
c
Programmer's Implementation Reference Manual

188-370-302 A

March 1986

WI CATsystems

• Softvvare •
Publications

CoI?lright ©1986 by WlCAT Systems InoorIDrated
All Rights Reserved
Printed in the United States of America

Receip: of this manual must not be oonstrued as any kind of commitment,
on the p:irt of WlCAT Systems Inoorp)rated, regarding delivery or
ownership of items manufactured t¥ WICAT Systems.

This manual is subject to change without notice.

first printing March 1986

Tradenarks Used in this Publication

UniPlus+ is a registered tradanark of UniSoft Systans
WMCS is a registered tradanark of WlCAT Systans

iii

Information acout this Manual

Review the following i tans before you read this publication.

'!he subj ect of this manual

'Ibis manual is designed to give information required to efficiently use
WI~'s C compiler.

The audience for whan this publication was written

This manual is written for the advanced programmer using WICAT' 5 C
compiler. The information herein presupJ;Oses a general knowledge of C,
and experience in prograrmning.

An introductory C text, lb.e. ~ Primer, and a general overview of C, ~ A
Reference Manila], are available from WICAT Systans, Inc. This manual
presupJ;Osses familiarity with the information in those rooks. This
publication is not tied to a sp=cific C release.

Related publications

The C Primer, };art number 188-370 101 A, is an excellent introduction to
C for the user who has little or no experience with C. This manual
presupp:>ses a knowledge of the information in The. ~ Primer, or equivalent
experience with C •

.c..;. A Reference Manual, };art number 188-370-301 A, is an overview of C. It
is for those with oome knowledge of C. '!he information in it is not
sp=cific to a !;Brticular C implanentation.

'l'yp>graI,ilical Conventions Used in this Publication

Bold facing indicates what you should typ=.

Square brackets, [], indicate a function key, the name of which app;ars
in up~rcase within the brackets. For example, [RRmN], [crRL] , etc.
Braces, {}, indicate a key in the keyp3.d.

Underlining is used for antilasis.

iv

Table of Contents

Chapter 1 Introduction

Olapter 2 The Compilation Process

C QJnpiler
Limitations on WI~'s C QJnpiler •••••••••••••••••••••••••••••••••

Olapter 3 WICAT C Irnplanentation

stora<]e •••
Storage Sizes ••

Stora<]e Allocation andAcoess •••••••••••••••••••••••••••••••••••••
Register Allom.tion •••
Us:iJlg the stack •••
Signed and unsigned Scalar ~ ••••••••••••••••••••••••••••••••••
WIa.T C Featllres ••
Talp>raJ:Y' Files •••

Olapter 4 Optimization

ca.piler (ocaD) Optimizations •••••••••••••••••••••••••••••••••••••
Constant folding •••
Strength reduction •••
~ reductions ••

Optimizer (~oopt) Optimizations •••••••••••••••••••••••••••••••••
])ata collection techniques •••• · •••••••••••••••••••••••••••••••••
Optimization tedlniques ••.••••••••••••••••••••••••••••••••••••••

Asqembler (~wimac) Optjmj?ations ••••••••••••••••••••••••••••••••
BOil to Get Good Code £raa the Software

Geleration ~E!IIl •••

v

2-1
2-3

3-1
3-2
3-2
3-4
3-5
3-7
3-7
3-7

4-1
4-2
4-2
4-2
4-3
4-3
4-4
4-10

4-11

Table of Contents

Do . no~ US7 ~egister variables
lndiscr~~tely •••

Do not over-declare register variabies •••••••••••••••••••••••••
Don't make functions too long ••••••••••••••••••••••••••••••••••
Consider using preprocessor macros instead

of simpie functions ••
Use pre-incranent/decranent in favor of

};X> st-incr anetlt/ decr anerlt •••••••••••••••••••••••••••••••••••••
Use char and short integer variables

instead of int variables •••••••••••••••••••••••••••••••••••••
Use };X>inters rather than indices when

looping through arr~s •••••••••••••••••••••••••••••••••••••••
Keep the range of QWitch statanerlts small

and not too sparse •••
Sc10e SJ;2cial. Tricks ••••••••••••••••••••••••• '......................

Optimiz ing ftmctions with more register
variables than registers •••••••••••••••••••••••••••••••••••••

Generating Special Instructions and
Addressing Modes •••

Speeding Up Arithmetic Operations ••••••••••••••••••••••••••••••
Improving array access and };X>inter

arithmetic •••
Fast data CX>1?{ing/ cantarison •••••••••••••••••••••••••••••••••••

<:atJtioos ai:x>1lI: o!*'jmiziIlg •••

Cllapter 5 Floating-pointx

Bow tbe C Cbm[dler Handles P.loating-point •••••••••••••••••••••••••
Floating-point Under WMCS ••••••••••••••••••••••••••••••••••••••
Floating-point Under UniPlus+ ~stan v•.....•...........

Getting the Best PeEfo~ce ••••••••••••••••••••••••••••••••••••••
Choosing the Floating-point Preprocessor •••••••••••••••••••••••
C Optimizer ••
Floating-point Registers •••••••••••••••••••••••••••••••••••••••
Precision ••

P.loating-poillt EbEDBt •••
~()Il Bald.ing ••

Exception Handl ing under UniPl us+ ~stan V •••••••••••••••••••••
Exception Handling under WMCS ••••••••••••••••••••••••••••••••••

Debugging Floating-poillt Prog1aws •••••••••••••••••••••••••••••••••
Debugging floating-point prograns under

UniP1us+ ~stan v ••

vi

4-11
4-11
4-12

4-12

4-13

4-13

4-13

4-14
4-14

4-14

4-15
4-16

4-16
4-18
4-20

5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-6
5-6
5-7
5-7

5-8

Table of Contents

I)ebugging floating-I;X)int programs tmder
WMCS. • 5-8

Pioating-poiot Libr,aries.. 5-9

Chapter 6 C Libraries

'.f!le C Libr~... •.• 6-1
'l!M! !I:lth Libraty.... 6 - 2

The Math Library tmder UniPlus+ System V....................... 6-2

<llapter 7 . Dictionar:y of C Library Routines

a641
abs
aces
asin
atan
atan2
beseP.l
brk
hsearch
ceil
chdir
clJDod
clearerr
close
ces
msb
erea.t
cIypt.
cteDDid
ctjup

ctype
cuserid
draIKK8
dup
ecvt
erf
erfc
eJEC
ent

vii

Table of Contents

ezp
fabs
fcl.ose
fCbpen
feof
ferror
£flush
fgetc
fget:s
fileno
floor
fDIld
fopen
£Irintf
fpJtc
fpIts
fread
freopen
frap
fscanf
fseek
£tell
fwrite
t:pmna
getc
getdIar
getcwd
getlogin
get:op:
getpid
get:s
getuid
getw
bsearch
hyp>t
j8
jl
jn
l3ta!
164a
log
10918
1 search

viii

lseek
malloc
IDBII)ry
mkta.p
open
nrand48
pow
{Xintf
pEe
pltdlar
plts
plbr
qsort
rand
rewind
scant
setbuf
setjJll)
setvbuf
sin
sinh
sleep
sprintf
sqrt
sscanf
stat
strcat
swab
system
tan
tanh
t8lll;lliDD
time
tmpfile
t-mpHn
trig
tseardl
tt.yname
mgete
unlink
write
y8
yl
yn

Table of Contents

ix

Table of Contents

<llapter 8

cnnpile
lllib
li
Uran

Chapter 9

WMCS Compilation Commands

calling Functions Written in other Languages

C atlICi ~ •••
Procedure Names ••
Data Representation ••••••••• ' •••••••••••••••••••••••••••••••••••
Ret urn Val ues ••••••••••••••••••••••• -" •••••••••••••••••••••••••••
Argument Lists •••

C arlCl Pa.sc::a 1.
Limi ta tions ••
Procedure naIlles ••
Data Representations •••
Return Values •••••••••••••••••••••••••••••••••••.•••••••••••••••
Argument Lists •••

Chapter 10 Debugging

HCJIf to I.clc:3te Ilelta. ••
HCJIf to ID<3te Q)cie ••••••••••••••••••••••••••••••••• " •••••••••••••••
IJeIJIlggiJlg <>r*i mj zei Q)cie ••

APtaldix A .ASCII Character Tab1 e

Appendix B Suppl anent to .Cl. A Reference Manual

Apta'ldix C Keywords

x

9-2
9-2
9-2
9-3
9-4
9-4
9-5
9-5
9-5
9-6
9-6

10-1
10-2
10-3

Clap:er 1

Introduction

This manual is intended to help the user of WICAT's C compiler. It should
be used in conj tmction with The ~ Primer, p:lrt nunber 188-370-101 A, and
~ A Reference Manual, part number 188-370-301 A.

'!he information contained in this manual covers the implanentation of
WICAT's C under WMCS and under UniP1us+ Systan V. Where appropriate,
topics are discussed in teIIllS of roth WMCS and UniPlus+ system V.

However, because information on C under UniPlus+ systan V is available in
the UniPlus+ system V cbcunentation, this manual anIilasizes C under WMCS.

For example, chap:er 2 covers the oompilation process under WMCS and
UniPlus+ system V.

Clapter 3 gives hints for successful irnplanentation of WICAT's C compiler
for WMCS and UniPlus+ system V.

Clap:er 4 is a brief introduction to the C and math libraries.

Clapter 5 describes WI CAT , s implanentation of floating-tx>int arithmetic
in relation to C.

<llap:er 6 gives information arout op:irnization under WICAT's C compiler.

Clapter 7 is a dictionary of C libraries not available as p:lrt of the
WMCS oocumentation. Because these libraries are Cbcumented in the
UniPlus+ system V manuals, . they are provided here s~ci£ically for the
user of C under WMCS.

<llap:er 8 contains the four WMCS C compilation cx>mmands. '!hey are
fonnatted in the WMCS camnand-description style. If you are using C under
WMCS, read these cx>mmand descriptions.

If you are using C under UniPlus+ system V, see the ~ camnand
description in the UniPlus± System V User's Reference Manual (Section ll..

1-1

Introduction

Chap::er 9 contains information to help the user interface C with other
languages.

Cllapter 10 offers guidelines for derugging when using the C a:>mpiler.

This manual. is written for programners familiar with C. It presupFOses an
aa;Iuaintance with the other two oooks that are };art of the WI~T C
Cbcumentation set, and experience with C.

1-2

CllaIXer 2

The Compilation Process

Under UmPlus+ Systan V, C files are CDmpiled with cc. [bcumentation for
cc is in the UniPlust System V User I s Reference Manual (Section lL.

Under WMCS, C files are CDmpiled with CDmpile. The CDmpile CDmmand
description is in chaIXer 8 of this manual.

Compile under WMCS, and cc under UniPlus+ Systan V, are the interface to
the Software Generation System (G;S). The s.:;s takes camnand line options
and C source files, and invokes the p:lsses required to translate a C
source program to an executable object module.

Files with a • c extension are assumed to oontain C source and follav the
execution p:lth shown. When more than one source file is s~cified on the
command line, each file is run through the execution sequence sep:lratel.y
(up to the LINKER p:lSS). At this p:>int, the LINKER canbines the created
object files into a single executable.

2-1

The Cbmpilation Process

The follaving diagram shows the oompile process under WMCS and UniPlus+
System V:

cpp ccom

cpp ccom

WMCS
filename.c ~ filename .exe

alib2
or askyl

copt or affpl WIMAC

UniPlus· System V
filename.c ~ a.out

c2

alib2
or askyl
or affpl as

other .a's

LL

ld

j's, .k's and .5'5 are temporary files with names derived from the process identification.
They are hidden in the WMCS dictionary sys$disklsystmpl or the UniPlus + System V
directory /usr/tmp.

2-2

'!he Compil ation Process

Limitations on WICAT's C Q:mpiler

'!be size of a C program is limited l:¥ the size of internal data
structures in the canpiler (which cannot be changed l:¥ the user). If the
program requiranents exceed these limits, the compiler can fail.

Following are limitations of the WICAT C canpiler:

Symtol tabl. e
Expression tree
p:lrse stack
switch
block nesting

1300 symOOls
500 nodes
150 I;Brameters
500 cases
30 levels

A program can aloo be limited by hardNare. Sane hardNare limitations are
apparent at canpile time, others are aptarent only when the program
crashes.

These are the hardNare limitations for a C program:

t. The total process size is limited to 2Mbytes (or the size of
cwailabl. e manory if 2 Mbytes is not avail abl. e) •

The process size includes the program's text, data, and run-time
stack. Because of this, the following declaration of an array
could fail:

char bigsucker[100] [100] [100];

A recursive fmction with a large anount of local storage could
aloo fail because it causes the stack to grow quickly.

2. The register-indirect-wi th-off set addressing mode is used by the
compiler. It is used for local variable and p:lrameter references.
It is limited to 16 bits (-32768 to 32767).

However, this addressing mode cannot be used if the nt.m1ber of
local variables, or the ntmber of bytes of paraneters, exceeds
32767 •

3. Indirection from a NULL I;X)inter can cause subtle problans. '!hough
location 0 is technically tart of a program's address stace, it
is a location in ROM.

2-3

The Cbmpilation Process

FollCMing are wGr:/s of misusing a NULL pointer:

Reading: Reading location rc1 returns whatever is at the
lCMest ROM address (a j ll11p instruction). When
printed the result is garbage.

For example, the follCMing program prints "ep is
Ny. n

char *ep = rc1;
printf("cp is %s\P", cp);

Writing: Although location rc1 is not writable, an error is
not produced. The write is ignored. Therefore, the
follCMing program segnent cbes not produce a core
dump, but it does not print "true" either.

char *ep = rc1;
*ep = 'x';
if (*ep = • x')

printf ("true \P ") ;

Executing: Location rc1 contains a j ll11p instruction to a
destination in the systan address sFSce (0x2rc1rc1rc1rc1rc1
or greater). Executing the instruction at rc1
causes a jump to systan sFSce. However, this is a
manory violation. The progran crashes with the
program oounter in the rc1x2rc1rc10rc1ra+ range.

2-4

<llapter 3

WICAT C Implanentation

This chapter contains information that will be helpful
impiementation of WICAT's C.

in the

storage

There are four kinds of storage:

1. Auto

These are local variables. They are allocated on the stack at run
time when a flllction is called. Auto variables in inner blocks
are allocated when the lexically enclosing function is entered,
not when the block is entered. However, optional initialization
occurs when the block is entered.

Names ap~ar in the compiler output as offsets from the stack
tx>inter as follows:

-<offset> (sp)

2. External

These are global variables. The oompiler allocates Spice for
these variables and assigns them the names given t1:t the user,
preceded qy an lIlderscore.

If initialized, the storage is allocated and the value is
assigned at compile time. If not initialized, space is not
allocated LU'ltil load time. Then the initial value is zero.

3. Static

This is another form of global storage. It is global only to the
defined function or file. Storage is allocated at oompile time

3-1

WICAT C Implanentation

whether the variable is initialized or not. Names are not
exp:>rted aoove the local level. and are not visible to the user or
other S:;S util ities.

4. Register

Register variables are contained in haravare machine registers.
They are limited to scalar ty};:es.

There can be up to six data variables (char/short/int/long), four
lDinter variables (e.g., char *), and four floating-p:>int
registers. The number of floating-IDint registers is hardvare
depandent.

Where the user declares more register variables than there are
registers, the register modifier is ignored. The mapping between
the name declared by the user and the register cnntaining it is
of ten diff icul t to compute.

Storage Siz es

Following is a list of storage sizes for data ty};:es under WlCAT' 5 C
compiler:

char
short
int
long
float
<DubIe

8 bits
16 bits
32 bits
32 bits
32 bits
64 bits

Storage Allocation and Access

To understand how various classes are allocated and accessed, the format
of C object files and images must be understood.

3-2

WIeAT C Implanentation

The following diagrams represent the format of executable files and
images:

o

1000

4000

Loaded WMCS Image
(with floating point)

ROM (41<)

Floating point
shared memory (12k)

Text segment

Data segment
10-- - -t- - -
I-- -- - - -

Stack
1faOOO

Floating point
shared memory (20k)

1££000

200000
Never used (41<)

WMCS Executable File

Bit maps

Text and
Initialized Data

Symbol Table

3-3

o

1000

1££000

200000

Loaded WMCS Image
(without floating point)

ROM (41<)

Text segment

Data segment -- - -J-- -

10--

__ t ___
Stack

Never used (41<)

WICAT C Implanentation

Loaded UNIX Image UNIX Executable File

Text Segment Header Infonnation

Data Se~ent
(initialized om file)

Data
(global/static)

"BSS" Segment
(init to zero on load)

Text
(program instructions)

<HOLE> Symbol Table

Stack
(new pages init to zero)

The UNIX executable file format is described in more detail in a.out (4)
of the UniPlus+ Systan V User's Manual Sections (2-6).

Initialized external and static variables are oontained in the data
segnent •. Names and locations of these variables are in the &ymtol table.
rrhe &ymtol tabl e al ED 00 ntai ns the names of mini tial iz ed external
variables. Locations of the variables are added at link time.

Storage for auto and register variables is not allocated until runtime.
'!he names are only in the code that references than.

When loaded, the data segnent has been expanded to include storage for
the previously uninitialized data variables. '!his storage has been
initialized to zero by the operating systan. Auto variables are created
on the stack when the lexically enclosing function is entered. Register
variables are loaded into machine registers when the lexically enclosing
function is entered.

3-4

WICAT C Implanentation

Register Allocation

The C CX)mpiler uses the 68000' s eight data registers and eight address
registers as follavs:

a0=l,d0,dl

These registers are used to oompute and store tanIDrary values
during evaluation of expressions. They are not saved when a
function is called, 00 their value is not guaranteed across
functional calls.

a2-aS,d2~7

a6

These registers are availabie as user~efined register
variables. If they are not user~efined, the oompiler can use
than as tanIDrary storage. '!hey are saved at function entry and
restored at exit 00 their value is maintained across function
calls.

This is the function call stack frame IDinter. It is used as a
base for locating function r:arameters and local variables. It
al&> serves as a backward link to previous function call stack
frames, i.e. function calls.

a7 (sp)

This is the stack I;Ointer.

Using the stack

The C compiler builds and maintains a stack frame for each active
function.

Address register 7 (A7, SP) and address register 6 (A6) have s:r:ecial
meaning.

Address register 7 (A7) is the current lowest active address (top) of the
stack.

Address register 6 (A6) is a frane p:>inter that def ines a base for
function parameters and local variables. It aloo provides a a p:>inter to
the previous stack frame.

Stack frames are manipulated with LINK and UNLK 68000 instructions.

3-5

WICAT C Implanentation

Following is a diagram of a function call stack frane:

sp-.....
-M(A6) -.....

Local Variables

-4(6) -..... t----------4
A6-..... Old Value of A6

Return addr to Caller
8(A6) -.....

Function Parameters

N(A6) -..... '--______ ---'

In the foreg:>ing diagram, local variables are accessed at negative
offsets fran AD, function parameters are at lDsitive offsets, and the
previous frame IX>inter value is at the location tDinted to by A6.

Register variables in functions have no ass:>ciated stack storage except a
function parameter.

If a function parameter is declared as register, it has storage in the
stack frame allocated by the calling function. Code is generated by the
compiler to cop.{ the contents of that location to a register when the
function is entered.

The follCMing function is a storage allocation example:

foo{pl, p2, p3)
char pI; register int p2; short p3;

{

}

regi ster char *apl = 0;
char al [11] ;
static int sl = 1;
int a2 = 2;

•

3-6

/* Locations: */

/* pI:
/* p2:
/* p3:
/* apl:
/* al:
/* sl:
/*' a2:

II (a6) */
12 (a6) and d7 */
18(a6) */
as */
-II (a6) to -1(a6)*/
not on stack */
-16{a6) */

WICAT'C Implanentation

In the foregoing example:

p2 occupies space on the stack. The compil er generates code to coW
fran the stack location: 12 (a6) to the appropriate register,' D7.

apl does not occu1?{ sI;8ce on the stack because it is a local
register variable. '!be compiler generates code to initialize it.

The calling function pushes all p:lrameters on the stack in re.verse
order. Therefore, they ap};Ear as first I;8rameter (lav address) to
last p:lrameter (high address). Scalar parameter tyFes shorter than a
lonq.yord are p:ldded to a lonq.yord OOLU'ldary.

The local array al is arranged from lowest address (a [0]) to the
highest address (a [Ie]) even though local variables are allocated
from highest to lavest (e.g., a2 occupies a laver address than al) •

The static variable sl occupies no stack storage even though it is
declared inside the function. It is allocated at compile time in the
initialized data section of the object file.

Register variables are allocated starting with d7 and as to d2 and
a2. Therefore, I;8rameter p2 is in d7 and local variable apl is in
as.

~: The C optimizer ranoves LINK and UNLK instructions in
functions with no local variables. In other words, function
parameters are accessed as p:>sitive offsets, from the stack
txlinter instead of offsets f rom the now-unacceptabl. e A6. rrhe C
optimizer can also ranap register variables into scratch
registers (d0 ,dl,a0 ,al). Read chap:er 6 of this manual for
more information on the C optimizer.

Signed and Unsigned Scalar Typ:!s

The scalar data tyt:es char, short, int, and long can be explicitly
declared as signed or unsigned. without a st:ecification, they are signed.

Unsigned modifiers affect unary and binary ot:erators as follavs:

Arithmetic ot:erators use unsigned aritlunetic (e.g., DIVU rather than
divs) •.

Logical, operators use unsigned comp:lrison (e.g., BLS rather than
BLE) •

The right shift operation zero-fills instead of sign-extends.

Implicit or explicit cast operations zero-fill rather than sign­
extend f ran shorter tyFes to longer tyFes.

3-7

WI~ C Implanentation

WIC\T C Features

The WICAT C compiler implanents extended o~rations on structures and
unions. structures and unions can be assigned, !;assed as ~rameters, and
returned as the result of functions.

In addition, the WICAT C compiler suptDrts enumeration tYI;2S (enum), the
void storage class, unsigned char and unsigned short data ty};es, and the
asn assembler esca~.

Al&>, the keyword list for the C compiler conforms to the prop:>sed ANSI
standard. The keywords nconst II and "volatil en are reserved for
implanentation of the ANSI standard. Attant:ts to use these keywords
generates a syntax error from the compiler. Entry has been drop~d from
the keyword 1 ist.

A list of keywords for the C rompiler app=ars in app=ndix c of this
manual.

TenIDrary Fil es

The C compiler creates a tanIDrary file for internal use. 'Ibis file is
used to collect string constants from throughout the &>urce file so they
can be emitted in a single section. When the preprocessor, compiler,
optimizer, and floating-IDint IDstprocessor are run under cc (UniPlus+
Systan V) or compile (WMCS), tanIDrary files are used to !;ass information
fran pass to ~ss.

These files are named CCCP<unique ID>. In the foregoing name, unique ID
represents a number that is unique to the process executing £Q or
cpmpile.

Under UniPlus+ Systan V, tanIDrary files are created in the follCMing
standard, systan-wide, tanIDrary directory:

/usr/trnp

Under WMCS these files are created in the following standard, systan­
wide, teml,Drary directory:

sys$disk/systmp

All tenl,Drary files are deleted when the compile process tenninates, or
when the compile process is interrupted.

3-8

ChaIXer 4

Optimization

'!he optimized code produced by the Software Generation Systan (a;S) is
not really optimimum code; a t:etter term is improved rode. Even though
the C optimizer dJesn't really optimize rode (it improves it), the term
"optimization" will t:e used throughout this manual since that is the term
tram tionally used to describe the "improving" process.

Optimization occurs in three parts of the S:;S: the canpiler, the
optimizer, and the assanbler. '!be optimization t:erformed t¥ the compiler
and the assanbler is oone a utanatical ly , i. e., it is perfooned on every
program and the user cannot turn it off. However, the optimizer is
turned off by default, and you must s~cify that the optimizer t:e used if
you want those optimizations to be t:erformed.

Caupiler (ccom) Optimizations

The C compiler t:erforms optimizations that the optimizer cannot Cb or
that are very hard to do. Primar ily, these optimizations require some
oource context that is not availabe in the generated assembly rode (e.g.,
types of variables). Th~ are perfooned whether or not the optimizer is
turned on.

The input for these optimizations is the internal expression trees
representing pieces of the program. '!be output is the assanbly code for
the program's statements. (The fundamental unit for compiler
optimizations is a C statanent.)

The following sections describe optimizations performed by the C
canpiler.

4-1

Optimization

Cbnstant folding

If the oFEranas of an oFErator are constants (their value is known
at canpile time), the operation is perfomed by the canpiler. For
example, the following two assigment statanents generate the same
code:

i = 3 * 5;

i = lSi

Strength reduction

If one of the operands of a binary operator is a constant, the
canpiler must generate code to perfOllll the operation. However, it
can use an instruction that takes less time.

'!he following examples shaN instructions the canpiler may use:

multiply by power-of-2
unsigned divide by power-of-2
some long-by-Iong multiples

'lYpe reductions

uses left shift
uses right shift
uses shifts and adds

Short integer tyI;eS (i. e., char and short) that occur in expressions
should undercp unary/binary <Dnversion (to longer integer types)
before the expression is evaluated. These conversions cause shorter
tyI;es to be promoted to int. .

For example, <Dnsider the following declarations and statanent:

int ii short Si char cl, C2i
i = s * (cl - c2);

/*declarations*/
/*statanent*/

The preceding stat anent should be evaluated as if it were this:

i = (int)s * ((int)cl - (int)c2)i

Since the roost efficient data size for the 68rcJrcJrcJ is 16 bits (a
short) while the size" of an int is 32 bits, <Dde can be produced
that is less efficient than it should be. In an effort to produce
more efficient code, the compiler uses shorter ~s whenever doing
ED does not change the value of the expression.

4-2

Optimiz ation

'Iherefore, the stat anent i = s * (~ - c2); would be evaluated as
the follCMing:

i = (int) (·s * ((short) cl - (shor~t) c2)) i

This tyI,:S of shortening is Cbne for bitwise, logical, and arithmetic
operators. While the rules for ~ shortening are complicated and
the shortening may not always be oone, the result will not differ
f ran the the result obtained had the usual conversions been appl ied.

flbst optimizations are r:;:erforrned by the optimizer. Processor-inder;endent
(ccmoon tail merging), processor-deJ;Sldent (register mapping), and WlCAT­
specific (suppressing NOPs following stack probes) optimizations are
perfooned l7j the optimizer.

The input for the optimizer is the assenbly-language program produced bj
the canpiler. The output fran the optimizer is another assanbly-language
program that should be functionally equivalent to the input program.

The optimizer uses three fundamental units of optimization:

A rodule, the largest unit, oorresJ:Onds to an entire C function.

A roodule contains one or more basic blocks. Each basic block is a
sequence of assembler instructions that start inmediately after a
label. or branch and end with the next branch or label. ('!be next
branch or label refers to the next one listed in the program, not
the next one to be executed.)

Within each basic block, a moving window of one to three
instructions is used for r:;:eeI;ilole optimizations.

This discussion of o};:Cimizer optimizations is divided int~ the techniques
used to· collect data for the optimization and the optimizations
thanselves.

Data collection technigues

'!he optimizer uses the follCMing data collection techniques:

.f.l2lf analysis The basic blocks of a roodule are linked internally to
form a flCM gratil. '!his gratil provides information al:out the flow
of execution in a module. One basic block is linked to another if
control fran one falls into the other, or if the second basic block
is the target of a branch from the first.

4-3

Optimization

LiYe/dead analysis For each instruction in a module, it" is
deteonined which registers are referenced and which are set. This
infonnation is transnitted throughout the module so that at every
instruction it is known which registers contain values that are
referenced again after the instruction (live registers) and which
are not referenced again (dead registers).

For data registers, the live/dead infonnation is kept for each
addressable piece of the register, i. e., byte, word, or long. '!be
1 ive/dead infonnation is not computed for condition codes or manory
locations.

op:imiz ation technigues

These are the optimizations the compiler ~rfonns:

Unreachable code elimination The flow graph is used to detect basic
blocks that cannot be reached by any execution sequence. The
optimizer eliminates these blocks.

In the following example, the basic block that consists of the
assanbly statanents for 1 is ranoved:

register int i, j, k;
for (i = 0; < 10; i++) {

if (i > 5) {
k = j; continue;

} else break;
j = i * 3; k += 4; /* 1 */

IDTE: This is a trivial example that even the canpiler would detect.

~ code elimination The live/dead information is used to
deteonine whether the value canputed by each statanent is used. If
it is not used and the statanent has no side effects (such as
setting condition oodes prior to a test instruction), it is ranoved.
The ranoval of a statanent can produce dead code, so the procedure
is repeated until no more dead oode is found.

4-4

Optimization

In the following exanple, the entire loop oody will be eliminated
because the value of register j is not used so 2 is eliminated, and
then value of register k is not used so 1 is eliminated:

register int i, j, k;
for (i = 0; i < 1000000; i++) {

k = (1 « i); /* 1 */
j = (i + k) & 0xFF; /* 2 */

}

The loop itself is not eliminated because register i is used each
time through the loop (even though the loop now does nothing) •

Redundant branch elimination The flow graI;h is ala) used to detect
and eliminate lU'lcondi tiona! branches that are the targ~t of other
branches and branches to the following statement. In the following
example, for the code on the left, the tmconditional branch to .L2
at .Ll is removed and the lal:el .Ll is moved Cbwn to the same
loca tion as .12 as shown in the code on the right:

me .Ll
•

<stuff>
•

bra .IA
.Ll:

bra .12
.L3:

•
<more stuff>

· beq .L2
.L2:

bne .Ll

· <stuff>
•

bra .IA
.L3:

•
<more stuff>

.Ll:

.12:

The second branch to is also removed since .12 is the lal:el for the
following statanent.

Cprmpn .tail merging Pairs of basic blocks are comp:1red from the end
back to the beginning to detetmine if the tails of the blocks are
the same. (Essentially, blocks are the same if they are lexically
Equivalent.)

If common tails are fotmd, the corraoon p:>rtion is broken out to form
a ne.v block, and branches to the ne.v block are added at the end of
the old ones. FOr more efficient use of s};Bce and time, a corraoon
tail must contain a minimum nunber of statements before it is broken
out.

