Wibug

Programmer’s Reference Manual

WICATsystems

188-190-203 A

May 1985

 Software e
Publications

Cop, ~ight ©1985 by WICAT Systems Incorporated
All Rights Reserved
Printed in the United States of America

Receipt of this manual must not be construed as any kind of commitment,
on the part of WICAT Systems Incorporated, regarding delivery or
ownership of items manufactured by WICAT.

This manual is subject to change without notice.

first printing May 1985

Information about this Manual
Review the following items before you read this publication.
The subject of this manual

The manual describes how to use WIBUG, an assembly-language
symbol ic debugger.

The audience for whom this publication was written

This manual is written for programmers.

iii

level,

Table of Contents

ExecutingWIBm..... oooooooo ®e0 000000000t 0ss0000s0 0000 ®se 00000 WB[E-'].

Section 1 General Information

d.
b.
Ce.
d.
e.
f.
g.
h.
i.
j.
k.
1.
m.
n.

Requirements for Debugging ProgramS..ccesecececcscssscscscsccaces
Executing and Exiting WIBUG..eccesecsccsccsacsacncns cessescsanae
Editing the WIBUG Command Line...... cessces tecssccscsserssersnns
The Help Display.ceeceee.. cecscesces cecsessecssesscscans
Interrupting Execution.......... ceccececsccesonae cesnccsses
WIBUG Error MessageSeecccececes cssccccccccescscccccccas cseccccccas
I/0 Devices Used With WIBUG.cccceeecccccsse cecescsccss ceccesenns
WIBUG Expressions..... cesesss ceccceccens cecccsccccneses ceecesens
Wildcarding..... cecesescsesctencscctscanas
Accessing SyMbDOlS.ceeeeseceescecscccesecscscesessescossessccsocanss
Input Formats....... cocccce cteccccccccoanns ceesccessecscsccannns
Memory Access Siz€....... ceeens ceesesean cececscsesssaae
Output Formats..... cesscnee cecesene cecescccccccnnns cevessscsncene
Address RangeS..e.... cecessecsssssenssnse cesesecescccscsacasccces

Section 2 Dictionary of WIBUG Commands

Display and Edit Breakpoints
Spawn a CIP

Clear Screen
Display PC history
Display Memory
Display Registers
Exit WIBUG

Help Display

Modify Memory

Turn On/off Printing
Read a Symbol Table
Stack Backtrace

Step JSR, RIS

Step Local

Step Single

Set Terminal

Execute Silent

TERM

XR Execute Realtime
XS

XT

Execute Trace

1-1
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-5
1-5
1-6
1-7

Typographical Conventions Used in this Publication

Bold facing indicates what you should type.

Square brackets, []l, indicate a function key, the name of which appears
in uppercase within the brackets. For example, [REIRNl, [CTRL], etc.

Underlining is used for emphasis.

Executing WIBUG

Functional Description

Use WIBUG to debug an executable file. WIBUG is an

assembly-language level, symbolic debugger. It has a
built-in, 68000-based assembler and disassembler that
uses Motorola mnemonics.

Command Line Syntax

Mnemonic wibug

Optional file name

parameter

Optional file parameters

parameter

Parameters

filename Function: This specifies the executable file you want
to debug.
Default: WIBUG provides you with a 4K page of NOP's to
experiment with.
Syntax: Type a single, standard file designation.
Wildcard symbols or WMCS search paths cannot be used.
(In other words, if you are not in the directory that
contains the file, you must type the complete file
designation.) You can also specify a logical name.

file parameters Ction: This specifies the parameters for the

executable file.
Default: No parameters are passed to the executable
file.

