WICAT

System 150
(mapped)

Hardware Reference Manual

July 1982

WICAT SYSTEMS INCORPORATED Orem, Utah

187-055-201 A

Copyright Statement

Copyright (c) 1982 by WICAT Systems Incorporated
All Rights Reserved
Printed in the United States of America

Receipt

of this manual must not be construed as any kind of

commitment, on the part of WICAT Systems Incorporated, regarding
delivery or ownership of items manufactured by WICAT.

This manual is subject to change without notice. A system software
subscription entitles you to receive all bulletins and revised
editions of manuals pertaining to your WICAT system. Call WICAT
Systems s main office for information on this service.

WARNING:

The equipment described in this manual generates, uses,

and can radiate radio frequency energy, and if not installed
in accordance with instructions provided in the hardware
documentation for the equipment, may interfere with radio
communications. Furthermore, the equipment has been tested
and found to comply with the limits for a Class A computing
device pursuant to subpart J, Part 15 of FCC rules, which
are designed to provide reasonable protection against such
interference when the equipment is operated in a commercial
environment. Operation of the equipment (described in this
manual) in a residential area is 1likely to cause
interference. Where the equipment will be wused in a
residential area, it is the user’s responsibility to ensure
that any interference is corrected.

Revision History

First'Printing July 1982

The Purpose of This Manual

This document provides the technical information users will need
should they want to modify System 150 (mapped) PC boards to interface
with peripheral devices that are not supplied by WICAT Systems Inc.

Furthermore, WICAT Systems Inc. assumes no responsibility for
difficulties arising from the use of equipment not manufactured by
WICAT.

Intended Audience

Field service technicians, OEM representatives, and maintenance
personnel on Systems 150 (mapped). Readers must be knowledgable in
electronics, and familiar with the basic terminology of computer
science.

CHAPTER 1 SYSTEM OVERVIEW

1.1 INTRODUCTION o o o o o o o o o o o o
1.2 DEFINITION AND FEATURES + & ¢ o o o &
1.3 SYSTEM CONFIGURATION . o o « o o o o
1.4 BOARD CONFIGURATION o« « o o o o o o o
1.5 BOARD INTERACTION & o « o o o o o o
1.5.1 Explanation Of Bus Structure . « . .
1.5.2 Bus Control o o o o ¢ o ¢ o o o o o
1.6 SYSTEM DATA FLOW & o 4 o o« o o o o o @
1.6.1 Central Processing Unit (CPU) . . .
1.6.2 MEMOTY o o o o o o o o o s o o o o o
106.3 CRT L] L] L] . L L] L] L] L] * L] L] L] . L] .
1.6.4 SEOTaZE ¢ o s o o o o o o ¢ o o o o
1.6.5 Peripherals .« o o o o o o o o o o o
1.6.5.1 Serial Interfaces .« o« « o o o o o
1.6.5.2 Parallel Interface « o o o ¢ o o &
1.6.5.3 Battery—backed Clock « « o o « « &
1.6.5.4 Graphics Circuitry (Optional) . .
1.6.5.5 Videodisc Controller (Optional) .
1.6.5.6 IEEE 488 Interface (Optional) . .
CHAPTER 2 CPU BOARD
2.1 INTRODUCTION « o o o o o ¢ o s o o o
2.2 DEFINITION AND FEATURES ¢ & o o o o &
2.3 CPU BOARD CONFIGURATION &« & o o o o &
2.3.1 The MULTIBUS Interface « o o o o o &
2.3.2 On Board ROM « 4 o o o o o o o o o o
2.3.3 Interrupt Circultry o o o o ¢ o o o
2.3.4 Bus Arbitration Circuitry .+ « « « &
2.3.5 Memory Mapping Registers ¢« « « o o »
2.4 PROCESSOR CIRCUITRY &« o o o o o o o o
2.4.1 Address BuS « o s o o o s o o o o
2.4.2 Data BUS « o o o o o o o s o s o o @
2.4.3 Synchronous Bus Control . e o s s
2.4.3.1 Command Lines (MRDC/, MWTC/, owc/,
IORC/) o o o o o o o @ . o« o e
2.4.3.2 Transfer Acknowledge Llne (XACK/)
2.4.4 MG68000 Bus Control o o o ¢ o o o &
2.4.5 Bus Arbitration Control .« « &+ « o &
2.445.1 Single Device Arbitration =« « +
2.445,2 Multi-Device Arbitration « + « o &
2.4.6 Interrupt Control + « « o o o o o o
2.4.7 System Control « « o« o o o o o o o
2.4,8 MC68000 Peripheral Control + + « .+
2.4.9 Processor Status « « o o o o o o o &
2.5 MEMORY MAP 4 o o o o o s o o s o o o o
2.6 ERROR CONTROL ¢ o o 6 o o 5 o o o o &
2.6.1 Address ETTOTS o o o o s o o ¢ o o o
2.6.2 The Error Register « « o o o o o o &

.

OCOWVOOWOORDRN L b

| ot et e e e et e b et e et e e

et et
—

fu—y

—

1
e
OO

[URrapr—
i

fasn

—

TTTYTYYYNN
= O O 0000 Lt Ut £~ P b

i

et ot

2.7 ON BOARD PERIPHERALS AND MEMORY & & & ¢ o & o o 2=24
2.7.1 Memory Mapping Flag And The Error Register . . 2-24
2.7.2 On Board MemoTry « o s o o o o o o o o o o o o 2=24
2.8 ADDRESS DECODE « v o o « o o o o o o o o o o o o 2-27
2.8.1 On Board Device Selection =« « o« o « o o o o o 2=27
2.8.2 CPU Board Address Decoding + « « o o o o o o » 2=27
2.8.3 EPROM Configuration Firmware ¢« « o o o o o o o 2-28
2.9 PAL EQUATIONS o« ¢ o o o o o s o o s s o o o o » 2=31
CHAPTER 3 I/0 BOARD
3.1 INTRODUCTION « « 4 o o o o o o o o o s o o o o o o 3=1
3.2 DEFINITION AND FEATURES ¢ ¢ ¢ o o o o o o o o o o 3=1
3.3 I/0 BOARD CONFIGURATION & 4 o o o o « o o o o o » 3-3
3.3.1 The Serial Interface « o« ¢« o ¢ ¢ ¢ o s o o o o & 3=5
3.3.2 The Real-Time Clock « o o« o o o o o s o o o o » 36
3.3.3 The Interval Timers =« o o o s o o o o ¢ o o o o 3=6
3.3.4 The Parallel POrt « o o o o o o o o o o o s o & 3=7
3.3.5 The Parallel Port Direction And LED Register . . 3~7
3.3.6 The Select/Configuration Switches « + « o o + o 3-9
3.3.7 TEEE 488 Multibus « ¢ o o o o o o o o o o o o o 3=9
CHAPTER 4 MEMORY MODULE

INTRODUCTION o o o o o s o o o o o o o o o o s o @
DEFINITION AND FEATURES ¢ & o ¢ o o o o o o o o o
MEMORY MODULE SIGNALS & & o o o o s o o o o o o

Advanced Acknowledge (AACK/) o ¢ o ¢ o o o o o o
ELECTRICAL CHARACTERISTICS o ¢ o o o s o s s o o o

.
—

.

.
I

D~D~P-bnb-b-?-b.b-b-&‘b~b
O N AUTE B WL WL W

TESTABILITY0.00.00...".00‘.04_13

1 Testing EDAC Logic e & 8 e e s e+ & e e e o e o 4-13
.2 Address Testing . * L] L] * L] . . . * L L] . . L] 4_13

4.1

4,2

4.3

4.3

44

4.4,1 EDAC o o o o o o o o o o o ¢ s o o o o o o s o o b=
4eb4,2 Status Registers (CSR And ESR) & ¢ « o o o o o o
bob.2.1 Control Status RegiSter « o« « o o o + o o o o 4=
beb,2.1.1 CSR Read FOrmat =« « o o o o o o o o o o s o 4=
4eb,2.2 CSR Flag Control BitsS « & o o o o o o o o » o 4=
4.4.2.3 Error Status Register .+ +« o ¢ o ¢ o o o o o o 4=
b4.,4.2.4 ESR:Signal Definitions . « « o o o o o « o o o b=
bebo2.5 Error Status LEDS & ¢ ¢ o« o o o ¢ s o ¢ o o o b=
4.4.3 Memory FeatuUres .« o o o o o o o o o o o o o o 4=10
4.4.3,.1 Addressing « « o ¢ ¢ o ¢ o o o o s 0 o o o+ 4=10
4.4.3,1.1 Starting Address Selection « « ¢« ¢« &« +» « o+ 4=10
4.4,3.1.2 Ending Address Selection « « « ¢« &« » « « «» 4-10
4.4,3.1.3 CSR/ESR Address Selection « o« o o o« o o o 4=11
4,4,3.1.4 CSR/ESR Address Range «+ « o« o o o« o o o o 4=11
4.4.3.2 Error Detection And Correction (EDAC) . . . 4-11
4.4.3.3 Interrupt OpPtions =« « « ¢ o o « s o o o o o 4=12
b.b.3.4 POWEr SOUTCE « s o s o o o s o o o s o o o o 4=12
4.4.3.5 RAM Configuration . « « ¢ o s o o s o o » o 4=12
4.5

4,5

4.5

vi

4.5.3 Testing Arbitration + « o o o o ¢ o o o o o o 414
4.6 MODES OF OPERATION & « 4 o o o s s o o s o o o o 4=16
4.6.1 Read Operations « o « o s o o o o o o o & o o 4=-19
4.6.2 Write Operations o o o o o ¢ o« o o o o ¢ o o o 4-19
4.6.3 BYte SWAD o o o o o o o o o o s o o o o s o o 4=20
4eb.4 Refresh « « « « & « s o s s e s s e o o o o 4=20
4.7 CONFIGURING THE MEMORY MODULE « ¢ o o o ¢ o s o 4=20
4.8 LOCATION OF ADDRESS SWITCHES &« & 4 « o o o o« o o 4=20
4,8.1 Starting Address « « o o o o o o o o o o o s o 4=21
4.8.2 Ending Address « o« o« « o o ¢ « o ¢ ¢ o o o o o 4-21
4.8.3 Enabling Extended Address Lines .+ ¢ o o « o o 4-22
4.8.4 Setting Address For Extended Lines . « « o+ « o 4-22
4.8.5 I/0 Port AdAresSs « + o o o o o o o s o o o o o 4=23
CHAPTER 5 WD1000 AND COUPLER/FLOPPY BOARD SET
5.1 INTRODUCTION 4 o o o o o o o o o o o o o o o o o o 51
5.2 DEFINITION AND FEATURES .+ « o & s s o o o s o o 5-1
5.3 WD1000 AND COUPLER/FLOPPY BOARD SET CONFIGURATION 5-2
5.4 COUPLER/FLOPPY CIRCUITRY AREAS « ¢ o o o s o s o o 5=4
5.4.1 WD1000 Coupler/DMA Controller .« o« o o ¢ ¢ & ¢ o 5=5
5.4.1.1 Synchronous State Machine . « o« ¢ o ¢ o &« o o 5=5
5.4.1.2 Address Decode o« « o « o s o o s o ¢ o o s o s 2=
5.4.1.3 DMA Address Register/Counter « + s« « « o« » o o 5=6
5.4.1.4 Bus Arbitration . . « ¢« ¢ ¢ ¢ ¢ o ¢ ¢ s o o o+ 5=6
5.4.1.5 Data Path & o o o o s o o s o s o s o s ¢ o o 5=6
5.4.2 Two-mode Operation Of Coupler + « ¢« ¢« ¢ o « « o« 5-6
5.4.2.1 Register Interface + « o o o s s ¢ o o o o » & 5=7
5.4.2.2 DMA Controller o« o o o o s o o o s o o o o o & 57
5.4.3 Floppy Controller Circuitry o« o« ¢ o« ¢ o ¢ » ¢ & 5-7
5.4.3.1 Data Separator « « o s o o » o o o » o o o o s 57
5.443.2 Write Precompensation « « o « o« o o o o o o o 5=7
5.5 WD100O BOARD CONFIGURATION « ¢ o « o o ¢ ¢ o o o o 5=8
5.6 BOARD SET ELECTRICAL DATA . ¢ & « o ¢ s s o o o« 5=10
5.7 MECHANICAL DATA ¢ 4 s + o s o s o o o o s o o o 5-11
5.8 ENVIRONMENTAL DATA & &« & o o o s o o o o s ¢ o » 5=11
5.9 SOFTWARE INTERFACE DATA =« 4 ¢ 4 ¢ o o o s o & » 5-11
5.10 BASE ADDRESS ¢ ¢ « o o s s s ¢ o s s o s s o o o 5=12
5.11 WINCHESTER REGISTERS ¢ ¢ « o o o o o o ¢ o o o o 5=12
5.12 FLOPPY REGISTERS &+ « o o ¢ ¢ ¢ s o o o » o o o o« 5=13
5.12.1 Description Of Floppy Registers o+ + ¢ » o « o 5-13
5.12.1.1 Status Register (Read Only) + « ¢ o & o o » 5-13
5.12.1.2 Command Register (Write Only) .« « « +» « o » 5-13
5.12.1.3 Track Register (Read/Write) + o« ¢ o o o« o o 5-14
5.12.1.4 Data Register (Read/Write) + « o« o o « o o« o« 5=14
5.12.1.5 Drive Select/Interrupt Register « + « + o o 5-=14
5.13 SIGNAL DEFINITIONS ¢ « o o o s s o o s o« o s & o b5-15

vii

APPENDIX A I/0 BOARD JUMPER PIN LOCATIONS BY PORT
APPENDIX B JUMPER PIN INPUT/OUTPUT SIGNALS

APPENDIX C WICAT DIAGNOSTIC MONITOR (DIAMOND)

INTRODUCTION « o o o o o o o o o o o »

LITERALS ¢ o o o o o o o o o o o o o o
Integer Literals o « o s o o o o s o
String Literals .+ o« ¢ ¢ ¢ o o ¢

SYNTAX ¢ ¢ o ¢ o o o o o o o o 2 o o @
The Stack « o ¢ o o o o ¢ ¢ ¢ o o &

L] .

. . L]
[] L]
N

Variables In Fixed Locations . . .

N R N N R R N D R N D R RN R RN ERDTLVWLWLWLWWWWWWW WRN N R
L]

Reverse-polish Notation . . .+ «

1

2
.3.3
3.4 Addresses Versus Contents o« « « o+ &
- 0401 @ L3 L] L] L] L] L] L * L] L] . .
«3.4.2 BW o ¢ o o o e o ¢ o o o s o 2 o
3.4.3 BL o ¢« & ¢ o ¢ o ¢ 2 ¢ o o o o o @
3.b4.4 L 6 6 e o o o o o o 8 s o o s s
e3.4.5 IW 6 4 o o ¢ o o o o o s o o o o o
e3.4.6 TL 4 ¢ o o o o o o o o o o o o o
30b4.7 1K= OPERATOR ¢ ¢ & o o« « « o o o

FIXED POINT OPERATORS .
UNARY OPERATORS ¢« ¢ o o o o o o« o &

MINUS « o o « o &
L] !ABS L] . . . e e
NOT . . .]] . s o 0 »

022* L] . . . L L] L] .

e o o
« o e
e o

.
.
.

12/ i e e e e e e e e e e e e e

. .

o!l+. L] L] . e o . L] e o

o!l—o . s o . [L] . . . L] .] L] .

LTZ e o o o o o o o o o o o o o
LEZQ‘.......‘C.‘Q.
GEZ '« ¢ o o o o o o o o o o o o
GIZ ¢ o o o o o o o o o o o o o
SPLIT o o o o o o o o o o o o o &
SPLITB o o « o o o o o o o o o« o &
JOIN @ o v o o o o o o o o o o o s
JOINB « + . .
BINARY OPERATORS . .

. e e o 0 s o .

NN RN NN RN NN RN o bt ot et pd ot pd ft ot b ot ok pd fmd ok ot ot et

.
.

.
bt b et et e et e = O 00 SO U1 B WD

« o o
. ° o
« o o
NOYL S~ = O

. . L[] - . Y
« o e o o
. L .

. .

. L] L] L] L] » L] L

L]
(3
.
.
3
.
3
e o o & o o
3
.
.
.
.
.
.

e o . »
e & o
e & o
e o o

»

.

L]

.

.

.

L]

OO0 0000000O0 000000000000 0000000000000 000O00000000n
O N W

RS~ % |+
EEE

viii

UL I L L
= O WO NNUUEWWN

eNeoNeEeNeoNoNeoNoNeNe!

. C-37
C-38
Cc-39
C-40

OR

Ceba2.9

- *

XOR

Ce4.2,10
C.A.z.ll
Cebdo2.12

. L]

*

EQ .
NE

TYLTLEERS
Sbddbddddd
e e e e
e e e e e e
e e e e e e e

.
*
.
.
.
.
L]
.
.

.
.
.
.
.
L]
.
-
.

]
e e o o s e o e 4y
¢}
e e * e e o s e
©
e o o e 0 e o e N
Q
*® » ° 8 ¢ o s ¢ (O
o
* e o o

RG] pd M
HEHMKEH®NONWNM O
LLGGLLAAm
w

NI N O~ OO

— o o e -

® s & o e e o o
222222223
. e o o e o
44444/4/4/4/4
e & o o ¢ o o o

CCCCCCCCC

OQOrm NN TV OMNOONNO
) 1N N N N) N N N N O O
LR T A T T A I O A |
QOO ULVDODODODOLDDLOOO
® & e & ¢ 9 2 s 8 s s o
¢ @& e & ¢ © & 2 & o o o
e @ e & s 9 8 9 T & o o

® & @ e e g @ ©° * e 0
e o RRQ. * o
Mo opg wm
REEEWWPP AV o
PEVVW O EHQ
2> 00 DhedEnam
AONONMDNOOAQAV N [+

O~
1.76aa,4.3,b P~ Q0 O v

333333333333

/.»./._./4/4/4/4/.-.,4/4.4/4/4

® e o e ¢ o o o o s o »

QO ODOLDLOLOLOLLOO

NN T INONDIITANNO - NN NN
O OO OO O OOWOPSNNMNMMANANS
LN A T N A Nt A R R A A A A
DOODOVODOLOODOLDUVDLOLDLOLVLLOU
® o & e o o & o e s o e e .o »

e e * o s s 8 e e & e o e o o
e o © e # e & & e o o o e o o
@ & * s 6 e & & e & s s e 2 o
® o © e o e o o 2 e ¢ * e e o
e e 2 s o o & o s eHd e e o o

[

e » o e @ & & ¢ e o *® e o
e & o e e s o o o om e o o e
e o e o & o & e o o4 e o o o

=

e e ® ® e & e o * o e o
* e ® e e s s e o om ® o o o

jea]

s o e e o o o o o 0D o e e o
e e e * e o e o o e e o e o
e o e e e o o o o om e o & o
- . . e e o . . . *] . L3 . .
. . m

- e o o o e o o e o o o
e e o e o o o o ¢ elT! e o o o

QO
® e o ® s 2 e e o o * e o o
oo}

. e o o e v o o o6 () e o e o

a (73] I_

- » o . ¢ o o .

m [=agcal W/\ - -
= O (NSRS D €3] — -]
MWORMMI ol F o
_OWHCSSW: owm * o o o

-~ j@}

H =
o
1 123/45678 123/-.

. e o o o o * o
314/4/4 /4/1-./4./4455555
e & e e o o o o o * o o

444444444/444444

o s e o » * e » e o e e o

CCCCCCCCCCCCCCC

N NN
~ i~ ~
U
OOV O
e o o
e o o
o o

e o o
.

2]
o o [x]

I
O M
> mom
o O
Zx=
e e o
W O~
* e
el TalTa
" e e
/4./4/4

CCC

NFT N OO NM
[t A S N S e O« o e 0]
N A T N A I R
VOVVOLLLOY
® o o o e+ s e o o
e o o o o o o o o
e o o o o e+ o o o
* o s & » o o o o
e & o & & o o+ e o
® ©® e & e * e e o
® e e o & o o s o
e o o & o o o e o
® s o e e o o o
. e 0 m
* o & v o e o o O
/m
s & » L
EH <3}
e o o o g e o o N
¢ e 3 om - QOE
* o o om . om
H
« o o o o | o=
w . (2 @)
AN s e N e M
o =) < I
H e o Z Iy oW
H 3 H MMD
— e ¢« T |~
Pt N e e o= O
bz -t tf “S4
® o
O O HHH
AH eZzZOQHHA
3! HiH XA
NM(\GG Bz O
Q m O o=
HEZMmMmA O
O M 2]
O H)

CCCCCCCCC

ix

o1 Postponing Execution « + . .
REPEATING THE LAST COMMAND LINE
DEFINING CONSTANTS, VARIABLES,

1 CONSTANTS & ¢ o o o 2 o o o
2 VARIABLES o ¢ o o o o o o o
.3 ARRAYS v ¢ o ¢ o o s o s o
3.1 REFERENCING ARRAY ELEMENTS

THE DICTIONARY &« o o o o o o

C.12 STRING HANDLING =« ¢ o o o o o

C.13 NUMBER OUTPUT CONVERSION . . .

