c

Programmer’s Implementation Reference Manual

WICATsystems

188-370-302 A

March 1986

Publications

Copyright ©1986 by WICAT Systems Incorporated
All Rights Reserved

Printed in the United States of America

Receipt of this manual must not be construed as any kind of commitment,
on the part of WICAT Systems Incorporated, regarding delivery or
ownership of items manufactured by WICAT Systems.
This manual is subject to change without notice.

first printing March 1986

Trademarks Used in this Publication

UniPlus+ is a registered trademark of UniSoft Systems
WMCS is a registered trademark of WICAT Systems

iii

Information about this Manual

Review the following items before you read this publication.

The subject of this manual

This manual is designed to give information required to efficiently use
WICAT's C compiler.

The audience for wham this publication was written

This manual is written for the advanced programmer using WICAT's C
compiler. The information herein presupposes a general knowledge of C,
and experience in programming.

An introductory C text, The C Primer, and a general overview of C, C: A
Reference Manual, are availabhle from WICAT Systems, Inc. This manual
presupposses familiarity with the information in those books. This
publication is not tied to a specific C release.

Related publications
The C Primer, part number 188-370 101 A, is an excellent introduction to
C for the user who has 1little or no experience with C. This manual

presupposes a knowledge of the information in The C Primer, or equlvalent
experience with C.

C: A Reference Manual, part number 188-370-301 A, is an overview of C. It

is for those with some knowledge of C. The information in it is not
specific to a particular C implementation.

Typographical Conventions Used in this Publication
Bold facing indicates what you should type.
Square brackets, [], indicate a function key, the name of which appears
in uppercase within the brackets. For example, [RETRN], [CTRL], etc.
Braces, {}, indicate a key in the keypad.

Underlining is used for emphasis.

iv

Table of Contents

Chapter 1 Introduction

Chapter 2 The Compilation Process

C milet m.l.'.l..."...........................0"..'....'
Lim.mu.om on wIm's C miler............'........'.....'.....

Chapter 3 WICAT C Implementation

stora@.....O...0........0...0.0.....0‘0.0............O..Q.Q......

StOrage SiZEeSeeeccececcecssscssssssesssssssscscscsossssnssssscsce
Storage Allocation and ACCESS...ccceccccscscscsssssssosscscssssses
Register AlloCation...ccececsccscscsssscccscecscscscsscscsssscoccnas
Using the Stack..cccececsecveccscscscccscossscescsssscssssscoscscs
Signed and Unsigned Scalar TYPeS.cccecccccccccssccscssrssssssssssscse
WImT C mm&........Q.'.l'...0...0.0............0...0.0...l...

Chapter 4 Optimization

Constant foldj-ng..............l'......O....O..Q...'.O'...0.....

Strerlgth re&lction...0.0.....0..0...0...'0...‘....Q.IO...QO....

Wreductions.......'................OQ........Q.............
mimizer (cymﬁ) w-mjzatims....O.......Q'.OQQ....OO....0l..b

mta c°llection tedlniques....‘0..........Q........l.‘.’.....‘..

owimization tedlniques...........Q.....I.....Q.".‘..........'O
Assembler (as/wimac) OptimizationS...cceceeescecccsscccscscccscnsce
How to Get Good Code from the Software

Gamtion mm..0....O..........0.......'...."Q............Q

2-1
2-3

3-1
3-2
3-2
3-4
3-5
3-7
3-7
3-7

4-1
4-2
4-2
4-2
4-3
4-3
4-4
4-10

4-11

Table of Contents

Do not use register variables

indiscriminately.ceeeceecccsccccsscsssscsscescosscccscsccnnes
Do not over—declare register variableS.cccecccecsscoscccsssccnse
Don't make functions t0O 1lONgeeececscsocccsceccosscsccccccsceacs
Consider using preprocessor macros instead

of simple fUNCLiONS.eeecececcecccscccsssccscoscsssccccsscnsae
Use pre-increment/decrement in favor of

post-increment/decramenteeeccesccscscscoscscscacccsscssscsccne
Use char and short integer variables

instead of int variableS.ececccscsccccccscccoscccessccncccces
Use pointers rather than indices when

looping through arrayS.eecceccccsccscsccsssccscscscsccasccncss
Keep the range of switch statements small

and NOt tOO SPAISEisecsscsvsscscsscssscsccscsscsssssssssscnce
Optimizing functions with more register

variables than registerScecsccecsssessscescccsscsssssssscssccsee
Generating Special Instructions and

Addressing MOGES.cescecccsosessssscscesssscsssscsscsssccccssnse
Speeding Up Arithmetic OperationSecececececescscscsccscsccccccacs
Improving array access and pointer

arithmetiCiccececccescccecececescecscecessssosscacocsccsnasscas
Fast data copying/COmMpAriSONeecccscccscesscssscccscsscsccssssses

Cautions about OptimiZing.e.ecececcscccsscccscccscsasccscscccacoas

Chapter 5 Floating-pointx

E‘lmting—mint Under WMCS...............Q....l.......‘.....'...
Floating-mint Under UniPlUS'*' SYSten v.oooooooooooooo-oo-cooooo
Gettingthem mom&..'...'..C0..........0.0..'...0.0..00'
Choosing the Floating—point PreproCeSSOL.ececsecccsssscccsccssace
COptjmizer.O.....Q.......'..'...'.'..’..Q...'..'.....O........
F‘].wting-mint R@isterSI.I.O0.'......."Q.Q.....CO...O....I..O
PreCiSion........'.IO.............'......'.......O.............
ﬂmtiwim mm.................'..........O.....'...CC.....
mjmming.................'Q...."...........Q...........
Exception Handling under UniPlus+ System Veieeeeeecccoccccccccecs
EXCeption Harld]-ing lmder WM@'...............0.........Q....Q..
mil‘gﬂmiwm Hm.....".Q....OC00'.....0.'.0.'.'.
Debugging floating—-point programs under
UniPluS+ wstm VQ...’...‘...Q...O...........OQ......0......0

vi

4-11
4-11
4-12

4-12
4-13
4-13
4-13

4-14
4-14

4-14

4-15
4-16

4-16
4-18
4-20

5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-6
5-6
5-7
5-7

Table of Contents

Debugging floating-point programs under
WM@...’...'Q.l.....................0..'......l'....'........ 5-8

nmwint L'mmi&.....'.............O.'....I...'.'......... 5_9

Chapter 6 C Libraries

mecLibraq.............'..'........‘.........................'.. 6-1
mm‘mLibraq................'.........................C....... 6-2
me mtl] Library lmder UniP]pl]s-*- WstanV....O.......C......O.'. 6-2

Chapter 7 - Dictionary of C Library Routines

a64l
abs
acos
asin
atan
atan2
bessel
brk
bsearch
ceil
chdir
chmod
clearerr
close

vii

Table of Contents

viii

ix

Table of Contents

Table of Contents

Chapcer 8 WMCS Compilation Commands
compile
111ib

1i
llran

Chapter 9 Calling Functions Written in Other Languages

Procedure NalNeS.eeeeccocccscsssscsossscesssscsssssscscssscssssscosces
Data RepresentatiONececccceccccssccccccsecccssscsssccssccssscccses
Return Values...".0....0'O'..'.0.'..0.0......0..........0...O.
Argument LiStSeeeecesscccessssccescssccsosssssscosssscsnssassssonsse
LimitationSeeeececccoscesoccssccsssssssessscscssssssascscscsscsoss
Procedure NAMES.cecececcscecscoscssscssssssecssssssssssscsssssssss
mta Representations....Q..0.Q..0...0...0.....C........Q.......
RetUrn ValueSeesececcccocccsccccsssssescsscsscsssscsosnsnscsscsscsssas
Argument LiStSeececccccccscscccsscesccssscccccsscsocscsscsccsocs

Chapter 18 Debugging

Hw to mte mm..........'......I..'............'..............
Hw to mte m................................'h...............

w—m wmizd MIIQOCOC......OOOOOCOOQC.....I'...Q'....l..
Appendix A ASCII Character Table

Appendix B Supplement to C: A Reference Manual

Appendix C Keywords

9-2
9-2
9-2
9-3
9-4
9-4
9-5
9-5
9-5
9-6
9-6

10-1
19-2
19-3

Chapter 1

Introduction

This manual is intended to help the user of WICAT's C compiler. It should
be used in conjunction with The C Primer, part number 188-370-101 A, and
C: A Reference Manual, part number 188-378-301 A.

The infommation contained in this manual covers the implementation of
WICAT's C under WMCS and under UniPlus+ System V. Where appropriate,
topics are discussed in temms of both WMCS and UniPlus+ System V.

However, because information on C under UniPlus+ System V is available in
the UniPlus+ System V documentation, this manual emphasizes C under WMCS.

For example, chapter 2 covers the oompilation process under WMCS and
UniPlus+ System V.

Chapter 3 gives hints for successful implementation of WICAT's C compiler
for WMCS and UniPlus+ System V.

Chapter 4 is a brief introduction to the C and math libraries.

Chapter 5 describes WICAT's implementation of floating-point arithmetic
in relation to C.

Chapter 6 gives information about optimization under WICAT's C compiler.

Chapter 7 is a dictionary of C libraries not available as part of the
WMCS documentation. Because these 1libraries are documented in the
UniPlust+ System V manuals, they are provided here specifically for the
user of C under WMCS.

Chapter 8 oontains the four WMCS C compilation ocommands. They are
formatted in the WMCS command-description style. If you are using C under
WMCS, read these command descriptions.

If you are using C under UniPlus+ System V, see the cc cammand
description in the UniPlus+ System V User's Reference Manual (Section 1).

1-1

Introduction

Chapter 9 oontains information to help the user interface C with other
langquages.

Chapter 19 offers guidelines for debugging when using the C compiler.
This manual is written for programmers familiar with C. It presupposes an

acguaintance with the other two books that are part of the WICAT C
documentation set, and experience with C.

Chapter 2

The Compilation Process

Under UniPlus+ System V, C files are oompiled with cc. Documentation for
cc is in the UniPlust System V User's Reference Manual (Section 1),

Under WMCS, C files are oompiled with oompile. The oompile ocommand
description is in chapter 8 of this manual.

C Compiler Passes

Compile under WMCS, and cc under UniPlus+ System V, are the interface to
the Software Generation System (SGS). The SGS takes cammand line options
and C source files, and invokes the passes required to translate a C
source program to an executable object module.

Files with a .c extension are assumed to contain C source and follow the
execution path shown. When more than one source file is specified on the
command line, each file is run through the execution sequence separately
(up to the LINKER pass). At this point, the LINKER combines the created
object files into a single executable.

2-1

The Compilation Process

The following diagram shows the compile process under WMCS and UniPlus+
System V:

WMCS
filename.c —s filename.exe
alib2
or askyl
cpp ccom copt or affpl ~ WIMAC LL
foo.c N
foo.i {4 foo.k | foo.k fH foo.s M4 foo.w |H foo.exe
.h files L/ /
other.w’s/
other lib’s
UniPlus* System V
filename.c ——= a.out
alib2
or askyl
cpp ccom 2 or affpl as Id
foo.c N
foo.i 4 foo.k |4 foo.k P foo.s P+ foo.o 4 a.out
.h files ¥ /

other .o’sl/

other .a’s

.i’s, .k’s and .s’s are temporary files with names derived from the process identification.
They are hidden in the WMCS dictionary sys$disk/systmp/ or the UniPlus* System V
directory /usr/tmp.

2=2

The Compilation Process

Limitations on WICAT's C Compiler

The size of a C program is limited by the size of internal data
structures in the compiler (which cannot be changed by the user). If the
program requirements exceed these limits, the compiler can fail.

Following are limitations of the WICAT C compiler:

Symbol table 1309 symbols
Expression tree 500 nodes
parse stack 150 parameters
switch 500 cases
block nesting 30 levels

A program can also be limited by hardware. Some hardware limitations are

apparent at compile time, others are apparent only when the program
crashes.

These are the hardware limitations for a C program:

1. The total process size is limited to 2Mbytes (or the size of
available memory if 2 Mbytes is not available).

The process size includes the program's text, data, and run-time
stack. Because of this, the following declaration of an array
could fail:

char bigsucker [100] [100] [100] ;

A recursive function with a large amount of local storage could
also fail because it causes the stack to grow quickly.

2. The register-indirect-with-offset addressing mode is used by the
compiler. It is used for local variable and parameter references.
It is limited to 16 bits (-32768 to 32767).

However, this addressing mode cannot be used if the number of
local variables, or the number of bytes of parameters, exceeds
32767.

3. Indirection from a NULL pointer can cause subtle problems. Though

location 8 is technically part of a program's address space, it
is a location in ROM.

2-3

The Compilation Process

Following are ways of misusing a NULL pointer:

Reading: Reading location @ returns whatever is at the
lowest ROM address (a jump instruction). When
- printed the result is garbage.

For example, the following program prints "cp is
Ny. "

char *cp = 9;
printf("cp is %s\n", cp);

Writing: Although location @ is not writable, an error is
not produced. The write is ignored. Therefore, the
following program segment does not produce a oore
dump, but it does not print "true" either.

char *cp = 0;
*cp = 'x';
if (*cp == 'x')
printf ("true\n");

Executing: Location @ oontains a jump instruction to a
destination in the system address space (0x200000
or greater). Executing the instruction at @
causes a jump to system space. However, this is a
memory violation. The program crashes with the
program counter in the 09x200000+ range.

2-4

Chapter 3

WICAT C Implementation

This chapter <contains information that will be helpful in the
implementation of WICAT's C.

Storage

There are four kinds of storage:

1.

Auto

These are local variables. They are allocated on the stack at run
time when a function is called. Auto variables in inner blocks
are allocated when the lexically enclosing function is entered,
not when the block is entered. However, optional initialization
occurs when the block is entered.

Names appear in the oompiler output as offsets from the stack
pointer as follows:

—<offset> (sp)
External
These are global variables. The compiler allocates space for
these variables and assigns them the names given by the user,
preceded by an underscore.
If initialized, the storage is allocated and the value is
assigned at oompile time. If not initialized, space is not
allocated until load time. Then the initial value is zero.
Static

This is another form of global storage. It is global only to the
defined function or file. Storage is allocated at compile time

3-1

WICAT C Implementation

whether the variable is initialized or not. Names are not
exported above the local level and are not visible to the user or
other SGS utilities. ‘

Register

Register variables are contained in hardware machine registers.
They are limited to scalar types.

There can be up to six data variables (char/short/int/long), four
pointer variables (e.g., char *), and four floating-point
registers. The number of floating-point registers is hardware
dependent.

Where the user declares more register variables than there are
registers, the register modifier is ignored. The mapping between
the name declared by the user and the register oontaining it is
often difficult to compute.

Storage Sizes
Following is a list of storage sizes for data types under WICAT's C
compiler:
char 8 bits
short 16 bits
int 32 bits

long 32 bits
float 32 bits
double 64 bits

Storage Allocation and Access

To understand how various classes are allocated and accessed, the format
of C object files and images must be understood.

WICAT C Implementation

';‘he‘ following diagrams represent the format of executable files and
images:

Loaded WMCS Image Loaded WMCS Image
(with floating point (without floating point)
0 ROM (4k) 0 ROM (4K)
1000 : . 1000
Floating point
shared me?ngry (12k) Text segment
4000
Text segment R _Data_?egiien_t- _
Data segment ‘
Stack
1fa000 Floating point — — — f— -
shared memory (20k) Stack
1££000 Never used (4k) 1££000 Never used (4k)
200000 200000

WMCS Executable File

Bit maps

Text and
Initialized Data

Symbol Table

WICAT C Implementation

Loaded UNIX Image UNIX Executable File
Text Segment Header Information
Data Segment Data

(initialized from file) (global/static)
“BSS” Segment Text

(init to zero on load) (program instructions)

<HOLE> Symbol Table
Stack
(new pages init to zero)

The UNIX executable file format is described in more detail in a.out (4)
of the UniPlus+ System V User's Manual Sections (2-6).

Initialized external and static variables are oontained in the data
segnent. Names and locations of these variables are in the symbol tahle.
The symbol table also oontains the names of uwninitialized external
variables. Locations of the variables are added at link time.

Storage for auto and register variables is not allocated until runtime.
The names are only in the code that references them.

When loaded, the data segment has been expanded to include storage for
the previously uninitialized data variables. This storage has been
initialized to zero by the operating system. Auto variables are created
on the stack when the lexically enclosing function is entered. Register
variahles are loaded into machine registers when the lexically enclosing
function is entered.

WICAT C Implementation

Register Allocation

The C compiler uses the 680@0's eight data registers and eight address
registers as follows:

apg=1,d40,d1

These registers are used to compute and store temporary values
during evaluation of expressions. They are not saved when a
function is called, so their value is not guaranteed across
functional calls.

a2-85 4 d2-d7

These registers are available as user—defined register
variables. If they are not user—defined, the coompiler can use
them as temporary storage. They are saved at function entry and
restored at exit so their value is maintained across function

calls.

a6
This is the function call stack frame pointer. It is used as a
base for locating function parameters and local variables. It
also serves as a backward 1link to previous function call stack
frames, i.e. function calls.

a7 (sp)

This is the stack pointer.
Using the Stack

The C compiler builds and maintains a stack frame for each active
function.

Address register 7 (A7, SP) and address register 6 (A6) have special
meaning.

Address register 7 (A7) is the current lowest active address (top) of the
stack.

Address register 6 (A6) is a frame pointer that defines a base for
function parameters and local variables. It also provides a a pointer to
the previous stack frame.

Stack frames are manipulated with LINK and UNLK 68000 instructions.

WICAT C Implementation

Following is a diagram of a function call stack frame:

SP —»
—M(A6) —

Local Variables

—4(6) —=
A6 — Old Value of A6

Return addr to Caller

8(A6) —

Function Parameters

.

N(A6) —e

In the foregoing diagram, local variables are accessed at negative
offsets from A6, function parameters are at positive offsets, and the
previous frame pointer value is at the location pointed to by A6.

Register variables in functions have no associated stack storage except a
function parameter.

If a function parameter is declared as register, it has storage in the
stack frame allocated by the calling function. Code is generated by the
compiler to oopy the contents of that location to a register when the
function is entered.

The following function is a storage allocation example:

foo(pl, p2, p3) /* Locations: */

char pl; register int p2; short p3; :

{ - /* pl: 11(a6) */
register char *apl = 0; /* p2: 12(a6) and 47 */
char al[ll]; /* p3: 18(ab) */
static int sl = 1; /* apl: a5 *
int a2 = 2; /* al: -=11(a6) to -1(a6)*/

/* sl: not on stack */
. /% a2: -16(a6) */

3-6

WICAT 'C Implementation

In the foregoing example:

p2 occupies space on the stack. The compiler generates code to copy
from the stack location: 12(a6) to the appropriate register, D7.

apl does not occupy space on the stack because it is a local
register variable. The compiler generates code to initialize it.

The calling function pushes all parameters on the stack in reverse
order, Therefore, they appear as first parameter (low address) to
last parameter (high address). Scalar parameter types shorter than a
longword are padded to a longword boundary.

The local array al is arranged from lowest address (a[f]) to the
highest address (a[lf]) even though local variables are allocated
from highest to lowest (e.g., @2 occupies a lower address than al).

The static variable sl occupies no stack storage even though it is
declared inside the function. It is allocated at compile time in the
initialized data section of the object file.

Register variables are allocated starting with d7 and a5 to d2 and
a2. Therefore, parameter p2 is in d7 and local variable apl is in
as.

NOTE: The C optimizer removes LINK and UNLK instructions in
functions with no local variables. In other words, function
parameters are accessed as positive offsets from the stack
pointer instead of offsets from the now-unacceptable A6. The C
optimizer can also remap register variables into scratch
registers (d¢,dl,ad,al). Read chapter 6 of this manual for
more information on the C optimizer.

Signed and Unsigned Scalar Types

The scalar data types char, short, int, and long can be explicitly
declared as signed or unsigned. Without a specification, they are signed.

Unsigned modifiers affect unary and binary operators as follows:

Arithmetic operators use unsigned arithmetic (e.g., DIVU rather than
divs). -

Logical operators use unsigned comparison (e.g., BLS rather than
BLE) .

The right shift operation zero-fills instead of sign-extends.

Implicit or explicit cast operations zero—-fill rather than sign-
extend from shorter types to longer types.

37

WICAT C Implementation

WICAT C Features

The WICAT C compiler implements extended operations on structures and
unions. Structures and unions can be assigned, passed as parameters, and
returned as the result of functions.

In addition, the WICAT C compiler supports enumeration types (enum), the
void storage class, unsigned char and unsigned short data types, and the
asm assembler escape.

Also, the keyword list for the C compiler conforms to the proposed ANSI
standard. The keywords "const" and "volatile" are reserved for
implementation of the ANSI standard. Attempts to use these keywords
generates a syntax error from the compiler. Entry has been dropped from
the keyword list.

A list of keywords for the C ocompiler appears in appendix c¢ of this
manual.

Temporary Files

The C compiler creates a temporary file for internal use. This file is
used to oollect string constants from throughout the source file so they
can be emitted in a single section. When the preprocessor, compiler,
optimizer, and floating-point postprocessor are run under cc (UniPlus+
System V) or compile (WMCS), temporary files are used to pass information
from pass to pass.

These files are named CCCP<unique ID>. In the foregoing name, unique ID
represents a number that is unique to the process executing cc or

compile.

Under UniPlus+ System V, temporary files are created in the following
standard, system-wide, temporary directory:

/usr/tmp

Under WMCS these files are created in the following standard, system-—
wide, temporary directory:

sys$disk/systmp

All temporary files are deleted when the compile process temminates, or
when the ocompile process is interrupted.

3-8

Chapter 4

Optimization

The optimized code produced by the Software Generation System (SGS) is
not really optimimum code; a better term is improved code. Even though
the C optimizer doesn't really optimize code (it improves it), the term
"optimization" will be used throughout this manual since that is the temm
traditionally used to describe the "improving" process.

Optimization occurs in three parts of the SGS: the compiler, the
optimizer, and the assembler. The optimization performed by the compiler
and the assembler is done automatically, i.e., it is perfommed on every
program and the user cannot turn it off. However, the optimizer is
turned off by default, and you must specify that the optimizer be used if
you want those optimizations to be performed.

Campiler (ccom) Optimizations

The C compiler performs optimizations that the optimizer cannot do or
that are very hard to do. Primarily, these optimizations require some
source context that is not availabe in the generated assembly code (e.g.,
types of variables). They are perfommed whether or not the optimizer is
turned on.

The input for these optimizations is the internal expression trees
representing pieces of the program. The output is the assembly code for
the program's statements. (The fundamental unit for compiler
optimizations is a C statement.)

The following sections describe optimizations performed by the C
compiler.

4-1

Optimization

Constant folding
If the operands of an operator are constants (their value is known

at compile time), the operation is performed by the compiler. For
example, the following two assigment statements generate the same

code: '
i=3*5;
i=15;
Strength reduction

If one of the operands of a binary operator is a oonstant, the
compiler must generate code to performm the operation. However, it
can use an instruction that takes less time.

The following examples show instructions the compiler may use:

multiply by power-of-2 uses left shift
unsigned divide by power-of-2 uses right shift
some long-by-long multiples uses shifts and adds

Iype reductions
Short integer types (i.e., char and short) that occur in expressions
should undergo unary/binary oonversion (to longer integer types)

before the expression is evaluated. These conversions cause shorter
types to be promoted to int.

For example, consider the following declarations and statement:

int i; short s; char cl, c2; /*declarations*/
i=s* (cl-c2); /*statement*/

The preceding statement should be evaluated as if it were this:
i=(int)s * ((int)cl - (int)c2);

Since the most efficient data size for the 68000 is 16 bits (a
short) while the size'of an int is 32 bits, code can be produced
that is less efficient than it should be. 1In an effort to produce
more efficient ocode, the compiler uses shorter types whenever doing
so does not change the value of the expression.

Optimization

Therefore, the statement i = s * (cl - c2); would be evaluated as
the following:

i= (int) (s * ((short)cl - (sho;fc)cz));:

This type of shortening is done for bitwise, logical, and arithmetic
operators. While the rules for type shortening are complicated and
the shortening may not always be done, the result will not differ
from the the result obtained had the usual conversions been applied.

Optimizer (c2/copt) Optimizations

Most optimizations are performed by the optimizer., Processor-independent
(common tail merging), processor—dependent (register mapping), and WICAT-
specific (suppressing NOPs following stack probes) optimizations are
perfomed by the optimizer.

The input for the optimizer is the assembly-language program produced by
the compiler. The output from the optimizer is another assembly-language
program that should be functionally equivalent to the input program.

The optimizer uses three fundamental units of optimization:
A module, the largest unit, corresponds to an entire C function.

A module contains one or more basic blocks. Each basic block is a
sequence of assembler instructions that start immediately after a
label or branch and end with the next branch or label. (The next
branch or label refers to the next one listed in the program, not
the next one to be executed.)

Within each basic block, a moving window of one to three
instructions is used for peephole optimizations.