WIBUG-1

Executing WIBUG

Examples

This command debugs an executable file named A.EXE and passes a parameter
with the value 1000 to the executable:

> wibug a 1000

This command debugs an executable file named TEST,.EXE but does not pass any
parameters:

> wibug test

This command executes WIBUG and gives you a 4K page of nop's to experiment
with:

> wibug

Section 1
General Information

a. Requirements for debugging programs

WIBUG cannot be used with executable files that exceed
its size requirements, require the stack pointer to be in
a specific location, or use certain traps.

The program to be debugged must fit into the 2 megabyte
logical address space along with its data, its stack, and
WIBUG. WIBUG uses about 128K of this space and also
changes the location of the stack pointer. Figure 1l
shows how WIBUG uses its share of logical address space.

Also, WIBUG cannot be used to debug a program that
defines a trap handler for traps 13 (breakpoint), 19
(single step), or 22 (set exit handler). These traps are
used by WIBUG.

NOTE: You can debug programs that define exit handlers,
as long as they do not set an exit handler with

trap 22.
0 0
Code Code
Data
Free
Memory
2 Mbyte

Fig 1 WIBUG uses same logical address space and moves the stack pointer

General Information

b.

e.

Executing and Exiting WIBUG

The syntax for executing WIBUG is explained at the beginning
of the WIBUG description. It is just like typing wibug in
front of the normal command line for your program.

WIBUG autamatically tries to load the symbol table for your
program. It does this by looking for a .mcr or .out file with
the same name as the executable file. If WIBUG cannot find a
symbol table it displays an error message.

After you execute WIBUG, its prompt appears:

->
At this point you can type any expression or WIBUG command.
To exit WIBUG, type:

-> ex [RETRN]

Editing the WIBUG Command Line

WIBUG is a 1line-oriented debugger. It has the same
command-line editing functions as the CIP., One command that
is particularly useful in WIBUG is [CTRL] e. It executes the
previous command, which is helpful when you want to repeatedly
single step through a program.

The Help Display

WIBUG has a help display, which is a syntax 1line for each
WIBUG command. To see the help display, type:

=> he [RETRN]

Interrupting Execution

Type [CTRL] c to interrupt the execution of your program in
WIBUG. You can also use |[CIRL] c¢ to abort WIBUG commands
(such as a long disassembly). It is normally best to type a
single, deliberate [CTRL] c. As a last resort, you can try
two quick [CIRL] c's, which WIBUG recognizes as a "panic"
interrupt. If you wish, you can resume execution where the
program stopped.

1-2

f.

h.

General Information

WIBUG Error Messages

For the most part, WIBUG generates the diagnostic messages
WMCS would normally generate while your program is running.
WIBUG also generates a few of its own diagnostic messages that
pertain to operating the debugger, such as a syntax error in a
command or reporting a full symbol table.

I/0 Devices Used With WIBUG

WIBUG performs its input and output through the devices or
files specified by the 1logical names WIBUGIN and WIBUGOUT
(defined on the CIP command line using logical name
assigmments). If these names are not defined before you
execute WIBUG, the devices specified by SYSSINPUT and
SYSSOUTPUT are used. If the printer is activated by WIBUG's
PR command, WIBUG outputs to the device or file specified by
the logical name WIBUGPRT. If this name is not defined, WIBUG
uses SYSSPRINT. You can also alter the input and output
devices in WIBUG by using the PR and TERM commands. This is
helpful for programs that are screen oriented, so you can run
the program on one terminal and operate the debugger on
another. To do this start your program with WIBUG on one
terminal but define the logical names WIBUGIN and WIBUGOUT for
another terminal. Then, when WIBUG begins execution, control
is switched to the second terminal. You can change control to
another terminal after executing WIBUG with the TERM command
(see section 2).

WIBUG Expressions

Expressions are used in WIBUG to perform operations and to
specify addresses. Expressions are typed on WIBUG's command
line by themselves to display memory or registers.
Expressions combined with the assignment operator, =, are used
to modify memory. Section 2 explains how to do these
operations.

