A\TSA
1\‘"?\ . :‘,’“ 3
"’\/“
s
o
»
WICAT
Macro Assembler (WiMAC)
User's Guide and Reference Manual
188-377-301 A
%% k%

% PRELIMINARY - For internal use only

January 1985

WICAT SYSTEMS INCQORFORATED
Orem, Utah

*kkk PRELIMINARY - For internal use only fadalodl

COPYRIGHT STATEMENT

Copyright (c) 1985 by WICAT Systems Incorporated

WIMAC is not a stand-alone product and consequently is not
supported as such by WICAT Systems. This manual is provided to
aid those who need to interface WIMAC with a programming language.
WICAT assumes no responsibility for the use of WIMAC (as an
interface or any other way) since it is not supported as a
stand-alone product.

The software described in this manual is provided in accordance
with a license agreement and may be used or copied only as
indicated under the temms of such license.

WICAT Systems Incorporated assumes no responsibility for the use
or reliability of software on equipment not supplied by WICAT.

MANUAL INTENT STATEMENT

The purpose of this manual is to help users in program
develomment. The information contained in the manual is subject
to change without notice and should not be oonstrued as a
commitment by WICAT Systems Incorporated. WICAT Systems
Incorporated assumes no responsibility for any errors that may
appear in this manual.

faladaded PRELIMINARY - For internal use only Fkkk

WiMAC Version: 1.0

dekdk NOTICE ****

This manual describes the WICAT Macro Assembler version
1.0 and later. Version 1.0 of WiMAC supports UniPlus+
System V QOFF and LL object formats. This version does
not support macros or the WMCS command line format. WiMAC
runs under the following operating systems:

WMCS 5.
Uniplus+ System V 1.

Appendix A lists the ASCII character set that can be used
in assembler programs.

Appendix B lists error messages produced by the assembler.
An explanation and probable cause for each error is also
given.

Appendix C

Appendix D order.

Appendix E lists the 68000 instruction set in alphabetical
order.

Appendix F

MANUAL QONVENTIONS

A description of the symbolic conventions used throughout this
manual follows. Familiarize yourself with these conventions
before you continue to read.

The following conventions are observed:

(o}

Examples consist of actual assembler programs or program
fragments wherever possible.

Uppercase words and letters, when used in examples,
indicate that the word or letter must be typed exactly as
shown.

Lowercase words and letter, when used in format examples,
indicate that you are to substitute a word or value of your
choice.

Square brackets ([]) indicate that the enclosed item(s)
is(are) optional. The square brackets are pot entered as
part of any option, they are shown only to aid in the
description of the syntax.

Braces ({}) indicates that the enclosed item(s) can be
repeated zero or more times as a group. The braces are pot
entered as part of the repetitions, they are shown only to
aid in the description of the syntax.

The angle brackets (<>) indicate that the item enclosed
must be supplied by the user. For items that reguire
numeric values, the values are interpreted as decimal,
unless otherwise stated or modified. The angle brackets
are not entered as part of item, they are shown only to aid

FIGURE

*kkk

PRELIMINARY - For internal use only

Figures

Source Line Syntax

User Symbol Syntax
Integer Syntax
Character Literal Syntax
Real Syntax

String Syntax

Radix Control Operator Syntax
Expression Syntax

Simple Expression Syntax
Term Syntax

Factor Syntax

dededek

SUMMARY OF TECGHNICAL CHANGES

This manual documents WiMAC version V1.0. The following
technical changes are new to this release:

CHANGES

None - A new release.

ENHANCEMENTS

None - A new release.

FIXED BUGS

None - A new release.

PREFACE

MANUAL, (BJECTIVES

The intent of this publication is to provide sufficient
information to develop assembly language programs on WICAT
computer systems. The information oontained in this manual
pertains to the usage and syntax of the assembler only.

MANUAL STRUCIURE

This manual is organized into ten <chapters and seven
appendices, as follows:

(0]

Chapter 1 introduces the features of the WICAT macro
assembler.

Chapter 2

Chapter 3 explains how to use the assembler on the
appropriate operating system (WMCS, UniPlus+ System V).

Chapter 4 describes the listing file produced by the
assembler.

Chapter 5 covers the format used in the assembler source
statements.

Chapter 6 describes the components of a assembler source
statements: the character set; symbols; numbers; and
expressions.

Chapter 7 explains the general directives (pseudo—opcodes).
Pseudo—opcodes discussed in this chapter include listing
control, symbol control, data definition and storage, and
program sectioning.

Chapter 8

Chapter 9

in the description of the syntax.

CHAPTER 1

INTRODUCTION

[To be written later]

1-1

CHAPTER 2
FEATURES

[To be written later]

2-1

3.1

3.2

CHAPTER 3

INVOKING THE ASSEMBLER

WMCS OPERATING SYSTEM

*kkk NOTE ‘kkk

At the time of this writing, WiMAC is used only to
assemble oompiler generated programs. It is not intended
to be used directly by the user. Therefore, all
invocation of WiMAC should be done by the QOMPILE utility.

Refer to the Wicat Multi-user Control System (WMCS) User's
Reference Manual for complete documentation on the use of
COMPILE.

UNIFLUS+ SYSTEM V OPERATING SYSTEM

kkkk NOTE ****

At the time of this writing, WiMAC is used only to
assemble oompiler generated programs. It is not intended
to be used directly by the user. Therefore, all
invocation of WiMAC should be done by the CC(1l) utility.
Refer to the Wicat UniPlus+ System V User's Manual
(Section 1) for oomplete documentation on the use of
cc(l).

INVOKING THE ASSEMBLER
DIAGNOSTIC MESSAGES

3.3 DIAGNOSTIC MESSAGES

CHAPTER 4

LISTING FILE

The listing file produced by the assembler can oonsist of the
following five parts:

0 Assembly source statements

0 Symbol table (optional)

0 Program section tables (optional)
0 Cross-reference table (optional)
0 Assembly summary (optional)

Sections 4.1 through 4.5 describe each of these parts. Section
4.6 contains an example of a listing file.

4.1 ASSEMBLY SCURCE STATEMENTS

The assembly source statements oomprise the main part of the
listing file, and consists of:

o DPage Headers

0 Source lines with hexadecimal code

o Error and informational messages (if applicable)
Each is described below.

4-1

LISTING FILE
ASSEMBLY SQURCE STATEMENTS
4.1.1 Page Header
The assembler prints a new page in the listing file when it
encounters a .PAGE directive in the source, when it encounters a
new page (form feed) in the source file, or when the existing page

of the listing file is filled. On the top of each page in the
listing file, the assembler prints five header lines.

The first line of the header contains the following information:

O Assembler name

0 Assembler configuration

0 Assembler version number

o Date the listing file was generated

o Time the listing file was generated

o Listing page number

The assembler configuration string consists of three fields. The
first field indentifies the host operating system. Typical values
are UNIX, WMCS, etc.. The second field lists the input format.
The final field shows the output format. The currently defined
output formats are LL and COFF.

The second line of the header contains the following information:

LISTING FILE

ASSEMBLY SCURCE STATEMENTS
O Wicat proprietary statement (if applicable) (See .LIST WICAT)
o Source file name.
The third line of the header contains a user-supplied message. If
no message has been supplied, this line is left blank. See the
.HEADER directive for more information.
The fourth line is blank.

The fifth line contains the source-line colunn headers.

4.1.2 Source Statements With Hexadecimal Code

This section is the main part of the 1listing; it oontains the
source lines and the binary code generated for each line.

The hexadecimal code is printed with the lowest address on the
left. The de listed for an instruction contains, fram left to

right:

o The opcode

o The first operand (if applicable)

o The second operand (if applicable)

o The third operand (if applicable)

The binary code for data storage is listed from left to right.

The number of data items that are listed on one line depends on
the size of the data type as shown in table 4-1.

4-3

LISTING FILE
ASSEMBLY SQURCE STATEMENTS

Table 4-1: Data Types per Line

Data Type | Number of Items per Line
Byte | 8
Word % 5
Long : 2
Characters lI 8
Quadword Il 1 (double precision real)

Continuation lines will be added as necessary.

If an expression oontains an externally-defined symbol, the
assembler evaluates the expression by assigning a value of zero to

that symbol.

Table 4-2 summaries the source line listing format.

Table 4-2: Source

Line Listing Format

Colunn | Header | Description
1-5 | Line | Source line number (decimal)
7-14 : Address lI Location counter (hexadecimal)
16-19 II Opcd % Opcode (hexadecimal)
21-39 : Operands I| Operands (hexadecimal)
41- : Source Statement |I Source line

4-4

LISTING FILE
ASSEMBLY SQURCE STATEMENTS

4.1.3 Error And Informational Messages
4.2 SYMBOL TABLE

The symbol table lists all symbols, except permanent symbols, that
are defined or referenced in the module. The symbols are listed
by order of appearance in a module. Each new level of nested
symbols is indented two spaces.

4.3 PROGRAM SECTION TABLES

The program section tables lists the program sections, their
names, their size, and their attributes. This information is
presented in two tables, the first table lists all named program
sections. This list is in the order in which they were defined.
This tables also includes any predefined section names. The
second table oonsists, all defined sections listed in numeric
order, followed by their size and attributes. See the .SECT
directive for a complete description of the attributes. All
section numbers and sizes are listed both in decimal and
hexadecimal radix. Decimal numbers always appear with a decimal
point (.) after the number.

4.4 CROSS-REFERENCE TABLE

[Not implemented in this version]

4.5 ASSEMBLY SUMMARY

[Not implemented in this version]

4.6 EXAMPLE LISTING

This section shows a complete listing file (figure 4-1) generated
by assembling the source program listed in figure 4-1.

4-5

CHAFTER 5

SCURCE STATEMENT FORMAT

An assembly source program oonsists of a sequence of source
statements, each of which occupies exactly one line. Multiple
statements on a single line are not allowed. Each line can be up
to 254 characters 1long (not including the line terminator).
However, no line should exceed 80 characters to ensure that the
source fits on ore line in the listing file.

A source line oonsist of four basic fields: label, opcode,
operand and comment. The general format of an assembler line is:

- label . opcode operand 3 comment
{ C 1

Spaces and tabs are allowed anywhere in the 1line, except inside
labels, opcodes, symbols and numbers. At least one space or tab
must appear between opcode and operand fields. Blank lines are
accepted, but have no significance or meaning. All characters
that have an ASCII value of space or less are treated as a space,
with the exception of line feed ("J) and form feed (°L).

5-1

SCURCE STATEMENT FORMAT
LABEL FIELD

5.1 LABEL FIELD

A label is a user-defined symbol that references a specific
location within a program. This symbol is assigned the value
equal to the current location counter. The value of symbol may be
absolute or relative depending on the type of section that it is
defined in.

A label is a symbol that can oontain uppercase letters (A-Z),
lowercase letters (a-z), digits (0-9), underline (_), dollar sign
($) and period (.) characters. A label cannot start with a number
or a dllar sign. A label must be terminated with a colon (:) and
conform to all the rules that govern user—defined symbols (see
section 6.2.2). This field is optional.

Once a label is defined within a module or a begin/end block, it
cannot be redefined in that module or block. If a label is
defined more that once, the assembler displays an error message
where the label was defined and again where it was redefined. All
labels are local to the module that they are defined in, unless
they are exported out of the module with the ,GLCBAL directive.

Only one label per source line is allowed. However, multiply
labels may have the same value. For example:

labell:
label2:
label3: nop

all have the same value (which is the address of the "nop"
instruction). :

All labels that apply to directives (see chapter 7), must be on
the same line as the directive. For example:

foo: .const 10
and

foo:
.const 10

are not equivalent. The second ".const" declaration will result
in an error (Label reguired).

SCURCE STATEMENT FORMAT
OPCOLE FIELD

5.2 OPQOLE FIELD

The opcode field specifies the action to be performed by the line.
This field may ocontain either an instruction mnemonic, an
assembler directive, or a macro call. Assemhler directives are
indicated by beginning with a period (.). This style enables the
user to quickly identify assembler directives from actual machine
instructions. See Appendix E for a complete list of instructions
mnemonics. Chapter 7 describes the assembler directives and macro
calls.

