
TN I CAT

System 150

(mapped)

Hardware Reference Manual

July 1982

WICAT SYSTEMS INCORPORATED Orem, Utah

187-055-201 A

Copyright Statement

Copyright (c) 1982 by WICAT Systems Incorporated
All Rights Reserved
Printed in the United States of America

Receipt of this manual must not be construed as any kind of
commitment, on the part of WICAT Systems Incorporated, regarding
delivery or ownership of items manufactured by WICAT.

This manual is subject to change without
subscription entitles you to receive
editions of manuals pertaining to your
Systems's main office for information on

notice. A system software
all bulletins and revised
WICAT system. Call WICAT

this service.

WARNING: The equipment described in this manual generates, uses,
and can radiate radio frequency energy, and if not installed
in accordance with instructions provided in the hardware
documentation for the equipment, may interfere with radio
communications. Furthermore, the equipment has been tested
and found to comply with the limits for a Class A computing
device pursuant to subpart J, Part 15 of FCC rules, which
are designed to provide reasonable protection against such
interference when the equipment is operated in a commercial
environment. Operation of the equipment (described in this
manual) in a residential area is likely to cause
interference. Where the equipment will be used in a
residential area, it is the user's responsibility to ensure
that any interference is corrected.

Revision History

First Printing July 1982

The Purpose of This Manual

This document provides the technical information users will need
should they want to modify System 150 (mapped) PC boards to interface
with peripheral devices that are not supplied by WICAT Systems Inc.

Furthermore,
difficulties
WICAT.

WI CAT Systems
arising from

Inc. assumes no responsibility for
the use of equipment not manufactured by

Intended Audience

Field service technicians, OEM representatives, and maintenance
personnel on Systems 150 (mapped). Readers must be knowledgable in
electronics, and familiar with the basic terminology of computer
science.

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1.5.1
1.5.2
1.6
1.6.1
1.6.2
1.6.3
1.6.4
1.6.5
1.6.5.1
1.6.5.2
1.6.5.3
1.6.5.4
1.6.5.5
1.6.5.6

CHAPTER 2

2.1
2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.4
2.4.1
2.4.2
2.4.3
2.4.3.1

2.4 • .3.2
2.4.4
2.4.5
2.4.5.1
2.4.5.2
2.4.6
2.4.7
2.4.8
2.4.9
2.5
2.6
2.6.1
2.6.2

SYSTEM OVERVIEW

INTRODUCTION •
DEFINITION AND FEATURES
SYSTEM CONFIGURATION •
BOARD CONFIGURATION
BOARD INTERACTION

Explanation Of Bus Structure •
Bus Control

SYSTEM DATA FLOW
Central Processing Unit (CPU)
Memory •
CRT
Storage
Peripherals

Serial Interfaces

. . .

Parallel Interface •
Battery-backed Clock •

. . . .
Graphics Circuitry (Optional)
Videodisc Controller (Optional)
IEEE 488 Interface (Optional)

CPU BOARD

INTRODUCTION •
DEFINITION AND FEATURES
CPU BOARD CONFIGURATION

The MULTIBUS Interface •
On Board ROM • . .
Interrupt Circuitry
Bus Arbitration Circuitry
Memory Mapping Registers •

PROCESSOR CIRCUITRY
Address Bus
Data Bus •

. .
Synchronous Bus Control

Command Lines (MRDC/, MWTC/, IOWC/, And
IORC/) •
Transfer Acknowledge Line (XACK/)

MG68000 Bus Control
Bus Arbitration Control

Single Device Arbitration
Multi-Device Arbitration •

Interrupt Control • •
System Control •
MC68000 Peripheral Control •
Processor Status •

MEMORY MAP •••
ERROR CONTROL

Address Errors •

.. .
The Error Register •

v

. .

. . .

. .

• 1-1
• 1-1
• 1-1
• 1-4
• 1-6
• 1-6
• 1-6
• 1-6
• 1-9
• 1-9
• 1-9
• 1-9
• 1-9
1-10
1-10
1-10
1-10
1-10
1-11

• 2-1
• 2-1
• 2-1
• 2-4
• 2-4
• 2-5
• 2-5
• 2-8
• 2-8
2-10
2-10
2-11

2-11
2-12
2-12
2-13
2-13
2-13
2-14
2-17
2-19
2-19
2-21
2-22
2-22
2-22

2.7
2.7.1
2.7.2
2.8
2.8.1
2.8.2
2.8.3
2.9

ON BOARD PERIPHERALS AND MEMORY 2-24
2-24
2-24
2-27
2-27
2-27
2-28
2-31

Memory Mapping Flag And The Error Register
On Board Memory • • • •• • • • • •

ADDRESS DECODE • • • • • • • • • • • • • • •
On Board Device Selection
CPU Board Address Decoding • • • • •
EPROM Configuration Firmware •

PAL EQUATIONS •• • • • • • •

CHAPTER 3 I/O BOARD'

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

INTRODUCTION • • • • • • • • • • ••• • • 3-1
DEFINITION AND FEATURES • • • • • • • 3-1
I/O BOARD CONFIGURATION • • • • • • • • • • • 3-3

The Serial Interface • • • • • • 3-5
The Real-Time Clock • • • • • • • • • • • • 3-6
The Interval Timers ••• • • • • • • 3-6
The Parallel Port • • • • • • • • • 3-7
The Parallel Port Direction And LED Register • • 3-7
The Select/Configuration Switches • • 3-9
IEEE 488 Multibus • • • • • • • • • • • • • • • 3-9

CHAPTER 4 MEMORY MODULE

4.1
4.2
4.3
4.3.1

INTRODUCTION • • • • • • • • • • • • • • • • 4-1
DEFINITION AND FEATURES • • • • • • 4-1
MEMORY MODULE SIGNALS •• • • • • • 4-3

Advanced Acknowledge (AACK/) • • • • • 4-3
4.4 ELECTRICAL CHARACTE~ISTICS •• • • • • • 4-3
4.4.1
4.4.2
4.4.2.1
4.4.2.1.1
4.4.2.2
4.4.2.3
4.4.2.4
4.4.2.5
4.4.3
4.4.3.1
4.4.3.1.1
4.4.3.1.2
4.4.3.1.3
4.4.3.1.4
4.4.3.2
4.4.3.3
4.4.3.4
4.4.3.5

EDAC • 4-3
Status Registers (CSR And ESR) • • ••••• 4-3

Control Status Register • • •• 4-4
CSR Read Format • • • • • • • • • • 4-4

CSR Flag Control Bits ••••••••• • 4-5
Error Status Register • • • • • 4-6
ESR~Signal Definitions. • • • • • 4-7
Error Status LEDs • • • • • • • • • • • • • • 4-9

Memory Features • • • • • • 4-10
Addressing • • • • • • • • • • • • • • • 4-10

Starting Address Selection • 4-10
Ending Address Selection • 4-10
CSR/ESR Address Selection • • • 4-11
CSR/ESR Address Range • • • • • • • • 4-11

Error Detection And Correction (EDAC) ••• 4-11
Interrupt Options • • • • • • • • • • • • • 4-12
Power Source • • • • • • • • • • 4-12
RAM Configuration • • • • • • • • 4-12

4.5
4.5.1
4.5.2

TESTABILITY • • • • • • • • 4-13
Testing EDAC Logic. • • • • • • • • 4-13
Address Testing • • • • • 4-13

vi

4.5.3
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.7
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5

CHAPTER 5

Testing Arbitration
MODES OF OPERATION •

.
Read Operations • • • •
Write Operations • • • •
Byte Swap
Refresh • • • • •

. .
. . .

CONFIGURING THE MEMORY MODULE
LOCATION OF ADDRESS SWITCHES •

.
Starting Address • • • • • • •
Ending Address • • • • • • •
Enabling Extended Address Lines ••••
Setting Address For Extended Lines •
I/O Port Address • • • • • • • • • • • •

WD1000 AND COUPLER/FLOPPY BOARD SET

. . .

. . .

4-14
4-16
4-19
4-19
4-20
4-20
4-20
4-20
4-21
4-21
4-22
4-22
4-23

5.1 INTRODUCTION ••••••••••••••••••• 5-1
5.2 DEFINITION AND FEATURES ••••••••••••• 5-1
5.3 WD1000 AND COUPLER/FLOPPY BOARD SET CONFIGURATION 5-2
5.4 COUPLER/FLOPPY CIRCUITRY AREAS •••••••••• 5-4
5.4.1 WD1000 Coupler/DMA Controller ••••••••• 5-5
5.4.1.1 Synchronous State Machine ••••• 5-5
5.4.1.2 Address Decode. • • • • • • • • • •• 5-6
5.4.1.3 DMA Address Register/Counter. • • • • •• 5-6
5.4.1.4 Bus Arbitration • • • • • • • • •• 5-6
5.4.1.5 Data Path • • • • • • • • • • ••••• 5-6
5.4.2 Two-mode Operation Of Coupler • • • • • 5-6
5.4.2.1 Register Interface. • • • • • • • 5-7
5.4.2.2 DMA Controller. • • • • • • • • • 5-7
5.4.3 Floppy Controller Circuitry •••••••• 5-7
5 • 4 • 3. 1 Da t a Se pa rat 0 r • • • • • • • 5 - 7
5.4.3.2 Write Precompensation •••••••••••• 5-7
5.5 WD1000 BOARD CONFIGURATION. 5-8
5.6 BOARD SET ELECTRICAL DATA • • • • •• 5-10
5. 7 MECHANICAL DATA • • • • • • • • • • • •• 5-11
5 .8 ENVIRONMENTAL DATA • • • • • • • • • 5-11
5.9 SOFTWARE INTERFACE DATA • • • • • • • • 5-11
5.10 BASE ADDRESS. • • • • • • • • • • • • • •• 5-12
5.11 WINCHESTER REGISTERS. • • • • • • •• 5-12
5.12 FLOPPY REGISTERS. • • • • • • • • •• • •• 5-13
5.12.1 Description Of Floppy Registers • • • 5-13
5.12.1.1 Status Register (Read Only) •••••• 5-13
5.12.1.2 Command Register (Write Only) •••• 5-13
5.12.1.3 Track Register (Read/Write) •••• 5-14
5.12.1.4 Data Register (Read/Write) • • • • • •• 5-14
5.12.1.5 Drive Select/Interrupt Register • • • • 5-14
5.13 SIGNAL DEFINITIONS. • • • • • • • • 5-15

vii

APPENDIX A

APPENDIX B

APPENDIX C

C .1
C.2
C.2.1
C.2.2
C.3
C.3.1
C.3.2
C.3.3
C.3.4
C.3.4.1
C.3.4.2
C.3.4.3
C.3.4.4
C.3.4.S
C.3.4.6
C.3.4.7
C.4
C.4.1
C.4.1.1
C.4.1.2
C.4.1.3
C.4.1.4
C.4.1.S
C.4.1.6
C.4.1.7
C.4.1.8
C.4.1.9
C.4.1.10
C.4.1.11
C.4.1.12
C.4.1.13
C.4.1.14
C.4.1.15
C.4.1.16
C.4.1.17
C.4.2
C.4.2.1
C.4.2.2
C.4.2.3
C.4.2.4
C.4.2.S
C.4.2.6
C.4.2.7
C.'4. 2.8

I/O BOARD JUt~ER PIN LOCATIONS BY PORT

JUMPER PIN INPUT/OUTPUT SIGNALS

WICAT DIAGNOSTIC MONITOR (DIAMOND)

INTRODUCTION •
LITERALS •

Integer Literals •
String Literals

SYNTAX •
The Stack
Variables In Fixed Locations •
Reverse-polish Notation
Addresses Versus Contents

@

@W •

@L •
!
!W •
! L •
.!<- OPERATOR

FIXED POINT OPERATORS
UNARY OPERATORS

MINUS
• !ABS
NOT
• ! 2* •
• ! 2/
• ! 1+ •
• ! 1- •
EQZ
NEZ
LTZ
LEZ
GEZ',
GTZ
SPLIT
SPLITB
JOIN •
JOINB

BINARY OPERATORS
+

/
/U •
MAX
MIN
AND

viii

• C-2
• C-3
• C-3
• C-4
• C-5

C-5
• C-7

C-7
• C-8

C-9
C-10
C-l1
C-12
C-13
C-14
C-14
C-15
C-15
C-16
C-16
C-17
C-17
C-17
C-17
C-17
C-18
C-19
C-20
C-21
C-22
C-23
C-24
C-25
C-26
C-27
C-28
C-29
C-30
C-31
C-32
C-33
C-34
C-35
C-36

C.4.2.9
C.4.2.10
C.4.2.11
C.4.2.12
C.4.2.13
C.4.2.14
C.4.2.1S
C.4.2.16
C.4.2.17
C.4.2.18
C.4.2.19
C.4.2.20
C.4.3
C.4.3.1
C.4.3.2
C.4.3.3
C.4.3.4
C.4.3.S
C.4.3.6
C.4.3.7
C.4.3.8
C.4.3.9
C.4.3.10
C.4.3.11
C.4.3.12
C.4.3.13
C.4.4
C.4.4.1
C.4.4.2
C.4.4.3
C.4.4.4
C.4.4.S
C.4.4.6
C.4.4.7
C.4.4.8
C.4.S
C.4.S.1
C.4.S.2
C.4.S.3
C.4.S.4
C.4.S.S
C.4.S.6
C.4.S.7
C.S
C.6
C.6.1
C.6.2
C.6.3
C.6.4
C.6.4.1
C.6.5
C.7

OR •
XOR
EQ •
NE •
LT •
LE •
GE •
GT •
LSL
LSR
ASL
ASR

Stack Operators
DUP
OVER •
20VER
30VER
UNDER
2UNDER •
3UNDER •
DROP
SWAP •
2 SWAP
FLIP
+ROT •
-ROT •

I/O WORDS
TYO
CR •
SPACE
SPACES •
TYI
=
• ! ?
TYPE.

WORDS WHICH CHANGE THE CURRENT RADIX •
• !-1<- •
• 1+1
.! 1+!
• ! 1-!
• !MOVE •
• ! XCHG •
.IMVBYTES

COLON DEFINITIONS
ITERATION

N ()
BEGIN ••• END
BEGIN ••• IF ••• REPEAT
DO LOOPS •

EXIT and LAST I
CONDITIONALS •

USING DIAMOND FROM THE KEYBOARD

ix

C-37
C-38
C-39
C-40
C-41
C-42
C-43
C-44
C-4S
C-46
C-47
C-48
C-49
C-SO
C-Sl
C-S2
C-S3
C-S4
C-SS
C-S6
C-S7
C-58
C-S9
C-60
C-61
C-62
C-63
C-64
C-6S
C-66
C-67
C-68
C-69
C-69
C-70
C-71
C-72
C-72
C-72
C-72
C-72
C-72
C-72
C-72
C-74
C-7S
C-76
C-77
-C-78
C-80
C-82
C-83

C.8 NESTING DEPTH AND CONTINUATION LINES ••••••
C.8.1 Postponing Execution •••••••••••
C.9 REPEATING THE LAST COMMAND LINE •••••
C.10 DEFINING CONSTANTS, VARIABLES, AND ARRAYS
C.10.1 CONSTANTS •••••••••••••
C.10.2 VARIABLES ••••••••••
C. 10.3 ARRAyS............
C.10.3.1 REFERENCING ARRAY ELEMENTS •••••••••
C.11 THE DICTIONARY •••••
C.12 STRING HANDLING ••••
C.l3 NUMBER OUTPUT CONVERSION •••••••
C • 14 FO RGET • • • • • • • • • • • • • • • •
C.15 DEBUGGING TECHNIQUES.. • ••••••

x

C-84
C-85
C-86
C-87
C-87
C-87
C-88
C-88
C-91
C-92
C-93
C-94
C-95

CHAPTER 1

SYSTEM OVERVIEW

1.1 INTRODUCTION

This chapter serves as an overview of the WICAT System 150 (mapped)
computer system. The information contained herein is for use by field
service technicians.

1.2 DEFINITION AND FEATURES

The WICAT System 150 (mapped) is a 68000-based microcomputer system
with mainframe capabilities. A single desk-top unit (with detachable
keyboard) contains:

• Central Processing Unit (CPU) (Section 1.6.1)

• Memory (Section 1.6.2)

• CRT (terminal screen) (Section 1.6.3)

• Storage and storage backup (Section 1.6.4)

• Several standa~d and optional peripherals (Section
1.6.5)

1.3 SYSTEM CONFIGURATION

Refer to Figure 1-1.

The PC boards are held in place by
behind the CRT. At. the base

the card cage located directly
of the card cage is the motherboard

containing six slots into which the boards are inserted.

The standard 150 multiuser configuration leaves two slots empty, but

1-1

SYSTEM OVERVIEW
SYSTEM CONFIGURATION

upon request these slots can be used for two additional memory boards,
or one additional memory board and a videodisc controller board.

To the left side of the card cage (with the CRT nearest you) and
running perpendicular to the card cage are the graphics terminal
boards (connected to each other by a ribbon cable) or a non-graphics
terminal board.

To the right side of the CRT are located the Winchester disk and
floppy disk drives.

The System 150 has a detachable keyboard connected to the terminal by
a coiled cable.

1-2

Figure 1-1

SYSTEM OVERVIEW
SYSTEM CONFIGURATION

System 150 Multiuser (Exploded View)

1-3

SYSTEM OVERVIEW
SYSTEM CONFIGURATION

WARNING

When removing the WD1000/Coupler Board,
please exercise extreme caution to avoid
damaging the end of the CRT.

1.4 BOARD CONFIGURATION

Refer to Figure 1-2.

The standard CPU chassis contains the following boards. (Indicated in
parentheses immediately following the board name are later chapters
that give detailed explanations):

• CPU (Chapter 2)

• I/O (Chapter 3)

• Memory Board (Chapter 4)

• WD 1000 and WD1000 Coupler/Floppy Disk Controller
(Chapter 5)

1-4

/_0-,
~.....,~~ __ TI

'I Ju ..

Figure 1-2

SYSTEM OVERVIEW
BOARD CONFIGURATION

CPU

I/O

Memory

Video-
disc
or

Memory
(Op.)

Memory
(Op.)

Disk
controller

Placement of Boards in CPU Chassis

1-5

SYSTEM OVERVIEW
BOARD INTERACTION

1.5 BOARD INTERACTION

The bus structure amounts to a common group of circuit paths over
which input and output signals are routed. This structure enables
communication between the CPU board and the other PC boards.

1.5.1 Explanation Of Bus Structure

The PC boards and the CPU board are interconnected by the backplane,
or motherboard, in the base of the chassis. The CPU board handles bus
control.

There are three types of buses: address buses, which consist of all
the signals needed to define any of the possible memory or I/O
locations in the system; data buses, which handle all communication
of instructions and data; and control buses, which are used by the
CPU to direct the action of the other elements in the system.

1.5.2 Bus Control

The MC68000 microprocessor allocates CPU time for requesting processes
and devices. The basic theory of allocation is simple. First, the
CPU receives a request signal for bus use. Second, based on
internally defined priorities, the request is either granted
immediately or delayed until previous or higher priority requests are
processed. Finally, when the request is granted, the requesting bus
device returns an acknowledgement signal to the CPU and the cycle
continues.

Once a device or process has been granted bus use, it is called the
"Bus Master". (WICAT systems currently allow only one bus master at a
time.) A device called the "slave" then receives or transmits data
from or to the bus master.

1.6 SYSTEM DATA FLOW

As shown in Figure 1-3, information is input to the System 150 through
the keyboard. A serial-link transfers the data to the terminal CPU,
located on one of the boards perpendicular to the card cage (see
Figure 1-1). The CPU is connected to the PI connector on the I/O
board by a ribbon connector.

The I/O board how acts as a liaison between the terminal section of

1-6

SYSTEM OVERVIEW
SYSTEM DATA FLOW

the System 150 and the other system boards. It sends data to the
other boards as required through the circuitry of the IEEE 796 bus.
Connector P5 connects the additional serial and parallel ports on the
I/O board to the connector panel at the back of the chassis.

The I/O board has two other connectors (P4 and P6) that can be
connected to peripheral devices. Connector P4 is configured as a
full-handshake modem port and connector P6 is used for the optional
IEEE 488 (GPIB) bus interface. See Figure 3-1 for connector locations
on the I/O board.

The disk controller board controls the Winchester disk drive and the
floppy disk drive.

The memory board on all standard 150's handles temporary data storage.