Expressions also specify addresses for WIBUG commands and can
be used anywhere a command requires an address. Address
arithmetic is performed with expressions using the four
standard arithmetic operators (+, -, *, /), plus the bitwise
logical operators for AND and OR (& and |). The @ sign is
used to signify address indirection. (Indirection accesses
the value at that address. Double indirection uses the value
at the specified address as a pointer to a second address,
whose contents are then accessed.) Any value can be specified
with an expression. For example, the following expression
evaluates to the value found at the address specified by

1-3

General Information

i.

adding the value of the symbol _main to the hexadecimal value
le:

-> @(_main+$le)
Double indirection is indicated with two @ signs:
=> @@(_main+$le)

Additional indirection can be specified (if you desire) with
additional @ signs.

Wildcarding

Wildcarding can be used with all applicable command
parameters, which includes the specification of registers and
symbols. The syntax for wildcarding is the same as WMCS
wildcarding (* for multiple characters and = for single
characters). The equal sign, =, is also used as an assignment
operator. If the meaning of = is ambiguous, WIBUG assumes it
is used as a wildcard symbol. For example, the following
command displays all three letter symbols whose names start
with te (the exclamation point means the expression refers to
symbols, not registers):

-> lte=

And this command displays all symbols, of any length,
beginning with re:

=> lre*

Accessing Symbols

If a symbol from a program is the same as a reserved word in
the debugger. you must precede the name of the symbol with an
exclamation point, !, when referring to it in an expression.
Otherwise, WIBUG thinks the symbol refers to the reserved
word. For example, to use the symbol pc (the same as WIBUG's
reserved word for program counter), you must type !pc. Also,
when there is a conflict of names between registers and
symbols, WIBUG defaults to registers. For example, this
command line displays all registers:

.
Whereas this command line displays all symbols:

- !*

General Information

And this command line displays all symbols that begin with r:

=> Ir*

Input Formats

The default input for expressions is hexadecimal. You cannot
change the default input, however, you can specify the format
of an input value with the following notations:

Format Input

decimal Precede the value with %

hexadecimal Precede the value with §

octal Precede the value with \

floating point No symbol. Number must contain decimal point.
Syntax:
[—] digito ee o [digito . -] [e [+|-] digito . n]

character Enclose the value in ' '

string Enclose the value in " " (WIBUG automatically

terminates the string with a null)
assembly Enclose the value in { }
relative There is no format symbol. Input the value

as an expression. For example, _main+$56f

For example, the following is a decimal expression:

-> $16499 - %7500
You don't need to include a dollar sign, $, with a hex string
since that is the default. For example, the following
expression is the same as $lef + $2ed:

=> lef + 2ed

Memory Access Size

The size of memory accesses is specified by the switches :1
(byte), :2 (word), or :4 (longword). The initial default is
longword. To specify a size other than the default for an

General Information

individual command, include the size specification anywhere on
the input line. To change the default size for the remainder
of the WIBUG session, type the size specification on a line by

itself. For example, the following command changes the
default size to word:

-> 22

The size of memory access can affect changes to memory
locations and certain expressions. For example, if you assign
0 to a location and the access size is longword, 4 bytes are
altered. However., if the access size is word, only two bytes
are altered. Also, the size of memory derived from
expressions can vary. For example, the following expression
causes WIBUG to display 40 bytes of memory beginning at
location 1000, assuming the default is longword:

-> 1000 for %10

But this expression displays only 10 locations (the access
size is byte):

-=> 1000 for %10 :1

Output Formats

You can specify the format of an output value with the
following notations:

Format Output
decimal :decimal
hexadecimal thexadecimal
octal soctal

single precision :sp (used only with display and modify memory)
double precision :dp (used only with display and modify memory)
character :character

string :string
assembly :assembly
relative :r followed by format symbol desired for

the offset from the label. For example,
:rd means relative with a decimal offset.

1-6

General Information

n.

