x and y
x/\y Bitwise exclusive OR (XOR) x and y
x«y Shift x to the left y bits
x»y Shift x to the right y bits
x<y x less than y
x>y x greater than y
x==y Equality; x equal to y
x!=y x not equal to y
+- Assigns the value on the right to the location identified on the left

(same as the C language assignment operator '=')
AP Argument pointer; register 10 (riO)
count Count operand
dst Destination operand
FP Frame pointer; register 9 (r9)
PC Program counter; register 15 (r15)
PSW Processor status word; register 11 (rIl)
SEXT(x) Function that returns x, sign extended through 32 bits.
SP Stack pointer; register 12 (rI2)
*(--Sp) A pop from the stack; decrement SP by 4 before removing data ()

from the stack
* (SP++) A push onto the stack; store data and increment SP by 4
src Source operand
Oxn Hexadecimal value where n is the digits a through 9 and a through

f (or A through F); may also be written OXn
/*comment*/ A comment, not an operation
{opera tion} An operation other than an instruction

3.7.2 Instruction Set Descriptions

The instruction set is described in detail on the following pages.

3-36

ADDB2
ADDH2
ADDW2

ADD

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

ADDB2 src,dst
ADDH2 src,dst
ADDW2 src,dst

Ox9F ADDB2
Ox9E ADDH2
Ox9C ADDW2

dst +- dst + src

src all modes

Add byte
Add halfword
Add word

dst all modes except literal or immediate

N +- 1, if (dst + src) < 0

Z +- I, if (dst + src) == 0

C I, if carry out of sign bit of dst

VI, if overflow

ADDB2
ADDH2
ADDW2

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.

ADDB2 $OxIOO,%rO
ADDH2 %rO,%r3
ADDW2 4(%r3),*$OxII0

3-37

ADDB3
ADDH3
ADDW3

ADDB3
ADDH3
ADDW3

ADD, 3 Address

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-38

ADDB3 srcJ,src2,dst
ADDH3 srcJ ,src2,dst
ADDW3 srcJ,src2,dst

OxDF ADDB3
OxDE ADDH3
OxDC ADDW3

dst +- srcJ + src2

srcJ all modes

src2 all modes

Add byte, 3 address
Add halfword, 3 address
Add word, 3 address

dst all modes except literal or immediate

N +- 1, if (srcJ + src2) < 0

Z +- 1, if (srcJ + src2) == 0

C +- 1, if carry out of sign bit of dst

V+-l, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.

ADDB3 %rO,%r3,%r5
ADDH3 4(%r2),*$OxllO,%r3
ADDW3 *$OxlFO,4(%rl),%rO

ALSW3 ALSW3

ARITHMETIC LEFT SHIFT

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

ALSW3 count,src,dst Arithmetic left shift word

OxCO ALSW3

dst - src < < (count & Oxl F) bits

count all modes

src all modes

dst all modes except literal or immediate

N - I, if dst < 0

Z - 1, if dst == 0

C - 0

V - 0 (see Note)

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: rO I 8F I OF I DF I FD I
-increasing bits

ALSW3 &2,%rO,%rO

After: rO I 3C I 3F I 7F F4

All operands are of type word. However, only the five low-order bits of
count are used; the upper bits are ignored. No bits are shifted past the
sign bit, so integer overflow cannot occur. However, the V bit can be
set if an expanded-operand type mode changes the type of dst. Zeros
replace bits that are shifted out. The sign bit is not changed.

3-39

ANDB2
ANDH2
ANDW2

AND

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-40

ANDB2 src,dst
ANDH2 src,dst
ANDW2 src,dst

OxBB ANDB2
OxBA ANDH2
OxB8 ANDW2

dst +- dst & src

src all modes

AND byte
AND halfword
AND word

dst all modes except literal or immediate

N +- MSB of dst

Z +- I, if dst == 0

C+-O

v ;- 1, if result must be truncated to fit dst size

ANDB2
ANDH2
ANDW2

Illegal operand exception occurs if literal or immediate mode is used for
dst.

ANDB2 &7,6(%rl)
ANDH2 %rO, *$result
ANDW2 (%rl),%r4

ANDB3
ANDH3
ANDW3

ANDB3
ANDH3
ANDW3

AND, 3 ADDRESS

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

ANDB3 srcJ ,src2,dst
AND H3 src 1 ,src2,dst
ANDW3 srcJ ,src2,dst

OxFB ANDB3
OxFA ANDH3
OxF8 ANDW3

dst -- src2 + srcJ

srcJ all modes

src2 all modes

AND byte, 3 address
AND halfword, 3 address
AND word, 3 address

dst all modes except literal or immediate

N -- MSB of dst

Z - I, if dst == 0

C-O

v - I, if result must be truncated to fit dst size

Illegal operand exception occurs if literal or immediate mode is used for
dst.

ANDB3 &Ox27,*$Ox300,%r6
ANDH3 Ox31(%rS),%rO,%r1
ANDW3 %r2,%r1,%rO

3-41

ARSB3
ARSH3
ARSW3

ARSB3
ARSH3
ARSW3

ARITHMETIC RIGHT SHIFT

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-42

ARSB3 count,src,dst
ARSH3 count,src,dst
ARSW3 count,src,dst

OxC7 ARSB3
OxC6 ARSH3
OxC4 ARSW3

Arithmetic right shift byte
Arithmetic right shift halfword
Arithmetic right shift word

dst - srcI > > (count & Oxlf) bits

count all modes

src all modes

dst all modes except literal or immediate

N - 1, if dst < 0

Z - 1, if dst == 0

C-O

V - 0

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: rO I OF I OF I 77 I AF I
-increasing bits

ARSH3 &2,%rO,%rO

After: rO I 00 I 00 I lD I EB I

All operands are of type word. However, only the five low-order bits of
count are used; the upper bits are ignored. The sign bit (MSB) of src is
copied as bits are shifted out. The type of src does not affect sign
extension.

BCCB
BCCH

BCCB
BCCH

BRANCH ON CARRY CLEAR

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BCCB disp8
BCCH dispJ6

Ox53 BCCB
Ox52 BCCH

if (C == 0)

Branch on carry clear, byte displacement
Branch on carry clear, halfword displacement

PC +- PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed l6-bit value

Unchanged

None

BCCB Ox9
BCCH OxFF23

3-43

BCSB
BCSH

BRANCH ON CARRY SET

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-44

BCSB disp8
BCSH dispJ6

Ox5B BCSB
Ox5A BCSH

if (C ==1)

Branch on carry set, byte displacement
Branch on carry set, halfword displacement

PC +- PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed 16-bit value

Unchanged

None

BCSB OxFF
BCSH Ox1234

BCSB
BCSH

BEB
BEH

BRANCH ON EQUAL

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BEB disp8
BEH dispJ6

Ox7F BEB
Ox6F BEB
Ox7E BEH
Ox6E BEH

if (Z == 1)

Branch on equal, byte displacement
Branch on equal, byte displacement

PC - PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed 16-bit value

Unchanged

None

BEB OxFl
BEH Ox4221

BEB
BEH

3-45

BGB
BGH

BGB
BGH

BRANCH ON GREATER THAN (SIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-46

BGB disp8 Branch on greater than, byte displacement
(signed)

BGH dispJ6 Branch on greater than, halfword displacement
(signed)

Ox47 BGB
Ox46 BGH

if «NIZ) == 0)
PC - PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

disp16 = signed 16-bit value

Unchanged

None

BGB more
BGH less

BGEB
BGEH

BRANCH ON GREATER THAN OR EQUAL (SIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BGEB disp8 Branch on greater than or equal, byte
displacement (signed)

BGEH dispJ6 Branch on greater than or equal, halfword
displacement (signed)

Ox43 BGEB
Ox42 BGEH

if «N == 0) I (Z == 1))
PC <- PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed 16-bit value

Unchanged

None

BGEB again
BGEH OxF102

BGEB
BGEH

3-47

BGEUB
BGEUH

BGEUB
BGEUH

BRANCH ON GREATER THAN OR EQUAL (UNSIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-48

BGEUB disp8 Branch on greater than or equal, byte
displacement (unsigned)

BGEUH disp16 Branch on greater than or equal, halfword
displacement (unsigned)

Ox53 BGEUB
Ox52 BGEUH

if (C == 0)
PC .- PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

disp16 = signed l6-bit value

Unchanged

None

BGEUB OxAl
BGEUH ahead

BGUB
BGUH

BGUB
BGUH

BRANCH ON GREATER THAN (UNSIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BGUB disp8 Branch on greater than, byte displacement
(unsigned)

BGUH dispJ6 Branch on greater than, halfword displacement
(unsigned)

Ox57 BGUB
Ox56 BGUH

if «CIZ) == 0)
PC - PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed l6-bit value

Unchanged

None

BGUB OxDE
BGUH OxF123

3-49

BITB
BITH
BITW

BIT TEST

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-50

BITB src1,src2
BITH src1,src2
BITW src1,src2

Ox3B BITB
Ox3A BITH
Ox38 BITW

Bit test byte
Bit test halfword
Bit test word

temp +- src2 & src1

src1 all modes

src2 all modes

N +- MSB of temp

Z +- 1, if temp == 0

C+-O

V+-O

None

BITB %rO, {uhalf}%rl
BITH *$OxFF,%r3
BITW bit (%r3),(%rO)

BITB
BITH
BITW

The final value of temp, a temporary register, determines the setting of
the condition codes. Temp is discarded upon completion of the
instruction.

BLB
BLH

BRANCH ON LESS THAN (SIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BLB disp8 Branch on less than, byte displacement
(signed)

BLH dispJ6 Branch on less than, halfword displacement
(signed)

Ox4B BLB
Ox4A BLH

if «N == I) & (Z == 0))
PC PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed l6-bit value

Unchanged

None

BLB OxlF
BLH back

BLB
BLH

3-51

BLEB
BLEH

BLEB
BLEH

BRANCH ON LESS THAN OR EQUAL (SIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-52

BLEB disp8 Branch on less than or equal, byte displacement
(signed)

BLEH dispJ6 Branch on less than or equal, halfword
displacement (signed)

Ox4F BLEB
Ox4E BLEH

if ((NIZ) == I)
PC +- PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed 16-bit value

Unchanged

None

BLEB Ox6
BLEH OxFFF

BLEUB
BLEUH

BRANCH ON LESS THAN OR EQUAL (UNSIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BLEUB disp8 Branch on less than or equal, byte
displacement (unsigned)

BLEUH dispJ6 Branch on less than or equal, halfword
displacement (unsigned)

Ox5F BLEUB
Ox5E BLEUH

if «Clz) == 1)
PC - PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed 16-bit value

Unchanged

None

BLEUB Ox14
BLEUH back

BLEUB
BLEUH

3-53

BLUB
BLUH

BLUB
BLUH

BRANCH ON LESS THAN (UNSIGNED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-54

BLUB disp8 Branch on less than byte displacement
(unsigned)

BLUH dispJ6 Branch on less than halfword displacement
(unsigned)

Ox5B BLUB
Ox5A BLUH

if (C == 1)
PC +- PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed I6-bit value

Unchanged

None

BLUB OxI2
BLUH OxFF12

BNEB
BNEH

BNEB
BNEH

BRANCH ON NOT EQUAL

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BNEB disp8
BNEH dispJ6

Ox77 BNEB
Ox67 BNEB
Ox76 BNEH
Ox66 BNEH

if (Z == 0)

Branch on less than, byte displacement
Branch on less than, halfword displacement

PC +- PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed 16-bit value

Unchanged

None

BNEB Ox FE
BNEH OxFF13

3-55

BPT

BREAKPOINT TRAP

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-56

BPT Breakpoint trap

Ox2E BPT

I*BPT executes the following processor operation*1
{breakpoint trap}

None

Unchanged

Generates breakpoint trap exception.

BPT

BPT

BRB
BRH

BRANCH

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BRB disp8
BRH dispJ6

Ox7B BRB
Ox7A BRH

Branch with byte displacement
Branch with halfword displacement

PC +- PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed 16-bit value

Unchanged

None

BRB OxA
BRH OxFAA

BRB
BRH

3-57

BSBB
BSBH

BRANCH TO SUBROUTINE

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-58

BSBB disp8
BSBH dispJ6

Ox37 BSBB
Ox36 BSBH

Branch to subroutine, byte displacement
Branch to subroutine, halfword displacement

* (SP++) +- address of next instruction
PC +- PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed l6-bit value

Unchanged

None

BSBB sub2
BSBH subl

BSBB
BSBH

BVCB
BVCH

BVCB
BVCH

BRANCH ON OVERFLOW CLEAR

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

BVCB disp8
BVCH dispJ6

Ox63 BVCB
Ox62 BVCH

if (V == 0)

Branch to subroutine, byte displacement
Branch to subroutine, halfword displacement

PC +- PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

dispJ6 = signed 16-bit value

Unchanged

None

BVCB Ox7E
BVCH Ox8F21

3-59

BVSB
BVSH

BVSB
BVSH

BRANCH ON OVERFLOW SET

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-60

BVSB disp8
BVSH disp16

Ox6B BVSB
Ox6A BVSH

if (V == 1)

Branch on overflow set, byte displacement
Branch on overflow set, halfword displacement

PC +- PC + SEXT(disp)

None valid
disp8 = signed 8-bit value

disp16 = signed l6-bit value

Unchanged

None

BVS OxFl
BVSB OxFF77

CALL CALL

CALL PROCEDURE

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

CALL src,dst Call procedure

Ox2C CALL

tempa +- &src
tempb +- &dst
* (SP+4) +- AP
*SP +- address of next instruction
SP +- SP+8
PC +- tempb
AP +- tempa

src all modes except literal, register, or immediate

dst all modes except literal, register, or immediate

Unchanged

Illegal operand exception occurs if literal, register, expanded-operand
type, or immediate mode is used for src or dst.

CALL -(3*4)(%sp),funcl (see Figure 3-9)

Both operands are effective addresses. Temp is a temporary register.
CALL sets up the protocol for a C language function call. (Also see
Return from procedure.) CALL sets AP to first of the word arguments
that the calling function pushed on the stack before executing the call.

3-61

CFLUSH CFLUSH

CACHE FLUSH

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Notes

3-62

CFLUSH Cache flush

Ox27 CFLUSH

/*CFLUSH executes the following processor operation*/
{all entries in instruction cache are marked invalid}

None

Unchanged

None

CFLUSH

CFLUSH is a nonprivileged instruction.

This instruction operates identically whether the instruction cache is
enabled (PSW<CD>==O) or disabled (PWS<CD>==I).

CLRB
CLRH
CLRW

CLEAR

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

CLRB dst
CLRH dst
CLRW dst

Ox83 CLRB
Ox82 CLRH
Ox80 CLRW

dst +- 0

Clear byte
Clear halfword
Clear word

dst all modes except literal or immediate

Z+-l

C+-O

V+-O

CLRB
CLRH
CLRW

Illegal operand exception occurs if literal or immediate mode is used for
dst.

CLRB * &Ox300
CLRH %r1
CLRW (%rO)

3-63

CMPB
CMPH
CMPW

COMPARE

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-64

CMPB srcl,src2
CMPH srcl,src2
CMPW srcl,src2

Ox3F CMPB
Ox3E CMPH
Ox3C CMPW

src2 +- srcl

srcl all modes

src2 all modes

Compare byte
Compare halfword
Compare word

N +- 1, if src2 < srcl (signed)

Z 1, if src2 == srcl

C 1, if src2 < srcl (unsigned)

Y+-O

None

CMPB &lO,%rO
CMPH (%rO),(%rI)
CMPW *$OxI2F7,%r2

CMPB
CMPH
CMPW

This instruction sets the condition flags N, Z, and C as if a subtract had
been executed. Neither operand is altered. (Also see Test,)

DECB
DECH
DECW

DECREMENT

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

DECB ';st
DECH dst

Decrement byte
Decrement halfword

DECW dst Decrement word

Ox97 DECB
Ox96 DECH
Ox94 DECW

dst +- dst - I

dst all modes except literal or immediate

N +- 1, if Cdst - 1) < 0

Z 1, if Cdst - 1) == 0

C 1, if borrow into sign bit of dst

VI, if overflow

DECB
DECH
DECW

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.

DECB 4C%fp)
DECH $resuIt
DECW *$last

3-65

DIVB2
DIVH2
DIVW2

DIVIDE

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-66

DIVB2 src,dst
DIVH2 src,dst
DIVW2 src,dst

OxAF DIVB2
OxAE DIVH2
OxAC DIVW2

dst - dst I src

src all modes

Divide byte
Divide halfword
Divide word

dst all modes except literal or immediate

N - 1, if (dst I src) < 0

Z - 1, if (dst I src) == 0

C - 0

V-I, if overflow

DIVB2
DIVH2
DIVW2

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer zero-divide exception occurs if src is equal to o.

Integer overflow exception occurs if there is truncation.

DIVB2 &40,%r6
DIVH2 4(%r3),(%r4)
DIVW2 $first,$last

DIVB3
DIVH3
DIVW3

DIVB3
DIVH3
DIVW3

DIVIDE, 3 ADDRESS

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

DIVB3 srcJ ,src2,dst
D IVH3 src 1 ,src2,dst
DIVW3 srcJ ,src2,dst

OxEF DIVB3
OxEE DIVH3
OxEC DIVW3

dst +- src2 / srci

srcJ all modes

src2 all modes

Divide byte, 3 address
Divide halfword, 3 address
Divide word, 3 address

dst all modes except literal or immediate

N - 1, if (src2 / srcJ) < 0

Z - 1, if (src2 / srcJ) == 0

C-O

v +- 1, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer zero-divide exception occurs if src 1 is equal to O.

Integer overflow exception occurs if there is truncation.

DIVB3 &Ox30,%r3,12(%ap)
DIVH3 &Ox3030, (%r2) ,5 (%r2)
DIVW3 &Ox304050, (%r 1),4 (%r1)

3-67

EXTFB
EXTFH
EXTFW

EXTFB
EXTFH
EXTFW

EXTRACT FIELD

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-68

EXTFB width,offset,src,dst
EXTFH width,offset,src,dst
EXTFW width,offset,src,dst

OxCF EXTFB
OxCE EXTFH
OxCC EXTFW

dst +- FIELD(offset,width,src)

width all modes

offset all modes

src all modes

Extract field from byte
Extract field from halfword
Extract field from word

dst all modes except literal or immediate

N +- high-order bit of dst

Z +- 1, if dst == 0

C+-O

V+-O (see Note)

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: Location Ll = Ox01234567

EXTFW &1O,&4,Ll,%rO

After: rO I 00 I 00 I 04 56

+- increasing bits

The field extracted starts at bit 4 of location Ll, skipping bits 0 through
3, and extends through bit 14 of Ll. These eleven bits are written to
bits 0 through 10 of rO; zeros fill the remaining bits of rOo

Only the low-order five bits of width and offset are examined. If the
sum width plus offset is greater than 32 (bits), then the field wraps
around through bit 0 of the base word. The field specified by width,
offset, and src is stored, right adjusted, in dst. The remaining bits of
dst are set to O. If the field is too large for the size of dst. the excess
high-order bits are discarded and the V flag is set.

EXTOP EXTOP

EXTENDED OPCODE

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

EXTOP byte Extended opcode

Ox14 EXTOP

I*EXTOP executes the following processor operation*1
{reserved-opcode exception}

None valid
byte = 8-bit value

Unchanged

Generates reserved opcode exception. See Note.

EXTOP Ox2F

The EXTOP opcode is an escape to form additional instructions. The
processor does not access byte when executing this instruction. Instead,
it generates a reserved-opcode exception after decoding the opcode. The
operating system's exception handler should access byte.

3-69

INCB
INCH
INCW

INCREMENT

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-70

INCB dst
INCH dst
INCW dst

Ox93 INCB
Ox92 INCH
Ox90 INCW

Increment byte
Increment halfword
Increment word

dst - dst + I

dst all modes except literal or immediate

N - 1, if (dst + I) < 0

Z - 1, if (dst + I) == 0

C - I, if carry into sign bit of dst

v - I, if overflow

INCB
INCH
INCW

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if truncation takes place.

INCB 4(%r2)
INCH %rO
INCW (%rl)

INSFB
INSFH
INSFW

INSFB
INSFH
INSFW

INSERT FIELD

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

INSFB width,offset,src,dst
INSFH width,offset,src,dst
INSFW width,offset,src,dst

OxCB
OxCA
OxC8

INSFB
INSFH
INSFW

Insert field from byte
Insert field from halfword
Insert field from word

FIELD (offset, width,dst) -- src

width all modes

offset all modes

src all modes

dst all modes except literal or immediate

N -- bit 31 of dst

Z -- 1, if dst == 0

C--O

V -- 0 (see Note)

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: rO AB I CD I EF I 01 I

-- increasing bits

INSFW & 11,&8,%r1,%rO

After: rO I AB I C5 I 67 I 01 I
The field insertion starts at bit 8 of rO, skipping bits 0 through 7, and
extends through bit 19. Therefore, bits 8 through 19 of rO now contain
the same value as bits 0 through 11 of rl.

Only the low-order five bits of width and offset are examined. If the
sum width plus offset is greater than 32 (bits), the field wraps around to
bit 0 of the destination. Starting with bit 0 of src, (width+ 1) bits are
placed into dst beginning at the bit designated by offset. If dst is a byte
or halfword and (width+offset) specifies a field that extends beyond dst,
no bits beyond dst are altered but the V flag is set.

3-71

JMP

JUMP

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-72

JMP

JMP dst Jump

Ox24 JMP

PC +- &dst

dst all modes except literal, register, or immediate

Unchanged

Illegal operand exception occurs if literal or immediate mode is used for I

dst.

JMP .L12

The operand dst is an effective address; i.e., the 32-bit address of dst is
used as the destination rather than the word stored at that address.

JSB JSB

JUMP TO SUBROUTINE

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

JSB dst Jump to subroutine

Ox34 JSB

* (SP++) +- address of next instruction
PC +- &dst

dst all modes except literal, register, or immediate

Unchanged

Illegal operand exception occurs if literal, expanded-operand type, or
immediate mode is used for dst.

JSB error

The operand dst is an effective address; i.e., the 32-bit address of dst is
used as the destination rather than the word at that address.

3-73

LLSB3
LLSH3
LLSW3

LLSB3
LLSH3
LLSW3

LOGICAL LEFT SHIFT

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-74

LLSB3 count,src,dst
LLSH3 count,src,dst
LLSW3 count,src,dst

OxD3 LLSB3
OxD2 LLSH3
OxDO LLSW3

Logical left shift byte
Logical left shift halfword
Logical left shift word

dst --- src < < (count & OxIF) bits

count all modes

src all modes

dst all modes except literal or immediate

N --- MSB of dst

Z --- I, if dst == 0

v --- 0, if result must be truncated to fit dst size

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: rO I OF I OF I DF I FD I

--- increasing bits

LLSH3 &2,%rO,%rO

After: rO I FF I FF I 7F F4

Only the five low-order bits of count are used; the high-order bits are
ignored. Zeros replace the bits shifted out of the low-order bit position
(bit 0).

LRSW3 LRSW3

LOGICAL RIGHT SHIFT

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

LRSW3 count,src,dst Logical right shift word

OxD4 LRSW3

dst - src > > (count & OxIF) bits

count all modes

src all modes

dst all modes except literal or immediate

N - MSB of dst

Z - I, if dst == 0

C-O

v - I, if result must be truncated to fit dst size

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: rO I C3 I CO I 00 I 00 I
- increasing bits

LRSW3 &Oxll,%rO,%rO

After: rO I 00 I 00 I 61 I EO I

All operands are type word. However, only the five low-order bits of
count are used; the high-order bits are ignored. Zeros replace the bits
shifted out of the high-order bit position (bit 31).

3-75

MCOMB
MCOMH
MCOMW

MCOMB
MCOMH
MCOMW

MOVE COMPLEMENTED

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-76

MCOMB src,dst
MCOMH src,dst
MCOMW src,dst

Ox8B MCOMB
Ox8A MCOMH
Ox88 MCOMW

dst -src

src all modes

Move complemented byte
Move complemented halfword
Move complemented word

dst all modes except literal or immediate

N +-- MSB of dst

Z +-- 1, if dst == 0

C+--O

v +-- 1, if result must be truncated to fit dst size

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: rO 12 I 34 I 56 I 78 I
+-- increasing bits

MCOMW %rO,%rl

After: rl I ED I CB I A9 I 87 I

dst is the one's complement of src

MNEGB
MNEGH
MNEGW

MNEGB
MNEGH
MNEGW

MOVE NEGATED

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

MNEGB src,dst
MNEGH src,dst
MNEGW src,dst

Ox8F MNEGB
Ox8E MNEGH
Ox8C MNEGW

dst - -src

src all modes

Move negated byte
Move negated halfword
Move negated word

dst all modes except literal or immediate

N - MSB of dst

Z - I, if dst == 0

C - 0

v - I, if integer overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: rO I 01 I 23 I 45 I 67 I
- increasing bits

MNEGB %rO,%rl

After: rl I FF I FF I FF I 99 I

dst is the two's complement of src.

3-77

MODB2
MODH2
MODW2

MODULO

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-78

MODB2 src,dst
MODH2 src,dst
MODW2 src,dst

OxA7 MODB2
OxA6 MODH2
OxA4 MODW2

dst -- dst % src

src all modes

Modulo byte
Modulo halfword
Modulo word

dst all modes except literal or immediate

N -- 1, if (dst % src) < 0

Z -- 1, if (dst % src) == 0

C--O

v -- 1, if overflow

MODB2
MODH2
MODW2

IlIegal operand exception occurs if literal or immediate mode is used for
dst.

Integer zero-divide exception occurs if src is equal to O.

Integer overflow exception occurs if there is truncation.

MODB2 &40,%r3
MODH2 4(%r3),%r3
MODW2 %rO, *$result

MODB3
MODH3
MODW3

MODB3
MODH3
MODW3

MODULO, 3 ADDRESS

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

MODB3 src1.src2.dst
MODH3 src1.src2.dst
MODW3 src1.src2.dst

OxE7 MODB3
OxE6 MODH3
OxE4 MODW3

dst +- srcl 9b src2

src1 all modes

src2 all modes

Modulo byte, 3 address
Modulo halfword, 3 address
Modulo word, 3 address

dst all modes except literal or immediate

N +- 1, if (src1 9b src2) < 0

Z +- I, if (src1 % src2) == 0

C+-O

V+-I, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer zero-divide exception occurs if src1 is equal to O.

Integer overflow exception occurs if there is truncation.

MODB3 &40,9br3,OxIIOI (9br2)
MODH3 9br3,$real,9br3
MODW3 4(9br2),*$Ox34,9brO

3-79

MOVB
MOVH
MOVW

MOVE

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-80

MOVB src,dst Move byte
MOVH src,dst Move halfword
MOVW src,dst Move word

Ox87 MOVB
Ox86 MOVH
Ox84 MOVW

dst - src

src all modes

dst all modes except literal or immediate

N - MSB of dst

Z - 1, if dst == 0

C - 0

V-I, if result must be truncated to fit dst size

See Note

MOVB
MOVH
MOVW

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: rO I 01 23 45 67

r 1 I AB I AB I AB I AB I
-increasing bits

MOVW %rO,%rl

After: rO I 01 I 23 45 67

rl I 01 I 23 I 45 I 67

NZCV = 0000

MOVB
MOVH
MOVW

Notes

MOVB
MOVH
MOVW

If the expanded-type mode is used for dst or for both operands, this
instruction can convert data from one type to another. The src operand
determines the type of extension performed: if src is signed byte or
halfword, sign extension occurs; if src is byte or unsigned halfword, zero
extension occurs.

Use the following instructions for conversions if the destination is not a
register.

Instruction

MOVB {sbyte} src, (shalf}dst
MOVB (sbyte}src, (sword}dst
MOVH src,(sword}dst
MOVB src, {shalf}dst
MOVB src,{sword}dst
MOVH {uhalf}src, {sword} dst
MOVH src, {sbyte}dst
MOVW src, {sbyte}dst
MOVW src,{shalf}dst

Conversion

Signed byte to signed halfword
Signed byte to signed word
Byte to signed word
Byte to signed halfword
Byte to signed word
Unsigned halfword to signed word
Halfword to signed byte
Word to signed byte
Word to signed halfword

If the destination is a register, use the following instructions for
conversions:

Instruction

ANDH3 & Oxff,src, {byte} dst
ANDW3 &Oxff,src, (byte}dst
MOVW src,dst; MOVH dst,dst

Conversion

Halfword to byte
Word to byte
Word to halfword

The instructions 'MOVW -,%psw' and 'MOVW %psw,-' do not
change the condition flags.

3-81

MOVAW MOVAW

MOVE ADDRESS (WORD)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-82

MOVA W src,dst Move address (word)

Ox04 MOVAW

dst +- &src

src all modes except literal, register, or immediate

dst all modes except literal or immediate

N +- MSB of dst

Z +- I, if dst == 0

C+-O

V+-O

Illegal operand exception occurs if literal, register, or immediate mode
is used for src, or if literal or immediate mode is used for dst.

Before: rO I 00 I 00 I 10 I 10 I

rl I AB I AB I AB I AB I
+- increasing bits

MOVAW 4(%rO),%rl

After: rl 00 00 10 14

Source operand type is effective address.

MOVBLW

MOVE BLOCK

Assembler
Syntax

Opcode

Operation

MOVBL W Move block of words

Ox3019 MOVBLW

while (R2 > 0) {
*Rl = *RO;
{disable interrupts)
--R2;
RO=RO+4;
Rl=R1+4;
{enable interrupts)

MOVBLW

Address None
Modes

Condition
Flags

Exceptions

Examples

Unchanged

External memory fault may occur in the middle of an iteration.

Before: rO I 00 I 00 I 01 I 00

rl I 00 I 00 I 02 I 00

r2 I 00 I 00 I 00 I 03

-- increasing bits

Assume three word locations starting at OxlOO contain the word values
Ox5, OxlO and Ox20, respectively.

MOVBLW

After: rO I 00 I 00 I 01 I DC I

r I I 00 I 00 I 02 I DC I

r2 I 00 I 00 I 00 I 00 I

3-83

MOVBLW

Notes

3-84

MOVBLW

Three word locations starting at Ox200 now also contain Ox5, Oxl0 and
Ox20, respectively.

Opcode occupies 16 bits. All operands are implicitly defined in the
registers (rO, rl, and r2) and are 32-bit words. These registers must be
preset with the following information before executing MOVBL W:

rO Address of source
r1 Address of destination
r2 Number of words to be moved.

The instruction may be interrupted only at the end of an iteration. A
memory fault may occur in the middle of an iteration. To restart the
instruction after a fault, execute MOVBL W again; the registers are
updated after the only memory access that could cause the fault. At
each iteration, rO and rl are incremented by 4, and r2 is decremented
by 1. Execution of MOVBL W is finished when r2 is O.

MULB2
MULH2
MULW2

MULTIPLY

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Example

MULB2 src,dst
MULH2 src,dst
MUL W2 src,dst

OxAB MULB2
OxAA MULH2
OxA8 MULW2

dst +- dst * src

src all modes

Multiply byte
Multiply halfword
Multiply word

dst all modes except literal or immediate

N +- 1, if (dst * src) < 0

Z +- 1, if (dst * src) == 0

C+-O

V+-l, if overflow

MULB2
MULH2
MULW2

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.

MULBH2 %r2,{sbyte}4(%r6)

3-85

MULB3
MULH3
MULW3

MULB3
MULH3
MULW3

MULTIPLY, 3 ADDRESS

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-86

MULB3 src1 ,src2,dst
MULH3 srcl ,src2,dst
MUL W3 srcl ,src2,dst

OxEB MULB3
OxEA MULH3
OxE8 MULW3

dst - srcl * src2

srcl all modes

src2 all modes

Multiply byte, 3 address
Multiply halfword, 3 address
Multiply word, 3 address

dst all modes except literal or immediate

N - 1, if (src1 * src2) < 0

Z - 1, if (srcl * src2) == 0

C - 0

V-I, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.

MULH3 %r3,*$Oxl004,%r4

MVERNO MVERNO

MOVE VERSION NUMBER

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

Note

MVERNO Move processor version number

Ox3009 MVERNO

rO +- processor version number

None

Unchanged

None

MVERNO

Opcode occupies 16 bits. Version number is the version of the processor
and may range from -128 to +127.

3-87

NOP
NOP2
NOP3

NOP
NOP2
NOP3

NO OPERATION

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Notes

3-88

NOP
NOP2
NOP3

No operation, 1 byte
No operation, 2 bytes
No operation, 3 bytes

Ox70 NOP
Ox73 NOP2
Ox72 NOP3

None

None

Unchanged

None

NOP
NOP2
NOP3

The assembler inserts a NOP before instructions (other than branch)
that read the PSW. This NOP allows the conditions bits to stabilize.
The bytes following NOP2 and NOP3 are generated by the assembler
and are ignored by the processor. They may be any value.

ORB2
ORH2
ORW2

OR

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

ORB2 src,dst
ORH2 src,dst
OR W2 src,dst

OxB3 ORB2
OxB2 ORH2
OxBO ORW2

dst +- dstlsrc

src all modes

OR byte
OR halfword
OR word

dst all modes except literal or immediate

N +- MSB of dst

Z +- 1, if dst == 0

C+-O

v +- 1, if result must be truncated to fit dst size

ORB2
ORH2
ORW2

Illegal operand exception occurs if literal or immediate mode is used for
dst.

ORB2 & 12,4 (%fp)
ORH2 %rO,4(%rO)
OR W2 %r3,$result

3-89

ORB3
ORH3
ORW3

ORB3
ORH3
ORW3

OR, 3 ADDRESS

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-90

ORB3 srci ,src2,dst
ORH3 srci,src2,dst
ORW3 srci,src2,dst

OxF3 ORB3
OxF2 ORH3
OxFO ORW3

dst -- src21srci

srci all modes

src2 all modes

OR byte, 3 address
OR halfword, 3 address
OR word, 3 address

dst all modes except literal or immediate

N -- MSB of dst

Z -- 1, if dst == 0

C--O

v -- 1, if result must be truncated to fit dst size

Illegal operand exception occurs if literal or immediate mode is used for
dst.

ORB3 &16,*$Ox304,%rO
ORH3 %r1,4(%rI),%r1
ORW3 %r2,%r3,%r1

POPW

POP (WORD)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

Note

POPW

POPW dst Pop (word)

Ox20 POPW

dst - *(--SP)

dst all modes except literal or immediate (see Note)

N - MSB of dst

Z 1, if dst == 0

C 0

v-O
Illegal operand exception occurs if literal, expanded-operand type, or
immediate mode is used for dst.

POPW (%r2)

If dst is the stack pointer (%sp), the results are indeterminate.

3-91

PUSHAW PUSHAW

PUSH ADDRESS (WORD)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

Note

3-92

PUSHA W src Push address (word)

Ox EO PUSHAW

* (SP++) +- &src

src all modes except literal, register, or immediate

N +- MSB of address of src

Z 1, if src == 0

C 0

v 0

Illegal operand exception occurs if literal, register, expanded-operand
type, or immediate mode is used for src.

PUSHA W Ox14(%r6)

Source operand type is effective address. This instruction is the same as
a move address (MOV A W) instruction, except that the destination for
PUSHA W is an implied stack push.

PUSHW PUSHW

PUSH (WORD)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

PUSHW src Push (word)

OxAO PUSHW

* (SP++) +- src

src all modes

N +- MSB of src

Z +- 1, if src == 0

C+-O

Illegal operand exception occurs if expanded-operand type addressing
mode is used.

PUSHW (%r2)

3-93

RCC RCC

RETURN ON CARRY CLEAR

Assembler RCC Return on carry clear
Syntax

Opcode Ox50 RCC

Operation if (C==O)
PC - *(--sp)

Address None
Modes

Condition Unchanged
Flags

Exceptions None

Example RCC

3-94

RCS RCS

RETURN ON CARRY SET

Assembler RCS Return on carry set
Syntax

Opcode Ox58 RCS

Operation if (C==l)
PC +- *(--SP)

Address None
Modes

Condition Unchanged
Flags

Exceptions None

Example RCS

3-95

REQL
REQLU

RETURN ON EQUAL

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Example

3-96

REQL
REQLU

Return on equal (signed)
Return on equal (unsigned)

Ox7C REQL
Ox6C REQLU

if (Z==1)
PC +- *(--sp)

None

Unchanged

None

REQL

REQL
REQLU

RESTORE RESTORE

RESTORE REGISTERS

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

Notes

RESTORE %rn Restore registers

OxlS RESTORE

tempa <- FP - 2S;
tempb <- * (FP - 2S);
tempc <- FP - 24;
while (n != FP) {
{

}

registednl <- (tempc)+;
n+=l;

FP <- tempb;
SP <- temp a

Register mode, where n ranges from 0 through 9

Unchanged

See Notes.

RESTORE %r3

If the operand is not register mode or n is not in the range 0 through 9,
the results are indeterminate. Although the results are determinate if n
is 0, 1 or 2, the effect is not that of a register restore in a function­
calling sequence.

RESTORE is the inverse of SAVE and should precede a return from
procedure (RET). (Also see SAVE and CALL.) The operand %rn
should be the same as in the corresponding SAVE, where n specifies the
number of registers (9 - n) to be restored for the original function.

RESTORE implements a stack frame for use in the C language
function-calling sequence. The instruction can restore up to six registers
(from register S through register 3) for use by the function. While
restoring these registers, it also adjusts SP and FP.

Illegal operand exception occurs if expanded-operand type address mode
is used.

3-97

RET RET

RETURN FROM PROCEDURE

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

Note

3-98

RET Return from procedure

Oxl8 RET

tempa +- AP;
tempb +- * (SP-4);
tempe +- *(SP-8);
AP +- tempb;
PC +- tempe;
SP +- tempa;

None

Unchanged

None

RET

The return (RET) is the inverse of the call (CALL) instruction. A
restore should precede a return (RET) inside the function being exited.
RESTORE sets up the protocol for a C language return from function.
RET restores AP, PC, and SP to the values saved on the stack with the
corresponding CALL.

RGEQ

RETURN ON GREATER THAN OR EQUAL (SIGNED)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

RGEQ Return on greater than or equal (signed)

Ox40 RGEQ

if «N==O) I (Z==1)
PC +- *(--sp)

None

Unchanged

None

RGEQ

RGEQ

3-99

RGEQU

RETURN ON GREATER THAN OR EQUAL (UNSIGNED)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

3-100

RGEQU Return on greater than or equal (unsigned)

Ox50 REGEQU

if (C==O)
PC +- *(--sp)

None

Unchanged

None

RGEQU

RGEQU

RGTR

RETURN ON GREATER THAN (SIGNED)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

RGTR Return on greater than (signed)

Ox44 RGTR

if ((NIZ)==O)
PC <- *(--sp)

None

Unchanged

None

RGTR

RGTR

3-101

RGTRU

RETURN ON GREATER THAN (UNSIGNED)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

3-102

RGTRU Return on greater than

Ox54 RGTRU

if «CIZ)==O)
PC +- *(--sp)

None

Unchanged

None

RGTRU

RGTRU

RLEQ

RETURN ON LESS THAN OR EQUAL (SIGNED)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

RLEQ Return on less than or equal

Ox4C RLEQ

if «NIZ)==l)
PC +- *(--sp)

None

Unchanged

None

RLEQ

RLEQ

3-103

RLEQU

RETURN ON LESS THAN OR EQUAL (UNSIGNED)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

3-104

RLEQU Return on less than or equal (unsigned)

Ox5C RLEQU

if «CIZ)==l)
PC - *(--sp)

None

Unchanged

None

RLEQU

RLEQU

RLSS

RETURN ON LESS THAN (SIGNED)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

RLSS Return on less than (signed)

Ox48 RLSS

if «N == 1) & (Z==O»
PC <- *(--Sp)

None

Unchanged

None

RLSS

RLSS

3-105

RLSSU

RETURN ON LESS THAN (UNSIGNED)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

3-106

RLSSU Return on less than (unsigned)

Ox58 RLSSU

if (C==l)
PC ..- *(--Sp)

None

Unchanged

None

RLSSU

RLSSU

RNEQ
RNEQU

RETURN ON NOT EQUAL

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

RNEQ
RNEQU

Return on not equal (signed)
Return on not equal (unsigned)

Ox74 RNEQ
Ox64 RNEQU

if (Z==O)
PC +- *(--sp)

None

Unchanged

None

RNEQ

RNEQ
RNEQU

3-107

ROTW

ROTATE

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-108

ROTW

ROTW count,src,dst Rotate word

OxD8 ROTW

dst +- src rotated right (count & OxlF) bits

count all modes

src all modes

dst all modes except literal or immediate

N +- MSB of dst

Z +- 1, if dst == 0

C+-O

V+-O

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Before: rO I OF I 00 I 00 I 7E I
+- increasing bits

ROTW &Ox404,%rO,%rO

After: rO EO I FO I 00 I 07 I

All operands are type word. However, only the five low-order bits of
count are used; the high-order bits are ignored.

RSB

RETURN FROM SUBROUTINE

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

RSB Return from subroutine (unconditionaI)

Ox78 RSB

PC +- *(--Sp)

None

Unchanged

None

RSB

RSB

3-109

Rve Rve

RETURN ON OVERFLOW CLEAR

Assembler RVC Return on overflow clear
Syntax

Opcode Ox60 RVC

Operation if (V==O)
PC +- *(--SP)

Address None
Modes

Condition Unchanged
Flags

Exceptions None

Example RVC

3·110

RVS RVS

RETURN ON OVERFLOW SET

Assembler RVS Return on overflow set
Syntax

Opcode Ox68 RVS

Operation if (V==I)
PC +- *(--SP)

Address None
Modes

Condition Unchanged
Flags

Exceptions None

Example RVS

3-111

SAVE SAVE

SAVE REGISTERS

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

Notes

3-112

SA VE %rn Save registers

OxlO SAVE

temp +- SP
* (SP++) +- FP
while (n !=FP){

*(SP++) +- registednl
n+=l;

}
SP +-temp + 28;
FP +- SP;

Register mode, where n ranges from 0 through 9

Unchanged

See Notes.

SAVE %r3 (see Figure 3-9)

If the operand is not register mode or n is not in the range 0 to 9, the
results are indeterminate. However, if n is 0, 1, or 2, the results are
determinate, but SP and FP will not point beyond the register-save area.

Temp is a temporary register, and n specifies the number of registers
(9 - n) to be saved for the calling function.

SAVE implements a stack frame for use in the C language function­
calling sequence. It should be the first statement in the called function.
(Also see Restore and Return from Procedure instructions') SAVE can
save up to six registers, from register 8 (r8) through register 3 (r3),
freeing them for the new function. After saving these registers, SA VE
adjusts SP and FP to point beyond the end of a fixed-size register-save
area. Figure 3-9 shows the stack after executing 'SAVE %r3'.

Illegal operand exception occurs if expanded-operand type addressing
mode is used.

SPOP

COPROCESSOR OPERATION (no operands)

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

SPOP word Coprocessor operation

Ox32 SPOP

/* coprocessor operation executes the following
processor operations * /

("word" is written out with an access status of
"coprocessor broadcast" }

(wait for "coprocessor done" }
(a word is written into PSW with an access status of

"coprocessor status fetch" }

None valid, word = 32-bit value

Unchanged

External memory fault may occur.

SPOP OXFFFFFFFF

SPOP

3-113

SPOPRS
SPOPRD
SPOPRT

COPROCESSOR OPERATION READ

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

3-114

SPOPRS word,src
SPOPRD word,src
SPOPPT word,src

Ox22 SPOPRS
Ox02 SPOPRD
Ox06 SPOPRT

Coprocessor operation read single
Coprocessor operation read double
Coprocessor operation read triple

/* coprocessor operation read executes the following
processor operations * /

"word" is written out with an access status of
"coprocessor broadcast" }
"src" is read with an access status of
"coprocessor data fetch" }
wait for "coprocessor done" }
a word is written into PSW with an access status of
"coprocessor status fetch" }

word none valid, 32-bit value
src all modes except register, literal, or immediate

Determined by the coprocessor status

External memory fault may occur.

SPOPRS OxF379FFFF,*$OxFF37
SPOPRD OxFFFFFFFF,%r3
SPOPRT OxOOOOOOOO,(%r4)

SPOPRS
SPOPRD
SPOPRT

SPOPS2
SPOPD2
SPOPT2

COPROCESSOR OPERATION, 2-ADDRESS

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

SPOPS2 word,src,dst Coprocessor operation single,
2-address

SPOPD2 word,src,dst Coprocessor operation double,
2-address

SPOPT2 word,src,dst Coprocessor operation triple,
2-address

Ox23 SPOPWS
Ox03 SPOPWD
Ox07 SPOPWT

/* coprocessor operation executes the following
processor operations * /

"word" is written out with an access status of
"coprocessor broadcast" }
"src" is read with an access status of "coprocessor
<:lata fetch" }

{ wait for "coprocessor done" }
{ a word is written into PSW with an access status of

"coprocessor status fetch" }
{ "dst" is written with an access status of

coprocessor data write" }

word none valid, 32-bit value
src all modes except register, literal, or immediate
dst all modes except register, literal, or immediate

Determined by the coprocessor status

External memory fault may occur.

SPOPS2 OxFF,4(%rO)
SPOPD2 OxFFF,%r3
SPOPT2 OxFE,(%rO)

SPOPS2
SPOPD2
SPOPT2

3-115

SPOPWS
SPOPWD
SPOPWT

COPROCESSOR OPERA nON WRITE

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Example

3-116

SPOPWS word,dst
SPOPWD word,dst
SPOPWT word,dst

Ox33 SPOPWS
Oxl3 SPOPWD
Oxl7 SPOPWT

Coprocessor operation write single
Coprocessor operation write double
Coprocessor operation write triple

1* coprocessor operation write executes the following
processor operations * I

("word" is written out with an access status of
"coprocessor broadcast" }

(wait for "coprocessor done" }
(a word is written into PSW with an access status of

coprocessor status fetch" }
"dst" is written with an access status of

coprocessor data write" }

word
dst

none valid, 32-bit value
all modes except register, literal, or immediate

Determined by the coprocessor status.

External memory fault may occur.

SPOPWS OxOO,%rO
SPOPWD OxOF,(%r1)
SPOPWT OxIOOO,4(%r2)

SPOPSW
SPOPWD
SPOPWT

STRCPY

STRING COPY

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

STRCPY

STRCPY String copy

Ox303S STRCPY

while ((*r1 = *rO)!=O)(
{disable interrupts}
rO++;
r1++;
{enable interrupts}

None

Unchanged

External memory fault may occur in the middle of an iteration.

Before: rO I 00 I 00 I 01 I 00 I

r1 I 00 I 00 I 40 I 00 I
+- increasing bits

The byte locations starting at OxlOO contain the values OxOI, Ox24,
OxE6, Ox7F, Oxll, and OxOO (Iocation OxlOS).

STRCPY

After: rO I 00 I 00 I 01 I 05 I

rl I 00 I 00 I 40 I 05 I

The byte locations from Ox4000 through Ox400S now contain the same
values as locations OxlOO through OxIOS.

3-117

STRCPY

Notes

3-118

STRCPY

Opcode occupies 16 bits. All operands are defined implicitly in the
registers, rO and rl, that function as byte pointers. These registers must
be preset with the following information before executing STRCPY:

rO Address of source string
rl Address of destination string

STRCPY implements the string-copy function commonly used in C
language. The instruction may be interrupted only at the end of an
iteration. A memory fault may occur in the middle of an iteration. To
restart the instruction after a fault, execute STRCPY again; the
registers are updated after the only memory access that could cause the
fault. The assignment is a byte move, and both RO and Rl are
incremented by 1 at each iteration. Execution of STRCPY is finished
when a null (zero) byte is reached. The null byte is always copied.

STREND

STRING END

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Notes

STREND

STREND String end

Ox301F STREND

while (*rO !=O) {
rO++;

None

Unchanged

External memory fault may occur in the middle of an iteration.

Before: rO I 00 I 00 I 04 I 00 I
<- increasing bits

The byte locations Ox400 through Ox404 contain the values Ox44, Ox55,
OxOl, Ox22, OxOO, respectively.

STREND

After: rO I 00 I 00 I 04 I 04 I

Opcode occupies 16 bits. The operand is defined implicitly in the
register rO, a byte pointer that must be preset with the starting address
of the source C language string. STREND moves the pointer to the
end of the string and could be used as part of a string-length or string·
concatenation function. The instruction may be interrupted at any timL.
A memory fault may occur in the middle of an iteration. To restart the
instruction after a fault, execute STREND again; the register is
updated after the only instruction that could cause the fault. Each
iteration tests a byte and increments the pointer rO by 1. Execution of
STREND terminates when a null (zero) byte is found. rO will be left
with the address of the null byte.

3-119

SUBB2
SUBH2
SUBW2

SUBTRACf

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-120

SUBB2 src,dst
SUBH2 src,dst
SUBW2 src,dst

OxBF SUBB2
OxBE SUBH2
OxBC SUBW2

dst +- dst - src

src all modes

Subtract byte
Subtract halfword
Subtract word

dst all modes except literal or immediate

N +- I, if (dst - src) < 0

Z +- 1, if (dst - src) == 0

C +- 1, if borrow from sign bit of dst

v +- 1, if overflow

SUBB2
SUBH2
SUBW2

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.

SUBB2 %r6, *$Ox30 (%r2)
SUBH2 %rO,$resulth
SUBW2 %r3,$resultw

SUBB3
SUBH3
SUBW3

SUBB3
SUBH3
SUBW3

SUBTRACT, 3 ADDRESS

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

SUBB3 src1 ,src2,dst
SUBH3 src1 ,src2,dst
SUBW3 src1 ,src2,dst

OxFF SUBB3
OxFE SUBH3
OxFC SUBW3

dst +- src2 - src1

src1 all modes

src2 all modes

Subtract byte, 3 address
Subtract halfword, 3 address
Subtract word, 3 address

dst all modes except literal or immediate

N +- 1, if (src2 - srcJ) < 0

Z 1, if (src2 - srcJ) == 0

C 1, if carry out of sign bit of dst

VI, if overflow

Illegal operand exception occurs if literal or immediate mode is used for
dst.

Integer overflow exception occurs if there is truncation.

SUBB3 %r3,*$Oxl005,%r2
SUBH3 %rl,%r3,%rO
SUBW3 $Nl,$N2,$result

3-121

SWAPBI
SWAPHI
SWAPWI

SWAPBI
SWAPHI
SWAPWI

SWAP (INTERLOCKED)

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

3-122

SWAPBI dst
SWAPHI dst
SWAPWI dst

OxlF SWAPBI
OxlE SWAPHI
OxIC SWAPWI

{set interlock}
tempa - dst
dst - rO
rO - tempa

Swap byte (interlocked)
Swap halfword (interlocked)
Swap word (interlocked)

dst all modes except register, literal, or immediate

N - MSB of rO

Z - I, if rO == 0

C-O

V-O

Illegal operand exception occurs if register, literal, expanded-operand
type, or immediate mode is used for dst.

The swap instruction can manipulate interlocks for multiprocessors.
Suppose location A is the interlock for a critical section of code, and a
nonzero means the lock is busy. Then, the following instructions
provide a busy-waiting loop:

MOVW &1,%rO
L1: SWAPWI A

BNEB L1

Final value of rO sets the condition codes. The SAS code is read
interlocked (7) for both the read and write bus transactions.

TSTB
TSTH
TSTW

TEST

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Note

TSTB src
TSTH src
TSTW src

Ox2B TSTB
Ox2A TSTH
Ox28 TSTW

src +- 0

Test byte
Test halfword
Test word

src all modes

N +- I, if src < 0 (signed)

Z 1, if src == 0

C 0

V+-O

None

TSTH 14(%r2)

TSTB
TSTH
TSTW

This instruction only sets condition codes. Its action is the same as a
compare instruction, where the first operand is zero, such as

CMPB &O,src2

However, test is faster because it is one byte shorter.

3-123

XORB2
XORH2
XORW2

XORB2
XORH2
XORW2

EXCLUSIVE OR

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

3-124

XORB2 src,dst
XORH2 src,dst
XORW2 src,dst

OxB7 XORB2
OxB6 XORH2
OxB4 XORW2

dst ... dst • src

src all modes

Exclusive OR byte
Exclusive OR halfword
Exclusive OR word

dst all modes except literal or immediate

N ... MSB of dst

Z ... 1, if dst == 0

C'" 0

v ... 1, if result must be truncated to fit dst size

Illegal operand exception occurs if literal or immediate mode is used for
dst.

XORB2 &40,4(%r4)
XORH2 %rl,$result
XORW2 4(%rl),$resuit

XORB3
XORH3
XORW3

XORB3
XORH3
XORW3

EXCLUSIVE OR, 3 ADDRESS

Assembler
Syntax

Opcodes

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

XORB3 mask,src,dst
XORH3 mask,src,dst
XOR W3 mask,src,dst

OxF7 XORB3
OxF6 XORH3
OxF4 XORW3

dst +- src "mask

mask all modes

src all modes

Exclusive OR byte, 3 address
Exclusive OR halfword, 3 address
Exclusive OR word, 3 address

dst all modes except literal or immediate

N +- MSB of dst

Z +- 1, if dst == 0

C+-O

v +- 1, if result must be truncated to fit dst size

Illegal operand exception occurs if literal or immediate mode is used for
dst.

XORB3 &4,*12(%r3),*$Ox400
XORH3 %rl,4(%r1),%rO
XORW3 %rO,%r1,%r3

3-125

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

3.7.3 Instruction Set Summary by Function

Table 3-12. Data Transfer Instruction Group

Instruction Mnemonic Opcode
Move:
Move byte MOVB Ox87
Move halfword MOVH Ox86
Move word MOVW Ox84
Move address (word) MOVAW Ox04
Move complemented byte MCOMB Ox8B
Move complemented halfword MCOMH Ox8A
Move complemented word MCOMW Ox88
Move negated byte MNEGB Ox8F
Move negated halfword MNEGH Ox8E
Move negated word MNEGW Ox8C
Move version number MVERNO Ox3009
Swap <Interlocked>:
Swap byte interlocked SWAPBI OxlF
Swap halfword interlocked SWAPHI OxlE
Swap word interlocked SWAPWI OxIC
Block Operations:
Move block of words MOVBLW Ox3019
Field Operations:
Extract field byte EXTFB OxCF
Extract field halfword EXTFH OxCE
Extract field word EXTFW OxCC
Insert field byte INSFB OxCB
Insert field halfword INSFH OxCA
Insert field word INSFW OxC8
String Operations:
String copy STRCPY Ox3035
String end STREND Ox30lF

Table 3-13. Arithmetic Instruction Group

Instruction Mnemonic Opcode
Add:
Add byte ADDB2 Ox9F
Add halfword ADDH2 Ox9E
Add word ADDW2 Ox9C
Add byte, 3-address ADDB3 OxDF
Add halfword, 3-address ADDH3 Ox DE
Add word, 3-address ADDW3 OxDC

3-126

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

Table 3-13. Arithmetic Instruction Group (Continued)

Instruction Mnemonic Opcode

Subtract:
Subtract byte SUBB2 OxBF
Subtract halfword SUBH2 OxBE
Subtract word SUBW2 OxBC
Subtract byte, 3·address SUBB3 OxFF
Subtract halfword, 3-address SUBH3 OxFE
Subtract word, 3-address SUBW3 OxFC

Increment:
Increment byte INCB Ox93
Increment halfword INCH Ox92
Increment word INCW Ox90
Decrement:
Decrement byte DECB Ox97
Decrement halfword DECH Ox96
Decrement word DECW Ox94
Multiply:
MUltiply byte MULB2 OxAB
Multiply halfword MULH2 OxAA
Multiply word MULW2 OxA8
Multiply byte, 3-address MULB3 OxEB
Multiply halfword, 3-address MULH3 OxEA
Multiply word, 3-address MULW3 OxE8

Divide:
Divide byte DlVB2 OxAF
Divide halfword DlVH2 OxAE
Divide word DlVW2 OxAC
Divide byte, 3-address DlVB3 OxEF
Divide halfword, 3-address DlVH3 OxEE
Divide word, 3-address DlVW3 OxEC
Modulo:
Modulo byte MODB2 OxA7
Modulo halfword MODH2 OxA6
Modulo word MODW2 OxA4
Modulo byte, 3-address MODB3 OxE7
Modulo halfword, 3-address MODH3 OxE6
Modulo word, 3-address MODW3 OxE4
Arithmetic Shift:
Arithmetic left shift word ALSW3 Ox CO
Ari thmetic right shift byte ARSB3 OxC7
Arithmetic right shift halfword ARSH3 OxC6
Arithmetic right shift word ARSW3 OxC4

3-127

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

Table 3-14. Logical Group

Instruction Mnemonic
AND:
AND byte ANDB2
AND halfword ANDH2
AND word ANDW2
AND byte, 3-address ANDB3
AND halfword, 3-address ANDH3
AND word, 3-address ANDW3
Exclusive OR (XOR):
Exclusive OR byte XORB2
Exclusive OR halfword XORH2
Exclusive OR word XORW2
Exclusive OR byte, 3-address XORB3
Exclusive OR halfword, 3-address XORH3
Exclusive OR word, 3-address XORW3
OR:
OR byte ORB2
OR halfword ORH2
OR word ORW2
OR byte, 3-address ORB3
OR halfword, 3-address ORH2
OR word, 3-address ORW3
Compare or Test:
Compare byte CMPB
Compare halfword CMPH
Compare word CMPW
Test byte TSTB
Test halfword TSTH
Test word TSTW
Bit test byte BITB
Bit test halfword BITH
Bit test word BITW
Clear:
Clear byte CLRB
Clear halfword CLRH
Clear word CLRW
Rotate or Logical Shift:
Rotate word ROTW
Logical left shift byte LLSB3
Logical left shift halfword LLSH3
Logical left shift word LLSW3
Logical right shift word LRSW3

3-128

Opcode

OxBB
OxBA
OxB8
OxFB
OxFA
OxF8

OxB?
OxB6
OxB4
OxF?
OxF6
OxF4

OxB3
OxB2
OxBO
OxF3
OxF2
OxFO

Ox3F
Ox3E
Ox3C
Ox2B
Ox2A
Ox28
Ox3B
Ox3A
Ox38

Ox83
Ox82
Ox80

OxD8
OxD3
OxD2
OxDO
OxD4

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

Table 3-15. Program Control Instructions

Instruction Mnemonic Opcode
Unconditional Transfer:
Branch with byte (8-bit) displacement BRB Ox7B
Branch with halfword (I6-bit) displacement BRH Ox7A
Jump JMP Ox24
Conditional Transfers:
Branch on carry clear byte BCCB Ox53*
Branch on carry clear halfword BCCH Ox52*
Branch on carry set byte BCSB Ox5B
Branch on carry set halfword BCSH Ox5A*
Branch on overflow clear, byte displacement BVCB Ox63
Branch on overflow clear, halfword displacement BVCH Ox62
Branch on overflow set, byte displacement BVSB Ox6B
Branch on overflow set, halfword displacement BVSH Ox6A
Branch on equal byte (duplicate) BEB Ox6F
Branch on equal byte BEB Ox7F
Branch on equal halfword (duplicate) BEH Ox6E
Branch on equal halfword BEH Ox7E
Branch on not equal byte (duplicate) BNEB Ox67
Branch on not equal byte BNEB Ox77
Branch on not equal halfword (duplicate) BNEH Ox66
Branch on not equal halfword BNEH Ox76
Branch on less than byte (signed) BLB Ox4B
Branch on less than halfword (signed) BLH Ox4A
Branch on less than byte (unsigned) BLUB Ox5B*
Branch on less than halfword (unsigned) BLUH Ox5A*
Branch on less than or equal byte (signed) BLEB Ox4F
Branch on less than or equal halfword (signed) BLEH Ox4E
Branch on less than or equal byte (unsigned) BLEUB Ox5F
Branch on less than or equal halfword (unsigned) BLEUH Ox5E
Branch on greater than byte (signed) BGB Ox47
Branch on greater than halfword (signed) BGH Ox46
Branch on greater than byte (unsigned) BGUB Ox57
Branch on greater than halfword (unsigned) BGUH Ox56
Branch on greater than or equal byte (signed) BGEB Ox43
Branch on greater than or equal halfword (signed) BGEH Ox42
Branch on greater than or equal byte (unsigned) BGEUB Ox53*
Branch on greater than or equal halfword (unsigned) BGEUH Ox52*

* Indicates that opcode matches another instruction but operation is the same.

3-129

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

Table 3-15. Program Control Instructions (Continued)

Instruction Mnemonic

Conditional Transfers (Continued):
Return on carry clear RCC
Return on carry set RCS
Return on overflow clear RVC
Return on overflow set RVS
Return on equal (unsigned) REQLU
Return on equal (signed) REQL
Return on not equal (unsigned) RNEQU
Return on not equal (signed) RNEQ
Return on less than (signed) RLSS
Return on less than (unsigned) RLSSU
Return on less than or equal (signed) RLEQ
Return on less than or equal (unsigned) RLEQU
Return on greater than (signed) RGTR
Return on greater than (unsigned) RGTRU
Return on greater than or equal (signed) RGEQ
Return on greater than or equal (unsigned) RGEQU
Subroutine Transfer:
Branch to subroutine, byte displacement BSBB
Branch to subroutine, halfword displacement BSBH
Jump to subroutine JSB
Return from subroutine RSB
Procedure Transfer:
Save registers SAVE
Restore registers RESTORE
Call procedure CALL
Return from procedure RET

Opcode

Ox50*
Ox58*
Ox60
Ox68
Ox6C
Ox7C
Ox64
Ox74
Ox48
Ox58*
Ox4C
Ox5C
Ox44
Ox54
Ox40
Ox50*

Ox37
Ox36
Ox34
Ox78

OxlO
Oxl8
Ox2C
Ox08

* Indicates that opcode matches another instruction but operation is the same.

3-130

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Function

Table 3-16. Coprocessor Instructions

Instruction Mnemonic Opcode
Coprocessor operation SPOP Ox32
Coprocessor operation read single SPOPRS Ox22
Coprocessor operation read double SPOPRD Ox02
Coprocessor operation read triple SPOPRT Ox06
Coprocessor operation single 2-address SPOPS2 Ox23
Coprocessor operation double 2-address SPOPD2 Ox03
Coprocessor operation triple 2-address SPOPT2 Ox07
Coprocessor operation write single SPOPWS Ox33
Coprocessor operation write double SPOPWD Oxl3
Coprocessor operation write triple SPOPWT Oxl7

Table 3-17. Stack and Miscellaneous Instructions

Instruction Mnemonic Opcode
Stack Operations:
Push address word PUS HAW OxEO
Push word PUSHW OxAO
Pop word POPW Ox20
Miscellaneous:
No operation, 1 byte NOP Ox70
No operation, 2 bytes NOP2 Ox73
No operation, 3 bytes NOP3 Ox72
Breakpoint trap BPT Ox2E
Extended opcode EXTOP Oxl4
Cache flush CFLUSH Ox27

3-131

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Mnemonic

3.7.4 Instruction Set Summary by Mnemonic

Table 3-18. Instruction Set Summary by Mnemonic

Mnemonic Opcode Instruction
ADDB2 Ox9F Add byte
ADDB3 OxDF Add byte, 3-address
ADDH2 Ox9E Add halfword
ADDH3 OxDE Add halfword, 3-address
ADDW2 Ox9C Add word
ADDW3 OxDC Add word, 3-address
ALSW3 Ox CO Arithmetic left shift word
ANDB2 OxBB AND byte
ANDB3 OxFB AND byte, 3-address
ANDH2 OxBA AND halfword
ANDH3 OxFA AND halfword, 3-address
ANDW2 OxB8 AND word
ANDW3 OxF8 AND word, 3-address
ARSB3 OxC7 Arithmetic right shift byte
ARSH3 OxC6 Arithmetic right shift halfword
ARSW3 OxC4 Arithmetic right shift word
BCCB Ox53* Branch on carry clear byte
BCCH Ox52* Branch on carry clear halfword
BCSB Ox5B* Branch on carry set byte
BCSH Ox5A* Branch on carry set halfword
BEB Ox6F Branch on equal byte (duplicate)
BEB Ox7F Branch on equal byte
BEH Ox6E Branch on equal halfword (duplicate)
BEH Ox7E Branch on equal halfword
BGB Ox47 Branch on greater than byte (signed)
BGEB Ox43 Branch on greater than or equal byte (signed)
BGEH Ox42 Branch on greater than or equal halfword (signed)
BGEUB Ox53* Branch on greater than or equal byte (unsigned)
BGEUH Ox52* Branch on greater than or equal halfword (unsigned)
BGH Ox46 Branch on greater than halfword (signed)
BGUB Ox57 Branch on greater than byte (unsigned)
BGUH Ox56 Branch on greater than halfword (unsigned)
BITB Ox3B Bit test byte
BITH Ox3A Bit test halfword
BITW Ox38 Bit test word
BLB Ox4B Branch on less than byte (signed)
BLEB Ox4F Branch on less than or equal byte (signed)
BLEH Ox4E Branch on less than or equal halfword (signed)

* Indicates that opcode matches another instruction but operation is the same.