4-5

Optimization

LQ.Ql;2 rotation The optimiz er attanp:s to 1 imit the number of branch
instructions r8:Iuired in loops because branch instructions use a lot
of cru time. For example, the following simple while loop generates
code with a test at the beginning,· the tody of the loo~ and a
branch back to the test:

while (i != ~)
f(i) ;

The test at the beginning incl udes a branch that skips the tody if
the oondi tion (i != ~) eval uates false. 'Iherefore, every tass
through the loop executes two branch instructions.

Loop rotation moves the test to the tottan of the loop and rever ses
the sense of the test so that a branch is taken to the beginning of
the loop if the condition eval uates true. Now, only one branch is
executed each time through the loop. A seoond branch before the
loop jumps to the test, but it is only executed once.

In the following example, the original loop is shown on the left and
the rotated loop is shown on the right:

.Ll: bra .Ll
tst.l - i .Ll:
beq .L2 IOOVe.1 _i,-(sp)
move. I _i,-(sp) jsr _f
jsr _f addI·I i4,sp
adCk;l.1 i4,sp .Ll:
bra .Ll tst.l _i

.L2: bne .L2

IDl'E: The foreg:>ing C code fragnent is an example only. '!be C
canpiler does not actually generate the code shown on the left
since the oompiler itself rotates simple loops.

Register rema,wing Register variable declar~tions within functions
cause an association to be formed between the variable and a
hardware register. When the association is fotmed, the previous
oontents of the register must be saved so old value can be restored
when the function is exited. '!he optimizer avoids these saves and
restores register values by rsnapping register variables into
scratch registers that eX> not need to be saved.

4-6

Optimization

In the following exanple, variable i is assigned to hardNare
register d7 and j is assigned to d6:

regiSter int i, ji

i = 1; j = 2;
if (i = j)

i = j;
return i;

This requires rode at the beginning to save the old values and rode
at the end to restore tmse val ues. The optimizer detects that the
scratch registers d~ and dl are not used, and it rsnaps the
references to d7 and d6 to dl and d~. This eliminates all saves and
restores.

In the following example, compiler-generated code is shown on the
I eft and the optimized code is shown on the right:

IWvan.1 #$C0,-(sp) IWVeq #l,cil
moveq #1,d7 moveq #2,d0
moveq t2,d6 cmp.l d0,dl
anp.l d6,d7 bne .Ll3
me .U3 IIDVe.1 d0,dl
move. 1 d6,d7 .LI3:

.Ll3: move. I dl,d0
move. I d7,d0
movan.l (sp)+,#$C0

~: Because d0, dl, a0, and al are the only scratch registers,
only two data register variables and two pointer register
variables can be rana~d this WO¥.

LINK/UNLK renpval If a function doesn I t have non-register local
variables, the compiler generates a link instruction in the
following form:

link a6,#-0

However, this serves only to save the old value of a6, thereby
maintaining the fmction call linkage. The optimizer eliminates all
links of this kind, changing references to I;Brameters to offsets
fran the stack pointer instead of offsets fran the now invalid a6.

4-7

op:imization

Consider this C function:

f(a,b)
int a, bi

{

}

a = bi b = 2i
return (a) i

The oompiler output fran the foregoing example is shown on the left
and the optmized code is shown on the right:

link a6,i-0 IIDVe.l -4+l2(sp),-4+8(sp)
move.l 12 (a6) ,8 (a6) mov~ i2,d0
rnov~ i2,d0 IIDVe.l d0,-4+l2(sp)
move. 1 d0 ,12 (a6) move.l -4+8(sp),d0
move.l 8(a6),d0 rts
unlk a6

NOl'E: The foregoing causes a couple of serious side effects:

Because the stack linkage is broken, debuggers no longer
give a reliable stack backtrace since they rely on
tracing the link chain.

calling a user-supplied assanbly language routine that
dlanges the val ue of the stack I;X)inter can change the
optimizer-generated references to fBrameters. The only
way to prevent this fran hapf:ening is to declare at least
one non-register local variable.

~ suooression Due to an anomaly in the WlCAT manory-rnanaganent
uni t, it is necessary to generate a NOP instruction following a
stack probe if the next instruction would modify the stack.
Normally, this NOP is generated as p:irt of the function-entry
sequence triggered by the .entry pseudo-o~ration. Whenever the
optimizer expands this pseuCb-op, it will generate a NOP only when
it is needed. Unfortunately, if the optimizer doesn It expmd it
Ci. e., the function uses f1oating-p:>int) the appropriate floating­
point preprocessor will always generate a NOP. Hence, this
optimization benef its only functions that cb not use floating I;X>int.

4-8

op:imization

Elimination .Qf stack.wm Parameters to functions are };Bssed by
pushing than onto the stack (i.e., decranenting the stack IX>inter
and storing the ~rameter at the location it now };X)ints to). After
returning f rom the function call, the r:arameters are lX>pp=d (i. e. ,
stack I:X>inter increnented). In many cases, one function call
immediately follows another.

In these cases, the first function's };Brameters are lX>pp=d (stack
};X)inter incr anented) and then the seoond is pushed (stack I:X>inter
decrenented). Here the optimizer will save time by not rothering to
lX>P the first function's final parameter and, instead, overwriting
it with the first t:arameter to the seoond function.

For example, oonsider the following segment °of C oode:

f(a);
g (b) i

For the foregoing exam~e, the compiler would generate the code on
the left and the optimizer would generate the oode on the left:

move. I _a,-(sp) IlDVe.l _a,-(sp)
jsr _f jsr _f
addI.l #4,sp move.l _b,(sp)
move.l _b,-(sp) jsr -g
jsr -g addI.l #4,sp
adCi9.1 #4,sp

In the optimized code, the };Brameter of function f is not lX>pp=d
after' the call, rather the following statenent just writes over a
with b, the };Brameter to function g. This optimization is :t:erformed
even if the function calls are not consecutive, just as long as roth
function calls are in the same basic block (i. e., there are no
intervening branches or labels.)

Peephole Optimizations The broadest class of optimizations are
those perfoIlI\ed on the moving instruction window. Peephole
optimizations entail analyzing one-, two-, and three- instruction
sequences and removing instructions that are not needed, or
re.wri ting the sequence into an equivalent sequence that is faster or
shorter. '!here are currently aoout 50 p=e};hole transformations that
cover a wide variety of instruction sequences.

4-9

Optimization

The following examples shC1tl some I;eeI,ilole optimizations. ~e
canpiler-generated oode is on the left, the optimized oode is on the
right. Comments are given after the semioolons:

cir.l d0 ->

moveq i-l,d0->
and. 1 d0,dl

moveq #S,d0 ->
add.l d0,dl

sub.w #1,d0 ->
anp.w i-l,d0
me label

move. 1
asr.l
and. 1

#16,d0 ->
d0,dl
#$FFFF,dl

move:} #0, d0

<deleted>

add:;} #S,dl

dbra d0, label

clr.w dl
swap dl

; move:} is faster

.1 essentially a NOP

; move is not necessa ry

; single dbra is shorter
; and much faster

; the latter is equivalent
; (though not necessarily
; as obvious)

The live/dead information is essential for many of the
transformations. For example, the third optimization in the
foregoing exanple oould not be Cone if some instruction following
the ADD used d0 (i. e., d0 is not dead after the ADD). Also, the
first example is not really a OOP since the AND sets condition codes
that might be required later. '!herefore, in order to proI;erly ranove
the AND, the appropriate oondition oodes must be dead after that
instruction.

It should be noted that the transformations are geared toward code
produced by the C canpiler and are not intended to be generally
applicable to all assembly-language prograns. In fact, the optimizer
makes a nt.mber of assunptions based on the known behavior of the
compiler code generator. For example, the second optimization in
the foregoing exanp1.e is not Cone for the more obvious oode sequence
that follows since the optimizer knows that the oompiler will
generate code to first load -1 into a register:

and. 1 i-l,dl

Assenbl er (as/wimac) op-imi7.ations

The final tilase of optimization is I;erformed is the assembler. '!here are
only two transformations done, both having to do with branch
instructions. '!he general technique is known as branch shortening or
sJ;BI1-dep:mdent optimization. These optimizations are controlled by the -0
flag of the assembler. The cc or compile command passes this flag to the
assanbl er , so this optimiza tion is always Cone. The input to the
assembler is a file containing assembly-language modules (corresFDnding

4-10

Optimization

to C functions). The output is a machine-language file in either Q)FF or
LL format. The mit of optimization is the module (fmction).

On the 68000, there are two types of branches. Both tyI;eS are relative
in that the target of the branch is s~cified as a byte distance from the
current location. The short branch has an 8-bit displacanent, allowing
targets anywhere fram -128 to 127 bytes from the current location. The
word branch has a 16- bit displacanent, allowing targets from -32768 to
32767 bytes awCJ:j. (Branches requiring offsets greater than 16 bits can
use the JMP instruction, which takes an absolute 32-bit target.) The
compiler (and optimizer) always generate the word form of branches.

In the first optimization, the assanbler deteonines how far CMCJ!j the
target of each branch is and shortens it if the distance to the
resI;ective target will fit in 8 bits. The assanbler only does this with
intra-roodule branches. It roes not attan~ to shorten inter-roodule
branches since it can make no assunptions aoout the way the linker will
order modules in the final output file.

The serond optimization is a side-effect of the first. If the target of
a branch is the next instruction, the branch instruction is replaced by a
NOP.

Bow to Get Good Code fraa the Software Generation ~staa

The WICAT S:;S produces rode that is adequate for roost applications under
most circumstances. There are, however, situations that warrant a little
extra work to coerce even better rode fran the S:;S. There are no set
rules to be followed; experience and eXI;Erimentation are the best tools
in these situations. However, the information in the following sections
can help you produce better rode.

Do not use register variables indiscriminately

Renanber that in mst cases creating a register variable entails
saving and restoring the previous contents of the register.
'lYpically, if a variable is accessed less than three or four times,
it is not advantageous to make it a register variable.

Do not oyer-declare register variables

You can have only 4 register fX)inter variables and 6 register long/
int/short/char variables. Declaring more doesn't cause a warning to
be generated, rut the register st:ecif ication is ignored. If the most
heavily used pointer is declared as a register after four others,
~rformance can be far worse than it would be if it were declared
after only three others.

4-11

Optimization

ron I t make ftmctions too long

Long ftmctions increase the probabil ity that the long form of
branches will have to be used. It also increases the probability
that the optimizer will run out of manory attenpting to process the
function.

Consider using preprocessor macros instead of sirwle functions

FOr example, a function like the following causes a function call,
register load, canpare, and return from function:

isthree(arg) register int arg;
{

return(arg 3);
}

This ocurrs because the following preprocesoor macro definition
requires only a single in-line canparison:

#define isthree(arg) «arg)=3)

However, the in-line nature is not always an advantage.

For example, consider the first segnent of C code as oPI:Osed to the
second segment of C code:

isnum(arg) register int arg;
{

}

return(arg 0 arg 1 arg 2 arg -3 arg 4
arg 5 arg==6 arg==7 arg 8 arg==9);

idef ine isnum (arg) \
«arg)==0 (arg)==1 (arg)=2 (arg)==3 (arg) 4 \

(arg)==5 (arg)==6 (arg)==7 (arg)=8 (arg) ==9)

With the following invocation, the macro definition generates code
to evaluate the (rather tmusual) expression for each of the 10
comparioons, whereas ·the function def inition requires that the
expression be evaluated only once with 10 register canparisons:

isnum(anarray [i+5*3] [j/'(int)sin(k)] ->field.nutherfield);

4-12

Optimization

Use Llre-inctenent/decteuent in favor of g;>st-inctenent/decranent

, The tDst-incranent fom requires that the appropriate value first be
oopied to a tanp:>rary location, the original incranented, and then
the old value used fran the tanJ;Orary oopy. In the pre-increment
form, the value can be incranented in place, and the new value used.
Note that there is no difference in the degenerate case where the
value is not used (e.g., the statanent ++i; vs. i++;) Another
exception is when the expression can be mapt:ed into a use of the
68~"~ p:>st-incranent addressing mode.

Use char and short integer variables instead of int variables

Since the natural word size of the 68~"" is 16 bits, char (8 bit)
and short (16 bit) ot:erations are typically much faster than the
analogous 32-bit operation. Using shorter integers often allcws the
compiler and optimizer to t:erform tyt:e reductions and hence generate
8- and 16-bit operations. This is extremely useful for
multiplication and division since the 68""" has no hardware
instructions for perfomU.ng 32-bit by 32-bit multiplication and
division. These ot:erations must be Cbne by calling runtime library
functions. Note that this tactic can backfire if no type reductions
can be t:erformed. In these cases, a large tDrtion of the generated
oode ends up being instructions to promote the shorter operands so
that 32-bit operations can be used.

Use winters rather than indices when looping through arrays

The 68""" does not have an addressing mode that is well suited to
general array indexing. As a result, array indexing can be an
expensive protDsition. The following operations typically occur for
a reference of the form array [loopindex] :

1. Load loopindex into a register.
2. Multiply this register by the size of an array el.anent.
3. Add the address of array.
4. Put this value into an address register.
S. Reference the value by indirecting off the address register.

This oomputation is t;erformed at f!'lery iteration of the loop. By
using a IX>inter variable, references of the fODD *arrayIX>inter cause
the follCMing operations to take place:

1. Load arrayJ;Ointer into an address register
2. Reference the value by indirecting off the address register

This IX>inter is incr~ented each time through the loop by simply
adding a constant (the array-elanent size). This tactic Cbes not

4-13

Optimization

gain you mucll if the termination condition of the loop still
involves an array reference (e. g., "arraypointer <
&array [maxindex] ") since the term ina tion condition must be eval ua ted
eacll time through the loop.

Keep the range of switch statenents snaIl and not too sm,rse

The range of a svitcll statenent is the numeric difference between
the lowest valued case and the highest valued case (excluding the
defaul t case). The fastest code that the compiler can generate for
a switcll statenent is a jump tabl,e. This produces the smallest
average number of comparisons J;er case (typically one). In order to
use a jump table, the range must be less than 16384 and there must
be at least four cases.

An additional constraint is that the range not be too splrse. For
the canpiler, this means that the range must be less than three
times the number of cases. For example, this prevents a 450-elenent
jump table fran being produced for a switch involving only cases 1,
2, 3, 4, and 450 since there would have to be at 1 east 150 cases to
generate one. If, for sane reason, you needed a jump table in this
instance you could "pad it out II by adding 145 cases betweEn 5 and
450 that did nothing but break.

sane Sp!cial Tricks

If sJ;eed takes precedence over good taste, there are rome tricks that can
be applied in s~cial cases.

Optimiz ing fmctions with more register variables than registers

There are at least three ways to sol ve this problen. The most
acceptable way is to break the fmction into a number of sub­
functions. However, if you Cb not want to incur the fmction call
overhead, you could either overload register variables or use inner
blocks. CNerloading simply means declaring a set of generic register
variables (e.g., register int ii register int *Pi) and, by using
explicit casts, use than in place of many different variables. This
is very non-IX>rtable.

A slightly better technique is to declare register variables inside
inner blocks within a function. This allows the canpiler to use the
same register in different blocks.

4-14

Optimization

For example, the following oode allows the canpiler to use the same
address register for cp and sp:

if (addr & 1) {
register char *cp = (char *) addr ;
•

· addr++;
}
if (addr & 2) {

register short *sp = (short *)addr;
•
•
addr += 2;

}

Generating Special Instructions and Addressing Modes

.mEA instruction If you have a loop in which the loop index serves
only to control the number of iterations of the loop, it can be
ooded in a Stecial wfJ¥ to allow the optimizer to generate a [ERA
instruction. For example, oonsider the following loop:

int i;
for (i = 0; i < END; i++)

<same-stuff-not-using-i>;

If END < 32768, the foregoing code can be ravritten as the
following:

register short i;
i = END - 1;
cb{

<some-stuff-not-using-i>;
} while (--i 1= -1);

.a1H1 instruction When oomFflring bytes of data, the oompiler
generates a Q1PM instruction for an if statanent of the following
foon if pI and p2 both I;Dint to objects of the same size (chari
short/int/long) and both pointers are in registers:

if (*Pl++ = *p2++)

4-15

Optimization

Post-increment ~ pre-decrement addressing modes Expressions
irwolving references of the following form, where rp is a register
variable (char/shQrt/int/long), produce instructions using p::>st­
increment and pre-decrement addressing modes:

*rpH­
*-rp

Speeding Up Arithmetic Operations

In instances where you cannot shorten the types of variables (as
described earlier) because the range of a variable is greater than 8
or 16 bits, it is still p:>ssible in many instances to gain an
advantage. Consider the following example, where there is a
frequently used arithmetic statement in which the majority of the
operand values are less than 8 or 16 bits:

register int iI, i2;
for (il = 0; il < 50000; il++)

i2 = il / 33;

You can try inserting a value test combined with an explicit cast to
force a shorter operation when appropriate:

for (il = 0; il < 50000; il++)
if (il < 32768)

i2 = (short) il / 33;
else

i2 = il / 33;

In the foregoing example, the added cost of the test is
insignif icant romp;lred to the time saved by corwerting the call to
the runtime 32-bit division to a single hardware division
instruction. In other situations, the added cost may exceed the
savings. Only experimentation wUl tell.

Improying array access and winter arithmetic

As mentioned earlier, using p:>inters to access array elements is
typically more efficient than indexing. '!here are aloo some other
special cases that can be improved when indexing is unavoidable. If
sp;lce is not a big concern, array element definitions can be p;ldded
to a size that is a p::>wer of 2. '!his allows the compiler to generate
a simple shift (as opp::>sed to a long multiply or a series of shifts
and adds) when selecting an array element.

4-16

Consider the following section of C rode:

struct s {
int ~i
char data [26] ;

}i
struct s sarr~[10]i

struct s *getpointer(ix}
int iXi

{

}
return(&sarray[ix]}i

Optimization

The foregoing example generates the following eight-instruction
sequence to canpute the return value:

8(a6},d0
d0,d0
d0,dl
d0,d0
d0,dl
#3,d0

move.l
add.l
move.l
add.l
sub. 1
asl.l
add.l
add.l

dl,d0
#_sarray,d0

Adding two t¥tes of p:ldding to the structure definition (to bring
the size to 32 bytes) generates the following three-instruction
sequence:

move.l 8(a6} ,d0
asl.l #5,d0
add.l #_sarr~,d0

Padding also benef its IDinter addition (since that is what array
indexing really is). It does not directly help J;.Ointer subtraction
however. For example, the rompiler implanents the following array
t¥ subtracting the two J;.Ointers and then dividing t¥ the size of an
e1anent:

get index (sp)
struct s *SPi

{

}
return (sp - sarray);

The compiler generates a call to the long division routine
regardless of p:ldding. A right shift is not used because the
pJinters are ronsidered signed. A DIVS instruction cannot be used
since the quotient might be greater than a word (i. e., the array has
more than 32767 elanents), which would cause an overflow with DIVS.

4-17

Optimization

When using padding, we can force a right shift by r€.Writing the
function as:

getindex(sp)
struct s *sp;

{
return (((unsigned int)sp - (unsigned int)sarray)

/ sizeof(struct s»;
}

Fast data copyingicanparison

One of the most conuoon o~rations in which generated code quality
has a maj or imJ;Sct is cop.{ing or cQIlparing blocks of data. As might
be expected, there are numerous obvious and non-obvious ways to
perfoon these functions. For large blocks of data, the best way is
probably to use the standard library functions that are written in
assanbly language and have been highly optimized for the best
~rforrnance. '!Wo such routines are memcm and memcmp. Under UNIX,
these routines are Cbcumented in manory(3C) of the UniPlus+ System V
User's Reference Manual(Sections 2=[L.

As usual, there is a trade-off t;:Oint at which the overhead of the
function call outweighs the benefits. This p:>int is at atout 16
bytes. For 16 bytes or less, it is often worthvhile to copy/cantare
data in-line.

The following examples show four I,Dssible ways to define a macro to
cop.{ c bytes from f to t:

#define (DPY0(f,t,c) \
{ register int n; for (n = 0; n < c; n++) t[n] = f[n]; }

#define (DPY1(f,t,c) \
rnancpy(t,f,c)

#define (DPY2(f,t,c) \
{ register short n = c-1; register char *fp = f, *tp = t; \
00 *tpi+ = *fpi+; while (-n 1= -1); }

#def ine mPY3 (f, t~ \
{ struct hack { char sJ;ace [FlXEDSIZE]; } hack; \
*((struct hack *)t) = *((struct hack *)f); }

COPY0 is the approach a naive user might first try. '!hough simple,
it takes easily twice as long as the next slowest method when
cop'{ing 16 bytes. <DPY1 is a call to the library routine and, for
16 bytes, takes nearly twice as long as <DPY2. CDPY2 is probably
the best code that you can get for byte-by-byte copies. But its

4-18

Optimization

st:eed is highly dep:mdent on having the three register variables
actually in registers. It aloo limits the count to 65536 since it
uses a short counter. <DPY3 is a very s~cial case that requires
the copy size always be the same and known at compile time. It also
ra;ruires that both the to and fran buffers be on an even-byte
oounaary. CDPY3 coerces the blffers into structures so that the
canpiler generates in-line code to do a structure copy. It more
than twice as fast as CDPY2 and almost 20 times faster than CDPY0
for a l6-byte copy.

FOr comparing c characters of two blffers f and t (setting r to one
if a;rual, zero if not), you can define the following analogous
routines:

idef me Q1P0 (f, t, c, r) \
{ register int n; \
for (n = 0; n < c; n++) \

if (t[n] != f[n]) break; \
r = (n == c); }

idefine CMPl(f,t,c,r) \
r = (memamp(t,f,c) == 0);

idefine CMP2(f,t,c,r) \
{ register short n = c-l: register char *fp = f, *tp = ti \
do if (*tpH- 1= *fp++) break; while (-n 1= -1); \
r = (n = -1); }

#define CMP3(f,t,c,r) \
{ register int *ipl = (int *)f, *ipe = (int *)t; \
r = 0; if (*ipl++ == *ipe-H-) if (*ipl-H- == *ip2++) \
if (*ipl-t+ = *ipe-t+) if (*ipl = *ip2) r = 1; }

The macro that is significantly difference is 01P3, which is
approximately 8:Iuivalent to what the compiler might Cb if there was
such a thing as structure canparison. It has the same restrictions
as CDPY3. Ebr 16-byte comparisons, in the best case where the first
byte differs, there is very little difference between the three in-
1 ine versions. '!be function call version takes alx>ut twice as long.
In the worst case where both buffers are equal, the times are aoout
the same as those of the cop.{ macros.

4-19

Optimization

cautions about op-jmizing

The C optimizer was intended only to improve code generated from the C
canpiler. For this reason, attanpting to optimize hand-coded assanbly or
interfacing hand-coded assembly to optimized <x>de is likely to cause
problans. If you try to do this, you should be aware of the following
itens:

The t;:eeJ;hole optimizer will miss many "obtlious" optimizations
because it assumes the canpiler never generates them.

Many peeIilol e optimizations can be r:erformed only if the condition
codes are dead following the window in question. Currently, true
live/dead analysis is not r:erformed on condition codes. 'lb determine
if the condition codes are dead following a window, it merely checks
to see if the next instruction uses than. If not, it assumes they
are dead.

The optimizer assembly language parser is not complete. It
recognizes only instructions, addressing modes, and p.seudo-ops
produced by the compiler. Many unreoognized constructs are just
copied to the output file when they are encountered. This creates
problems due to the fact that recognized instructions are
internalized and output at one time at the end of a function. The
resul ting output for a function is thus all unreoognized code for a
function followed by the optimized oody of the function.

Assembly <x>de in asm statanents is not handled Well. Currently, the
optimizer has no wO¥ of differentiating between code fran asrn
statenents and code produced by the compiler. Hence, it attenpts to
optimize it. lJbst times this works, but sometimes it messes up badly
(typically because the optimizer assembly language is incomplete).

There is no wO¥ of selectively choosing which optimizations are
r:erformed on a function or even a file.

4-2~

<llapter 5

Fl oa ting-I;X>int

WICAT's floating-I;Oint arithmetic oonforms to a subset of the pro};Osed
IEEE standard for binary floating-r:oint arithmetic.

WICAT's ooftware anulation Cbes not supI;Ort such features as denormalized
operands, extended precision, selection of rounding modes, NaN's, and
full exception handling. The different floating-I;Oint hardNare ty};:es
conform to this standard in varying degrees.

How the C <lJDpi1.er Handles Floating-p>int

'!he C canpiler generates pseudo-rode for all floating-I;X>int operations.
This enables programs to use floating-I;Oint without the rompiler having
details of each kind of hardware. One pseudo-code statanent (one line) is
generated for each floating-I;Oint o};:eration. The statanent indicates the
operation to be performed, and the operands to use (source and
destination) •

Each ty};:e of floating-I;Oint hardware has a preprocesoor. The software
anulation also has a preprocessor. These floating-I;X>int preprocessors
ronvert the pseuCb-code to assembly source statanents. The preprocesoor
generates the assanbly rode to perform the indicated operation on its
ty};:e of harciYare. Also, a harciYare preprocess:>r that is not hardNare
deP=rldent ronverts pseudo-code to subroutine calls where the subroutine
performs the indicated operation.

For information on selecting a floating-I;Oint preprocessor under UniPlus+
System V see cc in the UniPlus± System V User I s Manual (Section 11..

For information on selecting a floating-p:>int preprocesoor under WMCS see
the compile canmand description in chapter 8 of this manual.

5-1

Floating-IDint

Floating-mint Under WMCS

Under WMCS you can bind your program to a floating-IDint hardware by
using its preprocessor at canpile time.

Also, you can use the hardvare-inde~ndent preprocessor to clloose
the software emulation, or the s~cific hardware at run time. This
can be Cbne because the libraries that sUPIDrt the software
emulation, or the hardware, are not linked into the program's
executable image at oompile time.

The libraries are in shared manory and become tart of your program
during its execution. Th€¥ are put into shared memory using the
fgngr conunand (Refer ,to the fgngr oorranand descri};tion in the ~
User's Reference Manual).

The C language startup routines are automatically linked into your
program. Also, they execute before the first. statanent of your
program and oonnect it to the floating-I;Oint library in shared
manory.

Floating-mint Under UniPlus+ Systan V

Under UniPlus+ Systan V you can bind your program to a floating­
};:Oint hardware by using the preprocessor for the hardware at canpile
time.

The harcware-inde~ndent preprocessor binds your program to the
software floating-point anulation.

The choice of hara.vare or software cannot be made at run time.

The library that sup};:Orts the software emulation, or the hardware,
is 1 inked into your program I s executabl e image at oompil e time.

Getting the Best Perfonoance

Ebllowing are S)me general guidelines for getting the test r:erformance
from floating-};:Oint operations.

O1oosing the Floating-g>int Preprocessor

HarciYare is faster than software, although the difference in sp:ed
depends on whicll operation you are doing and whicll haravare you are
using.

Under uniPlus+ Systan V your program uses hardware if you compile it
using the hardware preprocessor.

5-2

Floating-tJ)int

Under WMCS you get best performance by canpiling your program with
the haravare preprocesoor. If you use the haravare independent
preprocessor, and choose the haravare at run time, performance is
not as good. The oode generation is less efficient due to the
indirectness of subroutine calls and parameter passing.

C Optimiz er

'!he C optimizer makes oode generated t¥ the C oompiler more
efficient. It also optimizes floating-pJint pseudo-oode.

Because the C optimizer Cbes not reoognize differences in haravare,
sane of the pseudo-a:>de optimizations can degrade the program's
performance on some haravare.

Your program will probably perform better if it is oompiled using
the C optimizer. Hcwever, tty it roth wCfjs to find which wCfj gives
you rest performance.

Floating-point Registers

If your floating-tJ)int haravare has general-purp:>se floating-tJ)int
registers, declare floating-pJint variables as register float or
register cbuble to improve performance.

'!he first four floating-p::>int registers are reserved as scratch
registers for the compiler and floating-tJ)int preprocessor. The next
four floating-pJint registers are available to be used for register
declarations.

If your haravare has more than eight registers, only the first eight
are used.

'!he maximum numrer of useful register declarations is four.

If your haravare does not have floating-pJint registers, using
register declarations degrades performance.

Precision

Ot:erations on floats (single precision) are faster than operations
on Cbubles (Cbuble precision). '!he difference in speed dep:mds on
whether you are using haravare or ooftware, which haravare is being
used, and what operation is being perfoIIDed.

However, the C language is designed to promote all calculations to
Cbuble precision. EVen if you declare all your floating-l,X)int
variables as float, Irost calculations are still Cbne in Cbuble
precision. Once calculations are canplete, a oonversion is perfoIIDed
on the result. This oonverts it to a float. The WICAT C oompiler
makes one exception to this.

5-3

Floating-IDint

If you use the +=, -=, *=, or /= o~rators on float o~rands, the
calculation is oone in single precision.

C is also def ined to promote all float pirameters pissed to
subprograms to double precision. Therefore, a single precision sin,
cos, exp, Eqrt, etc. cannot be oomputed. The oomputation is oone in
Cbuble. The result is converted to single.

Floating-lDint FoDDat

The storage formats for floating-IDint values oonform to the proIDsed
IEEE Standard for binary floating-fX)int arithnetic. All values are
normal iz ed.

Following is a diagram of a float storage format:

32 bits total

1 bit 8 bits 23 bits

F

31130 231 22 01

\ binary point

In the foregoing diagran .s is sign (0=IDsitive, l=negative), ~ is
biased eXfX)nent (true eX!;X>nent is biased eXfX)nent - 127), and.f is binary
fraction.

The float storage format is normalized with an implied 1 bit preceding
the binary fX)int.

The float storage format is interpreted (converted to decimal) as (s) 1.f
x 2'" (exp-127).

It has 6 - 7 significant decimal digits, and its approximate range is
8.4e-37 <= x <=3.4e+38.

5-4

Floating-};X)int

Following is a diagram of a double storage format:

64 bits total

1 bit 11 bits 52 bits

F

63162 52151 01

\ binary point

In the foregoing diagram ~ is sign (0 = p:>sitive, 1 = negative), ~ is
biased extDnent (true extDnent is biased extDnent - 1023), and .f. is
binary fraction.