1-7

SYSTEM OVERVIEW
SYSTEM DATA FLOW

r------------------..,
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

Modem
IEEE
488

I/O Connector Panel

si" Floppy Disk Drive

CPU Board

I I

I ~==~'==~~~~~~~~~ I Terminal I

Serial/Parallel
I/O

(Op. IEEE 488)

I CPU I
I I
I I
I 1
I I
I I
I I
I Terminal J

I Video I
I I
I I
I I
I I
I Sync-Video I
1 I
I High I
I I
I Voltage I
I I
I I
I I
I I
I I
I I
I I
I I
I I
! I

I I
L Terminal Section I ------------------

Memory

-Winchester Disk
Controller

RAVD
Boards

(Optional)

Power Supply
(+12 -12 +5 -5)

Figure 1-3
System 150 Multiuser Data Flow Chart

1-8

si" Winchester
10MB Drive

1.6.1 Central Processing Unit (CPU)

SYSTEM OVERVIEW
SYSTEM DATA FLO~~

The processor for the System 150 (mapped) is the Motorola 68000
microprocessor that runs at 8 megahertz (MHz) and executes
approximately one million instructions per second. Thirty-two bit
internal registers support 32-bit data operations.

See Chapter 2 for more information on the CPU.

1.6.2 Memory

The System 150 (mapped) _ is equipped with a single memory board
containing 256 Kilobytes (Kbytes) of Dynamic Random Access Memory
(DRAM) that is expandable to 512 Kbytes by fully populating the board.
Two additional memory boards may be inserted into the chassis
increasing the available memory space to 1.5 megabytes (Mb).

See Chapter 4 for more information.

1.6.3 CRT

The CRT has a resolution of 300
medium-resolution graphics when using
character is 7 X 9 pixels.

1.6.4 Storage

x 400 pixels, allowing
the graphics option. Each

Mass storage includes a 10 Mb 5-1/4 inch Winchester disk drive and a
5-1/4 inch floppy disk drive for backup and file portability purposes.

1.6.5 Peripherals

The standard and optional peripherals available on the System 150
(mapped) are:

• 5 RS232 serial interfaces (Section 1.6.5.1)

• 16-bit parallel interface (Section 1.6.5.2)

• Battery-backed clock (Section 1.6.5.3)

1-9

SYSTEM OVERVIEW
SYSTEM DATA FLOW

• Graphics circuitry (optional) (Section 1.6.5.4)

• Videodisc controller (optional) (Section 1.6.5.5)

• IEEE 488 interface (optional) (1.6.5.6)

1.6.5.1 Serial Interfaces -

These interfaces are used as input/output ports for various peripheral
devices such as printers, terminals, etc. The interfaces are located
on the I/O board (see Chapter 3) and conform to the standard RS232C to
ensure asynchronous ·data transfers.

1.6.5.2 Parallel Interface -

This .is a 16-bit parallel port organized as two 8-bit bi-directional
ports and set up to act as a standard Centronics interface.

1.6.5.3 Battery-backed Clock -

This clock, located on the I/O board, is a real time calendar clock
for the system. It continues to keep time, in the event of a system
failure or power-down, with power supplied by an on-board battery.

1.6.5.4 Graphics Circuitry (Optional) -

Two graphics boards located perpendicularly to the CRT allow system
graphics to be availabl~ as an option.

1.6.5.5 Videodisc Controller (Optional) -

To make the System 150 (mapped) compatible with a videodisc player, a
printed circuit (PC) board configured for videodisc control is
inserted into the first of the available slots in the chassis (see
Figure "1-2) •

This option allows the System 150 to interface with a videodisc
player's parallel control port.

1-10

1.6.5.6 IEEE 488 Interface (Optional) -

SYSTEM OVERVIEW
SYSTEM DATA FLOW

Additional components on the I/O board (see Chapter 3 and Figure 3-1)
make up this option. The IEEE 488 interface is a standard General
Purpose Interface Bus (GPIB), allowing the use of other external
peripherals.

1-11

CHAPTER 2

CPU BOARD

2.1 INTRODUCTION

This chapter explains the components of the CPU board and focuses on
the operations performed by the microprocessor.

2.2 DEFINITION AND FEATURES

The CPU board handles the central processing of the System 150
(mapped) and controls all bus use requests. The key component on the
board is the Motorola 68000 microprocessor. The CPU board has the
following features:

• Hemory map (Section 2.5)

• Error control (Section 2.6)

• On board peripherals and memory (Section 2.7)

• Address decoding (Section 2.8)

2.3 CPU BOARD CONFIGURATION

Refer to Figure 2-1.

The CPU board comprises five main areas of ci~cuitry:

2-1

CPU BOARD
CPU BOARD CONFIGURATION

• Multibus Interface (Section 2.2.1)

• On-board ROM (Section 2.2.2)

• Interrupt Circuitry (Section 2.2.3)

• Bus Arbitration Circuitry (Section 2.2.4)

• Memory Mapping Registers (Section 2.2.5)

2-2

~ol
I (DI {o [===:3 I <n 1'1

I <01 u. ue u. m
c:::JAa u~ ca ut" u. ~f V"' .:.6 u.

<0 <0 (~P1 ~ol {O [:=-=.=31]1 ~O V9 010 VI\ u.t. ~o
c:::J"" U.OW ") VI. , .. un ''''

Ull u'"' c.t.

<D <0 ~O ""'I <01 ~O UI. VI. C,," U10 c." c:::::J 011.1
<1& I ~ol 10

~o
1)\14 ,1., vu- e,-' LJU ,~)

n lF14

t-d <0 <0 m un c .. U1.' uO {oj <0 c::: un ut& eM uC't cu 010 W

(Iol ~
u'n ell vM ce6 "'~ ~ i!lHt

0 t:rj ~o I <0 <0 <0
~ ~ 0560 C~ u., cal u •• c," us. cn U.I CM un e\. m ([] <0 I10Q c.-O C:::I<:· .. U-40 cs. U~I en u ca.

N p..S::
I 11 ~OI u l l <D <0 w n (1)

~
U-4, C1'I 041 U4f V46 046 c.t .. u~ .. 04~

11 N

~I g I WI <01 ~[] ([] <0 W U~ uow· c~ usc. e4'" utS ,* u .. ., Uf~ (.4, os .. ,"" us," c U'

rt
ti <01 <01 <0 I <01 ~OI IDI <0 <0 <0 <0 '4 u, .. eso Uf' CSt II,.. eu 060 en u., Cf4 U6t. c,-s vu c~ u_ Cf .. lJ6.s U. U6Cio en

c:::JA-4

n
~Ol ~[Jj ~I <[]I ~ I <01 <0 <0 <0 <0 I-d

06.1 e40 v ... e.1 u ... u ,Cot. u"" U11: c .. ~ U,S eeA , .. C.'S u,'S C6." Ul' CA.l c::: c:::::lR ...

P. l}i"" tJ:l <01 C3 I <0 . <0 <0 <0 0 u'n U.8 u.) I 01, lOt "''I <:10 "60 ell <161 ~","I. uu. C"

~ E3AS
0'"'' "'0 ." t:;I

n
0 z
t:rj
H n
c;J I-d
c::: c:::

~ 0:1
0

H ~ ~ t:;I

CPU BOARD
CPU BOARD CONFIGURATION

The circuitry of the CPU board is divided into two principal
functions: the CPU bus-associated functions and some system I/O
functions. The connectors are the system bus proper. They contain
paths and connections for the system data~ address~ and control.

2.3.1 The MULTIBUS Interface

The MC68000 microprocessor and the INTEL Multibus are incompatible
because the Microprocessor de.fines the lower byte of the data bus as
odd" and the upper byte of the data bus as even; this data byte
definition is reversed on the Multibus. An interface in the form of
byte swap buffer ensures that odd and even single-byte transfers
always take place on the low order data lines. Thus, the CPU board
conforms to the INTEL MULTIBUS standard for both eight- and
sixteen-bit systems. Word transfers use the full set of sixteen data
lines.

CAUTION

When writing a byte to a peripheral
device the least significant address bit
must be complemented or inverted by the
software because of the MC68000 to
MULTIBU8 incompatibilities.

2.3.2 On Board ROM

The CPU board can support up to 64K bytes of on board Read Only Memory
(ROM). ROM address decoding is done through a 748288 PROM. ROM sizes
of 2K X 8, 4K X 8, or 81.(X 8 can be accommodated by changing two
jumpers and the address decode PROM. The CPU board accepts 2K X 8
EPROMs as standard. The CPU board will accept the other two types of
EPROMs if you change the jumpers as specified in Figure 2-2.

2-4

Jumper
.JP1 A

B
JP2 A

B

Jumper
JP1 A

B
JP2 A

B

EPROM SIZE 4K X 8

EPROM SIZE 8K X 8

Figure 2-2

CPU BOARD
CPU BOARD CONFIGURATION

IN/OUT
OUT
IN
IN
OUT

IN/OUT
OUT
IN
OUT
IN

Jumper Configuration for Larger EPROMs

2.3.3 Interrupt Circuitry

The CPU board supports seven levels of interrupts, INTO/ through
INT6/, with INTO/ having the highest priority. INTO/ is the only
nonmaskable interrupt. All interrupts are autovectored to addresses
designated by the MC68000. See Section 2.3.5 and the appropriate
section of the Motorola's MC68000 16-Bit Microprocessor User's Manual,
January 1980.

2.3.4 Bus Arbitration Circuitry

The CPU bus arbitration scheme conforms to the MULTIBUS specification
for serial priority bus arbitration. When a MULTIBUS device wants
control of the bus it checks its BPRN/ signal. If the BPRN/ signal is
low, the Multibus sets its BPRO/ signal high. The high signal
disables all lower priority bus requests and sends the MULTIBUS
device's request to the CPU. Th~ arbitration sequence is then as
follows:

1. The CPU finishes executing the current instruction
and sets the BUSY/ line high to tell the requesting
device that it can take control of the bus.

2-5

CPU BOARD
CPU BOARD CONFIGURATION

2. The requesting device then pulls BUSY/ low and
takes control of the bus.

3. When finished with the bus, the requesting device
sets its BPRO/ line low, then sets the BUSY/ line
high.

4. If no bus requests are pending, the CPU regains
control of the bus.

All bus arbitration signals are synchronized with the falling edge of
BCLK. Table 2-1 is an address map.

FFFFFF
1
I
1
1

1
1

1

1

1
1
1

1

I
1

1

1

I
1

FOOOOO
1

1

1

1

1

1

1

1

I
I
I

200000
1
I
1
I
I
1

I
I
1

010000
1
I
1

1
000000

CPU BOARD
CPU BOARD CONFIGURATION

1---------------------1
Not Used ,J . Memory Boards I/O 1

II Registers I
I , 1---------------------1

) 1---------------------1
) 1 Video Disk 1

I
I I Controller I

I 1---------------------1
, 1 Communications 1
I 1 Interface 1

1 1 I 1---------------------1
1 1/ 1 Winchester and I

:---------------------r :----::~::~-~~~:~-----:
1 MULTIBUS I/O 1 I I/O Board 1

1 System Space 1 ~----------------------
/

I I ,/
/'

1 1 ,'_- ~----------------------
1---------------------1"'-'.. I Error Register I
1 System I/O 1 1---------------------1
1 ----------------- I 1 Map & Lock Flags 1
1 MULTIBUS Memory I' " 1---------------------1
1 System Space I' 1 Memory Mapping I
1 1 ' "I Registers 1
1 1 ~----------------------
1---------------------1

1

1---------------------1
1 1

Users Logical
Space

I J ,-----------------------

1---------------------1---1 I
1 MULTI BUS Memory 1

I I
I Users Logical I
I Space 1

I 1

1 1

1 1
1 I

1---------------------1
1 MULTIBUS Memory 1

I Mapped - Users 1

1 logical space 1

1 Unmapped-ROM J

1 1

1 4K - Bytes 1
1---------------------1
1 4K - Bytes 1

1---------------------1
I

1---------------------1
1 4K - Bytes 1

1---------------------1
1 4K - Bytes 1

ROM Program

1
1
1

1

1 1
-----------------------, 1---------------------1

" " I ROM Exception 1

"I Vectors I
~----------------------

Table 2-1
Memory Address Map

2-7

FOFF3F

FOFFOO

TBD

TBD

FOOIAF

FOOI80
FOOIOO

FOOOOO

EFFFFF
EFFDOI

EFFeOl
EFFBFF

EFF800

IFFFFF

IFFOOO

IFEOOO

002000

001000

000000
OOFFFF

000400

000000

CPU BOARD
CPU BOARD CONFIGURATION

2.3.5 Memory Mapping Registers

lk of high speed static Rk~ at address EFF800-EFFBFF on the CPU board
is available for memory mapping. Address lines A12-A20 are the inputs
to the RAMs. The data lines out of the RAMs become the new lines
A12-A23. The mapping function is enabled by writing an 80 to EFFCOI
and disabled by writing a 00 to EFFCOl. This sets and clears a bit
addressable latch U2 on the CPU board.

2.4 PROCESSOR CIRCUITRY

The CPU board contains the Motorola MC68000 Microprocessor, which
directs control, logic, and arithmetic operations required of the
SYSTEM 150 (mapped). The processor circuitry is comprised of the
microprocessor, its associated buffers, system clocks; and, bus
error, interrupt, and arbitration logic.

Input and output signals of the microprocessor fall into the groups
shown in Figure 2-3.

2-8

Processor
Status

M6800
Peripheral

COlltrul

System
Control

Vee (2)
~ ..

GND (2)

CLK

FCO ...
~

FCl

... FC2 ...

E

VMA

VPA

~ -
RESET -...
HALT -~

MC68000
Microprocessor

Figure 2-3

CPU BOARD
PROCESSOR CIRCUITRY

Addrec;s Bus Al·A23

k}ata Bus
I

AS

R/W

UOS

LOS

OTACK

~

BG

BGACK

IPLO ...
IPLl

IPL2 ...

-

-
-

..

00·015

Asynchronous
Bus

Control

Bus Arbitration
Control

Interrupt
Control

Input and Output Signals

2-9

CPU BOARD
PROCESSOR CIRCUITRY

2.4.1 Address Bus

The microprocessor uses a 23-bit address bus to select one of eight
two-byte megawords. The lower 11 address lines are directly buffered
onto the bus connector. Normally, the upper 12 lines are routed
directly from the 68000 to the bus connector.

However, the upper 12 lines may be treated as a logical address and
the bus transaction may be steered by the mapping registers into a
physical location when the processor is in user state, or in
supervisor state with memory mapping flag set and the address is less
than one megaword (= two megabytes).

The address bus is asserted LOW at the bus connector and is the
logical inversion of the address bus at the microprocessor. The
address lines from the CPU board are put into a high impedance state
when another master controls the bus.

2.4.2 Data Bus

The MC68000 uses a 16-bit data bus to transfer programs or data. The
data bus is buffered at the bus connector.

The most significant data bits (D8-I5) are the odd bytes, and the
least significant bits (DO-D7) are the even bytes. When the processor
executes a byte operation, the least significant address bit--AO is
determined from the upper and lower data strobes (see Section 2.3.3).
This process determines whether the processor will transfer an even or
an odd byte.

Operating on a word or
different effect than

an even
operating

Executing a word instruction on an
address trap.

address boundary
on a byte at
odd boundary

will produce a
the same address.

causes an illegal

You may connect an eight-bit peripheral to the data bus with the byte
access option or the word access option.

1. Byte Access Option

The data lines can be connected to the least
significant eight data bus lines (DO-I7) and all
accesses to the peripheral may then be byte or word
accesses.

2. Word Access Option

The peripheral data lines can be connected to the
most significant eight data bus lines (D8-15) and

2-10

CPU BOARD
PROCESSOR. CIRCUITRY

all accesses must then be word accesses. A word
access will access the odd and the even bytes. A
byte instruction may not be used to access the
peripheral when connected to the most significant
eight data lines.

The data bus is asserted LOW at the bus connector. When another
master has control of the bus, the CPU board bus buffers are placed in
a high impedance state.

2.4.3 Synchronous Bus Control

NOTE

The following information regarding bus
control concerns the 796 bus.

Five control signals listed here coordinate data transfer on a
synchronous bus.

1. Memory Read Control (MRDC/)

2. Memory Write Control (MWTC/)

3. I/O Read Control (IORC/)

4. I/O Write Control (IOWC/)

5. Transfer Acknowledge (XACK/)

2.4.3.1 Command Lines (MRDC/, MWTC/, rowc/, And 10Re/) -

These command lines are communication links between the bus masters
and bus slaves. There are four command lines for memory and I/O reads
and writes. An active command line indicates to the slave that the
address lines are carrying a valid address, and that the slave should
perform the specified operation.

2-11

CPU BOARD
PROCESSOR CIRCUITRY

2.4.3.2 Transfer Acknowledge Line (XACK/) -

This line is the slave's acknowledgement of the master's command.
XACK/ indicates to the master that the requested action is complete,
and that data has been placed on or accepted from the data lines.

2.4.4 MG68000 Bus Control

Address Strobe (AS L)

AS L is a control signal asserted when the address on the bus is
stable and considered valid. It will remain asserted until Data
Transfer ACKnowledge (DTACK L) is asserted in response. If the
addressed device is not attached or occupied, the level of the Bus
ERRor line changes from high to low. The Error Control Circuitry
disables AS L before it reaches the bus connector if:

a. an access violation occurs in the current cycle.

b. a parity error occurs in the previous cycle.

Data Transfer ACKnowledge (DTACK)

The device currently being addressed asserts DTACK when that device is
ready to terminate the bus transaction. DTACK is negated in response
to the negation of Address Strobe.

Upper and Lower Data Strobe (UDS Land LDS L)

The CPU uses UDS Land LDS L to select one or both of the bytes from
the word currently being addressed by the address bus.

Read/Write (R/W)

R/W determines the direction of the data transfer. When LOW, data are
moving TO memory. When HIGH, data are moving away FROM memory.

2-12

2.4.5 Bus Arbitration Control

2.4.5.1 Single Device Arbitration -

CPU BOARD
PROCESSOR CIRCUITRY

The MC68000 uses three lines to arbitrate bus use among devices:

1. Bus Request (BR L) - an input signal that can be
driven by any number of devices wired-OR devices.

2. Bus Grant (BG L) - an output signal indicating that
the requesting device may use the bus after the
current bus transaction finishes.

3. Bus Grant ACKnowledge (BGACK L) - when asserted at
the end of the bus cycle, BGACK L allows the
requesting device to become bus master under three
conditions:

a. Address strobe and DTACK are negated

b. No other device is using the bus

c. The bus request ,is negated

2.4.5.2 Multi-Device Arbitration -

Three MSI logic devices on the CPU board automatically prioritize bus
requests and grants. On the left (or I/O) connector are eight bus
request lines (BRO-7) and eight corresponding bus grant lines (BGO-7).
BR7 has the highest priority.

Requests for bus use are prioritized depending on the bus request line
used for input. The nu~ber of the highest request is latched onto the
falling edge of bus grant from the processor. The outputs of this
latch then drive the inputs to a three-to-eight line decoder that
selects the highest priority bus grant line. Thus, a device simply
asserts its bus request line and waits until its bus grant line is
asserted. When the device recognizes its bus grant, it waits until
the end of the current bus cycle to verify that BGACK is not asserted.
After the verification the device asserts BGACK, negates its bus
request, and, becomes bus master.

If more than one bus request is pending, the arbitration logic selects
the bus grant corresponding to the highest priority bus request.
After the device with the highest priority has become bus master, the
arbitration logic will select the bus grant corresponding to the bus
request with the next highest priority.

2-13

CPU BOARD
PROCESSOR CIRCUITRY

lVhen the current bus master is through with the bus, the next device
immediately takes control. The arbitration logic then selects the
next device with the highest priority. Thus, the arbitration logic
manipulates the queu according to device priority.

2.4.6 Interrupt Control

The MC68000 supports seven interrupt levels.
nonmaskable and is the highest priority.

Level seven is

Interrupts are actually
called exceptions.
nonautovectored but the
process on autovectored

a subset of a more
Interrupts are

CPU board circuitry
interrupts:

general class of operations
either autovectored or
simplifies the interrupt

a. autovectored The processor generates the
interrupt vector number internally, as a function
of the interrupt level.

b. nonautovectored - The processor reads the interrupt
vector number from the interrupting device.

In each case the processor executes an interrupt acknowledge sequence.
During this sequence, the function codes indicate an interrupt
acknowledge cycle, the address lines A4-23 are set to l's, and the
interrupt level is placed on address lines Al-3. If Valid Peripheral
Address, VPA L, (2.3.7.[b]) is asserted during this bus cycle, the
interrupt will be interpreted as autovectored, in which case the bus
cycle emulates a MC6800 cycle. No DTACK will be expected and the
transaction will terminate after approximately 1 microsecond. The
interrupting device need not respond because the processor generates
its own interrupt vector number based on the level of the interrupt.

If VPA is not asserted during the interrupt acknowledge sequence, the
interrupt is considered nonautovectored, and the interrupting device
responds with a vector number on data bus lines DO-7 (odd byte). The
upper byte is ignored. This transfer takes place just as a normal
read operation does. The interrupting device asserts DTACK when the
data have been placed on the bus. This number is then multiplied by
four to obtain the address of the interrupt vector. Figure 2-4 is a
photographic recording of signal activity during an autovectored
interrupt sequence.

