
VxWorks Network
Programmer’s Guide

™

5.4

Edition 1
An ISO 9001 Registered Company

Copyright  1984 – 1999 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,

microfilm, retrieval system, or by any other means now known or hereafter invented without the

prior written permission of Wind River Systems, Inc.

VxWorks, IxWorks,Wind River Systems, the Wind River Systems logo, wind, and Embedded Internet

are registered trademarks of Wind River Systems, Inc. Tornado, CrossWind, Personal JWorks, VxMP,

VxSim, VxVMI, WindC++, WindConfig,Wind Foundation Classes, WindNet, WindPower, WindSh,and

WindView are trademarks of Wind River Systems, Inc.

All other trademarks used in this document are the property of their respective owners.

Corporate Headquarters
Wind River Systems, Inc.

500 Wind River Way

Alameda, CA 94501-1153

USA

toll free (US): 800/545-WIND

telephone: 510/748-4100

facsimile: 510/749-2010

Europe
Wind River Systems, S.A.R.L.

19, Avenue de Norvège

Immeuble B4, Bâtiment 3

Z.A. de Courtaboeuf 1

91953 Les Ulis Cédex

FRANCE

telephone: 33-1-60-92-63-00

facsimile: 33-1-60-92-63-15

Japan
Wind River Systems K.K.

Ebisu Prime Square Tower 5th Fl.

1-1-39 Hiroo

Shibuya-ku

Tokyo 150-0012

JAPAN

telephone: 81-3-5778-6001

facsimile: 81-3-5778-6002

VxWorks Network Programmer’s Guide, 5.4
Edition 1

6 May 99

Part #: DOC-12779-ZD-01

CUSTOMER SUPPORT

Telephone E-mail Fax

Corporate: 800/872-4977 toll free, U.S. & Canada

510/748-4100 direct

support@wrs.com 510/749-2164

Europe: 33-1-69-07-78-78 support@wrsec.fr 33-1-69-07-08-26

Japan: 011-81-3-5467-5900 support@kk.wrs.com 011-81-3-5467-5877

If you purchased your Wind River Systems product from a distributor, please contact your

distributor to determine how to reach your technical support organization.

Please provide your license number when contacting Customer Support.

Contents
1 Overview ... 1

1.1 Introduction .. 1

Supported Protocols and Utilities ... 1

1.1.1 Network ... 2

2 Configuring the VxWorks Network Stack ... 7

2.1 Introduction .. 7

2.1.1 The Data Link Layer .. 7

2.1.2 The MUX, TCP/IP, and Associated Protocols 7

2.1.3 Network Configuration Protocols ... 8

2.1.4 Routing Applications .. 8

2.1.5 Networking APIs ... 9

2.1.6 DNS, Domain Name System .. 9

2.1.7 SNTP, Simple Network Time Protocol .. 10

2.1.8 Remote Access Applications .. 10

2.2 Advice Concerning the Use of config.h and configAll.h 10

3 Data Link Layer Network Components .. 13
iii

VxWorks Network 5.4
Programmer’s Guide
3.1 Introduction .. 13

3.2 Ethernet Driver Support ... 13

3.3 Serial Line IP Support ... 14

3.3.1 Serial Line Driver Configuration ... 14

3.4 PPP, the Point-to-Point Protocol for Serial Line IP 15

3.4.1 Reference Material on PPP ... 16

3.4.2 PPP Features ... 16

3.4.3 The Point-to-Point Protocol Compared to SLIP 17

3.4.4 An Overview of PPP ... 19

Encapsulation ... 19

Link Control Protocol (LCP) .. 20

Internet Protocol Control Protocol (IPCP) 20

Password Authentication Protocol (PAP) 20

Challenge-Handshake Authentication Protocol (CHAP) 21

3.4.5 PPP Configuration ... 21

Selecting PPP Options By Configuring VxWorks 22

Selecting PPP Options Using an Options Structure 24

Setting PPP Options Using an Options File 25

3.4.6 Using PPP ... 25

Initializing a PPP Link .. 26

Deleting a PPP Link ... 27

PPP Options .. 27

PPP Authentication ... 31

Connect and Disconnect Hooks .. 35

3.4.7 PPP with Tornado .. 37

PPP Link as an Additional Network Interface 37

PPP Link as a Network Back End for the Target Server 37

3.4.8 Troubleshooting PPP ... 39

Link Establishment .. 39

Authentication ... 40

3.5 Shared-Memory Network on the Backplane ... 40
iv

Contents
3.5.1 The Backplane Shared-Memory Pool .. 42

Backplane Processor Numbers .. 42

The Shared-Memory Network Master: Processor 0 42

The Shared-Memory Anchor .. 43

The Shared-Memory Heartbeat ... 44

Shared-Memory Location ... 45

Shared Memory Size .. 45

On-Board and Off-Board Options ... 45

Test-and-Set to Shared Memory ... 46

3.5.2 Interprocessor Interrupts .. 47

3.5.3 Sequential Addressing .. 48

3.5.4 Shared-Memory Network Configuration 50

Example Configuration ... 50

Troubleshooting ... 53

3.6 Custom Interfaces ... 56

4 TCP/IP Under VxWorks .. 57

4.1 Introduction .. 57

4.1.1 MUX, an Interface between the Data Link and Network Layers 57

Attaching to the MUX ... 58

4.2 IP, Internet Protocol .. 58

4.2.1 Internet Addresses ... 58

4.2.2 Packet Routing ... 60

4.2.3 Network Byte Order .. 62

4.3 VxWorks Manual Network Configuration Utilities 63

4.3.1 Assigning Internet Addresses .. 63

4.3.2 Adding Gateways to a Network .. 66

4.3.3 Subnet Configuration .. 72

4.4 UDP, User Datagram Protocol .. 74
v

VxWorks Network 5.4
Programmer’s Guide
4.5 TCP, Transmission Control Protocol .. 74

4.6 Configuring the Network Stack ... 74

4.6.1 Network Protocol Scalability ... 75

4.6.2 Setting #defines for the IP, TCP, UDP, and ICMP Protocols 75

4.6.3 Network Memory Pool Configuration ... 78

4.6.4 Testing Network Connections ... 82

4.7 ARP and Proxy ARP for Transparent Subnets ... 84

4.7.1 ARP Introduction ... 85

4.7.2 Proxy ARP Overview .. 86

4.7.3 Routing Issues and the Proxy Server .. 87

4.7.4 Proxy ARP Protocol ... 89

4.7.5 Broadcast Datagrams .. 90

4.7.6 Special Configuration Needs for Multi-Homed Proxy Clients ... 91

4.7.7 Single-Tier Configuration for Shared-Memory Networks under

Proxy ARP .. 92

4.7.8 Proxy ARP and Its Consequences for Subnet Configuration 93

5 Network Configuration Protocols ... 101

5.1 Introduction .. 101

5.2 DHCP, Dynamic Host Configuration Protocol .. 102

5.2.1 Configuring VxWorks to Include the DHCP Components 103

5.2.2 Configuring the DHCP Client ... 103

5.2.3 Configuring DHCP Servers .. 104

Configuring the Supported DHCP Server 105

Adding Entries to the Database of a Running DHCP Server 107

Storing and Retrieving Active Network Configurations 108

Configuring the Unsupported DHCP Server 110

5.2.4 Configuring the Supported DHCP Relay Agent 110
vi

Contents
5.2.5 DHCP Within an Application .. 111

5.3 BOOTP, Bootstrap Protocol ... 113

5.3.1 BOOTP Configuration ... 114

About the BOOTP Database ... 114

Editing the BOOTP Database to Register a VxWorks Target 115

5.4 SNMP, Simple Network Management Protocol .. 116

6 Dynamic Routing Protocols .. 117

6.1 Introduction .. 117

6.2 RIP, Routing Information Protocol ... 118

6.2.1 VxWorks Includes Supplemental Debugging Routines for RIP . 119

6.2.2 Configuring RIP ... 120

6.3 OSPF, Open Shortest Path First .. 121

6.3.1 Including OSPF in VxWorks ... 122

7 Networking APIs ... 125

7.1 Introduction .. 125

7.2 BSD Sockets ... 125

7.2.1 Stream Sockets (TCP) .. 126

7.2.2 Datagram Sockets (UDP) .. 133

Using a Datagram (UDP) Socket to Access IP Multicasting 137

7.3 Zbuf Sockets .. 144

7.3.1 Zbuf Calls to Send Existing Data Buffers 144

7.3.2 Manipulating the Zbuf Data Structure ... 145

Zbuf Byte Locations ... 145

Creating and Destroying Zbufs ... 147

Getting Data In and Out of Zbufs .. 147

Operations on Zbufs .. 148
vii

VxWorks Network 5.4
Programmer’s Guide
Segments of Zbufs ... 149

Example: Manipulating Zbuf Structure ... 150

Limitations of the Zbuf Implementation .. 154

7.3.3 Zbuf Socket Calls ... 154

Standard Socket Calls and Zbuf Socket Calls 155

8 DNS: Domain Name System ... 161

8.1 Introduction .. 161

8.2 Domain Names ... 162

8.3 The VxWorks Resolver .. 162

8.3.1 Resolver Integration .. 163

8.3.2 Resolver Configuration ... 163

9 SNTP: A Time Protocol ... 165

9.1 Introduction .. 165

9.2 Using the SNTP Client .. 165

9.3 Using the SNTP Server .. 166

10 RPC: Remote Procedure Calls ... 167

10.1 Introduction .. 167

11 File Access Applications .. 169

11.1 Introduction .. 169

11.2 RSH and FTP .. 170

11.2.1 Allowing Remote File Access with RSH .. 171

11.2.2 Creating VxWorks Network Devices that use RSH or FTP 172

11.2.3 Setting the User ID for Remote File Access with RSH or FTP 173

11.2.4 File Permissions ... 173
viii

Contents
11.3 NFS ... 174

11.3.1 VxWorks Target as Client .. 174

Creating VxWorks Network Devices that Use NFS 175

Setting the User ID for Remote File Access with NFS 176

11.3.2 VxWorks Target as Server ... 176

Initializing an NFS-Exportable File System 176

Exporting a File System through NFS ... 177

Properties of NFS-Exported File Systems 178

Limitations of the VxWorks NFS Server ... 179

11.4 TFTP ... 180

11.4.1 Host TFTP Server ... 180

11.4.2 VxWorks TFTP Server ... 180

11.4.3 VxWorks TFTP Client .. 181

12 rlogin and telnet: Host Access Applications ... 183

12.1 Introduction .. 183

12.2 rlogin .. 183

12.3 telnet ... 184

12.4 remLib .. 184

13 Booting over the Network .. 185

13.1 Introduction .. 185

13.2 About the Boot Program ... 186

13.2.1 How the Boot Program Gets Its Boot Parameters 186

13.2.2 The General Format of a Boot Line ... 188

13.2.3 Boot Parameters Needed for DHCP, BOOTP, and Network Device

Initialization .. 189

13.2.4 Boot Parameters Returned from DHCP or BOOTP 191
ix

VxWorks Network 5.4
Programmer’s Guide
13.2.5 Boot Parameters Needed to Set Up Remote File Access and Get the

VxWorks Image .. 192

13.2.6 Optional Boot Parameters .. 193

13.3 Setting the VxWorks Boot Parameters .. 194

13.3.1 Supplying Boot Parameters Using #define Values 194

13.3.2 Supplying Boot Parameters Manually ... 195

13.3.3 Supplying Boot Parameters from a DHCP or BOOTP Server 196

13.4 Booting from the Ethernet .. 198

13.4.1 Troubleshooting ... 200

13.5 Booting from the Shared-Memory Network .. 201

13.6 Booting from the Serial Line ... 203

13.6.1 Booting VxWorks Using SLIP .. 203

13.6.2 Booting VxWorks Using PPP ... 205

14 Upgrading 4.3 BSD Network Drivers .. 209

14.1 Introduction .. 209

14.2 Structure of a 4.3 BSD Network Driver ... 210

14.2.1 Etherhook Routines Provides Access to Raw Packets 211

14.3 Upgrading to 4.4 BSD .. 212

14.3.1 Removing the xxOutput Routine .. 213

14.3.2 Changing the Transmit Startup Routine .. 214

14.3.3 Changes in Receiving Packets ... 214

14.3.4 Creating a Transmit Startup Routine .. 214

Index ... 217
x

1
Overview
1.1 Introduction

This guide describes the standard VxWorks network stack, which is based on the

4.4 BSD TCP/IP release.

Chapter Overview

The first several chapters in this guide describe the network protocols supported

by the standard VxWorks network stack and explain how to configure VxWorks to

include a particular protocol or utility and how to configure the protocol or utility

itself.

Chapter 13. Booting over the Network explains how to boot VxWorks from the

network. Included are instructions for booting over the Ethernet, the serial line

(using PPP or SLIP), or the memory backplane.

Chapter 14. Upgrading 4.3 BSD Network Drivers describes the issues associated with

porting a 4.3 BSD network driver to work within the VxWorks network stack. You

can choose between two upgrade paths: you can do a simple upgrade of the driver

to the standard 4.4 BSD network driver interface; or, if your driver needs to

support features such as multiple protocols, it should be rewritten to use the MUX

interface.

Supported Protocols and Utilities

The standard VxWorks network stack includes support for the following protocols

and utilities:
1

VxWorks Network 5.4
Programmer’s Guide
■ SLIP, Serial Line IP

■ CSLIP, Compressed Serial Line IP

■ PPP, the Point-to-Point Protocol

■ IP, Internet Protocol

■ UDP, User Datagram Protocol

■ TCP, Transmission Control Protocol

■ DHCP, Dynamic Host Configuration Protocol

■ BOOTP, Bootstrap Protocol

■ DNS, Domain Name System

■ ARP, Address Resolution Protocol, and Proxy ARP

■ OSPF, Open Shortest Path First

■ RIP, Routing Information Protocol

■ Sockets (TCP, UPD, multicasting, routing, and Zbuf)

■ RPC, Remote Procedure Calls

■ RSH, Remote Shell

■ FTP, File Transfer Protocol

■ NFS, Network File System

■ TFTP, Trivial File Transfer Protocol

■ rlogin, Remote Login

■ telnet, Remote Login

1.1.1 Network

One key to VxWorks’s effective relationship with host development machines is its

extensive networking facilities. By providing a fast, easy-to-use connection

between the target and host systems, the network allows full use of the host

machine as a development system, as a debugging host, and as a provider of non-

real-time services in a final system.

VxWorks currently supports loosely coupled network connections over serial lines

(using SLIP, CSLIP, or PPP) or Ethernet networks (IEEE 802.3). It also supports

tightly coupled connections over a backplane bus using shared memory. The
2

1

1
Overview
standard VxWorks network stack uses the Internet protocols, based on the 4.4 BSD

TCP/IP release, for all network communications.

In addition to the remote access provided by Tornado, VxWorks supports remote

command execution, remote login, and remote source-level debugging. VxWorks

also supports standard BSD socket calls, remote procedure calls, SNMP, remote file

access, boot parameter access from a host, and proxy ARP networks.

MUX Interface

A standard BSD 4.3 network driver can be ported to VxWorks with little effort.

However, VxWorks also supports an improved network driver interface. This

interface, called the MUX1, adds support for advanced features such as

multicasting, polled-mode Ethernet, and zero-copy transmission. This interface

also decouples the network driver and network protocol layers, allowing you add

new network drivers without the need to alter the network protocol, or to add a

new network protocol without the need to modify the existing MUX-based

network interface drivers.

Porting a driver to the MUX interface involves more work than a simple port to

BSD 4.4, but it is worth it if your driver must support multicasting, polled-mode

Ethernet, and other advanced features. More information about the process of

adding new drivers and protocols to the VxWorks network stack can be found in

the Network Protocol Toolkit User’s Guide.

Sockets

VxWorks provides standard BSD socket calls, which allow real-time VxWorks

tasks and other processes to communicate in any combination with each other over

the network. There are two sets of VxWorks socket calls: you can use sockets that

are source-compatible with BSD 4.4 UNIX, or you can use the zbuf socket interface
to streamline throughput.2

Any task can open one or more sockets, to which other sockets can be connected.

Data written to one socket of a connected pair is read, transparently, from the other

socket. Because of this transparency, the two tasks do not necessarily know

whether they are communicating with another process or VxWorks task on the

same CPU or on another CPU, or with a process running under some other host

operating system. Similarly, tasks using the zbuf socket interface are not aware of

whether their communications partners are using standard sockets, or are also

using the zbuf interface.

1. MUX: short for multiplexer, because it multiplexes access to physical network devices.

2. The TCP subset of the zbuf interface is sometimes called “zero-copy TCP.”
3

VxWorks Network 5.4
Programmer’s Guide
For information on sockets, see 2.6 Networking APIs, p.116, and the reference

entries for sockLib and zbufSockLib.

Remote Procedure Calls (RPC)

Originally designed by Sun Microsystems using the Sun ONC standard and now

available in the public domain, Remote Procedure Call (RPC) is a protocol that

allows a process on one machine to call a procedure that is executed by another

process on another machine. Thus with RPC, a VxWorks task or host machine

process can invoke routines that are executed on other VxWorks or host machines,

in any combination. For more information, see the RPC documentation (publicly

and commercially available) and the reference entry for rpcLib.

Simple Network Management Protocol (WindNet SNMP)

The WindNet SNMPv1/v2c optional component allows VxWorks targets to be

managed and configured remotely through SNMP (the Simple Network

Management Protocol). Application developers can customize the SNMP

management information base to include information specific to each application

and environment.

For detailed information about WindNet SNMP, see the WindNet SNMPv1/v2c
VxWorks Component Release Supplement.

Remote File Access: NFS, RSH, FTP, TFTP

Remote file access across the network is also available. A program running on

VxWorks can use the host machine as a virtual file system. Files on any host

machine can be accessed through the network as if they were local to the VxWorks

system. A program running under VxWorks does not need to know where that file

is, or how to access it. For example, /dk/file might be a file local to the VxWorks

system, while host:file might be a file located on another machine entirely.

Conversely, VxWorks can allow host machines to use files maintained on VxWorks

just as transparently – programs running on the host need not know that the files

they use are maintained on the VxWorks system.

VxWorks includes the Sun Microsystems standard Network File System (NFS).

VxWorks systems can run NFS clients, using files from other systems that export

files over NFS, or run NFS servers, exporting files to other systems. Alternatively,

VxWorks can use the following protocols to provide transparent remote file access:

■ The Remote Shell protocol (RSH) can be used as a client, accessing files on

UNIX host systems running an RSH server.
4

1

1
Overview
■ The File Transfer Protocol (FTP) provides remote access to VxWorks files from

other systems using FTP.

■ The Trivial File Transfer Protocol (TFTP) provides read/write capability to and

from a remote server.

See the reference entries for nfsLib, remLib, ftpLib, ftpdLib, tftpLib, and

tftpdLib, and the following sections: 3.7.4 Network File System (NFS) Devices, p.124,

2.10 File Access Applications, p.153, and 3.7.5 Non-NFS Network Devices, p.126.

Boot Parameter Access from Host

BOOTP is a basic bootstrap protocol which allows a booting target to configure

itself dynamically by obtaining the required parameters from the host via the

network, instead of using information encoded in the target’s non-volatile RAM or

ROM. The actual transfer of the boot image is performed by a file transfer program.

BOOTP and TFTP are commonly used together for network booting.

Proxy ARP Networks

Proxy ARP provides transparent network access by using Address Resolution

Protocol (ARP) to make distinct networks appear as one logical network. The

proxy ARP scheme implemented in VxWorks provides an alternative to the use of

explicit subnets for access to the shared memory network.

With proxy ARP, nodes on different subnetworks are assigned addresses with the

same subnet number. Because they appear to reside on the same network, and

because they can communicate directly, they use ARP to resolve each other’s

hardware address. The gateway node that responds to ARP requests is called the

proxy server.
5

VxWorks Network 5.4
Programmer’s Guide
6

2
Configuring the VxWorks

Network Stack
2.1 Introduction

This chapter introduces the configuration and use of the standard VxWorks

network stack, the details of which are given in subsequent chapters.

2.1.1 The Data Link Layer

Chapter 3. Data Link Layer Network Components is a discussion of the data link layer,

its general configuration needs, and network drivers. These drivers handle the

specifics of communicating over networking hardware, such as an Ethernet board,

a serial line, or even the shared-memory backplane. These drivers are the

foundation of the network stack. For information on booting VxWorks using these

drivers, see chapter 13. Booting over the Network.

2.1.2 The MUX, TCP/IP, and Associated Protocols

After the chapter on the data link layer, chapter 4. TCP/IP Under VxWorks
introduces the MUX and the TCP/IP protocol suite. Under VxWorks, TCP/IP uses

the MUX interface to communicate with the data link layer. The purpose of the

MUX is to decouple the data link and network layers. This makes it easier to add

new network drivers under an existing protocol. It also makes it easier for an

alternative protocol to run over the standard VxWorks data link layer. For more

information on the MUX, see the Network Protocol Toolkit User’s Guide.

The discussion of IP, TCP, and UDP is primarily an overview that prepares you for

a discussion of their configuration needs under VxWorks. However, this chapter
7

VxWorks Network 5.4
Programmer’s Guide
does describe ARP and Proxy ARP in some detail. ARP provides dynamic

mapping from an IP address to the corresponding media address. Using ARP,

VxWorks implements a proxy ARP scheme that can make distinct networks

appear as one logical network. This proxy ARP scheme is an alternative to the use

of explicit subnets for accessing the shared-memory network.

2.1.3 Network Configuration Protocols

The next group of protocols discussed, in chapter 5. Network Configuration
Protocols, are the network configuration protocols:

■ DHCP, Dynamic Host Configuration Protocol
■ BOOTP, Bootstrap Protocol
■ SNMP, Simple Network Management Protocol

The networking stack can use either DHCP or BOOTP to set up and maintain its

network configuration information. At boot time, both DHCP and BOOTP can

provide IP addresses and related information. BOOTP assigns IP addresses

permanently. The DHCP protocol extends BOOTP to allow the assignment of IP

addresses on a temporary basis. Thus, the client receives an IP address on lease.

When the lease expires, the client must renegotiate the lease. As a result, DHCP

remains active during run-time.

Although SNMP can provide network configuration information, it differs

significantly from BOOTP and DHCP in that it was not designed for use at boot

time. Instead, you use it to set up network management station (NMS) from which

you can remotely configure, monitor, and control network devices called agents.

Thus, SNMP is a network configuration protocol, but in a very different sense of

the term.

Beyond providing a few paragraphs of description, this manual does not discuss

SNMP. For detailed information on using SNMP with VxWorks, see WindNet
SNMP VxWorks Optional Product Supplement.

2.1.4 Routing Applications

Chapter 6. Dynamic Routing Protocols discusses the routing applications:

■ RIP, Routing Information Protocol

RIP maintains routing information within small inter-networks. The RIP

server provided with VxWorks is based on the 4.4 BSD routed program. The
8

2

2
Configuring the VxWorks Network Stack
VxWorks RIP server supports three modes of operation: Version 1 RIP, Version

2 RIP with multicasting, and Version 2 RIP with broadcasting.

■ OSPF, Open Shortest Path First

Like RIP, OSPF updates the information in the routing tables. However, OSPF

is more complex than RIP. This complexity enhances functionality. Thus, an

OSPF router can handle inter-networks that are too large for RIP.

Unfortunately, this complexity also makes OSPF much harder to configure.

2.1.5 Networking APIs

Chapter 7. Networking APIs discusses the VxWorks implementation of sockets.

Using sockets, applications can communicate across a backplane, within a single

CPU, across an Ethernet, or across any connected combination of networks. Socket

communications can occur between any combination of VxWorks tasks and host

system processes. VxWorks supports a standard BSD socket interface to TCP and

UDP. Using these standard BSD sockets, you can:

■ Communicate with other processes.
■ Access the IP multicasting functionality.
■ Review and modify the routing tables.

In addition to the standard BSD socket interface, VxWorks also supports zbuf

sockets, an alternative set of socket calls based on a data abstraction called the zbuf

(the zero-copy buffer). Using zbuf sockets, you share data buffers (or portions of

data buffers) between separate software modules. Although this interface is WRS-

specific, the interface can communicate with standard BSD sockets. Thus, the other

end of the socket connection can use the standard BSD interface even if you chose

to use the zbuf interface on the VxWorks side of the connection.

2.1.6 DNS, Domain Name System

DNS is a distributed database that most TCP/IP applications can use to translate

host names to IP addresses and back. DNS uses a client/server architecture. The

client side is known as the resolver. The server side is called the name server.
VxWorks provides the resolver functionality in resolvLib. DNS is discussed briefly

in chapter 8. DNS: Domain Name System. For detailed information on DNS, see

RFC-1034 and RFC-1035.
9

VxWorks Network 5.4
Programmer’s Guide
2.1.7 SNTP, Simple Network Time Protocol

Using an SNTP client, a target can maintain the accuracy of its internal clock based

on time values reported by one or more remote sources. Using an SNTP server, the

target can provide time information to other systems. SNTP is discussed briefly in

chapter 9. SNTP: A Time Protocol.

2.1.8 Remote Access Applications

Chapters 10. RPC: Remote Procedure Calls, 11. File Access Applications, and 12. rlogin
and telnet: Host Access Applications discuss the applications that provide remote

access over the network. VxWorks supports the following:

■ RPC (Remote Procedure Call, for distributed processing)
■ RSH (Remote Shell, for remote file access)
■ FTP (File Transfer Protocol, for remote file access)
■ NFS (Network File System, for remote file access)
■ TFTP (Trivial File Transfer Protocol, for remote file access)
■ rlogin (for remote login)
■ telnet (for remote login)

2.2 Advice Concerning the Use of config.h and configAll.h

There are times when VxWorks configuration must be fine-tuned beyond the

capabilities of the configuration tool described in the Tornado User’s Guide: Projects.

In these cases, you should edit configuration header files manually to modify

constants and macros.

The config.h file sets values for constants that the build uses to determine the

contents of a VxWorks image. The tricky part of editing config.h is determining

where you want to insert the #define or #undef statement. This is because all

config.h files contain a #include "configAll.h" statement.

Within the configAll.h file, there are #ifdef blocks that depend on the value of a

symbolic constant whose value you might want to modify. You should insert any

change to config.h that modifies such constants before the inclusion of configAll.h.

! WARNING: You should avoid modifying the configAll.h file.
10

2

2
Configuring the VxWorks Network Stack
However, configAll.h sometimes undefines a symbolic constant that you might

want to define. In such cases, you should put your #define statement after the

inclusion of configAll.h. As a consequence, before you modify a value in a BSP’s

config.h file, you must first check the configAll.h file for dependencies on the

constant you want to modify.

If you modify the config.h file, be sure to refer to the Tornado User’s Guide: Projects
for advice on how to coordinate these changes with ones you make using the

configuration tool.
11

VxWorks Network 5.4
Programmer’s Guide
12

3
Data Link Layer Network

Components
3.1 Introduction

The data link layer consists of drivers that directly handle communication with the

physical medium. It is their job to transmit and receive frames on the physical

network medium. VxWorks includes three different classes of data link layer

drivers: the Ethernet drivers; the Serial Line Interface Protocol (SLIP) driver; and

the shared-memory network driver, which provides communication over a

backplane. VxWorks also supports the creation of custom interface drivers.

3.2 Ethernet Driver Support

Ethernet is one medium among many over which the VxWorks network can

operate. Ethernet is a local area network specification that is supported by

numerous vendors. It is ideal for most VxWorks applications, but, with the

exception of certain protocols, such as BOOTP and DHCP, nothing in either the

VxWorks or host network systems is inherently tied to Ethernet.

If you are writing or porting an Ethernet driver to VxWorks, it should conform to

the MUX interface for network drivers (for information on how to write a driver

that works with the MUX, see the Network Protocol Toolkit User’s Guide). This

interface includes support for features such as multicasting and polled-mode

Ethernet. If these features do not matter to you, a simpler port might be possible;

see 14. Upgrading 4.3 BSD Network Drivers. However, the MUX is the future of
13

VxWorks Network 5.4
Programmer’s Guide
network driver interfaces under VxWorks; eventually, all network drivers must be

ported to the MUX.

3.3 Serial Line IP Support

The VxWorks target can support IP communication with the host operating system

over serial connections using the following protocols:

■ Serial Line IP (SLIP)
■ Compressed Serial Line IP (CSLIP)

SLIP and CSLIP (SLIP with compressed headers) provide a simple form of

encapsulation for IP datagrams on serial lines. Using SLIP or CSLIP as a network

interface driver is a straightforward way to use TCP/IP software with point-to-

point configurations such as long-distance telephone lines or RS-232 serial

connections between machines.

PPP also provides a simple form of encapsulation for IP datagrams on serial lines.

However, unlike SLIP or CSLIP, PPP provides support for multiple protocols on a

single serial line, dynamic negotiation of the IP addresses at each end, and much

more. Of course, it comes at the cost of additional overhead with each frame, and

extra frames when the link is first created.

3.3.1 Serial Line Driver Configuration

Configuring your system for SLIP requires configuring both target and host

systems. See your host system’s manual for information on configuring your host.

! CAUTION: The VxWorks implementation of PPP supports only IP. For more

information on PPP, see 3.4 PPP, the Point-to-Point Protocol for Serial Line IP, p.15.

! CAUTION: If you choose to use CSLIP, remember to make sure your host is also

using CSLIP. If your host is configured for SLIP, the VxWorks target receives

packets from the host, but the host cannot correctly decode the CSLIP packets from

the target. Eventually TCP resends the packets as SLIP packets, at which time the

host receives and acknowledge them. However, the whole process is slow. To

avoid this, configure the host and target to use the same serial protocol.
14

3

3
Data Link Layer Network Components
To use SLIP with your VxWorks target, make the following configuration changes

(for more information on configuring VxWorks, see the Tornado User’s Guide:
Projects):

1. Reconfigure VxWorks to include SLIP support. The relevant configuration

macro is INCLUDE_SLIP.

2. Specify the device to be used for the SLIP connection, the SLIP Channel

Identifier. The relevant configuration macro is SLIP_TTY. By default this is set

to 1, which sets the serial device to /tyCo/1.

3. Specify the baud rate or SLIP Channel Speed (optional). The relevant

configuration macro is SLIP_BAUDRATE. If this is not defined, SLIP uses the

baud rate defined by your serial driver.

4. Specify the SLIP Channel Capacity (optional). The relevant configuration

macro is SLIP_MTU. If you do not set this, the default value (576) will be used.

5. You can force the use of CSLIP when communicating with the host by setting

the Transmit Header Compression Flag. The relevant configuration macro is

CSLIP_ENABLE.

6. Otherwise, you can allow the use of plain SLIP unless the VxWorks target

receives a CSLIP packet (in which case the target also uses CSLIP) by setting

the Receive Header Compression Flag. The relevant configuration macro is

CSLIP_ALLOW.

3.4 PPP, the Point-to-Point Protocol for Serial Line IP

The VxWorks implementation of the PPP (Point-to-Point Protocol) is comprised of

several different protocols that work together with the PPP network interface

driver. Although PPP can, in theory, support a variety of protocols, the VxWorks

implementation supports only the TCP/IP stack. The VxWorks PPP

implementation is comprised of three main components:

■ A method for encapsulating multi-protocol datagrams.

! CAUTION: If you want to use VxSim for Solaris with PPP as the backend, you must

reconfigure VxWorks to remove BSD 4.3 compatability. (The relevant configuration

macro is BSD43_COMPATIBLE). Otherwise, you get an exception in the WDB task

when the target server tries to connect to the WDB agent.
15

VxWorks Network 5.4
Programmer’s Guide
■ A Link Control Protocol (LCP) for establishing, configuring, and testing the

data-link connection.

■ A family of Network Control Protocols (NCPs) for establishing and

configuring different network-layer protocols.

PPP is one method by which VxWorks can communicate with other operating

systems over a serial line connection. PPP supports Internet Protocol (IP) layer

networking software over point-to-point configurations, such as long-distance

telephone lines or RS-232 serial connections between machines. If either end of a

PPP connection has other network interfaces (such as Ethernet) and is able to

forward packets to other machines, a PPP connection can serve as a gateway

between networks.

The basic functionality provided by PPP is similar to that of the Serial Line Internet

Protocol (SLIP), with the advantage that PPP is extensible and offers various

configurable options.

PPP provides a standard method for transporting multi-protocol datagrams over

point-to-point links. It is designed for simple links which transport packets

between two peers. These links provide full-duplex, simultaneous operation and

are assumed to deliver packets in the order in which they are sent. It is intended

that PPP provide a common solution for easy connectivity among a variety of

hosts, bridges, and routers.

3.4.1 Reference Material on PPP

The following is a list of relevant Requests for Comments (RFCs) associated with

the VxWorks PPP implementation:

RFC 1332: The PPP Internet Protocol Control Protocol (IPCP)

RFC 1334: PPP Authentication Protocols

RFC 1548: The Point-to-Point Protocol (PPP)

The USENET news group, comp.protocols.ppp, is dedicated to the discussion of

PPP-related issues. Information presented in this forum is often of a general nature

(such as equipment, setup, or troubleshooting), but technical details concerning

specific PPP implementations are discussed as well.

3.4.2 PPP Features

PPP supports the following features:
16

3

3
Data Link Layer Network Components
■ PPP client and server connection support (either active or passive mode). In

active mode (default), the PPP software attempts to initiate a PPP link with the

peer. In passive mode, the PPP software waits for a peer to try to open a link.

■ Multiple unit support . Up to 16 PPP interfaces can be active at any one time.

■ Asynchronous character mapping . Users can specify control characters that

should be escaped by the peer upon transmission to avoid misinterpretation

by the serial driver library or by lower-level modem software.

■ Van Jacobsen (VJ) compression . This feature reduces the regular 40-byte

TCP/IP header to 3 or 8 bytes, thereby saving valuable link bandwidth.

■ Address, control, and protocol field compression . These types of compression

allow the PPP network interface driver to reduce the transmission of

extraneous PPP header information, thereby saving valuable link bandwidth.

■ Link state and link statistics querying . Internal PPP counters and protocol state

information may be obtained through query routines. This enables

applications to monitor and manage the PPP link.

■ IP address negotiation . Using IP address negotiation, one peer may assign the

other peer an IP address once the PPP link is established.

■ Echo request and reply . One peer may request that the other peer respond to

link-layer echoes. This allows for an automatic monitoring of the link’s

physical status.

■ Connect and disconnect hooks . Use of connect and disconnect hooks allows

applications to implement routines supporting modem control, dialing

software, connection scripting, etc.

■ Challenge-Handshake Authentication Protocol (CHAP) and Password
Authentication Protocol (PAP) . These authentication protocols ensure that the

remote peer is authorized to establish a PPP link and that the correct IP address

is used.

■ Proxy ARP routing . Use of this feature allows hosts on the proxy-server peer’s

connected network to access the proxy-client peer without manually adding

routing entries.

3.4.3 The Point-to-Point Protocol Compared to SLIP

For many years, transferring Internet Protocol (IP) packets over serial lines was

handled almost exclusively by the Serial Line Internet Protocol (SLIP). SLIP is a

simple link-layer driver that is installed between IP stack code and a serial driver.
17

VxWorks Network 5.4
Programmer’s Guide
While SLIP uses less object code than PPP and processes packets more efficiently

(using compressed headers in CSLIP), it can carry only IP packets and it is not

extensible. Furthermore, SLIP has several different protocol implementations that

do not always communicate smoothly with each other. Nevertheless, its general

ease of use and large installed base has made it the de facto standard for using IP

over point-to-point serial lines.

The Point-to-Point Protocol (PPP) was developed to address the shortcomings of

SLIP. Unlike SLIP, PPP is being defined and tracked by the Internet Engineering

Task Force (IETF), and the protocol specifications have been published in multiple

Request For Comments (RFC) documents. Although SLIP is still an attractive

choice for systems that only require basic IP-packet transfers, the advantages of

PPP are prompting the rapid growth of its installed base.

PPP supports several features that make it more suitable than SLIP for certain

applications:

■ Multi-Protocol Support . PPP packet framing includes a protocol field in the

header. This allows for the transfer of packets among different network-layer

protocols over a link. At present, the only protocols supported by this PPP

implementation are IP and the basic PPP protocols (LCP, IPCP, PAP, and

CHAP).

■ Extensibility . The protocol field in the frame header makes PPP able to

accommodate new protocols (both public and proprietary). The Internet

Assigned Numbers Authority (IANA) tracks the allocation of protocol field

values.

■ Error Detection . PPP framing also includes a Frame Check Sequence (FCS).

This field automatically ensures the data integrity of every packet received by

the PPP network interface driver. If an error is detected, the received packet is

dropped and an input error is recorded.

■ Link Management . The entire structure of PPP is based around the concept of a

point-to-point link which is established between peers (the local and remote

systems on either end of the serial connection). The link has several phases and

states associated with its life and is managed by its own separate protocol, the

Link Control Protocol (LCP). This concept of a link creates an environment that

can support features like option negotiation, link-layer user authentication,

link quality management, and loopback detection.

■ Option Negotiation . PPP allows for the dynamic negotiation of options between

peers. To some extent, this allows one end of the link to configure the peer. This

is especially useful in heterogeneous environments where a PPP server may
18

3

3
Data Link Layer Network Components
need to assign certain properties to the peer, such as the Maximum Receive

Unit (MRU).

■ Authentication . PPP supports link-layer authentication through two widely

used authentication protocols: PAP and CHAP. Both of these protocols check

that the peer is authorized to establish a link with the local host by sending

and/or receiving password information.

■ IP Address Negotiation . Built into the PPP control protocol for IP is the ability

to assign an IP address to a peer. This feature allows one peer to act as a PPP

server and assign addresses as clients dial in. The IP address can be re-used

when the PPP link is terminated.

While many applications do not require any of the features above, they may need

to interact with other systems that are using PPP and not SLIP. These two protocols

can not communicate with each other; this is perhaps the most compelling reason

for using PPP.

3.4.4 An Overview of PPP

PPP provides for the encapsulation of data in frames. It also supports the following

protocols:

■ Link Control Protocol (LCP)
■ Internet Protocol Control Protocol (IPCP)
■ Password Authentication Protocol (PAP)
■ Challenge-Handshake Authentication Protocol (CHAP)

Encapsulation

PPP encapsulation provides for simultaneous multiplexing of different network-

layer protocols over the same link. The PPP encapsulation has been carefully

designed to retain compatibility with most commonly used supporting hardware.

The frame format of a standard PPP frame structure is shown in Figure 3-1.

Figure 3-1 Format of Standard PPP Frame Structure

Flag
01111110

Information

Address
11111111

Control
00000011

Protocol
8/16 bits

FCS
16/32 bits

Flag
01111110

Inter-frame
or Next Address
19

VxWorks Network 5.4
Programmer’s Guide
Link Control Protocol (LCP)

In order to promote versatility and be portable to a wide variety of environments,

PPP provides a Link Control Protocol (LCP). LCP is used when establishing links

and negotiating a variety of configuration options. It is also used to create

automatic agreement on encapsulation format options, to handle variable size

limits placed on packets, to detect looped-back links and other common

configuration errors, and to terminate links.

Other optional facilities provided by LCP include: authentication of the peer on the

link by using authentication protocols such as PAP or CHAP, and determination

when a link is functioning properly and when it is failing. After the link is

established, PPP also allows an optional authentication. For more information, see

RFC 1548.

Internet Protocol Control Protocol (IPCP)

The IP Control Protocol (IPCP) is the Network Control Protocol (NCP) for IP. IPCP

is responsible for configuring, enabling, and disabling the IP protocol modules on

both ends of the point-to-point link. It uses the same packet exchange mechanism

as LCP. IPCP packets are not exchanged until PPP has established a link. IPCP is

also responsible for IP address negotiation between peers. For more information,

see RFC 1332.

Password Authentication Protocol (PAP)

The Password Authentication Protocol (PAP) provides a simple method by which

the peer establishes its identity using a two-way handshake. This is done only

upon the initial link creation. Once a link is established, an ID/password pair is

sent repeatedly by the peer to the authenticator until authentication is

acknowledged or the connection is terminated.

PAP is not a robust authentication protocol. Passwords are sent over the circuit “in

the clear,” without protection from playback or repeated trial-and-error attacks.

The peer is in control of the frequency and timing of the attempts. This

authentication method is most appropriately used when a plain-text password

must be available to simulate a login at a remote host. For information about using

PAP, see Using PAP, p.33, or refer to RFC 1334.
20

3

3
Data Link Layer Network Components
Challenge-Handshake Authentication Protocol (CHAP)

Challenge-Handshake Authentication Protocol (CHAP) is a more robust

authentication protocol offering better security than PAP. CHAP periodically

verifies the identity of a peer using a three-way handshake. This is done after an

initial link is established, and can be repeated later at any time.

After a link is established, the authenticator sends a “challenge” message to the

peer. The peer responds with a value calculated by a one-way hash function. The

authenticator checks the response against its own calculation of the expected hash

value. If the values match, the authentication is acknowledged; otherwise the

connection is terminated.

CHAP provides protection against playback attack by issuing ever-changing

challenges at specified time intervals. The use of repeated challenges is intended to

limit the time of exposure to any single attack. The authenticator is in control of the

frequency and timing of the challenges.

CHAP authentication for any particular link relies on the use of a “secret” known

only to the authenticator and the peer. The secret is not sent over the link; therefore

the server and its peer must both have access to it. In Tornado, this is achieved

using various methods explained in Using CHAP, p.34. For further technical

details, refer to RFC 1334.

3.4.5 PPP Configuration

Configuring your environment for PPP requires both host and target software

installation and configuration. See your host’s operating system manual for

information on installing and configuring PPP on your host.1

To include the default PPP configuration, configure VxWorks with PPP support.

The relevant configuration macro is INCLUDE_PPP.

1. If your host operating system does not provide PPP facilities, you can use a publicly avail-

able implementation. One popular implementation for SunOS 4.1.x (and several other

hosts) is the PPP version 2.1.2 implementation provided in the unsupported/ppp-2.1.2
directory. This code is publicly available and is included only as a convenience. This code is

not supported by Wind River Systems.
21

VxWorks Network 5.4
Programmer’s Guide
You can include the optional DES cryptographic package for use with the

Password Authentication Protocol (PAP). The relevant configuration macro is

INCLUDE_PPP_CRYPT. It is not included in the standard Tornado Release; contact

your WRS Sales Representative to inquire about the availability of this optional

package. The DES package allows user passwords to be stored in encrypted form

on the VxWorks target. If the package is installed, then it is useful only when the

VxWorks target is acting as a PAP server, that is, when VxWorks is authenticating

the PPP peer. Its absence does not preclude the use of PAP. For detailed

information about using the DES package with PAP, see Using PAP, p.33).

This PPP implementation includes many optional features (approximately 50 in

all) that can be configured in to enable the PPP capabilities listed in 3.4.2 PPP
Features, p.16. There are three methods of configuration:

■ At compile-time, by reconfiguring VxWorks as described in the Tornado User’s
Guide: Projects. Use this method with usrPPPInit(). (See Initializing a PPP Link,

p.26.)

■ At run-time, by filling in a PPP options structure. Use this method with

pppInit(). (See Initializing a PPP Link, p.26.)

■ At run-time, by setting options in a PPP options file. This method is used with

either usrPPPInit() or pppInit(), and can be used to change the selection of

PPP options previously configured by one of the other two configuration

methods, provided that the PPP options file can be read without using the PPP

link (for example, an options file located on a target’s local disk).

Each of these methods is described in a section that follows. For brief descriptions

of the various PPP options, see Table 3-3.

Selecting PPP Options By Configuring VxWorks

The various configuration options offered by this PPP implementation can be

initialized at compile-time by defining a number of configuration options.

! CAUTION: A VxWorks image that includes PPP sometimes fails to load. This

failure is due to the static maximum size of the VxWorks image allowed by the

loader. This problem can be fixed by either reducing the size of the VxWorks image

(by removing unneeded options), or by burning new boot ROMs. If you receive a

warning from vxsize when building VxWorks, or if the size of your image becomes

greater than that supported by the current setting of RAM_HIGH_ADRS, see

Creating Bootable Applications in the Tornado User’s Guide: Cross-Development for

information on how to resolve the problem.
22

3

3
Data Link Layer Network Components
First, make sure the PPP_OPTIONS_STRUCT constant is defined in config.h (it is

defined by default). Unless PPP_OPTIONS_STRUCT is defined, configuration

options in config.h cannot be enabled.

Then, specify the default serial interface that will be used by usrPPPInit() by

defining the PPP_TTY constant. Configuration options can be selected using

configuration constants only when usrPPPInit() is invoked to initialize PPP.

Specify the number of seconds usrPPPInit() will wait for a PPP link to be

established between a target and peer by defining the PPP_CONNECT_DELAY
constant. Table 3-1 lists the principal configuration constants used with PPP.

Table 3-2 shows the two basic formats used for configuration options in config.h.

The full list of options available with PPP appears in column 1 of Table 3-3. By

default, all of these options are disabled. To enable any PPP_OPT_option setting,

define its value to be 1 (these option constants are boolean values). To set any

PPP_STR_optionstring entry, define it by representing the desired value as a string.

For example, to set PPP_STR_MTU to 1000, enter:

#define PPP_STR_MTU "1000"

Setting PPP_OPTIONS_STRUCT, PPP_TTY, and PPP_CONNECT_DELAY in config.h,

as well as any configuration options, constitutes a modification to the

NOTE: See the Tornado User’s Guide: Projects for information on how to set some

configuration options through a graphical user interface, without directly editing

config.h.

Table 3-1 PPP Configuration Constants

Constant Purpose

INCLUDE_PPP Include PPP. *

* If you want to use VxSim for Solaris with PPP as the backend, you must configure

VxWorks with BSD 4.3 compatability off. The relevant configuration macro is

BSD43_COMPATIBLE. Otherwise, you get an exception in the WDB task when the

target server tries to connect to the WDB agent.

INCLUDE_PPP_CRYPT Include DES cryptographic package.

PPP_OPTIONS_STRUCT Enable configuration options set in config.h.

PPP_TTY Define default serial interface.