The default format is initially hexadecimal. Formats may be
specified by a substring of the format name. For example,
":he" or ":h" are both valid specifications for hexadecimal
format. To override the default format for an individual
command, include the format specification anywhere on the
input 1line. To change the default output format for the
remainder of the WIBUG session, type the format specification
on a line by itself. For example, the following command
changes the default output format to assembly:

-> assembly

Address Ranges

You can indicate address ranges by specifying the starting
address and the number of times to increment the starting
address. Or you can specify a starting address and an ending
address. For example, the following command displays the
contents of eight memory locations of the default size
beginning at location 1000 (hex 1000):

=> 1000 for 8

And this command displays the contents of addresses 1000
through 18e5 in default format:

-> $1000 to $18e5

Section 2

Dictionary of WIBUG Commands

Command descriptions appear in the following order:

br
cp
cs
dh
(no mnemonic)
(no mnemonic)
ex
he
(no mnemonic)
Pr
rs
sb
sj
sl
ss
term
Xr
XS
xt

Display and edit breakpoints
Spawn a CIP

Clear the screen

Display history

Display memory

Display registers

Exit WIBUG

Help

Modify memory

Turn on/off printing

Read a symbol table

Do Pascal- or C-style backtrace
Step jsr, rts

Step local

Step single

Set WIBUG's terminal

Execute realtime

Execute silent

Execute trace mode

Display and Edit Breakpoints BR

Command Line Syntax

Display breakpoints -> br
Set a breakpoint -> br
Delete a breakpoint -> br # Vaue

Delete all breakpoints -> br #*

Parameters

value This specifies the address where a breakpoint is to be
set or deleted.

This indicates the breakpoint is to be deleted.

* This is a wildcard, meaning all breakpoints.

Operation

This command is used to display, set, or delete breakpoints.
Breakpoints set with this command remain during the entire WIBUG
session, unless you delete them. Breakpoints are referenced by
the address at which the breakpoint is set. The XR, XS, and XT
commands allow you to set temporary (one use only) breakpoints.,

Examples

This command displays all breakpoints:
-> br

BREAKPOINTS-1

Dictionary of WIBUG Commands

Here is a sample display of a breakpoint:

hex symbol assembly instruction
address + offset at that location

This command sets a breakpoint at location main+$lef (WIBUG does
not generate a message to show the breakpoint was set):

-> br main+$lef
This command deletes a breakpoint at location $2edfa:
-> br # $2edfa

This command deletes all breakpoints:
-> br #*

BREAKPOINTS—-2

SpawnaClP CP

Command Line Syntax

Spawn a CIP -> Ccp

Parameters

none

Operation

This command spawns a CIP. When you want to return to WIBUG by
logging out of the CIP, you return to location in the program you
were at before the CIP was spawned.

Examples

This command spawns a CIP:

_>cp

CIP-1

ClearScreen CS

Command Line Syntax

clear screen =-> cs

Parameters

none

Operation

This command clears the screen and places the WIBUG prompt, =>,
at the bottam of a blank screen.

Examples

This command clears the screen:

=> cs

CLEAR-1

Display PC History DH

Command Line Syntax

display last -> dh
20 pc values
display a number => dh

of last pc values

Parameters

number This specifies the number of pc values to display. The
default is 20 decimal. The maximum value of this
parameter is 100 decimal.

Operation

This command displays a history of program execution. During
tracing the last 100 pc (program counter) values (addresses) are
stored. Each value displayed also includes the corresponding
assembly instruction for that location.

NOTE: You cannot keep track of the execution if you use the XR
(execute real time) command to execute the program. The
DH command displays four question marks, 22?2, instead of
a pc value to indicate that an XR command was executed.