5.3 OPERAND FIELD

The operand field oontains operands for the instruction or
arquments for an assembler directive or macro call. The operand
field must be separated fram the opocode field by a least one
delimiter. A delimiter is typically a space or tab, however, any
character with an ASCII value of space (hexadecimal 40) or less
(except line feed (°J) and form feed ("L)) 1is considered a
delimiter. When two or more operand appear within a statement,
they must be separated by a comma (,).

5.4 QOMMENT FIELD

The comment field contains text that describes the function of the
line. This field must start with a semiocolon (;) and be
terminated by the end-of-line character. Coamments can start
anywhere on a line, including colunn 1. The comment field may
contain any printable ASCII character (see Appendix A). Comments
are included in the assembly listing but, otherwise, are ignored
by the assembler. ‘

5-3

CHAPTER 6
SCURCE STATEMENT (QOMFONENTS

This chapter describes the various oomponents of the assembler
source statement. These ocomponents oonsist of characters,
symbols, numbers, strings, and expressions.

6.1 CHARACTER SET

The characters that can be used in assembler source statements are
listed in Table 6-1. All control characters and DEL are treated
as delimiters (spaces), except line feed ("J) and form feed (°L).
The null character (“@) should be avoided, for it causes premature
intemination of listing source lines.

Table 6-1: Legal Assembler Characters

Character | Character Name | Function
~J | Line feed | Line terminator
“L : Form feed : Page advance
I Space : Opcode/Operand field delimiter
! } Exclamation point I Logical NOT operator
" } Double quote mark { String indicator and terminator
} Number sign |I Immediate data indicator
$ ll Dollar sign = Hexadecimal radix indicator
| | and character in symbol name
% II Percent sign I Remainder operator (modulus)

6-1

SQURCE STATEMENT COMFONENTS
CHARACTER SET

Table 6-1 (Cont.): Legal Assembler Characters

Character | Character Name | Function
& | Ampersand | Bitwise AND operator
[l
' | Single Quote Mark | Character literal indicator
: | and teminator
|
(| Left Parenthesis | Expression grouping delimiter
I | and register indirection indicator
| |
) | Right Parenthesis | Expression grouping delimiter
| | and register indirection indicator
| |
* | Asterisk | Arithmetic multiplication and
: | current location counter
|
+ | Plus | Autoincrement, unary plus,
| | and arithmetic addition
| |
' | Comma | Operand and parameter separator
I l
- | Minus | Autodecrement, unary minus,
| | arithmetic subtraction, and
| | register range (MOVEM instr)
I I
. | Period | Character in symbol name and
[| real number decimal point
| |
/ | Slash | Arithmetic division and
| | register separator (MOVEM instr)
| |
0..9 | Digits | Numbers and characters in symbol
| | names
| |
| Colon | Label terminator and expression
] | qualifier
| I
: | Semicolon | Comment field indicator
I I
< | Left-angle bracket | Less than operator
| I
= | Equal sign | Equals operator
| |
> | Right-angle bracket| Greater than operator
|
I

Question mark

Def ined operator

SCURCE STATEMENT (QOMFONENTS
CHARACTER SET

Table 6-1 (Cont.): Legal Assembler Characters

Character | Character Name | Function
@ | At sign | Reserved for future use
A..2 ; Uppercase letters ; Characters in symbol names
[lI Right-square ; Reserved for future use
| bracket ' |
\ i Backslash 1 Escape character indicator
] ; Left-square l Reserved for future use
| bracket |
° Il Circumflex : Bitwise XOR operator
- { Underline : Character in symbol name
’ : Reverse Apostrophe : Unary operator delimiter
Aee2 { Lowercase letters { Characters in symbol names
{ II Left brace } Reserved for future use
I } Vertical bar = Bitwise OR operator (exclusive)
} { Right brace Il Reserved for future use
- l’ 'i‘ilde i 1's complement operator
6.2 SYMBQLS

Two types of symbols can be used in assembly programs: permanent
symbols and user-defined symbols. Each is described below.

6.2.1 Pemanent Symbols

Permanent symbols oonsist of specific processor instruction
mnemonics (see Appendix E), assembler directives (see Chapter 7)
and register names (see Table 6-2). These symbols need not be
defined before being used. Instruction mnemonics and assembler
directives are reserved symbol names and cannot be redefined by
the user.

SCURCE STATEMENT COMFONENTS
SYMBQLS

All pemanent symbols are converted internally to uppercase. For
example:

move do,d1
MOVE DO,D1
Move do,D1

are all the same instruction and registers.
The registers of the 68000 microprocessor must be referenced as

described in Table 6-2. Lowercase register names are allowed, but
are mapped internally into uppercase register names.

Table 6-2: Assembler Register Names

Register Name | 68000 Register

DO-D7 | Data registers

A0-A7 lI Address registers

SpP l Stack Pointer registers (A7)

SSpP Il Supervisor Stack Pointer register (A7)
UsP Il User Stack Pointer register

PC ; Program Counter

CCR ll Condition Code Register

SR } Status Register

A complete description of these registers may be found in the
Motorola MC68000 16-Bit Microprocessor User's Manual.

6.2.2 User-Defined Symbols

A user-defined symbol is a string of alphanumeric characters. The
general format for a user—defined symbol is:

SQURCE STATEMENT QOMFONENTS
SYMBALS

letter [-
¢ <_> é) dd.iﬁi?“ letter

The following rules govern the creation of user-defined symbols:

1. User—defined symbols can be oomposed of uppercase letters
(A-Z), lowercase letters (a-z), digits (0-9), underlines (1),
dollars ($) and periods (.).

2. The first character of a symbol must begin with a letter
(A-Z,a~2), underline (), or a period (.). It cannot begin
with a number or a dllar sign.

3. No embedded spaces or other characters are allowed in a
symbol .

4. There is no limit to the length of a symbol, however, the
input source 1line is 1limited to 254 characters, thereby
indirectly limiting the length of a symbol to 254 characters.

User—defined symbols can be used as labels, variables, module
names, section names, and macro names. These user—defined symbols
can also be equated to a specific value by the .ABSADR, .ADDR or
.QONST directives (see Chapter 7) and used in any expressions (see
Section 6.6).

Symbols can have absolute (constant) or relative values.

6.2.3 Name Spaces

The assembler supports several different name spaces. Name
conflicts only occur in the same name space. This is to say,

.. identical symbol names can oexist in different name spaces

without conflict. The following name spaces are supported:

0 Data Structure Names

6-5

SCURCE STATEMENT COMFONENTS
SYMBALS

0 Module and Block Names
0 Section Names
o Label and Variable Names

0 Macro Names

6.2.4 Case Conversion

Case conversion of user-defined symbols is oontrolled by the
".ENABLE UPFER", ".ENABLE LOWER" and ".ENABLE MIXED" directives.
When the ",ENABLE UPPER" directive is encountered, all subsequent
user-defined symbols are oonverted to uppercase. The ".ENABLE
LOWER" directive cause all subsequent user—defined symbols to be
converted to lowercase. When the ".ENABLE MIXED" directive is
encounter, no case oomnversion is performed. The default is
".ENABLE MIXED". Table 6-3 summarizes the effect of the various
case conversion directives. .

Table 6-3: Case Conversion Directives

.ENABLE MIXED | No case conversion of subsequent user—defined

symbols is performed.

Directive | Description
.ENABLE LOWER | Conwvert all subsequent user—defined symbols to
| lowercase.
[
.DISABL LOWER | Return to MIXED mode.
|
.ENABLE UPPER | Convert all subsequent user—defined symbols to
| uppercase.
l
.DISABL UPPER | Return to MIXED mode.
|
l
I
I
|

.DISABL MIXED | Ignored.

Case conversion oply applies to user—defined symbols. Permanent
symbols are always mapped to uppercase. See chapter 7 for more
information on the ".ENABLE" directive.

6-6

SCURCE STATEMENT COMFONENTS
SYMBALS
6.2.5 Detemmining Symbol Values

The value of a symbol depends on how it was defined or used in the
assembly progranm.

6.3 NUMBERS
Number can be integers, character literals, or reals. Integers

and character literals are treated identically, and interpreted as
integer numbers. All three types of numbers are described below.

Numbers are always treated as absolute (constant) values.

6.3.1 Integers

The general format for integer numbers is:

| binary binery
(_- operators diaits
octal octal
opgrators diqits
decimal decimal
operators diaits
hex hex
operalors digits
int - real
| operators real

Integers must be in the range of -2,147,483,648 to +2,147,483,647
for signed numbers or in the range of 0 to +4,294,967,295 for
unsigned numbers.

The assembler translates all negative numbers into 2's ocomplement
form. Negative numbers must be preceded by a minus sign. For
positive numbers, the plus sign is optional.

The assembler interprets all integers in the source program as
decimal unless the number is preceded by a radix control operator.
See section 6.6.1.1 for a description of the radix operators.

Integers can be used in expressions or as a single values.

6-7

SCURCE STATEMENT COMFONENTS
NUMBERS

6.3.2 Character Literals

Character literals are a string of up to four characters (bytes)

that are enclosed by single quote marks ('). The general format
for character literals is:

() N\
N

/
chacacter
S
ols

number —®

Character literals of more than four characters are illegal and
are reported as errors. The high order bit of each character in
the literal is cleared (parity bit set to zero). This dne to
prevent sign extension of characters that are moved into
registers.

All character literals are oonsidered internally as integer
numbers.

Character literals can be used any where an integer number is
allowed.

Character literals are always considered as absolute (constant)
values.

SCURCE STATEMENT COMFONENTS
NUMBERS

6.3.3 Reals

The general format for a real number is:

LEE DTN

The decimal point can appear anywhere to the right of the first
digit. However, a real number cannot start with a decimal point.
A real number can be specified with or without an exponent.

Real numbers can be single-precision (32-bit) or double precision
(64-bit) . The precision of single precision numbers is 6-7 digits
and 15-16 digits for double precision.

The assembler converts all real numbers into standard IEEE format,
A complete description of the internal real format can be found in
Appendix D.

Real numbers can only be used in the .DC.F and .DC.D directives.
Real numbers cannot be used in expressions or with any unary or
binary operators, with the exception of unary minus, uwnary plus
and and the unary operators 'R, ‘T, 'F, ‘U and ‘L.

6.4 STRINGS

Character strings are a string of up to 254 characters (bytes)
that are enclosed by double quote marks ("). The general format
for character strings is:

SQURCE STATEMENT QOMEONENTS
STRINGS

- 10

{chacacte r)‘
number "®J

Any ASCII character except the line feed and double quote mark
characters can appear directly within the string. All characters
in the string are converted to their 8-bit ASCII value, and the
high order bit is always cleared (parity bit set to zero). It is -
not recommend that non-printable (control) character be typed
directly into the character string. Any character, including
null, line feed, double quote and oontrol characters, can be
included in a character string, by "escaping” the character. An
"escaped” character is introduced by the backslash character (\).
The character immediately following the backslash is included in
the string. Any of the radix control operators and floating point
operator that return an integer can follow the backslash
character. In this case, the character whose value is represented
by the number is inserted into the character string. All numbers
represented in this way are truncated to an 8-bit value. Finally,
if the character immediately following the backslash is the
circumflex character (°), then the next character is treated as a
control character. This is the recommend way of inserting control
or non-printing character into a character string.

The assembler performs no case oonversion on strings. The
assembler does not autamatically insert any character at the end
of the string.

A null string is represented by two consecutive double quote marks
("") and has a length of zero.