PPP_CONNECT_DELAY Define time-out delay for link establishment.
23

VxWorks Network 5.4
Programmer’s Guide
configuration file. These changes do not actually take effect until after you have

recompiled VxWorks and initialized PPP. To initialize PPP, call usrPPPInit(). You

can make this call manually from a target shell (see Initializing a PPP Link, p.26) or

can include it in the boot code (see Booting over the Network, p.185).

Selecting PPP Options Using an Options Structure

PPP options may be set at run-time by filling in a PPP options structure and

passing the structure location to the pppInit() routine. This routine is the standard

entry point for initializing a PPP link (see Initializing a PPP Link, p.26).

The PPP options structure is typedefed to PPP_OPTIONS, and its definition is

located in h/netinet/ppp/options.h, which is included through h/pppLib.h.

The first field of the structure is an integer, flags, which is a bit field that holds the

ORed value of the OPT_option macros displayed in column 2 of Table 3-3.

Definitions for OPT_option are located in h/netinet/ppp/options.h. The remaining

structure fields in column 2 are character pointers to the various PPP options

specified by a string.

The following code fragment is one way to set configuration options using the PPP

options structure. It initializes a PPP interface that uses the target’s second serial

port (/tyCo/1). The local IP address is 90.0.0.1; the IP address of the remote peer is

90.0.0.10. The baud rate is the default rate for the tty device. The VJ compression

and authentication options have been disabled, and LCP (Link Control Protocol)

echo requests have been enabled.

PPP_OPTIONS pppOpt; /* PPP configuration options */

void routine ()
{
pppOpt.flags = OPT_PASSIVE_MODE | OPT_NO_PAP | OPT_NO_CHAP |

OPT_NO_VJ;
pppOpt.lcp_echo_interval = "30";
pppOpt.lcp_echo_failure = "10";

pppInit (0, "/tyCo/1", "90.0.0.1", "90.0.0.10", 0, &pppOpt, NULL);
}

Table 3-2 PPP Configuration Options in config.h

Configuration Option Option Included

PPP_OPT_option Specify a PPP configuration option.

PPP_STR_optionstring Specify a PPP configuration option string.
24

3

3
Data Link Layer Network Components
Setting PPP Options Using an Options File

PPP options are most conveniently set using an options file. There is one

restriction: the options file must be readable by the target without there being an

active PPP link. Therefore the target must either have a local disk or RAM disk or

an additional network connection. For more information about using file systems,

see VxWorks Programmer’s Guide: Local File Systems.

This configuration method can be used with either usrPPPInit() or pppInit(). It
also can be used to modify the selection of PPP options previously configured

using configuration constants in config.h or the option structure PPP_OPTION.

When using usrPPPInit() to initialize PPP, define the configuration constant

PPP_OPTIONS_FILE to be the absolute path name of the options file (NULL by

default). When using pppInit(), pass in a character string that specifies the

absolute path name of the options file.

The options file format is one option per line; comment lines begin with #. For a

description of option syntax, see the manual entry for pppInit().

The following code fragment generates the same results as the code example in

Selecting PPP Options Using an Options Structure, p.24. The difference is that the

configuration options are obtained from a file rather than a structure.

pppFile = "mars:/tmp/ppp_options"; /* PPP config. options file */

void routine ()
{
pppInit (0, "/tyCo/1", "90.0.0.1", "90.0.0.10", 0, NULL, pppFile);
}

In this example, mars:/tmp/ppp_options is a file that contains the following:

passive
no_pap
no_chap
no_vj
lcp_echo_interval 30
lcp_echo_failure 10

3.4.6 Using PPP

After it is configured and initialized, PPP attaches itself into the VxWorks TCP/IP

stack at the driver (link) layer. After a PPP link has been established with the

remote peer, all normal VxWorks IP networking facilities are available; the PPP

connection is transparent to the user.
25

VxWorks Network 5.4
Programmer’s Guide
Initializing a PPP Link

A PPP link is initialized by calls to either usrPPPInit() or pppInit(). When either

of these routines is invoked, the remote peer should be initialized. When a peer is

running in passive mode, it must be initialized first (see PPP Options, p.27.)

The usrPPPInit() routine is in config/all/bootConfig.c and

src/config/usrNetwork.c. There are four ways it can be called:

If the boot device is set to ppp, usrPPPInit() is called as follows:

– From bootConfig.c when booting from boot ROMs.

– From usrNetwork.c when booting from VxWorks boot code.

The PPP interface can also be initialized by calling usrPPPInit():

– From the VxWorks shell.

– By user application code.

Use either syntax when calling usrPPPInit():

usrPPPInit ("bootDevice", unitNum, "localIPAddress", "remoteIPAddress")
usrPPPInit ("bootDevice", unitNum, "localHostName", "remoteHostName")

You can use host names in usrPPPInit() provided the hosts have been previously

added to the host database. For example, you can call usrPPPInit() in the

following way:

usrPPPInit ("ppp=/tyCo/1,38400", 1, "147.11.90.1", "147.11.90.199")

The usrPPPInit() routine calls pppInit(), which initializes PPP with the

configuration options that were specified at compile-time (see Selecting PPP
Options By Configuring VxWorks, p.22). The pppInit() routine can be called

multiple times to initialize multiple channels.2 The connection timeout is specified

by PPP_CONNECT_DELAY. The return value of this routine indicates whether the

link has been successfully established—if the return value is OK, the network

connection should be fully operational.

The pppInit() routine is the standard entry point for initializing a PPP link. All

available PPP options can be set using parameters specified for this routine (see

Selecting PPP Options Using an Options Structure, p.24). Unlike usrPPPInit(), the

return value of pppInit() does not indicate the status of the PPP link; it merely

reports whether the link could be initialized. To check whether the link is actually

2. The usrPPPInit() routine can specify the unit number as a parameter. If this number is

omitted, PPP defaults to 0.
26

3

3
Data Link Layer Network Components
established, call pppInfoGet() and make sure that the state of IPCP is OPENED.

The following code fragment demonstrates use of this mechanism for PPP unit 2:

PPP_INFO pppInfo;

if ((pppInfoGet (2, &pppInfo) == OK) &&
(pppInfo.ipcp_fsm.state == OPENED))
return (OK); /* link established */

else
return (ERROR); /* link down */

Deleting a PPP Link

There are two ways to delete a PPP link:

■ When a terminate request packet is received from the peer.
■ By calling pppDelete() to terminate the link.

Merely deleting the VxWorks tasks that control PPP or rebooting the target severs

the link only at the TCP/IP stack, but does not delete the link on the remote peer

end.

The return value of pppDelete() does not indicate the status of the PPP link. To

check whether the link is actually terminated, call pppInfoGet() and make sure the

return value is ERROR. The following code fragment demonstrates the usage of

this mechanism for PPP unit 4:

PPP_INFO pppInfo;

if (pppInfoGet (4, &pppInfo) == ERROR)
return (OK); /* link terminated */

else
return (ERROR); /* link still up */

PPP Options

Table 3-3 lists all the configuration options supported by PPP. Each option is

shown in its three forms, corresponding to the configuration methods explained in

the following sections:

Column 1: Selecting PPP Options By Configuring VxWorks, p.22

Column 2: Selecting PPP Options Using an Options Structure, p.24

Column 3: Setting PPP Options Using an Options File, p.25.
27

VxWorks Network 5.4
Programmer’s Guide
A brief description of each option follows the three formats. Configuration options

specified in the options file PPP_OPTIONS_FILE take precedence over any

previously set in config.h or set by passing the structure PPP_OPTIONS to

pppInit(). For example:

■ If VxWorks is configured with the use of PAP negated, a subsequent setting of

require_pap in PPP_OPTIONS_FILE overrides the earlier setting enabling PAP

authentication. The relevant configuration macro is PPP_OPT_NO_PAP.

■ If char * netmask has been passed in the options structure PPP_OPTIONS to

pppInit() with a value of FFFF0000, and netmask FFFFFF00 is passed in

PPP_OPTIONS_FILE to usrPPPInit(), the network mask value is set to

FFFFFF00.

Table 3-3 PPP Configuration Options

Options Description

Set in config.h Set using options structure Set using options file

PPP_OPT_DEBUG OPT_DEBUG debug Enable PPP daemon debug mode.

PPP_OPT_DEFAULT_ROUTE OPT_DEFAULT_ROUTE default_route After IPCP negotiation is
successfully completed, add a
default route to the system routing
tables. Use the peer as the gateway.
This entry is removed when the
PPP connection is broken.

PPP_OPT_DRIVER_DEBUG OPT_DRIVER_DEBUG driver_debug Enable PPP driver debug mode.

PPP_OPT_IPCP_ACCEPT_LOCAL OPT_IPCP_ACCEPT_LOCAL ipcp_accept_local Set PPP to accept the remote peer’s
idea of the target’s local IP address,
even if the local IP address was
specified.

PPP_OPT_IPCP_ACCEPT_REMOTE OPT_IPCP_ACCEPT_REMOTE ipcp_accept_remote Set PPP to accept the remote peer’s
idea of its (remote) IP address,
even if the remote IP address was
specified.

PPP_OPT_LOGIN OPT_LOGIN login Use the login password database
for PAP authentication of peer.

PPP_OPT_NO_ACC OPT_NO_ACC no_acc Disable address/control
compression.

PPP_OPT_NO_ALL OPT_NO_ALL no_all Do not request/allow any options.

PPP_OPT_NO_CHAP OPT_NO_CHAP no_chap Do not allow CHAP authentication
with peer.
28

3

3
Data Link Layer Network Components
PPP_OPT_NO_IP OPT_NO_IP no_ip Disable IP address negotiation in
IPCP.

PPP_OPT_NO_MN OPT_NO_MN no_mn Disable magic number negotiation.

PPP_OPT_NO_MRU OPT_NO_MRU no_mru Disable MRU (Maximum Receive
Unit) negotiation.

PPP_OPT_NO_PAP OPT_NO_PAP no_pap Do not allow PAP authentication
with peer.

PPP_OPT_NO_PC OPT_NO_PC no_pc Disable protocol field
compression.

PPP_OPT_NO_VJ OPT_NO_VJ no_vj Disable VJ (Van Jacobson)
compression.

PPP_OPT_NO_VJCCOM OPT_NO_ASYNCMAP no_asyncmap Disable async map negotiation.

PPP_OPT_NO_VJCCOMP OPT_NO_VJCCOMP no_vjccomp Disable VJ (Van Jacobson)
connection ID compression.

PPP_OPT_PASSIVE_MODE OPT_PASSIVE_MODE passive_mode Set PPP in passive mode so it waits
for the peer to connect, after an
initial attempt to connect.

PPP_OPT_PROXYARP OPT_PROXY_ARP proxy_arp Add an entry to this system’s ARP
(Address Resolution Protocol)
table with the IP address of the
peer and the Ethernet address of
this system.

PPP_OPT_REQUIRE_CHAP OPT_REQUIRE_CHAP require_chap Require CHAP authentication with
peer.

PPP_OPT_REQUIRE_PAP OPT_REQUIRE_PAP require_pap Require PAP authentication with
peer.

PPP_OPT_SILENT_MODE OPT_SILENT_MODE silent_mode Set PPP in silent mode. PPP does
not transmit LCP packets to initiate
a connection until a valid LCP
packet is received from the peer.

PPP_STR_ASYNCMAP char * asyncmap asyncmap value Set the desired async map to the
specified value.

PPP_STR_CHAP_FILE char * chap_file chap_file file Get CHAP secrets from the
specified file. This option is
necessary if either peer requires
CHAP authentication.

Table 3-3 PPP Configuration Options (Continued)

Options Description

Set in config.h Set using options structure Set using options file
29

VxWorks Network 5.4
Programmer’s Guide
PPP_STR_CHAP_INTERVAL char * chap_interval chap_interval value Set the interval in seconds for
CHAP rechallenge to the specified
value.

PPP_STR_CHAP_RESTART char * chap_restart chap_restart value Set the timeout in seconds for the
CHAP negotiation to the specified
value.

PPP_STR_ESACAPE_CHARS char * escape_chars escape_chars value Set the characters to escape on
transmission to the specified
values.

PPP_STR_IPCP_MAX_CONFIGURE char * ipcp_max_configure ipcp_max_configure value Set the maximum number of
transmissions for IPCP
configuration requests to the
specified value.

PPP_STR_IPCP_MAX_FAILURE char * ipcp_max_failure ipcp_max_failure value Set the maximum number of IPCP
configuration NAKs to the
specified value.

PPP_STR_IPCP_MAX_TERMINATE char * ipcp_max_terminate ipcp_max_terminate value Set the maximum number of
transmissions for IPCP termination
requests to the specified value.

PPP_STR_IPCP_RESTART char * ipcp_restart ipcp_restart value Set the timeout in seconds for the
IPCP negotiation to the specified
value.

PPP_STR_LCP_ECHO_FAILURE char * lcp_echo_failure lcp_echo_failure value Set the maximum consecutive LCP
echo failures to the specified value.

PPP_STR_LCP_ECHO_INTERVAL char * lcp_echo_interval lcp_echo_interval value Set the interval in seconds for the
LCP negotiation to the specified
value.

PPP_STR_LCP_MAX_CONFIGURE char * lcp_max_configure lcp_max_configure value Set the maximum number of
transmissions for LCP
configuration requests to the
specified value.

PPP_STR_LCP_MAX_FAILURE char * lcp_max_failure lcp_max_failure value Set the maximum number of LCP
configuration NAKs to the
specified value.

PPP_STR_LCP_MAX_TERMINATE char * lcp_max_terminate lcp_max_terminate value Set the maximum number of
transmissions for LCP termination
requests to the specified value.

PPP_STR_LCP_RESTART char * lcp_restart lcp_restart value Set the timeout in seconds for the
LCP negotiation to the specified
value.

Table 3-3 PPP Configuration Options (Continued)

Options Description

Set in config.h Set using options structure Set using options file
30

3

3
Data Link Layer Network Components
PPP_STR_LOCAL_AUTH_NAME char * local_auth_name local_auth_name name Set the local name for
authentication to the specified
name.

PPP_STR_MAX_CHALLENGE char * max_challenge max_challenge value Set the maximum number of
transmissions for CHAP challenge
requests to the specified value.

PPP_STR_MRU char * mru mru value Set MRU (Maximum Receive Unit)
for negotiation to the specified
value.

PPP_STR_MTU char * mtu mtu value Set MTU (Maximum Transmission
Unit) for negotiation to the
specified value.

PPP_STR_NETMASK char * netmask netmask value Set the network mask value for
negotiation to the specified value.

PPP_STR_PAP_FILE char * pap_file pap_file file Get PAP secrets from the specified
file. This option is necessary if
either peer requires PAP
authentication.

PPP_STR_PAP_MAX_AUTHREQ char * pap_max_authreq pap_max_authreq value Set the maximum number of
transmissions for PAP
authentication requests to the
specified value.

PPP_STR_PAP_PASSWD char * pap_passwd pap_passwd passwd Set the password for PAP
authentication with the peer to the
specified password.

PPP_STR_PAP_RESTART char * pap_restart pap_restart value Set the timeout in seconds for the
PAP negotiation to the specified
value.

PPP_STR_PAP_USER_NAME char * pap_user_name pap_user_name name Set the user name for PAP
authentication with the peer to the
specified name.

PPP_STR_REMOTE_AUTH_NAME char * remote_auth_name remote_auth_name name Set the remote name for
authentication to the specified
name.

PPP_STR_VJ_MAX_SLOTS char * vj_max_slots vj_max_slots value Set the maximum number of VJ
compression header slots to the
specified value.

Table 3-3 PPP Configuration Options (Continued)

Options Description

Set in config.h Set using options structure Set using options file
31

VxWorks Network 5.4
Programmer’s Guide
PPP Authentication

PPP provides security through two authentication protocols: PAP (see Password
Authentication Protocol (PAP), p.20) and CHAP (see Challenge-Handshake
Authentication Protocol (CHAP), p.21). This section introduces the use of PPP link-

layer authentication (introduced in Link Control Protocol (LCP), p.20), and describes

the format of the secrets files.

In VxWorks, the default behavior of PPP is to provide authentication when

requested by a peer but not to require authentication from a peer. If additional

security is required, choose PAP or CHAP by enabling the corresponding option.

PPP in VxWorks can act as a client (the peer authenticating itself) or a server (the

authenticator).

Authentication for both PAP and CHAP is based on secrets, selected from a secrets
file or from the secrets database built by the user (which can hold both PAP and

CHAP secrets). A secret is represented by a record, which itself is composed of

fields. The secrets file and the secrets database contain secrets that authenticate

other clients, as well as secrets used to authenticate the VxWorks client to its peer.

In the case that a VxWorks target cannot access the secrets file through the file

system, use pppSecretAdd() to build a secrets database.

Secrets files for PAP and CHAP use identical formats. A secrets record is specified

in a file by a line containing at least three words that specify the contents of the

fields client, server, and secret, in that order. For PAP, secret is a password which

must match the password entered by the client seeking PAP authentication. For

CHAP, both client and server must have identical secrets records in their secrets

files; the secret consists of a string of one or more words (for example, “an

unguessable secret”).

Table 3-4 is an example of a secrets file. It could be either a PAP or CHAP secrets

file, since their formats are identical.

Table 3-4 Secrets File Format

client server secret IP address

vxTarget mars "vxTargetSECRET"

venus vxTarget "venusSECRET" 147.11.44.5

* mars "an unguessable secret"

venus vxTarget "venusSECRET" -

vxTarget mars @host:/etc/passwd
32

3

3
Data Link Layer Network Components
At the time of authentication, for a given record, PPP interprets any words

following client, server, and secret as acceptable IP addresses for the client and secret
specified. If there are only three words on the line, it is assumed that any IP address

is acceptable; to disallow all IP addresses, use a dash (-). If the secret starts with an

@, what follows is assumed to be the name of a file from which to read a secret. An

asterisk (*) as the client or server name matches any name. When authentication is

initiated, a best-match algorithm is used to find a match to the secret, meaning that,

given a client and server name, the secret returned is for the closest match found.

On receiving an authentication request, PPP checks for the existence of secrets

either in an internal secrets database or in a secrets file. If PPP does not find the

secrets information, the connection is terminated.

The secrets file contains secrets records used to authenticate the peer, and those

used to authenticate the VxWorks client to the peer. Selection of a record is based

on the local and remote names. By default, the local name is the host name of the

VxWorks target, unless otherwise set to a different name by the option

local_auth_name in the options file. The remote name is set to a NULL string by

default, unless otherwise set to a name specified by the option remote_auth_name
in the options file. (Both local_auth_name and remote_auth_name can be

specified in two other forms, as can other configuration options listed in Table 3-3.)

Using PAP. The default behavior of PPP is to authenticate itself if requested by a

peer but not to require authentication from a peer. For PPP to authenticate itself in

response to a server’s PAP authentication request, it only requires access to the

secrets. For PPP to act as an authenticator, you must turn on the PAP configuration

option.

Secrets can be declared in a file or built into a database. The secrets file for PAP can

be specified in one of the following ways:

■ By reconfiguring VxWorks with the PSP file specified. The relevant

configuration macro is PPP_STR_PAP_FILE.

■ By setting the pap_file member of the PPP_OPTIONS structure passed to

pppInit().

■ By adding the following line entry in the PPP options file specified in your

configuration:

pap_file /xxx/papSecrets

If the VxWorks target is unable to access the secrets file, call pppSecretAdd() to

build a secrets database.
33

VxWorks Network 5.4
Programmer’s Guide
If PPP requires the peer to authenticate itself using PAP, the necessary

configuration option can be set in one of the following ways:

1. By reconfiguring VxWorks with PAP required. The relevant configuration

macro is PPP_OPT_REQUIRE_PAP.

2. By setting the flag OPT_REQUIRE_PAP in the flags bit field of the

PPP_OPTIONS structure passed to pppInit();

3. By adding the following line entry in the options file.

require_pap

Secrets records are first searched in the secrets database; if none are found there,

then the PAP secrets file is searched. The search proceeds as follows:

■ VxWorks as an authenticator: PPP looks for a secrets record with a client field

that matches the user name specified in the PAP authentication request packet

and a server field matching the local name. If the password does not match the

secrets record supplied by the secrets file or the secrets database, it is

encrypted, provided the optional DES cryptographic package is installed.

Then it is checked against the secrets record again. Secrets records for

authenticating the peer can be stored in encrypted form if the optional DES

package is used. If the login option was specified, the user name and the

password specified in the PAP packet sent by the peer are checked against the

system password database. This enables restricted access to certain users.

■ VxWorks as a client: When authenticating the VxWorks target to the peer, PPP

looks for the secrets record with a client field that matches the user name (the

local name unless otherwise set by the PAP user name option in the options

file) and a server field matching the remote name.

Using CHAP. The default behavior of PPP is to authenticate itself if requested by a

peer but not to require authentication from a peer. For PPP to authenticate itself in

response to a server’s CHAP authentication request, it only requires access to the

secrets. For PPP to act as an authenticator, you must turn on the CHAP

configuration option.

CHAP authentication is instigated when the authenticator sends a challenge

request packet to the peer which responds with a challenge response. Upon receipt

of the challenge response from the peer, the authenticator compares it with the

expected response and thereby authenticates the peer by sending the required

acknowledgment. CHAP uses the MD5 algorithm for evaluation of secrets.

The secrets file for CHAP can be specified in any of the following ways:
34

3

3
Data Link Layer Network Components
■ By reconfiguring VxWorks with the CHAP file specified. The relevant

configuration macro is PPP_STR_CHAP_FILE.

■ By setting the chap_file member of the PPP_OPTIONS structure passed to

pppInit().

■ By adding the following line entry in the options file:

chap_file /xxx/chapSecrets

If PPP requires the peer to authenticate itself using CHAP, the necessary

configuration option can be set in one of the following ways:

■ By reconfiguring VxWorks with CHAP required. The relevant configuration

macro is PPP_OPT_REQUIRE_CHAP.

■ By setting the flag OPT_REQUIRE_CHAP in the flags bit field of the

PPP_OPTIONS structure passed to pppInit().

■ By adding the following line entry in the options file:

require_chap

Secrets are first searched in the secrets database; if none are found there, then the

CHAP secrets file is searched. The search proceeds as follows:

■ VxWorks as an authenticator: When authenticating the peer, PPP looks for a

secrets record with a client field that matches the name specified in the CHAP

response packet and a server field matching the local name.

■ VxWorks as a client: When authenticating the VxWorks target to the peer, PPP

looks for the secrets record with a client field that matches the local name and

a server field that matches the remote name.

Connect and Disconnect Hooks

PPP provides connect and disconnect hooks for use with user-specific software.

Use the pppHookAdd() routine to add a connect hook that executes software

before initializing and establishing the PPP connection or a disconnect hook that

executes software after the PPP connection has been terminated. The

pppHookDelete() routine deletes connect and disconnect hooks.

The routine pppHookAdd() takes three arguments: the unit number, a pointer to

the hook routine, and the hook type (PPP_HOOK_CONNECT or

PPP_HOOK_DISCONNECT). The routine pppHookDelete() takes two arguments:
35

VxWorks Network 5.4
Programmer’s Guide
the unit number and the hook type. The hook type distinguishes between the

connect hook and disconnect hook routines.

Two arguments are used to call the connect and disconnect hooks: unit, which is

the unit number of the PPP connection, and fd, the file descriptor associated with

the PPP channel. If the user hook routines return ERROR, then the link is gracefully

terminated and an error message is logged.

The code in Example 3-1 demonstrates how to hook the example routines,

connectRoutine() and disconnectRoutine(), into the PPP connection

establishment mechanism and termination mechanism, respectively.

Example 3-1 Using Connect and Disconnect Hooks

#include <vxWorks.h>
#include <pppLib.h>

/* type declarations */

void attachRoutine (void);
STATIC int connectRoutine(int unit, int fd);
STATIC int disconnectRoutine(int unit, int fd);

void attachRoutine (void)
{
/* add connect hook to unit 0 */
pppHookAdd (0, connectRoutine, PPP_CONNECT_HOOK);

/* add disconnect hook to unit 0 */
pppHookAdd (0 , disconnectRoutine, PPP_DISCONNECT_HOOK);
}

STATIC int connectRoutine
(
int unit,
int fd
)

{
BOOL connectOk = FALSE;

/* user specfic connection code */
{
..........
connectOk = TRUE;
}

if (connectOk)
return (OK);

else
return (ERROR);

}

36

3

3
Data Link Layer Network Components
STATIC int disconnectRoutine
(
int unit,
int fd
)
{
BOOL disconnectOk = FALSE;
/* user specific code */

{
..........
disconnectOk = TRUE;
}

if (disconnectOk)
return (OK);

else
return (ERROR);

}

3.4.7 PPP with Tornado

PPP can be used in two ways in the Tornado environment. The PPP link can serve

as an additional network interface apart from the existing default network

interface, or it can be the default network interface on the target, causing PPP to

serve as a network back end for the target server on the host.

PPP Link as an Additional Network Interface

1. To use this option, rebuild the VxWorks image with PPP included. For more

information on how to include PPP, see 3.4.5 PPP Configuration, p.21.

2. Boot the image from the regular Tornado boot ROM.

3. Start the Tornado target server and launch Tornado.

4. Start the Tornado shell, and invoke usrPPPInit() from the shell. You can also

use pppInit() from an application to configure the PPP link. For more

information on these routines, see Initializing a PPP Link, p.26.

PPP Link as a Network Back End for the Target Server

1. Configure VxWorks with PPP capability. The relevant configuration macro is

INCLUDE_PPP. Make new boot ROMs for the target with this configuration.

For more information, see 3.4.5 PPP Configuration, p.21.

2. Rebuild a new VxWorks image for the target.
37

VxWorks Network 5.4
Programmer’s Guide
3. Configure and start the pppd daemon on the host. For example, on a Sun host

using SunOS, the following command can be run to start the daemon:

% pppd passive /dev/ttyb 38400

4. Change the boot configuration parameters to use the PPP link. For example:

[VxWorks Boot}: c
boot device : ppp,38400
processor number : 0
host name : host
file name : /usr/wind/target/config/mv177/vxWorks
inet on ethernet (e) : 90.0.0.165:ffffff00
host inet (h) : 90.0.0.5
gateway inet (g) : 90.0.0.5
user (u) : thardy
flags (f) : 0x4
target name (tn) : luna

5. After booting you should see messages similar to the following:

Attaching network interface ppp0...
ppp0: ppp 2.1.2 started by
ppp0: Connect: ppp0 <--> /tyCo/1
ppp0: local IP address 90.0.0.165
ppp0: remote IP address 90.0.0.5
done.
Attaching network interface lo0... done.
Loading... 361620 + 70448 + 34350
Starting at 0x1000...

Attaching network interface ppp0...
ppp0: ppp 2.1.2 started by
ppp0: Connect: ppp0 <--> /tyCo/1
ppp0: local IP address 90.0.0.165
ppp0: remote IP address 90.0.0.5
done.
Attaching network interface lo0... done.
NFS client support not included.

VxWorks
Copyright 1984-1995 Wind River Systems, Inc.

CPU: Motorola MVME177
VxWorks: 5.3

BSP version: 1.1/0
Creation date: Jan 26 1996

WDB: Ready.

You are now ready to start the target server and run Tornado. For more information

on starting Tornado refer to the Tornado User’s Guide.
38

3

3
Data Link Layer Network Components
The PPP connection is a network back end established on a serial link. When using

the PPP link to communicate with the target, all the Tornado tools work in the same

way as any other network back end. (See the Tornado User’s Guide.)

3.4.8 Troubleshooting PPP

Because of the complex nature of PPP, you may encounter problems using it in

conjunction with VxWorks. Give yourself the opportunity to get familiar with

running VxWorks configured with PPP by starting out using a default

configuration. Additional options for the local peer should be disabled. (These can

always be added later.)

Problems with PPP generally occur in either of two areas: when establishing links

and when using authentication. The following sections offer checklists for

troubleshooting errors that have occurred during these processes. If, however,

difficulties using PPP with VxWorks persist, contact the Wind River Systems

technical support organization.

Link Establishment

The link is the basic operating element of PPP; a proper connection ensures the

smooth functioning of PPP, as well as VxWorks. The following steps should help

resolve simple problems encountered when establishing a link.

1. Make sure that the serial port is connected properly to the peer. A null modem

may be required.

2. Make sure that the serial driver is correctly configured for the default baud rate

of 9600, no parity, 8 DATA bits, and 1 STOP bit.

3. Make sure that there are no problems with the serial driver. PPP may not work

if there is a hang up in the serial driver.

4. Start the PPP daemon on the peer in the passive mode.

5. Boot the VxWorks target and start the PPP daemon by typing:

% usrPPPInit

! CAUTION: System-level debugging is not available when using the PPP link. To

perform system-level debugging, use the regular serial back end described in the

Tornado User’s Guide.
39

VxWorks Network 5.4
Programmer’s Guide
If no arguments are supplied, the target configures the default settings. If a

timeout error occurs, reconfigure VxWorks with a larger connect delay time.

The relevant configuration macro is PPP_CONNECT_DELAY. By default, the

delay is set to 15 seconds, which may not be sufficient in some environments.

6. Once the connection is established, add and test additional options.

Authentication

Authentication is one of the more robust features of PPP for VxWorks. The

following steps may help you troubleshoot basic authentication problems.

1. Turn on the debug option for PPP. The relevant configuration macro is

PPP_OPT_DEBUG. You can also use the alternative options in Table 3-3. By

turning on the debug option, you can witness various stages of authentication.

2. If the VxWorks target has no access to a file system, use pppSecretAdd() to

build the secrets database.

3. Make sure the secrets file is accessible and readable.

4. Make sure the format of the secrets file is correct.

5. PPP uses the MD5 algorithm for CHAP authentication of secrets. If the peer

tries to use a different algorithm for CHAP, then the CHAP option should be

turned off.

6. Turn off the VJ compression. It can be turned on after you get authentication

working.

3.5 Shared-Memory Network on the Backplane

The VxWorks network can also be used for communication among multiple

processors on a common backplane. In this case, data is passed through shared

memory. This is implemented in the form of a standard network driver so that all

the higher levels of network components are fully functional over this shared-

memory “network.” Thus, all the high-level network facilities provided over an

Ethernet are also available over the shared-memory network.
40

3

3
Data Link Layer Network Components
A multiprocessor backplane bus contains a separate Internet network. Each

shared-memory network has its own network/subnet number. As usual, each

processor (host) on the shared-memory network has a unique Internet address.

In the example shown in Figure 3-2, two CPUs are on a backplane. The shared-

memory network’s Internet address is 161.27.0.0. Each CPU on the shared-

memory network has a unique Internet address, 161.27.0.1 for vx1 and 161.27.0.2

for vx2.

The routing capabilities of the VxWorks IP layer allow processors on a shared-

memory network to reach systems on other networks over a gateway processor on

the shared-memory network. The gateway processor has connections to both the

shared-memory network and an external network. These connections allow

higher-level protocols to transmit data between any processor on the shared-

memory network and any other host or target system on the external network.

The low-level data transfer mechanism of the shared-memory network driver is

also available directly. This allows alternative protocols to be run over the shared-

memory network in addition to the standard ones.

The following features allow the VxWorks shared-memory network driver to send

network packets from one processor on the backplane to another:

■ Packets are transferred across the backplane through a pool of shared memory
that can be accessed by all processors on the backplane.

■ Access to the shared-memory pool is interlocked by use of a test-and-set

instruction.

! CAUTION: This is different if you are using proxy ARP. See 4.7 ARP and Proxy ARP
for Transparent Subnets, p.84 for additional information.

Figure 3-2 Shared-Memory Network

Backplane

161.27.0.1 161.27.0.2

161.27.0.0

vx1 vx2
41

VxWorks Network 5.4
Programmer’s Guide
■ Processors can poll the shared-memory data structures for input packets

receive notification of packet arrival through interrupts.

The shared-memory network is configured by various configuration constants and

by parameters specified to the VxWorks boot ROMs. The following sections give

the details of the backplane network operation and configuration.

3.5.1 The Backplane Shared-Memory Pool

The basis of the VxWorks shared-memory network is the shared-memory pool. This

is a contiguous block of memory that must be accessible to all processors on the

backplane. Typically this memory is either part of one of the processors’ on-board,

dual-ported memory, or a separate memory board.

Backplane Processor Numbers

The processors on the backplane are each assigned a unique backplane processor
number starting with 0. The assignment of numbers is arbitrary, except for

processor 0, which by convention is the shared-memory network master, described

in the next section.

The processor numbers are established by the parameters supplied to the boot

ROMs when the system is booted. These parameters can be burned into ROM, set

in the processor’s NVRAM (if available), or entered manually.

The Shared-Memory Network Master: Processor 0

One of the processors on the backplane is the shared-memory network master. The

shared-memory network master has the following responsibilities:

■ Initializing the shared-memory pool and the shared-memory anchor.

■ Maintaining the shared-memory heartbeat.

■ Functioning (usually) as the gateway to the external (Ethernet) network.

■ Allocating the shared-memory pool from its dual-ported memory (in some

configurations).

No processor can use the shared-memory network until the master has initialized

it. However, the master processor is not involved in the actual transmission of
42

3

3
Data Link Layer Network Components
packets on the backplane between other processors. After the shared-memory

pool is initialized, the processors, including the master, are all peers.

The configuration module target/src/config/usrNetwork.c sets the processor

number of the master to 0. The master usually boots from the external (Ethernet)

network directly. The master has two Internet addresses in the system: its Internet

address on the Ethernet, and its address on the shared-memory network. See the

reference entry for usrConfig.

The other processors on the backplane boot indirectly over the shared-memory

network, using the master as the gateway. They have only an Internet address on

the shared-memory network. These processors specify the shared-memory

network interface, sm, as the boot device in the boot parameters.

The Shared-Memory Anchor

The location of the shared-memory pool depends on the system configuration. In

many situations, you want to allocate the shared memory at run-time rather than

fixing its location at the time the system is built.

Of course, all processors on the shared-memory network must be able to access the

shared-memory pool, even if its location is not assigned at compile time. The

shared-memory anchor serves as a common point of reference for all processors.

The anchor is a small data structure assigned at a fixed location at compile time.

This location is usually in low memory of the dual-ported memory of one of the

processors. Sometimes the anchor structure is stored at some fixed address on the

separate memory board.

The anchor contains a pointer to the actual shared-memory pool. The master sets

this pointer during initialization. The value of the pointer to the shared-memory

pool is actually an offset from the anchor itself. Thus, the anchor and pool must be

in the same address space so that the offset is valid for all processors.

The backplane anchor address is established by configuration constants or by boot

parameters. For the shared-memory network master, the anchor address is

assigned in the master’s configuration at the time the system image is built. The

shared memory anchor address, as seen by the master, is also set during

configuration. The relevant configuration macro is SM_ANCHOR_ADRS.

For the other processors on the shared-memory network, a default anchor address

can also be assigned during configuration in the same way. However, this requires

burning boot ROMs with that configuration, because the other processors must, at

first, boot from the shared-memory network. For this reason, the anchor address

can also be specified in the boot parameters if the shared-memory network is the
43

VxWorks Network 5.4
Programmer’s Guide
boot device. To do this, enter the address (separated by an equal sign, “=”) after

the shared-memory network boot device specifier sm. For example, the following

line sets the anchor address to 0x800000:

boot device: sm=0x800000

In this case, this is the address of the anchor as seen by the processor being booted.

The Shared-Memory Heartbeat

The processors on the shared-memory network cannot communicate over that

network until the shared-memory pool initialization is finished. To let the other

processors know when the backplane is “alive,” the master maintains a shared-
memory heartbeat. This heartbeat is a counter that is incremented by the master

once per second. Processors on the shared-memory network determine that the

shared-memory network is alive by watching the heartbeat for a few seconds.

The shared-memory heartbeat is located in the first 4-byte word of the shared-

memory pool. The offset of the shared-memory pool is the fifth 4-byte word in the

anchor, as shown in Figure 3-3.

Thus, if the anchor were located at 0x800000:

[VxWorks Boot]: d 0x800000
800000: 8765 4321 0000 0001 0000 0000 0000 002c *.eC!...........,*
800010: 0000 0170 0000 0000 0000 0000 0000 0000 *...p............*
800020: 0000 0000 0000 0000 0000 0000 0000 0000 *................*

Figure 3-3 Shared-Memory Heartbeat

~~ ~~

1. ready value
2. .
3. .
4. .
5. Offset for smPktHeader

heartbeat

Shared-Memory
Anchor

smPktHeader
(anchor + offset)
44

3

3
Data Link Layer Network Components
The offset to the shared-memory pool is 0x170. To view the start of the shared-

memory pool, display 0x800170:

[VxWorks Boot]: d 0x800170
800170: 0000 0050 0000 0000 0000 0bfc 0000 0350 *...P...........P*

In this example, the value of the shared-memory heartbeat is 0x50. Examine this

location again to determine whether the network is alive. If the value has changed,

the network is alive.

Shared-Memory Location

As mentioned previously, shared memory is assigned a fixed location at compile

time or it is allocated dynamically at run-time. The location is determined by the

value of the shared memory size set during configuration (configuration constant:

SM_MEM_ADRS). This constant can be specified as follows:

■ NONE (-1) means that the shared-memory pool is to be dynamically allocated

from the master’s on-board dual-ported memory.

■ An absolute address that is different from the anchor address. The shared

memory anchor address (configuration constant: SM_ANCHOR_ADRS)

indicates that the shared-memory pool starts at that fixed address.

■ For convenience, an absolute address that is the same as the anchor address

means the shared-memory pool starts immediately after the anchor data

structure; the size of that structure need not be known in advance.

Shared Memory Size

The size of the shared-memory pool is set during configuration. The relevant

configuration macro is SM_MEM_SIZE.

The size required for the shared-memory pool depends on the number of

processors and the expected traffic. There is less than 2KB of overhead for data

structures. After that, the shared-memory pool is divided into 2KB packets. Thus,

the maximum number of packets available on the backplane network is (poolsize –

2KB) / 2KB. A reasonable minimum is 64KB. A configuration with a large number

of processors on one backplane and many simultaneous connections can require as

much as 512KB. Having too small a pool slows down communications.
45

VxWorks Network 5.4
Programmer’s Guide
On-Board and Off-Board Options

The configuration of VxWorks includes a conditional compilation constant that

makes it easy to select a pair of typical configurations, for instance between an off-
board shared-memory pool and an on-board shared memory pool. The relevant

configuration macro is SM_OFF_BOARD.

A typical off-board configuration establishes the backplane anchor and memory

pool at an absolute address of 0x800000 on a separate memory board with a pool

size of 512KB.

The on-board configuration establishes the shared-memory anchor at a low address

in the master processor’s dual-ported memory. The shared-memory pool size is

set to 64KB allocated from the master’s own memory at run time.

Because the shared-memory pool is accessed by all processors on the backplane,

that memory must be configured as non-cacheable. On some systems, this requires

that you change the sysPhysMemDesc[] table insysLib.c. Specifically, any board

whose MMU is enabled (the default) must disable caching for off-board memory.

Fortunately, if the VME address space used for the shared-memory pool already

has a virtual-to-physical mapping in the table, the memory is already marked non-

cacheable. Otherwise, you must add the appropriate mapping (with caching

disabled).

For the MC680x0 family of processors, virtual addresses must equal physical

addresses. For the 68030, if the MMU is off, caching must be turned off globally;

see the reference entry for cacheLib. Note that the default for all BSPs is to have

their VME bus access set to non-cacheable in sysPhysMemDesc[]. See VxWorks
Programmer’s Guide: Virtual Memory Interface.

Test-and-Set to Shared Memory

Unless some form of mutual exclusion is provided, multiple processors can

simultaneously access certain critical data structures of the shared-memory pool

and cause fatal errors. The VxWorks shared-memory network uses an indivisible

test-and-set instruction to obtain exclusive use of a shared-memory data structure.

This translates into a read-modify-write (RMW) cycle on the backplane bus.

It is important that the selected shared memory supports the RMW cycle on the

bus and guarantee the indivisibility of such cycles. This is especially problematic

NOTE: These configurations are provided as examples. Change them to suit your

needs.
46

3

3
Data Link Layer Network Components
if the memory is dual-ported, as the memory must then also lock out one port

during a RMW cycle on the other.

Some processors do not support RMW indivisibly in hardware, but do have

software hooks to provide the capability. For example, some processor boards

have a flag that can be set to prevent the board from releasing the backplane bus,

after it is acquired, until that flag is cleared. You can implement these techniques

for a processor in the sysBusTas() routine of the system-dependent library

sysLib.c. The shared-memory network driver calls this routine to set up mutual

exclusion on shared-memory data structures.

3.5.2 Interprocessor Interrupts

Each processor on the backplane has a single input queue for packets received from

other processors. There are three methods processors use to determine when to

examine their input queues: polling, bus interrupts, and mailbox interrupts.

When using polling, the processor examines its input queue at fixed intervals.

When using interrupts, the sending processor notifies the receiving processor that

its input queue contains packets. Interrupt-driven communication is much more

efficient than polling.

However, most backplane buses have a limited number of interrupt lines available

on the backplane (for example, VMEbus has seven). Although a processor can use

one of these interrupt lines as its input interrupt, each processor must have its own

interrupt line. In addition, not all processor boards are capable of generating bus

interrupts. Nor can you always use bus interrupts.

As an alternative interrupt mechanism, you can use mailbox interrupts, also called

location monitors because they monitor the access to specific memory locations. A

mailbox interrupt specifies a bus address that, when written to or read from, causes

a specific interrupt on the processor board. Each board can be set, with hardware

jumpers or software registers, to use a different address for its mailbox interrupt.

To generate a mailbox interrupt, a processor writes to that location. There is

effectively no limit to the number of processors that can use mailbox interrupts,

! CAUTION: Configure the shared memory test-and-set type for VxWorks

(configuration constant: SM_TAS_TYPE) to either SM_TAS_SOFT or

SM_TAS_HARD. If even one processor on the backplane lacks hardware test and

set, all processors in the backplane must use the software test and set

(SM_TAS_SOFT).
47

VxWorks Network 5.4
Programmer’s Guide
because each interrupt requires only a single address on the bus. Most modern

processor boards include some kind of mailbox interrupt.

Each processor must tell the other processors which notification method it uses.

Each processor enters its interrupt type and up to three related parameters in the

shared-memory data structures. This information is used by the shared-memory

network drivers of the other processors when sending packets.

The interrupt type and parameters for each processor are specified during

configuration. The relevant configuration macro is SM_INT_TYPE (also

SM_INT_ARGn). The possible values are defined in the header file smNetLib.h.

Table 3-5 summarizes the available interrupt types and parameters.

3.5.3 Sequential Addressing

Sequential addressing is a method of assigning IP addresses to processors on the

network based on their processor number. Addresses are assigned in ascending

order, with the master having the lowest address, as shown in Figure 3-4.

Using sequential addressing, a target on the shared-memory network can

determine its own IP address. Only the master’s IP address need be entered

manually. All other processors on the backplane determine their IP address by

adding their processor number to the starting IP address.

Sequential addressing provides a more uniform environment for the shared-

memory network. Because a target can determine both its own Internet address

Table 3-5 Backplane Interrupt Types

Type Arg 1 Arg 2 Arg 3 Description

SM_INT_NONE - - - Polling

SM_INT_BUS level vector - Bus interrupt

SM_INT_MAILBOX_1 address space address value 1-byte write mailbox

SM_INT_MAILBOX_2 address space address value 2-byte write mailbox

SM_INT_MAILBOX_4 address space address value 4-byte write mailbox

SM_INT_MAILBOX_R1 address space address - 1-byte read mailbox

SM_INT_MAILBOX_R2 address space address - 2-byte read mailbox

SM_INT_MAILBOX_R4 address space address - 4-byte read mailbox
48

3

3
Data Link Layer Network Components
and the Internet addresses of all other targets on the shared-memory network,

hardware-to-IP translation (ARP) is unnecessary over the VxWorks shared-

memory network, and is therefore eliminated.

When setting up a shared-memory network with sequential addressing, choose a

block of IP addresses and assign the lowest address in this block to the master.

When the shared-memory network driver is initialized by the master with

smNetInit(), the starting IP address is passed as a parameter and stored in the

shared-memory pool.

Each target sets its interface address with ifAddrSet(). This routine checks that the

assigned address matches the expected address for its location on the backplane,

based on the processor number from the boot parameters. If any other address is

specified, the operation fails. To determine the starting address for an active

shared-memory network, use smNetShow().

In the following example, the master’s IP address is 150.12.17.1.

-> smNetShow
value = 0 = 0x0

The following output displays on the standard output device:

Anchor Local Addr: 0x800000, SOFT TAS
Sequential addressing enabled. Master address: 150.12.17.1
heartbeat = 453, header at 0x800170, free pkts = 235.
cpu int type arg1 arg2 arg3 queued pkts
----- ----------- --------- --------- --------- --------------
 0 mbox-1 0x2d 0x803f 0x10 0
 1 mbox-1 0x2d 0x813f 0x10 0
input packets = 366 output packets = 376
input errors = 0 output errors = 1
collisions = 0

Figure 3-4 Sequential Addressing

150.12.17.1 150.12.17.2 150.12.17.3

(Shared-Memory Network)
sm0

CPU 0 CPU 1 CPU 2
49

VxWorks Network 5.4
Programmer’s Guide
With sequential addressing, when booting a slave, the backplane IP address and

gateway IP boot parameters are no longer necessary. The default gateway address

is the address of the master. Another address can be specified if this is not the

desired configuration.

[VxWorks Boot]: p
boot device : sm=0x800000
processor number : 1
file name : /folk/fred/wind/target/config/ bspname/vxWorks
host inet (h) : 150.12.1.159
user (u) : darger
flags (f) : 0x0

[VxWorks Boot] : @
boot device : sm=0x800000
processor number : 1
file name : /folk/fred/wind/target/config/ bspname/vxWorks
host inet (h) : 150.12.1.159
user (u) : darger
flags (f) : 0x0

Backplane anchor at 0x800000... Attaching network interface sm0...
done.
Backplane inet address: 150.12.17.2
Subnet Mask: 0xffffff00
Gateway inet address: 150.12.17.1
Attaching network interface lo0... done.
Loading... 364512 + 27976 + 20128
Starting at 0x1000...