3-132

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Mnemonic

Table 3-18. Instruction Set Summary by Mnemonic (Continued)

Mnemonic Opcode Instruction

BLEUB Ox5F Branch on less than or equal byte (unsigned)
BLEUH Ox5E Branch on less than or equal halfword (unsigned)
BLH Ox4A Branch on less than halfword (signed)
BLUB Ox5B* Branch on less than byte (unsigned)
BLUH Ox5A* Branch on less than halfword (unsigned)
BNEB Ox67 Branch on not equal byte (duplicate)
BNEB Ox77 Branch on not equal byte
BNEH Ox66 Branch on not equal halfword (duplicate)
BNEH Ox76 Branch on not equal halfword
BPT Ox2E Breakpoint trap
BRB Ox7B Branch with byte (8-bit) displacement
BRH Ox7A Branch with halfword (l6-bit) displacement

BSBB Ox37 Branch to subroutine, byte displacement
BSBH Ox36 Branch to subroutine, halfword displacement
BVCB Ox63 Branch on overflow clear, byte displacement
BVCH Ox62 Branch on overflow clear, halfword displacement
BVSB Ox6B Branch on overflow set, byte displacement
BVSH Ox6A Branch on overflow set, halfword displacement
CALL Ox2C Call procedure
CFLUSH Ox27 Cache flush
CLRB Ox83 Clear byte
CLRH Ox82 Clear halfword
CLRW Ox80 Clear word
CMPB Ox3F Compare byte
CMPH Ox3E Compare halfword
CMPW Ox3C Compare word
DECB Ox97 Decrement byte
DECH Ox96 Decrement halfword
DECW Ox94 Decrement word
DIVB2 OxAF Divide byte
DIVB3 OxEF Divide byte 3-address
DIVH2 OxAE Divide halfword
DIVH3 OxEE Divide halfword, 3-address
DIVW2 OxAC Divide word
DIVW3 OxEC Divide word, 3-address
EXTFB OxCF Extract field byte
EXTFH OxCE Extract field halfword
EXTFW OxCC Extract field word
EXTOP Ox14 Extended opcode
INCB Ox93 Increment byte
INCH Ox92 Increment halfword
INCW Ox90 Increment word
INSFB OxCB Insert field byte

* Indicates that opcode matches another instruction but operation is the same.

3-133

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Mnemonic

Table 3-18. Instruction Set Summary by Mnemonic (Continued)

Mnemonic Opcode Instruction

INSFH OxCA Insert field halfword
INSFW OxC8 Insert field word

JMP Ox24 Jump
JSB Ox34 Jump to subroutine

LLSB3 OxD3 Logical left shift byte
LLSH3 OxD2 Logical left shift halfword
LLSW3 OxDO Logical left shift word

LRSW3 OxD4 Logical right shift word

MCOMB Ox8B Move complemented byte
MCOMH Ox8A Move complemented halfword
MCOMW Ox88 Move complemented word

MNEGB Ox8F Move negated byte
MNEGH Ox8E Move negated halfword
MNEGW Ox8C Move negated word

MODB2 OxA7 Modulo byte
MODB3 OxE7 Modulo byte, 3-address
MODH2 OxA6 Modulo halfword
MODH3 OxE6 Modulo halfword, 3-address
MODW2 OxA4 Modulo word
MODW3 OxE4 Modulo word, 3-address
MOVAW Ox04 Move address (word)
MOVB Ox87 Move byte
MOVBLW Ox30l9 Move block of words
MOVH Ox86 Move halfword
MOVW Ox84 Move word

MULB2 OxAB Multiply byte
MULB3 OxEB Multiply byte, 3-address
MULH2 OxAA Multiply halfword
MULH3 OxEA Multiply halfword, 3-address
MULW2 OxA8 MUltiply word
MULW3 OxE8 Multiply word, 3·address

MVERNO Ox3009 Move version number

NOP Ox70 No operation, 1 byte
NOP2 Ox73 No operation, 2 bytes
NOP3 Ox72 No operation, 3 bytes

ORB2 OxB3 OR byte
ORB3 OxF3 OR byte, 3·address
ORH2 OxB2 OR halfword
ORH3 OxF2 OR halfword, 3-address
ORW2 OxBO OR word
ORW3 OxFD OR word, 3-address

POPW Ox2D Pop word

PUSHAW OxED Push address word
PUSHW OxAO Push word

3-134

Table 3-18.

Mnemonic

RCC
RCS
REQLU
REQL
RESTORE
RET
RGEQ
RGEQU
RGTR
RGTRU
RLEQ
RLEQU
RLSS
RLSSU
RNEQU
RNEQ
ROTW
RSB
RVC
RVS
SAVE
SPOP
SPOPRS
SPOPRD
SPOPRT
SPOPS2
SPOPD2
SPOPT2
SPOPWS
SPOPWD
SPOPWT
STRCPY
STREND
SUBB2
SUBB3
SUBH2
SUBH3
SUBW2
SUBW3

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Mnemonic

Instruction Set Summary by Mnemonic (Continued)

Opcode Instruction

Ox50* Return on carry clear
Ox58* Return on carry set
Ox6C Return on equal (unsigned)
Ox7C Return on equal (signed)
Oxl8 Restore registers
Ox08 Return from procedure
Ox40 Return on greater than or equal (signed)
Ox50* Return on greater than or equal (unsigned)
Ox44 Return on greater than (signed)
Ox54 Return on greater than (unsigned)
Ox4C Return on less than or equal (signed)
Ox5C Return on less than or equal (unsigned)
Ox48 Return on less than (signed)
Ox58* Return on less than (unsigned)
Ox64 Return on not equal (unsigned)
Ox74 Return on not equal (signed)
OxD8 Rotate word
Ox78 Return from subroutine
Ox60 Return on overflow clear
Ox68 Return on overflow set
OxlO Save registers
Ox32 Coprocessor operation
Ox22 Coprocessor operation read single
Ox02 Coprocessor operation read double
Ox06 Coprocessor operation read triple
Ox23 Coprocessor operation single 2-address
Ox03 Coprocessor operation double 2-address
Ox07 Coprocessor operation triple 2-address
Ox33 Coprocessor operation write single
Oxl3 Coprocessor operation write double
Oxl7 Coprocessor operation write triple
Ox3035 String copy
Ox30lF String end
OxBF Subtract byte
OxFF Subtract byte, 3-address
OxBE Subtract halfword
OxFE Subtract halfword, 3-address
OxBC Subtract word
OxFC Subtract word, 3-address

* Indicates that opcode matches another instruction but operation is the same.

3-135

\INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Opcode

Table 3-18. Instruction Set Summary by Mnemonic (Continued)

Mnemonic Opcode Instruction
SWAPBI OxlF Swap byte interlocked
SWAPHI OxlE Swap halfword interlocked'
SWAPWI OxiC Swap word interlocked
TSTB Ox2B Test byte
TSTH Ox2A Test halfword
TSTW Ox28 Test word
XORB2 OxB7 Exclusive OR byte
XORB3 OxF7 Exclusive OR byte, 3-address
XORH2 OxB6 Exclusive OR halfword
XORH3 OxF6 Exclusive OR halfword, 3-address
XORW2 OxB4 Exclusive OR word
XORW3 OxF4 Exclusive OR word, 3-address

3.7.5 Instruction Set Summary by Opcode

Table 3-19. Instruction Set Summary by Opcode

Menemonic Opcode Instruction
SPOPRD Ox02 Coprocessor operation read double
SPOPD2 Ox03 Coprocessor operation double, 2-address
MOVAW Ox04 Move address (word)
SPOPRT Ox06 Coprocessor operation read triple
SPOPT2 Ox07 Coprocessor operation triple, 2-address
RET Ox08 Return from procedure
SAVE Ox 10 Save registers
SPOPWD Oxl3 Coprocessor operation write double
EX TOP Oxl4 Extended opcode
SPOPWT Oxl7 Coprocessor operation write triple
RESTORE Oxl8 Restore registers
SWAPWI OxiC Swap word interlocked
SWAPHI OxlE Swap halfword interlocked
SWAPBI OxlF Swap byte interlocked
POPW Ox20 Pop word
SPOPRS Ox22 Coprocessor operation read single
SPOPS2 Ox23 Coprocessor operation single, 2-address
JMP Ox24 Jump
TSTW Ox28 Test word
TSTH Ox2A Test halfword
TSTB Ox2B Test byte
CALL Ox2C Call procedure
BPT Ox2E Breakpoint trap
MVERNO Ox3009 Move version number
MOVBLW Ox3019 Move block of words
STREND Ox301F String end
STRCPY Ox3035 String copy

3-136

Table 3-19.

Mnemonic Opcode
SPOP Ox32
SPOPWS Ox33
JSB Ox34
BSBH Ox36
BSBB Ox37
BITW Ox38
BITH Ox3A
BITB Ox3B
CMPW Ox3C
CMPH Ox3E
CMPB Ox3F
RGEQ Ox40
BGEH Ox42
BGEB Ox43
RGTR Ox44
BGH Ox46
BGB Ox47
RLSS Ox48
BLH Ox4A
BLB Ox4B
RLEQ Ox4C
BLEH Ox4E
BLEB Ox4F
RCC Ox50*
RGEQU Ox50*
BCCH Ox52*
BGEUH Ox52*
BCCB Ox53*
BGEUB Ox53*
RGTRU Ox54
BGUH Ox56
BGUB Ox57
RCS Ox58*
RLSSU Ox58*
BCSH Ox5A*
BLUH Ox5A*
BCSB Ox5B*
BLUB Ox5B*
RLEQU Ox5C
BLEUH Ox5E
BLEUB Ox5F

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Opcode

Instruction Set Summary by Opcode (Continued)

Instruction
Coprocessor operation
Coprocessor operation write single
Jump to subroutine
Branch to subroutine, halfword displacement
Branch to subroutine, byte displacement
Bit test word
Bit test halfword
Bit test byte
Compare word
Compare halfword
Compare byte

Return on greater than or equal (signed)
Branch on greater than or equal halfword (signed)
Branch on greater than or equal byte (signed)
Return on greater than (signed)
Branch on greater than halfword (signed)
Branch on greater than byte (signed)
Return on less than (signed)
Branch on less than halfword (signed)
Branch on less than byte (signed)
Return on less than or equal (signed)
Branch on less than or equal halfword (signed)
Branch on less than or equal byte (signed)
Return on carry clear
Return on greater than or equal (unsigned)
Branch on carry clear halfword
Branch on greater than or equal halfword (unsigned)
Branch on carry clear byte
Branch on greater than or equal byte (unsigned)
Return on greater than (unsigned)
Branch on greater than halfword (unsigned)
Branch on greater than byte (unsigned)
Return on carry set
Return on less than (unsigned)
Branch on carry set halfword
Branch on less than halfword (unsigned)
Branch on carry set byte
Branch on less than byte (unsigned)
Return on less than or equal (unsigned)
Branch on less than or equal halfword (unsigned)
Branch on less than or equal byte (unsigned)

* Indicates that opcode matches another instruction but operation is the same.

3-137

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Opcode

Table 3-19. Instruction Set Summary by Opcode (Continued)

Mnemonic Opcode Instruction
RVC Ox60 Return on overflow clear
BVCH Ox62 Branch on overflow clear, halfword displacement
BVCB Ox63 Branch on overflow clear, byte displacement
RNEQU Ox64 Return on not equal (unsigned)
BNEH Ox66 Branch on not equal halfword (duplicate)
BNEB Ox67 Branch on not equal byte (duplicate)
RVS Ox68 Return on overflow set
BVSH Ox6A Branch on overflow set, halfword displacement
BVSB Ox6B Branch on overflow set, byte displacement
REQLU Ox6C Return on equal (unsigned)
BEH Ox6E Branch on equal halfword (duplicate)
BEB Ox6F Branch on equal byte (duplicate)
NOP Ox70 No operation, 1 byte
NOP3 Ox72 No operation, 3 bytes
NOP2 Ox73 No operation, 2 bytes
RNEQ Ox74 Return on not equal (signed)
BNEH Ox76 Branch on not equal halfword
BNEB Ox77 Branch on not equal
RSB Ox78 Return from subroutine
BRH Ox7A Branch with halfword (J 6-bit) displacement
BRH Ox7B Branch with byte (8-bit) displacement
REQL Ox7C Return on equal (signed)
BEH Ox7E Branch on equal halfword
BEB Ox7F Branch on equal byte
CLRW Ox80 Clear word
CLRH Ox82 Clear halfword
CLRB Ox83 Clear byte
MOVW Ox84 Move word
MOVH Ox86 Move halfword
MOVB Ox87 Move byte
MCOMW Ox88 Move complemented word
MCOMH Ox8A Move complemented halfword
MCOMB Ox8B Move complemented byte
MNEGW Ox8C Move negated word
MNEGH Ox8E Move negated halfword
MNEGB Ox8F Move negated byte
INCW Ox90 Increment word
INCH Ox92 Increment halfword
INCB Ox93 Increment byte
DECW Ox94 Decrement word
DECH Ox96 Decrement halfword
DECB Ox97 Decrement byte
ADDW2 Ox9C Add word
ADDH2 Ox9E Add halfword
ADDB2 Ox9F Add byte

3-138

Table 3-19.

Mnemonic

PUSHW
MODW2
MODH2
MODB2
MULW2
MULH2
MULB2
DIVW2
DIVH2
DIVB2

ORW2
ORH2
ORB2
XORW2
XORH2
XORB2
ANDW2
ANDH2
ANDB2
SUBW2
SUBH2
SUBB2

ALSW3
ARSW3
ARSH3
ARSB3
INSFW
INSFH
INSFB
EXTFW
EXTFH
EXTFB
LLSW3
LLSH3
LLSB3
LRSW3
ROTW
ADDW3
ADDH3
ADDB3

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Opcode

Instruction Set Summary by Opcode <Continued)

Opcode Instruction

OxAO Push word
OxA4 Modulo word
OxA6 Modulo halfword
OxA7 Modulo byte
OxA8 Multiply word
OxAA Multiply halfword
OxAB Multiply byte
OxAC Divide word
OxAE Divide halfword
OxAF Divide byte

OxBO OR word
OxB2 OR halfword
OxB3 OR byte
OxB4 Exclusive OR word
OxB6 Exclusive OR halfword
OxB7 Exclusive OR byte
OxB8 AND word
OxBA AND halfword
OxBB AND byte
OxBC Subtract word
OxBE Subtract halfword
OxBF Subtract byte

OxCO Arithmetic left shift word
OxC4 Arithmetic right shift word
OxC6 Arithmetic right shift halfword
OxC7 Arithmetic right shift byte
OxC8 Insert field word
OxCA Insert field halfword
OxCB Insert field byte
OxCC Extract field word
OxCE Extract field halfword
OxCF Extract field byte
OxDO Logical left shift word
OxD2 Logical left shift halfword
OxD3 Logical left shift byte
OxD4 Logical right shift word
OxD8 Rotate word
OxDC Add word, 3-address
Ox DE Add halfword, 3-address
OxDF Add byte, 3-address

3-139

INSTRUCTION SET & ADDRESSING MODES
Instruction Set Summary by Opcode

Table 3-19. Instruction Set Summary by Opcode (Continued)

Mnemonic Opcode Instruction

PUS HAW OxEO Push address word
MODW3 OxE4 Modulo word, 3-address
MODH3 OxE6 Modulo halfword, 3-address
MODB3 OxE? Modulo byte, 3-address
MULW3 OxE8 Multiply word, 3-address
MULH3 OxEA Multiply halfword, 3-address
MULB3 OxEB Multiply byte, 3-address
DIVW3 OxEC Divide word, 3-address
DIVH3 OxEE Divide halfword, 3-address
DIVB3 OxEF Divide byte, 3-address
ORW3 OxFO OR word, 3-address
ORH3 OxF2 OR halfword, 3-address
ORB3 OxF3 OR byte, 3-address
XORW3 OxF4 Exclusive OR word, 3-address
XORH3 OxF6 Exclusive OR halfword, 3-address
XORB3 OxF? Exclusive OR byte, 3-address
ANDW3 OxF8 AND word, 3-address
ANDH3 OxFA AND halfword, 3-address
ANDB3 OxFB AND byte, 3-address
SUBW3 OxFC Subtract word, 3-address
SUBH3 Ox FE Subtract halfword, 3-address
SUBB3 OxFF Subtract byte, 3-address

3-140

Chapter 4

Operating System

Considerations

CHAPTER 4. OPERATING SYSTEM CONSIDERATIONS

CONTENTS

4. OPERATING SYSTEM
CONSIDERATIONS 4-1

4.1 FEATURES OF THE
OPERATING SYSTEM 4-1

4.1.1 Memory Management
Considerations for Virtual
Memory Systems....................... 4-4

4.2 STRUCTURE OF A PROCESS .. 4-4
4.2.1 Execution Privilege 4-5
4.2.2 Execution Stack........................... 4-5
4.2.3 Process Control Block 4-6

Initial Context for a Process 4-9
Saved Context for a Process 4-9
Memory Specifications................ 4-9

4.2.4 Processor Status Word 4-1 0
4.3 SYSTEM CALL............................ 4-1 0
4.3.1 Gate Mechanism 4-13

Pointer Table................. 4-13
Handling-Routine Tables 4-13

4.3.2 GATE Instruction 4-14
First Entry Point 4-14
Second Entry Point -

The Gate Mechanism 4-15
4.3.3 Return-From-Gate Instruction 4-16
4.4 PROCESS SWITCHING 4-16
4.4.1 Context Switching Strategy 4-17

R Bit. ... 4-17
I Bit ... 4-17

4.4.2 Call Process Instruction 4-20
4.4.3 Return-to-Process Instruction 4-22
4.5 INTERRUPTS 4-23
4.5.1 Interrupt-Handler Model 4-23
4.5.2 Interrupt Mechanism 4-24

Full-Interrupt Handler's PCB 4-25
Interrupt Stack and ISP 4-26
Interrupt-Vector Table 4-27

4.5.3 On-Interrupt Microsequence 4-28
4.5.4 Returning From an Interrupt. 4-29

Full Interrupts 4-29
Quick Interrupts 4-29

4.6 EXCEPTIONS............................... 4-29
4.6.1 Levels of Exception Severity 4-30
4.6.2 Exception Handler 4-30
4.6.3 Exception Microsequences 4-32

Normal Exceptions 4-32
Stack Exceptions 4-33
Process Exceptions 4-35
Reset Exceptions 4-35

4.7 MEMORY MANAGEMENT
FOR VIRTUAL MEMORY
SYSTEMS 4-36

4.7.1 Initializing the Memory
Management Unit.. 4-40
Defining Virtual Memory........... 4-40
Peripheral Mode 4-40

4.7.2 MMU Interactions 4-40
MMU Exceptions 4-41
Flushing 4-41

4.7.3 Efficient Mapping Strategies 4-41
4.7.4 Object Traps................................ 4-42
4.7.5 Indirect Segment Descriptors...... 4-42
4.7.6 Using the Cacheable BiL 4-42
4.7.7 Using the Page-Write Fault 4-42
4.7.8 Access Protection 4-43
4.7.9 Using the Software Bits 4-43
4.8 OPERATING SYSTEM

INSTRUCTIONS 4-43
4.8.1 Notation 4-43
4.8.2 Privileged Instructions 4·44
4.8.3 Nonprivileged Instructions 4-56
4.8.4 Microsequences............................ 4-64

OPERATING SYSTEM CONSIDERATIONS
Features of the Operating System

4. OPERATING SYSTEM CONSIDERATIONS

The WE 32100 Microprocessor allows cost-effective design of operating systems by
providing the system designer with special purpose operating system instructions and an
architecture that supports process-oriented operating system design. In general, a process
is a separately scheduled, independently executed unit of activity. It generally consists of
routines (functions) that perform a major task (such as a program manager, a file
manager, or a memory manager). To make full use of the power of the WE 32100
Microprocessor as an execution vehicle for today's efficient process-oriented operating
systems, this chapter presents the operating system considerations important to the system
designer.

The typical operating system for the WE 32100 Microprocessor schedules and initiates all
processes, handles error conditions (exceptions to normal processing), provides system
security, and resets the microprocessor when appropriate. Processes are scheduled through
common scheduling algorithms and are initiated through a process switch. A process
switch is an explicit or implicit request that changes the process controlling the
microprocessor. An explicit process switch is invoked by execution of one of the special
operating system instructions. An implicit process switch occurs as a result of a reset
request, some interrupt requests, or certain exception conditions. In theory, the
microprocessor can handle an unlimited number of processes, but real limits are imposed
by the operating system design (i.e., limiting the size of the interrupt stack). System
security is enforced by the microprocessor and by the WE 32101 Memory Management
Unit (MMU), an integral part of a virtual memory-based operating system using the
WE 32100 Microprocessor. The microprocessor is reset by the operating system through a
reset exception handler process. This handler should initialize the system hardware and
reload the operating system.

4.1 FEATURES OF THE OPERATING SYSTEM

As part of its architecture the microprocessor provides four execution or access levels for
processes. This allows each process to have functions that operate at different levels to
provide the proper levels of system protection. These levels range from the most privileged
(level 0) to the least privileged (level 3). Through built-in microprocessor safeguards, the
privilege level serves as a protection level. One of the functions of the MMU is to ensure
that code and data in any particular level are accessed only by code or processes that have
the right permissions. The four execution levels are defined as:

o Kernel (level 0) - The most privileged level; it contains the operating system's most
privileged services (e.g., device drivers and interrupt handlers).

o Executive (level 1) - This level is provided for greater flexibility in the operating system
design .

• Supervisor (level 2) - Common library routines can operate at this level and be safe from
corruption by the level 3 activities .

• User (level 3) - The least privileged level; most user programs can run in this level.

4-1

OPERATING SYSTEM CONSIDERATIONS
Features of the Operating System

4-2

Table 4-1 lists the powerful WE 32100 Microprocessor instructions provided for operating
systems. These instructions have two levels of hierarchy: privileged and nonprivileged.
Privileged instructions may be executed only if the processor is in kernel level, and they are
used to perform process switches, to enable or disable the MMU, or to suspend fetching of
instructions. Nonprivileged instructions do not depend on the execution level (i.e., they can
be executed at any level) and are used to switch between execution levels (in ways
restricted by the operating system) or to convert a virtual address to a physical address.

The processor automatically executes the appropriate microsequence (a built-in sequence of
actions) when an interrupt is requested or an exception occurs. These microsequences and
many operating system instructions can call functions (also microsequences) that do the
context switching (changing the hardware context for the new process to be executed).
This feature takes the requirements of context switching out of the operating system,
allowing for quicker and more efficient operating system design and execution. The
operating system instructions and microsequences are described in 4.8 OPERATING
SYSTEM INSTRUCTIONS.

Table 4-1. Operating System Instructions

Privileged Instructions

Instruction Assembly Hex Description
Syntax Opcode

Enable virtual ENBVJMP 300D Enables the MMU to translate addresses.
pin and jump The virtual address of the first instruction to

be executed after the MMU is enabled must
be stored in register rO before this instruction
is executed.

Disable virtual DISVJMP 3013 Disables the MMU from translating
pin and jump addresses. The physical address of the first

instruction to be executed after the MMU is
disabled must be stored in register rO before
this instruction is executed.

Call Process CALLPS 30AC Performs an explicit process switch.
Return to process RETPS 30C8 Restores a process from an interrupted state.
Wait for interrupt WAIT 2F Stops the CPU from fetching instructions.

Fetching resumes after an interrupt is
encountered.

Interrupt INTACK 302F Stores interrupt id in rOo
Acknowledge

Move translated MOVTR W src,dst OC The MMU converts the virtual address
word specified by src to a physical address. The

result is stored in dst. Can be used to obtain
physical address to send to an 110 device.

OPERATING SYSTEM CONSIDERATIONS
Features of the Operating System

Table 4-1. Operating System Instructions (Continued)

Nonprivileged Instructions

Instruction Assembly Hex Description
Syntax Opcode

Gate GATE 3061 Mechanism used to transfer control between
different execution levels.

Return from RETG 3045 Returns control to the function which called
Gate the gate. Linear ordering of execution levels

is enforced by RETG (j.e., new execution
level may not be more privileged than the
current level).

Other features of the microprocessor's architecture that are provided for operating system
design are summarized as follows:

.. The microprocessor supports different levels of execution privilege and enforces linear
ordering of these levels only on a return-from-gate (RETG) instruction, as discussed in
4.3.3 Return-From-Gate Instruction.

o The microprocessor provides flexibility in transferring execution control between
privilege levels. Control is transferred through the gate mechanism, as discussed in
4.3 SYSTEM CALL.

.. A scheduler may explicitly switch processes (CALLPS or RETPS instructions), but part
of the interrupt structure and certain exception conditions involve implicit switching of
processes. This provides some of the interrupt structure and some of the exception
handler advantages of a process switch .

.. The processor supports a layered exception-handling structure that uses different
mechanisms (process switching or gate mechanism), depending on the severity of the
exception.

o The processor supports full and quick interrupt handlers that use different mechanisms
(process switching or gate mechanism). A full interrupt is handled as an implicit
process switch, while a quick interrupt is handled as an implicit gate. See
2.8 INTERRUPTS for details on determining how interrupts are to be handled (j.e., as
full or quick interrupts) .

.. Address space of each process may include the space that contains the operating system;
i.e., the user may pass and address arguments across system calls efficiently, but need
not switch memory map information across such calls.

o The processor supports memory management, permitting users to believe the system has
4 Gbytes of memory. However, the operating system must provide the information
required by a memory management unit (MMU) to translate virtual addresses (j.e.,
memory descriptors) or disable the MMU for physical addressing. Systems without an
MMU use only physical addressing.

4-3

OPERATING SYSTEM CONSIDERATIONS
Memory Management Considerations for Virtual Memory Systems

4-4

4.1.1 Memory Management Considerations for Virtual Memory Systems

A memory management unit (MMU) is required for virtual memory (storage) systems.
The primary function of an MMU is to translate virtual address into physical addresses
and implement the protection of each process' data. The features thaf support a virtual
memory operating system are:

• Support of contiguous segments and paged segments. Segments, or blocks of memory,
are defined by memory descriptors. The WE 32101 Memory Management Unit uses
segment descriptors to define contiguous segments (i.e., a block of memory defined up to
128 Kbytes in length) and segment and page descriptors to define paged segments (i.e., a
block of memory defined to contain up to sixty-four 2 Kbyte pages).

• Present bits to indicate whether or not a segment is currently in main memory.

• Referenced and modified bits to aid implementation of a least recently used (LRU)
algorithm in the operating system.

• An indirection feature that allows segments to be given different access permissions
(e.g., read or write), yet still be shared by different routines running at the same
execution level (see 4.7.5 Indirect Segment Descriptors).

• Access fields contained in segment descriptors are used to provide protection so that
segments are accessed in the appropriate way by the appropriate execution level. An
access exception is generated if access is disallowed.

• An object-trap feature provides a mechanism where 110 devices or external processors
appear as normal segments from the user-software point of view.

• Segment marking as cacheable or not cacheable using a cacheable bit. This can be used
to aid the use of an external data cache in the system main memory (see 4.7.6 Using the
Cacheable Bit).

• A unique exception (page-write) that can be issued on any attempt to write a given page
(see 4.7.7 Using the Page-Write Fault).

4.2 STRUCTURE OF A PROCESS

Each process executing in the WE 32100 Microprocessor consists of the following elements:

• A processor status word (PSW) - the CPU register that contains status information
about the instruction just executed and the current process.

• A process control block (PCB) - a process data structure in external memory that
contains the hardware context of a process when the process is not running. This context
consists of the initial and current contents of control registers; PSW, program counter
(PC), and stack pointer (SP); the last contents of the general-purpose registers rO
through r8, frame pointer (FP), and argument pointer (AP); boundaries for an execution
stack; and block-move specifications for the process.

OPERATING SYSTEM CONSIDERATIONS
Execution Stack

• A process control block pointer (PCBP) - the CPU register that identifies the starting
location of the PCB for the process currently executing .

• Memory address space (the areas in memory allocated for the process). This space can
be defined by memory management specifications in the PCB block-move area.

o Segment and page descriptors and MMU SRAMs register contents, if the system uses
an MMU. This information can be defined in the PCB block-move area for automatic
transfer to the MMU during a process switch.

4.2.1 Execution Privilege

As stated previously, the processor recognizes four execution modes: kernel (most
privileged level), executive, supervisor, and user (least privileged level). Controlled entry
to an execution mode does not assume a particular order of the levels, but controlled return
does. Controlled return enforces a four-level privilege hierarchy going from most privileged
to least privileged; from kernel to executive to supervisor to user. See 4.3 SYSTEM CALL
for a description of controlled transfers across privilege levels. The operating system design
may use the four execution modes to manage layers of control. However, further
protection for memory access must be built into a memory management system.

To protect against an unwanted process switch, privileged operating system instructions
may be executed only in kernel mode. The other operating system instructions and the
instruction set may be executed in any of the four modes. Thus, only a two-level privilege
hierarchy exists for instruction execution.

Information associated with a process is protected by the restriction that the processor be
in kernel mode when writing the following registers:

1. Processor status word (PSW) - provides information about the current process. The
microprocessor implicitly alters the condition flags after most instructions. In
addition, some PSW fields change their contents to identify the type and severity of an
exception and help the operating system select the appropriate exception handler.

2. Process control block pointer (PCBP) - contains the starting address of the PCB for
the current process. Because the PCB for a process is assigned to a fixed starting
location, the PCBP content changes only during a process switch.

3. Interrupt stack pointer (ISP) - points to a stack which is used to store the PCBP for
interrupted processes and restores the PCBP when a process returns from its
interrupted state. Generally, the ISP is altered only on a process switch.

If the processor is not in kernel mode, it generates a normal exception (privileged register)
when an instruction tries to write to one of them. The use of privileged registers is
discussed later.

4.2.2 Execution Stack

During the execution of a process, the CPU SP register identifies the address of the next
available location on an execution stack. Conventionally, such a stack could be used for

4-5

OPERATING SYSTEM CONSIDERATIONS
Process Control Block

4-6

linking functions and passing arguments between:

• Functions that execute at the same level

• A privileged function and its less privileged caller

• An exception handler and the function that caused the exception

• An interrupt handler and the interrupted function.

An execution stack also provides tt:mporary storage for local variables.

Unlike other architectures that require at least two stacks, the WE 32100 Microprocessor
has only one execution stack per process. In some other processors, one stack serves the
most privileged execution levels, while the other is used in less privileged levels. Other
processors generally use a stack for each privilege level. A privileged stack in other
architectures is protected from errors in less privileged levels that could destroy its
contents.

In the WE 32100 Microprocessor architecture, a process uses one stack in all execution
modes. Each process stack is protected through maintenance of its upper and lower bounds
in the process control block (the data area that stores the hardware context) for the process
and checking of the bounds during a gate operation. Thus, each execution level is
protected from stack errors by other execution levels. In addition, using only one stack
reduces the overhead for stack allocation and simplifies the management of process stacks.

Before executing a transfer to a more privileged level through a system call or gate, the
processor checks the current SP against the stack bounds. The transfer occurs if the SP
falls within bounds. Otherwise, a stack exception (stack-bound) is generated.

Using the execution stack for the process, the processor handles normal exceptions within
the process in which they occurred. Before transferring to the appropriate exception
handler, it checks the current SP against the stack bounds.

Because an interrupt other than a quick interrupt causes a process switch, the processor
interrupt structure uses a different execution stack for each interrupt handler. Therefore,
the sanity of the interrupted process execution stack does not have to be checked. In
addition, the processor stores the PCBP of each interrupted process on one system-wide
interrupt stack and retrieves it from that stack when the process resumes execution. Quick
interrupts save the PC and PSW context on the execution stack of the active process and
are handled in the same manner as normal exception.

4.2.3 Process Control Block

Each process has a process control block (PCB). Elements in the PCB are accessed
through the process control block pointer (PCBP). This privileged register contains the
starting address in memory of the PCB for the process that is currently executing.
Although PCBs can be stored anywhere in memory, Table 4-2 identifies where the PCBP
must be stored for various processes.

OPERATING SYSTEM CONSIDERATIONS
Process Control Block

Table 4-2. PCBP Locations

Process Location <See note)

Full interrupt handler Vectors start at location 140 (Ox8C). Each interrupting
device has an 8-bit Interrupt-ID; the PCBP for the
appropriate interrupt handler should be at location
140+4* Interrupt ID.

Reset exception Physical location 128 (Ox80)
Process exception Location 132 (Ox84)
Stack exception Location 136 (Ox88)
Call process (CALLPS) PCBP taken from register rO; must be stored in rO

before CALLPS instruction is executed
Return to process (RETPS) PCBP taken from top of interrupt stack when RETPS

instruction is executed

Note: All locations are virtual addresses in virtual mode and physical addresses in physical
mode. Locations are given as decimal values (hexadecimal values).

Because only one process executes at a time in a multiprogramming system, the PCB of a
process retains its hardware context when that process is not running. The PCB, illustrated
on Figure 4-1, contains:

• Initial context. The three control registers (PC, PSW, and SP) are loaded with initial
values when a process starts executing for the first time. First time execution is
indicated by the I bit in the PSW being set (J).

• Control register save area. When a process is interrupted, the current contents of its
control registers are saved here. These values are loaded when that process resumes
execution and the I bit in the PSW is clear (0).

Note: If the I bit in the PSW of a process is initially set (1), execution starts from its
initial-context values. If the bit is clear (0), execution resumes from an intermediate
context. See 4.4.1 Context Switching Strategy for more information on the I bit.

• Stack bounds. The upper and lower stack bounds define the area allocated to the
execution stack for this process.

• General register save area. This area is reserved for saving the contents of register rO
through rlO. Registers r9 and rIO are the frame pointer (FP) and argument pointer
(AP) , respectively. These are used to specify the location of variables or arguments.
The FP locates local variables for a function, while the AP locates arguments passed to
the function.

• One or more block-move areas. If a process does not require any block moves (usually
used to perform a change in memory management specifications), only the null block is
required in the PCB. Otherwise, it contains a block-move area for each move to be
performed.

4-7

OPERATING SYSTEM CONSIDERATIONS
Process Control Block

4-8

Note: The R bit of the PSW must be set (1) if the general registers are to be saved for
the old process or loaded for the new process and if the block moves are to be executed for
the new process. See 4.4.1 Context Switching Strategy for more information on the R bit.

In general, the PC and SP values and block addresses stored in a PCB may be physical or
virtual addresses. If they are virtual addresses, the MMU must be enabled to translate
them into physical addresses. Two operating system instructions, enable virtual pin and
jump (ENBVJMP) and disable virtual pin and jump (DISVJMP), enable or disable the
processor's virtual address pin to tell the MMU it is generating virtual (enable) or physical
(disable) addresses. Before the instruction ENBVJMP or DISVJMP is executed, the
virtual or physical, respectively, address of next instruction to be executed must be stored
in rD.

THE 'INITIAL'
CONTEXT

'SAVE' AREA
FOR CONTROL
REGISTERS.

STACK BOUNOS

'SAVE' AREA
FOR GENERAL
REGISTERS.

FIRST
BLOCK MOVE

NEXT
BLOCK MOVE

31

INIT PSW

INIT PC

INIT SP

PSW

PC

SP

STACK LOWER BOUND

ST ACK UPPER BOUND

r10
r9
rO

I
r8

BLOCK SIZE

BLOCK AODRESS

I
BLOCK DATA

I
BLOCK SIZE

BLOCK AODRESS

I
BLOCK DATA

I
•

o

f : { ----- ------------
_NULL ~~OVE BLOCK SIZE = 0

31 0

PCBP 1(PSW<I> 1)

PCBP2 (PSW<I> 0)

PCBP2+4

PCBP2+8

PCBP2+60

PCBP2+64

Figure 4-1. A Typical Process Control Block

OPERATING SYSTEM CONSIDERATIONS
Memory Specifications

Initial Context for a Process

The initial context of the executing process is set up as follows:

o The PCBP, stored in memory, points to the initial-context area of its PCB .

• The initial PSW occupies the first PCB location, and its I bit should be set (1) to
identify that the process starts executing from its initial context. (The R bit should be
set if this process will use general registers.) See 4.2.4 Processor Status Word and
4.4.1 Context Switching Strategy for more details about the R and I bits.

o The second PCB word, the initial PC, is the address of the first instruction that process
executes.

co The third PCB word contains the initial SP (the address of the first location on the
execution stack).

co The seventh and eighth PCB words define the upper and lower limits of the execution
stack.

The values in the initial-context area and the stack bounds never change during normal
execution.

Saved Context for a Process

When a process switch occurs, the processor uses the current PCBP to save the context of
Process A (the executing process) in the current PCB. Using offsets from PCBP to access
the correct PCB location for Process A, the processor stores PC, PSW, SP, and if the PSW
R bit is set to 1, the general registers. It then reads in a new PCBP value for Process B
(the incoming process) and loads the Process B context from its PCB.

Memory Specifications

On each process switch, if the R bit in the PSW is set (I), the processor, using information
in the process PCB, performs a series of block moves. The PCB provides three elements
for each block move (see Figure 4-1):

1. Block size - This word value specifies the length of the block (number of words to be
moved) and implicitly identifies the starting location of the next block-move area.

2. Block address - This word value is the destination address where the processor starts
writing the block data.

3. Block data - This series of words represents the data to be moved. If the system has
an MMU, it could be the information written to MMU registers (or tables) to set up
the memory context for the new process.

The processor executes a move block (MOVBL W) instruction for each block until a zero­
length block (Block size = 0) is reached.

4-9

OPERATING SYSTEM CONSIDERATIONS
Processor Status Word

A memory management scheme does not alter the way the processor performs the block
moves or how many block moves occur. However, memory management may affect block
addresses. Systems with an MMU should use a virtual address for each block when the
MMU is enabled and physical addresses when the MMU is disabled. For a system
without an MMU, a block address must be a physical address.

4.2.4 Processor Status Word

The processor maintains a 32-bit processor status word (PSW) register which defines the
state of a currently running process. Table 4-3 identifies its contents.

The read-only fields of the PSW cannot be altered by software regardless of the execution
mode. An exception or process switch always directly affects the ET, ISC, and TM fields.
The ET and ISC fields, which identify the type and cause of an exception, are part of the
exception mechanism described in 4.6 EXCEPTIONS. The TE and TM fields are part of
the trace-trap mechanism.

An instruction may read the PSW at any time, but may write it explicitly only when the
process is in kernel mode. However, the processor implicitly alters some fields during
normal execution at other levels. In particular, most instructions change the condition
flags.

4.3 SYSTEM CALL

The system-call (gate) mechanism provides a means of controlled entry into a function by
installing a new PSW and PC value. If the new PSW has a different privilege level than
the current PSW, a transition to a different execution level occurs.

On simpler processors, a trap or supervisor call instruction picks up a new PC and PSW
from a fixed location. Then the software has to perform further indirection based on the
"trap number:' The gate mechanism, embodied in its gate (GATE) instruction,
automatically performs this second level of indirection for the user. The gate mechanism is
described 4.3.1 Gate Mechanisms.

4-10

Bit(s) Field

0-1 ET

2 TM

3-6 ISC

7-8 RI

9-10 PM

11-12 CM

OPERATING SYSTEM CONSIDERATIONS
Processor Status Word

Table 4-3. Processor Status Word Fields

Contents Description

Exception This read-only field indicates the type of exception
Type generated during operations and is interpreted as:

Code Description

00 On Reset Exception
01 On Process Exception
10 On Stack Exception
11 On Normal Exception

Trace The read-only TM field enables masking of a trace
Mask trap. This bit masks the trace enable (TE) bit for

the duration of one instruction to avoid a trace trap.
The TM bit is set (I) at the beginning of every
instruction and cleared (0) as part of every
microsequence that performs a context switch or a
return from gate.

Internal This 4-bit code distinguishes between exceptions of
State the same exception type. The ISC is a read-only
Code field.

Register- These bits control the context switching strategy.
Initial The I bit (bit 7) determines if a process executes
Context from initial or intermediate context. The R bit (bit

8, read only) determines if the registers of a process
should be saved. It also controls block moves to
change map information.

Previous This field defines the previous execution level. The
Execution code is interpreted as:
Level Code Description

00 Kernel level
01 Executive level
10 Supervisor level
11 User level

Current This field defines the current execution level. The
Execution CM code is interpreted the same way as the PM
Level code. Changes to the CM field via instructions with

the PSW as an explicit destination may cause the
XMD pins to change in the middle of a memory
access, which could cause a spurious exception or
system problem. Therefore, only microsequence
instructions should be used to change the CM field
state.

4-11

OPERATING SYSTEM CONSIDERATIONS
Processor Status Word

Table 4-3. Processor Status Word Fields (Continued)

Bit(s) Field Contents Description

13-16 IPL Interrupt The IPL field represents the current interrupt priority level.
Priority Fifteen levels of interrupts are available. An interrupt,
Level unless it is a nonmaskable interrupt, must have a higher

priority level than the current IPL in order to be
acknowledged. Therefore, level 0000 indicates that any of
the fifteen interrupt priority levels <0001 through 1111) can
interru pt the microprocessor; level 1111, the highest
interrupt priority level, indicates that no interrupts (except a
nonmaskable interrupt) can interrupt the microprocessor.

17 TE Trace This bit enables the trace function. When TE is set (I), it
Enable causes a trace trap to occur after execution of the next

instruction. Debugging and analysis software use this
facility for single-stepping a program. Changes to the state
of the TE bit via instructions with the PSW as an explicit
destination may cause unpredictable trace behavior.
Therefore, only microsequence instructions should be used to
change the TE bit state.

18-21 NZVC Condition The condition codes reflect the resulting status of the most
Codes recent instruction execution that affects them. These codes

are tested using the conditional branch instructions and
indicate the following when set (1):
N - Negative (bit 21) V - Overflow (bit 19)
Z - Zero (bit 20) C - Carry (bit 18)

22 OE Enable This bit enables overflow traps. It is cleared (0) whenever
Overflow an overflow trap is detected and handled.
Trap

23 CD Cache This bit enables and disables the instruction cache. When
Disable the CD bit is set (1), the cache is not used. Changes to the

state of the CD bit via instructions with the PSW as an
explicit destination may corrupt the contents of the
instruction cache. Therefore, only microsequence
instructions should be used to change the CD bit state.

24 QIE Quick- The QIE enables and disables the quick-interrupt facility. If
Interrupt QIE is set (1), an interrupt is handled via the
Enable quick-interrupt sequence.

25 CFD Cache When this bit is set (1), it disables cache flushing (emptying
Flush of the instruction cache contents) during the
Disable XSWITCH TWO microsequence.

26-31 Unused These bits are not used and are always cleared (0).

4-12

OPERATING SYSTEM CONSIDERATIONS
Handling-Routine Tables

4.3.1 Gate Mechanism

The CPU contains a microsequence program that locates the handling routine for the gate
mechanism. To use this mechanism, the operating system must provide the following gate
mechanism tables:

• Pointer table - Contains the 32-bit starting addresses for a set of handling-routine tables.
The processor assumes address 0 as the beginning of the table. The table contains
thirty-two 4-byte (word) addresses, one for each handling-routine table.

Note: Use of kernel level is forced whenever this table is accessed during execution of the
GATE instruction.

II Handling-routine tables - Each table in the set contains the entry points (PSW and PC
values) for a group of functions. A table is limited to 4096 two-word entries; one a new
PSW and the other a new PC (in that order) for a controlled transfer.

Two indexes, obtained from a GATE instruction's implied operands, locate the appropriate
PC and PSW pair for the controlled transfer.

Pointer Table

This table contains thirty-two entries and starts at location o. It must be contained in
secure memory (write permission for kernel level only) to prevent unwarranted access. The
first entry is reserved for normal-exception handling. Therefore, address 0 must locate the
handling-routine table (entry point set) for the normal-exception handlers.

The rest of the addresses in the pointer table may define sets of entry points for controlled
transfers. For example, one entry can be used to locate the handling-routine table for
kernel level entries, one entry for executive level entries, one for supervisor level entries,
and one for user level entries.

All thirty-two entries in the pointer table must be defined. A typical use for the remaining
entries is to define all unused pointer table entries to point to a dummy handling-routine
table. The dummy table is typically used to prevent an exception from occurring should an
offset into the pointer table result in locating an undefined handling-routine table.

Handling-Routine Tables

A handling-routine table stores a maximum of 4096 entry points (PSW and PC pairs) and
may be placed anywhere in memory (virtual memory if the system has an MMU that is
enabled; physical memory if it does not). However, each must start at an address that is a
multiple of eight. In a typical system, the handling-routine tables for entry into kernel
level reside in a section of memory that is shared by all processes.

Note: Sections of memory do not imply execution level. The GATE instruction forces
kernel level before it accesses any handling-routine tables. To preserve table security, these
tables should be protected so only the kernel level can write to them.

4-13

OPERATING SYSTEM CONSIDERATIONS
GATE Instruction

4.3.2 GATE Instruction

The GATE instruction is modeled after the jump to subroutine USB) instruction rather
than the call procedure (CALL) instruction which calls a function. In the typical system
environment (e.g., UNIX System, C compiler), the compiler generates a call to an
assembly-language function which then executes the gate instruction. GATE needs only to
execute a simple jump since the 'call frame' already exists.

Although GATE may be executed at any privilege level, the CPU forces and releases
kernel level for memory access. The gate instruction has two entry points. GATE starts
execution at the first entry point, while the on-normal exception microsequence enters at
the second (see 4.6 EXCEPTIONS). The second entry point is also the start of the gate
mechanism.

Before a GATE instruction is executed, two registers must be loaded:

• Register 0 (rO) must be loaded with the offset for constructing index1 (the index into
the pointer table). Indexl identifies the starting address of the appropriate handling­
routine table. Only five bits of rO are used .

• Register 1 (rI) must be loaded with the offset for constructing index2 (the index into
the handling-routine table). Index2 locates the new PSW and PC.

The on-normal exception microsequence is modelled after a GATE. On a normal
exception, the CPU supplies all appropriate information needed to execute a GATE-like
sequence.

The GATE instruction executes the following tasks in sequence (see Figure 4-2).

First Entry Point

I. GATE forces kernel level on memory accesses and checks the current SP against the
upper- and lower-stack bounds in the currently executing process PCB. A memory
exception on accessing either of the stack bounds from the PCB causes a process
exception (GATE-PCB). If SP is outside either boundary, a stack exception (stack
bound) is generated. GATE then releases kernel level for memory accesses.

2. GATE writes 1,0, 2 to the ISC, TM, and ET fields, respectively, of PSW. Then it
saves the address of the next instruction (PC + 2) and the current PSW on the
execution stack. If a memory exception occurs on the stack accesses, the processor
generates a stack exception (stack).

3. GATE computes index 1 for the pointer table by masking the contents of rO with Ox7C
and places the result in tempa. It then masks the contents of rl with Ox7FF8 for
index2 and stores the result in tempb. (Special registers tempa and tempb are used in
later steps for accessing the handling-routine tables.)

4-14

OPERATING SYSTEM CONSIDERATIONS
Second Entry Point

Second Entry Point - The Gate Mechanism

1. GATE again forces kernel execution level for memory accesses.

2. GATE uses tempa as a pointer to read the starting address of a handling-routine table
from the pointer table and write it to tempa. It then adds tempa and tempb (the
offset into the handling-routine table) and stores the result, index2, in tempb. This is
the address of the new PSW and entry point PC for the GATE jump.

3. GATE uses index2 to get new values for PSW fields OE, NZVC, TE, CM, R, and 1.
It then sets PSW fields ISC, TM, and ET to 7, 0, and 3, respectively.

4. GATE uses index2 to locate and load the new PC.

5. GATE adjusts SP to a location above the saved PC and PSW (thus completing a push
of the PC and PSW onto the stack) and releases kernel level for memory accesses.

The processor then begins executing the handling routine. When the routine finishes, a
return from gate (RET G) instruction returns to the function that issued the system call.

Note: If the GATE instruction is invoked directly, a memory exception that occurs during
the remaining steps causes a normal exception (gate-vector). A normal-exception
microsequence entering here will already have kernel level in effect and values in temp a
and tempb. Entering at this point from a normal-exception microsequence means that a
memory exception for any step generates a reset exception (gate-vector).

ADDRESS a

INDEX1!

POINTER
TABLE

indexl
index2

Entry Address for Handler Routine

INDEX2 !

rO & Ox7C
rl & Ox7FF8

HANDLING-ROUTINE
TABLE

NEW PSW
1-----

NEW PC
J ONE ENTRY

(Address Pointed to by index!) + index2

Figure 4-2. Tables for the Gate Mechanism

4-15

OPERATING SYSTEM CONSIDERATIONS
Return-From-Gate Instruction

4.3.3 Return-From-Gate Instruction

The return-from-gate (RETG) instruction is modeled after a return-from-subroutine
(RSB) instruction rather than after a return-from-procedure (RET) instruction. Unlike
the gate instruction, RETG enforces linear ordering of execution levels, which means the
new execution level may not be more privileged than the current level. During an RETG,
the microsequence forces and releases kernel level as required for memory access.

The return-from-gate instruction performs the following sequential actions to return to the
calling function.

1. Retrieves the old PSW and next-instruction address (stored on the execution stack by
the corresponding GATE) and places these in tempa and tempb, respectively.

2. Sets the trace mask (TM) bit in PSW to zero.

3. Compares the CM field in the current PSW to the CM field of the old PSW (in
tempa) to verify that the new execution level is less than or equal to the current level.
If this test fails, the microprocessor issues a normal exception (illegal-level change).

4. Writes the PSW fields OE, NZVC, TE, CM, PM, R, and I using the values in tempa
(the saved PSW).

5. Loads PC from tempb.

6. Adjusts SP to the location below the saved PSW and PC (thus completing a pop of
the PSW and PC from the stack).

7. Writes 7, 0, and 3 to PSW fields ISC, TM, and ET, respectively.

The function that called the GATE then starts executing its next instruction.

Note: If a memory exception occurs on a stack access during these steps, a stack
exception is issued.

4.4 PROCESS SWITCHING

Using its PCB, the WE 32100 Microprocessor explicitly invokes a process by automatically
saving or restoring its context. However, a PCB only defines hardware context (as
described in 4.2.3 Process Control Block), not software-maintained information (i.e.,
variables and arguments pointed to by the argument pointer and frame pointer) for the
process. The PCBP register always contains the address of the PCB of the current process.

To avoid destroying the PCB content on a process switch, the call process (CALLPS)
instruction performs both the save of the previous context and load of the new process
context. The processor does not accept interrupts until the CALLPS instruction is
completed. This prevents an undefined state between a save and a load. In this state, a
PCBP would still point to the PCB for the old (exiting) process. If the system completes a
save just as an interrupt occurs, then the interrupt-handling scheme causes the saved PCB
context to be overwritten. This cannot happen with the WE 32100 Microprocessor.

4-16

4.4.1 Context Switching Strategy

OPERATING SYSTEM CONSIDERATIONS
I Bit

The process-switch mechanism uses two PSW parameter bits, R and I, to control the
context-switching strategy:

• The R bit determines if the CPU general registers used by a process should be saved. It
also controls block moves .

• The I bit determines if a process executes from an initial context or intermediate context.
It also affects the setting of the PCBP register.

To save or load the appropriate information on a process switch, the processor uses the R
and I bits in the PSW of the new or incoming process. The use of the R and I bits is
explained next.

R Bit

The use of the R bit is explained by considering two processes: Process A as the current or
old process, and Process B as an incoming process. If Process B's PSW R bit is set, this
signifies that Process B wants to use the general registers, and thus the CPU's general
registers are saved in Process A's PCB save area for general registers when the process
switch occurs. Later, on return to Process A, the general registers will be restored for
Process A. If Process B requires block moves, the R bit must be set. On a process switch,
where a CALLPS (call process instruction) or simulated CALLPS is performed, the
processor saves general registers for Process A and performs block moves contained in
Process B if the R bit of Process B's PSW is set. When a process switch occurs as a result
of the RETPS instruction, the general registers are restored if Process A's PSW R bit is
set. (This value was copied from Process B's PSW when CALLPS occurred.)

To generalize, set the R bit in the initial-context PSW of any process that uses the general
registers or requires block moves. The R bit setting never changes, even though a process
switches in and out many times.

I Bit

The I bit function identifies whether a process is to start from an initial or intermediate
context. It also affects the PCBP register.

Consider two processes: Process A, the current or old process, and Process B, the incoming
or new process. The function of the I bit is explained as follows:

.. On leaving Process A, the microprocessor always writes the PC, SP, and PSW values
starting at the location pointed to by Process A's PCBP and then saves Process A's
PCBP on the interrupt stack. On entry to Process B, the microprocessor always reads
the PSW, PC, and SP values starting from the location pointed to by the Process B's
PCBP. These operations are the same for the CALLPS instruction, full interrupts, and
exceptions that perform a process switch.

4-17

OPERATING SYSTEM CONSIDERATIONS
I Bit

• If the I bit is set (1) in Process B's PSW, Process B's PCBP is incremented by twelve
bytes (three words) after the PSW, PC, and SP are loaded, and the I bit is set to zero.
Incrementing the PCBP guarantees that the initial context loaded in the first step will
not be overwritten if Process B is interrupted or executes a CALLPS instruction.
Clearing the I bit ensures that the adjustment of the PCBP is done only once. (If this
was not done and the I bit was to remain set, and if Process B was repeatedly
interrupted and resumed, Process B's PCBP would be incremented by twelve on each
RETPS instruction,)

• When Process B executes a RETPS instruction, Process A's PC, SP, and PSW context is
loaded from the locations pointed to by PCBP popped off the interrupt stack.

The main idea is that the effect of the I bit of a given process is not seen until that process
is itself interrupted and then returned to by another process.

If the I bit of a process is set when it is entered initially, the process' initial context will be
preserved if it is interrupted or if it calls another process. The saved context will be
written to and retrieved from the twelve bytes adjacent to the initial context. Otherwise, if
the I bit is zero initially, the initial context (if writable) will be overwritten in the course of
servicing the interrupt or CALLPS instruction.

Another way to look at the I bit is that if the PSW I bit feature did not exist, and the user
wanted to modify the PCBP via software to save the initial process context, it could not be
guaranteed that the PCBP would be adjusted before another interrupt was taken. Since
the I bit adjustment is done in a CPU microsequence, it guarantees that the PCBP
adjustment is made while the CPU is immune to interrupts.

The following describes the effects on the PCBP and the initial- and saved-context areas
during process switches.

When Process A is called initially by the CALLPS instruction (an explicit process switch),
the processor loads the PCBP register with the starting address (Address A) of the
Process A PCB (see part A of Figure 4-3). It then loads the PSW, the program counter
(PC), and the stack pointer (SP) with their initial context. Next, if the I bit in the PSW
is set (1), the processor clears the I bit and increments the PCBP register by twelve bytes
to the saved-context area (Address B) of the Process A PCB (see part B of Figure 4-3).
This will cause any later process switch to save PSW, PC, and SP values in the
intermediate context area instead of overwriting the initial-context values. The Process A
initial-context area and its PCBP stored in memory are not affected on this process switch.

Part A of Figure 4-4 shows the effect on the PCBP and the Process A PCB if a process
switch occurs before Process A is finished. Here, the processor uses the adjusted PCBP
(assuming the I bit was set when Process A was initiated) to save the intermediate context
of the control registers and stores the PCBP on the interrupt stack. This time, the PSW I
bit will be clear and the PC points to the next Process A instruction.

When the processor restores Process A (see part B of Figure 4-4), the processor retrieves
the PCBP from the interrupt stack. Remember that the PCBP points to the saved-context

4-18

OPERATING SYSTEM CONSIDERATIONS
I Bit

area (if the initial I bit value was zero, then the saved-context area overwrote the initial­
context area) and the I bit of the PSW is clear. The processor then loads the control
registers with their intermediate context and Process A resumes execution with its next
instruction. If the initial value of the I bit for Process A was clear (0), then the initial­
context area becomes the save area since the PCBP was never adjusted to point to the
saved-context area. That is, the Address B in Figures 4-3 and 4-4 is the same as Address
A, and the initial-context area no longer exists.

The initial context of a process never changes, provided the initial I bit setting is one.
Also, the PCBP stored in memory always points to the initial context. This enables an
interrupt-handler process to get its PCBP from memory without going through a scheduler.
A suspended process restarts from an intermediate context on a return from a full-interrupt
handler, certain exception handlers, or the RETPS (return-to-process) instruction. Also, a
process that had an initial I bit value of zero is restarted from an intermediate context on
any subsequent CALLPS instruction after it was first switched to. A process starts from
its initial context (initial I bit value is set) whenever a CALLPS instruction is executed.

PCB

MEMORY ADDRESS A INITIAL PSW - PCBP

ADDRESS A INITIAL PC

(PCBP FOR PROCESS A) INITIAL SP

ADDRESS B SAVE AREA

A. Context at Start of Switch to Process A

PCB

MEMORY ADDRESS A INITIAL PSW

ADDRESS A INITIAL PC

(PCBP FOR PROCESS A) INITIAL SP

ADDRESS B SAVE AREA ~ PCBP

B. Context After Switch to Process A

Figure 4-3. A PCB on an Initial Process Switch to a Process

4-19

OPERATING SYSTEM CONSIDERATIONS
Call Process Instruction

4-20

MEMORY
I ADDRESS A

(PCBP FOR PROCESS A)

INTERRUPT STACK g
PCB

ADDRESS A

ADDRESS B

INITIAL PSW

INITIAL PC

INITIAL SP

SAVED PSW f
SAVED PC

(
SAVE AREA

INTERMEDIATE CONTEXT)
SAVED SP L

• · •

A. Context After Switch to Some Other Process

PCB
ADDRESS A INITIAL PSW

MEMORY INITIAL PC

ADDRESS A INITIAL SP

(PCBP FOR PROCESS A) ADDRESS B OBSOLETE PSW ~ PCBP

OBSOLETE PC

OBSOLETE SP

•
•
•

B. Context After Process A Is Switched Back to and Restored

Figure 4-4. A PCB on a Process Switch During Execution of a Process

4.4.2 Call Process Instruction

The call process (CALLPS) instruction, mentioned in the discussion of the R and I bits, is
the process analog of the call procedure (CALL) and save registers (SAVE) instructions
that carry out a function call. To execute CALLPS, the processor must be in kernel mode.
In addition, rO must be preloaded with the new PCBP (address of the PCB for the new
process) .

OPERATING SYSTEM CONSIDERATIONS
Call Process Instruction

The call process instruction performs an explicit process switch. Using Process A as the
current (old) process and Process B as the incoming (new) process, CALLPS performs the
following sequential steps:

1. Places the content of rO (Process B PCBP) into register tempa and forces kernel
execution level on memory accesses.

2. Saves Process A PCBP on the interrupt stack (see Interrupt Stack and ISP under
4.5.2 Interrupt Mechanism). If a memory exception occurs when accessing this stack,
the processor issues a reset exception (interrupt stack).

3. Adjusts PC to the address of the instruction that Process A would have executed next
(PC + 2).

4. Calls the function XSWITCH_ONEO to save Process A context. (All writes are
made to the saved-context area of process PCB because the I bit of an executing
process PSW is always clear.) If a memory exception occurs on a PCB access, the
processor issues a process exception (old PCB).

XSWITCH_ONE does the following:

a. Using tempa as a pointer to the Process B PCB, copies the R bit from the new
PSW into the R bit of the current PSW. (The R bit will be used later.)

b. Stores the current PSW in the Process A PCB and writes 0, 0, 1 to the ISC, TM,
and ET fields, respectively, of the saved PSW.

c. Saves PC (address of the next instruction) and SP in the Process A PCB.

d. Writes rO through rIO to the general register area of the Process A PCB if the R
bit of the Process B PSW is set. Otherwise, these registers are not saved.

e. Returns control to CALLPS.

5. Calls the function XSWITCH TWOO to load the Process B context. If a memory
exception occurs when accessi~g its PCB, the processor issues a process exception (new
PCB).

XSWITCH_TWO does the following:

a. Loads PCBP from tempa (which contains Process B's PCBP value).

b. Reads in the new PSW and sets its TM bit to O. Next, it loads the new PC and
SP. PC now contains the address of the first instruction for Process B.

c. Tests the PSW I bit. If the I bit is set, the I bit is cleared, and the PCBP is
adjusted to the saved-context area of the Process B PCB.

d. Returns control to CALLPS.

4-21

OPERATING SYSTEM CONSIDERATIONS
Return-to-Process Instruction

6. Writes 7, 0, 3 to the ISC, TM, and ET fields, respectively, of the PSW.

7. Calls the function XSWITCH_THREEO for block moves.

XSWITCH_THREE does the following:

a. Tests the R bit in the PSW .

• If the R bit is set, it loads the block-move information from the block-move
areas of the Process B PCB. For each block to be moved, it preloads rO with
the starting address of the block-move area, rl with the size of the block
(number of words to be moved), and r2 with the destination of the move. Then
it executes a move block (MOVBL W) instruction .

• If the R bit is clear (0), no block moves are performed.

b. Returns control to CALLPS.

8. Releases kernel execution level on memory accesses and Process B begins executing.

4.4.3 Return-to-Process Instruction

The RETPS instruction restores a process from its interrupted state and may be executed
only when the processor is in kernel mode. RETPS is the process analog of a function
return that uses the restore registers (RESTORE) and return-from-procedure (RET)
instructions. Again, the R and I bits in the PSW determine the context-switching strategy.

The CALLPS and RETPS instructions act similarly, except the RETPS does not save the
context of the exiting process. For this discussion, Process A is the returned-to-process.
RETPS performs the following sequential steps:

I. Forces kernel execution level on memory access and moves the Process A PCBP from
the interrupt stack into register tempa. If a memory exception occurs on the stack
access, the processor issues a reset exception (interrupt-stack).

2. Loads the PSW R bit with R bit from tempa.

3. Calls XSWITCH_TWOO to restore the Process A context. If a memory exception
occurs when accessing its PCB, process exception (new PCB) is issued. (The PCBP
for Process A is still at the top of the interrupt stack.)

XSWITCH_TWO does the following:

a. Loads PCBP from tempa.

b. Loads PSW from the PCB, writes a 0 to the TM bit, and then loads PC and SP.
Because this is a return process, the I bit is clear and all control registers are
loaded from the saved-context area of its PCB.

c. Returns control to RETPS.

4. Writes 7, 0, 3 to the ISC, TM, and ET fields, respectively, of PSW.

5. If R bit is set (1), calls XSWITCH]HREEO to perform any block moves.

4-22

OPERATING SYSTEM CONSIDERATIONS
Interrupt-Handler Model

XSWITCH_THREE does the following:

a. Tests the R bit in the PSW .

• If the R bit is set (I), it does the block moves in the block-move areas of the
Process A PCB. For each block to be moved, rO gets the starting address of a
block-move area in the PCB, r1 gets the size of the block (number of words to
be moved), and r2 gets the destination of the move. Then the function executes
a move block instruction (MOVBL W).

• If the R bit is clear (0), no block moves are performed.

b. Returns control to RETPS.

6. If the R bit is set (1), RETPS loads rO-r10 from general register save area of
Process A PCB.

7. Releases kernel execution level on memory accesses and Process A resumes executing.

4.5 INTERRUPTS

When an external device requests an interrupt, a processor temporarily stops its current
execution and jumps to code that services the interrupt. On completion of the interrupt
handler code, execution resumes at the point where the interrupt occurred. An interrupt
mechanism performs the execution switch.

4.5.1 Interrupt-Handler Model

An interrupt handler may be modeled after a gate (system call) or process switch. In most
existing architectures, an interrupt handler is a function that is invoked on an interrupt.
The function executes as part of the interrupted process context or as part of a system-wide
context. Although easy to implement, the function call does not isolate interrupt handlers,
execute them at any level, or return from them to a different process.

The WE 32100 Microprocessor uses either the process switch or gate switch. In the
process switch model, an interrupt (called a full interrupt in this case) causes an implicit
process switch to a new process. In the gate switch model, an interrupt (called a quick
interrupt in this case) causes an implicit gate to a handler function. When full interrupts
are used, the processor interrupt mechanism meets the isolation and execution-level
requirements because each interrupt handler is a separate process with its own execution
stack. The processor tracks full-interrupt nesting in such a way that a full-interrupt
handler at any priority level may preempt the original process, thus meeting the return
requirement. With the quick-interrupt feature, interrupts can be handled as described
above for most existing architectures.

For efficient operation, the implicit process switch on a full interrupt does the following:

• Minimizes the loading and saving of an interrupt handler's context

• Allocates only one stack to each interrupt-handler.

4-23

OPERATING SYSTEM CONSIDERATIONS
Interrupt Mechanism

4.5.2 Interrupt Mechanism

There are three functions of the interrupt mechanism:

o Determining whether or not there will be an interrupt.

• Determining how an interrupt request will be acknowledged and what the interrupt-ID
value is.

o Saving the old context and bringing in a new context.

The first part involves checking the NMINT and IPL[3-01 pins, and the IPL field of the
PSW. The next part involves the NMINT, AVEC, IPL[3-01 and INTOPT pins, and an
interrupt acknowledge or auto-vector interrupt acknowledge bus cycle. The final part
involves the QIE field of the PSW and a quick-interrupt (gate-like) sequence or a full­
interrupt (process-switch) sequence.

The following algorithm describes the interrupt behavior. The notation used is:

• 1==1 if there is to be an interrupt

• ID is the value used as the interrupt-ID in the on-interrupt microsequence

• NMI, INTOPT, and AVEC represent the complements of the values of the nonmaskable
interrupt (NMINT), interrupt option (INTOPT), and auto-vector (A VEe) pins,
respectively.

1=0;
if(NMI==1) {

1=1;
10=0;

else if«requestedjnterrupUevel) > (PSW <IPL>))
1=1;

}

if(A VEC== 1)
ID=(INTOPT concatenated with interrupt request level);

else ID=(value fetched in interrupt acknowledge cycle);

if(I==l) {
call on-interrupt microsequence;

}
else {

no interrupt;

An interrupt occurs if the priority level requested is greater than the priority level in the
'IPL field of the PSW. Thus, if PSW<IPL>==15, no interrupts will be acknowledged
(except for nonmaskable interrupt).

4-24

OPERATING SYSTEM CONSIDERATIONS
Full-Interrupt Handler's PCB

After acknowledging an interrupt (full or quick as determined from Table 2-4), the
processor performs its on-interrupt micro sequence (an implicit process or gate switch). Its
actions are similar to a call process (CALLPS) instruction for a full interrupt and a gate
(GATE) instruction for a quick interrupt, but with a few differences.

When a full interrupt activates an interrupt-handler process, the interrupt handler starts
from its initial state. However, unlike ordinary processes, this initial context consists of
only the three registers and the stack bounds; general registers are not loaded for any
process starting from an initial context.

A higher priority interrupt may interrupt the current interrupt-handler process. When this
happens, its intermediate context is stored in the save area of the PCB, rather than the
initial-context area. Thus, the interrupted interrupt handler can resume execution from that
point later.

The I bit in the process PSW controls which starting point and context to use (see 4.4.1
Context Switching Strategy).

To return from a full interrupt, an interrupt-handler process executes a return-to-process
(RETPS) instruction. This process switch does not save the state of the exiting interrupt­
handler process (see 4.4.3 Return-to-Process Instruction).