C.14 FORGET ¢ ¢ o o o o ¢ o o o o o

C.15 DEBUGGING TECHNIQUES « « « « &

OOO0OO0OO00O00O000

. o

AND

NESTING DEPTH AND CONTINUATION LINES . .

C-84
C-85
C-86
c-87
Cc-87
Cc-87
C-88
C-88
Cc-91
C-92
C-93
C-94
C-95

CHAPTER 1

SYSTEM OVERVIEW

1.1 TINTRODUCTION

This chapter serves as an overview of the WICAT System 150 (mapped)
computer system. The information contained herein is for use by field

service technicians.

1.2 DEFINITION AND FEATURES

The WICAT System 150 (mapped) is a 68000-based microcomputer system
with mainframe capabilities. A single desk—top unit (with detachable

keyboard) contains:
e Central Processing Unit (CPU) (Section 1l.6.1)
e Memory (Section 1.6.2)
o CRT (terminal screen) (Section 1.6.3)
e Storage and storage backup (Section 1.6.4)

e Several standard and optional peripherals (Section
10605)

1.3 SYSTEM CONFIGURATION
Refer to Figure 1-1.

The PC boards are held in place by the <card cage located directly
behind the CRT. At the base of the card cage is the motherboard

containing six slots into which the boards are inserted.

The standard 150 multiuser configuration leaves two slots empty, but

1-1

SYSTEM OVERVIEW
SYSTEM CONFIGURATION

upon request these slots can be used for two additional memory boards,
or one additional memory board and a videodisc controller board.

To the left side of the card cage (with the CRT nearest you) and
running perpendicular to the card cage are the graphics terminal
boards (connected to each other by a ribbon cable) or a non-graphics
terminal board.

To the right side of the CRT are 1located the Winchester disk and
floppy disk drives.

The System 150 has a detachable keyboard connected to the terminal by
a coiled cable.

1-2

SYSTEM OVERVIEW

SYSTEM CONFIGURATION

Figure 1-1
System 150 Multiuser (Exploded View)

1-3

SYSTEM OVERVIEW
SYSTEM CONFIGURATION
WARNING

When removing the WD1000/Coupler Board,
please exercise extreme caution to avoid
damaging the end of the CRT.

1.4 BOARD CONFIGURATION

Refer to Figure 1-2.

The standard CPU chassis contains the following boards. (Indicated in
parentheses immediately following the board name are later chapters

that give detailed explanations):
e CPU (Chapter 2)
e I1/0 (Chapter 3)
e Memory Board (Chapter 4)

e WD 1000 and WD1000 Coupler/Floppy Disk Controller
(Chapter 5)

1-4

SYSTEM OVERVIEW
BOARD CONFIGURATION

I/0

Memory

Video-
disc
or
Memory
(Op.)

\ Memory

(Op.)

Disk
Controller

Figure 1-2
Placement of Boards in CPU Chassis

SYSTEM OVERVIEW
BOARD INTERACTION

1.5 BOARD INTERACTION

The bus structure amounts to a common group of «circuit paths over
which input and output signals are routed. This structure enables
communication between the CPU board and the other PC boards.

1.5.1 Explanation Of Bus Structure

The PC boards and the CPU board are interconnected by the backplane,
or motherboard, in the base of the chassis. The CPU board handles bus
control.

There are three types of buses: address buses, which consist of all
the signals needed to define any of the possible memory or I/0
locations in the system; data buses, which handle all communication
of instructions and data; and control buses, which are used by the
CPU to direct the action of the other elements in the system.

1.5.2 Bus Control

The MC68000 microprocessor allocates CPU time for requesting processes
and devices. The basic theory of allocation is simple. First, the
CPU receives a request signal for bus use. Second, based on
internally defined priorities, the request 1is either granted
immediately or delayed until previous or higher priority requests are
processed. Finally, when the request is granted, the requesting bus
device returns an acknowledgement signal to the CPU and the cycle
continues.

Once a device or process has been granted bus use, it is called the
"Bus Master'. (WICAT systems currently allow only one bus master at a
time.) A device called the "slave" then receives or transmits data
from or to the bus master.

1.6 SYSTEM DATA FLOW

As shown in Figure 1-3, information is input to the System 150 through
the keyboard. A serial link transfers the data to the terminal CPU,
located on one of the boards perpendicular to the card cage (see
Figure 1-1). The CPU is connected to the Pl connector on the I/0
board by a ribbon connector.

The I/0 board how acts as a liaison between the terminal section of

1-6

SYSTEM OVERVIEW
SYSTEM DATA FLOW

the System 150 and the other system boards. It sends data to the
other boards as required through the circuitry of the IEEE 796 bus.
Connector P5 connects the additional serial and parallel ports on the
I/0 board to the connector panel at the back of the chassis.

The 1/0 board has two other connectors (P4 and P6) that can be
connected to peripheral devices. Connector P4 is configured as a
full-handshake modem port and connector P6 is used for the optional
IEEE 488 (GPIB) bus interface. See Figure 3-1 for connector locations

on the I/0 board.

The disk controller board controls the Winchester disk drive and the
floppy disk drive.

‘ The memory board on all standard 150’s handles temporary data storage.

1-7

SYSTEM OVERVIEW
SYSTEM DATA FLOW

SP3
SP1

(T T T T T T T T T T T T T T T T T e T e e e e e e e T

Keyboard

UART’

S ——

1

Z}p Py
=71 sp
= | sp4
= 3
o | sk
L

CPU Board

Serial/Parallel

/0

JEN

(Op. IEEE 488)

‘Umw{
Terminal

I\ I

T

Terminal
video

[[Sync—vié;;

High
Voltage

Screen

Display

Terminal Section

System 150 Multiuser Data Flow Chart

I ™
Memory
"1 £

|

-Winchester Disk
Controller

-Floppy Drive

I

I/0 Connector Panel

53" Floppy Disk Drive

L, Controller
It

RAVD
Boards
{Optional)

1 P |

=1

53" Winchester
10MB Drive

Power Supply
(+12 =12 +5 =5)

Figure 1-3

1-8

SYSTEM OVERVIEW
SYSTEM DATA FLOW

l.6.1 Central Processing Unit (CPU)

The processor for the System 150 (mapped) . 1is the Motorola 68000
microprocessor that runs at 8 megahertz (MHz) and executes
approximately one million instructions per second. Thirty-two bit
internal registers support 32-bit data operations.

See Chapter 2 for more information on the CPU.

1.6.2 Memory

The System 150 (mapped) . is equipped with a single memory board
containing 256 Kilobytes (Kbytes) of Dynamic Random Access Memory
(DRAM) that is expandable to 512 Kbytes by fully populating the board.
Two additional memory boards may be inserted into the chassis
increasing the available memory space to 1.5 megabytes (Mb).

See Chapter 4 for more informationm.

1.6.3 CRT
The CRT has a resolution of 300 x 400 pixels, allowing

medium-resolution graphics when wusing the graphics option. Each
character is 7 X 9 pixels.

l.6.4 Storage

Mass storage includes a 10 Mb 5-1/4 inch Winchester disk drive and a
5-1/4 inch floppy disk drive for backup and file portability purposes.

1.6.5 Peripherals

The standard and optional peripherals available on the System 150
(mapped) are:

e 5 RS232 serial interfaces (Section 1.6.5.1)
e 16-bit parallel interface (Section 1.6.53.2)

e Battery-backed clock (Section 1.6.5.3)

1-9

SYSTEM OVERVIEW
SYSTEM DATA FLOW
e Graphics circuitry (optional) (Section 1.6.5.4)
o Videodisc controller (optional) (Section 1.6.5.5)

e IEEE 488 interface (optional) (l1.6.5.6)

1.6.5.1 Serial Interfaces -

These interfaces are used as input/output ports for various peripheral
devices such as printers, terminals, etc. The interfaces are located
on the I/0 board (see Chapter 3) and conform to the standard RS232C to
ensure asynchronous data transfers.

1.6.5.2 Parallel Interface -

This .is a 16-bit parallel port organized as two 8-bit bi-directional
ports and set up to act as a standard Centronics interface.

l.6.5.3 Battery-backed Clock -

This clock, located on the I1/0 board, is a real time calendar clock
for the system. It continues to keep time, in the event of a system
failure or power-down, with power supplied by an on-board battery.

le6.5.4 Graphics Circuitry (Optiomnal) -

Two graphics boards located perpendicularly to the CRT allow system
graphics to be available as an optionmn.

1.6.5.5 Videodisc Controller (Optional) -

To make the System 150 (mapped) compatible with a videodisc player, a
printed circuit (PC) board configured for videodisc control is
inserted into the first of the available slots in the <chassis (see
Figure "1-2). :

This option allows the System 150 to interface with a videodisc
player’s parallel control port.

1-10

SYSTEM OVERVIEW
SYSTEM DATA FLOW

1.6.5.6 IEEE 488 Interface (Optional) -

Additionmal components on the I/0 board (see Chapter 3 and Figure 3-1)
make wup this option. The IEEE 488 interface is a standard General
Purpose Interface Bus (GPIB), allowing the wuse of other external
peripherals.

1-11

CHAPTER 2

CPU BOARD

2.1 INTRODUCTION

This chapter explains the components of the CPU board and focuses on
the operations performed by the microprocessor.

2.2 DEFINITION AND FEATURES

The CPU board handles the central processing of the System 150
(mapped) and controls all bus use requests. The key component on the
board is the Motorola 68000 microprocessor. The CPU board has the
following features:

e Memory map (Section 2.5)

e Error control (Section 2.6)

e On board peripherals and memory (Section 2.7)

e Address decoding (Section 2.8)

2.3 CPU BOARD CONFIGURATION
Refer to Figure 2-1.

The CPU board comprises five main areas of circuitry:

CPU BOARD
CPU BOARD CONFIGURATION
e Multibus Interface (Section 2.2.1)
@ On-board ROM (Section 2.2.2)
e Interrupt Circuitry (Section 2.2.3)
e Bus Arbitration Circuitry (Section 2.2.4)

e Memory Mapping Registers (Section 2.2.5)

2-2

€-¢

£13T00ITH PIBOE 1dD

1-7 @an813

—-IO

N 3 [30 [20 1 ? l:;:l)
o ot S —a 0 0 c—=n [nl a
Cns) va (1) [(2] ue ot X <6 ve (3]
L e $ 0 G0 < LTSU L:JT:.—'——SQJ { { IR { | [glll gﬂ
Cany [i O <3 e [vt X
uis Ul cit [en——
AN T
e e S g ——"
Ty ‘{ﬂ 0 vte cu ves e vt cey
L ver s vt ?c[}n L ure ?‘[’]s L v <t o - o * { I4i] [?Dl 4“
 Sum——| -{ 11 U3 cw G cre s <
C s { (I | 30 0 1]
Ul %o T37 em TR O3 €33 o <34 vz | M 1 0 C [4i]
(Jbo Cac4t V40 (<79 vay (414 u4e 309
{ 300 S {1 <0 l C 30 C 30
Ual W U4q [l V46 <40 LAy caL van (1Y
C zﬂl 200 30 C 0 [30 [{1 [—
uso @ U 4 Uset c4¥ Uss c4e var vsa “ usY cde [can
{ <O i iR 0 <1 [} 20 41} L <0 | g
vsT cso uss (34 usy Cft veo css ust cs4 et [$24 Ues <% vesa c9? [V css 6 csy
Crae
{ [{1{ [41 S 300 Ky SOl 30 C 3 <] £ [41]
U6 cko Ty cel C.%Sﬁt vwe ot vt [¥214 (1% Y Qs ced VT4 CcoS [S1e LI <Y VI AT
30— DEBQ]E:U ’ [M 1] { {1}
VI ws uss 1 L1 Ae vl <0 uso N ver <1t uet <13
CT4 3:'

NOIIVYAOIANOD @¥vod NdD

@avod Ndo

CPU BOARD
CPU BOARD CONFIGURATION

The circuitry of the CPU board 1is divided into two principal
functions: the CPU bus-associated functions and some system I/0
functions. The connectors are the system bus proper. They contain
paths and connections for the system data, address, and control.

2.3.1 The MULTIBUS Interface

The MC68000 microprocessor and the INTEL Multibus are incompatible
because the Microprocessor defines the lower byte of the data bus as
odd and the upper byte of the data bus as even; this data byte
definition 1is reversed on the Multibus. An interface in the form of
byte swap buffer ensures that odd and even single-byte transfers
always take place on the low order data lines. Thus, the CPU board
conforms to the INTEL MULTIBUS standard £for both eight- and
sixteen-bit systems. Word transfers use the full set of sixteen data
lines.

CAUTION

When writing a byte to a peripheral
device the least significant address bit
must be complemented or inverted by the
software because of the MC68000 to
MULTIBUS incompatibilities.

2.3.2 On Board ROM

The CPU board can support up to 64K bytes of on board Read Only Memory
(ROM). ROM address decoding is done through a 745288 PROM. ROM sizes
of 2R X 8, 4K X 8, or 8K X 8 can be accommodated by changing two
jumpers and the address decode PROM. The CPU board accepts 2K X 8
EPROMs as standard. The CPU board will accept the other two types of
EPROMs if you change the jumpers as specified in Figure 2-2.

2-4

CPU BOARD
CPU BOARD CONFIGURATION

EPROM SIZE 4K X 8

Jumper IN/OUT
JPl A ouT
B IN
JP2 A IN
B ouT

EPROM SIZE 8K X 8

Jumper IN/OUT
JP1 A ouT
B IN
JP2 A ouT
B IN
Figure 2-2

Jumper Configuration for Larger EPROMs

2.3.,3 Interrupt Circuitry

The CPU board supports seven levels of interrupts, INTO/ through
INT6/, with INTO/ having the highest priority. INTO/ is the only
nonmaskable interrupt. All interrupts are autovectored to addresses
designated by the MC68000. See Section 2.3.5 and the appropriate
section of the Motorola’s MC68000 16-Bit Microprocessor User’s Manual,
January 1980.

2.3.4 Bus Arbitration Circuitry

The CPU bus arbitration scheme conforms to the MULTIBUS specification
for serial priority bus arbitration. When a MULTIBUS device wants
control of the bus it checks its BPRN/ signal. If the BPRN/ signal is
low, the Multibus sets its BPRO/ signal high. The high signal
disables all lower priority bus requests and sends the MULTIBUS
device’s request to the CPU. The arbitration sequence is then as
follows:

l. The CPU finishes executing the current instruction
and sets the BUSY/ line high to tell the requesting
device that it can take control of the bus.

2-5

CPU BOARD

CPU BOARD CONFIGURATION

All bus arbitration signals are synchronized with the falling edge
Table 2-1 is an address map.

BCLK.

2.

3.

4.

The requesting device then pulls BUSY/ 1low and
takes control of the bus.

When finished with the bus, the requesting device
sets its BPRO/ line low, then sets the BUSY/ line
high.

If no bus requests are pending, the CPU regains
control of the bus.

of

CPU BOARD
CPU BOARD CONFIGURATION

FFFFFF
| | I |- | FOFF3F
| | Not Used]) Memory Boards 1/0 |
| | | ! Registers |
; | | 7 | FOFFOO
| | (. | |
I . ['7 I Video Disk |
| | | / | Controller | TBD
| | | J 1 |
| | |7 | Communications | TBD
| | | /] Interface |
| | i | | FOOIlAF
| | I/ | Winchester and i
j | | Floppy Board | FO0180
| | ? | | FO00100
| | MULTIBUS I/0 |] I/0 Board |
| i System Space | R FO0000
| I | s
l l | .7 - EFFFFF
FO0000 | : %= | Error Register | EFFDO1
I | System I/0 i | |
|] { | Map & Lock Flags | EFFCO1
| | MULTIBUS Memory 1\\~ | | EFFBFF
] | - System Space AN | Memory Mapping i
| I I ! Registers |
| | | a EFF800
| |]
| |
| | | Users Logical
| | | Space
] | | - 1FFFFF
200000 | - | 4K - Bytes |
| |] | { 1FFO0O0
] | MULTIBUS Memory] | 4K - Bytes]
| |] | | 1FEO00
| | Users Logical] | :
| | Space |] | 002000
| | | | 4K - Bytes]
|] | | | 001000
| | | | 4K - Bytes |
| I | 000000
010000 | | OOFFFF
I | MULTIBUS Memory I | |
] | Mapped - Users | | |
| | logical space ! | ROM Program }
] | Unmapped-ROM |] |
000000 | | | |
~ I | 000400
M. | ROM Exception |
N Vectors |
000000
Table 2-1

Memory Address Map
2-7

CPU BOARD
CPU BOARD CONFIGURATION

2.3.5 Memory Mapping Registers

1k of high speed static RAM at address EFF800-EFFBFF on the CPU board
is available for memory mapping. Address lines Al12-A20 are the inputs
to the RAMs. The data lines out of the RAMs become the new lines
Al2-A23. The mapping function is enabled by writing an 80 to EFFCO1
and disabled by writing a 00 to EFFCOl. This sets and clears a bit
addressable latch U2 on the CPU board.

2.4 PROCESSOR CIRCUITRY

The CPU board contains the Motorola MC68000 Microprocessor, which
directs control, 1logic, and arithmetic operations required of the
SYSTEM 150 (mapped). The processor circuitry is comprised of the
microprocessor, 1its associated buffers, system clocks; and, bus
error, interrupt, and arbitration logic.

Input and output signals of the microprocessor fall into the groups
shown in Figure 2-3.

Processor
Status

M6800
Peripheral
Control

System
Control

CPU BOARD

PROCESSOR CIRCUITRY

Vee (2)
GND (D)
CLK

|

MC68000
Microprocessor

Address Bus

Data Bus

Figure 2-3
Input and Output Signals

2-9

Al-A23

DO-D15

Asynchronous
Bus
Control

Bus Arbitration
Control

Interrupt
Control

CPU BOARD
PROCESSOR CIRCUITRY

2.4.1 Address Bus

The microprocessor uses a 23-bit address bus to select one of eight
two-byte megawords. The lower 11 address lines are directly buffered
onto the bus connector. Normally, the wupper 12 1lines are routed
directly from the 68000 to the bus connector.

However, the upper 12 lines may be treated as a logical address and
the bus transaction may be steered by the mapping registers into a
physical 1location when the processor 1is in wuser state, or in
supervisor state with memory mapping flag set and the address is less
than one megaword (= two megabytes).

The address bus is asserted LOW at the bus connector and 1is the
logical inversion of the address bus at the microprocessor. The
address lines from the CPU board are put into a high impedance state
when another master controls the bus.

2.4.2 Data Bus

The MC68000 uses a 16~bit data bus to transfer programs or data. The
data bus is buffered at the bus connector.

The most significant data bits (D8-15) are the odd bytes, and the
least significant bits (DO-D7) are the even bytes. When the processor
executes a byte operation, the least significant address bit--A0 is
determined from the upper and lower data strobes (see Section 2.3.3).
This process determines whether the processor will transfer an even or
an odd byte.

Operating on a word or an even address boundary will produce a
different effect than operating on a byte at the same address.
Executing a word instruction on an odd boundary causes an 1illegal
address trap.

You may connect an eight-bit peripheral to the data bus with the byte
access option or the word access optionm.

1. Byte Access Option

The data 1lines can be connected to the least
significant eight data bus lines (D0-17) and all
accesses to the peripheral may then be byte or word
accesses.

2. Word Access Option

The peripheral data lines can be connected to the
most significant eight data bus lines (D8-15) and

2-10

CPU BOARD
PROCESSOR CIRCUITRY

all accesses must then be word accesses. A word
access will access the odd and the even bytes. A
byte instruction may not be wused to access the
peripheral when connected to the most significant
eight data lines.
The data bus is asserted LOW at the bus connector. When another

master has control of the bus, the CPU board bus buffers are placed in
a high impedance state.

2.4.3 Synchronous Bus Control

NOTE
The following information regarding bus
control concerns the 796 bus.
Five control signals 1listed here coordinate data transfer on a
synchronous bus.
1. Memory Read Control (MRDC/)
2. Memory Write Control (MWTC/)
3. I/0 Read Control (IORC/)
4, 1I/0 Write Control (IOWC/)

5. Transfer Acknowledge (XACK/)

2.4.3.1 Command Lines (MRDC/, MWTC/, IOWC/, And IORC/) =

These command lines are communication links between the bus masters
and bus slaves. There are four command lines for memory and I/0 reads
and writes. An active command line indicates to the slave that the
address lines are carrying a valid address, and that the slave should
perform the specified operation.

2-11

CPU BOARD
PROCESSOR CIRCUITRY

2.4.3.2 Transfer Acknowledge Line (XACK/) -

This line is the slave’s acknowledgement of the master’s command.
XACK/ indicates to the master that the requested action is complete,
and that data has been placed on or accepted from the data lines.