Sequential addressing can be enabled during configuration. The relevant

configuration macro is INCLUDE_SM_SEQ_ADDR.

3.5.4 Shared-Memory Network Configuration

For UNIX, configuring the host to support a shared-memory network uses the

same procedures outlined earlier in this chapter for other types of networks. In

particular, a shared-memory network requires that:

■ All shared-memory network host names and addresses are present in

/etc/hosts.

■ All shared-memory network host names are present in .rhosts in your home

directory or in /etc/hosts.equiv if you are using RSH.

■ A gateway entry specifies the master’s Internet address on the Ethernet as the

gateway to the shared-memory network. The gateway entry is not needed if

you are using proxy ARP. For more information, see 4.7 ARP and Proxy ARP for
Transparent Subnets, p.84.
50

3

3
Data Link Layer Network Components
For Windows hosts, the steps required to configure the host are determined by

your version of Windows and the networking software you are using. See that

documentation for details.

Example Configuration

To illustrate the previous discussion, this section presents an example of a simple

shared-memory network. The network contains a single host and two target

processors on a single backplane. In addition to the target processors, the

backplane includes a separate memory board for the shared-memory pool, and an

Ethernet controller board. The additional memory board is not essential, but

provides a configuration that is easier to describe.

Figure 3-5 illustrates the overall configuration. The Ethernet network is assigned

network number 150, and the shared-memory network is assigned 161. The host

h1 is assigned the Internet address 150.12.0.1.

Figure 3-5 Example Shared-Memory Network

Ethernet

h1

vx1vx2

host

sm master
& gateway

150.12.0.0

150.12.0.1

150.12.0.2

161.27.0.1161.27.0.2

161.27.0.0Shared-Memory
Network
51

VxWorks Network 5.4
Programmer’s Guide
The master is vx1, and functions as the gateway between the Ethernet and shared-

memory networks. It therefore has two Internet addresses: 150.12.0.2 on the

Ethernet network and 161.27.0.1 on the shared-memory network.

The other backplane processor is vx2; it is assigned the shared-memory network

address 161.27.0.2. It has no address on the Ethernet because it is not, directly

connected to that network. However, it can communicate with h1 over the shared-

memory network, using vx1 as a gateway. Of course, all gateway use is handled

by the IP layer and is completely transparent to the user. Table 3-6 shows the

example address assignments.

To configure the UNIX system for our example, the /etc/hosts file must contain the

Internet address and name of each system. Note that the backplane master has two

entries. The second entry, vx1.sm, is not actually necessary, because the host

system never accesses that system with that address—but it is useful to include it

in the file to ensure that the address is not used for some other purpose.

The entries in /etc/hosts are as follows:

150.12.0.1 h1
150.12.0.2 vx1
161.27.0.1 vx1.sm
161.27.0.2 vx2

To allow remote access from the target systems to the UNIX host, the .rhosts file in

your home directory, or the file /etc/hosts.equiv, must contain the target systems’

names:

vx1
vx2

To inform the UNIX system of the existence of the Ethernet-to-shared-memory

network gateway, make sure the following line is in the file /etc/gateways at the
time the route daemon routed is started.

net 161.27.0.0 gateway 150.12.0.2 metric 1 passive

Table 3-6 Network Address Assignments

Name Inet on Ethernet Inet on Backplane

h1 150.12.0.1 -

vx1 150.12.0.2 161.27.0.1

vx2 - 161.27.0.2
52

3

3
Data Link Layer Network Components
Alternatively, you can add the route manually (effective until the next reboot) with

the following UNIX command:

% route add net 161.27.0.0 150.12.0.2 1

The target system’s configurations include the parameters shown in Table 3-7. The

backplane master, vx1, uses the following boot parameters:

boot device : gn
processor number : 0
host name : h1
file name : /usr/wind/target/config/bspname/vxWorks
inet on ethernet (e) : 150.12.0.2
inet on backplane (b) : 161.27.0.1
host inet (h) : 150.12.0.1
gateway inet (g) :
user (u) : darger
ftp password (pw) (blank=use rsh) :
flags (f) : 0

The other target, vx2, has the following boot parameters:3

boot device : sm=0x800000
processor number : 1
host name : h1
file name : /usr/wind/target/config/bspname/vxWorks
inet on ethernet (e) :
inet on backplane (b) : 161.27.0.2
host inet (h) : 150.12.0.1
gateway inet (g) : 161.27.0.1
user (u) : darger
ftp password (pw) (blank=use rsh)†:
flags (f) : 0

Troubleshooting

Getting a shared-memory network configured for the first time can be tricky. If

you have trouble, here are a few troubleshooting procedures you can use. Take one

step at a time.

NOTE: For more information on boot devices, see the Tornado User’s Guide: Getting
Started. To determine which boot device to use, see the BSP’s documentation.

3. The parameters inet on backplane (b) and gateway inet (g) are optional with sequential

addressing.
53

VxWorks Network 5.4
Programmer’s Guide
1. Boot a single processor in the backplane without any additional memory or

processor cards. Omit the inet on backplane parameter to prevent the

processor from trying to initialize the shared-memory network.

2. Power off and add the memory board, if you are using one. Power on and boot

the system again. Using the VxWorks boot ROM commands for display

memory (d) and modify memory (m), verify that you can access the shared

memory at the address you expect, with the size you expect.

Table 3-7 Configuration Constants

Constant Value Comment

shared memory anchor

address

(SM_ANCHOR_ADRS)

0x800000 Address of anchor as seen by

vx1.

shared memory address

(SM_MEM_ADRS)

0x800000 Address of shared-memory pool

as seen by vx1. Zero indicates

that local memory should be

allocated.

shared memory size

(SM_MEM_SIZE)

0x80000 Size of shared-memory pool, in

bytes.

shared memory interrupt

type

(SM_INT_TYPE)

SM_INT_MAILBOX_1 Interrupt targets with 1-byte

write mailbox.

shared memory interrupt

type - argument 1

(SM_INT_ARG1)

VME_AM_SUP_SHORT_IO Mailbox in short I/O space.

shared memory interrupt

type - argument 2

(SM_INT_ARG2)

(0xc000|(sysProcNum * 2)) Mailbox at:

0xc000 for vx1
0xc002 for vx2

shared memory interrupt

type - argument 3

(SM_INT_ARG3)

0 Write 0 value to mailbox.

shared memory packet

size

(SM_PKTS_SIZE)

DEFAULT_PKTS_SIZE

max # of cpus for shared

network

(SM_CPUS_MAX)

DEFAULT_CPUS_MAX
54

3

3
Data Link Layer Network Components
3. Reboot the system, filling in the inet on backplane parameter. This initializes

the shared-memory network. The following message appears during the

reboot:

Backplane anchor at anchor-addrs...Attaching network interface
sm0...done.

4. After VxWorks is booted, you can display the state of the shared-memory

network with the smNetShow() routine, as follows:

-> smNetShow [" interface"] [, 1]
value = 0 = 0x0

The interface parameter is sm0 by default. Normally, smNetShow() displays

cumulative activity statistics to the standard output device; specifying 1 (one)

as the second argument resets the totals to zero.

5. Power off and add the second processor board. Remember that the second

processor must not be configured as the system controller board. Power on

and stop the second processor from booting by typing any key to the boot

ROM program. Boot the first processor as you did before.

6. If you have trouble booting the first processor with the second processor

plugged in, you have some hardware conflict. Check that only the first

processor board is the system controller. Check that there are no conflicts

between the memory addresses of the various boards.

7. Use the d and m boot ROM commands to verify that you can see the shared

memory from the second processor. This is either the memory of the separate

memory board (if you are using the off-board configuration) or the dual-

ported memory of the first processor (if you are using the on-board

configuration).

8. Use the d command on the second processor to look for the shared-memory

anchor. The anchor begins with the ready value of 0x8765 (see Figure 3-3).

You can also look for the shared-memory heartbeat; see The Shared-Memory
Heartbeat, p.44.

9. After you have found the anchor from the second processor, enter the boot

parameter for the boot device with that address as the anchor address:

boot device: sm=0x800000

Enter the other boot parameters and try booting the second processor.

10. If the second processor does not boot, you can use smNetShow() on the first

processor to see if the second processor is correctly attaching to the shared-
55

VxWorks Network 5.4
Programmer’s Guide
memory network. If not, then you have probably specified the anchor address

incorrectly on the second processor. If the second processor is attached, then

the problem is more likely to be with the gateway or with the host system

configuration.

11. You can use host system utilities, such as arp, netstat, etherfind, and ping, to

study the state of the network from the host side; see the Tornado User’s Guide:
Getting Started.

12. If all else fails, call your technical support organization.

3.6 Custom Interfaces

You can write a driver to provide a custom interface to existing or new

communication media. If you write the driver to use the MUX/NPT interface, the

VxWorks network can use your custom interface as readily as it uses the Ethernet

interface. The only exception being the BOOTP and DHCP protocols, which

currently assume Ethernet.
56

4
TCP/IP Under VxWorks
4.1 Introduction

Typically, most VxWorks systems use the TCP/IP protocol suite. Although you can

port other networking protocols to VxWorks, this document generally assumes

you are using TCP/IP and the numerous networking components, utilities, and

services built on TCP/IP. Included in the Internet Protocol suite are the transport

layer protocols TCP and UDP. These protocols, along with OSPF (a separately

purchasable option), are layered on top of the IP (network) layer. In turn, the IP

layer rests on top of the MUX.

Also included in this section is a detailed description of ARP and proxy ARP.

4.1.1 MUX, an Interface between the Data Link and Network Layers

VxWorks provides the MUX interface to support independence between the

network protocol layer and the data link layer. To use a driver in the data link layer,

the network protocol calls the appropriate MUX routine. Likewise, when a driver

in the data link layer needs to access the network layer (whether IP or another

protocol), it calls the appropriate MUX routine. Neither protocol nor driver deal

with each other directly. Thus, neither needs specific knowledge of the other,

which makes it easier to plug in a new protocol over existing drivers. For more

information on the MUX interface, see the Network Protocol Toolkit User’s Guide.
57

VxWorks Network 5.4
Programmer’s Guide
Attaching to the MUX

To attach the TCP/IP stack to the MUX for a particular interface, use the

ipAttach() routine. When an interface is shut down, ipDetach() will release the

TCP/IP stack components for that interface.

4.2 IP, Internet Protocol

A network protocol handles network communications at the level just above the

MUX interface to the drivers that provide raw Ethernet and backplane

transmission mechanisms. In VxWorks, the most commonly used network

protocol is the Internet Protocol (IP)—the network protocol of the Internet protocol

suite often referred to as TCP/IP.

With IP, each host (computer) in the network has a unique 4-byte Internet address

(described in 4.2.1 Internet Addresses, p.58). IP accepts packets addressed to a

particular host and tries to deliver them. If multiple networks are connected by

routers, IP forwards a packet from router to router until the packet reaches a

network where it can be delivered directly. IP also breaks up and reassembles

packets to fit the packet size of the physical network. However, IP makes no

guarantees that packets are delivered to the destination correctly. Although it is

possible to access IP directly, most applications use one of the higher-level

protocols such as UDP or TCP.

The VxWorks network also fully supports the associated Internet Control Message

Protocol (ICMP) and the Ethernet Address Resolution Protocol (ARP), as required

by the relevant RFCs.

4.2.1 Internet Addresses

Each Internet host has a unique Internet address and an associated address mask.

An Internet address is four bytes long and contains information that identifies a

network as well as a specific host on that network. The number of bits used for

network identification versus host identification can differ according to the class of

the address.

Depending on the address class, the networking software uses different masks to

separate the bits that carry the network address from those that carry the host
58

4

4
TCP/IP Under VxWorks
address. The address mask is set to a default value according to class if subnets are

not used. For more information, see 4.3.3 Subnet Configuration, p.72 and 4.7.8 Proxy
ARP and Its Consequences for Subnet Configuration, p.93.

The following list describes the Internet addresses used to accommodate different

network configurations.

Class A: These addresses support a small number of networks, each with a

large number of hosts.

Class B: These addresses support a moderate number of networks, each with a

moderate number of hosts.

Class C: These addresses support a large number of networks, each with a

small number of hosts.

Class D: These addresses support IP multicasting.

These classes are distinguished by the high-order bits of an Internet address as

shown in Figure 4-1.

By convention, Internet addresses are usually represented in dotted-decimal

notation, which lists the 32-bit number as a string of four 8-bit values separated by

dots. Internally, the Internet address is often kept as a simple 32-bit value (of type

struct in_addr1). For example, the Internet address 0x5A010203 is 90.1.2.3 in

standard dotted-decimal notation. Each Internet address class has a unique

address range determined by the high-order bits and the default address mask

Figure 4-1 Internet Address Classes

1. Other declarations are possible, but struct in_addr is more forward compatible and less

subject to a change in the size of the address.

network: 21 bits host: 8 bits

network: 14 bits host: 16 bits

network: 7 bits host: 24 bits 90.1.2.3

128.0.1.2

192.0.0.1

A

B

C 1 1 0

1 0

0

CLASS ADDRESS EXAMPLE

multicast group ID: 28 bits 224.0.0.1D 1 1 1 0
59

VxWorks Network 5.4
Programmer’s Guide
(used for separating the bits used for the network portion of the address) as shown

in Table 4-1.

VxWorks includes utilities for manipulating Internet addresses. For example,

there are routines for converting between dot notation and integer notation,

routines for extracting network and host portions of an address, and routines for

creating a new address from a network and host number.

See the reference entry for inetLib.

4.2.2 Packet Routing

The IP protocol handles packet routing. Each route entry in the routing table is a

mapping between a destination address and the network interface through which

the packet is transmitted.

The route entries in a routing table are of two types: host-specific and network-

specific. Host-specific route entries contain the host destination address and the

address of the gateway to use for packets destined for this host. Network-specific

route entries contain a network destination address and the Internet address of the

gateway to use for packets destined for this network.

The VxWorks networking software establishes a route before transmitting each

packet. Given a destination address, VxWorks searches the routing table to find a

matching route entry and thus the network interface through which it transmits

the packet. A route entry is considered a match if the logical AND of the network

mask and the given search key (destination address) equals the destination

address stored in the route entry. For example, if a route entry has 147.11.44.00 as

a destination and 0xFFFFFF00 as a network mask, a search key of 147.11.44.155

matches. However, a search key of 147.11.43.155 does not match.

Table 4-1 Internet Address Ranges

Class High Order Bits Default Address Mask Address Range

A 0 0xff000000 0.0.0.0 - 126.255.255.255

Reserved 127.0.0.0 - 127.255.255.255

B 10 0xffff0000 128.0.0.0 - 191.255.255.255

C 110 0xffffff00 192.0.0.0 - 223.255.255.255

D 1110 None 224.0.0.0 to 239.255.255.255
60

4

4
TCP/IP Under VxWorks
For a host route, a mask of 0xFFFFFFFF is assumed. If a default route is added with

the destination address as “0.0.0.0”, an implicit netmask of 0x00000000 is assumed.

The destination address for a default route entry is always “0.0.0.0”. An implicit

network mask of 0x00000000 is assumed for this route entry.

When searching2 the routing table for a destination address, the search algorithm

first tries to match the complete host address. If the host address match is not

found, the search tries to match the network address of the provided destination

address. If a network address match is not found, the search returns the route entry

of the default address (if any).

If the search of the routing table finds a matching entry which has a clone flag set,

a new route entry is created (cloned) from the found entry. For example:

If: The routing table on a VxWorks target contains a route to an Ethernet

network interface whose IP address is 147.11.44.155.

And: The subnet mask is 0xFFFFFF00.

Figure 4-2 Internet Routing

2. For more information about the routing table structure and the algorithms used to search

the routing table, see TCP/IP Illustrated, Volume 2, by Gary R. Wright and W. Richard Stevens.

161.27.0.50

150.12.0.2

150.12.0.1

161.27.0.51

150.12.0.0

161.27.0.0

161.27.0.51 150.12.0.2

161.27.0.0 150.12.0.2

Destination Gateway

Host-Specific Entry

Network-Specific Entry

Internet Routing Table

host

host gateway

0xFFFF0000

Network Mask

none
61

VxWorks Network 5.4
Programmer’s Guide
And: The RTF_CLONING (0x100) flag is set.

Then: A search for 147.11.44.156 matches the 147.11.44.155 entry and creates a

new route entry, a copy (clone) of the route entry for 147.11.44.155.

This new route entry for 147.11.44.156 is used by the link level address resolution

protocol (ARP) to supply the corresponding Ethernet hardware address to the

gateway address field. The route flags RTF_HOST (0x004) and RTF_LLINFO (0x400)

are set to specify that it is host route and the gateway address is a link level address

rather than a regular Internet address.

For information on configuring and adding routes to the routing table, see Adding
a Route on VxWorks, p.68.

4.2.3 Network Byte Order

A single network can contain CPUs using different internal architectures. The

numeric representation schemes of these architectures can differ: some use big-
endian numbers, and some use little-endian numbers. To permit exchanging

numeric data over a network, some overall convention is necessary. Network byte
order is the convention that governs exchange of numeric data related to the

network itself, such as socket addresses or shared-semaphore IDs. Numbers in

network byte order are big-endian.

The routines in Table 4-2 convert longs and shorts between host and network byte

order. To minimize overhead, macro implementations (which have no effect on

architectures where no conversion is needed) are also available, in h/netinet/in.h.

To avoid macro-expansion side effects, do not apply these macros directly to an

expression. The following increments pBuf four times (on little-endian

architectures):

pBufHostLong = ntohl (*pBuf++); /* UNSAFE */

Table 4-2 Network Address Conversion Macros

Macro Description

htonl Convert a long from host to network byte ordering.

htons Convert a short from host to network byte ordering.

ntohl Convert a long from network to host byte ordering.

ntohs Convert a short from network to host byte ordering.
62

4

4
TCP/IP Under VxWorks
It is safer to increment separately from the macro call. The following increments

pBuf only once, whether the architecture is big- or little-endian:

pBufHostLong = ntohl (*pBuf);
pBuf++;

4.3 VxWorks Manual Network Configuration Utilities

VxWorks includes a variety of utilities you can use to assign Internet addresses to

network interfaces, hosts, and broadcasting. VxWorks also includes utilities you

can use to explicitly add a gateway or configure a subnet. Not included in this

section is information on the automatic network configuration protocols, DHCP

and BOOTP. For more information on these utilities and their configuration needs,

see Network Configuration Protocols, p.101.

4.3.1 Assigning Internet Addresses

On a VxWorks target, you can use the functions of the ifLib library to associate

Internet addresses with network interfaces, host names, and broadcasting. For a

listing of these configuration functions, see the reference entry for ifLib.

Associating Internet Addresses with Network Interfaces

A system’s physical connection to a network is called a network interface. Each

network interface must be assigned a unique Internet (inet) address. A system can

be connected to several networks and thus have several network interfaces.

On a UNIX system, the Internet address of a network interface is specified using

the ifconfig command. For example, to associate the Internet address 150.12.0.1

with the interface ln0, enter:

% ifconfig ln0 150.12.0.1

This is usually done in the UNIX startup file /etc/rc.boot. For more information,

see the UNIX reference entry for ifconfig.

In VxWorks, the Internet address of a network interface is specified, and a new

route to that interface is constructed, by calling ifAddrSet(). For example, to

associate the Internet address 150.12.0.1 with the interface ln0, enter:
63

VxWorks Network 5.4
Programmer’s Guide
ifAddrSet ("ln0", "150.12.0.1");

For more information, see the Tornado reference entries for ifLib and ifAddrSet().

The VxWorks network startup routine, usrNetInit() in usrNetwork.c,

automatically sets the address of the interface used to boot VxWorks to the Internet

address specified in the VxWorks boot parameters.

Associating Internet Addresses with Host Names

The underlying Internet protocol uses the 32-bit Internet addresses of systems on

the network. People, however, prefer to use system names that are more

meaningful to them. Thus VxWorks and most host development systems maintain

their own maps between system names and Internet addresses.

On UNIX systems, /etc/hosts contains the mapping between system names and

Internet addresses. Each line consists of an Internet address and the assigned

name(s) for that address:

150.12.0.1 vx1

There must be an entry in this file for each UNIX system and for each VxWorks

system on the network. For more information on /etc/hosts, see your UNIX system

reference entry hosts(5).

In VxWorks, call hostAdd() to associate system names with Internet addresses.

Make one call to hostAdd() for each system the VxWorks target communicates

with, as follows:

hostAdd ("vx1", "150.12.0.1");

To associate more than one name with an Internet address, hostAdd() can be called

several times with different host names and the same Internet address. The routine

hostShow() displays the current system name and Internet address associations.In

the following example, 150.12.0.1 can be accessed with the names host, myHost,
and widget:

NOTE: The subnet mask used in determining the network portion of the address

used in ifAddrSet() will be that set by ifMaskSet(), or the default class mask if

ifMaskSet() has not been called. It is standard to call ifMaskSet() prior to any

calls to ifAddrSet().

NOTE: In addition to hostAdd(), VxWorks also includes DNS. You can use DNS

to create and automatically maintain host-name/address associations for your

VxWorks target. For more information, see DNS: Domain Name System, p.161.
64

4

4
TCP/IP Under VxWorks
-> hostShow
value = 0 = 0x0

The the standard output device displays the following output:

hostname inet address aliases
-------- ----------- -------
localhost 127.0.0.1
host 150.12.0.1

-> hostAdd "myHost", "150.12.0.1"
value = 0 = 0x0
-> hostAdd "widget", "150.12.0.1"
value = 0 = 0x0
-> hostShow
value = 0 = 0x0

Now standard output displays the following:3

hostname inet address aliases
-------- ----------- -------
localhost 127.0.0.1
vx1 150.12.0.1 myHost widget
value = 0 = 0x0

The VxWorks network startup routine, usrNetInit() in usrNetwork.c,

automatically adds the name of the host VxWorks was booted from, using the host

name specified in the VxWorks boot parameters.

Assigning Broadcast Addresses

Many physical networks support the notion of broadcasting a packet to all hosts on

the network. A special Internet broadcast address is interpreted by the network

subsystem to mean “all systems” when specified as the destination address of a

datagram message (UDP). This is shown in the demo program

target/src/demo/dg/dgTest.c.

Unfortunately, there is some ambiguity about which address is to be interpreted as

the broadcast address. The Internet specification now states that the broadcast

address is an Internet address with a host part of all ones (1). However, some older

systems use an Internet address with a host part of all zeros as the broadcast

address.

Most newer systems, including VxWorks, accept either address on incoming

packets as being a broadcast packet. But when an application sends a broadcast

packet, it must use the correct broadcast address for its system.

3. Internally, hostShow() uses the resolver library to access DNS to get the information it

needs to respond to a query.
65

VxWorks Network 5.4
Programmer’s Guide
VxWorks normally uses a host part of all ones as the broadcast address. Thus a

datagram sent to Internet address 150.255.255.255 (0x5AFFFFFF) is broadcast to all

systems on network 150. However, to allow compatibility with other systems,

VxWorks allows the broadcast address to be reassigned for each network interface

by calling the routine ifBroadcastSet(). For more information, see the reference

entry for ifBroadcastSet().

In addition, VxWorks supports multicasting—transmission to a subset of hosts on

the network. For more information on multicasting, see Using a Datagram (UDP)
Socket to Access IP Multicasting, p.137.

4.3.2 Adding Gateways to a Network

One of the primary functions of IP is to transport packets from one host to another.

Communication between two hosts on the same physical network requires little

effort on the part of IP. In this case, IP can deliver the packet directly to the

destination. However, if the destination of a packet is not local, IP cannot deliver

the packet directly. In this case, IP hands the packet off to a gateway.

A gateway is a machine that is able to forward packets from one network to

another. Thus, a gateway has a physical connection to two or more networks. If the

destination of a packet is local to the network on the other side of the gateway, the

gateway can deliver the packet directly. Otherwise, the gateway passes the packet

to still another gateway. This process, called routing, continues until the packet is

delivered or expires.

To support routing, most systems contain a table that identifies a default gateway

as well as gateways associated with specific IP addresses. To maintain this table

and determine network connectivity, a VxWorks system uses the Routing

Information Protocol (RIP) either version 1 or 2. The RIP implementation provided

with VxWorks is based on the BSD 4.4 routed program.

To setup the initial routing information available on a VxWorks target, use the

functions of the routeLib library. Using the routeLib routines, you can establish

the default gateway you want the target to use. These routines also let you

associate a destination IP address with a specific gateway. For a listing of the

routing configuration functions, see the reference entry for routeLib.

NOTE: An OSPF-based router is available for VxWorks as a separately purchasable

option. You can use this router instead of RIP to set up and maintain routing

information.
66

4

4
TCP/IP Under VxWorks
Adding a Route on Windows

The procedures vary according to your version of Windows and your networking

software package. For the details, see the documentation for your system.

Adding a Route on UNIX

A UNIX system can be told explicitly about a gateway in one of two ways: by

editing /etc/gateways or by using the route command. When the UNIX route

daemon routed is started (usually at boot time), it reads a static routing

configuration from /etc/gateways. Each line in /etc/gateways specifies a network

gateway in the following format:

net destinationAddr gateway gatewayAddr metric n passive

where n is the hop count from the host system to the destination network (the

number of gateways between the host and the destination network) and “passive”

indicates the entry is to remain in the routing tables.

For example, consider a system on network 150. The following line in

/etc/gateways describes a gateway between networks 150 and 161, with an Internet

address 150.12.0.1 on network 150. A hop count (metric) of 1 specifies that the

gateway is a direct connection between the two networks:

net 161.27.0.0 gateway 150.12.0.1 metric 1 passive

After editing /etc/gateways, you must kill the route daemon and restart it, because

it only reads /etc/gateways when it starts. After the route daemon is running, it is

not aware of subsequent changes to the file.

Alternatively, you can use the route command to add routing information

explicitly:

route add destination-network gatewayAddr [metric]

For example, the following command configures the gateway in the same way as

the previous example, which used the /etc/gateways file:

route add net 161.27.0.0 150.12.0.1 1

Note, however, that routes added with this manual method are lost the next time

the system boots.

You can confirm that a route is in the routing table by using the UNIX command

netstat -r.
67

VxWorks Network 5.4
Programmer’s Guide
Adding a Route on VxWorks

VxWorks provides a set of functions that you can use to edit the routing table.

However, before you edit the table, it is generally a good idea to look at what is

already there.

■ Inspecting the Routing Table

To inspect the contents of the routing table, use routeShow(). If a VxWorks target

boots through an Ethernet network interface, a typical routeShow() call would

display the following:4

-> routeShow()

ROUTE NET TABLE
destination gateway flags Refcnt Use Interface
--
147.11.44.0 147.11.44.165 101 0 0 ei0
--
ROUTE HOST TABLE
destination gateway flags Refcnt Use Interface
--
127.0.0.1 127.0.0.1 5 1 0 lo0
--
value = 77 = 0x4d = ‘M’

In the output shown above, the route entry for 147.11.44.0 shows that the flags

RTF_CLONING (0x100) and RTF_UP (0x001, signifying that the route is available

for use) are set. This route entry is set when the Ethernet network device “ei0” is

initialized. This is a network route and the network mask associated with this

route is 0xFFFFFF00.

■ Editing the Routing Table

VxWorks includes a number of functions that you can use to edit the routing table.

These functions are as follows:5

routeAdd()
Adds a route to the routing table.

4. This assumes that the VxWorks image is configured with network show routines. The rele-

vant configuration macro is INCLUDE_NET_SHOW.

5. These routines manage static routing entries. These entries are not updated, modified, or

deleted by the dynamic routing protocols (RIP or OSPF). They remain active until you

explicitly delete them.
68

4

4
TCP/IP Under VxWorks
routeNetAdd()
This function is the same as routeAdd() except that the destination

address is assumed to be a network. This is useful for adding a route to a

sub-network that is not on the same physical network as the local network.

routeDelete()
Deletes a route from the routing table.

mRouteAdd()
Adds routes differentiated by masks and service quality.

mRouteDelete()
Deletes routes differentiated by masks and service quality.

To add gateways to the VxWorks network routing tables, use routeAdd() or

mRouteAdd(). For example, to use routeAdd():

/* routeAdd (" destinationAddr", " gatewayAddr") */
/* To send to network 161.27.0.0 use 150.12.0.2 */
routeAdd ("161.27.0.0", "150.12.0.2");

Both addresses can be specified either by dotted decimal notation or by the host

names defined by the routine hostAdd(). If the destination address is a subnet,

you can use routeNetAdd() instead.

For example, consider two VxWorks machines vx2 and vx3 (shown in Figure 4-3),

both interfaced to network 161. Suppose that vx3 is a gateway between networks

150 and 161 and that its Internet address on network 161 is 161.27.0.3.

The following calls can then be made on vx2 to establish vx3 as a gateway to

network 150:

-> routeAdd ("150.12.0.0", "vx3");

or:

-> routeAdd ("150.12.0.0", "161.27.0.3");

To confirm that a route is in the routing table, use the routeShow() routine.6 Other

routing routines are available in the library routeLib.

NOTE: The functions routeAdd() and routeDelete() implicitly derive the netmask

from the given destination and gateway address. Please refer to the manual pages

for the function calls mentioned above.

6. This function is not built into the Tornado shell. The relevant configuration macro is

INCLUDE_NET_SHOW.
69

VxWorks Network 5.4
Programmer’s Guide
The VxWorks network startup routine, usrNetInit() in usrNetwork.c,

automatically adds the gateway specified in the boot parameters (if any) to the

routing tables. In this case, the address specified in the gateway field (g =) is

added as the gateway to the network of the boot host.

To add the default route entry to the routing table:

routeAdd ("0.0.0.0", " gatewayAddrs");

If a default route is added to the routing table, any packet for which a host route or

a network route cannot be established, is forwarded to the address provided in the

default route entry.

To delete an entry from the routing table, use routeDelete().

/* Delete route to node 161.27.0.51 using gateway 150.12.0.2 */
routeDelete ("161.27.0.51", "150.12.0.2");

■ Using mRouteAdd()

To use mRouteAdd() you need to specify a little more information than for a

simple routeAdd() call. However, this extra information does provide support for

additional routing services that take into account the type of service or mask

associated with a particular route. The general format of a mRouteAdd() call is as

follows:

Figure 4-3 Routing Example

161.27.0.2

vx2

150.12.0.2

h1

Network 161

Network 150

161.27.0.3

vx3

150.12.0.1
70

4

4
TCP/IP Under VxWorks
mRouteAdd (" destination”, " gateway", netmask, type-of-service, flags)

Thus, to specify that the route to the 90.0.0.0 network use the 91.0.0.3 router:

mRouteAdd ("90.0.0.0", "91.0.0.3", 0xffffff00, 0, 0);

To delete a route that was added using mRouteAdd(), call mRouteDelete(). The

general format of a call to mRouteDelete() is as follows:

mRouteDelete (" destination", netmask, tos)

Thus, to delete the route just added above:

mRouteDelete("90.0.0.0", 0xffffff00, 0);

The netmask and type of service must match those of the route you want to delete.

Otherwise the route is not deleted.

Using mRouteAdd(), you can specify multiple routes to a single destination. These

routes differ only in factors such as the netmask or the type of service. For example:

mRouteAdd ("90.0.0.0", "91.0.0.3", 0xFFFFFF00, 0, 0);
mRouteAdd ("90.0.0.0", "91.0.0.254", 0xFFFF0000, 0, 0);

Now packets destined for “90.0.0.0” can get there using either of the two different

gateways. The distinguishing factor is the netmask, although you could have used

the type-of-service or flags values to distinguish the routes. For more information,

see the mRouteAdd() reference entry.

■ Setting the Type Of Service

The type-of-service parameter to mRouteAdd() takes any of the following values:

IPTOS_LOWDELAY7

IPTOS_THROUGHPUT
IPTOS_RELIABILITY
IPTOS_MINCOST

The routing engine uses these values to pick among multiple routes when a user

application requests a certain type of service for their socket. Applications choose

their type of service as input to a setsockopt() call. See the setsockopt() reference

entry for more information.

7. The IPTOS constants are defined in netinet/ip.h.
71

VxWorks Network 5.4
Programmer’s Guide
■ Setting the Routing Priority

Within VxWorks it is now possible to have routes chosen on a priority scheme. All

routes that are installed in the system have a routing protocol type associated with

them. These types are as follows:

M2_ipRouteProto_other8

M2_ipRouteProto_local
M2_ipRouteProto_netmgmt
M2_ipRouteProto_icmp
M2_ipRouteProto_egp
M2_ipRouteProto_ggp
M2_ipRouteProto_hello
M2_ipRouteProto_rip
M2_ipRouteProto_is_is
M2_ipRouteProto_es_is
M2_ipRouteProto_ciscoIgrp
M2_ipRouteProto_bbnSpfIgp
M2_ipRouteProto_ospf
M2_ipRouteProto_bgp

All routes added by mRouteAdd() take a protocol type of M2_ipRouteProto_other.

To set the routing priority, use routeProtoPrioritySet():

void routeProtoPrioritySet
(
int proto, /* protocol no, from m2Lib.h */

 int prio /* priority, >= 0 , <= 200 */
)

Using this routine, you can give a certain class of routes precedence over routes of

other classes. For example, you could use routeProtoPrioritySet() to give OSPF-

installed routes precedence over routes installed by RIP or mRouteAdd(). See the

routeProtoPrioritySet() reference entry for more information.

4.3.3 Subnet Configuration

An Internet address consists of a network address portion and a host address

portion. There are different classes of Internet addresses in which different parts

of the 32-bit address are assigned to each portion. This provides a great deal of

8. The M2_ipRouteProto constants are defined in h/m2Lib.h.
72

4

4
TCP/IP Under VxWorks
flexibility in network addressing. Even so, in some environments network

addresses are a scarce resource.

A single network address can be subdivided into multiple sub-networks using a

technique called subnet addressing. This technique involves extending the network

portion of the addresses used on a particular set of physical networks. The

interpretation of the Internet address is altered to include more bits in the network

portion and fewer in host portion. For example, if a network uses a type B address

(131.1.0.0), the third byte can be used for the subnet and the fourth byte for the host

address, as shown in Figure 4-4. Internal to the subnet, the Internet address is

interpreted as 131.1.7 for the network portion and 81 for the host portion.

The specification of which bits are to be interpreted as the network address is

called the net mask. A net mask is a 32-bit value with 1’s in all bit positions to be

interpreted as the network portion. In the example in Figure 4-4, the netmask is

0xFFFFFF00. In VxWorks, use ifMaskSet() to specify the subnet mask for a

particular network interface (see also the reference entry for ifMaskSet()).

To specify a net mask, you must correctly access the host from which you are

booting. This can be done by appending :mask to the Internet address

specifications for the Ethernet and/or backplane interfaces in the boot parameters,

where mask is the desired net mask in hexadecimal. For example, when entering

boot parameters interactively, it might look as follows:

inet on ethernet (e) : 131.1.7.81:ffffff00
inet on backplane (b) : 131.1.81.1:ffffff00

When specifying the boot parameters in a boot string, the same Internet address

specification looks as follows:

e=131.1.7.81:ffffff00 b=131.1.81.1:ffffff00

Figure 4-4 Subnetting

131.1.7.81

subnetnetwork host
73

VxWorks Network 5.4
Programmer’s Guide
4.4 UDP, User Datagram Protocol

The User Datagram Protocol (UDP), part of the TCP/IP suite, provides a simple

datagram-based process-to-process communication mechanism. UDP extends the

message address to include a port address in addition to the host Internet address.

The port address identifies one of several distinct destinations within a single host.

Thus UDP accepts messages addressed to a particular port on a particular host,

and tries to deliver them, using IP to transport the messages between the hosts.

Like IP, UDP makes no guarantees that messages are delivered correctly or even

delivered at all.

However, it is this relatively low-overhead process-to-process delivery mechanism

that makes UDP so useful to many other protocols and utilities, such as BOOTP,

DHCP, DNS, RIP, SNMP, and NFS.

4.5 TCP, Transmission Control Protocol

The Transmission Control Protocol (TCP), part of the TCP/IP suite, provides

reliable, flow-controlled, two-way, process-to-process transmission of data. TCP is

a connection-based communication mechanism. This means that before data can be

exchanged over TCP, the two communicating processes must first establish a

connection through a distinct connection phase. Data is then sent and received as

a byte stream at both ends.

Like UDP, TCP extends the connection address to include a port address in

addition to the host Internet address. That is, a connection is established between

a particular port in one host and a particular port in another host. TCP guarantees
that the delivery of data is correct, in the proper order, and without duplication.

4.6 Configuring the Network Stack

Changing the default network stack configuration involves setting values for

various #define statements. To configure the amount of memory that the network
74

4

4
TCP/IP Under VxWorks
stack uses for the network memory pool, modify the clDescTbl table defined in

target/src/config/usrNetwork.c.

4.6.1 Network Protocol Scalability

By default, the build creates a VxWorks image that includes the code

implementing the TCP, UDP, ICMP, and IGMP protocols. If you want to exclude

one of these protocols, reconfigure VxWorks. The relevant configuration macro is

found in the table below:

4.6.2 Setting #defines for the IP, TCP, UDP, and ICMP Protocols

This section describes the configuration for the network layer protocols. Table 4-3

describes all configuration options. For some options, the default value is specified

using symbolic constants. These symbolic constants are defined in netLib.h. To

override any default values assigned to these constants, reconfigure VxWorks with

the appropriate values set.

INCLUDE_TCP Includes the TCP protocol.

INCLUDE_UDP Includes the UDP protocol.

INCLUDE_ICMP Includes the ICMP protocol.

INCLUDE_IGMP Includes the Internet Group Management Protocol (IGMP).

Table 4-3 Network Configuration Options

Configuration Constant Default Value and Description

TCP Default Flags

(TCP_FLAGS_DFLT)

Default Value: TCP_DO_RFC1323
Includes RFC1323 support. RFC 1323 is a specification to

support networks that have high bandwidth and longer

round trip times. This option is enabled by default. If this

option cannot be negotiated by the peer, it should drop the

option. If the host does not understand this option, it

terminates the connection. For such hosts, you must turn off

this option.

TCP Send Buffer Size

(TCP_SND_SIZE_DFLT)

Default Value: 8192

Sets the default send buffer size of a TCP connection.

TCP Receive Buffer Size

(TCP_RCV_SIZE_DFLT)

Default Value: 8192

Sets the default receive buffer size of a TCP connection.
75

VxWorks Network 5.4
Programmer’s Guide
TCP Connection Timeout

(TCP_CON_TIMEO_DFLT)

Default Value: 150 (75 seconds)

Sets the timeout on establishing a TCP connection.

TCP Retransmission Threshold

(TCP_REXMT_THLD_DFLT)

Default Value: 3

Sets the number of duplicate ACKs needed to trigger the fast

retransmit algorithm. Typically, TCP receives a duplicate

ACK only if a segment is lost.

Default TCP Maximum

Segment Size

(TCP_MSS_DFLT)

Default Value: 512

Sets the default maximum segment size to use if TCP cannot

establish the maximum segment size of a connection. To

establish a maximum segment size, TCP typically uses the

maximum transmission unit of the network interface on

which the connection is established.

Default Round Trip Interval

(TCP_RND_TRIP_DFLT)

Default Value: 3 (seconds)

Sets the round-trip time to use if TCP cannot get an estimate

within 3 seconds. The round trip time of a connection is

calculated dynamically.

TCP Idle Timeout Value

(TCP_IDLE_TIMEO_DFLT)

Default Value: 14400 (4 hours, in seconds)

Sets the idle time for a connection. Idle times in excess of this

value trigger a keep alive probe. After the first keep alive

probe, a probe is sent every 75 seconds for a number of times

restricted by the TCP Probe Limit.

TCP Probe Limit

(TCP_MAX_PROBE_DFLT)

Default Value: 8

Sets the maximum number of keep alive probes sent out on

an idle TCP connection. TCP drops the connection after

sending out the maximum number of keep alive probes.

UDP Configuration Flags

(UDP_FLAGS_DFLT)

Default Value: UDP_DO_CKSUM_SND |
UDP_DO_CKSUM_RCV
Tells UDP to calculate a UDP header and data checksum for

both send and receive UDP datagrams.

UDP Send Buffer Size

(UDP_SND_SIZE_DFLT)

Default Value: 9216

Sets the default send buffer size of a UDP connection.

UDP Receive Buffer Size

(UDP_RCV_SIZE_DFLT)

Default Value: 41600

Sets the default receive buffer size of a UDP connection.

Table 4-3 Network Configuration Options

Configuration Constant Default Value and Description
76

4

4
TCP/IP Under VxWorks
ICMP Configuration Flags

(ICMP_FLAGS_DFLT)

Default Value: ICMP_NO_MASK_REPLY
The default value specifies no ICMP mask replies. If this

option is enabled on a VxWorks host, and the host receives

an ICMP mask query, the VxWorks host replies with its

network interface mask.

IP Configuration Flags

(IP_FLAGS_DFLT)

Default Value: IP_DO_FORWARDING |
IP_DO_REDIRECT | IP_DO_CHECKSUM_SND |
IP_DO_CHECKSUM_RCV
The default value enables forwarding of packets and enables

sending ICMP redirect messages (if it is necessary to redirect

packets through a different router). The RFC requires that

you send and receive checksums. To prevent sending a

checksum, clear the IP_DO_CHECKSUM_SND bit.

Likewise, clear IP_DO_CHECKSUM_RCV to prevent a

checksum receive.

IP Time-to-live Value

(IP_TTL_DFLT)

Default Value: 64

Sets the IP default time to live, an upper limit on the number

of routers through which a datagram can pass. This value

limits the lifetime of a datagram. It is decremented by one by

every router that handles the datagram. If a host or router

gets a packet whose time to live is zero (this value is stored

in a field in the IP header), the datagram is thrown out and

the sender is notified with an ICMP message. This prevents

packets from wandering in the networks forever.

IP Packet Queue Size

(IP_QLEN_DFLT)

Default Value: 50

Sets the default length of the IP queue and the network

interface queue. IP packets are added to the IP queue when

packets are received. Packets are added to the network

interface queue when transmitting.

Table 4-3 Network Configuration Options

Configuration Constant Default Value and Description
77

VxWorks Network 5.4
Programmer’s Guide
4.6.3 Network Memory Pool Configuration

VxWorks allocates and initializes memory for the network stack only once, at

network initialization time. Out of this pre-allocated memory, the network stack

uses netBufLib routines to set up a memory pool. From this memory pool, the

network stack uses netBufLib routines to get the memory needed for data transfer.

The netBufLib routines deal with data in terms of mBlk structures, clBlk
structures, and clusters. The mBlk and clBlk structures provide information

necessary to manage the data stored in clusters. The clusters, which come in

different sizes, contain the data described by the mBlk and clBlk structures. When

VxWorks sets up the network stack memory pool, it needs to know the number of

mBlks, clBlks, as well as the number of clusters per cluster size. The default counts

are specified by symbolic constants defined in h/netBufLib.h. These constants are

described in Table 4-4.

IP Time-to-live Value for

packet fragments

(IP_FRAG_TTL_DFLT)

Default Value: 60 (30 seconds for received fragments)

Sets the default time to live value for an IP fragment. To

transmit a packet bigger than the MTU size, the IP layer

breaks the packet into fragments. On the receiving side, IP

re-assembles these fragments to form the original packet.

Upon receiving a fragment, IP adds it to the IP fragment

queue. Each fragment waiting to be re-assembled has its

own time to live, which, by default, is 30 seconds. This

means that a fragment is deleted from the queue if it cannot

be assembled in 30 seconds.

If the network is extremely busy, the IP fragment queue can

accumulate a lot of fragments that are waiting to be

reassembled. This clutter can cause the queue to grow very

large and thus take up a lot of system memory. To alleviate

this problem, you can reduce the value of this configuration

constant.

! CAUTION: Change these constants only after you fully understand what they do.

Setting inappropriate values can make the TCP/IP stack inoperable.

Table 4-3 Network Configuration Options

Configuration Constant Default Value and Description
78

4

4
TCP/IP Under VxWorks

u

t

Default Memory Pool Configuration for the Network Stack

By default, the VxWorks network stack creates six pools (all within the main

network memory pool) for clusters ranging in size from 64 bytes to 2048 bytes.

However, valid cluster sizes can range from 64 bytes increasing by powers of two

to 64K (65535). If your network stack needs clusters of a valid but non-default size,

you can edit the clDescTbl table defined in target/src/config/usrNetwork.c. The

following is an example and clDescTbl[] table:

Table 4-4 Configuration Constants for Network Memory Pools

Constant Description

Network memory blocks

for user data

(NUM_NET_MBLKS)

Default value: 400

Specifies the number mBlk structures to initialize. At a minimum,

there should be at least as many mBlks as there are clusters.

Number of 64 byte

clusters for user data

(NUM_64)

Default value: 100

Specifies the number of 64-byte clusters to initialize.

Number of 128 byte

clusters for user data

(NUM_128)

Default value: 100

Specifies the number of 128-byte clusters to initialize.

Number of 256 byte

clusters for user data

(NUM_256)

Default value: 40

Specifies the number of 256-byte clusters to initialize.

Number of 512 byte

clusters for user data

(NUM_512)

Default value: 40

Specifies the number of 512-byte clusters to initialize.

Number of 1024 byte

clusters for user data

(NUM_1024)

Default value: 25

Specifies the number of 1024-byte clusters to initialize.

Number of 2048 byte

clusters for user data

(NUM_2048)

Default value: 25

Specifies the number of 2048-byte clusters to initialize.