6.5 LOCATION (QOUNTER

The current location counter always has the value of the address
of the current byte. The assembler symbol for the location
counter is the asterisk (*). The assembler sets the current
location counter at the beginning of each new program section (see
.SECT - Chapter 7). The location counter may be set or changed by
use of the following directives:

6-10

SCURCE STATEMENT COMFONENTS
LOCATION (QOUNTER

1. .MODULE <name>

2. JSECT <section>

3. .SECT <section> ,ADDRESS = <expression>
4. .ALIGN <keyword [,<£ill>]

5. JALIGN <expression> [,FILL>]

6. .DS.x <expression> [,<£ill>]

When the current location counter is used in the operand field of
an instruction, the current location counter has the value of the
address of the beginning of the instruction — it des not have
the value of the address of the operand.

Asterisk has an absolute value if used in a absolute section,
otherwise it has a relative value.

6.6 GENERAL EXPRESSIONS

Expressions oonsist of oonstants, absolute symbols, relative
symbols, external symbols, functions, and operators. Constants
and absolute symbols can be used with any of the operators and
have no limitations on their usage in expressions. Relative and
external symbols can only be used with the addition and
subtraction operators in simple expression. Section 6.6.3
descibes where these symbols are legal The legal operators are
fully described in section 6.6.1.

The assembler evaluates expressions from left to right with the
operator precedence rules described in Table 6-11. However,
parentheses () can be used to change the order of evaluation. Any
portion of an expression that is enclosed in parentheses is first
evaluated to a single value, which is then used in evaluating the
complete expression.

All expressions are evaluated as signed 32-bit values. The result
of any expression with an error is zero.

6-11

SCURCE STATEMENT COMEONENTS
GENERAL EXPRESSIONS

6.6.1 Operators

Operators perform a specific function on an expression. All
operators accept only interger numbers or character literals as
operands, with the exceptions of the real number operators ('R,
‘t, ‘F, ‘U, and ‘L), which accept floating-point number as
operands. The result of all operators is a 32-bit signed integer
nunber.

The assembler operators are broken up into the following six
categories:

1. Radix Control Operators
2. Real Number Operators
3. Arithmetic Operators

4. Bitwise Operators

5. Logical Operators

6. Relational Operators

Each is described below.

6-12

SQURCE STATEMENT (OMFONENTS
GENERAL EXPRESSIONS

6.6.1.1 Radix Control Operators - The assembler accepts numbers
in four different radixes: binary, octal, decimal, and
hexadecimal. The default radix is decimal. The general format
for the radix control operators is:

| bi nary
diaits

@ | octal
diaits
/\-\ decimal
) diits [T

‘ | hex
diaits
| hex

For compatibility with previous assemblers, the dollar sign ($)
can be used to specified the hexadecimal radix. The legal
characters for each radix are listed below.

9

Table 6—4: Legal Radix Characters

Format | Radix | Legal Characters
‘B | Binary | 0 and 1 ‘
‘0 { Octal Il 0 throuch 7
'D II Decimal | 0 through 9
‘H l| Hexadecimal 'I 0 through 9, A through F, and a through £
$ { Hexadecimal I 0 through 9, A throuch F, and a throucgh £

Radix control operators can be included in the source program
anywhere a numeric value is legal. A radix control operator
affects only the number immediately following it.

The reverse apostrorhe (') cannot be separated fram the B, O, D,

and H character that follows it, but the radix operator can be
separated by spaces or tabs from the number that follows it.

Table 6-5 summarizes the radix control operators.

6~13

SCURCE STATEMENT (QOMFONENTS
GENERAL EXPRESSIONS

Table 6-5: Radix Control Operators

Operator | Operator Name | Operation

'B | Binary | Binary value

‘0 } Octal : Octal value

D } Decimal } Decimal value

'H } Hexadecimal : Hexadecimal value
$ Il Dollar sign I Hexadecimal value

- 6-14

SCURCE STATEMENT (QOMPONENTS
GENERAL EXPRESSIONS

6.6.1.2 Real Number Operators — Real number operators accept real
number arguments and return an integer number. The real number
operators are useful because it allows real numbers to be used in
expressions and instructions that accept only integers. See
section 6.3.3 for the format of real numbers.

Real number operators can be included in the source program
anywhere a numeric value is legal. A real number operator affects
only the number immediately following it.

The reverse apostrophe (') cannot be separated from the R, T, F,
U, and L character that follows it, but the real operator can be
separated by spaces or tabs fram the real number that follows it.

Table 6—6 summarizes the real number operators.

Table 6—6: Real Number Operators

Operator | Operator Name | Operation

32-bits of a double-precision
(64-bit) real number.

‘R | Round | Round real number to the nearest
| | integer.
l I
‘T | Truncate | Truncate real number to its integer
II : part.
F | Coerce | Change apparent type of a single-
| | precision (32-bit) real number to a
| | long integer (32-bit).
l |
'L | Double Lower | Extract as an integer the lower
| | 32-bits of a double-precision
l | (64~bit) real number.
I l
‘U | Double Upper | Extract as an integer the upper
I |
I |

6-15

SCURCE STATEMENT (OMFONENTS
GENERAL EXPRESSIONS

6.6.1.3 Arithmetic Operators - The arithmetic operators perform
the usual arithmetic conversion on their operands.
The assembler prints a warning message if division by zero occurs.

Table 6-7 summarizes the arithmetic operators.

Table 6-7: Arithmetic Operators

Operator | Operator Name | Operation

+ | Plus sign | Positive (unary)
- } Minus sign Il Negative (unary)
+ : Plus sign I| Addition

- : Minus sign : Subtraction

* : Asterisk : Multiplication
/ Il Slash ! Division

$ ll Per Cent II Remainder

6-16

SCURCE STATEMENT (OMFONENTS
GENERAL EXPRESSIONS

6.6.1.4 Bitwise Operators — The bitwise operators perform the
usual bitwise conversion on their operands.

The shift operators are used to perform left and right arithmetic
shifts., The first operand is shifted left or right by the number
of bit positions specified in the second operand. When the first
operand is shifted left, the low—order bits are set to zero. When
the right shift operator is used and the first operand is signed,
the high-order bits are set to the value of the orignal high-order
bit (sign bit) (arithmetic shift). When the right shift operator
is used and the first operand is unsigned the high—order bits are
set to zero (logical shift).

Table 6-8 summarizes the bitwise operators.

Table 6-8: Bitwise Operators

Operator | Operator Name | Operation

- | Tilde | 1's complement value
| |
& | Ampersand | Bitwise AND
| |
| | Exclamation | Bitwise OR (inclusive)
I I
° | Vertical bar | Bitwise OR (exclusive)
| |
>> | Right angle | Shift right
| brackets |
| |
<< | Left angle | shift left
| brackets |

6-17

SQURCE STATEMENT COMFONENTS
GENERAL EXPRESSICNS

6.6.1.5 Logical Operatbrs - Logical operators return a one (1) if
the the result of the operation is true, and zero (0) if the
result of the operation is false.

Table 6-9 summarizes the logical operators.

Table 6-9: Logical Operators

Operator | Operator Name | Operation

! Logical NOT operator

? Def ined operator

&&

I
I
|
|
| Logical AND operator
l

l

Logical OR operator

6-18

SCURCE STATEMENT (QOMFONENTS
GENERAL EXPRESSIONS

6.6.1.6 Relational Operators — Relational operators return a one
(1) if the the result of the operation is true, and zero (0) if
the result of the operation is false.

Table 6-10 summarizes the Relational operators.

Table 6-10: Relational Operators

Operator | Operator Name | Operation

Greater than | Greater than or egual
or egual |

= | Bqual | Bqual
<O Il Not equal i Not equal
I= ; Not equal : Not equal
< lI Less than : Less than
<= ll Less than : Less than or equal
| or egual I
> Il Greater than : Greater than
{ I
|

6-19

SQURCE STATEMENT COMFONENTS
GENERAL EXPRESSIONS

6.6.1.7 Operator Precedences And Associativity - Table 6-11
summarizes the operator precedences and associativity in the
assembler. These operators are listed in order of decreasing

precedence., Operators grouped together have the same precedence
and are associated from left to right.

Table 6-11: Operator Precedence

Operator | Function

’

Binary value operator Highest Precedence
Octal value operator
Decimal value operator
Hexadecimal value operator
Hexadecimal value operator
Round real operator
Truncate real operator
Coerce real operator
Upper real operator

Lower real operator

Id rd

rd

b 2)b 2
tcmdwm WUOUOWw

’

Unary plus operator
Unary minus operator
1's complement operator
Logical NOT operator
Symbol defined operator

W= 1| +

Multiplication operator
Division operator
Remainder operator
Bitwise AND operator
Logical AND operator
Shift left operator
Shift right operator

Addition operator
Subtraction operator

Bitwise exclusive OR operator
Bitwise inclusive OR operator
Logical OR operator

— >+

Less than operator

Less than or egqual operator
Greater than operator

Greater than or equal operator
Not equal operator

Not equal operator

Equal operator Lowest Precedence

v

— —— —— — — ——— S— — — — — — — —— — T o— — —— —— ——— —— ——— — — — — — — — o St
— — — — — — — — — — e Sy — — S S — — —— — — — — — — —— — —— — — —— — —

[} '—/\\"/V/\/\

6-20

SCQURCE STATEMENT COMFONENTS
GENERAL EXPRESSIONS

6.6.2 Expression

An expression consists either a simple expression or a simple
expression followed by any of the relational operators followed by
another simple expression. All relational operators have equal
precedences. Expressions can be grouped for evaluation by
enclosing them in parentheses. The enclosed expressions are
evaluated first, and all remaining operations are performed fram
left to right.

Relative and external values are not allowed as operands to
relational operators.

Figure 6-7 summaries the syntax of expressions.

| Simple

0009990

6.6.3 Simple Expressions

A simple expression consists either a temm or a sign followed by a
term or a simple expression followed by of the simple operator
followed by a temm. All simple operators have equal precedences.
Simple expressions can be grouped for evaluation by enclosing them
in parentheses. The enclosed simple expressions are evaluated
first, and all remaining operations are performed from left to
right.

6-21

SQURCE STATEMENT (OMFONENTS
GENERAL EXPRESSIONS

Relative and external values are not allowed as operands to simple
operators with the exception of binary plus and minus operators.
Table 6-12 summarizes the use of relative and external values in
these operators.

Table 6-12:
Operation | Result
Absolute + Absolute | Absolute
Absolute + Relative | Relative
Absolute + External | External - Relative
Relative + Absolute | Relative
Relative + Relative | ERROR
Relative + External | ERROR
External + Absolute | External - Relative
External + Relative | ERROR
External + External { ERRCR
Absolute - Absolute | Absolute
Absolute - Relative | ERROR
Absolute ~ External | ERROR
Relative - Absolute | Relative
Relative - Relative | Absolute *
Relative - External | ERROR
External - Absolute | External - Relative
External - Relative | ERROR
External - External | ERRCR

* If and only if both relative values are defined in the same
module and section, otherwise, the result is an ERROR.

Figure 6-8 summaries the syntax of simple expressions.

Selelole

6-22

teem

SCURCE STATEMENT CQOMEFONENTS
GENERAL EXPRESSIONS

6.6.4 Tems

A term consists either a factor or a term followed by a temm
operator followed by a factor. All term operators have equal
precedences. Temms can be grouped for evaluation by enclosing
them in parentheses. The enclosed term are evaluated first, and
all remaining operations are performed fram left to right.

Relative and external values are not allowed as operands to temm
operators.

Figure 6-9 sumaries the syntax of temm.

— 0090000

6.6.5 Factors

A factor cbnsists of any of the following:
1. Number

2. Symbol

3. Current location ocounter (*)

4., One's compliment operator (7)

5. Logical NOT operator (!)

6. Defined symbol operator (?)

7. An expression enclosed by parenthesis

Figure 6-10 sumaries the syntax of factors.

6~-23

SCORCE STATEMENT

COMFONENTS

GENERAL EXPRESSIONS

6-24

—T inteqer
—=t Symbel -
(D) facter —
“"@"‘&c‘tor —
{2 = sywabel —
<

CHAPTER 7

ASSEMBLER DIRECTIVES

The general assembler directives (pseudo—opcodes) provide
facilities for performing various assembler functions. Table 7-1
lists these functions and the directives in each category. The
remainder of this chapter describes the directives in detail,
showing their formats and giving examples of their use. For ease
of reference, the directives are presented in alphabetical order
in this chapter. In addition, Appendix C contains a sumary of
all assembler directives.

