WICATsystems

WICAT

Multi-user Control
System (WMCS)
LINK

Programmer Reference Manual
188-161-301 B

April 1984

* Software ¢
Publications

Copyright Statement

Copyright © 1981 by WICAT Systems Incorporated
All Rights Reserved

Printed in the United States of America

Receipt of this manual must not be construed as any kind of
commitment, on the part of WICAT Systems Incorporated, regarding
delivery or ownership of items manufactured by WICAT.

This manual is subject to change without notice.

Revision History

First Printing September 1981
Second Printing April 1984

The manual explains how to use the LINK Program for

development.

Reader’s Guide to MCS Publications

The Purpose of This Manual

Instructions: Determine the audience to which you belong and

then read only the publications at an arrowhzac.

Dotted arrowheads indicate optional reading.

System MCS Systems
manager user programmer
MCS Mifroductory S| Em Manageq hnual
[CS Introductdry User Manyal
MCSSGystem Mana| | Reference N pual
—J & ,7_ —J 7

V‘VICS User Re ience Manua..

Nt

uals descrlbmg system utlll‘tl.E.S

<

—\

L

M

b Programmer Reference M;

(;uals describing system utilities

y

L

=\

<

Release Notices

<

=

pa

Software Bulletms

m | Volume 2 || Volume 3]

1 Volume 4]

iii

program

An introductory user manual is a tutorial introduction to a software
product. In other words, use of the product is explained in a
step-by-step, user-friendly format that walks you through same
fundamental aspects of the product. When you complete the
introductory manual, you have the experiential basis for understanding
the products's user reference manual.

User reference manuals are written for those who are new to the
product (but who have read the introductory user manual) as well as
for the experienced user.

System manager reference manuals contain information for those who
perform administrative tasks associated with routine system operation.

Programmer reference manuals are written for programmers who at least
understand programming fundamentals.

iv

WMCS LINK Programmer Reference

Table Of Contents

OVERVIEW

THE RCLE OF THE LINKER o o
Program Modules . . « « « &
Compilation And Assembly .

LINK FUNCTIONS . & ¢ & « o &
Executable-image File . . .
Cross Reference Map File .

SYMBOLS AND REFERENCES

DEFINITION L] L] L] . L] . L] L] .

WPES L] L] L] * * L] * L] L] L] L] L]
Local Symbols « ¢ o o o o o
Global Symbols . « o & o &

OBJECT MODULES

DEFINITION e s s s 8 s o & »

Rmom TYPES L] L] . L] L] . . L]
lklimiter L] [] o ° L] . L L] L]
Code L] L] L] L] [] L] L] L] . L] *
Constants/labels . . « . .
Global Symbols o ¢ o o o &

IMAGE CREATION

BIT MAP L3 . L] Ll . . Ld L] ® e e e & o

Disk Memory Correspondence
Initial Memory Allocation .
Shared Memory Page . . . «

LIBRARIES

DEFINING A LIBRARY e 6 o o o o s o e o o

PREIIINK L] L] L] L] L] L] L] L] L] L] .
REFERENCING LIBRARTES
Default Library ¢ « « « « &

L] . L] L] L] .
L] L] L] . . L]

e e o o o
e o o o o o
* o ® e o o
e o o e o o
L) L] . L] L] L[]
. . . ° L] L]
e o o o e o

e e o o
e o o o
e o o o
L] L] L] L]
e o o o
e e o o
e« o o o
. L[] . .

e o o o o o
e o o @ e o
L] . L] . L] L]
e e o o e o
e o o o o o
¢ o o o . o
e o o o . o
L] ¢ o o o o
L]] L] L] . .
L] L] L] . * .

e e e o
e o o @
. L] L] L]
. L] L] .

2-1
2=2
2-2
2-3

3-1
3-5
3-5
3-6
3-6
3-6

. 5-1

5-2
5-3
5-3

APPENDIX C

APPENDIX D

APPENDIX E

Table of Contents
Other Libraries

e o o o o o

TROUBLESHOOTING

LINK DIAGNOSTIC MESSAGES . .
MISCELLANEQUS ERRORS . + « «
File Empty Or Does Not Exist
Invalid Symbol Address . .

EXAMPLE OF PROGRAM DEVELOPMENT
RELOCATABLE MODULE FORMAT
CROSS REFERENCE MAP LISTING

BIT MAPS AND RECORDS

vi

e e o o

e o e o

o o e o

e o e o

L] L] L] *

A-1
A-1
A-2
A-2

TYPOGRAPHICAL CONVENTIONS USED IN THIS MANUAL

Uppercase letters within text indicate sample command 1line character
strings, file designations, diagnostic messages, and reports. Such
samples are in uppercase when run into the text so that you can
distinguish what would be typed (or what would appear) on the screen.
Examples set off from the text are in lowercase.

Bold facing indicates what you should type onto the screen, i.e.,
whereas uppercase characters indicate sample character strings, etc.,
that are part of an example, bold faced characters indicate what you
must type as part of a procedure.

Square brackets, [], indicate a function key, the name of which
appears in uppercase within the brackets, e.g., [RETRN], [CTRL], etc.

Underlining is used for emphasis.

vii

CHAPTER 1
OVERVIEW

The WICAT Multi-user Control System (WMCS) LINK Program is a
programming tool used to prepare the output of a compiler or assembler
so that that output can be executed by the computer's hardware.
Therefore, LINK produces a file that is an executable image.

The executable image has sharable and nonsharable segments. Sharable
segments can be shared by more than one process.

LINK also creates a listing of symbols and addresses useful for cross
referencing.

The description of the LINK Command, in the WICAT Multi-user Control
System (WMCS) User Reference Manual, tells you how to execute LINK.

1.1 THE ROLE OF THE LINKER

The object modules created by language translators (including
assemblers) are nonexecutable. External symbol references are
unresolved. Unresolved symbol references include run-time
modules required by high level 1languages as well as
user-specified external declarations. The 1linker binds the
symbol reference with the symbol definition and creates a memory
image that can be read into memory and executed. Without a
linker, modular programming is impossible, and language
translators would be much more complex.

1.1.1 Program Modules

Modular programming, the process of combining separately
compiled or assembled modules into an executable image,
simplifies and enhances program development in the
following ways:

1. Smaller modules are easier to write and maintain

1-1

because it is easier to find and fix errors in a
smaller module.

Many modules are applicable to more than one
task, and modules that have been used and tested
in other programs can be included in new
applications. This speeds program development.

Complicated programming requirements are
simplified by breaking the requirements into
smaller tasks, each of which can be allocated to
a different person for implementation and
debugging.

In same cases, the best language for one module
may not be best for another part of the program.
Modular programming allows modules written in
different programming languages to be combined in
a single application. Thus the programmer can
use the language most suited to the application.

OVERVIEW

~

Figure 1.1 illustrates the role of the linker in modular
programming wherein TIME is a computer program that
interacts with the user to set the system clock on a WICAT
system. The interaction is achieved through a main
program written in WICAT Pascal. The clock is actually

set by an assembly language program written in WICAT
Assembler.

TIME.PAS SET.ASM
r Y
BASTAL Compiler Assembler
1 1
TIME.MRL SET.MRL

Figure 1.1. Modular Programming

OVERVIEW

1.1.2

Compilation And Assembly

LINK simplifies the work done by language translators
because it assigns code to executable pages.

1.2 LINK FUNCTIONS

LINK produces two files:

An executable-image file (EXE is the file extension for
this file).

2. A cross reference-map file (MCR is the file extension

for this file).

These files are discussed in the following sections.