Size of network memory

pool for user data

(NUM_CL_BLKS)

Default value: NUM_64 + NUM_128 + NUM_256 + NUM_512 +
NUM_1024 + NUM_2048
This value specifies the number of clBlk structures to initialize. Yo

need exactly one clBlk structure per cluster. If you add another

cluster pool to clDescTbl[] (described below), be sure you incremen

this value appropriately.
79

VxWorks Network 5.4
Programmer’s Guide
CL_DESC clDescTbl [] = /* network cluster pool configuration table */
 {
 /*
 clusterSize num memArea memSize
 ----------- ---- ------- -------
 */
 {64, NUM_64, NULL, 0},
 {128, NUM_128, NULL, 0},
 {256, NUM_256, NULL, 0},
 {512, NUM_512, NULL, 0},
 {1024, NUM_1024, NULL, 0},
 {2048, NUM_2048, NULL, 0}
 };

To add a cluster pool for clusters of 4096 bytes each, edit clDescTbl[] as follows: 9

CL_DESC clDescTbl [] = /* network cluster pool configuration table */
 {
 /*
 clusterSize num memArea memSize
 ----------- ---- ------- -------
 */
 {64, NUM_64, NULL, 0},
 {128, NUM_128, NULL, 0},
 {256, NUM_256, NULL, 0},
 {512, NUM_512, NULL, 0},
 {1024, NUM_1024, NULL, 0},
 {2048, NUM_2048, NULL, 0},
 {4096, NUM_4096, NULL, 0}
 };

The values shown above are reasonable defaults, but the network requirements for

your system could be radically different. For example, your use of the network

stack could require more clusters of a particular size. Making such a determination

is a matter of experimentation and analysis. However, as background information,

you need to understand how data divides up into mBlks, clBlks, and clusters.

9. For this particular clDescTbl[] table only, you can specify memArea values as NULL and

memSize values as 0. When the network initialization code actually allocates the necessary

memory, it resets these values appropriately. For all other clDescTbl[] tables, you must

provide these values explicitly before calling netPoolInit(). For more information, see the

reference entry for netPoolInit().

! CAUTION: Adjust the counts for mBlks, clBlks, clusters, and cluster pools only

after collecting data on system behavior and deciding whether or how you would

like to change that behavior. Carefully planned changes can significantly improve

performance, but reckless changes can significantly reduce performance.
80

4

4
TCP/IP Under VxWorks
The mBlk structure is the primary vehicle through which you access data in a

memory pool established by netPoolInit(). Because the mBlk structure merely

references the data, this lets network layers communicate data without actually

having to copy the data. In addition, data can be chained using mBlks. Thus, you

can pass an arbitrarily large amount of data by passing the mBlk at the head of an

mBlk chain. Consider Figure 4-5. 10

As shown in Figure 4-5, an mBlk references data only indirectly – through a clBlk
structure. This indirection makes it easier for multiple mBlks to share the same

cluster. See Figure 4-6.

Figure 4-5 Presentation of Two Packets to the TCP Layer

10. To support chaining across multiple packets, the mBlk structure contains two members that

support of chaining. One member points to the next mBlk in the current packet. The other

member points to the head mBlk in the next packet (if any).

Cluster
64 bytes

Cluster
512
bytes

mBlkmBlk mBlk null

mBlk mBlk null

Cluster
2048
bytes

clBlk clBlk clBlk

Cluster
64 bytes

Cluster
2028
bytes

clBlk clBlk

Packet 1

Packet 2
81

VxWorks Network 5.4
Programmer’s Guide
Please note that using a clBlk structure instead of a pointer to provide a level of

indirection is not an extravagance. The clBlk structure tracks how many mBlks

share its underlying cluster. This is critical when it comes time to free an

mBlk/clBlk/cluster construct. If you use netMblkClFree() to free the construct,

the mBlk is freed back to the pool and the reference count in the clBlk is

decremented. If the reference count drops to zero, the clBlk and cluster are also

freed back to the memory pool.

Configuring Memory Pools Out of Private Memory

The clDescTbl[] shown in the previous section did not make use of the memArea
and memSize members. For the default network buffer pool, the memory

allocation calls are handled internally and the values of memArea and memSize
are set for you. However, if necessary, you can supply these values and thus

explicitly determine the size and location of the memory pools. For more

information on how to use the memArea and memSize members, see the reference

entry for netPoolInit().

4.6.4 Testing Network Connections

You can use the ping() utility from VxWorks to test whether a particular system is

accessible over the network. Like the UNIX command of the same name, ping()
sends one or more packets to another system and waits for a response. You can

identify the other system either by name or by its numeric Internet address. This

is useful for testing routing tables and host tables, or determining whether another

machine is responding to network requests.

Figure 4-6 Two mBlks Can Share the Same Cluster

mBlk a mBlk b

Cluster
64 bytes

Cluster
2028
bytes

clBlk clBlk

void

mBlk 1

mBlk b

mBlk 2 void
82

4

4
TCP/IP Under VxWorks
The following example shows ping() output for an unreachable address:

-> ping "150.12.0.1",1
no answer from 150.12.0.1
value = -1 = 0xffffffff = _end + 0xfff91c4f

If the first argument uses a host name, ping() uses the host table to look it up, as in

the following example:

-> ping "caspian",1
caspian is alive
value = 0 = 0x0

The numeric argument specifies how many packets to expect back (typically, when

an address is reachable, that is also how many packets are sent). If you specify

more than one packet, ping() displays more elaborate output, including summary

statistics. For example, the following test sends packets to a remote network

address until it receives ten acknowledgments, and reports on the time it takes to

get replies:

-> ping "198.41.0.5",10
PING 198.41.0.5: 56 data bytes
64 bytes from 198.41.0.5: icmp_seq=0. time=176. ms
64 bytes from 198.41.0.5: icmp_seq=1. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=2. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=3. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=4. time=80. ms
64 bytes from 198.41.0.5: icmp_seq=5. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=6. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=7. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=8. time=64. ms
64 bytes from 198.41.0.5: icmp_seq=9. time=64. ms

----198.41.0.5 PING Statistics----
10 packets transmitted, 10 packets received, 0% packet loss
round-trip (ms) min/avg/max = 64/76/176
value = 0 = 0x0

The report format matches the format used by the UNIX ping utility. Timings are

based on the system clock; its resolution could be too coarse to show any elapsed

time when communicating with targets on a local network.

Applications can use ping() periodically to test whether another network node is

available. To support this use, the ping() routine returns a STATUS value and

accepts a PING_OPT_SILENT flag as a bit in its third argument to suppress printed

output, as in the following code fragment:

/* Check whether other system still there */

if (ping (partnerName, 1, PING_OPT_SILENT) == ERROR)
{

83

VxWorks Network 5.4
Programmer’s Guide
myShutdown(); /* clean up and exit */
}

...

You can set one other flag in the third ping() argument: PING_OPT_DONTROUTE
restricts ping() to hosts that are directly connected, without going through a

gateway.

4.7 ARP and Proxy ARP for Transparent Subnets

ARP (Address Resolution Protocol) provides dynamic mapping from an IP

address to the corresponding hardware or MAC address. Using ARP, VxWorks

implements a proxy ARP scheme over the shared-memory network that can make

distinct networks appear as one logical network (that is, the networks share the

same address space). This proxy ARP scheme is an alternative to the use of explicit

subnets for accessing the shared-memory network. See 3.5 Shared-Memory Network
on the Backplane, p.40. 11

Previously, the shared-memory network (backplane) had to be partitioned as a

separate subnet, and routes to that subnet had to be added to each host that

required access to the shared-memory network. Each shared-memory network

took up an individual subnet number; therefore, if a large number of shared-

memory networks were present on a network, precious subnet numbers were

rapidly consumed. However, with proxy ARP, the shared-memory network

appears to use the same subnet/network as the Ethernet. Therefore, subnet

numbers are not assigned.

If the shared-memory network is attached to a large network with many networks

and subnets, network configuration becomes difficult. Proxy ARP simplifies

network configuration because there is only one network to deal with and

additional configuration on the host is unnecessary.

11. Proxy ARP is described in Request For Comments (RFC) 925 “Multi LAN Address Resolu-

tion,” and an implementation is discussed in RFC 1027 “Using ARP to Implement Trans-

parent Subnet Gateways.” The ARP protocol is described in RFC 826 “Ethernet Address

Resolution Protocol: Or converting network protocol addresses to 48-bit Ethernet address

for transmission on Ethernet hardware.” The implementation of Proxy ARP for VxWorks is

based on RFC 925. However, it is a limited subset of that proposal.
84

4

4
TCP/IP Under VxWorks
4.7.1 ARP Introduction

ARP is used to resolve a host’s IP address into a hardware address. This is done

by broadcasting an ARP request on the physical medium (typically Ethernet). The

destination host sees the request and recognizes the destination IP address as its

own. It then sends a reply with its hardware address.

In the example in Figure 4-7, host h1 wants to communicate with host h4. It needs

h4’s hardware address, so it broadcasts an ARP request. Host h4 sees the ARP

request and replies with its hardware address. h1 records h4’s IP-to-hardware

mapping and proceeds to communicate with it.

For a host to communicate with another host on a different subnet or network (as

indicated by the IP addresses and the subnet mask), it must use a gateway. In

Figure 4-8, vx3 acts as a gateway between Network A and Network B. Each host

must have a routing entry for the gateway in its routing table. The routing table for

vx1 to communicate with Network B includes entries like the following:

node destination gateway
vx1 150.12.2.0 150.12.1.1 (network)

Figure 4-7 ARP Example

ARP BROADCAST: Who is 161.27.0.4?

ARP REPLY: 161.27.0.4 is 8:0:52:9:e7:3

h1

161.27.0.1

h2

161.27.0.2

h3

161.27.0.3

h4

161.27.0.4

h1 h2

161.27.0.2

h3

161.27.0.3

h4

161.27.0.4161.27.0.1
85

VxWorks Network 5.4
Programmer’s Guide
The routing table for h1 to communicate with Network A includes entries like the

following:

node destination gateway
h1 150.12.1.0 150.12.2.1 (network)

A sender cannot send an ARP request for a host on another subnet or network.

Instead, if it doesn’t know the hardware address for the gateway listed in its

routing table, it sends an ARP request for the gateway’s hardware address.

4.7.2 Proxy ARP Overview

With proxy ARP, nodes on different physical networks are assigned addresses with

the same subnet number. Because they appear to reside on the same network, they

can communicate directly and use ARP to resolve hardware addresses. The

gateway node provides this network transparency by watching for and answering

ARP requests that cross network boundaries. The node providing this

transparency is the proxy server.

The example configuration shown in Figure 4-8 changes slightly when proxy ARP

is used. As shown in Figure 4-9, the nodes vx1 and h1 now look as if they are on

the same subnet. Nodes h1 and vx1 are fooled by vx3 into thinking they can send

Figure 4-8 Subnets and ARP

150.12.1.20

Network A

Network B
150.12.2.34

gateway
vx1

150.12.1.1

150.12.2.1

vx3

h1
86

4

4
TCP/IP Under VxWorks
directly to each other, when they are actually sending to vx3. The gateway node,

vx3, ensures that the packets get to the correct destination.

4.7.3 Routing Issues and the Proxy Server

The proxy server provides network transparency by listening to and answering

ARP messages, and by manipulating its routing tables. Suppose the proxy server

had two interfaces: shared-memory network and Ethernet. Nodes residing on

different interfaces can have the same network address if network-specific routes

with an explicit mask of 0xFFFFFFFF were used on one interface (shared-memory

network) and network routing was done on the other (Ethernet).

The proxy clients in the shared-memory network are added with a subnet mask of

0xFFFFFFFF so that arp route entries to the proxy clients can be cloned from the

route added by the proxyLib. In the proxy server, the backplane IP address should

also have an explicit mask of 0xFFFFFFFF. For example:

Inet on the backcplane (b): 150.12.1.199:FFFFFFFF

In the example in Figure 4-10, vx1 and h1 have the same network address,

150.12.1.0. The proxy server, vx3, has a routing table like the following example:

Figure 4-9 Proxy ARP Example

150.12.1.20

Network A

Network B
150.12.1.34

vx1

150.12.1.1

150.12.1.2

vx3

h1

proxy
server
87

VxWorks Network 5.4
Programmer’s Guide
Destination Gateway
150.12.1.6 (network route with netmask 0xffffffff).......) 150.12.1.8
150.12.1.7 (network route with netmask 0xffffffff........) 150.12.1.8
150.12.1.0 (network) 150.12.1.60

The network on which the proxy server performs network-specific routing (or for

which it is acting as a proxy) with the mask 0xFFFFFFFF is referred to as the proxy
network. The proxy server has a network-specific route with mask 0xFFFFFFFF to

each node on the proxy network. The network interface on which the proxy server

performs network routing is called the main network. In the example in Figure 4-10,

the shared-memory network is the proxy network and the Ethernet is the main

network. The routing table of vx3 has network-specific routes with mask

0xFFFFFFFF for both vx1 and vx2. To send to nodes h1 and h2, it uses the network

route (150.12.1.0). There can be multiple proxy networks per main network.

However, there can only be one main network per network/subnet number.

Although network-specific routes with netmask 0xFFFFFFFF can be used on all

interfaces for complete generality, a VxWorks shared-memory network usually is

configured so that one side of the proxy server contains the majority of nodes (the

Ethernet side). Therefore, in this case it is reasonable to use this network as the

main network.

Figure 4-10 Proxy Server Example

150.12.1.62

150.12.1.6 150.12.1.8150.12.1.7

Shared-Memory

Ethernet
150.12.1.60

150.12.1.61

vx1 vx2 vx3

h2 h1

Network
88

4

4
TCP/IP Under VxWorks
4.7.4 Proxy ARP Protocol

The following subsections describe how the proxy ARP protocol responds to ARP

requests for proxy clients, non-proxy clients, and how it responds to replies from

the main network.

ARP Requests for Proxy Clients

If the proxy server receives an ARP request from the main network for a node on

a proxy network (proxy client), the proxy server generates an ARP reply with its

own hardware address as the source hardware address. If the node that generated

the request is also on the proxy network, the destination proxy client answers for

itself. In the example in Figure 4-10, if vx1 broadcasts an ARP request for 150.12.1.7,

vx2 replies to the request, not the proxy server vx3. However, if h1 broadcasts an

ARP request for 150.12.1.7, the proxy server (vx3) replies with its own hardware

address.

ARP Requests from Proxy Clients for Non-proxy Clients

If an ARP request comes from a proxy network and the destination address is not

a proxy client, the proxy server tries to resolve the request. If the hardware address

of the destination is known, the server generates and sends an ARP reply to the

source proxy client. If the hardware address is unknown, the server forwards the

ARP request to the proxy network’s corresponding main network, replacing the

source hardware address in the ARP message with its own outgoing interface

hardware address. For example, in Figure 4-10, vx1 sends an ARP request for

150.12.1.62. If vx3 knows the hardware address, it sends an ARP reply to vx1.

Otherwise it forwards the request to the Ethernet.

ARP Replies from the Main Network

If the proxy server gets an ARP reply, the server checks to see if the destination is

a proxy client. If it is, and the server previously forwarded this request, then the

server forwards the ARP reply back to the proxy client (replacing the source

hardware address in the ARP reply message with its own). In the previous

example, if h2 replies to the request for the Ethernet address of 150.12.1.62, the

proxy server (vx3) records the address for itself and then forwards the reply to vx1
(with vx3’s own hardware address substituted for h2’s).
89

VxWorks Network 5.4
Programmer’s Guide
4.7.5 Broadcast Datagrams

All nodes on a logical network are expected to receive an IP broadcast for that

network (for example, 150.12.1.255). Thus, broadcasts must be passed through the

proxy server so that nodes on both the proxy network and the main network

receive them. Because most broadcast traffic is extraneous, it is desirable to

minimize the number of forwarded shared-memory network broadcasts, thus

keeping shared-memory network traffic to a minimum.

To minimize and control shared-memory network broadcast traffic, the proxy

server can be configured to forward broadcasts only to a specified set of

destination UDP ports. Ports are enabled using the routine proxyPortFwdOn(),
and are disabled with proxyPortFwdOff(). Only the BOOTP/DHCP server port

(67) is enabled by default.

If a broadcast datagram originates from a proxy network (and the port is enabled),

the server forwards the broadcast to the main network, and to all other proxy

networks that have the same main network. For example, in Figure 4-11, if a

datagram comes from sm1, it gets forwarded to ln0 and sm0.

If the datagram originates from a main network (and the port is enabled), the

server forwards the broadcasts to all the main network’s proxy networks. For

example, in Figure 4-11, a datagram from ln0 is forwarded to both sm0 and sm1.

To prevent forwarding loops, broadcasts forwarded onto proxy networks are given

a time-to-live value of 1.

Figure 4-11 Broadcast Datagram Forwarding

proxy network 1 (sm1)

proxy network 0 (sm0)

m
ai

n
ne

tw
or

k
(ln

0)

vx1
90

4

4
TCP/IP Under VxWorks
Although forwarding broadcasts between interfaces is potentially dangerous (due

to broadcast storms and forwarding loops), the restrictions put on the

configuration make these situations unlikely. Even so, forwarding broadcasts

between proxy and main interfaces is not recommended. Therefore, forward

broadcasts only on necessary ports.

4.7.6 Special Configuration Needs for Multi-Homed Proxy Clients

Using multi-homed proxy clients requires that you make changes to the routing

and broadcast configuration of your VxWorks system. These changes are described

in the following subsections.

Routing Configuration Considerations for Multi-Homed Proxy Clients

If a proxy client also has an interface to the main network, some additional

configuration is required for optimal communications. The proxy client’s routing

tables must have network-specific routes with netmask 0xFFFFFFFF for nodes on

the proxy network, and a network-specific route for the main network. Otherwise

traffic travels an extra unnecessary hop through the proxy server.

In the example shown in Figure 4-12, vx1 is the proxy server and vx2 is a proxy

client with an interface on the main network. vx2 must be configured to have

network-specific routes with mask 0xFFFFFFFF to each of the other proxy clients

(vx4 and vx5), and a network-specific route to the main network. Otherwise any

traffic from vx2 to vx4 (or vx5) unnecessarily travels over the main network

through the proxy server (vx1).

The following is an example of vx2’s routing table. The routing table is

manipulated using routeAdd() and routeDelete(). For more information, see the

reference entry for routeLib.

Destination Gateway
150.12.0.4 (network with netmask 0xffffffff) 150.12.0.6
150.12.0.5 (network with netmask 0xffffffff) 150.12.0.6
150.12.0.0 (network) 150.12.0.7

Broadcasts Configuration Considerations for Multi-Homed Proxy Clients

A proxy client that also has an interface connected to the main network must

disable broadcast packets from the proxy interface. Otherwise, it receives

duplicate copies of broadcast datagrams (one from Ethernet and one from the

shared-memory network). Broadcasts can be disabled on an interface using

ifFlagChange(). (See the reference entry.)
91

VxWorks Network 5.4
Programmer’s Guide
4.7.7 Single-Tier Configuration for Shared-Memory Networks under Proxy ARP

Proxy ARP works only for a single tier of shared-memory networks. That is, only

interfaces directly attached to the proxy server are supported. Example

configurations that work are shown in Figure 4-13 and Figure 4-15.However, the

configuration shown in Figure 4-14 does not work because ARP requests are not

forwarded over proxy networks, and there can be only one proxy server per

shared-memory network. This single-tier restriction means that problems such as

network circles, broadcast storms, and continually forwarded ARP requests are

avoided.

To work, the configuration in Figure 4-14 requires a combination of proxy ARP and

IP (or standard subnet) routing. The modified configuration is shown in

Figure 4-16, where Proxy Network 1 has become an IP routing network with a

Figure 4-12 Routing Example

150.12.0.4 150.12.0.5

150.12.0.1

150.12.0.7150.12.0.2

150.12.0.3 150.12.0.6

vx1 vx2

vx4 vx5

h1

Main
Network

Proxy
Network

Proxy
Client

Proxy
Server
92

4

4
TCP/IP Under VxWorks
different network address. For vx6 to send to h2 in the modified configuration, it

requires the following entry in its routing table:

Destination Gateway
150.12.0.0 (network) 161.27.0.1

For h2 to send to vx6, it requires the following entry in its routing table:

Destination Gateway
161.27.0.0 (network) 150.12.0.6

4.7.8 Proxy ARP and Its Consequences for Subnet Configuration

If the main network on which the proxy server is connected is subnetted, then all

the interfaces (both proxy and main) must reside on the same subnet as the main

Figure 4-13 Single-Tier Example Using Proxy ARP with Two Branches

150.12.0.3

150.12.0.1

150.12.0.4

150.12.0.6150.12.0.5

Proxy Network 0 (sm0)

150.12.0.8150.12.0.7

Proxy Network 1 (sm1)150.12.0.9

150.12.0.2

vx1

h1 h2

vx4 vx5 vx6 vx7

Main
Network
93

VxWorks Network 5.4
Programmer’s Guide
network. That is, the main network interface and the proxy network interface on

the proxy server and all the proxy clients must have the same subnet mask.

To enable proxy ARP for the shared-memory network, reconfigure VxWorks and

rebuild it with the proxy server. The relevant configuration macro is

Figure 4-14 Multi-Tier Configuration that CANNOT Be Used with Proxy ARP

150.12.0.1Main Network

150.12.0.6 150.12.0.7150.12.0.5

Proxy Network 0

150.12.0.10150.12.0.9

Proxy Network 1

150.12.0.2

150.12.0.4

150.12.0.3

150.12.0.8

vx1

h1 h2

vx2 vx3 vx4

vx5 vx6

Proxy
Server

Proxy
Server
94

4

4
TCP/IP Under VxWorks
INCLUDE_PROXY_SERVER. If the target is processor zero (the shared-memory

network master), the proxy server is enabled using the boot parameter inet on
ethernet (e) as the main network, and the boot parameter inet on backplane (b) as

the proxy network. From the example in Figure 4-15, vx1’s corresponding boot

parameters are as follows:

Figure 4-15 Another Single-Tier Example Using Proxy ARP

150.12.7.6 150.12.7.7150.12.7.5

150.12.7.3

150.12.7.1 150.12.7.2

150.12.7.4

vx3

vx1

vx2 vx4

h1 h2

Main
Network

Proxy
Network
95

VxWorks Network 5.4
Programmer’s Guide
inet on ethernet (e) : 150.12.7.3:ffffff00
inet on backplane (b) : 150.12.7.4

Proxy ARP Server Configuration

The proxy server for the shared-memory network must be the master board. As

previously mentioned, the server must be configured for proxy servers. The

relevant configuration macro is INCLUDE_PROXY_SERVER. If sequential

addressing is not used, then the master backplane inet address must be specified

as well as the slaves’ backplane and gateway inet addresses. This configuration

gives you greater control over the addresses that are assigned to the target boards.

Sequential and Default Addressing

If such control is not required, it is possible to have the proxy server assign the inet

addresses to the proxy clients. When VxWorks is configured for sequential

addressing, the proxy server assigns incremental inet addresses to the slave boards

based on the proxy server’s backplane inet address. The relevant configuration

macro is INCLUDE_SM_SEQ_ADDR. For example, if the proxy server has a

backplane inet address of 150.12.0.4, the inet address assigned to the first slave is

150.12.0.5, to the second slave 150.12.0.6, and so on. (See Figure 4-16.)

Using sequential addressing frees you from having to specify a backplane or a

gateway inet address for each proxy client. All the addresses are assigned by the

proxy server at boot time.

It is also possible to have the proxy server’s backplane address configured by

default. This allows for greater flexibility in the assignment of backplane inet

addresses. You are only required to assign the inet address for the proxy server’s

interface to the main network. The backplane address is assigned automatically by

adding 1 (one) to the network interface address.

To assign the proxy server’s backplane address by default, you must use a

configuration with default addressing as well as sequential addressing. The

relevant configuration macro is INCLUDE_PROXY_DEFAULT_ADDR. This frees

you from having to specify the backplane inet address of the proxy server and the

proxy clients, and the gateway address of the proxy clients.

For example, with VxWorks so configured: if the proxy server is given the inet

network address of 150.12.0.3, its backplane address is 150.12.0.4. The first proxy

client is assigned the inet address 150.12.0.5, the second 150.12.0.6, and so on.

Note that with proxy ARP it is no longer necessary to specify the gateway. Each

target on the shared-memory network (except the proxy server) can register itself

as a proxy client by specifying the proxy ARP flag, 0x100, in the boot flags instead
96

4

4
TCP/IP Under VxWorks
of specifying the gateway. For additional information on booting with proxy ARP,

see 13.5 Booting from the Shared-Memory Network, p.201.

VxWorks Images for Proxy ARP with Shared Memory and IP Routing

Even if you are using the same board for the master and the slaves, the master and

slaves need separate BSP directories because they have different configurations.

Figure 4-16 Multi-Tier Example Using Proxy ARP and IP Routing

150.12.0.1
Main Network

150.12.0.6 150.12.0.7150.12.0.5

Proxy Network

161.27.0.3161.27.0.2

Network 161

150.12.0.2

150.12.0.4

150.12.0.3

161.27.0.1

vx1

h1 h2

vx2 vx3 vx4

vx5 vx6

(Ethernet)

(Shared Memory Network)

(IP Routing Network)

Proxy
Server

Proxy
Clients

(master)

(slaves)
97

VxWorks Network 5.4
Programmer’s Guide
For more information on configuring VxWorks, see the Tornado User’s Guide:
Projects.

■ Proxy ARP and Shared Memory Definition in the VxWorks Configuration:

(1) PING client (configuration constant: INCLUDE_PING)

(2) Shared memory network initialization (INCLUDE_SM_NET)

(3) Proxy ARP server (INCLUDE_PROXY_SERVER)

(4) Auto address setup (INCLUDE_SM_SEQ_ADDR) – required only for default

addressing

(5) Default address for bp (INCLUDE_PROXY_DEFAULT_ADDR) – required only

for default addressing

■ Master Definition in config.h:

#define PROXY_ARP_MASTER
#define SM_OFF_BOARD=FALSE

■ Slave definition in config.h:

#define PROXY_ARP_SLAVE
#define SM_OFF_BOARD=TRUE

Setting Up Boot Parameters and Booting

See 3.5 Shared-Memory Network on the Backplane, p.40 for information on booting

shared memory networks. After booting vx1 (the master), use smNetShow() to
find the shared memory anchor, which will be used with the slave boot device (for

vx2, vx3, and vx4). You will need to run sysLocalToBusAddr() on the master and

sysBusToLocalAddr() on each type of target to get the correct bus address for the

anchor. For general information on boot parameters, see the Tornado User’s Guide:
Getting Started.

Creating Network Connections

From vx1 (the master): Use routeAdd() to tell the master (the proxy server) about

the IP routing network by running the following:

-> routeAdd ("161.27.0.0", "150.12.0.6")
value = 0 = 0x0

From vx3: Since vx3 boots from the shared memory network, it needs to have its

connection to the IP routing network brought up explicitly. The following example

shows how to do this for vx3 in Figure 4-16:
98

4

4
TCP/IP Under VxWorks
-> userNetIfAttach ("ln", "161.27.0.1")
Attaching network interface ln0...done.
value = 0 = 0x0
-> userNetIfConfig ("ln", "161.27.0.1", "t0-1", 0xffffff00)
value = 0 = 0x

Diagnosing Shared Memory Booting Problems

See Troubleshooting, p.53 for information on debugging the shared memory

network.

Diagnosing Routing Problems

The following routines can be useful in locating the source of routing problems:

ping()
Starting from vx1, ping other processors in turn to see if you get the expected

result. The function returns OK if it reaches the other machine, or ERROR if the

connection fails.

smNetShow()
This routine displays cumulative activity statistics for all attached processors.

arpShow()
This routine displays the current Internet-to-Ethernet address mappings in the

system ARP table.

arptabShow()
This routine displays the known Internet-to-Ethernet address mappings in the

ARP table

routeShow()
This routine displays the current routing information contained in the routing

table.

ifShow()
This routine displays the attached network interfaces for debugging and

diagnostic purposes.

proxyNetShow()
This routine displays the proxy networks and their associated clients.

proxyPortShow()
This routine displays the ports currently enabled.

NOTE: Substitute the appropriate network boot device for “ln”. The correct boot

device is the first one given by ifShow().
99

VxWorks Network 5.4
Programmer’s Guide
100

5
Network Configuration

Protocols
5.1 Introduction

This section describes the protocols used for retrieving network configuration

information. These protocols are:

■ DHCP (Dynamic Host Configuration Protocol)
■ BOOTP (Boot Strap Protocol)
■ SNMP (Simple Network Management Protocol)

Both a DHCP server and a BOOTP server can supply an Internet host with an IP

address and related configuration information. When a BOOTP server assigns an

IP address to an Internet host, the address is permanently assigned.

A DHCP server is more flexible. It assigns an IP address on either a permanent or

leased basis. Leased IP addresses are an advantage in environments where large

numbers of Internet hosts join the network for sessions of limited duration.

Unfortunately, predicting the duration of such sessions is not usually possible at

the time the leases are assigned.

Fortunately, a DHCP client has the ability to recontact its server and renegotiate the

lease on an IP address (or request a replacement address). Unlike a BOOTP client,

a DHCP client must remain active for as long as the target needs a current lease on

an IP address.

Also included at the end of this section is a brief description of SNMP, a separately

purchasable optional networking product that is compatible with VxWorks. For

detailed usage information on SNMP, see the WindNet SNMP VxWorks Optional
Product Supplement.
101

VxWorks Network 5.4
Programmer’s Guide
DHCP and BOOTP are Supported for Ethernet Devices Only

Both the DHCP and BOOTP clients use broadcasts to discover an appropriate

server. As a result, both protocols require network devices capable of link-layer

broadcasts. In addition, the current VxWorks implementations of DHCP and

BOOTP assume Ethernet. Thus, under VxWorks, DHCP and BOOTP support only

Ethernet devices and the shared-memory network driver.

5.2 DHCP, Dynamic Host Configuration Protocol

DHCP, an extension of BOOTP, is designed to supply clients with all of the Internet

configuration parameters defined in the Host Requirements documents (RFCs

1122 and 1123) without manual intervention. Like BOOTP, DHCP allows the

permanent allocation of configuration parameters to specific clients. However,

DHCP also supports the assignment of a network address for a finite lease period.

This feature allows serial reassignment of network addresses. The DHCP

implementation provided with VxWorks conforms to the Internet standard RFC

1541.

VxWorks DHCP Components

VxWorks includes a DHCP client, server, and relay agent. The DHCP client can

retrieve one or more sets of configuration parameters from either a DHCP or

BOOTP server. The DHCP client also maintains any leases it has retrieved.

Likewise, the DHCP server can process both BOOTP and DHCP messages. Both

the client and server implementations support all options described in RFC 1533.

The DHCP relay agent provides forwarding of DHCP and BOOTP messages across

subnet boundaries. 1

Interface Settings Retrieved Using DHCP

If the server is configured to provide them, a lease can include configuration

parameters in addition to an assigned IP address . To minimize network traffic, the

DHCP client sets configuration values to the defaults specified in the Host

Requirements documents (RFCs 1122 and 1123) if the corresponding parameters

are not specified by the server.

1. In addition to the supported target-resident server, VxWorks also includes source for an

unsupported UNIX-compatible DHCP server. See target/unsupported/dhcp-1.3beta.
102

5

5
Network Configuration Protocols
Unlike the configuration parameters supplied by BOOTP, the DHCP-assigned

configuration parameters can expire. Although the DHCP server can duplicate

BOOTP behavior and issue a permanent IP address to the client, the lease granted

is usually temporary. To continue using the assigned parameters, the client must

periodically contact the issuing server to renew the lease.

5.2.1 Configuring VxWorks to Include the DHCP Components

To control which DHCP feature VxWorks includes, you must reconfigure

VxWorks. The relevant configuration macro is found in the list below:

DHCP server

Includes the DHCP server code in the VxWorks image. (Configuration

flag: INCLUDE_DHCPS)

DCHPv4 runtime client

Includes the DHCP client code in the VxWorks image. You need this code

if you want the target to boot using DHCP. (Configuration flag:

INCLUDE_DHCPC)

DHCP relay agent

Includes the DHCP relay agent in the VxWorks image. Include the DHCP

relay agent if the VxWorks target relays information from a DHCP server

on a different subnet. (Configuration flag: INCLUDE_DHCPR)

After defining any of the above constants, rebuild VxWorks.

5.2.2 Configuring the DHCP Client

The following configuration macros are defined by default for the DHCP client:

DHCP Client Target Port

Port monitored by DHCP servers. Default: 67. (Configuration constant:

DHCPC_SPORT)

! WARNING: The Tornado tools do not currently have any way to discover or

respond to a change in the target’s IP address. Such a change breaks the network

connection. In response, you must manually reconnect the Tornado tools to the

target’s new IP address. During development, this is rarely a serious problem, and

you can avoid it by having the DHCP server issue an infinite lease on the target’s

IP address.
103

VxWorks Network 5.4
Programmer’s Guide
DHCP Client Host Port

Port monitored by DHCP clients. Default: 68. (Configuration constant:

DHCPC_CPORT)

DHCP Client Maximum Leases

Maximum number of simultaneous leases. Default: 4. (Configuration

constant: DHCPC_MAX_LEASES)

DHCP Client Timeout Value

Seconds to wait for multiple offers. Default: 5. (Configuration constant:

DHCPC_OFFER_TIMEOUT)

DHCP Client Default Lease

Desired lease length in seconds. Default: 3600. (Configuration constant:

DCHPC_DEFAULT_LEASE)

DHCP Client Minimum Lease

Minimum allowable lease length (seconds). Default: 30. (Configuration

constant: DHCPC_MIN_LEASE)

You can configure VxWorks to set these parameters to any desired value. However,

the DHCP client rejects all offers whose duration is less than the minimum lease.

Therefore, setting the DHCP Client Minimum Lease value too high could prevent

the retrieval of any configuration parameters. In addition, if the DHCP client is

used at boot time, the values for DHCP Client Target Port and DHCP Client Host

Port used in the boot program and run-time image must match.

Finally, the DHCP Client Maximum Leases limit on multiple concurrent leases

includes a lease established at boot time. For example, if this limit has a value of

four, and if a boot-time DHCP client retrieves a lease, the run-time DHCP client is

limited to three additional sets of configuration parameters (until the boot-time

lease expires).

For more information on using a DHCP client to retrieve network configuration

parameters at boot-time, see 13. Booting over the Network.

5.2.3 Configuring DHCP Servers

Configuring the DHCP server requires that you create a pool of configuration

parameter sets. Each parameter set must include an IP address. When a DHCP

NOTE: In addition to setting values for the defines mentioned above, most real-

world uses of DHCP require that you provide an event hook routine to handle

lease events. For more information, see the dhcpcEventHookAdd() reference entry.
104

5

5
Network Configuration Protocols
client makes a request of the server, the server can then assign a parameter set to

the client (either permanently or on a leased basis). To store and maintain this pool

of configuration parameter sets, some DHCP servers use one or more files. This

approach is analogous to the use of the bootptab file associated with SunOS

BOOTP servers. The unsupported DHCP server distributed with VxWorks takes

this approach.

However, some VxWorks targets do not include a file system. The supported

target-resident DHCP server does not use a file-based mechanism for parameter

storage. Instead, the target-resident server maintains configuration parameters in

memory-resident structures. To control the contents of these memory-resident

structures, you must modify the source code that defines these structures.

The following sections describe how to configure the supported DHCP server.

Also included are pointers to reference information on configuring the

unsupported DHCP server. If you decide to use a third-party DHCP server, consult

the configuration information in the vendor-supplied documentation.

Configuring the Supported DHCP Server

Configuring the supported (target-resident) DHCP server involves setting

appropriate values for certain configuration macros. For more information on

configuring VxWorks, see the Tornado User’s Guide: Projects. The relevant

configuration macros are those in the following list:

DHCP Server Lease Storage Routine

Default: None. This constant specifies the name of the routine that handles

non-volatile storage of the active leases. For more information, see Storing
and Retrieving Active Network Configurations, p.108. (Configuration

constant: DHCPS_LEASE_HOOK)

DHCP Server Address Storage Routine

Default: None. This constant specifies the name of an optional storage

routine. For more information, see Storing and Retrieving Active Network
Configurations, p.108. (Configuration constant:

DHCPS_ADDRESS_HOOK)

DHCP Server Standard Lease Length

Default: 3600. This constant specifies the default lease length in seconds.

This value applies if no explicit value is set in the address pool.

(Configuration constant: DHCPS_DEFAULT_LEASE)
105

VxWorks Network 5.4
Programmer’s Guide
DHCPS_MAX_LEASE
Default: 3600. This constant specifies the maximum lease length in

seconds. This value applies if no explicit value is set in the address pool.

DHCP Server/Relay Agent Network Radius

Default: 4. This value limits the number of subnets that a DHCP message

can cross (prevents network flooding). The maximum valid value is 16.

(Configuration constant: DHCP_MAX_HOPS)

DHCP Server/Relay Agent Host Port

Default: 67. This value specifies the port monitored by DHCP servers.

(Configuration constant: DHCP_SPORT)

DHCP Server/Relay Agent Target Port

Default: 68. This value specifies the port monitored by DHCP clients.

(Configuration constant: DHCPS_CPORT)

To determine its initial configuration data, the supported DHCP server uses the

dhcpsLeaseTbl structure defined in usrNetwork.c. This structure describes the

server’s pool of network configuration parameter sets. It has the following format:

DHCPS_LEASE_DESC dhcpsLeaseTbl [] =
{
/* {"Name", "Start IP", "End IP", "parameters"} */

{"dflt", NULL, NULL, DHCPS_DEFAULT_ENTRY},

/* Sample database entries. */

/* {"ent1", "90.11.42.24", "90.11.42.24",
"clid=\"1:0x08003D21FE90\":maxl=90:dfl l=60"}, */

/* {"ent2", "90.11.42.25", "90.11.42.26",
"snmk=255.255.255.0:maxl=90:dfll=70:file=/vxWorks"},*/

/* {"ent3", "90.11.42.27", "90.11.42.27",
"maxl=0xffffffff:file=/vxWorks"}, */

/* {"entry4", "90.11.42.28", "90.11.42.29",
"albp=true:file=/vxWorks"} */

};

Each entry in this lease table must include an unique entry name of up to eight

characters and an IP address range for assignment to requesting clients. The

parameters field contains a colon-separated list of optional parameters for

inclusion in the DHCP server’s response. If subnetting is in effect, a critical entry

in the parameters field is the subnet mask (snmk). The server does not issue
106

5

5
Network Configuration Protocols
addresses to clients which would change their current subnet. The address pool

must specify a correct subnet mask if the default class-based mask is not valid.

A complete description of the parameters field is found in the manual pages for the

DHCP server. Any parameters not specified take default values according to the

Host Requirements Documents (RFC 1122 and 1123). The server can also read

additional entries from an optional storage hook (discussed below).

The sample entries shown above demonstrate the possible server-issued lease

types:

clid Indicates that this is a manual lease. Such a lease is issued only to the client

with the matching type:id pair. The address range for these entries must

specify a single IP address. The sample shown for “ent1” uses the

hardware address which the supported DHCP client uses for an identifier.

maxl Indicates that this lease is dynamic. This parameter specifies the maximum

lease duration granted to any requesting client. The automatic lease

illustrated in the third sample entry is implied by the assignment of an

infinite value for maxl.

albp Indicates a special type of automatic lease. Setting the albp parameter to

true in the fourth entry marks this lease as suitable for BOOTP clients that

contact this DHCP server.

The lease type is used by the server to select one of the three supported

mechanisms for IP address allocation. With manual allocation, DHCP simply

conveys the related manual lease to the client. If dynamic allocation is used, the

protocol assigns one of the dynamic leases to the client for a finite period.

Automatic allocation assigns a permanent IP address from the corresponding

automatic leases.

Dynamic allocation is the only method that allows reuse of addresses. The

allocation type defines the priority for assigning an IP address to a DHCP client.

Manual allocations have the highest priority, and automatic allocations the lowest.

Among automatic leases, configurations which are available only to DHCP clients

are preferred.

Adding Entries to the Database of a Running DHCP Server

After the server has started, use the following routine to add new entries to the

lease database:
107

VxWorks Network 5.4
Programmer’s Guide
STATUS dhcpsLeaseEntryAdd
(
char * pName, /* Name of lease entry. */
char * pStartIp, /* First IP address to assign. */
char * pEndIp, /* Last IP address in assignment range. */
char * pParams /* Formatted string of lease parameters. */
)

As input, dhcpsLeaseEntryAdd() expects to receive an entry name, starting and

ending IP addresses for assignment to clients, and a formatted string containing

lease parameters. If the entry is added successfully, the routine returns OK, or

ERROR otherwise. This routine allows expansion of the address pool without

rebuilding the VxWorks image whenever new entries are needed. If you provide

an appropriate storage hook, these entries are preserved across server restarts.

Storing and Retrieving Active Network Configurations

To store and retrieve network configuration information, you need to implement

an address storage routine and a lease storage routine. The lease storage routine

uses the prototype:

STATUS dhcpsLeaseStorageHook
 (
 int op, /* requested storage operation */
 char *pBuffer, /* memory location for record of active lease */
 int dataLen /* amount of lease record data */
)

Your lease storage routine must store and retrieve active network configurations.

To install the routine you created, configure VxWorks with the DHCP Server Lease

Storage Routine set to a string containing the routine name. The relevant

configuration macro is DHCPS_LEASE_HOOK.

The address storage routine uses the following prototype:

STATUS dhcpsAddressStorageHook
 (
 int op, /* requested storage operation */
 char * pName, /* name of address pool entry */
 char * pStartIp, /* first IP address in range */
 char * pEndIp, /* last IP address in range */
 char * pParams /* lease parameters for each address */
)

! CAUTION: Not providing the storage routine could cause DHCP to fail.
108

5

5
Network Configuration Protocols
Your address storage routine (optional) stores and retrieves additional address-

pool entries using dhcpsLeaseEntryAdd(). To preserve these entries, configure

VxWorks with the DHCP Server Address Storage Routine set to the name of the

storage routine. The relevant configuration macro is DHCPS_ADDRESS_HOOK. If

this configuration is not done, active leases using alternate entries are not renewed

when the server is restarted.

The cmd parameters of both storage routines expect one of the following values:2

DHCPS_STORAGE_START
Tells your storage routine to perform any necessary initialization. Your

storage routine should “reset” and thus return or replace any previously

stored data.

DHCPS_STORAGE_STOP
Tells your storage routine to perform any necessary cleanup. After a stop,

the storage routine should not perform any reads or writes until after the

next start.

DHCPS_STORAGE_WRITE
Tells the routine to store network configurations. Each write must store the

data to some form of permanent storage.

The write functionality of your lease storage routine is critical. It is

required to preserve the integrity of the protocol and prevent assignment

of IP addresses to multiple clients. If the server is unable to store and

retrieve the active network configurations, the results are unpredictable.

The write functionality of the lease storage routine must accept a sequence

of bytes of the indicated length.

The write functionality of the address storage routine must accept NULL-

terminated strings containing the entry name, starting and ending

addresses, and additional parameters.

If a write completes successfully, the routine must return OK.

DHCPS_STORAGE_READ
Tells your storage routine to retrieve network configurations. Each read

must copy the data (stored by earlier writes) into the buffers provided. The

returned information must be of the same format provided to the write

operation.

If a read completes successfully, your routine must return OK. If earlier

reads have retrieved all available data, or no data is available, your routine

2. These symbolic constants are defined in dhcpsLib.h.
109

VxWorks Network 5.4
Programmer’s Guide
must return ERROR. The server calls your routine with read requests until

ERROR is returned.

DHCPS_STORAGE_CLEAR
Used only in calls to your lease storage routine. This value tells your

routine that any data currently stored is no longer needed. Following this

operation, reads should return error until after the next write.

Configuring the Unsupported DHCP Server

The unsupported DHCP server is a port of a public domain server available from

the WIDE project. This port modifies the original code so that it supports Solaris as

well as SunOS. As a convenience, WRS provides the code for the unsupported

sever in target/unsupported/dhcp-1.3beta. Unlike the supported VxWorks DHCP

server, the unsupported server uses files to store the databases that track the IP

addresses and the other configuration parameters that it distributes.

You can specify the names of these files in the dhcps command that you use to start

the DHCP server. If you do not specify the configuration files by name, the server

uses the following defaults: /etc/dhcpdb.pool, and /etc/dhcpdb.bind (or

/var/db/dhcpdb.bind for BSD/OS). If the server supports a relay agent, it also

maintains an extra database with the default name of /etc/dhcpdb.relay. The server

also creates other files as needed in the /etc directory, but you do not need to edit

these files to configure the server.

For the specifics of how you should edit these files, see the DHCPS(5),

DHCPDB.POOL(5), and DHCPDB.RELAY(5) man pages included with the source

code for the unsupported DHCP server.

5.2.4 Configuring the Supported DHCP Relay Agent

The relay agent uses some of the same configuration constants as the DHCP server:

DHCP Server/Relay Agent Network Radius

Default: 4. Hops before discard, up to 16. (Configuration constant:

DHCP_MAX_HOPS)

DHCP Server/Relay Agent Host Port

Default: 67. Port monitored by DHCP servers. (Configuration constant:

DHCPS_SPORT)
110

5

5
Network Configuration Protocols
DHCP Server/Relay Agent Target Port

Default: 68. Port monitored by DHCP clients. (Configuration constant:

DHCPS_CPORT)

If DHCP relay is configured into VxWorks (The relevant configuration macro is

INCLUDE_DHCPR), the build generates a VxWorks image that includes the DHCP

relay agent. The relay agent reads the data structure contained in usrNetwork.c to

obtain the IP addresses of target DHCP servers or other relay agents. That data

structure, dhcpsRelayTbl, has the following format:

DHCPS_RELAY_DESC dhcpsRelayTbl [] =
{
/* IP address of agent subnet number
 ------------------- ------------ */
/* {"90.11.42.254", “90.11.42.0”} */

 };

Each entry in the table must specify a valid IP address for a DHCP server on a

different subnet than the relay agent. The relay agent transmits a copy of all DHCP

messages sent by clients to each of the specified addresses. The agent does not set

the IP routing tables so that the specified target addresses are reachable.

The relay agent forwards DHCP client messages through only a limited number of

targets: the DHCP Server/Relay Agent Network Radius. When the value specified

in the VxWorks configuration is exceeded, the message is silently discarded. This

value is only increased when the message is forwarded by a DHCP agent. It is

completely independent of the similar value used by IP routers. RFC 1542 specifies

the maximum value of 16 for this constant. The default hops value is four.