The Cbuble storage format is normalized with an implied 1 bit preceding
the binary I,X>int.

The Cbuble storage format is interpreted (converted to decimal) as (s)
l.f x 2A (exp-1023). .

It represents 15 to 16 significant decimal digits, and its approximate
range is 4.2e-307 <= x <=1.8e+308.

Following is a table of reserved floating-};X)int values:

zero

Float

+0 00000000
-0 80000000

infinity +00 7FFFFFFF
- 00 FFFFFFFF

[k)uble

00000000 00000000
80000000 00000000

7FFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF

5-5

Floating-{Dint

Exception Handling

Four ty};es of floating-fX)int exceI,±ions are supfX)rted:

1. Underflow occurs when the result of a calculation is too small to
be represented.

2. Olerflow occurs when the results of a calculation is too large to
be represented.

3. Divide-by-zero occurs when you attemI± to r:erform a division
opera tion with a denaninator of zero.

4. nlegal oI;eration occurs when you attemI± to 00 a mathematically
Lmdefined operation (taking the Equare root of a negative
number) •

Each of the foregoing exceptions has a standard default. A default resul t
is returned if an error occurs and the exception is masked (the exception
is turned off because the programmer ooes not want to know the error
occurred) •

The default results are used as oI;erands in subsequent calculations as
nomal results would be. For exanple, a value of infinity generated due
to an attanI± to divide 1:¥ zero can be protagated through subsequent
calculations in a program. If the value is output, it shows up as
approximately 1. 79et-3"'8. ibis is the largest number representable in
oouble precision.

Underflow returns zero, overflow returns infinity, and divide-by-zero
returns infinity when the software emulation exceptions are masked.

lllegal oI;eration has no default result because it canmt be masked.

If you are using floating-point hardware, consul t the hardware
Cbcumentation to see what exceI,±ions are supp::>rted, whether the,y can be
masked, and what default results are returned.

Exception Handling under UniPlust SysteD Y

If an exceI,±ion occurs and SIGFPE has a signal handler def ined, the
SIGFPE signal is gener;ated and caught 1:¥ the handler. ibe handler
Cbes nothing useful for floating-fX)int. ibe handler cannot return
its CMn default result and oontinue processing.

ibe startups autanatically define a handler for SIGFPE for the
process. However, the definition can be deleted, or the defined
handler can be replaced 1:¥ a user handler once inside the program.

5-6

Floating-I;Oint

The default handler causes a core dunp with the following message:

Floating exception - core dum~d

The _errno variable is set to ERAN;E.

If no handler is defined, all exceptions that can be masked are
masked, default results are generated, and processing continues. You
are not informed if er ror conditions occur.

Exceptions cannot be selectively unmasked fram a C program.

The matherr(3M) routine for handling math errors is not supI;Orted.

Exception Handling lUlder WMCS

Under WMCS exceptions that can l:e masked (for software or harcware)
are masked. In other words, when a rnaskable exception occurs, the
standard default result for that condition is returned. You are not
infooned that the error has occurred.

Exceptions cannot be urunasked from a C program.

Deblgging Floating-point Programs

A floating-I;Oirit op:ration shows up in the assembly source code produced
by a floating-p:>int preprocessor in two wcrjs:

It can be a jsr (subroutine call) to a flUlction name that has no
tmderscore. In this case, it typically has a math op:ration within
the name (e.g.,jsr add3ddxd, jsr divf, jsr sin).

When a hardware floating-p:>int preprocessor is used, the operation
can be a move (IroVes data), or a tst to an address from 0x2000 to
0x3fff (the address range is the user process into which the
harcware is map~d). The tst oom};Sres against 0, but for haravare
floating-point, it usually accesses a location to cause an
operation.

If you wish to determine what op:ration is taking place, get a listing of
the canpiler output prior to the floating-p:>int preprocessor };Sss. Use
the ~ oommand with the ~K option under Uoiplus+ Systan V, and the
conpile camnand with the :nofpreprocess switch tmder WMCS. This allows
you to look at the p3eudJ-code.'

If you are using floating-I;Oint harcware that has registers, neither adb
nor wmu; can display or modify the contents of the registers.

The debuggers are able to input and output IEEE-format single-and double­
precision nunbers. Refer to the wmu::; or adb Cbcumentation for details.

5-7

Floating-p:>int

Debugging floating-mint 12rograms tmder UniPlus+ Systen y

Floating-p:>int routines called by jsr instructions are linked into
your program like other routines. '!beir symbols app:ar in adb. You
can trace through than 1 ike any other routine.

Debugging floating-point 12rograns under WMCS

Because you can choose the software anulation or a floating-};X)int
hardYare at runtime, you should be aware of the following when
debugging under WMCS:

If no libraries, or the wrong libraries, are in shared manory,
one of the following error messages appears when you try to run
your program:

cannot share di rectory

Required hardware floating-};X)int not present

'!bese errors come from the C startups when they try to connect
the program to shared manory.

To avoid this, use fgngr to put the correct library into shared
manory. '!ben, run your program again.

'!be symtols for floating-p:>int routines have values in the
address range 0xl000 to 0xlfff.

'!be symtols are entries in a jump table. The value at that
location in the jump table is the starting address of the
routine.

For example, if the value of symtol add3ddxd is 0xl008, the
value stored at location 0xl008 is the starting address of
add3ddxd. It might be oomething like 0xlfa448.

The &ymbol for the floating-t:oint routine name is associated
with an address in the jump table (not with the starting
address of the routine). When you trace through the routine,
addresses in floating-p:>int routines are not displayed as
offsets fran the routine name.

Floating-p:>int routines reside in address ranges 0x2000 to
0x3fff, and 0xlfa000 to 0xlfefff in the process sp:ice.

A breakp:>int at a floating-p:>int routine cannot be set until
the startups have executed. Tlx>se routines are not p:l.rt of your
process lIDtil the startups put than there. If you try to set
the break};X)int before the startups execute, wmu:; returns a
memory violation.

5-8

F1oating-p:>int

Get p;lst the startups by typing xr JDilin. Then set your
floating-p:>int breaJqx>int when you have reached _main. This
works much better.

Breakpoints cannot be set inside floating-point routines
because the oode in shared memory is write-protected. If you
attempt: to set breaJqx:>ints inside floating-p:>int routines,
WIBU; gives a memory violation.

Ploating-p>int Libraries

Following are the floating-p:>int libraries under UniPlus+ system V:

/lib/libc.a software emulation floating-point routines

/usr/lib/libc-skyl.a

/usr/lib/libc-ffpl.a

SKY hardware floating-p:>int routines

FFP hardware floating-point routines

The floating-p:>int libraries under WMCS are referenced by the fgngr
camnand when it puts the routines into shared memory:

/sysexe/lib2init.exe

/sysexe/skylinit. exe

/~sexe/ffplinit.exe

software emulation floating-p:>int
routines

SKY hardware floating-p:>int routines

FFP hardware floating-point routines

5-9

Chap:er 6

C Libraries

The C libraries are collections of object files, which contain the object
oode for one or more useful functions. When a C program (an object
module) is linked by LL or ld to one of these libraries, an object file
a:>ntaining a referenced function is linked with the program. Both WMCS
and UniPlus+ Systan V have several standard libraries with which to work.

'!he C Librcuy

The C library contains the standard Input/Output routines, system call
entry IX>ints for UniPlus+ System V, string manipulation routines, and
floating-p:>int access routines. There is a version of this library for
each floating-fX)int type.

The C library is searched by default if the linker is invoked through cc
or conpile.

These are the C library files under UniPlus+ System V:

/lib/libc.a version with software FP (default)
/usr/lib/libc-skyl.a version with SKY FP support
/usr/lib/libc-ffpl.a version with FFP FP supfX)rt
/usr/lib/libc-nofl.a version with no FP support

'lbese are the C library files under WMCS:

sys$disk/comiib/libc.lib
sys $disk/comiib/libcnofp. lib
sys$disk/comiib/libcl~~.lib

version with FP suPtnrt (default)
version with no FP sUPIX>rt
version with FP suptnrt and
abili ty. to have 100 files OfSl
simul taneously

'!he C library under WMCS has no hardware-sI,:ecific versions.

6-1

'lbe Math Libraty

The math library contains trigonanetric, &Iuare root, and logarithmic
functions.

Under WMCS, the :libraries=lim switch must be used to access the math
library. The library file is SYS$DISK/<DMLm/LIBM.LIB.

The Math Library under UniPlus+ System y

Under UniPlus+ System V, the -1m op:ion must be sJ;ecified with the
cc canmand to access the math library. The library file is /usr/lib/
lim.a.

Ref er to section 3 of the UniPlus± System V User I s Manual (Sections
2=.6l. for infonnation on adell tional libraries under UniPlus± System
V.

Aloo, profiled versions of many of the libraries are available under
UniPlust System V. Every routine (function) in a profiled library
includes code to· count the calls made to the function (i.e., each
function that was canpiled with the -p option of ~.

6-2

<llap:er 7

Dictionary of C Library Routines

The C library routines oontained in this chapter are for the user of C
tmder WMCS. '!hey are derived from the UniPlus+ Systan V Cbcumentation and
have been modified slightly for the WMCS user.

Each entry in this dictionary is based on the format used in the UniPlus+
Systan V chcumentation.

'!he following sections are used.

Name gives the name(s) of the routine (s) described tmder this entry
and gives a very brief descrip:ion of it/than. l-Dre than one
routine is often described with one entry because the routines are
so similar. '!be dictionary entry for a routine tells where a
routine is described. (The index also lists where a routine is
descr ibed.)

synopsis shows how a routine is set up. It shows the include files
needed, if aT¥, and shows how the routine itself is declared. These
are not lines you ~ in your progran (except the include line),
but show the wCJ¥ the routine itself is programned.

Descrig.ion describes in more detail the routines listed in the Nane
section.

Examgle gives an example where appropriate.

Files lists the files the routine (s) might use.

~ ~ refers to related routines.

Diagnostics discusses diagnostic indications that can be produced.

Warnings l,Dints out I,Dtential problans.

7-1

. \

Dictionary of C Library Routines

~ lists known rugs and deficiencies. Sanetimes the suggested fix
is alSD listed.

The user of C under UniPlus+ Systan V should consult sections 2 and 3 of
the UniPlus+ 5.Ystan y.. User's Reference Manne] (Sections 2.=6.l. •

7-2

Name

a64l, l64a - convert between long integer and base-64 ASCII string

SYIDPSIS

long a64l (s)
char *s;

char *164a (1)
long 1;

DESClUPI'ION

a641

'!bese functions are used to maintain numbers stored in base-64 ASCII
characters. This is a notation by which long integers can be represented
by up to six characters; each character represents a digit in a radix-64
notation.

The characters used to represent digits are. for 0, Ifor 1, 0 through 9
for 2-11, A through Z for 12-37, and a through z for 38-63.

A64l takes a tDinter to a null-terminated base-64 representation and
returns a corresp:>nding long val ue. If the string IX>inted to by s
contains more than six characters, a64l will use the first six.

L64a takes a long argument and returns a IX>inter to the corresp:>nding
base-64 representation. If the argument is 0, l64a returns a tDinter to
a null string.

BOOS

'!be val ue returned by l64a is a p:>inter into a sta tic buff er , the
contents of which are overwritten by each call.

a641-1

Name

abs - return integer absolute value

Synopsis

int ats (i)
int i;

Description

Abs returns the absolute value of its integer operand.

Bugs

abs

In two's-canplanent representation, the absolute value of the negative
integer with largest magnitude is undefined. Sane implementations trap
the error, but others ignore it.

See Also

floor

abs-I

acos

sin, oos, tan, asin, acos, a tan , atan2 - trigonometric functions

SYNJPSIS

See trig

acos-l

asin

NAME

asin, cos, tan, sin, acos, atan, atan2 - trigonometric functions

SYIDPSIS

See trig

asin-l

atan

NAME

sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYIDPSIS

See trig

atan-l

bessel

j"', jl, jn, ya, yl, yn - Bessel functions

SYN)PSIS

iinclude <math.h>

double j'" (x)
oouble Xi

oouble jl (x)
oouble Xi

oouble jn (n, x)
int ni
<DubIe Xi

oouble y'" (x)
oouble Xi

oouble yl (x)
oouble Xi

oouble yn (n, x)
int ni
oouble Xi

DES<lUPl'ION

J'" and jl return Bessel functions of x of the first kind of orders '" and
I rest.:ectively. In returns the Bessel function of x of the first kind of
order n.

bessel-l

brk

SEE ALSO

exec(2).

brk-2

NAME

brk, sbrk - change data segment sp:lce allocation

SYIDPSIS

int brk (endds)
char *endds;

char *sbrk (incr)
int incri

DES(x[Pl'ION

brk

Brk and sbrk are used to change dynamically the amount of sp:lce allocated
for the calling process's data segnenti see exec(2). '!be change is made
by resetting the process's break value and allocating the appropriate
amount of Sp:lce. The break value is the address of the first location
beyond the end of the data segment. The amount of allocated sp:lce
increases as the break value increases. The newly allocated sp:lce is set
to zero.

Brk sets the break value to endds and changes the allocated sp:ice
accordingly.

Sbrk adds incr bytes to the break value and changes the allocated sp:lce
accordingly. Incr can be negative, in which case the anount of allocated
sp:ice is decreased.

REWRN VAIlJE

UIDn successful canpletion, brk returns a value of 0 and sbrk returns the
old break value. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

brk-l

be arch

IDTES

The IX>inters to the key and the elanent at the base of the table should
be of tn:e p:>inter-to-elanent, and cast to tn:e p:>inter-to-character. The
canparison ftmction need not can};8I'e every byte, so arbitrary data may be
contained in the elanents in addition to the values being cornp:ired.
Although declared as tn:e IX>inter-to-character, the value returned should
be cast into tn:e p:>inter-to-el anent.

SEE ALSO

1 search, hsearch, qsort, tsearch

•

bsearch-2

NAME

bsearch - binary search

SYIDPSIS

iinclude <search.h>

char *bsearch ((char *) key, (char *) base, nel, sizeof
(*key), canpar)
unsigned nel;
int (*canpar) ();

DESCRI Pl' ION

bsearch

Bsearch is a binary search routine generalized fran Knuth (6.2.1)
Algorithm B. It returns a tDinter into a table indicating where a datum
may be found. The table must be previously sorted in increasing order
according to a provided comtarison function. Key tDints to the datum to
be sought in the table. Base I;X)ints to the elanent at the base of the
table. Nel is the number of elanents in the table. Comtar is the name of
the canparison function, which is called with two arguments that I;X)int to
the elanents being com~red. '!he function must return an integer less
than, equal to, or greater than zero according as the first argument is
to be considered less than, equal to, or greater than the second.

DIIGIDSTICS

A mIL pointer is returned if the kty cannot be found in the table.

bsearch-l

ceil

NAME

floor, ceil, fmod, fabs - floor, ceiling, ranainder, absolute value
ftmctions

SYIDPSIS

See floor

ceil-l

chdir - change working directory

SYIDPSIS

int chdi r ({:6 th)
char *path;

DESQUPl'ION

chdir

Fa th I;X)ints to the t:a th name of a directory. Cldir causes the naned
directory to become the current working directory, the starting };X)int for
{:6th searches for {:6th names not beginning with /.

Oldir will fail and the current working directory will be unchanged if
one or more of the following are true:

A comp:>nent of the {:6th name is not a directory. [ENOIDIR]

The named directory does not exist. [ENOENr]

Search ~rrnission is denied for aIrf comp:>nent of the {:6th name. [FAeCES]

Path I;X)ints outside the p(ocess' s allocated address s{:6ce. [EFAULT]

REmJRN VAliJE

UIDn successful ccmpl etion , a value of fiJ is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

chdir-l

The effective user ID ooes not match the owner of the file. [EPERM]

Path I;X)ints outside the process's allocated address space. [EFAULT]

RE'IURN VALUE

UI;X)n successful canpletion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

clmod-2

NAME

ctmod - change IOOde of file

SYIDPSIS

int clJood (tath, IOOde)
char *path;
int mode;

DES<XIPI'ION

chmod

Path tx>ints to a tath nane naning a file. Cl'Iood sets the access
per.mission portion of the named file's mode according to the bit tattern
contained in rode.

Access per.mission bits are interpreted as follows:

