e) - .

o & H = A . o .

g F, 4 *% & i aes T Eg

"‘3’?- S & ;—'5;) iﬁg“‘*" T e
. /a - 8 9 A
A 5 7

Vi

Self-Training Manual

 PA-800516
Issue 1, April 1979

NOTICE
Not for use or disclosure outside the Bell System except under written agreement.

Prepared for the Microprocessor System Department

and the PA-800516
Continuing Education Department Issue 1, APfl'l '1979
by the AT&T Co Provisional

Technical Documentation Department,
Bell Laboratories, 1978

Second Printing 1979

CONTENTS

Description 1
Features 1
Simple Observations 5
Simple Operations 6
Introductory Program Exercises 6
Input/Output Program Exercises 33
TTY Program Exercises 45

The MACTUTOR Seif-Training Manual incorporates the introductory booklet MACTUTOR with additional programming
exercises, including input/output and teletype exercises.

PA-800516 Issue 1, April 1979

DESCRIPTION

The MAC Tutor is a self-teaching machine designed to introduce you to the scope and
capabilities of the MAC-8 microprocessor. The MAC Tutor allows you to:

e Enter and examine program instructions and data in memory.
* Execute the instructions.

e Examine the results.

1K 8-BIT BYTE CONNECTORS FOR TWO RS 232C
RANDOM-ACCESS INPUT-OUTPUT LINES CONNECTIONS FOR
MEMORY (RAM) AND BUS ACCESS TTY TERMINAL OR MODEM

(CAN BE EXPANDED TO 2K)

THREE 1K 8-BIT BYTE POWER
PROGRAMMABLE SUPPLY
READ-ONLY MEMORIES
(PROMS)
(SUPPLIED BY USER)
CASSETTE
TAPE
INTERFACE
2K 8-BIT BYTE
READ-ONLY MEMORY
(ROM)
CONTAINS EXECUTIVE
PROGRAM KEYPAD AND
DISPLAY

MAC-8 AND CLOCK
MISCELLANEOUS PROM
LOGIC PROGRAMMER

MAC Tutor

FEATURES

e A MAC-8 microprocessor with access to 65,536 8-bit bytes of memory.

PA-800516 Issue 1, April 1979

Read-only memory (ROM). There are 2048 8-bit bytes of ROM that contain the resident
executive program, which allows you to store, execute, and debug your programs. The
executive program also contains the interface routines for peripheral devices. This pro-
gram is located at hexadecimal (hex.) addresses 0000 through O7FF.

Random-access memory (RAM). There are 1024 8-bit bytes of RAM that contain the
registers where programs are temporarily stored, manipulated, and executed. The RAM
is located at hex. addresses 1800 through 1BFF, and there are sockets for an additional
1024 bytes of RAM with hex. addresses 1400 through 17FF. You should avoid using
RAM addresses above 1BBO in your programs because the resident executive program
reserves most of the locations above this address for its own use.

Programmable read-only memory (PROM). There are sockets for three PROMs con-
stituting 3072 locations with hex. addresses 0800 through 13FF. The PROMs are used
for permanent storage of your programs.

A PROM programming socket that is used to permanently burn in programs in PROMs.
An audio cassette tape interface for storing and retrieving data at a 166-baud rate.

Two EIA standard connections for a teletype terminal or a modem with a O- through
2400-baud rate. '

Address and data bus 16-pin connectors for the addition of extra memory or peripheral
devices other than an audio cassette tape, teletype terminal, or modem.

An on-board power supply that allows you to operate anywhere from a 117-volt 60-Hz
outlet.

A light-emitting diode (LED) display that consists of eight 7-segment LED arrays, and
each LED array displays one hex. digit. Because the LED arrays comprise only seven
segments and to avoid confusion, the hex. digits B, C, and D appear in lower-case form,
that is, b, ¢, and d. The hex. digits A, E, and F appear in upper-case form. Also, the hex.
digit 6 has the top horizontal segment lit to distinguish it from the hex. digit b. In the
following exercises, the leftmost four hex. digits of the display indicate an address in
memory. The rightmost two hex. digits indicate the contents of that address (also refer-
red to as the low contents). The remaining two hex. digits indicate the contents of the
next address (referred to as the high contents).

A 28-button keypad. The program instructions and data are entered via the keypad.
Most of the keys have two designations, one in yellow and one in blue. You will be
using only the blue designations; the yellow designations are reserved for future expan-
sion. The keys and their functions are as follows.

PA-800516 Issue 1, April 1979

bt 3

PA-800516 Issue 1, April 1979

KEYS

FUNCTION

THROUGH
AND

THROUGH

alwy

/a

/b

/d

?

Hexadecimal digits representing
digits 0 through 15.

Initialize memory.
Specify memory address.
Change memory contents.

Increment memory address.

Display register a.
Display register b.
Display register pointer.

Execute program.

Execute program in single-step
mode. :

Reserved for future use.

TTY interface.

Registers. As mentioned previously, the RAM contains the registers where programs
are temporarily stored, manipulated, and executed. A special register set, as shown below,
comprises 32 8-bit memory locations that are grouped in pairs. The pairs provide 16
16-bit b registers, b0 through b15, and the low-order 8 bits of the register pairs provide
16 8-bit a registers, a0 through a15. In addition, there are four important registers that
are located in the MAC-8 microprocessor. The register pointer (rp) is a 16-bit register
that contains the lowest memory address occupied by the a and b registers. The program
counter (pc) is a 16-bit register that contains the address of the program instruction that
is currently being executed. The stack pointer (sp) is a 16-bit register that contains an
address in a block of memory called the memory stack; a primary function of the stack
is to store the address of the next instruction in the main program to be executed after a
return instruction is executed in a subroutine. The condition register (cr) is an 8-bit
register that contains the condition bits, which are logical indicators that can be tested for
decision making.

MAC-8
MICROPROCESSOR MEMORY
16-Bit Program Counter
16-Bit Register Pointer ——Pp»| Current Instruction
16-Bit Stack Pointer E
a0 Low-Order 8 Bits b0
8-Bit Condition Register High-Order 8 Bits
; — * al } b1
Bit Condition Description a2 } b2
7 flag Defined by user
| a3
6 enabie Interrupts are b3
enabled
a4
5 odd Low-order bit of b4
result
4 ones Result is all ones
3 carry Borrow from most ald
significant bit b14
2 ovfl Arithmetic cverflow als
b15
1 zero Zero result
] neg High-order bit of .
result ——-——’ Top of Stack
Memary
Stack

Register Set

PA-800516 Issue 1. April 1979

-
SIMPLE OBSERVATIONS

If there is a video cassette accompanying this manual and a playback facility is available,
plug the cassette in now to review the description of the MAC Tutor and to perform the
following simpie exercises.

Plug in the power cord and turn on the switch at the rear of the MAC Tutor. (Because the
high and low contents contain random data, the data shown in the following iltustrations
may differ from the data shown on your MAC Tutor. Therefore, you will have to sub-
stitute the data shown on your MAC Tutor for the data given below.)

Press init and observe

18003d90
1800 is the hex. address to which the executive program initializes memory, the digits 3 D
(high contents) represent random data stored at hex. address 1801, and the digits 9 0O

(low contents) represent random data stored at hex. address 1800.

Press + and observe

1801083d
The memory address is incremented by 1. Note that the random data that appeared in the
high contents have been shifted to the right into the low contents and the random data

that are stored at hex. address 1802 appear in the high contents.

Press + and observe

18020d08
The memory address is incremented again. The random data that are stored at hex. address
1802 are shifted into the low contents and the random data that are stored at hex. address

1803 appear in the high contents.

Press — and observe
1801083d

The memory address is decremented; therefore, the random data that are stored at hex.
address 1802 shift to the left into the high contents and the random data that are stored
at hex. address 1801 reappear in the low contents.

PA-800516 Issue 1, April 1979 5

Press * and key in 1 8 6 3 and observe

18639 A8A

A particular memory address, 1863, is specified, but the contents are still random.

- SIMPLE OPERATIONS

Press init and observe

18003d90

Press= and key in A B and observe
18003dAbD
The digits AB are stored at hex. address 1800.
Press + and key in g 5 and observe
18010805
The memory address is incremented and the digits O 5 are stored there (note that the lead-
ing O has to be entered). If you make an error when you enter data at an address, simply

reenter all the digits that make up the data.

Press - and observe

180005A6b
The preceding data are stored in sequence.
When storing data at sequential addresses, press = once at the beginning. By pressing + be-

fore each entry, the MAC Tutor remains in the change memory contents, or store, mode.

When storing data at nonsequential addresses, press * and enter the address, then press =
and enter the data.

INTRODUCTORY PROGRAM EXERCISES

At this point, you are ready to enter and execute programs. The following program exercises
illustrate the extent of the instructions understood by the MAC Tutor. The instructions for

6 PA-800516 lssue 1, April 1979

ithese exercises are written in MAC-8 assembiy ianguage format and they must be converted
to hex. code before they can be entered into the MAC Tutor. The hex. code is suppiied for
all the program exercises contained in this manual; however, the Ox prefix required by the
MAC-8 assembler for hex. number representation has been omitted. To obtain maximum
benefit from the program exercises, you should carefully study the comments associated
with each exercise to become acquainted with the operations performed by each instruction
and use the MAC-8 Hexadecimal Coding Chart for verification of each instruction code.

Exercise 1 — Moving Data From One Address to Another

This program exercise moves data stored at hex. address 18A0 to hex. address 18A1.

Instruction
Instruction Hex. Code Address Comments
b0=18A0; COOF A0 18 1800 through Load the 16-bit register b0
1803 with 16-bit hex. address

18A0. The assembly language
for this instruction is bd=W,
where bd is the 16-bit b reg-
ister that is heing used as the
destination and W is the 16-
bit address that is being
loaded. To verify the hex.
code for this instruction,
look at Part 1 of the MAC-8
Hexadecimal Coding Chart.
Under the Addressing Mode
column, find the entry
16-Bit Register and 16-Bit
Immediate. Under the

Move column, find the
entry

bd =W
co
dF

W(LO)

W(HI)

CO0 is an operation code
(opcode), d is the destination
(register bQ), F is an opcode,
and W(LO) and W(H1) are the
low-order eight bits (AQO) and
the high-order eight bits (18),
respectively, of the 16-bit
address.

PA-800516 Issue 1, April 1979 7

Exergise T O

Instruction

al="b0;

++b0;

Hex. Cods

85 10

68 00

Instruction
Address

1804,1805

18086, 1807

Comments

Move the contents of the
address pointed to by 16-bit
register b0 (18A0) to 8-bit
register al. The assembly
language for this instruction
is ad = *bs, where ad is the a
register that is being used as
the destination,® indicates
the contents of the address
that is being pointed to, and
bs is the b register that is being
used as the source. In Part 1,
under the Addressing Mode
column, find the ehtry Reg-
ister and Indirect and under
the Move column find the
entry

ad = * bs
85
ds

85 is an opcode, d is the desti-
nation (register a1), and s is the
source (register b0).