2.4.,4 MG68000 Bus Control

Address Strobe (AS L)

AS L is a control signal asserted when the address on the bus 1is
stable and considered wvalid. It will remain asserted until Data
Transfer ACKnowledge (DTACK L) is asserted in response. If the

addressed device 1is not attached or occupied, the level of the Bus
ERRor line changes from high to low. The Error Control Circuitry
disables AS L before it reaches the bus connector if:

a. an access violation occurs in the current cycle.

b. a parity error occurs in the previous cycle.

Data Transfer ACKnowledge (DTACK)

The device currently being addressed asserts DTACK when that device is
ready to terminate the bus transaction. DTACK is negated in response
to the negation of Address Strobe.

Upper and Lower Data Strobe (UDS L and LDS L)

The CPU uses UDS L and LDS L to select one or both of the bytes from
the word currently being addressed by the address bus.

Read/Write (R/W)

R/W determines the direction of the data transfer. When LOW, data are
moving TO memory. When HIGH, data are moving away FROM memory.

2-12

CPU BOARD
PROCESSOR CIRCUITRY

2.4,5 Bus Arbitration Control
2.4.5.1 8ingle Device Arbitration -
The MC68000 uses three lines to arbitrate bus use among devices:

1. Bus Request (BR L) - an input signal that can be
driven by any number of devices wired-OR devices.

2. Bus Grant (BG L) = an output signal indicating that
the requesting device may use the bus after the
current bus transaction finishes.

3. Bus Grant ACKnowledge (BGACK L) - when asserted at
the end of the bus cycle, BGACK L allows the
requesting device to become bus master under three
conditions:

a. Address strobe and DTACK are negated
b. No other device is using the bus

c. The bus request is negated

2.4.5.2 Multi-Device Arbitration -

Three MSI logic devices on the CPU board automatically prioritize bus
requests and grants. On the left (or I/0) connector are eight bus
request lines (BRO-7) and eight corresponding bus grant lines (BG0O-7).
BR7 has the highest priority.

Requests for bus use are prioritized depending on the bus request line
used for input. The number of the highest request is latched onto the
falling edge of bus grant from the processor. The outputs of this
latch then drive the inputs to a three-to—eight line decoder that
selects the highest priority bus grant line. Thus, a device simply
asserts its bus request line and waits until its bus grant line is
asserted. When the device recognizes its bus grant, it waits until
the end of the current bus cycle to verify that BGACK is not asserted.
After the verification the device asserts BGACK, negates its bus
request, and becomes bus master.

If more than one bus request is pending, the arbitration logic selects
the bus grant corresponding to the highest priority bus request.
After the device with the highest priority has become bus master, the
arbitration logic will select the bus grant corresponding to the bus
request with the next highest priority.

2-13

CPU BOARD
PROCESSOR CIRCUITRY

When the current bus master is through with the bus, the next device
immediately takes control. The arbitration logic then selects the
next device with the highest priority. Thus, the arbitration logic
manipulates the queu according to device priority.

2.4.6 Interrupt Control

The MC68000 supports seven interrupt levels. Level seven is
nonmaskable and is the highest priority.

Interrupts are actually a subset of a more general class of operations
called exceptions. Interrupts are either autovectored or
nonautovectored but the CPU board circuitry simplifies the interrupt
process on autovectored interrupts:

a. autovectored - The processor generates the
interrupt vector number internally, as a function
- of the interrupt level.

b. nonautovectored — The processor reads the interrupt
vector number from the interrupting device.

In each case the processor executes an interrupt acknowledge sequence.
During this sequence, the function codes 1indicate an interrupt
acknowledge cycle, the address lines A4-23 are set to 1’s, and the
interrupt level is placed on address lines Al-3., If Valid Peripheral
Address, VPA L, (2.3.7.[b]) is asserted during this bus cycle, the
interrupt will be interpreted as autovectored, in which case the bus
cycle emulates a MC6800 cycle. No DTACK will be -expected and the
transaction will terminate after approximately 1l microsecond. The
interrupting device need not respond because the processor generates
its own interrupt vector number based on the level of the interrupt.

If VPA is not asserted during the interrupt acknowledge sequence, the
interrupt 1s considered nonautovectored, and the interrupting device
responds with a vector number on data bus lines D0O-7 (odd byte). The
upper byte 1is ignored. This transfer takes place just as a normal
read operation does. The interrupting device asserts DTACK when the
data have been placed on the bus. This number is then multiplied by
four to obtain the address of the interrupt vector. Figure 2-4 is a
photographic recording of signal ‘activity during an autovectored
interrupt sequence.

CPU BOARD
PROCESSOR CIRCUITRY

SO S2 S4 S6 SO S2 S4 Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw S6 SO S2

A1-A3 M > *C_

Ai{?}{ N/ \{::
AT N\ AN
Yos T\ [\ Jamt
=\ .

DTACK _—_/ —

D8-D15 “"'*::::::>* } 44::::i:f:::::3

v A———_—_\ —
VA —
\ /
leNormal Cyclesfe = ~ ~ « == —---- Aytovector Operation = - - = = « - ~ -
Figure 2-4

Signal Activity During an
Autovectored Interrupt Sequence

2~-15

CPU BOARD
PROCESSOR CIRCUITRY

After the interrupt vector number is obtained, either by internal
generation or by external read, the processor saves the status and
return address on the system stack and then uses the vector number to
access the interrupt vector (interrupt handler routine address) from
memory. The processor then continues execution at the interrupt
handler routine.

Eighteen wire—wrap pins on the high end of the left (I/0) connecter
(location M9) are arranged in six equivalent groups. Each group
configures the type of interrupt for levels one through six. Level
seven 1is reserved for the error control circuitry as described in
section 2.5. Level six is the leftmost group and level one 1is the
rightmost group of pins, as viewed from the connector edge of the
board.

Jumpering the center pin of any group to the pin above it (away from
the connector) defines . that interrupt level to be autovectored.
Jumpering to the pin below it (toward the connector), defines it as
nonautovectored.

The example in Figure 2~2 shows levels six, five, and two defined as
autovectored, and levels four, three, and one defined as
nonautovectored. The system leaves the factory with all levels
defined as autovectored.

If an interrupt level has been defined as autovectored, VPA will be
automatically asserted during an interrupt acknowledge bus cycle. If
the level is defined as nonautovectored, VPA will not be asserted
during interrupt acknowledge.

NOTE

IF VPA IS ASSERTED during the interrupt
“acknowledge bus cycle, the processor
still executes an autovectored interrupt
sequence even if the interrupt level is
jumpered to be nonautovectored. An
interrupting device connected to a
nonautovectored interrupt level may
still cause an autovectored sequence by
asserting VPA during interrupt
acknowledge.

2-16

CPU BOARD
PROCESSOR CIRCUITRY

2.4,7 System Control

System control comprises three lines, RESET (RESET L), HALT (HALT L),
and Bus ERRor (BERR L). RESET and HALT are bidirectional. On
power—up and during manual reset conditions, both the RESET and HALT
lines are driven as inputs for a minimum of 200 mSec. In no other
case is HALT or RESET driven as an input. The processor asserts RESET
while executing a vreset instruction and asserts HALT when the
processor is halted.

A high-to~low transition on the Bus ERRor 1line tells the processor
that a specified time has elapsed without a DTACK response to the
assertion of Address Strobe. The DIS CPU implements the Bus ERRor
timer with a presettable counter. This counter 1is clocked at 4
MegaHertz, but is normally held in the clear (all zeroes) conditionm.

When Address Strobe is asserted, the counter is allowed to Dbegin.
After 16 clock cycles, the ripple carry output causes the assertion of
Bus ERRor. If, however, DTACK is asserted before the 16 counts can
occur, the counter is stopped, and the negation of Address Strobe will
again hold the counter in the clear state. The 16 counts with a clock
cycle time of 250 nS provides a bus error time out of 4.0 uS. This
value is nonadjustable.

Figure 2-5 is a record of a bus error sequence.

When an access or parity error occurs, address strobe is not asserted
on the bus. Although the processor expects a DTACK, it receives none.
Normally, the bus error timer times out after 4.0 uS and causes the
assertion of Bus ERRor.

Because this causes an erroneous bus trap, the circuitry can detect a
bus error time out resulting from the blocking of the address strobe.
In this case, Bus ERRor is not asserted and the bus error timer
overflow latches the error conditions and generates a DTACK so that
the processor can finish its bus cycle.

2-17

CPU BOARD
PROCESSOR CIRCUITRY

BERR \ /

Initiate Initiate Bus
-—-—-——'——-———Response Feature———-—*—osus Error Detection+Cycle Terminates+— ———————— ——i
Read

Error Stacking

Figure 2-5
Bus Error Sequence

2-18

CPU BOARD

PROCESSOR CIRCUITRY

2.4.8 MC68000 Peripheral Control

The MC68000 provides three lines for interfacing MC6800 peripheral

devices:

de

Ce

Enable (E)- a clock signal that synchronizes
transactions between the processor and MC6800 type
peripherals. The clock period is ten times the
system clock (10 x 125nS = 1.25uS) and has a 60/40
duty cycle (6 clocks low, 4 clocks high).

Valid Peripheral Address (VPA L) - asserted by the
peripheral device when it recognizes its address on
the address bus. VPA L is also used to distinguish
between auto and nonautovectored interrupts during
an interrupt acknowledge sequence.

Valid Memory Address (VMA L) - asserted by the
processor in response to the assertion of VPA L
during an MC6800 peripheral data transfer.

E and VMA L are buffered onto the bus. VPA L is a shared
input to the CPU board.

2.4.9 Processor Status

tri-state

The values of the function code lines (FC0-2) determine the status of
each MC68000 bus cycle. See Figure 2-6 for these values.

FC2 FC1 FCO Cycle Type

0 0 0 (Undefined, Reserved)
0 0 . 1 User Data

0 -1 0 User Program

0 1 1 (Undefined, Reserved)
1 0 0 (Undefined, Reserved)
1 0 1 Supervisor Data

1 1 0 Supervisor Program

1 1 1 Interrupt Acknowledge

Figure 2-6
Function Code Line Values

2-19

CPU BOARD
PROCESSOR CIRCUITRY

As seen in the Figure 2~6, whenever FC2 is zero, the processor 1s in
user mode. The memory mapping logic uses FC2 to determine when to map
the processor address. The interrupt acknowledge condition is decoded
on the CPU board and buffered, along with the values of the function
codes, out onto the bus.

2-20

CPU BOARD
MEMORY MAP

2.5 MEMORY MAP

If mapping occurs the original upper three addresss bits (A21-23) are
zeroes (users are confined to a one-megaword address space). The next
nine address bits (Al12-20) will be used to access one of 512 locations
of the memory mapping registers. These registers are 16 bits wide,
containing 12 bits of new address and three bits of access control
information. One bit is not used. Each register location within the
memory map represents a 2K word segment of logical space, representing
one megaword of memory in all.

When a memory map register is accessed, the 12 bits of new address
information replace the original upper 12 address bits. This scheme
allows the system to map any of the user’s 512 2K word segments into
any of the system’s 4096 2K word segments. In reality, only the lower
14 megabytes are reserved for routine memory functions. The upper two
megabytes are reserved for system and I/0 space.

The three bits of access control information interact with the
function codes representing the state of the processor and the Memory
Mapping Flag to check for access errors as described in chapter four.
Figure 2-7 shows the memory mapping register format.

D15 | D14 D13 D12 D11 - DO

Not

Used 1/0 1/? 1/0 |Physical Segment Number

Segment Write Protected

: Segment Not Protected

: Segment Number Invalid

: Segment Number Valid

: Segment Not Resident

: Segment Resident in Memory

srdrarH

Figure 2~-7
Memory Mapping Register Format

2-21

CPU BOARD
MEMORY MAP

The memory map 1is accessible as read/write memory beginning at
location EFF800 (hex).

2.6 ERROR CONTROL

The CPU board error control circuitry monitors the address for address
violations. When an error occurs, the error type is latched, and a
level seven interrupt is generated.

2.6.,1 Address Errors

An illegal condition on the address bus causes an address error.
Nonmapped addresses are inherently legal except for a word access on a
byte boundary, so that an access error can only occur when the map 1is
active. Four address errors are associated with using the memory map:

1. access violation - occurs when you ¢try to access
outside of wuser space, defined as 000000 - 1FFFFF
(2 MegaBytes).

2, write violation - occurs when you try to write to a
segment that is write protected.

3. 4invalid segment - occurs when you try to access a
nonallocated segment.

4. nonresident segment - occurs when you try to access
a nonresident segment.

Conditions 2, 3, and 4 above result directly from the access control
information stored for each segment in the memory mapping registers.

2.6.2 The Error Register

All error conditions are sampled at the assertion of XACK/ at the end
of a bus cycle. There is no danger, however, that an address error
will cause erroneous data transfers since the error condition blocked
the assertion of address strobe on the bus. In this case the bus
error timer will time out asserting XACK/ (thereby latching the error
condition).

If an error condition exists, the error register, which holds the
values of the error conditions as sampled at the assertion of DTACK,
is disabled from further change until it has been read by the CPU.
Also, a level 7 autovectored interrupt is generated and held until it

2-22

CPU BOARD
ERROR CONTROL

is reset by the reading of the error register. The contents of the
error register are defined in the diagram below:

D7 D6 D5 D4 D3 .} D2 D1 DO

1 0 0 1/0 1/0 1/0 1/0 1/0

Access Violation

Write Violation

Invalid Segment Number

Non-resident segment

Parity Error

Not Used
Not Used

Any Error Condition

Figure 2-8
Error Register

The error condition flags (bits D0-D4) are active high, i.e., a one
indicates that an error occurred. Register bit D7 will be a zero if
an error condition is active. Register bits D5 and D6 are always
zeroes. ‘

The error conditions are latched at the assertion of XACK/ only if an
error 1is detected at that time. When the error register is read, the
level seven interrupt is reset but the contents of the error register
remain intact. They will not change until another error is detected
and latched. -

2-23

CPU BOARD
ON BOARD PERIPHERALS AND MEMORY

2.7 ON BOARD PERIPHERALS AND MEMORY

The on board peripheral/memory address and data busses are sourced
from the connector on the backplane and thus accessible to any device
currently controlling the bus. The single exception to this rule is
that another device cannot access the memory mapping registers.

2.7.1 Memory Mapping Flag And The Error Register

Two other devices may be considered on board peripherals: the Memory
Mapping Flag and the Error register.

If the processor is in supervisor state and the processor address bus
is carrying an address below 2 MegaBytes, then the value of the Memory
Mapping Flag will determine whether the address will be mapped. The
address will be mapped if the value of the flag is a one. It will not
be mapped if it is a zero. The Memory Mapping Flag is set by writing
80 to location EFFCOl, This is an even byte address. It may be reset
by writing 00 to the same location. The value of the flag may not be
read and is automatically reset to zero when the processor begins an
interrupt acknowledge bus cycle, and when the system is reset.

The Error Register is a read-only byte location in memory. Its
contents represent the error conditions present when the last address
or parity error occurred. An error generates a level seven interrupt.
Reading the Error Register (address = EFFD01l) clears the interrupt.

2.7.2 On Board Memory

Sockets for 8 UV-EPROMs, either 2Kx8, 4Kx8, or 8Kx8 allow for 16K,
32K, or 64K bytes of ROM. The CPU board supports the memory board and
any other part that conforms to these standards. In addition, the
board also supports either the memory board standards by selecting the
appropriate jump options. The memory type select jumpers are located
between C7 and C8 on the CPU board. It consists of six pins arranged
in three rows of two columns and two jump connections. (See Figure
2-9 for the various jumper configurations.)

2-24

Configuration
for TMS 2516.

Configuration
for TMS 2532

Configuration
for TMS 2564.

CPU BOARD
ON BOARD PERIPHERALS AND MEMORY

JP1 JP2
o o To Bus Connectors
[A |
o o }
B |
o o A
o o
i A
o o
| B
o o
o o
A
o o
I B
o o
0——0
Figure 2-9

Jumper Configurations

The ROM is configured to reside in the lower 16K (or 32K or 64K) bytes
of system memory. Figure 2~10 shows the board placement.

2-25

CPU BOARD
ON BOARD PERIPHERALS AND MEMORY

Even Bytes 0dd Bytes

(D8-D15) (DO-D7)
5 6 7
A | I] |
| ROMO | | ROMO |
| even | | odd |
I | |]
B | | | I
| ROM1 |] ROM1 |
| even | | odd |
[| | |
C | | | |
ROM2		ROM2
even		odd
D]	
ROM3		ROM3
even		odd ¢
E | I | |

[OK- 4K) [4K- 8K) [8K-12K) [12K~16K) 2Kx8's
[OK~ 8K) [8K-16K) [16K=-24K) [24K~-32K) 4Kx8’s
[OK-16K) [16K-32K) [32K~-48K) [48K-64K) B8Kx8's

To Bus Connectors

!
I
v

Figure 2-10
ROM Configuration

2-26

CPU BOARD
ADDRESS DECODE

2.8 ADDRESS DECODE

The address decoae logic decodes the value of the address bus and
drives select lines for the on board peripherals and memory as well as
general purpose 1/0 device and buffer select lines.

2.8.1 On Board Device Selection

The on board device selects are generated as the outputs of a 74154, 4
to 16 line decoder. The decoder is enabled when the address E00Bxx (x
= don’t care) appears on the address bus. The next to the least
significant hex digit determines which on board device is being
selected, while the least significant hex digit is reserved for
register selection within the device itself. This scheme allows for a
maximum of 16 on board peripherals. Currently only seven of these
select lines are used. DTACK is asserted whenever EQOBxx appears on
the address bus.

The memory mapping registers are selected whenever EQOCxx - EOOFxx
appears on the address bus, providing for 1K bytes (512 registers) of
memory map. DTACK is asserted whenever the map is selected as an 1/0

device.
The on board ROM is selected whenever 00xxxx appears on the address
bus. This allows for a maximum of 64K bytes of ROM; 32K bytes are

now implementable. DTACK is asserted whenever this area of memory is
addressed.

2.8.2 CPU Board Address Decoding

The following summarizes the CPU board address decoding:

2-27

CPU BOARD
ADDRESS DECODE

On Board Peripherals/Memory -

O03FFF (2Kx8’s) (standard)
O07FFF (4Kx8’s)
OOFFFF (8kx8’s)

Read Only Memory: 000000
000000
000000

Clock/Timer: TBD
Memory Mapping Flag: EFFCO!L

Error Register: EFFDOI1

Memory Mapping Registers: EFF800 - EFFBFF

Off Board Memory -

RAM/ROM: 020000 - EFF7FF

I/0 and Off Board Space -

FOO000 - FOFFFF

2.8.3 EPROM Configuration Firmware

One 74S288 PROM on the CPU board must be programmed according to the
EPROM configuration for your System 150. Tabulated below is the
firmware programming for the three EPROM configurations possible with
the CPU board. Standard configuration 1is 2K x 8 EPROMS. Use the
nonstandard PROM programs (Tables 2-3 and 2-4) only after the EPROMS
on the CPU board have been updated to the size indicated above the
tables. All address and data information is in hexadecimal.