Examples

This command displays the 50 (decimal) instructions that were
last executed and their addresses:

=> dh %50

DISPLAY HISTORY-1

Dictionary of WIBUG Commands

Here is a sample five-line display (produced by the command dh
5):

00010148 $10148 tst.b (al)
0001014a $10l4a *bne.s $10152
00010152 $10152 cmpm.b (a0) +, (al) +
00010154

. $10154 *dbne d0,$1013a

hex symbol (if any) assembly instruction
address + offset at that location

DISPLAY HISTORY-2

Display Memory

Command Line Syntax

display one
location

display a number
of locations

display a range
of locations

for number

value tOo value

Parameters

value

value for number

value to value

Specify one location in memory.

Specify a beginning location for the value.
Specify a number of locations for the number.

Specify the beginning location for the left value
and the ending location for the right value.

Add this to the command line if you want the
values in the specified locations disassembled.
(:a is a substring of :assembly)

Specify this with @value to display the 4 bytes,
beginning at value, as a single-precision number.

Specify this with @value to display the 8 bytes,
beginning at value, as a double-precision number.

DISPLAY MEMORY-1

Dictionary of WIBUG Commands

Operation

There is no command mnemonic for displaying memory. You display
memory by simply listing an address or a range of locations (see
section 1-n). The number of actual bytes displayed depends on
the memory access size (section 1-1). If you display a single
location, the at sign, @, must precede the value. If you display
a range, you should not include the at sign.

Examples

This command displays the contents at the address hex $1000 and
disassembles value:

-> @$1000 :a

Here is a sample display the previous command would produce
(assuming the memory access size is longword, :4):

00001000 $1000 jmp $3b30

This command displays 2e hex locations (in bytes) beginning at
location 45fb:

-> $45fb for $2e :1

This command displays the contents of locations 4500 through 4600
hex (the default input is hex):

=> 4500 to 4600
This command displays the contents of locations 4500 through 4600
This command displays the contents of 4 bytes beginning at
location 5fa (hex) as a single-precision number:

-> @s$5fa :sp

This command displays the contents of 8 bytes beginning at
hex location 5680 (default is hex) as a double-precision number:

-> @5680 :dp

DISPLAY MEMORY-2

Display Registers

Command Line Syntax

display all *
registers

display a
register

Parameters

register This specifies the register whose contents you want to
display. The asterisk means all registers. Data
registers are specified by d0 through d7, address
registers by a0 through a7 (d* displays all data
registers, a* all address registers). The program
counter is specified by pc, the current stack pointer
by sp and the user stack pointer by usp. Register a7
also contains the value of the stack pointer in use at
the time.

Operation

In WIBUG, you display the contents of a register by specifying
its name. Wildcarding applies (with * and =).

Examples

This expression displays the contents of all registers:

- *

DISPLAY RHGISTERS-1

Dictionary of WIBUG Commands

A display of all registers looks like this:

status hex symbol assembly
register addj;'ess + oj fset instruction

Registers 0 1 2
Data
Add

5 6 7
00000000 00000007 00000000 00000000 00000000 00000000 00000000 00000075

s 00000000 00003b42 00100024 00100006 00000003 001deff8 00000000

/

supervisor user current
stack stack stack
pointer pointer pointer
This

expression displays the contents of all data registers (d*
also works):

-> d=
This expression displays the contents of the program counter:

->m

DISPLAY REGISTERS-2

Exit WIBUG EX

Command Line Syntax

exit WIBUG -> ex

Parameters

none

Operation

This command allows you to exit WIBUG. Any changes you made to
your program during the WIBUG session are lost.

EXIT-1

.

Command Line Syntax

help display -> he

Parameters

none

Operation

The help command displays a page of one-line syntax summaries for
each WIBUG command.