Increment the contents {address
18A0) of 16-bit register b0 by 1
(18A1). The assembly language
is ++bd, where ++ indicates to
increment and bd is the b
register that is being used as

the destination. In Part 2,

under the Addressing Mode
column, find the entry 16-Bit
Register and under the Increment
column find the entry

++ bd
68
do

68 is an opcode, d is the destin-
ation (register b0}, and O is an op-
code.

TA_RNNETS Taspe 1, Anril 1979

Exercise 1 (Continued)

Instruction
Instruction Hex. Code Address Comments

*b0=at; 8101 1808, 1809 Move the contents of register al
to the address specified by
register bO (18A1). The assembly
language is *bd = as, where *
indicates ine contents of the
address that is being pointed to,
bd is the b register that is being
used as the destination, and as is
the a register that is being used as
the socurce, In Part 1, under the
Addressing Mode column, find
the entry Indirect and Register
and under the Move column, find
the entry

*bd = as
81
ds
81 is the opcode, d is the desti-
nation (register b0), and s is the
source (register aT).

return: 66 180A Return to the executive pro-
gram. The opcode for this
instruction is found in Part 4,
under the Return Instructions
and Unconditional columns.

Enter the program by keying in the commands and hex. code as follows.

int=CO0+0F+A0+18+85
+10+68+00+81+01+66

You can examine the program for errors by pressing init and then pressing + repeatedly.
This enables you to observe that the sequence of hex. addresses and hex. code is as indicated

in the previous program listing. If you find an error in the hex. code, press = and enter the
correct hex. code.

Now, store arbitrary data at hex. addresses 18A0 and 18A1. For example, key in * 18 A 0
=23+ 7C —and observe

18A07c23

Press init to initialize the program counter to hex. address 1800, which is the address of
the first instruction in the program, and then press go, which executes the program.

PA-800516 Issue 1, April 1979 9

Exercise 1 (Continued)
Key in* 1 8 A 0and observe

18A02323

Data stored at hex. address 18A0 are now also stored at hex. address 18A1. During execu-
tion, the program uses registers al and b0. To examine the contents of register al, press /a
and key in 1and observe

A1l 23
Register al contains the data to be moved.
To examine the contents of register b0, press /b and observe

b018AI1

Register b0 contains the new address of the data. The a and b registers can be observed in-
dividually, as above, or in sequence by pressing /a or /b and then pressing + repeatedly.

You can also observe the execution of the program by performing it in the single step
mode. For example, re-store the arbitrary data 23 and 7C at hex. addresses 18A0 and
18A1, respectively. Key in * 1 8 A 0and observe

18A02323

This is the result of the execution of the program. The address 18A0 already contains 23,
sokeyin+ = 7 C — and observe

1T8A07c23

Now, press init and observe

18000FcO
If you check the program listing, you will see that this is the start (the first two bytes) of

the first instruction in the program. Instead of pressing go, quickly press and release sst
and observe

18041085

This is the start of the second instruction. Only the first instruction has been executed.
You can verify this by checking the contents of register b0. As the Comments column
indicates, register bO should contain the hex. address 18A0. Press /b and observe

b018A0

10 PA-800516 Issue 1, April 1979

Cerma fam A I s)
LATILIDEC 1 \LunItinueu;y

Press * and observe

18041085

You have returned to the start of the second instruction in the program. Quickly press and
release sst again and observe

18060068

which is the start of the third instruction. Verify that the second instruction has been exe-
cuted by checking the contents of register al. Register a1l should contain the contents of
the address pointed to by register b0. Press /a, key in 1, and observe

A1 23

Press * and sst again and observe

18080181

This is the start of the fourth instruction, and execution of the third instruction can he
verified by checking the contents of register bO again. The address in register bO should be
incremented by 1. Press /b and observe

b018A1

Press * and sst and observe

180Axx66 {xx are random contents)

This is the start of the final instruction of the program. At this point, you can verify the
data transfer by checking the contents of hex. address 18A0. Press*, key in 1 8 A 0, and
observe

18A02323
To execute the final instruction, the return to the executive program, press * and sst and

observe

00350F4d

Hex. address 0035 is the location in the executive program that serves as a point of entry
from the user program.

PA-800516 Issue 1, April 1979 11

In the following program exercises, the instructions are entered in a manner similar to that
described at the beginning of this exercise, and the programs can be executed at full speed
or in the single step mode.

Exercise 2 — Loading 8-Bit Data Into Memory

This program exercise loads 8-bit data into specified memory locations using various ad-
dressing techniques.

Instruction

rp=1B00;

b0=1A00;

b1=1A00;

a1=50;

*1B04=E5;

*b0=45;

*{b0+1)=88;

*b1=79;

*(b1-1)=2F;

12

Hex. Code

4D OF 00 1B

COOF 00 1A

CO1F 00 1A

80 1F 50

81 FF 04 1B Eb

81 0OF 45

82 OF 01 88

811F 79

82 1F FF 2F

FF

Instruction
Address

1800 through
1803

1804 through
1807

1808 through
180B

180C through
180E

180F through
1813

1814 through
1816

1817 through
181A
181B through
181D
181E through

1821

1822

Comments

Load rp with hex. address 1B00.

Load register b0 with hex. address
1A00. 1A is loaded into 1B01 and
00 is loaded into 1B00 because
the rp is initialized to 1B00 and
low-order bits are stored first.

Load register b1 with hex. address
1A00. 1A is loaded into 1B03 and
00 is loaded into 1B02.

Load register a1 (hex. address
1B02) with 50. This overwrites
the 00 that was stored in the pre-
vious instruction; therefore, reg-
ister b1 now stores hex. address
1A50.

Load hex. address 1B04
(register a2) with Eb.

Load hex. address specified by
register b0 (1A00) with 45.

Increment hex. address specified
by register b0 (1A01) and load
88 into it.

Load 79 into hex. address
specified by register b1 (1A50).

Decrement hex. address specified
by register b1 (1A4F) and load 2F

into it.

I{legal opcode indicating stop.

PA-800516 Issue 1, April 1979

Exercise 2 (Continued)

Execute the program by pressing init followed by go. Examine the memory addresses and
registers for the following results.

Memory Contents of Memory Contents of
Address Register Register Address Address

1B00 a0 00 1AD0 a5

) . oo S?

1

180 1A 1A50 79

1802 al 50

1802 50

1803 b 1A

1B04 a2 E5

In this exercise, you have written data into memory by specifying both the data and the
memory address in the instruction and by specifying the data and using the b register to
point to addresses or to offsets of those addresses.

Also in this exercise, you have established the location of the a and b registers by setting the
rp at the beginning of the program. The executive program does set the rp to an appropriate
location for you, as in Exercise 1; however, it is good programming practice to set the rp.
yourself to avoid the random assignmeni of unsuiiabie memory space when you are not
using the MAC Tutor. When you set the rp in a program, you should terminate the program
with an illegal opcode instead of a return instruction. A return instruction causes the exec-
utive program to redefine the rp; therefore, when you examine the a and b registers, the data
displayed will not correspond to your program.

Exercise 3 — Automatic Incrementing

This program exercise loads 8-bit data into memory using the b registers to point to addresses.
The addresses are then automatically incremented.

Instruction
Instruction Hex. Code Address Comments
rp=1B00; 4D OF 00 1B 1800 through Load rp with hex. address
1803 1B00.
b0=1A00; COOF 00 1A 1804 through Load register b0 (hex. ad-
1807 dresses 1B00 and 1B01)
with hex. address 1A00.
*b0++=5D; 83 OF 5D 1808 through Load 5D into hex. ad-
180A dress specified by register

b0 (1A00). Increment the
contents of register bQ by
1. Register b0 now con-
tains hex. address TAQ01.

PA-800516 Issue 1, April 1979 13

Exercise 3 (Continued)

Instruction

Instruction Hex. Code Address Comments
*b0++=96; 83 OF 96 180B through Load 96 into hex. address
180D specified by register b0

(1A01). Increment the con-
tents of register b0 by 1

(1A02).
b1=1A50; CO 1F 50 1A 180E through Load register b1 (hex.
1811 addresses 1B02 and 1B03)
with hex. address 1A50.
*b1++=AC; 83 1F AC 1812 through Load AC into hex. address
1814 specified by register b1 (1Ab0).

Increment contents of reg-
ister b1 by 1 (1A51).

*b1=22; 81 1F 22 1815 through Load hex. address specified
1817 by register b1 (1A51) with 22.
FF 1818 lllegal opcode.

Execute the program and examine the memory addresses and registers for the following
results.

Memory Contents of Memory Contents of
Address Register Register Address Address
1B00 b0 02 1A00 5D
1BO1 1A 1A01 96
1A02 random
1802 51 1A50 AC
1803 bt 1A 1A51 22

In this exercise, you have loaded data into an address and then incremented that address
in one instruction. This postincrementing of addresses provides a convenient way of storing
data sequentially. Now that you know about postincrementing, try writing a shorter pro-
gram for Exercise 1.

Exercise 4 — Loading 16-Bit Data Into Memory

This program exercise loads 16-bit data into memory by specifying the data and the address
in the instruction and by using the registers to point to addresses, which are then auto-
matically incremented.

14 PA-800516 Issue 1, April 1979

Exercise 4 {Continued)

Instruction
rp=1800;

b0=1A00;

*d0=8F40;

*(d0+2)=91CS6;

b1=1Ab0;

*d1++=3456;

*d1=7629;

*1B04=479E;

Hex. Code
4D OF 00 1B

(@]
b
)
Q
Q
S
>

C10F 40 8F

C2 OF 02 C6 91

CO1F 50 1A

C3 1F 56 34

C11F 2976

C1FF 04 1B 9E 47

FF

PA-800516 Issue 1, April 1979

Instruction
Address

1800 through
1803

1804 through
1807

1808 through
180B

180C through
1810

1
i

1811 through
1814

1815 through
1818

1819 through
181C

181D through
1822

1823

Comments

Load rp with hex. address
1B00.

Load register b0

(hex. addresses 1B0Q and
1B0O1) with hex.address
1A00.

ioad 40 into hex. address
specified by register b0
(1AQ0) and load 8F into

the next hex. address (1A01).
(Note that when the b reg-
isters are used to point to
two successive addresses, they
are referred to as d registers
in the assembly language
statements.)

Load C6 into the hex. ad-
dress two above the addiess
specified by register b0 (1A02)
and load 91 into the next hex.
address (1A03).

Load register b1 (hex. ad-
dresses 1B02 and 1B03) with
hex. address 1ABO0.

Load 56 into hex. address
specified by register b1 (1A50)
and load 34 into the next hex.
address (1A51). Then, incre-
ment the contents of register
b1 by 2 (1A52).

Load 29 into hex. address
specified by register b1 (1A52)
and load 76 into the next hex.
address (1A53).

Load 9E into hex. address
1B04 and load 47 into hex.
address 1B05. These ad-

dresses constitute register b2.

Illegal opcode.

15

Exercise 4 (Continued)

Execute the program and examine the memory addresses and registers for the following
results.