When a quick interrupt activates an interrupt handler, the current PC and PSW values are
stored on the execution stack. A simulated gate is then performed to load the PC and
PSW registers with the initial information for the interrupt handler. A quick-interrupt
gate does not perform any stack bounds check; therefore, quick interrupts should not occur
in processes where the stack may be bad (e.g., a user process with a stack that is
unreliable). Also, a quick-interrupt gate sets the PSW interrupt priority level (IpL) field
to 15, thus disabling all interrupts except a nonmaskable interrupt.

Only a nonmaskable interrupt may interrupt the current quick-interrupt handler. When
this happens, the PC and PSW values of the interrupted interrupt handler are stored on the
execution stack and another simulated gate is performed. Thus, the interrupted interrupt
handler can resume execution from its interrupted state.

To return from a quick interrupt, an interrupt handler should restore the IPL field in the
PSW and then execute a return from gate (RETG) instruction (see 4.3.3 Return-From­
Gate Instruction).

Full-Interrupt Handler's PCB

Before an interrupt handler is activated, its PCBP points to the initial-context area of its
PCB, which contains initial values for the PSW, PC, and SP. The IPL field in this PSW
is usually set at least as high as the priority level of the device associated with the interrupt
handler. (Interrupt-priority levels range from 0, the lowest, to 15, the highest, which
indicates "no interrupts.") In addition, the I bit in this PSW should contain 1. If the
interrupt handler wants to use the general registers, the PSW R bit should be 1.

4-25

OPERATING SYSTEM CONSIDERATIONS
Interrupt Stack and ISP

If the new PSW has its I bit set when an interrupt handler is activated, the I bit in the
PSW register is cleared and the PCBP register is adjusted to the saved-context area of the
handler's PCB. The save area is used to store the handler's control registers if another
interrupt occurs.

If the PSW's I bit is set, an interrupt-handler process always starts from the same initial
state whenever it is initially activated because its initial-context values never change.
However, after being interrupted, the saved-context area always reflects its state at the
time of the interrupt. Thus, the restored interrupt handler starts from the appropriate
intermediate state.

An interrupt handler's MMU map specification, if maintained in the PCB block-move
areas, is used when loading an initial context or restoring an intermediate context.
Therefore, the user must ensure that the operating system restores the map data to its
initial state before a return-from-interrupt. This can be done by maintaining appropriate
R bit values in the PCBs involved.

Interrupt Stack and ISP

The user must design the operating system to allocate memory space for one interrupt
stack. This system data structure enables the processor to track the nesting of interrupt
handlers and active processes and is never used as an execution stack.

The processor uses its interrupt stack pointer (ISP) register to access the interrupt stack.
This privileged register always contains the address of the top of the stack. When it saves
the current PCBP, a CALLPS or on-interrupt microsequence automatically increments ISP
by four. A RETPS decrements ISP by four when it restores the PCBP. An attempt to
write this register other than in kernel level causes a normal exception privileged register.

At any level of full-interrupt handling, the interrupt stack contains the PCBPs for all lower
priority interrupt handlers that were interrupted while executing. The entry at the bottom
of the stack is the PCBP for the process that was interrupted by the first interrupt handler
(see Figure 4-5).

4-26

INTERRUPT STACK

PCBP PROCESS N+1

PCBP PROCESS N

PCBP PROCESS B

PCBP PROCESS A

E!--

PROCESS B INTERRUPTED PROCESS A.

ISP

PROCESS N+1 IS LAST PROCESS INTERRUP'ED.

Figure 4-5. An Interrupt Stack

OPERATING SYSTEM CONSIDERATIONS
Interrupt-Vector Table

Because a return-from-process (RETPS) restores the process that was interrupted, the
process at the bottom of the stack is eventually restored. However, any interrupt handler
whose PCBP is on this stack may force a return to a different process. If any interrupt
handler does this, be sure that it overwrites the normal-process PCBP at the bottom of this
stack with the PCBP of the desired process.

Interrupt-Vector Table

The user must provide interrupt-vector tables for full and quick interrupts, depending on
how interrupts are to be handled (process switches and/or gates). Figure 4-6 shows the
memory locations where interrupt PCBPs and PC/PSW pairs must be stored. If the
nonmaskable and auto-vector interrupts are not used, those locations can be used to store
the PCBPs for device-interrupt handlers. The full-interrupt-vector table starts at location
140 (8C hex) to store the PCBP (up to 256 PCBPs) for each interrupt handler and the
quick-interrupt-vector table starts at location 1164 (48C hex) to store PC/PSW pairs (up
to 256 pairs) for each interrupt handler. Commonly, each device that requests an interrupt
may require a different handling routine. The processor locates the appropriate interrupt
handler by using an 8-bit code (interrupt-ID) as an offset into the vector tables. The code
is used to form the address (140 + 4*interrupt-ID) to obtain the PCBP for a full-interrupt
handler or the address (1164 + 8*interrupt-ID) to obtain the PC/PSW pair for a quick­
interrupt handler.

Hex
Address

8C

8F
90

lOB
10C

48B

Nonmaskable Interrupt
Handler PCBP

"0 word)

Auto-vector
Interrupt

Handler PCBPs
(31 words)

Device Interrupt
Handler PCBPs

(224 words)

A. Full-Interrupt Vector Table

Hex
Address

48C

493
494

58B
58C

C8B

Nonmaskable Interrupt
Handler PC/PSW Pair

(2 word)

Auto-vector
Interrupt Handler

PC/PSW Pairs
(62 words)

Device Interrupt
Handler

PC/PSW Pairs
(448 words)

B. Quick-Interrupt Vector Table

Figure 4-6. Interrupt Vector Tables

4-27

OPERATING SYSTEM CONSIDERATIONS
On-Interrupt Microsequence

4.5.3 On-Interrupt Microsequence

The on-interrupt microsequence is a sequence of actions built into the WE 32100
Microprocessor that responds to interrupts. The on-interrupt microsequence handles both
full and quick interrupts. For full interrupts, the processor performs an implicit process
switch. For quick interrupts, the processor performs a GATE-like PSW fPC switch. Here,
Process A is the interrupted process and Process B is the interrupt handler. (See 4.4.2 Call
Process Instruction for descriptions of the XSWITCH functions.)

The microsequence performs the following sequential steps:

1. Writes the interrupt-ID to register tempa. If a memory exception occurs, the
processor generates a stack exception (interrupt-ID fetchr

2. Forces kernel level on memory accesses.

3. Skips to step 12 if it is a quick interrupt (the PSW's QIE field is set to I).

4 Performs steps 5 through 11 for a full interrupt.

5. Forms an index 140+4*tempa, which is written to tempa. This index is used to
locate the PCBP of the appropriate interrupt handler.

6. Stores the Process A PCBP on the interrupt stack. If a memory exception occurs on
this stack operation, the processor generates a reset exception (interrupt stack).

7. Calls XSWITCH_ONEO to store the Process A context in the saved-context area of
its PCB and then writes 0, 0, 1 to the ISC, TM, and ET fields, respectively, of the
saved PSW. If any of these operations causes a memory exception, the processor
generates a process exception (old-PCB).

8. Calls XSWITCH_TWOO to load the Process B PCBP and new PC, PSW, and SP
values from the initial-context area of its PCB. A memory exception on any
XSWITCH_TWO operation causes a process exception (new-PCB). If it is set, the
PSW I bit will be cleared and PCBP adjusted to the saved-context area of Process B
PCB.

9. Writes 7, 0, 3 to the PSW's ISC, TM, and ET fields, respectively.

10. Calls XSWITCH_THREEO to make any necessary block moves. A memory
exception here causes a process exception (new-PCB).

11. Releases kernel level on memory accesses. For full interrupts, this is the last step of
the on-interrupt microsequence.

12. Resumes quick interrupt here.

13. Forms an index, 1164+tempa*8, which is written to tempa. This index is used to
locate the PSW and PC of the appropriate interrupt handler.

14. Releases kernel level on memory accesses.

4-28

OPERATING SYSTEM CONSIDERATIONS
Exceptions

15. Pushes the PSW and PC of Process A onto the execution stack.

16. Forces kernel level on memory accesses.

17. Sets the PSW with value indexed by tempa, and PC with value indexed by 4+tempa.
Some fields in the PSW are unchanged. Also, the IPL field is set to 15 to mask any
subsequent interrupts. If a memory exception occurs, a normal exception (gate
vector) is generated.

18. Releases kernel level on memory accesses. For quick interrupts this is the last step of
the on-interrupt microsequence.

Process B (the interrupt handler) takes its priority level from the PSW that was just
loaded and starts executing. Execution may be interrupted only by a higher priority
interrupt (higher than the IPL value of the PSW).

4.5.4 Returning From an Interrupt

Full Interrupts

A full-interrupt handler may restore the inte~rupted process or may return to another
process after servicing the interrupting device. To accomplish either process switch, the
full-interrupt handler must contain a return-to-process (RETPS) instruction. Unlike the
call process, RETPS does not save the exiting process (interrupt handler) context.

Note: If a full-interrupt handler is not to return to the process interrupted, the interrupt­
handler routine must alter the interrupt stack before a RETPS instruction. The PCBP for
the process returned to must replace the PCBP that was saved for the interrupted process.

The PCBP of the process to which the return-from-interrupt occurs is removed from the
interrupt stack. The full context of the returning process is restored from its PCB, and any
required map changes are made (block moves are performed).

Quick Interrupts

A quick-interrupt handler returns to the function that was interrupted (i.e., restores the PC
and PSW registers with the values popped off the execution stack). To return from a
quick-interrupt handler, the handler must execute a return-from-GATE (RETG)
instruction. Also, before returning from a quick interrupt, the IPL field of the PSW
should be set to the previous state of the interrupted process.

4.6 EXCEPTIONS

An exception is an error condition, other than an interrupt, that requires special processing
for recovery. That is, an exception mechanism is needed to correct the error condition so

4-29

OPERATING SYSTEM CONSIDERATIONS
Levels of Exception Severity

that normal processing can continue. Exceptions are caused by the following three types of
events:

• Internal faults - error conditions detected by the processor during instruction execution.
The fault handler for such events may restart the instruction that caused the fault.

• External faults - error conditions detected outside the processor and conveyed to it over
its fault input. The processor recognizes the fault during instruction execution and the
appropriate fault handler may then restart the execution .

• Traps - internal error conditions detected by the processor at the end of an instruction.
After the trap is handled, execution may resume with the next instruction.

The exception mechanism for the WE 32100 Microprocessor is implemented through
microsequences. Depending on the level of exception severity, the microprocessor responds
with the appropriate microsequence to facilitate correction of the condition.

4.6.1 Levels of Exception Severity

The processor recognizes four levels of exception severity, with zero (0) as the highest
level. It uses the ET (exception type) and ISC (internal state code) fields of the PSW to
identify the severity and type of exception, respectively. Because all exception
microsequences preserve the ET and ISC values in the current PSW, the incoming
exception handler may use them. The ET value gives the class of exception and
corresponds to its severity level, while ISC distinguishes among error conditions of the
same class. During normal program execution, ET is 3 and ISC is 7. Table 4-4 identifies
the severity levels, giving the ET value in decimal. The meaning of the ISC values for
each exception severity level is identified later.

4.6.2 Exception Handler

On-stack, on-process, and on-reset exception microsequences do not use the ET and ISC
values, but preserve them for an incoming exception handler. The on-normal exception
microsequence uses them to locate the appropriate handling routine, as well as preserving
them.

Table 4-4. Severity Levels for Exceptions

ET Level Processor Response

0 Reset Executes on-reset microsequence; highest severity level
1 Process Executes on-process exception microsequence
2 Stack Executes on-stack exception microsequence
3 Normal Executes on-normal exception microsequence; lowest

severity level

4-30

OPERATING SYSTEM CONSIDERATIONS
Exception Handler

The ET and ISC values help identify the task an exception handler must perform. What
an exception handler should do with the ET and ISC values or how it should handle the
error depends on the needs of the system. In general, if computation can continue,
resumption of the process may be chosen. However, if an error is too serious for the
original process to continue its computations, the exception handler should ask the
scheduler to terminate the bad process.

The operating system designer must provide exception-vector tables. Figure 4-7 shows the
addresses where the vector tables reside. All locations must be filled with either PCBPs or
the address of the handling-routine table (for normal exceptions).

Hex
Address

00

03
04

7F
80

83
84

87
88

8B

Normal Exception
Pointer Table Entry

(1 word)

Gate Pointer
Table

(31 words)
(Not Used by

Exception
Handler)

Reset Exception
Handler PCBP

(1 word)

Process Exception
Handler PCBP

(I word)

Stack Exception
Handler PCBP

(I word)

Figure 4-7. Exception-Vector Table

4-31

OPERATING SYSTEM CONSIDERATIONS
Exception Microsequences

4.6.3 Exception Microsequences

The processor's microsequences enable it to execute an appropriate sequence of actions
when it detects an exception. By design, an exception that occurs during one of these
microsequences has a higher severity level. Such an exception, therefore, stops the current
microsequence, and the processor starts performing a higher level microsequence. Thus,
the processor can ripple up levels of exception severity.

Any exception during an on-reset sequence (the severest exception level) causes the
processor to restart the on-reset sequence. Trying to recover from the exception, the
processor goes into an infinite loop and consequently can recover from transient faults.

The sections that follow describe the error conditions for each class of exception and the
response of the microsequence. When describing this response, Process A is the process
that caused the exception and Process B is the exception handler. In general, a normal
exception results in a simulated gate instruction, but a stack, process, or reset exception
causes an implicit process switch. Descriptions of microsequences follow the operating
system instructions at the end of this chapter.

Normal Exceptions

This group of exceptions includes most of those that occur in other microprocessor
architectures. Table 4-5 identifies the ISC and the cause of each normal exception.

When a normal exception occurs, the processor executes the on-normal exception
microsequence. After some set up operations, the microsequence enters the gate instruction
at its second entry point (see 4.3.2 Gate Instruction). Using the ISC code, this simulated
GATE finds the appropriate exception-handler function and transfers control to it. Both
the microsequence and the exception handler execute within the process that caused the
error condition.

To locate the exception handler, GATE requires two implied operands that serve as indexes
into the pointer table and the correct handling-routine table. (See 4.3.1 Gate Mechanism
for a description of these tables') For GATE indexl, the microsequence supplies the value
of O. For GATE index2, it uses the internal-state code (ISC) in the saved PSW, shifted
three bits toward the most significant bit. This shifted ISC value forms an index into the
handling-routine table. Thus, a normal exception results in a controlled transfer to the
corresponding exception handler. On completion of the on-normal exception
microsequence, the ISC, TM, and ET fields of the PSW presented to the exception handler
will contain 7, 1,3, respectively.

Because a normal-exception handler executes as part of Process A, it uses the same
execution stack. After handling the error condition, a normal-exception handler must
execute a return from gate instruction to restore control to Process A.

4-32

OPERATING SYSTEM CONSIDERATIONS
Stack Exceptions

Table 4-5. Normal Exceptions (ET=3)

ISC Exception Cause

0 Integer zero divide An attempt to divide by zero. This exception is
(Internal fault) always enabled. (Note 1)

1 Trace Normal response to the end of an instruction if the
(Trap) TE bit is set in the PSW.

2 Illegal opcode Use of an undefined opcode.
(Internal fault)

3 Reserved opcode Use of an opcode reserved for future implementation.
(Internal fault) This is also the normal response to the extended

opcode (EXTOP) instruction.

4 Invalid descriptor Use of literal or immediate address mode for a
(Internal fault) destination operand; instruction's opcode requests

the effective address of a literal, immediate, or
register operand. (Note 1)

5 External memory A exception when accessing external memory.
(External fault)

6 Gate vector A memory exception when accessing the gate tables as
(External fault) part of a GATE.

7 Illegal level change An attempt to increase the current execution
(Internal fault) privilege level on a RETG.

8 Reserved data type Use of an operand type that is not defined for the
(Internal fault) expanded-operand type address mode. (Note 1)

9 Integer overflow An attempt to write data into a destination that is
(Internal fault) too small. This exception is enabled when the OE

bit is set in the PSW. (Note 2)

10 Privileged opcode An attempt to execute an opcode defined for kernel
(Internal fault) level at a different execution level.

11-13 Unused -
14 Breakpoint Normal response to a breakpoint trap (BPT)

(Trap) instruction.
15 Privileged register An attempt to write the ISP, PCBP, or PSW

(Internal fault) when not in kernel level. (Note 1)

Notes:
1. This exception sets the condition flags as if the instruction was successfully completed.
2. Before the overflow trap occurs, the processor may execute the next instruction after

the one that caused the overflow.

Stack Exceptions

Table 4-6 lists the ISC and the cause of each stack exception. A stack-bound exception
occurs when the stack-bound check fails on a system call (a gate instruction or on-normal
exception microsequence). A stack fault occurs on an execution stack access to save the

4-33

OPERATING SYSTEM CONSIDERATIONS
Stack Exceptions

current PC and PSW. An interrupt-ID-fetch exception occurs during the on-interrupt
microsequence if an exception occurs during the acknowledge access.

On a stack fault, the memory exception occurs when SP is used as an operand. Thus, the
processor first detects a normal exception and then detects the stack exception while
executing the implicit GATE (system call). In effect, the processor automatically ripples
up to a stack exception from a normal exception.

A stack exception occurs because Process A (the process at fault) cannot use its execution
stack. As a result, a stack exception cannot be handled as part of Process A (unlike
normal exceptions). Instead, the processor performs the on-stack exception microsequence,
which performs a process switch and thus provides the exception handler with a new
execution stack.

The interrupt-ID-fetch exception does not involve the stack, but it is treated as a stack
exception since it is systemwide. Thus, no context information is lost.

The on-stack exception microsequence saves the Process A PCBP on the interrupt stack,
stores the control registers in its PCB, and loads a new PCBP (for Process B) from location
136 (88 hex). Then it carries out an implicit process switch to the stack-exception handler,
Process B. Although the microsequence does not use the ISC value, it preserves this value
across the process switch. On completion of the microsequence, the ISC field in the PSW
saved for Process A still contains the code for the stack exception, and the TM and ET
fields contain 0 and 3, respectively. When Process B starts executing, the PSW's ISC,
TM, and ET fields contain 7, 0, 3, respectively.

Because a stack-exception handler is implemented as a process, the user may want to
prevent interrupts from entering the handler. Entry prevention is accomplished by raising
the interrupt priority level (the IPL field of its PSW) to 15 and thus disabling all
interrupts except a nonmaskable interrupt. Such a stack-exception handler should execute
only a few instructions.

A stack-exception handler can correct a stack-bound or stack-fault problem by:

• Growing the stack of the process

• Bringing in a missing page of the stack (in demand-paging systems).

Table 4-6. Stack Exceptions (ET = 2)

ISC Exception Cause

0 Stack bound An SP value outside the upper or lower stack bound
(Internal fault) on a system call.

1 Stack A memory exception when storing the PC or PSW on
(External fault) the execution stack during a system call.

3 Interrupt ID fetch A memory exception during the interrupt acknowledge
(External fault) access during an interrupt sequence.

4-34

OPERATING SYSTEM CONSIDERATIONS
Reset Exceptions

Process Exceptions

A process exception is generated if the process receives a memory exception signal on a
PCB access. The exception is local to Process A (the process that caused it) and implies a
~evere error condition. The ISC field of the Process A PSW is presented to the exception
handler (Process B) and identifies the condition that caused the exception. Table 4-7 lists
the ISC and the cause for each process exception.

When a process exception occurs, the processor executes its on-process exception
microsequence, an implicit process switch. Because the error condition signifies that the
Process A PCB cannot be accessed, its context cannot be saved. The microsequence stores
the Process A PCBP on the interrupt stack and loads the Process B PCBP from location
132 (84 hex). Then it loads the Process B context, preserving the ISC value from the
Process A PSW. When Process B begins executing, its PSW contains the code for the
exception condition, and the TM and ET fields contain 0 and 3, respectively.

Because the processor could not save the Process A hardware context, Process B normally
kills Process A. However, it can identify an old (good) process from its PCBP on the
interrupt stack. If the exception is a new PCB exception, the Process A PCBP is at the top
of the interrupt stack. If it is an old PCB exception and a process switch from a third
process (Process C) had been made previously, then the Process C PCBP is the second
element from the top of the stack. In either case, Process B could restart the last good
process because its context was not lost.

Reset Exceptions

A reset exception implies an error condition in accessing critical system data and requires
restarting of the system. On a reset exception, the processor acts as if an external reset
occurred. The ISC field in the PSW of the current process identifies if the condition is an
internal error or external request for a system reset. Table 4-8 lists the ISC and cause of
the reset exceptions.

Table 4-7. Process Exceptions (ET = 1)

ISC Exception Cause

0 Old PCB A memory exception when accessing the PCB for the
(External fault) exiting process on a process switch.

1 Gate PCB A memory exception when accessing the PCB for a stack
(External fault) bounds check during a GATE.

4 New PCB A memory exception when accessing the PCB for the new
(External fault) process during a process switch.

4-35

OPERATING SYSTEM CONSIDERATIONS
Memory Management for Virtual Memory Systems

On a reset exception, the processor performs an implicit process switch. It executes the
On-Reset microsequence after first disabling the memory management unit. The
microsequence picks up a new PCBP from physical address location 128 (80 hex) and
loads the reset-handler process (Process B). When Process B begins executing, its PSW
contains the code corresponding to the condition that caused the reset exception, and its
TM and ET fields contain 0 and 3, respectively.

Process B should restart the system (i.e., reinitialize the system), possibly after checking
the validity of system data.

Table 4-8. Reset Exceptions (ET=O)

ISC Exception Cause

0 Old PCB A memory exception when accessing the PCB of a process-
(External fault) exception handler.

1 System data A memory exception when accessing an interrupt vector
(External fault) or while processing an exception.

2 Interrupt stack A memory exception when accessing the interrupt stack
(External fault) while processing an exception.

3 External reset Normal response to an external (system) reset signal.
(External fault)

4 New PCB A memory exception when accessing the PCB of an
(External fault) exception-handler process.

6 Gate-vector A memory exception when accessing a gate table while
(External fault) processing a normal exception. (Here, the PSW ET

field contains O. If ET is 3, a gate-vector exception
is treated as a normal exception because it occurred
during a GATE instruction, rather than as part of
the on-normal exception microsequence.>

4.7 MEMORY MANAGEMENT FOR VIRTUAL MEMORY SYSTEMS

When a virtual memory system is used for a WE 32100 Microprocessor based system, a
memory management unit (MMU) is required. The main function of an MMU is to
translate virtual addresses into physical addresses. The MMU has the additional
responsibility of providing protection for the system memory space.

The virtual address space is divided into a number of sections by the MMU. Each section
is in turn subdivided into segments. Segments may either be contiguous or paged and are
mapped into physical address space by the MMU.

The WE 32101 Memory Management Unit (MMU) was developed to complement the
WE 32100 Microprocessor for creation of a virtual memory system. This section describes
the features of the MMU that are important for system design. A complete technical
summary of the MMU is provided in the WE 32101 Memory Management Unit Data
Sheet.

4-36

OPERATING SYSTEM CONSIDERATIONS
Memory Management for Virtual Memory Systems

The WE 32101 Memory Management Unit divides the virtual address space into four
sections and provides both contiguous and paged segments for the system. A contiguous
segment can be as large as 128 Kbytes and a paged segment can contain up to sixty-four
2 Kbyte pages.

The MMU divides virtual addresses into three fields for contiguous segments and four
fields for paged segments. A virtual address referencing a contiguous segment is divided
into three fields: a section ID (SID) field, a segment select (SSL) field, and a segment
offset (SOT) field: The SID field specifies the section of virtual address space, the SSL
field specifies the segment within the section, and the SOT field specifies the byte within
the segment. The format of these virtual addresses is shown on Figure 4-8.

For paged segments, the SOT field is subdivided into a page select (psL) field and a page
offset (POT) field. The PSL field specifies which page within the segment and the POT
field specifies which byte within the page. The format of these virtual addresses is shown
on Figure 4-9.

The MMU performs address translation using descriptors that contain the information
necessary for segment and page mapping. The MMU has two types of descriptors:
segment descriptors (SO) for mapping contiguous and paged segments and page descriptors
(PO) for mapping pages within paged segments. An SO contains a segment base address
that is added to an offset (from the virtual address SOT) to form the physical address.
The PO contains a page base address that is concatenated with a page offset (from the
virtual address POT) to form the physical address.

Other fields contained in SOs and POs provide functions other than address translation.
For example, the access fields in the SOs are used by the MMU to enforce protection of
system memory. This field and other fields are described later in this section.

The SOs for each of the four sections of virtual memory are located in physical memory in
segment descriptor tables (SOTs). There is one SOT associated with each section. The
POs for each paged segment are located in physical memory in page descriptor tables
(POTs), and there is one POT associated with each paged segment. Contiguous segments
are represented by an SOT entry, while paged segments are represented by both an SOT
entry and an entire POT (the SOT entry contains the physical base address of the POT).

31 30 29 17 16 0

I SID SSL SOT

Figure 4-8. Virtual Address Fields For a Contiguous Segment

31 30 29 17 16 11 10 0

I SID SSL PSL POT

Figure 4-9. Virtual Address Fields For a Paged Segment

4-37

OPERATING SYSTEM CONSIDERATIONS
Memory Management for Virtual Memory Systems

Figure 4-1 C is a model showing how a virtual address is translated to a physical address for
a contigucus segment. The SID field is used to find the base address of the required SDT.
(The base address of the SDT for each section is stored in the MMU.) This address and
the SSL field are combined to index an SD within the SDT. The starting physical address
of the contiguous segment is contained in the indexed SD. This address is added to the
SOT field to form the required physical address.

Figure 4-11 shows the paged segment model. This translation is identical to the contiguous
segment address translation up to the point where the SD is indexed. For paged segments,
the addrcss in the SD is used as the base address of a PDT. This address is combined with
the PSL field to index a PD. This PD contains the starting address of the paged segment
that is concatenated with the POT field to form the required physical address.

--£>f

SDT
BASE

ADDRESS
TABLE

(SRAMA)

4-38

VIRTUAL ADDRESS
SID I SSL I SDT

BASE

~ .,"'" + OF SDT _,t
lL

INDEXED
SEGMENT

DESCRIPTOR

SDT 0 STARTING
ADDRESS OF

~"'H,"'", + SEGMENT ~t. SD
SgT

SOT 1

D
SDT 2

D
SDT 3

D
SEGMENT

DESCRIPTOR
TABLES

TRANSLATED
PHYSICAL
ADDRESS

////

PHYSICAL
MEMORY

Figure 4-10. Virtual to Physical Translation for Contiguous Segments

]
CONTIGUOUS

SEGMENT

"'" I
W

""

SOT
BASE

ADDRESS
TABLE

(SRAMA)

VIRTUAL ADDRESS

SOT 1 INDEXED

D
PAGE

DESCRIPTOR

SOT 2

D
SOT 3

D
SEGMENT

DESCRIPTOR
TABLES

D
o
o
o

I PO I6rb ~6~~g~G
I PO I PDT I F PAGE

D '"""" ADDRESS

0

0

0

D
PAGE

DESCRIPTOR
TABLES

Figure 4-11. Virtual to Physical Translation for Paged Segments

PHYSICAL
MEMORY

o
~~
~ ~ g >
~ ~
~Z
g: ~
~ 00
~ <
!3 00
~ ..-3
-~
i~
~n
~O = Z e:.oo
~
~ 0
!3 ~
o ~
~ >
~~
~O
~ Z
~ 00

OPERATING SYSTEM CONSIDERATIONS
Initializing the Memory Management Unit

4.7.1 Initializing the Memory Management Unit

The operating system is required to initialize the MMU. Typical MMU initialization
consists of:

• Defining physical memory with segment descriptor tables and page descriptor tables for
each process

• Writing SDT addresses and length into MMU section RAMs.

The operating system should also set up the block-move area of the process control block
(PCB) for each process in the system. Block moves can be used to set the MMU section
RAMs, if desired, when process switches occur. Setting the section RAMs causes the
MMU to flush its caches.

Defining Virtual Memory

The operating system must define the way virtual memory is to be configured. In systems
using an MMU this requires that segment and page descriptor tables be set up in physical
memory. The way these tables are set up determines which segments in virtual memory
are to be contiguous or paged and where the segments and pages reside in physical
memory.

Peripheral Mode

The peripheral mode of the MMU is used by the operating system in several ways. One
use is to initialize some of the internal elements of the MMU. The elements that require
initialization are the section RAMs and the configuration register (CR). Section RAMs
are loaded with the SDT's base addresses and length. The descriptor caches may be
preloaded to avoid miss-processing (for a real-time process or other special case).

Other uses of the peripheral mode by the operating system include:

• Setting or clearing the configuration register referenced and/or modified bits

• Reading the fault code register (FL TCR) and fault address register (FL TAR) in order
to handle MMU-generated exceptions

• Reading the cache contents in the case of serious exceptions (e.g., double-page-hit).

4.7.2 MMU Interactions

The MMU interacts with the operating system through address translation, miss­
processing, exception detection, and other events. Once the MMU is initialized, it
translates virtual addresses by using the SDs and PDs. It caches descriptors from the
SDTs and PDTs to minimize translation time. The MMU handles the transfer of
descriptors between its caches and physical memory during miss-processing without
operating system intervention. The MMU also checks for violations (e.g., address or
access) without operating system action. If violations occur, exceptions are issued and the
operating system's exception handler can respond accordingly.

4-40

MMU Exceptions

OPERATING SYSTEM CONSIDERATIONS
Efficient Mapping Strategies

Operating system action is required when the MMU signals to the CPU that an exception
(external fault) has occurred. The MMU detects several exceptions that relate to errors
(such as memory exceptions when the MMU does not correctly read an SDT or PDT) and
places the corresponding code in the fault code register (FLTCR) and the fault address
register (FL TAR).

Other exceptions signal that data is not present in physical memory. In these cases, the
MMU tells the CPU that a required page or segment is not in physical memory and must
be brought into physical memory. The operating system is responsible for these activities;
it must do any I/O that is necessary and adjust the appropriate SDT and/or PDT values.

The MMU provides hardware support for operating system page- or segment-replacement
algorithms by setting the Rand M bits in the segment and page descriptors whenever a
segment or page is referenced or modified. If the operating system periodically clears all
of the R bits, for example, it can use the R bits to implement a variation of the least
recently used (LRU) replacement algorithm. It could choose to replace segments or pages
that still have their R bits clear when an exception occurs, reasoning that those segments or
pages have been referenced less recently than the ones with the R bits set.

Flushing

The operating system occasionally alters the contents of the descriptor tables in memory.
For example, it must do this to set and clear bits that indicate whether a page or segment
is present whenever they are swapped in and out of physical memory. Any alteration of
the table contents must be followed by some type of flushing of the MMU caches to
prevent the chaos that would result if tables and caches contained conflicting information.
If the operating system alters a table entry for one page or segment, it must flush the
cache entry for that page or segment, if there is such a cache entry. If the operating
system alters or deletes many entries in a table, it may be more efficient to flush an entire
section than to flush several cache entries one at a time.

4.7.3 Efficient Mapping Strategies

The memory mapping defined by the operating system may have an enormous effect on the
performance of the system. There are some basic rules for efficient mapping strategies.
Large blocks that will remain in physical memory for long periods could be defined as
contiguous segments so that few entries will be needed in the descriptor tables and
descriptor caches. If physical memory is scarce, however, use of several large contiguous
blocks could result in long waits to move the blocks in and out, thus wasting the physical
memory where another large block cannot fit.

If only part of a segment need be in memory at a time, paged segments make more
efficient use of memory.

4-41

OPERATING SYSTEM CONSIDERATIONS
Object Traps

4.7.4 Object Traps

Through object traps, the operating system can invoke a process or procedure whenever
virtual addresses in a given segment are generated. The MMU can then save the virtual
address that caused the trap. This facility can be used to make 110 devices or external
processors appear as normal segments from the user-software point of view.

4.7.5 Indirect Segment Descriptors

Indirect segment descriptors provide a mechanism to create shared segments that may be
easily swapped out. The only segment descriptor that has to be modified by the operating
system when the shared segment is swapped or moved is the last one (i.e., the descriptor
that directly references the segment data).

Indirect segment descriptors are useful for shared segments where different processes
running at the same execution level are given different access permissions to the segment.
The access permissions in the last descriptor are superseded by the access permissions in
the first descriptor used in the reference.

Indirect segment descriptors can also be used to provide chains of descriptors so that the
path to the last segment descriptor can be passed on from one process to another. This is
similar to the passing of pointers in a programming language, except that here each process
that owns a descriptor that others are linked to can rewrite that descriptor, thus breaking
or redirecting the chain.

4.7.6 Using the Cacheable Bit

Cached segment and page descriptors each contain one cacheable bit (represented by $ for
the MMU). Whenever a descriptor is used for translation, the MMU reflects the value of
the $ bit in the cached descriptor through the cacheable (CABLE) output.

The $ bit in the segment descriptor is copied into the cached page descriptor during miss­
processing so that (from the operating system designer's point of view) the $ bit values are
associated with segments, not individual pages.

The MMU does not manipulate the $ bits and the CABLE output signal in any other way,
so this facility can be used in any way desired by the system designer. As an example, one
possible use (from which the name cacheable is derived) is to provide an interface to a
cache memory other than the MMU's own descriptor caches. In this scenario, the
cacheable bit is used to indicate the contents of the associated segment that are not
cacheable.

4.7.7 Using the Page-Write Fault

The fault on write (W) bit in the MMU's page descriptors is checked during address
translation after all other checks have been done. If the W bit is set and the access type is
a write, a page-write fault occurs. This feature can lead to increased efficiency in the
implementation of a UNIX System fork. The W bit could be set when the fork is invoked,

4-42

OPERATING SYSTEM CONSIDERATIONS
Notation

and then both the parent and child processes could continue to use those pages without
having the MMU and operating system physically copy the shared pages until one of those
pages is written. A write operation would cause a page-write fault, and the pages would be
copied and the write bits reset. In this way the system copies pages only as necessary.

4.7.8 Access Protection

Access bits contained within segment descriptors specify the access permission (no access,
execute-only, read/execute, and read/write) for each execution level (kernel, executive,
supervisor, and user). These bits provide protection so that segments are accessed on the
appropriate level. If an access permission is disallowed, an access exception occurs.

4.7.9 Using the Software Bits

Three software bits are contained in each segment and page descriptor. The MMU does
not alter the value of these bits at any time. This allows the operating system designer to
use these bits in any manner. For example, a software bit can be used to avoid allocating
any stack space until a process actually needs it. This is done by assigning the software bit
to signify that a page does not exist. Normally, a process start-up would create a
(sometimes large) stack of zeros. The software bit could be used to avoid creating the
stack until the user program references that page. Only then would the page-not-present
fault cause the operating system to allocate the stack space. If the user program never
references that page, the software bit saves memory for other processes.

4.8 OPERATING SYSTEM INSTRUCTIONS

The remainder of this chapter describes the operating system instructions Oisted in Table
4-1) and the microsequences. Each description includes the assembler syntax, operation
performed, effect of address modes on condition flags, exceptions generated, and an
example.

Some operating system instructions and all microsequences call at least one XSWITCH
function to do parts of the context switch. These functions, XSWITCH_ONEO,
XSWITCH_TWOO, and XSWITCH_THREEO, are included among the microsequences.

4.8.1 Notation

Operations are described in C language where possible. In particular, the following
notation is used where a C language operator or symbol did not exist:

*x

*x++

Word of register x contains the address of
(a pointer to) the operand.

Use word or register x as a· pointer to the operand;
then increment x by I, 2, or 4 for a byte, halfword,
or word operation, respectively.

4-43

OPERATING SYSTEM CONSIDERATIONS
Privileged Instructions

4-44

*--x

interrupt_ID

dst

src

{operation}

Decrement word or register x by I, 2, or 4 for a
byte, halfword, or word operation, respectively; then
use x as a pointer to the operand.

An 8-bit value, generated on the interrupt
acknowledge access cycle, identifies the interrupt
vector to the process.

Replace with destination operand.

Replace with source operand.

Text between braces describes an operation in
general terms.

R<a> = <x> Replace field (or bits) a of word R with the value x.

Table 4-3 lists the symbols used to define the bits fields being altered in the PSW. See
Tables 4-5 through 4-8 for the ISC values.

The following symbols are used to identify processor registers:

AP

FP

ISP

PC

PCBP

PSW

Rn

SP

Argument pointer, riO (assembler syntax %ap)

Frame pointer, r9 (assembler syntax %fp)

Interrupt stack pointer, r13 (assembler syntax %isp)

Program counter, r15 (assembler syntax %pc)

Program control block pointer, r14 (assembler syntax
%pcbp)

Processor status word, rll (assembler syntax %psw)

Register n, rn,n = 0 to 8 (assembler syntax %rn)

Stack pointer, r12 (assembler syntax %sp)

4.8.2 Privileged Instructions

These instructions are executed only when the process is in the kernel execution mode.
Attempting to invoke them at a lower level causes a normal exception (privileged opcode).

OPERATING SYSTEM CONSIDERATIONS
Privileged Instructions

Instruction

Call process
Disable virtual pin and jump
Enable virtual pin and jump
Interrupt acknowledge
Fteturn-to-process
Wait

Mnemonic

CALLPS
DISVJMP
ENBVJMP
INTACK
FtETPS
WAIT

The DISV JMP and ENBV JMP instructions disable or enable the processor's virtual
address pin and then jump to an address. ENBVJMP enables an MMU, signalling that
the processor is now supplying virtual addresses for translation. DISV JMP disables the
MMU and only physical addresses are supplied. With an ENBV JMP instruction, a new
(virtual) address is loaded into the PC; hence the jump. For DISV JMP, a physical address
is loaded into the PC. The use of CALLPS and FtETPS was previously discussed in 4.4.2
Call Process Instruction and 4.4.3 Return-to-Process Instruction, respectively. WAIT
provides a processor-level execution halt that remains in effect until an interrupt occurs.

The following descriptions provide more detail about the instructions.

4-45

CALLPS

Call Process

Assembler
Syntax

Opcode

Description

Operands

Operation

4-46

CALLPS

CALLPS

Ox30AC

This instruction performs a process switch, saving the current process,
pushing its PCBP onto the interrupt stack, and entering a new process.
It:

• Saves the context (register contents) of the current process in the
current PCB (if R bit of new process is set).

• Pushes the current PCBP value onto the interrupt stack.

• Puts the new PCBP value (from register rO) into the PCBP
register.

• Sets the PSW, PC, and SP registers from the new PCB.

• Performs block moves (if any) for the new process (if R bit of
PSW is set).

• Exits, going to the new process.

rO is an implicit source operand (it should contain the PCBP of the new
process).

if Okernel-leveO
normal-exception (privileged-opcode)

1* put new PCBP into tempa *1
tempa = rO

1* push old PCBP onto interrupt stack *1
(force kernel level on memory accesses}
*ISP++ = PCBP
if (memory-exception)

reset-exception (interrupt-stack)

1* Any memory exception in the first XSWITCH subroutine will cause
a process exception (old PCB). The address of the next instruction is
always PC + 2 *1
PC = address of next instruction
1* set old PSW ISC/TM/ET to 010/1 respectively *1
PSW<ISC> = 0
PSW<TM> = 0
PSW<ET> = 1

CALLPS

1* save current registers in current PCB *1
XSWITCH ONEO
1* XSWITCH_ONEO performs the following operations *1
* (PCBP + 4) = PC
PSW<R> = *tempa<R>
*PCBP = PSW
* (PCBP + 8) = SP
if(PSW <R» {

* (PCBP + 20) = AP
*(PCBP + 24) = FP
* (PCBP + 28) = rO

I
I
I

* (PCBP + 60) = r8
FP = PCBP + 52

CALLPS

1* Any memory exception in the following XSWITCH subroutines will
cause a process exception (new PCB). *1

1* put new PCBP in PCBP register and get new PC, PSW, and SP. *1
XSWITCH TWOO
1* XSWITCH_TWOO performs the following operations *1
PCBP = tempa
PSW = *PCBP 1* PSW <R/ISC/TM/ET> unchanged here *1
PSW<TM> = 0
PC = *(PCBP + 4)
SP = * (PCBP + 8)
if(PSW <I» {

}

PSW<I> = 0
PCBP = PCBP + 12

if(PSW <CFD> == 0)
{flush instruction cache}

/* set new PSW ISC/TM/ET to 7/013 respectively *1
PSW<ISC> = 7
PSW <TM> = 0 1* avoid CALLPS trace trap *1
PSW<ET> = 3

4-47

4-48

CALLPS

Address
Modes

Condition
Flags

Exceptions

Example

Notes

/* do block moves if PSW <R> is set (1) */
XSWITCH THREEO

CALLPS

/* XSWITCH_THREEO performs the following operations */
if(PSW<R» {

rO = PCBP + 64
r2 = *rO++
while(r2 != 0) {

rl = *rO++
{execute MOVBL W instruction}
r2 = *rO++

rO=rO+4

{unforce kernel level on memory accesses}
{end of operation}

None

Set by new PSW

normal exception (privileged opcode)
process exception (old PCB or new PCB)
reset exception (interrupt stack)

{load new PCBP into rO}
CALLPS

Opcode occupies 16 bits. The ISC/TM/ET fields of the PSW saved
contain 0/0/1, respectively. These fields in the new process PSW
contain 7/0/3, respectively.

DISVJMP DISVJMP

Disable Virtual Pin and Jump

Assembler
Syntax

Opcode

Description

Operands

Operation

Address
Modes

Condition
Flags

Exceptions

Example

Notes

DISVJMP

Ox3013

This instruction changes the CPU to physical addressing mode (disables
the MMU) and puts a new value in the PC (switching addressing
modes usually makes the old PC value incorrect).

rO is an implicit source operand (it should contain the new physical PC
value).

ifOkernel-level)
normal-exception (privileged-opcode)

{Reset virtual address pin (VAn) to I}
PC = rO
{flush instruction cache}

None

Unchanged

normal exception (privileged opcode)

{load physical address of next instruction into rO}
DISVJMP

Opcode occupies 16 bits.

4-49

ENBVJMP ENBVJMP

Enable Virtual Pin and Jump

Assembler
Syntax

Opcode

Description

Operands

Operation

Address
Modes

Condition
Flags

Exceptions

Example

Notes

4-50

ENBVJMP

Ox300D

This instruction changes the CPU to virtual addressing mode (enables
the MMU) and puts a new value in the PC (switching addressing
modes usually makes the old PC value incorrect).

rO is an implicit source operand (it should contain the new virtual PC
value) .

ifOkernel-leveO
normal-exception (privileged-opcode)

(Set virtual address pin (v AD) to O}
PC = rO
(flush instruction cache}

None

Unchanged

normal exception (privileged opcode)

(load virtual address of next instruction into rO}
ENBVJMP

Opcode occupies 16 bits.

INTACK INTACK

Interrupt Acknowledge

Assembler
Syntax

Opcode

Operation

Address
Modes

Condition
Flags

Exceptions

Examples

Notes

INT ACK dst interrupt acknowledge

Ox302F INT ACK

under "interrupt acknowledge" status
rO (Interrupt - ID) < < 2

None

Unchanged

privileged-opcode exception

INTACK

This instruction is privileged.

If NMINT==O and A VEC==O, an "interrupt acknowledge" access is
performed, fetching an 8-bit "interrupt-IO". This value is zero-extended
to a word, shifted left by two bit positions, and stored in rOo If
NMI==O, an "auto-v ector-interrupt acknowledge" access ~rformed
(with all Is on the address bus) and 0 is stored in rOo If NMI==I and
AVEC==O, and "auto-vector-interrupt acknowledge" access is
performed, and the "requesting level" (inverted and put on address bus
and returned as "interrupt-IO") is indeterminate.

4-51

RETPS

Return to Process

Assembler
Syntax

Opcode

Description

Operands

Operation

4-52

RETPS

RETPS

Ox30C8

This instruction terminates the current process (its context is not saved)
and returns to the process whose PCBP is on the top of the interrupt
stack. It:

• Pops the saved (old) PCBP value from the interrupt stack.

• Puts the old PCBP value into the PCBP register.

• Sets the PSW, PC, and SP registers from the saved values in the
old PCB.

• Performs block moves (if any) for the old process (if the R bit of
the PSW is set).

• Puts the saved register values from the old PCB into the CPU
registers (if the R bit in PSW is set).

• Exits, going to the old process.

None

if C!kernel-leveO
normal-exception (privileged-opcode)

/* pop new PCBP from interrupt stack */
{force kernel level on memory accesses}
tempa = *--ISP
ifCmemory _exception)

reset-exception(old-PCB)

/* Any memory exception in the following operation will cause a
process exception (old PCB).

Transfer R bit from new PSW to current PSW so block moves and
register restores will occur if needed. * /
PSW<R> = *tempa<R>

/* Any memory exception in the following microsequence will cause a
process exception (new PCB).

RETPS RETPS

Put new PCBP in PCBP register and get new PC, PSW, and SP. *1
XSWITCH_TWOO
1* XSWITCH_TWOO performs the following operation *1
PCBP = tempa
PSW = *PCBP 1* PSW <RIISC/TM/ET> unchanged here *1
PSW<TM> = 0
PC = *(PCBP + 4)
SP = * (PCBP + 8)
if(PSW<I» (

)

PSW<I> = 0
PCBP = PCBP + 12

if(PSW<CFD> == 0)
{flush instruction cache}

1* set new PSW ISC/TM/ET to 7/0/3 respectively */
PSW<ISC> = 7
PSW <TM> = 0 1* prevent RETPS trace trap *1
PSW<ET> = 3

1* do block moves, if R bit set *1
XSWITCH_ THREEO
1* XSWITCHJHREEO performs the following operation *1
if(PSW<R» (

rO = PCBP + 64
r2 = *rO++
while(r2 != 0) (

rl = *rO++
(execute MOVBL W instruction)
r2 = *rO++

rO=rO+4

1* if R bit set, move saved register values from new PCB into CPU
registers. *1
if(PSW<R» (

FP = *(PCBP + 24)
rO = * (PCBP + 28)

I
I
I

r8 = * (PCBP + 60)
AP = * (PCBP + 20)

4-53

RETPS

Address
Modes

Condition
Flags

Exceptions

Example

Notes

4-54

{unforce kernel level on memory accesses}
{end of operation}

None

Set by new PSW

normal exception (privileged opcode)
process exception (old PCB and new PCB)
reset exception (interrupt stack)

RETPS

RETPS

Opcode occupies 16 bits. There is no check of the interrupt stack. Any
exception in accessing this stack causes a reset.

WAIT

Wait

Assembler
Syntax

Opcode

Description

Operands

Operation

Address
Modes

Condition
Flags

Exceptions

Example

Notes

WAIT

WAIT

Ox2F

This instruction halts the CPU, stopping instruction, fetching, and
execution until an interrupt or external reset occurs.

None

ifOkernel-leveO
normal-exception (privilege-opcode)

{Halt CPU until an interrupt occurs}

None

Unchanged

normal exception (privileged opcode)

WAIT

Opcode occupies 8 bits.

4-55

OPERATING SYSTEM CONSIDERATIONS
Nonprivileged Instructions

4.8.3 Nonprivileged Instructions

These instructions are executed in any execution level:

Instruction

Gate
Move Translated Word
Return from Gate

Mnemonic

GATE
MOVTRW
RETG

GATE and RETG were discussed previously in 4.3.2 Gate Instruction and 4.3.3 Return­
from-Gate Instruction, respectively.

MOVTRW tells an enabled MMU to intercept the virtual address sent by the processor,
translate it, and return the physical address to the destination. If no MMU is enabled and
the system treats the MT access as a read, then this instruction acts as a normal MOVW
(i.e., the source is copied into the destination).

4-56

GATE

Gate

Assembler
Syntax

Opcode

Description

Operands

Operation

GATE

GATE

Ox3061

This instruction performs a system call, saving the current PSW and PC
on the execution stack and using two levels of tables to obtain new PSW
and PC values. It:

.. Checks to make sure that the current stack pointer is within the
stack bounds specified in the PCB. This is to insure that the
routine called by the GATE instruction starts in a guaranteed safe
stack area .

.. Pushes a return address (PC) and the current value of the PSW on
the execution stack. The return address insures that the GATE
instruction can be used like a subroutine call. The PSW on the
stack will be used by RETG to restore the CPU to the state it was
in before the GATE function was invoked .

.. Index1 is used as an offset into the first-level table, which starts at
address O. The word selected is the address of a second-level table .

.. Index2 is used as an offset into the second~level table selected. It is
added to the word read from the first-level table, to obtain the
address of the PSW and PC entry in the second-level table. The
first word of the entry selected is a new PSW to be used by the
GATE-handling subroutine and the second word is the address
(starting PC) of the gate routine.

o The PSW is replaced by the new PSW from the second-level table,
with the old execution level field set appropriately and some other
fields changed (see operation below) .

.. The PC is set to the address of the GATE-handling routine.

• GATE exits, going to the new PC.

rO and rl are implicit source operands (they should contain byte offsets
within first-level and second-level tables, respectively).

1* When reading from the PCB in the following two operations, a
memory exception causes a process exception (gate PCB).

4-57

GATE

4-58

Check SP against stack bounds in PCB. *1
{force kernel level on memory accesses}
if(SP >= *(PCBP + 12»

stack-exception (stack-bound)
if(SP >= *(PCBP + 16»

stack-exception (stack-bound)
{unforce kernel level on memory accesses}

GATE

1* When writing to the stack in the following two operations, a memory
exception causes a stack exception (stack).

The address of the next instruction is always PC+2.

Save old PC and PSW on execution stack. *1
*SP = address of next instruction
1* set PSW ISC/TM/ET to 1/0/2, respectively *1
PSW<ISC> = 1
PSW<TM> = 0
PSW<ET> = 2
*(SP + 4) = PSW

1* mask index values and put in registers *1
tempa = rO & Ox7C 1* index 1 *1
tempb = rl & Ox7FF8 1* index2 *1

1* A memory exception from here to the end of the microsequence
causes a normal exception (gate vector).

Get new PC and PSW values from table. *1
{force kernel level on memory accesses}
1* get pointer to second-level table *1
tempa = *tempa
1* add offset within second-level table * /
tempa = tempa + tempb

1* get new PSW from second-level table *1
tempb = *tempa
1* set PM in new PSW to CM in old PSW *1
tempb<PM> = PSW<CM>
1* new PSW same IPUR values as old PSW */
tempb<IPL> = PSW<IPL>
tempb<R> = PSW<R>
1* set new PSW ISC/TM/ET to 711/3, respectively *1
tempb<ISC> = 7
tempb<TM> = 1
tempb<ET> = 3

GATE

Address
Modes

Condition
Flags

Exceptions

Example

Notes

/* put new PC/PSW values into PC/PSW registers
get new PC from second-level table */

PC = *(tempa + 4)
PSW = tempb

/* finish push of old PC and PSW */
SP = SP + 8

{un force kernel level on memory accesses}
{end of operation}

None

Set by new PSW

normal exception (gate vector)
stack exception (stack bound and stack)
process exception (gate PCB)
reset exception (gate vector)

GATE

Opcode occupies 16 bits.

GATE

The values of rO and rl should be byte-valued offsets. The value of
register rO must be a multiple of 4; and the value of rl must be a
multiple of 8. These two registers are source operands only; GATE
does not alter their contents.

4-59

MOVTRW MOVTRW

Move Translated Word

Assembler
Syntax

Opcode

Description

Operands

Operation

Address
Modes

Condition
Flags

Exceptions

Example

Notes

4-60

MOVTRW src,dst

OxOC

This instruction is intended for use with a memory mangement unit
(MMU). An access using the address of the source operand and an
MT access status is performed, and it is expected that the MMU will
translate the address and return the corresponding physical address.

src - contains virtual address to be translated
dst - contains the physical address after translation

{under MT status}
dst = &src

src - all modes except immediate, literal, or register
dst - all modes except immediate or literal

N = Bit 31 of word returned
Z = 1, if word returned == 0
v=o
C =0

normal exception (invalid descriptor and external memory)

MOVTRW X,%rO

Opcode occupies 8 bits.

When MOVTRW is executed in virtual mode with the WE 32101
Memory Management Unit present, the address is translated to the
corresponding physical address. If there is no exception, the MMU
returns the translated physical address, which is then stored at the
destination. If there is an exception, the MMU notifies the CPU in the
normal fashion.

MOVTRW MOVTRW

When MOVTRW is executed in physical mode with the WE 32101
Memory Management Unit present, the MMU will behave as if a read
operation in physical mode is taking place.

In systems without an MMU, some other device must respond to the
MT access.

The source operand is an address of operand. The destination operand
is of the type word. If &src is not a word address, a normal exception
(external memory) will occur.

During an MOVTRW instruction, the status pins identify the memory
access as being MT.

4-61

RETG

Return from Gate

Assembler
Syntax

Opcode

Description

Operands

Operation

4-62

RETG

RETG

Ox3045

This instruction can be used to return from a GATE, normal exception,
or quick interrupt. The PC and PSW values to return to are popped
from the execution stack, the current and new execution levels are
compared to prevent a return to a higher execution level, and then the
new values are put into the PC and PSW registers.

None

1* get old PC/PSW values from execution stack *1
tempa = *(SP - 4)
tempb = * (SP - 8)
if(memory-exception)

stack-exception (stack)

1* compare execution levels to prevent return to a higher execution
level. *1
if(tempa<CM> < PSW<CM»

normal-exception (illegal-level-change)

1* New PSW keeps same IPLlCFD/QIE/CD/R values as current
PSW. *1
tempa<IPL> = PSW<IPL>
tempa<CFD> = PSW<CFD>
tempa<QIE> = PSW<QIE>
tempa<CD> = PSW<CD>
tempa<R> = PSW<R>
1* set new PSW ISC/TM/ET to 7/0/3, respectively *1
tempa<ISC> = 7
tempa<TM> = 0 1* avoids RETG trace trap *1
tempa<ET> = 3

1* put new PC/PSW values into PC/PSW registers *1
PSW =tempa
PC = tempb

1* finish pop of old PC and PSW *1
SP = SP-8

{end of operation}

RETG

Address
Modes

Condition
Flags

Exceptions

Example

Notes

None

Set by new PSW

normal exception (illegal level change)
stack exception (stack)

RETG

Opcode occupies 16 bits

RETG

4-63

OPERATING SYSTEM CONSIDERATIONS
Microsequences

4.8.4 Microsequences

The microsequences represent built-in microprocessor functions. These are executed
automatically when the processor accepts an interrupt, generates an exception, or
acknowledges a reset request. The XSWITCH functions are called by some operating
system instructions and the microsequences.

4-64

ON-NORMAL EXCEPTION ON-NORMAL EXCEPTION

On-Normal Exception

Description

Operation

A normal exception is caused by some action of the current process,
such as execution of an illegal opcode, and it causes the CPU to
perform the following GATE-like actions. This sequence is identical to
that of GATE except that zero (instead of rO) is used as the offset into
the first-level table (index 1), and the ISC value (instead of rl) is used
as the offset into the second-level table (index2).

A RETG instruction can be used to return from a normal exception.

1* When reading from the PCB in the following two operations, a
memory exception causes a process exception (gate PCB).

Check SP against stack bounds in PCB. *1
(force kernel level on memory accesses}
if(SP < *(PCBP + 12»

stack -exception (stack -bound)
if(SP >= *(PCBP + 16»

stack -exception (stack-bound)
(un force kernel level on memory accesses}

1* When writing to the stack in the following two operations, a memory
exception causes a stack exception (stack).

Save old PC and PSW on execution stack. *1
*SP = PC
1* set PSW TM/ET to 013, respectively *1
PSW<TM> = 0
PSW <ET> = 3 1* normal exception *1
*(SP + 4) = PSW

1* set temp registers to GATE table index values *1
temp a = 0
tempb = PSW<ISC> «3

1* A memory exception from here to the end of the microsequence
causes a reset exception (gate vector).

4-65

ON-NORMAL EXCEPTION ON-NORMAL EXCEPTION

Condition
Flags

Exceptions

Notes

4-66

Get new PC and PSW values from table. *1
{force kernel level on memory accesses}
1* get pointer into second-level table *1
tempa = *tenwa
1* add offset within second-level table *1
tempa = tempa + tempb
1* get new PSW from second-level table *1
tempb = *tempa
1* set PM in new PSW *1
tempb<PM> = PSW<CM>
1* set new PSW ISC/TM/ET to 7/1/3, respectively *1
tempb<ISC> = 7
tempb<TM> = I
tempb<ET> = 3

1* put new PC/PSW values into PC/PSW registers *1
PC = * (tempa + 4) 1* get new PC *1
PSW = tempb

1* finish push of old PC and PSW *1
SP = SP + 8

{unforce kernel level on memory accesses}
{end of operation}

Set by new PSW

stack exception (stack-bound and stack)
process exception (gate PCB)
reset exception (ga te vector)

The value of the ISC field of the PSW is the identity of the normal
exception. See Table 4-5 for a list of normal exceptions. The ISC field
of the saved PSW contains this code.

Some exceptions set the condition flags as if the instruction that caused
the exception was successfully completed.

ON-STACK EXCEPTION ON-STACK EXCEPTION

On-Stack Exception

Description

Operation

A stack exception is caused by discovery of a stack-bound violation
during a GATE or normal exception. Such an event causes the CPU to
perform the following process switching action, similar to a CALLPS
instruction except that the new PCBP is obtained from a fixed address
instead of from rOo

A RETPS instruction can be used to return from the stack exception
handler process.

/* Get new PCBP value from fixed address */
(force kernel level on memory accesses}
tempa = *136 /* 88 hex */
if (memory-exception)

reset -exception (system -data)

/* push old PCBP onto interrupt stack :/
*ISP++ = PCBP
if (memory-exception)

reset-exception (interrupt-stack)

/* Any memory exception in the first XSWITCH microsequence will
cause a process exception (old PCB). '" /
PSW <ET> = 2 /* stack exception */
PSW < ISC> = code for cause of exception
/* save current registers in current PCB '" /
XSWITCH_ONEO
/* XSWITCH_ONE performs the following operation */
*(PCBP + 4) = PC
PSW<R> = *tempa<R>
*PCBP = PSW
* (PCBP + 8) = SP
if(PSW<R» (

'" (PCBP + 20) = AP
* (PCBP + 24) = FP
* (PCBP + 28) = rO

I
I

I
* (PCBP + 60) = r8
FP = PCBP + 52

4-67

ON-STACK EXCEPTION ON-STACK EXCEPTION

Condition
Flags

Exceptions

Notes

4-68

1* Any memory exception in the following XSWITCH
microsequence will cause a process exception (new PCB).

Put new PCBP value in PCBP register and get new PC, PSW, and
SP. *1
XSWITCH_TWOO
1* XSWITCH_TWO performs the following operation *1
PCBP = tempa
PSW = *PCBP 1* PSW<R/ISC/TM/ET> unchanged here *1
PSW<TM> = 0
PC = *(PCBP + 4)
SP = *(PCBP + 8)
if(PSW<I» {

}

PSW<I> = 0
PCBP = PCBP + 12

if(PSW<CFD> == 0)
{flush instruction cache}

1* set new PSW ISC/TM/ET to 7/0/3, respectively *1
PSW<ISC> = 7
PSW <TM> = 0 1* prevent trace trap *1
PSW<ET> = 3

{unforce kernel level on memory accesses}
{end of operation}

Set by the new PSW

process exception (old PCB and new PCB)
reset exception (interrupt stack and system data)

The ISC field of the saved PSW contains the code that caused the stack
exception.

ON-PROCESS EXCEPTION ON-PROCESS EXCEPTION

On-Process Exception

Description

Operation

A process exception is caused by a memory exception while accessing a
PCB. Such an event causes the CPU to perform the following process
switching action, similar to a CALLPS instruction except that there is
no attempt to save the context of the current process (except for its
PCBP value), and the new PCBP value is obtained from a fixed address
instead of from rOo

There is no automatic way to return from a process exception because
the exception is caused when there is a fatal error in the old process.
The operating system is expected to choose some other process to invoke
or return to.

/* Get new PCBP from fixed address. * /
(force kernel level on memory accesses)
temp a = *132 /* 84 hex */
if (memory-exception)

reset -exception (system -da ta)

/* push old PCBP onto interrupt stack */
*ISP++ = PCBP
if (memory-exception)

reset -exception (interru pt -stack)

/* Any memory exception in the XSWITCH microsequence will cause
a reset exception (new PCB).

Put new PCBP value in PCBP register and get new PC, PSW, and SP.
*/
XSWITCH _TWO 0
/* XSWITCH_TWO performs the following operation */
PCBP = tempa
PSW = *PCBP /* PSW<R/ISC/TM/ET> unchanged here */
PSW<TM> = 0
PC = *(PCBP + 4)
SP = * (PCBP + 8)
if(PSW<I» (

)

PSW<I> = 0
PCBP = PCBP + 12

if(PSW <CFD> == 0)
(flush instruction cache)

4-69

ON-PROCESS EXCEPTION ON-PROCESS EXCEPTION

Condition
Flags

Exceptions

Notes

4-70

/* set new PSW TMiET to 0/3, respectively * /
PSW<TM> = 0 /* prevent trace trap */
PSW<ET> = 3

(unforce kernel level on memory accesses)
(end of operation)

Set by new PSW

reset exception (system data, interrupt stack, and new PCB)

The ISC field of the PSW presented to the exception handling process
will contain the code corresponding to the condition that caused the
process exception.

ON-RESET EXCEPTION ON-RESET EXCEPTION

On-Reset Exception

Description

Operation

A reset exception is caused by an external reset request or by an
exception while accessing the interrupt stack, the GATE tables, or the
interrupt tables. Such an event causes the CPU to go to physical
addressing mode, obtain a new PCBP value from a fixed address, and
set the PSW, PC, and SP registers from values in the new PCB. No
information from the current (old) context is saved because the CPU
may be powering up for the first time or else the old software context
was so damaged that it caused a reset exception.

{flush instruction cache]

if{external-reset}
PSW<R> = 0

{force kernel level on memory accesses]

1* force physical mode *1
{Set V AD pin to one}

1* get new PCBP from fixed address *1
tempa = *128 1* 80 hex *1
if(memory-exception}

reset-exception (system-data)

1* Any memory exception in the XSWITCH microsequence will cause
a reset exception (new PCB).

Put new PCBP value in PCBP register and get new PC, PSW, and SP
values. *1
XSWITCH_TWOO
1* XSWITCH_TWO performs the following operations *1
PCBP = tempa
PSW = *PCBP 1* PSW < R/ISC/TM/ET > unchanged here *1
PSW<TM> =0
PC = * (PCBP + 4)
SP = * (PCBP + 8)
if(PSW<I>} {

}

PSW<I> = 0
PCBP = PCBP + 12

if{PSW <CFD> == O}
{flush instruction cache]

4-71

ON-RESET EXCEPTION ON-RESET EXCEPTION

Condition
Flags

Exceptions

Notes

4-72

1* set new PSW TM/ET to 013, respectively *1
PSW <TM> = 0 1* prevent trace trap *1
PSW<ET> = 3

(unforce kernel level on memory accesses}
(end of operation}

Set by new PSW

reset exception (system data and new PCB)

The ISC field of the PSW presented to the exception handling process
will contain the code corresponding to the condition that caused the
reset exception.

ON-INTERRUPT ON-INTERRUPT

On-Interrupt

Description

Operation

An interrupt is triggered by a request from external hardware and
causes the CPU to perform a process switch or a GATE-like action
(depending on the value of PSW <QIE».

For full (QIE==O) interrupts, the on-interrupt microsequence
implements a process switch to the process represented by the PCBP
value stored at location (I 40+ (4*Interrupt-ID» , where Interrupt-ID is
an 8-bit value fetched during an interrupt acknowledge access.

For quick (QIE==l) interrupts, the on-interrupt microsequence
implements a GATE-like PSW/PC switch, pushing the old PSW and
PC onto the execution stack and fetching new PSW and PC values from
locations (1164+(8*Interrupt-ID» and (11 64+ (8*Interrupt-ID) +4) ,
respectively. However, quick interrupt does not perform any stack
bounds check, so it should not be used with an untrusted user process,
which may have a bad value in SP. Unlike GATE, quick interrupt does
update the PSW <IPL> field to act.

If an interrupt request is granted and auto-vectoring is requested (via
the AVEC pin), an auto-vector interrupt acknowledge cycle is
performed and no Interrupt-ID is fetched. The complement of the
value of the interrupt option pin concatenated with the priority level at
which the interrupt was requested is used as the Interrupt-ID. That is,
bits 0-3 of the ID correspond to the requested level, bit 4 corresponds
to the interrupt option pin, and bits 5 - 7 are zeros.

If a nonmaskable interrupt request is received (via the NMINT pin), an
auto-vector interrupt acknowledge cycle is performed (as if an
autovector interrupt at level 0 was being acknowledged) and no
Interrupt-ID is fetched. The value 0 is used as the ID.

{Get interrupt-ID value via interrupt acknowledge bus cycle}
tempa = interrupt-ID
if(memory-exception)

stack-exception (interrupt-ID-fetch)

1* test for full or quick interrupt *1
if(PSW <QIE>==l)

goto QINT 1* quick interrupt *1

1* it is a full interrupt *1

4-73

ON-INTERRUPT ON-INTERRUPT

4-74

/* get new PCBP from full interrupt table */
{force kernel level on memory accesses}
temp a = *(140 + tempa * 4) /* 8C+tempa*4 hex */
if (memory-exception)

reset-exception (system-data)

/* push old PCBP onto interrupt stack */

*ISP++ = PCBP
if (memory-exception)

reset-exception (interrupt-stack)

/* Any memory exception in the first XSWITCH micro sequence will
cause a process exception (old PCB).

Set old PSW ISC/TM/ET to 0/0/1, respectively. */
PSW<ISC> = 0
PSW<TM> = 0
PSW<ET> = 1

/* save current registers in current PCB */
XSWITCH_ONEO
/* XSWITCH_ONE performs the following operations */
* (PCBP + 4) = PC
PSW<R> = *tempa<R>
*PCBP = PSW
*(PCBP + 8) = SP
if(PSW<R» {

* (PCBP + 20) = AP
* (PCBP + 24) = FP
* (PCBP + 28) = rO

I

I
* (PCBP + 60) = r8
FP = PCBP + 52

/* Any memory exception in the following XSWITCH microsequences
will cause a process exception (new PCB).