2-28

CPU BOARD
ADDRESS DECODE

Address

HEOOQEPOONOTUBEWN-O

oo 00 s 00000
oo 00000000
®0 00000000
ee 000000 e
oo 08000000
o000 0 00000
e 0 ev s e 000
s e s 000000
®00cs 000000
® @9 600 00 00
S0 e0 000000
®ee 0000000
s 00800000
*® 9000000 00
es 00000800

Data

OE
0D
0B
07
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

Address

LI BB S B SN Y)

et 00000000

P98 00800000

CRC IR IS N S Y Y)

e0 0 e 009000

®e0 00000 e

® 600000000

0 0 00000 00

se 0 a0 0s 00

9 80000000

0 8 00060000

se s 0000000

20000000900

% 08000000

Data

OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF

Table 2-2
2K X 8 EPROMS (standard)

2-29

CPU BOARD

ADDRESS DECODE

4K X 8 EPROMS

Address

MEUOOWPWOoOSNOU &SWN O

®evsses oo

o s 0000000

Se s 0000000

e s s 080200

®e s 000200

®es e 0o e 000

es 0 s 000000

s e e0 90000

ev0ecs 0000000

es s 000000

ee s 0s 00800

Se s 00000

LI B I Y I BN W)

29 c0s 0000

Data

OE
OE
0D
0D
0B
07
07
OF
OoF
OF
OF
OF
OF
OF
OF
OF

!
I
I
I
{
I
l
!
l
I
|
!
!
!
!
!
I
I

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

Address

oo o000

®e e 000

*e s s0s 000

®e s 000000

o8 s 000000

s 00000000

s s s 00

G 0000 00

e v cesees

eo e 00000

s s ss0v 00

te e o000 e

s 000000

ee 00004000

Data

OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF

Table 2-3

4K X 8 EPROMS

2-30

CPU BOARD
ADDRESS DECODE

Address Data] Address Data
]
DO eoecessees OE | 10 eeeeeess OF
1 es0s000 00 OE l 11 ss00000 OF
2 sesseense OE i 12 veeesess OF
3 teevesess OE ! I3 seeesses OF
N 1)) | 14 eeeeeeee OF
5 eesessese OD | 15 eeeeeeee OF
6 eeeseseee 0D | 16 eeveesse OF
7 eseesesss OD | 17 eeveeeees OF
8 ecseeacae OB] 18 veeesees OF
9 teeeeeess OB | 19 ceseeees OF
A ceeeeanees OB] 1A eceeeess OF
B eesevs0 e OB l 1B sac 000000 OF
C eeesnsses 07 | 1C eveeeese OF
D eeeeesees 07 | 1D veeenees OF
E eeceoeees 07 | 1E eeesesee OF
F eeeesesse 07 | IF ceeeeess OF

Table 2-4
8K X 8 EPROMS

2.9 PAL EQUATIONS

Uncommitted logic space in the chips is configured as per the
following equations:

PAL10OLS PAL DESIGN SPECIFICTION

P/N 318-021-001

CONTROL SIGNAL GENERATOR - POSTITON G2, S150 MMU CPU BOARD

SYSIO PA8 PA9 PA10 /PAO:/MWIC /MRDC /BHEN /CBUSY GND
SEL UHALF ERRSEL FLGSEL IOXACK LBYTE SWBYTE HBYTE LHALF VCC

LHALF = /PAO
+BHEN
UHALF = PAO
+BHEN
LBYTE = SEL*BHEN
+SEL*/PAO
SWBYTE = SEL#*/BHEN*PAO

2-31

CPU BOARD
PAL EQUATIONS

HBYTE = SEL*BHEN
IOXACK = SYSIO*MRDC*CBUSY
+SYSIO*MWTC*CBUSY
ERRSEL = SYSIO*MRDC*PA10%*/PA9*PA8%*/PAO
FLGSEL = SYSIO*MWIC*CBUSY*PA10%*/PA9%*/PA8%/PAO
DESCRIPTION:

This chip generates the byte control lines for the onboard I/0
which includes the ROM, the flag register, the error register,
and the mape registers.

2-32

CPU BOARD
PAL EQUATIONS

PAL12H6 PAL DESIGN SPECIFICATION
P/N 318-022-001
ERROR AND VAS GENERATOR - POSTITON B4, S150 MMU CPU BOARD

NRS NVS SWP /AS RW FC2 /MAPPED MAPFLG PIN9 GND
PIN11 PIN12 PIN13 AV WV SNV SNR VADD USP VCC

VADD = MAPPED*/NRS*/NVS*RW*AS
+MAPPED#*/NRS*/NVS*/SWP*AS
+FC2% /MAPFLG*AS
+FC2*AS*/USP

AV = /FC2%/USP

SNV = NVS*MAPPED
A% = SWP*/RW*MAPPED

SNR = NRS*MAPPED

DESCRIPTION:

s

This PAL generates the Valid Address Strobe and the error flags.

2-33

CHAPTER 3

I/0 BOARD

3.1 INTRODUCTION

This chapter deals with the physical and logical aspects of the 1I/0
board. Some of the items discussed are: 1I/0 board configuration, the
serial interface, the parallel port, etc.

3.2 DEFINITION AND FEATURES

The I/0 board interfaces with the other boards through the Multibus in
the motherboard or backplane (see Figure 1-2 System 150 (mapped)
System Flow). The I/0 board allows the system to communicate with the
outside world. The board has a serial communications ports called a
UART (Universal Asynchronous Receiver Transmitter) to 'talk" to the
internal display screen and "listen" to the detachable keyboard for
instructions from the user. The additional serial ports on the board
allow the same two-way communication with other terminals, printers,
modems, etc., through the connections on the back panel.

This board also has a general purpose 16-bit parallel port to
communicate with parallel I/0 peripheral devices and an optional
specialty interface called an IEEE 488 bus interface. (see Figure 3-1
below).

[4a)

(suotio=uuU0) UT) Parog Q/I ISSNTITNR
1-¢ 2an31g

Modem
(optional)

Graphics
Boards

Connector Panel
(Parallel and Serial Ports)

I/0 Board

*P1 and P2 connect to the [BEE 796 Bus (Mother Board).

*P1

pP5

TEEE 488
Multibus
pti 4

*p2

—Linnnanaannionnonoannnnoianaonoaaaiacanaooans — WILAAARERE T —

SHANIVIL GNV NOILINIJHA

aavod 0/1

I/0 BOARD
I/0 BOARD CONFIGURATION

3.3 1I/0 BOARD CONFIGURATION

The I/0 board comprises seven main areas of circuitry (see
Figure 3-2 below):

the serial interface (Sectidn 3.2.1)
the real-time clock (Section 3.2.2)
the interval timers (Section 3.2.3)
the general purpose parallel port (Section 3.2.4)

the parallel port direction and LED register
(Section 3.2.5)

the select/configuration switches (Section 3.2.6)

the IEEE~488 bus interface and DMA controller
(optional) (Section 3.2.7)

I/0 BOARD
I/0 BOARD CONFIGURATION

426 Bus

(oPTIONALY)

FARALLE L
INTERFAC.E-

SERIAL INTERFACE ——

UMA CONTROLLER &

Figure 3-2
Multiuser 1/0 Board Circuitry

3-4

BUS DRIVERS

I/0 BOARD
I/0 BOARD CONFIGURATION

3.3.1 The Serial Interface

Seven RS232C serial interfaces with full = handshaking can be
implemented on the I/0 board. In the standard board configuration the
handshaking is dormant, but by changing simple jumper combinatiomns,
any or all of the handshaking 1lines can be made functional (see
Appendix A Pin Locations). The baud rate is generated 1in the UARTs
and 1is software selectable from 110 baud to 19.2K baud. Many of the
handshaking lines can also be programmed to perform various functions
depending on the application (see Appendix A Pin Locations).

All seven UARTs (0-6) are selected at the even address locations on
the Memory Map (see Figure 3-3 Memory Map) between FO00000 and F00036
with the first UART using the first four locations, the second using
the next four, and so on.

All UARTs use interrupt level 5 (INT5/) on the Multibus. The UARTs
are tied to the 1lower byte of the data bus, and address lines
BADR1-BADR2 are used for internal register selection. UARTs 1-5
communicate externally through the I/0 connector board on the back of
the chassis. UART O connects to the internal terminal (transparent to
the user).

UART number six is configured to be used with a modem and for this
reason is Dbrought off the board on 1its own connector, P4. This
connector does not connect to the I/0 port panel on the back of the
system, and, for proper operation, it requires full handshaking,
including a data carrier detect (DCD) input signal (located at P4-8),

FOOOXX

00-06 Serial Port
08-0E Serial Port
10-16 Serial Port
18-~1E Serial Port
20-26 ' Serial Port
28-2E Serial Port
30-36 Serial Port
40-5E Parallel Port & Interval Timers
60~7E Calender Clock

oW O

DO LEDs/Parallel Port Direction
D2 Select/Configuration Switches
Figure 3-3

System 150 I/0 Memory Map

3-5

I/0 BOARD
I/0 BOARD CONFIGURATION
3.3.2 The Real-Time Clock

The real-time clock (RTC) is a calendar clock that can be set and read
from the microprocessor. The RTC can be set to give data on the
following:

e tenths of seconds

® seconds

e tens of seconds

e minutes

e tens of minutes

e hours

e tens of hours

e days

e tens of days

o day of week

e months

e tens of months

bo automatic leap-year
A battery backup circuit provides power to the RTC for 1-2 years, thus
maintaining time and date even when the power is off for extended
periods. The RTC is selected at addresses F00060-FQOO7E, and address
lines BADR1 -~ BADR4 are used for internal register selection (see
Figure 3-3 I/O Memory Map). The RTC data bus is four bits wide and is

tied to the four least significant bits of the low byte of the data
bus.

3.3.3 The Interval Timers

Two interval timers are included on the I/0 board. Each timer is
software-programmable to operate in several different modes, and can
interrupt the microprocessor when software—specified conditions occur.
The timers are contained in the SY6522 Timer/PIA IC and are tied to
the lower byte of the data bus. Address lines BADR1-BADR4 select the
internal register. The SY6522 IC is selected at address
F00040-FOO05E, and uses interrupt level 6 (INT6/) on the Multibus.

36

I/0 BOARD
I/0 BOARD CONFIGURATION

3.3.4 The Parallel Port

The I/0 board has a 16-bit, general purpose, bidirectional parallel
port, with four handshaking lines. The parallel port is actually two
bidirectional eight-bit ports, port A and port B, supplied by the
SY6522 Timer/PIA IC. Two handshaking lines are supplied with each
eight-bit port, and each line can be programmed to operate in a
variety of ways. Both eight-bit ports are buffered with bidirectional
buffers that can be programmed as either inputs or outputs.

To configure the ports as either inputs or outputs, the correct data
must be written to the SY6522 IC and also to a bit-addressable latch
that controls the port buffers. The addressable latch is described in
detail in the parallel port direction and LED register description
that follows (see Section 3.2.5).

On power up both eight-bit ports are configured as inputs. The SY6522
IC is selected at address F00040-FOOO5E, and uses interrupt level 6
(INT6/) on the Multibus. The SY6522 is tied to the lower byte of the
data bus, and address 1lines BADRl1 - BADR4 are used for internal
register selection.

3.3.5 The Parallel Port Direction And LED Register

The parallel port buffers and the six LEDs are controlled by an
addressable latch. The latch is selected at address location FOOODO.
The function of each output is described on the following page.

LED6 |LED5 |LED4 |[LED3 {LED2 |LED1 |BDIR |ADIR

I/0 BOARD
I/0 BOARD CONFIGURATION

e BDIR - Direction control for port B. A "1" at this
output causes the buffer on port B to become an
output, while a zero (0) causes the buffer to
become an input.

e ADIR - Direction control for port A. A "1" at this
output causes the buffer on port A to become an
output, while a zero (0) causes the buffer to
become an input.

e LEDLI-LED6 - On/off control for the SIX LEDs. A low
at one of these outputs causes the corresponding
LED to be turned on, while a "1" causes the
corresponding LED to be turned off.

e All outputs are cleared to zerces on power up and
on reset.

Figure 3-4
‘Explanation of Addressable Latch Operation

An addressable latch is a write-only latch on which only one bit is
written at a time. This is accomplished by using three bits of the
input data as an address, to select which of the latch outputs 1is to
be written to. Another bit of the input data is used as the data to
be written to the addressed output. The input data byte is organized
as shown below:

I/0 BOARD
1/0 BOARD CONFIGURATION

X X X X DATA A2 Al AQ

L—————-Least Significant Address Bit

Next to Least Significant

Most Significant Address Bit

Written to Latch Output

"Don't Care"

"Don't Care'

"Don't Care'"

"Don't Care"

Figure 3-5
Input Data Byte Organization

3.3.6 The Select/Configuration Switches

The eight DIP switches may be read by the system, Switches one
through five are used for the address select of the IEEE-488 bus
interface (see Section 3.2.7). Switches six through eight are used as
test/configuration switches. The switches are selected at address
FOOOD2 and are read only.

3.3.7 1IEEE 488 Multibus
This set of components is optional. When implemented it acts as a

General Purpose Interface Bus (GPIB), connecting other optional
peripherals to the I/0 board.

3-9

CHAPTER 4

MEMORY MODULE

4.1 INTRODUCTION

This chapter contains a description of the memory board signals, the
electrical characteristics, and the board configuration, including the
location and the use of address switches.

4,2 DEFINITION AND FEATURES

The memory board is a Dynamic RAM Memory Module with Error Checking
and Correction (ECC). The module is organized as 256K words by 16
bits (K = 1024) and uses the 64K DRAM. Features of the memory module

include:

e Compatibility with both the Intel Multibus protocol
and the IEEE 796 bus specifications

o Additional six bits of check bit data support error
detection and correction (EDAC)

e A control status register and an error status
register

® Decoding:
- 24 lines of address capability

. A 20-bit address field with a 4K byte
granularity

. Four additional address lines to select any
of 16 l-megabyte pages

. Data access in either word or byte mode

The following diagram shows the configuration of the memory module and

identifies some of the circuitry areas.

DEFINITION AND FEATURES

MEMORY MODULE

SHOLIINNOD (32uNOS 33IMNOd)
2d SNId MAIWN(C SAOLIINNOD 1 d

—

[memwon n B2
T 1 1
I 1 S | | N) § S |) S | AN || o | § o gy 0|]
0C—a oC_— 1 C—ocC— ranﬂ ' a 1 [1]
oC—n 0t 101 o s | 1 s s 1 s e ==
0t 01 Tl 101 n—r—r—r— n— 0 —

i — 1] —

ﬂu“__ 101 1
 — o B] 10
_ __HHHHU /0
D]]c
[

[:rlllL —14a
hHHHHDhHHHu /0

5 Hu@ﬂ]ﬂu}_lﬁ 1 .: HMD _HHH___WU:O_
X SRS E 5N

SIHOLINS SS3daay (onssauaaY) €d 1S3t

4=-2

Figure 4-1
256K Memory Module

MEMORY MODULE
MEMORY MODULE SIGNALS

4.3 MEMORY MODULE SIGNALS

Signals common to the Multibus system are defined in the 1Intel
Multibus Specification Manual 9800683 or the IEEE 796 bus
specification. Signals peculiar to the memory module are described in
Section 4.3.1.

4.3.1 Advanced Acknowledge (AACK/)

AACK/ warns the bus master of valid read data, thus avoiding
unnecessary wait states. AACK/ is identical to Transfer Acknowledge
(XACK/) except that it occurs earlier in the cycle during read
operations. AACK/ is brought out to the bus on connector P2.

4.4 ELECTRICAL CHARACTERISTICS
4.4.1 EDAC

EDAC corrects single bit errors and detects double bit/gross errors.
When enabled, EDAC completes all operations having a READ error by
attempting to write corrected data back to memory.

4.4.,2 Status Registers (CSR And ESR)

The memory module has a control status register (CSR) and an error
status register (ESR). From the card edge with the card in place, you
can see the error status displayed on the LEDs.

CSR and ESR are accessed through an I/0 port base address. CSR is
selected with ADRO = 1 (an electrical high); ESR with ADRO = 0. The
I/0 port base address is designated with eleven onboard switches.
Eight switches are compared with ADR4/ through ADR8/, and the three
more significant start address switches are compared with ADR1/
through ADR3/. Selecting addresses this way permits the eight more
significant bits of the I/0 port address to be identical to other
memory boards in the system and to mirror the I/0 port address
selection made based on position of the memory board within the
address space.

See Section 4.8.5 for the switch settings.

MEMORY MODULE

ELECTRICAL CHARACTERISTICS

bobo2.1

Control Status Register -

CSR controls and stores information on errors and power failure. You
CSR or read from it, depending on whether you are

can write
executing an I/0 Rea

b.4.2.1.1

to

the

CSR Read Format -

d Cycle (IORC) or an I/0 Write Cycle (IOWC).

-

Figure 4-2 shows the format for reading data from the CSR:

DAT7

DAT6

DATS

DAT4

DAT3

DAT2

DAT1 | DAT®

DBE

SBE

PFSN

LPERR

HINH

DBE EN [SBE EN

CSR Read Format

Figure 4-2

SBE Interrupt Enabled

I
DBE Interrupt Enabled

Error Correction Enabled
Latch First Error Enabled

Not Implemented
Not Used

Single-Bit Error Has Occured

Double-Bit Error Has Occured

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

Figure 4-3 shows the format for wriging data into the CSR:

DAT7

DAT6

DATS

DAT4 | DAT3 |DAT2 | DAT1 | DATOQ

RPFS (LFERR [HINH {PBE EN {SBE EN

L—————'dﬁ'=Enab1e, "@'" = Reset SBE Interrupt

"1'" = Enable, "9'" = Reset DBE Interrupt

Error Correction Disabled
Latch First Error Enabled

Reset Power Failsense F/F

Not Used
Not Used

Not Used

Figure 4-3
CSR Write Format

4.4.2.2 CSR Flag Control Bits - The system supports six CSR Flag
Control Bits, described below.

Double Bit Error Flag (DBE)

DBE indicates that two bits in the same word failed or
that a gross error has been detected. DBE is set when

a double bit error occurs, then reset when DBE EN control
bit is taken to zero. Setting DBE EN back to a logic one
enables detection of the next double bit error.

Single Bit Error Flag (SBE)

SBE, a read only signal, indicates that a single bit error
has been detected. SBE is set when the error is detected,
then reset when SBE EN control bit is taken to logic zero.
Setting SBE EN control bit back to a logic one enables

the detection of the next single bit error.

Latch First Error (LFERR)

LFERR allows you to select whether ERR data are updated
each time a SBE/DBE is detected, or only once on the first

4-5

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

error detected. Writing a logic one to the LFERR control
bit will enable LFERR so that the next error can be stored.
When you set LFERR to zero, the last error will always
update the ESR. LFERR can be read or written.

Error Correction Disabled (HINH)

When equal to logic one, HINH disables error detection,
error correction, and the write function to the checkbits.
Use HINH only for testing. HINH can be read or written,
and the board cannot be initialized when this bit is. set.

Enable DBE Interrupt (DBE EN)

When DBE EN equals logic one, interrupts on DBEs are
possible. Taking DBE EN control bit to a zero resets
any current DBE flag bit. Leaving DBE EN at a zero
disables DBE interrupts. DBE EN can be read or written.

Enable SBE Interrupt (SBE EN)
When SBE EN equals logic one, interrupts on SBEs are
possible. Taking SBE EN control bit to a zero resets

any current SBE. Leaving SBE EN at zero disables SBE
interrupts. SBE EN can be read or written.

4.4.2.3 Error Status Register -

When a single bit error occurs and the conditions for FE/LE have been
satisfied, ESR stores the error information. You can only read data.
from the ESR. Clear the ESR by

e writing to it,

e pressing RESET (Sl), or

e making INIT/ active.

Figure 4~4 shows the format for reading data from the ESR:

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

DAT7

DAT6

DATS

DAT4 | DAT3 | DAT2 |DAT1 |DATO

BANK1

BANK®

SYNS

SYN4 | SYN3 | SYN2 | SYN1 }SYN®

Syndrome Bit @

Syndrome Bit 1

Syndrome Bit 2

Syndrome Bit 3

Syndrome Bit 4

Syndrome Bit 5

Bank 1
Bank @

Figure 4~4
ESR Read Format

4.4.2.4 ESR Signal Definitions -

Bank:

Bank 1 and Bank O define the physical row of DRAMS (BANK) in which
Table 4~1 shows the relationship between bank address
and the reference designator for memory devices within that row.

an SBE occurs.

Bank 1 Bank O Memory Reference Designators
0 0 u000 through uQ21
0 1 ul00 through ul2l
1 0 u200 through u22l
1 1 u300 through u321
Table 4-1

Bank Signals Reference Table

47

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

Syndrome bit 5 through bit 0 (SYNS = SYNO)
Bits 5 through O define the hamming code generated by the

SN74LS630 EDAC device when a SBE occurs. Table C shows the

relationship between the syndrome code and bit location within a given
bank.

4-8

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

Syndrome Code Data Check Bit Location
(Bit 5 4 321 0) Bit Bit X=0,1,2,3 (Bank)

110100 0 . X00
110010 1 - X01
110001 2 X02
101100 3 X03
101010 4 X04
101001 5 X05
100101 6 X06
100011 7 X07
011100 8 X08
011010 9 X09
010110 10 X10
010101 11 X11
010011 12 X12
001110 13 X13
001101 14 X14
001011 15 X15
111110 0 X1i6
111101 1 X17
111011 2 X18
110111 3 X19
101111 4 X20
011111 5 X21
000011 Gross Error Condition

111100 Gross Error Condition

—
]

Note: lamp on

Table 4-2
Syndrome Code

The syndrome codes for DBEs are mutually exclusive of any SBE codes.
If you clear the ESR by writing to it, then by reading the ESR and
comparing it to zero you can check (poll) the board for errors.

The ten light emitting diodes (LEDs) near the address switches display
the error status: the left-most 1light indicates a DBE; the next
light indicates a SBE. Interpretation of the next eight lights is the
same as the ESR (see Section 4.4.2.2). Pressing reset (Sl) or writing
to the ESR clears the ten LEDs. An active input on the INIT/line
clears the LEDs and the ESR.

4-9

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

4.4.3 Memory Features

The memory features described in this section fall into one of six
categories.

o Addressing (Section 4.4.3.1)

e EDAC (Section 4.4.3.2)

e Interrupt options (Section 4.4.3.3)
o DPower fail reset (Section 4.4.3.4)
e Power source (Section 4.4.3.5)

e Advanced Acknowledge (Section 4.4.3.6)

4,4.3.1 Addressing -

Three sets of address switches (Figure 4-1) decode the lower and upper
end of memory and select the CSR/ESR base address. Memory address
range extends to 1024KB with 4KB granularity. The CSE/ESR address
range extends to 4KB. See Section 4.8 for examples of switch
settings.