2-14

50 52 54 S6 SO 52 S4 Sw Sw

CPU BOARD
PROCESSOR CIRCUITRY

Cl K fl..fL.nJlJ1.nJ
Al·A3 >-< ';-I ~
Al.A23)-()-I,---------------~

AS~j\ r,-
~~ n r~ CDs, n r,\-
R/;;

5TAcK~
08-015 --c::J~-----------<C-__ =___>__

00·07 ~ ()--_

FCO-'lx-==----:r ~
i'iSt'6 -2 __ --,

\~-------------------------------------
E J L
~=======-~\ r-'l
VMA ------===========~:--------- /--

\ _______J_

I-NO""81 Cycle-t- - - - - •• - - - •. Autovector OperatIon - - - - - - - - -i

Figure 2-4
Signal Activity During an

Autovectored Interrupt Sequence

2-15

CPU BOARD
PROCESSOR CIRCUITRY

After the interrupt vector number is obtained, either by internal
generation or by external read, the processor saves the status and
return address on the system stack and then uses the vector number to
access the interrupt vector (interrupt handler routine address) from
memory. The processor then continues execution at the interrupt
handler routine.

Eighteen wire-wrap pins on the high end of the left (I/O) connecter
(location M9) are arranged in six equivalent groups. Each group
configures the type of interrupt for levels one through six. Level
seven is reserved for the error control circuitry as described in
section 2.5. Level six is the leftmost group and level one is the
rightmost group of pins, as viewed from the connector edge of the
board.

Jumpering the center pin of any group to the pin above it (away from
the connector) defines that interrupt level to be autovectored.
Jumpering to the pin below it (toward the connector), defines it as
nonautovectored.

The example in Figure 2-2 shows levels
autovectored, and levels four,
nonautovectored. The system leaves
defined as autovectored.

six, five, and two
three, and one
the factory with

defined as
defined as
all levels

If an interrupt level has been defined as autovectored, VPA will be
automatically asserted during an interrupt acknowledge bus cycle. If
the level is defined as nonautovectored, VPA will not be asserted
during interrupt acknowledge.

NOTE

IF VPA IS ASSERTED during the interrupt
acknowledge bus cycle, the processor
still executes an autovectored interrupt
sequence even if the interrupt level is
jumpered to be nonautovectored. An
interrupting device connected to a
nonautovectored interrupt level may
still cause an autovectored sequence by
asserting VPA during interrupt
acknowledge.

2-16

2.4.7 System Control

CPU BOARD
PROCESSOR CIRCUITRY

System control comprises three lines, RESET (RESET L), HALT (HALT L),
and Bus ERRor (BERR L). RESET and HALT are bidirectional. On
power-up and during manual reset conditions, both the RESET and HALT
lines are driven as inputs for a minimum of 200 mSec. In no other
case is HALT or RESET driven as an input. The processor asserts RESET
while executing a reset instruction and asserts HALT when the
processor is halted.

A high-to-Iow transition on the Bus ERRor line tells the processor
that a specified time has elapsed without a DTACK response to the
assertion of Address Strobe. The DIS CPU implements the Bus ERRor
timer with a presettable counter. This counter is clocked at 4
MegaHertz, but is normally held in the clear (all zeroes) condition.

When Address Strobe is asserted, the counter is allowed to begin.
After 16 clock cycles, the ripple carry output causes the assertion of
Bus ERRor. If, however, DTACK is asserted before the 16 counts can
occur, the counter is stopped, and the negation of Address Strobe will
again hold the counter in the clear state. The 16 counts with a clock
cycle time of 250 nS provides a bus error time out of 4.0 uS. This
value is nonadjustable.

Figure 2-5 is a record of a bus error sequence.

When an access or parity error occurs, address strobe is not asserted
on the bus. Although the processor expects a DTACK, it receives none.
Normally, the bus error timer times out after 4.0 uS and causes the
assertion of Bus ERRor.

Because this causes an erroneous bus trap, the circuitry can detect a
bus error time out resulting from the blocking of the address strobe.
In this case, Bus ERRor is not asserted and the bus error timer
overflow latches the error conditions and generates a DTACK so that
the processor can finish its bus cycle.

2-17

CPU BOARD
PROCESSOR CIRCUITRY

A4

Ai >-<
AS \ I \

DDS \ / \
LDS \ I \

RW \
DTACK \

DB-DiS () (
DO D7 () (

FCO-2 :::)-(K
BERR \ I
HALI

~nitiat~ + + +- Initiate Bus ~ r---------r-----Response Feature - - Bus Error Detection Cycle Terminates ------:---
Read Error Stack~ng

Figure 2-5
Bus Error Sequence

2-18

CPU BOARD
PROCESSOR CIRCUITRY

2.4.8 MC68000 Peripheral Control

The MC68000 provides three lines for interfacing MC6800 peripheral
devices:

a. Enable (E)
transactions
peripherals.
system clock
duty cycle (6

a clock signal that synchronizes
between the processor and MC6800 type
The clock period is ten times the
(10 x 125nS = 1.25uS) and has a 60/40
clocks low, 4 clocks high).

b. Valid Peripheral Address (VPA L) - asserted by the
peripheral device when it recognizes its address on
the address bus. VPA L is also used to distinguish
between auto and nonautovectored interrupts during
an interrupt acknowledge sequence.

c. Valid Memory Address (VMA L) asserted by the
processor in response to the assertion of VPA L
during an MC6800 peripheral data transfer.

E and VMA L are buffered onto the bus. VPA L is a shared tri-state
input to the CPU board.

2.4.9 Processor Status

The values of the function code lines (FCO-2) determine the status of
each MC68000 bus cycle. See Figure 2-6 for these values.

FC2

o
o
o
o
1
1
1
1

FCI

o
o
1
1
o
o
1
1

FCO

o
1
o
1
o
1
o
1

Cycle Type

(Undefined, Reserved)
User Data
User Program
(Undefined, Reserved)
(Undefined, Reserved)
Supervisor Data
Supervisor Program
Interrupt Acknowledge

Figure 2-6
Function Code Line Values

2-19

CPU BOARD
PROCESSOR CIRCUITRY

As seen in the Figure 2-6, whenever FC2 is zero, the processor is in
user mode. The memory mapping logic uses FC2 to determine when to map
the processor address. The interrupt acknowledge condition is decoded
on the CPU board and buffered, along with the values of the function
codes, out onto the bus.

2-20

2.5 MEMORY MAP

CPU BOARD
MEMORY MAP

If mapping occurs the original upper three addresss bits (A21-23) are
zeroes (users are confined to a one-megaword address space). The next
nine address bits (A12-20) will be used to access one of 512 locations
of the memory mapping registers. These registers are 16 bits wide,
containing 12 bits of new address and three bits of access control
information. One bit is not used. Each register location within the
memory map represents a 2K word segment of logical space, representing
one megaword of memory in all.

When a memory map register is accessed, the 12 bits of new address
information replace the original upper 12 address bits. This scheme
allows the system to map any of the user's 512 2K word segments into
any of the system's 4096 2K word segments. In reality, only the lower
14 megabytes are reserved for routine memory functions. The upper two
megabytes are reserved for system and I/O space.

The three bits of access control information interact with the
function codes representing the state of the processor and the Memory
Mapping Flag to check for access errors as described in chapter four.
Figure 2-7 shows the memory mapping register format.

D1S D14

Not 1/0
Used

D13 D12

1/0 1/0

D11 - DO

Physical Segment Number

1: Segment W
~. Segment N ~.

1: Segment N
~: Segment N
1: Segment N

rite Protected
ot Protected
umber Invalid
umber Valid
ot Resident

0: Segment Resident in Memory

Figure 2-7
Memory Mapping Register Format

2-21

CPU BOARD
MEMORY MAP

The memory map is accessible as read/write memory beginning at
location EFF800 (hex).

2.6 ERROR CONTROL

The CPU board error control circuitry monitors the address for address
violations. When an error occurs, the error type is latched, and a
level seven interrupt is generated.

2.6.1 Address Errors

An illegal condition on the address bus causes an address error.
Nonmapped addresses are inherently legal except for a word access on a
byte boundary, so that an access error can only occur when the map is
active. Four address errors are associated with using the memory map:

1. access violation - occurs when you try to access
outside of user space, defined as 000000 - IFFFFF
(2 MegaBytes).

2. write violation - occurs when you try to write to a
segment that is write protected.

3. invalid segment - occurs when you try to access a
nonallocated segment.

4. nonresident segment - occurs when you try to access
a nonresident segment.

Conditions 2, 3, and 4 above result directly from the access control
information stored for each segment in the memory mapping registers.

2.6.2 The Error Register

All error conditions are sampled at the assertion of XACK/ at the end
of a bus cycle. There is no danger, however, that an address error
will cause erroneous data transfers since the error condition blocked
the assertion of address strobe on the bus. In this case the bus
error timer will time out asserting &~CK/ (thereby latching the error
condition).

If an error condition exists, the error register, which holds the
values of the error conditions as sampled at the assertion of DTACK,
is disabled from further change until it has been read by the CPU.
Also, a level 7 autovectored interrupt is generated and held until it

2-22

CPU BOARD
ERROR CONTROL

is reset by the reading of the error register. The contents of the
error register are defined in th~ diagram below:

D7 D6 D5 D4 D3

1 0 0 1/0 1/0

D2 D1 D0

1/0 1/0 1/0

I

Figure 2-8
Error Register

Access Violation

Write Violation

Invalid Segment Number

Non-resident segment

Parity Error

Not Used

Not Used

Any Error Condition

The error condition flags (bits DO-D4) are active high, i.e., a one
indicates that an error occurred. Register bit 07 will be a zero if
an error condition is active. Register bits 05 and 06 are always
zeroes.

The error conditions are latched at the assertion of XACK/ only if an
error is detected at that time. When the error register is read t the
level seven interrupt is reset but the contents of the error register
remain intact. They will not change until another error is detected
and latched.

2-23

CPU BOARD
ON BOARD PERIPHERALS AND MEMORY

2.7 ON BOARD PERIPHERALS AND MEMORY

The on board peripheral/memory address and data busses are sourced
from the connector on the backplane and thus accessible to any device
currently controlling the bus. The single exception to this rule is
that another device cannot access the memory mapping registers.

2Q7.1 Memory Mapping Flag And The Error Register

Two other devices may be considered on board peripherals: the Memory
Mapping Flag and the Error register.

If the processor is in supervisor state and the processor address bus
is carrying an address below 2 MegaBytes, then the value of the Memory
Mapping Flag will determine whether the address will be mapped. The
address will be mapped if the value of the flag is a one. It will not
be mapped if it is a zero. The Memory Mapping Flag is set by writing
80 to location EFFC01. This is an even byte address. It may be reset
by writing 00 to the same location. The value of the flag may not be
read and is automatically reset to zero when the processor begins an
interrupt acknowledge bus cycle, and when the system is reset.

The Error Register is a read-only byte location in memory. Its
contents represent the error conditions present when the last address
or parity error occurred. An error generates a level seven interrupt.
Reading the Error Register (address = EFFDOl) clears the interrupt.

2.7.2 On Board Memory

Sockets for 8 UV-EPROMs, either 2Kx8, 4Kx8, or 8Kx8 allow for 16K,
32K, or 64K bytes of ROM. The CPU board supports the memory board and
any other part that conforms to these standards. In addition, the
board also supports eith.er the memory board standards by selecting the
appropriate jump options. The memory type select jumpers are located
between C7 and C8 on the CPU board. It consists of six pins arranged
in three rows of two columns and two jump connections. (See Figure
2-9 for the various jumper configurations.)

2-24

Configuration
for TMS 2516.

Configuration
for TMS 2532

Configuration
for TMS 2564.

CPU BOARD
ON BOARD PERIPHERALS AND MEMORY

JPl JP2

0 0

0 0

0 0

0 0

0 0

0 0

o 0

o 0

o 0

0--0

A

B

A

B

A

B

Figure 2-9
Jumper Configurations

To Bus Connectors
I
I
I
V

The ROM is configured to reside in the lower 16K (or 32K or 64K) bytes
of system memory. Figure 2-10 shows the board placement.

2-25

CPU BOARD
ON BOARD PERIPHERALS A..~D HEMORY

A

B

C

D

E

Even Bytes
(D8-Dl5)

5

ROMO
even

ROMl
even

ROM2
even

ROM3
even

01<- 4K)
OK- 8K)
OK-16K)

Odd Bytes
(DO-D7)

6 7

ROHO
odd

ROMl
odd

ROM2
odd

ROM 3
odd

[4K- 8K) [8K-12K) [12K-16K) 2Kx8's
[8K-16K) [16K-24K) [24K-32K) 4Kx8's
[16K-32K) [32K-48K) [48K-64K) 8Kx8's

To Bus Connectors
I
I
V

Figure 2-10
ROM Configuration

2-26

2.8 ADDRESS DECODE

CPU BOARD
ADDRESS DECODE

The address decode logic decodes the value of the address bus and
drives select lines for the on board peripherals and memory as well as
general purpose I/O device and buffer select lines.

2.8.1 On Board Device Selection

The on board device selects are generated as the outputs of a 74154, 4
to 16 line decoder. The decoder is enabled when the address EOOBxx (x
= don't care) appears on the address bus. The next to the least
significant hex digit determines which on board device is being
selected, while the least significant hex digit is reserved for
register selection within the device itself. This scheme allows for a
maximum of 16 on board peripherals. Currently only seven of these
select lines are used. DTACK is asserted whenever EOOBxx appears on
the address bus.

The memory mapping registers are selected whenever EOOCxx EOOFxx
appears on the address bus, providing for 1K bytes (512 registers) of
memory map. DTACK is asserted whenever the map is selected as an I/O
device.

The on board ROM is selected whenever OOxxxx appears on the address
bus. This allows for a maximum of 64K bytes of ROM; 32K bytes are
now implementable. DTACK is asserted whenever this area of memory is
addressed.

2.8.2 CPU Board Address Decoding

The following summarizes the CPU board address decoding:

2-27

CPU BOARD
ADDRESS DECODE

On Board Peripherals/Memory -

Read Only Memory: 000000 - 003FFF
000000 - 007FFF
000000 - OOFFFF

Clock/Timer: TBD

Memory Mapping Flag: EFFC01

Error Register: EFFD01

Memory Mapping Registers: EFF800 - EFFBFF

Off Board Memory -

RAM/ROM: 020000 - EFF7FF

I/O and Off Board Space -

FOOOOO - FOFFFF

2.8.3 EPROM Configuration Firmware

(2Kx8's) (standard)
(4Kx8's)
(8kx8's)

One 74S288 PROM on the CPU board must be programmed according to the
EPROM configuration for your System 150. Tabulated below is the
firmware programming for the three EPROM configurations possible with
the CPU board. Standard configuration is 2K x 8 EPROMS. Use the
nonstandard PROM programs (Tables 2-3 and 2-4) only after the EPROMS
on the CPU board haye been updated to the size indicated above the
tables. All address and data information is in hexadecimal.

2-28

CPU BOARD
ADDRE S S DECODE

Address Data Address Data

0 · OE 10 · OF
1 · OD 11 · OF
2 · OB 12 · OF
3 · 07 13 · OF
4 · OF 14 · OF
5 · OF 15 · OF
6 · OF 16 · OF
7 · OF 17 · OF
8 · OF 18 · OF
9 · OF 19 · OF
A · OF lA · OF
B · OF IB · OF
C · OF lC · OF
D · OF ID · OF
E · OF IE · OF
F · OF IF · OF

Table 2-2
2K X 8 EPROMS (standard)

2-29

CPU BOARD
ADDRESS DECODE

Address

0 ·
1 ·
2 ·
3 ·
4 ·
5 ·
6 ·
7 ·
8 ·
9 ·
A ·
B ·
C ·
D ·
E ·
F ·

4K X 8 EPROMS

Data

OE
OE
aD
aD
OB
07
07
OF
OF
OF
OF
OF
OF
OF
OF
OF

Address

10
11
12
13
14
15
16
17
18
19
lA
IB
lC
ID
IE
IF

Table 2-3
4K X 8 EPROMS

2-30

· · · · · · · · · · · · · · · ·

Data

OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF

CPU BOARD
ADDRESS DECODE

Address Data Address Data

0 · OE 10 · OF
1 · OE 11 · OF
2 · OE 12 · OF
3 · OE 13 · OF
4 · OD 14 · OF
5 · OD 15 · OF
6 · OD 16 · OF
7 · OD 17 · OF
8 · OB 18 · OF
9 . ~ OB 19 · OF
A · OB lA · OF
B · .. ' OB IB · OF
C · 07 IC · OF
D · 07 ID · OF
E · 07 IE · OF
F · 07 IF · OF

--

Table 2-4
BK X B EPROMS

2.9 PAL EQUATIONS

Uncommitted logic space in the chips is configured as per the
following equations:
PALI0L8 PAL DESIGN SPECIFICTION
PIN 318-021-001
CONTROL SIGNAL GENERATOR - POSTITON G2, S150 MMU CPU BOARD

SYSIO PA8 PA9 PAlO /PAO:; /MWTC /MRDC /BHEN /CBUSY GND
SEL UHALF ERRSEL FLGSEL IOXACK LBYTE SWBYTE HBYTE LHALF VCC

LHALF = /PAO
+BHEN

UHALF = PAO
+BHEN

LBYTE = SEL*BHEN
+SEL*/PAO

SWBYTE = SEL*/BHEN*PAO

2-31

CPU BOARD
PAL EQUATIONS

HBYTE SEL*BHEN

IOXACK = SYSIO*HRDC*CBUSY
+SYSIO*MWTC*CBUSY

ERRSEL = SYSIO*MRDC*PAIO*/PA9*PA8*/PAO

FLGSEL = SYSIO*MWTC*CBUSY*PAIO*/PA9*/PA8*/PAO

DESCRIPTION:

This chip generates the byte control lines for the onboard I/O
which includes the ROM, the flag register, the error register,
and the mape registers.

2-32

CPU BOARD
PAL EQUATIONS

PAL12H6 PAL DESIGN SPECIFICATION
PiN 318-022-001
ERROR AND VAS GENERATOR - POSTITON B4, S150 MMU CPU BOARD

NRS NVS SWP /AS RW FC2 /MAPPED MAPFLG PIN9 GND
PIN11 PIN12 PIN13 AV WV SNV SNR VADD USP VCC

VADD = MAPPED*/NRS*/NVS*RW*AS
+MAPPED*/NRS*/NVS*/SWP*AS
+FC2*/MAPFLG*AS
+FC2*AS*/USP

AV = /FC2*/USP

SNV = NVS*MAPPED

WV = S~VP* /RW*MAPPED

SNR = NRS*MAPPED

DESCRIPTION:

This PAL generates the Valid Address Strobe and the error flags.

2-33

CHAPTER 3

I/O BOARD

3.1 INTRODUCTION

This chapter deals with the physical and logical aspects of the I/O
board. Some of the items discussed are: I/O board configuration, the
serial interface, the parallel port, etc.

3.2 DEFINITION AND FEATURES

The I/O board interfaces with the other boards through the Multibus in
the motherboard or backplane (see Figure 1-2 System 150 (mapped)
System Flow). The I/O board allows the system to communicate with the
outside world. The board has a serial communications ports called a
UART (Universal Asynchronous Receiver Transmitter) to "talk" to the
internal display screen and "listen" to the detachable keyboard for
instructions from the user. The additional serial ports on the board
allow the same two-way communication with other terminals, printers,
modems, etc., through the connections on the back panel.

This board also has a general purpose 16-bit parallel port to
communicate with parallel I/O peripheral devices and an optional
specialty interface cal1.ed an IEEE 488 bus interface. (see Figure 3-1
below).

3-1

tJ H
~
t-rjo
H
Z to
H 0
1-3

~ H
0
Z

~
t:J

if
I-'
rt
c::
Ol
CD

t-rj
~

P3 1'4 1'5 1'6 ~
~

~
Cf.l

...
H
0

tJjt'%j
o 1-'0

W ~~
I p..t;

tv CD 1/0 lloard

" t'd w I
~ I--"

0
0
~
~
CD
n
rt
8 *1'1 alld 1'2 eUlllwel to the IEEE 79G 13m, (Mother Board).

m
'-'

3.3 I/O BOARD CONFIGURATION

I/O BOARD
I/O BOARD CONFIGURATION

The I/O board comprises
Figure 3-2 below):

seven main areas of circuitry (see

• the serial interface (Section 3.2.1)

• the real-time clock (Section 3.2.2)

• the interval timers (Section 3.2.3)

• the general purpose parallel port (Section 3.2.4)

• the parallel port direction and LED
(Section 3.2.5)

register

• the select/configuration switches (Section 3.2.6)

• the IEEE-488 bus interface and DMA controller
(optional) (Section 3.2.7)

3-3

~
l-'
rt ..,.
~
en
(1)
t1

H~
......... ..,.