ON-INTERRUPT ON-INTERR.UPT

Put new PCBP value in PCBP registe(and get new PC, PSW, and
SP values. * 1
XSWITCH_TWOO
1* XSWITCH_TWO performs the following operations *1
PCBP = tempa
PSW = *PCBP 1* PSW <RIISC/TM/ET> unchanged here *1
PSW<TM> = 0
PC = *(PCBP + 4)
SP = *(PCBP + 8)
if(PSW<I» {

}

PSW<I> = 0
PCBP = PCBP + 12

if(PSW <CFD> == 0)
{flush instruction cache}

1* set new PSW ISC/TM/ET to 7/0/3, respectively *1
PSW<ISC> = 7
PSW <TM> = 0 1* prevent trace trap *1
PSW<ET> = 3

1* do block moves, if R-bit set (1) *1
XSWITCH_THREEO
1* XSWITCH_THREE performs the following operations *1
if(PSW<R» (

rO = PCBP + 64
r2 = *rO++
whileCr2 != 0) {

rl = *rO++
{execute MOVBL W instruction}
r2 = *rO++

rO = rO + 4

{unforce kernel level on memory accesses}
{end of operation}

QINT: 1* it is a quick interrupt *1

1* Put address of new PC and PSW pair in quick interrupt table into
tempa. *1
tempa = 1164 + tempa * 8 1* 48C+tempa*8 hex *1

1* When writing to the execution stack in the following two operations,
a memory exception causes a stack exception (stack).

4-75

ON-INTERRUPT ON-INTERRUPT

Condition
Flags

Exceptions

Notes

4-76

Save old PC and PSW on execution stack.
Note: No stack bounds check. *1
SP = PC 1 address of next instruction *1
1* set PSW ISC/TM/ET to 11012, respectively *1
PSW<ISC> = 1
PSW<TM> =0
PSW<ET> = 2
1* push PSW *1
*(SP + 4) = PSW

1* A memory exception from here until the end of the microsequence
causes a normal exception (gate vector).

Get new PC and PSW values from table. *1
{force kernel level on memory accesses}
tempb = *tempa
1* adjust previous execution level in new PSW *1
tempb<PM> = PSW<CM>
1* set new PSW IPL to 15 *1
tempb<IPL> = 15
1* new PSW ISC/TM/ET values same as old values *1
tempb<ISC> = PSW<ISC>
tempb<TM> = PSW <TM>
tempb<ET> = PSW<ET>
1* put new PC/PSW values into PC/PSW registers *1
PSW = tempb
PC = * (tempa + 4)

1* finish push of old PC and PSW *1
SP = SP + 8

{unforce kernel level on memory accesses}
{end of operation}

Set by new PSW

normal exception (gate vector)
stack exception (stack and interrupt-ID fetch)
process exception (old PCB and new PCB)
reset exception (system data and interrupt stack)

The interrupt-ID fetch is 8 bits, and is zero-extended to 32 bits in
tempa.

XSWITCH XSWITCH

XSWITCH Microsequences

Description

Operation

These micro sequences implement context-switching. They are used, in
various combinations, by the instructions CALLPS and RETPS and by
the implicit micro sequences On-Interrupt, On-Process, On-Stack, and
On-Reset.

XSWITCH_ONE performs a context save, saving the current registers
in the current PCB. XSWITCH_TWO performs a context switch,
putting a new value in the PCBP register and reading the new PSW,
SP, and PC values from the new PCB. XSWITCH_THREE performs
block moves specified in the PCB.

The action taken when a memory exception is encountered in the
XSWITCH microsequences is determined by the calling sequence.

/* Save current registers in current PCB. One argument: tempa is
expected to contain new PCBP value. */

XSWITCH ONE:

/* save current PC in PCB */
* (PCBP + 4) = PC

/* copy R-bit from new PSW to current PSW */ .
PSW<R> = *tempa<R>

/* save current PSW and SP in PCB */
*PCBP = PSW
*(PCBP + 8) = SP

/* if R-bit==l, save current rO-r8/FP/AP in PCB */
if(PSW<R» {

return

* (PCBP + 20) = AP
* (PCBP + 24) = FP
* (PCBP + 28) = rO

I

I
I

* (PCBP + 60) = r8
FP = PCBP + 52

4-77

XSWITCH

4-78

XSWITCH

1* Put new PCBP in PCBP register and get new PC, PSW, and SP.
One argument: tempa is expected to contain new PCBP value. *1

1* put new PCBP value into PCBP register *1
PCBP = tempa

1* put new PSW, PC, and SP values from PCB into registers *1
PSW = *PCBP 1* PSW<R/ISC/TM/ET> unchanged here *1
PSW<TM> = 0
PC = *(PCBP + 4)
SP = *(PCBP + 8)

1* if I-bit==I, increment PCBP past initial context area *1
if(PSW<I» (

1* clear I-bit in PSW register *1
PSW<I> = 0
1* increment PCBP past initial context area *1
PCBP = PCBP + 12

1* if cache flushing not disabled, flush cache *1
if(PSW<CFD> == 0)

{flush instruction cache}

return

XSWITCH

/* do block moves, if PSW <R>==1 */

XSWITCH _THREE:

if(PSW <R» {

return

/* get address of blockO size */
rO = PCBP + 64

/* get blockO size * /
r2 = *rO++

/* while block size != 0 */
while(r2 != 0) {

/* get destination start address * /
rl = *rO++
/* do one block copy */
{execute MOVBL W instruction}
/* get size of next block * /
r2 = *rO++

rO = rO + 4

XSWITCH

4-79

Chapter 5

Software Generation Programs

(Version SVR2.0)

CHAPTER S. SOFfW ARE GENERATION PROGRAMS

(VERSION SVR 2.0)

CONTENTS

5. INTRODUCTION TO THE
SOFTWARE GENERATION
PROGRAMS 5-1

Distinctive SGP Features 5-1
Host Computers................................ 5-2

5.1 COMPILER AND THE C
LANGUAGE................................ 5-3

5.1.1 Compiler 5-3
Compiler Options 5-4
Register Usage 5-6

5.1.2 C Language 5-6
Flexnames 5-7
Enumerations 5-7
Structure Assignment................. 5-9
Nonunique Structure Member

Names 5-9
Former Member Name
Restrictions 5-10

New Flexibility for Member
Names 5-10

Complete Structure and Union
Member Reference
Qualifications 5-11

Nonunique Tag Names
Allowed.. 5-12

Vertical Tab Character
Literal 5-13

In-Line Procedure Expansion 5-13
5.2 ASSEMBLER AND ASSEMBLY

LANGUAGE 5-13
5.2.1 Assembler 5-14

Assembled Files 5-15
Diagnostics 5·15
Macro Processing Facilities 5·16
Interface Macros 5·17

Function Interface Macros 5·18
Scratch Register Macros 5·19
Stack Frame Macros 5·19
Restrictions................................. 5-19

Using Predefined Macros 5·20
Examples 5·20

M4 Reserved Words 5-21

5.2.2 Assembly Language 5-22
Statements 5-22
Symbols .. 5-23

Values and Types 5-24
Assigning Values and Types

to Symbols................................ 5-25
Constants...................................... 5-25
Location Counter 5-25
Registers 5·26
Executable Instructions 5-27
Operands 5-28
Expressions................................... 5-30
Assembler Directives 5-31
Section Control Pseudo
Operations 5-31

Pseudo Operations Dealing
With Symbols 5-33

Assignment Pseudo Operation... 5-33
Assignment to Dot 5-34
Alignment Pseudo Operation 5-35
Data Generation Pseudo

Operations 5-35
Symbolic Debugging Pseudo

Operations 5·36
File Name Pseudo Operation 5-37
Line Number Pseudo

Operation 5-37
Function Calling Sequence 5-37

Stack Frame 5-38
Actions of Calling Function 5-39
Actions of Called Function...... 5·39

5.2.3 Exception Conditions 5-43
5.2.4 Programming Example 5-43
5.2.5 Machine Independent

Instruction Set 5-45
5.3 LINK EDITOR 5-48
5.3.1 Link Editor Command 5-48

Command Line Options 5-50
5.3.2 Link Editor Command Language. 5-51

Expressions................................... 5-52
Assignment Statements 5-53
Memory Configurations 5-53

CONTENTS

Section Definition Directives 5-55
Virtual Address and Bindings ... 5-56
File Specifications 5-56
Load a Section at a Specified
Address..................................... 5-57

Aligning an Output Section 5-57
Grouping Sections Together 5-58
Creating Holes Within Output
Sections 5-59

Creating and Defining Symbols
at Link-Edit Time 5-60

Allocating a Section Into
Named Memory 5-61

Initialized Section Holes or
BSS Sections 5-61

Notes on the Use of m32ld 5-62
Changing the Entry Point 5-62
Use of Archive Libraries 5-63
Dealing with Holes in
Physical Memory...... 5-64

Allocation Algorithm 5-65
Subsystems (Incremental)

Link Editing 5-66
Nonrelocatable Input Files 5-67
DSECT, COPY and
NLOAD Sections 5-67
Output File Blocking 5-68

5.3.3 Error Messages............................. 5-68
Corrupt Input Files 5-68
Errors During Output.................. 5-69
Internal Errors 5-70
Allocation Errors 5-70
Misuse of Link Editor
Directives 5-71

Misuse of Expressions 5-72
Misuse of Options 5-72
Space Restraints 5-73
Miscellaneous Errors 5-73

5.3.4 Syntax Diagram for Input
Directives 5-74

5.4 OBJECT FILE FORMAT 5-77
5.4.1 Definitions..................................... 5-78
5.4.2 File Header................................... 5-79

Flags ... 5-79
Optional Header Information 5-80

Standard UNIX System a.out
Header .. 5-80

5.4.3 Section Header Table 5-81
Flags... 5-82
.bss Section Header 5-82

5.4.4 Sections... 5-82
5.4.5 Relocation Information 5-83
5.4.6 Line Numbers 5-84
5.4.7 Symbol Table 5-84

Special Symbols 5-84
Inner Blocks 5-86
Symbols for Functions 5-89

Symbol Table Entries 5-89
Symbol Name Field (n_name) .. 5-90
Symbol Value Field and

Storage Classes (n_value) 5-90
Section Number Field

(n scnum) 5-93
Typ~ Field (n_type) 5-94
Structure for Symbol Table
Entry 5-97

Auxiliary Table Entries 5-97
File Names 5-98
Sections 5-98
Tag Names 5-99
End of Structures..................... 5-99
Functions.................................. 5-99
Arrays 5-99
End of Blocks and Functions... 5-100
Beginning of Blocks and

Functions 5-100
Names Related to Structures,

Unions, and Enumerations 5-100
5.4.8 String Table 5-101
5.5 UTILITIES AND LIBRARY

ROUTINES 5-102
5.5.1 Utility Programs 5-103

m32ar ... 5-103
m32convert 5-105
m32conv 5-105
m32cprs .. 5-107
m32dis .. 5-108
m32dump 5-111
m32list.. 5-113
m32lorder 5-114
m32nm ... 5-114
m32size .. 5-116
m32strip 5-116

CONTENTS

5.5.2 Accessing Library 5·117
Use of the Accessing Library .. 5·117
Library Functions and Macros .. 5·118
Functions That Open or Close Object Files .. 5·118
Functions That Read.. 5·120
Functions That Seek .. 5-120
Function That Returns the Index of a Symbol Table Entry.............................. 5-120
Macros .. 5·121

5.5.3 General-Purpose Library .. 5·121
Use of the General-Purpose Library... 5·121
Routines in the General-Purpose Library ... 5·122
Routines Required When Using printf and scanf.. ... 5·123

5.6 SGP MANUAL PAGES .. 5-123

SOFTWARE GENERATION PROGRAMS
Distinctive SGP Features

5. INTRODUCTION TO THE SOFTWARE GENERATION PROGRAMS

The WE 321SG Software Generation Programs is a package of support software tools used
to create and test programs for the WE 32100 Microprocessor. The SGP runs under the
UNIX Operating System and uses many features of the UNIX System shell. The SGP
makes possible high-level program coding and source-level testing of this code. This
improves programming productivity by freeing programmers from hardware architectural
details.

Since the SGP resides on a host UNIX Operating System, almost all user interaction with
the WE 32100 Microprocessor goes through the host computer. The SGP imposes no
convention on how the host computer ultimately communicates with the target WE 32100
Microprocessor.

The SGP frees programmers from the tedious task of machine-level coding and its pitfalls.
The SGP provides symbolic programming on several levels and simplifies programming
tasks by:

o Allowing programs to be portable across systems

• Making detailed knowledge of the WE 32100 Microprocessor architecture, I/O, and the
operating system unnecessary.

Programs can be written in the lower-level assembly language, but need not be unless low­
level data representations or low-level system functions must be accessed. Assembly
language programming is used for applications requiring high levels of efficiency, or in
cases where the higher-level language prevents access to data or to functions.

The C language is used as the high-level programming language. It contains a collection
of control- and data-structuring facilities that greatly simplify programming tasks. Within
the SGP, the C compiler (m32cc) converts C programs into assembly language programs
that are ultimately translated into object files by the assembler (m32as). The link editor
(m321d) collects and merges object files into executable load files. Each of these tools
preserves all symbolic information necessary for meaningful symbolic testing at the C
language source level. The SGP also provides a variety of utilities that read and
manipulate object files.

Figure 5-1 shows the overall organization of the SGP. This organization conceptually
parallels the C language support features of the UNIX Operating System.

Distinctive SGP Features

Distinctive features of the SGP tools are:

• All are designed to create and retain symbolic debugging information.

• A standard, common object file format is used.

5-1

SOFTWARE GENERATION PROGRAMS
Host Computers

5-2

• • •

Figure 5-1. Major Steps in the SGP

The SGP emphasizes the generation and retention of symbolic debugging information.
Table 5-1 lists the SGP tools described in this chapter. Also discussed are C language,
assembly language, link-editor command language, and object file format.

Host Computers

The SGP runs under the UNIX Operating System, which in turn runs on a host computer.
The host computer with the UNIX Operating System supports development of software for
a target processor; in this case, the target is the WE 32100 Microprocessor. Other possible
hosts for the UNIX Operating System and the SGP are:

• AT&T 3B20S Computer and AT&T 3B5 Computer

• Digital/Equipment Corporation VAX 11/780 Computer

• IBM 370 Computer running the "MAXI" version of the UNIX Operating System.

SOFTWARE GENERATION PROGRAMS
Compiler

5.1 COMPILER AND THE C LANGUAGE

The C language is used for high-level programming and contains many control and
structuring facilities that greatly simplify the task of algorithm construction. The C
compiler (m32cc) converts C programs into assembly-language programs. Outputs the
current on-line manual page for the compiler.

Table 5-1. SGP Tools

Tool Description

m32ar Combines several files into one archive file.
m32convert Converts object and archive files into common object file format
m32cc C Compiler
m32as Assembler
m321d Link Editor
m32conv Converts object files from one host machine format to another

host machine format.
m32cprs Compresses object files by removing duplicate structure and

union descriptors.
m32dis Disassembles object files to allow assembly-level debugging.
m32dump Dumps selected parts of the named object files.
m32list Produces a C language source list with line numbers that specify

where breakpoints can be inserted.
m3210rder Generates an ordered listing of object files suitable for link

editing in one pass, as done by m321d.
m32nm Prints the symbol table for an object file.
m32size Reports the number of bytes of text, uninitialized data, and

initialized data (and their sum) included in an object file.
m32strip Reduces file storage overhead by removing symbolic debugging

information from an object file.

5.1.1 Compiler

The command for the compiler is m32cc. Prior to using the compiler, a file containing C
source code is created using the UNIX Text Editor. The name of the file must end with
the last two characters .c (e.g., file1.c). The command line

m32cc options file.c

is then entered to invoke the compiler on the C source file file.c with the appropriate
options selected from Table 5-2. The compilation process creates an absolute binary file
named m32a.out that reflects the contents of file.c and any referenced (user-supplied)
library routines. The file, m32a.out, can then be executed on the target system.

options control the steps in the compilation process. When none of the controlling options
are used, the m32cc compiler automatically calls the m32as assembler, and the m321d link
editor (see Figure 5-1).

5-3

SOFTWARE GENERATION PROGRAMS
Compiler Options

5-4

The m32cc compiler also accepts input file names ending with the last two characters .s.
The .s signifies a source file in assembly language. The m32cc compiler passes this type of
file directly to m32as.

The m32cc compiler, based on a portable C compiler, translates C source files into
assembly code. Whenever the command m32cc is used, the C preprocessor is called. The
preprocessor performs file inclusion and macro substitution. The preprocessor is always
invoked by m32cc and not called directly by the programmer. The expanded files are
translated from C language to assembly code. Then, unless the appropriate flags are set,
m32cc calls the assembler, optimizer, and the link editor to produce an executable file.

Compiler Options

All options recognized by the m32cc command are listed in Table 5-2 and on the manual
page in 5.6 SGP MANUAL PAGES. The following provides additional information for
those options not completely described in Table 5-2.

By using appropriate options, compilation can be terminated early to produce one of several
intermediate translations such as relocatable object files (-c option), assembly source
expansions for C code (-S option), or the output of the preprocessor (-p option).
Generally, the intermediate files may be saved and later resubmitted to m32cc with other
files or libraries included as necessary.

When compiling C source files, the most common practice is to use the -c option to save
relocatable files. Subsequent changes to one file do not require that the others be
recompiled. A separate call to m32cc without the -c option creates the linked, executable
m32a.out file. A relocatable object file created under the -c option is named by replacing
.c with .0 of the source filename.

The -W option provides the mechanism to specify options for each step that is normally
invoked from the m32cc command line. These steps are:

• Preprocessing • Compiler • Optimization • Assembly • Link editing

The most common example of the use of the -W option is

-Wa,-m

which passes the -m option to the assembler. Specifying -Wl,-m passes the -m option to
the link editor.

When the -P option is used, the compilation process stops after completing only
preprocessing, with output left infile.i. This file is unsuitable for subsequent processing by
m32cc.

The -0 option decreases the size and increases the execution speed of programs by
moving, modifying, merging, and deleting code. However, line numbers used for symbolic
debugging may be transposed when the optimizer is used.

Table 5-2.

Option Argument

-c None

-g None
-p None
-D identifier[=constant I

-E None

-I directory

-0 None
-p None

-s None

-U identifier

-v None
-y limit

-w c,arglLarg2 ... 1

SOFTWARE GENERATION PROGRAMS
Compiler Options

m32cc Command Line Options

Description

Suppress the link-editing phase of compilation and
force an object file to be produced even if only one
file is compiled.
Produce symbolic debugging information.

Reserved for invoking a profiler.
Define the external symbol identifier to the pre-
processor and give it the value constant (if specified).
See Note.
Suppress compilation and loading; i.e., invoke only
preprocessor and direct the output to the
standard output.
Change the algorithm that searches for #include
files whose names do not begin with "I" to look in
the named directory before looking in the
directories on the standard list. Thus, #include files
whose names are enclosed in " "are first searched
for in the directory of the file being compiled, then
in directories named by the -I options, and last in
directories on the standard list. For #include files
whose names are enclosed in < >, the directory
of the file argument is not searched. See Note.
Invoke an object code optimizer.
Same as the -E option except output is directed to
corresponding files suffixed .i.
Compile the named C language programs, and
leave the assembly-language output on corre-
sponding files suffixed .s.
Undefine the named identifier to the preprocessor.
See Note.
Print versions of m32cc and tools it invokes.
Allow user to set limit on the percent growth per
file from in-line expansion. Values for limit are: u,
allows unlimited growth; integer;::: 0, allows
indicated percent growth; s, suppresses in-line
procedure expansion.
Pass along the argument(s) argi to pass c, where c
is one of [p02aIl, indicating preprocessor, compiler,
or link editor, respectively. See Note.

Note: Argument is appended to option with no embedded blanks.

5-5

SOFTWARE GENERATION PROGRAMS
Register Usage

5-6

If an asm instruction is encountered under the -0 option, the optimizer suppresses
optimization of any function containing an asm.

The -g option produces information for a symbolic debugger. The SGP does not currently
support a symbolic debugger, but one may be available as part of an application.

Register Usage

With the -0 option, the compiler and optimizer provide automatic global register
allocation on a procedural basis. Automatic allocation tries to move quantities to the
scratch registers that are not saved/restored during procedure call/return. Also, it
attempts to move quantities that cannot be placed in scratch registers into saved registers,
if there is a net payoff. The movement into registers is impeded by constraints that restrict
the registers' quantities. First, quantities that can be addressed in more that one way
cannot be safely placed in registers. Second, scratch registers are changed by calls to
procedures or move block instructions. Third, the number of registers is finite. And
fourth, there is an overhead for using saved registers.

For most uses, the details of register usage or assignment are not needed by programmers.
Registers can be accessed through an assembler escape, although this practice is not
recommended. Registers have the following usage in the compiler:

III rO-r2 Scratch registers
III r3-r8 Saved register variables

III ap Argument Pointer III fp Frame Pointer
III sp Stack Pointer

Six saved register variables are allowed by m32cc and are assigned to r8-r3 in descending
order. If more than six registers are declared in a C source program, the compiler silently
assigns stack space instead.

Register 0 (rO) holds the return value from a function call. Registers 0 (rO) and 1 (rl)
hold the return value from a call to a double precision floating point function. For a
function returning a structure, r2 passes the address in which the returned structure value
should be stored. Function calls are assumed to require all scratch registers.

5.1.2 C Language

The C language used by the WE 32100 Microprocessor has features to accommodate both
systems and general-purpose programming. The version of C language used is the one
described in The C Programming Language by B. W. Kernighan and D. M. Ritchie
(Prentice-Hall, 1978), except that it includes recent enhancements to C language. This
section describes the extensions to C language not covered in Kernighan and Ritchie's
book.

With the WE 32100 Microprocessor, C language data types map in the natural way for a
32-bit processor. That is, char maps to the processor type byte (8 bits), int and long map
to word (32 bits), and short to halfword (16 bits). The compiler also accepts floating point
data types. Codes for these data types assemble to opcodes which are illegal on the
WE 32100 Microprocessor. Applications can trap on these opcodes and provide emulation
of floating point operations.

SOFTW ARE GENERATION PROGRAMS
Enumerations

C language leaves identification of the assembler escape keyword (asm) to the designer.
The asm has been implemented for m32cc with the syntax:

asm ("assembly instruction").

For example,

asm ("movw &0, % rO")

loads register rO with a O. The assembly language instruction within the quotation marks
is transmitted unchanged to the assembler.

The C language enhancements recognized by m32cc are:

• Flexnames - Structure Assignments - Functions returning structure values
• Nonunique structure member names • Enumarations • Structure-valued arguments

A detailed discussion of each enhancement follows. These details are not required by many
programmers, but are included to completely describe the C language used by the
processor.

Flexnames

Flexnames allow the use of arbitrary length variable names. The restriction of eight
significant characters for C language variable names is removed. To allow names of
arbitrary length, a string table was added to the object file, and the symbol table was
modified to support the string table (see 5.4 OBJECT FILE FORMAT).

Enumerations

Enumerations are unique data types with named constants. These partly replace the use of
#define constants and offer the advantage of scoped constant names and strong type
checking in the use of such names. Enumerations are analogous to the scalar types of the
Pascal language.

To the type-specifiers listed in Section 8.2 of The C Programming Language by Kernighan
and Ritchie, add:

enum -specifier

with the syntax

enum-specifier:
enum {enum-Iist}
enum identifier {enum-Iist}
enum identifier

5-7

SOFTWARE GENERATION PROGRAMS
Enumerations

5-8

enum-list:

enumerator
enum-list , enumerator

enumerator:

identifier
identifier = constant-expression.

The role of the identifier in the en urn-specifier is entirely analogous to that of the
structure-tag in a struct-specifier; it names a particular enumeration. For example,

enum color { red, green, yellow, blue };

enum color *cp, col;

col = yellow;
cp = & col;

if(*cp == green) ...

makes color the enumeration-tag of a type describing various colors and then declares cp as
a pointer to an object of that type and col as an object of that type.

The identifiers in the enum-list are declared as constants and may appear whenever
constants are required. If no enumerators with "=" appear, then the values of the constants
begin at zero and increase by one, as the declaration is read from left to right. An
enumerator with "=" gives the associated identifier the value indicated; subsequent
identifiers continue the progression from the assigned value. For example,

enum interrupt{
halt = 0,

} icode;

badJnstr = 01001,
memJault,
div_zero = 02001,
overflow,
underflow

if((intHcode & 02000) /* arithmetic fault * /

illustrates specific value specification. In particular, the symbol overflow has the internal
value 02002.

All enumeration constants must be distinct. Unlike structure members, enumeration
constants are drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of
all other types. The compiler maps enumerations into the int storage class.

SOFTWARE GENERATION PROGRAMS
Nonunique Structure Member Names

Structure Assignment

Structure assignment was added to the C language to simplify the transferring of the value
of one structure instance to another, and to allow functions to return aggregate values.
Structure assignment permits more efficient use of the processor and also improves source
program readability.

Structures may be assigned as a unit, passed as arguments to functions, or returned by
functions. All structure operands taking part in these operations must be of the same type.
The following example demonstrates the new structure assignment features:

struct clock {

};
struct date {

};

int hour, minute, second;

int year, month, day;
struct clock time;

struct clock now={l3,2,36};
extern struct date spring 0;
struct date today, tomorrow;

struct date nextday(day) struct date day;
struct date tempday;

mainO

return tempday;

today = springO;
tomorrow = nextday(today);
tomorrow.time = now;

Nonunique Structure Member Names

The current standard C language allows more flexibility in the reuse of structure member
and structure field names than the original. The C language now permits reuse of
structure member or field names. The exception is that a particular name may not be used
for two distinct members within the same structure. This enhancement will, in one case,
preclude the use of a type of reference to structure members that was permitted in older
versions of the C language. This obscure case, where upward compatibility has not been
maintained, is explained in detail. Nonunique member names permit more natural
structure and union member naming conventions; which result in stronger and more
efficient type checking of both structure and union member references.

5-9

SOFTWARE GENERATION PROGRAMS
Nonunique Structure Member Names

Former Member Name Restrictions. Prior to this change, there were only two ways in
which structure member names could be reused.

1. Names of members of two distinct structures could be identical only if those names
represented the same member type and offset. For example, the name xyz is used in
both of the following two structures:

struct sl {

};
struct s2 {

} ;

long abc;
char xyz;
int def;

long rst;
char xyz;
short jkl;

With such a construction, the structure member name xyz could be referenced from
any structure variable of type s 1 or s2, or any pointer to these types without
ambiguity.

2. Member names could be reused within a new name scoping (block) level. In the
following code section, the member name f_one is reused:

struct outer {

};
functO

int Czero:2,Cone:4,Ctwo:l0;
struct outer *next;

struct inner {
int Cone, g_one, h_one;

};

When member names are redeclared at different block levels, the innermost declaration
serves to block the outer declarations of the same name within the inner scope. In a
structure of the type outer, the four-bit field f_one could not be referenced within the
function funct. This restriction would hold even for structures that were explicitly declared
to be of type outer.

New Flexibility for Member Names. The language change for structure member names
allows the reuse or redeclaration of structure member or field names with only a single
restriction:

5-10

A particular name may not be used for two distinct members within the same
structure. A name may, however, be reused within nested structures.

SOFTWARE GENERATION PROGRAMS
Complete Structure and Union Member Reference Qualifications

Due to this change, type-checking is performed more strongly for structures and unions. A
structure (or union) member is referred to as unique if it is declared only once, or if all its
declarations conform to the requirements of Case 1 above. If a uniquely named member is
mentioned in a structure reference where it is not a member of the structure, a warning
diagnostic is issued. This allows old C language programs that violate these new rules to
continue to compile. However, if a member that is not uniquely named is used in a
structure reference while it is not a member of the structure, a fatal diagnostic is issued.

The case in which upward compatibility is not maintained involves structure member name
declarations of Case 2 above.

struct x {

mainO {

int a,b;
lx_obj;

int *ip;
struct{

int b,a;
lLobj;

... ip-+a ...
···Lobj.a .. .
... x_obj.a .. .

In the example above, prior to the language change, each of the references ip-+a, y _obj.a,
and x_obj.a was considered legitimate, and an offset of one word for the integer referenced
by "a" was used. With nonunique structure members, the integer referenced by "a" in
x_obj.a would have an offset of zero bytes from the address of x_obj. The portable C
compiler used by m32cc considers such a reference to be a user error and issues a fatal
diagnostic for ip-+a.

Complete Structure and Union Member Reference Qualifications

Complete qualifications are now required for structure and union member references in the
C language because ambiguities can arise with incomplete qualifications and nonunique
structure member names. Incomplete qualifications are flagged with fatal error messages.

In earlier C compilers, a reference to a structure or union member could be abbreviated in
some cases. When an abbreviation was used, a structure or union reference became a
chain of member references (also called qualifications).

Qualifications were prefixed either by a structure or union proper or by a pointer to a
structure or union. Because each qualification implied the addition of an offset within an
address computation, it had been possible to omit those qualifications that had an offset

5-11

SOFTWARE GENERATION PROGRAMS
Nonunique Tag Names Allowed

of zero. Zero offsets occur in the first member of a structure and in all members of
unions. With the following two declarations:

struct xx {

} *xp;

union u {

} *up;

struct yy {
int y 1; char y2;

} ym;

struct a {
int a 1 ,a2,a3;

} merna;
struct b {

char bl,b2,b3;
} memb;

the following references were allowed:

xp-+y2 /* same as */ xp-+ym.y2
up-+b2 /* same as */ up-+memb.b2

Of the references in the previous example, only the following structure and union member
references are now legitimate:

xp-+ym.y2
up-+memb.b2

Nonunique Tag Names Allowed

Declared types of structure, union, and enumeration can be named by tag names that
appear after the keywords enum, struct, and union, as shown in the following examples:

typedef enum bool {false, true} bool;
struct list *head;
union cell {unsigned word; char byte[21;};

Previous implementations of the C language required that all union and structure tag
names be distinct from member names. The recent enhancements remove this restriction.
As a result, four name pools now exist:

• #define macro names

., Structure, union, and enumeration tag names

• Structure and union members (which may be nonunique)

• All other names, including typedef, array, structure instance, and variable names; and
enumeration constant names.

5-12

SOFTWARE GENERATION PROGRAMS
Assembler and Assembly Language

Vertical Tab Character Literal

The vertical tab character literal has been added to the C language. The character VT
(octal 013 in ASCII) can now be represented as \v in addition to \013. This character
may also be used within character string literals (e.g.: Upper left\t\t\t\v\vLower right\n).
Vertical tab is now included in the definition of white space and therefore can be used to
delimit tokens in a source file.

In-Line Procedure Expansion

With the -0 option, the optimizer provides performance enhancements by expanding small
procedures in-line to reduce discontinuities and the number of saves and restores executed.
The optimizer expands a call to a procedure only if, after global register allocation, the
procedure has no local variables and no saved registers, and if the call appears in the same
file in which the procedure appears. When a procedure is expanded in-line this fact is
noted in the object file symbol table (see the description of Auxiliary Table Entries in 5.4.7
Symbol Table).

Procedures are expanded to only one level (i.e., calls within expanded procedures are not
expanded). When the optimizer expands a procedure, it leaves the original copy in place,
but strips the call, save, restore, and ret instructions from the copies expanded in-line. A
procedure always appears once as a complete routine, but may appear many times as an
in-line expansion. Arguments to an in-line copy are placed on the stack and referenced
with the frame pointer of the calling routine. If a nested call is expanded, the frame
pointer offsets for the in-line copy's argument references are corrected for the presence of
other arguments on the stack.

The optimizer controls the amount of code growth resulting from the expansion by limiting
the percentage code growth per file. It does this by controlling the number of calls
expanded. The limit on the percent growth per file can be set by the user and a default
value can be set at SGP build time.

5.2 ASSEMBLER AND ASSEMBLY LANGUAGE

This section describes the WE 32100 Microprocessor assembler (m32as) and assembly
language. Most applications of the processor involve programming in a C language
environment only. However, some applications may require assembly language
programming for speed or access to functions not accessible at the C level. Short,
frequently executed routines, such as the ones needed to handle I/O, interrupts, and device
drivers are most likely written in assembly language.

The assembler constructs an object file from an assembly language source file. The object
file is relocatable and may include an extensive symbol table for symbolic debugging. This
relocatable object file is in "common" object file format and can be linked to other such
files using the m32ld link editor.

The assembler translates operation code mnemonics and operands into the target machine
bit pattern representing the particular instructions. The m32as assembler attempts to
optimize its output, thus reducing the number of machine cycles required for a given task.

5-13

SOFTWARE GENERATION PROGRAMS
Assembler

This optimization improves program speed. The assembler resolves local text labels,
identifies global text symbols defined in the input files, and identifies symbols referenced
but not defined.

The assembly language is made up of the WE 32100 Microprocessor instruction set,
assembler directives, and a machine-independent instruction set. The machine-independent
instructions are mapped into one or more WE 32100 Microprocessor instructions. The
processor instruction set contains special-purpose I/O and system instructions local to the
processor and a syntax for the variety of addressing modes that can be used to encode
operand references. The assembler directives, called pseudo-operations (or pseudo-ops)
permit description of high-level symbols and their types and storage classes, thus
facilitating symbolic testing. Source line numbers can also be described. Other assembler
directives can set location counters to allow flexibility in coding multiple sections in a
single file.

5.2.1 Assembler

The assembler is normally called by the m32cc command rather than directly by the user.
It has no flags of its own when called by m32cc, although it can be invoked directly with
the command line

m32as options filename

where options are chosen from Table 5-3.

Table 5-3. m32as Command Line Options

Option Argument Description

-m None Invoke the m4 macro processor.
-n None Turn off long/short address optimization.
-0 objfile Place the assembled output in objfile.
-V None Print the version of the assembler being

run on standard error.

The input assembly language program is read from filename, and the output is written to
an output object file. Unlike m32cc, only one file at a time may be input to m32as. If the
output file name is not specified by the -0 option, the output name is created from
filename using the following algorithm:

• If filename ends with the two characters .s, the output name is created by replacing
these last two characters with .0.

• If filename does not end in .s and is no more than twelve characters in length, the output
name is created by appending .0 to filename.

• If filename does not end with .s and has more than twelve characters, the output name is
created by appending .0 to the first twelve characters of filename. (File names on the
UNIX Operating System can be no longer than fourteen characters).

5-14

SOFTWARE GENERATION PROGRAMS
Diagnostics

Usage of the assembler options entails a few potential pitfalls. If the -n option is not used,
address optimization is invoked. The .align assembler directive is not guaranteed to work
in a .text section when optimization is performed. Therefore, aligned constants should not
be defined in the .text section. See 5.2.2 Assembler Directives for a more detailed
description of .align.

When the assembler is implicitly run by using m32cc, there are no key or reserved words.
However, when the assembler is run explicitly, macro processing may be invoked. In this
case, M4 keywords and predefined macros must not be used as symbols (variables,
functions, labels) in the input file, since the macro processors cannot distinguish assembler
symbols from macros. If macro expansion is not required, this problem cannot occur.

Assembled Files

The output of the assembler is an object file that has the format described in 5.4 Object
File Format. Each assembled file contains three sections: .text, .data, and .bss. Each
section begins at an address that is a multiple of four and consists of a contiguous sequence
of bytes. The .text section is used for the executable statements, the .data section is used
for the initialized variables, and the .bss section is used for the uninitialized variables.
Every statement in the input assembly language that produces code or data generates it
into one of these sections.

The assembler maintains three location counters for each assembled file, one for each of
the program sections. The initial value of each counter is set to zero. When an assignment
is made to the corresponding program section, the assembler increments the appropriate
location counter. On its final pass, the assembler concatenates the three sections for each
file in the order .text, .data, and .bss and sets each location counter to the correct starting
address. That is, the text origin is set to zero; the data origin is set to the location that
follows the .text section; and the .bss origin is set to the location that follows the data
entry. Figure 5-2 shows these starting memory locations.

Because the assembler produces relocatable code, modular program development is possible
and is encouraged.

Diagnostics

Many different errors may occur when using the assembler. Nearly as many error
messages are possible. The error messages are intended to be self-explanatory.

The most common error occurs when the input file cannot be read. The assembly then
terminates with the message "Can't open filename". If assembly errors are detected in the
input file, the following information is written to standard error: the input file name, the
line number where the error occurred in the assembly code, and possibly a descriptive
message for the problem. If the input file is produced by the C compiler, the line number
in the C source program that generated the erroneous code is written on standard error.

5-15

SOFTWARE GENERATION PROGRAMS
Macro Processing Facilities

~ . text ORIGIN

.text
SECTION

~ .data ORIGIN (A 512K-BYTE BOUNOARY)

.data
SECTION

~ .bss ORIGIN (= .data ORIGIN + .data SIZE)

. bss
SECTION

UNASSIGNEO

Figure 5-2. Mapping Program Sections

Macro Processing Facilities

Macro processors enhance programming languages by making them more readable, or by
tailoring them to specific applications. The basic facility provided by any macro processor
is replacement of text by other text. The #define statement in the C language performs a
function for the compiler analogous to the function performed for the assembler by the
macro processor.

When the -m option of m32as is specified, the M4 processor is invoked. The M4 macro
processor provides a collection of about thirty-two built-in (default) macros; in addition,
the user can define new macros using the M4 define function. As part of the programming
environment provided by the SGP, many interfacing macros have been predefined. That is,
the define function of M4 has already been used to establish several macros that interface
assembly language routines with C code.

The M4 processor operates by copying its input to its output. As the input is read, each
alphanumeric token (i.e., string of letters and digits) is checked. If the token matches the
name of a macro, the name of the macro is replaced by the defining text, and the resulting
string is pushed back onto the input and rescanned. In M4, built-ins and user-defined
macros work exactly the same way, except that some of the built-in macros have side
effects on the state of the process. Macros may be called with arguments, in which case
the arguments are collected and substituted into the right places in the defining text before
that text is rescanned.

5-16

SOFTWARE GENERATION PROGRAMS
Interface Macros

Use of the M4 helps facilitate symbolic debugging when assembly code is used by tailoring
the input file to look as though it came from the compiler. When an assembly language
program uses the provided M4 macros, symbol table information can be generated, as well
as the prologue and epilogue pseudo-code sequences that the compiler normally provides.
The assembly language programming example demonstrates the prologue and epilogue
sequences. (See 5.2.4 Programming Example.)

Interface Macros

A set of predefined macros is provided to enable assembly language function linkages to C
code to be specified independently from the details of the calling sequence. The macros
therefore not only make programming easier; they also provide some insulation from any
changes to the calling sequence that may occur. It must be emphasized, however, that
while these macros make assembly language programming easier, they do not change the
fact that, whenever possible, C language code should be used. Assembly code, no matter
how well designed, is more difficult to write and debug than C code. In addition, assembly
language routines do not necessarily perform a given task faster than high-level programs.

When the -m option is used, M4 preprocesses all input assembly language source files.
The macros described below are made available as part of this preprocessing step. The M4
processor operates on both assembly language source files and on intermediate assembly
language files generated by the compiler for C source files (i.e., .c files) that contain asm
assembler escapes.

Note: When using m32as, the -m option can be specified on the command line. When
using m32cc, the -Wa, -m option must be specified to access the macro package.

Function Interface Macros. The M4 macro package uses a functional notation for macros
with arguments. Function interface macros should appear alone on a line with the
arguments enclosed in parentheses and separated by commas. Additional white space
(blanks and tabs) is ignored. Macros without arguments should appear in the assembly
text just as if they were normal assembly language expressions.

C_PROLOGUE(name[,nregs])

This macro generates the standard C function prologue that finishes saving the caller's
environment on the stack and sets up a new stack frame for use by the called routine. The
operand name is the function name in the C source code; e.g., prefix in the example shown
in 5.2.4 Programming Example. The name must be a valid C language identifier.

The optional argument nregs gives the number of C language register variables that are
saved by C_PROLOGUE (default is six registers>' The assembly language function may
use the saved registers for any purpose. Register variable arguments and stack arguments

5-17

SOFTWARE GENERA nON PROGRAMS
Interface ~acros

are not available to C_PROLOGUE. Another predefined macro, _RESULT, names the
register that must be loaded with any value to be returned to the calling function.

C_RETURN(nregs)

This macro generates the standard function return sequence. It restores the caller's
environment and executes a branch to the return address that was saved with the
environment on the stack at the time of the call. The number of registers to be restored is
given by nregs and should be the same as that specified in C_PROLOGUE. The default is
six.

C_CALL({und.argl• arg5D

This macro generates a call to the C language function june. The operand june must be a
valid function name for either another normal assembly routine or a C source function that
has become known by link editing. Up to five arguments can be passed with C_CALL.
The arguments can be any valid operands to the assembler pushw instruction. Note that
the function arguments are passed through without change (except for macro expansion).
In the assembler language syntax, a variable name or constant operand is normally treated
as if addressing a word in memory. The ampersand (&) can be used to show that the
address itself is wanted. Thus, to use a specific value as an argument, an ampersand is
used with the value. For example, the value 3 would be designated by &3. An argument
that is to be the value stored at some address is indicated by giving the address with no
ampersand. For instance, to obtain the contents at address x, designate the letter x. If the
address itself is to be used as the value, write the value as an ampersand address; e.g.,
designate address x by &x.

This macro operates the same as C_PROLOGUE, but doe, not allow any registers to be
saved.

A _ EPILOGUE (name)

This macro generates the symbolic code indicating the end of a function. Programmers
must still write the actual return instructions before the A_EPILOGUE macro call; e.g.,
RESTORE and RET. Lines 30 through 33 in the example shown in 5.2.4 Programming
Example show the code generated by the A_EPILOGUE macro.

The macros that begin with C were written to connect assembly language segments to C
language programs. However, they can also be used to connect two assembly language
segments. In this use, the macros provide symbol table definitions, beginning and ending
statements, and a save instruction for the new segment.

If only the symbol table definition and the beginning and end statements are needed, the
A_PROLOGUE A_EPILOGUE pair should be used. The pair does not contain a save
command, and its use requires explicit coding of save and return instructions.

5-18

SOFfWARE GENERATION PROGRAMS
Interface ~acros

Scratch Register ~acros. The C compiler uses three scratch registers to store temporary
results of expression computations. When the compiler processes a function call, it
guarantees that no current values in the scratch registers will be needed after the call (by
storing the values in temporary locations on the stack if necessary). Therefore, each
function is free to use the scratch registers in any way and does not have to save or restore
them. The macros _SCR1, _SCR2, and _SCR3 expand to the register numbers of the
scratch registers and may be used freely inside a normal assembly language routine. Note
that _SRCI names the same register as ~ESULT. Register _SCRI has special meaning
during the call and return sequence, but is available for general use inside the called
function.

Stack Frame ~acros. Stack frame macros start with an underscore () and provide access
to the current stack frame environment. The argument macros _ISTARG, _2NDARG,
_3RDARG, _4THARG, and _5THARG reference the first through fifth arguments to the
function (via memory address), respectively. The macros _ISTREG, _2NDREG,
_3RDREG, _ 4THREG, _5THREG, and _6THREG reference the six general purpose
registers, r8 through r3, respectively. The macro _RESULT references the register
(typically rO) used by the C compiler to contain the value returned from a function.

If these macros are used in a normal assembly language routine (for example, one that
uses C_PROLOGUE and C_RETURN), they refer to the stack frame set up by
C_PROLOGUE. Note that C_PROLOGUE does not allocate any automatic storage.

The C stack frame can also be accessed directly by the stack pointer register (SP, rI2), the
frame pointer register (FP, r9), and the argument pointer register (AP, rIO). The function
interface and stack frame macros track any changes in the calling sequence. If the SP,
FP, or AP registers are used to get closer to the stack frame layout, code will no longer be
insulated from the details of the stack frame, and may have to be rewritten later.

Restrictions. In effect, the argument and register macros independently follow the same
algorithm used by the C compiler to allocate storage. Because there is no way for the
macro processor to know about the real environment of the assembly function or calling
function, the following restrictions must be considered when using these macros:

o The use of argument and register macros is inherently machine-dependent; the macros
cannot be recognized by processors not based on the assembler.

o All arguments, up to and including the last argument referenced by the macros, must be
ints or pointers. These macros do not deal with char, short, or struct arguments.
Functions that return structures require a more complicated calling sequence that is not
handled by this macro package .

• For assembly language routines, any copying of arguments into registers must be done
explicitly by the assembly code .

• Macro usage is not checked during the compiling and assembling of programs.
Therefore, an assembly language routine that incorrectly changes the value of FP will
cause run-time errors rather than compile-time errors.

5-19

SOFTWARE GENERATION PROGRAMS
Using Predefined Macros

Using Predefined Macros

A normal assembly language routine is called from a C source program just like any other
function. The routine can have arguments passed to it, and it establishes its own
environment on the stack. The file containing the assembly language source must have a
name ending in .s. The.s tells the compiler (m32cc) to skip compilation and send the
source directly to the assembler.

Examples. In the following example, a function named bump adds one to its argument and
returns that result.

C _PROLOGUE (bump)
movw _ISTARG,%_RESULT
addw2 &1,%_RESULT

C RETURN

If bump were called by the following C language routine

mainO
(

int i = 3;
int j;
j = bump(j);

then j would have the value 4.

The next example gets two pointers as arguments and swaps the values pointed to:

C _PROLOGUE(swap)
movw ISTARG,% ISTREG
movw O(%_ISTREG),%_SCRI
movw 2NDARG,% 2NDREG
movw 0(% 2NDREG),% SCR2
movw % SCR2,O(% ISTREG)
movw %=SCR1,O(%)NDREG)

C_RETURN

#lst arg is a pointer
#get value pointed to
#2nd arg is also a pointer
#get its value
#store 2nd args value
#store 1st args value

Suppose swap was called by the following program:

mainO
{

5-20

int i = 3;
int j = -4;
swap(&i,&j);

SOFTWARE GENERATION PROGRAMS
M4 Reserved Words

Then i would get the value -4 and j would get the value 3. A C language function to
accomplish the same task is

swapG,j)
int *i, *j;
{

register int temp;
temp = *i;
*i = *j;
*j = temp;

In the final example, assembly function chkster checks to see whether, after stepping the
first character, a text string has a common prefix with the string "abcdef' is defined using
the function prefix. (See 5.2.4 Programming Example.) This is a contrived example that
has no place in real code, but is presented to demonstrate how a C language function is
called with the C_CALL macro.

C _PROLOGUE (chkstr)

addw3 &l,_lSTARG,%_SCRl #skip first character
C_CALL(prefix, & string, %_SCRI)

C RETURN

.data
string:

.byte Ox61 ,Ox62,Ox63,Ox64,Ox65,Ox66,OxO

Note that the address of the format string must be passed to prefix and that the null byte
terminating the string must be explicitly coded. Also note that unlike some
implementations, the m32cc compiler does not prepend an underscore before global names.
Thus prefix is used in assembly code, not yrefix.

M4 Reserved Words

Detailed discussion of the M4 processor can be found in the UNIX System User's Manual.
A list of the M4 reserved words is:

changecom ifdef shift
changequote ifelse sinclude
decr include substr
define incr syscmd
defn index sysval
divert len traceoff

5-21

SOFTWARE GENERATION PROGRAMS
Assembly Language

divnum
dnl
dumpdef
errprint
eval

5.2.2 Assembly Language

m4exit
m4wrap
maketemp
popdef
pushdef

traceon
translit
undefine
undivert

This section describes the WE 32100 Microprocessor assembly language syntax and
semantics. The basic actions of evaluation, assignment, and control of evaluation order are
specified by statements. Statements are either machine instructions, assembler directives,
or macro instructions.

The data types supported by the assembly language are byte, halfword, word, and bit field.
A byte is an 8-bit quantity; a halfword is a 16-bit quantity; a word is a 32-bit quantity; and
a bit field is a sequence of 1 to 32 bits.

The instruction set provides that bytes, halfwords, and words can be interpreted as either
signed or unsigned quantities for arithmetic or logical operations. The processor does not
generate any fault internally in the event of word or halfword data specified at improper
addresses. The memory subsystem must generate a memory fault if such a fault is to be
provided.

Detailed information on the instruction set, if needed, may be found in Chapter 3.

Statements

An assembly language program consists of a sequence of lines of code. Each line consists
of a sequence of characters terminated by the new-line character (\n). Each line may
contain one or more statements. If several statements appear on a line, they must be
separated by semicolons (;). Each statement must be one of the following:

• Assembler Directive - a statement that is a command to the assembler. It consists of a
pseudo-operation code followed by zero or more operands.

• Machine Instruction - a mnemonic representation of an executable machine instruction.
It consists of an operation code followed by zero or more operands.

• Machine Independent Instruction - a statement that maps into one or more executable
machine instructions.

• Empty - a statement that contains only spaces and tabs. It signifies nothing to the
assembler, but is often used to enhance program readability.

Operation codes are separated from their operands by at least one space or tab. Operands
and arguments are separated by commas. Unless otherwise stated, any other use of space
and tab characters is optional. White space characters may be used freely to improve
readability.

5-22

SOFTWARE GENERATION PROGRAMS
Symbols

Each statement may be modified by one or more of the following:

• A label may be placed on any statement. The label consists of a symbol that begins in
the first character position of a statement (j.e., it must begin IMMEDIATELY after a
new-line character or semicolon) and is followed by a colon. Symbols are described in
detail in the following section. An unlabeled statement MUST have a space, tab, or
pound sign (#) in the first character position.

o A comment may be inserted at the end of any statement by preceding the comment with
a pound sign. The assembler will ignore the pound sign and all characters following it
up to the first new-line character. A new statement begins with the first character after
the new-line character.

There are no limits on the number of characters in a statement or on the number of
statements on a line. Multi-line comments are made by inserting a pound sign as the first
nonwhite-space character of each line.

An example showing the four parts of assembly language statements follows. The first
statement shows an assembler directive. The second statement is empty and was inserted
to provide a visual break between directive and machine-instruction sections. The last two
statements are machine independent instructions.

Label Mnemonic Operand Comment

.globl prefix

main: save &.RI #begin the function
addw2 &.FI,%sp

These statements are taken from the example in 5.2.4 Programming Example.

Symbols

Symbols are tokens recognized by the assembler. They always have a value and type,
either specified explicitly by an assignment statement (see 5.2.2 Assembler Directives) or
determined from the context. Value and type are described in detail in this section. A
symbol name consists of a string of the characters a-z, A-Z, 0-9, underscore (), and
period (.). Names may not begin with a digit. Because embedded blanks are not
permitted in symbols, the underscore is generally used in place of a blank to make an
identifier more readable.

Symbols are primarily used as labels. Four examples of symbols are:

Rtn Nam5 abc DEF xyz.QQQ.

The assembler does not put symbols beginning with. (read as 'dot') into the object file
symbol table. Exceptions to this rule are .text, .data, and .bss; these symbols are used for
relocation.

5-23

SOFTWARE GENERATION PROGRAMS
Symbols

The following symbols are reserved for use by the assembler:

1. . This symbol (read as dot) is used as the location counter while assembling a
program. Whenever actual code is generated by the assembler, the value of this
symbol is increased by the size of the generated code. Hence, this symbol effectively
represents the address of the code being generated. Depending on the section for
which code is being generated, dot may be of type TEXT, DATA, or BSS. Null data
can be generated by pseudo-op assignment to this symbol.

2. .text This symbol has type TEXT and is used to label the beginning of the .text
section for the program being assembled.

3. .data This symbol has type DATA and is used to label the beginning of the .data
section for the program being assembled.

4. .bss This symbol has type BSS and is used to label the beginning of the .bss section
for the program being assembled.

Values and Types. Values are represented in the assembler by signed 32-bit 2's
complement numbers. Every value is an instance of one of the following types:

TEXT A TEXT value is one that is defined relative to the beginning of the .text
section. Whenever the .text section is relocated forward (backward) by N
bytes, the number N will be added to (subtracted from) every value of
type TEXT. The most common example of a TEXT value is a label
appearing in the .text section.

DATA A DATA value is one that is defined relative to the beginning of the .data
section. Whenever the .data section is relocated forward (backward) by N
bytes, the number N will be added to (subtracted from) every value of
type DATA. The most common example of a DATA value is a label
appearing in the .data section.

BSS A BSS value is one that is defined relative to the beginning of the .bss
section. Whenever the .bss section is relocated forward (backward) by N
bytes, the number N will be added to (subtracted from) every value of
type BSS.

UNDEFINED An UNDEFINED value is one whose type has not yet been determined.
The UNDEFINED value may be a reference to a symbol whose definition
has not been encountered yet (i.e., a forward reference) or a reference to a
symbol that is assumed to be defined in a program other than the one
currently being assembled (i.e., an external reference).

ABSOLUTE An ABSOLUTE value is one that will not change as a result of relocating
any section of the program being assembled. Constants described in the
following section have absolute type.

In addition, any of the above types may be given the attribute EXTERNAL. For values of
the types ABSOLUTE, TEXT, DATA, and BSS; the attribute EXTERNAL indicates that
a value defined in the program currently being assembled will be made available to other
programs. For values of type UNDEFINED, EXTERNAL means that the value is
referenced in the program currently being assembled, but is defined in some other program.

5-24

SOFTWARE GENERATION PROGRAMS
Location Counter

Assigning Values and Types to Symbols. There are two ways to assign a value and type to
a symbol. The first is to write the symbol as a label. The label will be assigned the
current value and type of the location counter. The second is through the use of the .set
assembler directive. An arbitrary value and type can be assigned with this directive.

Constants

A constant is an object of ABSOLUTE type and fixed value. The size and appropriate
number of digits are controlled by the generation pseudo-ops .byte, .half, and .word. A
constant may be one of the following:

• A decimal constant is represented by a contiguous string of the digits 0-9, beginning with
a nonzero digit. Examples of decimal constants are:

123 75 1943 2

o An octal constant is represented by a contiguous string of the digits 0-7 beginning with a
zero digit. Examples of octal constants are:

077 0123 06 037777777777

o A hexadecimal constant is represented by a contiguous string of the digits 0-9 and the
letters a-f or A-F, prefixed by Ox or OX. Examples of hexadecimal constants are:

Ox3f OX9aC Oxabcd OXFE

Note: Floating point operations and declarations are not supported by the processor, but
are available in some applications. If supported, floating point constants have the same
syntax and interpretation as floating point constants in the C language with the exception
that the constant may be preceded by an optional minus (-) sign indicating a negative
constant. The precision of the constant (single or double) is always determined by its
context.

In order to be recognized as floating point, a constant must contain either a decimal point
or one of the exponential characters (e or E). Floating point constants that cannot be
encoded exactly in the specified form are rounded off.

Examples of floating point data types are:

31.0500 -16. 0.1024e4 500e-3

Floating point data specifications are expected to conform to the IEEE standard for binary
floating-point arithmetic.

Location Counter

The symbol. (read as dot) is the location counter used during the assembly of a program
and is reserved for use by the assembler. The type of this symbol is either TEXT, if code
is currently being generated for the .text section, or DATA, if code is currently being
generated for the .data section. The initial type of the location counter is TEXT and the
initial value is zero.

5-25

SOFTWARE GENERATION PROGRAMS
Registers

The location counter represents the address of the next available byte for the placement of
assembled code or data, and can change in the following ways:

• as a result of the .text, .data, .set, .zero, .align, .byte, .balf, or .word pseudo-ops

• as a result of the generation of code for a machine instruction.

In the first case, the change is explained in the description associated with each pseudo-op.
In the second case, the location counter is incremented by the size of the assembled code
after the statement is completely assembled.

For each section (.text, .data, or .bss) there exists a saved location counter value. Initially
each saved location counter value is zero. When the programmer issues a section change
pseudo-op, the current location counter (i.e., the section being changed from) is saved.
The current location counter is then assigned the value of the location counter for the
destination section.

Registers

Registers 3 through 8, which are referred to by the assembly language syntax %r3, %r4,
%r5, ... , %r8, are the general purpose registers that are always available to the
programmer. Registers 0, 1, and 2 are considered general purpose, but have implicit
definitions because of certain conventions of the C language. For example, rO should
always be used to return the value of a function. If a floating point double value is
returned from a function, it is stored in rO and rl. If a function returns a structure, then
the pointer to that structure should be returned to r2. In general, rO, rl, and r2 are scratch
registers. Data transfer instructions MOVBLW, STRCPY, and STREND also implicitly
use these three registers as do the system instructions MVERNO, INTACK, ENBVJMP,
DlSVJMP, GATE, RETPS and CALLPS.

Registers 9 (frame pointer), 10 (argument pointer), and 12 (stack pointer) are also
implicitly used, in this case by call and return instructions. These registers can be referred
to by the assembly language syntax %fp, %ap, and %sp, respectively.

Registers 0, 1,2, 9, 10, and 12 may be used in any addressing mode, privileged or
non privileged. The use of rO, rl, and r2 for function calls and returns is described in 5.2.2
Function Calling Sequence.

The program counter (rl5) is a special register that does not work in all addressing modes.
The three registers not yet discussed are privileged, and any attempt to write them when
the processor is not at kernel execution level results in a privileged register exception.
These three registers are the interrupt stack pointer nSp), the process control block
pointer (PCBP), and the process status word (PSW).

The PSW (rl1) contains four condition bits - N,Z,V, and C. Because of the pipelining
architecture of the processor, the condition codes in the PSW may not be valid immediately
after the execution of an instruction. This inherent delay is not a problem for any
conditional branch instructions because they wait until the condition codes are valid before
testing them. However, if the PSW is read by any non-machine independent instruction,

5-26

SOFTWARE GENERATION PROGRAMS
Executable Instructions

a NOP instruction should be inserted between the instruction affecting the condition codes
and the instruction trying to read the PSW to allow sufficient time for the condition codes
to settle.

Note: The assembler supplies the NOP, if needed, for macro ROM instructions.

Executable Instructions

Mnemonics for processor instructions use uppercase letters and machine independent
instruction mnemonics use lowercase letters. When coding in assembly language, this
distinction must be maintained. Therefore, all machine-specific mnemonics must be coded
in uppercase, while mnemonics common to the machine independent instructions must be
coded in lowercase.

Be careful when switching between processor and machine independent instructions.
Although the mnemonics are identical in many cases, the operations are not. For example,
the machine independent instruction cmpw &1,&2 will set the less than flag, while the
processor instruction CMPW &1,&2 would, under the same conditions, set the greater
than flag, because the operand order is reversed.

The processor instruction set is more complete than the machine independent instruction
set, but is machine dependent. Machine independent instructions can be portable.

Because floating point operations are not supported by the processor, use of floating point
instructions results in a run-time exception. However, these instructions become legal in
applications that support floating point operations.

In many cases, the mapping of machine independent instructions to processor instructions is
obvious, particularly when synonymous instructions exist in both instruction sets. However,
the mappings of machine independent instructions to corresponding processor instructions
can be obscure. In particular, there is only a rough correspondence between machine
independent instruction set jumps and processor branch instructions. The machine
independent instruction set also has four push instructions and several unsigned instructions
that have no synonyms in the processor instruction set.

Mappings can be obscure, not only from the lack of equivalent instructions, but also from
the considerable changes that are made as part of optimization. About half of the
mappings change when optimization is performed. Hence, the only way to determine the
mappings is by studying a disassembly.

The MOVEs of the two instruction sets also have a complex mapping. MOVEs can
perform conversion from one data type to another. Sign extension, if necessary, is
determined by the type of the source. Signs are extended if the source is signed byte or
signed halfword. Zero-extension is performed if the source is unsigned byte or unsigned
halfword.

5-27

SOFTWARE GENERATION PROGRAMS
Operands

The basis for the mappings of MOVE instructions is:

movbbh MOVB {sbyte}src, {shalf}dst

movbbw MOVB {sbyte}src, {sword}dst

movbhw MOVH src, {sword}dst

movzbh MOVB src, {shalf}dst

movzbw MOVB src, {sword}dst

movzhw MOVH {uhalf}src, {sword}dst

movthb MOVH src, {sbyte}dst

movtwb MOVW src, {sbyte}dst

movtwh MOVW src, {shalf}dst

If the dst operand is a register, the three truncate instructions are:

movthb

movtwb

movtwh

ANDH3 & Oxff,src, {byte} dst

ANDW3 &oxff,src,{byte}dst

MOVW src,dst;MOVH dst,dst

The notations used in the above mappings are:

src - source

dst - destination

s - signed

Operands

u - unsigned

byte - 8-bit data

half - 16-bit data

word - 32-bit data

The operand and address modes in assembly language are determined by the syntax. The
kinds of operands are:

• Basic

• Effective address

• Offset

The basic operand can be used as either a source or destination. The effective address
operand is used as a source. The offset is used as a destination. The basic and effective
address operands are described by operand descriptors. However, offset is not described by
a descriptor. Basic operands read or write a specified location. Effective address operands
contain the source address in the instruction. The offset is a signed 8- or 16-bit
displacement from the program counter. The resulting address serves as the target for a
branch instruction.

5-28

SOFTWARE GENERATION PROGRAMS
Operands

Table 5-4. Address Modes

Mode Syntax
Mode Register Total

Notes
Field Field Bytes

Absolute
Absolute $expr 7 15 5 -
Absolute deferred *$expr 14 15 5 -

Displacement (from a Register)
Byte displacement expr(%rn) 12 0-10,12-15 2 -
Byte displacement

deferred *expr(%rn) 13 0-10,12-15 2 -
Halfword displacement expr(%rn} 10 0-10,12-15 3 -
Halfword displacement

deferred *expr(%rn) II 0-10,12-15 3 -
Word displacement expr(%rn) 8 0-10,12-15 5 -
Word displacement

deferred *expr(%rn) 9 0-10,12-15 5 -
AP short offset so(%ap) 7 0-14 1 1
FP short offset so (%fp) 6 0-14 1 1

Immediate
Byte immediate &imm8 6 15 2 2,3
Halfword immediate &imm16 5 15 3 2,3
Word immediate &imm32 4 15 5 2,3
Positive literal &lit 0-3 0-15 1 2,3
Negative literal &lit 15 0-15 1 2,3,5

Register
Register %rn 4 0-14 1 1,3
Register deferred (%rn) 5 0-10,12-14 1 1

Special Mode
Expanded operand

type {type}opnd 14 0-14 2-6 4

Notes
1. Mode field has special meaning if the register field is 15; see Absolute

or Immediate mode.
2. Mode may not be used for a destination operand.
3. Mode may not be used if the instruction takes effective address of the

operand.
4. type overrides instruction type; opnd is any of the other valid address

modes and becomes the real address mode. For total bytes, add 1 to byte
count for address mode determined by opnd.

5. Negative quantity; overrides expanded operand type and instruction type.

5-29

SOFTWARE GENERATION PROGRAMS
Expressions

Each operand descriptor identifies the location of the operand. An operand descriptor may
be one or more bytes. The format of the first byte of a descriptor is:

mmmmrrrr

where rrrr is the register field (bits 0-3) and represents one of rO-r15. The mode field,
mmmm, is comprised of bits 4-7 and represents the addressing mode. Table 5-4 can be
used to determine the proper syntax and mode based on the value of the mode field.

Unless otherwise specified by the instruction, all operands are addressed by a descriptor.
The value of the PC is the address of the first byte of the instruction and retains that value
for all operand evaluations during the instruction.

Note: Data in the instruction stream may not be ordered the same way that data is
ordered when fetched into the processor. In the instruction stream, the byte order is right­
to-left; that is, the first byte of the data stream is always the least significant byte. For
example, the first byte of a 32-bit immediate value represents bits 0-7 of the operand.
The second byte represents bits 8-15; the third byte, bits 16-23; and the fourth byte, bits
24-31.

Expressions

An expression is a sequence of operands separated by operators. An operand is either a
constant, a symbol, or an expression enclosed in parentheses.

Expressions can be used as operands to assembler directives and machine instructions, as
appropriate. All operators are fundamentally binary in nature. The operator "-" may be
used as a unary operator with the interpretation 0-. For example, -x is interpreted as
(O-x).

All operators are assumed to be of EQUAL precedence. If anything other than left-to­
right evaluation. is desired, parentheses must be used for grouping.

If, in the process of evaluating an expression, an intermediate result will not fit in 32 bits,
the final value of that expression will be undefined.

The following operators are available:

+ Produces the 2's complement sum of its operands. One operand must be type
ABSOLUTE - the other can be any type. The sum has the type of the other operand.
All other combinations of operands are illegal.

5-30

Produces the 2's complement result of subtracting the right operand from the left
operand. If the right operand is ABSOLUTE, the difference has the type of the left
operand. Otherwise, both operands must be of the same type (which cannot be
UNDEFINED), and the result has type ABSOLUTE. All other combinations of
operands are illegal.

The result of the subtraction can be erroneous when taking the difference between two
relocatable symbols. For example, the value of labl-lab2, where labl and lab2 are
labels that are both of type TEXT, DATA or BSS, may change due to various

SOFTWARE GENERA nON PROGRAMS
Assembler Directives

optimizations of the code between labl and lab2 that are made after the assignment of
values and types to labl and lab2. In such cases, the value of labl-lab2 will not
correctly indicate the distance between labl and lab2.

* Produces the 2's complement product of its operands. It requires both operands to be of
ABSOLUTE type and produces an ABSOLUTE result.

/ Produces the 2's complement quotient of the left operand divided by the right operand.
Uneven divisions result in the integer that is the result of truncating the quotient toward
zero; for example, 5/-2 = -2. The quotient operator requires both operands to be of
ABSOLUTE type and produces an ABSOLUTE result.

Assembler Directives

An assembler directive is a command to the assembler that does not necessarily generate
any code. Directives are distinct from executable instructions, that contain mnemonics for
machine operations. Every assembler directive is coded as a pseudo-operation (pseudo-op)
code followed by zero or more operands. All assembler directives begin with a period (.).
Table 5-5 lists all pseudo-ops alphabetically.

Section Control Pseudo Operations. These pseudo-ops provide a method of changing the
section in which code is generated and the section in which labels are defined. They work
as follows: each of the sections .text, .data, and .bss has its own hidden dot or location
counter that indicates where the next code is to be generated for that section. The actual
symbol "." starts out with a type of TEXT and a value of zero. Whenever a section control
pseudo operation is encountered, the value of dot is stored away into whichever hidden dot
is indicated by its type. The value of some other hidden dot is then retrieved and stored as
the value of the symbol ".", and the type of dot is set depending on which hidden dot is
used.