Assembler directives are written in the same way as instructions,
but (with the exception of the .DC.x and .DS.x directives) do not
cause any code to be generated. All assembler directives begin
with a period (.). This style of naming directives enables the
user to quickly identify assembler directives fram actual machine
instructions.

Table 7-1: Assembler Directive Summary

Category | Directives
Assembler Option | ~DISABL
Directives | ENABLE

|
Listing Control | .BEADER
Directives | JLIST

| NQLIST

| .PAGE

l
Message Display | .ERRCR
Directives | FATAL

| .PRINT

| WARN

ASSEMBLER DIRECTIVES
*kkk PRELIMINARY - For internal use only *kkk

Table 7-1 (Cont.): Assembler Directive Summary

Category | Directives
Module and Block | .BEGIN
Directives | END

= MODULE
Program Sectioning | .SECT
Directive |

|
Symbol Assigrment | .ABSAIR
Directives | ADDR

| +OONST

|
Symbol Attribute | EXTERN
Directives | GLOBAL

| LOCAL

| .NONUSR

| JUSER

| WEAK

I
Data Definition | .ENDS
Directives | .STRUCT

|
Data Storage [DC.x
Directives | JDS.x

| .COMMON

|
Location Control | ALIGN
Directive |

|
Conditional Assembly | .ELSE
Directives | JENDC

| JIF

|
Miscellaneous | .CONFIG
Directives | .BOF

| .FILE

| JINCLD

| LINE

| .LINKER

| .PROCSS

ASSEMBLER DIRECTIVES
fabadeled PRELIMINARY - For internal use only *kkk

Any directives may have a label, same require it. If a directive
requires a label, the label must appear on the same line as the
directive., For example:

foo: .const 10
and

foo:
.const 10

are not equivalent. The first case shows a valid label for the
.(ONST directive. In the seocond case, "foo" is not a label for
the .QONST directive and this case will cause in an assembler
error (Label required).

dekkk

+ABSAIR

NAME :

FORMAT':

PARAMETERS:

<address>

<damain>

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only ****

«ABSADR

.ABSALR — Absolute address definition directive.

<label> .ABSAIR <address> [,<domain>]

any legal expression. The expression can oontain
forward references but cannot contain any external,
relative, or unresolved symbols. The expression
must evaluate to an assemble-time constant.

any legal expression. The expression can oontain
forward references but cannot contain any external,
relative, or unresolved symbols. The expression
must evaluate to an assemble-time constant. The
domain must be in the range of 0 through 254. The
default domain value is zero. This parameter is
optional.

The .ABSAIR directive is used to assign an absolute
address to the user symbol in the label field. This
is particularly useful when writing software that
accesses absolute address in an address space. An
example of this is device drivers that must directly
cammunicate to device specific locations. These
locations can be in memory (memory mapped I/0), or
on an I/O bus, or in some other address space. The
<domain> parameter is used to specify a specific
address space. 'This form is used only on machines
that support multiple address spaces (e.g. I/O
buses). A domain of zero is considered the native
or host address space and is the default.

An absolute address is treated internally by the
assembler as a signed constant.

1. This directive must appear inside a module (see
.MODULE) .

ASSEMBLER DIRECTIVES
bkl PRELIMINARY - For internal use only ol

ABSAIR (Continued) ABSADR

2. A label is required by this directive. The <label>
cannot be defined anywhere else at this module
level.

3. This directive is not supported by all object file

formats. Refer to Appendix F for specific object
file limitations.

7-5

ASSEMBLER DIRECTIVES

*dkkk PRELIMINARY - For internal use only *kkk

+ADDR

NAME :

FORMAT:

PARAMETERS:

- <address> =

DESCRIPTION:

+ADIR — Address definition directive.

<label> .ADDR <address>

any legal expression. The expression can oontain
forward references and relative symbols but cannot
contain any external or unresclved symbols.

The .ADIR directive assigns the value of the address
expression to the user symbol in the label field.
The value of the expression is relative to the
beginning of the section in which the definition
appears. If the definition appears in an absolute
section, the symbol is assigned the value of an
absolute address (see .ABSADR), otherwise the symbol
value is assigned a relative value.

.ADDR performs the same function as a program label
definition, except .ADDR can appear anywhere within
the section. The .ADDR directive performs an out of
line address definition, a label definition is an in
line address definition. For example the following
code segments are eguivalent.

.sect 10 ‘ .sect 10

bra foo bra foo
foo: .addr * + 100

.ds.b 100 .ds.b 100

nop foo: nop

An address value is treated internally by the
assembler as a signed constant.

1. This directive must appear inside a section (see
.SECT) .

7-6

ki

2.

ASSEMBLER DIRECTIVES
PRELIMINARY - For internal use only *kkk

(Continued) .ADDR

A label is required by this directive. The <label>
cannot be defined anywhere else at this module
level.

7-7

Fedekk

ALIGN

FORMAT':

PARAMETERS:

<address>

<keyword>

<Eil11>

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only *kkk

<ALIGN

+ALIGN — Align location counter directive,

JALIGN <address> [,<£il1l1>]
JALIGN <keyword> [,<£ill>]

any legal expression. The expression cannot contain
any forward references, external symbols, relative
symbols, or unresolved symbols. The expression must
evaluate to an assemble-time constant in the first

pass.

any keyword listed in Table 7-2. Either the long
form or short form of the keyword may be used.

any legal expression. The expression can oontain
forward references, but cannot contain any external,
relative, or unresolved symbols. The expression
must evaluate to an assemble-time constant. The
fill value must be in the range of 0 through 255.
The default f£fill value is zero. This parameter is
optional.

The .ALIGN directive aligns the location counter to
the boundary specified by either the <address> or
the <keyword> parameter. If the <address> parameter
is used, the location counter is set to the value of
the <address> expression. If the <keyword
parameter is used, the location ocounter is aligned
to the address that is the next multiple of the
value listed in Table 7-2 under "Size in Bytes". If
the optional <fill> value is supplied, the bLytes
skipped by the location counter (if any) are filled
with the specified value, otherwise, the bytes are
zero filled. If the fill value is larger than 255,
the value is truncated and a warning message is
printed.

#%* DRELIMINARY - For internal use only

+ALIGN

ASSEMBLER DIRECTIVES

(Continued)

Table 7-2:

*lekk

+ALIGN

Long
Form

gzm
g

hort | Size in

Description

ODD

BYTE

2

o
o

w
=

—— — — ——— — — — —— — — — —— —— —— — — —— — — —— — — — A, — i Gt et S i

|

—

The EVEN keyword
ensures that the
current value of
the location
counter is even.
If the location
counter is odd,
EVEN will add one
to the its value.
If the location
counter is already
even, no action is
taken.

The ODD keyword
ensures that the
current value of
the location
counter is odd.
If the location
counter is even,
ODD will add one
to the its value.
If the location
counter is already
odd, no action is
taken.

Align the location
counter to a byte
boundary. This
keyword performs
no action.

7-9

*kkk

+ALIGN

ASSEMBLER DIRECTIVES
PRELIMINARY - For internal use only

(Continued)

Table 7-2:

Jededek

+ALIGN

Long
Form

| Short | Size in
| Form | Bytes

| Description

LONG

PAGE

WD 2

LG

4096

l
l
|
|
|
|
l
|
|
I
I
|
I
|
l
|
|
|
FG |
|
I
I
|
|

Align the location
counter to a word
boundary. If the
current is aligned
to a word no
action is taken.
This is equivalent
to the EVEN
keyword.

Align the location
counter to a long
word boundary. If
the current value
is aligned to a
long word, no
action is taken.

Align the location
to a page boundary.
If the current
value is aligned
to a page, no
action is taken.

1. This directive must appear inside a section (see

.SECT) .

2. If a label is specified,

value

of the location

aligning is performed.

7-10

it is assigned the
counter before any

kkkdk

FORMAT:

PARAMETERS:

<name>

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only *kkk

- BEGIN

.BEGIN — Begin block directive.

.BEGIN [<name>]

any legal user—defined symbol. The default name is
the null name (a null string). This parameter is
optiomal.

The .BEGIN directive is used to start a new symbol
scoping level. It does not change the value of the
location ocounter.

If the optional <name> is specified, it cannot be
defined anywhere else in the activating module. A
name should be specified in the .BHGIN directive and
in the oorresponding .END directive, so that the
assembler can detect any improperly nested scoping
blocks.

This directive is similar in function to an inner
block in the C language.

1. This directive must appear inside a module (see
.MODULE) .

2. If a label is specified, it is assigned the
current value of the location oounter.

7-11

*kkkk

«COMMON

NAME :

FORMAT:

PARAMETERS:
<name>

<size>

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only *kkk

- COMMON

.QOMMON — Common region definition directive.

.COMMON <name> [,<size>]

any legal user-—defined symbol.

any legal expression. The expression can oontain
forward references but cannot contain any external,
relative, or unresolved symbols. The expression
must evaluate to an assemble-time constant. The
size must be a positive value. The default size
value is zero. This parameter is optional.

The .COMMON directive defines <name> as a common
region with 1length of <size> bytes. For commons
with the same name and different sizes, the largest
size is used. No storage is allocated for common
regions by the assembler, this is done by the
linker. The space reserved by the .COMMON directive
is oonsidered "out-of-line" storage allocation, the
user has no oontrol over the placement of this

space.

1. This directive must appear inside a section (see
.SECT) .

2. The space allocated by the common directive is
not necessarily allocated in the currently
defined section. Appendix F describes where
common regions are placed by the various
linkers.

7-12

*kkk

.QONFIG

NAME ;

FORMAT:

PARAMETERS:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only *kkk

. ONFIG

.QONFIG = Configuration directive.

.QONFIG "<configuration_string>"

<configuration_string> = any legal character string. Null strings

DESCRIPTION:

are not allowed.

The .QONFIG directive places the specified
configuration string (without the double quotes ("))
into the object file. This information can be used
by the various linkers and loaders. The assembler
does not enforce any format or structure on this
string. The fomat and structure of the
oconfiguration string are specified by the linkers
and loaders. Refer to Appendix F for the effects of
this directive on specific object files.

1. The double quwtes (") are not part of the
configuration string.

2. This directive is not supported by all object

file formats. Refer to Appendix F for specific
object file limitations.

7-13

ASSEMBLER DIRECTIVES

*kkek PRELIMINARY - For internal use only faladadl

+QONST

PARAMETERS:

{constant> =

DESCRIPTION:

« CONST

.QONST —— Constant symbol definition directive.

<label> .(ONST <constant>

any legal expression. The expression can oontain
forward references but cannot contain any external,
relative, or unresolved symbols. The expression
must evaluate to an assemble-time constant.

The .QONST directive assigns the value of the
oconstant expression to the symbol in the label
field. .QONST can appear outside module
definitions. This directive is useful for assigning
values to conditional assembly symbols.

1. A label is required by this directive. The
<label> cannot be defined anywhere else at this
module level.

2. A .QONST directive can appear any where in the
user's program.

7-14

ASSEMBLER DIRECTIVES

*kde PRELIMINARY - For internal use only fakadaded

.DC.X

PARAMETERS:

{constant> =

<fp_constant>

DESCRIPTION:

DC.X

.DC.x — Data storage directive.

.DC.B <constant> {,<constant>}
.DC.W <constant> {,<constant>}
DC.L <constant> {,<constant>}
.DC.F <fp_constant> {,<fp constant>}
.DC.D <fp_constant> {,<fp_constant>}

any legal expression or character string. The
expression can ocontain forward references, external
symbols, and relative symbols but cannot contain any
unresolved symbols. Null character strings are
allowed, but allocate no space. External and
relative symbols are resolved at link-time.

= any legal real number. Expressions are not
allowed.