1.2.1

1.2.2

Executable-image File

An executable-image file is file type number 1. The
record size of the file is 1024 bytes and the first record
of the image file contains bit maps. each of which is 256
bytes long. These maps represent logical address space.
Each of the bits in a map is a semaphore for a 1l-Kbyte
segment of address space. The first map defines the
correspondence between the records on the disk and their
ultimate location in memory. The second map defines the
initial memory allocation. The third map indicates which
pages can be shared.

The fourth map is not used on a WICAT computer.

Cross Reference Map File

This file is a listing file that specifies each module
name and starting address.

CHAPTER 2

SYMBOLS AND REFERENCES

LINK's primary responsibility is to resolve symbolic references
between modules.

2.1 DEFINITION

A symbol is an identifying label or name associated with one or
more program statements or data area. A reference is the use of
a symbol in a program statement of data definition.

Figure 2.1 illustrates a sample program called TEST. The program

is written in Pascal and consists of one main routine and one
subroutine.

Hoo~Noaus wnkr
o

o}

3

=

I :=1+1;
BEGIN
11 I :=0;
12 INCREMENT;
13 END.

Fig 2.1 Sample Program
These are the symbols used in TEST:
TEST The name of the main routine
INCREMENT The name of the subroutine
I The name of a data area or variable

These are the references used in TEST:

line 7 I is referenced twice
line 11 I is referenced once
_line 12 The subroutine INCREMENT is called
2.2 TYPES

Symbols are one of two types: local or global. LINK treats each
type differently.

2.2.1 Local Symbols

Local symbols can be referenced only in the routine in
which the local symbols are defined.

Note that for a program such as that in figure 2.1 (where

there are no local symbols) the compiler or assembler
resolves all references to local symbols.

2-2

SYMBOLS AND REFERENCES

2.2,2 Global Symbols

Global symbols can be referenced by routines other than
the routine that defines them. For example, in figure 2.1
all symbols are global because they are defined by TEST
(the main routine) and are therefore global to all
subroutines. LINK resolves global symbol references (see
chapter 4).

Global symbols are of two types:

1. Internally defined symbols, defined in the main
program.

2, Externally defined symbols, defined in a routine
that is external to the main program, and
independently compiled (e.g., runtime routines
used by Pascal).

2-3

CHAPTER 3

OBJECT MODULES

3.1 DEFINITION

The output (or object) file for the compiler or assembler is the
input file for LINK. An object file consists of modules. In the
case of the Pascal compiler, a discrete module 1is created for
each procedure in the program along with one for the main program
itself. An additional module is created for global variables.
In chapter 2, figure 2.1, we examined a simple Pascal program.
Figure 3.1 illustrates the modules created by the compiler.

Increment Test Globals

Fig. 3.1 Modules Created By PASCAL Compiler For TEST Program

A module can contain several records. An object record has the
following hexadecimal format displayed in bytes:

I [Byte | | Code | Code | . . . | Code |Check]
|Type|Count |Relative Address|Byte 1l|Byte 2| . . . |Byte n| Sum |

Fig. 3.2 Object Record Format

This is an explanation of the terms appearing in figure 3.2:

Type Type of object record described in 3.2,
a label.
Byte Count Number of bytes in the record following

the record type (not including the byte

3-1

OBJECT MODULES

Relative Address

Code Byte

Checksum

count itself).

Relative address of the code bytes in
the module.

In the case of a code type record, the
code bytes contain the actual
hexadecimal code for the module; in the
case of a symbol, the code bytes contain
a name.

The checksum is the one's complement of
the sum of the bytes.

Diagrams showing the format of each type of record are found in

appendix D,

Figure 3.3 shows the hexadecimal object file created by the
Pascal compiler for program TEST (shown in figure 2.1). Note,
the three modules relating to figure 3.1l.

OBJECT MODULES

Relative
Type Count Address Code/ASCII String/Checksum
RP | 05 | 00000000 | FA Branch to start
Rl | OC | 00000000 | 2ES3544152542E09 of main program
R | OB | 00000000 | 4EFS0000CO0CAD
R7 | GA | 00000002 | 544553543083
R8 | 05 | 00000006 | F4
RP | 05 | 00000000 | FA INCREMENT module
RL | OF | 00000000 | 494E4352454D454ES4311A
R2 ! 17 | 00000000 | 4ES6FFFCZDODS27900000042RASE4ESE4ETS03
R7 | 16 | 00000008 | 2450415343414C2D474C4F42414C242D32A8
R8 | 05 | 00000012 | ES
RP | 05 | 00000000 | FA TEST module
RL | OA | 00000000 | 544553543085
R | 25 | 00000000 | 2F3d00000006RF3J000000284EB40000000042790000004ARA4E4EBS00000000UE
R2 | OB | 00000020 | 4EB90000000QCD
R7 | 16 | 00000002 | 2450415343414C2D474C4F42414C242D32AE
R7 | 16 | 00000008 | 2450415343414C2D474C4F42414C242D32A8
R7 | OB | 0OOO00CE | 52525230303060
R7 | 16 | 00000014 | 2450415343414C2D474C4F42414C242D329C
R7 | OF | 0000001C | 494E4352454D454ES431FE
R7 | OB | 00000022 | 5252523030314B
R8 | 05 | 00000026 | D4
RI | 05 | 00000000 | FA GLOBAL module
RL | 16 | 00000000 | 2450415343414C2D474C4F42414C242D32E0
R8 | 05 | 0000004C | AE
R9 | 05 | 00000000 | FA

Fig. 3.3 Object File For TEST Program

Each record begins with a record label, 'R', followed by an
integer between 0 and 9 or one of the alphabet characters 'I' or
'P', References to global symbols (subroutines., variables, etc.)
must be made using the M68000 absolute long addressing mode. In
the object file, using figure 3.3 as an illustration, all
references to internally and externally defined global symbols
(refer to chapter 2) are enclosed in a box. Note, all references
to internally defined global symbols have an offset into the
global module while all references to externally defined global
symbols have an address value of 0. These global references can
be better understocd by studying a listing of the assembly code
generated by the compiler for TEST. This listing is illustrated
in figure 3.4.

OBJECT MODULES

WICAT Pascal Version 1.3

sprocedure: increment(1)

0000

0004
0006

000C
000E
0010

4ES6 link a6, #-4
FFFC

2D0D move.l a5,-(aé6)
5279 addg.w #1,74
0000 global
004A

2ASE move.l (a6)+,a5
4ESE unlk aé

4E75 rts

;procedure: test(0)

0000

0006

000cC

0012

0018
001A

0020

Fig. 3.4

2F3C move.l #6,~(sp)

0000 global
0006

2F3C move.l #40,-(sp)
0000 global
0028

4EB9 jsr XXXXXX
0000 RRR000
0000

4279 clr.w 74

0000 : global
004A

2A4E move.l a6,ad
4EB9 jsr XXXXXX
0000 INCREMENT1
0000

4EB9 jsr XXXXXX
0000 RRROO01
0000

Assembly Code Generated By Compiler For TEST Program

Note the following:

l.

2.

3'

Global reference for I following address 0006 in module:
INCREMENT

Globél references for I in module: TEST, following
address 0012.

External reference for runtime routine RRRO00 following
address C.

External reference for INCREMENT module following
address 1A,

5.

OBJECT MODULES

External reference of runtime routine RRR001 following
address 20.

3.2 RECORD TYPES

There are four broad categories into which all object module
can be classified:

records
l.
20

3.2.1 Delimiter

Delimiter.

Code.

Constant/label definitions.

References to global symbols.

There are six record types in this category, as defined by
the second character in the type field:

RP

RT

R8

Delimits a sharable segment; pure storage.
Delimits a nonsharable segment; impure storage.