Memory Contents of Memory Contents of
Address Register Register Address Address
1B00 00 1AQ00 40
1B01 b0 1A 1A01 8F
1A02 C6
1B02 52 1A03 91
1AB1 34
1804 oF 1A562 29
1805 b2 47 1A53 76

In this exercise, you have used the b registers as pointers to two successive locations to store
16-bit data and, because the data comprise 16 bits, automatically incremented the ad-
dresses by 2. You have loaded the 16-bit data into memory by specifying the data and the
address in the instruction. This instruction, located at hex. addresses 181D through 1822
requires six bytes and it is the longest of all the MAC-8 instructions.

r

Exercise 5 — Arithmetical and Logical Instructions

This program exercise performs arithmetical and logical operations on the corresponding
bits of 8- or 16-bit data using the same addressing modes used for data transfer.

Instruction

Instruction Hex. Code Address Comments

rp=1B00; 4D OF 00 1B 1800 through Load rp with hex. address
1803 1B00.

b0=1AB0; COOF 60 1A 1804 through Load register b0 (hex. ad-
1807 dresses 1B00 and 1B01)

with hex. address 1A60.

*d0=59CE; C10F CE 59 1808 through Load CE into hex. ad-
180B dress specified by register

b0 (1A60) and 59 into
next hex. address (1A61).

b1=73CF; CO1FCF 73 180C through Load register b1 (hex. ad-
180F dresses 1B02 and 1B03)
with 73CF. (This is 16-bit
data, not an address.)

16 PA-800516 Issue 1, April 1979

Exercise 5 {Continued)

Instruction
Instruction Hex. Code Address Comments

a2=al; 80 21 1810, 1811 Move the contents of
register a1 (CF) to regis-
ter a2 (hex. address 1B04).

a2=a2Aa0; 88 20 1812, 1813 Perform the logical exclu-
’ sive OR operation on the
contents of register a2 (CF)
and the contents of register
a0 (60). Store the result
(AF) in register a2.

b3=b0; C0 30 1814, 1815 Move the contents of
register bO (1A60) to regis-
ter b3 (hex. addresses 1B06
and 1B07).

b3=b3&b1; D8 31 1816, 1817 Perform the logical AND
operation on the contents
of register b3 (1A60) and
the contents of register b1
{73CF}. (In register b3, hex.
address 1AB0 is used as 16-bit
data.) Store the result {1240)
in register b3.

b4=%d0; C540 1818, 1819 Move the contents (CE and
59) of the hex. addresses
specified by register bO (1AG0
and 1A61) to register b4
(hex. addresses 1B08 and
1BQ9).

b5=b1; C0 51 181A, 181B Move the contents of regis-
ter b1 (73CF) to register b5
{hex. addresses 1BOA and
1BOB).

b5=b5+b4; E8 54 181C, 181D Perform the arithmetical
add operation on the con-
tents of register b4 (59CE)
and the contents of register
b5 (73CF). Store the result
(CD9D) in register b5,

FF 181E Illegal opcode.

PA-800516 Issue 1, April 1979 17

Exercise 5 {Continued)

Execute the program and examine the memory addresses and registers for the following

results.

Memory
Address

1B00

1B0O0
1801

1802

1802
1803

1B04

1804
1B05

1B06

1B06
1B07

1B08

1B08
1B09

1BOA

1B0OA
1808

Register

a0
b0

al

b1

a2

b2

a3

b3

ad

b4

ab

b5

Contents of Memory Contents of
Register Address Address

60 1A60 CE
60 1A61 59

1A
CF

CF
73

AF

AF
random

40

40
12

CE

CE
59

9D

9D
CD

In this exercise you have performed the logical exclusive OR and AND operations and the
arithmetical add operation. In the exclusive OR operation, located at hex. addresses 1812
and 1813, the corresponding data bits are examined. If either of the bitsisa 1, the resulting
bit is a 1. If both of the bits are 1s or Os, the resulting bit is a O as shown in the following.

Hex. Binary

Code Equivalent
CF 1100 1111
60 0110 0000

Logical exclusive OR result =

AF 1010 1111

In the logical AND operation, located at hex. addresses 1816 and 1817, the corresponding
data bits are examined, and if both bits are 1s, the resulting bit is a 1. If both bits are Os or if
one bit is a 1 and the other bit is a 0, the resulting bit is a 0, as shown in the following.

18

PA-800516 Issue I, April 1979

Exercise 5 {(Continued)

Hex. Binary

Code Equivalent

1A60 0001 1010 0110 0000
73C7 0111 0011 1100 0111

Logical AND result =

1240 0001 0010 0100 000C

In the arithmetical add operation, located at hex. addresses 181C and 181D, the bits are
added according to the following.

Bit Carry Carry
Values In Sum Out
0+0 0 0 0
0+1 0 1 0
1+0 0 1 0
1+1 0 0 1
0+0 1 1 0
0+1 1 0 1
1+0 1 0 1
1+1 1 1 1

The following example shows the resulting bits.

Hex. Binary

Code Equnaient

73CF 0111 0011 1100 1111
59CE 0101 1001 1100 1110

Arithmeatical add resuis =

CDSD 1100 1101 1001 1101

PA-800516 lssue 1, April 1979 19

Exercise 6 — Addition of 8-Bit Number to 16-Bit Number

This program exercise illustrates the distinction between signed and unsigned numbers,

Instruction

rp=1800;

b0=28A0;

al=77;

b0=b0+a1;

Hex. Code

4D OF 00 1B

CO OF A0 28

80 1F 77

7D 01

FF

Instruction
Address

1800 through
1803

1804 through
1807

1808 through
180A

1808B, 180C

180D

Comments

Load rp with hex. address
1800.

Load register bO (hex. ad-
dresses 1B0O0 and 1BO1)
with 28A0 (16-bit data).

Load register a1 (hex. ad-
dress 1B02) with 77
(8-bit data).

Perform the arithmetical
add operation on the con-
tents of register b0 (28A0)
and the contents of reg-
ister a1 (77). Store the
result (2917) in register b0.

Itlegal opcode.

Execute the program and examine the memory addresses and registers for the following

results.

Memory
Address

1B00

1B00
1B01

1B02

Register

a0

b0

al

Repeat the program with the following change.

Instruction.

bO=b0+logical al;

20

Hex. Code

75 01

Instruction
Address

1808, 180C

Contents of
Register

17

17
29

77

Comments

Perform the logical add
operation instead of the
arithmetical add operation
on the contents of register
b0 (28A0) and the contents
of register a1 (77). Store the
result (2917) in register b0.

PA-800516 Issue 1, April 1979

This change is made by changing the contents of hex.

After execution, the results are as follows.

Memory

Address Register
1800 a0
1B00
1801 b0
1B02 al

Repeat the program with the following changes.

Instruction Hex. Code
al=C7: 801F C7
b0=b0+a1; 7D 01

Instruction
Address

1808 through
180A

1808, 180C

address 180B from 7D to 75.

Contents of

Register

17

17
29

77

Comments

Load register al (hex. ad-
dress 1B02) with C7 (equal
to —39 in 2s complement
notation).

Perform arithmetical add
operation on the contents

of register bO (28A0) and the
contents of register a1 (C7).
Store the result (2867) in
register b0.

These changes are made by changing the contents of hex. address 180A from 77 to C7

and the contents of hex. address 180B from 75 to 7D.

After execution, the results are as follows.

Memory

Address Register
1800 a0
1B00
1801 b0
1B02 al

Repeat the program with the following change.

PA-800516 Issue 1, April 1979

Contents of
Register

67

67
28

c7

21

Exercise 6 (Continued)

Instruction
Instruction Hex. Code Address Comments
b0=b0+logical al; 75 01 1808, 180C Perform the logical add

operation on the contents
of register b0 (28A0) and
the contents of register al
(C7). Store the result (2967)
in register al.

This change is made by changing the contents of hex. address 180B from 7D to 75. After
execution, the results are as follows.

Memory Contents of

Address Register Register
1B0O a0 67
1B00 67
1801 b0 29
1802 al c7

In this exercise, you have performed the arithmetical and the logical add operations of an
8-bit number to a 16-bit number. An 8-bit number can be an unsigned number or a signed
2s complement number (one sign bit and 7-bit magnitude). The arithmetical add operation
treats 8-bit numbers as signed 2s complement numbers. For 2s complement numbers, the
format is as follows.

Most
Significant Bit
(Sign Bit) Sign Value
0 + True magnitude.
1 - 2s complement of

true magnitude.

The first part of this exercise contains the arithmetical add operation of the 8-bit number
0111 0111 (hex. 77). The sign bit is O; therefore, the signed 2s complement is +77, as
shown in the following.

Hex. Binary

Code Equivalent

28A0 0010 1000 1010 0000
+77 11 0111

Arithmetical add result =

2917 0010 1001 0001 0111

99 PA-800516 Issue 1, April 1979

waraicn B [DAand imarndl

| =
LAGIVIIU U \\WwViliIlIniucuy

The second part of this exercise contains the logical add instruction of the 8-bit number
0111 0111 (hex. 77). This instruction treats 8-bit numbers as unsigned numbers; therefore,

0111 0111 is a positive quantity, and the results are the same as the results in the first
part of the exercise.

The third part of this exercise contains the arithmetical add instruction of the 8-bit number

1100 0111 (hex. C7). Thesign bitis 1; therefore, the signed 2s complement is —39. Generally,
this is obtained in the following manner.

N =~N+1
2s complement

or

N=~N +1
2s complement

where ~ indicates the bit-by-bit complement of the number and N is the true magnitude.
In this exercise,

=100 0111
2s complement

~N =011 1000
2s complement

N =011 1001 = 39 (hex.}

Hex. Binary

Code Equivalent

28A0 0010 1000 1010 0000
_39 —011 1001

Arithmetical add result =

2867 0010 1000 0110 0111

To obtain the above result, the equivalent of subtraction is performed. The bits are sub-
tracted according to the following.

PA-800516 Issue 1, April 1979 23

Exercise 6 (Continued)

Bit Borrow Borrow
Values In Difference Out
0-0 0 0 0
0-1 0 1 1
1-0 0 1 0
1-1 0 0 0
0-0 1 1 1
0-1 1 0 1
1-0 1 0] 0

1-1 1 1 1

The last part of the exercise contains the logical add instruction of the 8-bit number 1100
0111 (hex. C7). Again, the logical add instruction treats 8-bit numbers as unsigned; there-
fore, 1100 0111 is a positive quantity. This is shown in the following example.

Hex. Binary

Code Equivalent

28AC 0010 1000 1010 0000
Cc7 1100 0111

Logical add result =
2967 0010 1001 0110 0111
Exercise 7 — Condition Register Observation

This program exercise permits observation of the condition register (cr) by moving, or
pushing, its contents onto the memory stack.

Instruction

Instruction Hex. Code Address Comments
rp=1B00; 4D OF 00 1B 1800 through Load rp with hex. address
1803 1B00.
sp=1BA0; 0D OF A0 1B 1804 through Load stack pointer (sp)
1807 with hex. address 1BAOQ.
a0=0; 20 00 1808, 1809 Load register a0 with all
0s. Now, the cr contains
02.