Beyond providing the list of target addresses, and optionally changing the

maximum number of hops permitted, no further action is necessary. The DHCP

relay agent executes automatically whenever it is included in the VxWorks image.

5.2.5 DHCP Within an Application

The target-resident DHCP client can retrieve multiple sets of configuration

parameters. These retrieval requests can execute either synchronously or

asynchronously. In addition, the retrieved network configuration information can

be applied directly to the underlying network interface or used for some other

purpose. The following example demonstrates the asynchronous execution of a

DHCP request for a lease with a 30 minute duration in which the retrieved

configuration parameters are applied to the network interface used to contact the

DHCP server.3
111

VxWorks Network 5.4
Programmer’s Guide
 pIf = ifunit ("net0"); /* Access network device. */

 /* Initialize lease variables for automatic configuration. */

pLeaseCookie = dhcpcInit (pIf, TRUE);
 if (pLeaseCookie == NULL)
 return (ERROR);

/* Set any lease options here. */

 dhcpcOptionSet (pLeaseCookie, _DHCP_LEASE_TIME_TAG, 1800, 0, NULL);

 result = dhcpcBind (pLeaseCookie, FALSE); /* Asynchronous execution. */
 if (result != OK)
 return (ERROR);

In the code above, the dhcpcInit() call used a value of TRUE for the autoconfig
parameter. This automatically includes a request for a subnet mask and broadcast

address in the cookie (pLeaseCookie). To request additional options for this lease

(such as a lease duration of 30 minutes) the code makes a call to dhcpcOptionSet().
Because the DHCP protocol requires that all requested parameters be specified

before a lease is established, the dhcpcOptionSet() call must precede the

asynchronous dhcpcBind() call that establishes the lease.

Although it is omitted from the example, you can use a dhcpcLeaseHookAdd() call

to associate a lease event hook routine with this lease. That way, you can note the

DHCPC_LEASE_NEW event that occurs when the asynchronous dhcpcBind()
completes its negotiations with the DHCP server.

To query the local DHCP client for a parameter value from the lease information it

has retrieved, call dhcpcOptionGet(). This routine checks whether the lease

associated with a particular lease cookie is valid and whether the requested

parameter was provided by the server. If so, dhcpcOptionGet() copies the

parameter value into a buffer. Otherwise, it returns ERROR. A call to

dhcpcOptionGet() generates no network traffic; it queries the local DHCP client

for the information it needs. The following sample demonstrates the use of this

routine:

inet_addr webServer;
STATUS result;
...
result = dhcpcOptionGet (pLeaseCookie, _DHCP_DFLT_WWW_SERVER_TAG, 4,
 &webServer);

3. The limit on the number of concurrent leases is the “DHCP Client Maximum Leases” value

set during configuration (configuration constant: DHCPC_MAX_LEASES). When setting

this value, remember to count the lease (if any) that the client retrieved at boot time.
112

5

5
Network Configuration Protocols
if (result == OK)
printf("Primary web server: %s", inet_ntoa (webServer));

...

In addition to dhcpcOptionGet(), you can use dhcpcParamsGet() to retrieve

multiple lease parameter values simultaneously. The DHCP client library also

provides other routines that you can use to get the values of particular parameters

(such as the lease timers) without supplying their option tags.

For more information on DHCP client features, see the dhcpcLib manual pages.

5.3 BOOTP, Bootstrap Protocol

BOOTP is a basic bootstrap protocol implemented on top of the Internet User

Datagram Protocol (UDP). The BOOTP client provided with VxWorks lets a target

retrieve a single set of configuration parameters from a BOOTP server. Included

among these configuration parameters is a permanently assigned IP address and

a file name specifying a bootable image. To retrieve the boot file, the target can use

a file transfer program, such as TFTP, FTP, or RSH.4

BOOTP offers centralized management of target boot parameters on the host

system. Using BOOTP, the VxWorks target can retrieve the boot parameters stored

on a host system. This lets you set up VxWorks systems that can automatically

reboot without the need to enter the configuration parameters manually.

A BOOTP server must be running (with inetd on a UNIX system) on the boot host,

and the boot parameters for the target must be entered into the BOOTP database

NOTE: To check on configuration parameters associated with a lease established at

boot time, use the pDhcpcBootCookie global variable as the lease cookie in a call

to dhcpcOptionGet().

4. For the complete BOOTP protocol specification, see RFC 951 “Bootstrap Protocol (BOOTP),”

RFC 1542 “Clarifications and Extensions for BOOTP,” and RFC 1048 “BOOTP Vendor Infor-

mation Extensions.”

NOTE: For many applications, the DHCP protocol can function as an alternative

to BOOTP.
113

VxWorks Network 5.4
Programmer’s Guide
(bootptab). The format of this database is server specific. An example bootptab
file is described in About the BOOTP Database, p.114.

BOOTP is a simple protocol based on single-packet exchanges. The client

transmits a BOOTP request message on the network. The server gets the message,

and looks up the client in the database. It searches for the client’s IP address if that

field is specified; if not, it searches for the client’s hardware address.

If the server finds the client’s entry in the database, it performs name translation

on the boot file, and checks for the presence (and accessibility) of that file. If the

file exists and is readable, the server sends a reply message to the client.

5.3.1 BOOTP Configuration

Using the BOOTP server to supply boot parameters requires that you edit the

server’s BOOTP database file, bootptab. However, the specifics of how to do this

can vary from server to server. Refer to the manuals for your host’s BOOTP server.

If the host does not provide a BOOTP server as part of the operating system, a copy

of the publicly available CMU BOOTP server is provided in

target/unsupported/bootp2.1.

The following discussion of how to modify bootptab applies to the CMU BOOTP

server.

About the BOOTP Database

To register a VxWorks target with the BOOTP server, you must enter the target

parameters in the host’s BOOTP database (/etc/bootptab). The following is an

example bootptab for the CMU version of the BOOTP server:

/etc/bootptab: database for bootp server (/etc/bootpd)
Last update Mon 11/7/88 18:03
Blank lines and lines beginning with '#' are ignored.
#
Legend:
#
first field -- hostname
(may be full domain name and probably should be)
#
hd -- home directory
bf -- boot file
cs -- cookie servers
ds -- domain name servers
gw -- gateways
ha -- hardware address
114

5

5
Network Configuration Protocols
ht -- hardware type
im -- impress servers
ip -- host IP address
lg -- log servers
lp -- LPR servers
ns -- IEN-116 name servers
rl -- resource location protocol servers
sm -- subnet mask
tc -- template host (points to similar host entry)
to -- time offset (seconds)
ts -- time servers
#
Be careful to include backslashes where they are needed. Weird (bad)
things can happen when a backslash is omitted where one is intended.
#
First, we define a global entry which specifies what every host uses.

global.dummy:\
:sm=255.255.255.0:\
:hd=/usr/wind/target/vxBoot:\
:bf=vxWorks:

vx240:ht=ethernet:ha=00DD00CB1E05:ip=150.12.1.240:tc=global.dummy
vx241:ht=ethernet:ha=00DD00FE2D01:ip=150.12.1.241:tc=global.dummy
vx242:ht=ethernet:ha=00DD00CB1E02:ip=150.12.1.242:tc=global.dummy
vx243:ht=ethernet:ha=00DD00CB1E03:ip=150.12.1.243:tc=global.dummy
vx244:ht=ethernet:ha=0000530e0018:ip=150.12.1.244:tc=global.dummy

Note that common data is described in the entry global.dummy. Any target

entries that want to use the common data use tc=global.dummy. Any target-

specific information is listed separately on the target line. For example, in the

previous file, the entry for the target vx244 specifies only its Ethernet address

(0000530e0018) and IP address (150.12.1.244). The subnet mask (255.255.255.0),

home directory (/usr/wind/target/vxBoot), and boot file (vxWorks) are taken from

the common entry global.dummy.

Editing the BOOTP Database to Register a VxWorks Target

To register a VxWorks target with the BOOTP server, log onto the host machine,

edit the BOOTP database file to include an entry that specifies the target address

(ha=), IP address (ip=), and boot file (bf=). For example, to add a target called

vx245, with Ethernet address 00:00:4B:0B:B3:A8, IP address 150.12.1.245, and boot

file /usr/wind/target/vxBoot/vxWorks, you would add the following line to the

file:

vx245:ht=ethernet:ha=00004B0BB3A8:ip=150.12.1.245:tc=global.dummy
115

VxWorks Network 5.4
Programmer’s Guide
Note that you do not need to specify the boot file name explicitly. The home

directory (hd) and the boot file (bf) are taken from global.dummy.

When performing the boot file name translation, the BOOTP server uses the value

specified in the boot file field of the client request message as well as the bf (boot

file) and the hd (home directory) field in the database. If the form of the file name

calls for it (for example, if it is relative), the server prefixes the home directory to

the file name. The server checks for the existence of the file; if the file is not found,

it sends no reply. For more information, see bootpd in the manual for your host.

When the server checks for the existence of the file, it also checks whether its read-

access bit is set to public, because this is required by tftpd(8) to permit the file

transfer. All file names are first tried as filename.hostname and then as filename, thus

providing for individual per-host boot files.

In the previous example, the server first searches for the file

/usr/wind/target/vxBoot/vxWorks.vx245. If the file does not exist, the server looks

for /usr/wind/target/vxBoot/vxWorks.

5.4 SNMP, Simple Network Management Protocol

WindNet SNMP is an optional component that provides VxWorks with SNMP

(Simple Network Management Protocol) capabilities. It is a “bilingual” product,

supporting both SNMP version 1 and version 2c. SNMP enables network devices,

called agents, to be monitored, controlled, and configured remotely from a network

management station.

WindNet SNMP allows a target to be managed and configured remotely by an

SNMP manager. The Management Information Base (MIB) specifies the network

management variables stored in an agent. You can customize the agent by

extending its MIB. The newly-added MIB can include information specific to your

application and environment. As shipped, WindNet SNMP supports the standard

Management Information Base-II (MIB-II) definitions.

WindNet SNMP is extensible. In addition to the base functionality, you can make

extensions to the SNMP agent’s MIB to include information specific to your

application and environment.

For detailed information about WindNet SNMP, see the WindNet SNMP VxWorks
Optional Product Supplement.
116

6
Dynamic Routing Protocols
6.1 Introduction

VxWorks retrieves routing information by searching for it in a routing table. To set

up and manage this table manually, use the routines routeAdd() or mRouteAdd().
However, because the network environment is constantly in flux, the information

in the routing table grows obsolete as machines join or leave the network. To

update the routing table dynamically, VxWorks supports two protocols:

■ RIP (Routing Information Protocol)
■ OSPF (Open Shortest Path First)

RIP, the older and simpler protocol, comes bundled with VxWorks, and is intended

for small to medium-sized networks. OSPF is a separately purchasable option for

use with VxWorks. OSPF is superior to RIP in many ways. For example, OSPF is a

link-state protocol, not a distance-vector protocol, like RIP. The messages from a

distance-vector protocol contain a vector of distances (a hop count). Each router uses

these distance-vectors to update its routing tables.

A router running a link-state protocol, such as OSPF, is more active about getting the

information it needs. An OSPF router actively tests the status of its links to its

neighbors, and then shares this information with other OSPF routers. One result of

this more active approach is faster network stabilization after a change, such as the

loss of a router or a link. Unfortunately, this enhanced stabilization comes at the

price of increased complexity. As a result, it requires considerably more thought to

configure OSPF correctly.
117

VxWorks Network 5.4
Programmer’s Guide
6.2 RIP, Routing Information Protocol

RIP maintains routing information within small internetworks. You can use RIP

only in networks where the largest number of hops is 15. While this might seem

like a large number, there are already many existing corporate networks that

exceed this limit.1

RIP is based on work done in the Internet community, and its algorithmic base

goes back to the ARPANET circa 1969. It is based on the distance-vector algorithm,

also called Bellman-Ford, which is described in “Dynamic Programming,” from

Princeton University by R. E. Bellman. This paper was published in 1957.

The RIP server provided with VxWorks is based on the BSD 4.4 routed program.

There are several relevant RFCs; the two most important are RFC 1058, in which

RIP version 1 was first documented, and RFC 1388, in which the version 2

extensions are documented.

The VxWorks RIP server supports three modes of operation:

■ Version 1 RIP

This mode of operation follows RFC 1058. It uses subnet broadcasting to

communicate with other routers and sends out only a gateway and metric for

each subnet.

■ Version 2 RIP with Broadcasting

This mode is the same as Version 2 RIP with multicasting (see below), except

that it uses broadcasting instead of multicasting. This mode is backwards

compatible with RIP Version 1 and is the mode recommended in RFC 1388.

■ Version 2 RIP with Multicasting

In this mode, the server not only knows about routers but can describe routes

based on their subnet mask and can designate a gateway that is not the router

that sends the updates. Thus, the machine that hosts the RIP server does not

necessarily have to be the gateway. Because this mode uses multicasting to

communicate, only interested nodes in the network see routing information

and updates.

1. A packet takes a hop every time it crosses a subnet. If a packet leaves machine Q and must

pass through two subnet routers before it reaches its destination on machine N, the number

of hops is two.
118

6

6
Dynamic Routing Protocols
6.2.1 VxWorks Includes Supplemental Debugging Routines for RIP

Provided with the RIP server are several routines that make debugging easier. The

most often used is ripLogLevelBump(), which enables tracing of packets and

routing changes. Keep in mind that bumping the log level several times prints a lot

of data to the console. Another routine is ripRouteShow(), which prints the

router’s internal tables to the console. The printed message provides the following

information:

■ the route being advertised
■ the router that routes the packets
■ a subnet mask
■ the timeout on the route (in seconds)2

■ the flags value (see Table 6-1)

Routing information is pushed down into VxWorks’s routing table periodically,

but there can be periods when the two are out of sync. This periodic updating (as

opposed to continuous updating) avoids route thrashing, where transient routes

are pushed into the system but then need to be removed immediately.

2. The timeout is the length of time for which the route remains current. If a route is not

updated after 3 minutes, it is flushed from the routing table.

Table 6-1 Flag Constants for ripRouteShow()

Constant Meaning

RTS_CHANGED Route has changed recently (within the last 30 seconds).

RTS_EXTERNAL Route should propagate to other routers.

RTS_INTERNAL Route is internal, do not propagate.

RTS_PASSIVE Route is on a passive interface (loopback).

RTS_INTERFACE Route is on a directly connected interface.

RTS_REMOTE Route is on a point to point link.

RTS_SUBNET Route is to a subnet (not a host).
119

VxWorks Network 5.4
Programmer’s Guide
6.2.2 Configuring RIP

To include the RIP server, reconfigure the VxWorks image. The relevant

configuration macro is INCLUDE_RIP. The RIP server starts up when

usrNetwork.c calls ripLibInit(). This routine takes four parameters. You set the

value of these parameters by editing the configuration and adjusting the following

configuration items:

RIP Supplier Flag

Set to 1 tells the RIP server to send out routing information and updates

no matter how many physical interfaces are attached to it. Setting this

constant to 0 turns off this feature. (Configuration macro: RIP_SUPPLIER)

RIP Gateway Flag

Set to 1 tells the server that it is a router to the greater Internet. If this is

not the case, set this constant to 0 (the default). (Configuration macro:

RIP_GATEWAY)

RIP Multicast Flag

Set to 1 tells the server to use the RIP multicast address (224.0.0.9) instead

of using broadcasts. This mode lowers the load on the network generated

by the routing updates. Unfortunately, not all RIP server implementations

(for example, BSD and SunOS routed) can handle multicasting.

(Configuration macro: RIP_MULTICAST)

RIP Version Number

Set to 1 tells the server to run just as a version 1 RIP router (as described in

RFC 1058). Such a server ignores all version 2 packets as well as

malformed version 1 packets. Set this constant to 2 to tell the server that it

should send out version 2 packets and that it should listen for and process

both version 1 and version 2 packets. If you set this constant to 2 and set

the RIP Multicast Flag to 1, you put the server in full version 2 mode.

(Configuration macro: RIP_VERSION)

BSD 4.3 Compatible Sockets

Undefine this constant if you want to use RIP with VxWorks. By default,

this constant is already defined. (Configuration macro:

BSD43_COMPATIBLE). It is also automatically defined if VxWorks is

! WARNING: Do not set RIP_GATEWAY to 1 unless this really is the general gateway.

Setting this to 1 makes the RIP server send a default route (0.0.0.0) out with every

routing update. This tells all the other listening servers that this server is the

default route for its subnet. This causes all packets to go to this router if they do not

have a route that matches an existing entry in their routing table.
120

6

6
Dynamic Routing Protocols
configured to use sockets. The relevant configuration macro is

INCLUDE_BSD_SOCKET.

In addition to setting the defines shown above, there are two alternate methods

you can use to configure RIP:

■ Use the m2Rip routines to configure RIP. These routines are documented in the

reference entries. The parameters to these routines are also described in RFC-

1389.

■ Use an SNMP agent to configure RIP.

6.3 OSPF, Open Shortest Path First

OSPF is an optional and separately purchasable product available from Wind

River Systems. The implementation of OSPF supported under VxWorks is OSPF

version 2, as defined in RFC-1583. OSPF is an “open” protocol because it was

defined in an open way by the Internet Engineering Task Force (IETF). It is a

shortest-path-first protocol because its routing protocol is of the Shortest Path First

family.

In addition to implementing routing management, the library associated with this

implementation of OSPF provides interfaces that you can use to configure the

OSPF MIBs (as defined in RFC-1253). You can invoke these services directly, or you

can invoke these services indirectly by using the relevant method routines of an

SNMP agent. Because OSPF is a complicated protocol to set up and maintain, it is

best to use an SNMP agent to handle configuration.

Another consequence of the complexity of OSPF is that documenting it is beyond

the scope of this manual. This manual assumes that you already have a good

understanding of OSPF and require only the specifics of this implementation. If

this is not the case, you should study RFC-1253 and the OSPF reference entries. You

should also consult one of the many published texts on OSPF and routing

protocols.3

! CAUTION: The RIP server does not support separate routing domains. Only

routing domain 0, the default, is supported.

3. For example, Routing in the Internet by Christian Huitema.
121

VxWorks Network 5.4
Programmer’s Guide
6.3.1 Including OSPF in VxWorks

To include OSPF, reconfigure VxWorks. The relevant configuration macro is

INCLUDE_OSPF.

To start OSPF, call ospfInit() after VxWorks has completed booting. This routine is

defined as follows:

STATUS ospfInit
(
int priority, /* Priority of tasks. */
int options,
int stackSize, /* Task stack size. */
int routerId /* The ID for this router. */
)

After OSPF is up and running, you must configure the OSPF MIB. To do this, use

the various m2Ospf routines. The parameters to these routines are specified in

the OSPF MIB as defined in RFC1253. The RFC provides explanations for all of

these routines and parameters. In addition, the VxWorks implementation of OSPF

supports additional configuration functions:

ospfAddExtRoute()
Imports an external route into the OSPF domain.

ospfDelExtRoute()
Deletes a route imported using ospfAddExtRoute().

ospfAddNbmaDest()
Adds a destination on a NBMA (Non Broadcast Multi Access) link.

These routines are not MIB routines. They are convenience interfaces provided for

adding and removing external routes. For more information, see reference entries

for these routines.

Example 6-1 Sample OSPF Configuration

This section provides an example router setup as well as the code necessary to

make the example work. In the example system, a router is attached to 2 subnets

160.10.10.00 and 160.10.11.00 with 0xffffff00 as the subnetmask. The interface

addresses are 160.10.10.5 and 160.10.11.5. The diagram in Figure 6-1 shows this

setup.

To set this up programatically, execute the following code:

void ospfSetup ()
{
/* This is a generic setup for all interfaces in the system. */
M2_OSPF_AREA_ENTRY area;
122

6

6
Dynamic Routing Protocols
M2_OSPF_IF_ENTRY intf;
area.ospfAreaId = 0x2; /* using area id 2
area.ospfAuthType = 0; /* no authentication
if (m2OspfAreaEntrySet (M2_OSPF_AREA_ID |

M2_OSPF_AUTH_TYPE, area) != OK)
{

return (ERROR);
};

/* First we set up Interface A */

/* set the interface address */
intf.ospfIfIpAddress = 0xa00a0a05; /* 160.10.10.5 */

/* address less interface is false */
intf.ospfAddressLessIf = 0;

/* interface area id set to 2 */
intf.ospfIfAreaId = 2;

/* interface type */
intf.ospfIfType = 1;

/* router priority */
intf.ospfIfRtrPriority = 5;

/* various time intervals */
intf.ospfIfTransitDelay = 1;
intf.ospfIfRetransInterval = 3;
intf.ospfIfHelloInterval = 10;
intf.ospfIfRtrDeadInterval = 40;
intf.ospfIfPollInterval = 30;

/* enable ospf on interface */
intf.ospfIfAdminStat = 1;

/* set the parameters for this interface */
if (m2OspfIfEntrySet(

M2_OSPF_ADDRESS_LESS_IF |
M2_OSPF_IF_AREA_ID |

Figure 6-1 Example Router Setup

160.10.11.00

Router

160.10.10.5

160.10.11.5

Interface B

Interface A

160.10.10.00
123

VxWorks Network 5.4
Programmer’s Guide
M2_OSPF_IF_TYPE |
M2_OSPF_IF_RTR_PRIORITY |
M2_OSPF_IF_RETRANS_INTERVAL |
M2_OSPF_IF_HELLO_INTERVAL |
M2_OSPF_IF_RTR_DEAD_INTERVAL |
M2_OSPF_IF_POLL_INTERVAL |
M2_OSPF_IF_ADMIN_STAT,
& intf) != OK)

 {
return (ERROR);

 }

/* similar sequence for Interface B */
intf.ospfIfIpAddress = 0xa00a0b05; /* 160.10.11.5 */
intf.ospfAddressLessIf = 0;
intf.ospfIfAreaId = 2;
intf.ospfIfType = 1;
intf.ospfIfRtrPriority = 0;
intf.ospfIfTransitDelay = 1;
intf.ospfIfRetransInterval = 3;
intf.ospfIfHelloInterval = 10;
intf.ospfIfRtrDeadInterval = 40;
intf.ospfIfPollInterval = 30;
intf.ospfIfAdminStat = 1;

if (m2OspfIfEntrySet (M2_OSPF_ADDRESS_LESS_IF |
M2_OSPF_IF_AREA_ID |
M2_OSPF_IF_TYPE |
M2_OSPF_IF_RTR_PRIORITY |
M2_OSPF_IF_RETRANS_INTERVAL |
M2_OSPF_IF_HELLO_INTERVAL |
M2_OSPF_IF_RTR_DEAD_INTERVAL |
M2_OSPF_IF_POLL_INTERVAL |
M2_OSPF_IF_ADMIN_STAT, & intf) != OK)
{
return (ERROR);
}

}

After this code has executed, the system uses OSPF to route between the two

interfaces, A and B. The system continues to use OSPF until either the system is

shut off or further calls are made into the system using the m2Ospf interfaces.
124

7
Networking APIs
7.1 Introduction

This section describes how to use the standard BSD socket interface for stream

sockets and datagram sockets on a VxWorks target. It also describes how to use

zbuf sockets, an alternative set of socket calls based on a data abstraction called the

zbuf. These zbuf calls let you share data buffers (or portions of data buffers)

between separate software modules.

Using sockets, processes can communicate within a single CPU, across a

backplane, across an Ethernet, or across any connected combination of networks.

Socket communications can occur between VxWorks tasks and host system

processes in any combination. In all cases, the communications appear identical to

the application—except, of course, for the speed of the communications.

One of the biggest advantages of socket communication is that it is a

“homogeneous” mechanism: socket communications among processes are exactly

the same, regardless of the location of the processes in the network or the operating

system where they run. This is true even if you use zbuf sockets, which are fully

interoperable with standard BSD sockets.

7.2 BSD Sockets

A socket is a communications end-point that is bound to a UDP or TCP port within

the node. Under VxWorks, your application can use the sockets interface to access
125

VxWorks Network 5.4
Programmer’s Guide
features of the Internet Protocol suite (features such as multicasting). Depending

on the bound port type, a socket is referred to either as a stream socket or a

datagram socket. VxWorks sockets are UNIX BSD 4.4 compatible. However,

VxWorks does not support signal functionality for sockets.

Stream sockets use TCP to bind to a particular port number. Another process, on

any host in the network, can then create another stream socket and request that it

be connected to the first socket by specifying its host Internet address and port

number. After the two TCP sockets are connected, there is a virtual circuit set up

between them, allowing reliable socket-to-socket communications. This style of

communication is conversational.

Datagram sockets use UDP to bind to a particular port number. Other processes, on

any host in the network, can then send messages to that socket by specifying the

host Internet address and the port number. Compared to TCP, UDP provides a

simpler but less robust communication method. In a UDP communication, data is

sent between sockets in separate, unconnected, individually addressed packets

called datagrams. There is no sense of conversation with a datagram socket. The

communication is in the style of a letter. Each packet carries the address of both the

destination and the sender. Compared to TCP, UDP is unreliable. Like the mail,

packets that are lost or out-of-sequence are not reported.

There are a number of complex network programming issues that are beyond the

scope of this guide. For additional information, consult a socket-programming

book, such as one of the following:

■ Internetworking with TCP/IP Volume III by Douglas Comer and David Stevens

■ UNIX Network Programming by Richard Stevens

■ The Design and Implementation of the 4.3 BSD UNIX Operating System by Leffler,

McKusick, Karels and Quarterman

■ TCP/IP Illustrated, Vol. 1, by Richard Stevens

■ TCP/IP Illustrated, Vol. 2, by Gary Wright and Richard Stevens

7.2.1 Stream Sockets (TCP)

The Transmission Control Protocol (TCP) provides reliable, two-way transmission

of data. In a TCP communication, two sockets are connected, allowing a reliable

byte-stream to flow between them in either direction. TCP is referred to as a virtual
circuit protocol, because it behaves as though a circuit is created between the two

sockets.
126

7

7
Networking APIs
A good analogy for TCP communications is a telephone system. Connecting two

sockets is similar to calling from one phone to another. After the connection is

established, you can write and read data (talk and listen).

Table 7-1 shows the steps in establishing socket communications with TCP, and the

analogy of each step with telephone communications.

Example 7-1 Stream Sockets (TCP)

The following code example uses a client-server communication model. The

server communicates with clients using stream-oriented (TCP) sockets. The main

server loop, in tcpServerWorkTask(), reads requests, prints the client’s message to

the console, and, if requested, sends a reply back to the client. The client builds the

request by prompting for input. It sends a message to the server and, optionally,

waits for a reply to be sent back. To simplify the example, we assume that the code

is executed on machines that have the same data sizes and alignment.

/* tcpExample.h - header used by both TCP server and client examples */

/* defines */
#define SERVER_PORT_NUM 5001 /* server's port number for bind() */
#define SERVER_WORK_PRIORITY 100 /* priority of server's work task */
#define SERVER_STACK_SIZE 10000 /* stack size of server's work task */
#define SERVER_MAX_CONNECTIONS 4 /* max clients connected at a time */
#define REQUEST_MSG_SIZE 1024 /* max size of request message */
#define REPLY_MSG_SIZE 500 /* max size of reply message */

Table 7-1 TCP Analogy to Telephone Communication

Task 1
Waits

Task 2
Calls

Function Analogy

socket() socket() Create sockets. Hook up telephones.

bind() Assign address to socket. Assign phone numbers.

listen() Allow others to connect to socket. Allow others to call.

connect() Request connection to another

socket.

Dial another phone’s number.

accept() Complete connection between

sockets.

Answer phone and establish

connection.

write() write() Send data to other socket. Talk.

read() read() Receive data from other socket. Listen.

close() close() Close sockets. Hang up.
127

VxWorks Network 5.4
Programmer’s Guide
/* structure for requests from clients to server */
struct request

{
int reply; /* TRUE = request reply from server */
int msgLen; /* length of message text */
char message[REQUEST_MSG_SIZE]; /* message buffer */
};

/* tcpClient.c - TCP client example */

/*
DESCRIPTION
This file contains the client-side of the VxWorks TCP example code.
The example code demonstrates the usage of several BSD 4.4-style
socket routine calls.
*/

/* includes */

#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "hostLib.h"
#include "ioLib.h"
#include "tcpExample.h"

/**
*
* tcpClient - send requests to server over a TCP socket
*
* This routine connects over a TCP socket to a server, and sends a
* user-provided message to the server. Optionally, this routine
* waits for the server's reply message.
*
* This routine may be invoked as follows:
* -> tcpClient "remoteSystem"
* Message to send:
* Hello out there
* Would you like a reply (Y or N):
* y
* value = 0 = 0x0
* -> MESSAGE FROM SERVER:
* Server received your message
*
* RETURNS: OK, or ERROR if the message could not be sent to the server.
*/

STATUS tcpClient
(
char * serverName /* name or IP address of server */
128

7

7
Networking APIs
)
{
struct request myRequest; /* request to send to server */
struct sockaddr_in serverAddr; /* server's socket address */
char replyBuf[REPLY_MSG_SIZE]; /* buffer for reply */
char reply; /* if TRUE, expect reply back */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
int mlen; /* length of message */

/* create client's socket */
if ((sFd = socket (AF_INET, SOCK_STREAM, 0)) == ERROR)

{
perror ("socket");
return (ERROR);
}

/* bind not required - port number is dynamic */
/* build server socket address */
sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sa_len = (u_char) sockAddrSize;
serverAddr.sin_port = htons (SERVER_PORT_NUM);

if (((serverAddr.sin_addr.s_addr = inet_addr (serverName)) == ERROR) &&
((serverAddr.sin_addr.s_addr = hostGetByName (serverName)) == ERROR))
{
perror ("unknown server name");
close (sFd);
return (ERROR);
}

/* connect to server */
if (connect (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)

{
perror ("connect");
close (sFd);
return (ERROR);
}

/* build request, prompting user for message */
printf ("Message to send: \n");
mlen = read (STD_IN, myRequest.message, REQUEST_MSG_SIZE);
myRequest.msgLen = mlen;
myRequest.message[mlen - 1] = '\0';
printf ("Would you like a reply (Y or N): \n");
read (STD_IN, &reply, 1);
switch (reply)

{
case 'y':
case 'Y': myRequest.reply = TRUE;

break;
default: myRequest.reply = FALSE;

break;
}

129

VxWorks Network 5.4
Programmer’s Guide
/* send request to server */

if (write (sFd, (char *) &myRequest, sizeof (myRequest)) == ERROR)
{
perror ("write");
close (sFd);
return (ERROR);
}

if (myRequest.reply) /* if expecting reply, read and display it */
{
if (read (sFd, replyBuf, REPLY_MSG_SIZE) < 0)

{
perror ("read");
close (sFd);
return (ERROR);
}

printf ("MESSAGE FROM SERVER:\n%s\n", replyBuf);
}

close (sFd);
return (OK);
}

/* tcpServer.c - TCP server example */

/*
DESCRIPTION
This file contains the server-side of the VxWorks TCP example code.
The example code demonstrates the useage of several BSD 4.4-style
socket routine calls.
*/

/* includes */
#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "taskLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "ioLib.h"
#include "fioLib.h"
#include "tcpExample.h"

/* function declarations */

VOID tcpServerWorkTask (int sFd, char * address, u_short port);

/**
*
* tcpServer - accept and process requests over a TCP socket
130

7

7
Networking APIs
*
* This routine creates a TCP socket, and accepts connections over the socket
* from clients. Each client connection is handled by spawning a separate
* task to handle client requests.
*
* This routine may be invoked as follows:
* -> sp tcpServer
* task spawned: id = 0x3a6f1c, name = t1
* value = 3829532 = 0x3a6f1c
* -> MESSAGE FROM CLIENT (Internet Address 150.12.0.10, port 1027):
* Hello out there
*
* RETURNS: Never, or ERROR if a resources could not be allocated.
*/

STATUS tcpServer (void)
{
struct sockaddr_in serverAddr; /* server's socket address */
struct sockaddr_in clientAddr; /* client's socket address */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
int newFd; /* socket descriptor from accept */
int ix = 0; /* counter for work task names */
char workName[16]; /* name of work task */

/* set up the local address */

sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sin_family = AF_INET;
serverAddr.sa_len = (u_char) sockAddrSize;
serverAddr.sin_port = htons (SERVER_PORT_NUM);
serverAddr.sin_addr.s_addr = htonl (INADDR_ANY);

/* create a TCP-based socket */

if ((sFd = socket (AF_INET, SOCK_STREAM, 0)) == ERROR)
{
perror ("socket");
return (ERROR);
}

/* bind socket to local address */

if (bind (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
{
perror ("bind");
close (sFd);
return (ERROR);
}

/* create queue for client connection requests */

if (listen (sFd, SERVER_MAX_CONNECTIONS) == ERROR)
{
perror ("listen");
131

VxWorks Network 5.4
Programmer’s Guide
close (sFd);
return (ERROR);
}

/* accept new connect requests and spawn tasks to process them */

FOREVER
{
if ((newFd = accept (sFd, (struct sockaddr *) &clientAddr,

&sockAddrSize)) == ERROR)
{
perror ("accept");
close (sFd);
return (ERROR);
}

sprintf (workName, "tTcpWork%d", ix++);
if (taskSpawn(workName, SERVER_WORK_PRIORITY, 0, SERVER_STACK_SIZE,

(FUNCPTR) tcpServerWorkTask, newFd,
(int) inet_ntoa (clientAddr.sin_addr), ntohs (clientAddr.sin_port),
0, 0, 0, 0, 0, 0, 0) == ERROR)
{
/* if taskSpawn fails, close fd and return to top of loop */

perror ("taskSpawn");
close (newFd);
}

}
}

/**
*
* tcpServerWorkTask - process client requests
*
* This routine reads from the server's socket, and processes client
* requests. If the client requests a reply message, this routine
* will send a reply to the client.
*
* RETURNS: N/A.
*/

VOID tcpServerWorkTask
(
int sFd, /* server's socket fd */
char * address, /* client's socket address */
u_short port /* client's socket port */
)
{
struct request clientRequest; /* request/message from client */
int nRead; /* number of bytes read */
static char replyMsg[] = "Server received your message";

/* read client request, display message */

while ((nRead = fioRead (sFd, (char *) &clientRequest,
sizeof (clientRequest))) > 0)
132

7

7
Networking APIs
{
printf ("MESSAGE FROM CLIENT (Internet Address %s, port %d):\n%s\n",

 address, port, clientRequest.message);

free (address); /* free malloc from inet_ntoa() */

if (clientRequest.reply)
if (write (sFd, replyMsg, sizeof (replyMsg)) == ERROR)

perror ("write");
}

if (nRead == ERROR) /* error from read() */
perror ("read");

close (sFd); /* close server socket connection */
}

7.2.2 Datagram Sockets (UDP)

You can use datagram (UDP) sockets to implement a simple client-server

communication system. You can also use UDP sockets to handle multicasting.

Using a Datagram Socket to Implement a Client-Server Communication System

The following code example uses a client-server communication model. The

server communicates with clients using datagram-oriented (UDP) sockets. The

main server loop, in udpServer(), reads requests and optionally displays the

client’s message. The client builds the request by prompting the user for input.

Note that this code assumes that it executes on machines that have the same data

sizes and alignment.

Example 7-2 Datagram Sockets (UDP)

/* udpExample.h - header used by both UDP server and client examples */

#define SERVER_PORT_NUM 5002 /* server's port number for bind() */
#define REQUEST_MSG_SIZE 1024 /* max size of request message */

/* structure used for client's request */

struct request
{
int display; /* TRUE = display message */
char message[REQUEST_MSG_SIZE]; /* message buffer */
};
133

VxWorks Network 5.4
Programmer’s Guide
/* udpClient.c - UDP client example */

/*
DESCRIPTION
This file contains the client-side of the VxWorks UDP example code.
The example code demonstrates the useage of several BSD 4.4-style
socket routine calls.
*/

/* includes */

#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "hostLib.h"
#include "ioLib.h"
#include "udpExample.h"

/**
*
* udpClient - send a message to a server over a UDP socket
*
* This routine sends a user-provided message to a server over a UDP socket.
* Optionally, this routine can request that the server display the message.
* This routine may be invoked as follows:
* -> udpClient "remoteSystem"
* Message to send:
* Greetings from UDP client
* Would you like server to display your message (Y or N):
* y
* value = 0 = 0x0
*
* RETURNS: OK, or ERROR if the message could not be sent to the server.
*/

STATUS udpClient
(
char * serverName /* name or IP address of server */
)
{
struct request myRequest; /* request to send to server */
struct sockaddr_in serverAddr; /* server's socket address */
char display; /* if TRUE, server prints message */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
int mlen; /* length of message */

/* create client's socket */

if ((sFd = socket (AF_INET, SOCK_DGRAM, 0)) == ERROR)
134

7

7
Networking APIs
{
perror ("socket");
return (ERROR);
}

/* bind not required - port number is dynamic */

/* build server socket address */

sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sa_len = (u_char) sockAddrSize;
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);

if (((serverAddr.sin_addr.s_addr = inet_addr (serverName)) == ERROR) &&
((serverAddr.sin_addr.s_addr = hostGetByName (serverName)) == ERROR))
{
perror ("unknown server name");
close (sFd);
return (ERROR);
}

/* build request, prompting user for message */

printf ("Message to send: \n");
mlen = read (STD_IN, myRequest.message, REQUEST_MSG_SIZE);
myRequest.message[mlen - 1] = '\0';

printf ("Would you like the server to display your message (Y or N): \n");
read (STD_IN, &display, 1);
switch (display)

{
case 'y':
case 'Y': myRequest.display = TRUE;

break;
default: myRey = FALSE;

break;
}

/* send request to server */

if (sendto (sFd, (caddr_t) &myRequest, sizeof (myRequest), 0,
(struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
{
perror ("sendto");
close (sFd);
return (ERROR);
}

close (sFd);
return (OK);
}

135

VxWorks Network 5.4
Programmer’s Guide
/* udpServer.c - UDP server example */

/*
DESCRIPTION
This file contains the server-side of the VxWorks UDP example code.
The example code demonstrates the useage of several BSD 4.4-style
socket routine calls.
*/

/* includes */
#include "vxWorks.h"
#include "sockLib.h"
#include "inetLib.h"
#include "stdioLib.h"
#include "strLib.h"
#include "ioLib.h"
#include "fioLib.h"
#include "udpExample.h"

/***
*
* udpServer - read from UDP socket and display client's message if requested
*
* Example of VxWorks UDP server:
* -> sp udpServer
* task spawned: id = 0x3a1f6c, name = t2
* value = 3809132 = 0x3a1f6c
* -> MESSAGE FROM CLIENT (Internet Address 150.12.0.11, port 1028):
* Greetings from UDP client
*
* RETURNS: Never, or ERROR if a resources could not be allocated.
*/

STATUS udpServer (void)
{
struct sockaddr_in serverAddr; /* server's socket address */
struct sockaddr_in clientAddr; /* client's socket address */
struct request clientRequest; /* request/Message from client */
int sockAddrSize; /* size of socket address structure */
int sFd; /* socket file descriptor */
char inetAddr[INET_ADDR_LEN];

 /* buffer for client's inet addr */

/* set up the local address */

sockAddrSize = sizeof (struct sockaddr_in);
bzero ((char *) &serverAddr, sockAddrSize);
serverAddr.sa_len = (u_char) sockAddrSize;
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT_NUM);
serverAddr.sin_addr.s_addr = htonl (INADDR_ANY);
136

7

7
Networking APIs
/* create a UDP-based socket */

if ((sFd = socket (AF_INET, SOCK_DGRAM, 0)) == ERROR)
{
perror ("socket");
return (ERROR);
}

/* bind socket to local address */

if (bind (sFd, (struct sockaddr *) &serverAddr, sockAddrSize) == ERROR)
{
perror ("bind");
close (sFd);
return (ERROR);
}

/* read data from a socket and satisfy requests */

FOREVER
{
if (recvfrom (sFd, (char *) &clientRequest, sizeof (clientRequest), 0,

(struct sockaddr *) &clientAddr, &sockAddrSize) == ERROR)
{
perror ("recvfrom");
close (sFd);
return (ERROR);
}

/* if client requested that message be displayed, print it */

if (clientRequest.display)
{
/* convert inet address to dot notation */

inet_ntoa_b (clientAddr.sin_addr, inetAddr);
printf ("MSG FROM CLIENT (Internet Address %s, port %d):\n%s\n",

inetAddr, ntohs (clientAddr.sin_port), clientRequest.message);
}

}
}

Using a Datagram (UDP) Socket to Access IP Multicasting

Multicasting is the delivery of the same packets to multiple IP addresses. Typical

multicasting applications include audio and video conferencing, resource

discovery tools, and shared white boards. Multicasting is a feature of the IP layer,

but to access this function, an application uses a UDP socket.

A VxWorks process must multicast on a network interface driver that supports

multicasting (many do not). To review the capabilities of all attached network
137

VxWorks Network 5.4
Programmer’s Guide
drivers, use ifShow(). If a network interface supports multicasting,

IFF_MULTICAST is listed among the flags for that network interface.

Multicast IP addresses range from 224.0.0.0 to 239.255.255.255. These addresses are

also called class D addresses or multicast groups. A datagram with a class D

destination address is delivered to every process that has joined the corresponding

multicast group.

To multicast a packet, a VxWorks process need do nothing special. The process just

sends to the appropriate multicast address. The process can use any normal UDP

socket. To set the route to the destination multicast address, use routeAdd().

To receive a multicast packet, a VxWorks process must join a multicast group. To

do this, the VxWorks process must set the appropriate socket options on the socket

(see Table 7-2).

When choosing an address upon which to multicast, remember that certain

addresses and address ranges are already registered to specific uses and protocols.

For example, 244.0.0.1 multicasts to all systems on the local subnet. The Internet

Assigned Numbers Authority (IANA) maintains a list of registered IP multicast

groups. The current list can be found in RFC 1700. For more information about the

IANA, see RFC 1700. Table 7-3 lists some of the well-known multicast groups.

The following code samples define two routines, mcastSend() and mcastRcv().
These routines demonstrate how to use UDP sockets to handle sending and

receiving multicast traffic.

Table 7-2 Multicasting Socket Options *

* For more on multicasting socket options, see the setsockopt() reference entry.

Command Argument Description

IP_MULTICAST_IF struct in_addr Select default interface for outgoing

multicasts.

IP_MULTICAST_TTL CHAR Select default time to live (TTL) for outgoing

multicast packets.

IP_MULTICAST_LOOP CHAR Enable or disable loopback of outgoing

multicasts.

IP_ADD_MEMBERSHIP struct ip_mreq Join a multicast group.

IP_DROP_MEMBERSHIP struct ip_mreq Leave a multicast group.
138

7

7
Networking APIs
mcastSend() transmits a buffer to the specified multicast address. As input, this

routine expects a multicast destination, a port number, a buffer pointer, and a

buffer length. For example:

status = mcastSend ("224.1.0.1", 7777, bufPtr, 100);

mcastRcv() receives any packet sent to a specified multicast address. As input, this

routine expects the interface address from which the packet is coming, a multicast

address, a port number, and the number of bytes to read from the packet. The

returned value of the function is a pointer a buffer containing the read bytes. For

example:

buf = mcastRcv (ifAddress, "224.1.0.1", 7777, 100) ;

Table 7-3 Well-Known Multicast Groups

Group VxWorks constant Description

224.0.0.0 INADDR_UNSPEC_GROUP Reserved for protocols that implement

IP unicast and multicast routing

mechanisms. Datagrams sent to any of

these groups are not forwarded beyond

the local network by multicast routers.

224.0.0.1 INADDR_ALLHOSTS_GROUP All systems on this subnet. This value is

automatically added to all network

drivers at initialization.