The .DC directive stores a bLyte, word or long

"integer, or a float or double real number. If the

<constant> is an expression, the expression is
evaluated as a 32-bit value. If this value is
larger than the allocated space, the oonstant is
truncated and a warning message is printed. If
multiple oonstants are specified, they must be
separated by commas.

The space reserved by the .DC directive is
oonsidered "in-line" storage allocation.

7-15

ASSEMBLER DIRECTIVES
*xkk PRELIMINARY - For internal use only *kkk

DCex (Continued) DC.x

Table 7-3:

Directive | Name | Range of Values Allowed

.DC.B | Byte | -128 to +255

.DC.W Il word : -32768 to +65535

.DC.L ll Long I| -2147483648 to +4294967295
.DC.F Il Float I| 8.43E-37 to 3.37E+38
.DC.D Il Double I| 4.198-307 to 1.67E+308

*%*x% WARNING ****

At link-time, a relocatable value or
expression can result in value that exceeds
the specified size. Not all 1linkers will
issve a truncation warning message.

1. This directive must appear inside a section (see
.SECT) .

7-16

ASSEMBLER DIRECTIVES
*dkkk PRELIMINARY - For internal use only fabadall

.DISABL +DISABL
NAME : .DISABL — Function ocontrol directive.
FORMAT': .DISABL <keyword> {,<keyword>}
PARAMETERS:

<keyword> = any keyword listed in Table 7-4. Either the long
form or short form of the keyword can be used.

DESCRIPTICN: The .DISABL directive disables, or inhibits, the
specified assembler function. .DISABL is the
negative form of .ENABLE. Refer to Table 7-4 for
specific functions.

If multiple keywords are used, they must be
separated by commas.

Table 7-4:

Long | Short | Default |

Form | Form | Condition | Description

EXTERNAL EX Disabled When EXTERNAL is
disabled, any
undef ined symbol
that is not listed
in a .EXTERN
directive causes
an error.

USER Us

disabled, any
symbol that is not
listed in a .USER
directive is
considered a
NONUSER symbol

I
I
I
I
I
I
I
I
|
I
I
I
I
|
| (see .NONUSER)

|
l
|
|
I
I
||
Enabled { When USER is
I
I
I
l
I
I

7-17

ASSEMBLER DIRECTIVES

kkkk

.DISABL

(Continued)

Table 7-4:

PRELIMINARY - For internal use only

dedekdk

.DISABL

Long
Form

| Short | Default
| Condition | Description

| Form

UPPER

LOWER

MIXED

LOCAL

I
|
I
|
I
I
I
I
I
I
I
I
l
I
I
I
|
|
|
I
|
|
I
I
I
I
I
I
|
|
I
I
|
I
|
I

UuC

LC

MC

LS

Disabled

Disabled

Enabled

Disabled

|
I
I
I
I
|
I
I
I
I
|
I
I
I
I
I
|
I
I
|
I
I
I
|
I
|
|
I
|
I
I
I
I
|
I
|

When UPFER is
disabled, mapping
of user—defined
symbols to upper-
case is terminated
and no case mapping
is performed on
subsequent
user—def ined
symbols (return
to MIXED mode).

When LOWER is
disabled, mapping
of user—defined
symbols to lower-
case is terminated
and no case mapping
is performed on
subsequent
user—def ined
symbols (return
to MIXED mode).

This keyword is
ignored in the
.DISABL directive.

When LOCAL is
disabled, all
subsequently

def ined local
symbols are
removed from the
object file symbol
table.

7-18

ASSEMBLER LCIRECTIVES

*kkk PRELIMINARY - For internal use only

*kkk

.DISABL (Continued) .DISABL
Table 7-4:
Long | Short | Default |
Form | Form | Condition | Description
NONUSR | NS | Disabled | When NONUSR is
| | | disabled, all
| | | subsequently
| I | defined local
I I | symbols are
| I | removed from the
| | | object file symbol
: II } table.
CROSS | CR | Enabled | Not implemented.
NOTES:
1.

7-19

kkkk

JS.X

FORMAT:

PARAMETERS::

<size>

<£ill>

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only *xkk

.m.x

.DS.x — Storage allocation directive.

.DS.B <size> [,<£ill>]
JS.W <size> [,<£ill>]
DS.L <size> [,<£ill>]
DS.8 <size> [,<£ill>]

any legal expression. The expression cannot contain
any forward references, external symbols, relative
symbols, or unresolved symbols. The expression must
evaluate to an assemble-time constant in the first

pass.

any legal expression. The expression can oontain
forward references but cannot ocontain any external,
relative, or unresolved symbols. The expression
must evaluate to an assemble-time constant. The
fill value must be in the range of 0 through 255.
The default £ill value is zero. This parameter is
optional.

Each .DS directive allocates storage for the
different data types. The value of <size>
determines the number of data items for which the
assembler reserves storage. The total number of
bytes reserved is equal to the length of the data
type (see Table 7-5) multiplied by the value of
<size>. If the optional fill value is specified,
then each data location is initialized to that
value. Otherwise, the data locations are
initjalized to zero.

The space reserved by the .DS directive is
considered "in-line" storage allocation.

7-20

ASSEMBLER DIRECTIVES
*kkk PRELIMINARY - For internal use only *kkk

DS.x (Continued) DS.x

Table 7-5:

Directive | Name | Number of Bytes Allocated

.DS.B | Byte | 1 * value of <size> |
DS.W Il Word ll 2 * value of <size>
.DS.L |I Long Il 4 * value of <size>
.DS.S } Struct = 1 * size of structure

1. This directive must appear inside a section (see
.SECT) .

7-21

ASSEMBLER DIRECTIVES
fakadaled PRELIMINARY - For internal use only Tk

+ELSE .ELSE

NAME : .ELSE — Conditional assembly else directive.
FORMAT': .ELSE
PARAMETERS: None.

DESCRIPTICN: The .ELSE directive begins the optional ELSE block
of the .IF directive. If the expression in the
corresponding .IF directive evaluates to zero, the
statements between the .ELSE and the corresponding
.INDC are assembled. Otherwise the statements are
skipped.

7-22

ASSEMBLER DIRECTIVES
*hkk PRELIMINARY - For internal use only *kkk

.ENABLE «ENABLE
NAME : .ENABLE — Function ocontrol directive.
FORMAT': .ENABLE <keyword> {,<keyword>}
PARAMETERS ¢

<keyword> = any keyword listed in Table 7-6. Either the 1long
form or short form of the keyword can be used.

DESCRIPTION: The .ENABLE directive enables the specified
assembler functions. .ENABLE and its negative form,
.DISABL, control the functions listed in Table 7-6
assembly functions. Refer to Table 7-6 for specific
functions.

If multiple keywords are used, they must be
separated by commas.,

symbol that is not
listed in a
.NONUSR directive
is oconsidered a
USER symbol (see
.USER) .

Table 7-6:
Long | Short | Default |
Form | Porm | Condition | Description
EXTERNAL | EX | Disabled | When EXTERNAL is
I | | enabled, all
| | | undefined symbols
| I | are considered
l l | EXTERNAL symbols
| | I (see .EXTERN) .
| I
USER | Us | Enabled | When USER is
} : } enabled, any
| I I
| I I
| | I
| I |
| | I

kekkk

.ENABLE

ASSEMBLER DIRECTIVES
PRELIMINARY - For internal use only fadadaled

(Continued) .ENABLE

Table 7-6:

Long
Form

| Short | Default |
| Form | Condition | Description

MIXED

LOCAL

Disabled | When UPEER is

| enabled, all

| subsequent user-
| defined symbols
| are mapped to

: uppercase.
Disabled | When LOWER is

| enabled, all

| subsequent user-—
| defined symbols
| are mapped to

| lowercase.

I
Enabled | When MIXED is

| enabled, any

| case-conversion
| options (UPPER,
| LOWER) is

| terminated and
| all subsequent
| user—defined

: symbols are

|
|
|
I
I
|
I
I
|
I
I
I
I
I

not converted.
Disabled When LOCAL is
enabled, all
subsequent
user—def ined
LOCAL symbols
(see .LOCAL)
are included
in the object
file symbol
table. This
function is
useful when

I
[
I
|
|
|
|
|
|
|
|
I
I
I
I
I
I
I
I
|
|
|
|
|
I
I
I
|
|
|
I
I
|
I
|
{
| debugging.

7-24

kkk

.ENABLE

ASSEMBLER DIRECTIVES
PRELIMINARY - For internal use only *kkk

(Continued) .ENABLE

Table 7-6:

Long
Form

| Short | Default |
| Form | Condition | Description

NCNUSR

CROSS

NS Disabled | When NONUSR is
| enabled, all
| subsequent

| user—defined
| NONUSR symbols
| (see .NONUSR)
| are included
| in the object
| file symbol

| table. This
| function is

I useful when

I

I

debugging.

Enabled Not implemented.

1.

7-25

ASSEMBLER DIRECTIVES
*kkk PRELIMINARY - For internal use only *kkk

.ENDC «ENDC
NAME : .ENDC — Conditional assembly end directive.
FORMAT': «ENDC

PARAMETERS: None.

DESCRIPTION: The .ENDC directive teminates the conditional
assembly block started by the .IF directive. See
the description of .IF for more information.

7-27

kkkk

FORMAT':

PARAMETERS:

<name>

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only *kkk

.END — Module and block end directive.

«END [<name>]

any legal user—defined symbol. This parameter is
optional.

.END teminates a .MODULE or .BHGIN definition. If
.IND is encountered without a corresponding .MODULE
or .BEGIN directive, the assembler displays an error
message. If the optional name is specified, it must
match the name defined in the corresponding .MODULE
or .BEGIN directive. The use of the name is
strongly recommended so that the assembler can
detect any improperly nested modules or begin
blocks.

7-26

ASSEMBLER DIRECTIVES

*kkk PRELIMINARY - For internal use only el

FORMAT':

PARAMETERS:

<name> =

DESCRIPTION:

.ENDS — Structure definition end directive.

.ENDS [<name>]

any legal user-defined symbol. This parameter is
optional.

The JENDS directive teminates a structure
definition started by the .STRUCT directive. See
the description of .STRUCT for more information. If
the optional name is specified, it must match the
name defined in the corresponding .STRUCT directive.
The name should be specified so that the assembler
can detect any improperly nested structures.

7-28

dedededk

FORMAT:

PARAMETERS:

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only *kkk

.EOF — Assembly temination directive.

- EOF

None.

The .EOF directive terminates the source program.
Subsequent source lines are ignored and not included
in the listing file or the object file.

The .BOF directive is not required to temminate a
source file., When the assembler encounters a
physical end of file, it is interrupted as a .EOF
directive. 2An exception occurs if the assembler
encounters a physical end of file inside an include
file, then the next ‘'outer nested' file is read
fran. However, if the assembler encounters a .EOF
inside an include file, all source line processing
is teminated at that point.

7-29

ASSEMBLFER DIRECTIVES
*kkk PRELIMINARY - For internal use only *dkkk

«ERROR «ERROR
NAME : .ERROR — Error message print directive.
FORMAT: .ERROR "dmessage>"
PARAMETERS::

<message> = any legal character string. Null strings are

allowed.

DESCRIFTION: .ERRCR causes the assembler to display an error
message on standard error and in the listing file
(if applicable). .ERRCR can be used to display an
error message when a macro call or conditional
assembly contains an undesirable set of conditions.

User—generated error messages have the form:

** <name>-Error <file_name> [User—generated]: <message>

Where:
<name> = to the assembler name.
<file_name> = to the source file that
‘generated the error message.
<message> = to message string to be printed

The '[User—generated]' distinguishes it fram error
messages generated by the assembler. The double
quotes (") do not appear as part of the printed
message.

When the assembly is finished, the assembler
displays the total number of errors encountered,
this includes both assembler and user-generated
errors.