~04~~
~~20~
~~l~~
~~07~
~~~07 

Read by owner 
Write by owner 
Execute (or search if a directory) by owner 
Read, write, execute (search) by group 
Read, write, execute (search) by others 

Chood will fail and the file rode will be Lmchanged if one or more of the 
following are true: 

A comp:>nent of the tath prefix is not a directory. [ENOIDIR] 

The named file ooes not exist. [ElDEN1'] 

Search per.mission is denied on .a component of the tath pref ix. 
[FAeCES] 

chmod-l 





clearerr 

NAME 

clear err , ferror, feof, f ileno - strean status il'X1uiries 

SYOOPSIS 

See ferror 

clearerr-l 





NAME 

close - close a file descriptor 

SYNJPSIS 

int close (fildes) 
int fildes; 

DESClU: prION 

close 

Fildes is a file descriptor obtained fran a creat, open, or dup system 
call. Close closes the file descriptor indicated by fildes. 

Close will fail if f ildes is not a valid open file descriptor. [EBADF] 

REruRN VALUE 

Utx>n successful canpl eti on, a value of f(l is returned. Otherwise, a value 
of -1 is returned and errno is set to indicate the error. 

SEE ALSO 

creat(2), dup(2), exec(2), open(2), 

close-l 





cos 

NAME 

sin, oos, tan, asin, aoos, atan, atan2 - trigonanetric functions 

SYIDPSIS 

See trig 

005-1 





cosh 

NAME 

sinh, rosh, tanh - hyperbolic ftmctions 

SYIDPSIS 

,see sinh 

oosh-l 



creat 

The file ooes not exist and the directory in which the file is to be 
created does not peoni t writing. [EACCES] 

The file is a pure procedure (shared text) file that is being 
executed. [ETX'IBSY] 

The named file is an existing directory. [EISDIR] 

'IWenty (20) file descriptors are currently open. [EMFILE] 

Path :FDints outside the process's allocated address stace. [EF.AULT] 

Utx>n successful canpletion, a non-negative integer, namely the file 
descriptor, is returned. otherwise, a value of -1 is returned and errno 
is set to indicate the error. 

SEE ALSO 

ciose(2), dup(2), 1seek(2), open(2), read(2), write(2). 

creat-2 



NAME 

creat - create a netl file or retlrite an existing one 

SYIDPSIS 

int creat (l;Bth, lOOde) 
char *path; 
int lOOde; 

DESCRIPl'ION 

creat 

Creat creates a netl ordinaty file or pretares to retlrite an existing file 
named by the l;Bth name };O inted to by l;B th. 

If the file exists, a netl version is created. 

Up:>n successful completion, a non-negative integer, namely the file 
descriptor, is returned. The file p:>inter is set to the beginning of the 
file. The file descriptor is set to ranain o};en across exec systan 
calls. No process may have more than 2~ files opm simultaneously. A netl 
file may be created with a mode that forbids writing. 

Creat will fail if one or more of the following are true: 

A oomp:>nent of the l;Bth pref ix is not a directory. [ENOIDIR] 

A canp:>nent of the J;Bth prefix does not exist. [ElDENl'] 

Search };ermission is denied on a comp:>nent of the };ath prefix. 
[FAeCES] 

The };ath name is null. [ENOENT] 

creat-l 



The argument to the encryp: entry is a character array of length 64 
containing only the characters with numerical value ~ and 1. The 
argument array is modified in piace to a similar array representing the 
bits of the argument after having been subjected to the DES algorithm 
using the key set by setkey. If edflag is zero, the argument is 
encrypted; if non-zero, it is decrypted. 

su;s 

The return value };X)ints to static data that are oveIWritten by each call. 

cryp:-2 



NAME 

crypt, setkey, encrypt - generate DES encryption 

SYIDPSIS 

char *crypt (key, salt) 
char *key, *salt; 

char *key; 

void encrypt (block, edflag) 
char *block; 
int edflag; 

DESClUPl'ION 

crypt 

Crypt is the password encryption function. It is based on the IDS Data 
Encryption Standard (DES), with variations intended (among other things) 
to frustrate use of hardtlare implanentations of the DES for key search. 

Key is a user IS tyt:ed password. Sal t is a two-character string chosen 
fran the set [a-zA-Zg-9 ./l; this string is used to perturb the DES 
algorithm in one of 4g96 different WO!fS, after which the I;Bssword is used 
as the ke.y to encrypt repaatedly a constant string. The returned value 
p:>ints to the encrypted password. The first two characters are the salt 
itself. 

'!be setkey and encrypt entries provide (rather primitive) access to the 
actual DES algori thrn. The argument of setkey is a character array of 
length 64 containing only the characters with numerical value 0 and 1. 
If this string is divided into groups of 8, the low-order bit in each 
group is ignored; this gives a 56-bit key which is set into the machine. 
'!his is the key that will be used with the above mentioned algorithn to 
encrypt or decrypt the string block with the function encrypt. 

crypt-l 



ctetJI;d 

SEE ALSO 

ttyname 

ctermid-2 



NAME 

ctermid - generate file name for terminal 

SYIDPSIS 

iinclude <stdio.h> 

char *ctermid(s) 
char *s; 

DESrnIPrION 

ctermid 

ctermid generates the p:1th name of the oontrolling terminal for the 
current process, and stores it in a string. 

If s is a NULL };X)inter, the string is stored in an internal static area, 
the oontents of which are overwritten at the next call to ctermid, and 
the address of which is returned. OtheIWise, s is assumed to };X)int to a 
character array of at least L_ctermid elanents; the tath name is placed 
in this array and the val ue of s is returned. The constant L_ctermid is 
defined in the <st_io.h> header file. 

The difference between ctermid and ttyname(3C) is that ttyname must be 
handed a file descri¢or and returns the actual name of the terminal 
associated with that file descriptor, while ctennid returns a string that 
will refer to the terminal if used as a file name. 'Ihus ttyname is 
useful only if the process already has at least one file opm to a 
terminal. 

ctermid-l 



ctime 

oonstant width. 

Sun Sep 16 ~1:~3:52 1973\n\~ 

Localtime and gmtime return lDinters to tm structures, described belCM. 
Local time corrects for the time zone and lDssible Daylight Savings Time; 
gmtime converts directly to Greenwich Mean Time (GMr). 

Asctime oonverts a tm structure to a 26-character string, as shCMn in the 
al:x:>ve example, and returns a p:>inter to the string. 

Declarations of all the functions and externals, and the On structure, 
are in the <time.h> header file. The structure declaration is: 

struct On { 

}i 

int tm_sec; /* seoonds (~ - 59) */ 
int tm.JIlin; /* minutes (0 - 59) */ 
int tm~ur; /* hours (~ - 23) */ 
int tm..JIlday; /* day of month (1 - 31) */ 
int tm.JOOn; /* month of year (~ - 11) */ 
int tm-year; /* year - 19ftJftJ */ 
int tm_wday; /* day of week (Sunday = ~) */ 
int tm-yday; /* day of year (~ - 365) */ 
int tm_isdst; 

TnLisdst is non-zero if Daylight Savings Time is in effect. 

The external long variable timezone oontains the difference, in seoonds, 
between GMr and local standard time (in EST, tinezone is 5*60*6~); the 
external variable daylight is non-zero if and only if the standard U. S.A. 
Daylight Savings Time oonversion should be applied. The program knows 
al:x:>ut the ~uliari ties of this oonversion in 1974 and 1975; if 
necessary, a table for these years can be extended. 

If the logical name TZ is defined, asctime uses it to override the 
default time zone. '!be value of TZ must be a three-letter time zone 
name, followed t1:i a nunber representing the difference between local time 
and Greenwich Mean Time in hours, followed t1:i an optional three-letter 
name for a daylight time zone. For exanple, the setting for New Jersey 
would be FSISEDr. The effects of setting TZ are thus to change the 
values of the external variabies timezone and daylight; in addition, the 
time zone names oontained in the external variabl e 

char *tzname [2] = { nEST a , nEDl'n } i 

are set from the logical name TZ. The ftmction tzset sets these external 
variables from TZ; tzset is called t1:i asctime and may al EO be called 
explicitly t1:i the user. 

ctime-2 



ctime 

NAME 

ctime, local time, gmtime, asctime, tzset - convert date and time to 
string 

SYIDPSIS 

tmclude <time.h) 

char *ctime (clock) 
long *clock; 

struct tIn *local time (clock) 
long *clock; 

struct tIn *gmtime (clock) 
long *clock; 

char *asctime (tm) 
struet tm *tm; 

extern long timezone; 

extern int daylight; 

extern char *tzname[2]; 

void tzset ( ) 

DESClU Pl' ION 

Ctime converts a long integer, J:X)inted to by clock, representing the time 
in seconds since 00:00:0ra GMl', January 1, 1970, and returns a IDinter to 
a 26-character string in the following form. All the fields have 

ctime-l 





ctjmp 

SEE ALSO 

time 

BOOS 

The return values p:>int to static data woose content is overwritten by 
each call. 

ctime-3 



c%YP= 

issp:lce 

ispunct 

ispriIL 

isgraph 

iscntrl 

isascii 

DIAGNosrICS 

c is a Sp:lce, tab, carriage return, new-line, vertical tab, 
or form-feed. 

c is a punctuation character (neither control nor alt;ilanumeric). 

c is a printing character, code 040 (sp:lce) through 0176 
(tilde) • 

c is a printing character, like isprint except false for sp:lce. 

c is a delete character (0177) or an ordinary control 
character (less than 040) • 

c is an ~crI character, code less than 0200. 

If the argument to arrt of these macros is not in the domain of the 
ftmction, the result is tmdef med. 

ctype-2 



ctype 

NAME 

isalIila, isupper, islower, isdigit, isxdigit, isalnum, issI;Bce, ispmct, 
isprint, isgraph, iscntrl, isascii -classify characters 

SYNOPSIS 

iinclude <ctype.h> 

int isalIila (c) 
int c; 

• • • 

DESCRIPrION 

These macros classify character-coded integer values 1:::¥ table lookup. 
Each is a predicate returning nonzero for true, zero for false. lsascii 
is defined on all integer values; the rest are defined only where isascii 
is true and on the single non-AScrI value EDF (-1 - see stdio(3S)). 

isal};ila c is a letter. 

istIpI:er c is an uJ?f:er-case letter. 

islower c is a lower-case letter. 

isdigit c is a digit [~-9]. 
'. 

isxdigit c is a hexadecimal digit [~-9], [A-F] or [a-f]. 

isalnum c is an altilanumeric (letter or digit). 

ctype-l 





NAME 

cuserid - get character login name of the user 

SYIDPSIS 

tinclude <stdio.h> 

char *cuserid (s) 
char *Si 

DEEm! prION 

cuserid 

CUserid generates a character-string representation of the login name of 
the owner of the current process. If s is a NULL p:>inter, this 
representation is generated in an internal static area, the address of 
which is returned. Otherwise, s is assumed to IDint to an array of at 
least L_cuserid characters i the representation is left in this array. 
'!he constant L_cuserid is defined in the <stdio.h> header file. 

DI}G~ICS 

If the login name cannot be found, cuserid returns a mIL p:>inter i if s 
is not a NULL p:>inter, a null character (\a) will be placed at s [a] • 

SEE ALSO 

getlogin 

cuserid-l 



Functions drand48 and erand48 return non-negative double-precision 
floating-p:>int values uniformly distributed over the interval [0.0, -1.0) • 

F\mctions lrand48 and nrand48 return non-negative long integers uniformly 
distributed over the interval [0,2 sup31 ). 

F\mctions mrand48 and j rand48 return signed long integers uniformly 
distributed over the interval [-2 sup 31 ,2 sup 31 ). 

F\mctions srand48, seed48 and loong48 are initialization entry I:X>ints, 
one of which should be irwoked before either drand48, lrand48 or mrand48 
is called. (Although it is not recommended practice, oonstant default 
initializer values will be supplied autonatically if drand48, lrand48 or 
mrand48 is called without a prior call to an initialization entry I:X>int.) 
Functions erand48, nrand48 and jrand48 Cb not require an initialization 
entry p:>int to be called first. 

All the routines work ~ generating a sequence of 48-bit integer values, 
X sub i , according to the linear oongruential formula 

X sub{n+1}=(ax sub n+c) sub{roman modm}n>=0. 

The parameter m=2 sup 48; hence 48-bit integer arithmetic is performed. 
Unless loong48 has been irwoked, the multiplier value a and the addend 
val ue c are giva1 l:¥ 

amark =roman SDEECE66Dsub 16=roman 
273673163155sub 8 
c1ineup =roman Bsub 16=roman 13sub 8 • 

The value returned l:¥ any of the ftmctions drand48, erand48, lrand48, 
nrand48, mrand48 or j rand48 is computed ~ first generating the next 48-
bit $X sub i$ in the sequence. Then the appropriate number of bits, 
according to the type of data iten to be returned, are copied from the 
high-order (leftIoost) bits of $X sub i$ and transformed into the returned 
value. 

The ftmctions drand48, lrand48 and mrand48 store the last 48-bit X sub i 
generated in an internal buffer; that is wh¥ they must be initialized 
prior to being irwoked. The functions erand48, nrand48 and j rand48 
require the calling program to provide storage for the successive X sub i 
values in the array specif~ed as an argument when the functions are 
irwoked. '!hat is wh¥ these routines 00 not have to be initialized; the 
calling program merely has to place the desired initial value of X sub i 
into the array and pass it as an arg1.lIDent. By using different argmnents, 
ftmctions erand48, nrand48 and j rand48 allow separate modules of a large 
program to generate several independent streams of pseudo-random numbers, 
i.e., the sequence of ntnnbers in each stream will not depend utDn how 
many times the routines have been called to generate numbers for the 
other streams. 

drand48-2 



drand48 

NAME 

drand48, erand48, lrand48, nrand48, mrand48, j rand48 , srand48, seed48 , 
loong48 - generate uniformly distributed pseudo-random numbers 

SYNOPSIS 

oouble drand48 ( ) 

double erand48 (xsubi) 
unsigned short xsubi[3]; 

long 1 rand48 ( ) 

long nrand48 (xsubi) 
unsigned short xsubi [3]; 

long mrand48 ( ) 

long j rand48 (xsubi) 
unsigned short xsubi [3] ; 

void srand48 (seedval) 
long seedval; 

unsigned short *seed48 (seedl6v) 
unsigned short seed16v[3]; 

void loong48 (param) 
unsigned short par am [7] ; 

DESOUPI'ION 

'Ibis family of functions generates pseudo-randan numbers using the well­
known linear oongruential algorithm and 48-bit integer arithmetic. 

drand48-l 





dramK8 

The initializer ftmction srand48 sets the high-order 32 bits of X sub i 
to the 32 bits contained in its argument. The low-order 16 bits of X sub 
i are set to the arbitra~ value raman 330E sub 16 • 

'!he initializer function seed48 sets the value of X sub i to the 48-bit 
value specified in the argument array. In addition, the previous value 
of X sub i is copied into a 48-bit internal buffer, used only by seed48, 
and a p:>inter to this buffer is the value returned by seed48. This 
returned p:>inter, which can just be ignored if not needed, is useful if a 
program is to be restarted fran a given p:>int at some future time - use­
the p:>inter to get at and store the last X sub i value, and then use this 
value to reinitialize via seed48 when the program is restarted. 

'!he initialization function lcong48 allows the user to specify the 
initial X sub i , the multiplier value a," and the addend value c. 
Argument array elanents p!ram[0-2] specify X sub i , p:lram[3-5] specify 
the multiplier a, and param[6] s~cifies the l6-bit addend c. After 
lcong48 has been called, a subsequent call to either srand48 or seed48 
will restore the standard multiplier and addend values, a and c, 
specified on the previous p:lge. 

SEE ALSO 

rand 

drand48-3 



dup 

Rm'URN VALUE 

Up:>n successful canpletion a' non-negative integer, namely the file 
descriptor, is returned. Otherwise, a value of -1 is returned and errno 
is set to indicate the error. 

SEE ALSO 

creat(2), ciose(2), exec (2) , open(2) , 

dup-2 



dup - duplicate an open file descriptor 

SYIDPSIS 

int dup (fildes) 
int fildes; 

DESCRIPl'ION 

dup 

Fildes is a file descriptor obtained fran a creat, open, or dup, &ystem 
call. Dup returns a new file descriptor having the following in corranon 
with the original: 

Same open file. 

Same fil e I;Dinter. 
{X>inter. ) 

(i. e. , both file descriptors share one file 

Same access mode (read, write or read/write). 

The new file descriptor is set to ranain open across exec systan calls. 

'!he file descript:or returned is the lowest one available. 

Dup will fail if one or more of the following are true: 

Fildes is not a valid open file descriptor. [EBADF] 

'tWenty (2f() file descriptors are currently open. [EMFILE] 

dup-l 



SEE ALSO 

printf 

BU;S 

The return values point to static data wmse content is overwritten by 
each call. 

ecvt-2 



NAME 

eOlt, fOlt, gOit - convert floating-p:>int number to string 

SYIDPSIS 

char *eOlt (val ue, ndigi t, decpt, sign) 
double value~ 
int ndigi t, *decpt, *sign ~ 

char *fcvt (value, ndigit, decpt, sign) 
doubl e val ue ~ 
int ndigi t, *decpt, *sign ~ 

char *gOlt (value, ndigit, buf) 
(bubl e val ue; 
char *buf; 

DESCRI Pl' ION 

ecvt 

Ec,vt converts value to a null-teIIninated string of ndigit digits and 
returns a p:>inter thereto. The low-order digit is rounded. The tDsition 
of the decimal p:>int relative to the beginning of the string is stored 
indirectly through decpt (negative means to the left of the returned 
digits). The decimal p:>int is not included in the returned string. If the 
sign of the result is negative, the word p:>inted to by sign is non-zero, 
otherwise it is zero. Fovt is identical to eOlt, except:. that the correct 
digit has been rounded for Fortran F-format output of the number of 
digits s~cified by ndigit. 

Gcvt converts the value to a null-terminated string in the array IDinted 
to by buf and returns buf. It attanpts to produce ndigit significant 
digits in Fortran F-format if tDssible, otherwise E-format, ready for 
printing. A minus sign, if there is one, or a decimal p:>int will be 
included as part of the returned string. Trailing zeros are suppressed. 

ecvt-l 





NAME 

erf, erfc - error function and cc:mplenentary error function 

SYIDPSIS 

#include <rcath.h> 

double erf (x) 
oouble Xi 

oouble erfc (x) 
oouble Xi 

DESClUPl'ION 

Erf returns the error function of x, defined as {2 over s:;Irt 
pi} int from 0 to x e sup {- t sup 2}'dt • 

Erfc, which returns 1.0 - erf (x), is provided because of the 
extrene loss, of relative accurac.y if erf (x) is called for 
large x and the result subtracted from 1.0 (e.g. for x = 5, 
12 places are lost) • 

SEE ALSO 

exp 

ert 

erf-l 





erfc 

NAME 

erf, erfc - error ftmction and canplanentaz:y error ftmction 

SYIDPSIS 

See erf 

erfc-l 



When a C program is executed, it is called as follows: 

main (argc, argv, envp) 
int argci 
char **argv, **envp; 

where argc is the argument OOtmt and argv is an array of character 
pointers to the arguments themselves. As indicated, argc is 
oonventionally at least one and the first manber of the array t;:cints to a 
string containing the name of the file. 

Path };Dints to a pith name that identifies the new process file. File 
IDints to the nEW process file. 

Arg9, argl, ••• , ar9- are p:>inters to null-terminated character strings. 
These strings constitute the argument list available to the nEW process. 
By oonvention, at least arg9 must be present and r:oint to a string that 
is the same as J;Bth (or its last canIDnent). 

Argv is an array of character };Dinters to null-terminated strings. These 
strings oonstitute the argument list available to the nEW process. By 
convention, argv must have at least one manber, and it must IDint to a 
string that is the same as pith (or its last ccmtDnent). Argv is 
terminated by a null tDinter. 

Exec will fail and return to the calling process if one or more of the 
following are true: 

One or IOOre oom};Dnents of the new process file's p:lth name 00 not exist. 
[EIDENl'] 

A comIDnent of the new process file's path prefix is not a directory. 
[ENJrDIR] 

Search ~rmission is denied for a directory listed in the new process 
f lie's pith prefix. [FACCES] 

rrbe new process file IOOde denies execution ~rmission. [EAC~] 

The exec is not an exec1p or exec.vp, and the new process file has the 
appropriate access permission but an invalid magic number in its header. 
[ EIDEXEX::] 

The new process file is a pure procedure (shared text) file that is 
currently open for writing by some process. [ErX'lBSY] 

The new process requires more manory than is allowed by the systan­
imtDsed maximum MAXMEM. [ENJMEM] 

exec-2 



exec 

exec, execl, execv, execle, exeOle, execlp, exeOlp - execute a file 

SYOOPSIS 

int execl (path, arg0, argl, ••• , argn, 0) 
char *path, *arg0, *argl, ••• , *argni 

int execv (path, argv) 
char *path, *argv [ ] i 

int execle (path, arg0, argl, ••• , argn, 0, envp) 
char *path, *arg0, *argl, ••• , *argn, *envp[ ] i 

int exec.ve (path, argv, envp) 
char *I;Bth, *argv[ ], *envp[ ] i 

int execlp (file, arg0, argl, ••• , argn, 0) 
char *file, *arg0, *argl, ••• , *argni 

int execvp (file, argv) 
char *f il e, *argv [ ] i 

DESCRIPl'ION 

Exec creates a ne.v process. The ne.v process is oonstructed fran an 
ordinary file called the new process file. '!his file is an executable 
object file, An executable object file oonsists of a header a text 
segnent, and a data segnent. The data segment contains an initialized 
portion and an unini tialized portion (bss). 

exec-l 





The number of t¥tes in the new process's argument list is greater than 
the systan-iInIx>sed limit of 5120 bytes. [E2BIG] 

-The new process file is not as long as indicated t¥ the size values in 
its header. [EFAULT] 

Path, argv, or envp };Dint to an ilJ.egal address. [EFAULT] 

RErum VALUE 

If exec returns an error, the return value will be -1 and errno will be 
set to indicate the error. 

SEE ALSO 

exit 

exec-3 





NAME 

exit, _exit - terminate process 

SYroPSIS 

void exit (status) 
int status1 
void _exit (status) 
int status1 

DESCRIPl'ION 

exit 

Exi t terminates the calling process with the following cons8:luences: 

All of the file descriI,±ors open in the calling process are closed. 

exit-l 



Pow returns x to the Y J;Ower. '!be values of x and y may not toth be 
zero. If x is non-{Dsitive, Y must be an integer. 

S:jrt returns the &1uare root of x. The value of x may not be negative. 

DI}1;~ICS 

Exp returns HU;E when the correct value would overflow, and sets errno to 
ERAN3E. 

Log and 10g13 return 3 and set ermo to EOOM when x is non-J;Ositive An 
error message is printed on the standard error output. 

EOw returns 3 and sets ermo to EOOM when x is non-IDsitive and y is not 
an integer, or wha'l x and yare toth zero. In these cases a message 
indicating OOMAIN error is printed on the standard error output. When 
the correct value for P'W would overflow, P'W returns HillE and sets errno 
to ERAN3E. 

S:jrt returns 3 and sets erma to EOOM when x is negative. A message 
indicating OOMAm error is printed on the standard error output. 

SEE ALSO 

exp-2 



exp 

NAME 

exp, log, 10g10, pow, sqrt - exponential, logarithm, power, square root 
ftmctions 

SYOOPSIS 

iinclude <math.h> 

do ubI e exp (x) 
oouble Xi 

ooub1e log (x) 
oouble Xi 

ooub1e 10g10 (x) 
oouble Xi 

double p:>w (x, Y) 
oouble x, Yi 

ooub1e sqrt (x) 
oouble Xi 

DESCRIPl'ION 

Exp returns e to the x pJWer. 

Log returns the natural logarithm of x. The value of x must be p:>sitive. 

Logl'" returns the logarithn base ten of x. The value of x must be 
I;X>sitive. 

exp-l 





fabs 

NAME 

fabs, floor, ceil, fmod, - floor, ceiling, remainder, absolute value 
ftmctions 

SYIDPSIS 

See floor 

fal::s-l 



fclose 

SEE ALSO 

close, en t, fopen, setbuf 

fclose-2 



NAME 

fclose, fflush - close or flush a stream 

SYIDPSIS 

iinclude <stello.h> 

int fclose (stream) 
FILE *stream; 

int fflush (stream) 
FILE *stream; 

DESOUPl'ION 

fclose 

Fclose causes any buffered data for the named stream to be written out, 
and the stream to be closed. 

Fclose is ~rformed autanatically for all open files uJ;On calling 
exit(2). 

Fflush causes any buffered data for the named stream to be written to 
that file. The stream renains open. 

DIM:;NOSTICS 

These ftmctions return '" for success, and EDF if arw error (such as 
trying to write to a file that has not been opened for writing) was 
detected. 

fclose-l 





fdopen 

NAME 

foop:m, freopen, fopen - open a stream 

SYIDPSIS 

See fop:m 

fCbpen-l 





feof 

feof, ferror, clearerr, fileno - stream status imuiries 

SYIDPSIS 

See ferror 

feof-l 



ferror 

Fileno returns the integer file descriptor ass:>ciated with the named 
stream; see open (2) • 

NJTE 

All these functions are implanented as nacros; they cannot be declared or 
redecl.ared. 

SEE ALSO 

open, fopen 

ferror-2 



NAME 

ferror, feof, clearerr, fileno - stream status iIXIuiries 

SYN)PSIS 

tinclude <stdio.h> 

int feof (stream) 
FILE 
*stream; 

int ferror (stream) 
FILE 
*stream; 

void clearerr (stream) 
FILE 
*stream~ 

int fileno (stream) 
FILE 
*stream; 

DEEClUPl'ION 

ferror 

Fecf returns non-zero when EDF has previously been detected reading the 
named input stream, otherwise zero. 

Ferror returns non-zero when an I/O error has previously occurred reading 
fran or writing to the named stream, otherwise zero. 

Clearerr resets the error indicator and EOF indicator to zero on the 
named stream. 

ferror-l 





fflush 

NAME 

fflush, fclose, - close or flush a stream 

SYIDPSIS 

See fclose 

fflush-l 





fgetc 

NAME 

fgetc, getdlar, getc, getw - get dlaracter or word fran stream 

SYIDPSIS 

See getc 

fgetc-l 





fgets 

fgets, gets - get a string from a stream 

SYIDPSIS 

See gets 

fgets-l 





fileno 

NAME 

fileno, ferror, feof, cl.earerr, - strean status il'XIuiries 

SYIDPSIS 

See ferror 

fileno-l 



floor 

SEE ALSO 

abs 

floor-2 



floor 

NAME 

floor, ceil, fmod, fabs - floor, ceiling, ranainder, absolute value 
functions 

SYroPSIS 

#include <rrath.h> 

double floor (x) 
oouble Xi 

oouble ceil (x) 
oouble Xi 

oouble fmod (x, y) 
oouble x, Yi 

oouble fabs (x) 
oouble Xi 

DESClUPl'ION 

floor returns the largest integer (as a oouble-precision number) not 
greater than x. 

Ceil returns the smallest integer not less than x. 

Fn¥:>d retums x if Y is zero, otherwise the number f with the same sign as 
x, such that x = iy + f for some integer i, and If I < Iy I. 

Fabs returns I x I • 

floor-l 





fmod 

NAME 

frood, ceil, floor, fabs - floor, ceiling, ranainder, absolute value 
ftmctions 

SYIDPSIS 

See floor 

fmod-I 



£open 

na n aPJ;Sld; open for writing at end of file, or 
create for writing 

nr+n open for update (reading and writing) 

nw+n truncate or create for update 

na+n aPJ;Sld; open or create for update at end-of-file 

Freopen substitutes the named file in place of the oI;el stream. The 
original stream is closed, regardless of whether the open ultimately 
succeeds. Freopen returns a J;X)inter to the FILE structure associated 
with stream. 

Freopen is typically used to attach the preo~ned streams associated with 
stdin, stoout and stderr to other files. 

Fdop:n associates a stream with a file descrip:or obtained from open, 
dup, or creat, which will open files but not return J;X)inters to a FilAE 
structure stream which are necessary input for many of the section 38 
library routines. The tyI:e of stream must agree with the mde of the open 
file. 

When a file is opened for update, roth input and output may be <Dne on 
the resulting stream. Hcwever, output may not be directly followed by 
input without an intervening fseek or rewind, and input may not be 
directly followed by output without an intervening fseek, rewind, or an 
input operation which encounters end-of-file. 

When a file is opened for append (i.e., when type is nan or na+Q
), it is 

llnIDssible to overwrite information already in the file. Fseek may be 
used to reJ;Osition the file J;X)inter to any IDsition in the file, but when 
output is written to the file the current file IDinter is disregarded. 
All output is written at the end of the file and causes the file IX>inter 
to be repositioned at the end of the output. If two seIBrate processes 
open the same file for append, each process may write freely to the file 
without fear of destroying output being written by the other. The output 
fran the two processes will be intemlixed in the file in the order in 
which it is written. 

SEE ALSO 

open, fclose 

DIMiNOSrICS 

Fbpen and freopen return a NULL pointer on failure. 

fopen-2 



NAME 

fopen, freopen, foopen - open a stream 

SYroPSIS 

iinclude <stdio.h> 

FILE *fopen (fil&-name, ~) 
dlar *f il&-name, *tyte; 

FILE *freopen (file-name, ty~, stream) 
dlar *fil&-name, *~; 
FILE *stream; 

FILE *foopen (fildes, ~) 
int fildes; 
dlar *type; 

DESOUPl'ION 

fopen 

Fopen opens the file named by fil&-name and associates a stream with it. 
Fopen returns a p:>inter to the FILE structure asoociated with the str_am. 

Fil&-name points to a dlaracter string that oontains the name of the file 
to be opened. 

Typ:! is a character string having one of the following values: 

"r" open for reading 

"w" truncate or create for writing 

fopen-l 





fprintf 

fprintf, printf, spr~ntf - print formatted output 

SYOOPSIS 

See printf 

fprintf-l 





fputc 

fputc, put char , putc, putw - put character or word on a stream 

SYIDPSIS 

See putc 

fputc-l 





fputs 

fputs, puts - put a string on a stream 

SYIDPSIS 

See puts 

fputs-l 



fread 

The variable size is typically sizeof (*ptr) where the pseucb-function 
sizeof sJ;ecifies the length of an item fX)inted to by ptr. If ptr fX)ints 
to a data ~ other than char it should be cast into a I;Ointer to char. 

SEE ALSO 

read, write, fopen, getc, gets, printf, putc, puts, scanf 

DIP.GNOSI'ICS 

Fread and fwrite return the nunber of itans read or written. If nitans is 
non-p::>sitive, no characters are read or written and 0 is returned by roth 
fread and £Write. 

fread-2 



NAME 

fread, £Write - binaty input/output 

SYIDPSIS 

tinclude <stdio.h> 

int fread (ptr, size, nitans, strean) 
char *ptr; 
int size, nitans; 
FILE *stream; 

int £Write (ptr, size, nitans, stream) 
char *ptr; 
int siz e, ni tans; 
FILE *stream; 

DESClUPl'ION 

fread 

Fread copies, into an array beginning at ptr, nitans itans of data from 
the named input stream, where an itan of data is a sequence of bytes (not 
necessarily temdnated by a null byte) of length size. Fread stops 
appmding bytes if an end-of-file or error condition is enCOlU'ltered while 
reading stream, or if nitans itans have been read. Fread leaves the file 
p:>inter in stream, if defined, p:>inting to the byte following the last 
byte read if there is one. "Fread does not change the contents of stream. 

Fwrite appmds at most nitans itans of data from the the array p:>inted to 
by ptr to the named output stream. _write stops appmding when it has 
appmded nitans itans of data or if an error condition is enCOlU'ltered on 
stream. Fwrite ooes not change the contents of the array tx>inted to by 
ptr. 

fread-l 





freopen 

NAME 

freopen, fopen, fdopen - open a stream 

SYIDPSIS 

See fopen 

freopen-l 





NAME 

frexp, ldexp, IOOdf - manipulate I,:arts of floating-};X)int numbers 

SYIDPSIS 

<Duble frexp (value, eptr) 
oouble value; 
int *eptr; 

cbuble ldexp (value, exp) 
oouble value; 
int exp; 

double modf (value, it:tr) 
oouble value, *iptr; 

DEScmprION 

frexp 

Every non-zero number can be written uniquely as x* 2 A n, where the 
mantissa (fraction) x is in the range ra.5 _ returns the mantissa of a 
<Duble value, and stores the exp:>nent indirectly in the location };X)inted 
to by ep:.r. 

Ldexp returns the quantity value* 2 exp. 

ltbdf returns the signed fractional p:irt of value and stores the integral 
part indirectly in the location p:>inted to by ip:.r. 

D:rn:;NlSTICS 

If ldexp would cause overflow, m.x;E is returned and errno is set to 
E}WI;E. 

frexp-l 





fscanf 

fscanf, scanf, sscanf - convert focnatted input 

SYIDPSIS 

See scanf 

fscanf-l 



Fte11 returns the offset of the current byte relative to the beginning of 
the file associated with the named stream. 

SEE ALSO 

1 seek, fopen, ungetc 

D~ICS 

Fseek returns non-zero for improper seeks, otherwise zero. An improJ;'Er 
seek can be, for example, an fseek done on a file that has not been 