Identifies the main program. The program name
is coded in the code bytes. This record
delimits the sequence of records pertaining to
the main program.

Identifies a module or subroutine. The module
name is coded in the code bytes. This record
delimits the sequence of records pertaining to a
module.

This record marks the end of a module. The
address of the first free location past the end
of the module. LINK uses this offset from the
start of the module to determine where it can
start loading the next module. This record
contains the amount of space used by the module.

This record marks the end of the dbject f£file.
An object file can contain several modules.

OBJECT MODULES

3.2.2

3.2.3

3.2.4

Code

An R2 label indicates that the record contains program
code.

Constants/labels

There are four types of object records found in this
category:

R3 Identifies a local constant. The name is coded
in the code bytes. The relative address field
contains the value of the constant.

R4 Identifies a local label. The name is coded in
the code bytes. The relative address field
contains an offset pointing to the labeled
location.

R5 Identifies a global constant. The name is coded
in the code bytes.

R6 Identifies a global label. The name is coded in
the code bytes.

Global Symbols

Record type R7 identifies a reference to any global
symbol. The relative address field is the location
(within the module) of the reference to the global symbol.

CHAPTER 4
IMAGE CREATION

LINK reads relocatable object modules, resolves references between
modules, and creates an image file that the operating system can load
and execute.

As relocatable modules are read in, they are placed in a virtual
address space that resembles the address space the program uses during
execution. By convention, this address space is divided in half with
the lower half reserved for program code and constants. The upper
half is reserved for the stack and other variables. The purpose of
this convention is to allow the nomchanging or pure portions of
programs to be shared among several users. See figure 4.l.

4-1

IMAGE CREATION

000000 =
Interrupt and Exception Vectors I
(This page physically resides in |
RM and is shared by all users.) I

001000
Pure Section

(This area contains constants and
code which may be shared between
users.)

Impure Section

(This area contains variables and
data which may not be shared.)

| User Stack |
| (The stack starts at 1FEFFF and |
1FEFFF | grows towards low memory.) |

Fig. 4.1 Memory Map Of The 2-Mbyte Virtual Address Space

Space is allocated consecutively in these two segments. Allocation in
each area is controlled by a base pointer that points to the lowest
unallocated memory location. The pointer into the lower half of the
address space is called Pure-Base and has an initial value of 1000
Hex. The pointer into the upper half of the address space is called
Impure-Base and has an initial value of 100000 Hex.

As the relocatable modules are read 1in, they are placed into the
virtual address space relative to one of these two bases. The base
pointer chosen depends on the 'RP' or 'RI' type record that must be
the first record in a module. If the record is type 'RP' the module
goes into the lower half of the address space. If the record is type
'RI' the module goes into the upper half of the address space.

The end of a module is delimited by an 'R8' type of a record. The
address field of an 'R8' type record contains a count of the number of
bytes of memory used by the module. When a module has been completely
read in, the base pointer is incremented by the value of the address

4-2

IMAGE CREATION

field in the R8 record. Thus the pointer once again points to the
baottam of free memory.

Between the start and end of a module, three classes of records may be
encountered. The first class causes data to be entered into the
virtual memory address space. The second class causes symbols to
‘become defined. The third class marks a reference to a symbol.

There is only one instance of the first record class. This is the
'R2' type of record. This record causes bytes of data to be stored in
the virtual memory space.

The second and third record classes affect the linker symbol table
that is defined by the series of Pascal statements in figure 4.2,

TYPE Symbol-Table = Record

Next : Symbol-Table;
Name : Packed Array [1..20] of Char;
Value + Address
Referenced : List-of-Undefined;

End;

List-of-Undefined = Record
Next ¢+ List-of-Undefined;
Value + Address;

End;

Fig. 4.2 PASCAL Definition Of Linker Symbol Table

Pictorially, the symbol table corresponds to the diagram in figure
4.3,

4-3

IMAGE CREATION

| Symhead A I
/.
List-heagaj Next | Name | Value | Referenced L\\
A
List-head | Next\» | Value |
¢ | .Main.0 | FFFFFFFF | «_ |
N
N 1///1111117)
I lf | 00001002 |
d | start | 00001000 | “. |
N
E Ne 1////11171))
¢ | First | 00001010 | “. |
N
N 1/////11/1/]
l ¢ | 00001050 |
| ; | 00001058 |

Fig. 4.3 Pictorial Representation of LINK Symbol

IMAGE CREATION

The second record class consists of types 'RQ', 'Rl', 'R5', and 'R6'.
These result in a symbol table entry being built if one does not yet
exist and cause the value field of the symbol table entry to become
defined.

The third record class consists of only record type 'R7'. &An
occurence of a type 'R7' record causes a symbol table entry to be
built if one does not yet exist. An entry is then made into a list of
locations of undefined symbols that is associated with the symbol
table entry.

After all of the relocatable modules are read in, LINK procedes to add
the value field of each symbol table entry to all of the locations
where it 1is referenced as specified in the associated 1list of
references to undefined symbols.

After the undefined references have been resolved, the executable
image file is created.

4,1 BIT MAP

The executable image file has a record length of 1024 bytes. The
first record of this file contains bit maps each of which is 256
bytes long. These bit maps are:

1. Disk Memory Correspondence.

2. Initial Memory Allocation.

3. Shared Memory Page.

4, NOT USED.
These maps are arranged as shown in figure 4.4.

4-5

IMAGE CREATION

=_.___ === - ======= record 1
| disk-memory correspondence map |
$000-0FF | I
I I
I |
| initial memory allocation map I
$100-1FF | |
[|
I I
| shared memory page map I
$200-2FF | |
I |
I I
| (not used) I
$300-3FF | |
| I
record 2
$400-2?2?

|
I
|
|
I
I
I
|

Fig. 4.4 Image File Format

4'1 'l

4.1.2

Disk Memory Correspondence

The first bit map defines the relationship between the
2-Mbyte logical address space and the records of the
executable image file. Each bit of this map correspords
to 1024 bytes of memory. If the bit is set, the next
record from the executable image file is read into memory
at the location correspording to the bit position.

Initial Memory Allocation

The second bit map indicates which pages of memory should
be allocated to the new process. Again, each bit
corresponds to 1024 bytes in the 2-Mbyte address space.
The operating system allocates memory to 4096-byte pages.
Therefore., the setting of any of the bits on the page
causes the full 4096 bytes to be allocated.

4-6

IMAGE CREATION

4,1.3 Shared Memory Page

The third bit map is the memory-protection bit map. The
setting of any of the bits within the range corresponding
to a 4096-byte page causes the full 4096 bytes to be write
protected by the operating system. This process makes the
page sharable because the contents cannot be changed.

There is space for a fourth bit map that is unused at this
time and is assumed to be zero.

CHAPTER 5

LIBRARTES

LINK uses the content of a library definition file to resolve
undefined references after all the user-specified files have been
input.

5.1 DEFINING A LIBRARY

To define a library, you create a file containing a 1list of
equivalences. An entry in this file is a symbolic name that can
be referenced followed by the filename of an object module that
defines the symbolic name.

You can create this file as a normal text file by using the VEW
Program (read the Virtual Editing Window (VEW) User Reference
Manual). The standard extension for a library definition file is
.DEF. When referencing a file in an entry, you should enter the
filename in uppercase and include the file extension.

A line that begins with an ampersand, @, indicates indirection
through another 1library definition file. In this case, LINK
responds as though the contents of the other file had been
inserted at this point.

Figure 5.1 is an example of a library definition file.