This discussion of optimizer optimizations is divided into the techniques
used to collect data for the optimization and the optimizations
themselves.

co ion t
The optimizer uses the following data collection techniques:

Flow analysis The basic blocks of a module are linked internally to
form a flow graph. This graph provides information about the flow
of execution in a module. One basic block is linked to another if
control from one falls into the other, or if the second basic block
is the target of a branch from the first.

4-3

Optimization

analysis For each instruction in a module, it is
detemined which registers are referenced and which are set. This
information is transmitted throughout the module so that at every
instruction it is known which registers oontain values that are
referenced again after the instruction (live registers) and which
are not referenced again (dead registers).

For data registers, the live/dead information is kept for each
addressable piece of the register, i.e., byte, word, or long. The
live/dead information is not computed for condition codes or memory
locations.

ot imization techni

These are the optimizations the compiler performs:

Unreachable code elimination The flow graph is used to detect basic
blocks that cannot be reached by any execution sequence. The
optimizer eliminates these blocks.

In the following example, the basic block that oonsists of the
assembly statements for 1 is removed:

register int i, j, k;
for (i = @; < 18; i++) {

if (1 >5) { .
k = j; continue;
} else break;
j=1%*3; k += 4; /* 1 */

NOTE: This is a trivial example that even the compiler would detect.

Dead code elimipation The live/dead information is used to
detemine whether the value computed by each statement is used. If
it is not used and the statement has no side effects (such as
setting condition codes prior to a test instruction), it is removed.
The removal of a statement can produce dead code, so the procedure
is repeated until no more dead code is found.

4-4

Optimization

In the following example, the entire loop body will be eliminated
because the value of register j is not used so 2 is eliminated, and
then value of register k is not used so 1 is eliminated:

register int i, j, k;

for (i = 0; i < 1000000; i++) {
k=(1<Ki); /* 1 */
j = (i + k) & OxFF; /* 2 %/

}

The loop itself is not eliminated because register i is used each
time through the loop (even though the loop now does nothing).

Redundant branch elimination The flow graph is also used to detect
and eliminate unconditional branches that are the target of other
branches and branches to the following statement. In the following
example, for the code on the left, the unconditional branch to .L2
at L1 is removed and the label .L1 is moved down to the same
location as .L2 as shown in the code on the right:

ne L1 bne .L1
<StufE> ¢StUEE>
bra..L4 bra..L4
Ll: .L3:
bra L2 .
.L3: <more stuff>
<more étuff> JLl:
. JL2:
beq .L2
L2

The second branch to is also removed since .I2 is the label for the
following statement.

Common tail merging Pairs of basic blocks are compared from the end
back to the beginning to detemine if the tails of the blocks are
the same. (Essentially, blocks are the same if they are lexically
equivalent.) -

If common tails are found, the common portion is broken out to form
a new block, and branches to the new block are added at the end of
the old ones. For more efficient use of space and time, a ocommon
tail must contain a minimum number of statements before it is broken
out.

4-5

Optimization

Loop rotation The optimizer attempts to limit the number of branch
instructions required in loops because branch instructions use a lot
of CPU time. For example, the following simple while loop generates
code with a test at the beginning,” the body of the loop, and a
branch back to the test: "

while (i != 9)
£(1i);

The test at the beginning includes a branch that skips the body if
the oondition (i != 0) evaluates false. Therefore, every pass
through the loop executes two branch instructions.

Loop rotation moves the test to the bottom of the loop and reverses
the sense of the test so that a branch is taken to the beginning of
the loop if the condition evaluates true. Now, only one branch is
executed each time through the loop. A second branch before the
loop jumps to the test, but it is only executed once.

In the following example, the original loop is shown on the left and
the rotated loop is shown on the right:

JLl: bra Ll
tst.l _1i .Ll:
beq L2 move.l _i,-(sp)
move.l _i,-(sp) jsr £
jsr £ addg.l #4,sp
addg.l #4,sp .Ll:
bra Ll tst.l _i

L2: bne L2

NOTE: The foregoing C code fragment is an example only. The C
campiler does not actually generate the code shown on the left
since the compiler itself rotates simple loops.

Register remapping Register variable declarations within functions
cause an association to be formed between the variable and a
hardware register. When the association is fommed, the previous
contents of the register must be saved so old value can be restored
when the function is exited. The optimizer avoids these saves and
restores register values by remapping register variables into
scratch registers that do not need to be saved.

4-6

Optimization

In the following example, variable i is assigned to hardware
register d7 and j is assigned to dé6:

register int i, j;

i=1; jJ=2;

if (i = 3])
i=3;

return i;

This requires code at the beginning to save the old values and code
at the end to restore those values. The optimizer detects that the
scratch registers dd and dl are not used, and it remaps the
references to d7 and d6 to dl and dd. This eliminates all saves and
restores.

In the following example, compiler-generated code is shown on the
left and the optimized code is shown on the right:

movem.l #$CO,-(sp) moveg #1,d1
moveg #1,d7 moveq #2,d0
moveg #2,d6 cnp.l dg,dl
anp.l d6,d7 bne 113
bne .L13 move.l dg,dl
move.l d6,d7 .L13:

L13: move.l dl,d9

move.l d7,d0
movem.l (sp)+,#SC0

NOTE: Because dd, dl, a#, and al are the only scratch registers,
only two data register variables and two pointer register
variables can be remapped this way.

LINK/UNLK removal If a function doesn't have non-register local
variables, the compiler generates a link instruction in the
following fom:

link a6,#-9
However, this serves only to save the old value of a6, thereby
maintaining the function call linkage. The optimizer eliminates all

links of this kind, changing references to parameters to offsets
from the stack pointer instead of offsets from the now invalid a6.

4-7

Optimization

Consider this C function:

f(a,b)
int a, b;
{
a=>b; b=2;
returni(a);

}

The compiler output from the foregoing example is shown on the left
and the optimized code is shown on the right:

link a6, #-9 move.l =4+12(sp),—4+8(sp)
move.l 12(a6),8(a6) moveg #2,d0

moveq #2,d0 move.l d@,-4+12(sp)
move.l d@,12(a6) move.l -4+8(sp),dd

move,l 8(a6),dd rts

unlk a6

NOTE: The foregoing causes a couple of serious side effects:

Because the stack linkage is broken, debuggers no longer
give a reliable stack backtrace since they rely on
tracing the link chain.

Calling a user-supplied assembly language routine that
changes the value of the stack pointer can change the
optimizer-generated references to parameters. The only
way to prevent this from happening is to declare at least
one non-register local variable.

NOP suppression Due to an anomaly in the WICAT memory-management
unit, it is necessary to generate a NOP instruction following a
stack probe if the next instruction would modify the stack.
Normally, this NOP is generated as part of the function-entry
sequence triggered by the .entry pseudo-operation. Whenever the
optimizer expands this pseudo-op, it will generate a NOP only when
it is needed. Unfortunately, if the optimizer doesn't expand it
(i.e., the function uses floating-point) the appropriate floating-
point preprocessor will always generate a NOP. Hence, this
optimization benefits only functions that do not use floating point.

Optimization

Elimination of stack pops Parameters to functions are passed by
pushing them onto the stack (i.e., decrementing the stack pointer
and storing the parameter at the location it now points to). After
returning from the function call, the parameters are popped (i.e.,
stack pointer incremented). In many cases, one function call
immediately follows another.

In these cases, the first function's parameters are popped (stack
pointer incremented) and then the second is pushed (stack pointer
decremented) . Here the optimizer will save time by not bothering to
pop the first function's final parameter and, instead, overwriting
it with the first parameter to the second function.

For example, consider the following segment ‘of C code:

f(a);
g(b);

For the foregoing example, the compiler would generate the code on
the left and the optimizer would generate the code on the left:

move.l _a,—(sp) move.l _a,-(sp)
jsr _f jsr _

addq.l #4,sp move.l _b, (sp)
move.l _b,-(sp) jsr -9

jsr -g addg.l #4,sp

addg.l #4,sp

In the optimized code, the parameter of function £ is not popped
after the call, rather the following statement just writes over a
with b, the parameter to function g. This optimization is performed
even if the function calls are not consecutive, just as long as both
function calls are in the same basic block (i.e., there are no
intervening branches or labels.)

Peephole QOptimizations The broadest class of optimizations are

those performed on the moving instruction window. Peephole
optimizations entail analyzing one-, two-, and three-instruction
sequences and removing instructions that are not needed, or
rewriting the sequence into an equivalent sequence that is faster or
shorter. There are currently about 50 peephole transformations that
cover a wide variety of instruction sequences.

4-9

Optimization

The following examples show some peephole optimizations. 'The
compiler-generated code is on the left, the optimized code is on the
right. Comments are given after the semicolons:

clr.l de@ -> moveqg #9,40 ; moveqg is faster

moveg #-1,d8 -> <deleted> 7 essentially a NOP

and.l dg,dl

moveg #5,d0 -> addg #5,dl ; move is not necessary
add.l d4dg,dl

sub.w #1,d0 > dbra d@,label ; single dbra is shorter
cnp.w #-1,d40 ; and much faster

bne label

move.l #16,d0 -> clr.w dl ; the latter is equivalent
asr.l do,dl swap dl ; (though not necessarily

and.l #$FFFF,dl as obvious)

The 1live/dead information is essential for many of the
transformations. For example, the third optimization in the
foregoing example could not be done if some instruction following
the ADD used df (i.e., df is not dead after the ADD). Also, the
first example is not really a NOP since the AND sets condition codes
that might be required later. Therefore, in order to properly remove
the AND, the appropriate oondition codes must be dead after that
instruction.

It should be noted that the transformations are geared toward code
produced by the C compiler and are not intended to be generally
applicable to all assembly-language programs. In fact, the optimizer
makes a number of assumptions based on the known behavior of the
compiler code generator. For example, the second optimization in
the foregoing example is not done for the more obvious code sequence
that follows since the optimizer knows that the compiler will
generate code to first load -1 into a register:

and.1l #-1,dl

Assembler (as/wimac) Optimizations

The final phase of optimization is performed is the assembler. There are
only two transformations done, both having to do with branch
instructions. The general technique is known as branch shortening or
span—dependent optimization. These optimizations are controlled by the -0
flag of the assembler. The cc or compile command passes this flag to the
assembler, so this optimization is always done. The input to the
assembler is a file ocontaining assembly-language modules (corresponding

4-190

Optimization

to C functions). The output is a machine~language file in either QOFF or
LL format. The unit of optimization is the module (function).

On the 68000, there are two types of branches. Both types are relative
in that the target of the branch is specified as a byte distance from the
current location. The short branch has an 8-bit displacement, allowing
targets anywhere from -128 to 127 bytes from the current location. The
word branch has a 16- bit displacement, allowing targets from -32768 to
32767 bytes away. (Branches requiring offsets greater than 16 bits can
use the JMP instruction, which takes an absolute 32-bit target.) The
compiler (and optimizer) always generate the word form of branches.

In the first optimization, the assembler detemmines how far away the
target of each branch is and shortens it if the distance to the
respective target will fit in 8 bits. The assembler only does this with
intra~-module branches. It does not attempt to shorten inter-module
branches since it can make no assumptions about the way the linker will
order modules in the final output file.

The second optimization is a side-effect of the first. If the target of
a branch is the next instruction, the branch instruction is replaced by a
NOP.

How to Get Good Code fram the Software Generation System

The WICAT SGS produces code that is adequate for most applications under
most circumstances. There are, however, situations that warrant a little
extra work to coerce even better code from the SGS. There are no set
rules to be followed; experience and experimentation are the best tools
in these situations. However, the infomation in the following sections
can help you produce better code.

Remember that in most cases creating a register variable entails
saving and restoring the previous contents of the register.
Typically, if a variable is accessed less than three or four times,
it is not advantageous to make it a register variable.

Do not over—declare register variables

You can have only 4 register pointer variables and 6 register long/
int/short/char variables. Declaring more doesn't cause a warning to
be generated, but the register specification is ignored. If the most
heavily used pointer is declared as a register after four others,
performance can be far worse than it would be if it were declared
after only three others.

4-11

Optimization

Don't make functions too long
Long functions increase the probability that the long form of
branches will have to be used. It also increases the probability
that the optimizer will run out of memory attempting to process the
function.
nsi i €pro i a

For example, a function like the following causes a function call,
register load, compare, and return from function:

J'{.sthree(arg) register int arg;

return(arg==3);
}

This ocurrs because the following preprocessor macro definition
requires only a single in-line comparison:

#define isthree(arqg) ((arg)==3)
However, the in-line nature is not always an advantage.

For example, consider the first segment of C code as opposed to the
second segment of C code:

isnum(arg) register int arg;

return(arg==0 arg=1l arg=2 arg==3 arg=4
arg=5 arg==6 arg=7] arg=8 arg==9);

#define isnum(arg) \
((arg)==0 (arg)==1 (arg)=2 (arg)==3 (arg)=4 \
(arg)==5 (arg)==6 (arg)==7 (arg)==8 (arg)==9)
With the following invocation, the macro definition generates code
to evaluate the (rather unusual) expression for each of the 10
comparisons, whereas ‘the function definition requires that the
expression be evaluated only once with 10 register comparisons:

isnum(anarray [i+5*3] [j/(int)sin(k)]->field.nutherfield);

4-12

Optimization

- The post-increment fom requires that the appropriate value first be

"~ copied to a temporary location, the original incremented, and then
the old value used from the temporary copy. In the pre-increment
form, the value can be incremented in place, and the new value used.
Note that there is no difference in the degenerate case where the
value is not used (e.g., the statement ++i; vs. i++;) Another
exception is when the expression can be mapped into a use of the
68000 post-increment addressing mode.

Use d 1 s - iables i 3 of i .

Since the natural word size of the 68000 is 16 bits, char (8 bit)
and short (16 bit) operations are typically much faster than the
analogous 32-bit operation. Using shorter integers often allows the
compiler and optimizer to perform type reductions and hence generate
8- and 16-bit operations. This is extremely useful for
multiplication and division since the 68060 has no hardware
instructions for perfoming 32-bit by 32-bit multiplication and
division. These operations must be done by calling runtime library
functions. Note that this tactic can backfire if no type reductions
can be performed. 1In these cases, a large portion of the generated
code ends up being instructions to promote the shorter operands so
that 32-bit operations can be used.

: . her than indi hen looping throud <

The 68008 does not have an addressing mode that is well suited to
general array indexing. As a result, array indexing can be an
expensive proposition. The following operations typically occur for
a reference of the form array[loopindex]:

1. Load loopindex into a register.

2. Multiply this register by the size of an array element.

3. Add the address of array.

4. Put this value into an address register.

5. Reference the value by indirecting off the address register.

This computation is performed at every iteration of the loop. By
using a pointer variable, references of the form *arraypointer cause
the following operations to take place:

1. Load arraypointer into an address register
2. Reference the value by indirecting off the address register

This pointer is incremented each time through the loop by simply
adding a oonstant (the array-element size). This tactic does not

4-13

Optimization

gain you much if the termination oondition of the loop still
involves an array reference (e.g., "arraypointer <
&array [maxindex]") since the termination condition must be evaluated
each time through the loop.

Reep the range of switch statements small and not too sparse

The range of a switch statement is the numeric difference between
the lowest valued case and the highest valued case (excluding the
default case). The fastest code that the compiler can generate for
a switch statement is a jump table. This produces the smallest
average number of comparisons per case (typically one). In order to
use a jump table, the range must be less than 16384 and there must
be at least four cases.

An additional constraint is that the range not be too sparse. For
the compiler, this means that the range must be less than three
times the number of cases. For example, this prevents a 450-element
jump table from being produced for a switch involving only cases 1,
2, 3, 4, and 450 since there would have to be at least 150 cases to
generate one. If, for some reason, you needed a jump table in this
instance you ocould "pad it out" by adding 145 cases between 5 and
450 that did nothing but break.

Some Special Tricks

If speed takes precedence over good taste, there are some tricks that can
be applied in special cases.

imizin jo ith more i v

There are at least three ways to solve this problem. The most
acceptable way is to break the function into a number of sub-
functions. However, if you d not want to incur the function call
overhead, you could either overload register variables or use inner
blocks. Overloading simply means declaring a set of generic register
variables (e.g., register int i; register int *p;) and, by using
explicit casts, use them in place of many different variables. This
is very non-portable.

A slightly better technique is to declare register variables inside

inner blocks within a function. This allows the compiler to use the
same register in different blocks.

4-14

Optimization

For example, the following code allows the compiler to use the same

address register for cp and sp:

if (addr & 1) {
register char *cp = (char *)addr;

;ddr++;

}
if (addr & 2) {
register short *sp = (short *)addr;

;ddr += 2;
} .
DBRA instruction 1If you have a loop in which the loop index serves

only to control the number of iterations of the loop, it can be
coded in a special way to allow the optimizer to generate a IBRA

instruction. For example, consider the following loop:

int i;
for (i =@; i < END; i++)
<some-stuff-not-using-i>;

If END < 32768, the foregoing code
following:

register short i;
i=mND - 1;
do {
<some-stuff-not-using-i>;
} while (—i != -1);

CMPM instruction When oomparing bytes of data,

can be rewritten as the

the oompiler

generates a (MPM instruction for an if statement of the following
form if pl and p2 both point to objects of the same size (char/

short/int/long) and both pointers are in registers:

if (*pl++ = *p2++)

4-15

Optimization

Post-increment and pre-decrement addressing modes Expressions
involving references of the following form, where rp is a register
variable (char/short/int/long), produce instructions using post-
increment and pre—decrement addressing modes:

*rp++
*_rp

Speeding Up Arithmetic Qperations

In instances where you cannot shorten the types of variables (as
described earlier) because the range of a variable is greater than 8
or 16 bits, it is still possible in many instances to gain an
advantage. Consider the following example, where there is a
frequently used arithmetic statement in which the majority of the
operand values are less than 8 or 16 bits:

register int il, i2;
for (il = 9; il < 50000; il+)
i2 = i1 / 33;

You can try inserting a value test combined with an explicit cast to
force a shorter operation when appropriate:

for (il = @; il < 50000; il++)
if (il < 32768)
i2 = (short)il / 33;
else
i2 = i1 / 33;

In the foregoing example, the added cost of the test is
insignificant compared to the time saved by converting the call to
the runtime 32-bit division to a single hardware division
instruction. In other situations, the added cost may exceed the
savings. Only experimentation will tell.

Im ing a

As mentioned earlier, using pointers to access array elements is
typically more efficient than indexing. There are also some other
special cases that can be improved when indexing is unavoidable. If
space is not a big oconcern, array element definitions can be padded
to a size that is a power of 2. This allows the compiler to generate
a simple shift (as opposed to a long multiply or a series of shifts
and adds) when selecting an array element.

4-16

Optimization

Consider the following section of C code:

struct s {

int type;

char data[26];
¥
struct s sarray[19];

struct s *getpointer(ix)
int ix;

{

}

The foregoing example generates the following eight-instruction
sequence to compute the return value:

return(&sarray[ix]);

move.l 8(a6) ,d0
add.l do,do

move. 1l de,dl

add.l da,do

sub.1l dg,dl

asl.l #3,d0

add.1 dl,de

add.l #_sarray,d®

Adding two bytes of padding to the structure definition (to bring
the size to 32 bytes) generates the following three-instruction
sequence:

move.l 8(a6),dd
asl.l #5,40
add.l # _sarray,dd

Padding also benefits pointer addition (since that is what array
indexing really is). It does not directly help pointer subtraction
however. For example, the compiler implements the following array
by subtracting the two pointers and then dividing by the size of an
element:

getindex(sp)
struct s *sp;
{

}

The compiler generates a call to the long division routine
regardless of padding. A right shift is not used because the
pointers are considered signed. A DIVS instruction cannot be used
since the quotient might be greater than a word (i.e., the array has
more than 32767 elaments), which would cause an overflow with DIVS.

return(sp - sarray);

4-17

Optimization

When using padding, we can force a right shift by rewriting the
function as:

getindex(sp)
struct s *sp;
{
return(((unsigned int)sp - (unsigned int)sarray)
/ sizeof(struct s));

ing/comparison

One of the most common operations in which generated code quality
has a major impact is copying or comparing blocks of data. As might
be expected, there are numerous obwvious and non-obvious ways to
perfom these functions. For large blocks of data, the best way is
probably to use the standard library functions that are written in
asseambly language and have been highly optimized for the best
performance. Two such routines are memcpy and memcmp. Under UNIX,
these routines are documented in memory(3C) of the UniPlust+ System V

User's Reference Manual (Sections 2-6).

As usual, there is a trade-off point at which the overhead of the
function call outweighs the benefits. This point is at about 16
bytes. For 16 bytes or less, it is often wortlwhile to copy/compare
data in-line.

The following examples show four possible ways to define a macro to
copy ¢ bytes from £ to t:

#define QOPYD(£,t,c) \
{ register int n; for (n=0; n < c; n++) t[n] = £[n]; }

#define QOPY1(£f,t,c) \
memcpy (t, £,C)

#define QOPY2(f,t,c) \
{ register short n = c-1; register char *fp = £, *p = t; \
do *tp++ = *fp++; while (—n != -1); }

#def ine QOPY3(f,t) \
{ struct hack { char space[FIXEDSIZE]; } hack; \
*((struct hack *)t) = *((struct hack *)f); }

COPY? is the approach a naive user might first try. Though simple,
it takes easily twice as long as the next slowest method when
copying 16 bytes. QOPYl is a call to the library routine and, for
16 bytes, takes nearly twice as long as (OPY2. (QOPY2 is probably
the best code that you can get for byte-by-byte copies. But its

4-18

Optimization

speed is highly dependent on having the three register variables
actually in registers. It also limits the count to 65536 since it
uses a short counter. QOPY3 is a very special case that requires
the copy size always be the same and known at compile time. It also
requires that both the to and from buffers be on an even-byte
boundary. (@OPY3 coerces the buffers into structures so that the
compiler generates in-line code to do a structure copy. It more
than twice as fast as QOPY2 and almost 20 times faster than QOPY@
for a l6-byte copy.

For comparing ¢ characters of two buffers f and t (setting r to one
if egual, zero if not), you can define the following analogous
routines:

#define QMPO(£,t,c,r) \
{ register int n; \
for (n=0; n < c; nH) \
if (t[n] != £[n]) break; \
r=(n==c); }

#define QP1(f,t,c,r) \
r = (memanp(t,£,c) = 0);

#define AMP2(£,t,c,r) \
{ register short n = c-1; register char *fp = £, *tp = t; \
do if (*tp++ != *€£p++) break; while (—n != -1); \
r=(n==-1); }

#define AMP3(£f,t,c,r) \
{ register int *ipl = (int *)f, *ip2 = (int *)t; \
r = @; if (*ipl++ == *ip2++) if (*ipl+ = *ip2++) \
if (*ipl++ == *ip2++) if (*ipl = *ip2) r = 1; }

The macro that is significantly difference is 1P3, which is
approximately equivalent to what the compiler might d if there was
such a thing as structure comparison. It has the same restrictions
as QOPY3. For l6-byte comparisons, in the best case where the first
byte differs, there is very little difference between the three in-
line versions. The function call version takes about twice as long.
In the worst case where both buffers are equal, the times are about
the same as those of the copy macros.

4-19

Optimization

Cautions about optimizing

The C optimizer was intended only to improve code generated from the C
compiler. For this reason, attempting to optimize hand-coded assembly or
interfacing hand-coded assembly to optimized code is likely to cause
problems. If you try to do this, you should be aware of the following
items:

The peephole optimizer will miss many "obvious"™ optimizations
because it assumes the compiler never generates them.

Many peephole optimizations can be performed only if the condition
codes are dead following the window in question. Currently, true
live/dead analysis is not performed on condition codes. To determine
if the condition codes are dead following a window, it merely checks
to see if the next instruction uses them. If not, it assumes they
are dead.

The optimizer assembly language parser is not complete. It
recognizes only instructions, addressing modes, and pseudo-ops
produced by the ocompiler. Many unrecognized constructs are just
copied to the output file when they are encountered. This creates
problems due to the fact that recognized instructions are
internalized and output at one time at the end of a function. The
resulting output for a function is thus all unrecognized code for a
function followed by the optimized body of the function.

Assembly code in asm statements is not handled well. Currently, the
optimizer has no way of differentiating between code from asm
statements and code produced by the compiler. Hence, it attempts to
optimize it. Most times this works, but sometimes it messes up badly
(typically because the optimizer assembly language is incomplete).

There is no way of selectively choosing which optimizations are
performed on a function or even a file.

4-29

Chapter 5

Floating-point

WICAT's floating-point arithmetic conforms to a subset of the proposed
IEEE standard for binary floating-point arithmetic.

WICAT's software emulation does not support such features as denormalized
operands, extended precision, selection of rounding modes, NaN's, and
full exception handling. The different floating-point hardware types
confom to this standard in varying degrees.

How the C Compiler Handles Floating-point

The C compiler generates pseudo-code for all floating-point operations.
This enables programs to use floating-point without the compiler having
details of each kind of hardware. One pseudo-code statement (one line) is
generated for each floating-point operation. The statement indicates the
operation to be performed, and the operands to use (source and
destination).