W O~
I tdt1

.p- o (1)
III
t1 w
Pol

N
n ..,.
t1
g ..,.
rt

~ ItH

D
0 0

0

v
~

uD " "
::.
I"

ufA. u51D

PI

I'~A L.
/' T"",4e.

CJ....OCK

HH --.... --....
00

tptp
00

?d~
t;;t;;

(")
o
z
t-xj
H
GJ
~

~
H
o
Z

I/O BOARD
I/O BOARD CONFIGURATION

3.3.1 The Serial Interface

Seven RS232C serial interfaces with full handshaking can be
implemented on the I/O board. In the standard board configuration the
handshaking is dormant, but by changing simple jumper combinations,
any or all of the handshaking lines can be made functional (see
Appendix A Pin Locations). The baud rate is generated in the UARTs
and is software selectable from 110 baud to 19.2K baud. Many of the
handshaking lines can also be programmed to perform various functions
depending on the application (see Appendix A Pin Locations).

All 'seven UARTs (0-6) are selected at the even address locations on
the Memory Map (see Figure 3-3 Memory Map) between FOOOOO and F00036
with the first UART using the first four locations, the second using
the next four, and so on.

All UARTs use interrupt level 5 (INT5/) on the Multibus. The UARTs
are tied to the lower byte of the data bus, and address lines
BADRI-BADR2 are used for internal register selection. UARTs 1-5
communicate externally through the I/O connector board on the back of
the chassis. UART 0 connects to the internal terminal (transparent to
the user).

UART number six is configured to be used with a modem and for this
reason is brought off the board on its own connector, P4. This
connector does not connect to the I/O port panel on the back of the
system, and, for proper operation, it requires full handshaking,
including a data carrier detect (DCD) input signal (located at P4-8).

FOOOXX

00-06
08-0E
10-16
18-1E
20-26
28-2E
30-36
40-5E
60-7E
DO
D2

Serial
Serial
Serial
Serial

'Serial
Serial

Port
Port
Port
Port
Port
Port

o
1
2
3
4
5

Serial Port 6
Parallel Port & Interval Timers
Calender Clock
LEDs/Parallel Port Direction
Select/Configuration Switches

Figure 3-3
System 150 I/O Memory Map

3-5

I/O BOARD
I/O BOARD CONFIGURATION

3.3.2 The Real-Time Clock

The real-time clock (RTC) is a calendar clock that can be set and read
from the microprocessor. The RTC can be set to give data on the
following:

• tenths of seconds

• seconds

• tens of seconds

• minutes

• tens of minutes

• hours

• tens of hours

• days

• tens of days

• day of week

• months

• tens of month~

• automatic leap-year

A battery backup circuit provides power to the RTC for 1-2 years, thus
maintaining time and date even when the power is off for extended
periods. The RTC is selected at addresses F00060-F0007E, and address
lines BADRI BADR4 are used for internal register selection (see
Figure 3-3 I/O Memory Ma.p). The RTC data bus is four bits wide and is
tied to the four least significant bits of the low byte of the data
bus.

3.3.3 The Interval Timers

Two interval timers are included on the I/O board. Each timer is
software~programmable to operate in several different modes, and can
interrupt the microprocessor when software-specified conditions occur.
The timers are contained in the SY6522 Timer/PIA IC and are tied to
the lower byte of the data bus. Address lines BADRI-BADR4 select the
internal register. The SY6522 IC is selected at address
F00040-F0005E, and uses interrupt level 6 (INT6/) on the Multibus.

3-6

3.3.4 The Parallel Port

I/O BOARD
I/O BOARD CONFIGURATION

The I/O board has a 16-bit, general purpose, bidirectional parallel
port, with four handshaking lines. The parallel port is actually two
bidirectional eight-bit ports, port A and port B, supplied by the
SY6522 Timer/PIA IC. Two handshaking lines are supplied with each
eight-bit port, and each line can be programmed to operate in a
variety of ways. Both eight-bit ports are buffered with bidirectional
buffers that can be programmed as either inputs or outputs.

To configure the ports as either inputs or outputs, the correct data
must be written to the SY6522 IC and also to a bit-addressable latch
that controls the port buffers. The addressable latch is described in
detail in the parallel port direction and LED register description
that follows (see Section 3.2.5).

On power up both eight-bit ports are configured as inputs. The SY6522
IC is selected at address F00040-F0005E, and uses interrupt level 6
(INT6/) on the Multibus. The SY6522 is tied to the lower byte of the
data bus, and address lines BADRI BADR4 are used for internal
register selection.

3.3.5 The Parallel Port Direction And LED Register

The parallel port buffers and the six LEDs are controlled by an
addressable latch. The latch is selected at address location FOOODO.
The function of each output is described on the following page.

7 6 5 4 3 2 1 0

LED6 LED5 LED4 LED3 LED2 LEDl BDIR ADIR

3-7

I/O BOARD
I/O BOARD CONFIGURATION

• BDIR - Direction control for port B. A "1" at this
output causes the buffer on port B to become an
output~ while a zero (0) causes the buffer to
become an input.

• ADIR - Direction control for port A. A "1" at this
output causes the buffer on port A to become an
output, while a zero (0) causes the buffer to
become an input.

• LEDI-LED6 - On/off control for the SIX LEDs. A low
at one of these outputs causes the correspo,nding
LED to be turned on, while a "1" causes the
corresponding LED to be turned off.

• All outputs are cleared to zeroes on power up and
on reset.

Figure 3-4
Explanation of Addressable Latch Operation

An addressable latch is a write-only latch on which only one bit is
written at a time. This is accomplished by using three bits of the
input data as an address, to select which of the latch outputs is to
be written to. Another bit of the input data is used as the data to
be written to the addressed output. The input data byte is organized
as shown below:

3-8

7 6 5 4 3 2

X X X X DATA A2

1 0

Al A0

I

Figure 3-5

I/O BOARD
I/O BOARD CONFIGURATION

Least Significant Address Bit

Next to Least Significant

Most Significant Address Bit

Written to Latch Output

"Don't Care"

"Don't Care"

"Don't Care"

"Don't Care"

Input Data Byte Organization

3.3.6 The Select/Configuration Switches

The eight DIP switches may be
through five are used for
interface (see Section 3.2.7).
test/configuration switches.
FOOOD2 and are read only.

3.3.7 IEEE 488 Multibus

read by the system. Switches one
the address select of the IEEE-488 bus
Switches six through eight are used as
The switches are selected at address

This set of components is optional. When implemented
General Purpose Interface Bus (GPIB), connecting
peripherals to the I/O board.

it acts as a
other optional

3-9

CHAPTER 4

MEMORY MODULE

4.1 INTRODUCTION

This chapter contains a description of the memory board signals, the
electrical characteristics, and the board configuration, including the
location and the use of address switches.

4.2 DEFINITION AND FEATURES

The memory board is a Dynamic RAM Memory Module with Error Checking
and Correction (ECC). The module is organized as 256K words by 16
bits (K = 1024) and uses the 64K DRAM. Features of the memory module
include:

• Compatibility with both the Intel Multibus protocol
and the IEEE 796 bus, specifications

• Additional six bits of check bit data support error
detection and correction (EDAC)

• A control status register and an error status
register

• Decoding:

24 lines of address capability

A 20-bit address field with a 4K byte
granularity

Four additional address lines to select any
of 16 I-megabyte pages

Data access in either word or byte mode

4-1

MEHORY MODULE
DEFINITION AND FEATURES

The following diagram shows the configuration of the memory module and
identifies some of the circuitry areas.

~
~
~
:R
UJ
~
o
o «

,-...
..!)
'2
til
/'I
1.1)
~
o
o «
'-'
ti')
Q..

tn w

1 0 0 0 0 0 '~.~
~ DO~D ~
.~ DOOO~ =

Ifr ~ ~ 0 ~,~L
~~ 0 0 ~~~ ~ 0 ~ ~ 0 ~~-

-0 ~ ~ ~ DID

o 0 DrQ[0
. 001 ![0

o 0 OLj~ 0

\UJODDODDDDDD ~D
1 ~w W w w W WOO Do

E3

;o 0 [t~~)
Figure 4-1

256K Memory Module

4-2

if'!
ti o
t N W

C-7
2

8

".....
UJ

Vl~
Z:)
o::~
~

~~
~~

~
~ v
OJ
:2

8
a.

'oJ

4.3 MEMORY MODULE SIGNALS

MEMORY MODULE
MEMORY MODULE SIGNALS

Signals common to the Multibus system are defined in the Intel
Multibus Specification Manual 9800683 or the IEEE 796 bus
specification. Signals peculiar to the memory module are described in
Section 4.3.1.

4.3.1 Advanced Acknowledge (AACK/)

AACK/ warns the bus master of valid read data, thus avoiding
unnecessary wait states. AACK/ is identical to Transfer Acknowledge
(XACK/) except that it occurs earlier in the cycle during read
operations. AACK/ is brought out to the bus on connector P2.

4.4 ELECTRICAL CHARACTERISTICS

4.4.1 EDAC

EDAC corrects single bit errors and detects double bit/gross errors.
When enabled, EDAC completes all operations having a READ error by
attempting to write corrected data back to memory.

4.4.2 Status Registers (CSR And ESR)

The memory module has a control status register (CSR) and an error
status register (ESR). From the card edge with the card in place, you
can see the error status displayed on the LEDs.

CSR and ESR are accessed through an I/O port base address. CSR is
selected with ADRO = 1 (an electrical high); ESR with ADRO = O. The
I/O port base address i~ designated with eleven onboard switches.
Eight switches are compared with ADR4/ through ADR8/, and the three
more significant start address switches are compared with ADR1/
through ADR3/. Selecting addresses this way permits the eight more
significant bits of the I/O port address to be identical to other
memory boards in the system and to mirror the I/O port address
selection made based on position of the memory board within the
address space.

See Section 4.8.5 for the switch settings.

4-3

MEMORY MODULE
-ELECTRICAL CHARACTERISTICS

4.4.2.1 Control Status Register -

CSR controls and stores information on errors and power failure. You
can write to the CSR or read from it, depending on whether you are
executing an I/O Read Cycle (IORC) or an I/O Write Cycle (IOWC).

4.4.2.1.1 CSR Read Format -

Figure 4-2 shows the format for reading data from the CSR:

DAT7 DAT6 DAT5 DAT4 DAT3

DBE SBE 0 PFSN LPERR

D:AT2 DATi DAT0

HINH DBE EN SBE EN

T

Figure 4-2
CSR Read Format

4-4

SBE Interrupt Enabled

DBE Interrupt Enabled

Error Correction Enabled

Latch First Error Enabled

Not Implemented

Not Used

Single-Bit Error Has Occured

Double-Bit Error Has Occured

DAT7

0

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

Figure 4-3 shows the format for writing data into the CSR:

DAT6 DAT5 DAT4 DAT3 DAT2 DATi DAT0

0 0 RPFS LFERR HINH DBE EN SBE EN

I "1" = Enable, "0" = Reset SBE Interrupt

"1 II = Enable, "0" = Reset DBE Interrupt

Error Correction Disabled

Latch First Error Enabled

Reset Power Failsense F/F

Not Used

Not Used

Not Used

Figure 4-3
CSR Write Format

4.4.2.2 CSR Flag Control Bits - The system supports six CSR Flag
Control Bits, described below.

Double Bit Error Flag (DBE)

DBE indicates that two bits in the same word failed or
that a gross error has been detected. DBE is set when
a double bit error occurs, then reset when DBE EN control
bit is taken to zero. Setting DBE EN back to a logic one
enables detection of the next double bit error.

Single Bit Error Flag (SBE)

SBE, a read only signal, indicates that a single bit error
has been detected. SBE is set when the error is detected,
then reset when SBE EN control bit is taken to logic zero.
Setting SBE EN control bit back to a logic one enables
the detection of the next single bit error.

Latch First Error (LFERR)

LFERR allows you to select whether ERR data are updated
each time a SBE/DBE is detected, or only once on the first

4-5

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

error detected. Writing a logic one to the LFERR control
bit will enable LFERR so that the next error can be stored.
When you set LFERR to zero, the last error will always
update the ESR. LFERR can be read or written.

Error Correction Disabled (RINH)

When equal to logic one, HINH disables error detection,
error correction, and the write function to the checkbits.
Use HINH only for testing. HINH can be read or written,
and the board cannot be initialized when this bit is,set.

Enable DBE Interrupt (DBE EN)

When DBE EN equals logic one, interrupts on DBEs are
possible. Taking DBE EN control bit to a zero resets
any current DBE flag bit. Leaving DBE EN at a zero
disables DBE interrupts. DBE EN can be read or written.

Enable SBE Interrupt (SBE EN)

When SBE EN equals logic one, interrupts on SBEs are
possible. Taking SBE EN control bit to a zero resets
any current SBE. Leaving SBE EN at zero disables SBE
interrupts. SBE EN can be read or written.

4.4.2.3 Error Status Register -

When a single bit error occurs and the conditions for FE/LE have been
satisfied, ESR stores', the error information. You can only read data
f,rom the ESR. Clear the ESR by

• writing to it,

• pressing RESET (Sl), or

• making INIT/ active.

Figure 4-4 shows the format for reading data from the ESR:

4-6

DAT7 DAT6 DAT5

BANKl BANK0 SYN5

DAT4

SYN4

DAT3 DAT2 DATI

SYN3 SYN2 SYNl

Figure 4-4
ESR Read Format

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

DAT0

SYN0

I
Syndrome Bit 0

Syndrome Bit 1

Syndrome Bit 2

Syndrome Bit 3

Syndrome Bit 4

Syndrome Bit 5

Bank 1

Bank 0

4.4.2.4 ESR Signal Definitions -

Bank:

Bank 1 and Bank a define the physical row of DRAMS (BANK) in which
an SBE occurs. Table 4-1 shows the relationship between bank address
and the reference designator for memory devices within that row.

Bank 1 Bank a Memory Reference Designators
--

a a uOOO through u021

a 1 ulaO through ul2l

1 a u20a through u221

1 1 u300 through u32l

Table 4-1
Bank Signals Reference Table

4-7

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

Syndrome bit 5 through bit 0 (SYN5 - SYNO)

Bits 5 through 0 define the hamming code generated by the
SN74LS630 EDAC device when a SBE occurs. Table C shows the
relationship between the syndrome code and bit location within a given
bank.

4-8

Syndrome Code
(Bit 5 4 3 2 1 0)

1 1 a 1 a a
1 1 a a 1 a
1 1 a a a 1
1 o 1 100
1 a 1 0 I °
1 o 100 1
1 o 0 101
1 00011
0 1 1 100
0 11010
0 I 0 1 1 0
0 1 0 101
0 10011
0 01110
0 o 1 101
0 o 1 alI
I 1 III 0
I 1 1 1 a 1
1 1 1 all
1 1 all 1
1 01111
0 1 1 1 1 1
0 00011
1 1 1 100

Note: 1 = lamp on

Data
Bit

a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

,,,,f

Gross

Check
Bit

Error

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

0
1
2
3
4
5

Bit Location
X=0,1,2,3 (Bank)

xaa
xal
xa2
xa3
X04
X05
X06
X07
X08
X09
XIO
XII
X12
XI3
XI4
XIS
XI6
Xl7
XI8
X19
X20
X21

Condition
Gross Error Condition

Table 4-2
Syndrome Code

The syndrome eodes for DBEs are mutually exclusive of any SBE codes.
If you clear the ESR by writing to it, then by reading the ESR and
comparing it to zero you can check (poll) the board for errors.

4.4.2.5 Error Status LEDs -

The ten light emitting diodes (LEDs) near the address switches display
the error status: the left-most light indicates a DBE; the next
light indicates a SBE. Interpretation of the next eight lights is the
same as the ESR (see Section 4.4.2.2). Pressing reset (SI) or writing
to the ESR clears the ten LEDs. An active input on the INIT/line
clears the LEDs and the ESR.

4-9

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

4.4.3 Memory Features

The memory features described in this section fall into one of six
categories.

• Addressing (Section 4.4.3.1)

• EDAC (Section 4.4.3.2)

• Interrupt options (Section 4.4.3.3)

• Power fail reset (Section 4.4.3.4)

• Power source (Section 4.4.3.5)

• Advanced Acknowledge (Section 4.4.3.6)

4.4.3.1 Addressing-

rl Three sets of address switches (Figure 4-1) decode the lower and upper
\ ••• c.-l()W end of memory and select the CSR/ESR base address. Memory address
Ir I:' range extends to 1024KB with 4KB granularity. The CSE/ESR address

S
.i kl~ range extends to 4KB. See Section 4.8 for examples of switch

, settings.
!

4.4.3.1.1 Starting Address Selection -

I Bus address bits ADRC/ through AD13/MSB (Most Significant Bit) are
V compared with switches S2-8 through S2-1 respectively. When the bus

address bits are greater than or equal to the selected switch
settings, the conditions for the lower end of the address range are
satisfied. To select t~e memory board however, conditions for the
ending address must also be satisfied.

4.4.3.1.2 Ending Address Selection -

~us address bits ADRC/ through AD13/ (MSB) are compared with switches
S3-8 through S3-1 respectively. When the bus address bits are less
than or equal to the selected switch settings, the conditions for the
upper end of the address range are satisfied. Read about the lower
end address requirements in 4.8.2. The ending address switch
specifies the last 4KB block to be addressed; i.e., if the ending
address switches were set to 43 hexadecimal, the last byte to be
addressed would be 43FFF.

4-10

4.4.3.1.3 CSR/ESR Address Selection -

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

Bus address bits ADR4/ through ADRB/ and ADR1/ through ADR3/ are
compared with switches S4-8 through S4-1 and switches S2-3 through
S2-1 respectively. Including S2-3 through S2-1 in the selection of
the CSR/ESR address permits all memory boards to have the same I/O
base address with selection being determined by the starting address
for the memory. A closed switch represents a logical zero. Read
section 4.8 for examples of switch settings.

4.4.3.1.4 CSR/ESR Address Range -

A three-jumper pin arrangement permits the removal of ADR8/ through
ADRB/ from the CSR-ESR ad4ress selection. Connecting wirewrap post B5
to C5 yields an address range of 4096 bytes. Connecting B5 to A5
limits the range to 256 bytes. The smaller range uses only eight bits
and is therefore normally enabled only when an eight-bit
microprocessor is used for I/O communications.

4.4.3.2 Error Detection And Correction (EDAC) -

EDAC Enabled

EDAC is enabled by an active INIT/ during power up. When the CSR bit
HINH is low (see 4.4.2.1), the EDAC device, SN74LS630, is enabled.
EDAC generates checkwords, syndrome bits, and error flags (DBE and
SBE), and corrects data words. Corrected data from the EDAC are
stored in a data latch so that during a read operation the corrected
data:

• are available on the bus,

• can replace error data (write back on error), and

• are made available for byte write operations

EDAC Disabled

When the CSR bit HINH is high, the EDAC device is held in an input
mode, and the error flags (DBE and SBE) are held reset. Read data are
not corrected, and the write operation to the checkbits is inhibited.
Thus,

• write data generate no checkbits, and

• writing a word to a location with HINH active

4-11

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

modifies the 16 data bits but leaves the six check
bits unchanged from the last write operation to
where HINH was inactive.

4.4.3.3 Interrupt Options -

Hardware Programming

Interrupt request lines INTO/ through INT7/ generate nonbus vectored
interrupts to the bus master. These eight lines can be connected to
any combination of three signals: SBE L, DBE L, and PFIN L. Normal
configuration is SBE L to 0, DBE L to INTO/.

Interrupts are wired so that a SBE or DBE causes INT7/ to be asserted.
No interrupts are jumpered at shipment time. Figure 4-1 shows the
jumper pin locations.

Software Programming

With SBE EN and DBE EN bits in the CSR, you can enable or disable SBE
interrupt and DBE interrupt respectively. To clear the current
interrupt, disable the interrupt, then reenable so that the interrupt
will operate on future errors.

4.4.3.4 Power Source -

The memory module has a three-section power plane and a solid ground
plane. All logical devices are on one or a combination of these
planes.

4.4.3.5 RAM Configuration -

The memory module can be configured with 64K DRAMS and 64K DRAMs,
i.e., 64 DRAMs with 32K of usable memory. Address programming of the
64K DRAM partials depends on which part of the DRAM is usable; four
combination are possible. When using partials, the module comprises
only one DRAM type.

The programming information shown in Figure 4-7 depends on the type of
DRAM used. Altering this information is impossible unless you replace
all of the DRAMs on the memory module •

\
?

4-12

PtN

Gl

G2

G3

G4

GS
GS

G7

G8

G9

G10

4.5 TESTABILITY

1-fEMORY MODULE
TESTABILITY

Three test features ensure the optimum effectiveness of computer-based
incircuit and functional test systems.

4.5.1 Testing EDAC Logic

Thorough testing of EDAC logic requires access to the six checkbits
generated/checked by the EDAC device (SN74LS630). The data from these
memory locations are unavailable through the bus I/O. Via connector
P4 the EDAC test can access these checkbits. Table 4-3 shows the
connector configuration.