ot:ened via fOI;a1; in };articular, fseek may not be used on a tenninal. 

WARNI~ 

Although on the UNIX Systan an offset returned by ftell is measured in 
bytes, and it is pennissible to seek to p:>sitions relative to that 
offset, IX>rtability to non-UNIX Systans requires that an offset be used 
by fseek directly. Arithmetic may not meaningfully be t:erformed on such a 
offset, which is not necessarily measured in bytes. 

fseek-2 



NAME 

f seek , rewind, ftell - rep:>sition a file IX>inter in a stream 

SYIDPSIS 

#include <stdio.h> 

int fseek (stream, offset, ptrname) 
FILE *stream; 
long offset; 
int ptrname; 

void rewind (stream) 
FILE *stream; 

long ftell (stream) 
FILE *stream; 

DESClUPl'ION 

fseek 

Fseek sets the I;X>sition of the next input or output operation on the 
stream. The new I;X>si tion is at the signed distance offset bytes f rom the 
beginning, fran the current I;X>sition, or fran the end of the file, 
according as ptrname has the value ~, l, or 2. 

Rewind (stream) is equivalent to fseek (stream, ~L, ~), except that no 
val ue is returned. 

Fseek and rewind unCb any effects of ungetc (3S) • 

After fseek or rewind, the next operation on a file opened for update may 
be either input or output. 

fseek-l 





ftell 

NAME 

ftell, rewind, fseek - reJ;Dsition a file p:>inter in a stream 

SYIDPSIS 

See fseek 

ftell-l 





fwrite 

NAME 

fwrite, fread, - binaty input/output 

SYIDPSIS 

See fread 

fwrite-l 



*§Udlft 

If the correct value would overflow, garmna returns HtX;E and sets ermo to 
ERAK;E. 

SEE ALSO 

exp 

garmna-2 



gamma - log gamma function 

SYIDPSIS 

iinclude <math.h> 

extern int signgam; 

oouble gamma (x) 
oouble Xi 

DESCRIPl'ION 

gamma 

Gamma returns ln ( GAMMA(x) ), where GAMMA(x) is defined as int from (() to 
inf e sup { - t} t sup { x - 1 } dt. The sign of GAMMA(x) is returned in 
the external integer signgam. The argument x may not be a non-positive 
integer. 

The following C program fragment might be used to calculate GAMMA: 

if «y = gamma (x» > La;mI;E) 
error()i 

y = signgam * exp(y); 

where UX;mx;E is the least value that causes exp (3M) to return a range 
error. 

DUGNOSrICS 

For non-negative integer arguments HU:;E is returned, and errno is set to 
EIX>M. A message indicating DOMAIN error is printed on the standard error 
output. 

gannna-l 



getc 

constant EDF uJ.X>n end-of-file or error, but as that is a valid; integer 
value, feaf and ferror(3S) should be used to check the success of getw. 
Getw increments the associated file !:Dinter, if defined, to !:Dint to the 
next word. Getw assumes no s~cial aligmnent in the file. 

SEE ALSO 

fclose (35), ferror (35), fopen (35), fread (35), gets (35), putc (35) , 
scanf(3S). 

DI.N:;NOSl'ICS 

These functions return the integer constant EOF at end-of-f ile or up:>n an 
error. 

Bro5 

Because it is implemented as a macro, getc treats incorrectly a stream 
argument with side effects. In p::lrticular, getc(*f++) doesn't work 
sensibly. Fgetc should be used instead. Because of !:Dssible differences 
in word length and byte ordering, files written using putw are machine­
depmdent, and may not be read using getw on a different processor. 

getc-2 



getc, get char , fgetc, getw - get character or word fran stream 

SYOOPSIS 

iinclude <stdio.h> 

int getc (strean) 
FILE *stream; 

int get char () 

int fgetc (stream) 
FILE *stream; 

int getw (stream) 
FILE *stream; 

DESCXIPI'ION 

gete 

Getc returns the next character (i. e. byte) fran the named input stream. 
It ala:> moves the file p:>inter, if def med, ahead one character in 
stream. Getc is a macro and so cannot be used if a function is 
necessary; for example one cannot have a function I;Dinter p:>int to it. 

~ 

Getchar returns the next character from the standard input stream, stdin. 
As in the case of getc, getchar is a macro. 

Fgetc perfOIInS the same function as getc, but is a genuine function. 
Fgetc runs more slowly than getc, but takes less sIBce ~r invocation. 

Getw returns the next word (i. e. integer) from the named input stream. 
The size of a word varies from machine to machine. It returns the 

getc-l 





getchar 

get char , getc, fgetc, getw - get character or word fran stream 

SYIDPSIS 

See getc 

getchar-l 



SEE ALSO 

malioe 

D~ICS 

Returns NULL with ermo set if s,Je is not large enough, or if an error 
ocurrs in a lower-level function. 

getcwd-2 



NAME 

getaYd - get l,Bth-name of current working directory 

SYroPSIS 

char *getaYd (buf, size) 
char *buf; 
int size; 

DESCRIPI'ION 

getcwd 

GetaYd returns a p:>inter to the current directory I;8th-name. The value of 
size must be at least two greater than the length of the I;8th-name to be 
returned. 

If buf is a NULL p:>inter, getaYd will obtain size l:¥tes of space using 
rnalloc (3C) • In this case, the p:>inter returned by getcwd may be used as 
the argument in a subsequent call to free. 

EXAMFLE 

char *c.wd, *getcwd () ; 
• 
• 
• 
if «cwd = getaYd( (char *)NJLL, 64» = NJLL) { 
perror("twd") ; 
exit(l); 
} 
printf("%ns\n, cwd); 

getaYd-1 





getlogin 

getlogin - get login name 

SYIDPSIS 

char *getlogin ( ); 

DESOUPl'ION 

Getlogin returns a pointer to the login name. 

If getlogin is called within' a process that is not attached to a 
terminal, it returns a mIL pointer. The correct procedure for 
determining the login name is to call cuserid. 

SEE ALSO 

cuserid 

D~NOSI'ICS 

Returns the roLL pointer if _name not fotmd. 

BOOS 

The return values fX)int to static data woose oontent is overwritten by 
each call. ~ 

getlogin-l 



Drx;NOSl'ICS 

Getopt prints an error message on stderr and returns a question mark (1) 
when it encounters an option letter not included in optstring. 

WARNm:; 

The above routine uses <stdio.h>, which causes it to increase the size of 
programs, not otherwise using standard I/O, IIlQre than might be expected. 

getopt-2 



NAME 

getopt - get option letter fram argument vector 

SYOOPSIS 

int getopt (argc, argv, optstring) 
int argc; 
char **argv; 
char *optstr ing; 

extern char *optarg; 
extern int optind; 

DESrnI Pl' ION 

getopt 

Getopt returns the next option letter in argv that matches a letter in 
optstring. Optstring is a string of recognized option letters; if a 
letter is followed by a colon, the option is eXI,:ected to have an argument 
that may or may not be separated from it by white space. Optarg is set 
to p:>int to the start of the option argument on return fran getopt. 

Getopt places in optind the argv index of the next argument to be 
processed. Because optind is external, it is normally initialized to 
zero automatically before the first call to getopt. 

When all options have been processed (i. e. , up to the first non-option 
argument), getopt returns EDF. '!he special option - may be used to 
delimit the end of the options; EDF will be returned, and - will be 
ski~. 

getopt-l 





getopt 

EXAMPLE 

'!he following code fragment shews hew one might process the arguments for 
a command that can take the mutually exclusive options a and b, and the 
options f and 0, toth of which r~uire arguments: 

main (argc, argv) 
int argc; 
char **argv; 
{ 

int c; 
extern int optind; 
exter.n char *optarg; 

• 
• 
• 

while «c = getopt (argc, argv, nabf:o: n» 1= EDF) 
switch (c) { 

} 

case 'a': 
if (bflg) 

errflg++; 
else 

aflg++; 
break; 

case 'b': 
if (aflg) 

errflg++; 
else 

bproc( ); 
break; 

case 'f': 
if il e = optarg; 
break; 

case '0': 
of il e = optarg; 
bufsiza = 512; 
break; 

case '?': 
errflg++; 

} 
if (errflg) { 

} 

fprintf (stderr, nusage: 
exit (2); 

. . . 
for ( ; optind < argc; optind++) { 

if (access (argv[optind], 4» { 

• 

n) ; 

getopt-3 





getpid 

NAME 

getpid, getpgrp, getppid - get process, process group, and tarent process 
IDs 

SYIDPSIS 

int getpid () 

int getpgrp () 

int getppid ( ) 

DESClUPI'ION 

Getpid returns the process ID of the calling process. 

Getpgrp returns the process group ID of the calling process. 

Getppid returns the parent process ID of the calling process. 

SEE ALSO 

exec 

getpid-l 



gets 

DIP.GNOSI'ICS 

- If end-of-file is encountered and no characters have been read, no 
characters are transferred to s and a NULL p:>inter is returned. If a 
read error occurs, such as trying to use these ftmctions on a file that 
has not been opened for reading, a NULL p:>inter is returned. Otherwise s 
is returned. 

gets-2 



NAME 

gets, fgets - get.a string fram a stream 

SYOOPSIS 

iinclude <stdio. h> 

char *gets (s) 
char *s; 

char *fgets (s, n, stream) 
char *s; 
int n; 
FILE *strean; 

DESClUPrION 

gets 

Gets reads characters fran the standard input stream, stdin, into the 
array p:>inted to by s, until a new-line character is read or an end-of­
file condition is encountered. The new-line character is discarded and 
the string is terminated with a null character. 

Fgets reads characters fran the strean into the array I;X>inted to by s, 
until n-l characters are read, or a new-line character is read and 
transferred to s, or an end-=af-file condition is encountered. The string 
is then terminated with a null character. 

SEE ALSO 

ferror, fopen, fread, getc, scanf 

gets-l 





NAME 

get ui d, getgid, - set user and group IDs 

SYIDPSIS 

unsigned short getuid () 

unsigned short getgid 0 

DESOUPI'ION 

Getuid returns the user ID of the calling process. 

Getgid returns the group ID of the calling process. 

getuid 

getuid-l 





getw 

NAME 

getw, get char , fgetc, getc - get character or word fran stream 

SYOOPSIS 

See getc 

getw-l 



bsearch 

entries that the table will oontain. This number may be adjusted ut:Ward 
by the algorithn in order to obtain certain mathematically favorable 
circumstances. 

Hdestroy destroys the search table, and may be followed by another call 
to hcreate. 

SEE ALSO 

bsearch(3C), lsearch(3C), string (3C) , tsearch(3C). 

D~ICS 

Hsearch returns a NULL pointer if either the action is FIND and the i tern 
could not be fomd or the action is ENTER and the table is full. 

Hcreate returns zero if it cannot allocate sufficient sIBce for the 
table. 

Bms 

Only one hash search table may be active at any given time. 

hsearch-2 



NAME 

hsearch, hcreate, hdestroy - manage hash search tables 

SYOOPSIS 

iinclude <search.h> 

ENmY *hsearch (itan, action) 
EN'IRY i tan; 
ACI'ION action; 

int hcreate (nel) 
unsigned nel; 

void hdestroy ( ) 

DESOUPrION 

hsearch 

Hsearch is a hash-table search routine generalized fran Knuth (6.4) 
Algorithm D. It returns a {Dinter into a hash table indicating the 
location at which an entry can be found. Itan is a structure of type 
ENIRY (defined in the <search.h> header file) containing two p:>inters: 
item.key p'ints to the canparison key, and item.data p'ints to em] other 
data to be associated with that key. (Pointers to tTI:es other than 
character should be cast to. p'inter-to-character.) Action is a manber of 
an enumeration type ACI'ION indicating the disp:>sition of the entry if it 
cannot be found in the table. ENTER indicates that the itan should be 
inserted in the table at an appropriate {Dint. FIND indicates that no 
entry should be made. Unsuccessful resolution is indicated by the return 
of a NULL pointer. 

Hcreate allocates sufficient spice for the table, and must be called 
before hsearch is used. _el is an estimate of the maximum number of 

hsearch-l 





NAME 

hyp>t - Euclidean distance function 

SYNJPSIS 

iinclude <math.h> 

oouble hyp>t (x, y) 
Cbuble x, y; 

DESCRIPl'ION 

Hyp:>t returns 

s:xrt (x * x + y * y) , 

taking precautions against unwarranted overflows. 

D~ICS 

hypot 

When the correct value would overflow, hyp:>t returns HU;E and sets ermo 
to ERAN;E. 

SEE ALSO 

Sirt 

hyp:>t-l 





jO 

j0, jl, jn, y0, yl, yn - Bessel ftmctions 

SYIDPSIS 

See bessel 

j0-1 





j1 

jl, j0, jn, y0, yl, yn - Bessel functions 

SYIDPSIS 

See bessel 

jl-l 





jn 

NAME 

jn, jl, ja, y0, yl, yn - Bessel functions 

SYIDPSIS 

See bessel 

jn-l 





l3tol, lto13 - convert between 3-byte integers and long integers 

SYIDPSIS 

void l3tol (lp, cp, n) 
long *lp; 
char *cp; 
int n; 

void lto13 (cp, Ip, n) 
char *CPi 
long *lPi 
int n; 

Description 

13tol 

I3tol converts a list of n three-I:!lte integers :tacked into a character 
string J;X>inted to by cp into a list of long integers pJinted to by Ip. 

Lto13 perfonns the reverse conversion from long integers (lp) to three­
byte integers (cp). 

'Ihese fl.mctions are useful for file-systan maintenance where the block 
numbers are three bytes long. 

Bugs 

Because of FOssible differences in t¥te ordering, the numerical values of 
the long integers are machine-dep:mdent. 

13tol-l 





164a 

NAME 

l64a, a64l - a:>nvert between long integer and base-64 ASCII string 

SYIDPSIS 

See a64l 

164a-l 





log 

log, exp, 10g19, pow, sqrt - exponential, logarithm, power, square root 
functions 

SYIDPSIS 

See exp 

10g-1 





log10 

10g19, exp, log, pow, sqrt - exponential, logarithm, power, square root 
functions 

SYIDPSIS 

See exp 

10g10-1 



Isearch 

IDTES 

The J;X>inters to the key and the elanent at the base of the table should 
be of 1:yI:e IX'inter-to-elanent, and cast to 1:yI:e IX' inter-to-character. The 
canparison function need not caIttare every byte, so arbitrary data may be 
contained in the elements in addition to the values being comtared. 
Al. though declared as 1:yI:e J;X>inter-to-character, the value returned should 
be cast into 1:yI:e IX'inter-to-element. 

SEE ALSO 

bsearch(3C), hsearch(3C), tsearch(3C). 

Diagnostics 

If the searched-for datum is found, both lsearch and lfind return a 
J;X>inter to it. Otherwise, lfind returns NULL and lsearch returns a 
J;X>inter to the newly added elanent. 

Bms 

Undefined results can occur if there is not enough room in the table to 
aCkl a new item. 

lsearch-2 



NAME 

lsearch - linear search and update 

SYIDPSIS 

#include <stdio.h> #include <search.h> 

char *lsearch «char *)key, (char *)base, nelp, 
sizeof (*key), canpar) 
LU'lsigned *nel Pi 
int (*canpar) ( )i 

char *lfind «char *)key, (char *)base, nelp, 
canpar) 
unsigned *nelpi int (*comp:lr) ( ); 

DES<XIPI'ION 

Isearch 

Lsearch is a linear search routine generalized fran Knuth (6.1) Algorithm 
S. It returns a lDinter into a table indicating where a datum may be 
fOLU'ld. If the datum ooes not occur, it is added at the end of the table. 
Key };Dints to the datum to be sought in the table. Base plints to the 
first elanent in the table. Nelp IX>ints to an integer containing the 
current number of elanents in the table. '!he integer is incranented if 
the datum is added to the tabl e. canp:lr is the name of the canp:lrison 
fLU'lction which the user m~ supply (strcnp, for example). It is called 
wi th two arguments that IX>int to the el anents being canp:lred. The 
function must return zero if the elanents are equal and non-zero 
otherwise. 

1 search-l 



lseek 

The resulting file p:>inter would be negative. [EINVAL] 

Sane devices are inca};8ble of seeking. The value of the file 1X'inter 
associated with such a device is undefined. 

Utx>n successful canpletion, a non-negative integer indicating the file 
rointer value is returned. otherwise, a value of -1 is returned and 
ermo is set to indicate the error. 

SEE ALSO 

creat(2), dup(2), open (2) 

lseek-2 



lseek - move read/write file p:>inter 

SYIDPSIS 

long lseek (fildes, offset, whence) 
int fildes; 
long off set; 
int whence; 

DES<lU:P1'ION 

Iseek 

Fildes is a file descriptor returned fran a creat, open, or dup system 
call. Lseek sets the file rointer associated with fildes as follows: 

If whence is 0, the p:>inter is set to off set bytes. 

If whence is 1, the p:>inter is set to its current location plus 
offset. 

If whence is 2, the p:>inter is set to the size of the file plus 
offset. 

Up:>n successful completion, the resulting IDinter location as measured in 
bytes fran the beginning of .the file is returned. 

Lseek will fail and the file p:>inter will ranain unchanged if one or IOOre 
of the following are true: 

Fildes is not an open file descriptor. [EBADF] 

Whence is not 0, 1 or 2. [EINV"AL] 

lseek-l 



malloc 

coalescing adjacent free blocks as it searches. It calls sbrk (see 
brk(2» to get more manory frem the systen when there is no suitable 
space al ready free. 

Realloc changes the size of the block IDinted to by ptr to size bytes and 
returns a p:>inter to the (I;Ossibly moved) block. The oontents will be 
tmchanged up to the lesser of the new and old sizes. If no free block of 
size bytes is available in the storage arena, then realloc will ask 
malloc/

A 

to enlarge the arena by size bytes and will then move the data 
to the n&1 sI;8ce. 

Realloc also works if ptr p:>ints to a block freed since the last call of 
malloc, realloc, or calloc; thus sequences of free, malloc and realloc 
can exploit the search strategy of malloc to Cb storage oomI;8ction. ' 

calloc allocates sp:lce for an array of nJan elements of size elsize. 
The space is initial iz ed to zeros. 

Each of the allocation routines returns a tDinter to SI;8ce suitably 
aligned (after I;Ossible p:>inter coercion) for storage of any ~ of 
object. 

D!P1;NOSl'ICS 

Malloc, realloc and calloc return a WLL p:>inter if there is no available 
manory or if the arena has been detectably corrupted by storing outside 
the bounds of a block. When this happens the block pointed to by ptr may 
be destroyed. 

oorES 

Search time increases when many objects have been allocated; that is, if 
a program allocates but never frees, then each successive allocation 
takes longer. 

malloc-2 



malloc, free, realloc, calloc - main manoIy allocator 

SYIDPSIS 

char *malloc (size) 
unsigned size; 

void free (ptr) 
char *ptr; 

char *realloc (ptr, size) 
char *ptr; 
unsigned size; 

char *calloc (nelem, elsize) 
unsigned nelan, elsize; 

DESOUPl'ION 

malloe 

Malloc and free provide a simple general-purp'se manory allocation 
package. Malloc returns a IDinter to a block of at least size bytes 
suitably aligned for any use. 

The argument to free is a - p:>inter to a block previously allocated by 
malloc; after free is perfooned this sp:lce is nade available for further 
allocation, but its contents are left tmdisturbed. 

Undefined results will occur if the sp:lce assigned by malloc is overrun 
or if some random number is handed to free. 

Malloc allocates the first big enough contigoous reach of free sp:ice 
found in a circular search front" the last block allocated or freed, 

malIoc-1 



Manccpy copies characters from manory area s2 into sl, stopping after the 
first occurrence of character c has been copied, or after n characters 
have teen oopied, whichever oomes first. It returns a p:>inter to the 
character after the cop.{ of c in sl, or a roLL tx>inter if c was not found 
in the first n characters of s2. 

Manchr returns a p:>inter to the first occurrence of character c in the 
first n characters of manory area s, or a mIL p::>inter if c ooes not 
occur. 

Mananp compares its arguments, looking at the first n characters only, 
and returns an integer less than, equal to,. or greater than ~, according 
as sl is lexicographically less than, ~ual to, or greater than s2. 

Mancp'{ copies n characters fran manory area s2 to sl. It returns sl. 

Manset sets the first n characters in menory area s to the val ue of 
character c. It returns s • 

For user convenience, all these functions are declared in the optional 
<manory.h> header file. 

Bms 

Menanp uses native character canpari son , which is signed on ~8r{"30s and 
PDP-lIs, unsigned on other machines. 

Olaracter movanent is ~rformed differently in different implenentations. 
rrhus overlapping moves may yield surprises. 

manory-2 



memory 

NAME 

memory, memccpy, memchr, memanp, memcw, manset - memory operations 

SYOOPSIS 

#include <manory.h> 

char *manccpy (sl, s2, c, n) 
char *sl, *s2; 
int c, n; 

char *manchr (s, c, n) 
char *s; 
int c, n; 

int mananp (sl, s2, n) 
char *sl, *s2; 
int n; 

char *mancpy (sl, s2, n) 
char *sl, *s2; 
int n; 

char *manset (s, c, n) 
char *s; 
int c, n; 

DESOUPI'ION 

These functions operate efficiently on memory areas (arrays of characters 
rounded by a oount, not teminated by a null character). They 00 not 
check for the overflCM of any receiving memory area. 

manory-l 





mktanp - nake a unique file name 

SYIDPSIS 

char *mktenp (tanplate) 
char *tanplate; 

DES<E:Pl'ION 

mktemp 

Mktanp replaces the oontents of the string p:>inted to by tanplate by a 
unique file name, and returns the address of tanplate. The string in 
tanplate should look like a file name with six trailing Xs; mktanp will 
replace the Xs with a letter and the current process ID. The letter will 
be cOOsen so that the resulting naIre does not duplicate an existing file. 

SEE ALSO 

getpid(2), tmpfile(3S), tmpnam(3S). 

BOOS 

It is :r;nssible to run out of letters. 

mktanp-l 



open 

O_EXCL If O_EXCL and O_CRFAT are set, open will fail if the file 
exists. 

Up:>n successful completion a non-negative integer, the file descriptor, 
is returned. 

'!he file p:>inter used to mark the current p:>sition within the file is set 
to the beginning of the file. 

The new file descrip:or is set to remain open across exec systan calls. 

No process may have more than 2e file descri p:ors oP=Il simultaneously. 

'!be named file is opened unless one or more of the following are true: 

A comp:>nent of the I=Sth prefix is not a directory. [ENJrDIR] 

O_CRFAT is not set and the named file ooes not exist. [ENOENr] 

A can{X)nent of the I=S th pr ef ix denies search peIlIlission. [EACCEE] 

Oflag permission is denied for the named file. [EACCES] 

The named file is a directory and of lag is write or read/write. 
[EISDIR] 

Twenty (2e) file descrip:ors are currently open. [EMFILE] 

Path p:>ints outside the process's allocated address space. [EFAULT] 

O_CRFAT and O_EXCL are set, and the named file exists. [EEXIST] 

The systen file table is full. [ENFILE] 

RE'IDRN VALUE 

Up:>n successful canpletion, a non-negative integer, namely a file 
descrip:or, is returned. Otherwise, a value of -1 is returned and ermo 
is set to indicate the error. 

SEE ALSO 

close, creat, dup, 1 seek, read, write 

open-2 



oIEl - open for reading or writing 

SYroPSIS 

#include <fcntl.h> 
int OIEl (path, oflag [ , IOOde ] ) 
char *},:a th; 
int oflag, mode; 

DESClUPl'ION 

open 

Path p:>ints to a p:ith name naning a file. Open opens a file descriptor 
for the named file and sets the file status flags acoording to the value 
of oflag. Oflag values are constructed by or-ing flags from the 
following list (only one of the first three flags below may be used): 

O...."RDONLY Open for reading only. 

O.....wmrr..y Open for writing only. 

O...,.RIWR Open for reading and writing. 

O_NDELAY This flag may affect subsequent reads and writes. See read 
and write. 

O.J\PPEND If set, the file IDinter will be set to the end of the file 
prior to each write. 

O_mEAT If the file exists, a new version is created. 

O_TRJNC If the file exists, its length is truncated to fa and the 
roode and owner are unchanged. 

open-l 



perror 

l,X)int to are located in the text segnent so that they can be shared in 
progrcms that are leaded pure. 'Ibis implies that they are read-only in 
pure prograns and any attanp:s to change than will cause manory faults. 
However, the sys_errlist array itself is in the data aegment and hence 
the l,X)inters may be changed. 

per ro r-2 



perror, errno, sys_errlist, sys.Jlerr - system error messages 

SYOOPSIS 

void perror (s) 
char *s; 

extern int er rno i 

extern char *sys_errlist [] i 

extern int sys.Jlerr i 

DESClUPl'ION 

perror 

Perror produces a message on the standard error output, describing the 
last error encountered during a call to a systan or library ftmction. The 
argument string s is printed first, then a colon and a blank, then the 
message and a new-line. To be of mst use, the argmnent string should 
include the name of the program that incurred the error. The error number 
is taken fran the external variable ermo, which is set when errors 
occur. It is not cleared when non-erroneous calls are made. 

To simplify variant formatting of messages, the array of message strings 
sys_errlist is provided. erma can be used as an index in this table to 
get the message string without the new-line. sys.Jlerr is the largest 
message number provided for in the table. It should be checked because 
new error oodes may be added to the systan before they are added to the 
table. 

WARNIN:i 

'!he text of the error messages that the J;X>inters in the array sys_errlist 

t=error-l 





pow 

NAME 

pow, exp, log, 10g19, sqrt - exponential, logarithm, power, square root 
functions 

SYroPSIS 

See exp 

I=Ow-1 



print£ 

Each oonversion s~cification is introduced by the character %. After 
the %, the following app:!Clr in sequence: 

Zero or more flags, which modify the meaning of the oonversion 
s~cification. 

An optional decimal digit string s~cifying a minimum field width. 
If the converted value has fewer characters than the field width, it 
will be J;8dded on the left (or right, if the left-adj ustment flag 
(see below) has been given) to the field width; 

A precision that gives the minimum number of digits to ap~ar for 
the d, 0, u, x, or X oonversions, the number of digits to appear 
after the decimal };Dint for the e and f conversions, the maxinun 
number of significant digits for the g oonversion, or the maximum 
number of characters to be printed from a string in s oonversion. 
The precision takes the form of a p:riod (.) followed by a decimal 
digit string: a null digit string is treated as zero. 

An optional 1 s~cifying that a following d, 0, u, x, or X 
oonversion character applies to a long integer arg. 

A character that indicates the ~ of conversion to be applied. 

A field width or precision may be indicated by an asterisk (*) instead of 
a digit string. In this case, an integer arg supplies the field width or 
precl.sl.on. The arg that is actually oonverted is not fetched until the 
conversion letter is seen, so the args specifying field width or 
precision must appear before the arg (if any) to be converted. 

The flag characters and their meanings are: 

+ 

blank 

printf-2 

'!he result of the conversion will be left-justified within 
the field. 

'!be result of a signed conversion will always begin with a 
sign (+ or -). 

If the first character of a signed conversion is not a 
sign, a blank will be prefixed to the result. This 
implies that if the blank and + flags roth apJ;ear, the 
blank flag wUl be ignored. 

This flag s~cifies that the value is to be oonverted to 
an alternate form. For c, d, s, and U oonversions, the 
flag has no effect. For 0 oonversion, it increases the 
precision to force the first digit of the result to be a 
zero. For x (X) conversion, a non-zero result will have 
~x (~X) prefixed to it. For e, E, f, g, and G 
conversions, the result will always contain a decimal 



printf, fprintf, sprintf - print foonatted output 

SYIDPSIS 

'include <stdio.h> 

int printf (format ,arg] ••• 
char *format; 

int fprintf (stream, format [ , arg ] ••• 
FILE *strean; 
char *format; 

int spr intf (s, format [ , arg ] ••• 
char *s, format; 

printf 

Printf places output on the standard output strean stdout. Fprintf places 
output on the named output stream. Sprintf places output, followed by 
the null character (\B) in consecutive bytes starting at *s; it is the 
user's resIDnsibility to ensure that Enough storage is available. Each 
function returns the nunber of characters transnitted (not including the 
\rr:J in the case of sprintf), or a negative value if an output error was 
encountered. 

Each of these functions converts, formats, and prints its args under 
control of the fonnat. The fomat is a character string that contains 
two tyI:es of obj ects: plain characters, which are simply copied to the 
output stream, and conversion spacifications, each of which results in 
fetching of zero or roore args. The results are undefined if there are 
insufficient args for the fonnat. If the format is exhausted while args 
remain, the excess args are sirnpiy ignored. 

printf-l 



printf 

% 

If the string p>inter arg bas the value zero, the result 
is tmdefined. A null arg will yield tmdefined results. 

PrInt a %; no argument is oonverted. 

In no case ooes a non-existent or small field width cause truncation of a 
field; if the result" of a oonversion is wider than the field width, the 
field is simply expanded to oontain the oonversion result. <llaracters 
generated by printf and fprintf are printed as if putc(3S) had been 
called. 

To print a date and time in the form Sunday, July 3, 10: 02, where weekday 
and month are pointers to null-teoninated strings: 

printf("%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min); 

To print pi to 5 decimal piaces: 

printf("pi = %.5f", 4*atan(l.0)); 

SEE ALSO 

ec,vt, putc, scanf, stellO 

printf-4 



IXintf 

};X>int, even if no digi ts follow the fX)int (nonnally, a 
decimal p'int ap~ars in the result of these oonversions 
only if a digit follows it). For g and G conversions, 
trailing zeroes will not be ranoved from the result (which 
they nonnally are). 

The conversion characters and their meanings are: 

d,o,u,x,X The integer arg is converted to signed decimal, unsigned 
octal, decimal, or hexadecimal notation (x and X), 
res~ctively; the letters abcdef are used for x oonversion 
and the' letters ABCDEF for X conversion. The precision 
st:eCifies the minimum number of digits to apP=ir; if the 
value being converted can be represented in fewer digits, 
it will be expanded with leading zeroes. The default 
precision is 1. The result of converting a zero value 
with a precision of zero is a null string. 

f 

e,E 

g,G 

c 

s 

The float or Cbuble arg is converted to decimal notation 
in the style [-]ddd.ddd, where the number of digits after 
the decimal p'int is equal to the precision st:ecif ication. 
If the precision is missing, 6 digits are output; if the 
precision is explicitly ~, no decimal p'int awears. 

The float or double arg is converted in the style 
[-]d.ddde_dd, where there is one digit before the decimal 
};X>int and the number of digits after it is equal to the 
precision; when the precision is missing, 6 digits are 
produced; if the 'precision is zero, no decimal p:>int 
a~ars. The E format oode will produce a number with E 
instead of e introducing the exp:>nent. The exp:>nent 
always oontains at least two digits. 

The float or oouble arg is printed in style f or e (or in 
style E in the case of a G format code), with the 
precision st:eCifying the number of significant digits. 
The style used depmds on the value oonverted: style e 
will be used only if the exp>nent resulting from the 
conversion is 1 ess than -4 or greater than the precision. 
Trailing zeroes are ranoved fran the result; a decimal 
p'int atJI:ears only if it is followed by a digit. 

The character arg is printed. 

The arg is taken to be a string (character p:>inter) and 
characters from the string are printed lU'ltil a null 
character (\((1) is encotmtered or the number of characters 
indicated by the precision s~cification is reached. If 
the precision is missing, it is taken to be infinite, so 
all characters up to the first null character are printed. 

printf-3 



of a word is the size of an integer and varies from machine to machine. 
Putw neither assumes nor causes s~cial aligmnent in the file. 

Output streams, with the exception of the standard error stream stderr, 
are by default buffered if the output refers to a file and line-buffered 
if the output refers to a terminal. '!be standard error output stream 
stderr is by default unbuffered, but use of freopen(see fopen(3S» will 
cause it to become tuffered or line-buffered. When an output stream is 
unbuffered infornation is queued for writing on the destination file or 
terminal as soon as written; when it is buffered many characters are 
saved up and written as a block; when it is line-buffered each line of 
output is queued for writing on the destination tenninal as soon as the 