Each type of floating-point hardware has a preprocessor. The software
enmulation also has a preprocessor. These floating-point preprocessors
convert the pseudo-code to assembly source statements. The preprocessor
generates the assembly code to perfom the indicated operation on its
type of hardware. Also, a hardware preprocessor that is not hardware
dependent converts pseudo-code to subroutine calls where the subroutine
performs the indicated operation.

For information on selecting a floating-point preprocessor under UniPlus+
System V see cc in the UniPlust System V User's Manual (Section l).

For information on selecting a floating-point preprocessor under WMCS see
the compile command description in chapter 8 of this manual.

Floating-point

1 cating-point Under WMCS

Under WMCS you can bind your program to a floating-point hardware by
using its preprocessor at compile time.

Also, you can use the hardware-independent preprocessor to choose
the software emulation, or the specific hardware at run time. This
can be done because the 1libraries that support the software
emulation, or the hardware, are not linked into the program's
executable image at compile time.

The libraries are in shared memory and become part of your program
during its execution. They are put into shared memory using the
fpmgr command (Refer ‘to the fpmgr command description in the WMCS
User's Reference Manual).

The C language startup routines are automatically linked into your
program. Also, they execute before the first statement of your
program and connect it to the floating-point library in shared
memory.

cating-poi i +

Under UniPlus+ System V you can bind your program to a floating-
point hardware by using the preprocessor for the hardware at compile
time.

The hardware-independent preprocessor binds your program to the
software floating-point emulation.

The choice of hardware or software cannot be made at run time.

The library that supports the software emulation, or the hardware,
is linked into your program's executable image at compile time.

Getting the Best Performance

Following are some general guidelines for getting the best performance
from floating-point operations.

toosing the Floating-goint

Hardware is faster thén software, although the difference in speed
depends on which operation you are doing and which hardware you are
using.

Under UniPlus+ System V your program uses hardware if you compile it
using the hardware preprocessor.

Floating-point

Under WMCS you get best performance by compiling your program with
the hardware preprocessor. If you use the hardware independent
preprocessor, and choose the hardware at run time, performance is
not as good. The code generation is less efficient due to the
indirectness of subroutine calls and parameter passing.

- L

The C optimizer makes code generated by the C compiler more
efficient. It also optimizes floating-point pseudo-code.

Because the C optimizer does not recognize differences in hardware,
some of the pseudo—-code optimizations can degrade the program's
performance on some hardware.

Your program will probably perform better if it is compiled using
the C optimizer. However, try it both ways to find which way gives
you best performance.

o i sters

If your floating-point hardware has general-purpose floating-point
registers, declare floating-point variables as register float or
register double to improve performance.

The first four floating-point registers are reserved as scratch
registers for the compiler and floating~point preprocessor. The next
four floating-point registers are available to be used for register
declarations.

If your hardware has more than eight registers, only the first eight
are used.

The maximum number of useful register declarations is four.

If your hardware does not have floating-point registers, using
register declarations degrades performance.

' E P

Operations on floats (single precision) are faster than operations
on doubles (double precision). The difference in speed depends on
whether you are using hardware or software, which hardware is being
used, and what operation is being performed.

However, the C language is designed to promote all calculations to
double precision. Even if you declare all your floating—point
variables as float, most calculations are still done in double
precision. Once calculations are complete, a conversion is performed
on the result. This oconverts it to a float. The WICAT C compiler
makes one exception to this.

5-3

Floating-point

If you use the +=, -=, *=, or /= operators on float operands, the
calculation is done in single precision.

Cis also defined to promote all float parameters passed to
subprograms to double precision. Therefore, a single precision sin,
cos, exp, sqrt, etc. cannot be computed. The computation is done in
double. The result is converted to single.

Floating-point Format

The storage formats for floating-point values conform to the proposed
IEEE Standard for binary floating-point aritlmetic. All values are

" normalized.

Following is a diagram of a float storage format:

. 32 bits total
1 bit 8 bits 23 bits
S EXP F
31|30 23|22 0]
\ binary point

In the foregoing diagram g is sign (#=positive, l=negative), exp is
biased exponent (true exponent is biased exponent - 127), and £ is binary
fraction.

The float storage format is normalized with an implied 1 bit preceding
the binary point.

The float storage format is interpreted (converted to decimal) as (s) 1l.f
x 27 (exp-127).

It has 6 - 7 significant decimal digits, and its approximate range is
8.4e=37 <= x <=3.4e+38.

Floating-point

Following is a diagram of a double storage fomat:
64 bits total
1bit 11 bits 52 bits
S EXP F
63(62 5251 0l
binary point

In the foregoing diagram g is sign (@ = positive, 1 = negative), exp is
biased exponent (true exponent is biased exponent - 1023), and f is
binary fraction.

The double storage format is normalized with an implied 1 bit preceding
the binary point.

The double storage format is interpreted (converted to decimal) as (s)
1.f x 2° (exp-1023). ‘

It represents 15 to 16 significant decimal digits, and its approximate
range is 4.2e-307 <= x <=1.8e+308.

Following is a table of reserved floating-point values:

Float Double
Zero +2 20003000 00000000 90000000
-9 800000060 80000000 90000000
infinity +00 7FFFFFFF 7FFFFFFF FFFFFFFF
-00 FFFFFFFF FFFFFFFF FFFFFFFF

Floating-point

Exception Bandling
Four types of floating-point exceptions are supported:

1. Underflow occurs when the result of a calculation is too small to
be represented.

2. Overflow occurs when the results of a calculation is too large to
be represented.

3. Divide-by-zero occurs when you attempt to perform a division
operation with a denominator of zero.

4. Tllegal operation occurs when you attempt to do a mathematically
undefined operation (taking the square root of a negative
number) .

Each of the foregoing exceptions has a standard default. A default result
is returned if an error occurs and the exception is masked (the exception
is turned off because the programmer does not want to know the error
occurred).

The default results are used as operands in subsequent calculations as
nomal results would be. For example, a value of infinity generated due
to an attempt to divide by zero can be propagated through subsequent
calculations in a program. If the value is output, it shows up as
approximately 1.79e+308. This is the largest number representable in
double precision.

Underflow returns zero, overflow returns infinity, and divide-by-zero
returns infinity when the software emulation exceptions are masked.

Illegal operation has no default result because it cannot be masked.

If you are using floating-point hardware, consult the hardware
documentation to see what exceptions are supported, whether they can be
masked, and what default results are returned.

Exception Handli ler Unipl ystem v

If an exception occurs and SIGFPE has a signal handler defined, the
SIGFPE signal is generated and caught by the handler. The handler
does nothing useful for floating-point. The handler cannot return
its own default result and continue processing.

The startups automatically define a handler for SIGFPE for the

process. However, the definition can be deleted, or the defined
handler can be replaced by a user handler once inside the program.

5-6

Floating-point

The default handler causes a core dump with the following message:
Floating exception — core dumped
The _errno variable is set to ERANGE.

If no handler is defined, all exceptions that can be masked are
masked, default results are generated, and processing continues. You
are not informed if error conditions occur.

Exceptions cannot be selectively urmasked from a C program.

The matherr(3M) routine for handling math errors is not supported.
. andl i Jer WMCS

Under WMCS exceptions that can be masked (for software or hardware)
are masked. In other words, when a maskable exception occurs, the
standard default result for that condition is returned. You are not
informed that the error has occurred.

Exceptions cannot be unmasked from a C pfogram.
Debugging Floating-point Programs

A floating-point operation shows up in the assembly source code produced
by a floating-point preprocessor in two ways:

It can be a jsr (subroutine call) to a function name that has no
underscore. In this case, it typically has a math operation within
the name (e.g.,jsr add3ddxd, jsr divf, jsr sin).

When a hardware floating-point preprocessor is used, the operation
can be a move (moves data), or a tst to an address from 9x2000 to
Px3fff (the address range is the user process into which the
hardware is mapped). The tst compares against @, but for hardware
floating-point, it usually accesses a location to cause an
operation.

If you wish to determine what operation is taking place, get a listing of
the compiler output prior to the floating—-point preprocessor pass. Use
the cc command with the ~K option under Uniplus+ System V, and the
compile command with the :nofpreprocess switch under WMCS. This allows
you to look at the pseudo—-code. ‘

If you are using floating-point hardware that has registers, neither adb
nor WIBUG can display or modify the contents of the registers.

The debuggers are able to input and output IEEE-format single-and double-
precision numbers. Refer to the WIBUG or adb documentation for details.

5-7

Floating-point

bugging floating-point pro iPlus+

Floating-point routines called by jsr instructions are linked into
your program like other routines. Their symbols appear in adb. You
can trace through them like any other routine.

Debugging floating-point programs under WMCS

Because you can choose the software emulation or a floating-point
hardware at runtime, you should be aware of the following when
debugging under WMCS:

If no libraries, or the wrong libraries, are in shared memory,
one of the following error messages appears when you try to run
your program:

Cannot share directory
Required hardware floating-point not present

These errors come from the C startups when they try to connect
the program to shared memory.

To avoid this, use fpmgr to put the correct library into shared
memory. Then, run your program again.

The symbols for floating-point routines have values in the
address range 0x1000 to Ox1fff.

The symbols are entries in a jump table. The value at that
location in the jump table is the starting address of the
routine.

For example, if the value of symbol add3ddxd is 0x1008, the
value stored at location #x1008 is the starting address of
add3ddxd. It might be something like @x1fad48.

The symbol for the floating-point routine name is associated
with an address in the jump table (not with the starting
address of the routine). When you trace through the routine,
addresses in floating-point routines are not displayed as
offsets fram the routine name.

Floating-point routines reside in address ranges ©#x2000 to
Ox3fff, and 0x1falPd to Oxlfefff in the process space.

A breakpoint at a floating-point routine cannot be set until
the startups have executed. Those routines are not part of your
process until the startups put them there. If you try to set
the breakpoint before the startups execute, WIBUG returns a
memory violation.

5-8

Floating-point

Get past the startups by typing xr _main. Then set your
floating-point breakpoint when you have reached _main. This
works much better.
Breakpoints cannot be set inside floating-point routines
because the code in shared memory is write-protected. If you
attempt to set breakpoints inside floating-point routines,
WIBUG gives a memory violation. '
Floating-point Libraries
Following are the floating-point libraries under UniPlus+ System V:
/lib/libc.a software emulation floating-point routines
/usr/lib/libc-skyl.a SKY hardware floating-point routines
/usr/lib/libc-ffpl.a FFP hardware floating—-point routines

The floating-point libraries under WMCS are referenced by the fpmar
camand when it puts the routines into shared memory:

/sysexe/lib2init.exe software emulation floating-point
routines

/sysexe/skylinit.exe SKY hardware floating-point routines

/sysexe/ffplinit.exe FFP hardware floating-point routines

5-9

Charter 6

C Libraries

The C libraries are collections of object files, which ocontain the object
code for one or more useful functions. When a C program (an object
module) is linked by LL or 1d to one of these libraries, an object file
containing a referenced function is linked with the program. Both WMCS
and UniPlus+ System V have several standard libraries with which to work.

The C Library

The C library contains the standard Input/Output routines, system call
entry points for UniPlus+ System V, string manipulation routines, and
floating-point access routines. There is a version of this library for
each floating-point type.

The C library is searched by default if the linker is invoked through cc
or compile.

These are the C library files under UniPlus+ System V:

/lib/libc.a version with software FP (default)
/usr/lib/libc-skyl.a version with SKY FP support
/usr/lib/libc-ffpl.a version with FFP FP support
/usr/lib/libc-nofl.a version with no FP support

These are the C library files under WMCS:
sys$disk/coml ib/libc.1lib version with FP support (default)
sys$disk/comlib/libcnofp.lib wversion with no FP support
sys$disk/comlib/1ibc16@.1ib version with FP support and
abilitv to have 100 files open
simul taneously

The C library under WMCS has no hardware-specific versions.

6-1

The Math Library

The math library oontains trigonometric, square root, and logarithmic
functions.

Under WMCS, the :libraries=lilm switch must be used to access the math
library. The library file is SYSSDISK/COMLIB/LIBM.LIB.

The Math Library under UniPlust+ System V

Under UniPlus+ System V, the -1m option must be specified with the
cc command to access the math library. The library file is /usr/lib/
likm.a.

Refer to section 3 of the UniPlust+ System V User's Manual (Sections
2-6) for infommation on additional libraries under UniPlust+ System
V.

Also, profiled versions of many of the libraries are available under
UniPlus+ System V. Every routine (function) in a profiled library
includes ocode to count the calls made to the function (i.e., each
function that was compiled with the -p option of c¢).

Chapter 7

Dictionmary of C Library Routines

The C library routines contained in this chapter are for the wuser of C
under WMCS. They are derived from the UniPlus+ System V documentation and
have been modified slightly for the WMCS user.

Each entry in this dictionary is based on the format used in the UniPlus+
System V documentation.

The following sections are used.

Name gives the name(s) of the routine(s) described under this entry
and gives a very brief description of it/them. More than one
routine is often described with one entry because the routines are
so similar. The dictionary entry for a routine tells where a
routine is described. (The index also lists where a routine is
described.)

Synopsis shows how a routine is set up. It shows the include files
needed, if any, and shows how the routine itself is declared. These
are not 1lines you type in your program (except the include line),
but show the way the routine itself is programmed.

Description describes in more detail the routines listed in the Name
section.

Example gives an example where appropriate.

Files lists the files the routine(s) might use.

See also refers to related routines.

Diagnostics discusses diagnostic indications that can be produced.

Warnings points out potential problems.

Dictionary of C Library Routines
Bugs lists known bugs and deficiencies. Sometimes the suggested fix
is also listed.

The user of C under UniPlus+ System V should consult sections 2 and 3 of
the UniPlust+ System V User's Reference Manual (Sections 2-6).

a64l

Name

a641, 1l64a - convert between long integer and base-64 ASCII string

SYNOPSIS

long a64l (s)
char *s;

char *164a (1)
long 1;

DESCRIPTION

These functions are used to maintain numbers stored in base-64 ASCII
characters. This is a notation by which long integers can be represented
by up to six characters; each character represents a digit in a radix-64
notation.

The characters used to represent digits are . for @, /for 1, @ through 9
for 2-11, A through Z for 12-37, and a through z for 38-63.

A64]1 takes a pointer to a null-terminated base-64 representation and
returns a corresponding long value. If the string pointed to by s
contains more than six characters, a64l will use the first six.

L64a takes a long argument and returns a pointer to the corresponding
base-64 representation. If the argument is 4, 1l64a returns a pointer to
a null string.

BUGS

The value returned by 1l64a is a pointer into a static buffer, the
ocontents of which are overwritten by each call.
a641-1

abs

Name

abs - return integer absolute value

Synopsis

int abs (i)
int i;

Description

Abs returns the absolute value of its integer operand.

Bugs

In two's-complement representation, the absolute value of the negative
integer with largest magnitude is undefined. Some implementations trap
the error, but others ignore it.

See Also

floor

abs-1

acos

NAME

sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS

See trig

acos-1

asin

NAME

asin, ocos, tan, sin, aocos, atan, atan2 - trigonometric functions

SYNOPSIS

See trig

asin-1

atan

NAME

sin, oos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS

See trig

atan-1

bessel

NAME

SYNOPSIS

#include <math.h>

double j@ (x)
double x;

double jl1 (x)
double x;

double jn in, X)
int n;
double x;

double yd (x)
double x:

double yl (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPT'ION

J0 and jl return Bessel functions of x of the first kind of orders # and
1 respectively. Jn returns the Bessel function of x of the first kind of

order n.

bessel-1

brk

SEE ALSO

exec(2).

brk~2

brk

NAME

brk, sbrk - change data segment space allocation

SYNOPSIS

int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION

Brk and sbrk are used to change dynamically the amount of space allocated
for the calling process's data segment; see exec(2). The change is made
by resetting the process's break value and allocating the appropriate
amount of space. The break value is the address of the first location
beyond the end of the data segment. The amount of allocated space
increases as the break value increases. The newly allocated space is set

to zero.

Brk sets the break value to endds and changes the allocated space
accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space
accordingly. Incr can be negative, in which case the amount of allocated
space is decreased.

RETURN VALUE

Upon successful completion, brk returns a value of @ and sbrk returns the
old break value. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

brk~1

bsearch

NOTES

The pointers to the key and the element at the base of the table should
be of type pointer-to-element, and cast to type pointer-to-character. The
comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should
be cast into type pointer-to—element.

SEE ALSO

lsearch, hsearch, gsort, tsearch

bsearch-2

bsearch

NAME

bsearch - binary search

SYNOPSIS

#include <search.h>

char *bsearch ((char *) key, (char *) base, nel, sizeof
(*key), compar)

unsigned nel;

int (*compar) ();

DESCRIFT'ION

Bsearch is a binary search routine generalized fram Knuth (6.2.1)
Algorithm B. It returns a pointer into a table indicating where a datum
may be found. The table must be previously sorted in increasing order
according to a provided comparison function. Key points to the datum to
be sought in the table. Base points to the element at the base of the
table. Nel is the number of elements in the table. Compar is the name of
the comparison function, which is called with two arguments that point to
the elements being compared. The function must return an integer less
than, equal to, or greater than zero according as the first argument is
to be considered less than, equal to, or greater than the second.

DIAGNOSTICS

A NULL pointer is returned if the key cannot be found in the table.

bsearch-1

NAME

floor, ceil,
functions

fmod,

fabs -

floor,

ceiling,

remainder,

absolute wvalue

SYNOPSIS

See floor

ceil=-1

chdir

NAME

chdir - change working directory

SYNOPSIS

int chdir (path)
char *path;

DESCRIPTION

Path points to the path name of a directory. Chdir causes the named
directory to become the current working directory, the starting point for
path searches for path names not beginning with /.

Chdir will fail and the current working directory will be unchanged if
one or more of the following are true:

A component of the path name is not a directory. [ENOTIDIR]
The named directory does not exist. [ENOENT]
Search permission is denied for any component of the path name. [EACCES]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE

Upon successful completion, a value of @ is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

chdir-1

chmod

The effective user ID does not match the owner of the file. [EPERM]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE

Upon successful completion, a value of # is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

chmod-2

chmod

NAME

-

chmod - change mode of file

SYNOPSIS

int chmod (path, mode)

char *path;

int mode;

DESCRIPTION

Path points to a path name naming a file. Chmod sets the access

permission portion of the named file's mode acoording to the bit pattern
contained in mode.

Access permission bits are interpreted as follows:

00400
00200
00109
00070
00007

Read by owner

Write by owner

Execute (or search if a directory) by owner
Read, write, execute (search) by group
Read, write, execute (search) by others

Chmod will fail and the file mode will be unchanged if one or more of the
following are true:

A component of the path prefix is not a directory. [ENOTDIR]

The named file does not exist. [ENOENT]

Search permission is denied on .a component of the path prefix.

[EACCES]

)

chmod~1

clearerr

NAME

clearerr, ferror, feof, fileno - stream status inquiries

SYNOPSIS

See ferror

clearerr-l

close

NAME

close - close a file descriptor

SYNOPSIS

int close (fildes)
int fildes;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, or dup system
call. Close closes the file descriptor indicated by fildes.

Close will fail if fildes is not a valid open file descriptor. [EBADF]

RETURN VALUE

Upon successful completion, a value of @ is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO

creat(2), dup(2), exec(2), open(2),

close-1

cos

NAME

sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS

See trig

oos-1

cosh

NAME

sinh, cosh,'tanh - hyperbolic functions

SYNOPSIS

See sinh

cosh-1

creat
The file does not exist and the directory in which the file is to be
created does not pemmit writing. [EACCES]

The file is a pure procedure (shared text) file that is being
executed. [ETXIBSY]

The named file is an existing directory. [EISDIR]
Twenty (20) file descriptors are currently open. [EMFILE]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE

Upon successful completion, a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

SEE ALSO

close(2), dup(2), lseek(2), open(2), read(2), write(2).

creat-2

creat

NAME

creat - create a new file or rewrite an existing one

SYNOPSIS

int creat (path, mode)
char *path;
int mode;

DESCRIFTION

Creat creates a new ordinary file or prepares to rewrite an existing file
named by the path name pointed to by path.

If the file exists, a new version is created.
Upon successful oompletion, a nonnegative integer, namely the file
descriptor, is returned. The file pointer is set to the beginning of the
file. The file descriptor is set to remain open across exec system
calls. No process may have more than 20 files open simul taneously. A new
file may be created with a mode that forbids writing. .
Creat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The path name is null. [ENOENT]

creat-1

crypt

The argument to the encrypt entry is a character array of length 64
containing only the characters with numerical value 8 and 1. The
arqument array is modified in place to a similar array representing the
bits of the argqument after having been subjected to the DES algoritlm
using the key set by setkey. If edflag is zero, the argqument is
encrypted; if non-zero, it is decrypted.

BUGS

The return value points to static data that are overwritten by each call.

crypt-2

crypt

NAME

crypt, setkey, encrypt - generate DES encryption

SYNOPSIS

char *crypt (key, salt)
char *key, *salt;

char *key;
void encrypt (block, edflag)

char *block;
int edflag;

DESCRIFT'ION

Crypt is the password encryption function. It is based on the NBS Data
Encryption Standard (DES), with variations intended (among other things)

to frustrate use of hardware implementations of the DES for key search.

Rey is a user's typed password. Salt is a two—character string chosen
from the set [a-zA-Z0-9./]; this string is used to perturb the DES
algorithm in one of 4096 different ways, after which the password is used
as the key to encrypt repeatedly a constant string. The returned value
points to the encrypted password. The first two characters are the salt
itself.

The setkey and encrypt entries provide (rather primitive) access to the
actual DES algorithm. The argument of setkey is a character array of
length 64 containing only the characters with numerical value 9 and 1.
If this string is divided into groups of 8, the low-order bit in each
group is ignored; this gives a 56-bit key which is set into the machine.
This is the key that will be used with the above mentioned algoritim to
encrypt or decrypt the string block with the function encrypt.

crypt-1

ctemid

SEE ALSO

ttyname

ctermid-2

ctermid

NAME

ctemid - generate file name for temminal

SYNOPSIS

#include <stdio.h>

char *ctermid(s)
char *s;

DESCRI PTION

Ctemid generates the path name of the controlling teminal for the
current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area,
the contents of which are overwritten at the next call to ctemmid, and
the address of which is returned. Otherwise, s is assumed to point to a
character array of at least L_ctermid elements; the path name is placed
in this array and the value of s is returned. The constant L _ctemid is
defined in the <st_jo.h> header file.

NOTES

The difference between ctemid and ttyname(3C) is that ttyname must be
handed a file descriptor and returns the actual name of the terminal
associated with that file descriptor, while ctemid returns a string that
will refer to the terminal if used as a file name. Thus ttyname is
useful only if the process already has at least one file open to a
terminal.

ctermid-1l

ctime

constant width.
Sun Sep 16 91:03:52 1973\n\@

Localtime and gmtime return pointers to tm structures, described below.
Localtime corrects for the time zone and possible Daylight Savings Time;
gntime converts directly to Greenwich Mean Time (GMT).

Asctime converts a tm structure to a 26-character string, as shown in the
above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tm structure,
are in the <time.h> header file. The structure declaration is:

struct tm {
int tm_sec; /* seconds (@ - 59) */
int tm min; /* minutes (@ - 59) */
int tm_hour; /* hours (8 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (6 - 11) */
int tm year; /* year - 1908 */
int tm _wday; /* day of week (Sunday = @) */
int tm yday; /* day of year (@ - 365) */

| int tm_isdst;

Tm_isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in seconds,
between GMI' and local standard time (in EST, timezone is 5%*60*60); the
external variable daylight is non-zero if and only if the standard U.S.A.
Daylight Savings Time conversion should be applied. The program knows
about the peculiarities of this oonversion in 1974 and 1975; if
necessary, a table for these years can be extended.