4.4.3,1.1 Starting Address Selection -

Bus address bits ADRC/ through AD13/MSB (Most Significant Bit) are
compared with switches S2-8 through 82-1 respectively. When the bus
address bits are greater than or equal to the selected switch
settings, the conditions for the lower end of the address range are
satisfied. To select the memory board however, conditions for the
ending address must also be satisfied. :

4.4.3.1.2 Ending Address Selection -

Bus address bits ADRC/ through AD13/ (MSB) are compared with switches
$3-8 through S3-1 respectively. When the bus address bits are less
than or equal to the selected switch settings, the conditions for the
upper end of the address range are satisfied. Read about the lower
end address requirements in 4.8.2. The ending address switch
specifies the last 4KB block to be addressed; i.e., if the ending
address switches were set to 43 hexadecimal, the 1last byte to be
addressed would be 43FFF. : '

4-10

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

4.4,3.1.3 CSR/ESR Address Selection -

Bus address bits ADR4/ through ADRB/ and ADRI/ through ADR3/ are
compared with switches S4-8 through S4-1 and switches S2-3 through
S2-1 respectively. Including S2-3 through S2-1 in the selection of
the CSR/ESR address permits all memory boards to have the same I/0
base address with selection being determined by the starting address
for the wmemory. A closed switch represents a logical zero. Read
section 4.8 for examples of switch settings.

4.4,3,1.4 CSR/ESR Address Range -

A three-jumper pin arrangement permits the removal of ADR8/ through
ADRB/ from the CSR-ESR address selection. Connecting wirewrap post B5
to C5 yields an address range of 4096 bytes. Connecting B5 to A5
limits the range to 256 bytes. The smaller range uses only eight bits
and is therefore normally enabled only when an eight-bit
microprocessor is used for I/0 communications.

4,4,3,2 Error Detection And Correction (EDAC) -
EDAC Enabled

EDAC is enabled by an active INIT/ during power up. When the CSR bit
HINH is low (see 4.4.2.1), the EDAC device, SN74LS630, is enabled.
EDAC generates checkwords, syndrome bits, and error flags (DBE and
SBE), and corrects data words. Corrected data from the EDAC are
stored in a data latch so that during a read operation the corrected
data:

e are available on the bus,

® can replace error data (write back on error), and

e are made available for byte write operations

EDAC Disabled

‘When the CSR bit HINH is high, the EDAC device is held in an input
mode, and the error flags (DBE and SBE) are held reset. Read data are
not corrected, and the write operation to the checkbits is inhibited.
Thus,

® write data generate no checkbits, and

o writing a word to a location with HINH active

4-11

MEMORY MODULE
ELECTRICAL CHARACTERISTICS

modifies the 16 data bits but leaves the six check
bits unchanged from the last write operation to
where HINH was inactive.

4.,4,3.3 Interrupt Optiomns -
Hardware Programming

Interrupt request lines INTO/ through INT7/ generate nonbus vectored
interrupts to the bus master. These eight lines can be connected to
any combination of three signals: SBE L, DBE L, and PFIN L. Normal
configuration is SBE L to 0, DBE L to INTO/.

Interrupts are wired so that a SBE or DBE causes INT7/ to be asserted.
No interrupts are jumpered at shipment time. Figure 4-1 shows the

jumper pin locations.

Software Programming

With SBE EN and DBE EN bits in the CSR, you can enable or disable SBE
interrupt and DBE interrupt respectively. . To clear the current
interrupt, disable the interrupt, then reenable so that the interrupt
will operate on future errors.

4.4,3.4 Power Source -

The memory module has a three-section power plane and a solid ground
plane. All 1logical devices are on one or a combination of these
planes.

4.4.3.5 RAM Configuration =

The memory module can be configured with 64K DRAMS and 64K DRAMs,
i.e., 64 DRAMs with 32K of usable memory. Address programming of the
64K DRAM partials depends on which part of the DRAM is wusable; four
combination are possible. When using partials, the module comprises
only one DRAM type. ‘

The programming information shown in Figure 4-7 depends on the type of
DRAM used. Altering this information is impossible unless you replace
all of the DRAMs on the memory module.

Y

)
Il

4-12

MEMORY MODULE
TESTABILITY

4,5 TESTABILITY

Three test features ensure the optimum effectiveness of computer-based
incircuit and functional test systems.

4.5.1 Testing EDAC Logic

Thorough testing of EDAC logic requires access to the six checkbits
generated/checked by the EDAC device (SN74LS630). The data from these
memory locations are unavailable through the bus I/0. Via connector

P4 the EDAC test can access these checkbits. Table 4-3 shows the
connector configuration.

PIN MNEMONIC DESCRIPTION 1/Q PIN MNEMONIC DESCRIPTION 1/Q

G1 GND Ground - H1 SYNLCK H Syndrome Latch |
Clock

G2 GND Ground - H2 LMWTC L Latched Writs ‘
Command

G3 REFMUX H Refresh CYC/CPU CYC 0 H3 RAMDSBL L RAM Disacle |

G4 a0H Start of Cycie o Ha CBWTEN L Checkbit Write)
Enable

G5 LATC80 H Latcned Checkbit O Q HS D116 H Buffared Check- T{e]

G8 LATC81 H Dats 0-5 1 o HE o7 H bit Data /O

G?7 LATCB2 H {Test Oniy) 2 (o] H7 o1g 1/Q

G8 LATCB3 H 3 (o] H8 Di19 H 1/Q

G3 LATCB4 H 4 0 H9 DI20 H 1/Q

G10 LATCBS H 5 Q H10 Q121 H 110

Table 4-3

P4 Connector Pin Assignments

4.5.2 Address Testing

A connector P3 ensures that all combinations of starting and ending

addresses are properly decoded. Each of the 24 ungrounded pins on P3
is in parallel with one of the address select switches. Figure 4~4
shows the connector configuration.

4-13

MEMORY MODULE
TESTABILITY

[} N2 wn
prrrrrrezaezee
N I I I O O A A
A I EEEEEEEE I
0 1 2 3 4 5 6 7 8 9 1011 1213
CONNECTCR Fl9 & & & ¢ 9 0 ¢ 9 9 ¢ 0 9 o
| L I L R
a 17 B T R .
FEEEEEEEEEEEEE Jouma
Figure 4-4

Addressing Connections

4.5.3 Testing Arbitration

To test arbitration, plot the skew between refresh request and CPU
request versus the start delay time as shown in Figure 4~4. Figure
4-5 shows the connector configuration for arbitration testing.

4-14

MEMORY MODULE
TESTABILITY

MEMORY CYCLE
STARTED REFRESH CYCLE STARTED

% N

$

1-135.

MWTC OR MROC |
ACTIVE TO d0 ACTIVE f=120 -
P4 CONNECTOR PIN G4 |

s {05 weemm————— —

OtSTART

MAX

1§

MIN l
|
| S - | [1L 1
-14 -9 4 0 +1 +13 +28

MWTC OR MRDC ACTIVE TO REFREQ ACTIVE,
Atreq

Figure 4-5
Arbitration Testing Plot
NOTE
These test features may change as it

becomes necessary to modify the test
programs.

4-15

MEMORY MODULE
TESTABILITY

TMMA0010
8 MODULE
»mRDC! 8 7 8
TIMING A 8[]E:]
cleje o
GENERATOR f P23
»{ REFR1/
F240 _ IRern2/
v PGt liom
EDGE “B" IS SKEWED WITH RESPECT TO
EDGE “A”. THE OUTPUT AT REFR2/LEADS \
~REFAEQ"” BY 816 NS. THE LEADING ey
EDGE OF “d0 H” 1S THE “CYCLE START" ’ ;l LS
INDICATION. ' MEASURE. | V-AXIS
»of MENT
»of PULSE
WIDTH
MEASURE- | XAXIS
L———e——] MENT
Figure 4-6
Arbitration Testing Connections
4,6 MODES OF OPERATION
Input/output (I/0) and memory are the two basic modes of

I/0 operations are between the CSR and ESR.

data transfers between memory.

cycle.

operation.
Memory operations involve
Figures 4-7 A, B, and C present
major decisions and events that take place during each memory or I/0

ISR VIS

comRrecT .
NO REFAESH
RANGE 4 REQUEST
?
ves
HOLD OFF BUS HANOSHAKE
ISSUE REFRESH ADDRESS
MEMORY
CYCLE NO DISABLE ALL 4§ CAS LINES
..w, o MAINTAIN PREVIOUS READ DATA
ISSUE RAS TO ALL 4 BANKS
ves l
I . ENO RAS 1
WRITE waITe WRITE
READ WORD MIGHSWAS SYTE LOW SYTE

3t

}

{ WAIT PRECHARGE TIME 1

LATCH
Han LATCH LATEN
& MGH Low

Low et
syTes svre

i

|

[ISSUE RAS TO APPROPRIATE SANK

:

| ASSEIAT COLUMN ADORESS

J

:

| ISEUE CAS TO ALL BANKS

<

WRITE
WORQ HIGCH/SWAP SYTE

WRITE
LOW SYTE

LOAD SYNDROME ANO BANK COOE
INTO ERROR STATUS REGISTER

LATEH
ran LATEN LATEM
1 Low MGH) 4
Low sYTR (a1
svves j
j was
l :L [ERROR
SINGLE OR
LaCE
APPROPRIATE OOUBLE BIT
DATA SBYTL(S) ON
OCATA 8VS s

oousLs
MT ERRON
INTERRUPY
ENASLED

UG L

MODES OF OPERATION

SET SBK F/F

SET DSE F/F

ISSUE SBE INTERAUPY

ISSUE DBE INTERRUST

|

L

| €ND RAS 2 CAS 1

}

r WALT PRECHARCE TIME i

L

Figure 4-7 a)

Memory Cycle Flow

Chart

MEMORY MODULE
MODES OF OPERATION

cLLAn
(2]
cLian
IRROR Laswrs ract
CONTROL STATUS
CLEAR REGISTEA ON
TAROR STATUS LOWBYTE SUS
AEQISTEN
L »
LOAD COMTROL
rLACE STATUS REGISTER
SNAQR STATUS wiTH CATA
RECQISTER O PROM LOW SYTE
Low QYTE B s
I |

Figure 4-7 (B)

=

CLLIAN
ERAOR LameS

CLEAR TAROA
STATUS RECISTIR

Figure 4-7 (C)

-

[

WO FORT FLOWCKAARTY

MEMORY MODULE
MODES OF OPERATION

Figure 4-8 summarizes the 8-bit and 16-bit data paths used.

(Figure 4-8 is on page 4-19A)

4.6.1 Read Operations

Data from a specified address 1is obtained from memory and sent
uncorrected to the EDAC logic for validation and correction. If EDAC
is inhibited, uncorrected data are immediately available at the bus as
either a 16-bit or 8-bit word. Otherwise, data are checked, and error
flags are set if an error is detected. If an SBE occurs, corrected
data are rewritten to memory. If enabled, error flags are latched
into the CSR, and interrupts are sent to the bus master. The CSR will
contain a value that can be interpreted to find the failing DRAM.

4.,6.2 Write Operations

If EDAC is enabled, l6-bit and 8-bit words for a specified address are
sent to the EDAC logic to generate checkbits, and the data in memory
are checked for errors, corrected, and stored in registers. If 8-bit
data are written, the input replaces the unwanted byte of the
corrected word in the data register. A new checkbit word is
generated, and the data word in the register is written back into
memory.

4-19

BUFFER =Y HI0HBYTE
REFRESH BUFFER
COUNTER BUFFER]l £ DAVS/-
> DATF/
s —_— L]
L BUFFER
* ma
:3?:‘::: S M ADDRESS . F-—-: .
MUL TIPLEXER ADDRESS f . .
omves) cueckuis |3 = HION BYYE Swar svTE
44 12 LOW BYTE D RAMS |H1GH BYTE D RAMS CK 8 i" . — BUFFER
ADRO/- QU A D RAMS w‘ E0AC LATCH
ADRIT! SEL o i ¥ . s CZ?.:-
n F LOWBYTE
A LATCH
" DAIVER z. ERROA L] .o
i ; .
ADRI4/ - ADRIN c ¥ 112 r-
-
i e s
PAGE COMPARATOR RAS, CAS, y 4 DATO/ -
BANK WHY ARRAY [[Il . OATY
| SELECT DRIVERS . Low
P —
4 " aVIE
BUFFER
MEGARY VE &
GE SELECT < 7 E 2 s
TAAAAAN' 1 :?';\"?
.
[om] Y
ADORESS SELECT 1["
EXTENDED ADDRESS ENABLE VESY CONNECTOA AEFRESH xnc:{
HIGH ADDRESS :)::"; A
wnesey I
HECKS!
XXFFF HEX HN NGy (;(:' Y
>
20 LUOLINDARY CONNEC
1 comP
- MEMORY CTRL 108
—— psEL)
o) 3 Al ARBITRATOR
> - TIMING GENERATOR
LOW ADDRESS 8 ~ READ CORRECT MODIFY WRITE CONTROL SV NDROME
ey ~ REFRESH CONTROL SYNDROME UFFER
vV - BUS CONTROL
¥ V000 HEX E LATCH LED
3 HIGH . 1] visravs
X :> BOUNDARY .] Ta s
s —_— .
MaOC! comp s N
Mwic/ - 2 SVND
wa = . STATUS '
BHEN/ 4] — REGHS. °
MPRO! TER
REFI/ R - csn o v osAnx
REF2/ .] o
10 PORT o
BASE ADDRESS bt 5 EARC.
SELECT
10 roRY l STATUS
BASE 1o CIAL LAYCH
COMPARATOR ~ ERRON STATUS REGISTER
2% — CONTROL STATUS REGISTER csh
— INTERRUPT CONTROL s
= ~ ERRORA LOGGING CONTROL enasie
" rESA/
; D>
e NON VECTORED INTERRUPT
2) STRAPS
10RC! N H
: INTO/-
1owel ” MANUAL & oan
reswt 3 EAROA STATUS REGISTER : ¢
RESET l |
RN/ (g

Figure 4-8 ,
Memory Cycle Data Paths

MEMORY MODULE
MODES OF OPERATION

4.6.3 Byte Swap
A byte swap buffer is included to maintain compatibility with 8-bit

bus masters. This buffer exchanges even bytes between the 8-bit
system bus and the high-byte in memory when BHEN/ is high.

4,6.4 Refresh
Refresh permits you to retain data in dynamic memory. A Row Address
Storage (RAS) only cycle is wused for refresh and a minimum of 256

cycles must occur every four milliseconds. A different row address is
accessed for each cycle of the 256 cycles.

4.7 CONFIGURING THE MEMORY MODULE
Three things happen on powerup,

1. The CSR is initialized so that error detection and
correction are enabled,

2. The ESR captures the last error,

3. DBE and SBE interrupts are disabled.

For initial checkout, you need set only the four address switches.

4.8 LOCATION OF ADDRESS SWITCHES
Turn the module so that the switches are facing you. From 1left to

right the switches facing you are:

STARTING ADDRESS, ENDING ADDRESS, I/0 PORT BASE ADDRESS

And in the upper right-hand corner, MEGABYTE PAGE ADDRESS.

4-20

MEMORY MODULE
LOCATION OF ADDRESS SWITCHES

NOTE
The MSB is on the left of each switch.

ON equals a logical =zero (0). OFF
equals a logical one (1).

4.8.1 Starting Address

The starting address is WX000 hexadecimal. WX represents two hex
digits (eight bits) that correspond directly to the eight bits of the
starting address switch, S2. Consider the example in Figure 4-9,

Desired Starting Switch S2
Address (hex) t WX ¢ -1 -2 =3 =4 -5 ~p -7 -8
00000 :00: 0 0 0 0 0O 0 O O
12000 :12: 0 0 0 1 0 O 1 O
3F000 ¢ 3 : 0 0 1 1 1 1 1 1
~S3FERYocoo : 8 : 1 0 0 0°0 O O O

Figure 4-9
Starting Address Settings

4.8.2 Ending Address
The ending address is YZFFF hexadecimal. YZ represents two hex digits

(eight bits) that corresponds directly to the eight bits of the ending
address switch, S3. Consider the example in figure 4-10.

4=-21

MEMORY MODULE
LOCATION OF ADDRESS SWITCHES

Desired Ending Switch S3

Address (hex) : Y2 ¢ -1 -2 -3 -4 -5 -6 -7 -8
3FFFF :3F : 0 0 1 1 1 1 1 1
56FFF : 5 : 0 1 0 1 0 1 1 O
9EFFF : 9 : 1 0 0 1 1 1 1 O
C3FFF :C3: 1 1 0 0 0 0 1 1

Figure 4-10
Ending Address Settings

4,8.3 Enabling Extended Address Lines

To enable the four extended address lines, locate the 5 position DIP
switch, S5, in the upper right-hand corner when the board component is
side up and the gold finger are away from you. The leftmost switch,
$5-1, enables or disables the four additional address lines as shown
here:

Switch : Position : Function
S5-1 : 0 : enables ADR14/ through ADRL7/

$5-1 : 1 : disables ADR14/ through ADR17/

4.8.4 Setting Address For Extended Lines
The board’s location will be one of 16 possible one-megabyte pages.

From the remaining four positions of the 5 position DIP switch S5,
select one page as shown in Table 4-4. '

422

MEMORY MODULE

LOCATION OF ADDRESS SWITCHES

Switches
One-megabyte S$5-2 S$5-3 S5-4 S5-5
page
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1
Table 4-4

Switch Setting for Each Page

NOTE

You cannot place the board across
megabyte boundaries. Thus, if the board
is in the 24 address line mode and if S5
is set -to page 12 (C hex), then the
combination of S2 and S3 setting may not
extend the starting address below C00000
hex the ending address above CFFFFF hex

4.8.5 I/0 Port Address

The I1/0 port base address is PQR hexadecimal,

where:

PQ

represents two hex digits (eight bits)
in direct correspondence to the eight

4-23

MEMORY MODULE
LOCATION OF ADDRESS SWITCHES

bits of the 1/0 port base address switch,
S4

R is a hex digit comprising the three more
significant bits of W (from the module
starting address) plus the state of ADRO/
from the bus.

Table 4-5 shows an example of how to set the I/0 port base address.

PQ R (PQR)
Switch S& Switch S2 I/0

I/0 Port Setting Start Address Logical Port REG

-1 -2-3-4-5-6-7-8:-1-2-3 ADRO Addr
0 0 0 00 00 0: 0 O0 O L 000 CSR
0 0 0O o000 0: 0 00O H 001 ESR
01 01 011 0: O OO L 560 CSR
0 1. 01 01 1 0: O OO H 561 ESR
1 01 0 01 0 1: 0 01 L A52 CSR
1 01 0 01 0 1: 0 0 1 H A53 ESR
1 1 1 1 1 1 1 1: 1 OO L FF8 CSR
1 111 1 1 1 1: 1 O O H FF9 ESR

Table 4-5

Address Settings for I/0 Port

4=-24

CHAPTER 5

WD1000 AND COUPLER/FLOPPY BOARD SET

5.1 INTRODUCTION

This chapter describes the WD1000 and Coupler/Floppy Board Set,
showing its configuration and explaining its functions and features.

5.2 DEFINITION AND FEATURES

Floppy disk control is handled by the WD1000O and Coupler/Floppy Board
set designed by Western Digital. The set is formed by physically and
logically connecting the WD1000 board and the Coupler/Floppy board.
Figure X-1 shows the board set configuration.

5-1

WD1000 AND COUPLER/FLOPPY BOARD SET
WD1000 AND COUPLER/FLOPPY BOARD SET CONFIGURATION

5.3 WD1000 AND COUPLER/FLOPPY BOARD SET CONFIGURATION

The WD1000 Coupler/Floppy Controller board inserts into the mother
board in the bottom of the chassis. The WD100O board is attached to
the coupler by four three-—eighths inch standoffs. The circuitry of
the two boards interface via the coupler cable, as shown in Figure

5-10

5-2

—m -

AL_LuJJl“L

WD1000 AND COUPLER/FLOPPY BOARD SET
WD1000 AND COUPLER/FLOPPY BOARD SET CONFIGURATION

i (D_\\\/g
e — - — ’___'\\Q
HH C>*x__
/4
g gy L I®
—

Legend:

1
2
3 -
4
5

WD1000 Coupler Board
WD1000 Board

Screw

Standoff

WD1000 Coupler Cable

WD1000 and Coupler/Floppy Board Set Configuration

Figure 5-1

5-3

AN

WD1000O AND COUPLER/FLOPPY BOARD SET
COUPLER/FLOPPY CIRCUITRY AREAS

5.4 COUPLER/FLOPPY CIRCUITRY AREAS

The circuitry of the WD1000 Coupler/Floppy board is divided

areas. The first area acts

into
as a coupler and Direct Memory Access

two

(DMA) controller for the WDLOOO Disk Controller, and has five areas of

circuitry (see Section 5.4).