MNEMONIC OeSCRIPT10N I/O PtN MNEMONIC OESCRIPT10N

GNO Ground H1 SYNt..CK H Syndrome '-itch - Clock

GNO Ground H2 LMWTC 1- L.au:ned Wria - C4mmand

AEFMUX H Retresh CYC/CPU eye 0 1'13 AAMOSSl. I- RAM oisacle

dOH Start ot Cyde H4 CSWTEN I- Cl'Ieckbit Write
0

En_ble

l.ATCSO H Latcned Checkbit 0 0 H5 0.1S H Buffered Cl'Ieck-

l.ATCSl H Data 0-5 1 0 H6 0117 H bit Data

LATCS2 H (Tat Only) 2 0 1'17 ol,a 1'1

LATCS3H 3 0 HS 0119 H

LATCS4 H 4 0 H9 01201'1

LATCSS H 5 0 1'110 012' H

Table 4-3
P4 Connector Pin Assignments

4.5.2 Address Testing

A connector P3 ensures that all combinations of starting and ending
addresses are properly decoded. Each of the 24 ungrounded pins on P3
is in parallel with one of the address select switches. Figure 4-4
shows the connector configuration.

4-13

110

I

I

I

I

1/0

1/0
1/0
1/0
1/0

1/0

MEMORY HODULE
TESTABILITY

~ t CONNeCTOR F

(I)
(J1

I
(J'I

0

(I)
(J1

l

~
I
w

~
I

N

~ ~ ~ :g en en en en l:3 N N N N
I .!.. I I I I I .!.. I
w U'i (J1 w

:g. ~ ~ ~ (I) en (I) :n 13 N N N N

l I I I I ~ l I I
N <II <It • N •

Figure 4-4
Addressing Connections

4.5.3 Testing Arbitration

l:3 l:3 l:3
} SWITCH I ~ .!.. (J'I

~ l:3 l:3
} SWITCH ~ I I

W ...

To test arbitration, plot the skew between refresh request and CPU
request versus the start delay time as shown in Figure 4-4. Figure
4-5 shows the connector configuration for arbitration testing.

4-14

MEMORY CYC1.E
STARTEO REFRE:Sl't CYCLE STARTED

~.~ ______ A~ ________ ~

135--------
MWTCOR MRCC

ACTIVE TO dO ACTIVE 120 -------
PC CONNECTOR PfN G4

AtSTART

105-----

MAX 25~ __ ~

T'YP 15)-_____ .1

MIN
5 t----i'--rtf

-14 -9 -4 o +1 +13 +26

MWTC OR MRCC ACTIVE TO REFReQ ACTIve,

AtRea

Figure 4-5
Arbitration Testing Plot

NOTE

These test features
becomes necessary
programs.

may change as it
to modify the test

4-15

HEMORY MODULE
TESTABILITY

MEMORY MODULE
TESTABILITY

I

TUM40010 I 8 MODULE

'-
TIMING

A

GENERATOR S-

~ - "--_.- -_.

ED WITII RESPECT TO EDGE "8"15 SKEW
EDGE "A". TltE Ol
"~EfREO" 8Y 916
EDGE Of "dO U" IS
INOteA TION.

JTPUT AT REFR2/LEADS
NS. THE LEADING
TUE "CYCLE START"

I

"-19
r MRDCI 6 1 •

B~IUJ
C •••

P2·l8 ..
REfRli

P2-.40 I
REfR21

P4·G4
dO It

r PULSE
WIDT ..
MEASURE· Y·AXI

... - MENT

PULSE
WIDTH X·AXI
MEASURE·

"" ME NT ... -

Figure 4-6
Arbitration Testing Connections

4.6 MODES OF OPERATION

5

s

Input/output (I/O) and memory are the two basic modes of operation.
I/O operations are between the CSR and ESR. Memory operations involve
data transfers between memory. Figures 4-7 A, B, and C present the
major decisions and events that take place during each memory or I/O
cycle.

4-16

PUC •
.vPR~'AT.

OATA aYnCSl 0lIl
OATA..,.

LATCH
~'GM
Int

c ··....)
"'----,...-

MOI.O 0"" BUS HANOSMA'"

ISSUI ""'''UM AOO"'SS

...... NTAI. "'IVIOUS R'AO OATA

ISIU. "AS TO A,,&, " UN"$

LOAD "'''''''ClMI .ANO IIAIIIIC eeoc
WTO 0 .. STATUS RIGIST."

Figure 4-7 (A)
Memory Cycle Flow Chart

n.LalVl\'.l i'lUuu Lt.

MODES OF OPERATION

MEMORY MODULE
MODES OF OPERATION

PUC1

'VoC'
eONT"C~ STATUI

"acl$T1" ON
LOW lIT,.. aua

..

•• .-0. STATUI
•• GdT'ltil 0lIl

LDW IIYT1 .,.

I.0A0CZ)III'~
ST"T\IS .ICl.STI •

"'TMC .. 'A
,ttOIIl.a.. a'I"TI

Figure 4-7 (B)

c" '''''0.
S'TAl'VS .. tCIS"n1t

c

Figure 4-7 (C)

4-18

MEMORY MODULE
MODES OF OPERATION

Figure 4-8 summarizes the 8-bit and 16-bit data paths used.

(Figure 4-8 is on page 4-19A)

4.6.1 Read Operations

Data from a specified address is obtained from memory and sent
uncorrected to the EDAC logic for validation and correction. If EDAC
is inhibited, uncorrected data are immediately available at the bus as
either a 16-bit or 8-bit word. Otherwise, data are checked, and error
flags are set if an error is detected. If an SBE occurs, corrected
data are rewritten to memory. If enabled, error flags are latched
into the CSR, and interrupts are sent to the bus master. The CSR will
contain a value that can be interpreted to find the failing DRAM.

4.6.2 Write Operations

If EDAC is enabled, 16-bit and 8-bit words for a specified address are
sent to the EDAC logic to generate checkbits, and the data in memory
are checked for errors, corrected, and stored in registers. If 8-bit
data are written, the input replaces the unwanted byte of the
corrected word in the data register. A new checkbit word is
generated, and the data word in the register is written back into
memory.

4-19

rl
,....-

__ IOABVT '{ c:::::l

01 SEliC 1 I
c:l

,"A"A" tt'
8

AORO/

AORI1/

AOftI4/ - AORU'

..

PAGE COMPARATOR
..---

:z , ..
.. .-

r--~~8=U=ff~frR====~==================~

• [DBU:fi:R ff.ffi BUffE .R L.::

1l
========:::::;-;nr:'-;::::=r-=W=:::;-=--::::=1:.~

:~::::: • ~ M~DORf" ~ ~~". ".::::::::' ,. . ['. ~ .----
t T - ~~ = ~ "' .. "" , <~ .. ~:.:. j. ~.:

"HRU"
COUNnR

..
~

-
r--

...- a4" t1~~ 1.- I· .. r U ~ " ~ 10AC UTCH

'- 7'4 L.-i AOOREGS r-------+------J-----I1- ~.-- loweVTE

J;Q ~Jt-----t-----I----I~" '"it' I II' _ ~H
RAI, CAS, in II UL ~~l

BANK WHT ARRAY I
SlllCT O.UVERS II

~
a V

r.....J

r--
..

a

r-- ...- "--
'4

II

ttlQUeVJI
aUff£"

A. .. 0 A 18/-
~ • -v 0 Alfl

iWA,eVTl

aUf ft "

~

~ ~
OA TO/-
OA '" LOW

evn
BUffER

r-~'" I t)(HNIJEO AOOREli$iNABLI
:'t:~~~~S:::~:~! I:::::: ::::: ::1

r--m 1 J}. l. a

"U"U"

___ O_SC_I_L_' -,~4
_ lATOR I U

MRDeI
MWTCI
INII1I
aUENI
Ml'ROI

Rlfll
RHa'

IORCI
IOWCI
PfSNI

'fiNI

IIIGt. ADDRU.
BOUNDARV

SElICT
lI)(fff HEI(

LOW AODRU.

.. ..

BOUNDARY"
SllECT

'1'1000"£)(

J

I/O'O"T
BASE AOORI5$

SlUC,

Kl< ~-I\IOtt
OOtNlAIIV

I/O'OR'
BASE
COMPARATOR

MUIO"yCTRL
- ARBITRAIOR
- TIMING GENERA10R
- "EADeoRRECT ,",OOlfY W"ITE OONIROL
- RURIIl .. CONTROL
- aus CONTROL

1/0CTRl
- IRROft at A lln "Ea'UI"
- CO .. IROlITATU. REOIIT""
-.NTIRnUPICO,,'ROl

LID
OliP'-A VI

Ii ..
¢ l

IVNIl a
•
0 .-- '::::s

TER ..

~
I
0 BAN:':

0
ERRO r.

.;';";::~'V csnR
-

::J ...r I

J~~~J~~~~~~~~~~~~~~~~~~~~~!!::::::Jr-- 'TATtn
A. LAIC ..