If the logical name TZ is defined, asctime uses it to override the
default time zone. The value of TZ must be a three-letter time zone
name, followed by a number representing the difference between local time
and Greenwich Mean Time in hours, followed by an optional three-letter
name for a daylight time zone. For example, the setting for New Jersey
would be ESTSEDT. The effects of setting TZ are thus to change the
values of the external variables timezone and daylight; in addition, the
time zone names contained in the external variable

char *tzname[2] = { "EST", "EDT" };
are set from the logical name TZ. The function tzset sets these external

variables from TZ; tzset is called by asctime and may also be called
explicitly by the user.

ctime-2

ctime

NAME

ctizpe, localtime, gmtime, asctime, tzset - convert date and time to
string

SYNOPSIS

#include <time.h>

char *ctime (clock)
long *clock;

struct tm *localtime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;
extern int daylight;
extern char *tzname[2];

void tzset ()

DESCRIPTION

Ctime converts a long integer, pointed to by clock, representing the time
in seconds since 00:00:00 GMI', January 1, 1970, and returns a pointer to
a 26-character string in the following form. All the fields have

ctime~1

SEE ALSO

time

BUGS

The return values point to static data whose content is overwritten by
each call.

ctime-3

ctype

isspace c is a space, tab, carriage return, new-line, vertical tab,
or formfeed.
ispunct ¢ is a punctuation character (neither control nor alphanumeric).
isprin_ c is a printing character, code 840 (space) through 9176
(tilde).
isgraph cisa printingvcharacter, like isprint except false for space.
isentrl c is a delete character (#177) or an ordinary control
character (less than 940).
isascii c is an ASCII character, code less than 0200.
DIAGNOSTICS

If the argqument to any of these macros is not in the domain of the
function, the result is undefined.

ctype-2

ctype

NAME

@salpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, isascii -classify characters

SYNOPSIS

#include <ctype.h>

int isalpha (c)
int c;

DESCRIPTION

These macros classify character-coded integer values by table lookup.
Each is a predicate returning nonzero for true, zero for false. Isascii
is defined on all integer values; the rest are defined only where isascii
is true and on the single non—-ASCII value EOF (-1 - see stdio(3S)).

isalpha c is a letter.

isupper Cc is an upper—case letter.

islower c is a lower-case letter.

isdigit c is a digit [#-9].

isxdigit c is a hexadecimal digit [#-9], [A-F] or [a—f].

isalnum c is an alphanumeric (letter or digit).

ctype-1

cuserid

NAME

cuserid - get character login name of the user

SYNOPSIS

#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION

Cuserid generates a character-string representation of the login name of
the owner of the current process. If s is a NULL pointer, this
representation is generated in an internal static area, the address of
which is returned. Otherwise, s is assumed to point to an array of at
least L_cuserid characters; the representation is left in this array.
The constant L_cuserid is defined in the <stdio.h> header file.

DIAGNOSTICS

If the login name cannot be found, cuserid returns a NULL pointer; if s
is not a NULL pointer, a nuJ:l character (\@) will be placed at s[9].

SEE ALSO

getlogin

cuserid-1

Functions drand48 and erand48 return non-negative double-precision
floating~point values uniformly distributed over the interval [0.0,71.0).

Functions lrand48 and nrand48 return non-negative long integers uniformly
distributed over the interval [6,2 sup3l).

Functions mrand48 and jrand48 return signed long integers uniformly
distributed over the interval [-2 sup 31 ,2 sup 31).

Functions srandd8, seed48 and locong48 are initialization entry points,
one of which should be invoked before either drand48, lrand48 or mrand48
is called. (Although it is not recommended practice, constant default
initializer values will be supplied automatically if drand48, lrand48 or
mrand48 is called without a prior call to an initialization entry point.)
Functions erand48, nrand48 and jrand48 d not require an initialization
entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values,
X sub i , according to the linear congruential formula

X sub{n+l}=(aX sub n+c) sub{roman modm}n>=4.

The parameter m=2 sup 48; hence 48-bit integer aritlmetic is perfommed.
Unless lcong48 has been invoked, the multiplier value a and the addend
value ¢ are given by

amark =roman 5DEECE66Dsub l6=roman
273673163155sub 8
clineup =roman Bsub l6=roman 1l3sub 8 .

The value returned by any of the functions drand48, erand48, lrand48,
nrand48, mrand48 or jrand48 is computed by first generating the next 48-
bit $X sub i$ in the sequence. Then the appropriate number of bits,
acoording to the type of data item to be returned, are copied from the
high-order (leftmost) bits of $X sub i$ and transfommed into the returned
value.

The functions drand48, lrand48 and mrand48 store the last 48-bit X sub i
generated in an internal buffer; that is why they must be initialized
prior to being invoked. The functions erandd8, nrand4d8 and jrand4$8
require the calling program to provide storage for the successive X sub i
values in the array specified as an argument when the functions are
invoked. That is why these routines do not have to be initialized; the
calling program merely has to place the desired initial value of X sub i
into the array and pass it as an argument. By using different arguments,
functions erand48, nrand48 and jrand48 allow separate modules of a large
program to generate several independent streams of pseudo-random numbers,
i.e., the sequence of numbers in each stream will not depend upon how
many times the routines have been called to generate numbers for the
other streams.

drand48-2

drand48

NAME

drand48, erand48, lrand48, nrandd8, mrand48, jrand48,

srand48, seedd8,

loong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS

double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long lrand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrandd8 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seedlév)
unsigned short seedlév([3];

void loong48 (param)
unsigned short param(7];

DESCRIPTION

This family of functions generates pseudo-random numbers using the well-
known linear congruential algorithm and 48-bit integer arithmetic.

drand48-1

drand48

The initializer function srand48 sets the high—order 32 bits of X sub i
to the 32 bits contained in its arqument. The low-order 16 bits of X sub
i are set to the arbitrary value roman 330E sub 16 .

The initializer function seed48 sets the value of X sub i to the 48-bit
value specified in the argument array. In addition, the previous value
of X sub i is copied into a 48-bit internal buffer, used only by seed48,
and a pointer to this buffer is the value returned by seedd8. This
returned pointer, which can just be ignored if not needed, is useful if a
program is to be restarted from a given point at some future time - use
the pointer to get at and store the last X sub i value, and then use this
value to reinitialize via seed48 when the program is restarted.

The initialization function loong48 allows the user to specify the
initial X sub i , the multiplier value a, and the addend value c.
Arqument array elements param[@-2] specify X sub i , param[3-5] specify
the multiplier a, and param[6] specifies the 16-bit addend c. After
loong48 has been called, a subsequent call to either srandd8 or seed48
will restore the standard multiplier and addend values, a and c,
specified on the previous page.

SEE ALSO

rand

drand48-3

dup

RETURN VALUE

Upon successful completion a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

SEE ALSO

creat(2), close(2), exec(2), open(2),

dup-2

dup

NAME

dup - duplicate an open file descriptor

SYNOPSIS

int dup (fildes)
int fildes;

DESCRIFTION

Fildes is a file descriptor obtained from a creat, open, or dup, system
call. Dup returns a new file descriptor having the following in common
with the original:

Same open file.

Same file pointer. (i.e., both file descriptors share one file
pointer.)

Same access mode (read, write or read/write).
The new file descriptor is set to remain open across exec system calls.
The file descriptor returned is the lowest one available.
Dup will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Twenty (20) file descriptors are currently open. [EMFILE]

SEE ALSO

printf

BUGS

The return values point to static data whose content is overwritten by
each call.

ecvt=2

ecvt

NAME

ecvt, fovt, govt - convert floating-point number to string

SYNOPSIS

char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
char *buf;

DESCRIPTION

Ecvt converts value to a null-teminated string of ndigit digits and
returns a pointer thereto., The low-order digit is rounded. The position
of the decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the returned
digits). The decimal point is not included in the returned string. If the
sign of the result is negative, the word pointed to by sign is non—zero,
otherwise it is zero. Fcvt is identical to ecvt, except that the correct
digit has been rounded for Fortran F-format output of the number of
digits specified by ndigit.

Gevt converts the value to a null-terminated string in the array pointed
to by buf and returns buf. It attempts to produce ndigit significant
digits in Fortran F-format if possible, otherwise E-format, ready for
printing. A minus sign, if there is one, or a decimal point will be
included as part of the returned string. Trailing zeros are suppressed.

ecvt-l

erf

NAME

erf, erfc - error function and complementary error function

SYNOPSIS

#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

DESCRI PTION

Erf returns the error function of x, defined as {2 over sqrt
pi} int from @ to x e sup {- t sup 2}'dt .

Erfc, which returns 1.0 - erf(x), is provided because of the
extreme loss of relative accuracy if erf(x) is called for
large x and the result subtracted from 1.8 (e.g. for x =5,
12 places are lost).

SEE ALSO

exp

erf-1

erfc

NAME

erf, erfc - error function and complementary error function

SYNOPSIS

See erf

erfc-1

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, argc is
conventionally at least one and the first member of the array points to a
string containing the name of the file.

Path points to a path name that identifies the new process file. File
points to the new process file.

Arqg#, argl, ..., arq_ are pointers to null-teminated character strings.
These strings constitute the argument list available to the new process.
By convention, at least argd must be present and point to a string that
is the same as path (or its last component).

Argv is an array of character pointers to null-terminated strings. These
strings oconstitute the argqument list availahle to the new process. By
convention, argv must have at least one member, and it must point to a
string that is the same as path (or its last component). Argv is
terminated by a null pointer.

Exec will fail and return to the calling process if one or more of the
following are true:

One or more components of the new process file's path name do not exist.
[ENOENT]

A component of the new process file's path prefix is not a directory.
[ENOTDIR]

Search permission is denied for a directory listed in the new process
file's path prefix. [EACCES]

The new process file mode denies execution permission. [EACCES]

The exec is not an execlp or execvp, and the new process file has the
appropriate access permission but an invalid magic number in its header.
[ENOEXEC]

The new process file is a pure procedure (shared text) file that is
currently open for writing by some process. [ETXIBSY]

The new process requires more memory than is allowed by the system—
imposed maximum MAXMEM. [ENOMEM]

exec~2

exec

NAME

exec, execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS

int execl (path, argd, argl, ..., argn, 9)
char *path, *arg@, *argl, ..., *argn;

int execv (path, argv)
char *path, *argv[];

int execle (path, arg#d, argl, ..., argn, 9, envp)
char *path, *argd, *argl, ..., *argn, *envp(1;

int execve (path, argv, envp)
char *path, *argv[], *enwvp[I;

int execlp (file, argd, argl, ..., argn, 9)
char *file, *argd, *argl, ..., *argn;

int execvp (file, argv)
char *file, *argv(];

DESCRIPTION

Exec creates a new process. The new process is oonstructed from an
ordinary file called the new process file. This file is an executable
object file, An executable object file consists of a header a text
segment, and a data segment. The data segment contains an initialized
portion and an uninitialized portion (bss).

exec~-l

The number of bytes in the new process's argument list is greater than
the system—imposed limit of 5128 bytes. [E2BIG]

-The new process file is not as long as indicated by the size values in
its header. [EFAULT]

Path, argv, or envp point to an illegal address. [EFAULT]

RETURN VALUE

If exec returns an error, the return value will be =1 and errno will be
set to indicate the error.

SEE ALSO

exit

exec-3

exit

NAME

exit, _exit - temminate process

SYNOPSIS

void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION

Exit teminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

exit-1

exp

Pow returns x to the Yy power. The values of x and y may not both be
zero. If x is non-positive, y must be an integer.

Sgrt returns the square root of x. The value of x may not be negative.

DIAGNOSTICS

Exp returns HUGE when the correct value would overflow, and sets errno to
ERANGE,

Log and logld return # and set errno to EDOM when x is non-positive An
error message is printed on the standard error output.

Pow returns # and sets errno to EDOM when x is non—positive and y is not
an integer, or when x and y are both zero. In these cases a message
indicating DOMAIN error is printed on the standard error output. When
the correct value for pow would overflow, pow returns HUGE and sets errno
to ERANGE,

Sqrt returns @ and sets errno to EDOM when x is negative. A message
indicating DOMAIN error is printed on the standard error output.

SEE ALSO
hypot, sinh

exp-2

exp

NAME

exp, log, logl#, pow, sqrt - exponential, logaritlm, power, square root

functions

SYNOPSIS

#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double loglf (x)
double x;

double pow (x, y)
double x, y:

double sgrt (x)
double x;

DESCRIPFTION

Exp returns e to the x power.

Log returns the natural logarithm of x.

Logld returns the logaritim base ten of x.

positive,

The value of x must be positive.

The value of x must be

exp-l

fabs

NAME

fabs, floor, ceil, fmod, - floor, ceiling, remainder, absolute value
functions

SYNOPSIS

See floor

fabs-1

fclose

SEE ALSO

close, exit, fopen, setbuf

fclose-~2

fclose

NAME

fclose, fflush - close or flush a stream

SYNOPSIS

#include <stdio.h>

int fclose (stream)
FILE *stream;

int £flush (stream)
FILE *stream;

DESCRIPFTION

Fclose causes any buffered data for the named stream to be written out,
and the stream to be closed.

Fclose is performed autamatically for all open files upon calling
exit(2).

Fflush causes any buffered data for the named stream to be written to
that file. The stream remains open.

DIAGNOSTICS

These functions return @ for success, and BOF if any error (such as
trying to write to a file that has not been opened for writing) was
detected.

fclose-1

fdopen

NAME

fdopen, freopen, fopen - open a stream

SYNOPSIS

See fopen

fdopen-1

feof

NAME

feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS

See ferror

feof-1

ferror

Fileno returns the integer file descriptor associated with the named
stream; see open(2).

NOTE

All these functions are implemented as macros; they cannot be declared or
redeclared.

SEE ALSO

~open, fopen

ferror-2

ferror

NAME

ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS

#include <stdio.h>

int feof (stream)
FILE
*stream;

int ferror (stream)
FILE
*stream;

void clearerr (stream)
FILE
*stream;

int fileno(stream)
FILE
*stream;

DESCRIPTION

Feof returns non—zero when BEOF has previously been detected reading the
named input stream, otherwise zero.

Ferror returns non—zero when an I/0 error has previously occurred reading
from or writing to the named stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the
named stream,

ferror-1

fflush

NAME

fflush, fclose, - close or flush a stream

SYNOPSIS

See fclose

fflush-1

fgetc

NAME

fgetc, getchar, getc, getw - get character or word from stream

SYNOPSIS

See getc

fgetc-1

fgets

NAME

fgets, gets - get a string from a stream

SYNOPSIS

See gets

fgets-1

fileno

NAME

fileno, ferror, feof, clearerr, - stream status inquiries

SYNOPSIS

See ferror

fileno~l

SEE ALSO

abs

floor-2

floor

NAME

floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value
functions

SYNOPSIS

#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION

Floor returns the largest integer (as a double-precision number) not
greater than x. ’

Ceil returns the smallest integer not less than x.

Fmod returns x if y is zero, otherwise the number f with the same sign as
X, such that x = iy + £ for some integer i, and |f| < |yl.

Fabs returns |[x|.

floor-1

fmod

NAME

fmod, ceil, floor, fabs - floor, ceiling, remainder, absolute value
functions

SYNOPSIS

See floor

fmod-1

fopen

"a" append; open for writing at end of file, or
create for writing
"r+" open for update (reading and writing)
" truncate or create for update
"a+" append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The
original stream is closed, regardless of whether the open ultimately
succeeds. Freopen returns a pointer to the FILE structure associated
with stream.

Freopen is typically used to attach the preopened streams associated with
stdin, stdout and stderr to other files.

Fdopen associates a stream with a file descriptor obtained from open,
dup, or creat, which will open files but not return pointers to a FILE
structure stream which are necessary input for many of the section 3S
library routines. The type of stream must agree with the mode of the open
file.

When a file is opened for update, both input and output may be done on
the resulting stream. However, output may not be directly followed by
input without an intervening fseek or rewind, and input may not be
directly followed by output without an intervening fseek, rewind, or an
input operation which encounters end-of-file.

When a file is opened for append (i.e., when type is "a" or "at+"), it is
impossible to overwrite information already in the file., Fseek may be
used to reposition the file pointer to any position in the file, but when
output is written to the file the current file pointer is disregarded.
All output is written at the end of the file and causes the file pointer
to be repositioned at the end of the output. If two separate processes
open the same file for append, each process may write freely to the file
without fear of destroying output being written by the other. The output
from the two processes will be intemixed in the file in the order in
which it is written.

SEE ALSO

open, fclose

DIAGNOSTICS

Fopen and freopen return a NULL pointer on failure.

fopen—2

fopen

NAME

fopen, freopen, fdopen - open a stream

SYNOPSIS

#include <stdio.h>

FILE *fopen (file-name, type)
char *file-name, *type;

FILE *freopen (file-name, type, stream)
char *file-name, *type;
FILE *stream;

FILE *£dopen (fildes, type)
int fildes;
char *type;

DESCRIFTION

Fopen opens the file named by file-name and associates a stream with it.
Fopen returns a pointer to the FILE structure associated with the str_am.

File-name points to a character string that contains the name of the file
to be opened.

Type is a character string having one of the following values:
"r" open for reading

"W truncate or create for writing

fopen-1

fprintf

NAME

fprintf, printf, sprintf - print formatted output

SYNOPSIS

See printf

fprintf-1

fputc

NAME

fputc, putchar, putc, putw — put character or word on a stream

SYNOPSIS

See putc

fputc-1

fputs

NAME

fputs, puts - put a string on a stream

SYNOPSIS

See puts

fputs-1

fread

The variable size is typically sizeof(*ptr) where the pseudo-function
sizeof specifies the length of an item pointed to by ptr. If ptr points
to a data type other than char it should be cast into a pointer to char.

SEE ALSO

read, write, fopen, getc, gets, printf, putc, puts, scanf

DIAGNOSTICS

Fread and fwrite return the number of items read or written. If nitems is
non-positive, no characters are read or written and 0 is returned by both
fread and fwrite.

fread-2

fread

NAME

fread, fwrite - binary input/output

SYNOPSIS

#include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE *stream;

DESCRIPTION

Fread copies, into an array beginning at ptr, nitems items of data from
the named input stream, where an item of data is a sequence of bytes (not
necessarily teminated by a null byte) of length size. Fread stops
appending bytes if an end-of-file or error condition is encountered while
reading stream, or if nitems items have been read. Fread leaves the file
pointer in stream, if defined, pointing to the byte following the last
byte read if there is one. Fread does not change the contents of stream.

Fwrite appends at most nitems items of data from the the array pointed to
by ptr to the named output stream. _write stops appending when it has
appended nitems items of data or if an error condition is encountered on
stream. Fwrite does not change the contents of the array pointed to by

ptr.

fread-1

freopen

NAME

freopen, fopen, fdopen - open a stream

SYNOPSIS

See fopen

freopen-1

frexp

NAME

frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNOPSIS

double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION

Every non-zero number can be written uniquely as x* 2°n, where the
mantissa (fraction) x is in the range 0.5 _ returns the mantissa of a
double value, and stores the exponent indirectly in the location pointed

to by eptr.
Ldexp returns the quantity value* 2 exp.

Modf returns the signed fractional part of value and stores the integral
part indirectly in the location pointed to by iptr.

DIAGNOSTICS

If ldexp would cause overflow, HUGE is returned and errno is set to
ERANGE.,

frexp-1

fscanf

NAME

fscanf, scanf, sscanf - convert formatted input

SYNOPSIS

See scanf

fscanf-1

fseek

Ftell returns the offset of the current byte relative to the beginning of
the file associated with the named stream.

SEE ALSO

lseek, fopen, ungetc

DIAGNOSTICS

Fseek returns non—zero for improper seeks, otherwise zero. An improper
seek can be, for example, an fseek done on a file that has not been
opened via fopen; in particular, fseek may not be used on a teminal.

WARNING

Although on the UNIX System an offset returned by ftell is measured in
bytes, and it is permissible to seek to positions relative to that
offset, portability to non-UNIX Systems requires that an offset be used
by fseek directly. Arithmetic may not meaningfully be performed on such a
offset, which is not necessarily measured in bytes.

fseek-2

fseek

NAME

fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS

#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

void rewind (stream)
FILE *streanm;

long ftell (stream)
FILE *stream;

DESCRI PTION

Fseek sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes from the
beginning, from the current position, or from the end of the file,
according as ptrname has the value 4, 1, or 2.

Rewind(stream) is equivalent to fseek(stream, 0L, @), except that no
value is returned.

Fseek and rewind undo any effects of ungetc(3S).

After fseek or rewind, the next operation on a file opened for update may
be either input or output.

fseek-1

ftell

NAME

ftell, rewind, fseek - reposition a file pointer in a stream

SYNOPSIS

See fseek

ftell-1

fwrite

NAME

fwrite, fread, - binary input/output

SYNOPSIS

See fread

fwrite-l

gamma

If the correct value would overflow, gamma returns HUGE and sets errmno to
ERANGE.

SEE ALSO

exp

gamma—2

gamma

NAME

gamma - log gamma function

SYNOPSIS

#include <math.h>
extern int signgam;

double gamma (x)
double x;

DESCRIFTION

Gamma returns ln (GAMMA(x)), where GAMMA(x) is defined as int from @ to
inf e sup { -~ t} t sup { x -1 } dt. The sign of GAMMA (x) is returned in
the external integer signgam. The argument x may not be a non-positive
integer.

The following C program fragment might be used to calculate GAMMA:

if ((y = gamma(x)) > LOGHUGE)
error();
y = signgam * exp(y);

where LOGHUGE is the least value that causes exp(3M) to return a range
error. ’

DIAGNOSTICS

For non-negative integer arguments HUGE is returned, and errno is set to
EDOM. A message indicating DOMAIN error is printed on the standard error
output.

gamma-1

getc

constant EOF upon end-of-file or error, but as that is a valid integer
value, feof and ferror(3S) should be used to check the success of getw.
Getw increments the associated file pointer, if defined, to point to the
next word. Getw assumes no special alignment in the file.

SEE ALSO

fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S),
scanf (3S) .

DIAGNOSTICS

These functions return the integer constant EOF at end-of-file or upon an
error.

BUGS

Because it is implemented as a macro, getc treats incorrectly a stream
arqument with side effects. In particular, getc(*f++) doesn't work
sensibly. Fgetc should be used instead. Because of possihle differences
in word length and byte ordering, files written using putw are machine-
dependent, and may not be read using getw on a different processor.

getc-2

getc

NAME

getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS

#include <stdio.h>

int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

DESCRIPTION

Getc returns the next character (i.e. byte) fram the named input stream.
It also moves the file pointer, if defined, ahead one character in
stream. Getc is a macro and so cannot be used if a function is
necessary; for example one cannot have a function pointer point to it.

Getchar returns the next character from the standard input stream, stdin.
As in the case of getc, getchar is a macro.

Fgetc perfoms the same function as getc, but is a genuine function.
Fgetc runs more slowly than getc, but takes less space per invocation.

Getw returns the next word (i.e. integer) from the named input stream.
The size of a word varies from machine to machine. It returns the

getc-1

getchar

NAME

getchar, getc, fgetc, getw - get character or word from stream

SYNOPSIS

See getc

getchar-1

SEE ALSO

malloc

DIAGNOSTICS

Returns NULL with errno set if s_ze is not large enough, or if an error
ocurrs in a lower-level function.

getowd-2

getcwd

NAME

getowd - get path-name of current working directory

SYNOPSIS

char *getowd (buf, size)
char *buf;
int size;

DESCRIPTION

Getowd returns a pointer to the current directory path-name. The value of
size must be at least two greater than the length of the path-name to be
returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using
malloc(3C). In this case, the pointer returned by getcwd may be used as
the argument in a subsequent call to free.

EXAMPLE

char *cwd, *getowd():;

if ((cwd = getowd((char *)NULL, 64)) = NULL) {
perror ("pwd");
exit(1l);

}
printf("s"s\n, cwd);

getcowd-1

getlogin

NAME

getlogin - éet login name

SYNOPSIS

char *getlogin ();

DESCRIPTION

Getlogin returns a pointer to the login name.

If getlogin is called within a process that is not attached to a
teminal, it returns a NIULL pointer. The correct procedure for
determining the login name is to call cuserid.

SEE ALSO

cuserid

DIAGNOSTICS

Returns the NULL pointer if name not found.

BUGS

The return values point to static data whose content is overwritten by
each call. \,

getlogin—-1

DIAGNOSTICS

Getopt prints an error message on stderr and returns a question mark (?)
when it encounters an option letter not included in optstring.

WARNING

The above routine uses <stdio.h>, which causes it to increase the size of
programs, not otherwise using standard I/0, more than might be expected.

getopt-2

getopt

NAME

getopt - get option letter from argument vector

SYNOPSIS

int getopt (argc, argv, optstring)
int argc;

char **argv;

char *optstring;

extern char *optarg;
extern int optind;

DESCRIPTION

Getopt returns the next option letter in argv that matches a letter in
optstring. Optstring is a string of recognized option letters; if a
letter is followed by a colon, the option is expected to have an argument
that may or may not be separated from it by white space. Optarg is set
to point to the start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be
processed. Because optind is external, it is normally initialized to
zero automatically before the first call to getopt. .

When all options have been processed (i.e., up to the first non-option
arqument), getopt returns EOF. The special option —— may be used to
delimit the end of the options; EOF will be returned, and — will be

skipped.

getopt-1

getopt

EXAMPLE

The following code fragment shows how one might process the arguments for
a ocommand that can take the mutually exclusive options a and b, and the
options £ and o, both of which require arguments:

main (argc, argv)

int arge;

?har **argv;
int c; ;
extern int optind;
extern char *optarg;

*

while ((c = getopt (argc, argv, "abf:o:")) != EOF)
switch (c) {
case 'a':
- if (bflgq)
errflg++;

case 'f':
ifile = optarg;
break;

case 'o':
ofile = optarg;
bufsiza = 512;
break;

case '?':
errflg+t;

}
if (errflg) { :
fprintf (stderr, "usage: . . . ");
exit (2);
}
for (; optind < argc; optind++) {
if (access (argv[optind], 4)) {

getopt-3

getpid

NAME

getpid, getpgrp, getppid - get process, process group, and parent process
IDs

SYNOPSIS

int getpid ()
int getpgrp ()
int getppid ()

DESCRIPTION

Getpid returns the process ID of the calling process.
Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO

exec

getpid-1

gets

DIAGNOSTICS

If end-of-file is encountered and no characters have been read, no
characters are transferred to s and a NULL pointer is returned. If a
read error occurs, such as trying to use these functions on a file that

has not been opened for reading, a NULL pointer is returned. Otherwise s
is returned.

gets-2

gets

NAME

gets, fgets - get a string from a stream

SYNOPSIS

#include <stdio.h>

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;

int n;

FILE *stream;

DESCRIPTION

Gets reads characters from the standard input stream, stdin, into the
array pointed to by s, until a new-line character is read or an end-of-
file condition is encountered. The new-line character is discarded and
the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to by s,
until n-1 characters are read, or a new-line character is read and
transferred to s, or an end-of-file condition is encountered. The string
is then terminated with a null character.