24 PA-800516 Issue 1, April 1979

Exercise 7 {Continued)

Instruction
Instruction Hex. Code Address Comments

push(a0); 06 00 180A, 180B Move the contents of
register a0 (00) to the hex.
address one below the hex.
address specified by the
sp (1B9F) and decrement
the sp by 1.

pushl{cr); 07 180C Move the contents of the
cr (02) to the hex. address
one below the hex. address
specified by the sp (1B9E)
and decrement the sp by 1.

—-a0; 28 08 180D, 180E Decrement the contents of
register a0 by 1. Now, reg-
ister a0 contains FF (-1 in
2s complement notation)
and the cr contains 39.

push(a0); 06 00 180F, 1810 Move the contents of reg-
ister a0 (FF) to the hex. ad-
dress one below the hex.
address specified by the sp
(1B9D) and decrement the
sp by 1.

push(cr); 07 1811 Move the contents of the cr
(39) to the hex. address one
below the hex. address
specified by the sp (1B9C)
and decrement the sp by 1.

a0=—a0; 24 00 1812, 1813 Negate the contents of reg-
ister a0. Register a0 now
contains 01 (+1) and the
cr contains 28.

push{a0); 06 00 1814, 1815 Move the contents of reg-
ister a0 (01) to the hex. ad-
dress one below the hex. ad-
dress specified by the sp
(1B9B) and decrement the
contents of the sp by 1.

PA-800516 Issue 1, April 1979 25

Exercise 7 {Continued)

Instruction

pushicr);

a0=a0>>>>1;

push{a0);

push(cr);

Hex. Code

07

34 OF

06 00

07

FF

Instruction

Address

1816

1817, 1818

1819, 181A

181B

181C

Comments

Move the contents of the cr
(28) to the hex. address one
below the hex. address
specified by the sp (1B9A)
and decrement the sp by 1.

Rotate the contents of reg-
ister a0 one bit to the right.
This moves the least sig-
nificant bit (LSB) to the most
significant bit (MSB) and also
to the carry bit of the cr. Reg-
ister a0 now contains 80 and
the cr contains 09,

Move the contents of regis-
ter a0 (80) to the hex. address
one below the hex. address
specified by the sp (1B99) and
decrement the sp by 1.

Move the contents of the cr
(09) to the hex. address one
below the hex. address speci-
fied by the sp (1B98) and
decrement the contents of the
sp by 1.

Illegal opcode.

Execute the program and examine the memory addresses for the following results.

Memory
Address

1898
(final sp)
1899
1B9A
1B9B
1B9C
189D
1B9E
1B9F
1BAO
(initial sp)

26

Contents

09

80
28
01

39
FF
02
00

random

Condition Register Bits

Flag Enable Odd Ones Carry Ovfl Zero Neg

0

0

PA-800516 Issue 1, April 1979

Exercise 7 {Continued)

As described previously, the stack is often used to store return addresses when subroutine
call instructions are executed. However, in this exercise, you are using the stack to store the
results of various operations that affect the cr. This permits you to observe the status of the
individual bits of the cr. The bits are set to 1 according to the following.

e The zero bit is set to 1 when the operation results in all Os.
¢ The ones bit is set to 1 when the operation results in all 1s.
e The odd bit is set to 1 when the operation results in the LSB equal to 1.

¢ The neg bit is set to 1 when the operation results in the MSB equal to 1 {MSB rep-
resents sign bit in 2s complement notation).

e The carry bit is affected by the decrement, negate, and rotate instructions. The
decrement operation results in a negative number and the carry bit is set to 1, indi-
cating a borrow in this case. The carry bit remains set to T after the negate operation,
even though the result is positive (+1]), because the negate operation involves
subtracting the specified number (which is in 2s complement form) from 0, yieiding
an apparent borrow. The carry bit remains set to 1 by the rotate 8 instruction
because the LSB is rotated into the carry bit as well as into the MSB. As illustrated
by this exercise, the carry bit result is not always obvious and should be used care-

fully,

When register a0 is loaded with 00 (0000 0000), the zero bit is set to 1 and the cr contains
02 (0000 0010). When the contents of register a0 are decremented to —1 (1111 1111),
the odd, ones, carry, and neg bits are set to 1s and the cr contains 39 (0011 1001). When
the contents of register a0 are negated and become +1 (0000 0001), the odd and carry bits
are set to 1s and the cr contains 28 (0010 1000). And, when the contents of register a0
are rotated and become 80 (1000 0000), the carry and the neg bits are set to 1s and the
cr contains 09 (0000 1001).

Exercise 8 — Multiplication of Two 8-Bit Unsigned Numbers

This program exercise breaks down the multiplication operation into a series of addition
and shifting operations that can be executed by the MAC-8 microprocessor.

Instruction

Instruction Hex. Code Address Comments

rp=1B00; 4DOF 00 1B 1800 through Load rp with hex. address
1803 1B00.

a0=8; 80 OF 08 1804 through Load register a0 {hex. ad-
1806 dress 1B00) with 8. Reg-

ister a0 is being used as a
counter to store the number
of bits in the multiplier.

PA-800516 Issue 1, April 1979 27

Exercise 8 (Continued)

check:

next:

28

Instruction

b1=0003;

a2=02;

b3=0;

if(1bit(0,a2))
goto next;

b3=b3+b1;

a2=a2>>>1;

b1=b1+b1;

——a0;

Hex. Code

CO0 1F 03 00

80 2F 02

60 30

522003

E8 31

34 2F

E8 11

28 08

Instruction
Address

1807 through
180A

1808 through
180D

180E, 180F

1810 through
1812

1813, 1814

1815, 1816

1817, 1818

1819, 181A

Comments

Load register b1 (hex. ad-
dresses 1B02 and 1B03) with
the multiplicand 03. Since
the number is limited to

8 bits, the high-order byte
contains all Os.

Load register a2 (hex. ad-
dress 1B04) with the multi-
plier 02.

Load register b3 (hex. ad-
dresses 1B06 and 1B07) with
all Os. The result of the multi-
plication, a 16-bit number, is
stored in this register.

I1f bit 0 (LSB) of the multiplier
(02) is 0, go to the instruction
next (three bytes ahead).

Add the contents of regis-
ter b1 to the contents of
register b3 and store the re-
sult in register b3. The multi-
plicand is being added to the
partial product only when
bit O of the multiplier is 1.

Rotate the contents of reg-
ister a2 one bit to the right.
This checks each multiplier
bit in sequence.

The contents of register bt
are added to themselves and
the result is stored in register
b1. This has the effect of
shifting the multiplicand one
bit to the left.

Decrement the contents of
register a0 by 1 and store
the result in register a0.

PA-800516 Issue 1, April 1979

Exercise 8 (Continued)

Instruction
Instruction Hex. Code Address Comments
if (1zero) 41 F11018 1818 through If the previous instruction
goto check; 181E results in a nonzero condition,
go to the instruction check
(hex. address 1810).
FF 181F Illegal opcode.

Execute the program and examine the memory addresses and registers for the following
results.

Memory Contents of

Address Register Register Function

1B0O a0 00 Counter.

1802 b1 00 Original muitiplicand location,
1B03 03 Final multiplicand location.
1B04 a2 02 Multiplier.

1B06 b3 06 LO product.

1B07 00 HI product.

In this exercise, you have used conditional transfer instructions to repeatedly execute the
adding and shifting that make up the multiplication operation. Decrementing register a0
affects the zero bit and, because initially register a0 contains the number 8 (the number of
bits to be multiplied), the instructions starting at check are executed eight times.

The MAC-8 assembly language permits the use of labels to identify specific memory addresses
to which a program can branch. Labels eliminate the need to assign absolute addresses when
an assembler program is used to generate the machine code. Labels also make assembly
language programs more readable. In this program, the label check is equivalent to *1810
and the label next is equivalent to *1815.

This program can be repeated, using different numbers, simply by changing the program byte
at hex. address 1809, which defines the multiplicand, and the program byte at hex. address
180D, which defines the multiplier. The product is found in register b3 (at hex. addresses
1B06 and 1B07).

PA-800516 Issue 1, April 1979 29

Exercise 8 {Continued)

Some additional multiplication exercises that you can verify are as follows.

Multiplicand Multiplier Product
67 85 3583
D6 AD 909E
FF FF FEO1
00 XX 0000
XX 00 0000

Note: xx are random contents.

The multiplicand and the multiplier can be specified by the program, as in the above exer-
cises, or they can be preloaded in specific memory locations and addressed by the program.
This is another exercise that you can perform.

Exercise 9 — Memory Block Transfer

This program exercise moves a block of data from one area of memory to another. To
execute this program, you have to preload the old starting address, the new starting ad-
dress, and the size of the data block.

Instruction
Instruction Hex. Code Address Comments
rp=1B00; 4D OF 00 1B 1800 through Load rp with hex. address
1803 1B0O0.
move: a3="b0++; 87 30 1804, 1805 Move the contents of the
hex. address specified by
register b0 to register a3.
Increment the contents of
register b0 by 1.
*b1++=a3; 8313 1806, 1807 Move the contents of
register a3 to the hex.
address specified by reg-
ister b1. Increment the
contents of register b1
by 1.
——b2; 68 28 1808, 1809 Decrement the contents

of register b2 by 1 and
store the result in register
b2.

30 PA-800516 Issue 1, April 1979

- . n ot~ .t 1
cXxercise ¥ {vonunuea)

Instruction Hex. Code
if(1zero) 41 F104 18
goto move;

FF

Now, preload the necessary data as follows.

Hex. Code Address

A0 19 1B00, 1BO1
BO 19 1B02,1B03
0C 00 1B04,1B05

Instruction
Address

180A through
180D

180E

Comments

If the previous instruction
resulted in a nonzero condi-
tion, go to the instruction
move (hex. address 1804).

Illegal opcode.

Comments

Load the old starting hex. ad-
dress, 19A0, into hex. ad-
dresses 1B00 and 1B01, which
constitute register b0.

Load the new starting hex. ad-
dress, 19B0, into hex. ad-
dresses 1B02 and 1B03,

saska Al

which constitute register b1l
Load the number of bytes to be
be moved into hex. addresses
1B04 and 1B05, which con-
stitute register b2.

Alternatively, you can preload the b registers by keying in the following sequence.

/b =19A0 + 19B0 + 000C

The first instruction of the program then assigns specific memory addresses to these registers.
A disadvantage of preloading (either way) is that the numbers change when the program is
executed. If you want to rerun the program, even using the same starting addresses, you must

preload the numbers again.

Execute the program and observe that the block of data that is stored at hex. addresses
19A0 through 19AB is stored also at hex. addresses 19B0 through 19BB.

In this exercise, you have moved a block of data from one area of memory to another,
but note that the block of data still exists in the old area of memory. You can move any
size block: the only restrictions are that you have to use the existent RAM and that the
area to which you are transferring a block of data cannot overlap the area from which the

block of data is being transferred.