224.0.0.2 All routers on this subnet.

224.0.0.3 Unassigned.

224.0.0.4 DVMRP routers.

224.0.0.5 OSPF routers.

224.0.0.6 OSPF designated routers.

224.0.0.9 All RIP routers.

224.0.0.255 INADDR_MAX_LOCAL_GROUP Unassigned.

224.0.1.1 NTP (Network Time Protocol).
139

VxWorks Network 5.4
Programmer’s Guide
Example 7-3 Datagram Sockets (UDP) and Multicasting

/* includes */
#include "vxWorks.h"
#include "taskLib.h"
#include "socket.h"
#include "netinet/in.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "sockLib.h"
#include "inetLib.h"
#include "ioLib.h"
#include "routeLib.h"

/* defines */
/* globals */
/* forward declarations */

STATUS mcastSend (char * mcastAddr, USHORT mcastPort, char * sendBuf,
 int sendLen);

char * mcastRcv (char * ifAddr, char * mcastAddr, USHORT mcastPort,
 int numRead);

/**
* mcastSend - send a message to the multicast address
* This function sends a message to the multicast address
* The multicast group address to send, the port number, the pointer to the
* send buffer and the send buffer length are given as input parameters.
* RETURNS: OK if sucessful or ERROR
*/

STATUS mcastSend
(
char * mcastAddr, /* multicast address */
USHORT mcastPort, /* udp port number */
char * sendBuf, /* send Buffer */
int sendLen /* length of send buffer */
)
{
struct sockaddr_in sin;
struct sockaddr_in toAddr;
int toAddrLen;
int sockDesc;
char * bufPtr;
int len;

/* create a send and recv socket */

if ((sockDesc = socket (AF_INET, SOCK_DGRAM, 0)) < 0)
{
printf (" cannot open send socket\n");
140

7

7
Networking APIs
return (ERROR);
}

/* zero out the structures */
bzero ((char *)&sin, sizeof (sin));
bzero ((char *)&toAddr, sizeof (toAddr));

sin.sa_len = (u_char) sizeof(sin);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(0);

if (bind(sockDesc, (struct sockaddr *)&sin, sizeof(sin)) != 0)
{
perror("bind");
if (sockDesc)

close (sockDesc);
return (ERROR);
}

toAddrLen = sizeof(struct sockaddr_in);
toAddr.sa_len = (u_char) toAddrLen;
toAddr.sin_family = AF_INET;

/* initialize the address to the send */
toAddr.sin_addr.s_addr = inet_addr (mcastAddr);

/* initialize the port to send */
toAddr.sin_port = htons(mcastPort);

bufPtr = sendBuf; /* initialize the buffer pointer */

/* send the buffer */
while (sendLen > 0)

{
if ((len = sendto (sockDesc, bufPtr, sendLen, 0,

 (struct sockaddr *)&toAddr, toAddrLen)) < 0)
{
printf("mcastSend sendto errno:0x%x\n", errno);
break;
}

sendLen -= len;
bufPtr += len;

taskDelay (1); /* give a taskDelay */
}

if (sockDesc != ERROR)
close (sockDesc);

return (OK);
}

/**
141

VxWorks Network 5.4
Programmer’s Guide
 * mcastRcv - receive a message from a multicast address
 * This function receives a message from a multicast address
 * The interface address from which to receive the multicast packet,
 * the multicast address to recv from, the port number and the number of
 * bytes to read are given as input parameters to this routine.
 * RETURNS: Pointer to the Buffer or NULL if error.
 */

char * mcastRcv
(
char * ifAddr, /* interface address to recv mcast packets */
char * mcastAddr, /* multicast address */
USHORT mcastPort, /* udp port number to recv */
int numRead /* number of bytes to read */
)
{
struct sockaddr_in fromAddr;
struct sockaddr_in sin;
int fromLen;
struct ip_mreq ipMreq;
int recvLen;
int sockDesc;
char * bufPtr;
int status = OK;
char * recvBuf = NULL;

if ((sockDesc = socket (AF_INET, SOCK_DGRAM, 0)) < 0)
{
printf (" cannot open recv socket\n");
return (NULL);
}

bzero ((char *)&sin, sizeof (sin));
bzero ((char *) &fromAddr, sizeof(fromAddr));
fromLen = sizeof(fromAddr);

if ((recvBuf = calloc (numRead, sizeof (char))) == NULL)
{
printf (" calloc error, cannot allocate memory\n");
status = ERROR;
goto cleanUp;
}

sin.sa_len = (u_char) sizeof(sin);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;

/* UDP port number to match for the received packets */
sin.sin_port = htons (mcastPort);

/* bind a port number to the socket */
if (bind(sockDesc, (struct sockaddr *)&sin, sizeof(sin)) != 0)

{
perror("bind");
status = ERROR;
goto cleanUp;
142

7

7
Networking APIs
}

/* fill in the argument structure to join the multicast group */
/* initialize the multicast address to join */

ipMreq.imr_multiaddr.s_addr = inet_addr (mcastAddr);

/* unicast interface addr from which to receive the multicast packets */
ipMreq.imr_interface.s_addr = inet_addr (ifAddr);

/* set the socket option to join the MULTICAST group */
if (setsockopt (sockDesc, IPPROTO_IP, IP_ADD_MEMBERSHIP,

(char *)&ipMreq,
sizeof (ipMreq)) < 0)

{
printf ("setsockopt IP_ADD_MEMBERSHIP error:\n");
status = ERROR;
goto cleanUp;
}

/* get the data destined to the above multicast group */
bufPtr = recvBuf;

while (numRead > 0)
 {
 if ((recvLen = recvfrom (sockDesc, bufPtr, numRead, 0,

 (struct sockaddr *)&fromAddr, &fromLen)) < 0)
 {
 perror("recvfrom");
 status = ERROR;
 break;
 }

 numRead -= recvLen; /* decrement number of bytes to read */
 bufPtr += recvLen; /* increment the buffer pointer */
 }

/* set the socket option to leave the MULTICAST group */
if (setsockopt (sockDesc, IPPROTO_IP, IP_DROP_MEMBERSHIP,

(char *)&ipMreq,
sizeof (ipMreq)) < 0)

printf ("setsockopt IP_DROP_MEMBERSHIP error:\n");

cleanUp:
{
if (sockDesc != ERROR)

close (sockDesc);
if ((status != OK) && (recvBuf != NULL))

{
free (recvBuf);
recvBuf = NULL;
}

}

143

VxWorks Network 5.4
Programmer’s Guide
return (recvBuf);
}

7.3 Zbuf Sockets

VxWorks includes an alternative set of socket calls based on a data abstraction

called a zbuf, which permits you to share data buffers (or portions of data buffers)

between separate software modules. The zbuf socket interface allows applications to

read and write UNIX BSD sockets without copying data between application

buffers and network buffers. You can use zbufs with either UDP or TCP

applications. The TCP subset of this new interface is sometimes called zero-copy
TCP.

Zbuf-based socket calls are interoperable with the standard BSD socket interface: the

other end of a socket has no way of telling whether your end is using zbuf-based

calls or traditional calls.

However, zbuf-based socket calls are not source-compatible with the standard BSD

socket interface: you must call different socket functions to use the zbuf interface.

Applications that use the zbuf interface are thus less portable.

To link (and initialize) the zbuf socket interface, reconfigure VxWorks. The

relevant configuration macro is INCLUDE_ZBUF_SOCK.

7.3.1 Zbuf Calls to Send Existing Data Buffers

The simplest way to use zbuf sockets is to call either zbufSockBufSend() (in place

of send() for a TCP connection) or zbufSockBufSendto() (in place of sendto() for

a UDP datagram). In either case, you supply a pointer to your application’s data

buffer containing the data or message to send, and the network protocol uses that

same buffer rather than copying the data out of it.

! WARNING: The send socket buffer size (set during configuration, using the macros

TCP_SND_SIZE_DFLT or UDP_SND_SIZE_DFLT) must exceed that of any zbufs

sent over the socket
144

7

7
Networking APIs
To receive socket data using zbufs, see the following sections. 7.3.2 Manipulating
the Zbuf Data Structure, p.145 describes the routines to create and manage zbufs,

and 7.3.3 Zbuf Socket Calls, p.154 introduces the remaining zbuf-specific socket

routines. See also the reference entries for zbufLib and zbufSockLib.

7.3.2 Manipulating the Zbuf Data Structure

A zbuf has three essential properties:

■ A zbuf holds a sequence of bytes.

■ The data in a zbuf is organized into one or more segments of contiguous data.

Successive zbuf segments are not usually contiguous to each other.

■ Zbuf segments refer to data buffers through pointers. The underlying data

buffers can be shared by more than one zbuf segment.

Zbuf segments are at the heart of how zbufs minimize data copying: if you have a

data buffer, you can incorporate it (by reference, so that only pointers and lengths

move around) into a new zbuf segment. Conversely, you can get pointers to the

data in zbuf segments, and examine the data there directly.

Zbuf Byte Locations

You can address the contents of a zbuf by byte locations. A zbuf byte location has

two parts, an offset and a segment ID.

An offset is a signed integer (type int): the distance in bytes to a portion of data in

the zbuf, relative to the beginning of a particular segment. Zero refers to the first

byte in a segment; negative integers refer to bytes in previous segments; and

positive integers refer to bytes after the start of the current segment.

A segment ID is an arbitrary integer (type ZBUF_SEG) that identifies a particular

segment of a zbuf. You can always use NULL to refer to the first segment of a zbuf.

! WARNING: Using zbufs allows different modules to share the same buffers. This

lets your application avoid the performance hit associated with copying the buffer.

To make this work, your application must not modify (let alone free!) the data

buffer while network software is still using it. Instead of freeing your buffer

explicitly, you can supply a free-routine callback: a pointer to a routine that knows

how to free the buffer. The zbuf library keeps track of how many zbufs point to a

data buffer, and calls the free routine when the data buffer is no longer in use.
145

VxWorks Network 5.4
Programmer’s Guide
Figure 7-1 shows a simple zbuf with data organized into two segments, with

offsets relative to the first segment. This is the most efficient addressing scheme to

refer to bytes a, b, or c in the figure.

Figure 7-2 shows the same zbuf, but labelled with offsets relative to the second

segment. This is the most efficient addressing scheme to refer to bytes d, e, f, or g

in the figure.

Two special shortcuts give the fastest access to either the beginning or the end of a

zbuf. The constant ZBUF_END refers to the position after all existing bytes in the

zbuf. Similarly, ZBUF_BEGIN refers to the position before all existing bytes. These

constants are the only offsets with meanings not relative to a particular segment.

When you insert data in a zbuf, the new data is always inserted before the byte

location you specify in the call to an insertion routine. That is, the byte location you

specify becomes the address of the newly inserted data.

Figure 7-1 Zbuf Addressing Relative to First Segment (NULL)

Figure 7-2 Zbuf Addressing Relative to Second Segment

a b c

gfe

0 1 2

d

3 4 5 6

a b c

gfe

321

d

0

–1–2–3
146

7

7
Networking APIs
Creating and Destroying Zbufs

To create a new zbuf, call zbufCreate(). The routine takes no arguments, and

returns a zbuf identifier (type ZBUF_ID) for a zbuf containing no segments. After

you have the zbuf ID, you can attach segments or otherwise insert data. While the

zbuf is empty, NULL is the only valid segment ID, and 0 the only valid offset.

When you no longer need a particular zbuf, call zbufDelete(). Its single argument

is the ID for the zbuf to delete. The zbufDelete() routine calls the free routine

associated with each segment in the zbuf, for segments that are not shared by other

zbufs. After you delete a zbuf, its zbuf ID is meaningless; any reference to a deleted

zbuf ID is an error.

Getting Data In and Out of Zbufs

The usual way to place data in a zbuf is to call zbufInsertBuf(). This routine builds

a zbuf segment pointing to an existing data buffer, and inserts the new segment at

whatever byte location you specify in a zbuf. You can also supply a callback

pointer to a free routine, which the zbuf library calls when no zbuf segments point

to that data buffer.

Because the purpose of the zbuf socket interface is to avoid data copying, the need

to actually copy data into a zbuf (rather than designating its location as a shareable

buffer) occurs much less frequently. When that need does arise, however, the

routine zbufInsertCopy() is available. This routine does not require a callback

pointer to a free routine, because the original source of the data is not shared.

Similarly, the most efficient way to examine data in zbufs is to read it in place,

rather than to copy it to another location. However, if you must copy a portion of

data out of a zbuf (for example, to guarantee the data is contiguous, or to place it

in a data structure required by another interface), call zbufExtractCopy()
specifying what to copy (zbuf ID, byte location, and the number of bytes) and

where to put it (an application buffer).

Table 7-4 Zbuf Creation and Deletion Routines

Call Description

zbufCreate() Create an empty zbuf.

zbufDelete() Delete a zbuf and free any associated segments.
147

VxWorks Network 5.4
Programmer’s Guide
Operations on Zbufs

The routines listed in Table 7-6 perform several fundamental operations on zbufs.

The routine zbufLength() reports how many bytes are in a zbuf.

The routine zbufDup() provides the simplest mechanism for sharing segments

between zbufs: it produces a new zbuf ID that refers to some or all of the data in

the original zbuf. You can exploit this sort of sharing to get two different views of

the same data. For example, after duplicating a zbuf, you can insert another zbuf

into one of the two duplicates, with zbufInsert(). None of the data in the original

zbuf segments moves, yet after some byte location (the byte location where you

inserted data) addressing the two zbufs gives completely different data.

The zbufSplit() routine divides one zbuf into two; you specify the byte location for

the split, and the result of the routine is a new zbuf ID. The new zbuf’s data begins

after the specified byte location. The original zbuf ID also has a modified view of

the data: it is truncated to the byte location of the split. However, none of the data

in the underlying segments moves through all this: if you duplicate the original

zbuf before splitting it, three zbuf IDs share segments—the duplicate permits you

Table 7-5 Zbuf Data Copying Routines

Call Description

zbufInsertBuf() Create a zbuf segment from a buffer and insert into a zbuf.

zbufInsertCopy() Copy buffer data into a zbuf.

zbufExtractCopy() Copy data from a zbuf to a buffer.

Table 7-6 Zbuf Operations

Call Description

zbufLength() Determine the length of a zbuf, in bytes.

zbufDup() Duplicate a zbuf.

zbufInsert() Insert a zbuf into another zbuf.

zbufSplit() Split a zbuf into two separate zbufs.

zbufCut() Delete bytes from a zbuf.
148

7

7
Networking APIs
to view the entire original range of data, another zbuf contains a leading fragment,

and the third zbuf holds the trailing fragment.

Similarly, if you call zbufCut() to remove some range of bytes from within a zbuf,

the effects are visible only to callers who view the data through the same zbuf ID

you used for the deletion; other zbuf segments can still address the original data

through a shared buffer.

For the most part, these routines do not free data buffers or delete zbufs, but there

are two exceptions:

■ zbufInsert() deletes the zbuf ID it inserts. No segments are freed, because they

now form part of the larger zbuf.

■ If the bytes you remove with zbufCut() span one or more complete segments,

the free routines for those segments can be called (if no other zbuf segment

refers to the same data).

The data-buffer free routine runs only when none of the data in a segment is part

of any zbuf; to avoid data copying, zbuf manipulation routines such as zbufCut()
record which parts of a segment are currently in a zbuf, postponing the deletion of

a segment until no part of its data is in use.

Segments of Zbufs

The routines in Table 7-7 give your applications access to the underlying segments

in a zbuf.

By specifying a NULL segment ID, you can address the entire contents of a zbuf as

offsets from its very first data byte. However, it is always more efficient to address

Table 7-7 Zbuf Segment Routines

Call Description

zbufSegFind() Find the zbuf segment containing a specified byte location.

zbufSegNext() Get the next segment in a zbuf.

zbufSegPrev() Get the previous segment in a zbuf.

zbufSegData() Determine the location of data in a zbuf segment.

zbufSegLength() Determine the length of a zbuf segment.
149

VxWorks Network 5.4
Programmer’s Guide
data in a zbuf relative to the closest segment. Use zbufSegFind() to translate any

zbuf byte location into the most local form.

The pair zbufSegNext() and zbufSegPrev() are useful for going through the

segments of a zbuf in order, perhaps in conjunction with zbufSegLength().

Finally, zbufSegData() allows the most direct access to the data in zbufs: it gives

your application the address where a segment’s data begins. If you manage

segment data directly using this pointer, bear the following restrictions in mind:

■ Do not change data if any other zbuf segment is sharing it.

■ As with any other direct memory access, it is up to your own code to restrict

itself to meaningful data: remember that the next segment in a zbuf is usually

not contiguous. Use zbufSegLength() as a limit, and zbufSegNext() when you

exceed that limit.

Example: Manipulating Zbuf Structure

The following interaction illustrates the use of some of the previously described

zbufLib routines, and their effect on zbuf segments and data sharing. To keep the

example manageable, the zbuf data used is artificially small, and the execution

environment is the Tornado shell (for details on this shell, see the Tornado User’s
Guide: Shell).

To begin with, we create a zbuf, and use its ID zId to verify that a newly created

zbuf contains no data; zbufLength() returns a result of 0.

-> zId = zbufCreate()
new symbol "zId" added to symbol table.
zId = 0x3b58e8: value = 3886816 = 0x3b4ee0
-> zbufLength (zId)
value = 0 = 0x0

Next, we create a data buffer buf1, insert it into zbuf zId, and verify that

zbufLength() now reports a positive length. To keep the example simple, buf1 is

a literal string, and therefore we do not supply a free-routine callback argument to

zbufInsertBuf().

-> buf1 = "I cannot repeat enough!"
new symbol "buf1" added to symbol table.
buf1 = 0x3b5898: value = 3889320 = 0x3b58a8 = buf1 + 0x10
-> zbufInsertBuf (zId, 0, 0, buf1, strlen(buf1), 0, 0)
value = 3850240 = 0x3ac000
-> zbufLength (zId)
value = 23 = 0x17
150

7

7
Networking APIs
To examine the effect of other zbuf operations, it is useful to have a zbuf-display

routine. The remainder of this example uses a routine called zbufDisplay() for

that purpose; for the complete source code, see Example 7-4.

For each zbuf segment, zbufDisplay() shows the segment ID, the start-of-data

address, the offset from that address, the length of the segment, and the data in the

segment as a character string. The following display of zId illustrates that the

underlying data in its only segment is still at the buf1 address (0x3b58a8), because

zbufInsertBuf() incorporates its buffer argument into the zbuf without copying

data.

-> ld </usr/jane/zbuf-examples/zbufDisplay.o
value = 3890416 = 0x3b5cf0 = zbufDisplay.o_bss + 0x8
-> zbufDisplay zId
segID 0x3ac000 at 0x3b58a8 + 0x0 (23 bytes): I cannot repeat enough!
value = 0 = 0x0

When we copy the zbuf, the copy has its own IDs, but still uses the same data

address:

-> zId2 = zbufDup (zId,0,0,23)
new symbol "zId2" added to symbol table.
zId2 = 0x3b5ff0: value = 3886824 = 0x3b4ee8
-> zbufDisplay zId2
segID 0x3abf80 at 0x3b58a8 + 0x0 (23 bytes): I cannot repeat enough!
value = 0 = 0x0

If we insert a second buffer into the middle of the existing data in zId, there is still

no data copying. Inserting the new buffer gives us a zbuf made up of three

segments—but notice that the address of the first segment is still the start of buf1,

and the third segment points into the middle of buf1:

-> buf2 = " this"
new symbol "buf2" added to symbol table.
buf2 = 0x3b5fb0: value = 3891136 = 0x3b5fc0 = buf2 + 0x10
-> zbufInsertBuf (zId, 0, 15, buf2, strlen(buf2), 0, 0)
value = 3849984 = 0x3abf00
-> zbufDisplay zId
segID 0x3ac000 at 0x3b58a8 + 0x0 (15 bytes): I cannot repeat
segID 0x3abf00 at 0x3b5fc0 + 0x0 (5 bytes): this
segID 0x3abe80 at 0x3b58b7 + 0x0 (8 bytes): enough!
value = 0 = 0x0

Because the underlying buffer is not modified, both buf1 and the duplicate zbuf

zId2 still contain the original string, rather than the modified one now in zId:

-> printf ("%s\n", buf1)
I cannot repeat enough!
value = 24 = 0x18
151

VxWorks Network 5.4
Programmer’s Guide
-> zbufDisplay zId2
segID 0x3abf80 at 0x3b58a8 + 0x0 (23 bytes): I cannot repeat enough!
value = 0 = 0x0

The zbufDup() routine can also select part of a zbuf without copying, for instance

to incorporate some of the same data into another zbuf—or even into the same

zbuf, as in the following example:

-> zTmp = zbufDup (zId, 0, 15, 5)
new symbol "zTmp" added to symbol table.
zTmp = 0x3b5f70: value = 3886832 = 0x3b4ef0

-> zbufInsert (zId, 0, 15, zTmp)
value = 3849728 = 0x3abe00
-> zbufDisplay zId
segID 0x3ac000 at 0x3b58a8 + 0x0 (15 bytes): I cannot repeat
segID 0x3abe00 at 0x3b5fc0 + 0x0 (5 bytes): this
segID 0x3abf00 at 0x3b5fc0 + 0x0 (5 bytes): this
segID 0x3abe80 at 0x3b58b7 + 0x0 (8 bytes): enough!
value = 0 = 0x0

After zbufInsert() combines two zbufs, the second zbuf ID (zTmp in this example)

is automatically deleted. Thus, zTmp is no longer a valid zbuf ID—for example,

zbufLength() returns ERROR:

-> zbufLength (zTmp)
value = -1 = 0xffffffff = zId2 + 0xffc4a00f

However, you must still delete the remaining two zbuf IDs explicitly when they are

no longer needed. This releases all associated zbuf-structure storage. In a real

application, with free-routine callbacks filled in, it also calls the specified free

routine on the data buffers, as follows:

-> zbufDelete (zId)
value = 0 = 0x0
-> zbufDelete (zId2)
value = 0 = 0x0

Example 7-4 Zbuf Display Routine

The following is the complete source code for the zbufDisplay() utility used in the

preceding example:

/* zbufDisplay.c - zbuf example display routine */

/* includes */

#include "vxWorks.h"
#include "zbufLib.h"
#include "ioLib.h"
#include "stdio.h"
152

7

7
Networking APIs
/**
*
* zbufDisplay - display contents of a zbuf
*
* RETURNS: OK, or ERROR if the specified data could not be displayed.
*/

STATUS zbufDisplay
(
ZBUF_ID zbufId, /* zbuf to display */
ZBUF_SEG zbufSeg, /* zbuf segment base for <offset> */
int offset, /* relative byte offset */
int len, /* number of bytes to display */
BOOL silent /* do not print out debug info */
)
{
int lenData;
char * pData;

/* find the most-local byte location */

if ((zbufSeg = zbufSegFind (zbufId, zbufSeg, &offset)) == NULL)
return (ERROR);

if (len <= 0)
len = ZBUF_END;

while ((len != 0) && (zbufSeg != NULL))
{
/* find location and data length of zbuf segment */

pData = zbufSegData (zbufId, zbufSeg) + offset;
lenData = zbufSegLength (zbufId, zbufSeg) - offset;
lenData = min (len, lenData); /* print all of seg ? */

if (!silent)
printf ("segID 0x%x at 0x%x + 0x%x (%2d bytes): ",

(int) zbufSeg, (int) pData, offset, lenData);
write (STD_OUT, pData, lenData); /* display data */
if (!silent)

printf ("\n");

zbufSeg = zbufSegNext (zbufId, zbufSeg); /* update segment */
len -= lenData; /* update length */
offset = 0; /* no more offset */
}

return (OK);
}

153

VxWorks Network 5.4
Programmer’s Guide
Limitations of the Zbuf Implementation

The following zbuf limitations are due to the current implementation; they are not

inherent to the data abstraction. They are described because they can have an

impact on application performance.

■ With the current implementation, references to data in zbuf segments before a

particular location (whether with zbufSegPrev(), or with a negative offset in a

byte location) are significantly slower than references to data after a particular

location.

■ The data in small zbuf segments (less than 512 bytes) is sometimes copied,

rather than having references propagated to it.

7.3.3 Zbuf Socket Calls

The zbuf socket calls listed in Table 7-8 are named to emphasize parallels with the

standard BSD socket calls: thus, zbufSockSend() is the zbuf version of send(), and

zbufSockRecvfrom() is the zbuf version of recvfrom(). The arguments also

correspond directly to those of the standard socket calls.

For a detailed description of each routine, see the corresponding reference entry.

Table 7-8 Zbuf Socket Library Routines

Call Description

zbufSockLibInit() Initialize socket libraries (called automatically if the

configuration has zbuf sockets enabled. The relevant

configuration macro is INCLUDE_SOCK_ZBUF).

zbufSockSend() Send zbuf data to a TCP socket.

zbufSockSendto() Send a zbuf message to a UDP socket.

zbufSockBufSend() Create a zbuf and send it as TCP socket data.

zbufSockBufSendto() Create a zbuf and send it as a UDP socket message.

zbufSockRecv() Receive data in a zbuf from a TCP socket.

zbufSockRecvfrom() Receive a message in a zbuf from a UDP socket.
154

7

7
Networking APIs
Standard Socket Calls and Zbuf Socket Calls

The zbuf socket calls are particularly useful when large data transfer is a significant

part of your socket application. For example, many socket applications contain

sections of code like the following fragment:

pBuffer = malloc (BUFLEN);
while ((readLen = read (fdDevice, pBuffer, BUFLEN)) > 0)

write (fdSock, pBuffer, readLen);

You can eliminate the overhead of copying from the application buffer pBuffer
into the internal socket buffers by changing the code to use zbuf socket calls. For

example, the following fragment is a zbuf version of the preceding loop:

pBuffer = malloc (BUFLEN * BUFNUM); /* allocate memory */
for (ix = 0; ix < (BUFNUM - 1); ix++, pBuffer += BUFLEN)

appBufRetn (pBuffer); /* fill list of free bufs */

while ((readLen = read (fdDevice, pBuffer, BUFLEN)) > 0)
{
zId = zbufCreate (); /* insert into new zbuf */
zbufInsertBuf (zId, NULL, 0, pBuffer, readLen, appBufRetn, 0);
zbufSockSend (fdSock, zId, readLen, 0); /* send zbuf */
pBuffer = appBufGet (WAIT_FOREVER); /* get a fresh buffer */
}

The appBufGet() and appBufRetn() references in the preceding code fragment

stand for application-specific buffer management routines, analogous to malloc()
and free(). In many applications, these routines do nothing more than manipulate

a linked list of free fixed-length buffers.

Example 7-5 The TCP Example Server Using Zbufs

For a small but complete example that illustrates the mechanics of using the zbuf

socket library, consider the conversion of the client-server example in Example 7-1

to use zbuf socket calls.

No conversion is needed for the client side of the example; the client operates the

same regardless of whether or not the server uses zbufs. The next example

illustrates the following changes to convert the server side to use zbufs:

– Instead of including the header file sockLib.h, include zbufSockLib.h.

– The data processing component must be capable of dealing with potentially

non-contiguous data in successive zbuf segments. In the TCP example, this

component displays a message using printf(); we can use the zbufDisplay()
routine from Example 7-4 instead.
155

VxWorks Network 5.4
Programmer’s Guide
– The original TCP example exploits fioRead() to collect the complete message,

rather than calling recv() directly. To achieve the same end while avoiding

data copying by using zbufs, the following example defines a

zbufFioSockRecv() subroutine to call zbufSockRecv() repeatedly until the

complete message is received.

– A new version of the worker routine tcpServerWorkTask() must tie together

these separate modifications, and must explicitly extract the reply and

msgLen fields from the client’s transmission to do so. When using zbufs, these

fields cannot be extracted by reference to the C structure in tcpExample.h
because of the possibility that the data is not contiguous.

The following example shows the auxiliary zbufFioSockRecv() routine and the

zbuf version of tcpServerWorkTask(). To run this code:

1. Start with tcpServer.c as defined in Example 7-1.

2. Include the header file zbufSockLib.h.

3. Insert the zbufDisplay() routine from Example 7-4.

4. Replace the tcpServerWorkTask() definition with the following two routines:

/**
*
* zbufFioSockRecv - receive <len> bytes from a socket into a zbuf
*
* This routine receives a specified amount of data from a socket into a
* zbuf, by repeatedly calling zbufSockRecv() until <len> bytes
* are read.
*
* RETURNS:
* The ID of the zbuf containing <len> bytes of data,
* or NULL if there is an error during the zbufSockRecv() operation.
*
* SEE ALSO: zbufSockRecv()
*/

ZBUF_ID zbufFioSockRecv
(
int fd, /* file descriptor of file to read */
int len /* maximum number of bytes to read */
)
{
BOOL first = TRUE; /* first time thru ? */
ZBUF_ID zRecvTotal = NULL; /* zbuf to return */
ZBUF_ID zRecv; /* zbuf read from sock */
int nbytes; /* number of recv bytes */

for (; len > 0; len -= nbytes)
{
nbytes = len; /* set number of bytes wanted */
156

7

7
Networking APIs
/* read a zbuf from the socket */

if (((zRecv = zbufSockRecv (fd, 0, &nbytes)) == NULL) ||
(nbytes <= 0))
{
if (zRecvTotal != NULL)

zbufDelete (zRecvTotal);
return (NULL);
}

/* append recv'ed zbuf onto end of zRecvTotal */

if (first)
zRecvTotal = zRecv; /* cannot append to empty zbuf */

else if (zbufInsert (zRecvTotal, NULL, ZBUF_END, zRecv) == NULL)
{
zbufDelete (zRecv);
zbufDelete (zRecvTotal);
return (NULL);
}

first = FALSE; /* can append now... */
}

return (zRecvTotal);
}

/**
*
* tcpServerWorkTask - process client requests
*
* This routine reads from the server's socket, and processes client
* requests. If the client requests a reply message, this routine
* sends a reply to the client.
*
* RETURNS: N/A.
*/

VOID tcpServerWorkTask
(
int sFd, /* server's socket fd */
char * address, /* client's socket address */
u_short port /* client's socket port */
)
{
static char replyMsg[] = "Server received your message";
ZBUF_ID zReplyOrig; /* original reply msg */
ZBUF_ID zReplyDup; /* duplicate reply msg */
ZBUF_ID zRequest; /* request msg from client */
int msgLen; /* request msg length */
int reply; /* reply requested ? */

/* create original reply message zbuf */
157

VxWorks Network 5.4
Programmer’s Guide
if ((zReplyOrig = zbufCreate ()) == NULL)
{
perror ("zbuf create");
free (address); /* free malloc from inet_ntoa() */
return;
}

/* insert reply message into zbuf */

if (zbufInsertBuf (zReplyOrig, NULL, 0, replyMsg,
sizeof (replyMsg), NULL, 0) == NULL)
{
perror ("zbuf insert");
zbufDelete (zReplyOrig);
free (address); /* free malloc from inet_ntoa() */
return;
}

/* read client request, display message */

while ((zRequest = zbufFioSockRecv (sFd, sizeof(struct request))) != NULL)
{
/* extract reply field into <reply> */

(void) zbufExtractCopy (zRequest, NULL, 0,
(char *) &reply, sizeof (reply));

(void) zbufCut (zRequest, NULL, 0, sizeof (reply));

/* extract msgLen field into <msgLen> */

(void) zbufExtractCopy (zRequest, NULL, 0,
(char *) &msgLen, sizeof (msgLen));

(void) zbufCut (zRequest, NULL, 0, sizeof (msgLen));

/* duplicate reply message zbuf, preserving original */

if ((zReplyDup = zbufDup (zReplyOrig, NULL, 0, ZBUF_END)) == NULL)
{
perror ("zbuf duplicate");
zbufDelete (zRequest);
break;
}

printf ("MESSAGE FROM CLIENT (Internet Address %s, port %d):\n",
 address, port);

/* display request message zbuf */

(void) zbufDisplay (zRequest, NULL, 0, msgLen, TRUE);
printf ("\n");
if (reply)

{
if (zbufSockSend (sFd, zReplyDup, sizeof (replyMsg), 0) < 0)

perror ("zbufSockSend");
}

158

7

7
Networking APIs
/* finished with request message zbuf */

zbufDelete (zRequest);
}

free (address); /* free malloc from inet_ntoa() */
zbufDelete (zReplyOrig);
close (sFd);
}

! CAUTION: In the interests of brevity, the STATUS return values for several zbuf

socket calls are discarded with casts to void. In a real application, check these

return values for possible errors.
159

VxWorks Network 5.4
Programmer’s Guide
160

8
DNS: Domain Name System
8.1 Introduction

Most TCP/IP applications use Internet host names instead of IP addresses when

they must refer to locations in the network. One reason for this is that host names

are a friendlier human interface than IP addresses. In addition, when a host-

name/IP-address pair changes, the services associated with that site typically

follow the host name and not the IP address. Most applications should probably

refer to network locations using host names instead of IP addresses. To make this

possible, the applications need a way to translate between host names and IP

addresses.

On a small isolated network, a hand-edited table is a viable solution to the look-up

problem. Such a table contains entries that pair up host names with their

corresponding IP addresses. If you copy this table to each host on the network, you

give the applications running on those hosts the ability to translate host names to

IP addresses. However, as hosts are added to the network, you must update this

table and then redistribute it to all the hosts in the network. This can quickly

become an overwhelming task if you must manage it manually.

As networks grow, they develop a hierarchy whose structure changes with the

growth. Such restructuring can change the network addresses of almost every

machine on the network. In addition, these changes are not necessarily made from

a single central location. Network users at different locations can add or remove

machines at will. As a result, the network has a dynamic decentralized structure.

Trying to track such a structure using a static centralized table is impractical. One

response to this need is the Domain Name System (DNS).

DNS is a distributed database that most TCP/IP applications can use to translate

host names to IP addresses and back. DNS uses a client/server architecture. The
161

VxWorks Network 5.4
Programmer’s Guide
client side is known as the resolver. The server side is called the name server.
VxWorks provides the resolver functionality in resolvLib. For detailed

information on DNS, see RFC-1034, and RFC-1035.

8.2 Domain Names

DNS is modeled after a tree architecture. The root of the tree is unnamed. Below

the root comes a group of nodes. Each of these nodes represents a domain within

the network. Associated with each node is a unique label, a domain name of up to

63 characters. The domain names are managed by the NIC (Network Information

Center), which delegates control of the top-level domains to countries,

universities, governments, and organizations.

An example of a domain name is “com”, the commercial domain. WRS (Wind

River Systems) is a commercial organization, thus it fits under the commercial

domain. The NIC has given WRS the authority to manage the name space under

“wrs.com”. WRS uses this space to name all the hosts in its network.

8.3 The VxWorks Resolver

The VxWorks implementation of the resolver closely follows the 4.4 BSD resolver

implementation. However, the VxWorks implementation differs in the way it

handles the hostent structure. The 4.4 BSD resolver is a library that links with each

process. It uses static structures to exchange data with the process. This is not

possible in VxWorks, which uses a single copy of the library that it shares among

all the tasks in the system. All applications using the resolver library must provide

their own buffers. As a result, under VxWorks, the functions

resolvGetHostByName() and resolvGetHostByAddr() require two extra

parameters (for a detailed description of the interface, see the reference entries for

these routines).

Under VxWorks, the resolver library uses UDP to send requests to the configured

name servers. The resolver also expects the server to handle any recursion

necessary to perform the name resolution. You can configure the resolver at
162

8

8
DNS: Domain Name System
initialization or at run time.1 The resolver can also query multiple servers if you

need to add redundancy to name resolution in your system. Additionally, you can

configure the resolver library’s response to a failed name server query. Either the

resolver looks in the static host configuration table immediately after the failed

query, or the resolver ignores the static table.2 The default behavior of the resolver

is to query only the name server and ignore the static table.

8.3.1 Resolver Integration

The resolver has been fully integrated into VxWorks. Existing applications can

benefit from the resolver without needing to make any code changes. This is

because the code internal to hostGetByName() and hostGetByAddr() have been

updated to use the resolver.3 Thus, the only thing you need do to take advantage

of the resolver is to include it in your VxWorks image.

8.3.2 Resolver Configuration

The resolver library is not included by default in the VxWorks image. Thus, to

include the resolver in your VxWorks image, you must modify config.h as follows:

1. Reconfigure VxWorks with the DNS resolver on. The relevant configuration

macro is INCLUDE_DNS_RESOLVER.

2. Establish the IP address of the Domain Name Server. Change the default value

for the constant:

#define RESOLVER_DOMAIN_SERVER " ip_address"

The IP address of the server needs to be in dotted decimal notation (for

example, 90.0.0.3).

3. Make sure that a route to the Domain Name Server exists before you try to

access the resolver library. To do this, you can use routeAdd() to add the route

to the routing table. However, if you have included a routing protocol such as

RIP or OSPF in your VxWorks image, these protocols add the route for you.

1. For initialization, call resolvParamsGet() and resolvParamsSet(). See the reference entries

for these routines.

2. The boot configuration table is maintained by hostLib.

3. Both hostGetByName() and hostGetByAddr() are hostLib functions.
163

VxWorks Network 5.4
Programmer’s Guide
4. Define the domain to which the resolver belongs by changing the default

Resolver Domain in the VxWorks configuration (defined by the configuration

constant RESOLVER_DOMAIN).

You must change this domain name to the domain name to which your

organization belongs. The resolver uses this domain name when it tries to

query the domain server for the name of the host machine for its organization.

The resolver library supports a debug option, the DNS Debug Messages

parameter: DNS_DEBUG.

Using this parameter causes a log of the resolver queries to be printed to the

console. The use of this feature is limited to a single task. If you have multiple tasks

running, the output to the console will be garbled.
164

9
SNTP: A Time Protocol
9.1 Introduction

VxWorks supports a client and server for the Simple Network Time Protocol

(SNTP). You can use the client to maintain the accuracy of your system’s internal

clock based on time values reported by one or more remote sources. You can use

the server to provide time information to other systems.

9.2 Using the SNTP Client

To include the SNTP client, reconfigure your VxWorks image. The relevant

configuration macro is INCLUDE_SNTPC. To retrieve the current time from a

remote source, call sntpcTimeGet(). This routine retrieves the time reported by a

remote source and converts that value for POSIX-compliant clocks. To get time

information, sntpcTimeGet() either sends a request and extracts the time from the

reply, or it waits until a message is received from an SNTP/NTP server executing

in broadcast mode. See the sntpcTimeGet() reference entry.
165

VxWorks Network 5.4
Programmer’s Guide
9.3 Using the SNTP Server

To include the SNTP server, reconfigure your VxWorks image. The relevant

configuration macro is INCLUDE_SNTPS. VxWorks automatically calls sntpsInit()
during system startup. Depending on the value of the SNTP Server Mode Selection

(set by the configuration constant SNTPS_MODE), the server executes in one of two

modes, SNTP_PASSIVE or SNTP_ACTIVE.

If the SNTP Server Mode Selection is set to SNTP_PASSIVE, the server waits for

requests from clients and sends replies containing an NTP timestamp. If the SNTP

Server Mode Selection is set to SNTP_ACTIVE, the server periodically transmits

NTP timestamp information at fixed intervals.

When executing in active mode, the SNTP server uses two other configuration

settings, the SNTP Server Destination Address (configuration constant

SNTPS_DSTADDR) and the SNTP Server Update Interval (configuration constant

SNTPS_INTERVAL) to determine the target IP address and broadcast interval. By

default, the server transmits the timestamp information to the local subnet

broadcast address every 64 seconds. To change these settings after system startup,

call the sntpsConfigSet() routine. The SNTP server operating in active mode can

also respond to client requests as they arrive.

The SNTP Client/Server Port (configuration constant SNTP_PORT) assigns the

source and destination UDP port. The default port setting is 123 as specified by the

RFC 1769.

Finally, the SNTP server requires access to a reliable external time source. To do

this, you must provide a routine of the form:

STATUS sntpsClockHook (int request, void *pBuffer);

Until this routine is hooked into SNTP, the server cannot provide timestamp

information. There are two ways to hook this routine into the SNTP server. The

first is to configure VxWorks with the SNTPS Time Hook (configuration constant

SNTPS_TIME_HOOK) set to the appropriate routine name. You can also call

sntpsClockSet(). See the reference entry fro sntpsClockSet() for more

information.
166

10
RPC: Remote Procedure Calls
10.1 Introduction

Remote Procedure Call (RPC) implements a client-server model of task interaction.

In this model, client tasks request services of server tasks, and then wait for their

reply. RPC formalizes this model and provides a standard protocol for passing

requests and returning replies. Thus, a VxWorks or host system client task can

request services from VxWorks or the host servers in any combination.

Internally, RPC uses sockets as the underlying communication mechanism. RPC,

in turn, is used in the implementation of several higher-level facilities, including

the Network File System (NFS) and remote source-level debugging. Also, RPC

includes utilities to help generate the client interface routines and the server

skeleton.

The VxWorks implementation of RPC is task-specific. Each task must call

rpcTaskInit() before making any RPC-related calls.

The VxWorks implementation of RPC was originally designed by Sun

Microsystems and is in the public domain. For more information, see the public

domain RPC documentation (supplied in source form in the directories

target/unsupported/rpc4.0/doc and target/unsupported/rpc4.0/man), and the

reference entry for rpcLib.
167

VxWorks Network 5.4
Programmer’s Guide
168

11
File Access Applications
11.1 Introduction

Using RSH, FTP, or NFS, applications running under VxWorks can access files on

any host development system (over the network) exactly as if they were local to the

VxWorks system. For example, /dk0/file might be a file local to the VxWorks

system, while /host/file might be a file located on another machine entirely. To

VxWorks applications, the files operate in exactly the same way; only the name is

different. Transparent file access is available through any of three different

protocols:1

■ Remote Shell (RSH) is serviced by the remote shell daemon rshd on the host

system. See the reference entry for remLib.

■ Internet File Transfer Protocol (FTP) client and server functions are provided

with a library of routines in ftpLib to transfer files between FTP servers on the

network and invoke other FTP functions. See the reference entries for ftpLib
and ftpdLib.

■ Network File System (NFS) client protocol is implemented in the I/O driver

nfsDrv to access files on any NFS server on the network. This I/O driver was

tested with many different implementations of NFS file servers on various

operating systems. The NFS server protocol is implemented (for dosFs file

systems) in two libraries, mountLib and nfsdLib.

1. If you are developing on a Windows host, check your Windows and networking software

documentation for information on which of these protocols is available and how to use

them.
169

VxWorks Network 5.4
Programmer’s Guide
An alternative remote file transfer protocol is the Trivial File Transfer Protocol

(TFTP). The VxWorks implementation provides both client and server functions,

and is used only to retrieve a VxWorks image at boot time. See the reference entries

for tftpLib and tftpdLib.

11.2 RSH and FTP

The VxWorks I/O driver netDrv implements remote file access using either of the

protocols, RSH or FTP. The netDrv driver uses these protocols to read the entire

remote file into local memory when the file is opened, and to write the file back

when it is closed (if it was modified).

The VxWorks I/O driver nfsDrv implements remote file access using NFS. This

protocol transfers only the data actually read or written to the file and thus is

considerably more efficient, both in terms of memory utilization and throughput.

However, it is somewhat more cumbersome to set up initially than the other

protocols. The following sections describe the implementation and configuration

of these protocols.

A separate VxWorks I/O device is created for every host that services remote file

accesses. When a file on one of these devices is accessed, netDrv uses either RSH

or FTP to transfer the file to or from VxWorks:

■ Using RSH, netDrv remotely executes the cat command to copy the entire

requested file to and from the target. The RSH protocol is serviced by the

remote shell daemon rshd. See the reference entry for remLib.

■ Using FTP, netDrv uses the RETR and STOR commands to retrieve and store

the entire requested file. The netDrv driver uses a library of routines, in

ftpLib, that implements the client side for the Internet File Transfer Protocol.

VxWorks tasks can transfer files to and from FTP servers on the network and

invoke other FTP functions. See the reference entry for ftpLib.

VxWorks can also function as an FTP server. The FTP daemon running on a

VxWorks server handles calls from host system and VxWorks clients, and can also

boot another VxWorks system. To boot from the VxWorks server with a local disk,

specify the Internet address of the VxWorks server in the host inet field of the boot

parameters, supply a password in the ftp password field, and specify the shared-

memory network as the boot device.
170

11

11
File Access Applications
In the following example (also see Figure 11-1), a slave on the shared-memory

network boots from the master CPU’s local SCSI disk. (For more information on

shared-memory networks, see 3.5 Shared-Memory Network on the Backplane, p.40.)

Note that VxWorks requires a non-empty ftp password field. This is true even if

VxWorks is configured with FTP server security turned off (the default). The

relevant configuration macro is INCLUDE_FTPD_SECURITY. However, if FTP

security checks are turned on, the ftp password field must contain a valid

password for the specified user.

The following boot parameters are for the slave processor (vxSlave):

boot device : sm=0x800000
processor number : 1
host name : vxServer
file name : /sd0/vx2
inet on backplane (b) : 161.27.0.2
host inet (h) : 161.27.0.1
user (u) : caraboo
ftp password (pw) (blank=use rsh) : ignored

The FTP server daemon is initialized on the VxWorks server based on the

configuration. The relevant configuration macro is INCLUDE_FTP_SERVER. See

also the reference entry for ftpdLib.

11.2.1 Allowing Remote File Access with RSH

An RSH request includes the name of the requesting user. The request is treated

like a remote login by that user.

Figure 11-1 FTP Boot Example

CPU 1CPU 0

vxServer

161.27.0.2161.27.0.1

/sd0/vx2

Shared-Memory Network

SCSI Disk

vxSlave
171

VxWorks Network 5.4
Programmer’s Guide
For Windows hosts, the availability and functionality of this facility is determined

by your version of Windows and the networking software you are using. See that

documentation for details.

For UNIX hosts, such remote logins are restricted by means of the host file .rhosts
in the user’s home directory, and more globally with the host file /etc/hosts.equiv.

The .rhosts file contains a list of system names (as defined in /etc/hosts) that have

access to that user’s login. Therefore, make sure that the user’s home directory has

a .rhosts file listing the VxWorks systems, each on a separate line, that are allowed

to access files remotely using the user’s name.

The /etc/hosts.equiv file provides a less selective mechanism. Systems listed in

this file are allowed login access to any user defined on the local system (except the

super-user root). Thus, adding VxWorks system names to /etc/hosts.equiv allows

those VxWorks systems to access files using any user name on the UNIX system.

The FTP protocol, unlike RSH, specifies both the user name and password on every

request. Therefore, when using FTP, the UNIX system does not use the .rhosts or

/etc/hosts.equiv files to authorize remote access.

11.2.2 Creating VxWorks Network Devices that use RSH or FTP

The routine netDevCreate() is used to create a VxWorks I/O device for a particular

remote host system:

netDevCreate (" devName", " host", protocol)

Its arguments are:

devName
The name of the device to be created.

host
The Internet address of the host in dot notation, or the name of the remote

system as specified in a previous call to hostAdd(). It is traditional to use

as the device name the host name followed by a colon.

protocol
The file transfer protocol: 0 for RSH or 1 for FTP.

For example, the following call creates a new I/O device on VxWorks called mars:,
which accesses files on the host system mars using RSH:

-> netDevCreate "mars:", "mars", 0
172

11

11
File Access Applications
After a network device is created, files on that host can be accessed by appending

the host path name to the device name. For example, the file name

mars:/usr/darger/myfile refers to the file /usr/darger/myfile on the mars system.

This file can be read and/or written exactly like a local file. For example, the

following Tornado shell command opens that file for I/O access:

-> fd = open ("mars:/usr/darger/myfile", 2)

The VxWorks network startup routine, usrNetInit() in usrNetwork.c,

automatically creates a network device for the host name specified in the VxWorks

boot parameters. If no FTP password was specified in the boot parameters, the

network device is specified with the RSH protocol. If a password was specified,

FTP is used.

11.2.3 Setting the User ID for Remote File Access with RSH or FTP

All FTP and RSH requests to a remote system include the user name. All FTP

requests include a password as well as a user name. From VxWorks you can

specify the user name and password for remote requests by calling iam():

iam (" username", " password")

The first argument to iam() is the user name that identifies you when you access

remote systems. The second argument is the FTP password. This is ignored if RSH

is being used, and can be specified as NULL or 0 (zero).