SEE ALSO

ferror, fopen, fread, getc, scanf

gets-1

getuid

NAME

getuid, getgid, — set user and group IDs

SYNOPSIS

unsigned short getuid ()

unsigned short getgid ()

DESCRIPT'ION

Getuid returns the user ID of the calling process.

Getgid returns the group ID of the calling process.

getuid-1

getw

NAME

getw, getchar, fgetc, getc - get character or word from stream

SYNOPSIS

See getc

getw-1

hsearch

entries that the table will contain. This number may be adjusted upward
by the algorithm in order to obtain certain mathematically favorable
circumstances.

Hdestroy destroys the search table, and may be followed by another call
to hcreate,

SEE ALSO

bsearch(3C), lsearch(3C), string(3C), tsearch(3C).

DIAGNOSTICS

Hsearch returns a NULL pointer if either the action is FIND and the item
could not be found or the action is ENTER and the table is full.

Hcreate returns zero if it cannot allocate sufficient space for the
table.

BUGS

Only one hash search table may be active at any given time.

hsearch-2

hsearch

NAME

hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS

#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;

ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

Hsearch is a hash-table search routine generalized from RKnuth (6.4)
Algorithm D, It returns a pointer into a hash table indicating the
location at which an entry can be found. Item is a structure of type
ENTRY (defined in the <search.h> header file) containing two pointers:
item.key points to the comparison key, and item.data points to any other
data to be associated with that key. (Pointers to types other than
character should be cast to pointer-to—character.) Action is a member of
an enumeration type ACTION indicating the disposition of the entry if it
cannot be found in the table. ENTER indicates that the item should be
inserted in the table at an appropriate point. FIND indicates that no
entry should be made. Unsuccessful resolution is indicated by the return
of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called
before hsearch is used. _el is an estimate of the maximum number of

hsearch-1

hypot

NAME

hypot - Euclidean distance function

SYNOPSIS

#include <math.h>

double hypot (x, ¥)
double x, y;

DESCRIPTION

Hypot returns
sart(x * x +y *y),

taking precautions against wwarranted overflows.

DIAGNOSTICS

When the correct value would overflow, hypot returns HUGE and sets errno
to ERANGE. .

SEE ALSO

sqrt

hypot-1

NAME

i@, j1, jn, y8, yl, yn - Bessel functions

SYNOPSIS

See bessel

j8-1

NAME

j1, i@, jn, y@, yl, yn - Bessel functions

SYNOPSIS

See bessel

§1-1

NAME

jn, j1, j@, y9, yl, yn - Bessel functions

SYNOPSIS

See bessel

jn=-1

13tol

NAME

13tol, 1ltol3 - convert between 3-byte integers and long integers

SYNOPSIS

void 13tol (1p, cp, n)
long *1p;

char *cp;

int n;

void 1tol3 (cp, 1lp, n)
char *cp;

long *1p;

int n;

Description

L3tol oonverts a list of n three-byte integers packed into a character
string pointed to by cp into a list of long integers pointed to by 1lp.

Ltol3 perfoms the reverse conversion from long integers (lp) to three-
byte integers (cp).

These functions are useful for file-system maintenance where the block
nunbers are three bytes long. '

Bugs

Because of possible differences in byte ordering, the numerical values of
the long integers are machine-dependent.

13tol-1

I64a

NAME

164a, a64l - convert between long integer and baserGh ASCIT string

SYNOPSIS

See a64l

164a-1

NAME

log, exp, logld, pow, sqrt - exponential, logarithm, power, square root

functions

SYNOPSIS

See exp

log-1

log10

NAME

logld, exp, log, pow, sqrt - exponential, logarithm, power, square root

functions

SYNOPSIS

See exp

loglg-1

lsearch

NOTES

The pointers to the key and the element at the base of the table should
be of type pointer-to-element, and cast to type pointer-to—character. The
comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.
Although declared as type pointer-to—character, the value returned should
be cast into type pointer-to—element.

SEE ALSO

bsearch(3C), hsearch(3C), tsearch(3C).

Diagnostics

If the searched-for datum is found, both lsearch and 1lfind return a
pointer to it. Otherwise, 1lfind returns NULL and lsearch returns a
pointer to the newly added element.

BUGS

Undefined results can occur if there is not enough room in the table to
add a new item.,

lsearch-2

Isearch

NAME

lsearch - linear search and update

SYNOPSIS

#include <stdio.h> #include <search.h>

char *lsearch ((char *)key, (char *)base, nelp,
sizeof (*key), compar)

unsigned *nelp;

int (*compar) ();

char *1find ((char *)key, (char *)base, nelp,

compar)
unsigned *nelp; int (*compar)();

DESCRIPT'ION

Lsearch is a linear search routine generalized from RKnuth (6.1) Algorithm
S. It returns a pointer into a table indicating where a datum may be
found. If the datum does not occur, it is added at the end of the table.
Key points to the datum to be sought in the table. Base points to the
first element in the table. Nelp points to an integer containing the
current number of elements in the table. The integer is incremented if
the datum is added to the table. Campar is the name of the comparison
function which the user must supply (stramp, for example). It is called
with two argquments that point to the elements being compared. The
function must return zero if the elements are equal and non—zero
otherwise.

lsearch-1

1seek

The resulting file pointer would be negative. [EINVAL]

Some devices are incapable of seeking. The value of the file pointer
associated with such a device is undefined.

RETURN VALUE

Upon successful completion, a non—-negative integer indicating the file
pointer value is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO

creat(2), dup(2), open(2)

1lseek—-2

Iseek

NAME

lseek - move read/write file pointer

SYNOPSIS

long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION

Fildes is a file descriptor returned from a creat, open, or dup system
call. Lseek sets the file pointer associated with fildes as follows:

If whence is @, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus
offset.

If whence is 2, the pointer is set to the size of the file plus
offset.

Upon successful completion, the resulting pointer location as measured in
bytes from the beginning of the file is returned.

Lseek will fail and the file pointer will remain unchanged if one or more
of the following are true:

Fildes is not an open file descriptor. [EBADF]

Whence is not @, 1 or 2. [EINVAL]

1seek-1

malloc

coalescing adjacent free blocks as it searches. It calls sbrk (see
brk(2)) to get more memory from the system when there is no suitable
space already free.

Realloc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) hlock. The contents will be
unchanged up to the lesser of the new and old sizes. If no free block of
size bytes is available in the storage arena, then realloc will ask
malloc/” to enlarge the arena by size bytes and will then move the data
to the new space.

Realloc also works if ptr points to a block freed since the last call of
malloc, realloc, or calloc; thus sequences of free, malloc and realloc
can exploit the search strategy of malloc to do storage compaction.

Calloc allocates space for an array of n_lem elements of size elsize.
The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.

DIAGNOSTICS

Malloc, realloc and calloc return a NULL pointer if there is no available
memory or if the arena has been detectahly corrupted by storing outside
the bounds of a block. When this happens the block pointed to by ptr may
be destroyed.

NOTES

Search time increases when many objects have been allocated; that is, if
a program allocates but never frees, then each successive allocation
takes longer.

malloc-2

malloc

NAME

malloc, free, realloc, calloc - main memory allocator

SYNOPSIS

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION

Malloc and free provide a simple general-purpose memory allocation
package. Malloc returns a pointer to a block of at least size bytes
suitably aligned for any use.

The argument to free is a- pointer to a block previously allocated by

malloc; after free is perfommed this space is made available for further
allocation, but its contents are left undisturbed.

Undefined results will occur if the space assigned by malloc is overrun
or if some random number is handed to free.

Malloc allocates the first big enough contiguwus reach of free space
found in a circular search from- the last block allocated or freed,

malloc-1l

MEMOry

Memccpy copies characters from memory area s2 into sl, stopping after the
first occurrence of character c has been copied, or after n characters
have been copied, whichever comes first. It returns a pointer to the
character after the copy of ¢ in sl, or a NULL pointer if ¢ was not found
in the first n characters of s2.

Memchr returns a pointer to the first occurrence of character ¢ in the
first n characters of memory area s, or a NULL pointer if ¢ does not
occur.

Memanp compares its arguments, looking at the first n characters only,
and returns an integer less than, equal to,.or greater than #, according
as sl is lexicographically less than, equal to, or greater than s2.
Memcpy copies n characters from memory area s2 to sl. It returns sl.

Memset sets the first n characters in memory area s to the value of
character c, It returns s .

NOTE

For user convenience, all these functions are declared in the optional
<memory.h> header file.

BUGS

Memcmp uses native character comparison, which is signed on MG680@@s and
PDP-1ls, unsigned on other machines.

Character movement is performed differently in different implementations.
Thus overlapping moves may yield surprises.

memory-2

memory

NAME

memory, memccpy, memchr, memcamp, memcpy, memset — memory operations

SYNOPSIS

#include <memory.h>

char *memccpy (sl, s2, ¢, n)
dlar *Sl' *52;
int ¢, n;

char *memchr (s, ¢, n)
char *s;
int ¢, n;

int memamp (sl, s2, n)
char *sl, *s2;
int n;

char *memcpy (sl, s2, n)
char *sl, *s2;
int n;

char *memset (s, ¢, n)
char *s;
int ¢, n;

DESCRI FTION

These functions operate efficiently on memory areas (arrays of characters

bounded by a count, not terminated by a null character).
check for the overflow of any receiving memory area.

They do not

memory-1

mktemp

NAME

mktemp - make a unique file name

SYNOPSIS

char *mktemp (template)
char *template;

DESCRIPTION

Mktemp replaces the contents of the string pointed to by template by a
unique file name, and returns the address of template. The string in
template should look like a file name with six trailing Xs; mktemp will
replace the Xs with a letter and the current process ID. The letter will
be chosen so that the resulting name does not duplicate an existing file.

SEE ALSO

getpid(2), tmpfile(3S), tmpnam(3S).

BUGS

It is possible to run out of letters.

mktemp-1

open
O_EXCLL If O_EXCL and O_CREAT are set, open will fail if the file

exists.

Upon successful completion a non-negative integer, the file descriptor,
is returned.

The file pointer used to mark the current position within the file is set
to the beginning of the file.

The new file descriptor is set to remain open across exec system calls.
No process may have more than 20 file descriptors open simultaneously.
The named file is opened unless one or more of the following are true:
A component of the path prefix is not a directory. [ENOTDIR]
O_CREAT is not set and the named file does not exist. [ENOENT]
A component of the path prefix denies search pemmission. [EACCES]
Oflag permission is denied for the named file. [EACCES]

The named file is a directory and oflag is write or read/write.
[EISDIR]

Twenty (20) file descriptors are currently open. [EMFILE]

Path points outside the process's allocated address space. [EFAULT]
O_CREAT and O_EXCL are set, and the named file exists. [EEXIST]

The system file table is full. [ENFILE]

RETURN VALUE

Upon successful completion, a non-negative integer, namely a file
descriptor, is returned. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

SEE ALSO

close, creat, dup, lseek, read, write

open—2

open

NAME

open - open for reading or writing

SYNOPSIS

#include <fcntl.h>

int open (path, oflag [, mode])
char *path;

int oflag, mode;

DESCRIPT'ION

Path points to a path name naming a file. Open opens a file descriptor
for the named file and sets the file status flags acoording to the value
of oflag. Oflag values are oonstructed by or-ing flags from the
following list (only one of the first three flags below may be used):

O_RDOMLY Open for reading only.
O_WRONLY Open for writing only.
O_RIWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes., See read
and write.

O_APPEND If set, the file pointer will be set to the end of the file
prior to each write,

O_CREAT If the file exists, a new version is created.
O_TRUNC If the file exists, its length is truncated to # and the

mode and owner are unchanged.

open-1

perror

point to are located in the text segment so that they can be shared in
programs that are loaded pure. This implies that they are read-only in
pure programs and any attempts to change them will cause memory faults.
However, the sys errlist array itself is in the data aegment and hence
the pointers may be changed.

perror-2

perror

NAME

perror, errno, sys errlist, sys _nerr - system error messages

SYNOPSIS

void perror (s)
char *s;

extern int errno;
extern char *sys errlist([];

extern int sys _nerr;

DESCRIPTION

Perror produces a message on the standard error output, describing the
last error encountered during a call to a system or library function. The
argument string s is printed first, then a colon and a blank, then the
message and a new-line. To be of most use, the argument string should
include the name of the program that incurred the error. The error number
is taken from the external variable errno, which is set when errors
occur., It is not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys _errlist is provided. errno can be used as an index in this table to
get the message string without the new-line. sys nerr is the largest
message number provided for in the table. It should be checked because
new error codes may be added to the system before they are added to the
table.

WARNING

The text of the error messages that the pointers in the array sys errlist

perror-1

pow

NAME

pow, exp, log, logld, sqrt - exponential, logarithm, power, square root

functions

SYNOPSIS

See exp

printf

Each conversion specification is introduced by the character %. After
the %, the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width.
If the converted value has fewer characters than the field width, it
will be padded on the left (or right, if the left-adjustment flag
(see below) has been given) to the field width;

A precision that gives the minimum number of digits to appear for
the 4, o, u, x, or X conversions, the number of digits to appear
after the decimal point for the e and £ conversions, the maximum
number of significant digits for the g conversion, or the maximum
number of characters to be printed from a string in s conversion.
The precision takes the form of a period (.) followed by a decimal
digit string: a null digit string is treated as zero.

An optional 1 specifying that a following d, o, u, X%, or X
conversion character applies to a long integer arg.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of
a digit string. In this case, an integer arg supplies the field width or
precision. The arg that is actually converted is not fetched until the
conversion letter is seen, so the args specifying field width or
precision must appear before the arg (if any) to be converted.

The flag characters and their meanings are:

- The result of the conversion will be left-justified within
the field.

+ The result of a signed conversion will always begin with a
sign (+ or -).

blank If the first character of a signed conversion is not a
sign, a blank will be prefixed to the result. This
implies that if the blank and + flags both appear, the
blank flag will be ignored.

This flag specifies that the value is to be oonverted to
an alternmate form. For ¢, d, s, and u conversions, the
flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be a
zero. For x (X) conversion, a non-zero result will have
@x (0X) prefixed to it. For e, E, £ g, and G
conversions, the result will always oontain a decimal

printf-2

NAME

printf, fprintf, sprintf - print formatted output

SYNOPSIS

#include <stdio.h>

int printf (format [, arg] ...)
char *fomat;

int fprintf (stream, format [, arg] ...)
FILE *stream;
char *format;

int sprintf (s, format [, arg] ...)
char *s, format;

DESCRIPT'ION

Printf places output on the standard output stream stdout. Fprintf places
output on the named output stream. Sprintf places output, followed by
the null character (\@) in consecutive bytes starting at *s; it is the
user's responsibility to ensure that enough storage is available. Each
function returns the number of characters transmitted (not including the
\@ in the case of sprintf), or a negative value if an output error was
encountered.

Each of these functions converts, formats, and prints its args under
control of the format. The fommat is a character string that contains
two types of objects: plain characters, which are simply copied to the
output stream, and conversion specifications, each of which results in
fetching of zero or more args. The results are undefined if there are
insufficient args for the format. If the fommat is exhausted while args
remain, the excess args are simply ignored.

printf-1

If the string pointer arg has the value zero, the result
is undefined. A null arg will yield undefined results.

$ Print a %; no arqument is converted.

In no case does a non—existent or small field width cause truncation of a
field; if the result' of a conversion is wider than the field width, the
field is simply expanded to contain the conversion result. Characters
generated by printf and fprintf are printed as if putc(3S) had been
called.

EXAMPLES

To print a date and time in the fom Sunday, July 3, 19:02, where weekday
and month are pointers to null-terminated strings:

printf("%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min);
To print pi to 5 decimal places:

printf("pi = %.5£", 4*atan(1.0)):;

SEE ALSO

ecvt, putc, scanf, stdio

printf-4

The conversion

d,o,u,x,X

e,E

9,G

printf

point, even if no digits follow the point (normally, a
decimal point appears in the result of these conversions
only if a digit follows it). For g and G conversions,
trailing zeroes will not be removed from the result (which
they normally are).

characters and their meanings are:

The integer arg is converted to signed decimal, unsigned
octal, decimal, or hexadecimal notation (x and X),
respectively; the letters abcdef are used for x conversion
and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits,
it will be expanded with leading zeroces. The default
precision is 1. The result of converting a zero value
with a precision of zero is a null string.

The float or double arg is converted to decimal notation
in the style [-]ddd.ddd, where the number of digits after
the decimal point is equal to the precision specification.
If the precision is missing, 6 digits are output; if the
precision is explicitly 0, no decimal point appears.

The float or double arg is converted in the style
[-]d.ddde_dd, where there is one digit before the decimal
point and the number of digits after it is egual to the
precision; when the precision is missing, 6 digits are
produced; if the precision is zero, no decimal point
appears. The E format code will produce a number with E
instead of e introducing the exponent. The exponent
always oontains at least two digits.

The float or double arg is printed in style £ or e (or in
style E in the case of a G format code), with the
precision specifying the number of significant digits.
The style used depends on the value converted: style e
will be used only if the exponent resulting from the
oconversion is less than -4 or greater than the precision.
Trailing zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.

The character:' arg is printed.

The arg is taken to be a string (character pointer) and
characters from the string are printed until a null
character (\@) is encountered or the number of characters
indicated by the precision specification is reached. If
the precision is missing, it is taken to be infinite, so
all characters up to the first null character are printed.

printf-3

putc

of a word is the size of an integer and varies from machine to machine.
Putw neither assumes nor causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr,
are by default buffered if the output refers to a file and line-buffered
if the output refers to a teminal, The standard error output stream
stderr is by default unbuffered, but use of freopen(see fopen(3S)) will
cause it to become buffered or line-buffered. When an output stream is
unbuffered information is queued for writing on the destination file or
terminal as soon as written; when it is buffered many characters are
saved up and written as a block; when it is line-buffered each line of
output is queued for writing on the destination terminal as soon as the
line is completed (that is, as soon as a new-line character is written or
terminal input is requested). Setbuf may be used to change the stream's
buffering strategy.

SEE ALSO

fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(38),
setbuf (39) .

DIAGNOSTICS

On success, these functions each return the value they have written. On
failure, they return the oonstant EOF. This will occur if the file
stream is not open for writing, or if the output file cannot be grown.
Because EOF is a valid integer, ferror(3S) should be used to detect putw
errors.

BUGS

Because it is implemented as a macro, putc treats incorrectly a stream
argument with side effects. In particular, putc(c, *f++); doesn't work
sensibly. Fputc should be used instead. Because of possible differences
in word length and byte ordering, files written using putw are machine-
dependent, and may not be read using getw on a different processor. For
this reason the use of putw should be avoided.

putc-2

putc

NAME

putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS

#include <stdio.h>

int putc (¢, stream)
char c¢;
FILE *stream;

int putchar (c)
char c;

int fputc (¢, stream)
char c;
FILE *stream;

int putw (w, stream)
int w;
FILE *stream;

DESCRIPTION

Putc writes the character ¢ onto the output stream (at the position where
the file pointer, if defined, is pointing). Putchar(c) is defined as
putc(c, stdout). Putc and putchar are macros. ,

Fputc behaves like putc, but is a function rather than a macro. _putc
runs more slowly than putc, but takes less space per invocation.

Putw writes the word (i.e. integer) w to the output stream (at the
position at which the file pointer, if defined, is pointing). The size

putc-1

putchar

NAME

putchar, putc, fputc, putw - put character or word on a stream

SYNOPSIS

See putc

putchar-1

puts

SEE ALSO

ferror, fopen, fread, printf, putc

NOTES

Puts appends a new-line character while fputs does not.

puts-2

puts

NAME

puts, fputs - put a string on a stream

SYNOPSIS

#include <stdio.h>

int puts (s)
char *s;

int fputs (s, stream)
char *s;
FILE *stream;

DESCRIFTION

Puts writes the null-teminated string pointed to by s, followed by a
new-line character, to the standard output stream stdout.

Fputs writes the null-temminated string pointed to by s to the named
output stream, :

Neither function writes the terminating null character.

DIAGNOSTICS

Both routines return EOF on error. This will happen if the routines try
to write on a file that has not been opened for writing.

puts-1

putw

NAME

putw, putchar, fputc, putc - put character or word on a stream

SYNOPSIS

See putc

putw-1

gsort

SEE ALSO

bsearch, lsearch, string

gsort-2

gsort

NAME

gsort - quicker sort

SYNOPSIS

void gsort ((char *) base, nel, sizeof (*base), compar)
unsigned int nel;
int (*compar)();

DESCRIPTION

Qsort is an implementation of the quicker-sort algorithm. It sorts a
table of data in place.

Base points to the element at the base of the table. Nel is the number
of elements in the table. Compar is the name of the comparison function,
which is called with two arquments that point to the elements being
compared. The function must return an integer less than, egual to, or

greater than zero according as the first argument is to be oonsidered
less than, equal to, or greater than the second.

NOTES

The pointer to the base of the table should be of type pointer-to-
element, and cast to type pointer-to-character. The comparison function
need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared. Although declared as
type pointer-to-character, the value returned should be cast into type
pointer-to-element.

gsort-1

rand

NAME

rand, srand - simple random-number generator

SYNOPSIS

int rand .()

void srand (seed)
unsigned seed;

DESCRIPTION

Rand uses a multiplicative oongruential random-number generator with
period 2**32 that returns successive pseudo-random numbers in the range
from @ to 2**15,

Srand can be called at any time to reset the random-number generator to a
random starting point. The generator is initially seeded with a value of
1.

NOTES

The spectral properties of rand leave a great deal to be desired.
Drand48(3C) provides a much better, though more elaborate, random—number
generator.

SEE ALSO

drand48(3C) .

rand=-1

rewind

NAME

rewind, fseek, ftell - reposition a file pointer in a stream

SYNOPSIS

See fseek

rewind-1

- scanf

The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form—feeds)
which, except in two cases described below, cause input to be
read up to the next non-white-space character.

2., An ordinary character (not %), which must match the next
character of the input stream,

3. Conversion specifications, oonsisting of the character %, an
optional assignment suppressing character *, an optional
numerical maximum field width, an optional 1 or h indicating the
size of the receiving variable, and a conversion code.

A conversion specification directs the oonversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression was indicated by *.
The suppression of assignment provides a way of describing an input field
which is to be skipped. An input field is defined as a string of non-
space characters; it extends to the next inappropriate character or until
the field width, if specified, is exhausted.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For
a suppressed field, no pointer argument should be given. The following
conversion codes are accepted:

$ a single % is expected in the input at this point; no
assigrmment is done.

d a decimal integer is expected; the ocorresponding argument
should be an integer pointer.

u an unsigned decimal integer is expected; the oorresponding
arqument should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument should
be an integer pointer.

P4 a hexadecimal integer is expected; the oorresponding argument
should be an integer pointer.

e £,

ga floating point number is expected; the next field is
converted accordingly and stored through the corresponding
argument, which should be a pointer to a float. The input
format for floating point numbers is an optionally signed
string of digits, possibly containing a decimal point, followed
by an optional exponent field consisting of an E or an e
follgwed by an optionally signed integer.

scanf-2

scanf

NAME

scanf, fscanf, sscanf - convert formatted input

SYNOPSIS

#include <stdio.h>

int scanf (format [, pointer] ...)
char *fomat;

int fscanf (stream, format [, pointer] ...)
FILE *stream;
char *format;

int sscanf (s, format [, pointer] ...)
char *s, *format;

DESCRIPTION

Scanf reads from the standard input stream stdin. Fscanf reads from the
named input stream. Sscanf reads from the character string s. Each
function reads characters, interprets them according to a format, and
stores the results in its argquments. Each expects, as arguments, a
control string format described below, and a set of pointer arguments
indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences.

scanf-1

scanf

an input character and the control string. If the input ends before the
first conflict or conversion, EOF is returned.

EXAMPLES

The call:

int i; float x; char name[58];
scanf ("3dsf¥s", &i, &x, name);

with the input line:
25 54.32E-1 thompson

will assign to i the value 25, to x the value 5.432, and name will
ocontain thompson\@. Or:

int i; float x; char name[50];
scanf ("$2d3f3*d %[0-9]1", &i, &x, name):;

with input:
56789 8123 56a72

will assign 56 to i, 789.8 to x, skip 9123, and place the string 56\@ in
name. The next call to getchar (see getc(3S)) will return a.

SEE ALSO

atof, getc, printf, strtol

NOTES

Trallmg white space (including a new-line) is left unread unless matched
in the control string.