The following section control pseudo operations are recognized:

where:

.text

.data

.bss symbol,size,align

.text causes the current location counter to be saved and then assigned the value of the
location counter for the text section. The type of the current location counter is set
to TEXT .

. data causes the current location counter to be saved and then assigned the value of the
saved value of the location counter for the data section. The type of the current
location counter is set to DATA .

. bss causes the bss location counter to be advanced to a multiple of align (which must
be an ABSOLUTE expression with a value of 2 or 4), and assigns to symbol the
type BSS and the current value of the bss location counter. The .bss section then
advances its dot by the value of size. size refers to the number of bytes; it must be
greater than or equal to 0 and have type ABSOLUTE. The type and value of the
current location counter remain unchanged.

5-31

SOFTWARE GENERATION PROGRAMS
Assembler Directives

Table 5-5. Alphabetical List of Pseudo-Operations

Name Operation

. align expr Increment the current location counter to a multiple of expr .
expr must evaluate to an ABSOLUTE of 2 or 4.

.bss sym, size, align Define the symbol name sym in the .bss section, and add
size to the value of dot and .bss after aligning it to a
multiple of align. This does NOT change the current
section to .bss. size must be an ABSOLUTE value and
align must be an ABSOLUTE value of 2 or 4 .

. byte valL vall... Generate initialized bytes containing the 8-bit value val in
the current section.

. data Change the current section to .data .

. def name Start of the symbolic description for the symbol name .

.dim exprL exprl... If the name in .def is an array, then the expression gives the
dimensions. Up to five dimensions are accepted. The type
of each expression should be ABSOLUTE.

.endef Ending bracket for .def.

. file "name" Pass the UNIX System source file name to the assembler .
Only one .file is allowed per assembly file.

.global name Treat name as a global symbol, equivalent to storage class
extern in the C language .

. half valL vall... Generate initialized halfwords containing val in the current
section. Each val must be a 16-bit value.

. il Indicates that a procedure has been expanded in line .

.line expr Define the source line number of the definition of block
symbol "name" in .def. expr should yield an ABSOLUTE
value .

.In line[, addrl Create an entry in the line number table for a section. The
current dot becomes the default for addr. The type of addr
tells which section owns the line number. The operand line
should be an ABSOLUTE value of the source line number.

.scl expr Within .def give name the storage class of expr. The type of
expr should be ABSOLUTE.

.set name,expr Set the value of the symbol name to expr; name must be a
symbol.

.size expr If name of .def is an object such as a structure or an array,
assign it size expr. The type of expr should be
ABSOLUTE.

5-32

SOFTWARE GENERATION PROGRAMS
Assembler Directives

Table 5-5. Alphabetical List oC Pseudo-Operations (Continued)

Name Operation

.tag sIr If name of .deC is a structure or union, sIr should be the
name of that structure or union tag as defined in the
previous .deC-.endeC pair. The operand sIr must be a symbol.

.text Change the current section to .text.

.type expr Within a .deC, give name the C compiler type representation
expr. The type of expr should be ABSOLUTE.

.val expr Within .deC, give name the value expr. The type of expr
should be ABSOLUTE .

• word vall, vall ... Generate initialized words containing val in the current
section. Each val must be a 32-bit value.

.zero size Advance the location counter by size and put zeros in the
area skipped. The type of size should be ABSOLUTE.
This pseudo-op is legal only in a .data section.

Pseudo Operations Dealing With Symbols. The pseudo-op .glob! is used to declare that a
symbol is to be accessed by more than one program (j.e., given the EXTERNAL
attribute). The format is:

.glob! symbol

This statement has one of two effects:

o If symbol is defined in the program in which the .glob! statement appears, a symbol
table entry will appear in the object file that will allow other programs to access symbol.

o If symbol is not defined in the program in which the .globl statement appears, then
references to symbol will be treated as references to something defined externally. This
use of .globl is entirely optional since any symbol that is undefined in a program will be
assumed to be external.

It is important to note that .glob! does not define the symbol. This pseudo operation is
similar to the "extern" declaration in the C language. A symbol is defined either when it is
used as a label, when it is used in one, of the data generating operations or when it is given
a value in an assignment statement. A .glob! pseudo-op is used on line 9 of the example in
5.2.4 Programming Example.

Assignment Pseudo Operation. A symbol may be given an arbitrary value and type through
the use of the .set pseudo-op. It has the form:

.set symbol, expression

The expression is evaluated and its value and type are assigned to symbol. Every symbol
that appears in expression must either be defined or have the EXTERNAL attribute.
Lines 30 and 31 of the example in 5.2.4 Programming Example show the use of .set
pseudo-ops.

5-33

SOFTWARE GENERATION PROGRAMS
Assembler Directives

Assignments are performed during the assembler's first pass over the input program. This
has several important consequences:

• The .set pseudo-op does not allow forward referencing; i.e., every symbol that appears in
expression must be defined prior to the assignment statement. Forward references are
allowed in other contexts because all other expressions are not evaluated until later
passes.

• The result of the assignment may be different from the expected result. For example,
consider the assignment

.set abc,labl-lab2

where labJ and lab2 are labels appearing in the .text section. An ABSOLUTE value is
assigned to abc, which is the distance from lab2 to labJ, during the first pass. This
distance may change during subsequent passes if there are offsets between lab2 and labl
that need to be altered. For example, the jmp instruction can assemble into a short form
(2 bytes) or a long form (3 bytes) depending on the value of the offset. The first pass of
the assembler assumes that the 2-byte form can be used. This will be expanded to the 3-
byte form if a subsequent pass determines that the label is out of the range for a short
jump. This expansion will not be reflected in the value of abc if the jmp occurs between
labl and lab2.

Other assignments may have no problem at all. For example, expressions containing only
ABSOLUTE operands always yield the correct result. Assignments such as

.set xyz.labl

where labJ is a label in the .text section, also behave as desired. When code is modified,
the assembler changes the values of labels to point to the correct locations. If the value of
labl changes, so will the value of xyz, because both are TEXT symbols with the same
value.

Assignment to Dot. Null data may be generated by assignment to the location counter.
The location counter is represented by the dot symbol (.). Assignment to dot may be
performed under the following conditions:

• The result type of the expression to be assigned to dot has the same type as dot.

• The value of the expression to be assigned is not less than the value of dot.

If the assignment increases the value of dot by N, then N bytes of null data are generated.
Assignment to dot is most often used to provide holes or spaces in code. For example, the

. statement

.set .,.+10

generates 10 bytes of null data. The assembler defines null data in the .text section as
NOPs (Ox70); null data in the data section is zero.

5-34

SOFTW ARE GENERATION PROGRAMS
Assembler Directives

Alignment Pseudo Operation. The alignment pseudo-op .align causes the next data item or
instruction to be assembled at an address that is a multiple of 2 or 4. It has the form

.align expression

where expression must evaluate to an ABSOLUTE 2 or 4. A .align 2 causes the value of
current location counter to be incremented by one if its current value is not a multiple of 2.
A .align 4 causes the value of the current location counter to be incremented by one, two or
three, if its current value is not a multiple of four. The appropriate increment (one, two,
or three) needed to bring the location counter to a multiple of four is chosen. If this
directive is used in the .text section, any space skipped will be filled with NOP instructions.
If it is used in the .data section, any space skipped will be filled with zeros.

Data Generation Pseudo Operations. Data generation pseudo-ops are used for declaring
variables. The data generation pseudo operations - .byte,.half, and .word generate 8-, 16-,
and 32-bit integer constants, respectively. The forms are

.byte expr, .. .

. half expr, .. .

. word expr, .. .

Each expression will be converted into its perspective data type. The location counter must
be properly aligned with .align before each use of one of these pseudo-ops. Dot is then
incremented by one, two, or four (depending on the pseudo-op) after the generation of each
data item in the list of expressions for that statement. For example, .word .,.,. generates
three words of data and each word contains the address of the first byte of that word.
Therefore, each word contains a different value.

Each expression may be given a bit width by prefacing it with an integer constant followed
by a colon. This format for bit width is

n:expr

where n ranges from 0 to 8 for .byte, 0 to 16 for .half, and 0 to 32 for .word. Nonprefaced
expressions have an assumed bit width of 8, 16, or 32, depending on whether the .byte,
.half, or .word pseudo-op is used. The expression, which must be ABSOLUTE, is
converted into the proper representation and placed in a field of the indicated width.

For example,

mode: .byte 5:x+y, 3:0

initializes an 8-bit variable, mode, by setting the upper five bits of mode to the result of
the expression x + y, and the lower three bits to zero.

Fields are assigned from high order bit positions (i.e., bit 7 of a byte) to low-order bit
positions. Each successive expression is placed into a field that begins with the next lower
bit position. The location counter is adjusted after the generation of each data item; it
always indicates the address of the first byte into which the current data item is to be
placed.

5-35

SOFTWARE GENERATION PROGRAMS
Assembler Directives

A field is not allowed to cross the implied boundary indicated by one of the above pseudo­
ops. If too few fields are encountered to fiII the indicated unit of memory, enough zeros
are supplied to fiII the low order bits.

The data generation pseudo-op .zero allocates an area of memory and fiIls it with zeros. It
has the form

.zero size

where size is the number of bytes to allocate and fill with zeros. The .zero pseudo-op
advances the location counter by size and puts zeros in each byte of memory that is
skipped. It is legal only in the .data section. Variables declared static in a C source
program are assembled through this pseudo-op.

Symbolic Debugging Pseudo Operations. Symbolic debugging pseudo-ops are provided for
making entries in the symbol and line number tables in the object file. The presence of
symbolic debugging pseudo operations in an assembly language program has no effect on
program execution. These statements merely serve to transparently pass information from
the user code to the symbolic debugger.

The basic symbolic debugging pseudo operations are .def and .endef. These are used as a
pair to surround a list of pseudo operations that assign attributes to a symbol. The format
used is:

.def name

(Attribute-assigning pseudo operations}

.endef

The attribute-assigning pseudo operations between .def and .endef assign attributes to the
symbol name. These attribute-assigning pseudo operations are available:

.val expr

.scI expr

.type expr

.tag str

.line expr

5-36

Gives the value expr to the symbol name. In general, the type of
expr (TEXT, DATA, etc.) is used to determine the section with
which the symbol name is associated.

Declares a storage class for the symbol name. expr must yield a
value of ABSOLUTE type that corresponds to the portable C
compiler's internal representation of a storage class.

Declares a data type for the symbol name. expr must yield a value
of ABSOLUTE type that corresponds to the portable C compiler's
internal representation of a type and derived type.

Used when name is a C level structure or a union. str is a structure
or union tag that is defined by some other .def-.endef pair.

Used when name is a block symbol. expr yields a value of
ABSOLUTE type that gives the line number of the declaration for
name.

SOFTWARE GENERATION PROGRAMS
Function Calling Sequence

.size expr

.dim exprl,expr2, ...

. il

Used when name is a C level structure or an array that does not
have a predetermined size. expr should yield a value of
ABSOLUTE type that gives the size of name, usually in bytes, or in
bits if name is a bit field.

Used when name is an array. Each expression yields a value of
ABSOLUTE type that gives the corresponding dimension of the
array. Since the UNIX System implementation of the C language
supports up to five dimensions for an array, there may be up to five
arguments to the .dim pseudo-op.

Used to indicate that a procedure has been expanded in-line .

For symbolic debugging purposes, the order of symbols is very important. The assembler
has no knowledge of this ordering; it just passes the symbols through from the C compiler
so they may be accessed by the symbolic debugger.

As with .glob!, the .def pseudo-op does not define the symbol. A symbol table entry is
created but no definition occurs.

File Name Pseudo Operation. Associated with each assembly file can be at most one .file
pseudo-op. It has the form

.file "name"

where "name" is a double-quoted string of 1 to 14 characters. This pseudo-op is normally
used to pass the name of the C source file from which the assembly program originated.
name then becomes part of the symbol table and can be accessed at run time. Line 1 of
the example in 5.2.4 Programming Example demonstrates the .file pseudo-op.

Line Number Pseudo Operation. Each section in the object file has a line-number table
associated with it that maps line numbers in the source code to addresses within the
section. A line-number entry may be made using the .In pseudo operation as:

.In lind,valuel

The operand line must have a value of ABSOLUTE type that gives a line number in the
source code. The optional operand value, if present, must have a value of type TEXT,
DATA, or BSS that gives the address within the section where the line number occurs. If
the value operand is missing, the value of the current location counter will be used as the
address of the line number.

Function Calling Sequence

The WE 32100 Microprocessor C language stack frame and calling sequence are discussed
in this section. This information is intended for those who require a detailed knowledge of
the implementation of C function calls or need to perform assembly language function
calls. The stack frame is examined, paying particular attention to the size and location of
its contents. An example of a typical function call is given, describing the needs of the
called and calling programs. High-level code that depends on these implementation details
should be avoided.

5-37

SOFTWARE GENERATION PROGRAMS
Function Calling Sequence

Four registers are manipulated as part of each function call. These are the frame pointer
(FP), r9; the argument pointer (AP), rIO; the stack pointer (SP), r12; and the program
counter (PC), r15.

The frame pointer and argument pointer are only affected by the function call and return
instructions. In C language, the frame pointer points to the location in the stack that is the
start of the area containing local variables for that function. The argument pointer points
to the location in the stack that contains the first of the set of arguments for that function.

The calling sequence is presented as if the C compiler were implementing the function call,
i.e., assembler instructions have been generated, and m32as is translating to the processor
instruction set. Two machine independent instructions, call and save, establish the calling
environment and one machine independent instruction, ret, unwinds it. If the
corresponding processor instructions were being used, the CALL and SA VE instructions
would establish the calling environment, and two instructions RESTORE and RET would
be required to conclude the function properly. Thus the processor instruction set requires
two instructions as opposed to one assembler instruction for this task. The machine
independent instructions give an additional degree of control in the calling sequence, while
the processor instructions have a closer interaction with the CPU. The processor
implementation of these instructions is described in the Stack Frame section below. The
four affected registers are initially set as:

1. PC. The program counter is set to the address of the first executable instruction of
the calling program.

2. SP. The stack pointer points to the top of the stack and is properly set so that a new
procedure may be called.

3. FP. The frame pointer points just past the top of the register save area. The register
save area is a FIXED size region created on the stack by the function call instructions
for saving registers. Just past the register save area is a stack region reserved to store
temporary (also called automatic) variables for a function.

4. AP. The argument pointer points to the BEGINNING of a list of arguments to the
function.

The stack frame reserves space for six registers in addition to the PC, FP, and AP. These
six registers correspond to the six registers available as register variables in C programs.

Note that the PC, FP, and AP are always pushed on the stack in a function calling
sequence; the SP is not because its value is always implicit.

Although space is reserved on the stack for up to six registers plus the AP and FP, only the
AP and FP MUST be pushed. The remaining six user registers should be pushed (via the
save instruction) only when necessary.

Stack Frame. A stack frame is created at run time for each instance of a function call.
The frame is destroyed when the called function returns to the calling function. Each
stack frame contains the information needed to restore the calling function to its prior state
(i.e., the state it was in before it made the function call). The stack frame also contains
the arguments passed to it by the caller, space for its automatic variables, and space for
any temporary variables needed during execution. The stack begins at lower addresses and

5-38

SOFfW ARE GENERA nON PROGRAMS
Function Calling Sequence

grows upward to higher addresses. Figure 5-3 shows a diagram of a typical stack frame.

Actions of Calling Function. To make a function call, the calling function must first push
all of the called functions onto the stack. The arguments are pushed in the same order as
they appeared in the function call. Every argument must be pushed on the stack as a 32-
bit quantity. Characters must be converted to integers, and structures of uneven length
must be filled out to word boundaries, even though the last byte(s) are meaningless. Also,
multiple word arguments, such as structures, will require multiple pushes.

For example, the following section of code implements a C level function of the form

func (A,B,C)

where A and C are integer arguments and B is a character (byte) argument. The machine
independent code to call func is:

pushw
pushzb
pushw
call

A
8
C
&3,func

#extend byte to 32 bits

#call the function, specifying
#the number of arguments

The equivalent processor instructions are:

PUSHW
PUSHW
PUSHW
CALL

A
{ubyte}8
C
-12(%sp),func

The last statement is a call to the desired function, thus transferring control to the called
function. This process is accomplished by the machine independent call instruction.
Figure 5-4 shows the stack after the call has been executed.

Actions of Called Function. The called function completes the initialization started by the
caller. The first responsibility of the called function is to use the save instruction to
implement a C procedure frame. The save instruction can save up to six registers (r3
through r8) so they may be used by the function. After saving the specified number of
registers, the save instruction adjusts the stack pointer and frame pointer to point beyond
the end of the fixed-size register save area. After executing a save instruction specifying
that five registers should be saved, the stack would look like Figure 5-5.

The remaining responsibility of the called function is to allocate space for the automatic
and temporary variables it will use. The function does this by adding a constant to the
stack pointer. This leaves %sp pointing somewhere above %fp in the stack. The stack
frame then appears as shown on Figure 5-3. Only after this has been accomplished should

5-39

SOFfWARE GENERATION PROGRAMS
Function Calling Sequence

the called function begin to execute.

In the above example of the call to function func, the called function should have the
machine independent syntax:

func: save
addw2

{function body}

ret

&5
&8,%sp

&5

The equivalent processor instructions are:

func: SAVE
ADDW

%r4
&8,%sp

RESTORE %r4
RET

#save the caller's registers
#allocate stack space for the

automatic and temporary variables

#restore registers and return to caller

To return to the caller, a function should execute an machine independent return (RET)
instruction. This is mapped into processor RESTORE and RET instructions. The
RESTORE instruction is the inverse of the SAVE instruction; Le., it restores up to six
registers and the frame pointer. After the RESTORE instruction, the stack is as described
after the call instruction (see Figure 5-4).

Note: The number of registers to be restored MUST be the same as the number of
registers saved; otherwise the results are undefined.

The RET instruction is the inverse of the call instruction; Le., RET returns the stack to the
state it was in before the function call.

When the routine accesses local data in the stack, it must do so by offsets from the frame
pointer. A routine accessing data passed to it as an argument must use offsets from the
argument pointer.

Locations in the stack area above the stack pointer are not protected from being destroyed
by interrupting processes and should not, therefore, be used without first incrementing the
stack pointer. The push instruction provides a convenient way of allocating stack space a
word at a time. In cases where speed is critical and a large number of words are to be
stored, it may be more efficient to allocate the total size of the area needed with a single
add to the stack pointer.

5-40

% sp --
% fp -

% ap -

SOFfWARE GENERATION PROGRAMS
Function Calling Sequence

AUTOMATIC VARIABLES

REGISTER 8
•
•
•

REGISTER 3

FRAME POINTER

ARGUMENT POINTER

PROGRAM COUNTER

ARGUMENT N

ARGUMENT N-1
•

· •
ARGUMENT 1

PREVIOUS STACK FRAME

SAVED
REGISTERS

Figure 5-3. Typical Stack Frame for a Function Call

5-41

SOFfWARE GENERATION PROGRAMS
Function CaUing Sequence

"sp~
r-----------------~

OLD AP

OLD PC

ARGUI'IENT C

ARGUI'IENT B

"ap~ ARGUI'IENT A

PREVIOUS FRAI'IES

Figure 5-4. Stack Frame Following a Call Instruction

Figure 5-5. Stack Frame After Three Registers are Saved

5-42

SOFTWARE GENERATION PROGRAMS
Programing Example

The SP should never be modified directly except with the push and pop instructions. These two
instructions automatically increment or decrement the stack pointer. If a program took such action
directly, and care was not taken, the contents of the restored registers could be destroyed. by
subsequent stack manipulations.

5.2.3 Exception Conditions

Several kinds of events may occur that will interrupt the execution of a program. These may either
be internally generated, that is, recognized and generated by the processor, or externally generated,
such as an I/O interrupt for a memory fault.

5.2.4 Programming Example

Following is an example of the compiler output and the assembler output for the function prefix.
The prefix function consists of C language code that determines if one string is a prefix of another.

The example includes many of the pseudo-ops explained in this chapter. These pseudo-ops form the
prologue and epilogue sections that the compiler always generates. The M4 processor can provide
these sections for assembly language programs if the -m option is specified and the defined macros
are used.

This example shows a program that was compiled, but not optimized. Therefore, the assembly code
contains #REGAL statements that were inserted by the compiler for use by the optimizer, but never
used. Since these lines have the format of assembler comments, they are simply ignored by the
assembler.

Line numbers have been added for convenience; otherwise, the left column presents all of the
machine code produced by the m32cc compiler. The right column presents the corresponding C
language statements. The correspondence between C code and assembly code can be seen for if and
while statements.

1.
2.
3.
4.
5.

6.
prefix:

7.
8.
9.

10.
11.

Assembly Code

.file "prefix.c"

.data

.text

.align 4

.def prefix;

.val prefix;

.scl 2;

.type 044;

.endef

.globJ prefix

save &.Rl
addw2 &.Fl,%sp
movw 4(%ap),4(%fp)
movw O(%ap),O(%fp)
jmp .L30

C Language Statement

prefix(a,b)

char *a,*b;
{char *p;

char *q=b;
p=a;

5-43

SOFTWARE GENERATION PROGRAMS
Programing Example

.L31:
12. addw2 &1,O(%fp) p++;
13. addw2 &1,4(%fp) q++;
14. cmpb *0(%fp),*4(%fp) if(*p!=*q)
15. je .L32
16. movw &O,%rO return (O);}
17 . jmp .L28
. L32:
.L30:
18. cmpb *O(%fp),&O while«*p!=NULL)
19. je .L33 &&
20. cmpb *4(%fp),&0 (*q!=NULL» (
21. jne .L31
.L33:
.L29:
22. movw &1,%rO return(J);
23. jmp .L28
#REGAL 0 NODBL
#REGAL 48 AUTO o (%fp)
#REGAL 48 AUTO 4 (%fp)
.L28:
24. .def .ef;

.val .,

.scl 101;

.line 10;

.endif
25. .In 10
26. .set .Fl,8
27. .set .RI,O
28. ret &.Rl
29. .def prefix;

.val .,

.scl -1;

.endif
30. .data

A disassembly of the assembler output below shows the processor instructions for this
routine. Note that the function saves no registers, and therefore starts with SAVE %fp.
The assembler directives have been omitted.

5-44

section . text
prefix 0

SAVE
ADDW2
MOVW

%fp
&Ox8,%sp
Ox4(%ap) .Ox4(%fp)

SOFTWARE GENERATION PROGRAMS
Machine Independent Instruction Set

MOVW
BRB
INCW
INCW
CMPB
BEB
CLRW
BRB
TSTB
BEB
TSTB
BNEB
MOVW
BRB
RESTORE
RET
NOP
NOP

o (%ap) ,0 (%fp)
Ox11 <20>
o (%fp)
Ox4(%fp)
*Ox4(%fp}, *OxO(%fp)
Ox6 <20>
%rO
Ox11 <2f>
*OxO(%fp)
Ox7 <2a>
*Ox4(%fp)
-Ox17 <11>
&Ox1,%rO
Ox2 <2f>
%fp

This listing was actually produced by disassembling the object file prefix.o with the m32dis
utility described in 5.5 UTILITIES AND LIBRARY ROUTINES.

5.2.5 Machine Independent Instruction Set

The machine independent instructions are listed alphabetically by mnemonic in Table 5-6.
Many instructions have three forms (byte, halfword and word) that are characterized by a
b, h, or w in their names. The term "complex" appearing under the mapping heading
indicates that an instruction has a complex (one-to-many) mapping into a sequence of
WE 32100 Microprocessor instructions. Instructions with simple (one-to-one) mapping
map to a corresponding processor instruction with the possibility of an optimized form. If
an instruction has an optimized form, the m32as assembler will map that instruction into a
different hexadecimal encoding than is used for the unoptimized form.

5-45

SOFTWARE GENERATION PROGRAMS
Machine Independent Instruction Set

Table 5-6. Machine Independent Instruction Set

Mnemonic , Name
acjl Add, compare, and jump less
acjle Add, compare, and jump less or equal
acjleu Add, compare, and jump less or equal

unsigned
acjlu Add, compare, and jump less unsigned
addb2,addh2,addw2 Add (2 operand) - byte, halfword, word
addb3,addh3,addw3 Add (3 operand) - byte, halfword, word
alsw2 Arithmetic left shift (2 operand)
alsw3 Arithmetic left shift (3 operand)
andb2,andh2,andw2 AND (2 operand) - byte, halfword, word
andb3,andh3,andw3 AND (3 operand) - byte, halfword, word
arsw2 Arithmetic right shift (2 operand)
arsw3 Arithmetic right shift (3 operand)
atjnzb,atjnzh, Add, test, and jump not zero - byte,
atjnzw halfword, word

bitb,bith,bitw Bit test - byte, halfword, word
call Call
cmpb,cmph,cmpw Compare - byte, halfword, word
divw2 Divide (2 operand)
divw3 Divide (3 operand)
extzv Extract field
insv Insert field
jbc Jump on bit clear
jbs Jump on bit set
je Jump equal
jg Jump greater
jge Jump greater or equal
jgeu Jump greater or equal unsigned
jgu Jump greater unsigned
jl Jump less
jle Jump less or equal
jleu Jump less or equal unsigned
jlu Jump less unsigned
jmp Jump
jne Jump not equal
jneg Jump negative
jnneg Jump not negative
jnpos Jump not positive

5-46

Mapping
Complex
Complex
Complex

Complex
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Complex

Simple
Simple
Simple
Simple
Simple
Simple
Simple
Complex
Complex
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple

SOFfW ARE GENERATION PROGRAMS
Machine Independent Instruction Set

Table 5-6. Machine Independent Instruction Set <Continued)
Mnemonic Name Mapping

jnz Jump not zero Simple
jpos Jump positive Simple
jsb Jump to subroutine Simple
jz Jump zero Complex
llsw2 Logical left shift (2 operand) Simple
llsw3 Logical left shift (3 operand) Simple
Irsw2 Logical right shift (2 operand) Simple
Irsw3 Logical right shift (3 operand) Simple
mcomb,mcomh,mcomw Move complemented - byte, halfword, word Simple
mnegh Move negated - halfword Simple
mnegw Move negated - word Simple
modw2 modulo (2 operand) Simple
modw3 modulo (3 operand) Simple
movaw Move address Simple
movb,movh,movw Move - byte, halfword, word Simple
movbbh Move bit extended - byte to halfword Simple
movbbw Move bit extended - byte to word Simple
movbhw Move bit extended - halfword to word Simple
movblb Move block - byte Complex
movblh Move block - halfword Complex
movblw Move block - word Simple
movthb Move truncated - halfword to byte Simple
movtwb Move truncated - word to byte Simple
movtwh Move truncated - word to halfword Complex
movzbh Move zero extended - byte to halfword Simple
movzbw Move zero extended - byte to word Simple
movzhw Move zero extended - halfword to word Simple
mulw2 Multiply (2 operand) Simple
mulw3 Multiply (3 operand) Simple
orb2,orh2,orw2 OR (2 operand) - byte, halfword, word Simple
orb3,orh3,orw3 OR (3 operand) - byte, halfword, word Simple
pushaw Push address - word Simple
pushbb Push bit extended - byte Complex
pushbh Push bit extended - halfword Complex
pushw Push word Simple
pushzb Push zero extended - byte Complex
pushzh Push zero extended - halfword Complex
ret Return Complex
rsb Return from subroutine Simple
save Save Simple

5-47

SOFfWARE GENERATION PROGRAMS
Link Editor

Table 5-6. Machine Independent Instruction Set <Continued)
Mnemonic Name

subb2,subh2,subw2 Subtract (2 operand) - byte, halfword, word
subb3,subh3,subw3 Subtract (3 operand) - byte, halfword, word
udivw2 Unsigned divide (2 operand)
udivw3 Unsigned divide (3 operand)
umodw2 Unsigned modulo (2 operand)
umodw3 Unsigned modulo (3 operand)
umulw2 Unsigned multiply (2 operand)
umulw3 Unsigned mUltiply (3 operand)
xorb2,xorh2,xorw2 XOR (2 operand) - byte, halfword, word
xorb3 ,xorh3 ,xorw3 XOR (3 operand) - byte, halfword, word

5.3 LINK EDITOR

Mapping
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple
Simple

The link editor creates load files by combining object files, performing relocations,
resolving external references, and supporting symbolic debugging information. The inputs
to m32ld are object files produced by either the m32cc compiler, the m32as assembler, or
by a previous m32ld run. The link editor combines these input object files to form either a
relocatable or an absolute (i.e., executable) object file. The object file format is given in
5.4 OBJECT FILE FORMAT.

The link editor control language can:

• Specify memory configurations for the intended target system.

• Combine object file segments in several ways and cause them to be loaded at specific
addresses or within specific portions of memory.

• Define or redefine global symbols at load time.

5.3.1 Link Editor Command

The link editor is called by the command line

m321d [options] filenaml filenam2 ...

Input files to the link editor must be object files, archive libraries containing object files, or
ASCII source files containing link editor directives. An archive library is merely a group
of object files that are collected in one place because they are expected to be useful in
several applications. The so-called "magic number" (in the first two bytes of the file
header) indicates which type of input file has been encountered. If the link editor does not
recognize the magic number, it will assume the file is a text file containing m32ld
directives and will attempt to parse it. Input object files and archive libraries of object
files are linked together to form an output object file that is executable on the target
system, provided there are no unresolved references. Input source files containing m32ld
directives are also called ifiles. Object files usually have the form name .0, although the
link editor does not enforce this convention.

5-48

SOFTWARE GENERATION PROGRAMS
Link Editor

To link object files named filel.o and file2.0, the following command line is sufficient:

m321d file.o file2.0

No directives or options are needed. If no errors occur, an executable object file named
m32a.out is created.

The sections of the input files are combined in order. That is, if filel.o and file2.0 each
contain the standard .text, .data, and .bss sections, then the output file will also contain
these three sections. m321d will concatenate the .text sections from filel.o and file2.0 to
form the output .text section. The output .data and .bss sections will be similarly formed.

Instead of entering the names of the files to be link edited and the m32ld options on the
command line, this information can be placed in an ifile which can be passed to the link
editor. For example, if the files filel.o, file2.0, and file3.0 were to be frequently linked
using the options -m and -V, the command line would be:

m32ld -m - V filel.o file2.0 file3.0

Rather than entering this command each time, an ifile can be created containing the
statements:

-m
-v
filel.o
file2.0
file3.0

The link editor can then be invoked using

m321d ifilename

where ifilename is the name of the ifile. Some of the object files to be link edited can be
specified in an ifile and others on the command line. The same holds true for options -
some can come from the command line while others come from the ifile.

Input files are link edited in the order they are encountered, whether they are encountered
on a command line or in an ifile. For example, the command line

m32ld file l.o ifile file2.0

can be used with a'n ifile containing

file3.0
file4.0

to form an object file with the form:

filel.o file3.0 file4.0 file2.0

This example demonstrates an important property of ifiles; i.e., they are read and processed
as soon as they are encountered in a command line.

5-49

SOFfW ARE GENERATION PROGRAMS
Command Line Options

Command Line Options

Options may be interspersed with file names both on the command line and in an ifile.
Except for the -I and -L options, all options may be specified in any order. The -I option
names an input archive library. Like other input files, libraries are searched and link­
edited just as they are encountered, so ordering is important. The -L option names
directories to be searched when looking for an archive library. Therefore, to be effective, a
-L option must appear before any -I options.

A minus sign (-) precedes all options, whether options are specified in an ifile or on the
command line. White space, (blanks or tabs) separates arguments to the option from the
option letter (except for -I and -0. Options recognized by m321d are listed in Table 5-7.

Table 5-7. m321d Command Line Options

Option Argument Description

-a None Produce an absolute executable file, and give warnings for
undefined references. Relocation information is stripped from the
output object file unless the -r option is invoked. The -r option is
needed only when an absolute object file must retain its relocation
information (an unusual case). The -a option is invoked by
default, but must be explicitly entered when the -r option is in
effect.

-e epsym Set the default entry point address for the output file to epsym.
This option both defines the entry point symbol and forces the
printing of a standard UNIX System a.out header.

-f fill Initialize holes within output sections using the argument fill. The
argument must be a two-byte constant, e.g., -fOxdfff.

-I lnam Link edit the library specified by lnam. The library name is
interpreted to be Iiblnam.a, where Inam can contain up to seven
characters. A library is searched when its name is encountered, so
the placement of a -I option is significant. Location of the library
is a SGP build parameter. See Note.

-M None Print a warning message for all external variables that are
multiply defined.

-m None Produce a map or listing of the input/output sections on the
standard output.

-0 outfile Name the output object file outfile. The name of the default
object file is m32a.out. See Note.

Note: Argument is appended to option with no embedded blanks.

5-50

SOFTW ARE GENERATION PROGRAMS
Link Editor Command Language

Table 5-7. m32ld Command Line Options (Continued)

Option Argument Description

-r None Retain the relocation entries in the output object file. Relocation
entries must be saved if the output file is to become an input file
to a subsequent m32ld run. The link editor complains about
unresolved references if the -r option was omitted. The -r option
is useful for forming subsystems.

-s None Strip line number entries and symbol table information from the
output object file. All symbols are removed, including global and
undefined symbols. Relocation entries are meaningless without the
symbol table, so the -r option cannot be used with -so

-t None Turn off the check ensuring that all instances of a multiply defined
symbol be the same size.

-u symname Take the argument symname as a symbol and enter it as
undefined in the symbol table. This is useful for loading entirely
from a library, because initially the symbol table is empty and an
unresolved reference is needed to force the loading of the first
routine. See Note.

-L dir Search for libraries in the directory dir before looking in the
default location (LIBDIR). See Note.

-N None Put the data section immediately after the text section in the
output file.

-V None Print (on standard error) a message giving information about the
version of m32ld being used.

-VS num Give the version stamp num to the m32a.out file that is produced.
The num argument is taken as a decimal number and stored in the
standard a.out header of the output object file. See Note.

-x None Do not preserve local symbols in the output symbol table; enter
external and static symbols only. This saves some space in the
output file.

Note: Argument is appended to option with no embedded blanks.

5.3.2 Link Editor Command Language

The m32ld command language enables the user to control the design of the object module
created from the input object files. The language consists of input statements and
specifications that can specify memory configuration, bind sections to named addresses or
portions of memory, and define global symbols. Additional caution is required when using
the power and flexibility of input directives. Any pointer that has the value zero must not
point to an object. (The C language defines a null pointer as zero, 0,) To ensure this
property, users must not place any object at virtual address zero in the data space.

5-51

SOFTWARE GENERATION PROGRAMS
Expressions

Expressions

Expressions may contain global symbols, constants, and most of the basic C language
operators. As in the C language, constants with a number are recogJ.1ized as decimal unless
preceded with 0 for octal or Ox for hexadecimal. All numbers are treated as long integers.
Symbol names may contain upper- or lower-case letters, digits, and the underscore ().
Symbols within an expression have the value of the address of the symbol only. m321d will
not perform symbol table lookup to find the contents (value) of a symbol, the
dimensionality of an array, structure elements declared in a C program, etc.

The link editor uses an input scanner (lexical analyzer) to identify symbols, numbers,
operators, etc. The current scanner design makes the following names reserved and
unavailable as symbol names or section names:

ALIGN PHY
align len phy
ASSIGN length RANGE
assign LENGTH range
BLOCK MEMORY REGIONS
block NOLOAD SECTIONS
COPY 0 SPARE
DSECT org spare
GROUP origin TV
group ORIGIN

The operators that are supported, in order of precedence from high to low, are:

!'" - (Unary)
* / %
+ - (Binary)
» «
==!= > < <= >=
&
I
&&
II
= += -= *= /=

5-52

SOFfWARE GENERATION PROGRAMS
Memory Configurations

The above operators have the same meaning as in C language. The associativity is also the
same as in C language, with left to right associativity except for !, -(unary), =, +=, -=,
*=, and 1=. Operators on the same line have the same precedence.

Assignment Statements

External symbols may be defined and assigned addresses using the assignment statement.
The assignment statement syntax is:

symbol = expression;
or

symbol op = expression;

where op is one of the operators +, -, *, or I. Assignment statements must be terminated
by a semicolon (;) .

All assignment statements, with the exception of the one case described in the following
paragraph, are evaluated after allocation has been performed and all input-file-defined
symbols have been appropriately relocated, but before the actual relocation of the text and
data itself. Therefore, if an assignment statement expression contains any symbol name,
the address used for that symbol in the evaluation of the expression reflects the symbol
address in the output object file. However, within text and data, references to symbols
given a value through an assignment statement will access this latest assigned value.
Assignment statements are processed in the same order as input to m321d.

Assignment statements are normally placed outside the scope of section-definition
directives (see Creating and Defining Symbols at Link-Edit Time in this section). However,
there exists a special symbol, called dot or ".", which can occur only within a section­
definition directive. This symbol refers to the current virtual address of the link editor
location counter. Thus, assignment expressions involving "." are evaluated during the
allocation phase of m321d. Assigning a value to the "." symbol within a section-definition
directive increments and resets the m321d location counter, and can create holes within the
section. Assigning the value of the "." symbol to a conventional symbol permits the final,
allocated address of a particular point within the link edit run to be saved.

Align is provided as a shorthand notation to allow alignment of a symbol to an n-byte
boundary within an output section, where n is a power of two. For example, the expression

align(n)

is equivalent to

(.+n-) & '" (n-I)

Memory Configurations

By default, the link editor considers the target processor to have an address range of 56
kbytes, numbered from OxlOOOOO to OxlOCFFF. This comprises the virtual address space
into which all input files are linked.

5-53

SOFTWARE GENERATION PROGRAMS
Memory Configurations

To help allocate space, virtual memory is partitioned into configured and un configured
memory. By default, all virtual memory is treated as configured, and unconfigured
memory is treated as reserved and unusable by the link editor.

Note: Nothing can ever be linked into unconfigured memory. Thus, making a certain
memory range unconfigured is one way of marking the addresses in that range as illegal or
nonexistent with respect to the linking process.

Memory configurations other than the default must be explicitly set up using the link
editor command language.

MEMORY directives are used to specify:

• The total size of the virtual space of the target WE 32100 Microprocessor.

• The configured and un configured areas of the virtual space.

If no directives are supplied, the link editor assumes that virtual memory is configured for
56 kbytes, beginning at address OxlOOOOO and ending at address OxlOCFFF.

MEMORY directives can assign an arbitrary name of up to eight characters to a virtual
address range. Output sections can then be forced to be bound at virtual addresses within
specific named memory areas. Memory names may contain upper- or lower-case letters,
digits, and the special characters '$', '.', and '_'. Names of memory ranges are only used
by the link editor and are not carried in the output file symbol table or headers.

When MEMORY directives are used, all virtual memory not described in a memory·
directive is considered to be unconfigured. Unconfigured memory is not used in the
allocation process of m32Id, and hence nothing can be link edited, bound, or assigned to
any address within unconfigured memory.

As an option to a MEMORY directive, attributes may be associated with a named
memory area. The attributes permit an output section to restrict where it will be bound;
such a section will be bound only to a memory area with the named attributes. The
attributes assigned to output sections in this manner are recorded in appropriate section
headers in the output file, thus making possible error checking in the future. (For
example, putting a text section into writable memory is a potential error condition.)
Currently, error checking of this type is not implemented.

Attributes that are currently accepted are:

• R Readable memory

• W Writable memory

• X Executable memory, i.e., instructions may reside in this memory

• I Memory that can be initialized; stack areas are typically not initialized.

Other attributes may be added in the future if necessary. If no attributes are specified on
a MEMORY directive, or if no MEMORY directives are supplied, memory areas will
assume all the attributes R, W, X, and I.

5-54

SOFTWARE GENERA nON PROGRAMS
Section Definition Directives

The syntax of the MEMORY directive is:

MEMORY {
namel (attr): origin = nl,length = n2
name2(attr): origin = n3, length = n4
etc.

The keyword origin (or org or 0) must precede the origin of a memory range, and the
keyword length (or len or l) must precede the length, as shown in the above prototype.
The origin operand refers to the virtual address of the memory range. Origin and length
are entered as 32-bit constants in either decimal, octal, or hexadecimal (using standard C
syntax). Origin and length specifications, as well as individual MEMORY directives, may
be separated by either white space or commas.

By specifying MEMORY directives, the user can tell the link editor that memory is
configured in some manner other than the default. For example, if it is necessary to
prevent anything from being linked to the first OxlOOOO words of memory, a MEMORY
directive can accomplish this:

MEMORY
valid: org = OxlOOOO, len = OxfeOOOO

Section Definition Directives

A section is the smallest relocatable unit of an object file and must reside in a contiguous
block of memory. Each section has a starting virtual address and a size. Section headers
(which are described in 5.4 OBJECT FILE FORMAT) start each file and contain
information describing all included sections. Sections from input files are combined to
form output sections containing executable text, data, or a mixture of both. Although
there may be "holes" or gaps between input sections and between output sections,
contiguous storage is allocated within each output section.

SECTIONS directives describe how input sections are to be combined, direct where to
place output sections (both in relation to each other, and to the entire virtual memory
space), and permit the renaming of output sections.

In the default case where no SECTIONS directives are given, each input section appears
in an output section of the same name. For example, if a number of object files from the
compiler are linked, each containing the three sections, .text, .data, and .bss, the output
object file will also contain three sections, .text, .data, and .bss. If two objects files are
linked, one containing sections sl and s2, and the other containing sections s3 and s4, then
the output object file will contain the four sections sl, s2, s3, and s4. The order of these
sections depends on the order in which the link editor saw the input files.

5-55

SOFTWARE GENERATION PROGRAMS
Section Definition Directives

The basic syntax of the SECTIONS directive is:

SECTIONS
secnamel:

secname2:

etc.

file_specifications,
assignment _statements
}
file_specifications,
assignment _statements
}

The various types of section definition directives are discussed in the remainder of this
section.

Virtual Address and Bindings. All addresses manipulated by m321d are 32-bit absolute
addresses defined relative to address zero. The address of a section means the virtual
address of the start of the section. The address of a symbol is the virtual address of the
text or data word defining the symbol. Physical addresses to the link-editing are equivalent
to virtual addresses, Le., no distinction is made by m321d.

It is often necessary to have a section begin at a specific, predefined address. The process
of specifying this starting address is called binding, and the named section is said to be
"bound at" or "bound to" the required address. Binding generally refers to output sections,
but it is also possible to bind global symbols using an assignment statement from the link
editor command language.

File Specifications. Within a section definition, the files and sections of files to be included
in the output section are listed as they appear in the output section. Sections from an input
file are specified by

filename (secname) or filename (secnaml secnam2 .,.)

Input file sections are separated either by white space or commas, as are the file
specifications.

If a filename appears with no sections listed, all sections from the file are linked into the
current output section. For example,

SECTIONS
outsec1:

file 1.0 (sec 1)
file2.0
file 3 .0 (sec 1 ,sec2)

links all sections from file2.0 into the output.

5-56

SOFTWARE GENERATION PROGRAMS
Section Definition Directives

The order in which the input sections appear in the output section outsecl is given by:

1. Section sec 1 from file 1.0

2. All sections from file2.0, in the order they appear in the file

3. Section secl from file3.0, and then section sec2 from file3.0.

If there are any additional input files that contained input sections also named outsecl,
these sections are linked following the last section named in the definition of outsecl (in
this example, file3.0 (sec2)).

There may be additional input sections in the files file.o, file2.0, and file3.0, other than
those specified as going into output section outsecl. These input sections are put into
output sections with corresponding names.

Load a Section at a Specified Address. Binding an output section to a specific virtual
address is done by a link editor command language option, as shown in the following
SECTIONS directive example:

SECTIONS
outsec addr: { ... }
etc.

where addr is the binding address, expressed as a C language constant. If outsec will not
fit at addr (perhaps because of holes in the memory configuration, or because out sec is too
large to fit without overlapping some other output section), then m32ld issues an
appropriate error message.

As long as output sections do not overlap, they can be bound anywhere in configured
memory. The SECTIONS directives defining output sections need not be given to m321d
in any particular order.

Aligning an Output Section. It is possible to request that an output section be bound to a
virtual address that falls on an n-byte boundary, where n is a power of 2. The ALIGN
option of the SECTIONS directive performs this function, so that the option

ALIGN(n)

is equivalent to specifying a binding address of

(.+n-1) & 'V (n-1)

For example:

SECTIONS
outsec ALIGN(Ox20000): { ... }
etc.

5-57

SOFfWARE GENERATION PROGRAMS
Section Definition Directives

The output section outsec is not bound to any given address, but will be linked to some
virtual address that is a multiple of Ox20000 (e.g., at address OxO, Ox20000, Ox40000,
Ox60000, etc.).

Grouping Sections Together. The default allocation algorithm for m32ld is:

1. Link all input .text sections together into one output section. This output section is
called .text and is bound at the address OxIOOOOO.

2. Link all input .data sections together into one output section. This output section is
called .data and is bound at an address aligned to OxS.

3. Link all input .bss sections together into one output section. This output section is
called .bss and is allocated to follow immediately after the output section .data. Note
that the output section .bss is not given any particular address alignment.

Specifying any SECTIONS directive with an ifile inhibits this default allocation.

The default allocation of m32ld is equivalent to supplying the following directives:

SECTIONS (
.text OxIOOOOO: 0
GROUP ALIGN(OxS):

.data: 0

.bss: 0
}

The GROUP command ensures that the two output sections .data and .bss are allocated
together (j.e., grouped). Binding or alignment information may be supplied only for the
group and not for the output sections contained within the group. The sections making up
the group are allocated in the order listed in the directive.

If .text, .data, and .bss are to be placed in the same segment, the following SECTIONS
directive could be used:

SECTIONS (
GROUP:

.text: 0

.data: 0

.bss: 0

Note that there are still three output sections <.text, .data, and .bss), but now they are
allocated into consecutive virtual memory.

This entire group of output sections could be bound to a starting address, or aligned, simply
by adding a field to the GROUP directive. To bind at OxcOOOO, use:

GROUP OxcOOOO: {

5-58

SOFTWARE GENERATION PROGRAMS
Section Definition Directives

The output section .text is bound at OxcOOOO with this directive. To align to OxlOOOO use:

GROUP ALIGN(OxIOOOO): (

Now the output section .text is aligned to OxIOOOO. In both cases, the remaining members
of the group are allocated, in order of their appearance, into the next available memory
locations.

When the GROUP directive is not used, each output section is treated as an independent
entity. Thus the directive

SECTIONS
.text: U
.data ALIGN(Ox20000): U
.bss: U

causes the .text section to start at virtual address OxO, and the .data section to start at a
virtual address aligned to Ox20000. The .bss section follows immediately after the .text
section if there is enough space. If there is not, it follows the .data section.

Note: The order in which output sections are defined to the link editor can not be used to
force a certain allocation order in the output file.

Creating Holes Within Output Sections. The dot symbol (".,,) can appear in an assignment
instruction only within a section definition. When appearing on the left side of an
assignment statement, dot causes the link editor location counter to be incremented/reset,
and leaves a hole in the output section. Consider the following section definition:

outsec:
.+= OxIOOO;

fl.o Ctext)
.+= OxIOO;

f2.oCtext)
.= align (4);

f3.oCtext)

The effects of this command are:

• A OxlOOO-byte hole is left at the beginning of the section. Input file fl.oCtext) is linked
after this hole.

e The .text section of input file f2.0 begins OxlOO bytes following the end of fl.o(.text) .

• The .text section of f3.0 is linked to start at the next full word boundary following the
text of f2.0, with respect to the beginning of "outsec".

Holes built into output sections in this manner are initialized using a fill character, either
the default fill character (OxOO) or a supplied fill character. The option -f is used to
supply a fill character.

5-59

SOFTWARE GENERATION PROGRAMS
Section Definition Directives

To help allocate and align addresses within an output section, the link editor treats the
output section as if it began at address zero. As a result, if (in the above example), outsec
ultimately was linked to start at an odd address, then the part of outsec built from
f3.oCtext) would also start at an odd address - even though f3.oCtext) was aligned to a
full-word boundary. This could be prevented by specifying an alignment factor for the
entire output section:

outsec ALIGN(4):

Note that the m32as assembler always pads the sections it generates to a full word length,
making explicit alignment specifications unnecessary. This also holds true for the m32cc
compiler.

Expressions that decrement dot are illegal. For example, subtracting a value from the
location counter is not allowed, because overwrites are not allowed. The most common
operators in expressions that assign a value to dot are += and align.

Creating and Defining Symbols at Link-Edit Time. The assignment instruction of the link
editor can be used to give symbols a value that is link-edit dependent. Typically, there are
three types of assignments:

1. Use of dot to adjust the m32ld location counter during allocation.

2. Use of dot to assign an allocation-dependent value to a symbol.

3. Assigning an allocation-independent value to a symbol.

The first type of assignment has already been discussed in the previous section. The
second type provides a means to assign addresses, known only after allocation, to symbols.
For example:

SECTIONS {
outsecl: { ... }
outsec2: (

file 1.0

file2.o(s2)
s2 end =.-1;

The symbol s2_start is defined to be the address of file2.o(s2), and s2_end is the address of
the last byte of file2.0 (s2) .

Assignment instructions involving "." must appear within sections definitions, because they
are evaluated during allocation. Assignment instructions that do not involve ".", although
they can appear within sections definitions, typically do not. Such instructions are
evaluated after allocation is complete. Reassignment of a defined symbol to a different
address is dangerous. If a symbol within .data is defined, initialized, and referenced within
a set of object files being link edited, the symbol table entry for that symbol will be

5-60

SOFfWARE GENERATION PROGRAMS
Section Definition Directives

changed to reflect the new, reassigned address, but the associated initialized data will not
be moved. This link editor issues warning messages for each defined symbol that is being
redefined with an ifile. However, assignments of absolute values to undefined symbols is
safe, because there are no initialized data associated with the symbol.

Allocating a Section Into Named Memory. Within a SECTIONS directive, it is possible to
specify that a section be linked somewhere within a named memory (as previously shown in
a MEMORY directive). This allocation method uses the> notation borrowed from the
UNIX System concept of "redirected output".

MEMORY (

}
SECTIONS (

meml:
mem2(RW):
mem3(RW):
meml:

O=OxOOOOOO
O=Ox020000
O=Ox070000
O=Ox120000

I=Oxl0000
I=Ox40000
I=Ox40000
I=Ox04000

outsec 1: (fl.o (.da ta) } > mem 1
outsec2: (r2.0(.data)} > mem3

This ifile segment directs m321d to place outsecl anywhere within the memory area named
meml; i.e., somewhere within the address range OxO-Oxffff or OxI20000-0xI23fff. Output
section outsec2 is placed somewhere in the address range Ox70000-0xaffff.

Initialized Section Holes or BSS Sections. When "holes" are created within a section, the
link editor normally outputs bytes of zeros as "fill". By default, .bss sections are not
initialized at all. That is, no initialized data are generated for any .bss section by the
assembler nor supplied by the link editor (not even zeros).

Initialization options can be used in a SECTIONS directive to set such holes or output .bss
sections to an arbitrary two-byte pattern. Such initialization options apply only to .bss
sections or holes. As an example, an application might want an uninitialized data table to
be initialized to a constant value without recompiling the .0 files; another application may
want a hole in the text area to be filled with a transfer to an error routine.

Either specific areas within an output section or the entire output section may be specified
as being initialized. However, since no text is generated for an uninitialized .bss section,
initializing part of such a section causes the entire section to be initialized. In other words,
to combine a .bss section with a .text or .data section (both of which are initialized), or to
initialize only part of an output .bss section, one of the following must hold:

1. Explicit initialization options must be used to initialize all .bss sections in the output
section.

2. The link editor must use the default fill value to initialize all .bss sections in the
output section.

5-61

SOFTWARE GENERATION PROGRAMS
Notes on the Use of m321d

Consider the following ifile:

SECTIONS
sec1:

) = Ox2f2f
sec2: (

)
sec3: (

) = Oxffff
sec4: (

fLo
. =+ Ox200;
f2.oCtext)

fl.o(.bss)
f2.0(.bss) = Ox1234

f3.0(.bss)

f4.0(.bss))

In this example, the Ox200 byte hole in section sed is filled with WAIT instructions
(Ox2f2f). In the section sec2, fl.o(.bss) is initialized to the default fill value of OxOO, and
f2.0(.bss) is initialized to Ox1234. All .bss sections within sec3 as well as holes are
initialized to Oxffff. Section sec4 is not initialized (i.e., no data are written to the object
file for sec4).

Notes on the Use of m32ld

Notes and special considerations on the use of the link editor, including initialization, use
of archive libraries, and other detailed aspects of m321d are presented here.

Changing the Entry Point. By default, a a.out header is written to the output file. The
a.out header contains a field for the primary entry point of the file. This field is set by the
following rules (listed in the order of application):

I. The value of the symbol in the -e flag, if present, is used.

2. The value of the symbol _start, if present, is used.

3. The value of the symbol main, if present, is used.

4. The value zero is used.

Thus, an explicit entry point can be assigned to this m32a.out header field through the -e
option, or by using an assignment instruction in an input file of the form:

_start = expression;

If the link editor is called through m32cc, a startup routine will automatically be linked in.
The user must be careful when calling the link editor directly or when changing the entry

5-62

SOFTWARE GENERATION PROGRAMS
Notes on the Use of m321d

point. The user must supply the startup routine or insure that the program performs the
necessary steps in order to execute correctly.

Use of Archive Libraries. Each member of an archive library (e.g., libc.a) is a complete
object file (typically consisting of the standard three sections: .text, .data, and .bss).
Archive libraries are created through the use of the m32ar command from object files
generated by running m32cc or m32as. Each library member has a "magic number". The
link editor enforces a policy that all input object files must have the same magic number.
Any object file that fails this test is not processed and generates a fatal m321d error.
However, this policy has an important exception - members of archive libraries with the
wrong magic number are silently skipped. This is not considered an error, and no message
is generated.

An archive library is always processed using selective inclusion. Only those members
which resolve existing undefined symbol references are taken from the library for link
editing.

Libraries can be placed both inside and outside section definitions. In both cases, a
member of a library is included for linking whenever:

• There is a reference to a symbol defined in that member

• The reference is found by the link editor before the actual scanning of the library.

When a library member is included by searching the library inside a SECTIONS directive,
all input sections from the member are included in the output section being defined. When
a library member is included by searching the library outside of a SECTIONS directive,
all input sections from the member are included into the output section with the same
name. That is, the .text section of the member goes into the output section named .text,
the .data section of the member goes into .data, and the .bss section of the member goes
into .bss. If necessary, m321d defines new output sections to provide a place to put the
input sections.

The -I option is a shorthand notation for specifying an input file coming from a predefined
directory and having a predefined name. By convention, such files are archive libraries,
although they need not be. Furthermore, archive libraries can be specified without using
the -I option, by simply giving the full or relative file pathname.

The ordering of archive libraries is important, since for a member to be extracted from the
library it must satisfy a reference that is known to be unresolved at the time the library is
searched. Archive libraries can be specified more than once; they are searched from the
beginning every time they are encountered. The proper order can often be determined with
the utility m3210rder, as described in 5.5 UTILITIES AND LIBRARY ROUTINES.

Consider the following example:

• The input files filel.O and file2.0 each contain a reference to the external function FCN

• Input filel.O contains a reference to symbol ABC

• Input file2.0 contains a reference to symbol XYZ

5-63

SOFTWARE GENERATION PROGRAMS
Notes on the Use of m32ld

• Library liba.a, member 0, contains a definition of XYZ

• Library libc.a, member 0, contains a definition of ABC

• Both libraries have a member 1 that defines FCN.

If the m32ld command line is entered as

m32ld filel.o -la file2.0 -Ie

the FCN references are satisfied by liba.a, member 1; ABC is obtained from libc.a,
member 0; and XYZ remains undefined because the library liba.a is searched before file
2.0 is specified. If the m32ld command line is entered as

m32ld filel.o file2.0 -/a -Ie

the FCN references are satisfied by liba.a, member 1; ABC is obtained from libc.a,
member 0; and XYZ is obtained from liba.a, member o. If the m32ld command line is
entered as

m32ld filel.o file2.0 -Ie -la

the FCN references are satisfied by libc.a, member 1; ABC is obtained from libc.a,
member 0; and XYZ is obtained from liba.a, member o. If the m32ld command line is
entered as

m32ld file.o file2.0 -Ie -/a

The FCN references are satisfied by libc.a., member 1; ABC is obtained from libc.a.,
member 0; and XYZ is obtained from liba.a., member O.

The -u option can be used to force the linking of library members when the link edit run
does not contain an actual external reference to the members. For example,

m32ld -u rout! -/a

created the undefined symbol rout! in the link editor global symbol table. If any member
of library liba.a defines this symbol, that member (and perhaps other members as well) is
extracted. Without the -u option, there would have been no trigger to cause m32ld to
search the archive library.

Dealing With Holes in Physical Memory. When memory configurations are defined such
that unconfigured areas exist in the virtual memory, each application or user must assume

5-64

SOFTWARE GENERATION PROGRAMS
Notes on the Use of m32ld

the responsibility of forming output sections that fit into memory. For example, assume
memory is configured as:

MEMORY {
meml: 0 = OxOOOOO
mem2: 0 = Ox40000
mem3: 0 = Ox20000

1 = Ox02000
1 = Ox05000
1 = OxlOOOO

Let the files fl.o, f2.0, ... fn.o each contain the standard three sections .text, .data, and
.bss, and suppose the combined .text section contains Oxl2000 bytes. There is no
configured area of memory where this section can be placed. Appropriate directives must
be supplied to break up the .text output section so that m32ld can perform allocation. For
example:

SECTIONS {
txtl:

txt2: {

etc.

}

fLo (text)
f2.0 (.text)
f3.o (.text)

f4.0 (.text)
f5.0 (text)
f6.0 (text)

Allocation Algorithm. The link editor forms output sections either according to
specifications in a SECTIONS directive or by combining input sections with the same
name. An output section can contain zero or more input sections. After determining the
composition of an output section, m32ld must then allocate the necessary configured virtual
memory. This task is performed using an algorithm that attempts to minimize
fragmentation of memory, thereby increasing the possibility that a link edit run will be able
to allocate all output sections within the specified virtual memory configuration. The
algorithm proceeds as:

1. Any output sections with explicitly specified binding addresses are allocated.

2. Any output sections to be included in a specific named memory are allocated. In both
this and the preceding step, each output section is placed into the first available space
within the (named) memory, with any alignment taken into consideration.

3. Output sections not handled by one of the above steps are allocated.

If all memory is contiguous and configured (the default case), and no SECTIONS
directives are given, then output sections are allocated in the order of appearance to the

5-65

SOFTWARE GENERATION PROGRAMS
Notes on the Use of m321d

link editor, normally .text, .data and .bss. The .text output section starts at virtual address
OxlOOOOO; the .data and .bss output sections are grouped together and aligned to a Ox8-
byte virtual address. Otherwise, output sections are allocated in the order they were
defined or made known to the link editor. The first available space large enough to hold
them is used.

Subsystems (Incrementa)) Link Editing. To help generate a large system with modular and
hierarchical design methodology, m321d provides the capability to form subsystems and link
edit in smaller, more manageable increments. As previously mentioned, the output of the
link editor can be used as an input file to subsequent m321d runs providing that the
relocation information is retained (-r option). In large applications it may be desirable to
partition C programs into subsystems, link each subsystem independently, and then link­
edit the entire application. For example:

Step I.

m321d -r -0 outfilel ifilel

1* ifile *1

SECTIONS

ssl:
fLo
f2.0

fn.o

Step 2.

m321d -r -0 outfiJe2 ifile2

1* ifile2 *1

SECTIONS

ss2:
g1.o
g2.0

gn.o

Step 3.

m321d -a -m -0 final.out outfilel outfile2

By judiciously forming subsystems, applications may achieve a form of "incremental link
editing" whereby it is only necessary to re-Iink a portion of the total link edit when a few
programs are recompiled.

5-66

SOFTWARE GENERA nON PROGRAMS
DSECT, COPY and NOLOAD Sections

Two simple rules are followed when applying this technique:

I. Place SECTIONS declarations only in incremental link edits. Be concerned only with
the formation of output sections from input files and input sections. Do not bind
output sections in these runs.

2. Only allocation and memory directives, as well as any assignment statements, should
be included in the final m321d call.

Nonrelocatable Input Files. Normally an input file produced by a previous m321d run was
produced under the -r option. This option preserves relocation information and permits
sections of the output file to be relocated by subsequent m321d runs.

Upon detecting an input file that does not have relocation or symbol table information, the
link editor issues a warning message. Such information may have been removed by the -a
or -s options of the link editor, as described in 5.3.1 Command Line Options. However, the
link editor continues using the nonrelocatable input file.

For such a link edit to succeed (i.e., to actually and correctly incorporate all input files,
relocate all symbols, resolve all unresolved references, etc'), two conditions must be met by
the nonrelocatable input file:

I. Each input file must not contain any unresolved external references.

2. Each input file must be bound at the same virtual address where it was bound during
the m321d run that created it.

Note: The m321d link editor does not issue an error message if these two conditions are
not met for all nonrelocatable input files. Therefore, extreme care must be exercised when
supplying such input files to the link editor.

DSECT, COPY and NOLOAD Sections

Sections may be given a "type" in a section definition as shown in the following example:

SECTIONS
{

name I Ox200000 (DSECT)
name20x400000 (COPY)
name3 Ox600000 (NOLOAD)

: {filel.o}
: {file2.0}
: {file3.0}

The DSECT option creates what is called a "dummy section". A "dummy section" has the
following properties:

• It does not participate in the memory allocation for output sections. As a result, it takes
up no memory and does not show up in the memory map (the "-m" option) generated by
the link editor.

• It may overlay other output sections and even unconfigured memory. DSECTs may
overlay other DSECTs.

5-67

SOFTWARE GENERATION PROGRAMS
Output File Blocking

• The global symbols defined with the "dummy section" are relocated normally. That is,
they appear in the output file's symbol table with the same value they would have had if
the DSECT were actually loaded at its virtual address. DSECT-defined symbols can be
referenced by other input sections. Undefined external symbols found within a DSECT
will cause specified archive libraries to be searched and any members which define such
symbols will be link-edited normally (j.e., not in the DSECT or as a DSECT).

• None of the section contents, relocation information, or line number information
associated with the section is written to the output file.

In the above example, none of the sections from filel.o are allocated, but all symbols are
relocated as though the sections were link edited at the specified address. Other sections
may refer to any of the global symbols and they are resolved correctly.

A "copy section" created by the COpy option is similar to a "dummy section"; the only
difference being that the contents of a "copy section" and all associated information is
written to the output file.

A section with the "type" of NOLOAD differs in only one respect from a normal output
section: its text and/or data is not written to the output file. A NOLOAD section is
allocated virtual space, appears in the memory map, etc.

Output File Blocking

The BLOCK option, which can be applied to any output section or GROUP directive, is
used to direct m321d to align a section at a specified byte offset in the output file. It has
no effect on the address at which the section is allocated, nor on any part of the link editor
process. It is used only to adjust the physical position of the section in the output file.

SECTIONS
(

.text BLOCK(Ox200) : {}

.data ALIGN (Ox20000) BLOCK(Ox200) : { }

With this SECTIONS directive, m321d will ensure that each section (text and .data) is
physically written at a file offset which is a multiple of Ox200 (e.g., at an offset of 0,
Ox200, Ox400, ... , etc. in the file).

5.3.3 Error Messages

Corrupt Input Files

The following error messages indicate that the input file is corrupt, nonexistent, or
unreadable. The user should check that the file is in the correct directory with the correct
permissions. If the object file is corrupt, try recompiling or reassembling it.

• Can't open name

• Can't read archive header from archive name

5-68

SOFTWARE GENERATION PROGRAMS
Errors During Output

• Can read file header of archive name

• Can't read 1st word of file name

• Can't seek to the beginning of file name

• Fail to read file header of name

• Fail to read lnno of section sect of file name

• Fail to read magic number of file name

• Fail to read section headers of file name

• Fail to read section headers of library name member number

• Fail to read symbol table of file name

• Fail to ready symbol table when searching libraries

• Fail to read the aux entry of file name

• Fail to read the field to be relocated

• Fail to seek to symbol table of file name

• Fail to seek to symbol table when searching libraries

• Fail to seek to the end of library name member number

• Fail to skip aux entries when searching libraries

• Fail to skip the mem of struct of name

o Illegal relocation type

• Line nbr entry (num num) found for non-relocatable symbol: section sect, file name

• No reloc entry found for symbol

• Reloc entries out of order in section sect of file name

• Seek to name section sect failed

• Seek to name section sect lnno failed

• Seek to name section sect reloc entries failed

• Seek to relocation entries for section sect in file name failed

Errors During Output

These errors and messages occur because the link editor cannot write to the output file,
usually indicating that the file system is out of space.

• Cannot complete output file name. Write error.

• Fail to copy the rest of section num of file name

• Fail to copy the bytes that need no reloc of section num of file name

• 110 error on output file name

5-69

SOFTWARE GENERATION PROGRAMS
Internal Errors

Internal Errors

These messages indicate that something is wrong with the link editor internally. There is
probably nothing the user can do except get help.

• Attempt to free nonallocated memory

• Attempt to reinitialize the SDP aux space

• Attempt to reinitialize the SDP slot space

• Default allocation didn't put .data and .bss into the same region

• Failed to close SDP symbol space

• Failure dumping an AIDFNxxx data structure

• Failure in closing SDP aux space

• Failure to initialize the SDP aux space

• Failure to initialize the SDP slot space

• Internal error: audit...Eroups, address mismatch

• Internal error: audit...Eroups finds anode failure

• Internal error: auditJegions detected no regions built

• Internal error: fail to seek to the member of name

• Internal error: in allocate lists, list confusion (num num)

• Internal error: invalid aux table id

• Internal error: invalid symbol table id

• Internal error: negative aux table id

• Internal error: negative symbol table id

• Internal error: no symtab entry for DOT

• Internal error: out of tv slots

• Internal error: split_scns, size of sect exceeds its new displacement

• Internal error: .tv not aligned

• Internal error: .tv not built

Allocation Errors

These error messages appear during the allocation phase of the link edit. They generally
appear if a section or group will not fit at a certain address, or if the given MEMORY,
REGION, or SECTION directives conflict in some way. If using an ifile, the user should
check that MEMORY and SECTION directives allow enough room for the sections, that
nothing overlaps, and that nothing is being placed in configured memory.