HELP-1

Modify Memory

Command Line Syntax

modify memory @ =

modify a register =

modify or create symbol

a symbol

Parameters

@ value = value The value on the left specifies a 1location. The

value on the right specifies the value assigned to
that location. Use the input format explained in
section 1—-k. You can use the address ranges
explained in section 1l-n for either of this
parameters. If you use a range for the left
parameter, do not use the at sign, @. For
example, assuming the default is hexadecimal, this
command copies 16 locations, in the default size,
from 2000 to 1000 (i.e., locations 2000 - 203f are
copied to 1000 - 103f if the default size is :4):

-> @1000 = 2000 for 10

And, assuming the default is hexadecimal, this
command initializes 16 words with 4e71 beginning
at location 2000:

-> 2000 for 10 = 4e7l1 :2
register = The value is assigned to the register you specify.

symbol value If you specify a symbol that already exists, the
value is assigned to the symbol. If you specify a
symbol that does not exist, a symbol is created
with the value you specified. Use an exclamation
mark in front of symbols with the same name as
WIBUG reserved words or those that could be

MODIFY-1

Dictionary of WIBUG Commands

:Sp

confused with registers.

NOTE: There must be a space on each side of the
equal sign, =, or else a wildcard function
is assumed.

Specify this with @value = fp value to store the
floating-point value in the 4 bytes beginning with
the address specified by value. The floating-point
value must be in the correct format specified in
section 1.k.

Specify this with @value = fp value to store the
floating-point value in the 8 bytes beginning with
the address specified by value. The floating-point
value must be in the correct format specified in
section 1l.k. Double-precision is the default
value, so if you specify without :sp or :dp, WIBUG
assumes it is double precision.

Operation

You modify memory by using the assignment operator. For more
than one location, use the address ranges explained in section

Examples

This expression assigns the assembly command tst.b (a4)+ to
location 105e:

-> @105 = {tst.b (ad)+}
This expression assigns zero to locations 1000 to 1020:
-> 1000 to 1020 = 0

And this expression assigns decimal 20 for 20 bytes (10 accesses
of word) beginning at location 1200:

=> 2000 for %10 = %20 :2

MODIFY-2

Dictionary of WIBUG Commands

This expression assigns the hex value 15ee4 to data register 3:
-> d3 = 15eed

And this expression creates a symbol called ROUTINEl and assigns
it the hex value 1000:

-> routinel = 1000

This expression stores the single-precision value zero to the 4
bytes beginning at location 54f:

-> @54f = 0. :sp

This expression stores the double-precision value 3.14159 to
the 8 bytes beginning at location 1000 (hex):

-> @$1000 = 3.14159 :dp

This expression stores the double-precision value -123.456e-44
to the 8 bytes beginning at location 2000 (hex):

-> @$2000 = -123.456e-44

MODIFY-3

Print PR

Command Line Syntax

toggle on/off -> pr

turn on printing -> pr on

turn off printing -> pr off

change print terminal => Pr terminal name
Parameters

terminal name This specifies the port of a terminal or printer where
you want WIBUG's output echoed.

Operation

This command allows you to turn on or turn off printing, or to
specify a new terminal or printer where the printing goes. When
print is on, WIBUG echoes everything that appears on your screen.
In other words, the output appears in both places.

Examples

This command turns printing on:
-> pr on

This command specifies _TT3 as the printer port:
-> pr _tt3

PRINT-1

ename

Read a Symbol Table RS

Command Line Syntax

Read from a file -> rs filename

Read from file with -> rs
same name as .exe file

Parameters
This is the name of a file with a .mcr or .out
extension. You don't need to specify the extension
unless there is file with with the same name for both
extensions. If you don't specify a filename, the .mcr
or .out file with the same name as the current .exe
file is used.

Operation

This command loads a symbol table from a .mcr or .out f£file into
WIBUG's symbol table. If symbols already exist in the symbol
table, this command adds to the list of symbols. If a symbol of
the same name exists in both the symbol table and the file, the
value in the file overwrites the value currently in the symbol
table.