PA-800516 Issue 1, April 1979

31

Exercise 9 {Continued)

Another way to move a block of data is to call the subroutine move (). This subroutine is
stored permanently as a part of the executive program, so you do not have to enter it
through the keypad. You can verify its existence by examining the contents of hex. ad-
dresses 022F through 023A. Also, any attempt to change the contents of these addresses
will fail because you are addressing the ROM rather than the RAM.

The subroutine move () is as follows.

Instruction
Instruction Hex. Code Address Comments
move: set(02); 0102 022F, 0230 Set zero bit to overcome
i hardware error in early
version MAC-8 micro-
processors.
b9-b10; FO 9A 0231, 0232
if(zero)return; 64 01 0233, 0234 Compare addresses and
return to another point
in the executive program
when data transfer is
complete.
a0="b9++; 87 09 0235, 0236 This instruction and the
next transfer the data
byte.
*b8++=a0; 83 80 0237, 0238
goto move; 58 F4 0239, 023A Go to instruction move,

The new starting address is stored in register b8. The starting address of the first byte to be
moved is stored in register b9. Finally, the address one above that of the last byte to be
moved is stored in register b10. To execute the same memory block transfer described in
the first part of this exercise, key in only the following.

Key
Sequence Comments
/b8=19B0 Load register b8 with new starting
address.
+19A0 Load register b9 with old starting
address.

32 PA-800516 Issue 1, April 1979

Exercise § {Continued)

Key
Sequence Comments
+19AC Load register b10 with the address
one above that of the last data
byte to be moved.
*022F Go to first address of move ().
ge Execute subroutine.

 INPUT/OUTPUT PROGRAM EXERCISES

The following exercises demonstrate the ability to program the MAC Tutor to communi-
cate with input/output {I/O) devices. When using the MAC Tutor alone, the input device is
the keypad and the output device is the display. The executive program, upon input instruc-
tions from the keypad, reads the keypad and presents output signals to the LED segments.
This is possible because hardware connections associate the keypad and LED arrays with
specific memory locations that can be addressed by software. As a result, each key is assigned
a specific function, allowing you to display and change memory and register contents, as well
as execute programs.

In these exercises, you will learn how to access the keypad, using software to define key
functions, and display arbitrary patterns on the 7-segment LED arrays.

BRIEF HARDWARE DESCRIPTION

I/0 Address Decoding Circuitry

The main hardware elements are two Intel 8255 programmable peripheral interface chips
(8255-1 and 8255-2) with 1/0 port pins connected to the keypad and display. The chips are
activated when valid address bits are presented to the MAC-8 microprocessor address bus.
(See the 1/0 Address Decoding Circuitry Schematic Diagram, which shows a portion of the
complex decoding circuitry.)

PA-800516 Issue 1, April 1979 33

15 ==Q
14 ==
13 =—=Q

12 com—

e P A 7
o P A\ 6
P PA 5
== PA 4 \ PortA
PA 3 ?(PBIO)
= PA 2
[PA 1
= PA 0
Z

~

8255-1
1 From Port {
N MAC-8 A
[— <
Data
From Bus
MAC-8
Address
Bus

>»> > PP

N W A OO N
O—dehO‘lm\)\

A Y4

e PB 7)
e PB 6
e P 5
—PB 4 Port B
[PB3 >(PBIO)
e P 2
e P 1
P PB 0
S

(Port C
‘AO not shown)

-

L1l d]]]

O 0O O O 0O O O O

o

(9}
w

all ~

mmr

Port {
B

-9

O = NWbLOGOTO

r
s

1 8255-2

pee PO 7
b PD 6
poene PD 5
Port pe PO 4\ Port D
p— PD 3 f {PDIO)
prme PD 2
prssen PD 1
prmee PO O
J

—
——
From
MAC-8 —
Data ﬁ
Bus
———
S—
L

O = NWHAEOO

O ©O 0O 0O 0o o O O
O = N W Ao N

(Ports Band C
not shown)

1/0 Address Decoding Circuitry Schematic Diagram

The 8255 chip select input (CS) must be a logical 0 to initiate operation. The valid address
bits are as follows.

Valid Address Bits

Chip A1s A1g A13 A1z Aqq Ao Ag Ag A7 Ag A5 Ag Az Ay A1 Ag
8255-1 6 0 0 1 1 1 X X X X X0 0 0X X

82556-2 o o o 1t 1 1 X X X X X 0 0 1X X

Note: X can be logical 1 or O.

If address bits Ag and Ag are logical 1s and A7, Ag, and Ag are logical Os, the /O address
space is limited to hex. addresses 1F00 through 1F03 for the 8255-1 chip and 1F04 through
1F07 for the 8255-2 chip. In addition, the value of address bits A1 and Ag determine the
selection of one of three 8255 chip 1/0 ports (A, B, or C) or an internal control word register.

34 PA-BONSTE Tssue 1, April 1979

The address Dit vaiues Tfor port and register seiection are as foiiows.

Aq Ag Port/Register Selection
0 0] Port A

0 1 Port B

1 0 Port C

1 1 Control word register.

Note: As indicated, the eight MAC-8 data bus lines
will be connected to port A, B, or C or to an internal
8255 chip control word register.

The control word register for the 8255- 1 chip is designated PCNTRL and the control word
register for the 8255-2 chip is designated QCNTRL. Also, as indicated on the 1/0 Address
Decoding Schematic Diagram, the port A pins on the 8255-2 chip are externally designated
as port D pins (PD7 through PDO). This is necessary to distinguish them from the port A pins
on the 8255-1 chip. These designations are also used in other MAC Tutor hardware and
software documentation.

Keypad/Display Circuitry

Ports A, B, and D are connected to the keypad and dispiay as shown in the foilowing dia-
grams.

PA3
+ C D E F
Port A
(Lower - 8 9 A B
4 bits)
* 4 5 6 7
.
r Bell Logo /d = 0 1 2 3
PDO commmm—
PD1
Y
Port D PD2) J
(LOWEF PD3
7 bits)
PD4 —C)
PD5 ﬁjr
L PD6 Q
+5 volts % i i i i V% o

Keypad Circuitry Schematic Diagram

PA-800516 Issue 1, April 1979 35

36

Port B (Lower 4 bits)

r —
PB3 PB2 PB1 PBO

l

Decimal Decoder/Driver

o
-
N
w

4 5 6 7 8

-
i
—
J
-
J

1 -1 1]

] i I]

|
I
|

I\\
N
.
L
—
L]
]

DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8
LED Arrays

LED Array Select Circuitry

LED Array Inputs and Outputs

Decoder Input Digit Selected
PB3 PB2 PB1 PBO

0 0 0 0 DSt
0 0 0 1 DS2
0 0 1 0 DS3
0 0 1 1 DS4
0 1 0 0 DS5
0 1 0 1 DS6
0 1 1 0 DS7
0 1 1 1 DS8
PD6
L
o1 o_{ I }_.o pos
! (Cower 7 bit
PD2 o——+ F_O
1
PD2

Notes:
1. Logical 1lights LED.
2. Same circuitry for all eight LED segments.

Segment Circuitry Diagram

PA-800516 Issue 1, April 1979

iviemory Locations

The 1/O address decoding and keypad/display circuitry establish the following memory
allocations.

Memory
Address Contents Function
1FO0 PAIO Keypad row sélect.
1F01 PBIO LED array select (lower four bits).
1F03 PCNTRL Control word register for ports A
and B.
1F04 PDIO Keypad column select and display
segment select (lower seven bits).
1F0Q7 QCNTRL Control word register for port D.

Ports A, B, and D are either input or output ports depending on the number stored in the
control word register of the appropriate chip. A number is stored in the control word regis-
ter by loading it, via software, into the associated memory location (hex. address 1F03 for
the 8255-1 chip or hex. address 1F07 for the 8255-2 chip). Upon execution of the proper
instruction, the number is transferred from the MAC-8 data bus into the appropriate controi
register. The number is held in this register until another software instruction changes it.
The control word register requirements for ports A and B of the 8255-1 chip and port D
of the 8255-2 chip are as follows.

Control Word Register — PCNTRL Port Direction
D; Dg Dg Dgq D3 Dy Dq Dy Port A PortB
1 0 0 1 X 0 1 X Input Input
1 0 0 1 X 0 0 X Input Output
1 0 0 0 X 0 1 X Output Input
1 0 0 0 X 0 0 X Output QOutput
Control Word Register — QCNTRL Port Direction
D; Dg Dg Dg D3 Dy D3 Dy Port D
1 0 0 1 X 0 X X Input
1 0 0 0 X 0 X X Output
Notes:

1. X can be logical 1 or 0.

2. The CSinput must be logical 0 and the address bits A1 and Ag must be logical 1s.

PA-800516 Issue 1, April 1979 37

MAC-8 microprocessor data are received from an input port and are sent to an output port.
The display circuitry requires that data be sent to port B to select the appropriate LED
array and sent to port D to light the desired segment of each LED array. (The status of
port A is immaterial at this time.) The control word register content for the 8255-1 chip
(PCNTRL) can be set to either 1001 X00X or 1000 X00X to define port B as an output port.
The control word register content for the 8255-2 chip (QCNTRL) can be set to either
1000 X01X or 1000 X00X to define port D as an output port. As a result, PCNTRL is set to
1000 0000 (80 hex.) and QCNTRL is set to 1000 0000 (80 hex.) for the display routines.

The keypad control requirements are dependent on the type of program. A simple way of
providing keypad control is to write a keypad scanning routine that examines each row of
keys in sequence. When a signal is provided to a particular row, a depressed key in that row
will transfer the signal to the line for the column corresponding to that key. In this manner,
a depressed key can be sensed by identifying the row and column location. The Keypad
Circuitry Schematic Diagram shows that this is accomplished by defining port A as an output
and port D as an input. The port D lines are at a logical 1 level when no keys are depressed.
If a logical O level is presented (via an instruction) to a row select line, a key closure in that row
results in a logical O level only on the column select line corresponding to that key. If the
column select number on port D is sent to the MAC-8 microprocessor, a logical O level on the
row and column line defines a unique key and the appropriate action is taken. (It should be
noted from the Keypad Circuitry Schematic Diagram that the keypad row and column
numbers differ from port A and D bit numbers.) It is also desirable to define port B as an input
during keypad scanning to prevent activating the display. For the keypad read routine,
PCNTRL is set to 1000 X01X and QCNTRL is set to either 1001 X01X or 1001 X00X. As a
result, PCNTRL is set to 1000 0010 (82 hex.) and QCNTRL is set to 1001 0000 (90 hex.).

Some shortcuts have been taken to reduce the number of instruction bytes that have to be
entered for the 1/O programs. For example, instead of initializing the rp (as in previous
program exercises), the value is set by the executive program. Also, certain b registers must
be preloaded. In the previous exercises, registers were loaded under program control (instruc-
tions were included within the program). This necessitated added instructions, but resulted
in a self-contained program. In the 1/O program exercises, the preloaded b registers contain
addresses that are not changed by the program. Therefore, the program can be rerun without
reloading those registers. After executing each 1/O program, it is necessary to press the
RESET button to allow the executive program to regain control {an exception is where
control is automatically returned to the executive program as in Exercise 12). In addition,
now that you are reasonably familiar with the MAC-8 instructions, the comments accom-
panying the 1/0 programs are less detailed.