• Bond address address for sect is not in configured memory

5-70

SOFTWARE GENERATION PROGRAMS
Misuse of Link Editor Directives

• Bond address address for sect overlays previously allocated section sect at address

• Can't allocate output section sect, of size num

• Can't allocate section sect into owner mem

• Default allocation failed: name is too large

• GROUP containing section sect is too big

• Memory types name1 and name2 overlap

• Output section sect not allocated into a region

• Sect at address overlays previously allocated section sect at address

• Sect, bonded at address, won't fit into configured memory

• Sect enters unconfigured memory at address

• Section sect in file name is too big

Misuse of Link Editor Directives

These errors and messages arise from the misuse of an input directive. Review the
appropriate section in the manual.

• Adding name(sect} to multiple output sections
The input section is mentioned twice in the SECTION directive.

• Bad attribute value in MEMORY directive: c
An attribute must be one of "R", "W", "X", or "I".

• Bad flag value in SECTIONS directive, option
Only the "-1" option is allowed inside of a SECTIONS directive.

• Bad fill value
The fill value must be a two-byte constant.

• Bonding excludes alignment
The section will be bound at the given address, regardless of the alignment of that
address.

• Cannot align a section within a group

• Cannot bond a section within a group

• Cannot specify an owner for sections within a group
The entire group is treated as one unit, so the group may be aligned or bound to an
address, but the sections making up the group may not be handled individually.

• DSECT sect can't be given an owner

• DSECT sect can't be linked to an attribute
Since dummy sections do not participate in the memory allocation, it is meaningless for
a dummy section to be given an owner or an attribute.

• REGIONS command not allowed in any instantiation other than b16

5·71

SOFTWARE GENERATION PROGRAMS
Misuse of Expressions

• Sect is a reserved section name
Currently only ".tv" is a reserved section name.

• Section sect not built
The most likely cause of this is a syntax error in the SECTIONS, directive.

• Semicolon required after expression

• Statement ignored
Caused by a syntax error in an expression.

• Usage of unimplemented syntax

Misuse of Expressions

These errors and messages arise from the misuse of expressions.

• Absolute symbol name being redefined
An absolute symbol may not be redefined.

• ALIGN illegal in this context
Alignment of a symbol may only be done within a SECTIONS directive.

• Attempt to decrement DOT

• Illegal operator in expression

• Misuse of DOT symbol in assignment instruction
The DOT symbol (".,,) cannot be used in assignment statements that are outside
SECTIONS directives.

• Symbol name is undefined
All symbols referenced in an assignment statement must be defined.

• Symbol name from file name being redefined
A defined symbol may not be redefined in an assignment statement.

• Undefined symbol in expression

Misuse of Options

These errors and messages arise from the misuse of options.

• Both -r and -s flags are set. -s flag turn off
Further relocation requires a symbol table

• Can't find library libx.a

• -L path too long (string)

• -0 file name too large (> 128 char), truncated to (string)

• Too many -L options, 7 allowed

Some options require whitespace before the argument, some do not. Including extra
whitespace, or not including the required whites pace is the most likely cause of the
following messages.

5-72

SOFTWARE GENERATION PROGRAMS
Miscellaneous Errors

• option flag does not specify a number

• option is an invalid flag

• -e flag does not specify a legal symbol name name

• -f flag does not specify a two-byte number

• No directory given with -L

• -0 flag does not specify a valid file name: string

• the -I flag (specifying a default library) is not supported

• -u flag does not specify a legal symbol name: name

Space Restraints

The following error messages may occur if the link editor attempts to allocate more space
than is available. This is more likely to occur on a PDP 11/70 Computer than on other
machines. The user should attempt to decrease the amount of space used by the link
editor. This may be accomplished by making the ifile less complicated, or by using the
"-r" option to create intermediate files.

• Fail to allocate num bytes for slotvec table

It Internal error: aux table overflow

• Internal error: symbol table overflow

• Memory allocation failure on num-byte 'calloc' call

• Memory allocation failure on realloc call

• Run is too large and complex

Miscellaneous Errors

These errors and messages occur because of a misuse of the link editor in general.

• Archive symbol table is empty in archive name, execute 'ar ts name' to restore archive
symbol table

On systems with a random access archive capability, the link editor requires that all
archives have a symbol table. This symbol table may have been removed by strip.

• Can't create intermediate id file name

• Can't open internal file name

These two messages are possible only when the link editor is two processes. This would
indicate that the temp directory (usually /tmp or /usr/tmp) is out of space, or that the
link editor does not have permission to write in it.

• Can't create output file name
The user may not have write permission in the directory where the output file is to be
written.

5-73

SOFTWARE GENERATION PROGRAMS
Syntax Diagram for Input Directives

• Failure to load pass 2 of ld
This can only occur when the link editor is built as two processes (j.e., on the PDP
11170). The most likely cause is that the second process is not accessible to the first
one.

• File name has a section name which is a reserved ld identifier: .tv

• File name has no relocation information

• File name is of unknown type, magic number = num

• Ifile nesting limit exceeded with file name
Hiles may be nested 16 deep.

• Library name, member has no relocation information

• Multiply defined symbol sym, in name has more than one size
A mUltiply defined symbol may not have been defined in the same manner in all files.

• name(sect) not found
An input section specified in a SECTIONS directive was not found in the input file.

• Section sect starts on an odd byte boundary!
This will happen only if the user specifically binds a section at an odd boundary.

• Sections .text .data or .bss not found. Optional header may be useless
The UNIX System a.out header uses values found in the .text, .data, and .bss section
headers.

• Undefined symbol sym first referenced in file name
Unless the -r option is used, the link editor requires that all referenced symbols must be
defined.

• Unexpected EOF
Syntax error in the ifile.

5.3.4 Syntax Diagram for Input Directives

<ifile> -> {<cmd>}

<cmd> -> <memory>

- > < sections>
-> <assignment>
-> <filename>
- > < options>

<memory> -> MEMORY {<memory_spec> ([,1 <memory_spec>}}

< memory_spec> - > < name> [< attributes> 1: < origin _spec> i, 1 < length _spec>

<attributes> -> ({RlwlxlI})

5-74

SOFTWARE GENERATION PROGRAMS
Syntax Diagram for Input Directives

<origin_spec> -> <origin> = <long>

<length_spec> -> <length> = <long>

<origin> -> ORIGIN lolorglorigin

<length> -> LENGTHllllenllength

<sections> -> SECTIONS {{ <sec_or~roup>}}

<sec_or~roup> -> <section>l<group>I<library>

<group> -> GROUP <group_options>: {<sectionJist>}[<mem_spec> 1

<section list> -> <section> {[,l<section>l

<section> -> <name> <sec_options>:{ <statementJist>}[<fill>][<mem_spec> 1

<group_options> -> [<addr>][<align_option>][<block_option> 1

<sec_options> -> [<addr>][<align_option> l[<block_option>][<type_option> 1

<addr> -> <long>

< align_option> -> <align> «long»

<align> -> ALIGN I align

< block_option> -> <block> «long»

<block> -> BLOCKlbiock

< type _option> -> (DSECT) I (NOLOADI (COpy)

<fill> -> = <long>

-> > <name>
-> > <attributes>

<statement> -> <filename> [(<nameJist»][<fill> 1
-> <library>
-> <assignment>

<name list> -> <name> {[,l<name>l

<library> -> -I<name>

5-75

SOFTWARE GENERATION PROGRAMS
Syntax Diagram for Input Directives

<assignment> -> <lside> <assign_op> <expr> <end>

<lside> -> <name> I.

< assign_op > -> =1+=1-=1*=1/=

<end> -> ;1,

<expr> -> <expr> <binary_op> <expr>
-> <term>

< binary _ op > -> *1/1%
-> +1-
-> »1«
-> ==I!=I>I<I<=I>=
-> &
-> I
-> &&
-> II

<term> -> <long>
-> <name>
-> <align> «term»
-> (<expr)
-> <unary_op> <term>

<unary-op> -> !I-

<options> -> -a
-> -e < wht_space > <name>
-> -f<wht_space> <long>
-> -i
-> -l<name>
-> -m
-> -o<wht_space> <filename>
-> -r
-> -s
-> -t
-> -u<wht_space> <name>
-> -x
-> -z
-> -F
-> -L<pathname>
-> -M
-> -N
-> -s

5-76

SOFTWARE GENERATION PROGRAMS
Object File Format

-> -v
-> -VS
-> -x

<name> -> any valid symbol name

<long> -> any valid long integer constant

< wht_space > -> blanks, tabs and new lines

<filename> -> any valid UNIX System filename.
This may include a full or partial pathname

<pathname> -> any valid UNIX System pathname (full or partial)

5.4 OBJECT FILE FORMAT

The output file produced by the m32as assembler and the m321d link editor is in a format
called the Common Object File Format (COFF). Several target machines use this format,
and more than one operating system on some of those machines use it. Hence the word
Common is both descriptive and widely recognized as a unique name. Because systems
other than the WE 32100 Microprocessor use COFF, the format includes some symbols
and fields that appear to be extraneous. These items are extraneous for processor users,
and are only included to maintain commonality.

An object file that contains no errors or unresolved references can be executed on the
target processor.

The object file supports user-defined sections and contains extensive information for
symbolic software testing. An object file consists of a file header, optional header
information, a table of section headers, the data corresponding to the section headers,
relocation information, line numbers, a symbol table, and a string table. Figure 5-6 shows
this overall structure.

The common object file is not only simple enough to be incorporated into existing projects,
but advanced enough to meet the needs of yet unspecified operating systems. Some key
features are:

• Applications may add system-dependent information to the object file without causing
access utilities to become obsolete.

• A wealth of symbolic information is provided for the use of debuggers and other
applications.

• Some modifications in object file construction may be made by the user or source file
application at compile time.

5-77

SOFTWARE GENERATION PROGRAMS
Definitions

5.4.1 Definitions

FILE HEADER
OPTIDNAL INFORMATION

(UNIX SYSTEM a.out HEADER)
• • •

SECTION 1 HEADER
• • •

SECTION n HEADER

RAW DATA FOR SECTION 1

• • •
RAW DATA FOR SECTION n

RELOCATION INFORMATION FOR SECTION 1
• • •

RELOCATION INFORMATION FOR SECTION n

LINE NUMBERS FOR SECTION 1
• • •

LINE NUMBERS FOR SECTION n

SYMBOL TABLE

STRING TABLE

Figure 5-6. Object File Format

The object file specification uses the following terms:

Section

Physical Address

Virtual Address

5-78

A section is the smallest portion of an object file that can be
relocated and can be treated as one distinct entity. The default
case has three sections: .text, .data, and .bss. Additional sections
are added to the default sections for multiple text segments, shared
data segments, or user-specified segments.

This is the 32-bit offset of a section with respect to the beginning of
memory. All relocatable references in a section assume that the
section resides at that address at execution time.

The virtual address is used by only a few systems. In WE 32100
Microprocessor object files, the physical address is equivalent to the
virtual address.

SOFTWARE GENERATION PROGRAMS
Flags

5.4.2 File Header

The file header contains the twenty bytes of information described in Table 5-8. The last
two bytes are flags that may be of use to m321d. The manual page for FILEHDR, found
in 5.6 SGP MANUAL PAGES, gives the exact C language structure for the file header.

The size of optional header information should be used by all referencing programs that
need to seek the beginning of section header table.

Table 5-8. File Header Contents

Bytes Contents Mnemonic Description

0-1 Unsigned Short Cmagic Magic number equal to 0560, also
defined by the mnemonic FBOMAGIC.

2-3 Unsigned Short f nscns Number of section headers (equals
the number of sections).

4-7 Long Int f timdat Time and date stamp containing
the number of elapsed seconds since
00:00:00 GMT, January 1, 1970.

8-11 Long Int Csymptr File pointer containing the starting
address of the symbol table.

12-15 Long Int f nsyms Number of entries in the symbol table.
16-17 Unsigned Short f opthdr Number of bytes in the optional header.
18-19 Unsigned Short f flags Flags (see Table 5-9).

Flags

The last two bytes of the file header are flags that describe the type of the object file. The
WE 32100 Microprocessor version of the COFF has no use for some of these flags, but
keeps them to maintain commonality.

The notation AR16WR in Table 5-9 signifies the architecture of the host machine where
the file was created. The AR stands for architecture, the digits give the number of bits per
word, W signifies left-to-right byte-ordering (most significant bit first), and WR signifies
right-to-left byte-ordering (least significant bit first). The AR32W machines are either
members of the AT&T 3B .Computer family or the "MAXI" version of the UNIX
Operating System that runs on a host IBM Computer.

5-79

SOFfWARE GENERATION PROGRAMS
Standard UNIX System a.out Header

Table 5-9. File Header Flags

Mnemonic Flag Meaning

F RELFLG 00001 Relocation information stripped from file.
F_EXC 00002 File is executable (i.e., no unresolved external

references) .
F LNNO 00004 Line numbers stripped from file.
F LSYMS 00010 Local symbols stripped from file.
F MIN MAL 00020 Not applicable to the WE 32100 Microprocessor.
F SWABD 00100 This file has had its bytes swapped (i.e., the bytes

of symbol table name entries have been reversed.)
F JtR16WR 00200 Created on AR16WR machine (e.g., PDP 11170 Computer).
F AR32WR 00400 Created on AR32WR machine (e.g., VAX 111780 Computer).
F AR32W 01000 Created on AR32W machine (e.g., 3B MAXI Computer).
F PATCH 02000 Not applicable to the WE 32100 Microprocessor.
F_BM32B 020000 File contains WE 32100 Microprocessor code

Optional Header Information. The template for optional information varies among
different systems that use the COFF. Applications place all systems-dependent
information into this record. General utility programs (e.g., the table access library
functions, the m32size utility, the m32strip utility, etc.) can be made to work properly on
any Common object file by seeking past this record using the size of optional header
information in the file header (bytes 16 and 17).

Standard UNIX System a.out Header

By default, files produced by the link editor always have a standard UNIX Operating
System a.out header in the optional header field. It contains the 28 bytes of information
listed in Table 5-10.

Table 5-10. Optional Header Contents

Bytes Name Contents

0-1 magic Magic number
0-3 vstamp Version stamp
4-7 tsize Size of text (bytes)
8-11 dsize Size of initialized data (bytes)

12-15 bsize Size of uninitialized data (bytes)
16-19 entry Entry point
20-23 text_start Base address of text
24-27 data start Base address of data

Possible values for the UNIX System header magic number are 0407, 0410 and 0413.

5-80

SOFTWARE GENERA nON PROGRAMS
Section Header Table

The following C language struct declaration is currently used for standard UNIX
Operating System a.out file header:

typedef struct aouthdr {
short magic;
short vstamp;
long tsize; 1* text size in bytes,padded to FW

bdry*1
long dsize; 1* initialized data" "*1
long bsize; 1* uninitialized data" "*1
long entry; 1* entry pt. *1
long text_start; 1* base of text used for this file* I
long data_start; 1* base of data used for this file* I

AOUTHDR;

5.4.3 Section Header Table

Every object file has a section header table that specifies the layout of data within the file.
Each section within an object file also has its own header.

The section header table consists of one entry for every section in the file. Each entry
contains the information in Table 5-11.

Table 5-11. Section Header Contents

Bytes Name Contents

0-7 S name 8-character null padded section name
8-11 S"'paddr Physical address of section

12-15 S vaddar Virtual address of section
16-19 S size Section size
20-23 S_scnptr File pointer to raw data
24-27 S relptr File pointer to relocation entries
28-31 SJnnoptr File pointer to line number entries
32-33 S nreloc Number of relocation entries
34-35 S nlnno Number of line number entries
36-39 S_flags Flags. Only byte 36 is used; bytes

37-39 are pads.

Section sizes are always padded to a multiple of 4 bytes.

File pointers are byte offsets that can be used to directly and exactly locate the start of
data, relocation, or line number entries for the section. They can be readily used with the
UNIX Operating System function fseekC3S).

5-81

SOFTWARE GENERATION PROGRAMS
Flags

Flags

The flag field indicates section types. The flags are defined in Table 5-12.

Table 5-12. Section Types

Mnemonic Flag Meaning

STYP REG OxOO Regular section
(allocated, relocated, loaded)

STYP DSECT OxOl Dummy section
(not allocated, relocated, not loaded)

STYP _NOLOAD Ox02 Noload section
(allocated, relocated, not loaded)

STYP_GROUP Ox04 Grouped section
(formed from input sections)

STYP_PAD Ox08 Padding section
(not allocated, not relocated, loaded)

STYP COPY OxlO Copy section
(for a decision function used in updating
fields; not allocated, not relocated, loaded,
relocation and line number entries
processed normally)

STYP TEXT Ox20 Section contains executable text.
STYP DATA Ox40 Section contains initialized data.
STYP BSS Ox80 Section contains un initialized data.

The C language data structure that is used to declare section headers can be found on the
manual page for SCNHDR.H(5L) in 5.6 SGP MANUAL PAGES .

. bss Section Header

The one anomaly in the section header table is the entry for uninitialized data in a .bss
section. A .bss section has a size, symbols that refer to it, and symbols that are defined in
it. At the same time a .bss section has no relocation entries, no line number entries, and no
data. Therefore, a .bss section has an entry in the section header table but occupies no
space in the section area of the file. That is, there are no raw data for .bss sections in the
area of the COFF immediately following the section headers. In this case, the number of
relocation and line number entries, as well as all file pointers in a .bss section header, are
zero.

5.4.4 Sections

Figure 5-6 shows that section headers are followed by the appropriate number of bytes of
text or data. The raw data for each section begins on a full word boundary in the file.

5-82

SOFTWARE GENERATION PROGRAMS
Relocation Information

Files produced by the compiler and the assembler always contain three sections, .text,
.data, and .bss. The .text section contains the instruction text (e.g., code), the .data section
contains initialized data variables, and the .bss section contains uninitialized data variables.

The link editor SECTIONS directives allow users to describe how input sections are to be
combined, to direct where to place output sections, and to rename output sections. If no
SECTIONS directives are given, each input section appears in an output section of the
same name. For example, if a number of object files from the compiler are linked, each
containing the three sections .text, .data, and .bss, the output object file will also contain
three sections, .text, .data, and .bss.

5.4.5 Relocation Information

Object files have one relocation entry for each relocatable reference in the text or data.
The relocation information consists of entries with the following lO-byte format:

VIRTUAL ADDRESS 4 BYTES

SYMBOL TABLE INDEX 4 BYTES

RELOCATION TYPE 2 BYTES

The first 4 bytes of the entry is the virtual address of the text or data. The next 4 byte
field, counted from 0, indexes the symbol table entry being referenced. The last 2 bytes
indicate the type of relocation to be applied.

The C language data structure that is used to declare relocation information can be found
on the manual page for RELOC in 5.6 SGP MANUAL PAGES.

As the link editor reads each input section and performs relocation, the relocation entries
are read. Relocation entries direct how references found within the input section are
treated.

Relocation types currently recognized are:

R ABS The reference is absolute and no relocation is needed. The entry is ignored.

R DIR32 The entry is a direct, 32-bit reference to the virtual address of the symbol.

R_DIR32S The entry is a direct, 32-bit reference to the virtual address of the symbol,
with the 32-bit value stored in reverse order in the object file.

The m32cc compiler and m32as assembler automatically generate relocation entries, which
are automatically used by the link editor. The -r link editor option retains relocation
entries in an object file. The -a link editor option is used to remove relocation entries
from an object file.

5-83

SOFTWARE GENERATION PROGRAMS
Line Numbers

5.4.6 Line Numbers

The m32cc compiler generates an entry in the object file for every C language source line
where a breakpoint can be inserted. Users can then reference line numbers when using the
appropriate debugger. All line numbers in a section are grouped by function, as shown
below.

SYMBOL INDEX 0

PHYSICAL ADDRESS LINE NUMBER

PHYSICAL ADDRESS LINE NUMBER

SYMBOL INDEX 0
PHYSICAL ADDRESS LINE NUMBER

PHYSICAL ADDRESS LINE NUMBER

The first entry in a function grouping has line number zero, and has an index into the
symbol table for the entry containing the function name in place of the physical address.
Subsequent entries will have actual line numbers and addresses of the text corresponding to
the line numbers. The line number entries appear in increasing order of address.

The C language data structure that is used to declare line numbers can be found on the
manual page for LINENUM in 5.6 SGP MANUAL PAGES.

5.4.7 Symbol Table

The ordering of symbols in the symbol table determines the scope of the symbols. The
order of symbols in the symbol table is, therefore, very important because of the symbolic
debugging requirements for the SGP. Symbols appear in the sequence shown on Figure
5-7.

The word STATICS on Figure 5-7 refers to symbols defined in the C language storage
class static outside any function. The symbol table consists of at least one fixed-length
entry per symbol, with some symbols followed by an auxiliary entry of the same size. The
entry for each symbol is a structure that holds the value, the type and other information.

Special Symbols

The symbol table contains some special symbols that are created by the compiler,
assembler, link editor, or utilities. These symbols are listed in Table 5-13.

When a structure, union, or enumeration has no tag name (a legitimate C language
syntax) the symbol table must create a name. The name chosen by the symbol table is
.xfake, where x is an integer. If there are 3 unnamed structures, unions, or enumerations
in the source; their tag names will be .Ofake, .1fake, and .2fake.

5-84

Symbol

.fiIe

.text

.data

.bss

.bb

.eb

.bf

.ef

. target

. xfake

. eos

. etext

. edata

. end

SOFTWARE GENERATION PROGRAMS
Special Symbols

FILE NAME 1
FUNCTION 1

LOCAL SYMBOLS FOR FUNCTION 1
FUNCTION 2

LOCAL SYMBOLS FOR FUNCTION 2
• • •

STATICS
• • •

FILE NAME 2
FUNCTION 1

LOCAL SYMBOLS FOR FUNCTION 1
• • •

STATICS
• • •

DEFINED GLOBAL SYMBOLS
UNDEFINED GLOBAL SYMBOLS

Figure 5-7. COFF Symbol Table

Table 5-13. Special Symbols in the Symbol Table

Meaning

File name

Address of .text section
Address of .data section
Address of .bss section

Address of start of inner block
Address of end of inner block

Address of start of function
Address of end of function

Pointer to the function returned structure or union .

Dummy tag name for structure, union, or enumeration .
End of members of structure, union, or enumeration .

Next available address after the end of the .text section .

Next available address after the end of the .data section .

Next available address after the end of the .bss section .

5-85

SOFTWARE GENERATION PROGRAMS
Special Symbols

Six of these special symbols occur in pairs. The .bb and .eb symbols indicate the
boundaries of inner blocks; a .bf and .ef pair brackets each function; and a .xfake and .eos
pair names and defines the limit of structures, unions, and enumerations that were not
named. The .eos symbol also appears after named structures, unions, and enumerations.

Each of the special symbols has different information stored in the symbol table entry as
well as in the auxiliary entry.

Inner Blocks. The C language defines a block as a compound statement that begins and
ends with braces ({ and}). An inner block is a block that occurs within a function
(which is also a block).

For each inner block that has local symbols defined, a special symbol .bb is put in the
symbol table immediately before the first local symbol of that block. Also a special symbol
.eb is put in the symbol table immediately after the last local symbol of that block. The
sequence is:

5-86

.bb
LOCAL SYMBOLS
FOR THAT BLOCK

.eb

SOFTWARE GENERATION PROGRAMS
Special Symbols

Because inner blocks can be nested by several levels, nested inner blocks may have the
following sequence:

.bb FOR BLOCK 1
LOCAL SYMBOLS

FOR BLOCK 1
.bb FOR BLOCK 2
LOCAL SYMBOLS

FOR BLOCK 2
.eb FOR BLOCK 2

.bb FOR BLOCK m
LOCAL SYMBOLS

FORBLOCKm
.bb FOR BLOCK ml
LOCAL SYMBOL
FOR BLOCK ml

.bb FOR BLOCK mn
LOCAL SYMBOLS

FOR BLOCKmn
.eb FOR BLOCK mn

.eb FOR BLOCK ml
.eb FOR BLOCK m

.eb FOR BLOCK 1

5-87

SOFTWARE GENERATION PROGRAMS
Special Symbols

For example: given the following code:

int i;
char c;

long a;

long i;

int x;

/* Begin Block 1 * /

/* Begin Block 2 * /

/* Begin Block 3 */

/* End Block 3 * /
/* End Block 2 * /
/* Begin Block 4 * /

/* End Block 4 * /
/* End Block 1 */

The symbol table would look like:

.bb for Block 1

i
c

.bb for Block 2

a

.bb for Block 3

x

.eb for Block 3

.eb for Block 2

.bb for Block 4

i

.eb for Block 4

.eb for Block 1

5-88

SOFTWARE GENERATION PROGRAMS
Symbol Table Entries

Symbols for Functions. For each function, a special symbol .bf is put between the function
name and the first local symbol of the function in the symbol table. Also a special symbol
.ef is put immediately after the last local symbol of the function in the symbol table. The
sequence is:

FUNCTION NAME
.bf

LOCAL SYMBOLS
.ef

If the return value of the function is a structure or union, the special .target symbol is put
between the function name and the .bf. The sequence becomes:

FUNCTION NAME
.target

.bf
LOCAL SYMBOLS

.ef

The m32cc compiler creates .target to store the function·returned structure or union. The
.target symbol is an automatic variable with pointer type. Its stack offset (value field in
the symbol table entry) is always zero.

Symbol Table Entries

All symbols, regardless of storage class and type, have the same format for their entries in
the symbol table. The symbol table entries contain the 18 bytes of information shown in
Table 5-14. Indices for symbol table entries begin at zero and count upward. Each
auxiliary entry also counts as one symbol.

Table 5-14. Symbol Table Entry Format

Bytes Mnemonic Contents

0-7 n name These 8 bytes contain either the name or a
pointer to the name of the symbol

8-11 n value Value (depends on storage class)
12-13 n scnum Section number
14-15 n type Type specification (basic and derived types)

16 n sci ass Storage class
17 n numaux Number of auxiliary entries

5-89

SOFTWARE GENERATION PROGRAMS
Symbol Table Entries

Symbol Name Field (n_name). The first eight bytes in the symbol table entry are a union
of a character array and two long integers. These eight bytes are described in Table 5-15.
If the symbol name is eight characters or less, the (null-padded) symbol name will be
stored in n_name field. If the symbol name is longer than eight characters, then the entire
symbol name will be stored in the string table. In this case, the eight bytes will contain
two long integers, the first of which will be zero, and the second will be the offset (relative
to the beginning of the string table) of the name in the string table. Since there can be no
symbols with a null name, the zeroes in the first four bytes serve to distinguish a symbol
table entry with an offset from one with a name in the first eight bytes.

Table 5-15. n_name Entry Formats

Bytes Mnemonic Description

0-7 n name Eight character null-padded symbol name.

0-3 n zeroes Zero in this field indicates the symbol name
is in the string table.

4-7 n_offset Offset of the symbol name in the string table.

Some special symbols are created by the compiler and link editor, as discussed in Special
Symbols. The names of special symbols usually start with a dot (.); e.g., .fiIe, .5fake, .bb.

Symbol Value Field and Storage Classes (o_value). The meaning of the value of a symbol
depends on its storage class. Table 5-16 lists storage classes, values, and meanings.

5-90

SOFTWARE GENERATION PROGRAMS
Symbol Table Entries

Table 5-16. Symbol Values

Storage
Class

Storage Class Mnemonic Value Meaning of Value Field

Automatic variable C_AUTO 1 Stack offset (bytes)
External symbol C_EXT 2 Relocatable address
Static C STAT 3 Relocatable address
Register variable C_REG 4 Register number
Label C LABEL 6 Relocatable address

Member of structure CMOS 8 Offset (bytes)
Function argument C_ARG 9 Stack offset
Structure tag C_STRTAG 10 o (always zero)
Member of union C MOU 11 Offset (bytes)
Union tag C UN TAG 12 0
Type definition ' C TPDEF 13 0
Enumeration tag C ENTAG 15 0
Member of enumeration C MOE 16 Enumeration value
Register parameter C_REGPARM 17 Register number
Bit field C FIELD 18 Bit displacement

Beginning and end of block C_BLOCK 100 Relocatable address
Beginning and end of function C-FCN 101 Relocatable address
End of structure C_EOS 102 Size
File name C_FILE 103 (See Note)
Duplicated tag C ALIAS 105 Tag index

Note: If the current symbol is the last symbol that has storage class C_FILE (.file
symbol), its value is the symbol table entry index of the first global symboL Otherwise the
symbol value equals the symbol table entry index of the next .file symbol (j.e., the .file
entries form a one-way linked list in the symbol table).

Relocatable symbols have a value equal to the virtual address of that symboL When the
section is relocated by the link editor, the value of these symbols changes.

The m32cprs symbol table compressor utility creates the C_ALIAS mnemonic. This
utility, which is described in 5.5 UTILITIES AND LIBRARY ROUTINES, removes
duplicated structure, union, and enumeration definitions and puts ALIAS entries in their
places.

There are also some dummy storage classes defined in the header file. They are used only
internally by the compiler and the assembler. These storage classes are listed in Table
5-17.

5-91

SOFTWARE GENERATION PROGRAMS
Symbol Table Entries

Table 5-17. Dummy Storage Classes

Storage Class Mnemonic

Physical end of function C EFCN
External definition C EXTDEF
Undefined label C_ULABEL
Uninitialized static C_USTATIC
Used only by utility programs CLINE

Value

-1
5
7

14
104

Table 5-18 lists special symbols that are restricted to certain storage classes.

Table 5-18. Restricted Special Symbols

Special Symbol Storage Class

.file C FILE

.bb C_BLOCK

.eb C BLOCK

.bf C FCN

.ef C FCN

.target C_AUTO

.xfake C _STRT AG,C _ UNTAG,C _ENTAG

.eos C EOS

.text C STAT

.data C STAT

.bss C STAT

Some storage classes are used only for certain special symbols. Table 5-19 summarizes
these storage classes.

Table 5-19. Restricted Storage Classes

Storage Class Special Symbol

C_BLOCK .bb,.eb
C FCN .bf,.ef
C ESO .eos
C FILE .file

5-92

SOFTWARE GENERATION PROGRAMS
Symbol Table Entries

Section Number Field (n_scnum). Table 5-20 lists the section numbers and their meanings.

Table 5-20. Section Numbers

Section Number Mnemonic Meaning

-2 N_DEBUG Special symbolic debugging symbol
-1 N ARB Absolute symbol

0 N_UNDEF Undefined external symbol
1-077767 N SCNUM Section number where symbol was defined

A special section number (-2) marks symbolic debugging symbols, including
structure/union/enumeration tag names, typedefs, and the name of the file. A section
number of -1 indicates that the symbol has a value, but is not relocatable. Examples of
absolute-valued symbols include automatic and register variables, function arguments, and
.eos symbols. If the SECTIONS directive-capability of the link editor is not used, .text,
.data, and .bss symbols default to section numbers 1,2, and 3, respectively.

A section number of zero indicates a relocatable external symbol that is not defined in the
current file, with one exception: a multiply-defined external symbol (i.e., FORTRAN
Common, or an uninitialized variable defined external to a function in C). In the symbol
table of each file where the symbol is defined, the section number of the symbol will be
zero and the value of the symbol will be a positive number giving the size of the symbol.
When the files are combined, the link editor will combine all the input symbols into one
symbol with the section number of the .bss section (or of the .data section, if one of the
input symbols is initialized). The maximum size of all the input symbols with the same
name will be used to allocate space for the symbol and the value will become the address of
the symbol. This is the only case where a symbol may have a section number of zero and a
non-zero value.

Symbols having certain storage classes are also restricted to certain section numbers.
Table 5-21 lists these storage classes.

5-93

SOFfWARE GENERATION PROGRAMS
Symbol Table Entries

Table 5-21. Restricted Storage Classes

Storage Class Section Number

C_AUTO NABS
C_EXT N_ABS, N_UNDEF, N_SCNUM
C_STAT N_SCNUM
C_REG N_ABS
C LABEL N UNDEF, N SCNUM

C_MOS N_ABS
C_ARG N_ABS
C_STRTAG N_DEBUG
C_MOU N_ABS
C UNTAG N DEBUG

C_TPDEF N_DEBUG
C_ENTAG N_DEBUG
C_MOE N_ABS
C_REGPARM N_ABS
C FIELD NABS

C_BLOCK N_SCNUM
C]CN N_SCNUM
C_EOS N_ABS
C]ILE N_DEBUG
C_ALIAS N_DEBUG

Type Field <n_type). The type field contains information about the basic and derived type
for the symbol. Each symbol has one basic (or fundamental) type but can have more than
one derived type. The format of the type entry is:

Bit:
Field:

~----~----~----~--~--~----~~~

5-94

SOFTWARE GENERATION PROGRAMS
Symbol Table Entries

The type field, bits 0-3, indicates one of the basic types listed in Table 5-22.

Table 5-22. Fundamental Types

Type Mnemonic Value

Type not assigned T_NULL 0
Character T_CHAR 2
Short integer T SHORT 3
Integer TINT 4
Long integer T LONG 5

Floating point T FLOAT 6
Double word T DOUBLE 7
Structure T_STRUCT 8
Union T_UNION 9
Enumeration T_ENUM 10

Member of enumeration T MOE 11
Unsigned character T_UCHAR 12
Unsigned short T USHORT 13
Unsigned integer T_UINT 14
Unsigned long T_ULONG 15

Bits 4-15 are arranged as six 2-bit fields marked d 1 through d6. These d fields represent
levels of the derived types listed in Table 5-23.

Table 5-23. Derived Types

Type Mnemonic Value

No derived type DT NON 0
Pointer DT PTR 1
Function DT FCN 2
Array DT ARY 3

The order of the derived types is from most tightly bound type to least tightly bound type
(generally from right to left in the C language declaration).

The following examples demonstrate the interpretation of the symbol table entry
representing type.

char *JuneO;

Here June is the name of a function that returns a pointer to a character. The
fundamental type of June is 2 (character), the dl field is 2 (function), and the d2 field

5-95

SOFTWARE GENERATION PROGRAMS
Symbol Table Entries

is 1 (pointer). The type word in the symbol table for June would contain the hexadecimal
number Ox62, which is interpreted to mean "function that returns a pointer to a character".

short *tabptrflO]{25]{3J;

Here tabptr is a three-dimensional array of pointers to short integers. The fundamental
type of tabptr is 3 (short integer); the dl, d2, and d3 fields each contains a 3 (array), and
the d4 field is 1 (pointer). Therefore the type entry in the symbol table would contain the
hexadecimal number Ox73f3, indicating a "three-dimensional array of pointers to short
integers".

Table 5-24 shows which type entries are legal for each storage class.

Table 5-24. Storage Class Type Entries

Storage d Entry typ Entry
Class Function? Array? Pointer? Basic Type

C_AUTO No Yes Yes Note 1
C_EXT Yes Yes Yes Note 1
C_STAT Yes Yes Yes Note 1
C REG No No Yes Note 1
C LABEL No No No T NULL

CMOS No Yes Yes Note 1
C_ARG Yes No Yes Note 1
C STRTAG No No No T STRUCT
C_MOU No Yes Yes Note 1
C UNTAG No No No T UNION

C_TPDEF No Yes Yes Note 1
C ENTAG No No No T ENUM
C_MOE No No No T_MOE
C_REGPARM No No Yes Note 1
C FIELD No No No Note 2

C_BLOCK No No No T NULL
C]CN No No No T NULL
C EOS No No No T_NULL
C_FILE No No No T_NULL
C_ALIAS No No No Note 3

Notes:
1. Any except T_MOE.
2. T_ENUM,T_UCHAR,T_USHORT,T_UlNT,T_ULONG.
3. T_STRUCT,T_UNION,T_ENUM.

Conditions for the d entries apply to dl through d6, except that it is impossible to have two
consecutive derived types of function.

5-96

SOFTWARE GENERATION PROGRAMS
Auxiliary Table Entries

Although function arguments can be declared as arrays, they will be changed to pointers
by default. Therefore no function argument can have array as its derived type.

Structure for Symbol Table Entry. The following C language structure declaration is
currently used for symbol table entries:

struct syment
{

union

char _n_name[SYMNMLEN]; 1* symbol name *1
struct
{

1* ==0 if in
string table * 1

1* location in
string table *1

} _n_n;
char * _n_nptr[2]; 1* allows overlaying *1

} -n:
long n_value;
short n_scnum;
unsigned short n_type;
char n_sclass;
char ll_llumaux;

};

#define n name _n._n_name
#define m zeroes _n._n_n._n_zeroes
#define n_offset n. n n. n offset
#define n_nptr =n.=n=nptr[l]
#define SYMNMLEN 8

Auxiliary Table Entries

Currently, there is at most one auxiliary entry per symbol. The auxiliary table entry
contains the same number of bytes as the symbol table entry. However, unlike symbol
table en tires, the format of the auxiliary table entry of a symbol depends on its type and
storage class. These are summarized in Table 5-25.

5-97

SOFTWARE GENERATION PROGRAMS
Auxiliary Table Entries

Table 5-25 Auxiliary Symbol Table Entries

Type Entry
Name Storage Class dl typ

.fiIe C FILE DTNON T NULL

.text,.data,.bss C STAT DT NON T NULL

tagname C_STRTAG, DT NON T NULL
C UNTAG,C EN TAG

.eos C EOS DT NON T NULL

fcname C EXT,C STAT DT FCN Note I

arrname C_AUTO,C_STAT, DT ARY Note I
C-MOS,C-MOU,
C-TPDEF,C EXT

.bb,.eb C BLOCK DT NON T NULL

.bf,.ef C FNC DT_NON T_NULL

name related to C_AUTO,C_STAT, DT_PTR, T_STRUCT
structure, C-MOS,C_MOU, DT_ARR, T_UNION,
union, or C-TPDEF,C _EXT, DTNON T_ENUM
enumeration

Note: Any except T_MOE.

Auxiliary
Entry Format

File name

Section

Tag name

End of structure

Function

Array

Beginning and
end of block

Beginning and
end of function

Name related to
structure
union, or
enumeration

In Table 5-25, the names tagname, fcname, and arrname represent any symbol name;
however, only tagname can include the special symbol .xfake.

Any symbol that satisfies more than one condition in Table 5-25 should have a union
format in its auxiliary entry. Symbols that do not satisfy any of the above conditions
should NOT have any auxiliary entry.

File Names. Each of these auxiliary table entries contains a 14-character file name in
bytes 0-13. The file names are padded with zeros to 14 characters.

Sections. The auxiliary table entries for sections have the format shown in Table 5-26.
The remaining bytes are also filled with zeroes.

Table 5-26. Section Format

Bytes Name Contents

0-3 x scnlen Section length
4-5 x nreloc Number of relocation entries
6-7 x nlinno Number of line numbers
8-17 - o (unused)

5-98

SOFTWARE GENERATION PROGRAMS
Auxiliary Table Entries

Tag Names. The auxiliary table entries for tag names have the format shown in Table
5-27.

Table 5-27. Tag Name Format

Bytes Name Contents

0-5 - o (unused)

6-7 x size Size of structure,
union, or enumeration

8-11 - o (unused)

12-15 x endndx Index of next entry
beyond this structure,
union, or enumeration

16-17 - o (unused)

End of Structures. The auxiliary table entries for the end of structures have the format
shown in Table 5-28.

Table 5-28. End of Structure Format

Bytes Name Contents

0-3 x tagndx Tag index
4-5 - o (unused)
6-7 size Size of structure, union,

or enumeration
8-17 - o (unused)

Functions. The auxiliary table entries for functions have the format shown in Table 5-29.
If a function has been expanded in-line, it has the least significant bit of the xJsize set to
one in the auxiliary entry for its .ef symbol

Table 5-29. Function Format

Bytes Name Contents

0-3 x tagndx Tag index
4-7 x fsize Size of function
8-11 x lnnoptr File pointer to line number

12-15 x_endndx Index of next entry beyond
this function

16-17 - o (unused)

Arrays. The auxiliary table entries for arrays have the format shown in Table 5-30.

5-99

SOFTWARE GENERATION PROGRAMS
Auxiliary Table Entries

Table 5-30. Array Format

Bytes Name Contents

0-3 x tagndx Tag index
4-5 x lnno Line number of declaration
6-7 x size Size of the array
8-9 x dimen[O] First dimension

10-11 x dimen[1l Second dimension
12-13 x dimen[2] Third dimension
14-15 x dimen[3] Fourth dimension
16-17 - o (unused)

End of Blocks and Functions. The auxiliary table entries for the end of blocks and
functions have the format shown in Table 5-31.

Table 5-31. End of Block and Function Format

Bytes Name Contents

0-3 - o (unused)
4-5 x lnno C source line number
6-17 - o (unused)

Beginning of Blocks and Functions. The auxiliary table entries for the beginning of blocks
and functions have the format shown in Table 5-32.

Table 5-32. Beginning of Block and Function Format

Bytes Name Contents

0-3 - Unused
4-5 x lnno C source line number
6-11 - Unused

12-15 x endndx Index of next entry past this block
16-17 - o (unused)

Names Related to Structures, Unions and Enumerations. The auxiliary table entries for
structure, union, and enumeration names have the format shown in Table 5-33.

5-100

SOFTWARE GENERATION PROGRAMS
String Table

Table 5-33. Structure, Union, and
Enumeration Format

Bytes Name Contents

0-3 x tagndx Tag index
4-5 - o (unused)
6-7 x size Size of the structure,

union, or enumeration
8-17 - o (unused)

Names defined by typedef mayor may not have auxiliary table entries. For example:

typedef struct people STUDENT;
struct people {

} ;

char name[20];
long id;

typedef struct people EMPLOYEE;

The symbol EMPLOYEE has an auxiliary table entry in the symbol table but the symbol
STUDENT does not.

The C language data structure that is used to declare auxiliary symbol table entries can be
found on the manual page for SYMS.H(5L) in 5.6 SGP MANUAL PAGES.

5.4.8 String Table

Symbol table names longer than eight characters are stored contiguously in the string table
with each symbol name delimited by a null byte. The first four bytes of the string table
are the size of the string table in bytes; offsets into the string table will, therefore, be equal
to or greater than four.

For example, given a file containing two symbols with names longer than eight characters,
long_name_l and another_one, the string table would look like this:

28

'1 ' '0' 'n' 'g'
, , 'n' 'a' 'm'

'e' , ,
'1 '

, ,
-

'a' 'n' '0' '1'

'h' 'e' 'r' , ,
-

'0' 'n' 'e' , ,

5-101

SOFTWARE GENERATION PROGRAMS
Utilities and Library Routines

5.5 UTILITIES AND LIBRARY ROUTINES

The output file obtained from the m32as assembler and the m321d link editor is an object
file named m32a.out. It has a format called the common object file format. The object
file is executable if no errors or unresolved references are found. The file contains a
header with size information, program sections, and a symbol table. Each section is
composed of a section header, data, and relocation and line number information.
Depending on the assembler or link editor options used to produce the object file, the file
may be devoid of relocation entries, line number entries, the symbol table, or compiler­
generated symbols.

The software generation programs (SGP) provide a variety of utilities to read and
manipulate object files. Among the functions performed by the utilities are listing,
reducing, or deleting various parts of an object file or symbol table. A library of interface
functions that aid in the development of application programs is also provided as part of
the SGP. Many projects will use the routines and data declarations that comprise the
libraries. This library approach allows efficient, controlled development of common code
and enhances portability.

The utilities are:

• m32ar Formats one or more files into a common archive file.

• m32convert Converts a UNIX System V archive file to UNIX System V archive file.

• m32conv Converts WE 32100 Microprocessor object files from one host machine
format to another host machine format.

• m32cprs Compresses object files by removing duplicate structure and union
descriptors from the symbol table.

• m32lis Produces assembly language listings from object files.

• m32dump Dumps selected parts of the named object files.

• m32list Produces a C language source listing with line numbers that specify where
breakpoints can be inserted.

• m3210rder Generates an ordered listing of object files suitable for link editing in one
pass, as done by m321d.

• m32size Reports the number of bytes of text, uninitialized data, and initialized data
(and their sum) included in an object module.

• m32nm Displays symbol table information.

• m32strip Reduces file storage overhead by removing symbolic testing information
from an object file.

Because the SGP runs under the UNIX Operating System, the utilities can use the many
features of shell commands. 110 redirection, pipes and filters, and the asynchronous
capability of the shell are commonly used with the utilities. The defining of procedures
and shell variables, the use of metacharacters, or other features of the shell may also prove
useful.

5-102

SOFTWARE GENERATION PROGRAMS
m32ar

The library of accessing routines provides an alternative method for examining parts of an
object file. Specific applications may need to examine the contents of an object file from
within a C language program. Although these programs must know the detailed structure
of the parts of the object file that they process, the access routines insulate these calling
programs from detailed knowledge of the overall structure of the object file. The accessing
library is described at the end of this section.

5.5.1 Utility Programs

The manual pages for the utilities described here are found in 5.6 SGP MANUAL
PAGES. These manual pages were valid at the time of publication. The current manual
pages can be obtained on-line from the UNIX System by using the m32man command.
The manual page contains an explanation of each utility and lists the temporary files
accessed.

One error message common to many utilities is "can't open file", meaning a file cannot be
read. The message is usually caused by misspelling the file name or being in the wrong
directory. A list of other commonly encountered error messages can be found with each
utility description.

m32ar

The m32ar utility maintains groups of files combined into a single archive file. Its main
use is to create and update library files as used by the link editor. When m32ar creates an
archive, it creates headers in a format that is portable across all machines. The archive
symbol table is used by the link editor to effect multiple passes over libraries of object files
in an efficient manner. An archive symbol table is only created and maintained by m32ar
when there is at least one object file in the archive. The archive symbol table is in a
specially named file which is always the first file in the archive. This file is never
mentioned or accessible to the user. Whenever m32ar is used to create or update the
contents of such an archive, the symbol table is rebuilt. The s option, described in Table
5-34, forces the symbol table to be rebuilt.

To invoke m32ar the command line

m32ar key [posname 1 afile [name 1 \f3m32convert.

is used. Key is an optional -, followed by one character from the set drqtpmx, optionally
concatenated with one or more of the set vuaibcls. Table 5-34 defines each character that
can be used in the key argument. Afile is the archive file name. The names are
constituent files in the archive file. The optional posname argument is described in Table
5-34 for the options that use it.

5-103

SOFTWARE GENERATION PROGRAMS
m32ar

Table 5-34. m32ar Command Line Keys

Key Description

c Suppresses the message that is produced by default when
afile is created.

d Deletes the named files from the archive file.
I Places temporary files in the local current working directory,

instead of the directory specified by the environment
variable TMPDIR or in the default directory Itmp.

m Moves the named files to the end of the archive file. If an
optional positioning character from the set abi is used, then
the posname argument must be present and specifics if files
are moved after (a) or before (b or j) posname.

p Prints the named files in the archive file.
q Appends the named files to the end of the archive file. This

option does not check whether the added members are
already in the archive file.

r Replaces the named files in the archive file. If the optional
character u is used with r, then only those files with dates of
modification later than the archive file are replaced. Ifa
positioning character is present, then the posname argument
must be present and, as in m, specifies where the files are to
be positioned.

s Forces the regeneration of the archive system table even if
m32ar is not invoked with a command which will modify {he
archive contents. This command is useful to restore the
archive symbol table after the m32strip command has been
used on the archive.

t Prints a table of contents of the archive file. If no names
are given, all files in the archive are tabled. If names are
given, only those files are tabled.

v Gives a verbose file-by-file description of the making of a
new archive file from the old archive and the constituent
files. When used with t, gives a long listing of all
information about the files. When used with x, precedes
each file with a name.

x Extracts the named files. If no names are given, all files in
the archive are extracted. In neither case does x alter the
archive file.

5-104

SOFTWARE GENERATION PROGRAMS
m32conv

m32convert

The m32convert utility is used to transform an input file to an output file. An input file
may be in any of the following four forms:

.. A pre UNIX System Release 5.0 V AX Computer object file or link-edited (a.out)
module (only with the -5 option),

.. A pre UNIX System Release 5.0 V AX Computer archive of object files or link edited
(a.out) modules (only with the -5 option),

.. A pre UNIX System Release 5.0 3B20S Computer archive of object files or link edited
(a.out) modules (only with the -5 option), or

.. A UNIX System Release 5.0 V AX Computer or 3B20S Computer archive file (without
the -5 option).

m32convert is used to transfer the input files into the following output files, respectively:

.. an equivalent UNIX System Release 5.0 V AX Computer object file or link edited (a.out)
module (with the -5 option),

.. an equivalent UNIX System Release 5.0 V AX Computer archive of equivalent object
files or link edited (a.out) modules (with the -5 option),

.. an equivalent UNIX System Release 5.0 archive of unaltered 3B20S Computer object
files or link edited (a.out) modules (with the -5 option), and

.. an equivalent V AX Computer or 3B20S Computer UNIX System Release 5.0 portable
archive containing unaltered members (without the -5 option).

All other types of input to the m32convert command will be passed unmodified from the
input file to the output file (along with appropriate warning messages). When
transforming archive files with the -5 option, the m32convert command will inform the
user that the archive symbol table has been deleted. To generate an archive symbol table,
this archive file must be transformed again by m32convert without the -5 option to create
a UNIX System Release 5.0 archive file. Then the archive symbol table may be created by
executing the m32ar command with the ts option. If a UNIX System Release 5.0 archive
with an archive symbol table is being transformed, the archive symbol table will
automatically be converted.

The command line used to invoke the m32convert command is

m32convert [-5 1 infile outfile

where the option -5 is used as described above. The argument infile is the input file and
out file is the output file. The name of the input and output files must be different.

m32conv

The m32conv utility is provided because the SGP runs on several machines. Whenever a
file is moved from one machine to another with different architecture, m32conv should be
used to format the resulting file.

5-105

SOFfW ARE GENERATION PROGRAMS
m32conv

Differences in byte ordering and data formats cause object file formats to differ in their
symbolic information when produced on machines with different architectures. The
m32conv utility converts a processor object file (e.g., m32a.out) from the internal format of
one machine architecture to that with another architecture. For example, use m32conv to
convert an object file produced on a 3B20S Computer to that for a VAX 11/780 Computer,
or the resulting file will not be in a usable format. m32conv does not alter the contents of
the .text or the .data sections; it only modifies the headers, symbol tables, and other
symbolic information.

File conversion is necessary and effective between machines of the following three
architectures:

1. A DEC Computer style byte ordering with 16-bit word length (e.g., PDP 11/70
Computer).

2. A DEC Computer style byte ordering with 32-bit word length (e.g., VAX 11/780
Computer).

3. An IBM Computer style byte ordering with 32-bit word length (e.g., AT&T 3B
Computer).

The output of m32conv is a file having the same name as the input file with a suffix of .v.
Output cannot be redirected from the m32conv command.

m32conv is best used within a procedure for sending object files from one machine to
another. Attempting to convert a file when no conversion is necessary results in an error
message, although the input file is copied to the output file. m32conv may be used on
either the source (sending) or target (receiving) machine.

To use m32conv, enter the command line

m32conv [-I [-sl [-al-ol-pl -t target files

where the -t option with a target name MUST be specified, and files is a list of files to be
converted. Values recognized for the -t option are given in Table 5-35. The b16 target
indicates an 8086 microcomputer.

The -a, -0, and -p options indicate which archive format is to be used for the output file
if the input file is an archive. The -p option produces an archive file in the UNIX System
Release 5.0 random access archive format. This is the default. The -a option produces
the output file in the UNIX System V Release 2.0 portable archive format. The -0 option
will produce archive in the old (pre-Release 5.0) archive format. m32conv will accept
input archive files in all three formats.

Two other options, - and -s, are available. The minus sign by itself specifies that
filenames are taken from the standard input. The -s option causes m32conv to function
exactly as the UNIX System swab command, which exchanges adjacent odd- and even­
numbered bytes. This may be useful depending on the actual transfer method used and the
byte-ordering of the host machine.

5-106

SOFTWARE GENERATION PROGRAMS
m32cprs

Table 5-35. m32conv Target Machines

pdp DEC PDP 11/70 Minicomputer
vax DEC VAX 11/780 Minicomputer
ibm IBM 370 Computer
i80 8080 microcomputer
x86 8086 microcomputer
b16 8086 microcomputer with Basic-16
n3b AT&T 3B Computer
m32 WE 32100 Microprocessor

All diagnostics are self-explanatory. Fatal errors on the command line cause the program
to terminate. Fatal errors within an input file cause the program to continue at the next
input file.

m32cprs

The m32cprs utility reduces the size of a processor object file by removing duplicate
structure and union descriptors from its symbol table. To invoke this utility, enter the SGP
command line

m32cprs options filel file2

where filel is the input file, file2 is the output file, and the available options are -p and
-v. The input file is not changed by this process; the output file, where the compressed
version of the input is placed, must be specified by the user.

The -p option causes the printing of statistical messages including: total number of tags,
total duplicate tags, and total reduction of the size of filel. The -v option causes verbose
error messages to be printed if an error occurs.

Some of the most commonly encountered error messages are:

• usage: m32cprs [-vI [-pI infHe outfile
Caused by failure to specify names for both input and output files.

• Infile has incorrect magic number error condition: no compression
Occurs when infile is not in processor object file format.

• no duplicate tags

• unable to open infile

• unable to create out file

5-107

SOFTWARE GENERATION PROGRAMS
m32dis

m32dis

The m32dis disassembler utility produces an assembly language listing for each object file
specified as input. The listing has a two-column format; assembly language statements are
in the right column and the corresponding hexadecimal object code and machine address of
the code are in the left column.

The disassembler produces a facsimile of the assembly language file that was assembled to
produce a given object file. m32dis provides a convenient method of obtaining a processor
assembly language listing of C language source programs and for assembly language
programs written in assembler code.

To invoke the disassembler, enter the command line

m32dis options files

where options are chosen from Table 5-36 and files represents a list of object files. If no
options are specified, all sections containing text are disassembled.

Three features of the m32dis listing are:

1. The disassembler prints line numbers for each C source line where a breakpoint can be
set in square brackets, (e.g., [5] shows the fifth source line where execution can be
halted for debugging). The line numbers appear in the first column, on the left hand
side of the the instruction corresponding to the line where a breakpoint can be
inserted.

2. The disassembler prints C function names followed by parentheses (e.g., printfC) for
the function print£). The function names appear in the first column, one line above
the instruction that begins the function.

3. The disassembler prints computed addresses within a section when control is to be
transferred to those addresses. They are printed within triangular brackets (e.g.,
<40> is computed address 40). These addresses appear in the operand field of
control transfer instructions following a relative displacement. The computed address
is the sum of the relative displacement and the address of the instruction currently
being disassembled.

Note that items 1 and 2 occur only if the information exists in the object file (e.g., the
code was compiled by m32cc with the -g option and the information was not removed by a
utility or link editor option).

5-108

SOFTWARE GENERATION PROGRAMS
m32dis

Table 5-36. m32dis Command Line Options

Option Argument Description

-d section Disassembles the named section as data, and prints
the offset of the data from the beginning of the
section.

-da section Disassembles the named section as data, and prints
the actual address of the data.

-F function Disassembles single named functions in each object
file that is specified on the command line.

-I string Disassembles the library file specified by string.
For example, one would issue the command line
m32dis -I x -I z to disassemble the libraries Iibx.a
and Iibz.a. The libraries are assumed to be in the
SGP lib directory.

-0 None Prints numbers in octal; without this option, default
is hexadecimal.

-t section Disassembles the named section as text.
-v None Prints the version number of the disassembler being

executed.

Note: Arguments are appended to options with no embedded blanks,
except for the -I option.

The -d option causes the named section of the object file to be disassembled as a data
section. The object code and its address relative to the beginning of the section are listed.
m32dis makes no attempt to determine the corresponding assembly language statement.
Addresses relative to the beginning of the named section are printed on the left side; object
code bytes are printed on the right side, eight bytes per line.

The -da option causes disassembly of the named section of the object file as a data section.
The object code and its absolute addresses are listed. No attempt is made to determine the
corresponding assembly language statement.

If the -F option is used, only those named functions from each file will be disassembled.

The -t option causes the named section of the object file to be disassembled as a text
section. The listing consists of the object code, its machine address, and the assembly
language statements that produced the code. For example, if the command line is

m32dis -t section files

then the bytes of that section of object code are assumed to be opcode and operand
encodings. The opcodes are looked up in the opcode disassembly table, and the operands
are disassembled and printed.

5-109

SOFTWARE GENERATION PROGRAMS
m32dis

The following is a list of error messages commonly encountered while executing the
disassembler:

• m32dis: <filename>: CANNOT OPEN:
Means the input file cannot be read.

• m32dis: <filename>: BAD MAGIC NUMBER
The input file is not a processor object file.

• m32dis: <filename> CANT FIND SECTION <section name>
An unknown section has been specified by the -t or -d option.

• m32dis: <filename>: CANT FIND SECTION HEADER <section name>
The input file is not a processor object file or the file was not properly converted
using m32conv.

• m32dis: BAD FLAG <flag>
An unrecognized option has been specified.

• m32dis: PREMATURE EOF

• m32dis: QUIRK--DATA SECfION HAS LINE NUMBER ENTRIES

If the disassembler cannot find an opcode in the disassembler opcode lookup table, the
message

ERROR UNKNOWN OPCODE

is printed on the same line as the bad object code and the disassembler then attempts to
resynchronize itself. There are three cases determining how the disassembler
resynchronizes.

1. If the file has been stripped of line number information as well as the symbol table,
the following message is printed:

NO LINE NUMBER ENTRIES EXIST
NO SYMBOL TABLE EXISTS
FOLLOWING DISASSEMBLY MAYBE OUT OF SYNC

The disassembler will then continue with the two bytes immediately following the bad
opcode.

2. If the file has been stripped of line number entries but has a symbol table, the
following message is printed:

5-110

NO LINE NUMBER INFORMATION EXISTS
DUMP TO NEXT FUNCTION OR SECTION END
IN ATTEMPT TO RESYNCHRONIZE

SOFTWARE GENERATION PROGRAMS
m32dump

The disassembler then dumps bytes of object code until the next function or the
section end (whichever comes first) is reached. At this point, the disassembler prints
out:

DISASSEMBLER RESYNCHRONIZED

3. The file has line number entries. The disassembler then dumps bytes of object code
until it reaches the next line where a breakpoint can be inserted. At that point the
disassembler prints:

DISASSEMBLER RESYNCHRONIZED

m32dump

The m32dump utility allows examination of an object file by listing the contents of the file
on standard output. The dump utility is normally used to look at different parts of an
object file, with the parts being selected by options. m32dump attempts to format the
information in a meaningful way by printing certain information in ASCII, hexadecimal,
octal, or decimal as appropriate. The input file is unchanged after execution of m32dump,
and no new files are created. m32dump accepts as input both object files and archive
libraries of object files.

The options for m32dump are listed in Table 5-37. The -a, -c, -f, -g, -h, -I, -0, -p,
-r, -s, -t, -u, and -z options specify which parts of an object file are to be dumped.
These are the basic options, and can be used independently; others are modifying options.
The options -d, +d, -n, -t (used with an argument), and -z (used with a numerical
argument) are used in combination with other options to limit the range and type of
information that is to be printed. The -v option is used to modify all but the -0 and -s
options. The -v option causes m32dump to interpret the information and print symbols
instead of numbers; e.g., static instead of Ox03. The -p and -0 options control the
printing of header information.

Blanks separating an option and its modifier are optional. The comma separating the
name from the number modifying the -z option may be replaced with a blank.

A simple example of m32dump is the command line

m32dump -t m32a.out

which would display the symbol table from the file m32a.out. The command line

m32dump -tv m32a.out

displays the symbol table from the file m32a.out in symbolic form. The command line

m32dump -f -h -r -t 3 +t 10 test.o > testdump

lists the file and section headers, the relocation information, and the symbol table entries
three through ten for the object file tesLo; the command also places the output in the file
testdump.

5-111

SOFTWARE GENERATION PROGRAMS
m32dump

Table 5·37. m32dump Command Line Options

Option Argument Description

-a None Dump the archive header of each member of each input
archive file.

-c None Dump the string table.
-d number Dump the section number given or dump the range

of sections beginning with the given number and ending
either at the last section or at the number specified
by +d.

+d number Dump only those sections having section numbers less
than number. Begin either with the first section or
with the section specified by the -d option.

-f None Dump each file header.
-g None Dump the global symbols in the symbol table of a

UNIX System release 6.0 archive file.
-h None Dump all section headers.
-I None Dump line number information.
-n name Dump only the information pertaining to the named entity.

This option is used with -h, -s, -r, -I, and -to
-0 None Dump each optional header.
-p None Suppress printing of the headers.
-r None Dump relocation information.
-s None Dump section contents.
-t None Dump symbol table entries.
-t index Dump only the indexed symbol table entry. -t used

with the +t option specifies a range of symbol table
entries.

+t index Dump symbol table entries in the range ending with
the indexed entry. The range begins at the first symbol
table entry or at the entry specified by the -t
option.

-u None Underline the name of the file emphasis.
-v None Print symbolic, rather than numeric, information.
-z name Dump line number entries for the named function.
-z name, number Dump line number entry or range of line numbers

starting at number for the named function.
+z number Dump line numbers starting at either the function

name or number specified by -z up to number
specified by +z.

5-112

SOFTWARE GENERATION PROGRAMS
m321ist

The more common error messages produced by m32dump are:

o usage: m32dump !flagsl file .•.
Occurs when the object file to be dumped is not named.

• m32object: bad magic file. out
Occurs when the file file.out is not a WE 32100 Microprocessor object file.

• m32object: cannot open file. out
Means file. out cannot be read.

o m32dump: unknown option OPTION.

m321ist

The m321ist utility lists C source files with line number information attached. m32list uses
the object file corresponding to the input C language source file to determine the lines
where breakpoints can be set. Generally breakpoints can be set at each executable
statement that begins a new line of source code.

To invoke the processor list utility, use the command

m32list [-VII-bl source {source ...][objectJ

where the square brackets denote optional entries, source is the source file name, and
object is the object file name. If several C source files were used to create the object file,
then a list of source files should be input to m321ist. The last name in the list of files is
considered to be the name of the object file. The default object file, m32a.out, is used
when no object file appears on the command line. The input object file MUST have
symbolic debugging symbols for m32list to work.

Line numbers are printed for each compiler-generated line where a breakpoint can be
inserted. Line numbering begins anew for each C language function. Line number 1
always indicates the line containing the left curly brace (0 that begins a function body.
Line numbers are also printed for inner block redeclarations of local variables so that those
variables can be distinguished by the symbolic debugger.

The -b option suppresses the printing of headings.

The -V option prints the version of m32list being executed.

Object files that have no line numbers cause an error message to be printed. Because
m321ist does not use the C preprocessor, it may not recognize function definitions whose
syntax has been distorted by the use of C preprocessor macro substitutions.

Some errors commonly encountered when using m32list are:

• usage: m32list sourcefile [sourcefile ... llobject filel
Caused when no object file or no source file is specified.

• m32list: name: cannot open
Caused when an input file name cannot be read.

5-113

SOFTWARE GENERATION PROGRAMS
m3210rder

• m32list: unknown option option

m32lorder

The m3210rder library orders object file libraries for the link editor, m321d. If the archive
members are arranged by m3210rder so that every symbol and function is defined after it is
referenced, m321d will make fewer passes over the library and will therefore be more
efficient. The SGP command line for library ordering works the same way as its UNIX
System counterpart. To invoke the library ordering utility, use the command line

m3210rder files

where files indicates the input of one or more object or library archive files. The
m3210rder output is a list of pairs of object file names, where the first file of the pair
contains references to external identifiers defined in the second. Therefore, the second
member of the pair must appear after the first to be properly loaded.

The names of input object files must end with .0, even when contained in library archives.
Files with names not adhering to this rule have their global symbols and references
attributed to some other file, and nonsense results.

The m3210rder output may be processed by the UNIX System tsort command to find an
ordering of a library suitable for one-pass access by the m32ld link editor. The following
example shows the use of tsort, along with m32ar, to build a new library from all existing
files with names ending in .0. The archive library is named /ibx.a both before and after
the operation:

m32ar cr Iibx.a 'm3210rder *.0 I tsort'

m32nm

The m32nm name list utility displays the symbol table for each processor object file that is
given as input. The input may be a relocatable or an absolute processor object file; or it
may be an archive library of relocatable or absolute object files.

For each symbol in the table, the following information is printed:

Name

Value

Class

Type

Size

5-114

the name of the symbol.

the symbol value expressed as an offset or an address depending on storage
class.

the symbol storage class.

the symbol type and derived type. If the symbol is an instance of a structure
or of a union, then the structure or union tag is given following the type (e.g.,
struct-person where person is the structure tag). If the symbol is an array,
then the array dimensions are given following the type (e.g., charfn][mJ).

the symbol size in bytes, if applicable. Special symbols have undefined size.

SOFTWARE GENRATION PROGRAMS
m32nm

Line the source line number where it is defined, if applicable.

Section for storage classes static and external, the object file section containing the
symbol.

m32nm does not change the input file and produces no new file. The syntax to invoke the
name list utility is

m32nm options filenames

where options are chosen from Table 5-38 and filenames are the names of the input file(s)
and/ or archive(s).

Table 5-38. m32nm Command Line Options

Option Description

-e Prints only static and external symbols.
-(Produces full output. Redundant symbols Ctext,

.data, and .bss) normally suppressed, are printed.
-n Sorts the external symbols by name before printing them.
-0 Prints the value and size for each symbol in octal instead

of the normal decimal.
-T Truncates very long names.
-u Prints only the undefined symbols.
-v Sorts external symbols by value before printing them.
-V Prints the version name of m32nm that is executing.
-x Prints the value and size in hexadecimal.

The options may be specified in any order, either singly or in combination, and may appear
anywhere on the command line. Therefore, both m32nm name -e -v and m32nm -ve
name print the static and external symbols in name, with the external symbols sorted by
value. If neither the -n nor the -v option is specified, the external symbols are printed in
the order in which they are encountered.