5-1

LIBRARIES

L 2 SymbOliC Nane ...I........'. File Nalne o0 s 0000

1 2 | 3 4 5
12345678901234567890 | 123456789012345678901234567890
RRROCO | _DS0/PRTLIB/INIT.MRL
RRROO1 | _DPSO/PRTLIB/EXIT.MRL
_PUTSTRING | _PS0/PRTLIB.SVC/PUTSTR.MRL

@_DS0/RLIB/ANOTHER.DEF

Fig. 5.1 Library Definition File

5.2 PRELINK

When LINK is ready to use a file, it must translate the name of
the file to get the File Control Block (FCB) number assigned to
the file. You can often save time during the linking process by
performing this translation as a separate step. The PRELINK
Program does this. Execute PRELINK by typing either of the
following command-line character strings and then striking
[RETRN] :

> prelink linklib.def
or
> prelink _ds0/syslib/linklib.def

PRELINK assumes the file has a .DEF extension if no file
extension is specified in the PRELINK command-line character
string.

PRELINK adds another column to the list of equivalences in the

DEF file. This column consists of the FCB numbers of the

specified files. See figure 5.2 for an example of a library
definition file after processing by PRELINK.

coo Symbolic Name eeoleesacoscse File NamMe cecececscselocss s FCB NUmMbEreeooss

1 2 | 3 4 5 | 6 7
12345678901234567890 | 123456789012345678901234567890 | 12345678901234567890
RRROOO | _PS0/PRTLIB/INIT.MRL | _pso//496.1
RRROO1 | _DSO/PRILIB/ED(IT.MRL | _DSO//#97 3
_PUTSTRING | _PS0/PRTLIB. SVC/PUTSTR. MRL | TPS0//#106.1
@ _DMO,/RT.TB/ANOTHER. DEF

Fig. 5.2 Library Definition File After Processing By Prelink

Note: PRELINK creates a new version of the 1library definition
file in the same directory as the original file. To

5-2

LIBRARIES

conserve disk space, you may want to purge old library
definition files after running PRELINK.

5.3 REFERENCING LIBRARIES

5.3.1

5.3.2

Default Library
LINK always references the file LINKLIB.DEF, found in
directory /SYSLIB/ on the system disk. During

initialization, LINK reads the contents of this file to
make the names of library routines available to programs.

Other Libraries

To reference another library definition file, use the
:LIBRARY switch on the command line. For example:

> link one,two,three :library=test

The foregoing command tells LINK to link files ONE, TWO,
and THREE and reference TEST.DEF as a library file.

APPENDIX A

TROUBLESHOOTING

A.l1 LINK DIAGNOSTIC MESSAGES

These are the diagnostic message associated with LINK:
Display Undefined Symbols

Checksum Error In Reading Relocatable Module
Unexpected End of File While Reading Relocatable Module

Address Of Undefined Reference Accesses Unallocated Disk
Page

Open Error (WMCS diagnostic message number)
Read Error (WMCS diagnostic message number)
Write Error (WMCS diagnostic message number)
Close Error (WMCS diagnostic message number)

Delete Error (WMCS diagnostic message number)

A.2 MISCELLANEQUS ERRCRS

Certain conditions lead to errors that do not give the preceding
error messages. Some of these conditions are discussed in this
section.

TROUBLESHOOTING

A.2.l

A.2.2

File Empty Or Does Not Exist

If a specified file is empty or does not exist, the
message 'Unexpected end of file encountered while reading'
is displayed followed by the name of the file. The
solution is to use the TYPE Command to display the
contents of the file. Be certain to specify the filename
given in the diagnostic message.

Invalid Symbol Address

LINK does not check the validity of symbol addresses. If
for same reason, a symbol has an offset beyond the end of
its module, this error can happen to be caught during the
process of adding the actual address to the location of an
undefined reference. The solution is to examine the
source modules for unreasonable address offsets.

A-2

APPENDIX B

EXAMPLE OF PROGRAM DEVELOPMENT

. The diagram on the next page shows how files produced by the assembler

and higher-level language compilers may be linked to form an
executable image. A number of relocatable code (.MRL) files can be
linked in one operation.

B-1

Assembly
Source

PROG1.ASM

!

Assembler

~

EXAMPLE OF PROGRAM DEVELOPMENT

Y

Print File

PROG1 . PRN

Relocatable
Code

PROG1 .MRL

\

Pascal
Source

PROG2.PAS

!

Pascal
Campiler

™~

Y

Print File

PROG2.PRN

Relocatable
Code

PROG2 . MRL

L

Cross
Reference

PROG.MCR

Executable
Image

PROG. EXE

B-2

APPENDIX C

RELOCATABLE MODULE FORMAT

The relocatable source file contains a series of modules terminated by
an R9 record. A module is a series of record types R2-R7 preceded
either by an RO or an Rl type record and terminated by an R8 type
record.

REC BYTE CHECK
TYPE COUNT ADDRESS SUM

| RO | BC | Al | A2 | A3 | A4 | #% | #% | ## | #3# | ... | #% | #%# | Cs |

\ /
\ /

\
BYTE COUNT

The byte count is the number of bytes not including the byte count
itself.

REC BYTE CHECK
TYPE CQOUNT ADDRESS SUM

| RO I BC | AL | A2 | A3 | A4 | ## | ## | #% | ## | ... | ## | ## | CS |
\ / /N
\ /]
v | |
NOT(SUM OF BYTES) = CHECKSUM

The checksum byte is the ones complement of the sum of the bytes.
This form of checksum was chosen to be compatible with Motorola.

RELOCATABLE MODULE FORMAT

REC BYTE CHECK
TYPE COUNT ADDRESS PROGRAM NAME SUM

| RO | BC | Al | A2 | A3 | A4 | ## | #4 | #% | #4 | ... | ## | #¢ | CS |

Delimits the sequence of records pertaining to the main program.
Otherwise, this type is treated the same as type 6.

REC BYTE CHECK
TYPE COUNT ADDRESS MODULE NAME SUM

' R1 | BC | AL | A2 | A3 | A4 | ## | #&% | #% | #% | ... | #% | ## | Cs |

Delimits the sequence of records pertaining to a subroutine.
Otherwise, this type is treated the same as type 6.

REC BYTE CHECK
TYPE COUNT ADDRESS CODE BLOCK SUM

| R2 | BC | Al | A2 | A3 | A4 | ## | ## | ## | #% | ... | #4 | #% | CS |

REC BYTE CHECK
TYPE COUNT ADDRESS LABEL SUM

| R3 | BC | Al | A2 | A3 | A4 | ## | ## | #% | #% | ... | ## | ## | CS |

Local constant:

The label is defined to have the value of the address field.

REC BYTE CHECK
TYPE COUNT ADDRESS LABEL SUM

| R& | BC | AL | A2 | A3 | A4 | #% | ## | #% | ## | ... | ## | ## | CS |

Local label:

The label is defined to have the value of the address field plus
the relocation constant.

C-2

RELOCATABLE MODULE FORMAT

REC BYTE CHECK
TYPE COUNT ADDRESS LABEL SUM

| RS | BC | Al | A2 | A3 | A4 | ## | #% | #% | #% | ... | ## | #% | CS |

Global constant:

The label is defined to have the value of the address field.

REC BYTE ' CHECK
TYPE COUNT ADDRESS LABEL SUM

| R6 | BC | AL | A2 | A3 | A4 | #4# | #3% | ## | ## | ... | ## | #8 | Ccs |

Global label:
The label is defined to have the value of the address field plus
the relocation constant.

REC BYTE CHECK
TYPE QOUNT ADDRESS LABEL SUM

| R7 | BC | Al | A2 | A3 | A4 | ## | #% | #% | ## | ... | #% | ## | CS |

The address field of this record is the location of the reference to
the undefined label.