DIAGNOSTICS

These functions return EOF on end of input and a short count for missing
or illegal data items.

scanf-4

scanf

S a character string is expected; the corresponding argument
should be a character pointer pointing to an array of
characters large enough to accept the string and a temminating
\d, which will be added automatically. The input field is
teminated by a white-space character.

c a character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is
suppressed in this case; to read the next non-space character,
use $1s. If a field width is given, the corresponding argument
should refer to a character array; the indicated number of
characters is read.

[indicates string data and the nommal skip over leading white
space is suppressed. The left bracket is followed by a set of
characters, which we will call the scanset, and a right
bracket; the input field is the maximal sequence of input
characters oonsisting entirely of characters in the scanset.
The circumflex, (7), when it appears as the first character in
the scanset, serves as a complement operator and redefines the
scanset as the set of all characters not oontained in the
remainder of the scanset string. There are some conventions
used in the construction of the scanset. A range of characters
may be represented by the construct first-last, thus
[0123456789] may be expressed [@-9].

Using this convention, first must be lexically less than or
equal to last, or else the dash will stand for itself. The
dash will also stand for itself whenever it is the first or the
last character in the scanset. To include the right square
bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the
scanset, and in this case it will not be syntactically
interpreted as the closing bracket. The corresponding argument
must point to a character array large enough to hold the data
field and the terminating \@, which will be added
automatically.

The conversion characters d, u, o, and x may be preceded by 1 or h to
indicate that a pointer to long or to short rather than to int is in the
argument list. Similarly, the conversion characters e , £ , and g may be
preceded by 1 to indicate that a pointer to double rather than to float
is in the argqument list.)

Scanf conversion terminates at BEOF, at the end of the control string, or
when an input character conflicts with the control string. In the latter
case, the offending character is left unread in the input stream.

Scanf returns the number of successfully matched and assigned input
items; this number can be zero in the event of an early conflict between

scanf-3

BUGS

The success of literal matches and suppressed assignments is not directly
determinable.

scanf-5

SEE ALSO

fopen, getc, malloc, putc

NOTES

A common source of error is allocating buffer space as an automatic
variable in a code block, and then failing to close the stream in the
same block.

setbuf-2

setbuf

NAME

setbuf - assign buffering to a stream

SYNOPSIS

#include <stdio.h>

void setbuf (stream, buf)
FILE *stream;
char *buf;

DESCRIPTION

Setbuf is used after a stream has been opened but before it is read or
written. It causes the character array pointed to by buf to be used
instead of an automatically allocated buffer. If buf is a NULL character
pointer input/output will be completely unbuffered.

A oconstant BUFSIZ, defined in the <stdio.h> header file, tells how big an
array is needed:

char buf [BUFSIZ];
A buffer is normally obtained from malloc(3C) at the time of the first
getc or putc(3S) on the file, except that the standard error stream
stderr is normmally not buffered.

Output streams directed to temminals are always line-buffered unless they
are unbuffered.

setbuf-1

setjmp

WARNING

If longjmp is calleél when env was never primed by a call to setjmp, or

when the last such call is in a function which has since returned,
absolute chaos is guaranteed. ‘

setjmp-2

setimp

NAME

setjmp, longjmp - non—-local goto

SYNOPSIS

#include <setjmp.h>

int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

DESCRIPTION

These functions are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

Setjmp saves its stack environment in env (whose type, Jjmp_buf, is
defined in the <setjmp.h> header file), for later use by longjmp. It
returns the value 9.

Longjmp restores the enviromment saved by the last call of setjmp with
the corresponding env argument. After longjmp is completed program
execution ocontinues as if the oorresponding call of setjmp (which must
not itself have returned in the interim) had just returned the value val.
Longjmp cannot cause setjmp to return the value @. If longjmp is invoked
with a second arqument of @, setjmp will return 1. All accessible data
have values as of the time longjmp was called.

setjmp-1

setvbuf

NAME

setbuf - assign buffering to a stream

SYNOPSIS

See setbuf

setvbuf-1

Sin

NAME

sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS

See trig

sin~1

sinh

NAME

sinh, ocosh, tanh - hyperbolic functions

SYNOPSIS

#include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRI PTION

Sinh, ocosh and tanh return respectively the hyberbolic sine, cosine and

tangent of their argument.

DIAGNOSTICS

Sinh and ocosh return HUGE when the correct value would overflow, and set

errno to ERANGE.

sinh-1

sleep

NAME

sleep - susi:end execution for interval

SYNOPSIS

unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION

The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than
that requested. Also, the suspension time may be longer than requested by
an arbitrary amount due to the scheduling of other activity in the
system., The value returned by sleep will be the unslept amount (the
requested time minus the time actually slept) in case the caller had an
alam set to go off earlier than the end of the requested sleep time, or
premature arousal.

The routine is implemented by setting an alam and pausing until it
occurs. The previous state of the alamm is saved and restored. The
calling program may have set up an alamm before calling sleep; if the
sleep time exceeds the time till such alarm, the process sleeps only
until the alam would have occurred, and the caller's alam catch routine
is executed just before the sleep routine returns, but if the sleep time
is less than the time till such alam, the prior alam time is reset to
go off at the same time it would have without the intervening sleep.

sleep-1

sprintf

NAME

sprintf, fprintf, printf - print formatted output

SYNOPSIS

See printf

sprintf-1

sqrt

NAME

sqrt, exp, log, logl#, pow, - exponential, logarithm, power, square root

functions

SYNOPSIS

See exp

sqrt-1

sscanf

NAME

sscanf, fscanf, - convert formmatted input

SYNOPSIS

See scanf

sscanf=1

stat

The contents of the structure pointed to by buf include the following
members :

ushort st_mode; /* File mode */
ino t st_ino; /* FCB number */
dev_t st_dev; /* Not used */
dev_t st_rdev; /* Not used */
short- st _nlink; /* Number of links (always 1) */
ushort st _uid; /* User ID of the file's owner */
ushort st_gid; /* Group ID of the file's group */
off £t st_size; /* File size in bytes */
time_t st_atime; /* Not used */
t}me_t st_mtime; /* Time of last data modification
%*
time_t st _ctime; /* Time file was created */
/* Times measured in seconds since */
/* 08:00:00 GMI', Jan. 1, 1970 */

st_mtime Time when data was last modified. Changed by the
following system calls: creat, and write.

st_ctime Time when the file was created. Changed by the following
system calls: creat,

Stat will fail if one or more of the following are true:
A component of the path prefix is not a directory. [ENOTIDIR]
The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
[EACCES]

Buf or path points to an invalid address. [EFAULT]
Fstat will fail if one or more of the following are true:
Fildes is not a valid open file descriptor. [EBADF]

Buf points to an invalid address. [EFAULT]

RETURN VALUE

Upon successful completion a value of @ is returned. .Otherwise, a value
of -1 is returned and errno is set to indicate the error.

stat-2

stat

NAME

stat, fstat - get file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

int stat (path, buf)
char *path;
struct stat *buf;

int fstat (fildes, buf)
int fildes;
struct stat *buf;

DESCRIPTION

Path points to a path name naming a file. Read, write or execute
permission of the named file is not required, but all directories listed
in the path name leading to the file must be searchable. Stat obtains
information about the named file.

Similarly, fstat obtains information about an open file known by the file
descrlptor fildes, obtained from a successful open, creat, dup, fcntl, or
pipe system call.

Buf is a pointer to a stat structure into which information is placed
oconcerning the file,

stat-1

stat

SEE ALSO

chmod, creat, read, time, unlink, write

stat-3

string

NAME

strcat, strncat, stramp, strnamp, strcpy, strncpy, strlen, strchr,
strrchr, strpbrk, strsm, strcspn, strtok - string operations

SYNOPSIS

See string

strcat-l

swab

NAME

swab - swap bytes

SYNOPSIS

void swab (from, to, nbytes)
char *from, *to;

int nbytes;

DESCRIPTION

Swab copies nbytes bytes pointed to by from to the array pointed to by
to, exchanging adjacent even and odd bytes. It is useful for carrying
binary data between PDP-1lls and other machines. Nbytes should be even
and non—negative. If nbytes is odd and positive swab uses nbytes-1
instead. If nbytes is nedative swab does nothing.

swab—-1

system

DIAGNOSTICS

System exec's the cip in order to execute string. If the exec fails,
system returns -1 and sets errno.

system-2

system

NAME

system - issue a cip command

SYNOPSIS

#include <stdio.h>

int system (string)
char *string;

DESCRI PTION

System causes the string to be given to the cip as input, as if the
string had been typed as a command at a terminal. The current process
waits until the cip has completed, then returns the exit status of the
cip. ‘

FILES

sys$disk/sysexe/cip.exe

SEE ALSO

exec

system-1

tan

NAME

tan, sin, oos, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS

See trig

tan-1l

tanh

NAME

tanh, sinh, cosh, - hyperbolic functions

SYNOPSIS

See sinh

tanh-1

tempnam

NAME

tempnam, tempnam - create a name for a temporary file

SYNOPSIS

See tmpnam

tempnam-1

time

NAME

time - get time

SYNOPSIS

long time ((long *) @)

long time (tloc)
long *tloc;

DESCRIPTION

Time returns the value of time in seconds since 90:00:080 GMT, January 1,
1970.

If tloc (taken as an integer) is non—-zero, the return value is also
stored in the location to which tloc points.

Time will fail if tloc points to an illegal address. [EFAULT]

RETURN VALUE

Upon successful completion, time returns the value of time. Otherwise, a -
value of -1 is returned and errno is set to indicate the error.

time=-1

tmpfile

NAME

tmpfile - create a temporary file

SYNOPSIS

#include <stdio.h>
FILE *mpfile ()

DESCRIPTION

Tnpfile creates a temporary file and returns a corresponding FILE
pointer. The file will automatically be deleted when the process using
it teminates. The file is opened for update.

SEE ALSO

creat, unlink, fopen, mktemp, tmpnam

tmpfile-1

tmpnam

enviromment, whose value is a path-name for the desired temporary-file
directory.

Many applications prefer their temporary files to have certain favorite
initial letter sequences in their names. Use the pfx arqument for this.
This arqument may be NULL or point to a string of up to five characters
to be used as the first few characters of the temporary-file name.

Tempnam uses malloc(3C) to get space for the oconstructed file name, and
returns a pointer to this area. Thus, any pointer value returned from
tempnam may serve as an argument to free (see malloc(3C)). If tempnam
cannot return the expected result for any reason, i.e. malloc failed, or
none of the above mentioned attempts to find an appropriate directory was
successful, a NULL pointer will be returned.

NOTES

These functions generate a different file name each time they are called.

Files created using these functions and either fopen or creat are
temporary only in the sense that they reside in a directory intended for
temporary use, and their names are unique. It is the user's
responsibility to use unlink(2) to remove the file when its use is ended.

SEE ALSO

creat, unlink, fopen, malloc, mktemp, tmpfile

BUGS

If called more than 17,576 times in a single process, these functions
will start recycling previously used names. Between the time a file name
is created and the file is opened, it is possible for some other process
to create a file with the same name. This can never happen if that other
process is using these functions or mktemp, and the file names are chosen
so as to render duplication by other means unlikely.

tmpnam-2

tmpnam

NAME

tmpnam, tempnam - create a name for a temporary file

SYNOPSIS

#include <stdio.h>

char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIFTION

These functions generate file names that can safely be used for a
temporary file.

Tmpnam always generates a file name using the path-name defined as
P_tmpdir in the <stdio.h> header file., If s is NULL, tmpnam leaves its
result in an internal static area and returns a pointer to that area.
The next call to tmpnam will destroy the contents of the area. If s is
not NULL, it is assumed to be the address of an array of at least
L_tmpnam bytes, where L_tmpnam is a constant defined in <stdio.h>; tmpnam
places its result in that array and returns s.

Tempnam allows the user to oontrol the choice of a directory. The
argument dir points to the path-name of the directory in which the file
is to be created. If dir is NULL or points to a string which is not a
path-name for an appropriate directory, the path-name defined as P_tmpdir
in the <stdio.h> header file is used. If that path-name is not
accessible, /tmp will be used as a last resort. This entire sequence can
be up-staged by providing a logical name TMPDIR in the user's

tmpnam-1

trig

Asin returns the arcsine of x, in the range -pi/2 to pi/2.
Aocos returns the arcoosine of x, in the range @ to pi.
Atan returns the arctangent of x, in the range -pi/2 to pi/2.

Atan2 returns the arctangent of y/x, in the range -pi to pi, using the
signs of both arguments to determine the quadrant of the return value.

DIAGNOSTICS

Sin, oos and tan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return @ when there would
otherwise be a complete loss of significance. 1In this case a message
indicating TLOSS error is printed on the standard error output. For less
extreme arquments, a PLOSS error is generated but no message is printed.
In both cases, errno is set to ERANGE.

Tan returns HUGE for an argument which is near an odd multiple of pi/2
when the correct value would overflow, and sets errno to ERANGE.

Arquments of magnitude greater than 1.0 cause asin and acos to return 2

and to set errno to EDOM. In addition, a message indicating DOMAIN error
is printed on the standard error output.

trig-2

trig

NAME

trig, sin, oos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS

#include <math.h>

double sin (x)
double x;
double cos (x)
double x;
double tan (x)
double x;
double asin (x)
double Xx;
double acos (x)
double x;
double atan (x)
double x;
double atan2 (y, Xx)
double x, y:
DESCRIPTION

Sin, cos and tan return respectively the sine, cosine and tangent of

their arqument, which is in radians.

trig-l

tsearch

The variable pointed to by rootp will be changed if the deleted node was
the root of the tree. Tdelete returns a pointer to the parent of the
deleted node, or a NULL pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree to be
traversed. (Any node in a tree may be used as the root for a walk below
that node.) Action is the name of a routine to be invoked at each node.
This routine is, in turn, called with three argquments. The first
arqument is the address of the node being visited. The second argument
is a value from an enumeration data type typedef enum { preorder,
postorder, endorder, leaf } VISIT; (defined in the <search.h> header
file), depending on whether this is the first, second or third time that
the node has been visited (during a depth-first, left-to-right traversal
of the tree), or whether the node is a leaf. The third arqument is the
level of the node in the tree, with the root being level zero.

NOTES

The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character. The comparison
function need not compare every byte, so arbitrary data may be contained
in the elements in addition to the values being compared. Although
declared as type pointer-to—-character, the value returned should be cast
into type pointer-to—element.

WARNING: The root argument to twalk is one level of indirection less
than the rootp arguments to tsearch and tdelete.

DIAGNOSTICS

A NULL pointer is returned by tsearch if there is not enough space
available to create a new node. A NULL pointer is returned by tsearch and
tdelete if rootp is NULL on entry.

SEE ALSO

bsearch(3C), hsearch(3C), lsearch(3C).

BUGS

Awful things can happen if the calling function alters the pointer to the
root.

tsearch-2

tsearch

NAME

tsearch, tdelete, twalk - manage binary search trees

SYNOPSIS

#include <search.h>

char *tsearch ((char *) key, (char **) rootp, compar)
int (*compar)():

char *tdelete ((char *) key, (char **) rootp, compar)
int (*compar)():

void twalk ((char *) root, action)
void (*action)();

DESCRIPFTION

Tsearch is a binary tree search routine generalized from Knuth (6.2.2)
Algorithm T. It returns a pointer into a tree indicating where a datum
may be found. If the datum does not occur, it is added at an appropriate
point in the tree. Key points to the datum to be sought in the tree.
Rootp points to a variable that points to the root of the tree. A NULL
pointer value for the variable denotes an empty tree; in this case, the
variable will be set to point to the datum at the root of the new tree.
Compar is the name of the comparison function. It is called with two
arguments that point to the elements being compared. The function must
return an integer less than, equal to, or greater than zero according as
the first arqument is to be considered less than, equal to, or greater
than the second.

Tdelete deletes a node from a binary search tree. It is generalized from
Knuth (6.2.2) algoritlm D. The arguments are the same as for tsearch.

tsearch~-1

BUGS

The return value points to static data whose content is overwritten by
each call.

ttyname-2

ttyname

NAME

ttyname, isatty - find name of a terminal

SYNOPSIS

char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPT'ION

Ttyname returns a pointer to a string containing the null-teminated path
name of the terminal device associated with file descriptor fildes.

Isatty returns 1 if fildes is associated with a teminal device, @
otherwise.

FILES

/dev/*

DIAGNOSTICS

Ttyname returns a NULL pointer if fildes does not describe a terminal
device.

ttyname-1

ungetc

DIAGNOSTICS

In order that ungetc perfomm correctly, a read statement must have been
performed prior to the call of the ungetc function. Ungetc returns EOF
if it can't insert the character. 1In the case that stream is stdin,
ungetc will allow exactly one character to be pushed back onto the buffer
without a previous read statement.

ungetc—-2

ungetc

NAME

ungetc - push character back into input stream

SYNOPSIS

#include <stdio.h>

int ungetc (¢, stream)
char c;
FILE *stream;

DESCRIPTION

Ungetc inserts the character c¢ into the buffer associated with an input
stream. That character, c, will be returned by the next getc call on
that stream. Ungetc returns c, and leaves the file stream unchanged.

One character of pushback is guaranteed provided something has been read
from the stream and the stream is actually buffered.

If c equals EOF, ungetc does nothing to the buffer and returns ECF.

Fseek (3S) erases all memory of inserted characters.

SEE ALSO

fseek, getc, setbuf

ungetc-1

RETURN VALUE

Upon successful completion, a value of # is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO

close, open

unlink-2

unlink

NAME

unlink - remove directory entry

SYNOPSIS

int unlink (path)
char *path;

DESCRIPTION

Unlthink removes the directory entry named by the path name pointed to be
path.

The named file is unlinked unless one or more of the following are true:
A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
[EACCES] :

Write permission is denied on the directory containing the link to
be removed. [EACCES]

The named file is a dif:ectory. [EPERM]

Path points outside the process's allocated address space. [EFAULT]
When all links to a file have been removed and no process has the file
open, the space occupied by the file is freed and the file ceases to

exist, If one or more processes have the file open when the last link is

removed, the removal is postponed until all references to the file have
been closed.

unlink-1

write

Fildes is not a valid file descriptor open for writing. [EBADF]

If a _rite requests that more bytes be written than there is room for
(e.g., the physical end of a medium), only as many bytes as there is roam
for will be written. For example, suppose there is space for 20 bytes
more in a file before reaching a limit. A write of 512 bytes will
return 20, The next write of a non-zero number of bytes will give a
failure return (except as noted below).

RETURN VALUE

Upon successful completion the number of bytes actually written is
returned. Otherwise, -1 is returned and errno is set to indicate the
error.

SEE ALSO

creat, dup, lseek, open

write-2

write

NAME

write - write on a file

SYNOPSIS

int write (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

DESCRI PTION

Fildes is a file descriptor obtained fram a creat, open, or dup system
call.

Write attempts to write nbyte bytes from the buffer pointed to by buf to
the file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from
the position in the file indicated by the file pointer. Upon return from
write, the file pointer is incremented by the number of bytes actually
written.

~ On devices incapable of seeking, writing always takes place starting at
the current position. The value of a file pointer associated with such a
device is undefined. i

If the O_APPEND flag of the file status flags is set, the file pointer
will be set to the end of the file prior to each write.

Write will fail and the file pointer will remain unchanged if one or more
of the following are true:

write-l

NAME

v8, yl, yn, i@, jl, jn, - Bessel functions

SYNOPSIS

See bessel

yo-1

NAME

vl, i@, j1, jn, y8, yn - Bessel functions

SYNOPSIS

See bessel

yl-1

yn

NAME

yn, j@, jl, jn, y@, yl, - Bessel functions

SYNOPSIS

See bessel

Chapter 8

WMCS Compilation Cammands

This chapter oontains the four WMCS C compilation commands. They are
fomatted in the WMCS command-description style. If you are using C under
WMCS, read these command descriptions.

If you are using C under UniPlus+ System V, see the c¢cc cammand
description in the UniPlust System V User's Reference Manual (Section 1).

smaxext= swarnf66
smaxhash= :xref=

LL switches slibraries= sruntime=
cprefix= sstrip
sreloc

Parameters

file list

Function: Use this parameter to specify the list of files
to be ocompiled and loaded together.

Default: None.

Syntax: Standard syntax for file lists. Wildcards are
allowed.

Switches

:asseanble

sbefore=

canpile-2

Function: Use this switch to specify that assembly-
language source files are to be assembled into object
files. Assembly-language source files are files specified
in the file list with a .S extension, plus any output
files from the floating-point preprocessors.

Default: :assemhle, i.e., assembly-language files are
assembled into object files.

Syntax: Type :noassemble to suppress the assembler and
the linker/loader phases. Files specified in the file
list with a .S extension are left untouched. Assembly-
language output files from the floating-point
preprocessors are saved in the default directory with the
same names as the corresponding source files, but with .S
extensions.

Function: Use this switch to select only those files that
were specified in the file list and were created/modified
before the specified date and time.

Default: Selects all files that were specified in the
file list.

Syntax: Type :before= followed by a date and/or time in
the standard date and time syntax.

Function: Use this switch with FORTRAN source files to
allow upper- and lower—case names to be distinct.

Default: :nocase, i.e., upper— and lower-case names are
not distinct.

Syntax: Type :case to allow upper— and lower—case names
to be distinct.

compile

Description

Use this command to compile C, FORTRAN, and/or assembly language
source files into object files, and to link object files together to

produce an executable file,

Command Line Syntax

Mnemonic compile
Required File list
parameter

Switches File selection

Suppress
compilation

General switches

C switches

FORTRAN switches

sbefore=
sexclude=
:mod

tassemble
:fpreprocess
:load

:deletetemp
:floatingpoint=
:listing=

slog

:optimize
soptimize=

:define=
sinclude=

:case
sint=
smaxctl=
smaxequ=

:since=
suic=

:preprocess
sprocess

soutput=
:subopt=
:subpass=
stemppref ix=
:verbose
:twarnings

sundefine=
tmaxstno=
sonetrip

srange
:undef ined

compile-l

campile

sfpreprocess

sinclude=

sint=

slibraries=

:listing=

compile—4

Function: Use this switch to specify that pseudo-assembly
language source files are to be translated into actual
assembly-lanqguage source files by a floating-point
preprocessor. Pseudo-assembly language source files are
files specified in the file list with a .K extension, plus
any output files from compilers and the C optimizer. The
floating-point preprocessor used is selected by the
:floatingpoint= switch.

Default: :fpreprocess, i.e., pseudo—-assembly language
files are translated to actual assembly-language files.
Syntax: Type :nofpreprocess to suppress the floating-
point preprocessor, assembler, and linker/loader rhases.
Files specified in the file list with a .K extension will
be optimized if the C optimizer is selected but will
otherwise be left untouched. Pseudo—-assembly language
output files from the compilers and the C optimizer will
be left in the current default directory with the same
names as the corresponding source files, but with .K
extensions.

Function: Use this switch on C source files to specify
additional directories in which the C preprocessor is to
search for include files. Directories specified by the
:include= switch are searched first, followed by
predefined "standard" directories.

Default: The C preprocessor searchs only the predefined
"standard" directories.

Syntax: Type :include= followed by a list of directory
specifications, separated by commas.

Function: Use this switch on FORTRAN source files to
change the default size of FORTRAN integers.

Default: :int=4, i.e., FORTRAN integers are 4 bytes long.
Syntax: Type :int= followed by one of the following:

2 Integers are 2 bytes long
4 Integers are 4 bytes long

Function: Use this switch to specify the names of library
files to be used by the linker/loader in addition to the
standard libraries.

Default: Only the standard libraries are used.

Syntax: Type :libraries= followed by a list of file
names, Wildcards are not allowed. Device and directory
names may not be given here but must instead be specified
by the :prefix= switch.

Function: Use this switch to specify a file in which a
program listing is generated. Currently, this switch
applies only to FORTRAN. To get a listing from the

:define=

:deletetemp

texclude=

compile

Function: Use this switch with C source files to define
macros for the C preprocessor. Definitions given by this
switch can be cancelled by the :undefine= switch.

Default: No macros are defined except some macros
predefined by the C preprocessor itself.

Syntax: Type :define= followed by a list of values,
separated by commas. Each value must be in one of the
following forms:

name=value Assigns the value to the name
name Assigns a value of 1 to the name

Function: Use this switch to cause temporary files to be
deleted automatically.

Default: :deletetemp, i.e., temporary files are
automatically deleted.

Syntax: Type :nodeletetemp to preserve temporary files.

Function: Use this switch to select only those files or
devices that were specified in the file list and & not
match any of the files specified as the value of the
sexclude= switch.

Default: Selects all files or devices specified in the
file list,

Syntax: Type :exclude= followed by a list of file or
device designations, separated by commas, any one of which
may contain wildcard characters.

:floatingpoint= Function: Use this switch to cause the compilers to

generate code for a specific kind of floating-point
hardware and/or software. This switch also selects the
floating-point preprocessor to be used.

Default: :floatingpoint=lib, i.e., the generic floating-
point library is used.

Syntax: Type :floatingpoint= followed by one of the
following:

LIB Current version of the generic floating-point
library (same as LIB2).