Examples

This command causes WIBUG to look for a symbol table in a file
named SUM.MCR or SUM.OUT, and read the table into WIBUG if it is
found:

-=> rs sum

READ SYMBOL-1

Stack Backtrace SB

Command Line Syntax

stack backtrace -> sb

Parameters

none

Operation

This command prints out a backtrace of the calling sequence,
starting with the current stack frame and continuing back until
the end of the stack is reached. The name of each routine called
is printed, followed by the parameters. For C programs, the
purameter list is in the proper order and values of the
parameters are displayed as long words. For Pascal programs, the
parameter list is in reverse order of the declared parameters.
Also, for Pascal programs, WIBUG displays the value of the
parameters as words. Pascal passes parameters as words and
longwords, but WIBUG does not make judgments about the length of
the parameters. Thus, the value of a long word parameter is
found in two adjoining words.

STACK BACKTRACE-1

Dictionary of WIBUG Commands

Examples

Here is a sample display of a stack backtrace for a Pascal
routine:

Oec7c 0000 0050 0014)

$b134: $101a0(001d.

hex name or routine
address address parameters
of call of routine
to routine

Here is a sample display of a stack backtrace for a C routine:

$293a:

$44($00000000, $00ldcfcd)
o ki

hex name or routine
address address parameters
of call of routine
to routine

STACK BACKTRACE-2

StepJSR RTS SJ

Command Line Syntax

step jsr, rts -> 53

Parameters

none

Operation

This command causes your program to execute until it encounters a
jsr, bsr, rts, rtr, or rte instruction and then displays the
contents of the registers. In other words, SJ is the same as the
SS command, except it only stops on jsr, bsr, rts, rtr, and rte
instructions.

Examples

A register display looks like this:

status hex symbol assembly
register address + offset instruction

5 6 7
Data 00000000 00000007 00000000 060000000 00000000 00000000 00000000 00000075
| 24 00100006 00000003 001deff8 00000000 &

supervisor user current
stack stack stack
pointer pointer pointer

STEP JSR-1

StepLocal SL

Command Line Syntax

step local -> sl

Parameters

none

Operation

This command executes your program one step at a time, and
displays the ocontents of the registers after each step, except
for subroutines. It treats a subroutine as one step, and
executes the entire routine and returns to the line after the
routine call before displaying the registers. In o.ler words, it
is the same as the SS command, except a call to a subroutine is
counted as one instruction and WIBUG does not show single steps
through the routine.

STEP LOCAL-1

Dictionary of WIBUG Commands

Examples

A register display looks like this:

status

hex symbol assembly
register addiess + offset instruction

Registers 0 1 2 3 4 5 6 7

Data 00000000 00000007 00000000 00000000 00000000 00000000 00000000 00000075

Address 00000000 00003b42 00100024 00100006 00000003 001deff8 00000000 £
supervisor user current

stack stack stack

pointer pointer pointer

STEP LOCAL-2

Step Single SS

Command Line Syntax

step single -> ss

Parameters

none

Operation

This command executes a single instruction and then dumps the
current pc and the contents of all other registers.

Examples

A register display looks like this:

status
register address

hex symbol assembly
+ of fset instruction

Registers 0 1 2 3 4 5 6
Data 00000000 00000007 00000000 00000000 00000000 00000000 00000000
Address 00000000 00003b42 00100024 00100006 00000003 00ldeff8 00000000

supervisor user current
stack stack stack
pointer pointer pointer

STEP SINGLE-1

Set Terminal TERM

Command Line Syntax

set input -> tem <

terminal

set output => tem >

terminal

set both -> term terminal name

input & output

Parameters

terminal name This specifies a port that has been mounted on your
system,

Operation

This command changes WIBUG's terminal to the specified device,
You can change the input terminal., the output terminal, or both,
If you change the output terminal. the output is displayed there
but not on your temminal. In other words, the output is not
echoed to both terminals. This command is helpful when you want
to execute your program on one terminal and operate WIBUG on
another terminal.