REC BYTE CHECK
TYPE COUNT ADDRESS SUM

| R8 | BC | Al | A2 | A3 | A4 | CS |

The foregoing kind of record marks the end of a module. This -record
contains the amount of space used by the module. The address field
from the record is added to the current location pointer to form the
address of the first free location past the end of the module. The
address of the first free location past the end of the module then
becomes the new location pointer.

RELOCATABLE MODULE FORMAT

REC BYTE CHECK
TYPE COUNT ADDRESS SUM

| RO | BC| Al | A2 | A3 | A4 | CS |

The foregoing kind of record marks the end of file. The address field
is undefined. _ A

APPENDIX D

CROSS REFERENCE MAP LISTING

The following pages display a cross reference map listing from the
sample program TEST.

D-1

CROSS REFERENCE MAP LISTING

WICAT Link Editor - Version 2.2

Linker map :
File : TEST.MRL

.START. Module

INCREMENT1 Module

TESTO : Module

SPASCAL-GLOBALS-2 Module
File : _DIO/PRTLIB/EXIT.MRL

RRROO1 Label
File : _DIO/PRTLIB/INIT.MRL

RRRO00 Label
File : _DIO/PRTLIB/RIGLOBAL.MRL

RTGLOBAL Module

HEAP Module
File : _DIO/PRTLIB/REWNRITE.MRL

RRRO11 Label
File : _DIO/PRTLIB/RESET.MRL

RRRO10 Label
File : _DIO/PRTLIB/FBINIT.MRL

RRRO09 Label
File : _DIO/PRTLIB/SHOWIO.MRL

SHOWIO Label
File : _DIO/PRTLIB/ERROR.MRL

ERROR Label
File : _DIO/PRTLIB/HANG.MRL

HANG Label
File : _DIO/PRTLIB/WHEX.MRL

RRRO39 Label
File : _DPI0O/PRTLIB/PUT.MRL

RRRO22 Label
File : _DIO/PRTLIB/GET.MRL

RRRO21 Label
File : _DIO/PRTLIB/MBVALID.MRL

RRR0O20 Label

D-2

Base
1000
1006
1018

100000

Used

Base
103E

Used

Base
107E

Used

Base

10004C
10005C

Used
Base
11A4
Used
" Base
1268
Used
Base
1352
Used
Base
139E
Used
Base
13FE
Used
Base
1450
Used
Base
1498
Used
Base
1530
Used
Base
16AC
Used
Base
1728
Used

Pure=

Pure=
Pure=

Pure=
Pure=

Pure=
Pure=

Pure=
Pure=

Pure=
Pure=

Pure=
Pure=

Pure=
Pure=

Pure=
Pure=

Pure=
Pure=

Pure=
Pure=

Pure=
Pure=

Pure=
Pure=

Pure=
Pure=

Pure=

1000

12
26

3E
103E

40
107E
126
126
1174

1174
C4
C4

1268

1352
4C
4C

139E
60
60

13FE

52
1450
48
48
1498
98

1530
17C
17C

16AC

7C
7C

1728
1C0
1Co

Impure=100000
0

0

0

4C

Impure= 4C
Impure=10004C
0

Impure= 0
Impure=10004C
0

Impure= 0
Impure=10004C
20

Impure= 20
Impure=10006C
0

Impure= 0
Impure=10006C
¢

Impure= 0
Impure=10006C
0

Impure= 0
Impure=10006C
0

Impure= 0
Impure=10006C
0

Impure= 0
Impure=10006C
0

Impure= 0
Impure=10006C
0

Impure= 0
Impure=10006C
0

Impure= 0
Impure=10006C
0

Impures= 0
Impure=10006C
0

Impure= 0

CROSS REFERENCE MAP LISTING

File : _DIO/PRTLIB/CLOSE.MRL Base - Pure= 18E8 Impure=10006C
** Unable to open by FCB!
RRRO19 Label 18E8
RRRO19A Label 18E8 F4 0
Used - Pure= F4 Impure= 0

_HEAP Symbol 10006C 0 0

Image filename = TEST.EXE
Total image size (all sizes given in hexadecimal) =
90C bytes pure code.
6C bytes impure code.
0 bytes reserved for dynamic space.
1000 bytes reserved for stack.

D-3

CROSS REFERENCE MAP LISTING

WICAT Link Editor - Version

Symbol Cross Reference

SPASCAL~GLOBALS-2 100000

+START. 1000
ERROR 13FE
HANG 1450
HEAP 10005C
INCREMENT1 1006
RRRO0O 107E
RRROO1 103E
RRRO09 1352
RRRO10 1268
RRRO11 11A4
RRRO19 18E8
RRRO19A 18E8
RRR020 1728
RRRO21 16aC
RRRO22 1530
RRRO39 1498
RIGLOBAL 10004C
SHOWIO 139E
TESTO 1018
_HEAP 10006C

2.2

100E
1230

123E
1150
1034
1026
103a
1102
1140
1112
11BA

16C6
12E4
1514
13C8
1044
1238
1002
1157

D-4

101A
131E

1924
132C

1454
1130

127E

105
1326

1020
13B0
1578

198A

1118
1572

102C
13D2
lér4

1146
16EE

145E

18BE

13B6
18B8

156A
1982

1408
19AC

16E6

APPENDIX E

BIT MAPS AND RECORDS

This appendix contains bit maps and records for the sample program
TEST. These bit maps and records are a hexadecimal dump of the image
file for the TEST program.

E-1

BIT MAPS AND RECORDS

I
I
I
I
I
I
|
I
|
I
I
f
I
|
I
I
I
I
|
I
I
I
I
I
I
I
I
I
|
I
I
|
I
|
Record|
I
[
I
I
I
|
I
|
I
|
|
I
I
I

FILE: _DIO/TOM.CDS/TEST.EXE.1l

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000A0
000000BO
000000C0O
000000D0
000000CEO
000000F0

00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
000001A0
000001B0
000001CO0
000001D0
000001E0
000001F0

00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
000002a0
00000280
000002C0
00000200

OE
00
00
00
00
00

00

00
80
00
00
00
00
00
00
00

OE
00
00
00
00
00
00
00
80
00
00
00
00
00
00
00

OE
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00

00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
0o
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00

E-2

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
a0
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00

00
00
00
00

00
00
00
00
00
00
00

00
00

00
00
00

00
00
00
00
00
00
00

00
00

00
00
00

00

00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
a0
00

00
00
00

00
00
00
00
00
00
00
00
00
00

00
00
00

00

00
00
00
00
00
00
00
00

00
00
00
00

00

00
00

00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00

00
00

00
00
00

00
00
00
00

00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00

00
00

00
00
00

00

00
00
00
00
00
00
00

00
00
00
00
00

00
00
00
00

00
0o
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00

00
00

00
00
00

00

00
00
00
00
00"
00
00
00
00
00
00

00
00

00

00
00
00
00
00

00
00

00
00
00

o
- | | |

First
Bit
Map

Second
Bit
Map

Third
Bit
Map

‘000002E0

000002F0

00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
00000320
000003B0
000003Co
000003D0
000003E0
000003F0

00000400
00000410
00000420
00000430
00000440
00000450
00000460
00000470
00000480
00000490
000004A0
00000480
000004C0
00000400
000004E0
000004F0

00000500
00000510
00000520
00000530
00000540
00000550
00000560
00000570
00000580
0000059
000005A0
00000580

48

00
SE
28
B9
7C

08

A7

OF
00
FF
F2
80
6F
2C

00
00

52
68

04
04
DF

00
0D

10
4E
4E
00
00
4E
42
48
oC
OF
6E
42
60
00

00

52
A4
67

7C

80
40
FF
54
56
08

88

FF

10
4E
20
20
FF
4E
FF
20
6F
53
48
42
00
3F

BIT MAPS AND RECORDS

00 00
00 00

00
00
00
00
00
00

00
00
00
00
00
00

0D

79
00
28
10
40
10
44

20
0A
01
A7

01

7A
4C
3C

10
oC
24

Co
00

00 00 00
00 00 00

00

00
4E

20
42
28
00
Bl
66

60

48
00

0 |
0 |

Fourth
Bit

I
I
|
I
I
00 |

I
|
e
|
|
I
I
I
|

10 NyNV|-Ry

3C J*"N"Nu/</<
47 (N9~ ByJ

56 *NNINI>NV

A7 x |P P/ (B!