Some common error messages that m32nm produces are:

• usage: m32nm: file: bad magic
Input file is not a WE 32100 Microprocessor object file.

G m32nm: name: cannot open
Input file cannot be read.

• m32nm: name: bad magic
Input file is not a processor object file.

o m32nm: name: no symbols
Symbols were stripped from the input file before it was input to m32nm.

• m32nm: unknown option option

5-115

SOFTWARE GENERATION PROGRAMS
m32size

m32size

m32size prints the number of bytes required for each section (e.g., .text,.data, and .bss) of
the input processor object file and the total number of bytes for all three sections. Such
information may be needed for locating sections in memory.

The file input to m32size remains unchanged. The output consists of the name of each
section, followed by its size in bytes, its physical address, and its virtual address. The form
of the command line for m32size is:

m32size (-oll-dll-VI filename[s]

By default, numbers are printed in hexadecimal. The -d option specifies decimal numbers;
the -0 option specifies octal. Version information is printed when the -V option is
specified.

Commonly encountered diagnostics are:

• m32size: filename: cannot open
Occurs when filename cannot be read.

• m32size: filename: bad magic
Occurs when filename is not a WE 32100 Microprocessor object file.

m32strip

The m32strip strip utility removes the symbol table and line number information from
processor object files and archive libraries, thus saving space. The effect of m32strip is the
same as the -s option of m32ld. After a file has been stripped, no symbolic debugging
access is available for that file. This command should be run only on production versions
of object files that have been debugged and tested.

The command line used to strip symbol table and line numbers is

m32strip (-III-xll-rll-VI name ...

where name is the name of a processor object file or archive library. Any number of
names may be specified. If name is an archive, m32strip removes the local symbols from
each object module in the archive. By deleting these symbols, the size of the archive is
decreased and link-editing performance improves.

The amount of information stripped from the symbol table can be controlled by using
either the -lor the -x options. With the -I option, only line number information is
stripped. Symbol table information remains unchanged. With the -x option, no static or
external symbol information gets stripped. The -V option prints version information.

If there are any relocation entries in the object file and symbol table information is to be
stripped, m32strip terminates without stripping name and prints the error message:

m32strip: name: relocation entries present; cannot strip

5-116

SOFTW ARE GENERA nON PROGRAMS
Use of the Accessing Library

The -r option allows the user to override this warning and force m32strip to strip an object
module even if the module contains relocation information. When the -r option is used,
m32strip will strip only local symbols and line number information. It will retain the
global and static symbols and relocation information needed for link editing.

Other commonly encountered error messages are:

• m32strip: name: cannot open
Occurs when name cannot be read.

• m32strip: name: bad magic
Occurs when name is not a WE 32100 Microprocessor object file.

o usage: m32strip [-lII-xll-rl file ...
Occurs when no input file was specified.

5.5.2 Accessing Library

A library of object file access routines is available to aid in the development of application
programs. Specific applications may need to examine the contents of an object file from
within a C language program. Although these programs must know the detailed structure
of the parts of the object file that they process, the access routines insulate these calling
programs from detailed knowledge of the overall structure of the object file.

The interface between the calling program and the object file access routines is based on
the defined type LDFILE, defined as struct ldfile, and declared in the header file Idfcn.h.
The primary purpose of this structure is to provide uniform access to both simple object
files and to object files that are members of an archive library.

All library functions except ldopen. ldaopen. ldtbindex, ldgetname, sgetl, and sputl return
either the constant SUCCESS, defined as 1, or FAILURE, defined as O. ldopen and
ldaopen both return pointers to a LDFILE structure, while ldtbindex returns an index to a
symbol table entry. ldgetname returns a character pointer, sgetl returns a long integer,
and sputl does not return a value.

Use of the Accessing Library

To use the object file access functions, a C language program must include at least the
files <stdio.h>, "INCDIR/filehdr.h", and "INCDIRndjcn.h", as described on the manual
pages for each function. If the path names present a problem, consult the manual page for
INTRO. Any program that uses the object file access routines must also be loaded with
the access routine library, Hbld.a. This is done by adding -lId on the final link edit line
when compiling a program.

The functions comprising the accessing library can be accessed from assembly language
code by simulating the C calling sequence. This is best accomplished by using the
interface macros described under Macro Processing Facilities, found in 5.2.1 Assembler.

I\n example, the assembly language function getindex, is defined here. This function calls
.he Idtbindex library routine and places the result (a symbol table index) in rOo

5-117

SOFTWARE GENERATION PROGRAMS
Library Functions and Macros

C_PROLOGUE(getindex)
C _ CALLOdtbindex,_ISTARG)
movw %rO,%_RESULT

C RETURN

Note that the movw statement is unnecessary as long as _RESULT is defined as register
zero (this is currently true). Nevertheless, it is good practice to insulate code from
potential changes through this type of statement.

Library Functions and Macros

The object file access functions may be divided into four categories:

1. Functions that open or close an object file

2. Functions that read header or symbol table information

3. Functions that seek to the start of the section, relocation, or line number information
for a particular section

4. A function to return the index of a particular symbol table entry, ldtbindex.

Additional access to an object file is provided through a set of macros contained in the
library. The operation of these macros parallels the standard input/output file reading and
manipulating functions.

Functions That Open or Close Object Files. The functions ldopen and ldaopen open object
files and archives of object files. These two functions, along with their counterparts for
closing functions (Idclose and ldaclose), are designed to provide uniform access to both
simple object files and object files that are members of archive files. Thus an archive of
processor object files can be processed as if it were a series of simple processor object files.

The function ldopen allocates and initializes the LDFILE structure and returns a pointer to
the LDFILE structure to the calling program. The fields of the LDFILE structure may be
accessed individually through macros defined in the header file ldfcn.h, and contain the
following information:

TYPEOdptr) the file magic number, used to distinguish between archive members and
simple object files.

IOPTROdptr) the file pointer returned by the UNIX System function fopen and used
by the standard input/output functions.

OFFSETOdptr) the file address of the beginning of the object file; the offset is nonzero if
the object file is a member of an archive file.

HEADEROdptr) the file header structure of an object file.

In addition to the #include files, the functions that open or close files must be declared
within the user program. For example,

LDFILE *ldopen(), *ldaopen();

5-118

SOFTWARE GENERATION PROGRAMS
Library Functions and Macros

ldopen and ldaopen both take two arguments, filename, a pointer to a character string, and
ldptr, a pointer to an LDFILE structure. If ldptr has the value NULL, ldopen opens the
file filename, allocates and initializes the LDFILE structure, and returns a pointer (to the
structure) to the calling program. If ldptr is valid and if TYPEUdptr) is the archive
magic number, ldopen reinitializes the LDFILE structure for the next member of the
archive file, filename.

ldopen and ldc/ose are designed to work together. ldc/ose returns FAILURE only when
TYPEUdptr) is the archive magic number and there is another file in the archive to be
processed. Only then should ldopen be called with the current value of ldptr. In all other
cases, (particularly when a new file, filename, is opened), ldopen should be called with a
NULL ldptr argument.

The following is a prototype for the use of ldopen and ldc/ose:

/* for each filename to be processed */

ldptr = NULL;
do
(

if «(Jdptr = ldopen(filename, ldptr» != NULL)
(

J

/*check magic number * /
/*process the file * /

J while (Jdclose(ldptr) == FAILURE);

If the value of oldptr is not NULL, ldaopen opens filename anew and allocates and
initializes a new LDFILE structure, copying the TYPE, OFFSET, and HEADER fields
from oldptr. ldaopen returns a pointer to the new LDFILE structure. This new pointer is
independent of the old pointer, oldptr. The two pointers may be used concurrently to read
separate parts of the object file. For example, one pointer may be used to step sequentially
through the relocation information, while the other is used to read indexed symbol table
entries.

Both ldopen and ldaopen open filename for reading. Both functions return NULL if
filename cannot be opened, or if memory for the LDFILE structure cannot be allocated.
Successfully opening a file does not insure that the given file is a processor object file or an
archived object file.

If TYPE([dptr) does not represent an archive file, ldc/ose closes the file and frees the
memory allocated to the LDFILE structure associated with ldptr. If TYPE([dptr) is the
magic number of an archive file, and if there are any more files in the archive, ldc/ose
reinitializes OFFSET([dptr) to the file address of the next archive member and returns
FAILURE. The LDFILE structure is prepared for a subsequent ldopen. In all other cases,
ldclose returns SUCCESS.

5-119

SOFTWARE GENERATION PROGRAMS
Library Functions and Macros

Idaclose closes the file and frees the memory allocated to the LDFILE structure associated
with ldptr regardless of the value of TYPEOdptr). Idaclose always returns SUCCESS.
The function is often used in conjunction with Idaopen.

Functions That Read. Six functions read header or symbol table information. Five return
either SUCCESS or FAILURE, and all must be loaded with the object file access library.
Manual pages for each function are in 5.5 UTILITIES AND LIBRARY ROUTINES.
These functions are:

ldahread

ldfhread

Idshread
Idnshread

ldtbread

ldgetname

reads the archive header of a member of an archive file;

reads the file header of a processor object file;

read an indexed or named section header of a processor object file, respectively;

reads a symbol table entry of a processor object file;

retrieves a symbol name from a symbol table entry or from the string table.

Functions That Seek. Eight functions position an object file at (j.e., seek to) the start of
the section, or the relocation or line number information for a particular section. These
functions point to, and thus identify, the parts of object files. All eight return either
SUCCESS or FAILURE, and must be loaded with the object file access library, as
previously described. Some unusual FAILUREs can occur when using these functions;
consult the manual pages for details. The seeking functions are:

ldohseek

ldsseek
Idnsseek

ldrseek
Idrnseek

Idlseek
ldlnseek

Idtbseek

points to the optional file header of an object file;

point to an indexed or named section of an object file, respectively;

point to the indexed or named relocation entries of a section of an object
file;

point to the indexed or named line number entries of a section of an object
file;

points to the symbol table of an object file.

Function That Returns the Index of a Symbol Table Entry. The function Idtbindex returns
the index of a symbol table entry. This index may be used in subsequent calls to Idtbread.
However, because Idtbindex returns the index of the symbol table entry that begins at the
current position of the object file, calling ldtbindex after a particular symbol table entry
has been read causes the index of the next entry to be returned.

The function Idtbindex fails if there are no symbols in the object file or if the object file is
not positioned at the beginning of a symbol table entry. Note that the first symbol in the
symbol table has an index of zero. Consult the manual page for additional usage details.

5-120

SOFTWARE GENERATION PROGRAMS
Use of the General-Purpose Library

Macros. A set of macros defined in ldfcn.h provides additional access to object files. The
macros parallel the standard input/output file reading and manipulating functions,
translating a reference in the LDFILE structure into a reference to its file descriptor field.
The following macros are provided:

GETC get a character from a stream (same as C language's getchar);

FGETC a function to retrieve a character from a stream;

GETW get a word from a stream;

UNGETC push a character back onto the input stream;

FGETS get a string from a stream;

FREAD buffered binary input/output;

FSEEK set the position of the next input or output operation on a stream;

FfELL obtain an offset for FSEEK;

REWIND reposition a stream;

FEOF tell when end of file is read on an input stream;

FERROR tell when an error has occurred in reading or writing a stream;

FILENO return the file descriptor associated with a stream;

SETBUF assign buffering to a stream.

STROFFSET calculates the address of the string table in an object file.

These macros and functions are described on the manual page LDFCN and are essentially
the same as the standard UNIX System input/output library functions.

Note: The macro FSEEK translates into a call to the standard UNIX System input/output
function, fseek(3S). The macro FSEEK should not be used to seek to the end of an
archive file, because the end of an archive file may not be the same as the end of one of its
object file members.

5.5.3 General-Purpose Library

A general-purpose library is available with the SGP to provide the functions of I/O
formatting and conversion, string operations, memory operations, searching, random
number generation, absolute value calculation, encryption, and byte order conversion.

Use of the General-Purpose Library

To use routines from the general-purpose library, a C language program must include the
header files described in the manual pages for the routines used. For instance, the memory
access routines require the header <memory.h>. Any program that uses the general­
purpose routines must be loaded with the general-purpose library, libcm32.a. This is done
when compling the program by adding -lcm32 on the final link edit line.

5-121

SOFTWARE GENERATION PROGRAMS
Routines in the General-Purpose Library

The general-purpose routines can be accessed from assembly language code by simulating
the C calling sequence. This is best accomplished by using the interface macros described
in Macro Processing Facilities (found in 5.2.1 Assembler), and as illustrated in
5.5.2 Accessing Library.

Routines in the General-Purpose Library

The following routines comprise the general-purpose library:

Routine

a641
abs
atoi
atol
bsearch
crypt
ctype
13tol
164a
lfind
Isearch
itol13
memccpy
memchr
memcmp
memcpy
memset
printf
rand
scanf
sprintf
srand
sscanf
strcat
strchr
strcmp
strcpy
strcspn
strlen
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strtok
strtol
swab

5-122

Summary

convert base-64 ASCII strings to long integers
return integer absolute value
convert string to integer
convert string to long integer
binary search a sorted table
generate DES encryption
table of character types
convert 3-byte integers to long integers
convert long integers to base-64 ASCII strings
linear search and update routine
line search routine
convert long integers to 3-byte integers
memory copy till character
return pointer to first occurrence of character
compares first n characters of arguments
copies n characters from memory
sets first n characters to c
print formatted output
simple random-number generator
reads formatted input
generates formatted strings
initial random-number generator
parses formatted strings
appends string
returns pointer to first occurrence of character c
compares two strings lexigraphically
copies string
returns length of initial string segment not from string2
returns number of characters in string
appends at most n characters
compares at most n characters
copies at most n characters
returns pointer to first occurrence of character from string2
returns pointer to last occurrence of character c
returns length of initial string segment from string2
returns pointer to next token
convert string to long integer
swap bytes

toascii
tolower
to upper

zero out non-ASCII bits
translate to lower case
translate to upper case

SOFTWARE GENERATION PROGRAMS
SGP Manual Pages

Routines Required When Using printf and scanf

There are two routines which reference other functions that are not in the general purpose
library: print! calls putchar, and scan! calls getchar.

If the WE 321EB Microprocessor Evaluation Board is the target on which the user's
programs will be run, then the putchar and getchar routines are provided in the WE 321SE
Evaluation Software Programs. If the user's target is the WE 321AP Microprocessor
Analysis Pod, putchar and getchar are in the WE 321SD Development Software Programs.

Otherwise, to use printf, the user must supply putchar and to use scanf, the user must
supply getchar. putchar accepts a characer and returns an int which is EOF (-1) on
error. getchar returns an int that is EOF (-1) on end-of-file or error.

sprint! and sscan! do not require any additional routines.

5.6 SGP MANUAL PAGES

The manual pages for the command, subroutines and file formats that comprise the SGP
are contained in this section. They were current at the time of publication and are similar
to those obtained with the man command. Use the man command to obtain the manual
pages that apply to your version of the SGP. Table 5-39 lists the manual pages that are in
this section.

5-123

SOFTWARE GENERATION PROGRAMS
SGP Manual Pages

Table 5-39. SGP Manual Pages

Commands Subroutines File Formats

M32AR A64L INTRO
M32AS ABS FILEHDR
M32CC BSEARCH LDFCN
M32CONV CONY LINENUM.H
M32CONVERT CRYPT M32A.OUT
M32CPRS CYTYPE PATHS
M32DIS L3TOL RELOC
M32DUMP LDAHREAD SCNHDR
M32LD LDCLOSE SYMS
M32LIST LDFHREAD
M32LORDER LDGETNAME
M32MAN LDLREAD
M32NM LSEARCH
M32SIZE LDLSEEK
M32STRIP LDOHSEEK

LDOPEN
LDRSEEK
LDSHREAD
LDSSEEK
LDTBINDEX
LDTBREAD
LDTBSEEK
MEMORY
PRINTF
RAND
SCANF
SPUTL
STRING
STROTL
SWAB

Synopsis entries for the command manual pages list the command line. For the
subroutines (libraries) the synopsis lists the information of the library file. The file
formats synopsis lists the file(s) for the file format.

5-124

M32AR (Command) M32AR

NAME
m32ar - archive and library maintainer for portable archives

SYNOPSIS
m32ar key [posname] afile [name] ...

DESCRIPTION
The m32ar command maintains groups of files combined into a single archive file. Its
main use is to create and update library files as used by the link editor. It can be
used, though, for any similar purpose. The magic string and the file headers used by
m32ar consist of printable ASCII characters. If an archive is composed of printable
files, the entire archive is printable.

When m32ar creates an archive, it creates headers in a format that is portable across
all machines. The portable archive format and structure is described in detail in
m32ar. The archive symbol table is used by the link editor (m32Id) to effect multiple
passes over libraries of object files in an efficient manner. An archive symbol table is
only created and maintained by m32ar when there is at least one object file in the
archive. The archive symbol table is in a specially-named file which is always the first
file in the archive. This file is never mentioned or accessible to the user. Whenever
the m32ar command is used to create or update the contents of such an archive, the
symbol table is rebuilt. The s option described below will force the symbol table to be
rebuilt.

Key is an optional -m, followed by one character from the set drqtpmx, optionally
concatenated with one or more of vuaibc/s. Afile is the archive file. The names are
constituent files in the archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is used
with r, then only those files with dates of modification later than the archive files
are replaced. If an optional positioning character from the set abi is used, then
the posname argument must be present and specifies that new files are to be
placed after (a) or before (b or i) posname. Otherwise new files are placed at
the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether the
added members are already in the archive. Useful only to avoid quadratic
behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files in
the archive are tabled. If names are given, only those files are tabled.

5-125

M32AR (Command) M32AR

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is
present, then the posname argument must be present and, as in r, specifies
where the files are to be moved.

x Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

v Give a verbose file-by-file description of the making of a new archive file from
the old archive and the constituent files. When used with t, give a long listing of
all information about the files. When used with x, precede each file with a
name.

c Suppress the message that is produced by default when file is created.

Place temporary files in the local current working directory, rather than in the
directory specified by the environment variable IMPDIR or in the default
directory \tmp.

s Force the regeneration of the archive symbol table even if m32ar is not invoked
with a command which will modify the archive contents. This command is
useful to restore the archive symbol table after the m32strip command has been
used on the archive.

FILES
\tmp\ar* temporaries

SEE ALSO
m32convert, m321d, m32lorder, m32strip, m32a.out

NOTES
This archive format is new to this release. The m32convert command can be used to
change an older archive file into an archive file that is recognized by this m32ar
command.

BUGS

5-126

If the same file is mentioned twice in an argument list, it may be put in the archive
twice.

M32AS (Command) M32AS

NAME
m32as - WE 32100 Microprocessor Assembler

SYNOPSIS
m32as [-0 objfilel [-nl [-ml [-Rl [-vl file-name

DESCRIPTION
The m32as command assembles the named file.

The following flags are recognized by the assembler and may be specified in any
order:

-0 objfile
Output of assembly is put in objfile. By default, the output file name is formed
by removing the .s suffix, if there is one, from the input file name and appending
a .0 suffix.

-n Turns off long/short address optimization. By default, address optimization takes
place.

-m Invokes the m4 macro processor. By default, does not invoke m4 on the input to
the assembler.

-R Remove (unlink) the input file after assembly is completed.

-V Causes the version number of the assembler being run to be written on standard
error.

FILES
/usr/tmp/m32as[1-6]XXXXXX temporary files

SEE ALSO
m32Id,m32nm,m32strip, m32a.out.

DIAGNOSTICS
If the input file cannot be read, the assembly terminates with the message "Unable to
open input file". If assembly errors are detected in the input file the following
information is written to standard error: the input file name, line number where the
error occurred in the assembly code, a descriptive message of the problem, and, if the
input file was produced by the C compiler (see m32cc), and the line number in the C
program that generated the erroneous code.

5-127

M32AS (Command) M32AS

CAVEATS
If the input file does not contain a .fiIe assembler, then the file name given by the
assembler when an error occurs is one of the temporary files.

If the m4 macro processor (see 5.2.1 Assembler) is used, then m4 keywords cannot be
used as symbols (variables, functions, labels) in the input assembly file, since m4
cannot determine which are assembler symbols and which are real m4 macros.

BUGS

5-128

The .align assembler directive is not guaranteed to work in the .text section when
optimization is performed. Arithmetic expressions may have only one forward­
referenced symbol per expression.

M32CC (Command) M32CC

NAME
m32cc - WE 32100 Microprocessor C Compiler

SYNOPSIS
m32cc [-c1 [-pI [-gl [-yl [-01 [-SI [-pI [-EI [-VI [-Dsymboll •• .I-Usymboll
.. ,[Idirl files

DESCRIPTION
The m32cc command is the interface to the C compiler, assembler, and link editor.
Arguments whose names end with .c are taken to be C source programs and those
with .s are taken as assembly programs; they are compiled/assembled, and link edited.
The resulting object and code is left in a file named m32a.out.

The following flags are interpreted by m32cc. See m32ld or m32as for other useful
flags.

-c

-p

-g

-y limit

-0

-S

-p

-E

-V

-D

Run the preprocessor, compiler, and assembler, and leave the
object code on corresponding files suffixed with .0.

This flag is reserved for invoking a profiler.

Produce additional information needed for the use of sdb.

Set limit on percent growth per file due to in-line expansion.
Values for limit are: u, allows unlimited growth; integer >0
allows indicated percent growth; s, suppresses in-line expansion.

Invoke an object-code optimizer. The optimizer will move,
modify, merge and delete code, so symbolic debugging with line
numbers could be confusing when the optimizer is used.

Compile the named C programs, and leave the assembler­
language output on corresponding files suffixed .5.

Run only the macro preprocessor on the named C programs,
and leave the output on corresponding files suffixed .i.

Same as the -p option except the output is directed to the
standard output. This allows the preprocessor to be used as a
filter for any other compiler.

Print the version of the compiler, optimizer, assembler or link­
editor that is invoked.

Define symbol to the preprocessor. This mechanism is useful
with the conditional statements in the preprocessor by allowing
symbols to be defined external to the source file.

5-129

M32CC (Command) M32CC

-u Undefine symbol to the preprocessor.

-I Change the algorithm for searching for #include files whose
names do not begin with I to look in dir before looking into the
directions on the standard list. Thus, #include files whose
names are enclosed in " "will be searched for first in the
directory of the file argument, then in directories named in -I
options, and last in directories on a standard list. For #include
files whose names are enclosed in < >, the directory of the file
argument is not searched.

-We, arg1 [,arg2 .. .1 Hand off the argument[s] m32argn to pass e where e is one of
[p02all indicating preprocessor, compiler, optimizer, assembler,
and link editor, respectively. For example, -Wa, -m invokes
the m4 macro preprocessor on the input to the assembler.

-B string Construct pathnames for substitute preprocessor, compiler,
assembler, and link editor passes by concatenating string with
the suffixes cpp, comp, optim, m32as, m321d.

-t [p02all Find only the designated preprocessor, compiler, assembler, and
link edit passes in the file whose names are constructed by a
-B option. " "is equivalent to -tp02.

Other arguments are taken to be either link-editor flag arguments, or C compatible
object programs, typically produced by an earlier m32ee run, or perhaps libraries of C
compatible routines. These programs, together with the results of any compilations
specified, are link-edited (in the order given) to produce an executable program with
name m32a.out unless the -0 option of the link-editor is used.

FILES
File

file.c
file.o
file.s
m32a.out
lusrltmp/m32?
LIBDIR/comp
LIBDIR/optim
LIBDIRllibc.a

SEE ALSO

Description
input file
object file
assembly language file
link-edited output
temporary
compiler
optimizer
WE 32100 Microprocessor Library

m32as, m32dis, m321d, m321ist.

5-130

M32CC (Command) M32CC

DIAGNOSTICS
The diagnostics produced by the C compiler are sometimes cryptic. Occasional
messages may be produced by the assembler or link-editor.

NOTES
By default, the return value from a C program is completely random. The only two
guaranteed ways to return a specific value is to explicitly call exit (2) or to leave the
function mainO with a "return expression;" construct.

5-131

M32CONV (Command) M32CONV

NAME
m32conv - WE 32100 Microprocessor SGP Object File Converter

SYNOPSIS
m32conv [-][-s1 [-al-01-p1 -t target files

DESCRIPTION
The m32conv command converts object files from their current format to the format of
the target machine. The converted file is written to file.v.

Command line options are:

indicates files should be read from stdin.

-a If the input file is an archive, produce the output file in the UNIX System
V Release 2 portable archive format.

-0 If the input file is an archive, produce the output file in the old (pre
UNIX System Release 5.0) archive format.

-p If the input file is an archive, produce the output file in the UNIX System
V Release random access archive format. This is the default.

-s causes m32conv to function exactly as the UNIX System swab command.
This is useful only for 3B20 object files which are to be "swab-dumped"
from a DEC Computer to a 3B20 Computer.

-t target indicates the machine (target) to which the object file is being shipped.
This may be another host or a target machine. Legal values for target
are: pdp, vax, ibm, iSO, xS6, b16, n3b and m32.

m32conv can be used to convert all object files in common object file format, not only
object files. it can be used on either the source (sending) or target (receiving)
machine.

m32conv is meant to ease the problems created by a multihost cross-compilation
development environment. m32conv is best used within a procedure for shipping object
files from one machine to another.

m32conv will recognize and produce archive files in three formats: the pre UNIX
System Release 5.0 format, the 5.0 random access format, and the System V Release
2 portable ASCII format.

EXAMPLE

5-132

*ship object files from vax to ibm
$echo *.outlm32conv -t ibm -$OFC/foo.o
$uucp *.v my370nrjel

M32CONV (Command) M32CONV

DIAGNOSTICS
All intended to be self-explanatory. Fatal diagnostics on the command lines cause
termination. Fatal diagnostics on an input file cause the program to continue to the
next input file.

BUGS
Special applications must compile m32conv differently if it is to convert special object
files, e.g., products of Idp, correctly. m32conv will not convert archives from one
format to another if both the source and target machines have the same byte ordering.
The UNIX System tool m32convert should be used for this purpose.

5-133

M32CONVERT (Command) M32CONVERT

NAME
m32convert - convert object and archive files to common formats

SYNOPSIS
m32convert {-51 infile outfile

DESCRIPTION

5-134

m32convert transforms input infile to output outfile. Infile must be different from
out file. The -5 option causes m32convert to work exactly as it did for UNIX System
Release 5.0. Infile may be anyone of the following:

1. a pre UNIX System Release V AX Computer object file or link-edited (a.out)
module (only with the -5 option).

2. a pre UNIX System Release V AX Computer archive of object files or link-edited
(a.out) modules (only with the -5 option).

3. a pre UNIX System Release 3B20S Computer archive of object files or link­
edited (a.out) modules (only with the -5 option), or

4. a UNIX System Release 5.0 V AX Computer or 3B20S Computer archive file
(without the -5 option).

m32convert will transform infile to one of the following (respectively):

1. an equivalent UNIX System Release 5.0 V AX Computer object file or link-edited
(a.out) module (with the -5 option).

2. an equivalent UNIX System Release 5.0 V AX Computer archive of equivalent
object files or link-edited (a.out) modules (with the -5 option).

3. an equivalent UNIX System Release 5.0 archive of unaltered 3B20S Computer
object files or link-edited (a.out) modules (with the -5 option), and

4. an equivalent V AX Computer or 3B20S Computer UNIX System Release 5.0
portable archive containing unaltered members (without the -5 option).

All other types of input to the m32convert command will be passed unmodified from
the input file to the output file (along with appropriate warning messages). When
transforming archive files with the -5 option, the m32convert command will inform
the user that the archive symbol table has been deleted. To generate an archive
symbol table, this archive file must be transformed again by m32convert without the
-5 option to create a UNIX System Release 5.0 archive file. Then the archive symbol
table may be created by executing the m32ar command with the ts option. If a UNIX
System Release 5.0 archive with an archive symbol table is being transformed, the
archive symbol table will automatically be converted.

M32CONVERT

FILES
/tmp/conv*

SEE ALSO
m32ar
m32a.out,m32ar

(Command) M32CONVERT

5-135

M32CPRS (Command) M32CPRS

NAME
m32cprs - Compress an Assembler Object File

SYNOPSIS
m32cprs [-pv 1 infile outfile

DESCRIPTION
The m32cprs command reduces the size of an assembler object file, in file, by removing
duplicate structure and union descriptors. The reduced file, out file, is produced as
output.

The options are:

-p Print statistical messages including: total number of tags, total duplicate tags,
and total reduction of infile.

-v Print verbose error messages if error condition occurs.

EXAMPLE
m32cprs m32a.out sm3b

SEE ALSO
m32strip.

5-136

M32DIS (Command) M32DIS

NAME
m32dis - WE 32100 Microprocessor Disassembler

SYNOPSIS
m32dis [-o][-V][-L][-d secl [-da sec][-F function][-t sec] [-I string] files

DESCRIPTION
The m32dis command produces an assembly language listing of each of its object file
arguments. The listing includes assembly statements and the binary code that
produced those statements.

The following options are interpreted by the disassembler and may be specified in any
order.

-0

-v
-L

-d sec

-da sec

Print numbers in octal. Default is hexadecimal.

Version number of the disassembler is written to standard error.

Invokes a lookup of C source labels in the symbol table for subsequent
printing.

Disassembles the named section as data, printing the offset of the data
from the beginning of the section.

Disassembles the named section as data, printing the actual address of
the data.

-F function Disassembles single named functions in each object file that is specified
on the command line.

-t sec Disassembles the named section as text.

-I string Disassemble the library file specified as string. For example, one would
issue the command m32dis -I x -Iz to disassemble libx.a and libz.a. All
libraries are assumed to be in lusr/m321lib.

If the -d, -da or -t options are specified, only those named sections from each user­
supplied file name are disassembled. Otherwise, all sections containing text are
disassembled. If the -F option is specified, only those named functions from each
user-supplied filename will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as [5],
represents that the C breakpointable line number starts with the following instruction.
An expression such as <40> in the operand field, following a relative displacement
for control transfer instructions, is the computed address within the section to which
control will be transferred. A C function name appears in the first column, followed
by O.

5-137

M32D1S (Command) M32D1S

DIAGNOSTICS
The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

SEE ALSO
m32as, m32cc, m321d.

5-138

M32DUMP (Command) M32DUMP

NAME
m32dump - Dump Selected Parts of an Object File

SYNOPSIS
m32dump [-acd fgblooprstuv] [-z name] files

DESCRIPTION
The m32dump command dumps selected parts of each of its objectfi/e arguments.

This command accepts both object files and archives of object files. It processes each
file argument according to one or more of the following options:

-a

-g

-f

-0

-b

-s

-r

-I

-t

-z name

-c

Dump the archive header of each member of each archive file argument.

Dump the global symbols in the symbol table of an archive.

Dump each file header.

Dump each optional header.

Dump section headers.

Dump section contents.

Dump relocation information.

Dump line number information.

Dump symbol table entries.

Dump line number entries for the named function.

Dump the string table.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

-d number Dump the section number or range of sections starting at number and
ending either at the last section number or number specified by +d.

+d number Dump sections in the range either beginning with first section or
beginning with section specified by -d.

-0 name

-p

-t index

Dump information pertaining only to the named entity. This modifier
applies to -b -s, -r, -I, and -to

Suppress printing of the headers.

Dump only the indexed symbol table entry. The -t used in conjunction
with +t specifies a range of symbol table entries.

5-139

M32DUMP (Command) M32DUMP

+t index Dump the symbol table entries in the range ending with the indexed
entry. The range begins at the first symbol table entry or at the entry
specified by the -t option.

-u Underline the name of the file for emphasis.

-v Dump information in symbolic representation rather than numeric (e.g.,
C_STATIC instead of OX02). This modifier can be used with the above
options except -s and -0 options of m32dump.

-z name, Dump line number entry or range of line numbers starting at number for
number the named function.

+z number Dump line numbers starting at either function name or number specified
by -z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma separating the
name from the number modifying the -z option may be replaced by a blank.

The m32dump command attempts to format the information it dumps in a meaningful
way, printing certain information in character, hex, octal or decimal representation as
appropriate.

SEE ALSO
m32a.out, m32ar

5·140

M32LD (Command) M32LD

NAME
m321d - Link Editor for WE 32100 Microprocessor Object Files

SYNOPSIS
m321d [-al [-e epsyml [-f filll [-Ixl [-ml [-rl [-sl [-0 outfilel [-u symnamel
[-L dirl [-Nl [-vl [-VS numl [-xl file-names

DESCRIPTION
The m321d command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object programs are given, and
m321d combines them, producing an object module that can either be executed or used
as input for a subsequent m321d run. The output of m321d is left in m32a.out. This
file is executable if no errors occurred during the load. If any input file, file-name, is
not an object file, m32ld assumes it is either an ASCII file containing link editor
directives or an archive library.

If any argument is a library, it is searched exactly once at the point it is encountered
in the argument list. Only those routines defining an unresolved external reference are
loaded. The library (archive) symbol table is searched sequentially with as many
passes as are necessary to resolve external references which can be satisfied by library
members. Thus, the ordering of library members is unimportant.

The following options are recognized by m321d.

-a

-e epsym

-f fill

-I

-m

Produce an absolute file; give warnings for undefined references.
Relocation information is stripped from the output object file unless the
-r option is given. The -r option is needed only when an absolute file
should retain its relocation information (not the normal case). If neither
-a nor -r is given, -a is assumed.

Set the default entry point address for the output file to be that of the
symbol epsym. This option forces the -x option to be set.

Set the default fill pattern for "holes" within an output section as well as
initialized bss sections. The argument fill is a two-byte constant.

Specify a library named x. It stands for Iibx.a where x is up to seven
characters. A library is searched when its name is encountered, so the
placement of a -I is significant. By default, libraries are located in
LIBDIR.

Generate a map or listing of the input/output sections on the standard
output.

5-141

M32LD (Command) M32LD

-ooutfile

-r

-s

-t

Produce an output object file named out file. The name of the default
object file is m32a.out.

Retain relocation entries in the output object file. Relocation entries
must be saved if the output file is to become an input file in a
subsequent m321d run. Unless -a is also given, the link editor will not
complain about unresolved references.

Strip line number entries and symbol table information from the output
object file.

Turn off the warning about multiply-defined symbols that are the same
size.

-u symname Enter the argument symname as an undefined symbol in the symbol
table. This is useful for loading entirely from a library, since initially
the symbol table is empty and an unresolved reference is needed to force
the loading of the first routine.

-L dir

-m

-N

-V

-VS num

Change the algorithm of searching for Iibx.a to look in djr before
looking in LIBDIR.

Output a message for each multiply-defined external definition.
However, if the object being loaded include debugging information,
extraneous outputs is produced (see the -g option in m32cc).

Put the data section immediately following the text in the output file.

Output version of m321d being used.

Use num as a decimal version number identifying the m32a.out file that
is produced. The version stamp is stored in the optional header.

FILES
File

LIBDIR/libx.a
m32a.out

Description
libraries
output file

CAVEATS

5-142

Through its input directives, the link editor gives users great flexibility; however,
people who use the input directives must assume some added responsibilities. Input
directives should insure the following properties for programs:

C defines a zero pointer as null. A pointer to which zero has been assigned must not
point to any object. To satisfy this, users must not place any object at virtual address
zero in the data space.

M32LIST (Command) M32LIST

NAME
m32list - Produce C Source Listing from WE 32100 Microprocessor Object File

SYNOPSIS
m32list [-V] [-h] source file ... [object-file]

DESCRIPTION
The m321ist command produces a C source listing with line number information. If
multiple C source files were used to create the object file, m32list will accept multiple
file names. The object file is taken to be the last non-C source file argument. If no
object file is specified, the m32a.out default object file, m32.out is used.

Line numbers are printed for each breakpoint inserted by the compiler (generally,
each executable C statement that begins a new line of source code). Line numbering
begins at once for each function. Line number I is always the line containing the left
curly brace (() that begins the function body. Line numbers are also supplied for
inner block redeclarations of local variables so that they can be distinguished by the
symbolic debugger.

The -V flag supplies m32list version information.

The -h flag suppresses heading output.

CAVEATS
Object files given to m32list must have symbolic debugging symbols.

Since m32list does not use the C preprocessor, it may be unable to recognize function
definitions whose syntax has been distorted by the use of C preprocessor macro
substitutions.

SEE ALSO
m32as, m32cc, m321d.

DIAGNOSTICS
m32list will produce the error message.
m32list: name: cannot open if name cannot be read.

The following messages are produced when m32list has become confused by #ifdef's in
the source file:

m32list: name: out of synch: too many}
m32list: name: unexpected end-of-file

5-143

M32LIST (Command) M32LIST

5-144

The error message

m32list: name: missing or inappropriate line numbers

means that either symbolic debugging information is missing or m32list has been
confused by C preprocessor statements.

If the source file names do not end in .c the message is

m32list: name: invalid C source name

An invalid object file will cause the message

m32list: name: bad magic

to be produces. If some or all of the symbolic debugging information is missing, one
of the following messages will be printed:

m32list: name: symbols have been stripped, cannot proceed
m32list: name: cannot read line numbers
m32list: name: not in symbol table

M32LORDER (Command)

NAME
m3210rder - Find Ordering Relation for an Object Library

SYNOPSIS
m3210rder files

DESCRIPTION

M32LORDER

The input is one or more object or library archive files. The standard output is a list
of pairs of object file names, meaning that the first file of the pair refers to external
identifiers defined in the second.

The output may be processed by tsort(t) to find a ordering of a library suitable for
one-pass access by m321d(t). The link editor is capable of mUltiple passes over the
archive and does not require that m3210rder be used when building an archive. The
usage of m3210rder may, however, allow for a slightly more efficient access of the
archive during the link edit process.

The following example builds a new library from existing .0 files.

ar cr library 'm3210rder *.0 I tsort'

FILES
*symref, *symdef temporary files

SEE ALSO
m321d, m32ar, sort

BUGS
Object files whose names do not end with .0, even when contained in library archives,
are overlooked. Their global symbols and references are attributed to some other file.

5·145

M32MAN (Command) M32MAN

NAME
m32man - Print On-Line Documentation for WE 32100 Microprocessor

SYNOPSIS
m32man command

DESCRIPTION
m32man is a shell command file which prints on-line documentation for WE 32100
Microprocessor commands.

DIAGNOSTICS
can't open MANDIR/command.out
Manual page for command is not on system.

FILES
MAND IRI command.out

5-146

M32NM (Command) M32NM

NAME
m32nm - Print Name List of WE 32100 Microprocessor Object File

SYNOPSIS
m32nm [-o][-x] [-v] [-0] [-e] [-f] [-u] [-V] file name ...

DESCRIPTION
The m32nm command displays the symbol table of each object file file-name. file­
name may be a relocatable or absolute object file or it may be an archive of such
object files. For each symbol, the following information is printed:

Name

Value

Class

Type

Size

Line

Section

The name of the symbol.

Its value expressed as an offset or an address depending on its storage
class.

Its storage class.

Its type and derived type. If the symbol is an instance of a structure or of
a union then the structure or union tag is given following the type (e.g.,
struct-tag). If the symbol is an array, then the array dimensions are given
following the type (e.g., charln][m)).

Its size in bytes, if available.

The source line number at which it is defined, if available.

For storage classes static and external, the object file section containing
the symbol.

The output of m32nm may be controlled using the following flags:

-0 A symbol's value and size are printed in octal instead of decimal.

-x A symbol's value and size are printed in hexadecimal instead of decimal.

-h Do not display the output header data.

-v External symbols are sorted by value before being printed.

-n External symbols are sorted by name before being printed.

-e Only static and external symbols are printed.

-f "Fancy" output is produced; that is, the symbol table information is post-
processed to reflect the block structure of the source code.

-u Only undefined symbols are printed.

-r Prep end the name of the object file to each output line.

5-147

M32NM (Command) M32NM

-p Produce easily parsed, terse output. Each symbol name is preceded by its
value (blanks if undefined) and one of the letters U (undefined), A
(absolute), T (text segment symbol), D (data segment symbol), S (user­
defined segment symbol), R (register symbol), F (file symbol), or C
(common symboO. If the symbol is local (nonexternaO, the type letter is
in lower case.

-v Print the version of nm command executing on the standard error output.

-T By default, nm prints the entire name of the symbols listed. Since object
files can have symbol names with an arbitrary number of characters, a
name that is longer than the width of the column set aside for names will
overflow its column, forcing every column after the name to be misaligned.
The -T option causes nm to truncate every name which would otherwise
overflow its column and place an asterisk as the last character in the
displayed name to mark it as truncated.

Flags may be used in any order, either singly or in combination, and may appear
anywhere in the command line. Therefore, both m32nm name -e -v and m32nm -ve
name print the static and external symbols in name, with external symbols sorted by
value.

FILES
lusr/tmp/nm??????

SEE ALSO
m32as,m32cc,m32Id.

DIAGNOSTICS

m32nm: name: cannot open
if name cannot be read.

m32nm: name: bad magic
if name is not an object file.

m32nm: name: no symbols
if the symbols have been stripped from name.

5-148

M32SIZE (Command) M32SIZE

NAME
m32size - Print Section Sizes for WE 32100 Microprocessor Object Files

SYNOPSIS
m32size [-01 [-xl [-vI files

DESCRIPTION
The m32size command produces section size information for each section in the object
files.

Numbers are printed in decimal unless either the -0 or the -x option is used, in
which case they are printed in octal or in hexadecimal, respectively.

The -V flag supplies version information on the m32size command.

SEE ALSO
m32as, m32cc, m321d.

DIAGNOSTICS
m32size: name: cannot open

if name cannot be read.

m32size: name: bad magic
if name is not a WE 32100 Microprocessor object file.

5-149

M32STRIP (Command) M32STRIP

NAME
m32strip - Strip Symbol and Line Number Information From WE 32100

Microprocessor Object File

SYNOPSIS
m32strip [-I] [-x] [-r] [-s] [-V] file-names

DESCRIPTION
The m32strip command strips the symbol table and line number information from
object files, including archives. Once this has been done, no symbolic debugging
access is available for that file; therefore, this command is normally run only on
production models that have been debugged and tested.

The amount of information stripped from the symbol table can be controlled using the
following options:

-I Strip line number information only; do not strip any symbol table information.

-x Do not strip static or external symbol information.

-r Reset the relocation indices into the symbol table.

-b Same as the -x option, but also do not strip scoping information (i.e., beginning
and end of block delimiters).

-V Print version of m32strip command executing.

If there are any relocation entries in the object file and any symbol table information
is to be stripped, m32strip will terminate without stripping file-name unless the -r
flag is used.

If the m32strip command is executed on a common archive file (see m32ar file
format), the archive symbol table will be removed. The archive symbol table must be
restored by executing the m32ar command with the s option before the archive can be
link-edited by the Id command. m32strip will instruct the user with appropriate
warning messages when this instruction arises.

The purpose of this command is to reduce the file storage overhead taken by the
object file.

FILES
/usr/tmp/m32str???? ??

SEE ALSO
m32as, m32cc, m321d

5-150

M32STRIP

DIAGNOSTICS

m32strip:

m32strip:

m32strip:

(Command)

name: cannot open

name: bad magic

M32STRIP

if name is not a WE 32100 Microprocessor object file

name relocation entries present; cannot strip
if name contains relocation entries, the -r flag not used, and any symbol
table information was to be stripped.

5-151

A64L
L64A

(Subroutine) A64L
L64A

NAME
a64l, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (s)
char *s;

char *164a (J)
long I;

DESCRIPTION
These functions are used to maintain numbers stored in base-64 ASCII characters.
This is a notation by which long integers can be represented by up to six characters;
each character represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are. for 0, / for 1,0 through 9 for 2-11, A
through Z for 12-37, and a through z for 38-63.

a641 takes a pointer to a null-terminated base-64 representation and returns a
corresponding long value. If the string pointed to by s contains more than six
characters, a641 will use the first six.

164a takes a long argument and returns a pointer to the corresponding base-64
representation. If the argument is 0, 164a returns a pointer to a null string.

BUGS

5-152

The value returned by 164a is a pointer into a static buffer, the contents of which are
overwritten by each call.

ABS (Subroutine)

NAME
abs - return integer absolute value

SYNOPSIS
iot abs (j)
iot i;

DESCRIPTION
abs returns the absolute value of its integer operand.

BUGS

ABS

, In two's complement representation, the absolute value of the negative integer with
largest magnitude is undefined. Some implementations trap this error, but others
simply ignore it.

SEE ALSO
floor (3 M).

5-153

BSEARCH (Subroutine) BSEARCH

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <search.h>

char *bsearch «char *) key, (char *) base, nel, sizeof (*key), compar)
unsigned nel;
int (*compar) ();

DESCRIPTION
bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It
returns a pointer into a table indicating where a datum may be found. The table must
be previously sorted in increasing order according to a provided comparison function.
key points to a datum instance to be sought in the table. base points to the element at
the base of the table. nel is the number of elements in the table. compar is the name
of the comparison function, which is called with two arguments that point to the
elements being compared. The function must return an integer less than, equal to, or
greater than zero as accordingly the first argument is to be considered less than, equal
to, or greater than the second.

EXAMPLE

5-154

The example below searches a table containing pointers to nodes consisting of a string
and its length. The table is ordered alphabetically on the string in the node pointed to
by each entry.

This code fragment reads in strings and either finds the corresponding node and prints
out the string and its length, or prints an error message.

#incIude <stdio.h>
#incIude <search.h>

#define T ABSIZE 1000

struct node { 1* these are stored in the table *1
char *string;
int length;

};
struct node table[TABSIZE]; 1* table to be searched *1

struct node *node.JJtr, node;
int node_compare (); 1* routine to compare 2 nodes *1
char str _space[20]; I*space to read string into *1

BSEARCH

NOTES

(Subroutine)

node. string = str _space;
while (scanf{"%s", node. string) != EOF) {

/*

*/
int

node--ptr = {struct node *)bsearch«char *)(node),
(char *hable, T ABSIZE,
sizeof(struct node), node_compare);

if (node--ptr != NULL) {
(void)printf{"string = %20s, length = %d\n",

node --ptr-> string, node --ptr-> length);
} else {

(void)printf{"not found: %s\n", node.string);
}

This routine compares two nodes based on an
alphabetical ordering of the string field.

node_compare{nodel, node2)
struct node *nodel, *node2;
{

return strcmp (node 1-> string, node2-> string);

BSEARCH

The pointers to the key and the element at the base of the table should be of type
pointer-to-element, and cast to type pointer-to-character. The comparison function
need not compare every byte, so arbitrary data may be contained in the elements in
addition to the values being compared. Although declared as type pointer-to­
character, the value returned should be cast into type pointer-to-element.

SEE ALSO
hsearch (3C), lsearch, qsort (3 C) , tsearch (3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

5-155

CONY (Subroutine) CONY

NAME
toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#incIude <ctype.h>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

DESCRIPTION
toupper and tolower have as domain the range of getc(3S): the integers from -)
through 255. If the argument of toupper represents a lower-case letter, the result is
the corresponding upper-case letter. If the argument of tolower represents an upper­
case letter, the result is the corresponding lower-case letter. All other arguments in
the domain are returned unchanged.

The macros _to upper and _tolower are macros that accomplish the same thing as
toupper and tolower but have restricted domains and are faster. _toupper requires a
lower-case letter as its argument; its result is the corresponding upper-case letter. The
macros _tolower requires an upper-case letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause undefined
results.

toascii yields its argument with all bits turned off that are not part of a standard
ASCII character; it is intended for compatibility with other systems.

SEE ALSO
ctype, getc(3S).

5-156

CRYPT (Subroutine)

NAME
crypt, setkey, encrypt - generate DES encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, edflag)
char *block;
int edflag;

DESCRIPTION

CRYPT

crypt is the password encryption function. It is based on the NBS Data Encryption
Standard (DES), with variations intended (among other things) to frustrate use of
hardware implementations of the DES for key search.

key is a user's typed password. salt is a two-character string chosen from the set [a­
zA-ZO-9.11; this string is used to perturb the DES algorithm in one of 4096 different
ways, after which the password is used as the key to encrypt repeatedly a constant
string. The returned value points to the encrypted password. The first two characters
are the salt itself.

The set key and encrypt entries provide (rather primitive) access to the actual DES
algorithm. The argument of setkey is a character array of length 64 containing only
the characters with numerical value 0 and 1. If this string is divided into groups of 8,
the low-order bit in each group is ignored; this gives a 56-bit key which is set into the
machine. This is the key that will be used with the above mentioned algorithm to
encrypt or decrypt the string block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 containing only
the characters with numerical value 0 and 1. The argument array is modified in place
to a similar array representing the bits of the argument after having been subjected to
the DES algorithm using the key set by setkey. If edflag is zero, the argument is
encrypted; if non-zero, it is decrypted.

SEE ALSO
10gin(1), passwd(J), getpass{3C), passwd(4).

BUGS
The return value points to static data that are overwritten by each call.

5-157

CTYPE (Subroutine) CTYPE

NAME
isalpha, is upper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph,
iscontrl, isascii - classify characters

SYNOPSIS
#incIude <ctype.h>
int isaJpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table lookup. Each is a
predicate returning nonzero for true, zero for false. isascii is defined on all integer
values; the rest are defined only where isascii is true and on the single non-ASCII
value EOF (-1 - see stdio(3S).

isalpha c is a letter.

is upper c is an upper-case letter.

islower c is a lower-case letter.

isdigit c is a digit [0-91.

isxdigit c is a hexadecimal digit [O-9UA-FJ or [a-f1.

isalnum c is an alphanumeric (Jetter or digit).

isspace c is a space, tab, carriage return, new-line, vertical tab, or form-feed.

ispunct c is a punctuation character (neither control nor alphanumeric).

isprint c is a printing character, code 040 (space) through 0176 (tilde).

isgraph c is a printing character, like isprint except false for space.

iscntrl c is a delete character (0177) or an ordinary control character (Jess than
040).

isascii c is an ASCII character, code less than 0200.

DIAGNOSTICS
If the argument to any of these macros is not in the domain of the function, the result
is undefined.

SEE ALSO
stdio(3S), ascii(5).

5-158

L3TOL (Subroutine)

NAME
13tollto13 - convert between 3-byte integers and long integers

SYNOPSIS
void l3tol Op, cp, n)
long *Ip;
char *cp;
int n;

void Itol3 (cp, Ip, n)
char *cp;
long *Ip;
int n;

DESCRIPTION

L3TOL

I3tol converts a list of n three-byte integers packed into a character string pointed to
by cp into a list of long integers pointed to by Ip.

Itol3 performs the reverse conversion from long integers Up) to three-byte integers
(cp).

These functions are useful for file-system maintenance where the block numbers are
three bytes long.

SEE ALSO
fs(4).

BUGS
Because of possible differences in byte ordering, the numerical values of the long
integers are machine-dependent.

5-159

LDAHREAD (Subroutine) LDAHREAD

NAME
Idahread - Read Archive Header of an Archive File Member

SYNOPSIS
#incIude <stdio.h>
#include <ar.h>
#incIude "INCDIR/filehdr.h"
#incIude "INCDIR/Idfcn.h"

int Idahread Odptr ,arhead)
LDFILE *Idptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE([dptr) is the archive file magic number, idahread reads the archive header of
the object file currently associated with Idptr into the area of memory beginning at
arhead.

Idahread returns SUCCESS or FAILURE. Idahread fails if TYPE([dptr) does not
represent an archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library
LIBDIR/Iibld.a.

intro describes LlBDIR and INCDIR.

SEE ALSO
idc/ose, Idopen, Idfcn, m32ar format

5-160

LDCLOSE (Subroutine)

NAME
ldclose. ldaclose - Close a WE 32100 Microprocessor Object File

SYNOPSIS
#include <stdio.h>
#include "INCDIR/fiIehdr.h"
#include "INCDIR/ldfcn.h"

int Idclose Odptr)
LDFILE *Idptr;

int Idaclose Odptr)
LDFILE *Idptr;

DESCRIPTION

LDCLOSE

ldopen and idc/ose provide uniform access to both simple object files and object files
that are members of archive files. Thus an archive of object files can be processed as
if it were a series of simple object files.

If TYPE(ldptr) does not represent an archive file, idc/ose will close the file and free
the memory allocated to the LDFILE structure associated with ldptr. If TYPE(Jdptr)
is the magic number of an archive file, and if there are any more files in the archive,
idc/ose reinitializes OFFSET(Jdptr) to the file address of the next archive member and
returns FAILURE. The LDFILE structure is prepared for a subsequent ldopen. In
all other cases, ldc/ose returns SUCCESS.

ldac/ose closes the file and frees the memory allocated to the LDFILE structure
associated with ldptr regardless of the value of TYPE(Jdptr). ldaclose always returns
SUCCESS. The function is often used in conjunction with idaopen.

The program must be loaded with the object file access routine library
LIBDIR/libld.a.

intro describes INCDIR and LIBDIR.

SEE ALSO
idopen, intro, idfcn, paths

5-161

LDFHREAD (Subroutine) LDFHREAD

NAME
ldfhread - Read the File Header for a WE 32100 Microprocessor Object File

SYNOPSIS
#incIude <stdio.h>
#incIude "INCDIR/filehdr.h"
#incIude "INCDIR/ldfcn.h"

int Idfhread Odptr, filehead)
LDFILE *Idptr;
FILHDR *filehead;

DESCRIPTION
ldfhread reads the file header of the object file currently associated with ldptr into the
area of memory beginning at filehead.

ldfhread returns SUCCESS or FAILURE. ldfhread fails if it cannot read the file
header.

In most cases the use of ldfhread can be avoided by using the macro HEADER([dptr)
defined in Idfcn.h (see ldfcn). The information in any field, fieldname, of the file
header may be accessed using HEADER(tdptr)/ieldname.

The program must be loaded with the object file access routine library
LIBDIR/libld.a.

intro describes INCDIR and LlBDIR.

SEE ALSO
ldclose, ldopen, intro, ldfcn, paths

5·162

LDGETNAME<3X) (Subroutine) LDGETNAME(3X)

NAME
ldgetname - retrieve symbol name for object file symbol table entry

SYNOPSIS
#include <stdio.h>
#include "INCDIR/filehdr.h"
#include "INCDIRlsyms.h"
#include "INCDIR/ldfcn.h"

char *ldgetname (Jdptr, symbol)
LDFILE *ldptr;
SYMENT *symbol;

DESCRIPTION
Ldgetname returns a pointer to the name associated with symbol as a string. The
string is contained in a static buffer local to ldgetname that is overwritten by each call
to ldgetname, and therefore must be copied by the caller if the name is to be saved.

Ldgetname will return NULL (defined in stdio.h) for an object file if the name cannot
be retrieved. This situation can occur:

o if the "string table" cannot be found,

• if enough memory cannot be allocated for the string table,

o if the string table appears not to be a string table (for example, if an auxiliary entry
is handed to ldgetname that looks like a reference to a name in a nonexistent string
table), or

• if the name's offset into the string table is past the end of the string table.

Typically, ldgetname will be called immediately after a successful call to ldtbread to
retrieve the name associated with the symbol table entry filled by ldtbread.

The program must be loaded with the object file access routine library
LlBDIR/libld.a.

intro describes INCDIR and LIBDIR.

SEE ALSO
ldclose, ldopen, ldtbseek, ldtbread, intra ldfcn, paths

5-163

LDLREAD (Subroutine) LDLREAD

NAME
ldlread, ldlinit, ldlitem - Manipulate Line Number Entries for a WE 32100
Microprocessor Object File Function

SYNOPSIS
#include < stdio.h >
#include "INCDIR/fiIehdr.h"
#include "INCDIR/linenum.h"
#include "INCDIR/Idfcn.h"

int Idlread Odptr,fcnindx,linenum,linent>
LDFILE *Idptr;
long fcnindx;
unsigned short Iinenum;
LINENO Iinent;

int Idlinit Odptr ,fcnindx)
LDFILE *Idptr;
long fcnindx;

int IdlitemOdptr, linenum, Iinent)
LDFILE *Idptr;
unsigned short Iinenum;
LINENO Iinent;

DESCRIPTION

5-164

ldlread searches the line number entries of the object file currently associated with
ldptr. ldlread begins its search with the line number entry for the beginning of a
function and confines its search to the line numbers associated with a single function.
The function is identified by fcnindx, the index of its entry in the object file symbol
table. ldlread reads the entry with the smallest line number equal to or greater than
linenum into linent.

ldlinit and ldlitem together perform exactly the same function as Idlread. After an
initial call to ldlread or ldlinit, ldlitem may be used to retrieve a senes of line RUmber
entries associated with a single function. ldlinit simply locates the line number entries
for the function identified by fcnindx. ldlitem finds and reads the entry with the
smallest line number equal to or greater than linenum into linent.

LDLREAD (Subroutine) LDLREAD

ldlread, ldlinit, and ldlitem each return either SUCCESS or FAILURE. ldlread fails
if there are no line number entries in the object file, if fcnindx does not index a
function entry in the symbol table, or if it finds no line number equal to or greater
than linenum. ldlinit fails if there are no line number entries in the object file or if
fcnindx does not index a function entry in the symbol table. ldlitem fails if it finds no
line number equal to or greater than linenum.

The programs must be loaded with the object file access routine library
LIBDIRflibld.a.

SEE ALSO
ldclase, ldapen, ldtbindex, intra, ldfcn, paths.

5-165

LSEARCH (Subroutine) LSEARCH

NAME
lsearch, lfind - linear search and update

SYNOPSIS
#include <stdio.h>
#include < search.h >

char *lsearch «char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar) ();

char *lfind «char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar)();

DESCRIPTION
lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It
returns a pointer into a table indicating where a datum may be found. If the datum
does not occur, it is added at the end of the table. key points to the datum to be
sought in the table. base points to the first element in the table. nelp points to an
integer containing the current number of elements in the table. The integer is
incremented if the datum is added to the table. compar is the name of the comparison
function which the user must supply (strcmp, for example). It is called with two
arguments that point to the elements being compared. The function must return zero
if the elements are equal and nonzero otherwise.

/find is the same as lsearch except that if the datum is not found, it is not added to
the table. Instead, a NULL pointer is returned.

NOTES
The pointers to the key and the element at the base of the table should be of type
pointer-to-element, and cast to type pointer-to-character. The comparison function
need not compare every byte, so arbitrary data may be contained in the elements in
addition to the values being compared. Although declared as type pointer-to­
character, the value returned should be cast into type pointer-to-element.

EXAMPLE

5-166

This fragment will read in ~ T ABSIZE strings of length ~ ELSIZE and store them
in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>

#define T ABSIZE 50
#define ELSIZE 120

LSEARCH (S u brou tine)

char line(ELSIZE1, tab[TABSIZE][ELSIZE1, *Isearch();
unsigned nel = 0;
int strcmp();

while (fgets(Jine, ELSIZE, stdin) != NULL &&
nel < T ABSIZE)

(void) Isearch(!ine, (char *}tab, &nel,
ELSIZE, strcmp);

SEE ALSO
bsearch, hsearch (3C), tsearch (3C).

DIAGNOSTICS

LSEARCH

If the searched for datum is found, both /search and /find return a pointer to it.
Otherwise, /find returns NULL and /search returns a pointer to the newly added
element.

BUGS
Undefined results can occur if there is not enough room in the table to add a new
item.

5-167

LDLSEEK (Subroutine) LDLSEEK

NAME
ldlseek,idnlseek - Seek to Line Number Entries of a Section of a WE 32100
Microprocessor Object File

SYNOPSIS
#include <stdio.h>
#include "INCDIR/filehdr.h"
#include "INCDIR/ldfcn.h"

int Idlseek Odptr, sectindx)
LDFILE *Idptr;
unsigned short sectindx;

int Idnlseek Odptr, sectname)
LDFILE *Idptr;
char *sectname;

DESCRIPTION
ldlseek seeks to the line number entries of the section specified by sectindx of the
object file currently associated with ldptr.

ldnlseek seeks to the line number entries of the section specified by sectname.

ldlseek and ldnlseek return SUCCESS or FAILURE. ldlseek fails if sectindx is
greater than the number of sections in the object file; ldnlseek fails if there is no
section name corresponding with *sectname. Either function fails if the specified
section has no line number entires or if it cannot seek to the specified line number
entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library
LIBDIR/libld.a.

intro describes INCDIR and LIBDIR.

SEE ALSO
ldclose, ldopen, ldshread, intro, ldfcn, paths

5-168

LDOHSEEK (Subroutine) LDOHSEEK

NAME
Idohseek - Seek to the Optional File Header of a WE 32100 Microprocessor Object
File

SYNOPSIS
#include <stdio.h>
#include "INCDIRifilehdr.h"
#include "INCDIRildfcnh.h"

int Idohseek Odptr)
LDFILE *Idptr;

DESCRIPTION
Idohseek seeks to the optional file header of object file currently associated with Idptr.

ldohseek returns SUCCESS or FAILURE. Idohseek fails if the object file has no
optional header or if it cannot seek to the optional header.

The program must be loaded with the object file access routine library
LIBDIRllibld.a.

intro describes INCDIR and LIBDIR.

SEE ALSO
Idclose, Idopen, Idfhread, intro, Idfcn, paths

5-169

LDOPEN (Subroutine) LDOPEN

NAME
ldopen. ldaopen - Open a WE 32100 Microprocessor File for Reading

SYNOPSIS
#include <stdio.b>
#include "INCDIR/filebdr.b"
#include "INCDIR/ldfcn.b"

LDFILE *ldopen (filename, Idptr)
cbar *filename;
LDFILE *ldptr;

LDFILE *ldaopen (filename, oldptr)
cbar *filename;
LDFILE *oldptr;

DESCRIPTION

5·170

ldopen and Idclose provide uniform access to both simple object files and object files
that are members of archive files. Thus an archive of object files can be processed as
if it were a series of simple object files.

If Idptr has the value NULL, then Idopen opens filename and allocates and initializes
the LDFILE structure, and returns a pointer to the structure to the calling program.

If Idptr is valid and if TYPEUdptr) is the archive magic number, Idopen reinitializes
the LDFILE structure for the next archive member of filename.

Idopen and Idclose are designed to work in concert. Idclose returns FAILURE only
when TYPEUdptr) is the archive magic number and there is another file in the
archive to be processed. Only then should Idopen be called with the current value of
ldptr. In all other cases, in particular whenever a new filename is opened, ldopen
should be called with a NULL Idptr argument.

The following is a prototype for the use of Idopen and ldclose.

/*for each filename to be processed*/
ldptr = NULL;
do

if (Jdptr + ldopen(filename, ldptr» != NULL)
{

}

/* check magic number * /
/* process the file * /

}while (Jdc1ose(Jdptr) == FAILURE);

LDOPEN (Subroutine) LDOPEN

If the value of oldptr is not NULL, Idaopen opens filename anew and allocates and
initializes a new LDFILE structure, copying the TYPE, OFFSET, and HEADER
fields from oldptr. Idaopen returns a pointer to the new LDFILE structure. This new
pointer is independent of the old pointer, oldptr. The two pointers may be used
concurrently to read separate parts of the object file. For example, one pointer may
be used to step sequentially through the relocation information, while the other is used
to read indexed symbol table entries.

Both Idopen and Idaopen open filename for reading. Both functions return NULL if
filename cannot be opened, or if memory for the LDFILE structure cannot be
allocated. A successful open does not insure that the given file is an object file or an
archived object file.

The program must be loaded with the object file access routine library
LIBDlR/libld.a.

intro describes INCDIR and LIBDIR.

SEE ALSO
Idclose. intro. Idfcn. paths

5-171

LDRSEEK (Subroutine) LDRSEEK

NAME
ldrseek,ldnrseek Seek to Relocation Entries of a Section of a WE 32100

Microprocessor Object File

SYNOPSIS
#include <stdio.b>
#include "INCDIR/filebdr.b"
#include "INCDIR/ldfcn.b"

int Idrseek Odptr, sectindx)
LDFILE *Idptr;
unsigned sbort sectindx;

int Idnrseek Odptr, sectname)
LDFILE *Idptr;
cbar *sectname;

DESCRIPTION
ldrseek seeks to the relocation entries of tbe section specified by sectindx of the object
file currently associated witb ldptr.

ldnrseek seeks to the relocation entries of the section specified by sectname.

ldrseek and ldnrseek return SUCCESS or FAILURE. ldrseek fails if sectindx is
greater than the number of sections in the object file; ldnrseek fails if there is no
section name corresponding with sectname. Either function fails if the specified
section has no relocation entries or if it cannot seek to the specified relocation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library
LIBDIRllibld.a.

intro describes INCDIR and LIBDIR.

SEE ALSO
ldclose, ldopen, ldshread, intro, ldfcn, paths

5-172

LDSHREAD (Subroutine) LDSHREAD

NAME
ldshread,ldnshread Read an Indexed/Named Section Header of a WE 32100

Microprocessor Object File

SYNOPSIS
#include <stdio.h>
#include "INCDIR/fiIehdr.h"
#include "INCDIR/scnhdr.h"
#include "INCDIR/ldfcn.h"

int ldshread Odptr, sectindx, secthead}
LDFILE *ldptr;
unsigned short sectindx;
SCNHDR *secthead;

int ldnshread Odptr, sectname, secthead}
LDFILE *ldptr;
char sectname;
SCNHDR *secthead;

DESCRIPTION
ldshread reads the section header specified by sectindx of the object file currently
associated with ldptr into the area of memory beginning at secthead.

ldnshread reads the section header specified by sectname into the area of memory
beginning at secthead.

ldshread and ldnshread return SUCCESS or FAILURE. ldshread fails if sectindx is
greater than the number of sections in the object file; ldnshread fails if there is no
section name corresponding with sectname. Either function fails if it cannot read the
specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access routine library
LIBDIR/lihld.a.

intra describes INCDIR and LIBDIR.

SEE ALSO
ldclose. ldopen. intra. ldfcn. paths

5-173

LDSSEEK (Subroutine) LDSSEEK

NAME
ldsseek, ldnsseek Seek to an Indexed/Named Section of a WE 32100

Microprocessor Object File

SYNOPSIS
#incIude < stdio.b >
#incIude "INCDIR/filebdr.b"
#incIude "INCDIRlldfcn.b"

int Idsseek Odptr, sectindx}
LDFILE *Idptr;
unsigned sbort sectindx;

int Idnsseek Odptr, sectname}
LDFILE *Idptr;
cbar *sectname;

DESCRIPTION
ldsseek seeks to the section specified by sectindx of the object file currently associated
with ldptr.

ldnsseek seeks to the section specified by sectname.

ldsseek and ldnsseek return SUCCESS or FAILURE. ldsseek fails if sectindx is
greater than the number of sections in the object file; ldnsseek fails if there is no
section name corresponding with sectname. Either function fails if there is no section
data for the specified section or if it cannot seek to the specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library LIDIR/libld.a.

intro describes INCDIR and LIBDIR.