Examples

To operate WIBUG on another terminal once you have executed your
program with WIBUG, you would change the input terminal. This
command changes the input terminal to _TTS

-> term < _tt5

SET TERMINAL~1

Execute Realtime XR

Command Line Syntax

execute to end -> Xr
or [CTRL] c

execute and -> Xr
specify temporary
breakpoint

Parameters

temp breakpoint This specifies a temporary breakpoint that is set just

before execution begins and is cleared when execution
ends.

Operation

This command executes your program until a breakpoint is
encountered, your program ends, or you type [CTRL] c. Your
program executes at full speed with this command. Breakpoints
are physically stored in your program as trap number 13.
Execution begins at the current pc. WIBUG cannot keep a history
of the pc with this command. The output your program generates
or error messages are the only output generated with this
command. This command, when used with the temporary breakpoint.,
allows you to execute quickly to a spot in your program you want
to work with more closely.

Examples

This command causes your program to be executed until it

encounters a breakpoint and sets a temporary breakpoint at
location 4efe:

-> Xr defe

EXECUTE REAL-1

Execute Silent XS

Command Line Syntax

execute -> XS
execute and -> XS
specify temporary
breakpoint

Parameters

temp breakpoint This specifies a temporary breakpoint that is set just
before execution begins and is cleared when execution
ends.

Operation

This command executes your program until a breakpoint is
encountered, your program ends, or you type [CTRL] c. The XS
command is similar to the XR command but with one very important
difference. While the XR command executes your program at full
speed, the XS command silently single steps your program. The
single stepping is very slow, but WIBUG is able to keep a history
of the pc. The only display generated by this command is the
display generated by your program and error messages.

Examples

This command causes your program to executed and keep track of
the program counter history:

=> Xs

EXECUTE SILENT-1

Execute Trace XT

Command Line Syntax

execute -> xt

execute and => xt temp breakpoint
specify temporary

breakpoint

Parameters

temp breakpoint This specifies a temporary breakpoint that is set Jjust
before execution begins and is cleared when execution
ends.

Operation

This command executes your program until a breakpoint is
encountered, your program ends, or you type [CTRL] c. The XT
command is just like the XS command except that XT displays the
registers between each single step. There is a one second delay
between each step to give you a chance to glance at the register
display and decide if you want to interrupt execution with [CTRL]
C.

Examples

This command causes your program to execute a step at a time and
display the registers after each step. It executes until a
breakpoint is encountered and the command also sets a temporary
breakpoint at location 204e:

=> xt 204e

EXECUTE TRACE-1

Dictionary of WIBUG Commands

A register display looks like this:

status hex

symbol assembly
register address

+ offset instruction

Registers

5 6 7
Data 00000000 00000007 00000000 00000000 00000000 00000000 00000000 000000 5

0024 00100006 00000003 001deff8 00000000 90Ide

supervisor user . current
stack stack stack
pointer pointer

pointer

EXECUTE TRACE-2

WICAT Systems, Inc.

Product-documentation Comment Form

We are constantly imeroving ur documentation, and we welcome sgecific comments cn this manuai.

Document Title:

Part Number:

Your Pasition: [J Novice user O System manager
| 0O Experienced user . O Systems anaiyst
O Appglications programmer 0O Harcware technician
Questions and Comments Page Na

Sriefly cescrice examcies, iilustraticns, ¢r informaticn that you think shculd ce accec
{0 this manual.

What would vcu celete from the manual and wny?

What areas need greater emphasis?

List any terms or symbels used incorrectly.

173-CQ1C09 8

First Feid

FOMAILED
iN THE

NC =CSTACGE
NECESSARY
JNITEDS STATES

BUSINESS REPLY MAIL

SIRST CLASS PEAMIT NQ. 20028 CREM. UTAH

SCSIAGE MILL 3E A0 3E ACDRESSEE

WICAT Systems, Inc.

Attn: Corperate Communications
1875 S. State St.
Qrem, UT 84058

Second Fold