50 Hn|N@ |L P
A7 /(B'Hn|N@B'
4F B'B'Hn|N@'~ (O
0C B 1InD /

FC n8 1Q@1|

04 n*Jo& £

20 S*rB(So

D6 fvS'SHhR'V
2C ?HOB'B'B',0/,
E7 /r/rNVHg

01 |/.Bg?<2<

67 N9R/.HzBg
0C N9§ |L .

B9 /.Bg?<?<N9
B9 R/.Hz"BgN9
7Ch |P . |

04 \!H!|1

00 (I

04 (!@B(-n

24 I, ?N"PNuSYSS$
55 CUTPUTSYSSINPU
OE TNVHg@ n

6E J(g/NShln

BIT MAPS AND RECORDS

o
5 1 z pqf
: HE : 5%
o)) [o ~ m@
v -~ 3 | o ‘8 v o | o nwmﬂ 0 O mﬂ.mm9 HG b
ml\/ @ w — Nn/“m.fP m(L& m _NZW(N = XN — = ..mmH
Wll?./\ m,_l_ NE m ~ =] MZWOP malm & [—_— N/ Z N mP
XS EFE258 BSRScBS_l2 gEEECCFREESLEFZ O
% ~N /| | &= g M mmf<mw!9_ s = /BMWfilm~W QMB mw~ m
(n.m W/ H MJ/ Ima E(/ _WB (®] o e o)) (] m Y% .
M= t H NI - me MR B o222 L] t A
WO LAHOAON OO L © (=} O VOOOMNOAEIN <I\O OO0 0 [y IO NN O < O
—~ 00 — 4 OOBOSQCOOMGKOEDO E052®90005822F55 %02070%@5C
oMo OCMBOMN~NWVWOOOOMVWOOO codIITNOCOOHE KO] NOoO OO Mo
onNom 004054%0004600&0 50154400044%0%&4 40%0402 <t
o ™M QOANOS O][] I~ < 00— IO NOONNOMAEW KOO MKINO COmMOAOACY LN
E%ZF COALINDMONVO RO O 0304496E67%0MD50 N AN M BZMSU
O L [y B VolNITORNEGNOOOO ono NocoAQRHOpO®UMO OO0 N®
T MM FOoOFINLS N 40500% 0405&425%40 4&50 NN NS
OANOQ om o OVWOIFTMOWMMO <IN VOWAINA RO M —~ © 00N 0 fx3 pMNOQ
—~0 oM 00%92 OO0OHO A OO E1F440910Mm5904% KFFN5%422E
0%0 COoOOMANOEOMO coom 00E2ﬂ0200082402D OO MEODNN [
odh o oo ANTONOINO ooco<x NOINITOTOOOINAHOINO oVvhmkmFoOoFF o9
0y O M OIINO QNN N B o DV LNOVVO T O™ o 3] T N~ W0
oL om torodAdwnmonN 202%@% ®n92%@9%E00 oo NN l%%GWMSSﬂS
e =27 BopmoompmEBPraNdpon~ o oM m CONOWOOOOO un oo O ONN MM
VoM FoOoOtdoNtFLOIEIMOIANNO oY HAdANNYtFOMNMOoOoooOoOId oINS TN < <P
~ O <5 RO HOO AT HONOQYO 0o [} €0 00 [oo 0 O BEMPO MO
o~ (<A 06%B320®080401M0 2DOE4096%N61B@E4 KOAFD34450
OMEF OEOEIOOOOOOEOOGO ZOOOSEZIOFOOE < K= orNmDONO 4O
o [°H o OFMANOOOINOITOOHO OO N t“moANOITNITN NOLFLF AT FO
oMo X=NS 84080EA88N048F0 NOOOOOXPOORVUUKMELO VOBl oO®© oo
NOoO O™ wHoomMANoONOKOONMmMO H—omMmuohH BN~k O mMHmWOWwoowm N o
N O OO MmN oOwvwooOoN KO COMRMHpOoONOWVWHBNMMEK O B mooonN< o
42EE <0V O 5@%%06004F0M votMIoLoOoONITHLANANLAFO FMF4004520
ml <€ <G 8DNB204EE9C8DF9E OO OOWOOELMNKDO o m8F649EOED
cooo« oo L ANFOOHMOO L ML oNOMAMNMNACONEKHpMO®o OMOOmMMLN<*O
coodN 00F325501ME80FEE 02%20E200083F080 VORMEKBORNOO NN
= Y=X=%"1 cCoAMINIIOM LSO M T odNINANASLSLIOONT H{MOINAN O NO PO ¥
@ []~ VORHOOITVRIWMANO ®M® @® — NOBENQOOHHARKOOITO M ompupomnmoRnon
ow NV GESOSS%GEOOOEKOO 0O mn 09660000B5m F63060F®24
onN o @ r~ OFANANO 0O (e N ™ oo mN o~ coocoomMp]o . N o oM oo
02%4 45@0144212%05&%0 0015@%43%0000442 F2E0321554
[cfoNole) 0000000000 [e¥eoNoNoNoNoNoSoNeoloojoloNe el 0000000
RABH 3cSCEESCEEZE888E GSSCEEESLERAECeEE 5258388533
o= =X=] CO0O0O0O00O00O0O0CO0OOO0OO OOOOWOOOOOOOOOOO OO0
s X=k=%=, COO0O000O0O0O0O0O0O0O0O00O0O 0CO0O000O000O0O0O0O0OO0OO COO0O0O0O0O0O0OO
=X=X=%=! OO0 O0O0OO0OOOOOO0OO00OO OO0 O00O0O0O0O0OO0O0O00O0OO CO0OO0OO0OOCO0OO0OOO
OO0 0O Q0000000000000 COO0OO0O0O0O0OODODO0OO0OOOO0O 0O00O0O00O0O0OO
OO0 OO [eNoNoNoNoNoloNoNoloNoNoNoNoNoNo oNeoloNoloaNeNoloNeoNelloRoaloNelNoeNe [sNoNoeNoNoNololaolomlo)

BIT MAPS AND RECORDS

BN,
w, B9

25 o m
£'F Z 0
wammv«
m O (o Mign])
OO r-MO <
OO MmO

SESUSK

CRVWDMO O
ook oo

ONHO OO
Mmnooomr

MmMANBRO ™M
NN O e~

&N B
FIFOoONOO

NN N O
< L O N (]