LIB2 Version 2 of the generic floating-point
library.

SKY Current version of the SKY floating-point
board (same as SKYl).

SKY1 Version 1 of the SKY floating-point board.

FFP Current version of the FFP floating-point
board (same as-FFP1).

FFPl Version 1 of the FFP floating-point board.

NOFP No floating-point (produces smaller image
files).

compile-3

:maxhash=

smaxstno=

smod

sonetrip

:optimize

soptimizes=

campil e-6

Function: Use this switch with FORTRAN source files to
specify the size of the FORTRAN compiler's symbol table,
Default: :maxhash=401, i.e., the FORTRAN oompiler's
symbol table has room for 401 entries.

Syntax: Type :maxhash= followed by a numeral indicating
the size of the FORTRAN compiler's symbol table.

Function: Use this switch with FORTRAN source files to
specify the maximum number of statement numbers allowed.
Default: :maxstno=401, i.e., a maximumn of 401 statement
nunbers is allowed.

Syntax: Type :maxstno= followed by a numeral indicating
the maximum number of statement numbers to be allowed.

Function: Use this switch to specify that the
modification date is to be used in all date and time
considerations by the :before= or :since= switches.
Default: :nomod, i.e., the creation date is used in all
date and time oonsiderations by the :before= or :since=
switches.

Syntax: Type :mod.

Function: Use this switch with FORTRAN source files to
specify that DO loops are to be executed at least once.
Default: :noonetrip, i.e., DO loops are not performed if
the upper limit is less than the lower limit.

Syntax: Type :onetrip to cause DO loops to be executed at
least once even if the upper limit is less than the lower
limit.

Function: Use this switch to perform code optimizations
where possible, This switch has the same effect as
soptimize=F77,0PT and is included for convenience.
Default: :nooptimize, i.e., no optimizations are
performed.

Syntax: Type :optimize to perform optimizations.

Function: Use this switch to perfomm specific code
optimizations.

Default: No optimizations are performed.

Syntax: Type :optimize= followed by one or both of the
following values (if both, separate with commas):

F77 For FORTIRAN source files only, performms FORTRAN-
specific optimizations.

OPT Perfoms optimizations on the pseudo-asseambly
language that is output from the compilers. This
value is used for C programs.

:load

tlog

smaxctl=

:maxequ=

:maxext=

campile

assembler use :subopt="as:-1 filename" (where filename is
the file you want to be the listing).

Default: A program listing is not generated.

Syntax: Type :listing= followed by a file designation.
Wildcards are not allowed.

Function: Use this switch to specify that object files
are to be linked to create an executable file. Object
files are files specified in the file list with a .W
extension, plus any output files from the assembler and
LLC,

Default: :load, i.e., object files are linked to create
an executable file,

Syntax: Type :noload to suppress the linker/locader phase.
Files specified in the file list with a .W extension are
left untouched, and object files from the assembler and
LLC are left in the current default directory with the
same names as the oorresponding source files, but with W
extensions.

Function: Use this switch to specify whether log messages
are displayed. (Log messages are informational displays
that indicate what the utility is doing.)

Default: The value specified by the OPFTION command.
Syntax: Type :log or :nolog to override the default.

Function: Use this switch with FORTRAN source files to
specify the maximum level that IF and DO statements can be
nested.

Default: smaxctl=10, i.e., IF and DO statements can be
nested 19 deep.

Syntax: Type :maxctl= followed by a numeral indicating
the maximum number of levels that IF and DO statements can
be nested.

Function: Use this switch with FORTRAN source files to
specify the maximum number of equivalences allowed.
Default: :maxequ=150, i.e., a maximum of 150 equivalences
is allowed.

Syntax: Type :maxequ= followed by a numeral indicating
the maximum number of equivalences to be allowed.

Function: Use this switch with FORTRAN source files to
specify the maximum number of external symbols allowed.
Default: :maxext=200, i.e., a maximum of 20@ external
symbols is allowed.

Syntax: Type :maxext= followed by a numeral indicating
the maximum number of external symbols to be allowed.

N

compil e~5

sreloc

sruntime=

:since=

sstrip

:subpass=

compile-8

performed at runtime.

Default: snorange, i.e., runtime range-checking of
subscripts is not perfommed.

Syntax: Type :range to cause runtime range-checking of
subscripts to be perfommed.

Function: Use this switch to specify that relocation
information is to be preserved in the executable file.
Default: tnoreloc, i.e., relocation information is not
preserved.

Syntax: Type :reloc to cause relocation information to be
preserved in the executable file (useful for ummapped
S125@s) . ’

Function: Use this switch to specify that the linker/
loader is to use language-specific runtime libraries.
Default: The linker/loader automatically uses language-
specific libraries whenever the corresponding language
compiler is used.

Syntax: Type :runtime= followed by a value specifying a
language-specific library. Currently, the only valid
value is F, which specifies the FORTRAN libraries.

Function: Use this switch to select only those files
specified in the file list and were created/modified since
the specified date and time.

Default: Selects all files specified in the file list.
Syntax: Type :since= followed by a date and/or time in
the standard syntax.

Function: Use this switch to specify that all symbols are
to be stripped from the executable file.

Default: :strip, i.e., all symbols are stripped.

Syntax: Type :nostrip to preserve symbols in the
executable file.

Function: Use this switch to specify substitute compiler
passes. The compile utility uses a three-step algoritim
to determine the filename of each compiler pass. First,
compiler passes specified by the :subpasss switch are
used. Seocond, for passes not specified by the :subpass=
switch, passes specified by 1logical names are used.
Finally, for passes not specified by the :subpass switch
or by logical names, the standard campiler passes are
used.

Default: If any of the following logical names are
defined, then their definition is used as the filename of

soutput=

:prefix=

:preprocess

sprocess

srange

compile

Function: Use this switch to name the output file of the
compilation process.

Default: If :preprocess, :nofpreprocess, :noassemble, or
:noload is specified, the output is stored in the default
directory in files with the same names as the
corresponding source files specified in the file list, but
with extensions of .I, .K, .S, or .W respectively. If the
linker/loader phase is not suppressed, the resulting
executable file is stored in the default directory with
the same name as the first file specified in the file
list, but with an extension of .EXE.

Syntax: Type :output= followed by a file name without a
file extension. The oorrect extension (.I, .S, or .EXE,
for example) is added automatically by the compiler.
Wildcards are not allowed.

Function: Use this switch to specify additional
directories in which the linker/loader is to search for
libraries. Directories specified by the :prefix= switch
are searched first, followed by predefined "standard"
directories.

Default: The linker/loader searchs only the predefined
"standard" directories.

Syntax: Type :prefix= followed by a list of directory
specifications, separated by commas. As a special case, a
value of zero causes the predefined "standard" directories
to not be searched.

Function: Use this switch to specify that the output from
the preprocessors is to be left in the current default
directory in files with the same name as the corresponding
source files, but with .I extensions. All other phases of
the compile are suppressed.

Default: :nopreprocess, i.e., preprocessor output is sent
to the compilers, and other phases of the compile compile
are not suppressed.

Syntax: Type :preprocess to send the output of the
preprocessors to .I files.

Function: Use this switch to specify that the output from
the preprocessors is to be sent to standard output. All
other phases.of the compile are suppressed.

Default: :noprocess, i.e., preprocessor output is not
sent to standard output, and other phases of the compile
are not suppressed.

Syntax: Type :process to send the output of the
preprocessors to standard output.

Function: Use this switch with FORTRAN source files to
specify that range~-checking of array subscripts is to be

compile-7

sundef ine=

sundefined

:verbose

swarnf66

:warnings

sxref=

compile-10

Syntax: Type suic= followed by a list of UIC's or
usernames.

Function: Use this switch with C source files to “cancel
macro definitions for the C preprocessor given by the
:define= switch. This switch can also be used to cancel
the macros predefined by the C preprocessor itself.
Default: No macros are cancelled.

Syntax: Type :undefine= followed by a list of names,
separated by commas, to be cancelled.

Function: Use this switch with FORTRAN source files to
specify that the default type of variables is undefined,
rather than using the default FORTRAN rules.

Default: :noundefined, i.e., the default type of
variables is detemined according the default FORTRAN
rules.

Syntax: Type :undefined to cause the default type of
FORTRAN variables to be undefined.

Function: Use this switch to display the command line for
each compiler pass before it is executed. This switch
also sets the :log switch. Additionmal information may be
displayed as well depending on the situation.

Default: inoverbose, i.e., command lines for oompiler
passes are not displayed.

Syntax: Type :verbose to display command lines for each
campiler pass.

Function: Use this switch with FORTRAN source files to
suppress extensions that enhance compatibility with
FORTRANG6 .

Default: :nowarnf66, i.e., extensions that enhance
FORTRAN66 compatibility are not suppressed.

Syntax: Type :warnf66 to suppress extensions that enhance
FORTRAN66 campatibility.)

Function: Use this switch to display warning messages
generated by the campiler.

Default: :warnings, i.e., warning messages are displayed.
Syntax: Type :nowarnings to suppress warnings.

Function: Use this switch with FORTRAN source files to
specify a file in which a symbol cross reference listing
is generated.

Default: A cross-reference listing is not generated.
Syntax: Type :xref= followed by a filename. Wildcards are
not allowed.

:subopt=

stempprefix=

suic=

compile

the corresponding compiler pass, otherwise the standard
compiler passes are used:

Name Corresponding Compiler Pass
CPP C preprocessor

F77 FORTRAN compiler

F77X FORTRAN cross reference

cC C compiler

OFT C optimizer

APP Floating-point preprocessor
AS Assembler

LLC Compiler for linker/loader
LL Linker/loader

Syntax: Type :subpass= followed by one or more values,
separated by commas, in the form name:filename, where name
is one of the names given in the above table, and filename
is the filename (including its directory) of the
corresponding substitute compiler pass.

Function: Use this switch to specify arbitrary command
line arguments for individual ocompiler passes. (This
switch is provided for maximum flexibility. Take care not
to misuse it.)

Default: Only arguments put on the command line by
COMPILE (possibly detemined by regular QOMPILE switches)
are passed to the compiler passes.

Syntax: ‘Type one or more values, separated by cammas,
where each value is of the form "name:string”. The name
must be one of the following: CPP, F77, F77x, CC, OFT,
APP, AS, LIC, or LL (see :subpass= for the meaning of each
name) . The string is the actual string to be placed on the
named compiler pass's command line. If the string contains
spaces, then the entire name:string value should be
enclosed in double quotes.

Function: Use this switch to specify the directory in
which temporary files are stored.

Default: If the logical name TMPDIR is defined, then the
directory it specifies is used, otherwise the directory
SYS$TMP/SYSTMP/ is used.

Syntax: Type :tempprefix= followed by a directory
specification. Wildcards are not allowed.

Function: Use this switch to select only those files or
devices that are specified in the file list and are owned
by the specified user or list of users.

Default: Selects all files specified in the file list.

compile-9

At first glance, the :runtime= switch might appear useless
since language-specific libraries are automatically
included whenever the corresponding language compiler is
used. This ocould be used if you previously compiled
several FORTRAN source files into objects and now want to
link these object files together to produce an executable
file. Compile would only see a bunch of .W files and
wouldn't know about their FORTRAN ancestry. You would
have to use the :runtime= switch to explicitly tell
OMPILE that these object files were produced from FORTRAN
source files and require the use of the FORTRAN libraries.

In order to produce smaller executable files, the symbol
table is normally stripped by the linker/loader. When
debugging programs with WIBUG, however, it is highly
recommended that you use :nostrip to preserve the symbols.

Related CIP Commands

compile-12

111ib
llran
1i

Exampl es

> compile main.c,routinel.c,routine2.c

This command compiles the C source files named MAIN.C,
ROUTINEL.C, and ROUTINE2.C in the default directory,
producing the object files MAIN.W, ROUTINEl.W, and
ROUTINE2.W, and the executable file MAIN.EXE.

> compile *.f :prefix=/mylib/ :lib=matrix :float=sky :output=munge.exe

Assume that the library file /MYLIB/MATRIX.LIB exists on
the default device. This command compiles all of the
FORTRAN source files with a .F extension in the default
directory, producing a .W object file for each one. These
object files are then linked together using the library
file /MYLIB/MATRIX.LIB to produce an executable file named
MINGE.EXE. The program is targeted for the SKY floating-
point board. '

Using Prompts

> Compile
File list

> main.c,routinel.c,routine2.c

This is the same as the first example.

Notes on Usage

The :optimize and :optimize= switches improve the ultimate
efficiency of the program, but oompilation usually takes
longer.

Any of the five switches that suppress compilation phases
may be specified at the same time. The switch that comes
first in the following list is used, and any other
switches in the list that are specified are ignored:

tprocess
spreprocess
snofpreprocess
~ :noassemble
:noload

compile-11

Switches
sbefore= - Type a date and time. (see dates)
sexclude= - Type a list of file designations. (see filelist)
:log - Log messages are displayed.
:mod ' - Use file modification date for comparison
:since= - Type a date and time. (see dates)
:uic= - Type a list of uics or usernames. (see uiclist)
:verbose - Display detailed infommation about the files.

The following switches are mutually exclusive:

:add - Add the files to the library. Create library.
:delete - Delete the indicated files from the library.
sextract - Extract the indicated files from the library.
:list - List the files in the library.

111ib-2

lllib

Description

Use this command to create or maintain a packaged library file for the
11 loader. The indicated relocatable object files generated by WiMAC
are archived into a file, and llran is used to generate a symbol
table.

Examples

> 111ib develop.lib *.w :add :log

Generate the library file develop.lib from all the .w files in the
current directory. Display the names of the files being libraried.

Parameters

Library file > - Required. Enter the name of the library file to be
used. A file extension of .lib is customary.

File list > - Optional. Type a list of file designations which
are to be displayed, added, or deleted. Wildcards
are only permitted when adding. Default: With :add,
all files in the current directory, with :extract
or :list, all files in the library, with :delete,
no files.,

111ib-1

Display format

1i-2

:fil ename

sheader
spause
sradix=

:segment=

1sort=

struncate

Precede each symbol by the name of the file
it is in

(Default) Display filename and column headers
Pause after each screenful of display

Select the base in which symbol values are
displayed.

Specify one of the following: octal, decimal,
or hexadecimal. Default: hexadecimal.

Select which segments to display. Specify one
or more of the following (separated by
commas): all, absolute, text, data, stack,
uconstant, sconstant, or unknown.

Default: all.

Select the order symbols are displayed.
Specify one of the following: name, value,
none.

Default: name.

(Default) Truncates symbol names in the
display if they are longer than the display
field width.

Description

Use this comand to display symbols in image files (.EXE files)
generated by the LL linker.

Examples

>1i

Display all symbols in all image files in the current directory. (Non-
image files are ignored. Image files generated by the LINK linker will
always have "no symbols found" as will stripped LL image files.)

Parameters:
File list > - Optional. Default: *. Type a list of file
designations whose symbols are to be displayed.
(see filelist)
Switches
File selection
tbefore= - Type a date and time. (see dates)
sexclude= - Type a list of file designations. (see
filelist)
:mod - Use file modification date for comparison
:since= - Type a date and time. (see dates)
uic= - Type a list of uics or usernames. (see
uiclist)

1li-1

liran

Description

Use this command to create or maintain a packaged library file for the
11 loader. The indicated relocatable object files generated by WiMAC
are archived into the file SYMIAB,LL in the current directory.

Example:

> llran *.,w :log

Generate the directory library file SYMTAB.LL in the current directory
from all the .w files in the current directory. Display the names of
the files being libraried.

Parameters:

File list > - Required. Type a list of file designations whose
attributes are to be displayed or modified. (see
filelist).

Switches

:before= - Type a date and time. (see dates)

:exclude= - Type a list of file designations. (see filelist)

:log - Log messages are displayed

:mod - Use file modification date for comparison

squick - Allow or disallow scrutinizing the input

:since= - Type a date and time. (see dates)

suic= - Type a list of uics or usernames. (see uiclist)

:verbose - Display detailed information about files

:warnings - Allow or disallow warning messages

llran-1

Calling Functions ‘Written in Other Languages

The function return value is stored in register dd. If the return value
is of type double, then the most significant half of it is in d@. The
least significant half of it is in dl.

C and FORTRAN77

To write C-language procedures that call or are called by FORTRAN77, it
is necessary to know procedure names, data representation, return values,
and arqument lists that the compiled code uses.

LProcedure Names
The name of a FORIRAN procedure has an underscore added to it by the
compiler, The underscore distinguishes the procedure name from a C-

language procedure or external variable with the same user-assigned
name.

Also, FORTRAN-library procedure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

Data Representation
The following is a list of corresponding FORTRAN and C declarations:

FORTRAN C Language
integer*2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision x double x;
complex X struct { float r, i; } x;
double complex x ’ struct {double dr, di; } x;
character*6 x char x[6];

Integer, logical, and real data occupy the same amount of memory in
FORTRAN.,

Return Values

A function of type integer, logical, real, or double precision
declared as a C function returns the corresponding type. A complex
or double complex function is equivalent to a C routine with an
additional initial argument that points to the place where the
return value is to be stored.

9-2

Chapter 9

Calling Functions Written in Other Languages

The calling function evaluates each actual parameter and pushes it on the
stack from right to left.

The following type oonversions are performed on each actual parameter
value before it is pushed:

1. A float is oonverted to a double.
2. A char or short is converted to an int.

3. An unsigned char or unsigned short is converted to an unsigned
int.

4. An array name is oconsidered a pointer to the first element in the
array.

5. A entire struct or union is pushed on the stack. Structs and
unions can be very large. Everything on the stack gets pushed. It
may have an extra dummy byte added to the end so an even number
of bytes is always pushed.

After the parameters have been pushed, the caller calls the function. The
C compiler adds an underscore to the beginning of function names.

The called function preserves registers d2 through d7 and a2 through a7.
Registers dd, dl, ad, and al are not preserved. These four registers are
called scratch registers.

Once the called function has returned, the parameters are popped off the
stack.

NOTE: The caller pops the parameters from the stack. This is helpful
with functions that have a variable number of parameters (such
as printf()) because the caller knows how many parameters to

Pop.
9-1

Calling Functions Written in Other Languages

The string lengths are long int quantities passed by value.
The arguments are in the following order:
1. Extra arguments for complex and character functions
2. Address for each datum or function
3. A long int for each character argument
Because of this, the call in

external £
character*7 s
integer b(3)

call sam(£, b(2),s)
is equivalent to the call in the following:

int £();
char s(7];
long int b[3];

sam_(£f,&[1]1,s,7L);
NOTE: The first element of a C array always has subscript 9.

However, FORTRAN arrays begin at 1 by default. FORTRAN
arrays are stored in oolumn-major order. C arrays are
stored in row-major order.

C and PRascal

C functions cannot call Pascal routines because of unresolvable
differences between the C and Pascal calling oonventions. However, C
functions can be called by Pascal routines because the Pascal compiler
generates C style calls through the cexternal directive. Also, external C
variables are not accessible from Pascal.

Limitati

The C library and the Pascal runtime library are not compatible. The
C memory allocation routines (malloc, etc.) conflict with the Pascal
memory allocation routines (mark, new, etc.).

Since many library routines allocate memory internally, it is
difficult to tell what will work and what won't.

Calling Functions Written in Other Languages

Because of this, the following:
complex function £(...)
is equivalent to

struct { float r, i;} temp;
f_(&temp,...)

A character-valued function is equivalent to a C routine with two
extra initial arguments, a data address and a length. Therefore,

character*15 function g(...)
is equivalent to the following:

char result(];
long int length;
g_(result,length,...)

The foregoing could be invoked in C by the following:
char chars[15];

g_(chars,15L,...);
Subroutines are invoked as if they are integer-valued functions,
whose value specifies which alternate return to use. Alternate
return arguments (statement labels) are not passed to the function.
They are used to do an indexed branch in the calling procedure.

The return value is undefined if the subroutine has no entry points
with alternate return arguments.

The statement
call nret(*1, *2, *3)
is treated exactly as if it were the computed goto
goto (1, 2, 3), nret()
Argument Lists
All FORTRAN arguments are passed by address. In addition, for every

argument that is of type character, an argument giving the length of
the value is passed.

9-3

Calling Functions Written in Other Languages

C enumerated types are always 4 bytes long. They do not
correspond to Pascal enumerated types. .

(3) Member @ of the Pascal set corresponds to the least significant
bit of the C unsigned char. Member 1 corresponds to the next
significant bit.

(4) Member @ of the Pascal set corresponds to the least significant
bit of the first C unsigned long int. Member 63 corresponds to
the most significant bit of the last unsigned long int.

Return Values

To be called from Pascal, a C function should be of type int, long
int, unsigned int, unsigned long int, double, pointer, or void.

A C function of type void corresponds to a Pascal procedure,
Arqument Lists

To be called from Pascal, a C function should not have formal

parameters of type float, struct, or union. In addition, the Pascal

ocompiler does not acoount for the type conversions listed in this

chapter. Therefore, a C fommal parameter of type char or short
corresponds to a Pascal actual parameter of type longint.

Array parameters work as long as subscripting is declared to begin
at @ in Pascal.

9-6

Calling Functions Written in Other Languages

In addition, some routines in each library depend on initializations
done by the main program. ,If the main program is written in C, the
Pascal initializations aren't done. If the main program is written
in Pascal, the C initializations aren't done.

Therefore, you can write C functions to be called by Pascal
routines, but you do so at your own risk.

The cexternal directive exists primarily so that Pascal can access
UNIX system calls.

If you want to try to call C functions with Pascal routines, the
following information may be of help.

LProcedure pames

To be called from Pascal, the name of the C function must not
contain any uppercase letters. Pascal is not case sensitive. It
assumes that the names of all C functions are in lowercase.

Furthemore, a C function called foo must be declared as _foo in

Pascal. The C compiler puts a leading underscore on function names,
but Pascal does not.
Data Representations
Following is a list of corresponding Pascal and C declarations:
Pascal C Notes
X: char; unsigned char x;

(1)

(2)

X: boolean;

X: integer;

x: longint;

x: (red, green, blue);
X: real;

x: record i, j: integer end;
x: string [9];

x: array [0..9] of char;
x: “char;

x: set of 0..1;

X: set of 0..63;

False ocorresponds to @, true

char x; (1)
short int x;

long int x; or int x;
unsigned char x; (2)
double x;

struct {short int i, j;} x;
char x[10];

char x[9];

char *x;

unsigned char x; (3)
unsigned long int x[2]; (4)

corresponds to 1 (in most cases,

true corresponds to any value other than).

Red corresponds to 4,

green oorresponds to 1,

and blue

corresponds to 2. Pascal enumerated types are 1 byte long if
they have 256 values or less. Otherwise they are 2 bytes long.

Debugging

can be changed temporarily to remove the static modifier for
debugging.

Auto variables (and formal parameters)

Auto variables also have no symbols. Because an auto is a local
variable, it is usually easier to find a nearby reference to it
than to a static variable.

An auto variable's location can be estimated. An auto variable
is located at a negative offset from register a6. Generally,
the C compiler places the first auto variable nearest a6, the
next auto further from a6, etc.

A formal parameter is accessed like an auto variable is
accessed except it is located at a positive offset from a6.

Register variables

Register variables have no symbols, but, like auto variables,
references to them can often be found in the code (see chapter
3 for details)

Also, it is possible to determine the hardware register that
corresponds to a given register variable in functions that have
not been optimized (see chapter 3 for details).

A register parameter is like a register variable except that an
initial value gets copied into the register at the beginning of
the function.

How to Locate Code
Locating a function

Non-static functions are referred to by name. The name is
preceded by an underscore. The name represents the address of
the first instruction in the function.

Static functions cannot be referred to by name. Like static
variables, a static function can best be located by finding a
reference to it in the ocode, then noting its address.

Locating lines in a function
If the C optimizer is not used, specific lines in a function

can be located by examining the .s assembly language source
file produced by the C compiler.

N4

19-2

Chapter 19

Debugging

The WMCS debugger is WIBUG. The UniPlus+ System V debugger is adb. Both
are symbolic assembly-level debuggers, that is, they allow functions and
variables to be accessed by name at the assembly-language level.

For detailed information on WIBUG see the WIBUG Programmer's Reference
Manual.

For detailed information on adb see the UniPlust+ System V User's Manual
(Section 1).

Because WIBUG and adb have roughly equivalent capabilities, they will be
referred to in this chapter as WIBUG/adb.

How to Locate Data

External variables can be referred to by name. However, static, auto, and
register variables have no symbols with which they can be accessed.
Following are tips for accessing each storage class:

External variables

An external variable can be referred to by its name, preceded
by an underscore.

For example, a global variable called foo in C is called _foo
in WIBUG/adb. The symbol represents the address of the first
byte of the variable. WIBUG/adb can locate the variable, but
has no infommation about its type or size.

Static variables

Static variables have no symbols, and their location in memory
is hard to predict. A static variable is best found by locating
a reference to it in the oode, and then noting its address. It
is also possible to declare all statics with a macro so they

19-1

Debugging

the optimizer performs live/dead analysis on them. A simple’
change in the C source can result in a drastic change in the
optimized assembly code.