1. The line ocontaining the .ERROR directive is not
included in the listing file.

7-30

kkkk

ASSEMBLER DIRECTIVES
PRELIMINARY - For internal use only

(Continued)

7-31

kdkkk

ASSEMBLER DIRECTIVES

*kkk PRELIMINARY - For internal use only kkkk

FORMAT:

PARAMETERS:
<symbol> =

DESCRIPTION:

+EXTERN — External symbol definition directive.

EXTERN <symbol> {,<symbol>}

any legal user—defined symbol.

The .EXTERN directive indicated that the specified
symbols are external to this module.

If the EXTERNAL keyword is enabled (see the
description of .ENABLE), all unresolved symbols are
declared external. Thus, if EXTERNAL is enabled,
the programmer need not specify symbols as external
using the .EXTERN directive. However, if EXTERNAL
is disabled, the programmer must explicitly use
.EXTERN to declare any symbols that are defined
externally but referred to in the current module.
If EXTERNAL is disabled and the assembler £finds
symbols that are not defined in the current module
and are not listed in a .EXTERN directive, an error
message is printed.

If a symbol is declared as external, and then

defined in the current module, an error message is
printed.

If multiple symbols are specified, they must be
separated by commas.

1. This directive must appear inside a module (see
.MODULE) .

7-32

ASSEMBLER DIRECTIVES
*kkk PRELIMINARY - For internal use only kel

-FATAL «FATAL
NAME ; .FATAL — Fatal message print directive.
FORMAT: .FATAL "<message>"
PARAMETERS:

<message> = any legal character string. Null strings are
allowed.

DESCRIPTION: .FATAL causes the assembler to display a fatal
message on standard error and in the listing file
(if applicable). .FATAL can be used to display an
error message when a macro call or conditional
assembly contains a disastrous set of conditions.

User—generated fatal messages have the form:

** <(name>-Fatal <file_name> [User—generated]: <message>

Where:
<name> = to the assembler name.
<file_name> = to the source file that
generated the fatal message.
<message> = to message string to be printed

The '[User—generated]' distinguishes it from fatal
messages generated by the assembler. The double
quotes (") do not appear as part of the printed
message.

The .FATAL directive causes the assembler to
immediately abort in pass one and no pass two
processing will occur. All source line processing
teminates at that point.

1. The line containing the .FATAL directive is not
included in the listing file.

7-33

ASSEMBLER DIRECTIVES
ol PRELIMINARY - For internal use only Fkkk

FATAL (Continued) .FATAL

2. The assembler exit value will be set an error value.
This value is operating system dependent.

7-34

ASSEMBLER DIRECTIVES

*dk PRELIMINARY - For internal use only *kdk

.FILE

FORMAT:

PARAMETERS :

<number> =

<name> =

<modify_time>

DESCRIPTION:

.FILE

.FILE — Source file definition directive.

LFILE <number> [,"<name>" [,<modify_time>]]

any legal integer number. The file number is
represented as a unsigned integer and has the range
of 0 through +4294967295. Negative numbers and
expressions are not allowed. :

any legal character string. Null strings are not
allowed. This parameter is optional.

= any legal integer number. The modify time is
represented as a signed integer and has the range of
-2147483648 through +2147483647. The default modify
time is zero. This parameter is optional.
Expressions are not allowed.

The .FILE directive is used to oontrol the source
file name that is displayed whenever an error
message is issued by the 1linker or the runtime
loader. This information is also used by the
debuggers.

The optional <name> and <modify_time> are only
necessary when the first reference to the file is

made. If the first reference des not include a

file name, an assembler error will result.
Subsequent references only need to specify the
<number>.

1. The assembler does not enforce any path or file
naming oonvention. This is specified by the
host operating system.

2. The double quotes (") are not passed as part of
the file name.

7-35

*kkk

FILE

3.

ASSEMBLER DIRECTIVES
PRELIMINARY - For internal use only dekkk

(Continued) .FILE

File numbers can be redefined by specifying a new
file name to the number.

4

7-36

ASSEMBLER DIRECTIVES
kdekk PRELIMINARY - For internal use only *dkk

.GLCBAL -GLCBAL
NAME : .GLCBAL — Global symbol declaration directive.
FORMAT: .GLCBAL <symbol> {,<symbol>}

PARAMETERS:

<symbol> = any legal user—defined symbol.

DESCRIPTION: The .GLOBAL directive indicates that the specified
symbols are declared as global symbols and are
exported one level out (made visible outside the
current module).

If multiple symbols are specified, they must be
separated by commas.

1. This directive must_appear inside a module (see
.MODULE) . i

2. If a symbol is declared global, but not defined
in the current module, an error is printed.

7-37

ASSEMBLER DIRECTIVES
**%* PRELIMINARY - For internal use only *kkk

-HEADER .HEADER
NAME : .HEADER — Listing header directive.
FORMAT: .HEADER "<string>"
PARAMETERS :

<string> = any legal character string. Null strings are

allowed.

DESCRIPTION: The .HEADER directive causes the assembler to print
the <sting> on the third line of each page of the
listing file. A null <string> will clear or blank
the ©previous header sting. This directive is
ignored if no listing file was specified.

1. The .HEADER directive takes affect on the next
listing page generated, unless it is the first
opcode on the page.”

2. The header string can be up to 254 characters
long, however, it is recommended that it is
limited to the width of the listing page.

3. The .HEADER string is initially set to the null
string (blank).

7-38

dekkk

JIF

NAME :

FORMAT:

PARAMETERS:

<expression>

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only ddkekk

.IF

.IF — Conditional assembly if directive.

.IF <expression>

= any legal expression. The expression cannot

ocontain any forward references, external symbols,
relative symbols, or unresolved symbols. The
expression must evaluate to an assemble-time
constant in the first pass.

A conditional assembly block is a series of source
statements that is assembled only if a certain
condition is met at assembly-time. .IF starts the
conditional block and .ENDC ends the conditional
block. An optional .ELSE can appear between .IF and
.ENDC. Each .IF must have an corresponding .ENDC.
The .IF directive contains an express:.on which is
evaluated (as 32-bits). If the result is non—zero,
all the source lines up until the ,ELSE or .ENDC
directives are assembled. If the expression
evaluates to zero, all source 1lines up until the
.ELSE or .ENDC directives are skipped. If a .ELSE
directive is encountered, then the lines between the
.ELSE and .ENDC are assembled.

Conditional bhlocks can be nested, that is a
conditional bhlock can be inside of another
oconditional block. In this case the statements in
the inner oonditional block are assembled only if
the condition is met for both the outer and inner
block. .IF directives can be nested 16 levels deep.
If a statement attempts to exceed this nesting level
depth, the assembler displays an error message.

7-39

*kkk

JIF

ASSEMBLER DIRECTIVES
PRELIMINARY - For internal use only

(Continued)

7-40

% dekk

JIF

ASSEMBLER DIRECTIVES
*kkk PRELIMINARY - For internal use only falabdd

+INCLD «INCLD
NAME : +INCLD — Include file directive.
FORMAT: .INCGLD "<file_name)>"
PARAMETERS:

<file_name> = any legal character string. Null strings are not-
allowed.

DESCRIPTION: The .INCLD directive includes the <file_name> in the
source stream. Include files may be nested. If a
.EOF directive is encountered in an include file,
all subsequent source lines are ignored. Nested
.INCLD are allowed to 16 levels.

7-41

*kkk

FORMAT:

PARAMETERS:

<number>

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only dadedd

«LINE

.LINE — Source line number definition directive.

.LINE [+]=] [<number>]

any legal integer number. The 1line number is
represented as a unsigned integer and has the range
of 0 through +4294967295. This parameter |is
optional. Negative numbers and expressions are not
allowed.

The .LINE directive is used to oontrol the line
nunber that is displayed whenever an error message
is issued by the linker or the runtime loader. This
information is also used by the debuggers.

The various functions of the .LINE directive are
sumarized in Tabhle 7-7.

Table 7-7:
Directive | Description
.LINE Increment the current source line
nunber by one.
.LINE - Decrement the current source line
nunber by one. '
LINE + Increment the current source line

nunber by one.

Set the source line number to
<number>.

LINE <number>

Set the source line number to the
current source line number minus
<number>.

LINE -<number>

7-42

ASSEMBLER DIRECTIVES
kedkk PRELIMINARY - For internal use only faladadl

.LINE (Continued) .LINE'

" Table 7-7:

Directive | Description

.LINE +<number> | Set the source line number to the

| current source line number plus
| <number>.

7-43

ASSEMBLER DIRECTIVES

Fdkk PRELIMINARY - For internal use only bodalaled

«LINKER

FORMAT:

PARAMETERS:

<value> =

DESCRIPTION:

«LINKER

.LINKER — Linker directive.

.LINKER <value> {,<value>}

any legal expression. The expression can oontain
forward references, but cannot contain any external,
relative or unresolved symbols. The expression must
evaluate to an assemble-time constant.

The .LINKER directive is used to pass information
directly to the linker. Detailed knowledge of the
object format is needed to used this directive.
Extreme caution should be taken in using this
directive. Refer to Appendix F for the effects of
this directive on specific object files.

7-44

ASSEMBLER DIRECTIVES
*kkk PRELIMINARY - For internal use only Fkkx

<LIST +LIST

NAME : .LIST —— Listing control directive.
FORMAT: LLIST <keyword> {,<keyword>}
PARAMETERS:

<keyword> = any keyword listed in Table 7-8. Either the 1long
form or short form of the keyword can be used.

DESCRIFTION: LLIST and its negative form, .NCLIST, specify
listing ocontrol options in the source text of a
program. .LIST causes certain types of lines to be
included in the listing file.

Each keyword can be used alone or in oombination
with other keywords. If multiple keyword are
specified, they must be separated by commas.

Table 7-8:

Long | short | Default |

Form | Foorm | Condition | Description

PAGE | PG | List | Enable the use
| | | of the .PAGE
| l | directive.
| I |

CONDITIONS | cA | List | Not implemented.
| | |

DEFINITION | MD | List | Not implemented.
| I I

CALLS | MC | List | Not implemented.
| | I

EXPANSIONS | ME | List | Not implemented.
| | I

SCURCE | SL | List | List source lines.
| I |

TSTATES | TS | List | Not implemented.

7-45

ASSEMBLER DIRECTIVES

*kkk

(Continued)

Table 7-8:

PRELIMINARY - For internal use only

Jedekek

.LIST

Long
Form

| Short | Default
| Form | Condition

Description

WICAT

No List

I I
I |
I |
I |
I I
| I
I |
| I
I I
I I
I I
l I

Print the WICAT
proprietary
statement on the
second line of
each listing page.
This statement
will be printed
on every listing
page, regardless
of where the .LIST
directive is
encountered.

7-46

ASSEMBLER DIRECTIVES

ool PRELIMINARY - For internal use only babadabd

NAME :

FORMAT:

PARAMETERS:

<symbol> =

DESCRIPTION:

.LOCAL — Local symbol declaration directive.

.LOCAL <symbol> {,<symbol>}

any legal user—defined symbol.

The .LOCAL directive indicates that specified
symbols are declared as local symbols. If a symbol
is not declared as a .GLCBAL or .EXTERN, then it is
assumed to be local. If a symbol is declared, but
never defined (e.g. as a label), an error is
printed. .

.LOCAL is the default for all symbols.

1. This directive must appear inside a module (see
.MODULE) .

7-47

kkkdk

-MODULE

PARAMETERS :

<name>

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only Fkkk

MODULE

«MODULE — Module definition directive.

JMODULE [<name>]

any legal user—defined symbol. The default name is
the null name (null string). This parameter is
optional.

The .MODULE directives is used to begin a new
procedure or subroutine. Each module defines a new
scoping symbol envirament. Any previous dJdefined
section (see. SECT) is pushed onto the section
stack. Modules may be nested.

7-48

ASSEMBLER DIRECTIVES
***%* PRELIMINARY - For internal use only *kk

«NCLIST .NCLIST
NAME : NCLIST — Listing control directive.
FORMAT: NOLIST <keyword> {,<keyword>}
PARAMETERS:

<keyword> = any keyword listed in Table 7-9. Either the long
form or short form of the keyword can be used.