The second area is a 5 1/4" Floppy Disk

Drive controller and has two areas of circuitry (see Section 5.5).

Figure 5-2 shows the circuitry areas on the Coupler/Floppy Board.

SSINCHRONOUS STATE MACHINE

following sections.

uat uay)
G i e R — U
 —
s Ang)
csi 2] 3 1
- - ws Uy Lo
s R A £ ! Jus b Jua § Jos §] §]
us (L
1 [N Jue § Ju? s Jus) Jug T Jue 1Y &2
s, e
__Jjuiq
i ADIRE S5
Jues b 16 Juse VE&OD?-
W
'A‘J'
30 L_T n _Jux)
MSl
Juss g S Juw I“W Jusp
U'si
us; us4
S — 1]
Bus eaTion DATA PATHS
US ARBITRATIO
/
DMA ADDRESS RESISTER. / CounTer.
Figure 5-2
WD1000 Coupler/Floppy Board Circuitry
The circuitry areas are logically distinct and are discussed in the

WD1000 AND COUPLER/FLOPPY BOARD SET
COUPLER/FLOPPY CIRCUITRY AREAS

5.4.1 WD100O Coupler/DMA Controller
The heart of the coupler portion of the board is an 8 MHz clock
synchronous state machine, which allows the flexibility and speed
required to interface between the WD10OO board and the IEEE 497 bus.
The coupler has five major circuitry areas:

e A synchronous state machine (Section 5.3.1.1)

e Address decode (Section 5.3.1.2)

e DMA address register (Section 5.3.1.3)

e Bus arbitration (Section 5.3.1.4)

o Data Paths (Section 5.3.1.5)

5.4.1.1 Synchronous State Machine -

The following shows the integrated circuits involved in the state
machine and their functions. (Refer to Figure 5-2.)

NOTE

In the following examples, a "g"
followed by a number (such as U2, U33,
etc.) refers to a specific integrated
circuit on the state machine. Notatioms
such as U33-25 refer to a specific pin
location on that integrated circuit.

Functions IC’s
State register U2
Input forming logic u7,011
Decision variable selection Ul8 (state machine inputs)
Input Synchronization Ul13
Output forming logic U1,Uu8
Output latching U6,U12 (state machine outputs)

5=5

WD1000 AND COUPLER/FLOPPY BOARD SET
COUPLER/FLOPPY CIRCUITRY AREAS

5.4.,1.2 Address Decode -

The address decoding is performed by the following:

Functions IC’s
Board select Ul4,U019,026
Onboard selects 031,038

5.4.1.3 DMA Address Register/Counter -

Direct Memory Access (DMA) allows direct access to main memory for the
transfer of data without using the CPU. Those IC’s on the board that
accomplish this function are indicated below.

The DMA address is 24 bits wide and is generated by:

Functions IC’s
DMA register/counter U23,017,022,027,U34,U53
Address buffer/driver U29,028,035,U054

5.4.1.4 Bus Arbitration -

Bus arbitration (see Section 1.X Bus Theory) is accomplished using the
Intel 8218 Integrated Circuit (IC) U33. When the state machine wants
the bus it brings the signal Bus Control Request (BCR) U33-25 (IC
number U33, pin number 25) high. When the 8218 has received the bus
it brings ADEN (address enable) U33-19 low.

5040105 Data Path -

The data path is a transfer bus for input/output and data handling
operations. Data going to the WD1000 passes through U30. ICs U24 and
U30 are used as data latchs to interface a 16-bit bus to an 8~bit bus.
IC U37 is used to force the WD10OO address lines low during DMA.

5.4.2 Two-mode Operation Of Coupler

The coupler operates in two modes: register interface and DMA
controller modes.

WD1000 AND COUPLER/FLOPPY BOARD SET
COUPLER/FLOPPY CIRCUITRY AREAS

5.4.2.1 Register Interface -

While in register interface mode the coupler acts as a bus slave
allowing the host system to read and write to the WDI0OO intermal
registers. In this mode the state machine converts the interface
signals of the Multibus to the signals required by the WD100O,
ensuring that the timing requirements of both interfaces are met.
These registers pass all status, parameters, and commands to and from
the WD1000 disk and controller.

5¢4.2.2 DMA Controller =~

The state machine services all WD10OO board requests for a DMA cycle,
During a DMA cycle the coupler board becomes the system bus master,
reads or writes a 16-bit word to system memory and writes two 8-bit
bytes to the WD1000 internal sector buffer. Bus control is
relinquished between each DMA cycle and returned to the processor.

5.4.3 Floppy Controller Circuitry

The second circuitry area of the Coupler Board controls the 5 1/4"
floppy disk drive. The Western Digital 1795 chip works with two other
WD chips: the 1691 and the 2143 (see Figure 5-~1) that do the data
separation. The floppy controller interfaces with the Multibus using
a simple logic. The floppy interface excludes a DMA controller, and
therefore the system processor must do the system interface.

5.4.,3.1 Data Separator -

The 1691 chip, wused with a 74LS269 Voltage-controlled oscillator
(vCo), performs the data separation.

5.4.3.2 Write Precompensation =-

Each track on the disk contains the same number of sectors;
therefore, the inner tracks are more compressed. Read errors can
occur because of data that has shifted location because of magnetic
interference between the bits. The 1691 chip, used with the 2143,
"precompensates” the data for the inner tracks by anticipating the
deviation and writing to that anticipated location. The 2143 supplies
four timing signals to the 1691.

5-7

WD1000 AND COUPLER/FLOPPY BOARD SET
WD1000 BOARD CONFIGURATION

5.5 WD100OO BOARD CONFIGURATION

The WD1000 is a stand-alone, general purpose Winchester Controller
board that interfaces up to four Winchester disk drives to a host
processor. All necessary buffers and receivers/drivers are included
on the board to allow direct connection to the drive. Both 34 pin
(5=1/4" drive) and 50 pin (8" drive) connectors are provided, as well
as four 20 pin data connectors.

5-8

6-S

sea1y L13TN0IT) paeog QOQIAM

€-G¢ 2an8tg

as a4 Lt e Qe €
L3 T g J L35 "~
vaD :': gz: : :: CAre oLt ; ':':‘:"
ar SV RS peaad 1
O B =1 3 M
L v v us
a? ot e [:;—_—l C___J /R 39 Ao
2) b | ? 1 '
[k] Ue v ve ve
34 3)t 3
']] 2 13 18
ud [*1) 3 vIs U 4 uIs uUie
[agr oLt
E ii | B 2]] 2
uis [T [V 24 v v v v4
e
2 B) 12 Je
[A31 VW v U Ly v 3o
. bX]
)]]2 |) 13 | RV
Y13 ['E T DR uUss U le
SR k=) 2 i I S | S—
[3h 1Y U 3. v a0 O 4% U4
] I)] 2]
v4s U 4y Uvae v 47 v4s
||
]] 2 1 |)
v so L 53 TR UTY [YED
’ _4
3

NOILVINOIANOD q¥vOod 000T1dM

LdS Q¥vV0d Add0Td4/¥9d7TdN0D ANV 0001aM

WD1000 AND COUPLER/FLOPPY BOARD SET
BOARD SET ELECTRICAL DATA

5.6 BOARD SET ELECTRICAL DATA

The following is a list of electrical data and specifications that

pertain to the WD1000O Coupler/floppy and the WD100O Disk Controller as

a board set.

ITEM

SPECIFICATION

Winchester Controller

Encoding Method:

Cylinders per Head:

Sectors per Track:
Heads per Drive:
Drive Selects:
Step Rate:

Write Precomp:
Sectoring:

Drive Cable Length:

DMA Address:
DMA Data:

Floppy Controller

Sectoring:
Density:
Format:

Sector Length:

Cylinders per Head:

Heads per Drive:
Drive Selects:
Write Precomp:

Drive Cable Length:

Voltages

Board address

Modified Frequency Modulation (MFM)
Up to 1024

Up to 256

8

4

10 uS to 7.5 mS (0.5 mS increments)
Yes

Soft

8 ft. max

24 bits

16 bits

Soft

Double (MFM)

IBM System 34

128, 256, 512, 1024

Up to 256

2

4

Yes

8 ft.

+ 5 volts

+ 12 volts
- 12 volts

Decodes lower 12 address lines
Base address selectable
on 32-byte boundary

5-10

WD1000 AND COUPLER/FLOPPY BOARD SET
MECHANICAL DATA

5.7 MECHANICAL DATA

The WD1000 and Coupler board set interfaces with the
Extended-Multibus. The board-set meets all electrical specification
of the bus, but it does not meet the mechanical size specification.
The following are the mechanical specifications for the board-set.

ITEM SPECIFICATION
WD1000 board: 6.83" X 9.88"
Coupler board: 12" X 8.3"

5.8 ENVIRONMENTAL DATA

The following is the environmental specification for the board set.

ITEM SPECIFICATION

Ambient Temperature
operating: 0Cto50C

Relative Humidity
operating: 207 to 80% noncondensing

5.9 SOFTWARE INTERFACE DATA

Thirty-two registers communicate the command and status information.
The registers are divided into two groups of 16, one group for the
Winchester disk drives and one group for the floppy disk drives. The
registers are offset from a base address that can be located on any
32-byte boundary in the I/0 space. The following is an I/0 map for
the controller’s registers. (Note: The addresses are 68000
addresses. The least significant address on the 68000 (ADDRO) is
inverted to that of the Multibus.

5-11

WD1000 AND COUPLER/FLOPPY BOARD SET
BASE ADDRESS

5.10 BASE ADDRESS

System 150 (mapped) - F00180 hex

5.11 WINCHESTER REGISTERS

1/0 port Input Command Output Command
Address I/0 Read I/0 Write
Base + 0 Error Register Write Precomp
Base + 1 Data Register Data Register
Base + 2 Sector Number Sector Number
Base + 3 Sector Count Sector Count
Base + 4 Cylinder High Cylinder High
Base + 5 Cylinder Low Cylinder Low
Base + 6 Status Register Command Register
Base + 7 Size/Drive/Head Size/Drive/Head
Base + 8 Reserved Reserved
Base + 9 Reserved Reserved
Base + 10 Reserved Reserved
Base + 11 Reserved Reserved
Base + 12 Not Used DMA Addr. 9-16
Base + 13 Not Used DMA Addr. 1-8
Base + 14 Reserved DMA R/W
Base + 15 Not Used DMA Addr. 17-23

5-12

5.12 FLOPPY REGISTERS

WD1000 AND COUPLER/FLOPPY BOARD SET

I/0 port Input Command Output Command
Address I1/0 Read I1/0 Write
Base + 16 Status Register Command Register
Base + 17 Track Register Track Register
Base + 18 Sector Register Sector Register
Base + 19 Data Register Data Register
Base + 20 Reserved Reserved
Base + 21 Reserved Reserved
Base + 22 Reserved Reserved
Base + 23 Reserved Reserved
Base + 24 Interrupt status Drv Sel/Intr Dis
Base + 25 Reserved Reserved
Base + 26 Reserved Reserved
Base + 27 Reserved Reserved
Base + 28 Reserved Reserved
Base + 29 Reserved Reserved
Base + 30 Reserved Reserved
Base + 31 Reserved Reserved

5.12.1 Description Of Floppy Registers

The following is a brief description of the function of

FLOPPY REGISTERS

each of the

Floppy registers. Motor control 1is transparent to the software
because of the head load and head load timing signal of the 1795 chip.

5.12.1.1 Status Register (Read Only)‘—

The status register is updated after each command. The meaning of the

bits of the status vregister may change following the different
commands. The status is not valid until 28 uSec. after a write to
the command register in double density, and 56 uSec. 1in single
density.

5.12.1.2 Command Register (Write Only) -

Commands are written to this register. Upon a write signal to the
register the command is started. Each command has several flags, set
as follows:

5-13

WD1000 AND COUPLER/FLOPPY BOARD SET
FLOPPY REGISTERS

V=20 No verify

h =1 unload head at beginning

T=1 Update track register

a0 =0 Normal data address mark

U is set to the desired head 0 or 1
E=1 15 ms head settle time

L=1 for IBM compatability

m=20 single record

5.12.1.3 Track Register (Read/Write) -

The track register contains the present position of the drive heads.
If a new drive is to be selected this register has to be saved and the
new drive’s track position written to the register.

5¢.12.1.4 Data Register (Read/Write) -
This register is the port through which all the data passes to and

from the disk drives. Once a data transfer begins, this register must
be read or written to every 23 uSec.

5.12.1.5 Drive Select/Interrupt Register -
This register is used to select the floppy drive. It is not part of

the 1795 but is 1located on the coupler board. The following
hexadecimal pattern corresponds to each of the drives.

Drive Select with Interrupts Disabled

DRIVEQO = FE hex
:DRIVEl = FD hex
DRIVE2 = FB hex
DRIVE3 = F7 hex
NO DRIVE = FF hex

Drive Select with Interrupts Enabled

DRIVEO = 7E hex
DRIVE] = 7D hex
DRIVE2 = 7B hex
DRIVE3 = 77 hex
NO DRIVE = 7F hex

5-14

WD1000 AND COUPLER/FLOPPY BOARD SET
SIGNAL DEFINITIONS

5.13 SIGNAL DEFINITIONS

A0 - Al7
ADEN

ADDRO - ADR17
BCLK

BCR

BHEN

BOARD SEL
BPRN

BPRO

BREQ

BUSY

CONTR SEL
DO - D7
DATA REG SEL
DMA R/W
DRIVE LOAD
DRQ

FSEL

HBIC

HBOC

HWC

INC

INIT

INTO - INT7
INT DIS
INTRQ

IORC

IOWC

LBIC

LBOC

LOADO ~-LOAD3
LWC

MR

MRDC

MWTC

Q0 - Q7

RC

READ

VSELO - VSEL2
WAIT
WD1000 SEL
WRITE

XACK
XACKBAK
8MHZ

Address 0 - Address 17

Address Enable (means coupler has bus)
Address 0 - Address 17 (DMA)

Bus Clock

Bus Control Request

Bus High Enable

Board Select

Bus Priority In

Bus Priority Out

Bus Request

Bus Busy

Controller Select (WD1000O)

Internal Data Bus

Data Register Select

DMA Read / Write

Drive Select Load

DMA Request

Floppy Controller Select

High Byte Input Control (internal side)
High Byte Output Control (intermal side)
High Write Control (multibus side)
Increment

Initialize (reset)

Interrupt 0 - 7

Interrupt Disable

Interrupt Request

I / 0 Read Control

I /0 Write Control

Low Byte Input Control (internal side)
Low Byte Output Control (internal side)
DMA Register Load 0 - 3

Low Write Control (multibus side)
Master Reset

Memory Read Control

Memory Write Control

Present state 0 - 4

Read Control (multibus side)

Internal Read Strobe

Variable Select 0 - 2

Wait (WD100O Handshake 1line)

WD1000 Select

Internal Write Strobe

Transfer Acknowledge

Transfer Acknowledge Back

8 MHz Clock

5-15

I/0 BOARD JUMPER PIN LOCATIONS BY PORT

The following chart
respective ports.

APPENDIX A

arranges the jumper pins according to their

Port O Port 1 Port 2 Port 3 Port 4 Port 5

JP1 JP2 JP3 JP4 JP5 JP6
JP19 JP15 JP11 JP13 JP17
JP20 JP16 JP12 JP14 JP18

APPENDIX B

JUMPER PIN INPUT/OUTPUT SIGNALS

The following chart shows the signals associated with each jumper pin,
their functions, default state (on/off), and the status of the signal
(input/output).

Pin # Signal Function Defaut State Input/Output
JP1 TxXEMT off

JP2 " 1"

JP3 " "

JP4 " "

J’PS "t . "

JP6 TxEMT . Off

JP7

JP8

JPS

JP10

JP11 CTS/RTS On Both
JP12 DCR/DIR " "
JP13 " " 11"
JP14 CTS/RTS " "
JP15 DCR/DTR | " "
JP16 CTS/RTS . " "
JP17 " 1" "
JP18 DSR/DIR " "
JP19 " " "
JP20 CTS/RTS " "
JPZ]. 1" 1" "

Jp22 DSR/DTR " "

APPENDIX C

WICAT DIAGNOSTIC MONITOR (DIAMOND)

WICAT DIAGNOSTIC MONITOR (DIAMOND)
INTRODUCTION

C.1 INTRODUCTION

DIAMOND is a general purpose interactive program which dincorporates
the capabilities of a compiler, assembler, debugger, loader, and
operating system within a single architecture.

Some of the attributes of DIAMOND are:

« core—-efficiency
o high running speed
. extreme flexiblity

The flexiblity of the language permits the user to develop a working
vocabulary of subroutines tailored to his specific applicationm.

The most prominent feature of DIAMOND is its principal data structure,
called the dictionary. The dictionary is an ordered list of entries
called words. Associated with the dictionary entry for each word is a
name. A legal name for a word 1is any string of up to 255 ASCII
characters. All printing ASCII characters, including letters,
numbers, and special characters may be freely used within a name,
except for the SPACE and RUBOUT characters.

NOTE

1. Do not use non-printing characters
or control characters in a name.

2. If.you create a name that looks like
a number (in any radix), DIAMOND
will assume that you are entering a
number. To avoid this problem, make
sure there is at least one character
in the name that is not part of the
Set 1_!0", Hl"’ "2", "3"’ "4"’ "5"’
"6"’ "7"’ "8"’ "9"’ "A", "B", "C"’
HD" s "E" , "F" .

3. Although the RUBOUT character may
not be used as part of a name,
pressing the RUBOUT (DELETE on some
terminals) key deletes the character
to the left of the cursor and may be
used to correct a typing error.

Cc-2

WICAT DIAGNOSTIC MONITOR (DIAMOND)
LITERALS

C.2 LITERALS

A literal is a sequence of characters which describes a constant.
DIAMOND supports two types of literal: 32-bit integer and string.

C.2.1 Integer Literals

An integer literal is a sequence of digits optionally preceded by a
plus or minus sign, in accordance with these rules:

1. All digits must be less than the current radix (also known as
the base). For example, if the current radix is "DECIMAL",
the digits O through 9 are valid. DIAMOND allows you to wuse

BINARY, OCTAL, DECIMAL, or HEX as the radix.
NOTE
Although the default radix is 16 (HEX); to avoid
confusion, the examples presented in this manual use

a default radix of 10 (DECIMAL), wunless otherwise
specified.

2. No spaces may be embedded within an integer literal.

3. Integer literals must be in the range of =-2,147,483,654 to
2,147,483,653 if signed or O to 4,294,967,308 if unsigned.

4. A sign is optional. No sign means the literal is unsigned.

EXAMPLES:

-1234 is a legal literal (unless the current radix is
BINARY)

+-100 is not a legal literal (the second sign is illegal)

—-AFCO is a legal literal if the current radix is HEX (if
not, the line is ignored and an error message is
printed)

WICAT DIAGNOSTIC MONITOR (DIAMOND)
LITERALS

C.2.,2 String Literals

String literals may take one of two forms:

l. A string enclosed in double quotes:

"STRING"

NOTE

A carriage return before the second double quote will
terminate the string.

2. A string preceded by one single quote and terminated by a
SPACE, TAB, carriage RETURN, or FORM FEED:

* STRING
EXAMPLES:
"THIS IS A STRING LITERAL"

“HELLO_THERE

WICAT DIAGNOSTIC MONITOR (DIAMOND)
SYNTAX

C.3 SYNTAX

DIAMOND syntax is quite simple. A legal command line consists of a
sequence of literals and/or mnames of words separated by spaces or
tabs, and is terminated by a carriage RETURN.

Programming in DIAMOND consists primarily of defining a set of new
words based on words which have already been defined. An initial
vocabulary of about one hundred words called the KXERNEL enables the

user to get started.

C.3.1 The Stack

The principal vehicle for communication between words is the parameter
stack, frequently called the stack. A stack is a common programming
tool which allows the programmer to store information on a last-in,
first=-out method. An example of a stack is the tray dispenser in a
cafeteria, where the only available tray is the top one, which must be
removed before any of the other trays are accessible. Similarly, when
clean trays come from the kitchen, they are placed on top of the trays
already there. Thus, the most recently added trays are the first ones
available.

In many of the examples in the following sections, a picture like this
will represent the stack:

WICAT DIAGNOSTIC MONITOR (DIAMOND)
SYNTAX

Stack

In this example, "A" represents the entry at the top of the stack, "B"
represents the next entry, and so on.

In computer terminology, adding a parameter to the top of the stack is
called pushing the parameter, and removing the top parameter is called

popping.

Stack before push Stack after push
| A ! | new data |
! B l I A |
I Y { ! B |
I D ! | C I

WICAT DIAGNOSTIC MONITOR (DIAMOND)

SYNTAX
Stack before pop Stack after pop
I A I I B I
| B I I C I
| c I I D |
I D I | E |

Typically, the parameters upon which a word will operate are pushed on
the stack. The word pops its parameters from the stack and pushes its
results on the stack.