The optimizer removes the LINK and UNLK instructions from a
function if it has no non-register local variables. This causes
parameters to be at an unpredictable offset from the stack
pointer, rather than at a predictable offset from register a6.

Stack backtraces in WIBUG/adb depend on the linked list of
stack frames maintained by the LINK and UNLK instructions.
Backtraces of optimized code can be misleading because
functions without LINK and UNLK do not appear in the backtrace.

The optimizer remaps register variables to registers with lower
nunbers. This takes advantage of unused scratch registers.
Remapping makes it more difficult to calculate which hardware
register corresponds to which register variable.

10-4

Debugging

To produce a .s file under WMCS, use the compile command with
the :noassemble switch. To produce a .s file under UniPlus+
System V, use the ¢cc command with the -S option.

Source file names and line numbers are indicated by .line and
.file directives among the assembly-language statements.

The beginning of the C source file and each #include file is
marked by a .file directive in the following fomat:

.file file number,"file name"

In the foregoing fomat, file number is a unique integer and
file name is the name of the source file. The end of each
#include file is marked by an abbreviated .file directive in
which the file name is omitted, and the file number is the
number of the file that did the #include.

The beginning of each C statement is marked by a .line
directive in the following format:

.line 1line_number

In the foregoing format, line number is the number of the line
on which the statement begins.

A .line directive appears only for lines containing the
beginning of a statement.

Lines oontaining only comments, declarations, etc. are not
represented.

Debugging code that has been optimized with the C optimizer is

difficult. Your ability to debug optimized code depends on the
optimizations that were performed.

Following are some things to watch out for:

The C optimizer removes all .file and .line directives. It does
this because it moves, eliminates, and rearranges code,
invalidating the line numbers. To locate lines in a function,
you must look at the assembly code and try to correlate it with
the source manually.

However, the optimized assembly code may not oorrespond in an
obvious way to the original C source. The ocode for a C
statement could be dispersed, or eliminated altogether. This is
most likely to occur with the use of register variables because

18-3

ASCIT CHARACTER TARLE

Abbreviations for control key functions:

NUL - Null

SCH - Start of header
STX - Start of text
ETX - End of text

ENQ - Enquiry

BS - Backspace

HT - Horizontal tab
LF - Line feed

VT - Vertical tab

FF - Form feed

CR - Carriage return
SO - Shift ocut

SI - Shift in

DLE - Data link escape

AN

DCl - Device control 1

DC2 - Device control 2

DC3 =~ Device control 3

DC4 - Device control 4

NAK - Negative acknowledge

SYN - Synchronous idle

ETB -~ End of transmission block
CAN - Cancel

EM - End of medium

SUB -~ Substitute

ESC - Escape

FS - File separator
GS -~ Group separator
RS - Record separator
US - Unit separatcr
SP - Space

DEL - Delete

APPENDIX A

ASCIT CHARACTER TABLE

Character DEC HEX Char DEC HEX Char DEC HEX Char DEC HEX
[CTRL]@ NUL. 000 00 SP 032 20 @ 064 40 * 0% 60
[CTRL]a SCH 001 Ol ! 033 21 A 065 41 a 097 61
[CIRL]b STX 002 02 " 034 22 B 066 42 b 098 62
[CIRL]c ETX 003 03 # 035 23 C 067 43 c 099 63
[CTRL]d BOT 004 04 $ 036 24 D 068 44 d 100 64
[CTRL]e ENQ 005 05 % 037 25 E 069 45 e 101 65
[CIRL]f ACK 006 06 & 038 26 F 070 46 b 102 66
(CTRL]g BEL 007 07 ! 039 27 G 071 47 g 103 67
[CTRL]h BS 008 08 (040 28 H 072 48 h 104 68
[CTRL]i BT 009 09) 041 29 I 073 49 i 105 69
[CTRL]J LF 010 O0A * 042 2A J 074 4A 3 106 6A
[CTRL]k VT 011 OB + 043 2B K 075 4B k 107 6B
[CIRL]1 FF 012 OC R 044 2C L 076 4C 1 108 6C
[CTRLJm CR 013 OD - 045 20 M 077 4D m 109 6D
[CTRL]In SO 014 OE . 046 2E N 078 4E n 110 6E
[CTRL]o SI 015 OF / 047 2F 0 079 4r o 111 e6F
[CTRL]p DLE 016 10 0 048 30 P 080 50 p 112 70
(CTRL]g DC1 017 11 1l 049 31 Q 081 51 q 113 71
[CIRL]r DC2 018 12 2 050 32 R 082 52 r 114 72
[CTRL]s DC3 019 13 3 051 33 S 083 53 S 115 73
[CTRL]t DC4 020 14 4 052 34 T 084 54 t 116 74
[CTRL]Ju NAK 021 15 S 053 35 U 085 55 u 117 75
[CTRL]v SYN 022 16 6 054 36 \' 086 56 v 118 76
[CTRL]w ETB 023 17 7 055 37 W 087 57 W 119 77
[CTRL]x CAN 024 18 8 056 38 X 088 58 X 120 78
[CTRL]y EM 025 19 9 057 39 Y 089 59 V4 121 79
[CTRL]Zz SUB 026 1A : 058 3aA Z 090 5A z 122 7A
[CTRL][ESC 027 1B : 059 3B [091 SB { 123 7B
[CTRLI\ FS 028 1C < 060 3C \ 092 5C | 124 7C
[CTRL]] GS 029 1D = 061 3D] 093 5D } 125 7
[CIRL]I® RS 030 1E > 062 3E ~ 094 5SE ~ 126 7E
[CTRL]_US 031 1F ? 063 3F _ 095 SF DEL 127 7F

Supplement to C: A Reference Manual

14

16

16
16

17

17

18

19

21

23

26

27

28

33

Are any additional characters allowed in an identifier? No
additional characters are allowed in identifiers (only
letters, digits, and the underscore, _, are allowed).

Are enum and void implemented? Yes, both are implemented.
Is entry va reserved word? No.

What are the reserved words in WICAT Systems C? The reserved
words are listed in appendix C of this manual.

Are the digits 8 and 9 allowed as octal digits? Yes, but a
warning message is generated.

What are the storage sizes of the data types? The storage
sizes are given in chapter 3.

How are out-of-range values handled? Constants larger than
MAXINT (2147483647) are silently truncated, and no warning or
error message is generated.

What representation does the 68000 use for integers? The
twol complement representation is used for integers.

How is the char oonstant implemented? Character constants
are implemented as 8-bit signed types, i.e., the sign
extends.

How 1is the backslash treated when it is followed by an
invalid escape code? The backslash, \, is ignored when it is
followed by an invalid escape-code character.

Is hexadecimal notation allowed in numeric escape oodes?
Yes. The hexadecimal escape oode \x is allowed in character
oonstants (e.g., "\x1A").

Can the preprocessor and the <compiler be operated
separately? Yes. The oompilation process is described in
chapter 2.

Are the preprocessor commands delif and defined supported?
The preprocessor oommand defined is supported but #elif is
not.

Is leading space and whitespace allowed with the macro
commands? No leading space, whitespace yes.

Can actual argument token lists extend across multiple
lines? Backslash required.

B-2

Appendix B
Supplement to C: A Reference Manual

The book C: A Reference Manual supplied by WICAT Systems raises questions
about differences between various implementations of C. This appendix
clarifies those questions so that C: A Reference Manual, along with this
appendix, is a complete language reference for WICAT Systems C. These
answers are given in the order the questions are presented in the book.

Pace #
9

10

12

14

Answer

Does the character set include additional characters not in
the standard set Yes. WICAT supports the oomplete ASCII
character set (e.g., the §, @ and ' characters are
included). The characters not included in the standard set
can only appear in comments, character constants, or string
constants.

What is the 1line limit of a C program? 256 characters.
Different parts of the software generation system have
different line limits. The shortest limit is 256 characters
for the floating-point preprocessor.

Are nested comments allowed? Nested comments are accepted.
However, 1lint generates a warning message for nested
comments.

What is the maximum length of an identifier? Identifiers of
any length are allowed. However, global and static
identifiers are declared in the assembly output on one line,
similar to this:

.global <identifier>
The entire line must be less than 256 characters to work with

the floating-point preprocessor, so the practical 1limit to
the length of an identifier is about 200 characters.

B-1

Supplement to C: A Reference Manual

40

40

41

41

46

48

The call QONC(INC,TAB) is ultimately expanded into this:
table of_increments

Does the preprocessor perform stringent error checking? The
preprocessor does not check for things such as an incomplete
token in the macro definition.

How are double quotes and angle brackets treated in #include
statements? Files listed in double quotes are only searched
for in the directory the source is in. Files listed in angle
brackets are searched for in the standard directories and any
other directories specified with compiler options. The
directories you specify are searched first.

What are the standard include directories? The standard
include directories are:

/usr/include (UNIX only)
sys$disk/ucc. include/ (WMCS only)
sysSdisk/sysincl.sys/ (WMCS only)

Are nested #include statements allowed? Yes. Nesting is
allowed to 16 levels.

How are errors in oonstant expressions in preprocessor
conditional ocommands handled? When an error occurs in a
constant expression, no warning message is generated and the
value is assumed to be zero.

Is # allowed for #line? Yes. The line "# <number>" is the
same as "#line <number>"

B-4

34

34

36

36

37

39

Supplement to C: A Reference Manual

Are macro formal parameters recognized within string and
character constants? Yes. Formal parameters will have the
same textual form as the actual parameters when expanded with
the exception that oomments are deleted. For example,
consider the definition and call below:

#define X(x) "x"
X(a += 00400 /* foo blat */)

The definition would cause the call to expand to this
constant :

" a+= 00400 "

How are comments within macros treated? They are not passed
when a macro definition is substituted (see the example in
the foregoing comment) .

What are WICAT's predefined macros? The only predefined
macros are:

mc68009
unix (for UNIX systems)
WINCS (for future WMCS systems)

HBow is an attempt to redefine a macro handled? Macros can be
redefined. The new definition replaces the old one, and the
preprocessor generates a warning message, including warnings
about parameter mismatches.

Are macro definitions implemented with a stack? No. The
preprocessor does not stack macro definitions (defined with
#define). X would not be defined as 10 after the following
three ocommands, as the example on p. 37; x would be
undef ined:

#define x 10
#define x 12
#undef

Are macro bodies treated as character sequences? Yes.
Consider the following example, given on p. 39. of the text:

#define INC ++

#define TAB internal_table

#define INCTAB table_of_increments
#define QONC(X,y) x/**/y

QONC (INC, TAB)

B-3

Supplement to C: A Reference Manual

74
75
76
77

78

79

80

80

81

87

89

9@

93

98

99

Is compile~time floating point arithmetic performed? Yes.
Are casts allowed in constant expressions? Yes.
Can autamatic arrays be Initialized? No.

Are braces allowed in enumeration initialization
expressions? Yes.,

Can bit fields be initialized? VYes, static and extern bit
fields can be initialized.

Can wnions be initialized? No.

Are too few or too many braces allowed in initializer lists?
No. WICAT Systems C strictly conforms to the "Brace Eliding"
rules given on p. 79 of the text.

Are pointers and ints the same size? Yes. Chapter 3 lists
the storage size for each data type.

When is a top-level declaration of an external name
considered to be its definition? The ocompiler uses the
"mixed"” strategy, described on p. 82 of the text, to define
external names. With an initializer but no extern, it is a
definition. With no initializer and no extern, it is a
"common" definition. If extern is there, the definition
occurs elsewhere,

What are the sizes of short, int, and long? The sizes for
all data types are given in chapter 3 of this manual.

What unsigned types are supported? The compiler supports
unsigned long, short, and char types.

Bow is the char type implemented? The char type is signed.
Therefore it can assume negative values. The size of char,

along with the sizes of all data types, is given in chapter 3
of this manual.

Is long float allowed? No, the compiler does not recognize
"long float" as a synonym for double.

What is the maximum dimension of an array? The compiler can
handle up to 13 dimensions of an array. In general, the
compiler can handle 13 levels of indirection.

What is the unit of measurement returned by the sizeof
operator? The sizeof operator returns the size of an array

in pbytes.
B~-6

54

56

59

61

69

Supplement to C: A Reference Manual

Are labels placed in the same space as variahles? No.
Labels have a separate name space from variables. 1In this
example, given on p. 54, the integer declaration of L hides
the label (it is not an illegal duplicate definition of L):

{ ..

goto L;
{ int L;
{ XX
L=10;
L:'..
}
}

}

Bow are forward references to static variables handled?
Forward references to static variables with "extern" do not
change the storage class of the variable, i.e., it remains
static.

Are the normal scoping rules different for external
declarations? Yes. The normal scoping rules for extern
declarations are "violated." The following example, given on
p. 59, extends the definition of E to the second assignment
(it is not illegal):

{

extern E;
E=08;

}

E=1;

}

How many register variabhles are available? The use of
register variables is described in chapter 3 of this manual.

Are zero-length arrays allowed? No, but null-sized arrays
are allowed, even in some contexts where it does not seem to
make sense. For example, the following function compiles even
though it is improper:

func() {
char carrayl[];
sprintf (carray, «..);

B-5

Supplement to C: A Reference Manual

156

157

163

169

183

185
186

187

189

190
190
193
194
216

Can the address operator be used with a register variable?
No, you cannot take the address of a register variahle,

Can the address operator be used with an array or function?
The compiler generates a warning message if you try to take
the address of an array or a function.

How is integer division with negative numbers handled? 1In
integer division involving negative numbers where the
mathematical quotient is not an exact integer, the result is
the nearest integer which is closest to zero (i.e., the same
as for positive numbers).

How does the signed right shift work? Right shifts of signed

numbers replicate the sign bit, i.e., the sign bit is
extended.

Can the result of a conditiomal expression be structure,
union, enumeration, or void? Yes, any of them.

Are structure and union assignments allowed? Yes.

Is whitespace allowed between the characters of a compound
assignment operator? Yes. For example, "i + =5" is
allowed.

Are the “"old style®™ compound assignment operators
recognized? The "old style" compound assignment operators
described on pp. 186-187 are recognized and generate a fatal
error. Statements like "i=-4" produce warning messages about
ambiguous assignments.

Is the exclamation point, !, allowed 1in coonstant
expressions? Yes.

Is casting allowed in constant expressions? Yes.,

Is the comma operator allowed in constant expressions? No.
Is a warning message generated for discarded values? No.
Does the compiler optimize memory access? No.

Are the enum and long types allowed in switch statements?
Yes.

B-8

192

192

123

106

108

108

109

119

140

145

148

150

153
154

Supplement to C: A Reference Manual

What is the size of an enum type? The size of all data types
is given in chapter 3 of this manual.

Can previously defined enum oonstants be used in enum
constant expressions? Yes.

How is the enum type implemented? The enumeration type is
impl emented as an integer model.

What structure operations are possible? Structures can be
assigned, passed as parameters, and returned as function
values.

Can two structures have components with the same name? VYes,
the overloading of structure component names is allowed.

How are structure components packed? Structure components
larger than the size of char always start at an even-byte
offset.

How are bit fields packed? Bit fields are packed from left
to right.

How are bit fields implemented? Bit fields must be unsigned
(int or enum type). Signed declarations produce no warnings
or errors and are treated as though unsigned. Fields are
limited to 32 bits (one longword). Fields too large to fit
entirely in the current longword are aligned to the next word
boundary. Zero—-length bit fields are not supported.

How are overflow, underflow, division-by-zero, and other
arithmetic exceptions handled? Overflow, underflow, and
other arithmetic exceptions do not generate error or warning
messages. The (unpredictable) results are propagated through
future results. Division by zero, however, generates an
error message.

Does enclosing an expression in parentheses force a unary
conversion? No.

Can functions return structures and unions? Yes.

Can formal parameters be used in a function expression? No,
you cannot specify a formal parameter declared as being of
type "function returning T" for some type T.

Are "narrowing casts® performed by the compiler? Yes.

What is the type of the sizeof result? The result type of
the sizeof operator is unsigned int. The size is given in

bytes.
B-7

Appendix C
KReywords

The keyword (reserved word) list for WICAT's C compiler conforms to the
proposed ANSI standard for C.

If you use a keyword as an identifier, the compiler ‘returns a syntax
error.

Following is a list of the keywords for the WICAT C compiler. The words
followed by an asterisk are reserved due to the proposed standard:

asm enum* struct
auto for sizeof
break float short
char fortran static
case goto typedef
const* if unsigned
continue int union
double long void*
default return volatile*
do register while
extern signed*

else switch

c1

Index

111ib, 7-1
compile process,
diagrams, 2-2
UniPlus+ System V, 2-2
WMCS, 2-2
compiler, features, 3-7
compiler limitations, 2-3
compiler optimization, 4-4
common tail merging, 4-5
constant folding, 4-1
dead code elimination, 4-4
elimination of stack pops, 4-8
input, 4-1
instructions, 4-2
link/UNLK removal, 4-7
loop rotation, 4-6
NOP suppression, 4-8
peephole optimizations, 4-9
redundant branch elimination, 4-5
register remapping, 4-6
strength reduction, 4-2
type reductions, 4-2
unreachable code elimination, 4-4
cos, see trig
cosh, see sinh
creat, creat-l
crypt, crypt-l
ctermid, ctermid-l
ctime, ctime-l
ctype, ctype-l

cuserid, cuserid-l

data registers, 3-4
ag=1, 4@, di, 3-4
a2-a5' d2_d7' 3-4
a6’ 3-4
a7l (sp), 3-4
data types, storage sizes,
debugging, 16-1
adb, 18-1
locating code,
function, 18-2
lines in a function, 19-2
locating data, 18-1
auto variables (and formal
parameters), 18-2
external variables, 10-1
register variables, 10-2

3-2

static variables, 10-1
optimized code, 10-3
things to watch out for, 10-3
assembly code, 10-3
file and .line, 16-3

LINK/UNLK, 10~4

remapping register variables, 10-4

stack backtraces, 10-4
WIBUG, 18-1
drand48, drand48-1
dup, dup-l

ecvt' eCVt-l
erand48, see drand48
erf, erf-1

erfc, see erf

errno, see perror
exec, exec-l

execl, see exec
execle, see exec
execlp, see exec
executable files and images
format, 3-2

execv, see exec
execve, see exec
execvp, see exec
exj.t' e}(it"l,

exp, exp-l

fabs, see floor
fclose, fclose-l
fovt, see ecvt
fdopen, see fopen
feof, see ferror
ferror, ferror-l
fflush, see fclose
fgetc, see getc
fgets, see gets
fileno, see ferror
floating-point,
C optimizer, 5-3
choosing preprocessor, 5-2
compiler, 5-1
debugging, 5-7
a move, 5-7
cc K, 5-7
compile : nofpreprocess, 5-7
jsr, 5=7
under UniPlus+ System V, 5-8

index-2

Index

ab4l, a64l-1

abS, abs-l

acos, see trig

adb, 10-1

ASCII character table, A-l

asj-n' see trig)

assembler optimization, 4-10
branch shortening, 4-10
on 680600, 4-11
span—dependent optimization, 4-10

atan, see trig

atan2, see trig

bessel, bessel-l
brk, brk-1
bsearch, bsearch-1

.C extension, 2-1

C libraries, 6-1
files under UniPlus+ System V, 6-1
files under WMCS, 6-1
14, 6-1
LL, 6-1

C program hardware limitations, 2-3
process size, 2-3

index-1

¢ source files, 2-1

calling FORTRAN77, 9-2
arqument lists, 9-4
C and FORTRAN declarations, 9-2
procedure names, 9-2
return values, 9-3

calling function, 9-1

calling Pascal, 9-4
argument lists, 9-6
C and Pascal declarations, 9-5
data representations, 9-5
procedure names, 9-5
return values, 9-6

calloc, see malloc

cc, 2-1

ceil, see floor

chdir, chdir-1

dmd' dm0d-l

clearerr, see ferror

close, close-1l

compilation under WMCS,
compile, 7-1
li' 7-1

Index

lrand48, see drand48
lsearch, lsearch-1
lseek, lseek-l
1tol3, see 13tol

malloc, malloc-1
math library, 6-2
under UniPlus+ System V, 6-2
under WMCS, 6-2
memccpy, See memory
memchr, see memory
memamp, See memory
mEMCpy, See memory
memory, memory-l
memset, see memory
mktemp, mktemp-1
modf, see frexp
mrand48, see drandd$8

nrand48, see drand48
NULL pointer, misuse, 2-3

open, open-l

optimization, definition, 4-1

optimization cautions, 4-20

optimization tricks, 4-14
QOMPM instruction, 4-15
DBRA instructions, 4-15

fast data copying/comparison, 4-18

improving array access and
pointer arithmetic, 4-16
optimizing functions with more
register variables than
registers, 4-14
post-increment and pre-
decrement addressing, 4-15

speeding up arithmetic functions, 4-16

optimizer optimization, 4-3
basic blocks, 4-3

data ocollection techniques, 4-3

flow analysis, 4-3
live dead analysis, 4-4
fundamental units, 4-3
module, 4-3
moving window, 4-3

perror, perror-1

PoW, see exp
printf, printf-1

putc, putc-l
putchar, see putc
putw, see putc

gsort, gsort-l

rand, rand-l

realloc, see malloc
register-indirect-with~offset
gdgressing mode, limitations,
rewind, see fseek

scanf, scanf-l

seed48, see drand48

setbuf, setbuf-l

setjmp, setjmp-l

setvbuf, see setbuf

sin, see trig

sinh, sinh-1

sleep, sleep-l

software generation system, 2-1
getting good code, 4-11

sprintf, see printf

sqrt, see exp

srand, see rand

srand48, see drand48

sscanf, see scanf

stack, 3-5

Stat, Stat-l

storage,
external, 3-1
register, 3-2

storage allocation example, 3-6
calling function, 3-6
local array, 3-6
register variables, 3-6
static variable, 3-6

strcat, see string

strchr, see string

stramp, see string

strcpy, see string

strespn, see string

string, string-1

strlen, see string

strncat, see string

Index

under WMCS, 5-8
breakpoint, 5-8
libraries, 5-8
startups, 5-8

double storage format diagram, 5-4
exception handling, 5-6

divide-by-zero, 5-6

illegal operation, 5-6

overflow, 5-6

under UniPlust+ System V, 5-6

under WMCS, 5-7

underflow, 5-6

float storage format diagram, 5-4
hardware and software, 5-1
libraries,

under UniPlus+ System V, 5-9

under WMCS, 5-9

precision, 5-3

registers, 5-3

reserved values, 5-5
software emulation, 5-1
under UniPlus+ System V, 5-2
under WMCS, 5-2

fpngr command, 5-2

floor, floor-1l ~

fmod, see floor

fopen, fopen-1

fprintf, see printf

fputc, see putc

fputs, see puts

fread, fread-1

free, see malloc

freopen, see fopen

frexp, frexp-l

fscanf, see scanf

fseek, fseek-1

fstat, see stat

ftell, see fseek

function call stack frame,
local variables, 3-5
register variables, 3-5

function call stack frame

diagram, 3-5

function parameter, 3-5

fwrite, see fread

gamma, gamma-l
gcvt, see ecvt

index-3

getc, getc-l
getchar, see getc
getowd, getowd-l
getgid, see getuid
getlogin, getlogin-l
getopt, getopt-l
getpgrp, see getpid
getpid, getpid-l
getppid, see getpid
gets, gets-1
getuid, getuid-l
getw, see getc

hcreate, see hsearch
hdestroy, see hsearch
hsearch, hsearch-1

hypot, hypot-1

initialized external and static
variables, 3-4

isalnum, see ctype

isalpha, see ctype

iQSCii' see Ctym

isatty, see ttyname

isontrl, see ctype

isdiqgit,
isgraph,
islower,
iSEI int,
ispunct,
isspace,
isupper,

see ctype
see ctype
see ctype
see ctype
see ctype
see ctype
see ctype

isxdigit, see ctype

j8, see bessel
jl, see bessel
jn, see bessel

jrand48,

see drand48

keymr(k' C—l
reserved, C-1

13tol, 13tol-l
164a, see a64l

lcong48,

see drand48

ldexp, see frexp
log, see exp
logl®, see exp

loqgj mp,

see setjmp

R

- e,

s e e s
B I

- e
e

WICAT Systems, Inc.

Product-documentation Comment Form

We are censtantly improving our documentation, and we welcome sgecific comments on this manual.

Document Title:

Part Number:

Your Position: [0 Novice user O System manager
0O Experienced user O Systems analyst
0O Applications programmer O Hardware technician
Questions and Comments Page No.

Briefly describe exampies, illustrations, or information that you think shouid be added
to this manual.

What would you delete from the manual and why?

What areas need greater emphasis?

List any terms or symbols used incorrectly.

First Fold

(il

BUSINESS REPLY MAIL

- FIRST CLASS PERMIT NQ. 00028 QREM. UTAH

POSTAGE WILL 3E PAID 3€ AODRESSEE

WICAT Systems, Inc.

Attn: Corporate Communications
1875 S. State St.
Orem, UT 84058

NG PCSTAGE
NECESSARY
iF MAILED
IN THE
UNITED STATES

Second Fold

Tape