OO0 WVWNY
~roocwuaNmMm

888884
02022%
N OoOnmMm

2BO88E
%88 @
OO QOOO0
OO0 O0OO0OO
[ejololole N
OO0
OCOO0OO0OOO0O

FI
— PUT
WRITE FAILE

B

5q

g _JBE
muw ~N M ﬂ m
LI LE MY
n | - mm _ mw N mMh o
”0 M.B m,. B . H__
28E e an Bl e
>N Wﬂ_\NzwA O om
145E1A8094A45C02
OCOFMHOMROMYWTNONOO M
CORMMOXENOHANUVUONML

coFTwo n FOUNFOWMm

HEGCOONBENO IO 00 0 K
ocoVvooAHUANIIVIFNAHO

o COITAHIOANNITAN o<

RASRSBSRANTALESE

—~ 0o ono—~ < (9 BT y
01“88_59005605 O
o oNNMMNMONIINNN < o~

oOMmbhoANMKOIYHNMOOITNIO
ONAOIISONITFANNINIL O

—HO MO O m o N0 LNOOMD
O MILIN WO AN fxy LN nNMIPOO W

05E0000E00@22 =g
O NONOISFININTEFMmMNNDO M

0 888 EO Eo OE
OO WOT~ NN NSO Mm

oSO MO NOOQ K
28DE9000E4552076

o Mn [eleNoNoNoNale Ne o~
]83

9
8
E
6
0
E
C
9
2
5
0
0

00000900 11 5
00000910 2F O
00000920 00 O
00000930 4E 5
00000940 61 O
00000950 2D 6
00000960 00 1
00000970 4E B
00000980 32 3
00000990 4C 4
00000920 41 2
00000980 00 O
000009C0 20

000009D0 44 0
000009E0 67 0
00000SF0 00

)
&Q .mn(

Y N @ ~ ~r 3 —
R ONTY e P PT
~ N Q/Hm~ m ! m ~
~5e RYELAYELE Ay
#EE EoypdTE8RE 2
o mh NQ//J/f.HW
BRRIHIHRR23321L3R
NOmMOOO I oo oOoONmOO
NOMIONOIM ooonNIoN

VOO OAE OO <FIOOO o~
HEBONNOYNOWVWONANO mom

031”080080-& 08E2
O <N oTNOTO on<rm

00 < Q) 00 00 \O e 0O 1y O «f I O] OO
AlDOGFMZFG NNINO ™M

%0408FE FSEGZEEZ
OHOYmMENMLIHLOTIFNN

OCONOEKEKOW KL WON O [N
S EHONRBOVWONKREKOO N LN

oo o [y 0O O] [ooOor~oOMN

LN ITADRHUVOVDO0O O
N hpooMmuowLONOCDOO W

OO MMLOW 0 I~ oo«
N OMhnoo < O [N NN

<t 1 o OO HFTONTONO
FEEO%EADNOOOBOBO

HASLCHNSRNE888984S

L HHNOoO) O[] MW
lECMNWOEEOAGOGlF

SERREDSSNES]HASY

8
10
3C
05

8

8

0

00000A00 3D 68
00000A10 BO AE
00000A20 24 49
00000A30 4A 2E
0000040 2F 2E
00000A50 FF F2
00000A60 4E 40
00000A70 D1 A
0ogooag80 00
00000A90 2F
00000AA0 0O
00000ABO 2F O
00000ACO 66 O
00000ADO 00 1
00000AE0 48 7A
00000AF0 13 9E 4

EOF W
Ph

2F 08 20 6E GEINVn/ n

00 02 66 00 J(fHJ(f
42 28 00 03 @aJJ(g4B(

0A 00 20 67 1C (g$(g
0C 00 20 67 OC (g(g
20 50 E8 00 03 J(fI

F 52 20 54 4F AS TRUE PRIOR TO

45 4F 46 20 57 — GET —
4
E
2
3

B
8
4

oo m ~O OO
N <y LVooo

ONWWQP WO
NN FOANANN

OR OO o
A3¥88888

m000844c
NOONN I~

onNovw S~

NToOoWVUF VWO
INCOCO O L
55%0 NN O

NNOOOO oW
FINOCOOCO OV

~NI<t0O mo
45520%02

o owm HO OO

NNaedwvwooo
3378 © m ®
nNLTodac

00000BO0 2D
00000B10 41
00000B20 20
00000B30 00
00000B40 00
00000B50 OC
00000B60 OC
00000B70 4A

E-5

BIT MAPS AND RECORDS

W .
mwmmn(mm
S8 Eo>Y
_||n3mwmmuwx/ .
T/ = =~
ESHESS83
OO MMk OO0
<O [y Iy oONO

[TaN @iy Neolaloo)
N~V AHAMRANNY

EEZOF o ®©
< <toOom o<

888 L3ER
NV~ QOO DM
nNowomMMo i

MOO RO MM
NOOMON My

o~ fxy O
0 @ & 1]
BISSEAEE

o OoONOO Iy
o~ ooo My

0O WO £l
ONGFAIIZ

SHIEKRSHY
SARIZCES

CNMHMOO 4 lrd
oOoYmoOoOANmLA

Mo Mmoo K] BN
OCOoWVAN <N i
OCQOO MM
Q838838 &k
OOWNOMOO
D N m
o0 m Bm Bw
IsX=k=X=-R=-R=-X=X=}
Is=-X=k=X-%=-R=K=}
COO0O0COO0O00
COO0O0O0O000
ISx=-X=-R=-R=-X=K=K=}

— MBV
READ F

o
a4
* o
= So- .63 %8
vpzSig 288 2128
S TENPLE R SE AN T
L AESaTEResERAN;
Mﬂﬂ%LV m“%$7 2 <
SSRHSRRBRBSBEBY
OWVWO Mm OCANMNMUNMOITOIAN ((e]
OFUMWO L

C869 0 6
00—/C1140%131F@2 —~

OO m+40O OO0OO0OMOMMO OO
oOoOoONINn O CoOoOOTOIFANXISO

8ROARKSISIITERIRSE
8YbNMSYSRSINALE

CLEOWPOVIFOORVNOO NV
Cr{000WVWOVHMHU~ONININO

~FOO0OOVMODOORKOO O MW
WOOWOTOOODLUDITONN IO

LLCONDOEOOVDOVDOUNNOOO
OO NROVOWUNREEMMOANO O

OF 0 F870 FEZ 0

8E685F804E380mD8
NOmHANMBmONBRNOMANON

OO bOoO MO NO I

48341CES 0E2458
0920036EEMCF5440

oo o 0 XI~S~onNmMmANOQO

(=N o O FNvoQANIIO
[N RVe] <7 1428900&9E
T OWw (a] [oNoNaR-R NoNTe <t O
BHOwoo moOooooJYo o
4600“F0008201ﬂﬂ2
000000000%000000
828808980 088888Y
OO0 O0O0O0O0O0DOO0OOODO0OODOOO
[eYelololeleNoNcNoloNololoNoNaeNe)
[eYeolololelololololoNololeNoNoNo)
OO0 O0CODO0OO0OO0DO0ODOOOOO0OO

@% N N
—_—~O— Zo o |
NG CERE P M
WMh(NIWN9 &5un
cEE3(g8 EynEgE
N//O(/JNB NW
OO NHOYTOUHO NN OO0
o ~oOoOoOoOROoO 83”4000
o wowIILoOo < —~ nNoOoo
VDOV ONINOONOOO

NN OVOOLANN~FONITOOO

2000202?&3“&002000
cooNWYOIIMHTONNOOO

™M 0Q 00 [C0 0 O O O X I nkoX=X=]
0A6016010%B35000

o WOVOOOVHMHOOOO
o N wotooomnNILMNOOO

MO NN NNMOUNOMANOOO

O wVWoOo <7 n & N oo
3600%FEW44 SEWOO

<F 00 0000 KEI\O e [N YOO
Or{fWLWANOWMOOO N e o)