line is completed (that is, as soon as a new-line character, is written or 
terminal input is requested). Setbuf may be used to change the stream I s 
buffering strategy. 

SEE ALSO 

fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S), 
setbuf(3S). 

D:uGNOSI'ICS 

On success, these functions each return the value they have written. On 
failure, they return the oonstant EDF. This will occur if the file 
stream is not open for writing, or if the output f lie cannot be grown. 
Because EDF is a valid integer, ferror (3S) should be used to detect putw 
errors. 

BtGS 

Because it is implemented as a macro, putc treats incorrectly a stream 
argument with side effects. In particular, IXItc(c, *f++); <Desnlt work 
sensibly. Fputc should be used instead. Because of IDssible differences 
in word length and byte ordering, files written using putw are machine­
dependent, and may not be read using getw on a different processor. For 
this reason the use of putw. should be avoided. 

putc-2 



NAME 

putc, put char , fputc, putw - put character or word on a stream 

SYNOPSIS 

#include <stello.h> 

int putc (c, stream) 
char c; 
FILE *streami 

int putchar (c) 
char c; 

int fputc (c, stream) 
char c; 
FILE *stream; 

int putw (w, stream) 
int w; 
FILE *stream; 

DESCRIPl'ION 

pute 

Putc writes the character c onto the output stream (at the p>sition where 
the file IDinter, if defined, is IDinting). Put char (c) is defined as 
putc (c, stoout). Putc and putchar are nacros. 

FpUtc behaves like putc, but is a ft.mction rather than a macro. -Pltc 
rt.ms more slowly than putc, but takes less sp:ice per invocation. 

Putw writes the' word (i.e. integer) w to the output stream (at the 
p:>sition at which the file tx'inter, if defined, is tx'inting). The size 

putc-l 





putchar 

putchar, putc, fputc, putw - put character or word on a stream 

SYNOPSIS 

See PU1:c 

put char-l 



SEE ALSO 

ferro'r, fopen, fread, printf, putc 

Puts appends a new-line character while fputs does not. 

puts-2 



puts, fputs - put a string on a stream 

SYIDPSIS 

#include <stdio.h> 

int plts (s) 
char *s; 

int fputs (s, stream) 
char *s; 
FILE *stream; 

DESClUPI'ION 

puts 

Puts writes the null-temdnated string p:>inted to by s, follONed by a 
new-line character, to the standard output stream stCbut. 

Fputs writes the null-temdnated string p:>inted to by s to the named 
output stream. 

Neither function writes the terminating null character. 

DIIGRASTICS 

Both routines return EDF on error. This will happen if the routines try 
to write on a file that has not been opened for writing. 

p.1ts-l 





putw 

NAME 

putw, putchar, fputc, putc - put character or word on a stream 

SYIDPSIS 

See putc 

fUtw- 1 



qsort 

SEE ALSO 

bsearch, 1 search,. string 

qsort-2 



NAME 

qsort - quicker sort 

SYIDPSIS 

void qsort ((char *) base, nel, sizeof (*base), ccmpar) 
unsigned int nel; 
int (*ccmpar) ( ); 

DESCRIPI'ION 

qsort 

Qsort is an implanentation of the quicker-sort algorithm. It sorts a 
tabl e of data in place. 

Base p:>ints to the e1anent at the base of the table. Nel is the number 
of elanents in the table. canpar is the name of the ccmparison ftmction, 
which is called with two arguments that p:>int to the elanents being 
canpared. The function must return an integer less than, equal to, or 
greater than zero according as the first argument is to be considered 
less than, equal to, or greater than the second. 

IDTES 

'!be pointer to the base of the table should be of tyt:e pointer-to­
e1anent, and cast to ty};e p:>inter-to-character. The comparison function 
need not ccmpare fiNery byte, so arbitrary data may be CDntained in the 
e1anents in addition to the values being compared. Although declared as 
ty};e pointer-to-character, the val ue returned should be cast into ty};e 
p:>inter-to-el anent. 

qsort-l 





NAME 

rand, srand - simple random-number generator 

SYIDPSIS 

int rand ( ) 

void srand (seed) 
tmsigned seed; 

DESCRIPl'ION 

rand 

Rand uses a multiplicative congruential random-number generator with 
period 2**32 that returns successive pseudo-random numbers in the range 
from 0 to 2**15. 

Srand can be called at any time to reset the random-number generator to a 
random starting tx>int. The generator is initially seeded with a val ue of 
1. 

IDTES 

'!be s~ctral' properties of rand leave a great deal to be desired. 
Drand48 (3C) provides a mucli better, though more elaoorate, random-number 
generator. 

SEE ALSO 

drand48(3C) • 

rand-l 





rewind 

rewind, fseek, ftell - retDsition a file pointer in a stream 

SYIDPSIS 

See fseek 

rewind-l 



scanf 

The oontrol string may contain: 

1. Whit~spice characters (blanks, taOO, new-lines, or form-feeds) 
which, except in two cases described below, cause input to be 
read up to the next non-whit~spice character. 

2. An ordinary character (not %), which must natch the next 
character of the input stream. 

3. Conversion specifications, consisting of the character %, an 
optional assignment suppressing character *, an optional 
numerical naximum field width, an optional 1 or h indicating the 
size of the receiving variable, and a conversion oode. 

A oonversion specification directs the conversion of the next input 
field; the result is placed in the variable I,X>inted to by the 
corresponding argument, unless assignment suppression was indicated by *. 
The suppression of assignment provides a way of describing an input field 
which is to t:e skipped. An input field is defined as a string of non­
spice characters; it extends to the next inappropriate character or lU1til 
the field width, if specified, is exhausted. 

The conversion code indicates the interpretation of the input field; the 
oorresp:>nding p:>inter argument must usually be of a restricted type. For 
a suppressed field, no p:>inter argument should t:e given. The following 
conversion codes are accepted: 

% a single % is expected in the input at this p:>int; no 
assignment is Cbne. 

d a decimal integer is expected; the corresFOnding argument 
should be an integer I,X>inter. 

u an unsigned decimal integer is expected; the corresp:>nding 
argument should be an unsigned integer I,X>inter. 

o an octal integer is expected; the corresFOnding argument should 
be an integer p:>inter. 

x a hexadecimal integer is expected; the oorresIDndin9 argument 
should be an integer p:>inter. 

e,f,g 
a floating point number is expected; the next field is 
converted accordingly and stored through the corresFOnding 
argument, which should be a FOinter to a float. '!he input 
fomat for floating I,X>int numbers is an optionally signed 
string of digits, possibly containing a decimal point, followed 
by an optional exponent field oonsisting of an E or an e, 
folJoNed by an optionally signed integer. 

scanf-2 



NAME 

scanf, fscanf, sscanf - convert formatted input 

SYIDPSIS 

iinclude <stdio.h> 

int scanf (format [ , p:>inter ] •• • ) 
char *fonnat; 

int fscanf (stream, format [ , p:>inter ] ••• 
FILE *stream; 
char *format; 

int sscanf (s, format [ , p:>inter ] ••• 
char *s, *format; 

DESCRIFrION 

scanf 

Scanf reads from the standard input strecm stdin. Fscanf reads from the 
named in};Xlt stream. Sscanf reads from the character string s. Each 
function readS characters, interprets than according to a foIltlat, and 
stores the results in its arguments. Each expects, as arguments, a 
control string format described below, and a set of pointer arguments 
indicating where the conven:-ed inp,rt should be stored. 

The control string usually contains conversion s~ifications, which are 
used to direct interpretation of inplt sequences. 

scant-I 



an inplt dlaracter and the oontrol string. If the inplt ends before the 
first <Dnflict or <Dnversion, EDF is returned. 

EXAMPLES 

'l1le call: 

int i; float Xi char name[5~1; 
scanf ("%d%f%s", &i, &x, name); 

with the input line: 

25 54. 32E-l thanpson 

will assign to i the value 25, to X the value 5.432, and name will 
oontain thanpson \0. Or : 

int i; float X; char name[5~1; 
scanf ("%2d%f%*d %[~91", &i, &x, name); 

with inp.tt: 

56789 0123 56a72 

will assign 56 to i, 789.~ to x, skip 0123, and place the string 56\0 in 
name. 'l1le next call to getdlar (see getc(3S)) will return a. 

SEE ALSO 

atof, getc, printf, strtol 

IDTES 

Trailing white stace (including a new-line) is left unread unless matched 
in the <Dntrol str ing. 

DUGNOSl'ICS 

'1hese functions return EDF on end of input and a short cx>unt for missing 
or illegal data i tans. 

scanf-4 



s a character string is expected; the corresp:>nding argument 
should be a character p:>inter p:>inting to an array of 
characters large enough to accept the string and a tetminating 
\0, which will be added autanatically. The input field is 
tetminated by a whit~space character. 

c a character is expected; the corresIDndin9 argument should be a 
character p:>inter. The normal. skip over white space is 
suppressed in this case; to read the next non-space character, 
use %ls. If a field width is given, the corresIDnding argument 
should refer to a character array; the indicated number of 
characters is read. 

indicates string data and the nomal skip over leading white 
space is suppressed. The left bracket is followed by a set of 
characters, which we will call the scanset, and a right 
bracket; the input field is the maximal sequence of input 
characters consisting entirely of characters in the scanset. 
The circumflex, (A), when it apI;Ears as the first character in 
the scanset, serves as a complenent operator and redefines the 
scanset as the set of all characters not contained in the 
ranainder of the scanset string. There are some conventions 
used in the construction of the scanset. A range of characters 
may be represented by the construct first-last, thus 
[0123456789] may be expressed [0-9]. 

Using this convention, first must be lexically less than or 
equal to last, or else the dash will stand for itself. The 
dash will also stand for itself whenever it is the first or the 
last character in the scanset. To include the right square 
bracket as an elanent of the scanset, it must apt=ear as the 
first character (IDssibly preceded by a circumflex) of the 
scanset, and in this case it will not be syntactically 
interpceted as the closing bracket. The corresponding argument 
must IDint to a character array large enough to hold the data 
field and the terminating \0, which will be added 
autanatically. 

The conversion characters d, u, 0, and x may be preceded by 1 or h to 
indicate that a p:>inter to long or to short rather than to int is in the 
argument list. Similarly, the conversion characters e , f , and g may be 
preceded by 1 to indicate that a p:>inter to double rather than to float 
is in the argument list. . 

Scanf conversion teminates at EDF, at the end of the control string, or 
when an input character conflicts with the control string. In the latter 
case, the offending character is left tmread in the input stream. 

Scanf returns the number of successfully matched and assigned input 
itans; this number can be zero in the event of an early conflict betwem 

scanf-3 





scanf 

BU;S 

'!be success of literal matches and suppressed assigrunents is not directly 
determinable. 

scanf-5 



SEE ALSO 

fopen, getc, malloc, putc 

IDTES 

A canmon source of error is allocating buffer sIBce as an automatic 
variable in a code block, and then failing to close the stream in the 
same block. 

setbuf-2 



NAME 

setbuf - assign buffering to a stream 

SYOOPSIS 

iincl.ude <stdio.h> 

void setbuf (stream, buf) 
FILE *stream; 
char *buf; 

DESCRIPrION 

setbuf 

Setbuf is used after a stream has been opened but before it is read or 
written. It causes the character array p:>inted to by buf to be used 
instead of an automatically allocated buffer. If buf is a NULL character 
tDinter input/output will be oompletely unbuffered. 

A oonstant BUFSIZ, defined in the <stdio.h> header file, tells how big an 
array is needed: 

char buf [BUFSIZ] ; 

A buffer is normally obtained from malloe (3C) at the time of the first 
gete or pute(3S) on the file, except that the standard error stream 
stderr is normally not buffered. 

Output streams directed to terminals are always line-buffered unless they 
are unbuffered. 

setbuf-l 



seLjll¥ 

WARNI~ 

If longjrnp is called when env was never primed ~ a call to setjrnp, or 
when the last such call is in a function which has since returned, 
absolute chaos is guaranteed. 

setjmp-2 



NAME 

setjmp, longjmp - non-local goto 

SYOOPSIS 

iinclude <setjmp.h> 

int setjmp (env) 
jmpjJuf env; 

void longjmp (env, val) 
jmpjJuf env; 
intval; 

DESCRIPl'ION 

setjmp 

These functions are useful for dealing with errors and interrupts 
encountered in a low-level subroutine of a program. 

Setjmp saves its stack environment in env (wmse type, jmpjJuf, is 
defined in the <Setjmp.h> header file), for later use by longjmp. It 
returns the value ftJ. 

Longjmp restores the enviromnent saved by the last call of setjmp with 
the corresp:>nding env ar9lJlllent. After longjmp is canpleted progran 
execution continues as if the cor resp:>nding call of setjmp (which must 
not itself have returned in the interim) had just returned the value val. 
Longjmp cannot cause setjmp to return the value ra. If longjmp is invoked 
with a seoond argument of ftJ, setjmp will return 1. All accessible data 
have values as of the time longjmp was called. 

setjmp-l 





setvbuf 

setbuf - assign buffering to a stream 

SYIDPSIS 

See setbuf 

setvbuf-l 





sin 

sin, oos, tan, asin, acos, atan, atan2 - trigonometric functions 

SYOOPSIS 

See trig 

sin-l 





NAME 

sinh, oosh, tanh - hyperbolic ftmctions 

SYOOPSIS 

tinclude <math.h> 

double sinh (x) 
double x; 

double cosh (x) 
double x; 

double tanh (x) 
double x; 

DESClUPI'ION 

sinh 

Sinh, oosh and tanh return res~ctively the hyberbolic sine, oosine and 
tangent of their argument. 

DIPGNOSI'ICS 

Sinh and oosh return HtI;E when the correct value would overflow, and set 
errno to ERANGE. 

sinh-l 





NAME 

sleep - suspend execution for interval 

SYIDPSIS 

unsigned sleep (seconds) 
unsigned seconds; 

DESCRIPl'ION 

sleep 

'!he current process is suspended frem execution for the number of seconds 
s~eified by the argument. '!he actual suspmsion time may be less than 
that requested. Also, the suspension time may be longer than requested by 
an arbitrary arnotmt due to the sehedu! ing of other acti vi ty in the 
system. The value returned by sleep will be the unslept amount (the 
requested time minus the time actually slept) in case the caller had an 
alaon set to go off earlier than the end of the requested sleep time, or 
pranature arousal. 

The routine is implanented by setting an alaon and pausing tmtil it 
occurs. The previous state of the alann is saved and restored. The 
calling program may have set up an alaon before calling sleep; if the 
sleep time exceeds the time till such alarm, the process sleeps only 
until the alaIlll would have occurred, and the caller IS alaIlll catch routine 
is executed just before the. sleep routine returns, but if the sleep time 
is less than the time till such alaIlll, the prior alaIlll time is reset to 
go off at the same time it would have without the intervening sleep. 

sleep-l 





sprintf 

NAME 

sprintf, fprintf, printf - print fonnatted output 

SYIDPSIS 

See printf 

sprintf-l 





sqrt 

NAME 

sqrt, exp, log, logla, ~, - exp:>nential, logarithm, tx'Wer, square root 
ftmctions 

SYIDPSIS 

See exp 

fGrt-l 





sscanf 

NAME 

sscanf, fscanf, - convert fornatted input 

SYOOPSIS 

See scanf 

sscanf-l 



stat 

'!be oontents of the structure IDinted to by buf include the following 
manbers: 

ushort 
ino_t 
dev_t 
dev_t 
short, 
ushort 
ushort 
off_t 
time_t 
time_t 
*/ 
time_t 

st.JI¥)de; 
st_ino; 
st_dev; 
stJdev; 
st......nlink; 
st_uid; 
st_gid; 
st.-size; 
st_atime; 
st.JUtime; 

/* File mode */ 
/* FCB number */ 
/* Not used */ 
/* Not used */ 
/* Number of links (always 1) */ 
/* User ID of the file's owner */ 
/* Group ID of the file's group */ 
/* File size in bytes * / 
/* Not used */ 
/* Time of last data IOOdification 

/* Time file was created */ 
/* Times measured in seoonds since */ 
/* 00:00:00 GMT, Jan. 1, 1970 */ 

st.JIltime Time when da ta was last modif ied. Cllanged by the 
following systen calls: creat, and write. 

st_ctime Time when the file was created. Cllanged by the following 
systen calls: creat, 

Stat will fail if one or more of the following are true: 

A comp>nent of the pith prefix is not a directory. [ENOIDIR] 

The named file ooes not exist. [EIDEm] 

Search J;ermission is denied for a oomIDnent of the pith prefix. 
[FAeCES] 

Buf or path p>ints to an invalid address. [EFAULT] 

Fstat will fail if one or more of the following are true: 

Fildes is not a valid open file descriptor. [EBADF] 

Buf IX>ints to an invalid address. [EFAIJLT] 

REruRN VALUE 

Up>n successful canpletion a value of 0 is returned •. Otherwise, a value 
of -1 is returned and ermo is set to indicate the error. 

stat-2 



NAME 

stat, fstat - get file status 

SYIDPSIS 

iinclude <sys/~s.h> 
tinclude <sys/stat.h> 

int stat (J;atb, buf) 
char *path; 
struct stat *buf; 

int fstat (fildes, buf) 
int fildes; 
struct stat *buf; 

DESCRIPI'ION 

stat 

Path p:>ints to a J;ath name naning a file. Read, write or execute 
permission of the named file is not required, but all directories listed 
in the J;ath name leading to the file must be searchable. Stat obtains 
information alx>ut the named file. 

Similarly, fstat obtains information atout an open file known by the file 
descriptor fildes, obtained fran a successful open, creat, dup, fentl, or 
pi~ systen call. 

Buf is a IDinter to a stat structure into which information is placed 
ooncerning the file. 

stat-l 





stat 

SEE ALSO 

cbood, creat, read, time, tmlink, write 

stat-3 





string 

strcat, strncat, stranp, stmanp, strcpy, stmcpy, strlen, strchr, 
strrchr, strpbrk, strsp1, strcsp1, strtok - string operations 

SYNOPSIS 

See string 

strcat-l 





NAME 

swab - swap bytes 

SYIDPSIS 

void swab (from, to, nbytes) 
char *from, *to i 
int nbytesi 

DESOUPrION 

swab 

SVab copies nbytes bytes };X>inted to by fran to the array };X>inted to by 
to, exchanging adjacent even and odd bytes. It is useful for carrying 
binary data between PDP-lis and other machines. Nbytes should be even 
and non-negative. If nbytes is odd and lDsitive swab uses nbytes-l 
instead. If nbytes is negative swab ooes nothing. 

5Wab-l 



systea 

D:rnGNOSI'ICS 

Systan exec's the cip in order to execute string. If the exec fails, 
systan returns -1 and sets ermo. 

system-2 



systen - issue a cip camnand 

SYOOPSIS 

iinclude <stdio.h> 

int systan (string) 
char *string; 

DESCRIPI'ION 

system 

5Ysten causes the string to be given to the cip as input, as if the 
string had been tyJ;:ed as a oonunand at a terminal. '!be current process 
waits until the cip has a:mpleted, then returns the exit status of the 
cip. 

FILES 

sys$disk/sysexe/cip.exe 

SEE ALSO 

exec 

systan-l 





tan 

NAME 

tan, sin, cos, asin, acos, atan, atan2 - trigonometric functions 

SYNOPSIS 

See trig 

tan-l 





tanh 

NAME 

tanh, sinh, rosh, - hyperbolic functions 

SYOOPSIS 

See sinh 

tanh-I 





tempnam 

NAME 

tanpnam, tanpnam - create a name for a tan};X)rary file 

SYIDPSIS 

See tmpnam 

te.np1ClIIl-l 





time - get time 

SYN)PSIS 

long time «long *) ~) 

long time (tloe) 
long *tloe~ 

DESOUPl'ION 

time 

Time returns the val ue of time in seronds since ~~: ~~: 0~ GMl', January 1, 
1970. 

If tloe (taken as an integer) is non-zero, the return value is als:> 
stored in the location to which tloe J;X>ints. 

Time will fail if tloc J;X>ints to an illegal address. [EFAULT] 

RElURN VALUE 

UJ;X>n successful canpletion,. time returns the value of time. Otherwise, a ' 
value of -1 is returned and errno is set to indicate the error. 

tizre-1 





tmpfile 

NAME 

tmpfile - create a tantx>rary file 

SYIDPSIS 

'include <stdio.h> 

FILE *tropf il e () 

DESOUPl'ION 

'Jlnpf ile creates a tantx>rary file and returns a corresp:>nding FILE 
p:>inter. The file will automatically be deleted when the process using 
it temdnates. The file is o~ned for update. 

SEE ALSO 

creat, unlink, fopm, rnktanp, tmpnam 

tmpfile-l 



environment, whose value is a path-name for the desired tanp:>rary-file 
directory. 

Many applications prefer their tanp:>rary files to have certain favorite 
initial letter sequences in their names. Use the pfx argument for this. 
'Ibis argmnent may be NULL or tDint to a string of up to five characters 
to be used as the first few characters of the tanI;X>rary-f ile name. 

TenIJlCUIl uses malloc(3C) to get space for the constructed file name, and 
returns a I;X>inter to this area. '!hus, arr:! I;X>inter value returned fran 
tanIJlCUIl may serve as an argument to free (see rnalloc(3C)). If tanIJlCUIl 
cannot return the exp:!cted result for arr:! reason, i. e. malloc failed, or 
none of the atove mentioned attan¢s to find an appropriate directory was 
successful, a NOLL I;X>inter will be returned. 

IDTES 

These ftmctions generate a different file name each time they are called. 

Files created using these functions and either fopen or creat are 
tanI;X>rary only in the sense that they reside in a directory intended for 
temI;X>rary use, and their names are unique. It is the user's 
resp:>nsibility to use unlink(2) to ranove the file when its use is ended. 

SEE ALSO 

creat, unlink, fopen, malloc, mktanp, bnpf ile 

BOOS 

If called more than 17 ,576 times in a single process, these ftmctions 
will start recycling previously used names. Between the tine a file name 
is created and the file is op:med, it is p:>ssibl e for some other process 
to create a file with the same name. 'Ihis can never happ:m if that other 
process is using these ftmctions or mktanp, and the file names are clx>sen 
so as to render duplication by other means unlikely. 

tmpnam-2 



NAME 

tmpnam, tanpnarn - create a name for a temporary file 

SYN:)PSIS 

#include <stdio.h> 

char *t:roplaIIl (s) 
char *s; 

char *tanplaIIl (dir, pfx) 
char *dir, *pix; 

DESCXIFrION 

tmpnam 

These flmctions generate file names that can safely be used for a 
ten!Drary file. 

'llnplaIIl always generates a file name using the tath-name defined as 
p_tmpdir in the <stdio.h> header file. If s is NULL, tmpnarn leaves its 
resul t in an internal static area and returns a p:>inter to that area. 
The next call to tmpnam will destroy the contents of the area. If s is 
not NULL, it is assumed to be the address of an array of at least 
L_tmpnam bytes, where L_tmpnam is a oonstant defined in <stdio.h>; tmpnam 
places its result in that a~ray and returns s. 

Tenpnarn allows the user to oontrol the choice of a directory. The 
argument dir !Dints to the pith-name of the directory in which the file 
is to be created. If dir is mIL or points to a string which is not a 
tath-name for an appropriate directory, the tath-name defined as P_tmtrlir 
in the <stdio.h> header file is used. If that tath-name is not 
accessible, /tmp will be used as a last resort. This enti re sequence can 
be up-staged by providing a logical name TMPDIR in the user IS 

tmp1aID-l 



trig 

Asin returns the arcsine of x, in the range -pi/2 to pi/2. 

Aoos returns the arcoosine of x, in the range ~ to pi. 

Atan returns the arctangent of x, in the range -pi/2 to pi/2. 

Atan2 returns the arctangent of y/x, in the range -pi to pi, using the 
signs of both arguments to determine the quadrant of the return value. 

DIlGIDSTICS 

Sin, oos and tan lose accuracy when their argument is far from zero. For 
arguments sufficiently large, these functions return ~ when there would 
otherwise be a canplete loss of significance. In this case a message 
indicating TLOSS error is printed on the standard error output. For less 
extrane arguments, a FLOSS error is generated but no message is printed. 
In l:oth cases, ermo is set to ~E. 

Tan returns HtI;E for an argument which is near an odd multiple of pi/2 
when the correct value would overflow, and sets ermo to ~E. 

Arguments of magnitude greater than 1. ~ cause asin and aoos to return ~ 
and to set ermo to EOOM. In addition, a message indicating DOMAIN error 
is printed on the standard error output. 

trig-2 



trig 

NAME 

trig, sin, ms, tan, asin, aces, atan, atan2 - trigonometric ftmctions 

SYOOPSIS 

iinclude <math.h> 

double sin (x) 
oouble x; 

double oos (x) 
oouble x; 

oouble tan (x) 
Cbuble x; 

double asin (x) 
oouble x; 

Cbuble aoos (x) 
Cbuble x; 

oouble atan (x) 
oouble x; 

double atan2 (y, x) 
Cbuble x, y; 

DESOUPrION 

Sin, cx>s and tan return res~ctively the sine, cx>sine and tangent of 
their argument, which is in radians. 

trig-l 



tsearch 

The variable I,:ointed to by rootp will be changed if the deleted node was 
the root of the tree. Tdelete returns a };X>inter to the parent of the 
deleted node, or a NULL I,:ointer if the node is not found. 

'!Walk traverses a binary search tree. Root is the root of the tree to be 
traversed. (Any node in a tree may be used as the root for a walk belCM 
that node.) Action is the name of a routine to be invoked at each node. 
This routine is, in turn, called with three arguments. The first 
argument is the address of the node being visited. The second argument 
is a value from an enumeration data ty};e ty};edef enum { preorder, 
I,:ostorder, endorder, leaf } VISIT; (defined in the <search.h> header 
file), dep:nding on whether this is the first, second or third time that 
the node has been visited (during a depth-first, left-to-right traversal 
of the tree), or whether the node is a leaf. The third argument is the 
level of the node in the tree, with the root being level zero. 

IDrES 

The pointers to the key and the root of the tree should be of type 
I,:ointer-to-elanent, and cast to ty};e I,:ointer-to-character. The comparison 
function need not cantBre every byte, so arbitrary data may be contained 
in the elanents in addition to the values being compared. Although 
declared as ty};e pointer-to-character, the val ue returned should be cast 
into ty};e I,:ointer-to-elanent. 

WARNIl{;: The root argument to twalk is one level of indirection less 
than the rootp arguments to tsearch and tdelete. 

DIAGNOSI'ICS 

A mIL pointer is returned by tsearch if there is not enough space 
available to create a new node. A NULL I,:ointer is returned by tsearch and 
tdelete if rootp is NULL on entry. 

SEE ALSO 

bsearch(3C), hsearch(3C), lsearch(3C). 

BOOS 

Awful things can happen if the calling function alters the };X>inter to the 
root. 

tsearch-2 



tsearch 

NAME 

tsearch, tdelete, twalk - manage binary search trees 

SYroPSIS 

iinc1ude <search.h> 

char *tsearch « char *) key, (char **) rootp, compar) 
int (*canpar) ( ); 

char *tdelete «char *) key, (char **) rootp, compar) 
int (*canpar) ( ); 

void twalk «char *) root, action) 
void (*action) ( ); 

DESCRI PrION 

Tsearch is a binary tree search routine generalized from Knuth (6.2.2) 
Algorithm T. It returns a pJinter into a tree indicating where a datum 
may be found. If the datllIl ooes not occur, it is added at an appropriate 
r:oint in the tree. Kej p>ints to the datum to be sought in the tr ee. 
Rootp points to a variable that points to the root of the tree. A NULL 
r:ointer value for the variable denotes an an{X:y tree; in this case, the 
variable will be set to point to the datum at the root of the n&l tree. 
Compar is the name of the oomtarison function. It is called with two 
arguments that point to the elanents being canpared. The function must 
return an integer less than, equal to, or greater than zero acoording as 
the first argument is to be considered less than, equal to, or greater 
than the second. 

Tdelete deletes a node from a binary search tree. It is generalized from 
Knuth (6.2.2) algorithn D. The arguments are the same as for tsearch. 

tsearch-l 



Bms 

The return value I;X>ints to static data woose content is overwritten by 
each call. 

ttyname-2 



NAME 

ttyname, isatty - find name of a terminal 

SYroPSIS 

char *ttyname (f ildes) 
int fildes; 

int isatty (fildes) 
int fildes; 

DESCRIPI'ION 

ttyname 

Ttyname returns a };X)inter to a string containing the null-terminated t:a th 
name of the terminal device ass:>ciated with file descriptor fildes. 

lsatty returns 1 if fildes is associated with a terminal device, 0 
otherwise. 

FILES 

/dev/* 

DUGNOSI'I CS 

Ttyname returns a NULL };X)inter if f ildes does not describe a terminal 
device. 

ttyname-l 



D~ICS 

In order that ungetc petiollIl correctly, a read statement must have been 
performed prior to the call of the ungetc function. Ungetc returns BOF 
if it can I t insert the character. In the case that stream is stdin, 
ungetc will allow exactly one character to be pushed back onto the buffer 
without a previous read statement. 

ungetc-2 



NAME 

ungetc - push character back into input stream 

SYIDPSIS 

iinclude <stdio.h> 

int ungetc (c, stream) 
char c; 
FILE *stream; 

DES<E:PI'ION 

ungetc 

Ungetc inserts the Character c into the buffer associated with an input 
stream. '!bat character, c, will be returned by the next getc calIon 
that stream. Ungetc returns c, and leaves the file stream lIDchanged. 

One character of pushback is guaranteed provided something has been read 
fran the stream and the stream is actually buffered. 

If c equals EOF, ungetc ooes nothing to the buffer and returns EOF. 

Fseek (3S) erases all menory of inserted Characters. 

SEE ALSO 

fseek, getc, setbuf 

ungetc-l 



unlink 

RmURN VALUE 

UlDn successful cc:mpletion, a value of ra is returned. Otherwise, a value 
of -1 is returned and ermo is set to indicate the error. 

SEE ALSO 

close, o~ 

unlink-2 



unlink 

NAME 

unlink - ranove directory entry 

SYIDPSIS 

int unlink (p:lth) 
char *path; 

DESOUP1'ION 

Unlink ranoves the directoIy entry named by the p:lth name tx>inted to be 
path. 

'!be named file is unlinked unless one or roore of the following are true: 

A cantx>nent of the p:lth prefix is not a directory. [ENJI'DIR] 

The named file ooes not exist. [ENOENT] 

Search ~onission is denied for a canp:>nent of the p:lth prefi'x. 
[FACCES] 

write ~rmission is denied on the directory containing the link to 
be ranoved. [FACCES] 

4 

The named file is a directory. [EPERM] 

Path tx>ints outside the process's allocated address sp:lce. [EFAIJLT] 

When all links to a file have been ranoved and no process has the file 
open, the sp:lce occupied by the file is freed and the file ceases to 
exist. If one or roore processes have the file open when the last link is 
ranoved, the ranoval is tDstp:>ned lU1til all references to the file have 
been closed. 

tmlink-l 



write 

Fildes is not a valid file descriptor open for writing. [EBADF] 

If a _rite r~uests that more bytes be written than there is room for 
(e.g., the IilYsical end of a medium), only as many bytes as there is roan 
for will be written. For example, supp>se there is s};Bce for 2a bytes 
rore in a file before reaching a limit. A write of 512 bytes will 
return 2a. The next write of a non-zero number of bytes will give a 
failure return (except as noted below) • 

REWm VALUE 

UIDn successful canpletion the number of bytes actually written is 
returned. Otherwise, -1 is returned and erma is set to indicate the 
error. 

SEE ALSO 

creat, dup, lseek, open 

write-2 



NAME 

write - write on a file 

SYOOPSIS 

int write (fildes, buf, nbyte) 
int fildes; 
char *buf; 
unsigned nbyte; 

DEScmPl'ION 

write 

Fildes is a file descriI±or obtained fran a creat, open, or dup system 
call. 

Write attempts to write ~e pytes fram the buffer pointed to py buf to 
the file associated with the fildes. 

On devices capWle of seeking, the actual writing of data proceeds from 
the p:>sition in the file indicated py the file {X)inter. Up:>n return fran 
write, the file p:>inter is incremented py the number of pytes actually 
written. 

CAl devices incapWle of seeking, writing always takes place starting at 