DESCRIPTION: .NQLIST specify listing oontrol options in the
source text of a program. .NCGLIST causes certain
types of lines to be excluded in the listing file.

Each keyword can be used alone or in combination
with other keywords. If multiple keyword are
specified, they must be separated by commas.

Table 7-9:
Long | Short | Default |
Form | Form | Condition | Description
PAGE | PG | List | Disable the use of
I I | .PAGE.
| I |
CONDITIONS | cA | List | Not implemented.
I | I
DEFINITION | MD | List | Not implemented.
I I I
CALLS | MC | List | Not implemented.
I | |
EXPANSIONS | ME | List | Not implemented.
| I |
SCURCE | SL | List | Do not list source
| | | lines. :
| | |
TSTATES | TS | List | Not implemented.

7-49

ASSEMBLER DIRECTIVES
*kkk PRELIMINARY - For internal use only *kdk

.NOLIST (Continued) .NCLIST
Table 7-9:

Long | Short | Default |

Form | Form | Condition | Description

WICAT | WS | No List | Do not list the
I l | WICAT proprietary
| I | statement.

NOTES :
1.

7-50

ASSEMBLER DIRECTIVES

*hkk PRELIMINARY - For internal use only *kkk

«NCNUSR

FORMAT':

PARAMETERS:
<symbol> =

DESCRIPTION:

«NCNUSR

-NQNUSR —— Nom-user symbol declaration directive.

.NONUSR <symbol> {,<symbol>}

any legal user—defined symbol.

The .NONUSR directive indicates that specified
symbols are declared as non-user defined symbols.
This directive is wuseful for distinguishing user
defined symbols form non-user defined symbols (e.g.
compile symbols). By default, nom-user symbols not
included in object files.

If the USER keyword is disabled (see the description
of .DISABL), all undeclared symbols will be assumed
to be declared as non—-user symbols (see .NQNUSR).
Thus, if the USER keyword is disnabled, the
programmer need not specify symbols as nomuser
using the .NONUSR directive. However, if USER is
enabled (the default), the programer must
explicitly use .NONUSR to declare any symbols that
are not defined by the user symbols in the current
module.

If a symbol is declared as non-user, but never
defined (e.g. as a label), an error will be
reported.

If miltiple symbols are specified, they must be
separated by commas.

1. This directive must appear inside a module (see
omeE) .

7-51

*kkk

+PAGE

ASSEMBLER DIRECTIVES
PRELIMINARY - For internal use only bobdaded

«PAGE

.PAGE — Page advance directive.

. PAGE

None.

The .PAGE directive advances the listing file to the
top of the next page. This is accomplished by
writing a Form Feed (L) character into the listing
file. If the listing file is printed on a device
that does not support the Form Feed character, the
use of the .PAGE directive is ineffective.

7-52

ASSEMBLER DIRECTIVES
*hkx PRELIMINARY - For internal use only ol

«PRINT «PRINT
NAME : +PRINT -- Print message directive.
FORMAT: .PRINT "<message>"
PARAMETERS:

<message> = any legal character string. Null strings are
allowed.

DESCRIPTION: .PRINT causes the assembler to display an
informational message on standard error and in the
listing file (if applicable). .PRINT can be used to
display an informational message. The message
produced by .PRINT is not oonsidered an error or
warning message.

User—generated messages have the form:

** <name>-Print <file name> [User—generated]: <message>

Where:
<name> = to the assembler name.
<file_name> = to the source file that
generated the message.
<message> = to message string to be printed

The '[User—generated]' distinguishes it fram
messages generated by the assembler. The double
quotes (") do not appear as part of the printed
message.

1. The line containing the .PRINT directive is not
included in the listing file.

7-53

ASSEMBLER DIRECTIVES
bbbl d PRELIMINARY - For internal use only badadoded

+«PROCSS « PROCSS
NAME : «PROCSS — Processor definition directive.
FORMAT: +PROCSS <type>
PARAMETERS :

<type> = any processor type listed in Table 7-10.

DESCRIFTION: The .PROCSS directive causes the assembler to
accepts only the instructions and addressing modes
of the specified processor.

Table 7-10:
Long | Short |
Form | Form | Description
M68000 | MO | Accept the M68000 instructions
| | and addressing modes.
| |
M68020 | m2 | Not implemented.
NOTES :
l.

7-54

ASSEMBLER DIRECTIVES

*kkk PRELIMINARY - For internal use only *kdk

.SECT

FORMAT:

PARAMETERS:
<number> =

<name> =

<attribute> =

DESCRIPTION:

«SECT — Section definition directive.

.SECT <number> {,<attribute>}
.SECT <name> {,<attribute>}

any legal integer number. The section number must
be in the range of 0 through 254. Negative numbers
and expressions are not allowed.

any legal user—defined symbol.

any attribute listed in Tahle 7-11. Either the long
form or short form of the attribute can be used.

The directive .SECT defines a section and its
attributes. When the <name> parameter is used, the
name must be either a predefined section name (see
Table 7-12), or ‘have be defined previously with the
NAME attribute. The <number> parameter specifies
the section number.

Each section can be defined to have the attributes
listed in Tabhle 7-11. However, once & section is
defined, oconflicting attributes are not allowed.

Table 7-11:
Long | Short |
Form | Form | Description
ABSCLUTE AS The linker assigns the

|
| section to be absolute.
| The contents of this

| section can be code or
| data. The default

| section type is

| relative (see

| RELATIVE) .

7-55

ASSEMBLER DIRECTIVES
*kkk PRELIMINARY - For internal use only ekl

.SECT (Continued) .SECT
Table 7-11:
Long | Short |
Form | Form | Description
RELATIVE | RS | The linker assigns the
| | section type to be
| | relocatable. The
| | contents of this
| | section can be code or
| | data., This is the
I | default section type.
[|
ADDRESS = <value> | AD | Set the beginning
| | address of this section
| | to <value>. The default
l | beginning address is
| | zero.
| |
NAME = <symbol> | NM | Assign <symbol> as the
| | name of this section.
Table 7-12: Predefined Section Names
Name | Attributes
TEXT | RELATIVE
DATA | RELATIVE
BSS | RELATIVE
CSTR | RELATIVE
PURE | RELATIVE
IMPURE | RELATIVE
NOTES :

1. This directive must appear inside a module (see
.MODULE) .

ASSEMBLER DIRECTIVES
faladadel PRELIMINARY - For internal use only *kkk

2. The ABSQLUTE and ADDRESS keywords are not
supported by all object file formats. Refer to
Appendix F for specific object file limitations.

7-57

*kkk

.STROCT

NAME :

FORMAT:

PARAMETERS:

<name>

DESCRIPTION:

ASSEMBLER DIRECTIVES
PRELIMINARY - For internal use only *kkk

.STROCT — Structure definition directive.

.STROCT <name>

= any legal user—defined symbol.

Not supported in this version.

7-58

« STROCT

kkkk

.USER

FORMAT:

PARAMETERS:

<symbol>

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only Fekkk

.USER

.USER —— User symbol definition directive.

.USER <symbol> {,<symbol>}

any legal user-defined symbol.

The .USER directive indicates that specified symbols
are declared as user defined symbols. This
directive is useful for distinguishing user defined
symbols form non-user defined symbols (e.g. compile
symbols). By default, non—-user symbols not included
in object files.

If the USER keyword is disabled (see the description
of .DISABL), all undeclared symbols will be assumed
to be declared as non-user symbols (see .NCONUSR).
Thus, if the USER keyword is enahled, the programmer
need not specify symbols as user using the .USER
directive. However, if USER is disabled, the
programmer must explicitly use .USER to declare any
symbols that are defined as user symbols in the
current module.

If a symbol is declared as user, but never defined
(e.g. as a label), an error will be reported.

If multiple symbols are specified, they must be
separated by commas.

1. This directive must appear inside a module (see
.MODULE) .

7-59

ASSEMBLER DIRECTIVES

bl PRELIMINARY - For internal use only Fkkk

NAME :

FORMAT:

PARAMETERS:

<message> =

DESCRIPTION:

«WARN

WARN — Warning message print directive.

.WARN "<message>"

any legal character string. Null strings are
allowed.

JWARN causes the assembler to display a warning
message on standard error and in the listing file
(if applicable). .WARN can be used to display a
warning message when a macro call or conditional
assembly contains a questionable set of conditions.

User—generated warning messages have the form:

** <name>-Warn <file_name> [User—generated]: <message>

Where:
<name> = to the assembler name,
<file_name> = to the source file that
generated the warning message.
<message> = to message string to be printed

The '[User—generated]' distinguishes it fram warning
messages generated by the assembler. The double
quotes (") do not appear as part of the printed
message.

When the assembly finishes, the assembler displays
the total number of warning encountered, this
includes both assembler and user—generated warnings.

1. The line oontaining the .WARN directive is not
included in the listing file.

7-60

*kkk

-WEAK

NAME :

FORMAT:

PARAMETERS:

<symbol>

DESCRIPTION:

ASSEMBLER DIRECTIVES

PRELIMINARY - For internal use only *kkk

.WEAK — Weak symbol declaration directive.

WEAK <symbol> {,<symbol>}

any legal user-defined symbol.

.WEAK specifies that references to the name
symbol (s) may be allowed to be unresolved during the
link editing process. If a .WEAK symbol is
resolved, the .WEAK directive has the same effect as
.EXTERN. If the symbol is unresolved during
linking, references to it are set to the default
value of -1 (NOTE: this value may be changed at
link-time. See the linker documentation information
on how to modify the default value.). The linker
does NOT report an error for unresolved weak

symbols.

When .WEAK specifies a symbol that is defined in the
current visible scope, then that definition is used,
and the symbol is considered defined. In this case,
the .WEAK declaration has no meaning.

If a weak symbol is not referenced in the current
scope, then an error is reported.

If multiple symbols are specified, they must be
separated by commas.

1. This directive must appear inside a module (see
.MODULE) .

2. This directive is not supported by all object

file formats. Refer to Appendix F for specific
object file limitations.

7-61

CHAPTER 8

INSTRUCTION SET AND ADDRESSING MODES

[To be written later]

8-1

CHAPTER 9

WRITING FOSITION INDEPENDENT CODE

[To be written later]

9-1

APPENDIX A

ASCIT (HARACTER TABLE

C O D H CO D H CO D H CO D H

H C E E|lH C E E|lH C E E|lH C E E

R T C XIR T C X: R T C XIRT C X

I l

NUL("@) 000 O O0O|SP 040 32 20| @ 100 64 40| ' 140 96 60
SGH("A) 001 101 ! 041 33 21| A 101 65 41| a 141 97 61
STX("B) 002 2 02| " 042 34 22| B 102 66 42| b 142 98 62
.ETX("C) 003 3 03| # 043 35 23| C 103 67 43| c 143 99 63
EOT("D) 004 4 04| $ 044 36 24| D 104 68 44| 4 144 100 64
ENQ("E) 005 5 05| % 045 37 25| E 105 69 45| e 145 101 65
ACK("F) 006 6 06| & 046 38 26| F 106 70 46| £ 146 102 66
BEL("G) 007 7 07| ' 047 39 27| G 107 71 47| g 147 103 67
BS ("H) 010 8 08| (050 40 28] H 110 72 48] h 150 104 68
HT ("I) 011 9 09]) 051 41 29| I 111 73 49| i 151 105 69
LF (°J) 012 10 OA| * 052 42 2A| J 112 74 4A| j 152 106 6A
VT ("K) 013 11 OB| + 053 43 2B| K 113 75 4B| k 153 107 6B
FF (L) 014 120C| , 054 44 2C| L 114 76 4C| 1 154 108 6C
CR ("M) 015 13 OD| - 055 45 2D| M 115 77 4D| m 155 109 6D
SO ("N) 016 14 OE| . 056 46 2E| N 116 78 4E| n 156 110 6E
SI ("0) 017 15 OF] / 057 47 2F| O 117 79 4F| o 157 111 6F
DLE("P) 020 16 10| 0 060 48 30| P 120 80 50| p 160 112 70
DC1("Q) 021 17 11| 1 061 49 31} Q121 81 51| g 161 113 71
DC2("R) 022 18 12| 2 062 50 32| R 122 82 52| r 162 114 72
DC3("s) 023 19 13| 3 063 51 33| S 123 83 53| s 163 115 73
DCA("T) 024 20 14| 4 064 52 34| T 124 84 54| t 164 116 74
NAK("U) 025 21 15| 5 065 53 35| U 125 85 55| u 165 117 75
SYN("V) 026 22 16| 6 066 54 36| V126 86 56| v 166 118 76
EB("W) 027 23 17| 7 067 55 37| w 127 87 57| w 167 119 77
CAN("X) 030 24 18| 8 070 56 38| X 130 88 58] x 170 120 78
EM (7Y) 031 25 19| 9071 57 39| Y 131 89 59| y 171 121 79
SUB("Z) 032 26 1A] : 072 58 30| 2 132 90 5A| z 172 122 7A
ESC("[) 033 27 1B| ; 073 59 3B| [133 91 SB| { 173 123 7B
FS (™\) 034 28 1C| < 074 60 3C| \ 134 92 5C| | 174 124 7C
GS ("]) 035 29 1ID| =075 61 3D|] 135 93 5D| } 175 125 7D
RS (°7) 036 30 1E| > 076 62 3E| " 136 94 SE| ~ 176 126 7E
Us (") 037 31 1F| 2 077 63 3F| _ 137 95 5F|RUB177 127 7F