--... cs,,~
I

_ ENABLE

...
l

, " _ - IRROR LOGGINO CONTROL

~~~~~~r~----~~·~·~~~~~~ .1 MANUAL 49 ERROR STA'UI REOIUIR 

'-----t>.f~ 'fin' 
NON VECTORED INURnU'T 

~ STRAPS 

...... 
v 

-lar RESET 

Figure 4-8 
Memory Cycle Data Paths 

I 



MEMORY MODULE 
MODES OF OPERATION 

4.6.3 Byte Swap 

A byte swap buffer is included to maintain compatibility with 8-bit 
bus masters. This buffer exchanges even bytes between the 8-bit 
system bus and the high-byte in memory when BHEN/ is high. 

4.6.4 Refresh 

Refresh permits you to retain data in dynamic memory. A Row Address 
Storage (RAS) only cycle is used for refresh and a minimum of 256 
cycles must occur every four milliseconds. A different row address is 
accessed for each cycle of the 256 cycles. 

4.7 CONFIGURING THE MEMORY MODULE 

Three things happen on powerup, 

1. The CSR is initialized so that error detection and 
correction are enabled, 

2. The ESR captures the last error, 

3. DBE and SBE interrupts are disabled. 

For initial checkout, you need set only the four address switches. 

4.8 LOCATION OF ADDRESS SWITCHES 

Turn the module so that the switches are facing you. 
right the switches facing you are: 

From left to 

STARTING ADDRESS, ENDING ADDRESS, 110 PORT BASE ADDUSS 

And in the upper right-hand corner, MEGABYTE PAGE 'ADDRESS. 

4-20 



NOTE 

HEMORY MODULE 
LOCATION OF ADDRESS SWITCHES 

The MSB is on the left of each switch. 
ON equals a logical zero (0). OFF 
equals a logical one (1). 

4.8.1 Starting Address 

The starting address is WXOOO hexadecimal. WX represents two hex 
digits (eight bits) that correspond directly to the eight bits of the 
starting address switch, S2. Consider the example in Figure 4-9. 

Desired Starting 
Address (hex) 

00000 
12000 
3FOOO 
~'1Jt;o/)O 

Switch S2 
: WX : -1 -2 -3 -4 -5 -6 -7 -8 

00 
12 
3F 
80 

000 
000 
001 
100 

o 0 000 
10010 
11111 
o . 0 000 

Figure 4-9 
Starting Address Settings 

4.8.2 Ending Address 

The ending address is YZFFF hexadecimal. YZ represents two hex digits 
(eight bits) that corresponds directly to the eight bits of the ending 
address switch, S3. Co~sider the example in figure 4-10. 

4-21 



MEMORY MODULE 
LOCATION OF ADDRESS SWITCHES 

Desired Ending Switch S3 
Address (hex) : YZ . -1 -2 -3 -4 -5 -6 -7 -8 . 

--------------------------------------------------
3FFFF 3F 0 0 1 1 1 1 1 1 
56FFF 56 0 1 0 1 0 1 1 0 
9EFFF 9E 1 0 0 1 1 1 1 0 
C3FFF C3 1 1 0 0 0 0 1 1 

--------------------------------------------------

Figure 4-10 
Ending Address Settings 

4.8.3 Enabling Extended Address Lines 

To enable the four extended address lines, locate the 5 position DIP 
switch, S5, in the upper right-hand corner when the board component is 
side up and the gold finger are away from you. The leftmost switch, 
S5-1, enables or disables the four additional address lines as shown 
here: 

Switch: Position: 

S5-1 
S5-1 

o 
1 

Function 

enables ADR14/ through ADRI7/ 
disables ADRI4/ through ADR17/ 

4.8.4 Setting Address For Extended Lines 

The board's location will be one of 16 possible one-megabyte pages. 
From the remalnlng f9ur positions of the 5 position DIP switch S5, 
select one page as shown in Table 4-4. 

4-22 



MEMORY MODULE 
LOCATION OF ADDRESS SWITCHES 

--------------------------------------------------
Switches 

One-megabyte S5-2 S5-3 S5-4 S5-5 
page 

-------------- ----------------------------------
0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

10 1 0 1 0 
11 1 0 1 1 
12 1 1 0 0 
13 1 1 0 1 
14 1 1 1 0 
15 1 1 1 1 

-------------- ----------------------------------

Table 4-4 
Switch Setting for Each Page 

NOTE 

You cannot place the board across 
megabyte boundaries. Thus, if the board 
is in the 24 address line mode and if S5 
is set to page 12 (C hex), then the 
combination of S2 and S3 setting may not 
extend the starting address below cocoon 
hex the ending address above CFFFFF hex 

4.8.5 I/O Port Address 

The I/O port base address is PQR hexadecimal, 

where: PQ represents two hex digits (eight bits) 
in direct correspondence to the eight 

4-23 



MEMORY MODULE 
LOCATION OF ADDRESS SWITCHES 

R 

Table 4-5 shows an 

PQ 
Switch S4 

I/O Port Setting 

bits of the I/O port base address switch, 
S4 

is a hex digit comprlslng the three more 
significant bits of W (from the module 
starting address) plus the state of ADRO/ 
f rom the bus. 

example of how to set the I/O port base address. 

R (PQR) 
Switch S2 I/O 
Start Address Logical Port REG 

-1 -2 -3 -4 -5 -6 -7 -8 . -1 -2 -3 ADRO Addr . 
------------------------------------------------------------------

0 0 0 0 0 0 0 0 0 0 0 L 000 CSR 
0 0 0 0 0 0 0 0 0 0 0 H 001 ESR 
0 1 0 1 0 1 1 0 0 0 0 L 560 CSR 
0 1 0 1 0 1 1 0 0 0 0 H 561 ESR 
1 0 1 0 0 1 0 1 0 0 1 L A52 CSR 
1 0 1 0 0 1 0 1 0 0 1 H A53 ESR 
1 1 1 1 1 1 1 1 1 0 0 L FF8 CSR 
1 1 1 1 1 1 1 1 1 0 0 H FF9 ESR 

------------------------------------------------------------------

Table 4-5 
Address Settings for I/O Port 

4-24 



WDIOOO AND COUPLER/FLOPPY BOARD SET 

5.1 INTRODUCTION 

This chapter describes the WDI000 and Coupler/Floppy Board Set, 
showing its configuration and explaining its functions and features. 

5.2 DEFINITION AND FEATURES 

Floppy disk control is handled by the WDI000 and Coupler/Floppy Board 
set designed by Western Digital. The set is formed by physically and 
logically connecting the WDIOOO board and the Coupler/Floppy board. 
Figure X-I shows the board set configuration. 

5-1 



WDIOOO AND COUPLER/FLOPPY BOARD SET 
WDIOOO AND COUPLER/FLOPPY BOARD SET CONFIGURATION 

5.3 WDIOOO AND COUPLER/FLOPPY BOARD SET CONFIGURATION 

The ~vDIOOO Coupler/Floppy Controller board inserts into the mother 
board in the bottom of the chassis. The WDIOOO board is attached to 
the coupler by four three-eighths inch standoffs. The circuitry of 
the two boards interface via the coupler cable, as shown in Figure 
5-1. 

5-2 



WDIOOO AND COUPLER/FLOPPY BOARD SET 
WDIOOO AND COUPLER/FLOPPY BOARD SET CONFIGURATION, 

-4am - -c:::J- - m$ -

-~--~ 

Legend: 

1 - WDIOOO Coupler Board 
2 - WD1000 Board 
3 - Screw 
4 - Standoff 
5 - tIDIOOO Coupler Cable 

Figure 5-1 
WDIOOO and Coupler/Floppy Board Set Configuration 

5-3 

1:::::::::::::::::::::::1 

$ 

nnnn 
IJULILI 

~ 
~ 



WD1000 AND COUPLER/FLOPPY BOARD SET 
COUPLER/FLOPPY CIRCUITRY AREAS 

5.4 COUPLER/FLOPPY CIRCUITRY AREAS 

The circuitry of the ~f.D1000 Coupler/Floppy board is divided into two 
areas. The first area acts as a coupler and Direct Memory Access 
(DMA) controller for the WD1000 Disk Controller, and has five areas of 
circuitry (see Section 5.4). The second area is a 5 1/4" Floppy Disk 
Drive controller and has two areas of circuitry (see Section 5.5). 

Figure 5-2 shows the circuitry areas on the Coupler/Floppy Board. 

M.A.CHINE-

~ Ff-----.l11"4 
CJ '--______ ..J ~r. ..... 1 

CS"I 

C-f-_-.JU1 

L:::::]UIO 
JPZ o 

~_--,IU41 

\---------i-AI)DR~~S 

1'-_ .... lIlI c----LU, ~1j5"O DUODf.. 

1I.N4-

lASt 
~_--,Itn, 

~ 
OMA po,ODIl..E~S f2.66IST~rt.. / CO\;\,,",""~~ 

Figure 5-2 
WDIOOO Coupler/Floppy Board Circuitry 

The circuitry areas are logically distinct and are discussed in the 
following sections. 

5-4 



WD1000 AND COUPLER/FLOPPY BOARD SET 
COUPLER/FLOPPY CIRCUITRY AREAS 

5.4.1 WD1000 Coupler/DMA Controller 

The heart of the coupler portion of the board is an 8 MHz clock 
synchronous state machine, which allows the flexibility and speed 
required to interface between the WD1000 board and the IEEE 497 bus. 

The coupler has five major circuitry areas: 

• A synchronous state machine (Section 5.3.1.1) 

• Address decode (Section 5.3.1.2) 

• DMA address register (Section 5.3.1.3) 

• Bus arbitration (Section 5.3.1.4) 

• Data Paths (Section 5.3.1.5) 

5.4.1.1 Synchronous State Machine -

The following shows the integrated circuits involved in the state 
machine and their functions. (Refer to Figure 5-2.) 

NOTE 

In the following examples, a "U" 
followed by a number (such as U2, U33, 
etc.) refers to a specific integrated 
circuit on the state machine. Notations 
such as U33-25 refer to a specific pin 
location on that integrated circuit. 

Functions 

State register 
Input forming logic 
Decision variable selection 
Input Synchronization 
Output forming logic 
Output latching 

5-5 

IC's 

U2 
U7,Ul1 
U18 (state machine inputs) 
U13 
Ul,U8 
U6,U12 (state machine outputs) 



WDIOOO AND COUPLER/FLOPPY BOARD SET 
COUPLER/FLOPPY CIRCUITRY AREAS 

5.4.1.2 Address Decode -

The address decoding is performed by the following: 

Functions 

Board select 
Onboard selects 

5.4.1.3 DMA Address Register/Counter -

IC's 

U14,U19,U26 
U31,U38 

Direct Memory Access (DMA) allows direct access to main memory for the 
transfer of data without using the CPU. Those IC's on the board that 
accomplish this function are indicated below. 

The DMA address is 24 bits wide and is generated by: 

Functions 

DMA register/counter 
Address buffer/driver 

5.4.1.4 Bus Arbitration -

IC's 

U23,U17,U22,U27,U34,U53 
U29,U28,U35,U54 

Bus arbitration (see Section I.X Bus Theory) is accomplished using the 
Intel 8218 Integrated Circuit (IC) U33. When the state machine wants 
the bus it brings the signal Bus Control Request (BCR) U33-25 (IC 
number U33, pin number 25) high. When the 8218 has received the bus 
it brings ADEN (address enable) U33-19 low. 

5.4.1.5 Data Path -

The data path is a transfer bus for input/output and data handling 
operations. Data going to the WDIOOO passes through U30. ICs U24 and 
U30 are used as data latchs to interface a 16-bit bus to an 8-bit bus. 
IC U37 is used to force the WDIOOO address lines low during DMA. 

5.4.2 Two-mode Operation Of 'Coupler 

The coupler operates in two modes: 
controller modes. 

5-6 

register interface and DMA 



5.4.2.1 Register Interface -

WD1000 AND COUPLER/FLOPPY BOARD SET 
COUPLER/FLOPPY CIRCUITRY AREAS 

While in register interface mode the coupler acts as a bus slave 
allowing the host system to read and write to the WD1000 internal 
registers. In this mode the state machine converts the interface 
signals of the Multibus to the signals required by the WD1000, 
ensuring that the timing requirements of both interfaces are met. 
These registers pass all status, parameters, and commands to and from 
the WD1000 disk and controller. 

5.4.2.2 DMA Controller -

The state machine services all WD1000 board requests for a DMA cycle. 
During a DMA cycle the coupler board becomes the system bus master, 
reads or writes a 16-bit word to system memory and writes two 8-bit 
bytes to the WDIOOO internal sector buffer. Bus control is 
relinquished between each DMA cycle and returned to the processor. 

5.4.3 Floppy Controller Circuitry 

The second circuitry area of the Coupler Board controls the 5 1/4" 
floppy disk drive. The Western Digital 1795 chip works with two other 
WD chips: the 1691 and the 2143 (see Figure 5-1) that do the data 
separation. The floppy controller interfaces with the Multibus using 
a simple logic. The floppy interface excludes a D}~ controller, and 
therefore the system processor must do the system interface. 

5.4.3.1 Data Separator -

The 1691 chip, used with a 74LS269 Voltage-controlled oscillator 
(VCO), performs the data separation. 

5.4.3.2 Write Precompensation -

Each track on the disk contains the same number of sectors; 
therefore, the inner tracks are more compressed. Read errors can 
occur because of data that has shifted location because of magnetic 
interference between the bits. The 1691 chip, used with the 2143, 
"precompensates" the data for the inner tracks by anticipating the 
deviation and writing to that anticipated location. The 2143 supplies 
four timing signals to the 1691. 

5-7 



WDIOOO AND COUPLER/FLOPPY BOARD SET 
WDIOOO BOARD CONFIGURATION 

5.5 WDIOOO BOARD CONFIGURATION 

The WDIOOO is a stand-alone, general purpose Winchester Controller 
board that interfaces up to four Winchester disk drives to a host 
processor. All necessary buffers and receivers/drivers are included 
on the board to allow direct connection to the drive. Both 34 pin 
(5-1/4" drive) and 50 pin (8" drive) connectors are provided, as well 
as four 20 pin data connectors. 

5-8 



ClOo 8"'4 ~·n" 8" .... E3 fl~'-§". ~'f :'. I " .. , ~,. 

VRt) ~ .. ' ""t " ... , fl." 4~ 
ct ... .. c:=:::J" .-t 0'- , ,,\00 «.'\s 

06 
fit. Itl 

~ ~ 
:~ ) It" D> ) 1[1] 
fl6 U, .1:. ut. us 
fit" 8"\' c::::J"''" r=J c:=:J " .. ~ " . ., ...... Q U 

Rilt \,1 oel& 0> ~ ) ~ ) 
~~t«, O~ U4 Ul U. .,. 
iiiflO7" 

[::::J1l4 :; .)" n )I ,), 

D 
II 

~ ~ ~ 0) ) IS I~ 
t:;; "'0 UU UI~ lit'S v,", u,f" Ult. ..... 'It c:::J A.<4Y OL. e 
e 

} I~ e DO) , > ) ) > 
txI 

Q') U '"1 U •• o ." u co u~, U Ie uu u-4 

0 ..... ~ ~ J. ,... t-'o :~ ) ) ) ) I> D ) p,.oq 

d~) 
VI ~ UCA UI.'J VtA. UU 0'. o c't 0.., 
I (")t; 

1.0 ...,.CD 
l' ~ t; 

n VI > ) ) ) I 5 t:; 
~ I H~'O I-' 

U " 
o JI. v •• U ... 0'. u-seo 

~ 
0 t-'ow c •• 0 f'1' 

~ 0 

~ I ~ ~ ) ~ I > ~ > UJ" U'. U .. " U40 
u~ U"' .. 

~ t:; t; 
t:; CD 

S» I-'() 

til > I ) I ) ) ) I ) 00 
oc::: 

V 4' U44 0"'..- U .... U<4., u", Ol-d ~ t-4 
b:ltIl 

I f 
> I ) O~ 

~ ~~ v'St-U'Sa t:;t-4 
0 

U<4, () I-d 

~ > > I ~ 0 I-d 
cu va Z t-<l 

0 D U '$"0 O'SI U'{" u~ U'S. ~ 
lilt .. , Hb:l 
c::J <;)0 

c:::~ 
~t:; 
1-3 
H en o tIl 
ZI-3 



WD1000 AND COUPLER/FLOPPY BOARD SET 
BOARD SET ELECTRICAL DATA 

5.6 BOARD SET ELECTRICAL DATA 

The following is a list of electrical data and specifications that 
pertain to the WD1000 Coupler/floppy and the WD1000 Disk Controller as 
a board set. 

ITEM 

Winchester Controller 

Encoding Method: 
Cylinders per Head: 
Sectors per Track: 
Heads per Drive: 
Drive Selects: 
Step Rate: 
Write Precomp: 
Sectoring: 
Drive Cable Length: 
DMA Address: 
DMA Data: 

Floppy Controller 

Sectoring: 
Density: 
Format: 
Sector Length: 
Cylinders per Head: 
Heads per Drive: 
Drive Selects: 
Write Precomp: 
Drive Cable Length: 

Voltages 

Board address 

SPECIFICATION 

Modified Frequency Modulation (MFM) 
Up to 1024 
Up to 256 
8 
4 
10 uS to 7.5 mS (0.5 mS increments) 
Yes 
Soft 
8 ft. max 
24 bits 
16 bits 

Soft 
Double (MFM) 
IBM System 34 
128, 256, 512, 1024 
Up to 256 
2 
4 
Yes 
8 ft. 

+ 5 volts 
+ 12 volts 
- 12 volts 

Decodes lower 12 address lines 
Base address selectable 
on 32-byte boundary 

5-10 



5.7 MECHANICAL DATA 

WD1000 AND COUPLER/FLOPPY BOARD SET 
MECHANICAL DATA 

The \ID1000 and Coupler board set interfaces with the 
Extended-Multibus. The board-set meets all electrical specification 
of the bus, but it does not meet the mechanical size specification. 
The following are the mechanical specifications for the board-set. 

ITEM SPECIFICATION 

WD1000 board: 6.83" X 9.88" 

Coupler board: 12" X 8.3" 

5.8 ENVIRONMENTAL DATA 

The following is the environmental specification for the board set. 

ITEM 

Ambient Temperature 
operating: 

Relative Humidity 
operating: 

5.9 SOFTWARE INTERFACE DATA 

SPECIFICATION 

OCto 50 C 

20% to 80% noncondensing 

Thirty-two registers communicate the command and status information. 
The registers are divided into two groups of 16, one g~oup for the 
Winchester disk drives and one group for the floppy disk drives. The 
registers are offset from a base address that can be located on any 
32-byte boundary in the I/O space. The following is an I/O map fQr 
the controller's registers. (Note: The addresses are 68000 
addresses. The least significant address on the 68000 (ADDRO) is 
inverted to that of the Multibus. 

5-11 



WDI000 AND COUPLER/FLOPPY BOARD SET 
BASE ADDRESS 

5.10 BASE ADDRESS 

System 150 (mapped) - F00180 hex 

5.11 WINCHESTER REGISTERS 

I/O port Input Command 
Address I/O Read 

Base + 0 Error Register 
Base + 1 Data Register 
Base + 2 Sector Number 
Base + 3 Sector Count 
Base + 4 Cylinder High 
Base + 5 Cylinder Low 
Base + 6 Status Register 
Base + 7 Size/Drive/Head 
Base + 8 Reserved 
Base + 9 Reserved 
Base + 10 Reserved 
Base + 11 Reserved 
Base + 12 Not Used 
Base + 13 Not Used 
Base + 14 Reserved 
Base + 15 Not Used 

5-12 

Output Command 
I/O Write 

Write Precomp 
Data Register 
Sector Number 
Sector Count 
Cylinder High 
Cylinder Low 
Command Register 
Size/Drive/Head 
Reserved 
Reserved 
Reserved 
Reserved 
DMA Addr. 9-16 
DMA Addr. 1-8 
DMA R/W 
DMA Addr. 17-23 



5.12 FLOPPY REGISTERS 

I/O port Input Command 
Address I/O Read 

Base + 16 Status Register 
Base + 17 Track Register 
Base + 18 Sector Register 
Base + 19 Data Register 
Base + 20 Reserved 
Base + 21 Reserved 
Base + 22 Reserved 
Base + 23 Reserved 
Base + 24 Interrupt status 
Base + 25 Reserved 
Base + 26 Reserved 
Base + 27 Reserved 
Base + 28 Reserved 
Base + 29 Reserved 
Base + 30 Reserved 
Base + 31 Reserved 

WD1000 AND COUPLER/FLOPPY BOARD SET 
FLOPPY REGISTERS 

Output Command 
I/O Write 

Command Register 
Track Register 
Sector Register 
Data Register 
Reserved 
Reserved 
Reserved 
Reserved 
Drv Sel/lntr Dis 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 

5.12.1 Description Of Floppy Registers 

The following is a brief description of the function of each of the 
Floppy registers. Hotor control is transparent to the software 
because of the head load and head load timing signal of the 1795 chip. 

5.12.1.1 Status Register (Read Only) -

The status register is updated after each command. The meaning of the 
bits of the status register may change following the different 
commands. The status is not valid until 28 uSec. after a write to 
the command register in double density, and 56 uSec. in single 
density. 

5.12.1.2 Command Register (Write Only) -

Commands are written to this register. Upon a write signal to the 
register the command is started. Each command has several flags, set 
as follows: 

5-13 



\vDIOOO AND COUPLER/FLOPPY BOARD SET 
FLOPPY REGISTERS 

v 0 No verify 
h 1 unload head at beginning 
T 1 Update track register 

aO 0 Normal data address mark 
U is set to the desired head 
E = 1 15 ms head settle time 
L = 1 for IBM compatability 
m 0 single record 

5.12.1.3 Track Register (Read/Write) -

o or 1 

The track register contains the present position of the drive heads. 
If a new drive is to be selected this register has to be saved and the 
new drive's track position written to the register. 

5.12.1.4 Data Register (Read/Write) -

This register is the port through which all the data passes to and 
from the disk drives. Once a data transfer begins, this register must 
be read or written to every 23 uSee. 

5.12.1.5 Drive Select/Interrupt Register -

This register is used to select the floppy drive. It is not 
the 1795 but is located on the coupler board. The 
hexadecimal pattern corresponds to each of the drives. 

Drive Select with Interrupts Disabled 

DRIVEO = FE hex 
'DRIVEl = FD hex 
DRIVE2 = FB hex 
DRIVE3 = F7 hex 
NO DRIVE = FF hex 

Drive Select with Interrupts Enabled 

DRIVEO 7E hex 
DRIVEl = 7D hex 
DRIVE2 = 7B hex 
DRIVE3 = 77 hex 
NO DRIVE = 7F hex 

5-14 

part of 
following 



\IDIOOO AND COUPLER/FLOPPY BOARD SET 
SIGNAL DEFINITIONS 

5.13 SIGNAL DEFINITIONS 

AO - Al7 
ADEN 
ADDRO - ADR17 
BCLK 
BCR 
BHEN 
BOARD SEL 
BPRN 
BPRO 
BREQ 
BUSY 
CONTR SEL 
DO - D7 
DATA REG SEL 
DMA R/W 
DRIVE LOAD 
DRQ 
FSEL 
HBIC 
HBOC 
HWC 
INC 
INIT 
INTO - INT7 
INT DIS 
INTRQ 
IORC 
IOWC 
LBIC 
LBOC 
LOADO -LOAD3 
LWC 
MR 
MRDC 
MWTC 
QO - Q7 
RC 
READ 
VSELO - VSEL2 
WAIT 
WDIOOO SEL 
WRITE 
XACK 
XACKBAK 
8MHZ 

Address 0 - Address 17 
Address Enable (means coupler has bus) 
Address 0 - Address 17 (DMA) 
Bus Clock 
Bus Control Request 
Bus High Enable 
Board Select 
Bus Priority In 
Bus Priority Out 
Bus Request 
Bus Busy 
Controller Select (WD1000) 
Internal Data Bus 
Data Register Select 
DMA Read / Write 
Drive Select Load 
DMA Request 
Floppy Controller Select 
High Byte Input Control (internal side) 
High Byte Output Control (internal side) 
High Write Control (multibus side) 
Increment 
Initialize (reset) 
Interrupt 0 - 7 
Interrupt Disable 
Interrupt Request 
I/O Read Control 
I/O Write Control 
Low Byte Input Control (internal side) 
Low Byte Output Control (internal side) 
DMA Register Load 0 ~ 3 
Low Write Control (multi bus s-ide) 
Master Reset 
Memory Read Control 
Memory Write Control 
Present state 0 - 4 
Read Control (multi bus side) 
Internal Read Strobe 
Variable Select 0 - 2 
Wait (WD1000 Handshake line) 
WD1000 Select 
Internal Write Strobe 
Transfer Acknowledge 
Transfer Acknowledge Back 
8 MHz Clock 

5-15 



APPENDIX A 

I/O BOARD JUMPER PIN LOCATIONS BY PORT 

The following chart arranges the jumper pi.ns according to their 
respective ports. 

Port 0 

JPl 

Port 1 

JP2 
JP19 
JP20 

Port 2 

JP3 
JPlS 
JP16 

Port 3 

A-I 

JP4 
JPll 
JP12 

Port 4 

JPS 
JP13 
JP14 

Port 5 

JP6 
JP17 
JP18 





APPENDIX B 

JUMPER PIN INPUT/OUTPUT SIGNALS 

The following chart shows the signals associated with each jumper pin, 
their functions, default state (on/off), and the status of the signal 
(input/output). 

Pin If 

JPl 
JP2 
JP3 
JP4 
JP5 
JP6 
JP7 
JP8 
JP9 
JPIO 
JPll 
JP12 
JP13 
JP14 
JP15 
JP16 
JP17 
JP18 
JP19 
JP20 
JP21 
JP22 

Signal Function 

TxEMT 
" 
" 
" 
" 

TxEMT 

CTS/RTS 
DCR/DTR 

" 
CTS/RTS 
DCR/DTR 
CTS/RTS 

" 
DSR/DTR 

" 
CTS/RTS 

" 
DSR/DTR 

Defaut State Input/Output 

Off 
" 
" 
" 
" 

Off 

On Both 
" ff 

" 11 

" 11 

" " 
" 11 

" " 
" " 
" " 
" " 
" " 
" " 

B-1 





APPENDIX C 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 

C-l 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
INTRODUCTION 

C.l INTRODUCTION 

DIAMOND is a general purpose interactive program which incorporates 
the capabilities of a compiler, assembler, debugger, loader, and 
operating system within a single architecture. 

Some of the attributes of DIAMOND are: 

core-efficiency 
high running speed 
extreme flexiblity 

The flexiblity of the language permits the user to develop a working 
vocabulary of subroutines tailored to his specific application. 

The most prominent feature of DIA}10ND is its principal data structure, 
called the dictionary. The dictionary is an ordered list of entries 
called words. Associated with the dictionary entry for each word is a 
name. A legal name for a word is any string of up to 255 ASCII 
characters. All printing ASCII characters, including letters, 
numbers, and special characters may be freely used within a name, 
except for the SPACE and RUBOUT characters. 

NOTE 

1. Do not use non-printing characters 
or control characters in a name. 

2. If,you create a name that looks like 
a number (in any radix), DIAMOND 
will assume that you are entering a 
number. To avoid this problem, make 
sure there is at least one character 
in the name that is not part of the 
set 1·'0", "1", "2", "3", "4", "5", 
"6", "7", "8", "9", "A", "B", "C", 
"D", "E", "F". 

3. Although the RUBOUT character may 
not be used as part of a name, 
pressing the RUBOUT (DELETE on some 
terminals) key deletes the character 
to the left of the cursor and may be 