the current position. The val ue of a file {X)inter associated with such a 
device is tmdefined. 

If the O...,APPEND flag of the file status flags is set, the file p:>inter 
will be set to the end of the file prior to each write. 

write will fail and the file FOinter will remain tmchanged if one or more 
of the following are true: 

write-l 





yO 

NAME 

y0, yl, yn, j0, jl, jn, - Bessel fmctions 

SYOOPSIS 

See bessel 

y0-1 





y1 

NAME 

yl, j~, jl, jn, yil, yn - Bessel ftmctions 

SYOOPSIS 

See bessel 

yl-l 





yn 

yn, j9, jl, jn, yB, yl, - Bessel functions 

SYIDPSIS 

See bessel 

yn-l 





<lla¢er 8 

WMCS canpilation camnands 

This chat±er oontains the four WMCS C compilation oornmands. '!hey are 
formatted in the WMCS camnand-description style. If you are using C under 
WMCS, read these command descriptions. 

If you are using C under UniPlus+ 5Ystem V, see the cc camnand 
descri¢ion in the UniPlUS+ ~stem V User's Reference Manual (Section.ll. 

8-1 



<xJDpile 

Parameters 

file list 

Svitches 

:assanble 

:before= 

: case 

canpile-2 

LL switches 

:maxext= 
: ma.xha sh= 

:libraries= 
:prefix= 
:rel.oc 

:warnf66 
:xref= 

:runtime= 
: strip 

Function: Use this parameter to sr:;ecify the list of files 
to be oompil ed and loaded together. 
Default: None. 
Syntax: Standard syntax for file lists. Wildcards are 
allowed. 

Function: Use this switch to sr:;ecify that assanbly­
language oource files are to be assembled into object 
files. Assanbly-language source files are files sr:;ecified 
in the file list with a • S extension, plus any output 
files fran the floating-tX>int preprocessors. 
Default: :assemble, i.e., assembly-language files are 
assanbled into object files. 
Syntax: Tyr:;e :noassemble to suppress the assembler and 
the linker/loader filases. Files sr:;ecified in the file 
list with a .S extension are left untouched. Assernbly­
language output files from the floating-point 
preprocesoors are saved in the default directory with the 
same names as the corresFOnding source files, but with .S 
extensions. 

Function: Use this &witch to select only those files that 
were sr:;ecified in the file list and were created/modified 
before the sI,::ecified date and time. 
Default: Selects all files that were sr:ecified in the 
file list. 
Syntax: Typ:! :before= followed t¥ a date and/or time in 
the standard date and time syntax. 

Function: Use this &witch with FORmAN source files to 
allow upper- and lower-case nanes to be distinct. 
Default: :nocase, i.e., upI;er- and lower-case names are 
not di stinct. 
Syntax: Typ:! :case to allow upI;er- and lower-case names 
to be di stinct. 



compile 

Description 

Use this camnand to canpile C, FORTRAN, and/or assenbly language 
source files into object files, and to link object files together to 
produce an executable file. 

Ccmnand Line Syntax 

Mnanonic 

Required 
parameter 

Switches 

canpile 

File list 

File selection 

Suppress 
canpila tion 

General switches 

C switches 

EURTRAN switches 

:before= 
:exclude= 
: mod 

:assanble 
:fpreprocess 
:load 

:deletetenp 
: floa tinCJtX) int= 
:listing= 
:10g 
: optimize 
:optimiz e= 

:define= 
:include= 

: case 
:int= 
:maxctl= 
:maxequ= 

:since= 
:uic= 

:preprocess 
: process 

:output= 
:subopt= 
:subpass= 
:tanppr ef ix= 
:ver 1::x> se 
:wamings 

:undefine= 

:maxstno= 
:onetrip 
: range 
:undefined 

compile-1 



txmpile 

:fpreprocess Function: Use this svitch to s};:ecify that pseud:>-assembly 
language source files are to be translated into actual 
assembly-language source files by a floating-p::>int 
preprocessor. Pseudo-assanbly language source files are 
files s};:ecified in the file list with a .K extension, plus 
any output files fran canpilers and the C optimizer. The 
floating-{X>int preprocessor used is selected by the 
:floating{X>int= svitch. ' 
Defaul t: :fpreprocess, i. e. , J;SeuCb-assembly language 
files are translated to actual assanbly-language files. 
5yntax: ~ :nofpreprocess to suppress the floating­
{X>int preprocessor, assanbler, and linker/loader Iilases. 
Files s};:ecified in the file list with a .K extension will 
be optimized if the C optimizer is selected but will 
otherwise be left untouched. PseuCb-assembly language 
output files fran the canpilers and the C optimizer will 
be left in the current default directory with the same 
names as the corresI;Onding source files, but with .K 
extensions. . 

:include= Function: Use this switch on C source files to s};:ecify 
additional directories in which the C preprocessor is to 
search for include files. Directories s};:ecified by the 
:include= switch are searched first, followed by 
predefined "standard" directories. 
Defaul t : The C preprocessor searchs only the predef ined 
"standard" directories. 
Syntax: ~ :include= followed by a list of directory 
s~cifications, separated by camnas. 

:int= Function: Use this switch on FORI'RAN source files to 
change the default size of FORTRAN integers. 

:libraries= 

:listing= 

canpile-4 

Default: :int=4, i.e., FORI'RAN integers are 4 bytes long. 
Syntax: 'ryy;e :int= followed by one of the following: 

2 Integers are 2 bytes long 
4 Integers are 4 bytes long 

Function: Use this switch to s};:ecify the names of library 
files to be used by the linker/loader in addition to the 
standard libraries. 
Default: Only the standard libraries are used. 
Syntax: 'ryy;e :libraries= followed 1:¥ a list of file 
names. Wildcards are not allowed. Device and di rectory 
names may not be given here but must instead be s};:ecified 
by the :pref ix= switch. 

Ftmction: Use this svitch to s};:ecify a file in which a 
program listing is generated. Currently, this switch 
applies only to FORTRAN. To get a listing fran the 



:define= 

: del etetanp 

:exclude= 

<DDpile 

Function: Use this switch with C source files to define 
macros for the C preprocessor. Definitions given qy this 
&witch can be cancelled by the :undefine= switch. 
Defaul t: No macros are def ined except rome macros 
predefined by the C preprocessor itself. 
Syntax: Type :define= followed by a list of values, 
separated by canmas. Each value must be in one of the 
follCMing forms: 

name=value 
name 

Assigns the value to the name 
Assigns a value of I to the name 

Function: Use this switch to cause tanlDrary files to be 
deleted a utana ti cally • 
Defaul t: :deletetemp, i. e., temp:>rary files. are 
automatically deleted. 
Syntax: Tyre :nodeletetemp to preserve temfOrary files. 

Function: Use this switch to select only tOOse files or 
devices that were sIEcified in the file list and cb not 
retch any of the files sIEcified as the value of the 
:exclude= switch. 
Default: Selects all files or devices sIEcified in the 
file list. 
Syntax: Tyre :exclude= followed by a list of file or 
device designations, separated by canrnas, any one of which 
may oontain wildcard characters. 

:floatin9IX)int= Function: Use this switch to cause the canpilers to 
generate oode for a sIEcific kind of floating-point 
hardvare and/or software. This switch also selects the 
floating-point preprocessor to be used. 
Default: :floatingpoint=lib, i. e., the generic floating­
p:>int library is used. 
Syntax: Ty~ :floatingp:>int= follwed by one of the 
follCMing: 

LIB Current version of the generic floating-point 
library (same as LIB2). 

LIB2 Version 2 of the generic floating-fOint 
library. 

SKY Current version of the SKY floating-point 
board (same as SKYl). 

SKYI Version 1 of the SKY floating-point board. 
FFP Current version of the FFP floatin9-fOint 

mard (same as ·FFPl) • 
FFPl Version 1 of the FFP floatin9-fOint board. 
NOFP No floating-1,X>int (produces smaller image 

files) • 

compile-3 



caapile 

:maxhash= 

:maxstno= 

:mod 

:onetrip 

:optimize 

:optirniz e= 

canpile-6 

Function: Use this &witch with FORmAN source files to 
s~cify the size of the FORTRAN canpiler's symbol table. 
Default: :rnaxhash=40 1 , i.e., the FORmAN compiler's 
symbol table has room for 401 entries. 
Syntax: Ty};.e :rnaxhash= followed by a numeral indicating 
the size of the FORmAN canpiler's symbol table. 

Function: Use this &witch with FORmAN source files to 
s~cify the maximum number of statenent numbers allowed. 
Default: :maxstno=40l, i.e., a maximum of 401 statenent 
numbers is allowed. 
Syntax: Ty};.e :maxstno= followed by a numeral indicating 
the maximum nl.1llber of statenent numbers to be allowed. 

Function: Use this switch to specify that the 
modification date is to be used in all date and time 
considerations by the :before= or :since= switches. 
Default: :nomod, i.e., the creation date is used in all 
date and time considerations by the :before= or :since= 
switches. 
Syntax: Ty~ :mod. 

Function: Use this &witch with FORmAN source files to 
specify that 00 loops are to be executed at least once. 
Default: :noonetrip, i.e., DO loops are not performed if 
the upper limit is less than the lower limit. 
Syntax: Ty};.e :onetrip to cause DO loops to be executed at 
least once even if the upper limit is less than the lower 
limit. 

Function: Use this switch to perform code optimizations 
where p:>ssible. This switch has the same effect as 
:optimize=F77,OPr and is included for convenience. 
Default: :nooptimize, i. e., no optimizations are 
performed. 
Syntax: Ty};.e :optimize to perform optimizations. 

Function: Use this switch to perfoon specific code 
optimizations. 
Default: No optimizations are performed. 
5yntax: 'lYpe :optimize= followed by one or both of the 
following values (if both, sep:lrate with rommas): 

F77 For FORmAN source files only, perfoons FORTRAN­
specif ic optimizations. 

aPr Perfoons optimizations on the pseudo-assanbly 
language that is output from the rompilers. This 
value is used for C programs. 



:load 

:log 

:maxctl= 

:maxequ= 

: maxe xt= 

ampUe 

assanbler use :sulx>pt.=nas :-1 f ilenanen (where filename is 
the file you want to be the listing) • 
Default: A program listing is not generated. 
Syntax: ~ :listing= followed by a file designation. 
Wildcards are not allowed. 

Function: 
are to be 
files are 
extension, 
LLC. 

Use this switch to s~cify that object files 
linked to create an executabl e file. Obj ect 
files s~cified in' the file list with a .w 
plus any output files fran the assanbler and 

Default: :load, i.e., object files are linked to create 
an e)Cecutabl e file. 
Syntax: Ty~ :noload to suppress the linker/loader tilase. 
Files s~cified in the file list with a .w extension are 
left untouched, and obj ect files from the assembler and 
LLC are left in the current default directory with the 
same names as the cnrresI;Onding source files, but with .w 
extensions. 

Ftmction: Use this svitch to s~cify whether log messages 
are displayed. (Log messages are infonnational displays 
that indicate what the utility is (bing.) 
Default: The value st:ecified by the OPl'ICN camnand. 
Syntax: ~ :log or :nolog to override the default. 

Function: Use this switch with FORTRAN source files to 
s~cify the maximum level that IF and 00 statanents can be 
nested. 
Default: :maxctl=10, i.e., IF and 00 statanents can be 
nested 10 deep. 
Syntax: ~ :maxctl= followed by a numeral indicating 
the maximum number of levels that IF and 00 statanents can 
be nested. 

Function: Use this svitch with FORrRAN source files to 
specify the maximum number of equivalences allowed. 
Default: :maxequ=150, i.e., a maximum of 150 equivalences 
is allowed. 
Syntax: ~ :maxequ= followed by a numeral indicating 
the maximum ~unber of equivalences· to be allowed. 

Function: Use this switch with FORrRAN source files to 
s~cify the maximum number of external symbols allowed. 
Default: :maxext=2rara, i.e., a maximum of 2rara external 
symbols is allowed. 
Syntax: ~ :maxext= followed by a numeral indicating 
the maximum number of external symbols' to be allowed. 

compile-S 



canpile 

:reloc 

:rmtime= 

:since= 

:strip 

:subpass= 

canpile-8 

t:erformed at rmtime. 
Default: :norange, i.e., runtime range-checking of 
subscripts is not performed. 
Syntax: 'l'yI:e: range to cause rmtime range-checking of 
subscripts to be ~rfoIIlled. 

Function: Use this switch to st:ecify that relocation 
information is to be preserved in the executable file. 
Default: :noreloc, i.e., relocation information is not 
preserved. 
Syntax: 'l'yI:e: reloc to cause relocation information to be 
preserved in the executable file (useful for unmapt:ed 
Sl250s). -

Function: Use this &witch to st:ecify that the linker/ 
loader is to use language-st:ecific runtime libraries. 
Default: The linker/loader autanatically uses language­
sp:cific libraries whenever the corresp:>nding language 
compiler is used. 
Syntax: Typ: :runtime= followed by a value spacifying a 
language-sp:cific library. Currently, the only valid 
value is F, which sp:cifies the EORI'RAN libraries. 

Fmction: Use this switch to select only trose files 
specified in the file list and were created/modified since 
the sp:cif ied date and time. 
Default: Selects all files st.=ecified in the file list. 
5Yntax: 'l'yI:e :since= followed by a date and/or time in 
the standard syntax. 

Function: Use this switch to spacify that all symOOls are 
to be stripped fran the executable file. 
Default: :strip, i.e., all symOOls are stripped. 
Syntax: Type :nostrip to preserve symbols in the 
executabl e file. 

Function: Use this switch to specify substitute compiler 
p:lSses. The canpile utility uses a three-step algorithn 
to determine the filename of each compiler tass. First, 
canpiler p:1sses specified by the :subpass= switch are 
used. Second, for taSseS not st.=ecif ied by the : s ubpass= 
switch, p:1sses specified by logical names are used. 
Finally, for tBsses not specified by the :subpass switch 
or by logical names, the standard canpiler {asses are 
used. 
Defaul t: If any of the following logical names are 
defined, then their definition is used as the filename of 



:output= 

:prefix= 

:preprocess 

:process 

: range 

aapile 

Function: Use this switch to name the output file of the 
compilation process. 
Default: If :preprocess, :nofpreprocess, :noassemble, or 
:noload is sI,:ecified, the output is stored in the default 
directory in files with the same names as the 
corresIDnding source files sI,:ecified in the file list, but 
with extensions of .I, .K, .S, or .W resf:ectively. If the 
linker/loader };ilase is not suppressed, the resulting 
executable file is stored in the default directory with 
the same name as the first file sf:ecified in the file 
list, but with an extension of .EXE. 
Syntax: ~ :output= followed by a file name without a 
file extension. '!be oorrect extension (.I, .S, or .EXE, 
for example) is added automatically by the canpiler. 
Wildcards are not allowed. 

Function: Use this switch to specify addi tional 
directories in which the linker/loader is to search for 
libraries. Directories sf:ecified by the :prefix= switch 
are searched first, followed by predef ined "standard" 
directories. 
Defaul t: The linker/loader searchs only the predef ined 
"standard" directories. 
Syntax: ~ :prefix= followed by a list of directory 
sf:ecifications, se};arated by canmas. As a spacial case, a 
value of zero causes the predefined "standard" directories 
to not be searched. 

Function: Use this switch to sf:ecify that the output from 
the preprocessors is to be left in the current defaul t 
directory in files with the same name as the corresIDnding 
source files, but with. I extensions. All other Iilases of 
the oompile are suppressed. 
Default: :nopreprocess, i.e., preprocessor output is sent 
to the canpilers, and other };ilases of the canpile canpile 
are not suppr essed. 
Syntax: ~ :preprocess to send the output of the 
preprocessors to • I files. 

Function: Use this &witch to sf:ecify that the output from 
the preprocessors is to be sent to standard output. All 
other Iilases~ of the oompile are suppressed. 
Default: :noprocess, i. e. , preprocessor output is not 
sent to standard output, and other };ilases of the oompile 
are not suppcessed. 
Syntax: Type :process to send the output of the 
preprocessors to standard output. 

Function: Use this switch with FORmAN source files to 
spacify that range-checking of array subscripts is to ~ 

compile-7 



canpUe 

:undefine= 

: undefined 

:veroose 

:warnf66 

:warnings 

:xref= 

canpile-10 

Syntax: Typ: :uic= follCMed by a list of UIC's or 
usernames. 

~ 

Function: Use this j&witch with C source files to "cancel 
macro definitions for the C preprocessor given by the 
:def ine: &witch. 'Ibis &witch can also be used to cancel 
the macros predefined by the C preprocessor itself. 
Default: No macros are cancelled. 
Syntax: Ty~ :undefine= follCMed by a list of names, 
sep:irated by corranas, to be cancelled. 

Function: Use this &witch with FORTRAN source files to 
specify that the default type of variables is undefined, 
rather than using the default FORTRAN rules. 
Default: :noundefined, i.e., the default type of 
variables is deteonined according the default FORTRAN 
rules. 
Syntax: Typ:: undef ined to cause the defaul t type of 
FORTRAN variables to be undefined. 

Function: Use this &witch to display the connnand line for 
each canpiler p:iSs before it is executed. This &witch 
also sets the :log switch. AcXlitional information may be 
displayed as well dep:mding on the situation. 
Default: :noveroose, i.e., corranand lines for cnmpiler 
p:isses are not displayed. 
Syntax: Typ: :veroose to display connnand lines for each 
canpiler p:iss. 

Function: Use this &witch with FORmAN source files to 
suppress extensions that enhance comp:itibility with 
EORTRAN66 • 
Default: :nowarnf66, i.e., extensions that enhance 
FORTRAN66 canJ;Stibili ty are not suppressed. 
Syntax: Typ: :warnf66 to suppress extensions that enhance 
FORTRAN66 canJ;Stibility. 

Function: Use this &witch to display warning messages 
generated by the canpiler. 
Default: :wamings, i.e., warning messages are displayed. 
Syntax: Ty~ :nCMarnings to suppress warnings. 

Function: Use this &witch with FORmAN source files to 
specify a file in which a symbol cross reference listing 
is generated. 
Default: A cross-reference listing is not generated. 
Syntax: 'lY~ :xref= followed by a filename. Wildcards are 
not allowed. 



cnnpile 

the corres};Onding canpiler pass, otherwise the standard 
compiler passes are used: 

Name Corres};Onding canpil er Pass 

cpp e preprocessor 
F77 FORTRAN compiler 
F77X FORTRAN cross reference 
ee e compiler 
OPr e optimiz er 
APP Floating-};Oint preprocessor 
AS Assanbler 
LLe Compiler for linker/loader 
LL Linker/loader 

Syntax: Type :subpas&= followed by one or more values, 
separated by canma.s, in the form name:f ilename, where name 
is one of the names given in the al:ove table, and filename 
is the filename (including its directory) of the 
corres};Onding substitute compiler pass. 

:subopt= Function: Use this switch to sp:cify arbitrary camnand 
line arguments for individual compiler passes. (This 
switch is provided for maximum flexibility. Take care not 
to misuse it.) 
Default: Only arguments put on the connnand line by 
CDMPILE <};Ossibly determined by regular CDMPILE switches) 
are passed to the compiler passes. 
Syntax: 'lYP: one or more values, separated by camnas, 
where each value is of the form "name :string". The name 
must be one of the following: CPP, F77, F77x, ee, OPI', 
APP, AS, LLC, or LL (see :subpas&= for the meaning of each 
name). The string is the actual string to be placed on the 
named compiler pass's connnand line. If the string contains 
spaces, then the entire name:string value should be 
enclosed in <DubIe quotes. 

:tanpprefix= Function: Use this switch to specify the directory in 
which tan};Orary files are stored. 
Defaul t : If the logical name TMPDIR is defined, then the 
di rectory it" specif ies is used, otherwise the di rectory 
SYS$rMP/SYSlMP/ is used. 
Syntax: Type :tempprefix= followed by a directory 
sp:cification. Wildcards are not allowed. 

:uio= Function: Use this switch to select only those files or 
devices that are specified in the file list and are owned 
by the specified user or list of users. 
Default: Selects all files specified in the file list. 

compile-9 



cxmpile 

At first glance, the :runtime= switch might apt:ear useless 
since language-specific libraries are automatically 
included whenever the corresIDnding language compiler is 
used. This could be used if you previously canpiled 
several FORrRAN source files into objects and now want to 
link these object files together to produce an executable 
file. Compile would only see a bunch of .W files and 
wouldn't knCM about their FORmAN ancestry. You would 
have to use the :runtime= switch to explicitly tell 
<DMPILE that these object files were produced from FORTRAN 
source files and r6:iuire the use of the FORrRAN libraries. 

In order to produce smaller executable files, the symbol 
table is normally stript:ed by the linker/loader. When 
debugging programs with wmu;, hCMever, it is highly 
recorranended that you use :nostrip to preserve the syrnl:ols. 

Related eIP Corranands 

canpile-12 

lllib 
llran 
Ii 



cxwpile 

Examples 

> compile rnain.c,routinel.c,routine2.c 

This command compiles the C source files named MArn.C, 
RClJrINE1.. C, and RClJrINE2. C in the default directory, 
producing the object files MAIN.W, ROOTINEl.W, and 
Ra1l'INE2.W, and the executable file MAIN.EXE. 

> compile *.f :prefiX=/II¥lib/ :lib=matrix :float=sky :output=rnunge.exe 

Assume that the library file /MYLIB/MATRIX.LID exists on 
the default device. 'lhls command compiles all of the 
FORTRAN source files with a • F extension in the default 
di rectory, producing a • W obj ect file for each one. These 
obj ect files are then linked together using the library 
file /MYLm/MATRIX.Lm to produce an executable file named 
r1Jt'GE.EXE. The program is targeted for the SKY floating­
I,:X)int mard. 

Using Pranpts 

> canpile 
File list 

Notes on Usage 

> rnain.c,routinel.c,routine2.c 

'Ibis is the same as the first example. 

The :optimize and :optimize.c: switches improve the ul tirnate 
efficiency of the program, but compilation usually takes 
longer. 

Any of the five switches that suppress compilation tilases 
may be sJ;ecified at the same time. 'Ibe switch that comes 
first in the following list is used, and any other 
switches in the list that are SJ;ecified are ignored: 

: process 
: preprocess 
:nofpreprocess 
:noassanble 
:noload 

compil e-ll 



lllib 

SVitches 

:before= 
: exclude= 
:log 
:mod 
:since= 
:uic= 
:veroose 

- IJ:Ype a date and time. (see dates) 
- ~ a list of file designations. (see filelist) 
- Log messages are displayed. 

, - Use file modification date for comp:irison 
- IJ:Ype a date and time. (see dates) 
- ~ a list of uics or usernames. (see uiciist) 
- Display detailed information about the files. 

The following switches are mutually exclusive: 

: add 
:delete 
: extract 
:list 

lllib-2 

- Add the files to the library. Create library. 
- Delete the indica ted files f rom the 1 ibr ary • 
- Extract the indicated files from the library. 
- List the files in the 1 ibr ary • 



IIlib 

Description 

Use this camnand to create or maintain a I;ackaged library file for the 
11 loader. The indicated relocatable object files generated by WiW\C 
are archived into a file, and llran is used to generate a symbol 
table. 

Examples 

> lllib develop.lib *.w :add :log 

Generate the libraty file develop.lib from all the .w files in the 
current directory. Display the names of the files being libraried. 

Parameters 

Libraty file > - Required. Enter the name of the library file to be 
used. A file extension of .lib is custanary. 

File list > - Optional. rrype a list of file designations which 
are to be displayed, added, or deleted. Wildcards 
are only permitted when adding. Default: with :add, 
all files in the current directory, with :extract 
or :list, all files in the library, with : delete, 
no files. 

11 1 ib-l 



Ii 

Display format 

:fileni:une 

: header 
: pause 
:radix= 

:segnent= 

:sort= 

: truncate 

li-2 

- Precede each syml:x:>l by the name of the file 
it is in 

- (Default) Display filename and column headers 
- Pause after each screenful of display 
- Select the base in which syml:x:>l values are 

displayed. 
Specify one of the following: octal, decimal, 
or hexadecimal. Default: hexadecimal. 

- Select which segnents to display. SI;:ecify one 
or more of the following (sep;lrated by 
conunas): all" absolute, text, data, stack, 
uoonstant, sconstant, or unknown. 
Default: all. 

- Select the order symbols are displayed. 
Specify one of the following: name, value, 
none. 
Default: name. 

- (Default) Truncates symbol names in the 
display if they are longer than the display 
field width. 



Ii 

Description 

Use this camnand to display symbols in image files (.EXE files) 
gener ated by the LL linker. 

Examples 

> Ii 

Display all 5YJI1OOls in all image files in the current directory. (Non­
image files are ignored. Image files generated by the LINK linker will 
always have "no 5YJI1OOls found" as will strip{:ed LL image files.) 

Parameters: 

File list 

Svitches 

File selection 

:before= 
:exclude= 

: mod 
:since= 
:uic= 

> - Optional. Defaul t: *. Type a 1 ist of f il e 
designations whose 5YJI1OO1s are to be displayed. 
(see filelist) 

- 'IYP= a date and time. (see dates) 
- 'lYpe a list of file designations. (see 

filelist) 
- Use file modification date for oomparison 
- 'lYpe a date and time. (see dates) 
- 'lYpe a list of uics or usernarnes. (see 

uiclist) 

1 i-I 





II ran 

Description 

Use this caranand to create or maintain a p:tckaged library file for the 
11 loader. The indicated relocatable object files generated by WiMC 
are archived into the file SYMI'AB.LL in the current directory. 

Example: 

> 11ran *.w :log 

Generate the directory library file SYMI'AB.LL in the current directory 
fran all the .w files in the current directory. Display the names of 
the files being libraried. 

Parameters: 

File list 

SNitches 

:before= 
:exclude= 
:109 
: mod 
: quick 
:since= 
:uic= 
:veroose 
:warnings 

> - Required. 'lYpe a list of file designations woose 
attributes are to be displayed or modified. (see 
filelist) • 

- 'lYpe a' date and time. (see dates) 
- rrype a list of file designations. (see filelist) 
- Log messages are displayed 
- Use file modification date for comp:lrison 
- Al1CM or disallCM scrutiniz ing the input 
- rrype a date and time. (see dates) 
- 'lYpe a list of uics or usernames. (see uiclist) 
- Display detailed information aOOut files 
- Al1CM or disallCM warning messages 

11 ran-I 



calling Functions Written in Other Languages 

'!he function return val ue is stored in register d0. If the return val ue 
is of tne rouble, then the most significant half of it is in d0. '!he 
least significant half Of .. it is in dl. 

e and EORrRART1 

'lb write C-Ianguage procedures that call or are called by FORI'RAN77, it 
is necessary to know procedure names, data representation, return val ues, 
and argument lists that the oornpiled oode uses. 

Procedure Names 

The name of a EORmAN procedure has an mdersoore added to it by the 
canpiler. '!he mderscore distinguishes the procedure name fran a C­
language procedure or external variabie with the same user-assigned 
name. 

Aloo, FORmAN-library procedure names have enbedded underscores to 
avoid clashes with user-assigned subroutine names. 

Data Representation 

'!he following is a list of oorresIDnding FORmAN and C declarations: 

FORTRAN 

integer*2 x 
integer x 
logical x 
real x 
oouble precision x 
canplex x 
oouble oornplex x 
character*6 x 

C Language 

short int Xi 
long int Xi 
long int Xi 
float Xi 
double Xi 
struct { float r, ii } Xi 
struct {double dr, di i } Xi 
char X[6]i 

Integer, logical, and real data occupy the same amot.n1t of rnanory in 
FOR-mAN. 

Return values 

A function of tne integer, logical, real, or rouble precision 
declared as a C function returns the corresp:>nding type. A canplex 
or oouble oornplex function is equivalent to a C routine with an 
addi tional initial argument that !,X)ints to the place where the 
return value is' to be stored. 

9-2 



Chap:er 9 

calling Functions Written in Other Languages 

The calling function evaluates each actual r:arameter and pushes it on the 
stack fran right to left. 

The following ty~ oonversions are p:rformed on each actual p:1rameter 
value before it is pushed: 

1. A float is oonverted to a cbuble. 

2. A char or short is oonverted to an int. 

3. An unsigned char or unsigned short is oonverted to an unsigned 
int. 

4. An array name is oonsidered a p::>inter to the first elenent in the 
array. 

5. A entire struct or union is pushed on the stack. Structs and 
unions can be very large. Everything on the stack gets pushed. It 
may have an extra dl.mm¥ byte added to the end so an even number 
of bytes is always pushed. 

After the I;arameters have been pushed, the caller calls the function. '!be 
C canpiler adds an underscore to the beginning of ftmction names. 

The called function preserves registers d2 through d7 and a2 through a7. 
Registers d~, dl, ~, and al are not preserved. These four registers are 
called scratch registers. 

Once the called function has returned, the tarameters are p::>pp:d off the 
stack. 

NarE: The caller fOps the I;arameters from the stack. This is helpful 
with functions that have a variable nt.mber of J;arameters (such 
as printf (» because the caller knows how many p:1rameters to 
fOP· 

9-1 



calling Functions written in Other Languages 

'!he string lengths are long int quanti ties ~ssed l:¥ val ue. 

The arguments are in the following order: 

1. Extra arguments for canplex and character functions 

2. Address for each datum or function 

3. A long int for each character argument 

Because of this, the call in 

external f 
character*7 s 
integer b ( 3) ... 
call sam(f, b(2),s) 

is Equivalent to the call in the following: 

int f (); 
char s [7] ; 
long int b [3] ; 
••• 
saffi_(f,&b[1],s,7L); 

NarE: The first elanent of a C array always has subscrip: 0. 

C and B:lscal 

However, FORTRAN arrays begin at 1 by defaul t. FORTRAN 
arrays are stored in oolumn-ma.jor order. C arrays are 
stored in row-major order. 

C functions cannot call Pascal routines because of unresolvable 
differences between the C and Pascal calling oonventions. However, C 
functions can be called l¥ Pascal routines because the Pascal oompil er 
generates C style calls through the cexternal directive. Also, external C 
variables are not accessible from Pascal. 

Limitations 

The C library and the Pascal runtime library are not oom~tible. '!he 
C manory allocation routines (malloc, etc.) oonflict with the Pascal 
manory allocation routines (ma.rk, new, etc.). 

Since many library routines allocate manory internally, it is 
difficult to tell what will work and what won't. 

9-4 



calling Functions W ri tten in Other Languages 

Because of this, the following: 

complex function f ( ••• ) 

is a;;{uivalent to 

struct { float r, ii} tanpi 
f_(&temp, ••• ) 

A character-valued function is equivalent to a C routine with two 
extra initial arguments, a data address and a length. 'lherefore, 

character *15 function g ( ••• ) 

is equivalent to the following: 

char resul t [] i 
long int 1 ength i 
9-(result,length, ••• ) ... 

The foregoing could be invoked in ~ by the following: 

char chars [15] i ... 
9-(chars,15L, ••• )i 

Subroutines are invoked as if they are integer-valued functions, 
whose value s~cifies which alternate return to use. Alternate 
return argtmlents (statement labels) are not fBssed to the function. 
They are used to do an indexed branch in the calling procedure. 

The return value is undef ined if the subroutine has no entry p:>ints 
with alternate return arguments. 

The statanent 

call nret(*l, *2, *3) 

is treated exactly as if it were the canputed goto 

goto (1, 2, 3), nret() 

Argument Lists 

All EORI'RAN arguments are pissed by address. In addition, for fNery 
argument that is of ty};e character, an argument giving the length of 
the val ue is fBssed. 

9-3 



calling Functions Written in Other Languages 