For example, the following command tells VxWorks that all accesses to remote

systems with RSH or FTP are through user darger, and if FTP is used, the password

is unreal:

-> iam "darger", "unreal"

The VxWorks network startup routine, usrNetInit() in usrNetwork.c, initially sets

the user name and password to those specified in the boot parameters.

11.2.4 File Permissions

For a VxWorks system to have access to a particular file on a host, permissions on

the host system must be set up so that the user name that VxWorks is using has

permission to read that file (and write it, if necessary). This means that it must

have permission to access all directories in the path, as well as the file itself.
173

VxWorks Network 5.4
Programmer’s Guide
The easiest way to check this is to log in to the host with the user name VxWorks

uses, and try to read or write the file in question. If you cannot do this, neither can

the VxWorks system.

11.3 NFS

The I/O driver nfsDrv, which provides NFS client support, uses the client routines

in the library nfsLib to access files on an NFS file server.

VxWorks also allows you to run an NFS server to export files to other systems. The

server task mountd allows other systems on the network to mount VxWorks file

systems (dosFs only); then the server task nfsd allows them to read and write to

those files. The VxWorks NFS server facilities are implemented in the following

libraries:

mountLib
Mount Protocol library. Provides functions to manage exporting file

systems.

nfsdLib
NFS Server library. Provides functions to manage requests from remote

NFS clients.

The routines in the VxWorks NFS libraries are implemented using RPC. For more

information, see the reference entries for these libraries and RPC: Remote Procedure
Calls, p.167.

11.3.1 VxWorks Target as Client

To access files on UNIX, NFS clients mount file systems from NFS servers. On a

UNIX NFS server, the file /etc/exports specifies which of the server’s file systems

can be mounted by NFS clients. For example, if /etc/exports contains the following

line:

/usr

then the file system /usr can be mounted by NFS clients such as VxWorks. If a file

system is not listed in this file, it cannot be mounted by other machines. Other
174

11

11
File Access Applications
optional fields in /etc/exports allow the exported file system to be restricted to

certain machines or users.

Creating VxWorks Network Devices that Use NFS

Access to a remote NFS file system is established by mounting that file system

locally and creating an I/O device for it using the routine nfsMount():

nfsMount (" host", " hostFileSys", " localName")

Its arguments are:

host
The host name of the NFS server where the file system resides.

hostFileSys
The name of the desired host file system or subdirectory.

localName
The local name to assign to the file system.

For example, the following call mounts /usr of the host mars as /vwusr locally:

-> nfsMount "mars", "/usr", "/vwusr"

The host name mars must already be in VxWorks’s list of hosts (added with the

routine hostAdd()). VxWorks then creates a local I/O device /vwusr that refers to

the mounted file system. A reference on VxWorks to a file with the name

/vwusr/darger/myfile refers to the file /usr/darger/myfile on the host mars as if it

were local to the VxWorks system.

If VxWorks is configured with “NFS mount all” on, VxWorks mounts all host-

exported NFS file systems. The relevant configuration macro is

INCLUDE_NFS_MOUNT_ALL. Otherwise, the network startup routine,

usrNetInit() in usrNetwork.c, tries to mount the file system from which VxWorks

was booted—as long as NFS is included in the VxWorks configuration and the

VxWorks boot file begins with a slash (/). For example, if NFS is included and you

boot /usr/wind/target/config/ bspname/vxWorks, then VxWorks attempts to mount

/usr from the boot host with NFS.

! CAUTION: On Windows, most networking packages that support NFS also supply

a mechanism for exporting files so that they are visible on the network. See your

Windows and networking software documentation for information on this facility.
175

VxWorks Network 5.4
Programmer’s Guide
Setting the User ID for Remote File Access with NFS

When making an NFS request to a host system, the NFS server expects more

information than the user’s name. NFS is built on top of Remote Procedure Call

(RPC) and uses a type of RPC authentication known as AUTH_UNIX. This

mechanism requires the user ID and a list of group IDs to which the user belongs.

These parameters can be set on VxWorks using nfsAuthUnixSet(). For example,

to set the user ID to 1000 and the group ID to 200 for the machine mars, use:

-> nfsAuthUnixSet "mars", 1000, 200, 0

The routine nfsAuthUnixPrompt() provides a more interactive way of setting the

NFS authentication parameters from the Tornado shell. On UNIX systems, a user

ID is specified in the file /etc/passwd. A list of groups that a user belongs to is

specified in the file /etc/group.

A default user ID and group ID is specified during configuration by setting the

user identifier for NFS access (the configuration constant NFS_USER_ID, set by

default to 2001) and the group identifier for NFS access (the configuration constant

NFS_GROUP_ID, set by default to 100) respectively. The NFS authentication

parameters are set to these values at system startup. If NFS file access is

unsuccessful, make sure that the configuration is correct.

11.3.2 VxWorks Target as Server

To export a dosFs file system with NFS, carry out the following steps:

■ Initialize a dosFs file system, with the option that makes it NFS-exportable.
■ Register the file system for export, with a call to nfsExport().

To use the file system from another machine after you export it, you must also:

■ Mount the remote VxWorks file system using local host facilities.

To include NFS Server support, reconfigure VxWorks. The relevant configuration

macro is INCLUDE_NFS_SERVER. If you wish, you can run a VxWorks system

with only NFS Server support (no client support).

Initializing an NFS-Exportable File System

To export a dosFs file system with NFS, you must initialize that file system with the

DOS_OPT_EXPORT option (see VxWorks Programmer’ Guide: Volume Configuration).
176

11

11
File Access Applications
With this option, the dosFs initialization code creates some small additional in-

memory data structures; these structures make the file system exportable.

The following steps initialize a DOS file system called /export on a SCSI drive. You

can use any block device instead of SCSI. Your BSP can also support other suitable

device drivers; see your BSP’s documentation.

1. Initialize the block device containing your file system.

For example, you can use a SCSI drive as follows:

scsiAutoConfig (NULL);
pPhysDev = scsiPhysDevIdGet (NULL, 1, 0);
pBlkDev = scsiBlkDevCreate (pPhysDev, 0, 0);

Calling scsiAutoConfig() configures all SCSI devices connected to the default

system controller. (Real applications often use scsiPhysDevCreate() instead,

to specify an explicit configuration for particular devices.) The

scsiPhysDevIdGet() call identifies the SCSI drive by specifying the SCSI

controller (NULL specifies the default controller), the bus ID (1), and the

Logical Unit Number (0). The call to scsiBlkDevCreate() initializes the data

structures to manage that particular drive.

2. Initialize the file system with the usual dosFs facilities, but also specify the

option DOS_OPT_EXPORT. If your NFS client is PC-based, it may also require

the DOS_OPT_LOWERCASE option. For example, if the device already has a

valid dosFs file system on it (see VxWorks Programmer’s Guide: Using an Already
Initialized Disk), initialize it as follows:

dosFsDevInitOptionsSet (DOS_OPT_EXPORT);
dosFsDevInit ("/export", pBlkDev, NULL);

Otherwise, specify a pointer to a DOS_VOL_CONFIG structure rather than

NULL as the third argument to dosFsDevInit() (see the dosFsLib reference

entry for details).

Exporting a File System through NFS

After you have an exportable file system, call nfsExport() to make it available to

NFS clients on your network. Then mount the file system from the remote NFS

client, using the facilities of that system. The following example shows how to

! CAUTION: For NFS-exportable file systems, the device name must not end in a

slash.
177

VxWorks Network 5.4
Programmer’s Guide
export the new dosFs file system from a VxWorks platform called vxTarget, and

how to mount it from a typical UNIX system.

1. After the file system (/export in this example) is initialized, the following

function call specifies it as a file system to be exported with NFS:

nfsExport ("/export", 0, FALSE, 0);

The first three arguments specify the name of the file system to export; the

VxWorks NFS export ID (0 means to assign one automatically); and whether

to export the file system as read-only. The last argument is a place-holder for

future extensions.

2. To mount the file system from another machine, see the system documentation

for that machine. Specify the name of the VxWorks system that exports the file

system, and the name of the desired file system. You can also specify a

different name for the file system as seen on the NFS client.

For example, on a typical UNIX system, the following command (executed

with root privilege) mounts the /export file system from the VxWorks system

vxTarget, using the name /mnt for it on UNIX:

/etc/mount vxTarget:/export /mnt

Properties of NFS-Exported File Systems

Several global variables allow you to specify dosFs facilities related to NFS

support. Because these facilities use global variables, you can export previously

existing dosFs file systems without altering the existing configuration stored with

the file system data on disk.

However, because these are global variables, you must take care to avoid race

conditions if more than one task initializes dosFs file systems. If your application

initializes file systems for NFS on the fly, you may need mutual exclusion

surrounding these global variable settings and the corresponding file system

initialization.

You can specify a single user ID, group ID, and mode (permissions) for all files

within a dosFs file system. To specify these values, define the following global

variables before initializing a dosFs file system with either dosFsDevInit() or

dosFsMkfs():

! CAUTION: On UNIX systems, you normally need root access to mount file

systems.
178

11

11
File Access Applications
dosFsUserId
Numeric user ID. Default: 65534.

dosFsGroupId
Numeric group ID. Default: 65534.

dosFsFileMode
Numeric file access mode (that is, permissions with UNIX encoding).

Default: 511 (octal, 777).

These settings remain in effect for the file system until you reboot.

You can also set the current date and time for the DOS file system using

dosFsDateSet() and dosFsTimeSet(). For a discussion of these routines and other

standard dosFs facilities, see VxWorks Programmer’s Guide: MS-DOS-Compatible File
System: dosFs.

Limitations of the VxWorks NFS Server

The VxWorks NFS Server can export only dosFs file systems, which leads to the

following DOS limitations:

– File names in dosFs normally share the DOS limit of 8 characters with a three-

character extension. An optional dosFs feature allows (at the expense of DOS

compatibility) file names up to forty characters long. To enable this extension,

create the file system with the DOS_OPT_LONGNAMES option (defined in

dosFsLib.h).

– DOS file systems do not provide for permissions, user IDs, and group IDs on

individual files. You can provide a single user ID, a single group ID, and a

single set of permissions for all files on an entire DOS file system by defining

the global variables dosFsUserId, dosFsGroupId, and dosFsFileMode,

described in the reference entry for dosFsLib.

– Because the DOS file system does not provide file permissions, VxWorks does

not normally provide authentication services for NFS requests. To

authenticate incoming requests, write your own authentication functions and

! WARNING: dosFsFileMode controls only how the file access mode is reported to

NFS clients; it does not override local access restrictions on the DOS file system. In

particular, if any file in an exported file system has DOS_ATTR_RDONLY set in its

file-attribute byte, no modifications to that file are permitted regardless of what

dosFsFileMode says.
179

VxWorks Network 5.4
Programmer’s Guide
arrange to call them when needed. See the reference entries for nfsdInit() and

mountdInit() for information on authorization hooks.

11.4 TFTP

The Trivial File Transfer Protocol (TFTP) is implemented on top of the Internet

User Datagram Protocol (UDP). VxWorks provides both a TFTP client and a TFTP

server. The TFTP client is useful at boot time, when you can use it to download a

VxWorks image from the boot host. The TFTP server is useful if you want to boot

an X-Terminal from VxWorks. It is also useful if you want to boot another VxWorks

system from a local disk.

Unlike FTP and RSH, TFTP requires no authentication; that is, the remote system

does not require an account or password. The TFTP server allows only publicly

readable files to be accessed. Files can be written only if they already exist and are

publicly writable.

11.4.1 Host TFTP Server

Typically, the host-resident Internet daemon starts the TFTP server. For added

security, some hosts (for example, Sun hosts) default to starting the TFTP server

with the secure (-s) option enabled. If -s is specified, the server restricts host access

by rooting all TFTP requests into the directory specified (for example, /tftpboot).

For example, if the secure option was set with -s /tftpboot, a TFTP request for the

file /vxBoot/vxWorks is satisfied by the file /tftpboot/vxBoot/vxWorks rather than

the expected file /vxBoot/vxWorks.

To disable the secure option on the TFTP server, edit /etc/inetd.conf and remove

the -s option from the tftpd entry.

11.4.2 VxWorks TFTP Server

The TFTP server daemon is initialized by default when VxWorks is appropriately

configured. The relevant configuration macro is INCLUDE_TFTP_SERVER. See the

reference entry for tftpdLib.
180

11

11
File Access Applications
11.4.3 VxWorks TFTP Client

Include the VxWorks TFTP client side by reconfiguring VxWorks. The relevant

configuration macro is INCLUDE_TFTP_CLIENT. To boot using TFTP, specify 0x80

in the boot flags parameters. To transfer files from the TFTP host and the VxWorks

client, two high-level interfaces are provided, tftpXfer() and tftpCopy(). See the

reference entry for tftpLib.
181

VxWorks Network 5.4
Programmer’s Guide
182

12
rlogin and telnet: Host Access

Applications
12.1 Introduction

VxWorks supports the host access applications telnet and rlogin. VxWorks also

includes remLib, a library for the execution of commands on a remote shell.

12.2 rlogin

You can log in to a host system from a VxWorks terminal using rlogin(). For more

information on the VxWorks side of this communication, see the reference entry for

rLogLib.

When connecting with a Windows host system, VxWorks’s ability to remotely

login depends on your version of Windows and the networking software you are

using. See that documentation for details.

When connecting with a UNIX host system, access permission must be granted to

the VxWorks system by entering its system name either in the .rhosts file (in your

home directory) or in the /etc/hosts.equiv file. For more information, see

11.2.1 Allowing Remote File Access with RSH, p.171.
183

VxWorks Network 5.4
Programmer’s Guide
12.3 telnet

Like rlogin, telnet is another remote login utility. However, telnet does not require

any previous setup of the “rhosts” file. For more information on how to use telnet

with a VxWorks target, see the reference entry for telnetLib.

12.4 remLib

The VxWorks remote command execution facilities allow applications running

under VxWorks to invoke commands on a remote system and have the results

returned on standard output and standard error over socket connections. This is

accomplished using the remote shell protocol, which on UNIX systems is serviced

by the remote shell daemon rshd. See the reference entry for remLib.
184

13
Booting over the Network
13.1 Introduction

To boot VxWorks over the network, a VxWorks target needs to know certain

configuration parameters that describe itself, the network, and its relationship to

the network. The goals of the boot program are as follows:

1. Gather configuration information (such as networking parameters).

2. Format the configuration information as an ASCII string, a boot line.

3. Store the boot line in a known memory location.

4. Retrieve and load a run-time VxWorks image.

5. Pass control to the run-time VxWorks image.

When the run-time VxWorks image needs the configuration information gathered

by the boot program, it reads the boot line that the boot program stored at the

known memory location.

The following sections describe the boot parameters and how to set them. This

section also discusses the protocols, network utilities, and network devices

available to the boot program. These various media, protocols, and utilities

combine to produce a great variety of different boot systems (Ethernet with DHCP

with TFTP, serial line with BOOTP with RSH, shared memory backplane with

BOOTP with FTP, and so on.) This section describes booting using three

representative systems, one example for each physical medium.
185

VxWorks Network 5.4
Programmer’s Guide
13.2 About the Boot Program

It is possible to write your own boot program from scratch, provided that the

program leaves a correctly formed boot line at the known memory location and

then retrieves, loads, and runs the VxWorks image. While that might sound

simple, in practice, it requires a considerable amount of work. This is because the

boot program typically needs access to a variety of networking utilities in order to

gather all the information needed for the boot line, as well as a file transfer utility

to retrieve the boot image.

For example, in many environments, the boot program must include a DHCP

client to negotiate for a lease on an IP address. In addition, in order to get the

VxWorks image, the boot program typically needs access to a file transfer utility,

such as FTP. Thus, such a program must include a network device driver, a DHCP

client, a networking stack, an FTP client, and more.

To create a boot program without coding everything from scratch, you can use the

appropriate BSP and Tornado to control the configuration of bootConfig.c, the

VxWorks boot program. The resulting boot program knows how to format a boot

line and store it in the known memory location (as well as NVRAM, if available).1

However, a boot program that uses the network to retrieve a run-time image needs

its own boot parameters, such as the name of its network device.

13.2.1 How the Boot Program Gets Its Boot Parameters

The default VxWorks boot program has a built-in default boot line.2 However, that

line might be incomplete, and certain values might not be valid. Before the boot

program tries to use its default boot line, the boot program looks in NVRAM, if

available. The boot program also accepts a boot line from user input.

From these sources, a non-networked boot program must be able to find

appropriate values for all necessary boot parameters. However, if the boot

program has network access, the initial boot line needs to define only those

parameters required to initialize and use its networking utilities. The boot program

can then use these networking utilities to retrieve the missing boot parameters and

the run-time VxWorks image from a remote source.

1. This boot line address is configurable. The relevant configuration macro is

BOOT_LINE_ADRS. If this behavior is inappropriate for your target device, you can copy

bootConfig.c, modify the copy, and then use the resulting code as your boot program.

2. The default boot line is configurable. The relevant configuration macro is

DEFAULT_BOOT_LINE.
186

13

13
Booting over the Network
Figure 13-1 Sources of Boot Parameters

Use boot line in RAM.

Yes

No

Get boot line

Get additional boot

Yes

No Get the default

from NVRAM.

Copy into RAM.

Yes

User adjusts boot
parameters.

No

parameters from
networked server.

Start VxWorks.

No

YesYes

Start

End

boot line.

No

Warm

Boot line
reboot with

non-empty boot
line in RAM at

BOOT_LINE_ADRS
?

available in
NVRAM

?

No
auto-boot or
user stops
countdown

?

Do boot
parameters specify

dynamic configuration
using DHCP or

BOOTP
?

Can
boot program
load VxWorks

image
?

187

VxWorks Network 5.4
Programmer’s Guide
13.2.2 The General Format of a Boot Line

When a VxWorks target boots, it uses the boot line to fill in a BOOT_PARAMS
structure. The boot program and the VxWorks run-time image use this structure to

track boot parameters. The BOOT_PARAMS structure is defined as follows:

typedef struct /* BOOT_PARAMS */
{
char bootDev [BOOT_DEV_LEN]; /* boot device code */
char hostName [BOOT_HOST_LEN]; /* name of host */
char targetName [BOOT_HOST_LEN]; /* name of target */
char ead [BOOT_ADDR_LEN]; /* ethernet internet addr */
char bad [BOOT_ADDR_LEN]; /* backplane internet addr */
char had [BOOT_ADDR_LEN]; /* host internet addr */
char gad [BOOT_ADDR_LEN]; /* gateway internet addr */
char bootFile [BOOT_FILE_LEN]; /* name of boot file */
char startupScript [BOOT_FILE_LEN]; /* name of startup script file */
char usr [BOOT_USR_LEN]; /* user name */
char passwd [BOOT_PASSWORD_LEN]; /* password */
char other [BOOT_OTHER_LEN]; /* available for applications */
int procNum; /* processor number */
int unitNum; /* network device unit number */
int flags; /* configuration flags */
} BOOT_PARAMS;

This structure is shown here because its member names provide a convenient set

of labels for discussing boot parameters. For example, using the member names

shown above, this document can represent the general format of a boot line is as

follows:

bootDev(unitNum, procNum) hostName: bootFile e= ead b= bad h= had g= gad u= userName
pw=passWord f= flags tn= targetName s= startupScript o= other

The labeled parameters e, b, h, and so on, are not order sensitive. You can leave

them blank. For example, “pw= “ specifies an empty password parameter. If the

labeled parameter is optional or supplied later by DHCP or BOOTP, you can omit

it from the boot line entirely.

As an example of a typical boot line, consider the following:

ln(0, 0) bear:/usr/wpwr/target/config/mz7122/vxworks e=90.0.0.2
b=91.0.0.2 h=100.0.0.4 g=90.0.0.3 u=papa pw=biggrump f=0x80 tn=goldilox
s=bear:/usr/papa/startup o=

To get a listing of the boot parameters, type p at the boot prompt (if a parameter

currently has no setting, the p command does not list it). The labels used in the p
listing differ somewhat from the names of the structure members.
188

13

13
Booting over the Network
13.2.3 Boot Parameters Needed for DHCP, BOOTP, and Network Device Initialization

Before the boot program can use a DHCP or BOOTP client to retrieve additional

boot parameters from a remote server, the boot program needs appropriate values

for bootDev, unitNum, procNum, and flags. See Table 13-1. Because the boot

program does not yet have network access, the target must be able to find these

parameter values in the default boot line, a user-provided boot line, or NVRAM

boot line.3

Table 13-1 Boot Parameters Needed for DHCP, BOOTP, and Network Device Initialization

Parameter Name from
BOOT_PARAMS

Parameter Name from p Command Listing
(followed by description)

bootDev boot device
Contains the name of the network device to boot from. For example,

ln specifies the Lance driver. Which device you specify determines

the physical medium over which the boot program attempts a

networked boot. Currently, VxWorks supports drivers operating

over three physical media: Ethernet, a serial line, and the memory

backplane. For information on the configuration needs of these

drivers, see 2.2 Data Link Layer Network Components, p.11. To add

support for another medium, write a MUX-based driver for the new

network and include the driver in your boot program. For more

information on writing a driver to the MUX interface, see Using the
MUX Interface, p.191.

unitNum unit number
Contains the unit number for the network device. In boot prompts

that reference the network device, the target appends this to the

bootDev. For example, if you see an “ln0”, the “ln” refers to the

Lance driver, and the “0” is the network device unit number. If you

do not specify a unit number, the boot program defaults to using 0.

procNum processor number
Contains the backplane processor number of the target CPU. This

value is critical to the shared-memory network. The shared memory

master must be CPU 0.

3. If the target has NVRAM, and the user specified these parameters in a previous boot session,

the boot program knows to save these parameters to an NVRAM boot line for the use of the

next boot session.
189

VxWorks Network 5.4
Programmer’s Guide
flags flags (f)
Contains a value composed of flags (ORed in values) that configure

the boot process. The predefined significance of each bit is as

follows:

0x01 Disables system controller for processor 0 (not supported on

all boards).

0x02 Loads the local symbols as well as the global symbols into the

target-based symbol table. This has consequences for tools

such as the target shell. If the target-based symbol contains

local variables, the target shell has access to both locally and

globally declared symbols. Setting this bit means you must

also reconfigure VxWorks with a downloaded symbol table.

The relevant configuration macro is

INCLUDE_NET_SYM_TBL. The VxWorks startup code

assumes that the file containing the symbol table is resident

on the same host as the boot image. The VxWorks startup

code also assumes that the name of the symbol table file is the

boot file name with an appended .sym suffix. When reading

the .sym file, the VxWorks image has the option of loading

local symbols as well as global symbols into its target-resident

symbol table.

0x04 Prevents autoboot.

0x08 Enables quick autoboot (no countdown).

0x20 Disables login security.

0x40 Specifies automatic configuration using BOOTP or DHCP.

VxWorks tries first to use a DHCP client. If the boot ROM

does not include the DHCP client, then the target uses the

BOOTP client to retrieve information.

0x80 Tells the target to use TFTP to get VxWorks image. Otherwise,

the target uses either RSH or FTP. The target uses FTP if you

enter a non-empty value for the passwd parameter.

Otherwise, the target uses RSH.

0x100 Makes target register as a Proxy ARP client.

Table 13-1 Boot Parameters Needed for DHCP, BOOTP, and Network Device Initialization

Parameter Name from
BOOT_PARAMS

Parameter Name from p Command Listing
(followed by description)
190

13

13
Booting over the Network
13.2.4 Boot Parameters Returned from DHCP or BOOTP

If the 0x40 bit in the flags parameter is set, the boot program uses either DHCP or

BOOTP client to retrieve the following parameters: ead (from which the boot

program also derives a value for bad), had, gad, and bootFile.4 See Table 13-2.

Table 13-2 Boot Parameters Returned from DHCP or BOOTP

Parameter Name from
BOOT_PARAMS

Parameter Name from p Command Listing
(followed by description)

ead inet on ethernet (e)
This value is the Internet address of this target on the Ethernet or, if

you are booting from SLIP, the local end of a SLIP connection. You

can also specify a subnet mask (as described in Subnet Configuration,

p.67). If ead is empty, the target does not attach the Ethernet

interface. This is acceptable if the target is booting over the

backplane.

bad inet on backplane (b)
Actually, neither BOOTP nor DHCP supply this value directly, the

backplane Internet address. If this parameter contains a non-empty

value, the target attaches the backplane interface. Typically, the

boot program uses sequential and proxy default addressing

conventions to derive a bad value from the ead parameter (which

BOOTP can provide) and the CPU number. However, the use of

sequential addressing makes booting from the shared-memory

backplane incompatible with DHCP. This parameter should be

empty if no shared-memory network is required. To specify a

subnet mask for bad, see Subnet Configuration, p.67).

had host inet (h)
The Internet address of the host from which to retrieve the boot file.

gad gateway inet (g)
The Internet address of the gateway through which to boot if the

host is not on the same network as the target. If gad has a non-empty

value, a routing entry is added indicating that the address is a

gateway to the network of the specified boot host.

bootFile file name
The full path name of the file containing the VxWorks run-time

image.

4. If you accidentally include both a DHCP and BOOTP client in a boot program, the program

uses the DHCP client.
191

VxWorks Network 5.4
Programmer’s Guide
13.2.5 Boot Parameters Needed to Set Up Remote File Access and Get the VxWorks
Image

To get a file containing the VxWorks run-time image, the boot program needs to

know the name of the file containing the run-time image. The boot program also

needs to know the identity of the machine that hosts the file. These are provided in

the boot parameters: had and fileName. Typically, the boot program gets these

parameters from a DHCP or BOOTP message.5

To retrieve the image, the boot program uses any of three protocols: TFTP, FTP, or

RSH. If the 0x80 bit in the flags parameter is set, the boot program uses TFTP.

Otherwise, the boot program uses FTP or RSH to retrieve the image. However, in

order to use RSH, the boot program needs a user ID, usr. If the boot program must

use FTP, it needs both a user ID and a password, passwd. In addition, if the

VxWorks run-time image is resident on a SCSI drive, you can use the other
parameter to specify the network interface to which the VxWorks image attaches

after it boots.

To support remote file access for startup code in the VxWorks image, you also need

to supply a host name, hostName. This parameter is not critical to the boot

program. You can leave it empty, if you want. However, entering a meaningful

hostName can make messages from the boot program a little easier to read. For

detailed descriptions of boot parameters for remote file access, see Table 13-3.

5. If the target reaches the host through a gateway, the target also needs the gad value, which

is included in the same DHCP or BOOTP message that provided the had value.

Table 13-3 Boot Parameters for Remote File Access

Parameter Name from
BOOT_PARAMS

Parameter Name from p Command Listing
(followed by description)

usr user (u)
The user name to use with FTP or RSH.

passwd ftp password (pw)
The password to use with FTP. If the password is empty, the boot

program uses RSH instead of FTP. Supplying a password also has

configuration consequences for remote file access and remote login.

To access remote files, the target creates a device named according to

the value of the hostName parameter. This device is an instance of

the netDrv utility. This utility provides remote file access using either

RSH or FTP to retrieve the remote file. If you enter a password here,

netDrv uses FTP. For more information on netDrv, see 2.10.1 RSH
and FTP, p.154.
192

13

13
Booting over the Network
13.2.6 Optional Boot Parameters

Table 13-4 lists the optional boot parameters. Omitting these parameters from the

boot line does not prevent the target from booting.

other other (o)
If you are booting from the network, this parameter has no

predetermined use. It is optional, and you can leave it empty.

However, when booting from a disk (a subject outside the scope of

this chapter), bootDev refers to the disk not the network device. If the

boot program finds that you have entered a non-empty value for

other, the boot program assumes that this value is the name of a

network device that you want to attach.

Table 13-4 Optional Boot Parameters

Parameter Name from
BOOT_PARAMS

Parameter Name from p Command Listing
(followed by description)

hostName host name
Can contain the name of the host that supplies the boot file. The

startup code in the VxWorks run-time image uses this name for the

netDrv device that it creates to handle remote file access, but this

name is entirely optional. Leaving it empty breaks nothing, although

using a meaningful name here does make the messages from the boot

program a little easier to follow. For example, this parameter is used

to name the current working directory (if any), which is the netDrv
device “hostName:”. The target also adds this name (if any) to its host

table.

targetName target name (tn)
Contains the name of the target. VxWorks adds this name to its host

and route tables.

startupScript startup script (s)
Names the script, if any, to execute in a target shell upon completion

of boot.

Table 13-3 Boot Parameters for Remote File Access

Parameter Name from
BOOT_PARAMS

Parameter Name from p Command Listing
(followed by description)
193

VxWorks Network 5.4
Programmer’s Guide
13.3 Setting the VxWorks Boot Parameters

To set boot parameter values, you can enter the parameter values manually at boot

time, or you can set various #defines to create a default boot line. You also have the

option of using either a DHCP or BOOTP client to retrieve certain parameters

(such as IP address, boot file name, and so on) from a remote server.

13.3.1 Supplying Boot Parameters Using #define Values

The default boot line is specified during configuration. The relevant configuration

macro is DEFAULT_BOOT_LINE. A valid setting looks like:

"ei(0,0)host:/vw/config/mv166/vxWorks h=90.0.0.3 e=90.0.0.50 u=target"

When control passes to the run-time VxWorks image, VxWorks parses the boot line

at the known memory location and loads the values into a BOOT_PARAMS
structure and checks for missing boot parameters. At this point, if you booted

using TFTP, the only parameters that could be missing are: hostName,

targetName, usr, passwd, startupScript, and other. Otherwise, the boot would

have failed.6

However, these parameters can be useful to the run-time image even if they were

not essential to the boot program. Therefore, it is possible to include values for

these parameters in the run-time VxWorks image. To do this, reconfigure VxWorks.

For more information on configuring VxWorks, see the Tornado User’s Guide:
Projects. The relevant configuration macros are the following:

HOST_NAME_DEFAULT
Supplies a hostName value, the name of the system that supplied the boot file,

bootFile. This name is added to the target’s host table to provide a convenient

label for the host machine at the IP address, had. The hostName is added to

the host and route tables. At startup, the run-time VxWorks image creates a

netDrv device named “hostName:”.

TARGET_NAME_DEFAULT
Supplies a targetName value, the name of the target. This name is added to the

target’s host table to provide a convenient label for the target’s IP address, had.

6. If you booted using RSH, you had to have provided the boot program with a value for usr.
If you booted using FTP, you had to have provided values for usr and passwd.
194

13

13
Booting over the Network
HOST_USER_DEFAULT
Supplies a usr value, the login name that this target’s netDrv device should

use.

HOST_PASSWORD_DEFAULT
Supplies a passwd value, the password (if any), to use. If there is a non-empty

passwd, this has configuration consequences for netDrv as well as for remote

login from the VxWorks target to a remote system. A password here tells

netDrv device, “hostName:”,7 to use FTP for remote file access. Otherwise, it

uses RSH.

SCRIPT_DEFAULT
Supplies a value for startupScript, the startup script for the VxWorks target-

based shell (if any). You can use this script to do things such as redirect output.

OTHER_DEFAULT
Supplies an other value. If the booted VxWorks image must access a local SCSI

disk, you can use the other parameter to specify which network interface to

attach.

13.3.2 Supplying Boot Parameters Manually

If you supply a boot line manually, its values take precedence over parameters

specified by any other source (except those few parameters retrieved by DHCP or

BOOTP). To check the values of all currently set boot parameters, type p at the

VxWorks prompt. This command lists all currently set boot parameters and their

values. For example:

[VxWorks Boot]: p
boot device : ln
processor number : 0
flags (f) : 0xc0
unit number : 0

Before you can boot the target from the network, you must enter appropriate

values for bootDev (boot device), procNum (processor number), flags, and

unitNum (unit number). The target can store these values in NVRAM (if available)

and use them in subsequent boot sessions.

To change the boot device, processor number, flags value, or unit number, enter a

c at the boot prompt. This runs a script that prompts you for individual boot

7. The presence or lack of a passwd affects only the “hostName:” device. Other instances of

netDrv are individually configurable.
195

VxWorks Network 5.4
Programmer’s Guide
parameters. To bypass the script and enter the whole boot line all at once, enter a

$ followed by the boot line.

If you intend to use a DHCP or BOOTP message to supply additional parameters,

make sure that you specify a flags value that sets the 0x40 bit (the dynamic

configuration bit). Although this setting is the same for both DHCP and BOOTP,

the VxWorks startup code automatically uses DHCP if available. If DHCP is

unavailable, the startup code uses BOOTP. Typically, the boot image contains

either a DHCP or BOOTP client and not both. However, if, for some reason, you

have included both clients in the boot image, the BOOTP client is ignored and the

boot image is larger than it need be.

To make a DHCP or BOOTP client available at boot time, you must construct boot

ROMs that contain the client code.

13.3.3 Supplying Boot Parameters from a DHCP or BOOTP Server

If the boot program includes a DHCP or BOOTP client, and you have set the 0x40

bit in the flags boot parameter, the boot program uses the DHCP or BOOTP client

to retrieve values for ead (from which the boot program derives bad), had, gad,

and bootFile.

IP Lease Length

When booting with DHCP, the value of the minimum lease length is critical.

Because the network address assigned by DHCP is only valid for a finite period of

time, the DHCP client must spawn a monitor task to renew the lease as necessary.

However, this cannot occur until after the VxWorks boot file has been downloaded.

Thus, the minimum lease setting must be large enough to allow this download to

complete. Otherwise, the server which supplied the IP address may reassign it

after the lease expires, and the VxWorks image will inadvertently use an invalid IP

address. The default value is acceptable for an Ethernet link, but might need to be

increased for slower connections, such as serial links.

NOTE: This section provides a general discussion of the issues that arise when

using a DHCP or BOOTP server to provide boot parameters. For more on

configuring the DHCP or BOOTP servers, see Configuring VxWorks to Include the
DHCP Components, p.96, or BOOTP Configuration, p.106.
196

13

13
Booting over the Network
Booting a VxWorks Target with DHCP from a Windows NT Server

The Windows NT implementation of the DHCP server is geared towards

providing configuration parameters for other Windows NT workstations. As a

result, it does not provide all the information necessary to boot a VxWorks target

successfully.

In particular, the Windows NT implementation of the DHCP server does not

provide a boot file name. Thus, to use DHCP to boot a VxWorks target from a

Windows NT Server, you must enter the boot file name manually at the boot

prompt. In addition, the Windows NT implementation of DHCP server does not

provide for the case in which the DHCP server that provides the configuration

parameters is resident on one machine while the boot file is resident on another.

Thus, you have to enter the host IP address manually.

Normally, the Tornado target server retrieves the run-time VxWorks image from

the target. Unfortunately, because the NT DHCP server does not provide the target

with the name of this file, the target cannot provide the file name to the target

server. To get around this lack in the NT implementation of DHPC, you must

supply Tornado with the name of the VxWorks run-time image. To do this, go the

Create Target Server window (accessible from the Tornado Launcher window by

selecting Target: Create), then use the Core field to specify a VxWorks image file.

This file need not be the actual image used by the target. It can be a locally

accessible copy of that image.

Getting the Target Ethernet Address

When you configure the BOOTP server, you need the target’s hardware address to

use as a key into the BOOTP database. You get this address from the target device.

If the device is running VxWorks, you can use the ifShow() command. In the

following example, the target’s Ethernet address is 00:00:4b:0b:b3:a8.8

-> ifShow "ln0"
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

ln (unit number 0):
Flags: (0x63) UP BROADCAST ARP RUNNING
Internet address: 150.12.1.240
Broadcast address: 150.12.1.255
Netmask 0xffff0000 Subnetmask 0xffffff00
Ethernet address is 00:00:4b:0b:b3:a8
Metric is 0

8. The ifShow() function is not built in to the Tornado shell but must be activated by turning

on network debugging. The relevant configuration macro is INCLUDE_TCP_SHOW.
197

VxWorks Network 5.4
Programmer’s Guide
Maximum Transfer Unit size is 1500
5 packets received; 6 packets sent
0 input errors; 0 output errors
6 collisions

If the device has not yet booted, you can use the n command to retrieve the

information from the boot ROMs. For example:

[VxWorks Boot]: n ln
Attaching network interface enp0... done
Address for device "ln" == 02:cf:1f:e0:20:24

13.4 Booting from the Ethernet

The following procedure describes how to boot from a UNIX host over the

Ethernet for a VxWorks target that uses DHCP or BOOTP to retrieve boot

parameters and TFTP to retrieve the file containing the run-time image.

1. Copy the VxWorks image to the boot directory on the boot host:9

% cp vxWorks.st /usr/wind/target/vxBoot/vxWorks.vx245

2. Make sure that the permissions on the boot file make it accessible to all:

% chmod 644 vxWorks.vx245
% ls -l
total 609
-rw-r--r-- 1 target 519880 Jul 6 19:36 vxWorks.vx245

3. On the target, set the flag value to 0xc0. This enables automatic configuration

(using DHCP or BOOTP, 0x40) and file retrieval using TFTP (0x80).

To check the current value, enter p at the boot prompt:

[VxWorks Boot]: p

The target responds:

boot device : ln
processor number : 0
flags (f) : 0xc0
unit number : 0

9. The file suffix, .vx245, is of no special significance. It just distinguishes this image from other

VxWorks images that might reside in the directory.
198

13

13
Booting over the Network
To change a value, enter c at the boot prompt.

4. Boot the target. To do this, enter an @ at the prompt:

[VxWorks Boot]: @

If the target uses DHCP, it responds:

boot device : ln
unit number : 0
processor number : 0
user (u) : stephenm
flags (f) : 0x40

Attaching network interface ln0... done.
Getting boot parameters via network interface ln0.

DHCP Server:147.11.46.24
Boot file: /usr/wind/target/vxBoot/vxWorks.vx245
Boot host: 147.11.46.24
Boot device Addr (ln0): 147.11.46.174
Subnet mask: 0xffffff00
Subnet gateway: 147.11.46.24

Attaching network interface lo0... done.
Loading... 374624 + 57008 + 20036
Starting at 0x1000...

Host Name: bootHost
Target Name: vxTarget
User: target
Attaching network interface ln0... done.
Attaching network interface lo0... done.

If the target uses BOOTP, it responds:

boot device : ln
processor number : 0
flags (f) : 0xc0
Attaching network interface ln0... done.
Getting boot parameters via network interface ln0.
Bootp Server:150.12.1.159
Boot file: /usr/wind/target/vxBoot/vxWorks.vx245
Boot host: 150.12.1.159
Boot device Addr (ln0): 150.12.1.245
Subnet mask: 0xffffff00
Attaching network interface lo0... done.
Loading... 374624 + 57008 + 20036
Starting at 0x1000...

Host Name: bootHost
Target Name: vxTarget
User: target
Attaching network interface ln0... done.
Attaching network interface lo0... done.
199

VxWorks Network 5.4
Programmer’s Guide
Getting a Symbol Table File

VxWorks can be configured to omit the symbol table, by turning off the

“downloadable symbol table” during configuration. The relevant configuration

macro is INCLUDE_NET_SYM_TBL.10 Instead, the run-time VxWorks image (not

the boot program) downloads the symbol table file from the same remote directory

that contained the VxWorks image. To retrieve this file, VxWorks uses the netDrv
I/O driver.

When you copy the VxWorks image to the host boot directory:

% cp vxWorks /usr/wind/target/vxBoot/vxWorks.vx245

You must also copy the symbol file to the same directory:

% cp vxWorks.sym /usr/wind/target/vxBoot/vxWorks.vx245.sym

Note that the name of the symbol file is the bootfile name with a .sym suffix.

13.4.1 Troubleshooting

If possible, put the BOOTP server in debugging mode.

No BOOTP Reply or Problems with TFTP

If there is no BOOTP reply:

■ Make sure a BOOTP server is running on the host.
■ Verify that the target address is correct.
■ Be sure the boot file for the target exists and is accessible.

If the TFTP server is started with the -s option, it roots its requests in the specified

directory. This can cause a conflict with BOOTP.

For example, suppose the boot file is specified in bootptab as

/tftpboot/vxBoot/vxWorks.vx245. After getting the request, the BOOTP server

checks for the existence of this file, and then sends a reply. In response to the

10. You need this symbol table to be resident on the target only if you want to use target-resi-

dent (pre-Tornado) tools. Host-based tools do not require a target-resident symbol table.

NOTE: Because netDrv uses either RSH or FTP to access the remote files, the boot

parameters must specify a value for the usr boot parameter. If you want to use FTP,

you must also specify a passwd. Otherwise, the target uses RSH. For more

information on netDrv, see 2.10.1 RSH and FTP, p.154.
200

13

13
Booting over the Network
BOOTP reply, the target sends a TFTP request to get the file

/tftpboot/vxBoot/vxWorks.vx245.

However, if the TFTP server was started with the -s /tftpboot option, the request

fails because the server looks for the file in /tftpboot/tftpboot/vxBoot rather than

in /tftpboot/vxBoot. If this is a problem, link /tftpboot/tftpboot to /tftpboot. To

do this, use the following commands:

% cd /tftpboot
% ln -s . tftpboot

Multiple BOOTP Servers

If there are multiple BOOTP servers on the network, the target uses the parameters

specified in the first reply message it receives. In the previous example, the server

from which the reply message came is specified in an output line like the

following:

Bootp Server:150.12.1.159

Subnet Mismatch between DHCP Server and Client

The DHCP server distributes IP addresses only to clients that reside on the same

subnet as the server. If you want the client to use a server on a different subnet, you

must setup a DHCP relay agent on the target’s subnet.

13.5 Booting from the Shared-Memory Network

Targets on the shared-memory network can boot using BOOTP only if proxy ARP

is enabled (see Proxy ARP Overview, p.80). A target on the shared-memory

network keys its entry in the BOOTP database by its IP address. A shared-memory

network target’s entry in the BOOTP database looks something like:

vx232:ip=150.12.1.232:tc=global.dummy

A shared-memory network’s master entry in the BOOTP database looks like:

vx230:ht=ethernet:ha=0000530e0018:ip=150.12.1.230:tc=global.dummy

The following example is a master processor using a combination of BOOTP, TFTP,

proxy ARP, sequential addressing, and proxy default addressing for booting:11
201

VxWorks Network 5.4
Programmer’s Guide
[VxWorks Boot]: @
boot device : ln
processor number : 0
flags (f) : 0xc0

Attaching network interface ln0... done.
Getting boot parameters via network interface ln0.
Bootp Server:150.12.1.159

[1] Boot file: /usr/wind/target/vxBoot/vxWorks.vx230
[1] Boot host: 150.12.1.159
[1] Boot device Addr (ln0): 150.12.1.230
[1] Subnet mask: 0xffffff00

Attaching network interface lo0... done.
Loading... 370356 + 28040 + 20196
Starting at 0x1000...

[2] Host Name: bootHost
[2] Target Name: vxTarget
[2] User: target

Attaching network interface ln0... done.
Initializing backplane net with anchor at 0x800000... done.
Backplane anchor at 0x800000... Attaching network interface sm0...

done.

[3] Backplane address: 150.12.1.231
Creating proxy network: 150.12.1.231
Attaching network interface lo0... done.

The parameters from the preceding output came from the following sources:

[1] These lines all display information retrieved from the BOOTP database.

[2] These lines display information you set during configuration (defaults).

[3] These lines appear because you have configured VxWorks with “proxy arp

server,” “auto address setup,” and “default address for bp” (the configuration

macros INCLUDE_PROXY_SERVER, INCLUDE_SM_SEQ_ADDR, and

INCLUDE_PROXY_DEFAULT_ADDR). (Note that the address is one more than

that of parameter inet on ethernet, in this case 150.12.1.230.)

The following example shows booting a slave processor using a combination of

BOOTP, TFTP, and sequential addressing:

[VxWorks Boot]: @
boot device : sm=0x800000
processor number : 1
flags (f) : 0x1c0

Backplane anchor at 0x800000... Attaching network interface sm0...
done.

11. The use of sequential addressing can make it difficult to use DHCP.
202

13

13
Booting over the Network
[1] Backplane inet address: 150.12.1.232
registering proxy client: 150.12.1.232.done.
Getting boot parameters via network interface sm0.
Bootp Server:150.12.1.159

[2] Boot file: /usr/wind/target/vxBoot/vxWorks.vx232
[2] Boot host: 150.12.1.159
[2] Subnet mask: 0xffffff00

Attaching network interface lo0... done.
Loading... 370356 + 28040 + 20196
Starting at 0x1000...

[3] Host Name: bootHost
[3] Target Name: vxTarget
[3] User: target

Backplane anchor at 0x800000... Attaching network interface sm0...
done.

Attaching network interface lo0... done.

The parameters from the preceding output came from the following sources:

[1] These lines appear because you have configured VxWorks with “proxy arp

client” and “auto address setup” (the configuration constants

INCLUDE_PROXY_CLIENT and INCLUDE_SM_SEQ_ADDR)12. (Note that the

address is equal to the master CPU’s backplane address plus the client’s

processor number.)

[2] These lines all display information retrieved from the BOOTP database.

[3] These lines display information you set during configuration(defaults).

13.6 Booting from the Serial Line

VxWorks can communicate with the host operating system over serial connections

as well as over networks and backplanes. Over a serial line connection, you can

boot VxWorks using either SLIP or PPP.

13.6.1 Booting VxWorks Using SLIP

If you have configured VxWorks to use SLIP, you can use the Serial Line Internet

Protocol to boot VxWorks. The relevant configuration macro is INCLUDE_SLIP.

SLIP supports IP layer software with point-to-point configurations such as RS-232

12. The use of sequential IP addressing makes this procedure incompatible with DHCP.
203

VxWorks Network 5.4
Programmer’s Guide
serial connections between machines or long-distance telephone lines. If either end

of a SLIP connection has other network interfaces (such as Ethernet), it can forward

packets to other machines.