Exercise 10 — Fixed Message Display

This program exercise demonstrates the ability to control the lighting of individual segments
of the LED arrays and to use software to continually refresh the display so that it remains
visible.

38 PA-800516 Issue 1, April 1979

Exercise 10 (Continued)

Instruction
instruction Hex. Code Address Comments
fixed: *(b0+2)=80; 820F 0280 1800 through Set value of PCNTRL to
1803 define port B as output port
for LED array select.
*(b0+6)=80; 82 OF 06 80 1804 through Set value of QCNTRL to de-
1807 fine port D as output port
for segment select.
start: b1=1800; C0 1F 00 19 1808 through Store address of leftmost
180B LED array display code.
*b0=0; 21 00 180C, 180D Set PBIO to select leftmost
LED array.
light: *(b0+3)=*(b1+0); C4 01 00 03 180E through SET PDIO to output display
1811 code.
*(b0+3)="(b1+0); C4 01 00 03 1812 through Repeat to brighten display.
1815
*(b0+3)=0; 22 00 03 1816 through Blank display before select-
1818 ing next LED array.
++b1; 68 10 1819, 181A Display next LED array to
the right.
++*b0; 29 00 181B, 181C
*b0-8; B1 OF 08 181D through After all eight arrays are
181F displayed, repeat the
display for continuous
if(lt) goto light; 49 F8 OE 18 1820 through refreshing.
1823
goto start; 59 08 18 1824 through
1826

Now, key in /jb=1 F 0 1 to preload the port B address and *1 9 0 0=0 0+0 0 +
00+00+37+4 F+0 E+6 7 to store codes in hex. addresses 1900 through 1907.
Press initand go. You should observe the following.

g e
) 3 |z i |
The four leftmost LED arrays are blank because you entered Os at hex. addresses 1900

through 1903. Leave this program in memory for use in the next exercise. Press RgggT to
allow the executive program to regain control.

PA-800516 Issue 1, April 1979 39

Exercise 10 (Continued)

With this program you have used the LED arrays as output devices that can be addressed
as memory locations to display a particular message. The display must be blanked after
each segment is selected because only one set of signals required for the display can be
stored. If the display is not blanked, each segment will carry over to the next. The bright-
ness of the message is dependent on the proportion of time that the message is on com-
pared to the time that the display is blank. This program allows control of the individual
segments of the LED arrays so you are not limited to displaying hex. digits. In fact, you
are not limited to displaying the message HELP. All you have to do to change the message
is to change the contents of hex. addresses 1900 through 1907. Try changing the message
using the following list of codes for displaying alphanumerics.

Digit Hex. Letter Hex.
Display Code Display Code

0o i 7E =

1 30 B o1 1F

I 6D o =)

3 :_l' 79 D IZ/ 3D

s Y 33 e = 4F

5 o 58 S 47

6 o 5F s [5E

7] 70 Ho - 37

= 7F [| 10

g = 73 ot 3C

L L OE

N 15

O | 1D

Binary Code P ,r—_' 67

o s yoh =>765413210 R 05
o 54 OXXX N XXX P, C
(Logic 1 lights a bar,) D 'sPtay Code vy Y 33

Note: These codes can be entered into hex. addresses 1900 through 1907 for
Exercise 10 and into addresses 1901, 1903, 1905, 1907, etc., for Exercise 13.

Exercise 11 — Keypad Scan Routine

This program exercise makes use of the keypad as an input device and action is initiated when
a specific key is depressed. (This program is loaded at hex. address 1A00 and is dependent
on the fixed message display program exercise.)

40 PA-800516 Issue 1, April 1979

Exercise 11 (Continued)

Instruction

*(b0+2)=82;

* (b0+6)=90;

22=FE;

loop: *(b0-1)=a2;

if(bit(0,a2) Jgoto next;

a3="(b0+3);

if{bit(1.a3)) goto next;

fixed();

next: a2=a2 <<<1;

goto loop;

Hex. Code

82 OF 02 82

82 OF 06 90

80 2F FE

82 02 FF

5A 20 OA

86 30 03

5A 31 04

79 00 18

34 21

59 0B 1A

Note: Fixed() is the labe! for Exercise 10.

instruction
Address

1A00 through
1A03
1A04 through

1A07

1AQ8 through
1A0A

1AOB through
1A0D

1AQE through
1A10

1A11 through
1A13

1A14 through
1A16

1A17 through
1A19

1A1A, 1A1B

1A1C through
1A1E

Comments
Define port A as output
port (for keypad row

select).

Define port D as input port
(for keypad column select).

Prepare to check first row
for depressed key.

Output signal to row.
Row 4 key down?

If so, input signal from
column.

Is column 2 key down?
Display fixed message

of previous exercise only
if key /d is depressed.

Check next row and
repeat.

Key in *1 A 0 0 and press go. Observe that the display is blank. Press /d. You should

observe the following.

In this exercise, you have used the functioning of a key to close a circuit between the row
and column corresponding to that key. The program issues a signal to each row in sequence
and is able to detect a specific key closure by determining if the signal has been transmitted

PA-800516 Issue 1, April 1979

41

Exercise 11 (Continued)

to the column corresponding to the key. Instructions are executed in microseconds so the
keypad scan is rapid enough to catch any key closure. The key functions are under control
of this program rather than the executive program; therefore, the key labels are meaningless
and any key can be used to initiate the message display. The row selection information is
part of the instruction byte stored at hex. address 1AOF and the column selection information
is stored at hex. address 1A15.

Exercise 12 — Sequential Display of Segment Patterns

This program exercise causes a sequential display of 128 different patterns using a single
7-segment LED array. A delay loop has been included in the program to control the duration

of the pattern.

Instruction
Instruction Hex. Code Address Comments
*{b0+2)=80; 82 OF 02 80 1800 through Define port B as output
1803 port (for LED array select).
*(b0+6)=80; 82 OF 06 80 1804 through Define port D as output
1807 port (for segment select).
a2=0; 20 20 1808, 1809 Initialize display pattern,
*b0=07; 81 OF 07 180A through Select rightmost array for
180C display.
light: b4="d3; C5 43 180D, 180E Store delay time bytes.
*(b0+3)=a2; 82 02 03 180F through Display pattern.
1811
loop: ——b4; 68 48 1812, 1813 Hold display for specified
time,
if(!zero) goto loop; 41 F1 12 18 1814 through
1817
++a2; 28 20 1818, 1819 Prepare for next pattern.
if(bit(7,a2)) goto bA 27 04 181A through After all 128 patterns are
finish; 181C displayed, return to
executive program. This
goto light; 59 0D 18 181D through eliminates the need to
181F press RESET.
finish: return; 66 1820

42

PA-800516 Issue 1, April 1979

Exercise 1Z (Continued)

Keyin*1 8 F D =00 + 5 0 toload a number relating to a delay time of approxi-
mately 0.5 second per pattern;/b=1 F 0 1 to preload the port B address; and/b 3=
1 8 F D to preload the delay time address. Pressinit andgo and observe the sequential
display of 128 patterns.

In this exercise, you have repeatedly incremented the segment select byte to display all the
possible patterns. You have also used a register as a counter to provide a controlled timing
joop by branching when a preassigned count is reached. You can speed up or siow down the
pattern sequence by decreasing or increasing, respectively, the number that you have loaded
in hex. addresses 18FD and 18FE.

Exercise 13 — Cyclic Dispiay

This program exercise extends the scope of the program contained in the previous exercise
by displaying an arbitrary sequence of patterns using any or all of the 7-segment LED arrays.

The programmed delay loop is used to aiternately light and biank the dispiay.

Instruction
Instruction Hex. Code Address Comments
*(b0+2)=80; 82 OF 02 80 1800 through Define port B as output
1803 port {for LED array
select).
*(b0+6)=80; 82 OF 06 80 1804 through Define port D
1807 as output port (for seg-
ment select).
start: b1=1900; CO 1F 00 19 1808 through Store starting address of
180B pattern.
a3="b2; 85 32 180C, 180D Save number of patterns
per cycle.
next: ad="b1++; 87 41 180E, 180F Select LED array and
prepare to output
*b0=a4; 81 04 1810, 1811 segment select code
stored in next address.
dsply{); 79 20 18 1812 through Go to display sub-
1814 routine.
+4+b1; 68 10 1815, 1816 Prepare for next
display in pattern.
—-a3; 28 38 1817, 1818
if(1zero) goto next; 41 F1 OE 18 1819 through Repeat pattern.

PA-800516 Issue 1, April 1979

181C

43

Exercise 13 (Continued)

dsply:

delay:

loop:

Instruction

goto start;

*(b0+3)="(b1+0);

delay();

*(b0+3)=0;

delay();

return;
b6="d5;
~—-b6;

if(!zero) goto loop;

return;

Hex. Code

59 08 18

C4 01 00

79 2E 18

22 00 03

79 2E 18

66

Cb 65

68 68

03

41 F1 30 18

66

Instruction
Address

181D through
181F

1820 through
1823

1824 through
1826

1827 through
1829

182A through
182C

182D
182E, 182F
1830, 1831

1832 through
1835

1836

Comments

Display and hold
pattern using
delay subroutine.

Blank pattern and
hold using delay
subroutine.

Return to main program.

Hold pattern or
blank display for
specified time.

Return to display
routine.

Keyin*18 FD=00+0 C+1 4 to load a delay time of approximately 5 seconds per
cycle and the number of patterns per cycle. Key in the following LED array and segment
selection information.

44

Hex.
Addresses

1900, 1901
1902, 1903
1904, 1905
1906, 1907
1908, 1909
190A, 1908
190C, 190D
190E, 190F
1910, 1911
1912, 1913
1914, 1915
1916, 1917
1918, 1919
191A, 191B
191C, 191D

LED Array

{Low Address}

00
01
02
03
04
05
06
07
07
07
07
06
05
04
03

Segment
{High Address)

40
40
40
40
40
40
40
40
20
10
08
08
08
08
08

PA-B00516 JIssue 1, April 1979

Exercise 13 (Continued)

Hex. LED Array Segment
Acdrasses {Low Address) (High Address)
191E, 191F 02 08
1920, 1921 01 08
1922, 1923 00 08
1924, 1925 00 04
1926, 1927 00 02

Now key in /b=1 F 0 1 to preload the port B address; /b 2=1 8 F F to preload the
address containing the number of patterns in the cycle; and /b 5=1 8 F D to preload
the delay time address. Press init and go. You should observe the following LED segments
light in sequence.

[~ = T o e S

Sy Y

Note: The digit select range is 00 through 07 and the seg-
ment seiect range (pattern) is 00 through 7F.

In this exercise, you have stored LED array and segment select numbers in memory, starting
at hex. address 1900, toc output a cyciic dispiay. The patterns are on and off for an equai
amount of time, and the amount of time is proportional to the number loaded at hex.
addresses 18FD and 18FE. The number of patterns in the cycle is stored at hex. address
18FF. You can create your own display by changing the LED array and segment select
numbers used in this program.