C.3.2 Variables In Fixed Locatioms

DIAMOND also uses communication through variables in fixed locations
(not on the stack). In most cases, to use a variable which is in a
fixed location, place the address of the variable on the stack, then
execute a word that takes the address off the stack and operates on
the variable at this address.

C.3.3 Reverse-polish Notation

DIAMOND uses reverse-polish notation (RPN) for all operations. This
means that all operands precede their operators and parentheses are
never necessary.

Some hand-held scientific calculators use this method of entering
instructions. For example:

11+ 2 * in RPN is (1+1)%2 in algebraic notation
1 23*% -~ in RPN is 1-(2%3) in algebraic notation

WICAT DIAGNOSTIC MONITOR (DIAMOND)
SYNTAX

C.3.4 Addresses Versus Contents

Unlike most high-level languages, DIAMOND enables the user to
manipulate addresses and data. It is important, however, for the user
to remain aware of the distinction between an address and its
contents.

Three common types of words which push numbers on the stack:
literals, constants, and variables.

. A reference to a literal or a constant causes its value to be
pushed on the stack.

» A reference to a variable causes its address to be pushed on
the stack.

The operators "@" and "!" are used to obtain and modify the value of a
variable. They are defined on the following pages.

NOTE

1. In the examples on the following
pages, you will see the characters
"0] " at the left end of some of the
lines. This 1is the prompt message
which DIAMOND prints to show that it
is ready for input. This prompt is
described in section A.7 below.

2. If you are familiar with RPN, vyou
may be confused by the use of an
equals sign (=) 1in some of the
examples. As described in section
A.4.4, DIAMOND uses the equals sign
to output the top number on the
stack. The calculations specified
are carried out on the stack whether
or not the equals sign is present.

WICAT DIAGNOSTIC MONITOR (DIAMOND)
SYNTAX

C.3.4.1 @

This word is used to load the contents of a memory location (byte)
onto the stack. It replaces the address on the top of the stack by
the contents of that address.

Stack before Stack after
| A] I c(A) |
| B | | B |

For example:

0] 341 @ = prints the value of the byte at location 341

c-9

WICAT DIAGNOSTIC MONITOR (DIAMOND)
SYNTAX

C.3.4.2 @W

This word is used to load the contents of the word (2 bytes) beginning
at the memory location on top of the stack. It replaces the address
on the top of the stack by the contents of that address. If the
address on top of the stack is 3pn odd byte location, an address
error OCCcurs.

Stack before Stack after
| A | I c(A) I
| B | | B |

For example:

0] 342 QW = prints the value of the word which begins at
location 342

Cc-10

WICAT DIAGNOSTIC MONITOR (DIAMOND)
SYNTAX

C.3.4.3 QL

This word is used to load the contents of the longword (4 Dbytes)
beginning at the memory location on top of the stack. It replaces the
address on the top of the stack by the contents of that address. If
the address on top of the stack is an: odd byte location, an
address error occurs.

Stack before Stack after
| A I I c(A) I
| B | | B |

For example:

0] 340 @L = prints the value of the longword which begins
at location 340

C-11

WICAT DIAGNOSTIC MONITOR (DIAMOND)
SYNTAX

Ce3ubo4)

Store at the address on the top of the stack the number (byte) next to
top of the stack. Both numbers are removed from the stack.

Stack before Stack after
| A | | C I
] B | | D |
| C | | E |

(In this set of examples, A, B, and C represent constants, and X, Y,
and Z represent variables.)

For example:

01 100 X! set value of X to 100

0] XY ! | set the value of Y to the address of X

0] X 10000 ! store the address of X in location 10000

0] xX@vy! set the value of Y to the value of X

olxey@+2z! add the values of X and Y and store the result
in 2

0] XA+ Y ! store (address of X)+A in Y

0] XAB++@Y! set value of Y to the contents of location
X+A+B :

Cc-12

WICAT DIAGNOSTIC MONITOR (DIAMOND)
SYNTAX

Ce3.4.5 IW

Store at the address on the top of the stack the word (2 bytes)
contained in the entry next to the top of the stack. Both numbers are
removed from the stack. If the address on top of the stack is an
odd byte location, an address error occurs.

Stack before Stack after
| A I | C I
| B | | D |
| C | | E |

For example:

0] 100 X''w set value of X to 100

c-13

WICAT DIAGNOSTIC MONITOR (DIAMOND)
SYNTAX

C.3.4.6 IL

Store at the address on the top of the stack the longword (4 Dbytes)
contained in the entry next to top of the stack. Both numbers are
removed from the stack. If the address on top of the stack is an
odd byte location, an address error occurs.

Stack before Stack after
| A | | C]
| B | | D |
| C |] E |

- — iy et 30 e S i s g s S

For example:

0] 100 X !L set value of X to 100

C.3.4.7 .!<= OPERATOR

C-14

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4 FIXED POINT OPERATORS

DIAMOND provides the user with a large number of fixed-point
operators. Unless otherwise specified, all numbers used as arguments
to these fixed point operators are 32-bit (4 byte) integers.

C.4.1 UNARY OPERATORS

The following operators replace the number on top of the stack
(usually called "A") with their result.

C-15

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Cedel.1l MINUS

Negates A.

Stack before Stack after

For example:
0] 1 MINUS =

-1

Cebels2 L!ABS

C-16

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.1.3 NOT

Computes the logical complement of A.

Stack before Stack after
A ! | NOT(A) |

Cebolebs L12%
C.bol.5 L1012/
Cebdoeleb 11+

Co4olo7 o!l-'

c-17

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.1.8 EQZ

Tests if A is equal to zero. Replaces A by 0 if A is equal to 0O, -1
otherwise.

Stack before Stack after
i A | | * |
| B | | B |

For example:

0] -1 EQZ =
-1
0] 0 EQz =
0

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.1.9 NEZ

Tests if A is not equal to zero. Replaces A by O if A is not equal to
0, =1 otherwise.

Stack before Stack after
| A |] *]
| B | | B |

For example:

0] -1 NEZ =
0
0] O NEZ =

-1

Cc-19

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.1.10 1LTZ

Tests if A is less than zero. Replaces A by O if A is less than 0, -1
otherwise.

Stack before Stack after
! A | | * |
| B | | B !

For example:

0] -1 LTZ =
0

0] 0 LTZ
-1

0] 1 LTZ
-1

C-20

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.1.11 LEZ

Tests if A is less than or equal to zero. Replaces A by 0 if A is
less than or equal to 0, -1 otherwise.

Stack before Stack after
| A | | * |
| B | | B |

For example:

0] -1 LEZ =
0

]

0] 0 LEZ
0

0] 1 LEZ
-1

Cc-21

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.ed.1.12 GEZ

Tests if A is greater than or equal to zero. Replaces A by 0 if A is
greater than or equal to 0, -1 otherwise.

Stack before Stack aftep
| A | | * |
| B | | B |

For example:

0] -1 GEZ =
-1

0] 0 GEZ
0

0] 1 GEZ
0

Cc-22

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.1.13 GTZ

Tests if A is greater than zero. Replaces A by O if A is greater than
0, -1 otherwise.

Stack before Stack after
] A | | * |
] B | ! B |

For example:

0] -1 GTZ =

0] 0 GTZ
-1

0] 1 GTZ
0

C-23

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.1.14 SPLIT

Splits the longword on top of the stack into two words. The two words
replace the top two stack entries. SPLIT sign—extends the results.
In other words, the high order bit of each resulting word is
propegated to the left to £ill up the longword stack entry. If the
first bit is 0, the stack entry will be left-filled with zeroes. If
the first bit is 1, the stack entry will be left filled with Fs (hex).
(See the example below).

Stack before Stack after
! A | | first half|
| B | | last half |
! C | | C |

! I I I

For example:
0] 12345678 SPLIT = =
1234 5678

0] HEX FEEE7EEE SPLIT = =
FFFFFEEE 7EEE :

(The second number is left-filled with zeroes, which do not print.)

C-24

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.1.15 SPLITB

Splits the word on top of the stack into two bytes. The two bytes
replace the top two stack entries. SPLITB works just like SPLIT
execpt it ignores the top word of the longword on top of the stack.
SPLITB sign—-extends the results as does SPLIT.

Stack before Stack after
! A | | first half|
| B | | last half |
| C | | C |

I | I !

For example:
0] 1234 SPLITB = =
12 34

0] HEX FE7E SPLITB = =
FFFFFFFE 7E

(The second number is left-filled with zeroes, which do not print.)

C-25

WICAT DIAGNOSTIC MONITOR (DIAMOND)

FIXED POINT OPERATORS

C.e4.1.16 JOIN

Combines the bottom words of the top two stack entries to form a
longword, which is placed on top of the stack.

Stack before

| first half]

last half

For example:

0] 1234 5678 JOIN =

56781234

C-26

Stack after

result

!

C

D

new

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.1.17 JOINB

Combines the bottom bytes of the top two stack entries to form a new
word, which is placed on top of the stack.

Stack before Stack after
first half		result
last half		C
C] D	

For example:

0] 12 34 JOINB =
3412

c-27

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS
C.4.2 BINARY OPERATORS

The following operators replace the top two numbers on the stack with
their results.

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.2.1 +

Computes B+A.

Stack before Stack after
] A]] B + A |
{ B | | C |
| C | | D |

For example:

0111+ =
2

0] 111+ + =
3

Cc-29

WICAT DIAGNOSTIC MONITCR (DIAMOND)
FIXED POINT OPERATORS

C040202 -

Computes B-A.

Stack before . Stack after
l A | | B - A
| B I | C

| C] | D

|

For example:

0] 21~-=
1

C-30

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.2.3 *

Computes B*A.

Stack before Stack after
| A !] B * A |
| B i | C |
| C | I D |

For example:

01 23 =* =
6

C-31

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C¢402c4 /

Divides B by A and returns the quotient and remainder.

Stack before : Stack after
| A | | quotient |
| B I | remainder |
| C I | C

For example:

0] 8 2/
40

]
1

0172/
31

[]
I

"A modulo B" can be computed as:
0] A B / DROP
For example:

0] 53 / DROP =
2

Cc-32

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

c.402.5 /U

Performs an unsigned divide of B by A and returns the quotient and
remainder.

Stack before Stack after
I A | | quotient |
| B | | remainder |
I C ! | C |

For example:

0] 82 /U ==
40

Cc-33

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.2.6 MAX

Returns the signed maximum of B and A.

Stack before Stack after
I A ! | max(B,A) |
| B | ! c |
| C | | D |

For example:

0] -1 5 MAX =
5

C-34

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Ceb4.2.7 MIN

Returns the signed minimum of B and A.

Stack before Stack after
I A | | min(B,A) |
[B I | C |
| C | '] D |

For example:

0] -1 5 MIN =
-1

C-35

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.2.83 AND

Returns the logical AND of B and A.

Stack before Stack after
| A |] B AND A

! B | | C

| C | | D

For example:

0] 1 0 AND
0

]

0] 1 1 AND
1

C-36

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Ce4.2.9 OR

Returns the logical OR of B and A.

Stack before Stack after

I A | i B OR A |
| B | | C I
! C | | D]

For example:

]

0] 0 0 OR
0

0] 1 0 OR
1

Cc-37

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.e4.2.10 XOR

Returns the logical EXCLUSIVE OR of B and A.

Stack before Stack after
| A | | B XOR A

I B J | C

| C | | D

For example:

0] 1 0 XOR =
1
0] 1 1 XOR =
0

C-38

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.2.11 EQ

Tests if B is equal to A. Returns O if B is equal to A, -1 otherwise.

Stack before Stack after

I A I ! * I
! B ! I c !
! C ! I D !

For example:

0] 121~-EQ-=

C~-39

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Ce4e2.12 NE

Tests if B is not equal to A. Returns O if B is not equal to A, -1
otherwise.

Stack before Stack after
| A | | * |
! B | | C |
| C | | D !

For example:

0] 132=NE =
-1

C-40

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Ceb4.2.13 LT

Tests if B is less than A. Returns 0 if B is 1less than A, -1
otherwise.,

Stack before Stack after
| A | | * |
] B | | C |
| C | | D |

For example:

0] 54 LT
0

0] 7 9 LT
-1

C-41

WICAT DIAGNOSTiC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.2.14 LE

Tests if B is less than or equal to A. Returns O if B is less than or
equal to A, -1 otherwise.

Stack before Stack after
A		*
B		C
C		D

For example:

0] 5 4 LE =
0

C-42

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.2.15 GE

Tests 1f B is greater than or equal to A. Returns 0 if B is greater
than or equal to A, ~1 otherwise.

Stack before Stack after
A !	*	
B		C
C		D

For example:

0] 54 GE =
0

C-43

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.b4.2.16 GT

Tests if B is greater than A. Returns O if B is greater than A, -1
otherwise.

Stack before Stack after
| A |] *]
| B | | C |
| C | | D |

For example:

0] 6 5GT =
0

C-44

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.2.17 LSL

Performs a logical shift left of the data in B by the number of bits
in A.
NOTE

Logical shifts should be used only on
unsigned numbers.

Stack before Stack after
| count | | shifted |
| data | | C I
| C]] D |

For example:

0] HEX 7FFFFFFF 1 LSL =
FFFFFFFE ;

0] DECIMAL 1 3 LSL =
8

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

CQ4.2.18 LSR

Performs a logical shift right of the data in B by the number of bits
in A.
NOTE

Logical shifts should be used only on
unsigned numbers.

Stack before Stack after
count		shifted
data		C
c		D

For example:

0] HEX FFFFFFFF 1 LSR =
7FFFFFFF :

C-46

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Ce4.2.19 ASL

Performs a arithmetic shift left of the data in B by the number of
bits in A.

NOTE

Arithmetic shifts should be used only on
signed numbers.

Stack before Stack after
| count | | shifted |
] data] T C |
| C | | D |

For example:

0] HEX 8FFFFFFF 1 ASL =
-00000002

0] HEX 8FFFFFFF 1 ASL =U
9FFFFFFF

C-47

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Ce4.2.20 ASR

Performs a arithmetic shift right of the data in B by the number of
bits in A.
NOTE

Arithmetic shifts should be used only on
signed numbers.

Stack before Stack after
| count | | shifted |
data | ! C |

—_ -] -
a
[w)

For example:

0] HEX FFFFFFFF 1 ASR
FFFFFFFF

i
-

0] HEX 7FFFFFFF 1 ASR
3FFFFFFF

[
[}

0] HEX 8FFFFFFF 1 ASR
C7FFFFFF

Il
[}

C~48

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.3 Stack Operators

A number of operators are also provided whose sole function is to
reorganize the elements of the stack:

C-49

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.3.1 DUP

Places a duplicate of A on top of the stack. The rest of the stack is
undisturbed. :

Stack before Stack after
| A | | A |
] B | | A |
| C] | B |
| D | | C |

For example:

0] 1 2DUP = = =
221

C-50

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.3.2 OVER

Places a duplicate of B on top of the stack. The rest of the stack is
undisturbed.

Stack before Stack after
| A I I B |
! B ! I A !
I C ! I B !
| D | | C |
! E I ! -_D I

For example:

0] 1 2 OVER = = =
121

C-51

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.3.3 20VER

Places a duplicate of C on top of the stack. The rest of the stack is
undisturbed.

Stack before Stack after
A		C
B		A
C !	B	
D]	C	

For example:

0] 1 2 3 20VER = = = =
1321

C-52

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Cs4.3.4 30VER

Places a duplicate of D on top of the stack. The rest of the stack is
undisturbed.

Stack before Stack after
! A | I D I
| B | I A |
l ¢ | 1 B 1
| D l | C I

E | I D |

For example:

0] 1 234 30VER = = = = =
14321

C-53

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.3.5 UNDER

Replaces B by A and moves the stack pointer down one position.

Stack before Stack after

For example:

0] 1 2 3 UNDER = =
31

C-54

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.3.6 2UNDER

Replaces C by A and moves the stack pointer down one position.

Stack before Stack after
I A | | B |
| B] | A |
I c | l D !
| D l I E !
| E l ! F |

For example:

0] 4 3 21 2UNDER = = =
124

C-55

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.3.7 3UNDER

Replaces D by A and moves the stack pointer down one positiom.

Stack before Stack after

! A] l 3
I B | | c
! C | | N
] | E
\oE] | T
| | |

For example:

543213UNDER====

2315

C-56

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.3.8 DROP

Discards the number at top of the stack.

Stack before Stack after
| A] | B |
] B] i C |
| C ! | D |

For example:

0] 1 2 3 DROP = =
21

C-57

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

c.4.3'9 SWAP

Exchanges the top two entries on the stack.

Stack before Stack after
| A | | B |
| B | | A]
| C | ! C |
| D | I D |

For example:

0] 1 2 SWAP = =
12

C-58

WICAT DIAGNOSTIC MONITOR (DIAMOND)
' FIXED POINT OPERATORS

C.4.3.10 2SWAP

Exchanges B and C.

Stack before Stack after
! A | I A !
! B | I C I
I c l | B |
| D | | D |
| E I | E |

For example:

0] 1 2 3 4 2SWAP = =
4231

C-59

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.3.11 FLIP

Exchanges A and C.

Stack before Stack after

| A I ! c
| B I | B
I c ! I A
I D ! ! D
I E | ! E

For example:

0] 1 23 4FLIP === =
2341

C-60

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.3.12 +ROT

Rolls top 3 stack entries up.

Stack before Stack after
| A I | B |
I B I I C !
| c | | A |
T D | I D |
! E | ! E !

For example:

0] 1 2 3 +ROT = = =
213

C-61

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C‘403n13 "ROT

Rolls top 3 stack entries down.

Stack before Stack after
| A | | C
| B ! I A
| C | | B
T D | | D
T E l I E

For example:

0] 123 -ROT = = =
132

C-62

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.b.4 TI/0 WORDS

DIAMOND provides a number of words which are wused for input and
output.

C-63

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Cebobo.l TYO

Output the ASCII character in the rightmost 8 bits of A.

For example:

0] 33 TYO
!

(ASCII 33 is an exclaimation point.)

C-64

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C'4.4.2 CR

Output a <CR>XLF> (carriage return, line feed) combination.

For example:

0] 65 TYO CR 66 TYO
A
B

(ASCII 65 = "A", 66 = "B".)

C-65

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.4.3 SPACE

Output a space.

C-66

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

C.4.4.4 SPACES

Output A spaces.,

For example:

0] 65 TYO 7 SPACES 66 TYO
A B

C-67

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Cob.4.5 TYI

Input a character and put it on top of the stack.

For example:

0] TYI =

(press the"A" key)
61
0]

C-68

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Cebobeb =

Output the number at top of the stack in the current radix followed by
a space.

NOTE

The "=" operator removes the number from
the stack.

For example:

0] 123=-==
321

Cebdob7 12

C-69

- WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Cebob.8 TYPE

Output string which starts at location stored at B.

0] "THIS IS A TEST" TYPE
THIS IS A TEST

Cc-70

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Ce4.5 WORDS WHICH CHANGE THE CURRENT RADIX

BINARY

Set current radix to BINARY.

OCTAL

Set current radix to OCTAL.

DECIMAL

Set current radix to DECIMAL.

Set current radix to HEXADECIMAL.

For example:

0] HEX 10 DUP =
10

0] DECIMAL DUP =
16

0] OCTAL DUP =
20

0] BINARY =
10000

C-71

WICAT DIAGNOSTIC MONITOR (DIAMOND)
FIXED POINT OPERATORS

Cedu5.1 JI-IK-
Cedo5.2 14!

Cebo5.3 114!

Ceb4.5.4 111

C.4.5.5 .!MOVE
C.4.5.6 .!XCHG
C.4.5.7 +!MVBYTES

C.5 COLON DEFINITIONS

To define a new word in terms of previously defined words, use the
colon definition:

“NEWWORD : WORD1 WORD2 ... WORDN ;
A colon definition consists of the following parts:

l. The name of the word being defined, preceded by a single
quote (7).

2. A colon (:), which separates the name of the word being
defined from its definition.

3. The definition of the word.

4, A semicolon (;), which terminates the definition.

NOTE

The colon must be preceded and followed
by a space or tab, and the semicolon at
the end must be preceded by a space or
tab.

This creates a new dictionary entry called NEWWORD which, when
executed, will in turn execute WORD1l, WORD2, ..., WORDN.

Each of the words WORDl, WORD2, ... WORDN must already exist as
entries in the dictionary before definition of NEWWORD. If not, a
fatal error message will be generated.

If, in the above example, WORD2 is not yet defined when NEWWORD 1is
defined, the fatal error message will be:

WORD2

Cc-72

WICAT DIAGNOSTIC MONITOR (DIAMOND)
COLON DEFINITIONS

undefined, compiling... WORD2 ,..in line
NEWWORD : WORD1 WORD2 ... WORDN ;

A word may be redefined at any time. In this case, all prior
definitions which referenced that word will still execute the old
version. All subsequent definitions, however, will execute the new
version. ‘

NOTE

If the name of a word being redefined
appears within the new definition, its
0ld meaning will be used for purposes of
the definitiom. Thus, the new version
of the word will refer to the old
version.