A-1

APPENDIX B

ASSEMBLER DIAGNOSTIC MESSAGES

[To be written later]

B-1

APPENDIX C

ASSEMBLER SYNTAX SUMMARY

This appendix describes the complete assembler syntax in modified
Backus-Naur Form (BNF). The following symbols are meta-symbols
belonging to the-BNF formalism:

<O - Denotes a syntactic unit.
Read as: the name enclosed in the angle
brackets.

$:= - Definition of a syntactic unit.

Read as: "is defined to be".
- Choose between syntactic units.
This symbol can appear as part of the
assembler language.
Read as: "or".
{} - Denotes possible repetition of the enclosed
syntactic unit(s) zero or more times.
Read as: "zero or more occurences of".
(] - Optional syntactic unit(s).
Read as: "optionally".
<space> - Concatenation of two syntactic units.
Read as: "followed by"
oo - Terminal symbol range.
Read as: "through" (implied "or" (|) between
each element in the range.

All other characters are part of the assembler language.

C-1

ASSEMBLER SYNTAX SUMMARY

*kkk

PRELIMINARY - For internal use only

dedekk

GENERAL ASSEMBLER SYNTAX SUMMARY:

<file>
<line>
<label>
<opcode>
<operands>
<operand> |
<camment>

<expression>
<simple_expression>

<tem>

<factor>

<relation_operator>
<simple_operator>
<term_operator>
<symbol >
<symbol_start>
<symbol _body>
<integer>
<character_literal>

<character_unit>

<number>

e (1) . (1) . o .
(1] (1]

. .o 13 .o .o . .
e e .o s

(1)

.
-

{ <line> }

<label> <opcode> <operands> <comment>
<symbol>: | <empty>

<symbol> | <empty>

<operand> | <operand> { , <operand> }
<PROCESSOR_DEPENDENT> | <empty>

; { <character> }

<simple_expression> | <simple_expression>
<relation_operator> <simple_expression>

<tem> | <sign> <tem> |
<simple_expression> <simple_operator> <term>

<factor> | <temm> <temm_operator> <factor>

<symbol> | <integer> | (<expression>) |
~ <factor> | ! <factor> | ? <symbol> | *

K| <=l=1Cll=]>]>
+ 1 =110 00

* /sl alak] <>
<symbol_start> <symbol_body>
detter> | . | _

{ <letter> | <decimal_digit> | . | _ | $}
<character_literal> | <number>

' { <character_unit> } '

<character> | \ <character> |
\ * <character> | \ <number>

<binary_number> | <octal_number> |

<decimal_number> | <hexadecimal_number> |
<int-real_number>

C-2

ASSEMBLER SYNTAX SUMMARY
okl PRELIMINARY - For internal use only Fkkk

<binary_number> 1:= <binary_digit> { <binary_digit> } |
}

'B

‘b <binary_digit> { <binary_ digit>
<octal_number> ::= "0 <octal_digit> { <octal_digit> } |
‘o <octal_digit> { <octal_digit> }
<decimal number> 2e= <decimal_digit> { <decimal_digit> } |
<decimal_digit> { <decimal_digit> } |
<decimal_digit> { <decimal_digit> }

D
d

rd

<hexadecimal _number> ::= 'H <hexadecimal_digit> { <hexadecimal_digit> } |
*h <hexadecimal_digit> { <hexadecimal_digit> } |
§ <hexadecimal_digit> { <hexadecimal_digit> }
<int-real_number> ::= 'R <real> | ‘r <reald> |
‘T <real> | 't <real> |
'F <real> | ‘£ <real> |
'L <real> | "1 <real> |
‘U <real> | ‘u <real>
<real> | ::= <whole_part> . <fractional_part> <exponent>
<whole_part> ::= <decimal_digit> { <decimal_digit> }
<fractional_part> ::= <decimal_digit> { <decimal_digit> } |
<empty>
<exponent> ::= E <sign> <decimal_digit> { <decimal_digit> } |
e <sign> <decimal_digit> { <decimal_digit> } |
<empty>
<sign> ' =+ | = | <empty>
<string> s:= " { <character_unit> } "
<empty> 3=
<character> ::= ASCIT character set
Jdetter> s:=A..2 a..z
<binary_digit> ::=0 11
<octal_digit> se= 0..7
<decimal_digit> 2= 0..9

<hexadecimal_digit> ::=0..9 | A..F | a..f

Cc-3

*hkk

ASSEMBLER SYNTAX SUMMARY

PRELIMINARY - For internal use only

DIRECTIVE SYNTAX SUMMARY:

<label>
<label>

<label>

+ABSALR
+ADIR
+ALIGN
-ALIGN
.Bmm
-COMMON
+QONFIG
~QONST
.DC.B
DC.W
.DC.L
.DC.F
.m.D
.DISABL
.m. B
.m'w
IDS.L
.DS.S
.mﬂ
.ENABLE
+END
«ENDC
«ENDS
EOF

« ERROR
-EXTERN
«FATAL
FILE
<GLCBAL
+HEADER
.IF
«INCLD
.LINE
+LINKER
+LIST
+LOCAL
MODULE
NCQLIST
«NCNUSR
.PAGE

« PRINT
«PROCSS
+SECT
«SECT
«STROCT
.USER
<WARN
-WERK

<expression> [,<expression>]
<expression>

<expression> [,<expression>]
<symbol> [,<expression>]
[<symbol>]

<symbol> [,<expression>]
<string>

<expression>

<expression> {,<expression>}
<expression> {,<expression>}
<expression> {,<expression>}
<real> {,<real>}

<real> {,<real>}

<symbol> {,<symbol>}
<expression> [,<expression>]
<expression> [,<expression>]
<expression> [,<expression>]
<expression> [,<expression>]

<symbol> {,<symbol>}
[<symbol>]

[<symbol>]
<string>

<symbol> {,<symbol>}
<string>

deddkk

<integer> [,<string> [,<integer>]]

<symbol> {,<symbol>}
<{string>
<expression>
<string>

[+|=] [<integer>]
<expression> {,<expression>}
<symbol> {,<symbol>}
<symbol> {,<symbol>}
[<symbol>]

<symbol> {,<symbol>}
<symbol> {,<symbol>}

<string>
<symbol >
<integer> {,<symbol>}
<symbol> {,<symbol>}
<symbol>
<symbol> {,<symbol>}
<string>
<symbol> {,<symbol>}

C-4

APPENDIX D

ASSEMBLER FLOATING FOINT FORMAT

[To be written later]

D-1

APPENDIX E

68000 INSTRUCTION SET SUMMARY

This appendix provides a sumary of the 68000 instruction set.
For detailed information, refer to the
Motorola MC68000 16-pit Mi User's M 1.

E-1

68000 INSTRUCTION SET SUMMARY

kkkk PRELIMINARY - For internal use only

ABCD
ADD

ADDA
ADDI
ADDD

ADDX
AND

ANDI

BSR
BTIST

K
QR

Dn,Dn

=(An) ,~(An)
<ea>,Dn
Dn,<ea>
<ea>,An
#<data>,<ea>
#<data>,<ea>
Dn,Dn

-(An) r"(An)
<ea>,Dn
Dn,<ea>
#<data>,<ea>
#<data>,CCR
#<data>, SR
Dn,Dn
#<data>,In
<ea>

Dn,In
#<data>,Dn
<ea>

<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
In,<ea>
#<data>,<ea>
Dn,<ea>
#<data>,<ea>
<label>
In,<ea>
#<data>,<ea>
<label>
Dn,<ea>
#<data>,<ea>
<ea>,Dn

<ea>

<ea>,Dn

dekkk

kkkk

CMPA

BCC
DBCS
DBEQ
DBF

DBGE
DBGT
DBHI
DBHS
DBLE
DBLO
DBLS
DBLT
DBMI
DBNE
DBPL
DBRA
DBT

DBVC
DBVS
DIVS
DIVU
EOR

EORI

ILLHGAL
JSR
LINK
LSL

LSR

MOVEA
MOVEM

68000 INSTRUCTION SET SUMMARY
PRELIMINARY - For internal use only

<ea>,An

#<data>,<ea>
(An) +, (An) +

Dn,<label>
Dn,<label>
Dn,<label>
Dn,<label>
n,<label>
Dn,<label>
Dn,<label>
In,<label>
Dn,<label>
Dn,<label>
Dn,<label>
In,<label>
Dn,<label>
Dn,<label>
Dn,<label>
Dn,<label>
Dn,<label>
Dn,<label>
Dn,<label>
<ea>,Dn

<ea>,Dn

Dn,<ea>

#<data>,<ea>
#<data>,CR

#<data>,SR
Rn,Rn
Dn

<ea>

<ea>
<ea>,An
An, #<data>
Dn,Dn
#<data>,Dn
<ea>

In,In
#<data>,Dn
<ea>
<ea>,<ea>
<ea>,CCR
<ea>,SR
SR, <ea>
An, USP
USP,An
<ea>,An

<register_list>,<ea>
<ea>,<register_list>

Jededek

68000 INSTRUCTION SET SUMMARY

*kdkk PRELIMINARY - For internal use only

MULS
MOLU
NBCD

NOP
NOT
OR

ORI

RESET

ROR

RTE

SBCD

SscC
SCs

SGE
SGT
SHI
SHS
SLE
SLO
SLS
SLT

SPEL
SRA

SvC

d(An) ,Dn
#<data>,Dn
<ea>,Dn
<ea>,In
<ea>

<ea>

<ea>

<ea>
<ea>,Dn
Dn,<ea>
#<data>,<ea>
#<data>,CCR
$<data>,SR
<ea>

Dn,Dn
#<data>,In
<ea>

Dn,Dn
#<data>,Dn
<ea>
Dn,Dn
#<data>,Dn
<ea>

Dn,Dn
#<data>,Dn
<ea>

Dn,Dn
=(An) ,~(An)
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>
<ea>

*kkk

68000 INSTRUCTION SET SUMMARY

*kkk PRELIMINARY - For internal use only

SVS
STOP

SUBA
SUBI
SUBX

SWAP

TST
UNLK

<ea>

#<data>
<ea>,Dn
Dn,<ea>

<ea> rAn
#<data>,<ea>
#<data>,<ea>
m' In

=(An) ,~(An)
In

<ea>
#<vector>

<ea>
An

E-5

dedeke ke

APPENDIX F

OBJECT FILE AND LINKER LIMITATTIONS

[To be written later]

F-1