~ O o WO OriMNOWNOO
o« (Ve il Vo] OO MNANITOO

VOO AYMNMUUD OO NDOO
oOVWmOOoOOoOoCOoOOAONI FOO

o [T COO0OOODOIFMANOO
o (I a] oo oOoOITOANTFOO

8 F40808890 00
ZMFlm0A46030@ﬂ00
MOFOOOMEEOEO woo

omooo<d < oo oo

BRRRIRLILISLRRSS
YMNIRHSSYSZYR]SS
[elcNejoNo ool oloeloloNo oo ole
858585885868688888¢8
O OO0 O0CO0O0O0O00O0O00O0QO0O0C0
[eNolololololololooloalalalalel
OO0 O0O0O0OO0DO0OO0O0O0O0O0O0CO0OO0
[eNeoNololafoleNolololollololoRole]

000C0EOO 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00
00000E10 00 00 00 00 00 00 00 00 GO 00 00 00 00 00 00 00
00000E20 00 00 00 00 00 00 00 00 0C 00 00 00 00 00 00 00
00000E30 00 00 00 00 00 00 00 00 00 00 00 00 00 0G 00 0O
00000E40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000OESO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

E-6

. —— ——— . —— — —— — —— —— — — —— — — —— — — — — —— — —— — ot s,

00000E60
G000CO0E70
00000E80
00000ES0
00000EAO
00000EBO
00000ECO
00000EDO
0000CEEO
00000EF0

0000CF00
00000F10
0000QF20
00000F 30
00000F 40
00000F 50
00000CF60
00000F70
00000F 80
00000F 90
0000QCFAO
0000CFBO
00000FCO
00000FDO
0000CFEQ
0C00CFFO0

00001000
00001010
00001020
00001030
00001040
00001050
00001060
00001070
00001080
00001090
00001020
00001080
000010C0
000010D0
000010E0
000010F0

00001100
00001110
00001120
00001130

00
00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00

00
00
00
00
00
00
00
00

00

00
00
00
00
00
00
00
00

00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00

00
00

00
00
00

00
00
00
00
00
00

00
00

00
00

00
00
00

00
00
00
00
00
00
00
00
00

00
00

00
00
00

00
00
00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00

00
00
00
00
00
00
00
00
00
00

00

00

00
00

00
00
00
00
00
00

00
00
00

00
00
00
00
00
00
00
00
00
00

BIT MAPS AND RBECORDS

Record

00001140
00001150
00001160
00001170
00001180
00001190
000011A0
000011B0
0ooo011co
000011D0
000011E0
000011F0

00001200
00001210
00001220
00001230
00001240
00001250
00001260
00001270
00001280
00001290
000012A0
00001280
000012C0
00001200
000012E0
000012F0

00001300
00001310
00001320
00001330
00001340
00001350
00001360
00001370
00001380
00001390
000013A0
000013BO
000013Co
000013D0
000013E0
000013F0

| 00001400
| 00001410

00
00

00

00
00
00
00
00
00
00
00
00
00
00

00
00

00
00
00

00
00
00
00
00

00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

02
26

00
00
00
00

00
00
00
00
00
00
00
00
00

00

00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00

00

OE
2C

00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

00
00
00
00

00
00
00
00
00

00
00
00
00
00

10
10

00
00
00
00
00
00
00
00
00
00
00

00
00
00
00

00
00
00
00

00
00
00
00
00
00
00

00
00
00

00
00
00
00

00
00
00
00
00
00

00
00
00
00

00
00

00
00
00

00
00

00
00
00
00
00

00
00
00
00
00
0o
00
00
00
00
00
00
00
00
00
00

00
00
00
00

00
00
00
00
00
00
00
00
00
00
00

20
3A &,4:

BIT MAPS AND RECORDS

00001420 00 00 10 44 00 00 10 5A 00 00 11 02 00 00 11 12 Dz
00001430 00 00 11 18 00 00 11 30 00 00 11 40 00 00 11 46 0@F
00001440 00 00 11 50 00 00 11 5A 00 00 11 BA 00 00 12 30 PZ:0
00001450 00 00 12 38 00 00 12 3E 00 00 12 7E 00 00 12 E4 8>~d
00001460 00 00 13 1E 00 00 13 26 00 00 13 2C 00 00 13 BO &,0
00001470 00 00 13 B6 00 00 13 C8 00 00 13 D2 00 00 14 08 6HR
00001480 00 00 14 54 00 00 14 SE 00 00 15 14 00 00 15 6A T"j
00001490 00 00 15 72 00 00 15 78 00 00 16 C6 00 00 16 E6 rxFf
000014A0 00 00 16 EE 00 00 16 F4 00 00 18 BO 00 00 18 B8 nt08
000014B0 00 00 18 BE 00 00 19 8A 00 00 19 A4 00 00 19 AC >$,
000014C0 00 00 19 B2 FF FF FF FF 00 00 00 00 00 00 00 00 2
000014D0 00 00 00 00 00 00 00 00 00 00 00 00 0C 00 00 00
000014E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000014F0 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00

00001500 00 00 00 00 00 00 00 0O 00 0O 00 00 00 00 00 00
00001510 00 00 0C 00 00 00 00 00 00 00 00 00 00 00 00 00
00001520 0C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001530 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001540 00 00 00 00 00 00 00 0O 00 0C 00 00 00 00 00 00
00001550 00 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00
00001560 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001570 00 00 00 0C 00 00 00 00 00 00 00 00 00 00 00 00
00001580 00 00 00 00 00 00 00 0O 00 00 00 0O 00 00 00 00
00001590 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000015A0 00 00 00 00 00 0O 00 00 00 00 00 00 00 0O 00 00
000015B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0
000015C0 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00
000015D0 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00
000015E0 00 00 00 00 00 0O 00 00 00 0O 00 00 00 00 00 00
000015F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00001600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0C 00
00001610 00 00 00 00 00 00 00 00 00 00 00 00 G0 00 0C Q0
00001620 00 00 00 00 00 00 00 00 00 00 GO 00 00 00 00 00
00001630 00 00 00 00 00 00 00 00 00 00 00 00 GO 00 00 00
00001640 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001650 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O
00001660 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O
00001670 00 00 00 00 00 00 00 00 00 00 00 00 00 GO 00 0O
00001680 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00
00001690 00 00 00 00 00 00 00 00 00 00 0O 0C 00 00 00 00
000016A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000016B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O
000016CO 00 00 Q0 00 00 00 00 00 00 00 0C 00 00 00 00 0O
000016D0 00 00 00 00 00 00 00 00 00 GO 00 00 00 00 00 Q0
000016E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000016Fr0 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 00 00

BIT MAPS AND RECORDS

— et —— —— — — —— — —— —— ———— — .

00001700
00001710
00001720
00001730
00001740
00001750
00001760
00001770
00001780
00001790
00001720
00001780
000017C0
000017D0
000017E0
000017F0

00
00
00
00
00
00
00
00
00

00
00
00
00

00
00

00
00
00
00
00
00

00

E-10

00
00
00
00

00
00
00
00
00
00
00
00
00

00

WICAT Systems, Inc.

Product-documentation Comment Form

We are censtantly imgroving Qur decumentation, and we welcome scecific comments on this manual.

Document Title:

Part Number:

Your Pasition: [J Novice user O System manager
O Experienced user ’ O Systems analyst
O Applications programmer O Harcware technician
Questions and Comments Page Na.

Briefly descrite exameies, illustrations, cr information that you think shculd be acced
to this manual.

What would you delete from the manual and wny?

What areas need greater emphasis?

List any terms or sympols used incarrectly.

178-CQ1-008 8

First Foid

{il

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NQ. 20028 CREM. UTAM

SOSTAGE WILL 3E PAID 3E ACORESSEE

WICAT Systems, Inc.

Attn: Corporate Communications
1875 S. State St.
Qrem, UT 84058

NC 3CSTACE
NECESSARY
iF MAILED
IN THE
UNITES 3TATES

Second Foid

Tape