EXAMPLES:
"AVERAGE : + 2 /

This defines the word "AVERAGE" which computes the average of the top
two numbers on the stack.

0] 2 4 AVERAGE =
3 :

‘SPACE : 32 TYO ;

This defines the word "SPACE" which types a space. (The ASCII code
for a space is 32 decimal).

C-73

WICAT DIAGNOSTIC MONITOR (DIAMOND)
ITERATION

C.6 ITERATION

DIAMOND provides five means for iterative execution of a sequence of
words, namely:

N (oeeo)

Execute the words included in parentheses N
times.

BEGIN ... END

Execute the words between "BEGIN" and "END"
until a condition is satisfied.

BEGIN ... IF ... REPEAT
Execute the words between "BEGIN" and "IF.

If the condition is met, execute the words
between "IF" and "REPEAT", then loop back to
"BEGIN".

If the condition is not met, exit, skipping
the words between "IF" and "REPEAT.”

DO ... LOOP

Execute the words between '"DO" and "LOOP,"
running index from a lower to an upper limit,
incrementing by 1 each time.

DO ... N +LOOP.
Execute the words between '"DO" and "+LOOP,"

running an index from a lower to an upper
limit, incrementing by N each time.

Iterations may be nested subject to the normal restrictions on
overlapping ranges, i.e. any iteration which is initiated within the
range of another iteration must be terminated within that same range.

C-74

WICAT DIAGNOSTIC MONITOR (DIAMOND)
ITERATION

C.6.1 N (LN])

The following construction executes a sequence of words repetitively:
N (WORDLl WORD2 ... WORDN)

The sequence WORDl, WORD2, ... WORDN is executed N times where N is

the number on the top of the stack. The value of N can be specified

either when the iteration is defined or when it is executed. See the

examples below.

If N is zero or negative, the sequence of words is not executed at all,
and control passes to the word following the ")".

EXAMPLES:

"DINGDING : 2 (DING) ;
This definition is functionally equivalent to:

‘DINGDING : DING DING ;
In either case, executing "DINGDING" causes the word "DING" to be
executed twice. ("DING" must have been previously defined.)

“SPACES : (SPACE) ;

This is a definition of the word "SPACES". Thus, "20 SPACES" causes
"SPACE" to be executed 20 times.

In this example, the value of '"N" is specified at execution time.

Cc-75

WICAT DIAGNOSTIC MONITOR (DIAMOND)
ITERATION

C.6.2 BEGIN ... END

Use the BEGIN ... END iteration to execute a sequence of words and
then, depending on a computed logical variable, either repeat the
sequence or continue with the next instruction:

BEGIN WORD! WORD2 ... WORDN END

The sequence WORD1, WORD2, ... 1is executed once. When the "END" is
reached, the top of the stack is popped and tested. If it is true
(0), control passes to the word following the "END". If it dis false
(not 0), control passes back to the word following "BEGIN".

EXAMPLE:
"EXAMPLE : 5 BEGIN 1 - DUP DUP = EQZ END DROP ;
This defines the word "EXAMPLE" which might be called as follows:

0] 5 EXAMPLE
43210

Each time through the loop, the top of the stack (initially the number
5) is decremented, printed, and compared to zero. If it is not zero,
the loop is repeated. When the top of the stack becomes zero, the
loop terminates.

C-76

WICAT DIAGNOSTIC MONITOR (DIAMOND)
ITERATION

C.6.3 BEGIN ... IF ... REPEAT
BEGIN +s¢ IF +¢so REPEAT is similar to BEGIN ... END except that the
test is made in the middle of the loop rather than at the end:

l. The words from "BEGIN" to "IF" are executed.

2. 1If the top of the stack is true (0) when execution reaches
the "IF," the words between "IF" and "REPEAT" are executed
and control then passes back to the word following "BEGIN,"

3. If the top of the stack is false (not 0) when execution

reaches the "IF" control passes to the word following
"REPEAT, "

c-77

WICAT DIAGNOSTIC MONITOR (DIAMOND)
ITERATION

C.6.4 DO LOOPS

A DO loop facility is provided by DIAMOND for indexing through a
sequence of words. There are two forms of DO loop:

HIGH LOW DO WORD1 WORD2 ... WORDN LOOP
HIGH LOW DO WORD1 WORD2Z ... WORDN INCR +LOOP

The limits "HIGH" and "LOW" (the top two stack entries) are compared.
If "HIGH" 1is less than or equal to "LOW", control passes to the word
following "LOOP" or "+LOOP". Otherwise, the sequence WORD1l, WORD2,
+es WORDN is executed.

"LOOP" causes the lower limit ("LOW") to be incremented by 1 and
compared to the upper limit ("HIGH"). If "LOW" is equal to or greater
than "HIGH", the loop is terminated. Otherwise, another iteration is
performed.

"+LOOP" is identical to "LOOP" with the exception that "LOW" is
incremented by the word on the top of the stack ("INCR"). ™"INCR" must
be a positive number.

NOTE

In this release of DIAMOND, all DO loops
will execute at least once, even if
"HIGH" is initially less than or equal
to "LOW". This will be changed in a
future release.

Within the range of the loop, the current value of the loop index 1is
available by wusing the word "I". 1If DO loops are nested, "I" always
contains the value of the innermost index. The next outer indices are
available using the words "J" and "K". The word "I'" is used to
obtain the value of "HIGH"+'"LOW"~-I-1, This is used to run an index
backwards from "HIGH"-1 to "LOW." The words "J’" and "K'" are
similarly defined. '

When parentheses are nested with "DO" loops, they count as one level
of indexing. "I" wused within the range of a parenthesis iteration
will return the current value of the iteration count (which runs from
its initial value downwards to one).

For example:

Cc-78

WICAT DIAGNOSTIC MONITOR (DIAMOND)
ITERATION

0] 30DOCRS5 (I =) LOOP
0
0
0

ettt
NN
w Www
S~

Cc-79

WICAT DIAGNOSTIC MONITOR (DIAMOND)
ITERATION

C.6.4.1 EXIT and LAST I

The word "EXIT" causes the innermost loop in which it is embedded to
unconditionally terminate on the next cycle, whether a DO loop or a
parenthesis loop.

The word "LAST I", if executed immediately after leaving a loop, will
push onto the stack the value of "I" at the time the word "EXIT" was
executed.

If the word "EXIT" was never executed, LAST I will push the value of
"HIGH".

EXAMPLES:

0]5 0 DO I = LOOP
1234

] 40D0 4 0D0OJ 4 * I+ =LOOP CR LOOP
1 3
5 7
9 10 11

0
0
4
8
1 14 15

2
6
1
2 13

0] 5 0 DO I” = LOOP
43210

0 21 1 DO I + DUP = 2 +LOOP DROP
1 49 25 36 49 64 81 100

Suppose you have a DO loop that wuses "I" (or "J" or "K") in
conjunction with "+LOOP" to create an ascending set of indices. If
you want to change the loop to produce the same indices in descending
order, replace "I" by "I’" wherever ' it occurs and replace the value

you used for "HIGH" by "HIGH"-"INCR"+l.

EXAMPLES:

C-80

WICAT DIAGNOSTIC MONITOR (DIAMOND)

0] 24 0 DO I = 4 +LOOP
04812 16 20

0] 24 0 DO T’ 4 +LOOP

231915117 3

0] 24 4 =1+ 0 DO I’ = 4 +LOOP
20 16 12 8 4 0

Cc-81

ITERATION

WICAT DIAGNOSTIC MONITOR (DIAMOND)
ITERATION

C.6.5 CONDITIONALS

DIAMOND has a powerful IF .. ELSE ... THEN construction which
allows complicated logical tests to be performed. The normal

restrictions apply to nested conditionals, i.e. any conditional which
is initiated within the range of another conditional must be
terminated within that same range. The same restrictions apply to
nesting of mixed conditionals and iterations.
For the purposes of the conditional, "TRUE" is considered to be zero
(0) and "FALSE" is any non-zero value.

NIFTI T2 ... TN THEN
The top of the stack, "N" is tested.

If true (0) the words Tl, T2, ... TN are executed.

If false (not 0) control passes to the word following "THEN".

NIFTI T2 ... TN ELSE F1 F2 ... FN THEN
The top of the stack, "N" is tested.

If true (0) the words Tl, T2, ... TN are executed; control then
passes to the word following "THEN", so the words Fl, F2, ... FN are
skipped.

If false (not 0) control passes to the word following "ELSE". The

words Fl, F2, ... FN are executed in this case and the words Tl, T2,
ees TN are skipped.

EXAMPLES:

“ABS : DUP LTZ IF MINUS THEN ;

This defines the word "ABS" which replaces the top of the stack with
its absolute value.

‘MAX : DDUP GT IF DROP ELSE UNDER THEN ;

This defines the word "MAX" which compares the top two stack entries
and leaves the larger of the two.

Cc-82

WICAT DIAGNOSTIC MONITOR (DIAMOND)
USING DIAMOND FROM THE KEYBOARD
C.7 USING DIAMOND FROM THE KEYBOARD
When activated, DIAMOND types a prompt consisting of the current

nesting depth (see below), followed by a right bracket (]), followed
by a space, to indicate that it is awaiting keyboard input.

When you see this prompt, type a command line.

NOTE

When typing in a command from the
keyboard, use the RUBOUT key to delete
the last character.

As soon as you press RETURN, DIAMOND compiles the command line and, in
the absence of compilation errors, executes it.

After command execution, the compiled code from the last command is

discarded. DIAMOND again types its prompt message and waits for the
next command line.

C-83

WICAT DIAGNOSTIC MONITOR (DIAMOND)
NESTING DEPTH AND CONTINUATION LINES

C.8 NESTING DEPTH AND CONTINUATION LINES

DIAMOND maintains a nesting depth. The nesting depth is wused for
syntax checking and to determine when a multi-line command has been
completed and is ready to execute.

Initially, the nesting depth is set to =zero. It 1is dincremented
whenever any of the following words are encountered during
compilation:

IF
ELSE

(
BEGIN

DO

.
.

The nesting depth is decremented by the following words:

THEN
ELSE

)
END

LOOP
+LOOP

b

REPEAT (decrements nesting depth by 2)

A fatal '"SYNTAX ERROR" occurs if either of the following happens:
. the nesting depth ever becomes negative
. the nesting depth is non-zero either at the beginning or at
the end of a colon definition.
After compiling a line, :DIAMOND checks the nesting depth. If it 1is

zero, the line is executed. If it is non-zero, compilation continues
on the next line.

For example:

C-84

WICAT DIAGNOSTIC MONITOR (DIAMOND)
NESTING DEPTH AND CONTINUATION LINES

OO O0OO NN EFO
N W
oo
| 3)
o O

et

Thus, the execution of the DO loop is automatically postponed until
the nesting depth returns to zero; i.e., when the "LOOP" matching the
first "DO" is encountered.

Similarly, a multi-line colon definition is extended to include all
words up to the matching ";".

C.8.1 Postponing Execution

Execution of compiled code may be postponed even if the nesting depth
is zero by using the word """.

NOT IMPLEMENTED

The "~" feature is not yet implemented
in DIAMOND.

C-85

WICAT DIAGNOSTIC MONITOR (DIAMOND)
REPEATING THE LAST COMMAND LINE
C.9 REPEATING THE LAST COMMAND LINE
Typing a line feed causes DIAMOND to recompile and re—execute the last
command line executed.
NOT IMPLEMENTED

The LINE FEED ° word is not yet
implemented in DIAMOND.

C-86

WICAT DIAGNOSTIC MONITOR (DiAMOND)
DEFINING CONSTANTS, VARIABLES, AND ARRAYS

C.10 DEFINING CONSTANTS, VARIABLES, AND ARRAYS
C.10.1 CONSTANTS

A constant is a dictionary entry which causes a 32-bit integer to be
pushed on the parameter stack. Once a constant is defined, its value
is not intended to be changed at run time.

To define a constant, use the word '"CONSTANT":
VALUE “NAME CONSTANT

Here, "VALUE" is the number on the top of the stack and "NAME" is the
name to be assigned to the constant. When you execute "NAME", "VALUE"
is pushed on the stack.

EXAMPLE:

5 ’FIVE CONSTANT

This sets up a dictionmary entry with name "FIVE". Executing the word
"FIVE" causes a 5 to be pushed on the stack.

C.10.2 VARIABLES

A variable is a dictionary entry which contains a 32-bit integer‘ as
its value. The wvalue of a variable can be changed during program
execution. When executed, it causes the address of its value to be
pushed on the parameter stack.

, Variables are defined as follows:
VALUE ‘NAME VARIABLE

"VALUE" is the number on the top of the stack and "NAME" is the name
to be assigned to the variable. "VALUE" is used to set the initial
value of the variable. It is mot an address where you want the
variable to be stored.

EXAMPLE:

WICAT DIAGNOSTIC MONITOR (DIAMOND)
DEFINING CONSTANTS, VARIABLES, AND ARRAYS
100 ‘X VARIABLE

This defines a variable "X" with an initial value of 100.

C.10.3 ARRAYS

Although DIAMOND has no built-in array handling facility, its
ability to perform address arithmetic makes subscripting possible.

There are several methods for setting aside storage for an array. The
simplest is to use the word "ARRAY":

LENGTH ’NAME ARRAY
This defines and zeros an array whose length (in 32-bit words) -and
name are specified. The array is just a variable with extra storage
locations reserved. Referencing an array causes the address of the

zeroth element to 'be pushed on the stack. (The elements run from 0
thru "LENGTH"-1.)

EXAMPLE:

100 “BUFFER ARRAY

This defines and zeroes a 100-word array named "BUFFER".

C.10.3.1 REFERENCING ARRAY ELEMENTS

To reference an element of an array, all that is necessary is to add
an appropriate offset to the address of the zeroth element.

NOTE

Since the first element has offset zero,
the Nth element has offset N-1.

EXAMPLE:

C-88

WICAT DIAGNOSTIC MONITOR (DIAMOND)
DEFINING CONSTANTS, VARIABLES, AND ARRAYS

10 "X ARRAY
10 0 DO I X I 4* + ! LOOP

The above code defines a 10 element array "X" and fills it with the
numbers 0 to 9.

Note that since addresses are in bytes, the index must be multiplied
by 4.

Multidimensional subscripting is handled in a similar fashion.
EXAMPLE:

100 "X ARRAY
100D0O100D0OIJ+J10* I+ 4% X+ | LOOP LOOP

This example sets up a 100 element array "X" which is treated as a 10
by 10 matrix and then stores I+J in the element (I,J). A general 10
by 10 matrix can be thought of as:

X(1,1) X(1,2) . . . X(1,10)

X(2,1) X(2,2) . .« .« X(2,10)

.

X(10,1) x(10,2) . . . X(10,10)

Another way of considering the array is as a one-dimensional array
with 100 elements:

X(1,1) X(1,2) . . . X(1,10)
1 2 10

X(2,1) X(2,2) . . . X(2,10)
11 12 E 20

X(10,1) X(10,2) . .+ . X(10,10)
91 92 100

It is easy to see that the index of an array element in one scheme 1is
related to that in the other scheme by:

{one=dim index> = (10 * <row number>) -+ <column number>

Cc-89

WICAT DIAGNOSTIC MONITOR (DIAMOND)
DEFINING CONSTANTS, VARIABLES, AND ARRAYS

Or, calling the row number J and the column number I:
{index> = 10*J + 1

Translating this last expression into RPN, the index can be
as:

J 10 * I+

which is the expression in the middle of the second line
example:

100DO 100DOIJ+J10* I+ 4% X+ ! LOOP LOOP

written

of

Since each element of the array is a longword (4 bytes long),

displacement from the beginning of the array is 4*<index> bytes, so
starting

should be

this displacement is computed and added to "X", which is the
address of the array, to get the address where an element
stored:

100D0O 100DOTITJ+J10* I+ 4% X+ ! LOOP LOOP
The following part of the statement computes I+J:

100DO1I0ODOIJ+J10* I+ 4% X+ ! LOOP LOOP
So, the statement is of the form:

10 0 DO 10 O DO <value> <address> ! LOOP LOOP

where:
{valued> = "I J +" (the value to be
location 1,J)
<address> = "J 10 # I + 4% X +" (the location of
element)

The nested DO LOOPs run.I and J through the values 1 through

Cc-90

the

the

stored at

the

10.

1,J

WICAT DIAGNOSTIC MONITOR (DIAMOND)
THE DICTIONARY
C.11 THE DICTIONARY

The dictionary starts in low core and grows upward toward the top of
memory. As each definition is made, it is appended to the high memory
end of the dictiomary.

The following word gets the address of a dictiomary entry:
“NAME ADDRESS
This word pushes two values on the stack if its execution is
successful:
l. The address of "NAME". (Placed next to top of the stack)

2. A value which reflects the success or failure of the
operation. (Placed on top of the stack)

For example:

If the word "GORK" is defined:

0] ‘GORK ADDRESS = =
0 204078

"If the word '"GUCK" is not defined:

0] ‘GUCK ADDRESS =
-1

(There is no second eiement.)

C-91

WICAT DIAGNOSTIC MONITOR (DIAMOND)
STRING HANDLING

C.12 STRING HANDLING

Executing a string literal causes a pointer to the length word of the

string to be pushed on the stack.

EXAMPLE:

‘LARK : ‘NONSENSE TYPE ;

Executing "LARK" causes '"'NONSENSE" to be typed.

Cc-92

WICAT DIAGNOSTIC MONITOR (DIAMOND)
NUMBER OUTPUT CONVERSION

C.13 NUMBER OUTPUT CONVERSION

DIAMOND performs number conversion using a small but powerful set of
words which permit a variety of output formats to be generated.

RADIX Variable which contains current input and output radix.

TYO Convert the number on the top of the stack to an ASCII
character.

Higher level words are used to provide number output in a default
format:

=U Convert and output the number on the top of the stack.
(unsigned) '

= Convert and output the number on the top of the stack.
(signed) stack. (signed)

=F Convert and output the number next to the top of the stack,
displaying the number of digits specified by the number on top
of the stack. (signed) If the number to be displayed requires
fewer digits than specified, the output will be left zero
filled.

=UF Convert and output the number next to the top of the stack,
displaying the number of digits specified by the number on top
of the stack. (unsigned) If the number to be displayed
requires fewer digits than specified, the output will be left
zero filled.

C-93

WICAT DIAGNOSTLC MONITOR (DIAMOND)

FORGET
C.l4 FORGET
Entire sections of the dictionary may be deleted by using the
following word:

“NAME FORGET discards the named dictionary entry and all subsequent

entries.

FORGET is useful when trying out definitions from the keyboard. The
usual procedure is to first make a dummy definition:

0] “TEST : ;

Next, test definitions are made (typically by loading a program). If
they are unsuccessful, "’‘TEST FORGET" will delete them from the

dictionary, and the process is repeated. For convenience, the dummy
definition may be placed at the beginning of the program.

"FORGET" may also be used to provide an overlay facility. If a
program has been loaded, and is no longer needed, it may be deleted
using "FORGET". The dictionary space is then free to load another

program.

C~94

WICAT DIAGNOSTIC MONITOR (DILAMOND)
DEBUGGING TECHNIQUES

C.15 DEBUGGING TECHNIQUES

The following techniques may prove useful in debugging new
definitions:

1.

To test a word, feed in arguments on the stack, execute the
word, and examine the results using "=".

If a word fails, type in the words which make it up, one at a
time, examining the stack as you go along and restoring it by
typing the parameters back in, in reverse order.

Keep track of the radix you are using. This is a common
source of errors. Within a program being executed, save the
radix, set it to the value the program expects, and when
done, restore the saved value.

For example:

0] RADIX @ DECIMAL . . . RADIX !

This saves the current radix on the stack and sets the radix
to DECIMAL. At the end, the 0ld radix is restored (assuming
the stack has not been disturbed). :

The proper selection of lower level words has an enormous
effect on all subsequent higher level definitions. Thus, it
pays to design lower level words very carefully.

When debugging a program, test all lower level words
thoroughly before testing the words which call them.

Be especlally careful with any word which modifies memory.

Make sure the word 1is modifying only those locations you
intend, and not part of the program.

C-95

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-19A
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	C-55
	C-56
	C-57
	C-58
	C-59
	C-60
	C-61
	C-62
	C-63
	C-64
	C-65
	C-66
	C-67
	C-68
	C-69
	C-70
	C-71
	C-72
	C-73
	C-74
	C-75
	C-76
	C-77
	C-78
	C-79
	C-80
	C-81
	C-82
	C-83
	C-84
	C-85
	C-86
	C-87
	C-88
	C-89
	C-90
	C-91
	C-92
	C-93
	C-94
	C-95