used to correct a typing error. 

C-2 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
LITERALS 

C.2 LITERALS 

A literal is a sequence of characters 
DIAMOND supports two types of literal: 

which describes a constant. 
32-bit integer and string. 

C.2.1 Integer Literals 

An integer literal is a sequence of digits optionally preceded by a 
plus or minus sign, in accordance with these rules: 

1. All digits must be less than the current radix (also known as 
the base). For example, if the current radix is "DECIMAL", 
the digits 0 through 9 are valid. DIAMOND allows you to use 
BINARY, OCTAL, DECIMAL, or HEX as the radix. 

NOTE 

Although the default radix is 16 (HEX); to avoid 
confusion, the examples presented in this manual use 
a default radix of 10 (DECIMAL), unless otherwise 
specified. 

2. No spaces may be embedded within an integer literal. 

3. Integer literals must be in the range of -2,147,483,654 to 
2,147,483,653 if signed or 0 to 4,294,967,308 if unsigned. 

4. A sign is optional. No sign means the literal is unsigned. 

EXAMPLES: 

-1234 

+-100 

-AFCO 

is a le'gal literal (unless the current radix is 
BINARY) 

is not a legal literal (the second sign is illegal) 

is a legal literal if the current radix is HEX (if 
not, the line is ignored and an error message is 
printed) 

C-3 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
LITERALS 

C.2.2 String Literals 

String literals may take one of two forms: 

1. A string enclosed in double quotes: 

"STRING" 

NOTE 

A carriage return before the second double quote will 
terminate the string. 

2. A string preceded by one single quote and terminated by a 
SPACE, TAB, carriage RETURN, or FORM FEED: 

'STRING 

EXAl.'1PLES: 

"THIS IS A STRING LITERAL" 

'HELLO THERE 

C-4 



C.3 SYNTAX 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
SYNTAX 

DIAMOND syntax is quite simple. A legal command line consists of a 
sequence of literals and/or names of words separated by spaces or 
tabs, and is terminated by a carriage RETURN. 

Programming in DIAMOND consists primarily of defining a set of new 
words based on words which have already been defined. An initial 
vocabulary of about one hundred words called the KERNEL enables the 
user to get started. 

C.3.1 The Stack 

The principal vehicle for communication between words is the parameter 
stack, frequently called the stack. A stack is a common programming 
tool which allows the programmer to store information on a last-in, 
first-out method. An example of a stack is the tray dispenser in a 
cafeteria, where the only available tray is the top one, which must be 
removed before any of the other trays are accessible. Similarly, when 
clean trays come from the kitchen, they are placed on top of the trays 
already there. Thus, the most recently added trays are the first ones 
available. 

In many of the examples in the following sections, a picture like this 
will represent the stack: 

C-5 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
SYNTAX 

Stack 

A 

B 

C 

D 

E 

F 

G 

H 

In this example, "A" represents the entry at the top of the stack, "B" 
represents the next entry, and so on. 

In computer terminology, adding a parameter to the top of the stack is 
called pushing the parameter, and removing the top parameter is ~alled 
popping. 

Stack before push Stack after push 

A new data I 

B A 

C B 

D C 

C-6 



Stack before pop 

A 

B 

C 

D 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
SYNTAX 

Stack after pop 

B 

C 

D 

E 

Typically, the parameters upon which a word will operate are pushed on 
the stack. The word pops its parameters from the stack and pushes its 
results on the stack. 

C.3.2 Variables In Fixed Locations 

DIAMOND also uses communication through variables in fixed locations 
(not on the stack). In most cases, to use a variable which is in a 
fixed location, place the address of the variable on the stack, then 
execute a word that takes the address off the stack and operates on 
the variable at this address. 

C.3.3 Reverse-polish Notation 

DIAMOND uses reverse-polish notation (RPN) for all operations. This 
means that all operands precede their operators and parentheses are 
never necessary. 

Some hand-held scientific calculators use this method of entering 
instructions. For example: 

11+ 2 * 
1 2 3 * 

in RPN is 
in RPN is 

(1+1)*2 
1-(2*3) 

C-7 

in algebraic notation 
in algebraic notation 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
SYNTAX 

C.3.4 Addresses Versus Contents 

Unlike most high-level languages, DIAMOND enables the user to 
manipulate addresses and data. It is important, however, for the user 
to remain aware of the distinction between an address and its 
contents. 

Three common types of words which push numbers on the stack: 
literals, constants, and variables. 

A reference to a literal or a constant causes its value to be 
pushed on the stack. 
A reference to a variable causes its address to be pushed on 
the stack. 

The operators "@" and "!" are used to obtain and modify the value of a 
variable. They are defined on the following pages. 

NOTE 

1. In the examples on the following 
pages, you will see the characters 
"0 ] " at the left end of some of the 
lines. This is the prompt message 
which DIA}10ND prints to show that it 
is ready for input. This prompt is 
described in section A.7 below. 

2. If you are familiar with RPN, you 
may be confused by the use of an 
equals sign (=) in some of the 
examples. As described in section 
A.4.4, DIAMOND uses the equals sign 
to output the top number on the 
stack. The calculations specified 
are carried out on the stack whether 
or not the equals sign is present. 

C-8 



C.3.4.1 @ 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
SYNTAX 

This word is used to load the contents of a memory location (byte) 
onto the stack. It replaces the address on the top of the stack by 
the contents of that address. 

Stack before Stack after 

A c(A) 

B B 

For example: 

0] 341 @ prints the value of the byte at location 341 

C-9 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
SYNTAX 

C.3.4.2 @W 

This word is used to load the contents of the word (2 bytes) beginning 
at the memory location on top of the stack. It replaces the address 
on the top of the stack by the contents of that address. If the 
address on top of the stack is an odd byte location, an address 
error occurs. 

Stack before 

A 

B 

For example: 

0] 342 @W = 

Stack after 

c(A) 

B 

prints the value of the word which begins at 
location 342 

C-IO 



C.3.4.3 @L 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
SYNTAX 

This word is used to load the contents of the longword (4 bytes) 
beginning at the memory location on top of the stack. It replaces the 
address on the top of the stack by the contents of that address. If 
the address on top of the stack is an· odd byte location, an 
address error occurs. 

Stack before 

A 

B 

For example: 

0] 340 @L 

Stack after 

c(A) 

B 

prints the value of the longword which begins 
at location 340 

C-ll 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
SYNTAX 

C.3.4.4 

Store at the address on the top of the stack the number (byte) next to 
top of the stack. Both numbers are removed from the stack. 

Stack before Stack after 

A C 

B D 

C E 

(In this set of examples, A, B, and C represent constants, and X, Y, 
and Z represent variables.) 

For example: 

0] 100 X 

0] X Y 

0] X 10000 

0] X @ Y 

0] X @ Y @ + Z 

0] X A + Y ! 

0] X A B + + @ Y 

set value of X to 100 

set the value of Y to the address of X 

store the address of X in location 10000 

set the value of Y to the value of X 

add the values of X and Y and store the result 
in Z 

store (address of X)+A in Y 

set value of Y to the contents of location 
X+A+B 

C-12 



C.3.4.S !W 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
SYNTAX 

Store at the address on the top of the stack the word (2 bytes) 
contained in the entry next to the top of the stack. Both numbers are 
removed from the stack. If the address on top of the stack is an 
odd byte location, an address error occurs. 

Stack before Stack after 

A C 

B D 

C E 

For example: 

set value of X to 100 

C-13 



WICAT DIAGNOSTIC MONITOR (DIL~OND) 
SYNTAX 

C.3.4.6 !L 

Store at the address on the top of the stack the longword (4 bytes) 
contained in the entry next to top of the stack. Both numbers are 
removed from the stack. If the address on top of the stack is an 
odd byte location, an address error occurs. 

Stack before Stack after 

A C 

B D 

C E 

For example: 

0] 100 X ! 1 set value of X to 100 

C.3.4.7 .!<- OPERATOR 

C-14 



C.4 FIXED POINT OPERATORS 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

DIAMOND provides the user with a large number of fixed-point 
operators. Unless otherwise specified, all numbers used as arguments 
to these fixed point operators are 32-bit (4 byte) integers. 

C.4.1 UNARY OPERATORS 

The following operators replace the number on top of the stack 
(usually called "A") with their result. 

C-lS 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.1.1 MINUS 

Negates A. 

Stack before 

For example: 

0] 1 MINUS = 
-1 

C.4.1.2 .!ABS 

A 

B 

C-16 

Stack after 

- A 

B 



C.4.1.3 NOT 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Computes the logical complement of A. 

Stack before Stack after 

A NOT(A) 

B B 

C.4.1.4 .!2* 

C.4. 1.5 .! 2/ 

C.4.1.6 .!1+ 

C.4.1.7 .!1-

C-17 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.1.8 EQZ 

Tests if A is equal to zero. Replaces A by 0 if A is equal to 0, -1 
otherwise. 

Stack before 

A 

B 

* = 0 or -1 

For example: 

0] -1 EQZ = 
-1 

0] 0 EQZ = 
o 

Stack after 

* 
B 

C-18 



C.4.1.9 NEZ 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Tests if A is not equal to zero. Replaces A by 0 if A is not equal to 
0, -1 otherwise. 

Stack before Stack after 

A * 
B B 

* = 0 or -1 

For example: 

0] -1 NEZ = 
o 

0] 0 NEZ = 
-1 

C-19 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.1.10 LTZ 

Tests if A is less than zero. Replaces A by 0 if A is less than 0, -1 
otherwise. 

Stack before Stack after 

A * 
B B 

* = 0 or -1 

For example: 

0] -1 LTZ = 
0 

0] o LTZ = 
-1 

0] 1 LTZ = 
-1 

C-20 



C.4.1.11 LEZ 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Tests if A is less than or equal to zero. Replaces A by 0 if A is 
less than or equal to 0, -1 otherwise. 

Stack before Stack after 

A * 
B B 

* = 0 or -1 

For example: 

0] -1 LEZ = 
0 

0] o LEZ = 
0 

0] 1 LEZ = 
-1 

C-21 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.1.12 GEZ 

Tests if A is greater than or equal to zero. Replaces A by 0 if A is 
greater than or equal to 0, -1 otherwise. 

Stack before Stack after 

A * 
B B 

* = 0 or -1 

For example: 

0] -1 GEZ = 
-1 

0] o GEZ = 
0 

0] 1 GEZ = 
0 

C-22 



C.4.1.13 GTZ 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Tests if A is greater than zero. Replaces A by 0 if A is greater than 
0, -1 otherwise. 

Stack before Stack after 

A * 
B B 

* = 0 or -1 

For example: 

0] -1 GTZ = 
-1 

0] o GTZ = 
-1 

0] 1 GTZ = 
0 

C-23 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.1.14 SPLIT 

Splits the longword on top of the stack into two words. The two words 
replace the top two stack entries. SPLIT sign-extends the results. 
In other words, the high order bit of each resulting word is 
prop~gated to the left to fill up the longword stack entry. If the 
first bit is 0, the stack entry will be left-filled with zeroes. If 
the first bit is 1, the stack entry will be left filled with Fs (hex). 
(See the example below). 

Stack before 

A 

B 

C 

For example: 

0] 12345678 SPLIT = = 
1234 5678 

0] HEX FEEE7EEE SPLIT = = 
FFFFFEEE 7EEE 

Stack after 

I first half I 

I last half I 

C 

(The second number is left-filled with zeroes, which do not print.) 

C-24 



C.4.1.15 SPLITB 

\-lICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Splits the word on top of the stack into two bytes. The two bytes 
replace the top two stack entries. SPLITB works just like SPLIT 
execpt it ignores the top word of the longword on top of the stack. 
SPLITB sign-extends the results as does SPLIT. 

Stack before 

A 

B 

C 

For example: 

0] 1234 SPLITB = = 
12 34 

0] HEX FE7E SPLITB = = 
FFFFFFFE 7E 

Stack after 

I first half I 

I last half I 

C 

(The second number is left-filled with zeroes, which do not print.) 

C-25 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.1.16 JOIN 

Combines the bottom words of the top two stack entries to form a new 
longword, which is placed on top of the stack. 

Stack before 

'I first half I 

1 last half 1 

c 

For example: 

0] 1234 5678 JOIN = 
56781234 

Stack after 

result 

c 

D 

C-26 



C.4.1.17 JOINB 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Combines the bottom bytes of the top two stack entries to form a new 
word, which is placed on top of the stack. 

Stack before 

I first half I 

I last half I 

C 

For example: 

0] 12 34 JOINB = 
3412 

Stack after 

result 

C 

D 

C-27 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.2 BINARY OPERATORS 

The following operators replace the top two numbers on the stack with 
their results. 

C-28 



C.4.2.1 + 

Computes B+A. 

Stack before 

For example: 

OJ 1 1 + = 
2 

0] 1 1 1 + + = 
3 

A 

B 

C 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Stack after 

B + A 

c 

D 

C-29 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.2.2 -

Computes B-A. 

Stack before 

For example: 

0] 2 1 - = 
1 

A 

B 

C 

C-30 

Stack after 

B - A 

C 

D 



C.4.2.3 * 

Computes B*A. 

Stack before 

For example: 

0] 2 3 * = 
6 

A 

B 

C 

\.JICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Stack after 

B * A 

C 

D 

C-31 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.2.4 / 

Divides B by A and returns the quotient and remainder. 

Stack before 

For example: 

0] 8 2 / = = 
4 0 

0] 7 2 / = 
3 1 

A 

B 

C 

"A modulo B" can be computed as: 

0] A B / DROP 

For example: 

0] 5 3 / DROP = 
2 

Stack after 

I quotient 

I remainder I 

C 

C-32 



C.4.2.S lu 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Performs an unsigned divide of B by A and returns the quotient and 
remainder. 

Stack before 

For example: 

0] 8 2 lu = = 
4 0 

A 

B 

C 

Stack after 

I quotient 

I remainder I 

C 

C-33 



WICAT DIAGNOSTIC MONITOR (DI&~OND) 
FIXED POINT OPERATORS 

C.4.2.6 MAX 

Returns the signed maximum of Band A. 

Stack before 

For example: 

0] -1 5 MAX 
5 

A 

B 

C 

C-34 

Stack after 

max(B,A) I 

C 

D 



C.4.2.7 MIN 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Returns the signed minimum of Band A. 

Stack before 

For example: 

0] -1 5 MIN = 
-1 

A 

B 

C 

Stack after 

min(B,A) I 

C 

D 

C-35 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.2.8 AND 

Returns the logical AND of Band A. 

Stack before 

For example: 

0] 1 0 AND = 
o 

0] 1 1 AND = 
1 

A 

B 

C 

C-36 

Stack after 

B AND A 

C 

D 



C.4.2.9 OR 

\~ICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Returns the logical OR of Band A. 

Stack before 

For example: 

0] 0 0 OR = 
o 

0] 1 0 OR = 
1 

A 

B 

C 

Stack after 

B OR A 

C 

D 

C-37 



WICAT DIAGNOSTIC HONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.2.10 XOR 

Returns the logical EXCLUSIVE OR of Band A. 

Stack before 

For example: 

0] 1 0 XOR = 
1 

0] 1 1 XOR = 
o 

A 

B 

C 

C-38 

Stack after 

B XOR A 

C 

D 



C.4.2.11 EQ 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Tests if B is equal to A. Returns 0 if B is equal to A, -1 otherwise. 

Stack before Stack after 

A * 
B C 

C D 

* = 0 or -1 

For example: 

0] 1 2 1 - EQ = 
-1 

C-39 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.2.12 NE 

Tests if B is not equal to A. Returns 0 if B is not equal to A, -1 
otherwise. 

Stack before 

A 

B 

C 

* = 0 or -1 

For example: 

0] 1 3 2 - NE 
-1 

Stack after 

* 
C 

D 

C .... 40 



C.4.2.13 LT 

Tests if B is less than A. 
otherwise. 

Stack before 

A 

B 

C 

* = 0 or -1 

For example: 

0] 5 4 LT = 
o 

0] 7 9 LT = 
-1 

WICAT DIAGNOSTIC MONITOR (DI.~OND) 
FIXED POINT OPERATORS 

Returns 0 if B is less than A, -1 

Stack after 

* 
C 

D 

C-41 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.2.14 LE 

Tests if B is less than or equal to A. Returns 0 if B is less than or 
equal to A, -1 otherwise. 

Stack before Stack after 

A * 
B C 

C D 

* = 0 or -1 

For example: 

0] 5 4 LE = 
o 

C-42 



C.4.2.15 GE 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Tests if B is greater than or equal to A. Returns 0 if B is greater 
than or equal to A, -1 otherwise. 

Stack before 

A 

B 

C 

* = 0 or -1 

For example: 

0] 5 4 GE = 
a 

Stack after 

* 
C 

D 

C-43 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.2.16 GT 

Tests if B is greater than A. Returns 0 if B is greater than A, -1 
otherwise. 

Stack before 

A 

B 

C 

* = 0 or -1 

For example: 

0] 6 5 GT 
o 

Stack after 

* 
C 

D 

C-44 



C.4.2.17 LSL 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Performs a logical shift left of the data in B by the number of bits 
in A. 

NOTE 

Logical shifts should be used only on 
unsigned numbers. 

Stack before Stack after 

count 

data 

C 

For example: 

0] HEX 7FFFFFFF 1 LSL = 
FFFFFFFE 

0] DECIMAL 1 3 LSL = 
8 

shifted 

C 

D 

C-45 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.2.18 LSR 

Performs a logical shift right of the data in B by the number of bits 
in A. 

NOTE 

Logical shifts should be used only on 
unsigned numbers. 

Stack before Stack after 

count 

data 

C 

For example: 

0] HEX FFFFFFFF 1 LSR = 
7FFFFFFF 

shifted 

C 

D 

C-46 



C.4.2.19 ASL 

\-lICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Performs a arithmetic shift left of the data in B by the number of 
bits in A. 

NOTE 

Arithmetic shifts should be used only on 
signed numbers. 

Stack before Stack after 

count 

data 

C 

For example: 

0] HEX 8FFFFFFF 1 ASL = 
-00000002 

0] HEX 8FFFFFFF 1 ASL =U 
9FFFFFFF 

shifted 

C 

D 

C-47 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.2.20 ASR 

Performs a arithmetic shift right of the data in B by the number of 
bits in A. 

NOTE 

Arithmetic shifts should be used only on 
signed numbers. 

Stack before Stack after 

count 

data 

C 

For example: 

0] HEX FFFFFFFF 1 ASR =U 
FFFFFFFF 

0] HEX 7FFFFFFF 1 ASR =U 
3FFFFFFF 

0] HEX 8FFFFFFF 1 ASR =U 
C7FFFFFF 

.,. 

shifted 

C 

D 

C-48 



C.4.3 Stack Operators 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

A number of operators are also provided whose sole function is to 
reorganize the elements of the stack: 

C-49 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.3.1 DUP 

Places a duplicate of A on top of the stack. The rest of the stack is 
undisturbed. 

Stack before Stack after 

A A 

B A 

C B 

D C 

For example: 

0] 1 2 DUP = = 
221 

C-50 



C.4.3.2 OVER 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Places a duplicate of B on top of the stack. The rest of the stack is 
undisturbed. 

Stack before Stack after 

A B 

B A 

C B 

D C 

E D 

For example: 

0] 1 2 OVER = = = 
121 

C-Sl 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.3.3 20VER 

Places a duplicate of C on top of the stack. The rest of the stack is 
undisturbed. 

Stack before Stack after 

A C 

B A 

C B 

D C 

For example: 

0] 1 2 3 20VER = = = 
132 1 

C-S2 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.3.4 30VER 

Places a duplicate of D on top of the stack. The rest of the stack is 
undisturbed. 

Stack before Stack after 

A D 

B A 

C B 

D C 

E D 

F E 

, For example: 

0] 1 2 3 4 30VER = = = = 
1 432 1 

C-53 



WICAT DIAGNOSTIC MONITOR (DIM~OND) 
FIXED POINT OPERATORS 

C.4.3.S UNDER 

Replaces B by A and moves the stack pointer down one position. 

Stack before 

A 

B 

C 

For example: 

0] 1 2 3 UNDER = = 
3 1 

Stack after 

A 

c 

D 

C-S4 



C.4.3.6 2UNDER 

WICAT DIAGNOSTIC MONITOR (DIL~OND) 
FIXED POINT OPERATORS 

Replaces C by A and moves the stack pointer down one position. 

Stack before 

A 

B 

C 

D 

E 

For example: 

0] 4 3 2 1 2UNDER = = = 
124 

Stack after 

B 

A 

D 

E 

F 

C-55 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.3.7 3UNDER 

Replaces D by A and moves the stack pointer down one position. 

Stack before 

A 

B 

c 

D 

E 

For example: 

5 4 3 2 1 3UNDER = = = 
2 3 1 5 

Stack after 

B 

C 

A 

E 

F 

C-56 



C.4.3.8 DROP 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Discards the number at top of the stack. 

Stack before 

A 

B 

C 

For example: 

0] 1 2 3 DROP = 
2 1 

Stack after 

B 

C 

D 

C-57 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.3.9 SWAP 

Exchanges the top two entries on the stack. 

Stack before 

A 

B 

c 

D 

For example: 

0] 1 2 SWAP = = 
1 2 

C-58 

Stack after 

B 

A 

C 

D 



C.4.3.10 2SWAP 

Exchanges Band C. 

Stack before 

A 

B 

C 

D 

E 

For example: 

0] 1 2 3 4 2SWAP = = = = 
4 2 3 1 

\vICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Stack after 

A 

C 

B 

D 

E 

C-59 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.3.11 FLIP 

Exchanges A and C. 

Stack before 

A 

B 

C 

D 

E 

For example: 

0] 1 2 3 4 FLIP = = = 
234 1 

C-60 

Stack after 

C 

B 

A 

D 

E 



C.4.3.12 +ROT 

Rolls top 3 stack entries up. 

Stack before 

A 

B 

C 

D 

E 

For example: 

0] 1 2 3 +ROT = = = 
2 1 3 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Stack after 

B 

C 

A 

D 

E 

C-61 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.3.13 -ROT 

Rolls top 3 stack entries down. 

Stack before 

A 

B 

c 

D 

E 

For example: 

0] 1 2 3 -ROT = = = 
132 

C-62 

Stack after 

C 

A 

B 

D 

E 



C.4.4 I/O WORDS 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

DIAMOND' provides a number of words which are used for input and 
output. 

C-63 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.4.1 TYO 

Output the ASCII character in the rightmost 8 bits of A. 

For example: 

0] 33 TYO 

(ASCII 33 is an exclaimation point.) 

C-64 



C.4.4.2 CR 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Output a <CR)<LF) (carriage return, line feed) combination. 

For example: 

0] 65 TYO CR 66 TYO 
A 
B 

(ASCII 65 = "A", 66 ::: "B".) 

C-65 



WICAT DIAGNOSTIC MONITOR (DIAHOND) 
FIXED POINT OPERATORS 

C.4.4.3 SPACE 

Output a space. 

C-66 



C.4.4.4 SPACES 

Output A spaces. 

For example: 

0] 65 TYO 7 SPACES 66 TYO 
A B 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C-67 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.4.5 TYl 

Input a character and put it on top of the stack. 

For example: 

0] TYI = 

61 
0] 

(press the"A" key) 

C-68 



C.4.4.6 = 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

Output the number at top of the stack in the current radix followed by 