C enumerated typ:s are always 4 bytes long. 'IbE¥ 00 not 
corresp::>nd to Pascal enumerated t~s. . 

(3) Manber ~ of the Pascal set corresp:>nds to the least significant 
bit of the C unsigned char. Me:nber 1 corresp::>nds to the next 
significant bit. 

(4) Me:nber ~ of the Pascal set corresp::>nds to the least significant 
bit of the first C unsigned long int. Manber 63 corresp::>nds to 
the most significant bit of the last unsigned long int. 

Return Values 

To be called fran Pascal, a C function should be of typ: int, long 
int, unsigned int, unsigned long int, oouble, I;X>inter, or void. 

A C function of tyt:e void corresI;Onds to a Pascal procedure. 

Argument Li stS 

To be called from Pascal, a C function should not have formal 
parameters of type float, struet, or union. In addition, the Pascal 
compiler <Des not account for the typ: oonversions listed in this 
chapter. 'Iherefore, a C formal parameter of tyt:e char or short 
corresp::>nds to a Pascal actual parameter of typ: longint. 

Array parameters work as long as subscripting is declared to begin 
at ~ in Pascal. 

9-6 



calling Functions Written in Other Languages 

In addition, sane routines in each library dep:nd on initializations 
oone by the main program. ;rf the main progran is written in C, the 
Pascal initializations aren1t oone. If the main program is written 
in Pascal, the C initializations aren l toone. 

Therefore, you can write C functions to be called by Pascal 
routines, but you 00 S) at your own risk. 

The cexternal directive exists primarily so that Pascal can access 
UNIX systan calls. 

If you want to try to call C functions with Pascal routines, the 
following infonnation may be of help. 

Procedure names 

To be called from Pascal, the name of the C function must not 
contain any uppercase letters. Pascal is not case sensitive. It 
assumes that the names of all C functions are in lowercase. 

Furthennore, a C function called foo must be declared as Joo in 
Pascal. The C compiler puts a leading underscore on function names, 
but Pascal does not. 

Data Repcesentations 

Following is a I ist of· corresI:Dnding Pascal and C declarations: 

Pascal C Notes 

x: char; unsigned char X; 
x: boolean; char x; (1) 
x: integer; short int x; 
x: longint; long int x; or int x; 
x: (red, green, blue) ; unsigned char x; (2) 
x: real; oouble x; 
x: record i, j: integer end; struct {short int i, j;} x; 
x: string [9]; char x[l"']; 
x: array ["' •• 9] of char; char x[9]; 
x: Achar; char *x; 
x: set of "' •• 1; unsigned char x; (3) 
x: set of "' •• 63; . unsigned long int x[2]; ( 4) 

(1) False corresp:>nds to "', true corresp:>nds to 1 (in most cases, 
true corresp:>nds to arrj val ue other than "'). 

(2) Red corresp:>nds to "', green corresp:>nds to I, and blue 
corresp:>nds to 2. Pascal. enumerated typ:s are 1 byte long if 
they have 256 values or less. Otherwise they are 2 bytes long. 



Debugging 

can be changed tanporarily to ranove the static modifier for 
detugging. 

~ variables ~ formal parameters) 

Auto variables also have no symbols. Because an auto is a local 
variable, it is usually easier to find a nearby reference to it 
than to a static variable. 

An auto variable's location can be estimated. An auto variable 
is located at a negative offset fran register a6. Generally, 
the C compiler places the first auto variable nearest a6, the 
next auto further fran a6, etc. 

A formal p3.rameter is accessed like an auto variable is 
accessed except it is located at a IDsitive offset from a6. 

Register variables 

Register variables have no &ymOOls, rut, like auto variables, 
references to than can often be found in the code (see chapter 
3 for details) 

Also, it is possible to determine the haravare register that 
corresp:>nds to a given register variable in functions that have 
not been optimized (see chapter 3 for details). 

A regist'er parameter is like a register variable except that an 
initial value gets copied into the register at the beginning of 
the function. 

How to IDeate <Dde 

Ipcating .Q function 

Non-static functions are referred to by name. The name is 
preceded l:¥ an underscore. The name represents the address of 
the first instruction in the function. 

Static functions cannot be referred to by name. Like static 
variables, a static function can best be located by finding a 
reference to it in the code, then noting its address. 

Ipcating lines .in .Q function 

If the C optimizer is not used, st;:ecific lines in a function 
can be located by exanining the .s assanbly language source 
file produced by the C compil er • 

10-2 



Olapter 10 

Deblgging 

The WMCS debugger is wmu:;. The UniPl us+ System V debugger is adb. Both 
are symbolic assanbly-level debuggers, that is, they allow functions and 
variables to be accessed by' name at the assembly-language level. 

For detailed infonnation on wmm see the WIBUG Prograumer's Reference 
Manual. 

For detailed information on adb see the UniPlust System V User's Manual 
(Section ll.. 

Because wmm and adb have roughly equivalent cap:tbilities, they will be 
referred to in this chapter as wmU;/adb. 

BOIl to Locate IBta 

External variables can be referred to by name. However, static, auto, and 
register variables have no symbols with which they can be accessed. 
Following are tips for accessing each storage class: 

External variables 

An external variable can be referred to by its name, preceded 
by' an underscore. 

For example, a global variable called foo in C is called _foo 
in WmOO/adb. The symbol represents the address of the first 
t¥te of the variable. wmm/adb can locate the variable, but 
has no infonnation about its tyt:e or size. 

Static variables 

Static variables have 00 syml:x>ls, and their location in rnanory 
is hard to predict. A static variable is best found by locating 
a reference to it in the code, and then noting its address. It 
is also tDssible to declare all statics with a macro so they 

10-1 



Debugging 

the optimizer ~rforms live/dead analysis on than. A simple' 
change in the C source can result in a drastic change in the 
optimized assembly code. 

'!be optimizer ranoves the LINK and UNLK instructions from a 
function if it has no non-register local variables. '!his causes 
J;arameters to be at an unpredictable offset from the stack 
tx>inter, rather than at a predictable offset from register a6. 

stack backtraces in Wmm/adb depmd on the linked list of 
stack frames maintained by the LINK and UNLK instructions. 
Backtraces of optimized code can be misleading because 
functions without LINK and UNLK 00 not apFEar in the backtrace. 

'!be optimizer ranaps register variables to registers with lower 
nt.mbers. This takes advantage of \.mused scratch registers. 
Ranapping makes it more difficult to calculate which hardware 
register corresponds to which register variable. 

1~-4 



Deb.lgging 

To produce a .s file under WMCS, use the compile canmand with 
the :noassemble svitch. To produce a .s file under UniPlus+ 
System V, use the cc canmand with the -S option. 

Source file names. and line numbers are indicated by .line and 
.file directives aroong the assanbly-language statanents. 

The beginning of the C source file and each #include file is 
marked by a .f ile directive in the following format: 

.file fileJlumber, nfile_namen 

In the foregoing fonnat, f ileJlumber is a unique integer and 
file_name is the name of the source file. The end of each 
iinclude file is marked by an abbreviated .f ile directive in 
which the file name is omitted, and the file number is the 
number of the file that did the #include. 

The beginning of each C statanent is marked by a .line 
directive in the following fonnat: 

.line lineJlumber 

In the foregoing format, lineJlumber is the number of the line 
on which the statanent begins. 

A .line directive appears only for lines containing the 
beginning of a statanent. 

Lines containing only comments, declarations, etc. are not 
represented. 

Detugging op-jmjzed Code 

Debugging code that has been optimized with the C optimizer is 
difficul t. Your ability to debug optimized code dep:mds on the 
optimizations that were ~rformed. 

Following are sane things to watch out for: 

The C optimizer ranoves all .file and .line directives. It ooes 
this because it moves, eliminates, and rearranges code, 
invalidating the -line numbers. To locate lines in a ftmction, 
you must look at the assanbly code and try to correlate it with 
the source manually. 

However, the optimized assembly code may not corresp:>nd in an 
obvious wCJ¥ to the original C source. The code for a C 
statanent could be disI,Ersed, or eliminated altogether. This is 
JOOst likely to occur with the use of register variables because 



ASCII CHARACTER TABLE 

Abbreviations for control key functions: 

NUL - Null 
SCE - Start of header 
STX - Start of text 
ETX - End of text 
Ear - End of transmission 
m:l - Enquiry 
ACK - Acknowledge 
BEL·- Bell 
BS - Backs};ace 
HT - Horizontal tab 
LF - Line feed 
VT - Vertical tab 
FF - Form feed 
CR - Carriage return 
SO - Shift out 
5I - Shift in 
DLE - Data link escat=e 

OCl - Device control 1 
OC2 - Device control 2 
OC3 - Device control 3 
OC4 - Device control 4 
NAK - Negative acknowledge 
SYN - Synchronc:us idle 
EI'B - End of transmission block 
CAN - Cancel 
E}1 - End of medium 
SUB - Substitute 
ESC - Escape 
FS - File separator 
GS - Group separator 
RS - Record separator 
US - Unit separator 
SP - Space 
DEL - Delete 



APmIDIX A 

ASCII CHARACTER TABLE 

Character DEC HEX Char DEC HEX Char DEC HEX Char DEC HEX 

[CI'RL] @ NUL 000 00 SP 032 20 @ 064 40 
, 

096 60 
[CI'RL] a SOH 001 01 ! 033 21 A 065 41 a 097 61 
[CI'RL] b STX 002 02 n 034 22 B 066 42 b 098 62 
[CI'RL] c m'X 003 03 # 035 23 C 067 43 c 099 63 
[CI'RL] d EDT 004 04 $ 036 24 D 068 44 d 100 64 
[CI'RL] e EOO 005 05 % 037 25 E 069 45 e 101 65 
[CI'RL] f AQ( 006 06 & 038 26 F 070 46 f 102 66 
[CI'RL] 9 BEL 007 07 , 039 27 G 071 47 9 103 67 
(CI'RL]h BS 008 08 ( 040 28 H 072 48 h 104 68 
[CI'RL] i HT 009 09 ) 041 29 I 073 49 i 105 69 
[CI'RL] j LF 010 OA * 042 2A J 074 4A j 106 6A 
[CI'RL] k VT 011 OB + 043 2B K 075 4B k 107 6B 
[CI'RL]1 FF 012 OC , 044 2C L 076 4C 1 108 6C 
[CI'RL]m CR 013 OD - 045 2D M 077 4D m 109 6D 
[CI'RL]n SO 014 OE • 046 2E N 078 4E n 110 6E 
[CI'RL]o SI 015 OF / 047 2F 0 079 4F 0 111 6F 
[CI'RL] P OLE 016 10 0 048 30 P 080 50 P 112 70 
[CI'RL] q OC1 017 11 1 049 31 Q 081 51 q 113 71 
[CI'RL] r 0C2 018 12 2 050 32 R 082 52 r li4 72 
[CI'RL] s OC3 019 13 3 051 33 S 083 53 s liS 73 
[CI'RL] t OC4 020 14 4 052 34 T 084 54 t 116 74 
[CI'RL] u NAK 021 15 5 053 35 U 085 55 u 117 75 
[CI'RL] v SYN 022 16 6 054 36 V 086 56 v li8 76 
[CI'RL] w ETB 023 17 7 055 37 W 087 57 w 119 77 
[CI'RL] x CAN 024 18 8 056 38 X 088 58 x 120 78 
[CI'RL]y EM 025 19 9 057 39 y 089 59 Y 121 79 
[CI'RL] z SOB 026 lA · 058 3A Z 090 SA z 122 7A · [CTRL] [ ESC 027 lB · 059 3B [ 091 SB { 123 7B , 
[CI'RL]\ FS 028 1C < 060 3C \ 092 5C I 124 7C 
[CI'RL]] GS 029 lD = 061 3D ] 093 50 } 125 7D 
[CI'RL] A RS 030 IE > 062 3E A 094 5E - 126 7E 
[CI'RL]_ US 031 IF ? 063 3F - 095 SF DEL 127 7F 

A-1 



Supplement to .c.t A Reference Manila] 

14 

16 

16 

16 

17 

17 

18 

19 

21 

23 

25 

26 

27 

28 

33 

Are tmI additional characters allowed in an identifier? No 
additional characters are allowed in identifiers (only 
letters, digits, and the underscore, _, are allowed) • 

Are enum and void implanented? Yes, roth are implemented. 

Is entry a reserved word? No. 

What are the reserved words in WIc\T Systems C? The reserved 
words are 1 isted in apt:endix C of this manual. 

Are the digits 8 and 9 allCMed as octal digits? Yes, rut a 
warning message is generated. 

What are the storage sizes of the data ~s? The storage 
sizes are given in chap:er 3. 

HCM are out-of-range values handled? Constants larger than 
MAXINT (2147483647) are silently truncated, and no warning or 
er ror message is generated. 

What representation <bes the 68f,HUJ use for integers? The 
twol complement representation is used for integers. 

HCM is the char CDnstant implanented? Character constants 
are implemented as 8-bit signed tyt:es, i. e. , the sign 
extends. 

HCM is the backslash treated when it is follONed t'¥ an 
invalid escape oode? The backslash, \, is ignored when it is 
followed by an invalid escaJ;e-COde character. 

Is hexadecimal notation allowed in numeric escape CDdeS? 
Yes. The hexadecimal escat:e rode \x is allowed in character 
oonstants (e.g., R\xlA"). 

can the preprocess:>r and the CDmpiler be o~rated 
sepirately? Yes. '!he CDmpilation process is descrired in 
chal,Xer 2. 

Are the preproc:esaor cxmunands telif and def ined lup;DrtlC!? 
The preprocess>r oonunand defined is sUPIDrted but #elif is 
not. 

Is leading spice and whitespice allCMed with the macro 
cx:nnmands? No leading st;:ace, whitest;:ace yes. 

can actual argument token lists extend across multiple 
lines? Backslash ra;Iui red. 

B-2 



Appendix B 

Supplanent to ~ A Reference Manna] 

The rook C: A Reference Manual supplied by WICAT Systems raises questions 
atout differences l::etweal various implementations of C. '!his app:ndix 
clarifies those questions so that.c..;,. A Reference Manpa] t. along with this 
aPJ;endix, is a oomplete language reference for WICAT Systans C. '!hese 
answers are given in the order the questions are presented in the rook. 

~1. 

9 

1" 

12 

14 

Answer 

Jl)es the character set include additional. characters not in 
the standard set Yes. WICAT supPJrts the oomplete ASCII 
character set (e.g., the $, @, and ' characters are 
included). The characters not included in the standard set 
can only app:ar in oomments, character constants, or str ing 
constants. 

What is the line limit of a C progran? 256 characters. 
Different tarts of the s:>ftware generation systen have 
different line limits. '!be shortest limit is 256 characters 
for the floating-fX)int preprocess::>r. 

Are nested oomments allCMed? Nesteq OOImllents are accepted. 
HCMever, lint generates a warning message for nested 
COImllents. 

What is the maximun length of an identifier? Identifiers of 
any length are allowed. HONever, global and static 
identifiers are declared in the assembly output on one line, 
similar to this: 

.global <identifier> 

The entire line must be less than 256 characters to work with 
the floating-fX)int preprocesoor, s:> the practical limit to 
the 1 ength of an identifier is aoout 2"" characters. 

B-1 



Supplanent to ~ A Reference Mannal 

40 

40 

41 

41 

46 

48 

The call <DNC (INC, TAB) is ultimately expanded into this: 

Does the preprocess:>r p!rform stringent error checking? The 
preprocesoor (bes not check for things such as an inoomplete 
token in the macro definition. 

Bow are <Duble qmtes and angle brackets treated in linclude 
statanents? Files listed in Cbuble qootes are only searched 
for in the directory the oource is in. Files listed in angle 
brackets are searched for in the standard directories and any 
other directories s~cified with oompiler options. The 
directories you s~cify are searched first. 

What are the standard include directories? The standard 
include directories are: 

/usr/ incl ude (UNIX only) 
sys$disk/ucc. include/ (WMCS only) 
sys$disk/sysincl.sys/ (WMCS only) 

Are nested iinclude statanents allowed? Yes. Nesting is 
allowed to 16 levels. 

Bow are errors in oonstant expressions in preprocesoor 
conditional commands handled? When an error occurs ln a 
constant expression, no warning message is generated and the 
value is assumed to be zero. 

Is I allowed for Iline? Yes. The line "# <number)" is the 
same as "#line <number)" 

B-4 



34 

34 

36 

36 

37 

39 

Supplanent to ~ A Reference Manual 

Are macro formal J;.8rameters reCX>gnized within string and 
character constants? Yes. Fbrmal I=Brameters will have the 
same textual form as the actual I=Brameters when expanded with 
the excep:ion that oomments are deleted. Ebr example, 
oonsider the definition and call below: 

#define X(x) nxn 

x ( a += 00400 /* foo blat */ ) 

The definition would cause the call to expand to this 
constant: 

n a += 00400 n 

IICM are oomments within macros treated? They are not p:lssed 
when a macro definition is substituted (see the example in 
the for ego ing comment) • 

What are WlCAT's predefined macros? The only predef ined 
macros are: 

mc68000 
unix (for UNIX systems) 
WInes (for future WM~ systems) 

Bow is an attEm~ to redefine a macro handled? Macros can be 
redefined. '!be rew definition replaces the old one, and the 
preprocessor generates a warning message, including warnings 
about I=Brameter mismatches. 

Are macro definitions implanented with a stack? No. '!he 
preprocessor <.Des not stack macro definitions (defined with 
#define). X would not be defined as 10 after the following 
three oommands, as the example on p. 37; x would be 
undefined: 

idefine x 10 
idefine x 12 
iundef 

Are macro bodies treated as character sequences? Yes. 
Consider the following example, given on p. 39. of the text: 

idef ine mc ++ 
idefine TAB internal_table 
#define mcrAB table_of_incranents 
idefine CDNC(x,y) x/**/y 
<nNC (INC, TAB) 

B-3 



Supplanent to ~ A Reference Manpa] 

74 

75 

76 

77 

78 

79 

8fiJ 

8fiJ 

81 

87 

89 

9fiJ 

93 

98 

99 

Is CX)JDpile-time floating p>int arithmetic perfonned? Yes. 

Are casts allowed in oonstant expressions? Yes. 

can autanatic arrays be Initialized? No. 

Are braces allowed in enumeration initialization 
expressions? Yes. 

can bit fields be initialized? Yes, static and extern bit 
fields can be initialized. 

can unions be initialized? No. 

Are too few or too IDaIl¥ braces allowed in initializer lists? 
No. WICAT Systans C strictly oonforms to the "Brace Eliding" 
rules given on p. 79 of the text. 

Are plinters and ints the same size? Yes. Cllapter 3 lists 
the storage size for each data tyte. 

When is a top-lwel declaration of an external name 
considered to be its definition? The compiler uses the 
"mixed" strategy, described on p. 82 of the text, to define 
external names. With an initializer but no extern, it is a 
definition. With no initializer and no extern, it is a 
"coII1lOOn" definition. If extern is there, the definition 
occurs elsewhere. 

What are the sizes of short, int, and long? The sizes for 
all data tyt:es are given in chapter 3 of this manual. 

What lnsigned ~s are sllpp)rted? The compiler supIDrts 
unsigned long, short, and char tyt:es. 

Bow is the char tyt:e implanented? The char ty:r:e is signed. 
Therefore it can assune negative values. The size of char, 
along with the sizes of all data tyt:es, is given in chapter 3 
of this manual. 

Is long float allowed? No, the oompiler (bes not recognize 
"long float" as a &ynolWffi for Cbuble. 

What is the maxinnJn dimension of an array? The oompiler can 
handle up to 13 dimensions of an array. In general, the 
compiler can handle 13 levels of indirection. 

What is the unit of measuranent returned by the sizeof 
operator? The sizeof oterator returns the size of an array 
in bYtes. 



54 

56 

59 

61 

69 

~upplanent to ~ A Reference Manpal 

Are labels placed in the same sIBee as variables? No. 
Labels have a sep;lrate name s};Sce from variables. In this 
example, given on p. 54, the integer declaration of L hides 
th~ label (it is not an illegal duplicate definition of L) : 

... 

{ ••• 
<pto Li 
••• 
{ int Li ... 

{ ••• 
L = l~i ... 

L: 
••• 

} 
} 

} 

IJCN are forward references to static variables handled? 
Forward references to static variables with "extern" do not 
change the storage class of the variable, i. e. , it ranains 
static. 

Are the normal scoping rules different for external 
declarations? Yes. '!be normal scoping rules for extern 
declarations are "violated. n The following example, given on 
p. 59, extends the definition of E to the sea:>nd assignment 
(it is not illegal): 

{ 

} 

{ 

} 

extern Ei 
E = ~i 

E = Ii 

IkM many register variables are available? The use of 
register variables is described in chap:er 3 of this manual. 

Are zero-length arrays allowed? No, rut null-sized arrays 
are allowed, even in some a:>ntexts where it (bes not sean to 
make sense. For example, the following function a:>mpiles even 
though it is improJ;er: 

funcO { 

} 

char carray [] i 
sprintf(carray, ••• )i 

8-5 



Supp1anent to ~ A Reference Manna' 

156 can the address operator be used with a register variable? 
No, you cannot take the address of a register variable. 

157 can the address operator be used with an array or function? 
The compiler generates a warning message if you try to take 
the address of an array or a function. 

163 Bow is integer division with negative numbers handled? In 
integer division involving negative numbers where the 
mathenatical qootient is not an exact integer, the result is 
the nearest integer which is closest to zero (i. e., the same 
as for positive numbers) • 

169 Bow cbes the signed right shift work? Right shifts of signed 
numbers replicate the sign bit, i. e., the sign bit is 
extended. 

183 Can the result of a oonditional expression be structure, 
union, enumeration, or void? Yes, any of than. 

185 Are structure and union assignments allowed? Yes. 

186 Is whitesp!ce allowed between the characters of a oomp:>und 
assignment operator? Yes. For example, "i + = 5 II is 
allowed. 

187 Are the ·old style· comp:>und assignment operators 
recognized? The "old stylen comJ;Dund assignment operators 
described on pp. 186-187 are recognized and generate a fatal 
error. Statanents like ni=-4" produce warning messages aoout 
ambiguous assignments. 

189 Is the exclanation IDint, 1, allowed in oonstant 
expressions? Yes. 

190 Is casting allowed in oonstant expressions? Yes. 

190 Is the cxmna operator allowed in conat:ant expr.Ii0n8? No. 

193 Is a waming message generated for discarded values? No. 

194 Ik>es the oompiler optimize menory access? No. 

216 Are the enum and long types allowed in switch statanents? 
Yes. 

B-8 



Supplanent to ~ A Reference Mantla] 

1~2 What is the size of an enum~? The size of all data ~s 
is given in chapter 3 of this manual. 

1~2 can previously defined enum <Dnstants be used in enum 
oonstant expressions? Yes. 

lro IIcM is the enum ~ implanented? The enumeration t~ is 
implanented as an integer model. 

1~6 What structure operations are I,X)ssible? Structures can be 
assigned, };Bssed as };Brameters, and returned as function 
values. 

1~8 Can two structures have oomp:>nents with the same name? Yes, 
the overloading of structure comp:>nent names is allowed. 

108 BOw are structure components };Bcked? Structure components 
larger than the size of char always start at an even-byte 
offset. 

1~9 Bow are bit fields p:lcked? Bit fields are tacked from left 
to right. 

ll~ BC7ttI are bit fields implanented? Bit fields must be unsigned 
(int or enum ~) • Signed declarations produce no warnings 
or errors and are treated as though unsigned. Fields are 
limited to 32 bits (one longword). Fields too large to fit 
entirely in the current longword are aligned to the next word 
ooundary. Zero-length bit fields are not supp:>rted. 

l4~ BC7ttI are overflow, underflow, division-by-zero, and other 
arithmetic exceptions handled? OVerflow, underflow, and 
other arithmetic exceptions Cb not generate error or warning 
messages. '!be (unpredictable) results are proIBgated through 
future results. Division by zero, rowever, generates an 
error message. 

145 Does enclosing an expression in IBrentheses force a unary 
oonversion? No. 

148 Can functions return structures and unions? Yes. 

15~ Can formal p:lrameters be used in a function expression? No, 
you cannot s~cify a formal tarameter declared as being of 
~ nfunction returning Tn for some ~ T. 

153 Are "narrowing casts· performed by the CX)J'Qpiler? Yes. 

154 What is the ~ of the sizeof result? The result ~ of 
the sizeof operator is unsigned int. '!he size is given in 
bytes. 

B-7 





Appendix C 

Keywords 

The keyword (reserved word) list for WICAT's C compiler conforms to the 
proIDsed ANSI standard for C. 

If you use a keyword as an identifier, the compiler returns a syntax 
error. 

Following is a list of the keywords for the WICAT C compiler. The words 
followed by an asterisk are reserved due to the proIDsed standard: 

asm enum* struct 
auto for sizeof 
break float short 
char fortran static 
case goto ty~def 
const* if unsigned 
continue int union 
chuble long void* 
default return volatile* 
do register while 
extern signed* 
else &witch 

C-l 



Index 

lllib, 7-1 
11 ran, 7-1 

oompile process, 
diagrams, 2-2 
UniPlus+ Systan V, 2-2 
WMCS, 2-2 

oompil er , features, 3-7 
oompiler limitations, 2-3 
compiler optimization, 4-4 

common tail merging, 4-5 
constant folding, 4-1 
dead code elimination, 4-4 
elimination of stack lDps, 4-8 
input, 4-1 
instructions, 4-2 
link/UNLK r anoval, 4-7 
loop rotation, 4-6 
OOP suppression, 4-8 
peeIito1e optimizations, 4-9 
redundant branch elimination, 4-5 
register ranapping, 4-6 
strength reduction, 4-2 
type reductions, 4-2 
unreachable code elimination, 4-4 

cos, see trig 
CX)sh, see sinh 
creat, creat-1 
cryp:, ctyt:t.-1 
ctennid, ctermid-l 
ctime, ctime-1 
ctype, ctype-l 
cuserid, cuserid-1 

data registers, 3-4 
aa=l, da, dl, 3-4 
a2-aS, d2-d7, 3-4 
a6, 3-4 
a7 (sp), 3-4 

data types, storage sizes, 3-2 
detugging, 1 a-1 

adb, 1a-1 
locating code, 

function, 1 a-2 
lines in a function, 10-2 

locating data, 10-1 
auto variables (and formal 
pirameters), 1a-2 

external variables, 10-1 
register variables, 10-2 

static variables, 10-1 
optimiz ed code, 10-3 

things to watch out for, 10-3 
assanbly code, 10-3 
file and .line, 10-3 
LINK/UNLK, 10-4 
renapping register variables, 10-4 
stack backtraces, 10-4 

wmm, la-I 
drand48, drand48-1 
dup, dup-l 

ec.vt, ~t-l 
erand48, see dr and4 8 
erf, erf-l 
erfc, see erf 
ermo, see perror 
exec, exec-l 
execl, see exec 
execle, see exec 
execlp, see exec 
executable files and images 
format, 3-2 
execv, see exec 
execle,see exec 
execvp, see exec 
exit, exit-I, 
exp, exp-I 

fats, see floor 
fclose, fclose-l 
fcvt, see ecvt 
ftbpen, see fopen 
feof, see ferror 
ferror, ferror-I 
fflush, see fclose 
fgetc, see gete 
fgets, see gets 
fileno, see ferror 
floating-p>int, 

C optimizer, 5-3 
choosing preproces&>r, 5-2 
compiler, 5-1 
deblgging, 5-7 

a move, 5-7 
cc -K, 5-7 
compile: nofpreprocess, 5-7 
jsr, 5-7 
under UniPI us+ Systan V, 5-8 

index-2 



a64l, a641-1 
a1:s, abs-1 
aces, see trig 
adb, 10-1 
ASCII character table, A-I 
asin, see trig . 
assembler optimization, 4-1a 

branch shortening, 4-1a 
on 68aaa, 4-11 

Index 

span-de~ndent optimization, 4-10 
atan, see trig 
atan2, see trig 

bessel, besse1-1 
brk, brk-1 
bsearch, hsearch-1 

.c extension, 2-1 
C libraries, 6-1 

files tmder UniPlus+ Systan V, 6-1 
files tmder WMCS, 6-1 
1d, 6-1 
LL, 6-1 

C progran harGiare limitations, 2-3 
process size, 2-3 

index-1 

c source files, 2-1 
calling EURrRAN77, 9-2 

argument lists, 9-4 
C and FORmAN declarations, 9-2 
procedure names, 9-2 
return val ues, 9-3 

calling function, 9-1 
calling Pascal, 9-4 

argument 1 ists, 9-6 
C and Pascal declarations, 9-5 
data representations, 9-5 
limitations, 9-5 
procedure names, 9-5 
return values, 9-6 

calloc, see malloe 
ee, 2-1 
ceil, see floor 
chdir, chdi r-1 
chmod, chmod-1 
clearerr, see ferror 
close, close-1 
(X)Inpilation lnder WMCS, 

oompile, 7-1 
Ii, 7-1 



Index 

lrand48, see drand48 
lsearch, 1search-1 
lseek, 1seek-1 
ltol3, see l3to1 

malIce, mal1oc-1 
math libraty, 6-2 

under UniP1us+ Systan V, 6-2 
under WMCS, 6-2 

memccpy, see manory 
mandlr, see menory 
msnanp, see menory 
DlSDCJ?{, see manory 
memory, manory-l 
manset, see manory 
mktemp, mktanI>-l 
modf, see f rexp 
mrand48, see dr and48 

nrand48, see drand48 
RlLL tDinter, misuse, 2-3 

open, open-1 
optimization, definition, 4-1 
optimization cautions, 4-20 
optimization tricks, 4-14 

CMPM instruction, 4-15 
DBRA instructions, 4-15 
fast data ooJ;¥ing/comparison, 4-18 

improving array access and 
J;X)inter arithmetic, 4-16 
optimizing functions with more 
register variables than 
registers, 4-14 
~st-incranent and pre-
decranent addressing, 4-15 

speeding up arithmetic functions, 4-16 
optimizer optimization, 4-3 

basic blocks, 4-3 
data collection techniques, 4-3 

flow analysis, 4-3 
live dead analysis, 4-4 

fundamental units, 4-3 
IOOdule, 4-3 
IOOVing winOOw, 4-3 

perror, perror-1 
1,lJW, see exp 
printf, pr intf-l 

index-4 

patc, putc-1 
put char , see putc 
puts, puts-l 
putw, see putc 

qsort, qsort-1 

rand, rand-l 
reallce, see malloc 
register-indirect-with-offset 
addressing mode, limitations, 
2-3 
r&lind, see fseek 

scanf, scanf-l 
seed48, see drand48 
setOOf, setbuf-l 
setjmp, setjrnp-1 
setvOOf, see setOOf 
sin, see trig 
sinh, sinh-1 
sleep, 51 eep-1 
software generation systen, 2-1 

getting good 00 de , 4-11 
sprintf, see printf 
!qrt, see exp 
srand, see rand 
srand48, see drand4 8 
sscanf, see scanf 
stack, 3-5 
stat, stat-1 
storage, 

auto, 3-1 
external, 3-1 
register, 3-2 
static, 3-1 

storage allocation example, 3-6 
calling function, 3-6 
local array, 3-6 
register variables, 3-6 
static variable, 3-6 

str eat , see string 
strchr, see string 
stranp, see string 
strcp,y, see string 
strcspl, see string 
string, string-l 
strIen, see string 
stmca.t, see string 



Index 

tmder WMCS, 5-8 
brealq:oint, 5-8 
libraries, 5-8 
startups, 5-8 
symOOls, 5-8 

oouble storage format diagran, 5-4 
exception handling, 5-6 

divide-by-zero, 5-6 
illegal operation, 5-6 
overflow, 5-6 
under UniPl us+ Systan V, 5-6 
under WMCS, 5-7 
underflow, 5-6 

float storage format diagran, 5-4 
hardvare and software, 5-1 
libraries, 

tmder UniPlus+ Systan V, 5-9 
tmder WMCS, 5-9 

precision, 5-3 
registers, 5-3 
reseIVed val ues, 5-5 
software anulation, 5-1 
under UniPlus+ Systan V, 5-2 
tmder WMCS, 5-2 

fpngr command, 5-2 
floor, £1oor-l 
flood, see floor 
fopen, fopen-l 
fprintf, see pr intf 
fpute, see pute 
fputs, see puts 
fread, fread-l 
free, see malloe 
freopen, see fopen 
frexp, frexp-l 
fscanf, see scanf 
fseek, fseek-l 
fstat, see stat 
ftell, see fseek 
function call stack frane, 

local variables, 3-5 
register variables, 3-5 

function call stack f rane 
diagran, 3-5 
function };Braneter, 3-5 
£Write, see fread 

gauma, ganuna-l 
gcvt, see ec,vt 

index-3 

gete, gete-l 
getchar, see gete 
getcwd, getGld-l 
getgid, see getuid 
getlogin, getlogin-l 
getopt, getopt-l 
getpgrp, see getpid 
getpid, getpid-l 
getppid, see getpid 
gets, gets-l 
getuid, getuid-l 
getw, see gete 

hereate, see hsearch 
hdestroy I see hsearch 
hsearch, hsearch-l 
byj;:ot, l¥!x>t-l 

initialized external and static 
variables, 3-4 
isalnum, see ctyt:e 
isaltna, see ctyt:e 
isascii, see ctyt:e 
isatty, see ttyname 
iBaltrl, see ctyt:e 
isdigi t, see ctype 
isgraIil, see ctype 
islower, see cty~ 
is};rint, see cty~ 
isp.nct, see ctype 
isSIBce, see cty~ 
isupper, see ctyt:e 
islCdigit, see cty~ 

jS, see bessel 
jl, see bessel 
jn, see bessel 
j rand48 , see drand48 

keywords, C-l 
reseIVed, C-l 

13tol, 13tol-l 
164a, see a641 
loong48, see drand48 
ldexp, see frexp 
log, see exp 
loglS, see exp 
longjmp, see setjrnp 





WICAT Systems, Inc. 
Product-documentation Comment Form 

"Ve are constantly improving our documentation, and we welcome scecific comments on this manuaL 

Oecumentntla: ______________________________________________________ __ 

Part Number: 

Your Position: 0 Novice user 

o Experienced user 

o Applications programmer 

Questlens and Comments 

o System manager 

o Systems analyst 

CJ Hardware technician 

8riefly describe examples, illustrations, or information that you think should be added 
to this manual. 

What would you deiete from the manual and why? 

What areas need greater emphasis'? 

List any terms or symbols used incorrectly. 

Page No. 



First Fold 

NO ~CSTAGE 
NECES5.J-~Y 
iF MAIl.ED 

IN T'HE 
UNITEC SiATES 

BUSINESS REPLY MAIL 
F1RSf~ ~M'T NO. 00028 OReM. UrAl-! 

I'OSTAGa WIIJ.. ae ~tO ae AOOResSeE 

WICAT Systems, 
Attn: Corporate Communications 

I ne. 
1875 S. State St. 

! Orem, UT 84058 
I 
i 
, 

.. 

Second Fold 

Tape 