SEE ALSO
ldclose, ldopen, ldshread, intra, ldjcn, paths

5-174

LDTBINDEX (Subroutine) LDTBINDEX

NAME
ldtbindex Compute the Index of a Symbol Table Entry of a WE 32100

Microprocessor Object File

SYNOPSIS
#include < stdio.b >

#include "INCDIR/filehdr.b"
#include "INCDIRlsyms.b"
#include "INCDIR/ldfcn.b"

long Idtbindex Odpd
LDFILE *Idptr;

DESCRIPTION
ldtbindex returns the (long) index of the symbol table entry at the current position of
the object file associated with ldpr.

The index returned by ldtbindex may be used in subsequent calls to ldtbread.
However, since ldtbindex returns the index of the symbol table entry that begins at
the current position of the object file, if ldtbindex is called immediately after a
particular symbol table entry has been read, it returns the index of the next entry.

ldtbindex fails if there are no symbols in the object file, or if the object file is not
positioned at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library
LlBDIR/libld.a.

intro describes INCDIR and LIBDIR.

SEE ALSO
Ide lose, ldopen, ldtbread, ldtbseek, intro, ldfen, paths

5-175

LDTBREAD (Subroutine) LDTBREAD

NAME
ldtbread Read an Indexed Symbol Table Entry of a WE 32100

Microprocessor Object File

SYNOPSIS
#include <stdio.h>
#include "INCDIR/filehdr.h"
#include "INCDIR/syms.h"
#include "INCDIRl1dfcn.h"

int Idtbread Odptr, symindex, symbol)
LDFILE *Idptr;
long symindex;
SYMENT *symbol;

DESCRIPTION
ldtbread reads the symbol table entry specified by symindex of the object file
currently associated with ldptr into the area of memory beginning at symbol.

ldtbread returns SUCCESS or FAILURE. ldtbread fails if symindex is greater than
the number of symbols in the object file, or if it cannot read the specified symbol table
entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library
LIBDIR/libld.a.

intro describes INCDIR and LIBDIR.

SEE ALSO
ldclose, ldopen, ldtbseek, intro, ldfcn, paths

5-176

LDTBSEEK (Subroutine) LDTBSEEK

NAME
ldtbseek - Seek to the Symbol Table of a WE 32100 Microprocessor Object File

SYNOPSIS
#include < stdio.h >
#include "INCDIR/fiIehdr.h"
#include "INCDIR/ldfcnh.h"

int Idtbseek Odptr)
LDFILE *Idptr

DESCRIPTION
ldtbseek seeks to the symbol table of the object file currently associated with ldptr.

ldtbseek return SUCCESS or FAILURE. ldtbseek fails if the symbol table has been
stripped from the object file, or if it cannot seek to the symbol table.

The program must be loaded with the object file access routine library
LIBDIR/libld.a.

intra describes INCDIR and LIBDIR.

SEE ALSO
ldclase, ldapen, ldtbread, intra, ldfcn, paths

5-177

MEMORY (Subroutine) MEMORY

NAME
memccpy, memchr, memcmp, memcpy, memset - memory operations

SYNOPSIS
#ioclude <memory.h>
char *memccpy (st, s2, c, 0)
char *st, *s2;
iot c, 0;

char *memchr (s, c, 0)
char *s;
iot c, 0;

iot memcmp (st, s2, 0)
char *st, *s2;
iot 0;

char *memcpy (st, s2, 0)
char *st, *s2;
iot 0;

char *memset (s, c, 0)
char *s;
iot c, 0;

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.

memccpy copies characters from memory areas s2 into sl, stopping after the first
occurrence of character c has been copied, or after 0 characters have been copied,
whichever comes first. It returns a pointer to the character after the copy of c in st,
or a NULL pointer if c was not found in the first 0 characters of s2.

memchr returns a pointer to the first occurrence of character c in the first 0

characters of memory areas s, or a NULL pointer if c does not occur.

memcmp compares its arguments, looking at the first 0 characters only, and returns an
integer less than, equal to, or greater than 0, according as sl is lexicographically less
than, equal to, or greater than s2.

memcpy copies 0 characters from memory area s2 to sl. It returns st.

memset sets the first 0 characters in memory area s to the value of character c. It
returns s.

NOTE

5-178

For user convenience, all these functions are declared in the optional <memory.h>
header file.

MEMORY (Subroutine) MEMORY

BUGS
memcmp uses native character comparison, which is signed on PDP 11 Computers and
VAX 11 Computers, unsigned on other machines. Thus the sign of the value returned
when one of the characters has its high-order bit set is implementation-dependent.

Character movement is performed differently in different implementations. Thus
overlapping moves may yield surprises.

5-179

PRINTF (Subroutine) PRINTF

NAME
printf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>

int printf (format [, arg I ...)
char *format;

int sprintf (s, format [, arg I ...)
char *s format;

DESCRIPTION

5-180

printfplaces output on the standard output stream stdout. sprintfplaces "output,"
followed by the null character (\0), in consecutive bytes starting at *s; it is the user's
responsibility to ensure that enough storage is available. Each function returns the
number of characters transmitted (not including the \0 in the case of sprintj), or a
negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character string that contains two types of objects: plain
characters, which are simply copied to the output stream, and conversion
specifications, each of which results in fetching of zero or more args. The results are
undefined if there are insufficient args for the format. If the format is exhausted
while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the
following appear in sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the
converted value has fewer characters than the field width, it will be padded on
the left (or right, if the left-adjustment flag' -', described below, has been
given) to the field width. If the field width for an s conversion is preceded by
a 0, the string is right adjusted with zero-padding on the left.

A precision that gives the minimum number of digits to appear for the d, 0, u,
x, or X conversions, or the maximum number of characters to be printed from
a string in s conversion. The precision takes the form of a period (.) followed
by a decimal digit string; a null digit string is treated as zero.

An optionall (ell) specifying that a following d, 0, u, x, or X conversion
character applies to a long integer argo An 1 before any other conversion
character is ignored.

A character that indicates the type of conversion to be applied.

PRINTF (Subroutine) PRINTF

A field width of precision may be indicated by an asterisk (*) instead of a digit string.
In this case, an integer arg supplied the field width or precision. The arg that is
actually converted is not fetched until the conversion letter is seen, so the args
specifying field width or precision must appear before the arg (if any) to be converted.

The flag characters and their meanings are:

+
blank

The result of the conversion will be left-justified within the field.

The result of a signed conversion will always begin with a sign (+ or -).

If the first character of a signed conversion is not a sign, a blank will be
prefixed to the result. This implies that if the blank and + flags both
appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an "alternate form."
For c, d, s, and u conversions, the flag has no effect. For 0 conversion, it
increases the precision to force the first digit of the result to be a zero.
For x or X conversion, a non-zero result will have Ox or OX prefixed to it.

The conversion characters and their meanings are:

d,o,u,x,x

c

S

%

The integer arg is converted to signed decimal, unsigned octal, decimal,
or hexadecimal notation (x and X) respectively; the letters abcdef are
used for x conversion and the letters ABCDEF for X conversion. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be explained
with leading zeros. (For compatibility with older versions, padding with
leading zeros may alternatively be specified by prep ending a zero to the
field width. This does not imply an actual value for the field width.)
The default precision is 1. The result of converting a zero value with a
precision of zero is a null string.

The character arg is printed.

The arg is taken to be a string (character pointer) and characters from
the string are printed until a null character (\0) is encountered or the
number of characters indicated by the precision specification is reached.
If the precision is missing, it is taken to be infinite so all characters up to
the first null character are printed. A NULL value for arg will yield
undefined results.

Print a %; no argument is converted.

In no case does a nonexistent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by printf are printed as if
putc(3S) had been called.

5-181

PRINTF (Subroutine) PRINTF

EXAMPLE
To print a data and time in the form "Sunday, July 3, 10:02," w4ere weekday and
month are pointers to null-terminated strings:

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min);

SEE ALSO
ecvt(3C), putc(3S), scanf, stdio(3S)

5-182

RAND (Subroutine)

NAME
rand, srand - simple random-number generator

SYNOPSIS
iot rand ()

void sraod (seed)
unsigned seed;

DESCRIPTION

RAND

rand uses a multiplicative congruential random-number generator with period 232 that
returns successive pseudo-random numbers in the range from 0 to 215_1.

srand can be called at any time to reset the random-number generator to a random
starting point. The generator is initially seeded with a value of 1.

NOTE
The spectral properties of rand leave a great deal to be desired. drand48(3C) provides
a much better, though more elaborate, random-number generator.

SEE ALSO
drand48 (3C)

5-183

SCANF (Subroutine) SCANF

NAME
scanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer 1 ...)
char *format;

int sscanf (s, format [, pointer 1 ...)
char *s, *format;

DESCRIPTION

5-184

scanf reads from the standard input stream stdin. sscanf reads from the character
string s. Each function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects, as arguments, a control string
format described below, and a set of pointer arguments indicating where the converted
input should be stored.

The control string usually contains conversion specifications, which are used to direct
interpretation of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which, except in
two cases described below, cause input to be read up to the next non-white-space
character.

2. An ordinary character (not %), which must match the next character of the input
stream.

3. Conversion specifications, consisting of the character %, an optional assignment
suppressing character *, an optional numerical maximum field width, an optional
I (ell) or h indicating the size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding argument, unless assignment
suppression was indicated by *. The suppression of assignment provides a way of
describing an input field which is to be skipped. An input field is defined as a string
of non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted. For all descriptors except "[,, and "c", white
space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a resticted type. For a suppressed field, no
pointer argument is given. The following conversion codes are legal:

% a single % is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an
integer pointer.

SCANF (Subroutine) SCANF

u an unsigned decimal integer is expected; the corresponding argument should
be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument should be an integer
pointer.

x a hexadecimal integer is expected; the corresponding argument should be an
integer pointer.

s a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to accept
the string and a terminating \0, which will be added automatically. The
input field is terminated by a white-space character.

c a character is expected; the corresponding argument should be a character
pointer. The normal skip over white space is suppressed in this case; to read
the next non-space character, use % Is. If a field width is given, the
corresponding argument should refer to a character array; the indicated
number of characters is read.

indicates string data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of characters, which we will
call the scanset, and a right bracket; the input field is the maximal sequence
of input characters consisting entirely of characters in the scan set. The
circumflex ("), when it appears as the first character in the scanset, serves as
a complement operator and redefines the scanset as the set of all characters
not contained in the remainder of the scanset string. There are some
conventions used in the construction of the scanset. A range of characters
may be represented by the construct first -last, thus [01234567891 may be
expressed [0-91. Using this convention, first must be lexically less than or
equal to last, or else the dash will stand for itself. The dash will also stand
for itself whenever it is the first or the last character in the scanset. To
include the right square bracket as an element of the scanset, it must appear
as the first character (possibly preceded by a circumflex) of the scanset, and
in this case it will ot be syntactically interpreted as the closing bracket. The
corresponding argument must point to a character array large enough to hold
the data field and the terminating \0, which will be added automatically. At
least one character must match for this conversion to be considered
successful.

The conversion characters d, u, 0, and x may be preceded by I or h to
indicate that a pointer to long or to short rather than to int is in the
argument list. The I or h modifier is ignored for other conversion characters.

scan! conversion terminates at EOF, at the end of the control string, or when
an input character conflicts with the control string. In the latter case, the
offending character is left unread in the input steam.

5-185

SCANF (Subroutine) SCANF

scan! returns the number of successfully matched and assigned input items;
this number can be zero in the event of an early conflict between an input
character and the control string. If the input ends before the first conflict or
conversion, EOF is returned.

EXAMPLES
The call:

int i, n; float x; char name[50];
n = scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-I thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will
contain thompson\O. Or:

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0-9]", &i, &x, name);

with input:

567890123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next
call to getchar (see getc(JS» will return a.

SEE ALSO
getc (38), printf, strtod (3C), strtol

NOTE
Trailing white space (including a new-line) is left unread unless matched in the
control string.

DIAGNOSTICS
These functions return EOF on end of input and a short count for missing or illegal
data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

5-186

SPUTL (Subroutine) SPUTL

NAME
sputJ, sgetl - access long integer data in a machine independent fashion.

SYNOPSIS
void sput! (value, buffer>
long value;
char *buffer;

long sgetl (buffer)
char *buffer;

DESCRIPTION
sputJ takes the four bytes of the long integer value and places them in memory
starting at the address pointed to by buffer. The ordering of the bytes is the same
across all machines.

sgetl retrieves the four bytes in memory starting at the address pointed to by buffer
and returns the long integer value in the byte ordering of the host machine.

The combination of sputl and sgetJ provides a machine-independent way of storing
long numeric data in a file in binary form without conversion to characters.

A program which uses these functions must be loaded with the object-file access
routine library LIBDIR/libld.a.

5-187

STRING (Subroutine) STRING

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn,
strcspn, strtok - string operations.

SYNOPSIS

5-188

#include <string.h>

char *strcat (sl, s2)
char *sl, *s2;

char *strncat (sl, s2, n)
char *sl, *s2;
int n;

int strcmp (sl, s2)
char *sl, *s2;

int strncmp (sl, s2, n)
char *sl, *s2;
int n;

char *strcpy (sl, s2)
char *sl, *s2;

char *strncpy (sl, s2, n)
char *sl, *s2;
int n;

int strlen (s)
char *s;

char * strchr (s, c)
char *s;
int c;

char * strrchr (s, c)
char *s;
int c;

char *strpbrk (sl, s2)
char *sl, *s2;

int strspn (s I, s2)
char *sl, *s2;

STRING

iot strcspo (sl, s2)
char *sl, *s2;

char *strtok (sl, s2)
char *sl, *s2;

DESCRIPTION

(Subroutine) STRING

The arguments sl, s2 and s point to strings (arrays of characters terminated by a null
character). The functions straet, strneat, strepy, and strnepy all alter s1. These
functions do not check for overflow of the array pointed to by sl.

streat appends a copy of string s2 to the end of string sl. strneat appends at most n
characters. Each returns a pointer to the null-terminated result.

stremp compares its arguments and returns an integer less than, equal to, or greater
than 0, according as sl is lexicographically less than, equal to, or greater than s2.
strnemp makes the same comparison but looks at most n characters.

strepy copies string s2 to sl, stopping after the null character has been copied.
strnepy copies exactly 0 characters, truncating s2 or adding null characters to sl if
necessary. The result will not be null-terminated if the length of s2 is 0 or more.
Each function returns sl.

str/en returns the number of characters in s, not including the terminating null
character.

strehr (strrehr) returns a pointer to the first (last) occurrence of character c in string
s, or a NULL pointer if c does not occur in the string. The null character terminating
a string is considered to be part of the string.

strpbrk returns a pointer to the first occurrence in string sl of any character from
string s2, or a NULL pointer if no character from s2 exists in s1.

strspn (strespn) returns the length of the initial segment of string sl which consists
entirely of characters from (not from) string s2.

strtok considers the string sl to consist of a sequence of zero or more text tokens
separated by spans or one more characters from the separator string s2. The first call
(with pointer sl specified) returns a pointer to the first character of the first token,
and will have written a null character into sl immediately following the returned
token. The function keeps track of its position in the string between separate calls, so
that subsequent calls (which must be made with the first argument a NULL pointer)
will work through the string sl immediately following that token. In this way,
subsequent calls will work through the string sl until no tokens remain. The separator
string s2 may be different from call to call. When no token remains in sl, a NULL
pointer is returned.

5-189

STRING (Subroutine) STRING

NOTE
For user convenience, all these functions are declared in the optional <string.h>
header file.

BUGS

5-190

strcmp and strncmp use native character comparison, which is signed on PDP II
Computers and V AX II Computers, unsigned on other machines. Thus the sign of the
value returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementations. Thus
overlapping moves may yield surprises.

STRTOL (Subroutine)

NAME
strto1, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
cbar *str, **ptr;
int base;

long atol (str)
cbar *str;

int atoi (str>
cbar *str;

DESCRIPTION'

STRTOL

strtol returns as a long integer the value represented by the character string pointed to
by str. The string is scanned up to the first character inconsistent with the base.
Leading "white-space" characters (as defined by isspace in ctype) are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the
scan is returned in the location pointed to by ptr. If no integer can be formed, that
location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conversion.
After an optional leading sign, leading zeros are ignored, and "Ox" or "OX" is ignored if
base is 16.

If base is zero, the string itself determines the base thusly: After an optional leading
sign a leading zero indicates octal conversion, and a leading "Ox" or "OX" hexadecimal
conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an
explicit cast.

atol(str) is equivalent to strtol(str. (char **)NULL. 10).

atodstr) is equivalent to (int) strtol(str. (char**)NULL. 10).

SEE ALSO
ctype, scanf, strtod (3)

BUGS
Overflow conditions are ignored.

5-191

SWAB

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes>
char *from, *to;
int nybtes;

DESCRIPTION

(Subroutine) SWAB

swab copies nbytes bytes pointed to by from to the array pointed to by to, exchanging
adjacent even and odd bytes. It is useful for carrying binary data between PDP 11
Computers and other machines. nbytes should be even and nonnegative. If nbytes is
odd and positive swab uses nbytes-l instead. If nbytes is negative, swab does nothing.

5-192

INTRO (File Format) INTRO

NAME
intra - Introduction to WE 32100 Microprocessor File Formats and Include Files

DESCRIPTION
This section describes the header files and file formats used. C struct declarations
appear where useful. Several of the files apply to the object file format. The others
are useful for assembly language programming or for installation of the various pieces
of the processor. Normally, these files reside in directories under lusr/m32. Specific
installations may alter this directory as described in paths.

Briefly, three main directories contain any files for users. All descriptions of these
files use the names BINDIR, INCDIR, and LIBDIR for the command, include, and
library directories, respectively. They are set at build time.

SEE ALSO
paths

5-193

FILEHDR (File Format) FILEHDR

NAME
filehdr - File Header for WE 32100 Microprocessor Object File

SYNOPSIS
#include "filehdr.h"

DESCRIPTION
Every object file begins with a 20-byte header. The following C struct declaration is
used:

struct filehdr
{

};

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

Cmagic;
Cnscns;
Uimdat;
f_symptr;
Cnsyms;
Copthdr;
fJlags;

1* magic number *1
1* number of sections *1
1* time & date stamp *1
1* file ptr to symtab *1
1* # symtab entries *1
1* sizeof(opt hdr} *1
1* flags *1

f_symptr is the byte offset into the file at which the symbol table can be found. Its
value can be used as the offset in the UNIX System fseek command to position an I/O
stream to the symbol table. The processor uses the optional header for a UNIX
System header, which is always 28 bytes. The only valid processor magic number is:

#define FBOMAGIC 0560
#define RBOMAGIC 0562

The value in Ltimdat is obtained from the time system call. Flag bits currently
defined are:

#define F _ RELFLG
#define F _EXEC
#define F _LNNO
#define F _LSYMS
#define F _MINMAL
#define F_VPDATE
#define F_SWABD
#define F _ARI6WR
#define F _AR32WR
#define F _AR32W
#define F _PATCH
#define F _BM32B

00001/* relocation entries stripped *1
00002/* file is executable *1
00004/* line numbers stripped *1
00010/* local symbols stripped *1
00020/* minimal object file *1
00040/* update file, ogen produced *1
00100/* file is "pre-swabbed" *1
00200/* 16 bit DEC host *1
00400/* 32 bit DEC host *1
010001* non-DEC host *1
02000/* "patch"list in opt hdr *1
020001 * file contains WE 32100 code *1

SEE AlSO
m32a.out

5-194

LDFCN (File Format) LDFCN

NAME
Idfcn - WE 32100 Microprocessor Object File Access Routines

SYNOPSIS
#include <stdio.h>
#include "INCDIR/fiIehdr.h"
#include "INCDIR/Idfcn.h"

DESCRIPTION
The object file access routines are a collection of functions for reading an object file
that is in common object file form. Although the calling program must know the
detailed structure of the parts of the object file that it processes, the routines
effectively insulate the calling program from knowledge of the overall structure of the
object file.

The interface between the calling program and the object file access routines is based
on the defined type LDFILE, defined as struct Idfile, declared in the header file
Idfcn.h. The primary purpose of this structure is to provide uniform access to both
simple object files and to object files that are members of an archive file.

The function /dopen allocates and initializes the LDFILE structure and returns a
pointer to the structure to the calling program. The fields of the LDFILE structure
may be accessed individually through macros defined in Idfcn.h and contain the
following information:

LDFILE *ldptr;

TYPE (Jdptr)

IOPTROdptr)

OFFSETOdptr)

The file magic number, used to distinguish between archive
members and simple object files.

The file pointer returned by Jopen and used by the standard
input/output functions.

The file address of the beginning of the object file; the offset is
non-zero if the object file is a member of an archive file.

HEADEROdptr) The file header structure of the object file.

5-195

LDFCN (File Format) LDFCN

The object file access functions themselves may be divided into four categories:

(1) Functions that open or close an object file:
ldopen and ldaopen open a processor object file,
ldclose and ldaclose close a processor object file.

(2) Functions that read header or symbol table information:
ldahread reads the archive header of a member of an archive file,
ldfhread reads the file header of an object file,
ldshread and ldnshread read a section header of an object file,
ldtbread reads a symbol table entry of an object file.
ldgetname retrieves a symbol name from a symbol table entry or from the string table.

(3) Functions that position an object file at (seek to) the start of the section,
relocation, or line number information for a particular section:

Idohseek seeks to the optional file header of an object file,
Idsseek and Idnsseek seek to a section of an object file,
Idrseek and Idnrseek seek to the relation information for a section

of an object file,
Idlseek and Idnlseek seek to the line number information for a section

of an object file,
Idtbseek seek to the symbol table of an object file.

(4) The function Idtbindex which returns the index of a particular object file symbol
table entry.

These functions are described in detail on their respective manual pages.

All the functions except Idopen. Idaopen, Idgetname, and Idtbindex return either
SUCCESS or FAILURE, both constants defined in Idfcn.h. Idopen and Idaopen both
return pointers to a LDFILE structure.

MACROS

5-196

Additional access to an object file is provided through a set of macros defined in
Idfcn.h. These macros parallel the standard input/output file reading and
manipUlating functions, translating a reference of the LDFILE structure into a
reference to its file descriptor field.

LDFCN (File Format)

The following macros are provided:

LDFILE *ldptr;
GETC(\dptr)
FGETC (\pdptr)
GETW(Jdptr)
UNGETC(c,ldptr)
FGETS(s, n, ldptr)
FRED«char *)ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(Jdptr, offset, ptrname)
FTELL (Jdptr)
REWIND (\dptr)
FEOF(\dptr)
FERROR([dptr)
FILENO (Jdptr)
SETBUF(\dptr, bur)
STROFFSET(\dptr)

LDFCN

The STROFFSET macro calculates the address of the string table in an object file.

See the manual pages for the corresponding standard input/output library functions
for details on the use of the rest of these macros.

The program must be loaded with the object file access routine library
LIBDIRlIibld.a.

intra describes LlBDIR and INCDIR.

CAVEATS
The macro FSEEK defined in the header file Idfcn.h translates into a call to the
standard input/output UNIX System function fseek. FSEEK should not be used to
seek from the end of an archive file since the end of an archive file may not be the
same as the end of one of its object file members!

SEE ALSO
ldahread. ldclase. ldfhread. ldlread. ldlseek. ldahseek, ldapen, ldrseek, ldlseek,
ldshread, ldtbindex, ldtbread, ldtbseek, intra, ldfcn. paths

5-197

LINENUM.H (File Format) LINENUM.H

NAME
linenum - Line Number Entries in a WE 32100 Microprocessor Object File

SYNOPSIS
#include "linenum.h"

DESCRIPTION
Compilers based on pee generate an entry in the object file for each C source line on
which a breakpoint is possible. Users can then reference line numbers when using the
appropriate software test system. The structure of these line number entries appears
below.

struct lineno
(

union
(

long Uymndx;
long tpaddr;

l_addr;
Unsigned short Unno;

};

Numbering starts with one for each function. The initial line number entry for a
function has 1_lnno equal to zero, and the symbol table index of the function's entry is
in I_symndx. Otherwise, 1_lnno is non-zero and Iyaddr is the physical address of the
code for the referenced line. Thus the overall structure is the following:

I_addr
function symtab index
physical address
physical address

function symtab index
physical address
physical address

1_lnno
o
line
line

o
line
line

SEE ALSO
m32ee, m32a.out.

5-198

M32A.OUT (File Format) M32A.OUT

NAME
m32a.out - WE 32100 Microprocessor Object File Format

DESCRIPTION
This describes the default output file format from the m32as assembler, and the m32ld
link editor. The resultant file can be executed on the target machine if no errors or
unresolved references were found. In no case is the file given UNIX System execute
permissions because the object code is for the target machine; not the host machine on
which the file was created.

An object file supports user-defined sections and contains extensive information for
symbolic software testing. The overall structure of an object file is given below.

File header.
UNIX System header.
Section I header.

Section n header.
Section 1 data.

Section n data.
Section I relocation.

Section n relocation.
Section I line numbers.

Section n line numbers.
Symbol table.

See filehdr, scnhdr, reloc, linenum, and syms for descriptions of the individual parts.
Every section created by m32as contains a multiple of four number of bytes; directives
to m32ld can create a section with an odd number of bytes.

A set of functions exist to manipulate object files. See Idfcn and its associated
references for more information.

SEE ALSO
m32as, m321d, Idfcn, filehdr, linenum, reloc, schhdr, syms.

5-199

PATHS (File Format) PATHS

NAME
paths - Directory Path Names for the WE 32100 Microprocessor

SYNOPSIS
#include "paths.h"

DESCRIPTION

5-200

Users may install the SGP under four separate directories: bin for the commands, lib
for the libraries, include for the header files, and man for manual pages. After the
SGP is installed, the directories should not be moved. Users must specify the
installation directories by using the "pathedit" command before installation. "Pathedit"
is described in the README file delivered with the SGP. The following are among
the modified definitions:

#define
#define
#define
#define

BINDIR
INCDIR
LIBDIR
MANDIR

"/usr/m32/bin"
"/usr/m32/include"
"/usr/m32/lib"
"/usr/m32/man"

Additionally, users may specify a directory that processor tools should use for
temporary files.

#define TMPDIR "/usrltmp"

RELOC (File Format) RELOC

NAME
reloc - Relocation Information for a WE 32100 Microprocessor Object File

SYNOPSIS
#incIude "reloc.h"

DESCRIPTION
Object files have one relocation entry for each relocatable reference in the text or
data. If relocation information is present, it is in the following format:

struct reloc
(

) ;

long
long
short

r_vaddr ;
r_symndx;
r_type ;

#define R ABS 0
#define R DIR32 06
#define R DIR32S 012

/* (virtual) address of reference */
/* index into symbol table */
/* relocation type */

As the link editor reads each input section and performs relocation, the relocation
entries are read. They direct how references found within the input section are
treated.

R ABS The reference is absolute, and no relocation is necessary.
The entry is ignored.

R DIR32 A direct, 32·bit reference to a symbol's virtual address.

R DIR32S A direct, 32-bit reference to a symbol's virtual address.
The 32-bit value is stored in reverse order in the object file.

Other relocation types will be defined as they are needed.

Relocation entries are generated automatically by the compiler and the assembler, and
automatically utilized by the link editor. A link editor option exists for removing the
relocation entries from an object file.

SEE ALSO
m321d, m32strip, m32a.out, syms.

5-201

SCNHDR (File Format) SCNHDR

NAME
scnhdr - Section Header for a WE 32100 Microprocessor Object File

SYNOPSIS
#include "scnhdr.h"

DESCRIPTION
Every object file has a table of section headers to specify the layout of the data within
the file. Each section within an object file has its own header. The C structure
appears below.

struct scnhdr
{

};

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_name[81 ;
sJladdr;
s_vaddr;
s_size ;
s_scnptr ;
sJelptr;
sJnnoptr;
s_nreloc;
s_nlnno;
sJlag;

/* physical address * /
/* virtual address * /
/* section size * /
/* file ptr to raw data */
/* file ptr to relocation * /
/* file ptr to line numbers * /
/* # reloc entries * //
/* # line number entries * /
/* flags */

File pointers are byte offsets into the file; they can be used as the offset in a call to
the UNIX System command fseek. If a section is initialized, the file contains the
actual bytes. An uninitialized section is somewhat different. It has a size, symbols
defined in it, and symbols that refer to it. But it can have no relocation entries, line
numbers, or data. Consequently, an uninitialized section has no raw data in the object
file, and the values for s_scnptr, sJelptr, sJnnoptr, s_nreloc, and s_nlnno are zero.

SEE ALSO
m321d, m32a.out.

5-202

SYMS (File Format) SYMS

NAME
syms - WE 32100 Microprocessor Object File Symbol Table Format

SYNOPSIS
#include "syms.h"

DESCRIPTION
Processor object files contain information to support symbolic software testing. Line
number entries, linenum, and extensive symbolic information permit testing at the C
source level. The symbol table for every object file is organized as:

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the structure hold
the name (null padded), its value, and other information. The C structure is:

#define SYMNMLEN 8
#define FILNMLEN 14

struct syment
{
union
{

char _n_name[SYMNMLEN); /* symbol name */
struct
{

long JI_zeros; /* ==OL when in
string table * /

long _n_offset; /* location of
name in table */

5-203

SYMS (File Format) SYMS

5-204

};

} n n;
char-* _n_nptr[21;

unsigned long
short
unsigned short
char
char

#define n_name _n._n_name
#define n_zeros _n._n_n._n_zeros
#define n offset n. n n. n offset
#define n=nptr _~._~_~ptai1

/* allows overlaying * /

n_value ;/* value of symbol */
n_scnum ;/* section number */
n_type ;/* type and derived type */
n _sclass ;/* storage class * /
n_numaux ;/* number of aux entries */

Some symbols require more information than a single entry; they are followed by
auxiliary entries that are the same size as a symbol entry. The format is:

union auxent
{

struct
{

long
union
{

struct
{

}xJnsz;

unsigned short x Jnno;
unsigned short x_size;

long x Jsize;
} x_mise;
union
{

struct
{

} xJcn;
struct
{

unsigned short

long xJnnoptr;
long x_endndx;

unsigned short x_dimen[DIMNUM1;
x-ary;
xJcnary;
iUvndx;

SYMS

struct
{

struct
{

struct
{

};

(File Format)

char xJname[FILNMLEN);
xJile;

long x_scnlen;
unsigned short x_nreloc:
unsigned short x nlinno:

long x _tvfill;
unsigned short x tvlen;
unsigned short x=tvran[2);
x_tv;

Indices of symbol table entries begin at zero.

SEE ALSO
m32a.out, linenum.

SYMS

5-205

Glossary and

Acronyms

Absolute deferred mode - An address
mode that uses an address embedded in
the operand to locate a pointer to data.

Absolute mode - An address mode that
uses an address embedded in the
operand to locate data.

Address arithmetic unit (AAU) - Fetch
unit element that calculates 32-bit
addresses.

Argument pointer (AP) - User register
that points to the beginning location in
the stack where a set of arguments for
a function has been pushed.

Arithmetic logic unit (ALU) - On-chip
unit that performs arithmetic
operations on 32-bit data.

Assert - To drive a signal to its active
state.

Bit field - A sequence of I to 32 bits
contained in a base word. The field is
specified by the address of its base
word, a bit offset, and a width.

Bit offset - Identifies the starting bit of
the field in its base word. The offset
ranges from 0 to 31.

Bus interface control - Provides all the
strobes and control signals necessary to
implement the interface with
peripherals.

Byte - An 8-bit quantity that may appear
at any address in memory.

Cache - A high-speed memory filled at a
lower speed from main memory. Used
to reduce memory access time.

Cache disable (CD) - A field in the PSW
that enables and disables the
instruction cache.

Cache flush disable (CFD) - A field in
the processor status word (PSW) that
enables and disables instruction cache
flushing (emptying of the cache's
contents) when a new process is loaded

via the XSWITCH_TWO
micro sequence.

GLOSSARY

Condition codes (NZVC) - The flags in
this 4-bit field reflect the resulting
status of the most recent instruction
execution which affects them. The
four flags are negative (N), zero (Z),
overflow (V), and carry (CL

Coprocessor - A support processor that
operates synchronously with the CPU
to provide greater throughput in
arithmetic or I/O functions.

Current execution level (CM) - A 2-bit
field in the PSW that represents the
current execution level. The four
execution levels are kernel, executive,
supervisor, and user.

Dedicated registers - Seven registers
(r9-rl5) that have specific,
predetermined functions.

Displacement mode - An address mode
that uses a register and an offset, both
embedded in the operand, added
together to form the address of data.

Displacement deferred mode - An address
mode that uses a register and an offset,
both embedded in the operand, added
together to form the address of a
pointer to data.

Enable overflow trap (OE) - A field in
the PSW that enables overflow traps.

Exception type (ET) - A 2-bit field in the
PSW that indicates exceptions
generated during operations. The four
types of exceptions are normal, stack,
process, and reset.

Exceptional conditions - Events other
than interrupts and reset requests that
may interrupt the execution of a
program. The four classes of
exceptional conditions are normal
exceptions, stack exceptions, process
exceptions, and reset exceptions.

GLOSSARY

Execute unit - The elements in this unit
perform all arithmetic and logic
operations, perform all shift and all
rotate operations, and compute the
condition flags.

Expanded-operand-type mode - An
address mode that changes the type of
the instruction for an operand and
those that follow it in the instruction.
It does not affect immediate operands.

Faults - Error conditions that are
detected outside the microprocessor
and conveyed to the microprocessor
over its fault input FAULT.

Fetch unit - The elements in this unit
handle the instruction stream and
perform memory-based operand
accesses.

Frame pointer (FP) - User register that
points to the beginning location in the
stack of a function's local variables.

Full interrupt - Interrupt whose handling
routine implements a process switch to
the interrupt's handler. All interrupts
are handled via the full interrupt
sequence if the QIE bit in the PSW is
cleared (0).

General-purpose registers - Nine registers
(rO-r8) that may be used for high­
speed accumulation, for addressing, or
for temporary data storage.

Halfword - 16-bit quantity that may
appear at any address in memory that
is divisible by 2.

Immediate and displacement extractor -
Provides address calculation data to the
address arithmetic unit (AAU) for its
use in calculating 32-bit addresses.

Immediate mode - An address mode
where the operand contains actual data
to be used by instruction.

Instruction cache - A 64- by 32-bit
on-chip cache used to increase the
microprocessor's performance by

reducing external memory reads for
instruction fetches.

Instruction queue - An 8-byte, first-in­
first-out (FIFO) on-chip queue that
stores prefetched instructions.

Internal state code (ISC) - A 4-bit field
in the PSW that distinguishes between
exceptions of the same exception type.

Interrupt - A means by which external
devices may request service by the
microprocessor.

Interrupt priority level (IpL) - A 4-bit
field in the PSW that represents the
current interrupt priority level.

Interrupt stack pointer (ISP) - User
register that contains the 32-bit
memory address of the top of the
interrupt stack.

Main controller - The microprocessor's
central control unit. It is responsible
for acquiring and decoding instruction
opcodes and directing the action of the
fetch and execute controllers.

Memory management unit (MMU) - A
software or hardware unit, or
combination of both, that translates
virtual addresses into physical
addresses and verifies access
authorization. The WE 32101
Memory Management Unit provides
this function for the CPU.

Negate - To drive a signal to its inactive
state.

Nonmaskable interrupt - Type of
interrupt that interrupts the
microprocessor regardless of the
priority level in the IPL field of the
PSW.

Normal exceptions - A class of
exceptional conditions generated by the
microprocessor when it detects a
condition such as a trap, invalid
opcode, or illegal operation.

Operand descriptor - First byte of an
operand defining which address mode
and register the operand uses.

Pipe lining - Overlapping the execution of
instructions to increase the
microprocessor's performance.

Prefetch - A technique where the CPU
fetches an instruction prior to the
completion of previous instructions.

Previous execution level (PM) - A 2-bit
field in the PSW that represents the
previous execution level. The four
execution levels are kernel, executive,
supervisor, and user.

Privileged instruction - An operating
system group instruction that can
execute only in kernel execution level.

Process control block (PCB) - A process
data structure in external memory that
saves the context of a process when the
process is not running. This context
consists of the initial and current
contents of control registers (PSW, PC,
and SP), the last contents of registers
rO through riO, boundaries for an
execution stack, and memory
specifications for the process.

Process control block pointer (PCBP) -
User register that points to the starting
address of the process control block for
the current process.

Process exceptions - A class of
exceptional conditions that may occur
during a process switch.

Processor status word (PSW) - User
register that contains status
information about the microprocessor
and the current process.

Program counter (PC) - User register
that contains the 32-bit memory
address of the instruction being
executed or, upon completion, contains
the starting address of the next
instruction to be executed.

GLOSSARY

Quick interrupt - An interrupt whose
handling routine pushes the old PSW
and PC on the stack and fetches a new
PSW and PC that correspond to the
interrupt's handler. For this reason the
quick interrupt handling routine
requires less time than a full interrupt
which implements a process switch to
the interrupt's handler. Interrupts are
handled via the quick-interrupt
sequence if the QIE bit in the PSW is
set (1).

Quick-interrupt enable (QIE) - A field in
the PSW that enables and disables the
quick-interrupt facility.

Read interlocked operation - An operation
which consists of a memory fetch (read
access), one or more internal
microprocessor operations, and then a
write access to the same memory
location.

Register deferred mode - An address
mode that uses a register name,
embedded in an operand, which
contains a pointer to data to be used
by the instruction.

Register mode - An address mode that
uses a register name, embedded in an
operand, which contains data to be
used by the instruction.

Register-initial context (RI) - A 2-bit
field in the PSW that controls the
microprocessor context switching
strategy.

Reset exceptions - A class of exceptional
conditions that is triggered by an error
condition in accessing critical system
data.

Scratch registers - User registers rO, rl,
and r2. These three registers are used
by the C compiler to store temporary
values and also return specific values
during procedure calls.

GLOSSARY

Short offset mode - An address mode that
uses an offset embedded in an operand.
The offset is added to the frame
pointer or argument pointer to form
the address of data.

Sign extension - Automatic extension of a
byte or halfword value to 32 bits by
filling the high-order bits with the
value of the sign bit.

Stack exceptions - A class of exceptional
conditions that may occur during a
process switch or a GATE sequence.

Stack pointer (SP) - User register that
contains the current 32-bit address of
the top of the execution stack; i.e., the
memory address of the next item to be
stored on (pushed onto) the stack or
the last item retrieved (popped) from
the stack.

Trace enable (TE) - A field in the PSW
that enables the trace function.

Trace mask (TM) - A field in the PSW
that enables masking of a trace trap.

Trace mechanism - An interpretive
diagnostic trace trap using two bits in
the PSW, trace enable (TE) and trace
mask (TM), to analyze each executed
instruction.

User registers - The sixteen 32-bit
registers (rO-rI5) that are available to
the user. The user registers consist of
nine general purpose registers (rO-r8)
and seven dedicated registers
(r9-rI5).

Vestigial cycle - A clock cycle that
follows every access and is provided to
allow enough time for a memory
management unit to release the shared
address bus.

Wait-state - Idle periods that may be
generated during a bus transaction to
allow slow peripherals to handshake
with the microprocessor.

Width - The size of a bit field. Width
plus one is the number of bits in the
field. The width ranges from 0 to 31.

Word - A 32-bit quantity that may
appear at any address divisible by 4.

Working registers - Registers that are
used exclusively by the microprocessor
and are not user-accessible.

Zero extension - Automatically extending
a byte or halfword value to 32 bits by
filling the high-order bits with zeros.

3-state - To place an input in a high­
impedance state.

AAU - Address arithmetic unit

ALU - Arithmetic logic unit

AP - Argument pointer

BPT - Breakpoint trap

BSS - Bounded static storage

C - Condition flag bit carry

CALLPS - Call process

CD - Cache disable

CFD - Cache flush disable

CM - Current execution level

CMOS - Complimentary metal-oxide

semiconductor

COFF - Common object file format

COPY - "Copy" section

CPU - Central processing unit

CR - Configuration register

DMA - Direct memory access

DSECT - "Dummy" section

EPROM - Eraseable programmable ROM

ET - Exception type

FL T AR - Fault address register

FL TCR - Fault code register

FP - Frame pointer

I/O - Input/output

IPL - Interrupt priority level

ISC - Internal state code

ISP - Interrupt stack pointer

LIFO - Last-in-first-out

LRU - Least recently used

LSB - Least significant bit

mmmm - Mode field

MMU - Memory management unit

MSB - Most significant bit

ACRONYMS

N - Condition flag bit negative

NOP - No operation

OE - Overflow enable

PC - Program counter

PCB - Process control block

PCBP - Process control block pointer

PD - Page descriptors

PDT - Page descriptor table

PM - Previous execution level

POT - Page offset field

PPC - Prefetch counter

PSL - Page select field

PSW - Processor status word

QIE - Quick-interrupt enable

RAM - Random access read/write memory

RI - Register-initial

ROM - Read-only memory

rrrr - Register field

RSB - Return from subroutine

SD - Segment descriptors

SDP - Software demand paging

SDT - Segment descriptor table

SGP - Software generation programs

SID - Section ID field

SOT - Segment offset field

SP - Stack pointer

SSL - Segment select field

TE - Trace enable

TM - Trace mask

TT - Trace trap

TTL - Transistor-transistor logic

V - Condition flag bit overflow

Z - Condition flag bit zero

Index

A

AAU. See Address arithmetic unit
ABSOLUTE, 5-24
Absolute

address modes, 3-10
binary file, 5-3, See also Object

file format
deferred, 3-11

Access protection, 4-43
Accessing

library, 5-117
macros, 5-121

Address
and data bus, 2-1
assigned to symbols, 5-53
assigning of, 5-53
fault, 2-30
mode absolute, 3-10
mode absolute deferred, 3-11
modes, 3-6
mode syntax, 3-8
physical, 5-56, 5-78
printing of computed, 5-108
range of target processor, 5-53
signals, 2-75
virtual, 4-36, 5-56, 5-78

Address arithmetic unit (AAU), 2-1
Addressing modes

absolute, 3-10
absolute deferred, 3-10
argument pointer (AP) short offset, 3-15
byte displacement, 3-11
byte displacement deferred, 3-12
byte immediate, 3-16
displacement, 3-11
expanded operand type, 3-20
frame pointer (FP) short offset, 3-15
halfword displacement, 3-12
halfword displacement deferred, 3-13
halfword immediate, 3 -1 7
immediate, 3-16
negative literal, 3 -18
positive literal, 3-18
register, 3-19
register deferred, 3-19
short offset mode, 3-15

syntax, 3-8
word displacement, 3-14
word displacement deferred, 3-14
word immediate, 3-17

.align, 5-35
Alignment

data, 2-10
fault, 2-10, 2-68
fault bus activity, 2-56
fault properties, 2-68
output section, 5-57
pseudo operation, 5-35

Allocating sections, 5-61, 5-65
Allocation algorithm, 5-65
Allocation errors, 5-70
ALU. See Arithmetic logic unit
a.out header, 5-80
Arbitration signals, 2-48
Architecture, 1-2, Chapt. 2

overview, 2-1
pipelining, 2-1, 2-57

Archive
distinguishing members from object

files, 5-118
magic number, 5-118
maintainer, m32ar, 5-103

INDEX

opening and closing files, 5-118
ordering of libraries, m3210rder, 5-114
reading of header, 5-120
stripping information from

libraries, m32strip, 5-116
use of libraries, 5-63, 5-121, 5-117

Argument macros, 5-19
Argument pointer (AP), 2-4, 3-8, 5-38

short offset mode, 3-15
Arithmetic instructions, 3-25
Arithmetic logic unit (ALU), 2-2

execute controller, 2-1
Arrays, symbol table entry, 5-99
asm, assembler escape, 5-7
Assembled files, 5-15
Assembler, 5-13

directives, 5-31
escapes, 5-7
example of programming, 5-43
language, 5-22
m32as, 5-14

INDEX

m32as and registers, 5-26
m32as and sections, 5-15
m32as diagnostics, 5-15
m32as location counter, 5-15
m32as macro processing facilities, 5-16
m32as options, 5-14
m32as use; 5-13
predefined interface macros,

M4 processor, 5-16
restrictions on macros, 5-19
syntax, 5-14

Assembly language, 5-22
applications requiring, 5-13
descriptions, 5-22 thru 5-43
function calling, 5-37
statements, 5-22
symbols, 3-36, 5-23

Asserted signal, 2-13, 2-70
Assigning of structures, 5-9
Assigning of values and

types to symbols, 5-25
Assignment

pseudo operation, 5-33
statements, 5-53
to dot, 5-34

Asynchronous read, 2-15
Asynchronous write, 2-18
Auto-vector interrupt, 2-45, 4-24
Auxiliary table entries, 5-97

B

Beginning of blocks
and functions, 5-100

Bit field
base word, 2-8
defined, 2-8, 3-1
instructions, 3-1
offset, 2-8, 3-1
width, 2-8, 3-1

Blockfetch operation, 2-25
Borrow, 3-23
Branch, 3-43 thru 3-60, See also

Program control instructions
BSS,5-24
.bss section, 5-15, 5-31, 5-32, 5-82

finding size of, 5-82
grouping together, 5-58
section header, 5-82
initialized, 5-61

Bus
address, 2-1, 2-12, 2-75
arbitration, 2-49
data, 2-1, 2-75
exceptions, 2-30
exceptions, retry and relinquish, 2-34
operation, Chapt. 2
request, 2-51

.byte, 5-32, 5-35
Byte

c

data, 2-8, 3-1
descriptor, 3-8
displacement deferred mode, 3-12
displacement mode, 3-11
immediate mode, 3-16
ordering and m32conv, 5-106

Carry, 3-23
C language, 5-1, 5-6

calling sequence, 5-37
examining object files from, 5-117
features, 5-1, 5-6
flag, 5-79
macros, 5-16
preprocessor, 5-4
stack frame, 5-37

Cache
instruction, 2-1, 2-6
instruction cache flush, 2-7
instruction cache hit, 2-55
memory, 4-42
MMU descriptor, flushing, 4-41

Call process instruction, 4-16, 4-46
Central processing unit (CPU), 1-2

architecture, Chapt. 2
instructions, Chapt. 3
operation, Chapt. 2
register syntax, 3-3, 3-9, 5-26
registers, 2-3, 3-3, 5-26

Changing entry point, 5-62

Classes, CPU output, 2-84
Clock

input, 2-11, 2-83
state, 2-12

Closing object files, 5-118
Common object file format (COFF), 5-77
Compiler, 5-3

m32cc,5-3
options, 5-4
register usage, 5-6

Complete structure and union member
reference qualifications, 5-11

Compress utility, m32cprs, 5-107
Condition flags, 2-4, 3-1, 3-22, 3-23, 3-34
Constants, 5-25
Context switching strategy, 4-17
Control-register save area, 4-7
Controllers

main, 2-1
executive, 2-1
fetch, 2-1

Coprocessor, 2-58
broadcast, 2-58
data write, 2-65
instructions, 3-32
operand fetch, 2-63
status fetch, 2-64

Corrupt input files, 5-68
Creating and defining symbols, 5-60
Creating holes within

output sections, 5-59
Current execution level (cm),

2-5,4-11

D

.data, 5-31, 5-32
Data

alignment fault properties, 2-68
embedded in operands, 3-6
generation pseudo operations, 5-35
in memory, 2-10
transfer instructions, 3-23
types, 2-8, 3-1

Deferred address modes, 3-6
Diagnostics, See Error

Direct memory access (DMA), 2-51
Disassembler

m32dis, 5-108
m32dis error messages, 5-110
options, 5-108

Disassembly, 5-27, 5-44
Displacement modes, 3-11
DMA, See Direct Memory Access
DSECT, COPY and NLOAD sections

output file blocking, 5-67

E

Efficient mapping strategies, 4-41
Electrical

requirements, 2-84
specifications, 2-86

End
of blocks and functions, 5-100
of structures, 5-99

Entry point, 4-14
Enumerations

constants, 5-7
enumeration-tag, 5-7

Epilogue sections, 5-43
Error

messages, 5-68
messages, m32as, 5-15
messages, m32conv, 5-107
messages, m32cprs, 5-107
messages, m32dis, 5-110
messages, m32dump, 5-113
messages, m321d, 5-68
messages, m32list, 5-113
messages, m32nm, 5-115
messages, m32strip, 5-116

Exception
breakpoint trap, 2-67, 4-33
conditions, 2-66, 4-30
defined, 2-66, 4-30
external memory, 2-68, 4-33
gate vector, 2-68, 4-36
handler, 4-30
illegal level change, 2-68, 4-33
illegal opcode, 2-68, 4-33
integer overflow, 2-67, 4-33

INDEX

INDEX

integer zerodivide, 2-68, 4-33
interrupt-stack fault, 2-66, 4-36
invalid descriptor, 2-68, 4-33
new-PCB fault, 2-66, 4-35
normal, 2-67, 4-32
old-PCB fault, 2-66, 4-35
on-normal exception, 2-67, 4-32, 4-65
on-process exception, 2-67, 4-35, 4-69
on-reset exception, 2-67, 4-35, 4-71
on-stack exception, 2-67, 4-33, 4-67
privileged-opcode, 2-68, 4-33
privileged-register, 2-68, 4-33
process, 2-67, 4-35
reserved-data-type, 2-68, 4-33
reserved opcode, 2-68, 4-33
reset, 2-67, 4-35
severity, levels of, 2-67, 4-30
stack, 2-67, 4-33
system-data, 2-66, 4-36
trace trap, 2-68, 4-33

Executable instructions, assembly
language, 5-27

Execution
modes, levels, 2-5,4-1,4-5,4-11
privilege, 4-5
stack, 4-5

Executive mode (level 1),4-1
Expanded -operand

type mode, 3-20
Explicit process switch, 4-3, 4-16

F

Fault,
blockfetch, 2-37
defined, 2-30
exception mechanism, 4-30, 2-68
memory, 2-30, 2-68, 4-41
stack fault, 4-33

Features of the operating system, 4-1
Fields in the PSW, 2-4, 4-10
File

a.out header, 5-80
address, 5-118
contents of header, 5-79
conversion, 5-105

flags, 5-79
header, 5-79
magic number, 5-118
name pseudo operation, 5-37
names, auxiliary table, 5-98
pointer, 5-118
reading of header, 5-120
sections, 5-82
seeking to header, 5-120
specifications, 5-56

Flexnames, 5-7
Flushing

instruction cache, 2-7
MMU descriptor cache, 4-41

Frame pointer (FP), 2-4, 3-8
short offset mode, 3-15

Full interrupts, 2-42, 4-29
Full-interrupt handler's PCB, 4-25
Function

G

accessing, 5-118
auxiliary table entries, 5-100
call stack frame, 5-41
called, 5-39
calling, 5-39
calling sequence, 5-37
index return, 5-120
interface macros, 5-17
names, listing, 5-108
returning structure values, 5-9
saving no registers, 5-44
symbols for, 5-84
to close, 5-118
to open, 5-118
to read, 5-120
to return aggregate values, 5-9
to return symbol index, 5-120
to seek, 5-120

Gate, 4-10
instruction, 4-14, 4-57
mechanism, 4-13
return from, 4-16

Gate-PCB fault, 4-16, 4-35
Gate-vector fault, 4-15, 4-36

General-purpose library, 5-121
General-purpose registers, 2-4, 3-3, 5-26
General-register save area, 4-7

H

Halfword
boundary, 2-10
data, 2-8, 3-1
displacement deferred mode, 3-13
displacement mode, 3-12
immediate mode, 3-17

Handling-routine tables, 4-13
Header

file Odfcn), 5-117
reading of information, 5-120

Holes in physical memory, 5-64
Host computers for SGP, 5-2

I bit, 4-17
ifiles, 5-48
Immediate modes, 3-16
Implicit process switch, 4-3, 4-23, 4-28,

4-34, 4-35, 4-36
Include files, 5-118
Indirect segment descriptors, 4-42
Initial context for a process, 4-9, 4-17
Initialize

section holes, 5-61
memory management unit, 4-40

In-line procedure expansion, 5-13
Inner blocks, 5-86
Input specifications, 2-86
Instruction format, 3-6
Instruction set, 1-4, 3-1, 5-13, 5-38

descri ptions, 3 -33
functional groups, 3-23
listings, 3-33
operating system, 4-2, 4-43
summary by function, 3-126
summary by mnemonic, 3-132
summary by opcode, 3-136

Instruction cache hit, 2-55

Interface macros, 5-17
Interlocked operation, read, 2-22
Internal errors, 5-70
Internal reset, 2-52
Internal State Code (ISC), 2-5, 2-66,

4-11,4-32 thru 4-36
Interrupt

acknowledge, 2-42, 4-24
auto-vector, 2-45, 4-24
handler model, 4-23
handler's PCB, 4-25
mechanism, 4-24
nonmaskable, 2-45

INDEX

on-interrupt microsequence, 4-28, 4-73
request and acknowledge codes, 2-44
returning from, 4-29

li\:

quick interrupt, 2-48, 4-29
signals, 2-79
stack, 4-26
stack pointer (ISP), 2-7, 4-26
stack and ISP, 4-26
structure, 4-23
vector table, 4-27

Kernel mode Clevel 0), 4-1

L

Ldaclose, 5-118
Ldaopen, 5-117
Ldclose, 5-118
Ldfcn. See Header file, 5-117
Ldfile structure, 5-117
Ldopen, 5-117
Ldtbindex, 5-117
Least significant bit (LSB), 2-8, 3-1
Least significant byte, 5-30
Levels of exception severity, 4-30
Library,

access routines, 5-117
archive file, 5-63
functions and macros, 5-118
general purpose, 5 -121

INDEX

routines, 5-102, 5-122
Line

listing of numbers, 5-113
number pseudo operation, 5-37
numbers, 5-84
numbers, stripping from an object

file, 5-116
seeking numbers, 5-118, 5-120

Link editing in one pass, 5-102
Link editor, m321d, 5-48

assignment statements, 5-53
command language, 5-51
command line options, 5-50
error messages, 5-68
ifiles, 5-48
initialization of . bss, 5-61
library order and m321d, 5-114
memory configurations, 5-53
notes on m32ld use, 5-62
options to m321d, 5-50
reserved names for m321d, 5-52
section definition directives, 5-55

List utility, m32list, 5-113
Listing

assembly language programs,
m32dis, 5-108

instruction set, 3-33
&lit defined, 3-8, 3-18
Load specified address section, 5-57
Location counter, 5-25
Logical instructions, 3-26

M

m32a.out. See Object file format
m32ar. See Archive
m32as. See Assembler
m32cc. See Compiler
m32convert. See Object file converter
m32cprs. See Compress utility
m32dis. See Disassembler
m32dump. See Object file dumper
m321d. See Link editor
m32list. See List utility
m32lorder. See Object file order
m32man. See On-line documentation

m32nm. See Name list utility
m32size. See Object file section size
m32strip. See Strip utility
Machine independent instruction set, 5-45
Macro processing facilities, M4, 5-16

reserved words, 5-21
Macros

accessing, object files, 5-121
assembler, 5-17

Main controller, 2-1
Memory

link editor configurations, 5-53
management, 2-10, 4-36
management, virtual, 4-4, 4-36
options, 4-37, 2-10
PCB specifications, 4-9
translation, 4-37

Memory management unit
(MMU), 2-10, 4-36

exceptions, 4-41
initialized, 4-40
interactions, 4-40
mapping strategies, 4-41
peripheral mode, 4-40
transla tion

continuous segment, 4-37
paged segment, 4-37

Microprocessor
architecture, 2-1, 4-1
bus arbitration, 2-48
bus exceptions, 2-30
characteristics, Cha pt. 2
coprocessor interface, 2-58
data handling, 2-8
exceptional conditions, 2-66
features of the operating systems, 4-1
operating requirements, 2-83
output classes, 2-84
outputs during DMA, 2-51
outputs during reset, 2-53
pin assignments, 2-70
registers, 2-3, 3-3
signals for interfacing, 2-75 thru 2-83
specifications, 2-83
trace mechanism, 2-69

Microsequence, 4-2, 4-64
on-interrupt, 4-28, 4-73

on-normal, 4-32, 4-65
on-process, 4-35, 4-69
on-reset, 4-35, 4-71
on-stack, 4-33, 4-67
XSWITCH, 4-21, 4-22, 4-28, 4-77

Misuse
expressions, 5-72
link editor directives, 5 -71
options, 5-72

mmmm field (address mode
field), 3-10

Mnemonic, 3-1, 3-6
Modifier options, 5-111
Most significant bit, 2-8, 3-1

N

Name list utility, m32nm, 5-114
Names related to structures, unions

and enumerations, 5-100
Negated signal, 2-13, 2-70
Negative literal mode, 3-18
New flexibility for member

names, 5-10
New-PCB fault, 2-66,4-35
Nonmaskable interrupt, 2-45
NonpriviJeged instructions, 4-56
Nonrelocatable input files, 5-67
Nonunique structure member

names, 5-9
Nonunique tag names allowed, 5-12
Normal exceptions, 4-32

o

Object file
archive, m32ar, 5-103
access functions, 5-118
access routines, 5-117
conversion, m32conv, 5-105
converter, m32convert, 5-105
dumper, m32dump, 5-111
format, features of, 5-77
opening and closing, 5-118

order, m3210rder, 5-114
relocatable, 5-83
section headers, 5-81
section size, m32size, 5-116
sections of, 5-82
stripping information from,

m32strip, 5-116
symbols, 5-84
symbol table, 5-114

Object traps, 4-42
Old-PCB fault, 2-66, 4-35
On-interrupt microsequence, 4-28, 4-73
On-line documentation,

m32man, 5-103, 5-123
On-normal exception, 2-67, 4-32, 4-65
On-process exception, 2-67, 4-35, 4-69
On-reset exception, 2-67, 4-35, 4-71
On-stack exception, 2-67, 4-33,4-67
Opcodes, 3-34, 3-136
Operand, 3-6, 5-28

See also Addressing modes
data embedded in, 3-6
descriptor, 3-6, 5-30
in instruction format, 3-6
syntax, 3-8, 5-28

Operating system
considerations, Chapt. 4
features, 4-1
instructions, 4-2, 4-43
support, 1-4, Chapt. 4

Operation
read,2-12
write, 2-12

Operator precedence, 5-52
opnd. See Operand
Optimization, 5-4, 5-43
Optimizer, 5-4
Optional header, 5-80
Output

classes, 2-84
errors in m321d, 5-69
file blocking, 5-68
file, redirection from

m32conv, 5-106
sections, 5-55, 5-65
specifications, 2-86

INDEX

INDEX

p

PC. See Program counter
PCB. See Process control block
PCBP. See Process control block pointer
Peripheral mode, 4-40
Physical

address, 2-10, 4-36
memory, 2-10, 4-13, 4-36

Pin assignments, 2-70
Pipelining, 2-1, 2-57
Pointer table, 4-13
Positive literal mode, 3-18
Predefined macros, use of, 5-20
Previous execution level (PM), 2-5, 4-11
Privileged

execution modes, 4-1, 4-5
instructions, 4-2, 4-44
opcode, exception, 2-68
register, 2-3, 3-4
register exception, 2-68

Procedure transfer, 3-28
Process,

defined, 4-1
exceptions, 2-67, 4-35
structure of a, 4-4
switching, 4-1, 4-16

Process control block (PCB), 4-4, 4-6
Process control block pointer

(PCBP), 2-7, 4-5
locations, 4-6, 4-7
register, 3-3, 4-5

Processor. See Central processing unit
Processor status word (PSW), 2-4, 4-10

fields, 2-5, 4-11
register, 2-3, 3-3

Program control instructions, 3-28
Program counter (PC), 2-8, 3-4
Programming example, assembly, 5-43
Prologue sequence, 5-17, 5-43
Pseudo operations, 5-31

Q

Quick interrupt, 2-48, 4-29, 4-23

R

R bit, 4-17
Register, 2-3, 3-3

as an operand, 3-3
assembler syntax, 3-4
compiler usage, 5-6
modes, 3-19
reading from a, 3-6
save area, 3-28, 5-38
writing to a, 3-6

Registers defined, 5-26
Relinquish and retry, 2-34
Relinquish and retry of blockfetch, 2-42
Relocatable symbols, 5-83
Relocation, 5-83

entries, 5-83
seeking entries, 5-118, 5-120
stripping entries, 5-116
types, 5-83

Removing duplicate structures, 5-107
Reserved

data type exception, 2-68, 4-33
opcode, exception, 2-68, 4-33
symbol names, 5-52, 5-21

Reset, 2-52
exceptions, 4-35, 4-71, 2-66
internal, 2-52
sequence, 2-54
signal, 2-53
states, 2-53

Restrictions, macros, 5-19
Retry, 2-34
Return

from gate, 4-16, 4-62
from interrupt, 4-29
instruction set commands, 3-94
to process, 4-22, 4-52

rrrr field (register field), 3-10
Routines

general purpose library, 5-122
printf and scanf, 5 -123

s

Save-context area, 4-7
Saved context for a process, 4-9, 4-17
Scratch register ~acros, 5-19
Second entry point, 4-15
Section

control pseudo operations, 5-31
definition directives, 5-55
definition of, 5-78
headers, 5-81
numbers, 5-93

Sections, See also .bss section,
.data section, and .text section

aligning, 5-57
allocating into memory, 5-61
assigning symbols, 5-60
auxiliary table entry for, 5-98
binding, 5-56
creating holes in, 5-59
grouping of, 5-58
initialize, 5-61
loading, 5-57
output, 5-56
seeking to, 5-ll8, 5-120
user-defined, 5-55

SECTIONS directives,
5-55 thru 5-68, 5-82

Seeking file headers, 5-79, 5-120
Selective inclusion, 5-63
Sending object files, 5-106
Shell commands, and utilities, 5-102
Sign and zero extension, 3-3
Signal sampling points, 2-11
Software Generation Programs

(SGP), 1-5, Chapt. 5
distinctive features, 5-1

SP. See Stack pointer
Space restraints, 5-73
Special symbols, 5-84
Stack

and miscellaneous
instructions, 3-32, 3-l31

bounds, 4-6, 4-33
exceptions, 2-67, 4-33, 4-67
execution, 4-5
fault, 4-33

frame, 3-28, 5-38
frame macros, 5-19
interrupt, 4-6, 4-26

Stack-bound, 4-8
exception, 4-33
fault, 4-33

INDEX

Stack-exception handler, 3-32,4-6, 4-34
Stack pointer (SP), 2-7, 3-28, 3-36
Standard UNIX System a.out

header, 5-80
Statements, assembly language, 5-22
Standard input (output),

Stdio, 5-117
Storage classes, 5-90
String table, 5-101
Strip utility, m32strip, 5-116
S truc'ture,

assignment, 5-7, 5-9
field names, 5-9, 5-10
member name restrictions, 5-10
member names, 5-9, 5-10
of a process, 4-4
operands, 5-9
references, 5-11
symbol table entries, 5-97
tag names, 5-12

Structure-tag, 5-8
Structure-valued arguments, 5-7
Subroutine transfer, 3-28
Subsystems link editing, 5-66
Supervisor mode (level 2), 4-1
Support, application, 1-4
Symbol information

finding index of, 5-ll8
name field, 5-90
reading, 5-120
storage classes, 5-90
value field, 5-90

Symbol table, 5-84
auxiliary entries, 5-97
displaying, 5-114
entries, 5-89
entry format, 5-89, 5-97
functions reading, 5-89
removing, 5-ll6
seeking, 5-120
stripping, 5-116

INDEX

Symbolic
debugger, 5-6
debugging, and assembly code, 5-17
debugging pseudo operations, 5-36
debugging symbols, 5-93
information, 5-1, 5-2

Symbols
creating and defining, 5-23
for functions, 5-89
pseudo-ops for, 5-33

Synchronous
read, 2-13
write, 2-18

Syntax diagram for input, 5-74
System reset, 2-52

T

Tag names, 5-99
Target machine, 5-106
Target processor address range, 5-53
TEXT,5-24
.text section, 5-31, 5-33

and m32conv, 5-106
Trace mechanism, 2-69

trace enable (TE), 2-69
trace mask (TM), 2-69
trace trap (TT), 2-68

truth table, 2-69
Transferring structure value, 5-9
Translation virtual, 4-37
Trap, 2-66, 4-30
TTL

input, 2-84
input specifications, 2-86

tttt field (data type), 3-20, 3-21
TYPE,5-118
Type

entry, 5-94
field, 5-94

Type-checking for structures, 5-11
Types, symbol, 5-24

u

UNDEFINED, 5-24
Unions, 5-11, 5-12
UNIX System, 1-5, 5-1

and utilities, 5-103
a.out header, 5-80
archive maintainer, 5-103, 5-114

User mode {level 3),4-1
User registers, 2-3, 3-3
Utilities and library routines, 5-102
Utility programs

v

m32ar, 5-103
m32conv, 5-105
m32convert, 5-105
m32cprs, 5-107
m32dis, 5-108
m32dump, 5-111
m32list, 5 -113
m3210rder, 5-114
m32nm, 5-114
m32size, 5-116
m32strip, 5-116

Value types, assembler, 5-24
ABSOLUTE, 5-24
BSS, 5-24
DATA,5-24
TEXT,5-24
UNDEFINED, 5-24

Vertical tab character literal, 5-13
Virtual

address, 5-56, 4-37
address space, 4-36, 5-53
memory, 4-36, 4-40, 5-53
memory, division of, 5-54, 4-37

w

Word
address modes, 3-9
data, 2-10, 3-1
boundary, 2-10
displacement deferred mode, 3-14
displacement mode, 3-14
immediate mode, 3-17

Writing and reading registers, 3-6

x

XSWITCH function, 4-21, 4-22, 4-28, 4-77
XSWITCH_ONE,4-77
XSWITCH_TWO,4-78
XSWITCH_THREE,4-79

z

Zero extension, 3-3, 3-6

INDEX