a space. 

For example: 

0] 1 2 3 = = = 
321 

C.4.4.7 .!? 

NOTE 

The n=n operator removes the number from 
the stack. 

C-69 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.4.8 TYPE 

Output string which starts at location stored at B. 

0] "THIS IS A TEST" TYPE 
THIS IS A TEST 

C-70 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C. 4.5 vlORDS WHICH CHANGE THE CURRENT RADIX 

BINARY 

Set current radix to BINARY. 

OCTAL 

Set current radix to OCTAL. 

DECIMAL 

Set current radix to DECIMAL. 

HEX 

Set current radix to HEXADECIMAL. 

For example: 

0] HEX 10 DUP = 
10 
0] DECIMAL DUP = 
16 
0] OCTAL DUP = 
20 
0] BINARY = 
10000 

C-71 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
FIXED POINT OPERATORS 

C.4.S.l • !-1<-

C.4.S.2 • !+1 

C.4.S.3 • ! 1+! 

C.4.S.4 • ! 1-1 

C.4.S.S • !MOVE 

C.4.S.6 • !XCHG 

C.4.S.7 .!MVBYTES 

C.S COLON DEFINITIONS 

To define a new word in terms of previously defined words, use the 
colon definition: 

'NEWWORD : WORDl WORD2 ••• WORDN ; 

A colon definition consists of the following parts: 

1. The name of the word being defined, preceded by a single 
quote ('). 

2. A colon (:), which separates the name of the word being 
defined from its definition. 

3. The definition of the word. 
4. A semicolon (;), which terminates the definition. 

NOTE 

The colon must be preceded and followed 
by a space or tab, and the semicolon at 
the end must be preceded by a space or 
tab. 

This creates a new dictionary entry called NEWWORD which, when 
executed, will in turn execute WORDl, WORD 2 , ••• , WORDN. 

Each of the words WORD1, WORD 2 , WORDN must already 
entries in the dictionary before definition of NEWWORD. 
fatal error message will be generated. 

exist as 
If not, a 

If, in the above example, WORD2 is not yet defined when NEWWORD is 
defined, the fatal error message will be: 

WORD2 

C-72 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
COLON DEFINITIONS 

undefined, compiling ••• WORD2 ••• in line 
, NEWWORD : WORD 1 WORD2 ••• WORDN ; 

A word may be redefined at any time. In this case, all prior 
definitions which referenced that word will still execute the old 
version. All subsequent definitions, however, will execute the new 
version. 

EXAMPLES: 

NOTE 

If the name of a word being redefined 
.appears within the new definition, its 
old meaning will be used for purposes of 
the definition. Thus, the new version 
of the word will refer to the old 
version. 

'AVERAGE + 2 I ; 

This defines the word "AVERAGE" which computes the average of the top 
two numbers on the stack. 

0] 2 4 AVERAGE = 
3 

'SPACE 32 TYO ; 

This defines the word "SPACE" which types a space. 
for a space is 32 decimal). 

C-73 

(The ASCII code 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
ITERATION 

C.6 ITERATION 

DIAMOND provides five means for iterative execution of a sequence of 
words, namely: 

N ( ••• ) 

BEGIN 

BEGIN 

Execute the words included in parentheses N 
times. 

... END 

Execute the words between "BEGIN" and "END" 
until a condition is satisfied. 

IF .... REPEAT 

Execute the words between "BEGIN" and "IF.'I 

If the condition is met, execute the words 
between "IF" and "REPEAT", then loop back to 
"BEGIN". 

If the condition is not met, exit, skipping 
the words between "IF" and "REPEAT .11 

DO ••• LOOP 

Execute the words between "DO" and "LOOP It ) 

running index from a lower to an upper limit, 
incrementing by 1 each time. 

DO ••• N +LOOP· 

Execute the words between "DO" and "+LOOP l
lt 

running an index from a lower to an upper 
limit, incrementing by N each time. 

Iterations may be nested subject to the normal restrictions on 
overlapping ranges, i.e. any iteration which is initiated within the 
range of another iteration must be terminated within that same range. 

C-74 



C.6.l N ( ••• ) 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
ITERATION 

The following construction executes a sequence of words repetitively: 

N ( WORDI WORD2 ••• WORDN) 

The sequence WORDl, WORD 2 , ••• WORDN is executed N times where N is 
the number on the top of the stack. The value of N can be specified 
either when the iteration is defined or when it is executed. See the 
examples below. 

If N is zero or negative, the sequence of words is not executed at al~ 
and control passes to the word following the tI)". 

EXAMPLES: 

'DINGDING: 2 ( DING ) 

This definition is functionally equivalent to: 

'DINGDING: DING DING ; 

In either case, executing "DINGDING" causes the word "DING" to be 
executed twice. ("DING" must have been previously defined.) 

'SPACES: (SPACE); 

This is a definition of the word "SPACES". Thus, "20 SPACES" causes 
"SPACE" to be executed 20 times. 

In this example, the value of "N" is specified at execution time. 

C-75 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
ITERATION 

C.6.2 BEGIN ••• END 

Use the BEGIN ••• END iteration to execute a sequence of words and 
then, depending on a computed logical variable, either repeat the 
sequence or continue with the next instruction: 

BEGIN WORDI WORD2 WORDN END 

The sequence WORDl, WORD2, ••• is executed once. When the "END" is 
reached, the top of the stack is popped and tested. If it is true 
(0), control passes to the word following the "END". If it is false 
(not 0), control passes back to the word following "BEGIN". 

EXAMPLE: 

'EXAMPLE 5 BEGIN 1 - DUP DUP = EQZ END DROP ; 

This defines the word "EXAMPLE" which might be called as follows: 

0] 5 EXAMPLE 
43210 

Each time through the loop, the top of the stack (initially the number 
5) is decremented, printed, and compared to zero. If it is not zero, 
the loop is repeated. When the top of the stack becomes zero, the 
loop terminates. 

C-76 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
ITERATION 

C.6.3 BEGIN ••• IF ••• REPEAT 

BEGIN ••• IF ••• REPEAT is similar to BEGIN END except that the 
test is made in the middle of the loop rather than at the end: 

1. The words from "BEGIN" to "IF" are executed. 

2. If the top of the stack is true (0) when execution reaches 
the "IF/ l the words between "IF" and "REPEAT" are executed 
and control then passes back to the word following "BEGIN. II 

3. If the top of the stack is false (not 
reaches the "IF/- control passes to 
"REPEAT. Ii 

C-77 

0) when execution 
the word following 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
ITERATION 

C.6.4 DO LOOPS 

A DO loop facility is provided by DIAMOND for indexing through a 
sequence of words. There are two forms of DO loop: 

HIGH LOW DO WORDI WORD2 ... WORDN LOOP 

HIGH LOW DO WORDI WORD2 ... WORDN INCR +LOOP 

The limits "HIGH" and "LOW" (the top two stack entries) are compared. 
If "HIGH" is less than or equal to "LOW", control passes to the word 
following uLOOP" or "+LOOP". Otherwise, the sequence WORD 1 , WORD 2 , 

WORDN is executed. 

"LOOPf1 causes the lower limit ("LOW") 
compared to the upper limit ("HIGH"). 
than "HIGH", the loop is terminated. 
performed. 

to be incremented by 1 and 
If "LOW" is equal to or greater 

Otherwise, another iteration is 

"+LOOP" is identical to "LOOP" with the exception that "LOW" is 
incremented by the word on the top of the stack ("INCR"). "INCR" must 
be a positive number. 

NOTE 

In this release of DIAMOND, all DO loops 
will execute at least once, even if 
"HIGH" is initially less than or equal 
to "LOW". This will be changed in a 
future release. 

Within the range of the loop, the current value of the loop index is 
available by using the word "I". If DO loops are nested, "I" always 
contains the value of the innermost index. The next outer indices are 
available using the words "J" and "K". The word "I'" is used to 
obtain the value of "HIGH"+"LOW"-I-l. This is used to run an index 
backwards from "HIGH"-l to "LOW." The words "J'" and "K'" are 
similarly defined. 

When parentheses are nested with "DO" loops, they count as one level 
of indexing. "I" used within the range of a parenthesis iteration 
will return the current value of the iteration count (which runs from 
its initial value downwards to one). 

For example: 

C-78 



0] 3 0 DO CR 5 ( I = ) LOOP 
o 1 234 
o 1 234 
o 1 234 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
ITERATION 

C-79 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
ITERATION 

C.6.4.1 EXIT and LAST I 

The word "EXIT" causes the innermost loop in which it is embedded to 
unconditionally terminate on the next cycle, whether a DO loop or a 
parenthesis loop. 

The word "LAST_I", if executed immediately after leaving a loop, will 
push onto the stack the value of "I" at the time the word "EXIT" was 
executed. 

If the word "EXIT" was never executed, LAST I will push the value of 
"HIGH". 

EXAMPLES: 

0]5 0 DO I = LOOP 
1 234 

0] 4 0 DO 4 0 DO J 4 * I + = LOOP CR LOOP 
o 1 2 3 
4 5 6 7 
8 9 10 11 
12 13 14 15 

0] 5 0 DO I' = LOOP 
43210 

o 21 1 DO I + DUP = 2 +LOOP DROP 
1 4 9 25 36 49 64 81 100 

Suppose you have a DO loop that uses "I" (or "J" or "K") in 
conjunction with "+LOOP" to create an ascending set of indices. If 
you want to change the loop to produce the same indices in descending 
order, replace "I" by "I'" wherever it occurs and replace the value 
you used for "HIGH" by "HIGH"-"INCR"+l. 

EXAMPLES: 

C-80 



0] 24 0 DO I = 4 +LOOP 
o 4 8 12 16 20 

0] 24 0 DO I' = 4 +LOOP 
23 19 15 11 7 3 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
ITERATION 

0] 24 4 - 1 + 0 DO I' = 4 +LOOP 
20 16 12 8 4 0 

C-81 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
ITERATION 

C.6.S CONDITIONALS 

DIAMOND has a powerful IF ••• ELSE ••• THEN construction which 
allows complicated logical tests to be performed. The normal 
restrictions apply to nested conditionals, i.e. any conditional which 
is initiated within the range of another conditional must be 
terminated within that same range. The same restrictions apply to 
nesting of mixed conditionals and iterations. 

For the purposes of the conditional, "TRUE" is considered to be zero 
(0) and "FALSE" is any non-zero value. 

N IF Tl T2 ••• TN THEN 

The top of the stack, "N" is tested. 

If true (0) the words Tl, T2, ••• TN are executed. 

If false (not 0) control passes to the word following "THEN". 

N IF Tl T2 ••• TN ELSE Fl F2 FN THEN 

The top of the stack, "N" is tested. 

If true (0) the words Tl, T2, TN are executed; control then 
passes to the word following "THEN", so the words Fl, F2, ••• FN are 
skipped. 

If false (not 0) control passes to the word following "ELSE". The 
words Fl, F2, ••• FN are executed in this case and the words Tl, T2, 

TN are skipped. 

EXAMPLES: 

'ABS DUP LTZ IF MINUS THEN; 

This defines the word "ABS" which replaces the top of the stack with 
its absolute value. 

'MAX DDUP GT IF DROP ELSE UNDER THEN ; 

This defines the word "MAX" which compares the top two stack entries 
and leaves the larger of the two. 

C-82 



C.7 USING DIAMOND FROM THE KEYBOARD 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
USING DIAMOND FROM THE KEYBOARD 

When activated, DIAMOND types a prompt consisting of the current 
nesting depth (see below), followed by a right bracket (]), followed 
by a space, to indicate that it is awaiting keyboard input. 

When you see this prompt, type a command line. 

NOTE 

When typing in a command from the 
keyboard, use the RUBOUT key to delete 
the last character. 

As soon as you press RETURN, DIAMOND compiles the command line and, in 
the absence of compilation errors, executes it. 

After command execution, the compiled code from the last command is 
discarded. DI4~OND again types its prompt message and waits for the 
next command line. 

C-83 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
NESTING DEPTH AND CONTINUATION LINES 

C.8 NESTING DEPTH AND CONTINUATION LINES 

DIAMOND maintains a nesting depth. The nesting depth is used for 
syntax checking and to determine when a multi-line command has been 
completed and is ready to execute. 

Initially, the nesting depth is set to zero. 
whenever any of the following words are 
compilation: 

IF 
ELSE 
( 
BEGIN 
DO 

It is incremented 
encountered during 

The nesting depth is decremented by the following words: 

THEN 
ELSE 
) 
END 
LOOP 
+LOOP 

REPEAT (decrements nesting depth by 2) 

A fatal "SYNTAX ERROR" occurs if either of the following happens: 

the nesting depth ever becomes negative 
the nesting depth is non-zero either at the beginning or at 
the end of a colon definition. 

After compiling a line" DIAMOND checks the nesting depth. If it is 
zero, the line is executed. If it is non-zero, compilation continues 
on the next line. 

For example: 

C-84 



0] 3 0 DO 
1] 2 0 DO 
2] I = 
2] LOOP 
1] CR 
1] LOOP 
o 1 
o 1 
o 1 
0] . 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
NESTING DEPTH AND CONTINUATION LINES 

Thus, the execution of the DO loop is automatically postponed until 
the nesting depth returns to zero; i.e.) when the "LOOP" matching the 
first "DO" is encountered. 

Similarly, a multi-line colon definition is extended to include all 
words up to the matching ";". 

C.B.l Postponing Execution 

Execution of compiled code may be postponed even if the nesting depth 
is zero by using the word "Aft 

NOT IMPLEMENTED 

The " ... " feature is not yet implemented 
in DIAMOND. 

C-85 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
REPEATING THE LAST COMMAND LINE 

C.9 REPEATING THE LAST COMMAND LINE 

Typing a line feed causes DIAMOND to recompile and re-execute the last 
command line executed. 

NOT IMPLEMENTED 

The LINE FEED word 
implemented in DIAMOND. 

C-86 

is not yet 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
DEFINING CONSTANTS, VARIABLES, AND ARRAYS 

C.IO DEFINING CONSTANTS, VARIABLES, AND ARRAYS 

C.I0.1 CONSTANTS 

A constant is a dictionary entry which causes a 32-bit integer to be 
pushed on the parameter stack. Once a constant is defined, its value 
is not intended to be changed at run time. 

To define a constant, use the word "CONSTANT": 

VALUE 'NAME CONSTANT 

Here, "VALUE" is the number on the top of the stack and "NAME" is the 
name to be assigned to the constant. When you execute "NAME", "VALUE" 
is pushed on the stack. 

EXAMPLE: 

5 'FIVE CONSTANT 

This sets up a dictionary entry with name "FIVE". Executing the word 
"FIVE" causes a 5 to be, pushed on the stack. 

C.IO.2 VARIABLES 

A variable is a dictionary entry which contains a 32-bit integer as 
its value. The value of a variable can be changed during program 
execution. When executed, it causes the address of its value to be 
pushed on the parameter stack. 

Variables are defined as follows: 

VALUE 'NAME VARIABLE 

"VALUE" is the number on the top of the stack and "NAME" is the name 
to be assigned to the variable. "VALUE" is used to set the initial 
value of the variable. It is not an address where you want the 
variable to be stored. 

EXAMPLE: 

C-87 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
DEFINING CONSTfu~TS, VARIABLES, AND ARRAYS 

100 'X VARIABLE 

This defines a variable "X" with an initial value of 100. 

C.IO.3 ARRAYS 

Although DIAMOND has no built-in array handling facility, its 
ability to perform address arithmetic makes subscripting possible. 

There are several methods for setting aside storage for an array. The 
simplest is to use the word "ARRAY": 

LENGTH 'Nfu'1E ARRAY 

This defines and zeros an array whose length (in 32-bit words) and 
name are specified. The array is just a variable with extra storage 
locations reserved. Referencing an array causes the address of the 
zeroth element to be pushed on the stack. (The elements run from a 
thru "LENGTH"-l.) 

EXAMPLE: 

100 'BUFFER ARRAY 

This defines and zeroes a lOa-word array named "BUFFER". 

C.lO.3.1 REFERENCING ARRAY ELEMENTS 

To reference an element of an array, all that is necessary is to add 
an appropriate offset to the address of the zeroth element. 

EXAMPLE: 

NOTE 

Since the first element has offset zero, 
the Nth element has offset N-l. 

C-88 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
DEFINING CONSTANTS, VARIABLES, AND ARRAYS 

10 IX ARRAY 
10 0 DO I X I 4* +! LOOP 

The above code defines a 10 element array "X" and fills it with the 
numbers 0 to 9. 

Note that since addresses are in bytes, the index must be multiplied 
by 4. 

Multidimensional subscripting is handled in a similar fashion. 

EXAMPLE: 

100 'X ARRAY 
10 0 DO 10 0 DO I J + J 10 * I + 4* X +! LOOP LOOP 

This example sets up a 100 element array "X" which is treated as a 10 
by 10 matrix and then stores I+J in the element (I,J). A general 10 
by 10 matrix can be thought of as: 

X(I,I) 

X(2,1) 

X(lO,l) 

X(1,2) 

X(2,2) 

X(10,2) 

Another way of considering 
with 100 elements: 

X(l,l) 
1 

X(2,1) 
11 

X(lO,l) 
91 

X(1,2) 
2 

X(2,2) 
12 

X(10,2) 
92 

the 

X(l,lO) 

X(2,10) 

X(10,10) 

array is 

X(l,IO) 
10 

X(2,10) 
20 

X(lO,lO) 
100 

as a one-dimensional array 

It is easy to see that the index of an array element in one scheme is 
related to that in the other scheme by: 

<one-dim index> = ( 10 * <row number> ) + <column number> 

C-89 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
DEFINING CONSTANTS, VARIABLES, AND ARRAYS 

Or, calling the row number J and the column number I: 

<index> = 10*J + I 

Translating this last expression into RPN, the index can be written 
as: 

J 10 * I + 

which is the expression in the middle of the second line of the 
example: 

10 0 DO 10 0 DO I J + J 10 * I + 4* X + LOOP LOOP 

Since each element of the array is a longword (4 bytes long), the 
displacement from the beginning of the array is 4*<index> bytes, so 
this displacement is computed and added to "X", which is the starting 
address of the array, to get the address where an element should be 
stored: 

10 0 DO 10 0 DO I J + J 10 * I + 4* X +! LOOP LOOP 

The following part of the statement computes I+J: 

10 0 DO 10 0 DO I J + J 10 * I + 4* X +! LOOP LOOP 

So, the statement is of the form: 

10 0 DO 10 0 DO <value> <address> 

where: 

<value> = "I J +" 

<address> = "J 10 * I + 4* X +" 

LOOP LOOP 

(the value to be stored at 
location I,J) 
(the location of the I,J 
element) 

The nested DO LOOPs run:I and J through the values 1 through 10. 

C-90 



C.11 THE DICTIONARY 

WICAT DIAGNOSTIC MONITOR (DIAMOND) 
THE DICTIONARY 

The dictionary starts in low core and grows upward toward the top of 
memory. As each definition is made, it is appended to the high memory 
end of the dictionary. 

The following word gets the address of a dictionary entry: 

, NAME ADDRE S S 

This word pushes two values on the stack if its execution is 
successful: 

1. The address of "NAME". (Placed next to top of the stack) 

2. A value which reflects the success or failure of the 
operation. (Placed on top of the stack) 

For example: 

If the word "GORK" is defined: 

0] 'GORK ADDRESS - -
o 204078 

If the word "GUCK" is not defined: 

0] 'GUCK ADDRESS = 
-1 

(There is no second element.) 

C-91 



WICAT DIAGNOSTIC HONITOR (DIAMOND) 
STRING HANDLING 

C.12 STRING HANDLING 

Executing a string literal causes a pointer to the length word of the 
string to be pushed on the stack. 

EXAMPLE: 

'LARK: 'NONSENSE. TYPE ; 

Executing "LARK" causes "NONSENSE" to be typed. 

C-92 



WICAT DIAGNOSTIC MONITOR (DIAMOND) 
NUMBER OUTPUT CONVERSION 

C.l3 NUMBER OUTPUT CONVERSION 

DIAMOND pe.'fforms number conversion using a small but powerful set of 
words which permit a variety of output formats to be generated. 

RADIX Variable which contains current input and output radix. 

TYO Convert the number on the top of the stack to an ASCII 
character. 

Higher level words are used to provide number output in a default 
format: 

=U Convert and output the number on the top of the stack. 
(unsigned) 

Convert and output the . number on the top of the stack. 
(signed) stack. (signed) 

=F Convert and output the number next to the top of the stack, 
displaying the number of digits specified by the number on top 
of the stack. (signed) If the number to be displayed requires 
fewer digits than specified, the output will be left zero 
filled. 

=UF Convert and output the number next to the top of the stack, 
displaying the number of digits specified by the number on top 
of the stack. (unsigned) If the number to be displayed 
requires fewer digits than specified, the output will be left 
zero filled. 

C-93 



~'llCAT DIAGNOSTiC ~'lO~~~TC)(·~ (DL\H()~~lJ) 

FORGET 

C.14 FORGET 

Entire sections of the dictionary may be deleted by using the 
following word: 

'NAME FORGET discards the named dictionary entry and all subsequent 
entries. 

FORGET is useful when trying out definitions from the keyboard. The 
usual procedure is to first make a dummy definition: 

0] 'TEST : 

Next, test definitions are made (typically by loading a program). If 
they are unsuccessful, "'TEST FORGET" will delete them from the 
dictionary, and the process is repeated. For convenience, the dummy 
definition may be placed at the beginning of the program. 

"FORGET" may also be used to provide an overlay 
program has been loaded, and is no longer needed, 
using "FORGET". The dictionary space is then free 
program. 

C-94 

facility. If a 
it may be deleted 
to load another 



WICAT DIAGi'iOSTIC ~10>nTOR (DIA>lO~U) 

DEBUGGING TECHNIQUES 

C.lS DEBUGGING TECHNIQUES 

The following techniques may prove 
definitions: 

useful in debugging new 

1. To test a word, feed in arguments on the stack, execute the 
word, and examine the results using u=". 

2. If a word fails, type in the words which make it up, one at a 
time, examining the stack as you go along and restoring it by 
typing the parameters back in, in reverse order. 

3. Keep track of the radix you are using. This is a common 
source of errors. Within a program being executed, save the 
radix, set it to the value the program expects, and when 
done, restore the saved value. 

4. 

5. 

For example: 

0] RADIX @ DECIMAL . . • RADIX ! 

This saves the current radix on the stack and sets the radix 
to DECIMAL. At the end, the old radix is restored (assuming 
the stack has not been disturbed). 

The proper selection of lower level words has an 
effect on all subsequent higher level definitions. 
pays to design lower level words very carefully. 

When debugging a program, test all lower level 
thoroughly before testing the words which call them. 

enormous 
Thus, it 

words 

6. Be especially careful with any word which modifies memory. 
Make sure the word is modifying only those locations you 
intend, and not part of the program. 

C-9S 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-19A
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	C-55
	C-56
	C-57
	C-58
	C-59
	C-60
	C-61
	C-62
	C-63
	C-64
	C-65
	C-66
	C-67
	C-68
	C-69
	C-70
	C-71
	C-72
	C-73
	C-74
	C-75
	C-76
	C-77
	C-78
	C-79
	C-80
	C-81
	C-82
	C-83
	C-84
	C-85
	C-86
	C-87
	C-88
	C-89
	C-90
	C-91
	C-92
	C-93
	C-94
	C-95