If you want to display alphanumerics, use the list of segment select numbers that appears
after Exercise 10. For other patterns, simply derive your own segment select codes.

TTY PROGRAM EXERCISE

The following program exercise demonstrates the ability to key in a succession of char-
acters (or message) on a TTY, store the resulting American Standard Code for Information
Interchange (ASCI) codes in successive locations in the RAM of the MAC Tutoer, and take
the coded message stored in the MAC Tutor and print the individual characters out on the
TTY. Several important computer-communications principles are illustrated in this exercise.
They are:

« The use of a microprocessor to carry on 2-way communications with a peripheral
device.

« The ability to store information and display it when desired.

PA-800518 lIssus !, April 1979 45

The facility of the TTY to convert numerical, alphabetical, and control characters
to a standard format (ASCII code). (Texas Instruments’ Silent 700 Electronic
Data Terminal was used to develop this exercise.)

The use of software to perform the serial-parallel conversion required to make
TTY data compatible with data used by the MAC-8 microprocessor. (Serial data
consist of a number of bits appearing on a single data line, spaced apart in time.
Parallel data require separate lines for each bit, but all bits are available at the
same time.)

The need to insert a controlled time delay into the program to reconcile the dif-
ference between the data rate of the TTY and the instruction execution time of
the MAC-8 microprocessor.

BRIEF HARDWARE DESCRIPTION

The MAC Tutor provides two RS 232C connections for attaching TTY compatible terminals
or modems capable of running at rates from 0 to 2400 baud. If a compatible TTY terminal
is available and the proper interface connections are made, you can use the TTY keyboard
and printer (under control of the MAC Tutor executive program) in place of the MAC Tutor
keypad and display. This exercise assumes that the MAC Tutor-TTY terminal connections
have been made and that communications will occur under control of a user program.

TTY Interface

The hardware interface between the MAC Tutor and TTY is shown in the following
MAC Tutor-TTY Interface Diagram.

MAC-8

46

' .
7 — PAG SeﬂData Keyboard
g PAS Output
Data S
Bus Port < 4
A 3 pr—
2 prme—
D7 - Do
1 fr—
o TTY
8255-1
A15 - Ag
Address 3
Port
Select 2 f—
¢ Serial
(Low) 1 o Printer
PCO
0 Data Input

Simpiified MAC Tutor-TTY interface Diagram

PA-800516 Issue 1, April 1979

Some ot the details of the 8255 programmable peripheral interface chip were described
in the 1/O programming exercises. Recall that ports A and B of the 8255-1 chip and port A
of the 8255-2 chip were used by the MAC Tutor keypad and display. The TTY interface uses
only two bits of port A and the lowest bit of port C. An additional feature of the 8255 chip
is its ability to control the direction of flow of the lower four bits of port C, independent of
the high four bits. Although this feature is not important with respect to the TTY interface,

it does affect the control word requirements of the 8255 chip. The control word format for
the 8255 chip is shown beiow.

Data Bit

D D6 D5 D4 D3 02 D1 DO

OO x| x|O}| x| X

I Port C {Low) I = Input
PC3 - PCO 0= Output
Note: Control words Cr——renl> Port B
are sgt by the first in- Port C (High)
struction of a program.
PC7 - PC4
=l Port A

Control Word Format

To transmit serial data from the TTY keybecard to the MAC Tutor, port A is defined as

an input port. Although not necessary, port B is defined as an input port for this mode of

communication to keep the MAC Tutor display blank, If the TTY printer is to receive seria!

data from the MAC Tutor, ports A and C must be defined as output ports. The control word
with respect to port direction is as follows.

Control Word Port Direction

Direction DDDDDDUDTD
of Transmission 76543210 A B C (Low) C (High)
TTY Keyboard to MAC Tutor I O 01 OO0O1 O Input Input Output OQOutput
MAC Tutor to TTY Printer I OO O0OO0OO0O I O Output Input Output Output

Data Format

Referring to the MAC Tutor-TTY Interface Diagram, serial data from the TTY keyboard
are received on PAG of the 8255 chip and transmitted to the MAC-8 microprocessor on Dg.
Conversely, serial data are transmitted by the MAC-8 microprocessor on Dg and passed to
PA5 of the 8255 chip. If the signal on PCO is held low, the serial data are simply inverted
and received by the TTY printer. The TTY printer issues serial data as shown below.

- 8-Bit ASCII Code |
- >
High (D [Start & O 1 27 o e loadl ol T oY stop[sact o
8 B 8 B B B8 B B B
Low(O)lBitL1|2|3|4|5|6|7l8|8it BitL1
LSB MSB = Next
' Character
Parity Bit

Serial Data from TTY Printer

PA-800516 Issue 1, April 1979 47 .

The TTY issues 8-bit ASCll-coded characters. The first seven bits define the character and
the eighth bit provides an even-parity check (i.e., the bit has a value that results in the
8-bit code containing an even number of logical 1 bits). Thus, a code of this length can
uniquely identify 27 or 128 TTY characters. The following is a list of standard 7-bit ASCI|I
codes, using hex. notation. The most significant bit is always 0, so the parity bit is not
included in this code.

HEX. — ASCIl CODE

00 NUL 20 SP 40 @ 60 °
01 SOH 21 | 41 A 61 a
02 STX 22 - 42 B 62 b
03 ETX 23 # 43 C 63 ¢
04 EOT 24§ 4 D 64 d
05 ENQ 25 % 45 E 65 e
06 ACK .26 & 46 F 66 f
07 BEL 27 ' 47 G 67 ¢
08 BS 28 (48 H 68 h
09 HT 29) 49 | 69 i
0A LF 2A - 4A) 6A j
0B VT 2B+ 4B K 6B k
0C FF 2c 4c L 6C |
0D CR 2D - a M 6D m
OE SO 2E . 4E N 6E n
OF SI 2F / 4F O 6F o
10 DLE 30 0 50 P 70 p
11 DC1 (X-ON) 31 1 51 Q 71 q
12 DC2 (TAPE) 32 2 52 R 72 ¢
13 DC3 (X-OFF) 33 3 53 S 73 s
14 DC4 34 4 54 T 74t
15 NAK 3% 5 55 U 75 u
16 SYN 36 6 56 V 76 v
17 ETB 37 7 57 W 77w
18 CAN 38 8 58 X 78 x
19 EM 39 9 59 Y 79 vy
1A SUB 3A BA Z A 2z
1B ESC 3B 58 | 78 |
1C FS 3c < 5C \ 7¢ |
1D GS 3D = 5D] 7D} (ALT MODE)
1E RS 3E > BE A (N 7E ~
1F US 3F 2 BF — (9 7F DEL (RUB OUT)
Notes:

1. When the parity bit is added, an uppercase B results in hex. 42, but uppercase C yields hex. C3 rather
than 43 (as an example).

2. This ASCII code is generated by a mechanical TTY; the electronic terminals use a negative logical repre-
sentation of the bits.

48 PA-800516 Issue 1, April 1979

Some additional points about the format of the serial data are:

Normally, the line connected to the TTY keyboard is at logical O (low). When a
key is depressed (either alone or in conjunction with the shift or control key), a
start bit (always at logical 1) is issued prior to the character code. Thus, the
transition from low to high signifies the fact that a character code is to follow.
Without this start bit, it is difficult to know when the code starts, particularly if
the initial bits of the code are Os.

The data bits are issued, starting with the LSB and ending with the MSB, which is
the parity bit. Actually, the data bits from the TTY keyboard are inverted when
they enter the MAC-8 microprocessor because of the negative logic associated with
the electronic terminal.

A stop bit (alvx}ays at logical 0) follows the MSB and enables recognition of the
start of the next character. This level is maintained until the next TTY key is
pressed. Some TTYs require two successive stop bits following the message.

As the MAC Tutor-TTY Interface Diagram suggests, the TTY printer requires data
in inverted form to that shown. Thus, the line to the printer is normally at a high
ievei {iogicai 1) untii the start bit appears as a high io iow transition.

Exercise 14 — Store and Print Message

This program exercise is divided into two routines. The first routine takes the message keyed
in on the TTY and stores it in the MAC-8 microprocessor RAM. The second routine prints
the message out on the TTY. The two routines are described separately, with the complete
program listing appearing at the end of the exercise.

Store Message Routine

The store message routine, shown in the flowchart, consists of the following segments:

PA-800516 Issue 1, April 1979

Initialization.

Check for arrival of sfart bit.
Input and save data bits.
Check for end of message.

Delay subroutine.

49

Issue control word to
set port directions.

:

Store memory
addresses.

¢

Wait for start bit
of next character.

Wait for end of start bit and
middle of first data bit.

&

Input and save
next data bit.

I

Wait for end of data
bit.

Have
eight data
bits been
sent?

End of
message?

Store Message Flowchart

PA-800516 Issue 1, April 1979

Exercise 14 (Continued)

Initialization

Instruction Comments

*1F03=92; Control word defines ports
A and B as input ports.

b0=1F00; Store port A address.

b1=1900; Store starting address of
message.

b5=18FE; Store address of delay fac-
tor.

b8=18FC; Store address of half-delay
factor.

The incoming message is stored in successive memory addresses, starting with 1900. The
preceding hex. addresses 18FC through 18FF store two 16-bit numbers, in conjunction with
the delay subroutine, that reconcile the TTY and MAC-8 microprocessor timing differences.
Registers b0, b5, and b8 can be preloaded with their addresses because they will not change
when the program is executed.

Check for Arrival of Start Bit

Instruction Comments
wait: if{!bit(6,"b0)) goto wait; Loop until bit 6 is high.
pulse(); Go to delay subroutine un-

til end of start bit.

halfpuls(); Go to subroutine that pro-
vides delay of half of bit
width.

The program does not proceed until a TTY key is depressed, and the MAC-8 microprocessor
idles until the TTY is ready to input data. This technique is called device polling and is
commonly used in microprocessor applications.

Input and Save Data Bits

Instruction Comments
a3=8; Save number of data bits
in ASCII code.

PA-800516 Issue 1, April 1979 51

Exercise 14 {(Continued)
Instruction
a4=0;

loop: a7="b0;
a7=a7840;

ad=adla7;

ad=ad>>>1;

pulse{);

—-a3;
if(!zero)goto loop;
ad=ad<<<1;

ad=ad<<< 1;

*b1=a4;

*b1++="~"b1++;

Comments

Save ASCII code in reg-
ister a4.

Input data bit.
Mask all bits except bit 6.

Transfer to bit 6 position
of register a4.

Rotate data bit one
position to right to make
room for next data bit.

Go to delay subroutine un-
til ready for next data bit.

Repeat until all eight data
bits are stored.

Because bits enter on line 6,
rotate left twice so that
LSB is bit 0, next to LSB

is bit 1, etc.

Store character code in
memory, outside of register
space.

Complement character code
and increment address for
next character to be stored.

Note that the 8-bit ASCIl code makes it convenient to perform the required serial-to-
parallel conversion in an 8-bit a register (a4 in this case).

Check for End of Message
Instruction

if(!zero)goto wait;

return;

52

Comments

Wait for next TTY character
unless an ASCH code O is
received.

Return to executive program
after message is completed.

PA-800516 Issue 1, April 1979

Cuwvnvna inn 1A [OAamsinindl
LAGIVIIC 177 \wUlTIuNIuGu

A convenient way to terminate the message is to use the NUL controi character on the TTY.
The ASCII code contains all Os and the routine exits from the loop when this character is
received.

Delay Subroutines

instruction Comments

pulse: b6=*d5; Fetch 16-bit delay factor
stored in hex. addresses 18FE
and 18FF.

delay: ——b8; Continue decrementing delay

factor until it reaches 0.
if(1zero) goto delay;

return; Return to main program.

halfpuls: b9="*d8; Fetch 16-bit half-delay
factor stored in hex. addresses
18FC and 18FD.

haifdiy: ——b9; Continue decrementing haif-
delay factor until it reaches 0.
if(!zero)goto halfdly;

return; Return to main program.

This simple type of delay subroutine has been used previously in the 1/O programming
exercises. In those exercises, the delay loop was used to change the LED display to a con-
venient -rate for visual observance of the patterns. Changing the delay factor either speeded
up or slowed down the display sequence, but did not alter the sequence. In this program,
the delay factor must be chosen with care because the time during which the program is in
the delay loop must correspond to the time width of a bit issued by the TTY. For this reason,
and because timing delays are such an important aspect of microprocessor programming,
a description of how the delay factor is chosen is included in this program exercise.

In this program, the TTY rate is set to 30 characters per second. This corresponds to a
rate of 300 bits per second (called 300 baud) because each character consists of 10 bits
(including a start bit and stop bit). Therefore, the time duration of a single bit is 1/300
second or 3.333 milliseconds (ms). The MAC-8 microprocessor, like all microprocessors,
executes its instructions under the control of a clock. A clock is simply a crystal-controlled
circuit that issues a repetitive series of high-low pulses at a particular rate (called the clock
rate). Each MAC-8 instruction has a number of associated clock cycles that correspond
to the total time required to fetch and execute the particular instruction. The clock cycle
requirements for each instruction of the delay subroutine are as follows.

PA-800516 Issue 1, April 1979 53

Exercise 14 {Continued)

Instruction Clock Cycles
pulse: b6="d5; 17
delay: ——b6; 12

if(1zero)goto delay; 7

return; 8

The MAC Tutor operates at a clock rate of 1 MHz, so that the number of clock cycles
corresponds directly to time in microseconds (us).

Since the total delay required is several thousand us (3.333 ms = 3333 us), and each instruction
takes approximately 10 us to execute, several hundred instructions have to execute to allow
the MAC-8 microprocessor to slow down to the rate of the TTY. This is the reason for
storing a number in a register and repeatedly decrementing it. Since almost all of the time is
spent in the delay loop, the time it takes to call the subroutine, initialize register b6, and
return to the main program is relatively negligible (only about 30 to 40 us). The delay loop
itself consists of two instructions requiring a total of 19 us. Thus, the number that must be
stored initially in register b6 and preloaded into hex. addresses 18FE and 18FF is

3333
b =222 _ _
19 = 175, = 00AF

10 6

A second delay subroutine (called halfpuls) has been inserted into the program to improve
the timing. An extra delay of half the bit width is inserted after the start bit is issued. This
allows the MAC-8 microprocessor to sample each data bit near the middle of the pulse rather
than at the beginning. This is good practice in an exercise of this type, as the system will be
less sensitive to any drifting of the clock rate.

Since register b8 is used in this subroutine, it should contain the number

17510

b8 R 871 = 0057’1

0 6

This number is preloaded into hex. addresses 18FC and 18FD.

Print Message Routine

The second routine of this program exercise, the print message routine, fetches a string of
coded characters stored in memory and prints them out in succession on the TTY. Thus,
when this routine is linked to the store message routine, the TTY message keyed in and
stored in memory is printed out upon execution of this program segment. The print message
routine is similar to the store message routine, so the same flowchart is applicable. The only
differences are as follows: instead of serial data being input on PAG of the 8255 chip, serial

54 PA-800516 Issue 1, April 1979

Eecmcaian 1A I/ a . 1\
LATIULDE 1< (VUlILIIIUCU/)

data must be output on PA5 while keeping line PCO low {see the MAC Tutor-TTY Interface
Diagram). The program is now performing a parallel-to-serial rather than serial-to-parallel
conversion. Also, bit-by-bit complementation of the ASCII code is not required in software
since the hardware does this (note the NAND gate tied to the TTY printer). Finally, the
program does not have to wait for a start bit for each character; it can issue the start bit
since the characters are already stored.

The print message routine consists of the following segments:

o Initialization.
Transmit start bit to TTY,
e Transmit data bits to TTY and check for end of message.

e Transmit stop bits to TTY and prepare to send new character.

Initialization

Instruction Comments

*1F03=82; Control word defines ports
A and C as output ports.

*1F02=0; Transmit low to PCO.
b1=1900; Store starting address of
message.

The message previously keyed in on the TTY is stored in ASCII code in memory, starting at
hex. address 1900.

Transmit Start Bitto TTY

Instruction Comments
next: *b0=0; Transmit a low to PAb; signal

goes to TTY printer (register
b0 stores port A address).

pulse(}; Go to delay subroutine to establish
required width of start pulse.

With reference to the description of timing, a low start bit of 3.333-ms duration is trans-
mitted and inverted by hardware. The TTY then recognizes the succeeding transmitted bits
as a character to be printed. The program returns to this point (next) after each character
has been printed until a NUL character is encountered (signifies end of message).

PA-800516 Issue 1, April 1979 55

Exercise 14 (Continued)

Transmit Data Bits to TTY and Check for End of Message

Instruction Comments

a3=8; Save number of data bits in
ASCII code.

ad="b1++; Move ASCI! code to register

a4 and increment address
for next character.

if(zero)return; Return to executive program
if end of message is encoun-
tered.

ad=ad>>>1; Rotates LSB into bit 5
for subsequent transmis-

ad=ad>>>1; sionto TTY.

ad=ad>>>1;

loop: *b0=a4; Transmit bit on Dg to TTY
printer.

pulse(); Delay to establish proper
bit width.

ad=ad>>>1; Rotates next bit to be

transmitted to LSB.
——a3; Repeat until all eight data
bits are transmitted.

if(1zero)goto loop;

It should be noted again that TTY serial transmission (in either direction) requires that the
LSB be sent first and the MSB last.

Transmit Stop Bit to TTY and Prepare to Send New Character

Instruction Comments

*b0=20; Transmit a highto TTY
printer.

pulse{); Go to delay subroutine to
establish required width of
stop pulse.

b6 PA-800516 Issue 1, April 1979

Exercise 14 (Continued)

Instruction Comments

goto next; Return to point in program
where start bit for next
character is issued.

A high 3.333-ms stop bit is transmitted and inverted. This enables the TTY to recognize
the start of the next character. Since the routine does not reach this point when a NUL is
encountered, it always branches back to next.

Program Listing

The following is the complete program listing for the store message and print message
routines.)

Store Message

Starting

Instruction Hex. Code Address
*1F03=92; 81 FF 03 1F 92 1800
b1=1900; CO 1F 00 19 1805

wait: if{ibit 6,"b0} jgoto wail; 53 08 FE 1800
pulse{); 79 36 18 180C
halfpuls(); 79 3F 18 180F
a3=8; 80 3F 08 1812
a4=0; 20 40 1815

loop: a7="b0; 85 70 1817
a7=a78&40; 98 7F 40 1819
ad=ad|a?; 90 47 181C
ad=a4d >>>1; 34 4F 181E
puise{); 79 36 18 1820
—-a3; 28 38 1823
if(!zero)goto loop; 41 F1 17 18 1825
ad=a4 <<<1; 34 4 1829
ad=a4 <<L1; 34 41 182
*b1=a4; 81 14 182D
pit+=~"bi++; 2F 10 182F
if(!zero)goto wait; 41 F1 09 18 1831
return; 66 1835
pulse: b6="d5; C5 65 1836
delay: ——b6; 68 68 1838
if(1zero)goto delay; 41 F1 38 18 183A
return; 66 183E
halfpuls: b9=*d8; C5 98 183F
halfdly: —~—b9; 68 98 1841
if(1zero)goto halfdly; 41 F1 41 18 1843
return; 66 1847
57

PA-800516 Issue 1, April 1979

Exercise 14 {Continued)

Print Message

) : Starting

Instruction Hex. Code Address
*1F03=82; 81 FF 03 1F 82 1A00
*1F02=0; 21 FO 02 1F 1A05
b1=1900; , CO"1F 00 19~ S 1A09
next: *b0=0; : 21.00 : ‘ 1A0D
puise(); 79 36 18 . . - 1AQF
a3=8; 80 3F 08 1A12
ad="b1++; 87 41 1A15
if(zerojreturn; 64 01 1A17

ad=ad >>>1; 34 4F . 1A19
ad=ad4 >>>1; 34 4F ‘ ' 1A1B
ad=ad >>>1; 34 4F TA1D
loop: *b0=a4; 81 04 1A1F
pulse(); 79 36 18 1A21
ad=ad >>>1; 34 4F 1A24
——a3; 28 38 1A26
if(!zero)goto loop; 41 F1 1F 1A 1A28
*b0=20; ; , 81 OF 20 1A2C
pulse(); 79 36 18 1A2F
goto next; 59 0D 1A 1A32

In addition to the store and print routines, the following data and addresses must be pre-
loaded. *1 8 F C=5 7+0 0+A F+0 0 stores half-delay factor 0057 in hex. addresses
18FC and 18FD and delay factor O0AF in hex. addresses /b=1F 0 0,
/b 5=18 F E, /b 8=1 8 F C stores addresses in registers b0, b5, and b8.

To store and print a message, pressinit andgo on the MAC Tutor. (The display will go blank.)
Key in the message on the TTY. When you want to terminate the message, hold down
CTRL and press NUL. The TTY will not print the message as it is being keyed in. Key in
*1 A 0 0andpressgo. The message will be printed out on the TTY and retamed in
memory.

The ASCII codes can be examined by pressing* 1 9 0 0 and repeatedly incrementing the
address. The program can be rerun for different messages by pressinginit andgo and repeating
the above procedure. It is not necessary to reload any registers.

The final program exercises in this self-training manual are two follow-up exercuses to the
store and print message program exercises. They consist of:

e Varying the delay time factor that is preloaded into hex. addresses 18FE and 18FF.

You will see that it is possible to increase or decrease it to some extent, but there
are limits because of its relation to the TTY baud rate.

58 PA-800516 Issue 1, April 1979

Exercise 14 (Continued)

e Keying in a long message that requires more than one line to print out. You will
find that a problem exists because a TTY carriage return and line feed will auto-
matically occur when the end of the line is reached. Since the carriage return and
line feed occur while the print message routine is being executed, the time required
for this mechanical operation results in the loss of several characters from the
message. You can overcome this problem in various ways, such as by using control
characters in the message itself.

PA-800516 Issue 1, April 1979 59

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59