Optionally, you can use compressed TCP/IP headers over SLIP. This variant of the

protocol is known as CSLIP (compressed SLIP). Only the TCP/IP headers are

compressed, not the data itself; this implies that CSLIP improves the

responsiveness of interactive communications (such as remote shells), where the

ratio of header size to data is large, but makes little difference for large data

transfers (such as downloading object code). Because compression applies only to

TCP/IP headers, not to other forms of IP, CSLIP has no impact on applications that

use UDP rather than TCP (for example, CSLIP has no effect on NFS).13

When booting using SLIP (or its CSLIP variant), specify the boot device as follows:

boot device: sl or sl= device

Using the form sl=device allows you to specify the SLIP tty, overriding the

configuration constant SLIP_TTY.

The following is a boot example for the configuration shown in Figure 13-2:

boot device : sl=/tyCo/1
processor number : 0
host name : phobos
file name : /usr/wind/target/config/ads302/vxWorks
inet on ethernet (e) : 150.12.1.2
host inet (h) : 150.12.1.1
user (u) : jane
target name (tn) : vxJane

When the boot device is SLIP, the SLIP interface is configured by usrSlipInit() in
target/src/config/usrNetwork.c. This sets up the SLIP tty, and configures the point-

to-point connection using the target and host IP addresses specified in the boot

parameters. If a gateway address is specified, the SLIP driver adds a routing entry

from the gateway address to the host address. If a gateway address is not

NOTE: Both target and host must agree on the MTU size. On a VxWorks system,

the default MTU size is 576.

13. If your host operating system does not include SLIP or CSLIP facilities, consider using a

publicly available implementation. One popular implementation for SunOS 4.1.x, the Van

Jacobson CSLIP 2.7 release, is provided in target/unsupported/cslip-2.7. This code is

publicly available, and is not supported by Wind River Systems. It is included only as a

convenience.
204

13

13
Booting over the Network
specified, the SLIP driver assumes that the point-to-point peer address on the other

end of the serial line is the gateway and enters the appropriate routing entry.

If you do not have a second serial port, then you must use the console port as the

SLIP port. To do this:

1. Set the console serial port (configuration constant CONSOLE_TTY) to NONE
and define the SLIP channel identifier (configuration constant SLIP_TTY):

#define CONSOLE_TTY NONE
#define SLIP_TTY 0 /* use port number 0 for slip */

2. Remake VxWorks and burn new boot ROMs before booting.

To access a UNIX file system, the Internet addresses specified in the target boot

parameters must be consistent with those specified when the host connection is

created.

13.6.2 Booting VxWorks Using PPP

To boot VxWorks using PPP, first configure PPP into the system (see PPP
Configuration, p.18) and remake the VxWorks and boot ROM images. After a new

boot ROM image has been built, burned into ROM, and installed in the target

board, bootstrap the target board to the VxWorks boot ROM prompt.

When booting using PPP, specify the boot device with one of the following options:

boot device: ppp
If using boot device: ppp, the serial channel is set to PPP_TTY in the VxWorks

configuration and the baud rate is set to the default baud rate of the channel.

When the boot device is ppp, the PPP interface is initialized by usrPPPInit().
This configures the point-to-point connection using the serial device, target,

Figure 13-2 SLIP Configuration Example

150.12.1.1150.12.1.2

Serial Line

/tyCo/1

tty

target host
205

VxWorks Network 5.4
Programmer’s Guide
and host IP addresses specified in the boot parameters. And it configures in the

options defined at compile-time in the configuration (see the Tornado User’s

Guide: Projects for more information on configuring VxWorks). If a gateway

address is specified, the PPP driver adds a routing entry from the gateway

address to the host address. If a gateway address is not specified, the PPP

software assumes that the point-to-point peer address is on the other end of

the serial line and enters the appropriate routing entry.

ppp=device
Specifying ppp=device allows you to choose the PPP tty (serial channel),

overriding the PPP_TTY constant.

ppp=device,baudrate
Specifying ppp=device,baudrate allows you to choose the PPP tty (serial

channel) and the baud rate of the channel.

ppp,baudrate
The default baud rate used by the PPP tty (serial channel) can be configured

into the system by defining the constant PPP_BAUDRATE (in config.h) as the

required baud rate, and remaking VxWorks and the boot ROM images.

However, the baud rate supplied as a part of the boot device overrides any default

settings. The following is a boot example for the configuration shown in

Figure 13-3:

boot device : ppp=/tyCo/2,38400
processor number : 0
host name : mars
file name : /usr/vw/config/mv167/vxWorks
inet on ethernet (e) : 90.0.0.10
host inet (h) : 90.0.0.1
user (u) : jane
target name (tn) : vxJane

If you want to boot VxWorks over a PPP link but do not have a console device, the

following additional modifications must be made:

1. Set the console serial port (configuration constant CONSOLE_TTY) to NONE
and define the tty port number using the constant PPP_TTY in config.h:

#define PPP_TTY 0 /* use port number 0 for PPP */

2. Specify the default boot line (configuration constant DEFAULT_BOOT_LINE)

before making your boot ROMs. Changing any of the default PPP settings

requires new boot ROMs. An example of a default boot line is:
206

13

13
Booting over the Network
"ppp(0,0)mars:/usr/vw/config/mv167/vxWorks h=90.0.0.1 e=90.0.0.10 u=jane"

3. If your system has nonvolatile RAM (NVRAM), edit sysLib.c and change

sysNvRamGet() to return ERROR. This forces the use of the default boot line,

instead of the value stored in NVRAM.

4. Initialize PPP on the remote peer.

5. Boot VxWorks with the new boot ROMs.

Figure 13-3 PPP Configuration Example

90.0.0.190.0.0.10

Serial Line

/tyCo/2
tty

target host
207

VxWorks Network 5.4
Programmer’s Guide
208

14
Upgrading 4.3 BSD Network

Drivers
14.1 Introduction

This chapter describes two upgrade paths for 4.3 BSD network drivers. One path

simply ports the 4.3 BSD network driver to the BSD 4.4 model. The other path

upgrades the 4.3 BSD network driver to an NPT driver (described in the Network
Protocol Toolkit User’s Guide).

Porting a network driver to the 4.4 BSD model should require only minimal

changes to the code. In fact, porting some drivers has taken less than a day’s work.

However, an older driver that does not already use a transmission startup routine

can take longer to port.

Porting a network driver to an NPT driver requires more extensive changes.

However, it is worth the effort if the driver must handle the following:

■ multicasting

■ polled-mode Ethernet (necessary for WDB system-mode debugging over a

network, a mode that is several orders of magnitude faster than the serial link)

■ zero-copy transmission

■ support for network protocols other than IP
209

VxWorks Network 5.4
Programmer’s Guide
14.2 Structure of a 4.3 BSD Network Driver

The network drivers currently shipped with VxWorks are based on those available

in BSD UNIX version 4.3. These drivers define only one global (user-callable)

routine, the driver’s attach routine. Typically, the name of this routine contains the

word, attach, prefixed with two letters from the device name. For example, the

AMD Lance driver’s attach routine is called lnattach(). The xxattach() routine

hooks in five function pointers that are mapped into an ifnet structure. These

functions, listed in Table 14-1, are all called from various places in the IP protocol

stack, which has intimate knowledge of the driver.

Packet reception begins when the driver’s interrupt routine is invoked. The

interrupt routine does the least work necessary to get the packet off the local

hardware, schedules an input handler to run by calling netJobAdd(), and then

returns. The tNetTask calls the function that was added to its work queue. In the

case of packet reception, this the driver’s xxReceive() function.

The xxReceive() function eventually sends the packet up to a protocol by calling

do_protocol_with_type(). This routine is a switch statement that figures out

which protocol to hand the packet off to. This calling sequence is shown in

Figure 14-1.

Figure 14-2 shows the call graph for packet transmission. After a protocol has

picked an interface on which to send a packet, it calls the xxOutput() routine for

that interface. The output routine calls the generic ether_output() function,

passing it a pointer to addressing information (usually an arpcom structure) as

well as the data to be sent. After the data is properly packed, it is placed on the

output queue (using the IF_ENQUEUE macro), and the driver’s start routine is

called. The xxTxStartup() routine dequeues as many packets as it can and

transmits them on the physical medium.

Table 14-1 Network Interface Procedure Handles

Function Function Pointer Driver-Specific Routine

initialization if_init xxInit()

output if_output xxOutput()

control if_ioctl xxIoctl()

reset if_reset xxReset()

watchdog if_watchdog (optional) xxWatchdog()
210

14

14
Upgrading 4.3 BSD Network Drivers
14.2.1 Etherhook Routines Provides Access to Raw Packets

You can use the etherInputHook() and etherOutputHook() routines to bypass the

TCP/IP stack and thus get access to raw packets. On packet reception, if an

etherInputHook() function is installed, it receives the packet just after the driver

has completed reception but before the packet goes to the protocol. If

Figure 14-1 Packet Reception Call Graph

[1] The xxReceive() first shows the packet to etherInputHook().

[2] If etherInputHook() does not take delivery of the packet, xxReceive() hands

the packet to do_protocol_with_type().

Figure 14-2 Packet Transmission Call Graph

[1] The xxTxStartup() first shows the packet to etherOutputHook().

[2] If etherOutputHook() does not take delivery of the packet, xxTxStartup()
transmits the packet on the medium.

do_protocol_with_type()

xxInt()

xxHandleRecvInt()

xxReceive()

etherInputHook()

[1]
[2]

xxTxStartup()

ether_output()

xxOutput()

etherOutputHook() transmit on medium

[1] [2]
211

VxWorks Network 5.4
Programmer’s Guide
etherInputHook() decides to prevent others from seeing the packet,

etherInputHook() returns a non-zero value and the driver considers the packet to

be delivered. If the etherInputHook() returns 0, the driver hands the packet to the

TCP/IP stack.

On packet transmission, an installed etherOutputHook() receives a packet just

before it would have been transmitted. If etherOutputHook() decides to prevent

the packet from passing on, etherOutputHook() returns a non-zero value and the

driver considers the packet to be transmitted. If the etherOutputHook() returns 0,

the driver transmits the packet.

It is only possible to install one etherInputHook() and one etherOutputHook()
function per driver. This limits the number of alternate protocols to one, unless

these ether*Hook routines then act as a multiplexor for more protocols.

For more information on etherhooks, see the Tornado BSP Developer’s Kit for
VxWorks, Tornado 1.0.1, User’s Guide: G.4 Network Interface Hook Routines.

14.3 Upgrading to 4.4 BSD

To upgrade a driver from 4.3 BSD to 4.4 BSD you must change how the driver uses

ether_attach(). This routine is almost always called from the driver’s own

xxattach() routine and is responsible for placing the driver’s entry points, listed in

Table 14-1, into the ifnet structure that the TCP/IP protocol to track drivers.

Consider the call to ether_attach() shown below:

ether_attach(
(IFNET *) & pDrvCtrl->idr,
unit,
"xx",
(FUNCPTR) NULL,
(FUNCPTR) xxIoctl,
(FUNCPTR) xxOutput,
(FUNCPTR) xxReset
);

As arguments, this routine expects an Interface Data Record (idr), a unit number,

and a quoted string that is the name of the device, in this case, “xx”. The next four

arguments are the function pointers to relevant driver routines.

! CAUTION: Future versions of VxWorks will not support etherhooks.
212

14

14
Upgrading 4.3 BSD Network Drivers
The first function pointer references this driver’s init() routine, which this driver

does not need or have. The second function pointer references the driver’s ioctl()
interface, which allows the upper layer to manipulate the device state. The third

function pointer references the routine that outputs packets on the physical

medium. The last function pointer references a routine that can reset the device if

the TCP/IP stack decides that this needs to be done.

In 4.4 BSD, there is a generic output routine called ether_output() that all Ethernet

device drivers can use. Thus, to convert the above ether_attach() call to a 4.4-style

call, you would call ether_attach() as follows:

ether_attach(
(IFNET *) & pDrvCtrl->idr,
unit,
"xx",
(FUNCPTR) NULL,
(FUNCPTR) xxIoctl,
(FUNCPTR) ether_output, /* generic ether_output */
(FUNCPTR) xxReset
);

pDrvCtrl->idr.ac_if.if_start = (FUNCPTR)xxTxStartup;

This time, there is an extra line following the call to ether_attach(). This line of

code adds a transmit startup routine to the Interface Data Record. The transmit

startup routine is called by the TCP/IP stack after the generic ether_output()
routine is called. This extra line of code assumes that the driver already has a

transmit startup routine. If a driver lacks a separate transmit startup routine, you

must write one. See the template in 14.3.4 Creating a Transmit Startup Routine, p.214.

14.3.1 Removing the xxOutput Routine

If a 4.3 BSD driver has an xxOutput() routine, it probably looks something like the

following:

static int xxOutput
(
IDR * pIDR,
MBUF * pMbuf,
SOCK * pDestAddr
)
{
return (ether_output ((IFNET *)pIDR, pMbuf, pDestAddr,

(FUNCPTR) xxTxStartup, pIDR));
}

Internally, this routine calls the ether_output() routine, which expects a pointer to

the startup routine as one of its arguments. However, in the 4.4 BSD model, all that
213

VxWorks Network 5.4
Programmer’s Guide
work that is now handled in the TCP/IP stack. Thus, in a 4.4 BSD driver, this code

is unnecessary and should be removed.

14.3.2 Changing the Transmit Startup Routine

Under 4.3 BSD, the function prototype for a transmit startup routine is as follows:

static void xxTxStartup (int unit);

Under 4.4 BSD, the prototype has changed to the following:

static void xxTxStartup (struct ifnet * pDrvCtrl);

The 4.4 BSD version expects a pointer to a driver control structure. This change

eases the burden on the startup routine. Instead of having to find its own driver

control structure, it receives a pointer to a driver control structure as input.

If the driver uses netJobAdd() to schedule the transmit startup routine for task-

level execution, edit the netJobAdd() call to pass in a DRV_CTRL structure pointer

instead of a unit number.

14.3.3 Changes in Receiving Packets

Under 4.3 BSD, the driver calls do_protocol_with_type(). For example:

do_protocol_with_type (etherType, pMbuf, &pDrvCtrl->idr, len);

This call expects an etherType (which the driver had to discover previously), a

pointer to an mbuf containing the packet data, the Interface Data Record, and the

length of the data.

Under 4.4 BSD, replace the call above with a call to do_protocol(). For example:

do_protocol (pEh, pMbuf, &pDrvCtrl->idr, len);

The first parameter is a pointer to the very beginning of the packet (including the

link level header). All the other parameters remain the same. The driver no longer

needs to figure out the etherType for the protocol.

14.3.4 Creating a Transmit Startup Routine

Some 4.3 BSD drivers did not have a transmit startup routine. For such a driver,

you must create one. The template is as follows:
214

14

14
Upgrading 4.3 BSD Network Drivers
void templateStartup
(
DRV_CTRL *pDrvCtrl
)
{
MBUF * pMbuf;
int length;
TFD * pTfd;

/* Loop until there are no more packets ready to send or we
 * have insufficient resources left to send another one. */

 while (pDrvCtrl->idr.ac_if.if_snd.ifq_head)
 {

/* Deque a packet from the send queue. */
IF_DEQUEUE (&pDrvCtrl->idr.ac_if.if_snd, pMbuf);

/* Device specific code to get transmit resources, such as a
 * transmit descriptor, goes here. */

if (Insufficient Resources)
{
m_freem (pMbuf);/* Make sure to free the packet. */
return;
}

/* pData below is really the place in your descriptor,
 * transmit descriptor, or equivalent, where the data is
 * to be placed. */

copy_from_mbufs (pData, pMbuf, length);
if ((etherOutputHookRtn != NULL) &&

(* etherOutputHookRtn)
(&pDrvCtrl->idr, (ETH_HDR *)pTfd->enetHdr, length))
continue;

/* Do hardware manipulation to set appropriate bits
 * and other stuff to get the packet to actually go.
 */

/*
 * Update the counter that determines the number of
 * packets that have been output.
 */

pDrvCtrl->idr.ac_if.if_opackets++;

} /* End of while loop. */
} /* End of transmit routine. */
215

VxWorks Network 5.4
Programmer’s Guide
216

Index
Symbols
#define statements

see also individual #define parameters

boot parameters, setting 194

network layer protocols, configuring 75–78

A
Address Resolution Protocol, see ARP

addresses, see broadcast addresses; Internet

addresses; port addresses

anchor, see shared-memory anchor

ARP (Address Resolution Protocol) 84–86

main network, replies from the 89

non-proxy clients, requests for 89

proxy clients, requests for 89

arpShow() 99

arptabShow() 99

AUTH_UNIX (RPC) 176

authentication 20

CHAP 34

PAP 33–34

RPC 176

B
backplanes

see also shared-memory networks

anchor address, setting 43

interprocessor interrupts 47

interrupt types 48

processor 0 42

processor numbers 42

shared-memory pool 41–47

bad (inet on backplane (b)) 191

big-endian numbers 62

boot line

default, creating 194

format 188

boot parameters 186–207

see also boot program; booting

bad (inet on backplane (b)) 191

bootDev (boot device) 189

bootFile (file name) 191

ead (inet on ethernet (e)) 191

flags (flags (f)) 190

gad (gateway inet (g)) 191

getting 186

had (host inet (h)) 191

hostName (host name) 193

listing 188

network devices, initializing 189–190

other (other (o)) 193
217

VxWorks Network 5.4
Programmer’s Guide
passwd (ftp password (pw)) 192

procNum (processor number) 189

remote file access, for 192

run-time image, getting the VxWorks 192

setting 194–198

BOOTP servers, from 196–198

#defines, using 194

DHCP servers, from 196–198

manually 195

startupScript (startup script (s)) 193

targetName (target name (tn)) 193

tracking 188

unitNum (unit number) 189

usr (user (u)) 192

boot program 186–193

see also boot parameters; booting

boot parameters, getting 186

boot parameters, tracking 188

BOOT_LINE_ADRS 186

BOOT_PARAMS structure 188

bootConfig.c 186

see also boot program

PPP links, initializing 26

bootDev (boot device) 189

bootFile (file name) 191

booting

see also boot parameters; boot program; BOOTP

boot programs, working with 186–193

CSLIP, from 204

Ethernet, from 198–200

PPP, from 205–207

shared-memory networks, from 201–203

SLIP, from 203–205

VxWorks over the network 185–207

BOOTP (Bootstrap Protocol) 113–116

see also booting; bootptab database; DHCP;

UDP; RFC 951; RFC 1542; RFC 1048

boot parameters

required for initializing 189–190

returned by 191

supplying from server 196–198

configuring 114–116

database (bootptab) 114–116

Ethernet, booting from 198–200

multiple servers 201

public domain file 114

shared-memory networks, booting from 201–

203

target Ethernet address, getting 197

troubleshooting 200

bootptab database 114–116

VxWorks targets, registering 115–116

broadcast addresses

assigning 65

multicasting 66

broadcast datagrams 90

proxy clients, using multi-homed 91

broadcasting 85, 118

BSD sockets, see datagram sockets; sockets; stream

sockets

BSD43_COMPATIBLE 23, 120

C
cat command 170

Challenge-Handshake Authentication Protocol

(CHAP) 21

see also PPP; RFC 1334

MD5 algorithm 40

secrets files, defining 34

using 34

CHAP, see Challenge-Handshake Authentication

Protocol

chap_file member 34

clBlk structures 78–82

clDescTbl table 75, 79

clusters 78–82

code examples

PPP hooks, connecting and disconnecting 36

sockets, using

datagram 133–137

multicasting (datagram) 138–144

stream 127–133

zbufs

display routine, creating a 152–153

TCP server, converting a 155–159

compressed Serial Line IP, see CSLIP

compression

address 17
218

IX

Index
control 17

protocol field 17

Van Jacobsen (VJ) 17, 40

config.h 10

PPP options, selecting 22

configAll.h 10

configuration 7–11

BOOTP 114–116

CSLIP 15

DHCP 103–111

DNS 163–164

ICMP 75

IGMP 75

memory pool, network 78–82

network layer protocols 75

network stack 74–84

network utilities, manual 63–73

gateways 66–72

Internet addresses 63–66

subnets 72

networks 101–116

OSPF 122–124

PPP 21–25

RIP (Routing Information Protocol) 120–121

shared-memory networks 50–53

SLIP 14

subnets 72

TCP 75

UDP 75

cryptographic package, DES 22, 34

CSLIP (compressed SLIP) 14

see also SLIP

booting from 204

configuring 15

CSLIP_ALLOW 15

CSLIP_ENABLE 15

D
daemons

network tNetTask 210

PPP pppd 37

remote file access

mountd 174

nfsd 174

remote shell rshd 170, 184

routing routed 66, 67, 118

data link layer 13–56

see also drivers; MUX interface

datagram sockets 133–144

code examples

client-server communication 133–137

multicasting 138–144

multicasting 137–144

datagrams, see broadcast datagrams; UDP

DCHPC_DEFAULT_LEASE 104

debugging, see troubleshooting

DEFAULT_BOOT_LINE 186, 194

#define statements

boot parameters, setting 194

network layer protocols, configuring 75–78

DES cryptographic package 22, 34

DHCP (Dynamic Host Configuration

Protocol) 102–113

see also BOOTP; UDP; dhcpcLib(1); RFC 1541

addresses, storing 108

applications, using in 111–113

boot parameters

required for initializing 189–190

returned by 191

supplying from server 196–198

booting

Ethernet, from 198–200

lease length 196

Windows NT, using 197

configuring 103–111

client, DHCP 103

relay agent, supported DHCP 110

servers, DHCP 104–110

supported 105–107

unsupported 110

VxWorks for 103

leases

IP addresses and other parameters 102

minimum length and booting 196

storing 108

types 107

network configuration information, storage

hooks for 108–110
219

VxWorks Network 5.4
Programmer’s Guide
servers, adding entries to running 107

troubleshooting 201

DHCP_MAX_HOPS 106, 110

DHCP_SPORT 106

dhcpBootBind() 112

DHCPC_CPORT 104

DHCPC_MAX_LEASES 104

DHCPC_MIN_LEASE 104

DHCPC_OFFER_TIMEOUT 104

DHCPC_SPORT 103

dhcpOptionGet() 112

dhcpParamsGet() 113

DHCPS_ADDRESS_HOOK 105, 109

DHCPS_CPORT 106, 111

DHCPS_DEFAULT_LEASE 105

DHCPS_LEASE_HOOK 105, 108

DHCPS_MAX_LEASE 106

DHCPS_SPORT 110

DHCPS_STORAGE_CLEAR 110

DHCPS_STORAGE_READ 109

DHCPS_STORAGE_START 109

DHCPS_STORAGE_STOP 109

DHCPS_STORAGE_WRITE 109

dhcpsLeaseEntryAdd() 108

dhcpsLeaseTbl structure 106

dhcpsRelayTbl structure 111

distance-vector protocol 117

DNS (Domain Name System) 9, 161–164

see also resolvLib(1); RFC 1034; RFC 1035

configuring 163–164

domain names 162

name server 162

NIC (Network Information Center) 162

resolver 162–164

do_protocol() 214

do_protocol_with_type() 210, 214

DOS_OPT_EXPORT 176

DOS_OPT_LONGNAMES 179

DOS_OPT_LOWERCASE 177

dosFsDateSet() 179

dosFsDevInit() 178

dosFsFileMode global variable 179

dosFsGroupId global variable 179

dosFsMkfs() 178

dosFsTimeSet() 179

dosFsUserId global variable 179

drivers

see also data link layer; Enhanced Network

Driver

CSLIP 14

custom interface 56

Ethernet 13

MUX, using 57

network

4.3 BSD, structure of 210–211

4.4 BSD, porting 4.3 BSD to 209–215

MUX, upgrading 4.3 BSD to 209

PPP 15–40

SLIP 14

E
ead (inet on ethernet (e)) 191

echoes, link-layer 17

encapsulation 19

/etc/gateways 67

/etc/hosts 64

ether_attach() 212

ether_output() 213

etherhooks 211

etherInputHook() 211

Ethernet

booting from 198–200

drivers 13

polled-mode 209

etherOutputHook() 212

F
File Transfer Protocol, see FTP

flags (flags (f)) 190

FTP (File Transfer Protocol) 170–174

see also ftpdLib(1); ftpLib(1)

file permissions 173

network devices, creating VxWorks 172

run-time image, getting the VxWorks 192

user ID, setting 173
220

IX

Index
VxWorks as server 170–171

G
gad (gateway inet (g)) 191

gateway processors 41

specifying for a network 66–72

H
had (host inet (h)) 191

hooks

authorization 180

connect and disconnect (PPP) 17, 35

hop count 67

hopping, packet 118

host names

DNS, using 161–164

Internet addresses to, assigning 64–65

translating to IP addresses 161–164

HOST_NAME_DEFAULT 194

HOST_PASSWORD_DEFAULT 195

HOST_USER_DEFAULT 195

hostAdd() 64

hostent structure (DNS) 162

hostName (host name) 193

hostShow() 64

I
iam() 173

ICMP (Internet Control Message Protocol) 58

configuring 75

ICMP_FLAGS_DFLT 77

ifAddrSet() 49, 63

ifBroadcastSet() 66

ifconfig command 63

ifFlagChange() 91

ifLib 63–66

see also Internet addresses

ifMaskSet() 73

ifnet structure 210, 212

ifShow() 99, 138

IGMP (Internet Group Management Protocol) 75

INCLUDE_DHCPC 103

INCLUDE_DHCPR 103, 111

INCLUDE_DHCPS 103

INCLUDE_FTP_SERVER 171

INCLUDE_FTPD_SECURITY 171

INCLUDE_ICMP 75

INCLUDE_IGMP 75

INCLUDE_NET_SYM_TBL 200

INCLUDE_NFS_MOUNT_ALL 175

INCLUDE_NFS_SERVER 176

INCLUDE_OSPF 122

INCLUDE_PPP_CRYPT 22

INCLUDE_PROXY_DEFAULT_ADDR 96

INCLUDE_PROXY_SERVER 95, 96

INCLUDE_RIP 120

INCLUDE_SLIP 15

INCLUDE_SM_SEQ_ADDR 50, 96

INCLUDE_SNTPC 165

INCLUDE_SNTPS 166

INCLUDE_TCP 75

INCLUDE_TFTP_CLIENT 181

INCLUDE_TFTP_SERVER 180

INCLUDE_UDP 75

INCLUDE_ZBUF_SOCK 144

inet addresses, see Internet addresses

input queues 47

Internet addresses 58–60

see also ifLib(1)

assigning 63–66

host names, to 64–65

network interfaces, to 63–64

backplane, of 191

booting gateway, of 191

broadcasting 65

DNS, using 161–164

host, of 191

SLIP connection, local end of 191

target on Ethernet, of 191

Internet Control Message Protocol, see ICMP

Internet Group Management Protocol, see IGMP

Internet Protocol Control Protocol (IPCP) 20

Internet Protocol, see IP
221

VxWorks Network 5.4
Programmer’s Guide
interrupt type 47

interrupts, interprocessor 47

mailbox 47

polling 47

IP (Internet Protocol) 58–63

address negotiation 17

gateways, specifying 66–72

network byte order 62

packet routing 60–62

routing 66–72

IP_ADD_MEMBERSHIP 138

IP_DROP_MEMBERSHIP 138

IP_FLAGS_DFLT 77

IP_FRAG_TTL_DFLT 78

IP_MULTICAST_IF 138

IP_MULTICAST_LOOP 138

IP_MULTICAST_TTL 138

IP_QLEN_DFLT 77

IP_TTL_DFLT 77

ipAttach() 58

ipDetach() 58

IPTOS constants 71

L
LCP, see Link Control Protocol

Link Control Protocol (LCP) 20

link-state protocol 117

little-endian numbers 62

location monitors, see mailbox interrupts

M
m2Ospf() 122

m2Rip() 121

mailbox interrupts 47

main network 88, 89

masks, address

routing 70–72

master processor 42, 48

mBlk structures 78–82

MD5 algorithm 40

memory pool, network 78–82

see also clBlk structures; clusters; mBlk
structures; netBufLib(1)

size and location, determining 82

mountd server task 174

mountdInit() 180

mounting file systems 174

mountLib 174

mRouteAdd() 69, 70–72

mRouteDelete() 69, 71

multicasting 66, 118, 209

datagram sockets, using 137–144

code example 138–144

groups 139

options 138

mutual exclusion 46

MUX interface 3, 57

see also Network Protocol Toolkit User’s Guide
4.3 BSD network drivers, upgrading 209

attaching to 58

N
name serve (DNS) 9

net masks 73

netBufLib 78

netDevCreate() 172

netDrv 170

netJobAdd() 210

netstat - r command (UNIX) 67

network byte order 62

converting longs and shorts 62

Network File System, see NFS

network interfaces 63–64

network protocol layer

see also ICMP; IGMP; TCP; UDP

configuring 75

scalability 75

network stacks

configuring 74–84

memory pool 78–82

testing connections 82–84

networks 2–4

APIs 125–159
222

IX

Index
booting VxWorks 185–207

configuration utilities, manual 63–73

gateways 66–72

Internet addresses 63–66

subnets 72

configuring 101–116

BOOTP 113–116

DHCP 103–113

connections, testing 82–84

gateways to, adding 66–72

sockets 125–159

subnets 72

NFS (Network File System) 174–180

see also mountLib(1); nfsdLib(1); nfsDrv(1)

authenticating requests 179

client, VxWorks target as 175–176

date and time, setting 179

DOS_OPT_EXPORT, using 176

dosFs facilities, specifying 178

exporting file systems 176–180

limitations, DOS 179

group IDs, setting 176

mounting file systems 174

mountLib 174

network devices, creating VxWorks 175

nfsdLib 174

server facilities 174

server, VxWorks target as 176–180

user IDs, setting 176

NFS_GROUP_ID 176

NFS_USER_ID 176

nfsAuthUnixPrompt() 176

nfsAuthUnixSet() 176

nfsd server task 174

nfsdInit() 180

nfsdLib 174

nfsDrv 174

nfsExport() 176

nfsLib 174

nfsMount() 175

NIC (Network Information Center) 162

non-proxy clients 89

O
Open Shortest Path First, see OSPF

OPT_option 24

OPT_REQUIRE_CHAP 35

OPT_REQUIRE_PAP 34

optional VxWorks products

WindNet SNMP 4, 116

OSPF (Open Shortest Path First) (option) 121–124

see also routing; RFC 1253; RFC 1538

configuring 122–124

MIB, configuring the 122

starting 122

ospfAddExtRoute() 122

ospfAddNbmaDest() 122

ospfDelExtRoute() 122

ospfInit() 122

other (other (o)) 193

OTHER_DEFAULT 195

P
p command (booting) 188

packet reception

4.3 BSD network drivers 210

etherhooks, using 211

packet routing 60–62

packet transmission 210

etherhooks, using 212

PAP, see Password Authentication Protocol

pap_file member 33

passwd (ftp password (pw)) 192

Password Authentication Protocol (PAP) 20

see also PPP; RFC 1334

DES cryptographic package 22

secrets files, defining 33

using 33–34

ping() 82–84, 99

Point-to-Point Protocol, see PPP

polling 47

port addresses 74

PPP (Point-to-Point Protocol) 15–40

see also Challenge-Handshake Authentication

Protocol; Password Authentication
223

VxWorks Network 5.4
Programmer’s Guide
Protocol; RFC 1332; RFC 1334; RFC

1548; RFC 1549

asynchronous character mapping 17

authentication 31–38

CHAP, using 34

PAP, using 33–34

booting from 205–207

CHAP (Challenge-Handshake Authentication

Protocol) 21

client-server connection 17

compression

address 17

control 17

protocol field 17

Van Jacobsen (VJ) 17, 40

configuration options 27–31

order of precedence 28

configuring 21–25

daemon pppd 37

debugging 40

DES cryptographic package 22, 34

echoes, link-layer 17

encapsulation 19

hooks, connect and disconnect 17, 35

code example 36

Internet Protocol Control Protocol (IPCP) 20

IP address negotiation 17

Link Control Protocol (LCP) 20

links

confirming 27

deleting 27

initializing 26

network backend, as 37

network interfaces, as additional 37

querying status and data 17

multiple channels, using 17

optional features, selecting 22–25

compile-time, at 22

configuration constants, using 22

options files, using 25

options structures, using 24

run-time, at 24

PAP (Password Authentication Protocol) 20

proxy ARP routing 17

querying link data 17

secrets 32–35

SLIP, contrasted with 17

system image, failing to load 22

Tornado, using with 37–38

troubleshooting 39–40

authentication 40

links, establishing 39

USENET news group 16

version 2.1.2 21

PPP_BAUDRATE 206

PPP_CONNECT_DELAY 23

PPP_HOOK_CONNECT 35

PPP_HOOK_DISCONNECT 35

PPP_OPT_DEBUG 40

PPP_OPT_option 24

PPP_OPT_REQUIRE_CHAP 35

PPP_OPT_REQUIRE_PAP 33

PPP_OPTIONS 24, 33

CHAP, using 34

PPP_OPTIONS_FILE 25

PPP_OPTIONS_STRUCT 23

PPP_STR_CHAP_FILE 34

PPP_STR_optionstring 24

PPP_STR_PAP_FILE 33

PPP_TTY 23

pppd daemon 37

pppDelete() 27

pppHookAdd() 35

pppHookDelete() 35

pppInfoGet() 27

pppInit()
links, initializing 26

PPP options, selecting

options files, using 25

options structures, using 24

pppSecretAdd() 32, 33

processor numbers, backplane 42

processor 0 42

procNum (processor number) 189

protocols 1, 7–9

see also individual protocols
ARP (Address Resolution Protocol) 84–86

BOOTP (Bootstrap Protocol) 113–116

CHAP (Challenge-Handshake Authentication

Protocol) 21
224

IX

Index
CSLIP (compressed SLIP) 14

DHCP (Dynamic Host Configuration

Protocol) 102–113

FTP (File Transfer Protocol) 170–174

ICMP (Internet Control Message Protocol) 58

IP (Internet Protocol) 58–63, 66–72

IPCP (Internet Protocol Control Protocol) 20

LCP (Link Control Protocol) 20

network configuration 101–116

NFS (Network File System) 174–180

OSPF (Open Shortest Path First) 121–124

PAP (Password Authentication Protocol) 20

PPP (Point-to-Point Protocol) 15–40

proxy ARP 17, 86–99

RIP (Routing Information Protocol) 118–121

RPC (Remote Procedure Calls) 167, 176

RSH (Remote Shell) 170–174, 184

SLIP (Serial Line Internet Protocol) 14

SNTP (Simple Network Time Protocol) 165–

166

TCP (Transmission Control Protocol) 74, 126–

133

TCP/IP protocol suite 57–99

TFTP (Trivial File Transfer Protocol) 180–181

UDP (User Datagram Protocol) 74, 133–144

proxy ARP 86–99

see also proxy clients; proxy servers; RFC 925;

RFC 1027

booting from shared-memory networks 201–

203

default addressing, using 96

routing 17

sequential addressing, using 96

shared-memory networks, working with 92–

93, 94

subnets, working with 93–99

and system images 97

proxy clients 89

multi-homed, working with 91

proxy servers 86

routing 87–88

proxyNetShow() 99

proxyPortFwdOff() 90

proxyPortFwdOn() 90

proxyPortShow() 99

R
read-modify-write cycles (RMW) 46

remLib 184

remote file access 4, 170–174

see also FTP; NFS; RSH; TFTP; ftpdLib(1);

ftpLib(1); nfsDrv(1); remLib(1);

tftpdLib(1); tftpLib(1)

FTP, using 172–174

permissions 173

RSH, using 171–174

remote login utilities 183

Remote Procedure Calls, see RPC

remote shell, see RSH

resolver (DNS) 9, 162–164

see also resolvLib(1)

RETR command 170

.rhosts file 172

RIP (Routing Information Protocol) 66, 118–121

configuring 120–121

debugging 119

multicasting 118

SNMP, configuring with 121

subnet broadcasting 118

tables, display internal 119

tracing packets and routing changes 119

versions 118

RIP_GATEWAY 120

RIP_VERSION 120

ripLibInit() 120

ripLogLevelBump() 119

ripRouteShow() 119

rlogin 183

see also rLogLib(1)

rlogin() 183

route command (UNIX) 67

routeAdd() 68, 98, 138

routed daemon 66, 67, 118

routeDelete() 69, 70

routeLib 66

see also routing

routeNetAdd() 69

routeProtoPrioritySet() 72

routeShow() 68, 69, 99

routing 66–72, 117–124
225

VxWorks Network 5.4
Programmer’s Guide
see also OSPF; RIP; routing tables

masks 70–72

packets 60–62

priority, setting 72

proxy ARP, using 17

proxy clients, multi-homed 91

proxy server issues 87–88

service, setting the type of 71

troubleshooting 99

UNIX, in 67

VxWorks, with 68–72

Windows, in 67

routing protocol types 72

routing tables 68–72

see also OSPF; RIP; routing

editing 68–72

gateways, adding 69–72

inspecting 68

updating, dynamic 117–124

RPC (Remote Procedure Calls) 167, 176

see also rpcLib(1)

NFS, implementing 174

rpcTaskInit() 167

RSH (Remote Shell) 170–174, 184

see also remLib(1)

daemon rshd 170, 184

file permissions 173

network devices, creating VxWorks 172

.rhosts file 172

run-time image, getting the VxWorks 192

user ID, setting 173

S
-s option (TFTP) 180

SCRIPT_DEFAULT 195

secrets (PPP) 32–35

configuring 33

secrets files

CHAP, defining for 34

PAP, defining for 33

security 21

see also authentication

PPP 31–35

TFTP 180

sequential addressing 48–50, 96

Serial Line Internet Protocol, see SLIP

setsockopt() 71

shared-memory anchor 42, 43

off-board address 45

on-board address 46

shared-memory networks 40–55

see also shared-memory anchor; shared-memory

pool

booting from 201–203

configuring 50–53

gateways, routing over 41

heartbeat 44

interface (sm) 43

interprocessor interrupts 47

interrupt types 48

location in memory 45

MC680x0 requirements 46

network master processor 42

processor 0 42

processor numbers, backplane 42

proxy ARP, using 92–93, 94

sequential addressing 48–50

size of memory 45

sysPhysMemDesc[] 46

test-and-set access control 46

troubleshooting 53–55

shared-memory pool 41–47

on-board/off-board configurations 45

size 45

SLIP (Serial Line Internet Protocol) 14

see also CSLIP; PPP

booting from 203–205

configuring 14

PPP, contrasted with 17

setting baud rate 15

specifying device for connection 15

SLIP_BAUDRATE 15

SLIP_TTY 15

sm shared-memory network interface 43

SM_ANCHOR_ADRS 43

SM_INT_ARGn 47

SM_INT_TYPE 47

SM_MEM_ADRS 45
226

IX

Index
SM_MEM_SIZE 45

SM_OFF_BOARD 45

SM_TAS_HARD 47

SM_TAS_SOFT 47

SM_TAS_TYPE 47

smNetInit() 49

smNetShow() 98, 99

configuring a shared-memory network 54

sequential addressing 49

SNMP, see WindNet SNMP

SNTP (Simple Network Time Protocol) 165–166

SNTP_ACTIVE 166

SNTP_PASSIV 166

SNTP_PORT 166

sntpcTimeGet() 165

SNTPS_CLOCK_HOOK 166

SNTPS_DSTADDR 166

SNTPS_INTERVAL 166

SNTPS_MODE 166

sntpsClockSet() 166

sntpsConfigSet() 166

sntpsInit() 166

sockets 3, 125–159

see also zbufs; sockLib(1); zbufSockLib(1)

datagram 133–144

signals, using 126

stream 126–133

zbufs 144–159

startupScript (startup script (s)) 193

STOR command 170

stream sockets 126–133

client-server communication 127–133

code example 127–133

subnet addressing 73

subnets

configuring 72

proxy ARP, using 86–89, 93–99

sysBusTas() 46

sysBusToLocalAddr() 98

sysLocalToBusAddr() 98

sysPhysMemDesc[] 46

non-cacheable shared-memory 46

T
TARGET_NAME_DEFAULT 194

targetName (target name (tn)) 193

tasks

network (tNetTask) 210

TCP (Transmission Control Protocol) 74

configuring 75

stream sockets 126–133

zbufs, using 144

zero-copy 144

TCP/IP protocol suite 57–99

#define statements, setting 75–78

TCP_CON_TIMEO_DFLT 76

TCP_FLAGS_DFLT 75

TCP_IDLE_TIMEO_DFLT 76

TCP_MAX_PROBE_DFLT 76

TCP_MSS_DFLT 76

TCP_RCV_SIZE_DFLT 75

TCP_REXMT_THLD_DFLT 76

TCP_RND_TRIP_DFLT 76

TCP_SND_SIZE_DFLT 75

telnet 184

see also telnetLib(1)

test-and-set instruction 46

TFTP (Trivial File Transfer Protocol) 180–181

see also tftpdLib(1); tftpLib(1)

run-time image, getting the VxWorks 192

security (-s option) 180

VxWorks client 181

VxWorks server 180

tftpCopy() 181

tftpXfer() 181

tNetTask task 210

Transmission Control Protocol, see TCP

Trivial File Transfer Protocol, see TFTP

troubleshooting

BOOTP 200

DHCP 201

PPP 39–40

routing 99

shared-memory networks 53–55
227

VxWorks Network 5.4
Programmer’s Guide
U
UDP (User Datagram Protocol) 74

broadcasting 65

configuring 75

datagram sockets 133–144

multicasting 66

zbufs, using 144

UDP_FLAGS_DFLT 76

UDP_RCV_SIZE_DFLT 76

UDP_SND_SIZE_DFLT 76

unitNum (unit number) 189

User Datagram Protocol, see UDP

usr (user (u)) 192

usrNetInit() 64, 65, 70

network device, creating a 173

user name, setting 173

usrNetwork.c
PPP links, initializing 26

usrPPPInit()
calling 26

links, initializing 26

PPP options, selecting

configuration constants, using 23

options files, using 25

target-peer link delay, setting 23

usrSlipInit() 204

V
Van Jacobsen (VJ) compression 17, 40

VMEbus access 46

VxSim, using (for Solaris) 23

W
WindNet SNMP (option) 4, 116

Z
ZBUF_BEGIN 146

ZBUF_END 146

zbufCreate() 147

zbufCut() 149

zbufDelete() 147

zbufDup() 148

zbufExtractCopy() 147

zbufInsert() 148, 149

zbufInsertBuf() 147

zbufInsertCopy() 147

zbufLength() 148

zbufs 3, 144–159

see also zbufLib(1); zbufSockLib(1)

byte locations 145–146

code examples

display routine, creating a 152–153

TCP server, converting a 155–159

configuring into VxWorks image 144

creating 147

data structures, manipulating 145–154

data, handling

copying into 147

copying out of 147

placing in 147

deleting 147

dividing in two 148

inserting 148

length, determining 148

limitations on use 154

offsets 145

removing bytes 149

segment IDs 145

segments 148, 149–150

byte locations, determining 150

data location, determining 150

length, determining 150

reading 150

sharing 148

socket calls 154–159

zbufSegData() 150

zbufSegFind() 150

zbufSegLength() 150

zbufSegNext() 150
228

IX

Index
zbufSegPrev() 150

zbufSockBufSend() 144, 154

zbufSockBufSendto() 144, 154

zbufSockLibInit() 154

zbufSockRecv() 154

zbufSockRecvfrom() 154

zbufSockSend() 154

zbufSockSendto() 154

zbufSplit() 148

zero-copy TCP 144, 209
229

	1
	Overview
	1.1� Introduction
	Supported Protocols and Utilities
	1.1.1� Network

	2
	Configuring the VxWorks Network Stack
	2.1� Introduction
	2.1.1� The Data Link Layer
	2.1.2� The MUX, TCP/IP, and Associated Protocols
	2.1.3� Network Configuration Protocols
	2.1.4� Routing Applications
	2.1.5� Networking APIs
	2.1.6� DNS, Domain Name System
	2.1.7� SNTP, Simple Network Time Protocol
	2.1.8� Remote Access Applications

	2.2� Advice Concerning the Use of config.h and configAll.h

	3
	Data Link Layer Network Components
	3.1� Introduction
	3.2� Ethernet Driver Support
	3.3� Serial Line IP Support
	3.3.1� Serial Line Driver Configuration

	3.4� PPP, the Point-to-Point Protocol for Serial Line IP
	3.4.1� Reference Material on PPP
	3.4.2� PPP Features
	3.4.3� The Point-to-Point Protocol Compared to SLIP
	3.4.4� An Overview of PPP
	Encapsulation
	Link Control Protocol (LCP)
	Internet Protocol Control Protocol (IPCP)
	Password Authentication Protocol (PAP)
	Challenge-Handshake Authentication Protocol (CHAP)

	3.4.5� PPP Configuration
	Selecting PPP Options By Configuring VxWorks
	Selecting PPP Options Using an Options Structure
	Setting PPP Options Using an Options File

	3.4.6� Using PPP
	Initializing a PPP Link
	Deleting a PPP Link
	PPP Options
	PPP Authentication
	Connect and Disconnect Hooks

	3.4.7� PPP with Tornado
	PPP Link as an Additional Network Interface
	PPP Link as a Network Back End for the Target Server

	3.4.8� Troubleshooting PPP
	Link Establishment
	Authentication

	3.5� Shared-Memory Network on the Backplane
	3.5.1� The Backplane Shared-Memory Pool
	Backplane Processor Numbers
	The Shared-Memory Network Master: Processor 0
	The Shared-Memory Anchor
	The Shared-Memory Heartbeat
	Shared-Memory Location
	Shared Memory Size
	On-Board and Off-Board Options
	Test-and-Set to Shared Memory

	3.5.2� Interprocessor Interrupts
	3.5.3� Sequential Addressing
	3.5.4� Shared-Memory Network Configuration
	Example Configuration
	Troubleshooting

	3.6� Custom Interfaces

	4
	TCP/IP Under VxWorks
	4.1� Introduction
	4.1.1� MUX, an Interface between the Data Link and Network Layers
	Attaching to the MUX

	4.2� IP, Internet Protocol
	4.2.1� Internet Addresses
	4.2.2� Packet Routing
	4.2.3� Network Byte Order

	4.3� VxWorks Manual Network Configuration Utilities
	4.3.1� Assigning Internet Addresses
	4.3.2� Adding Gateways to a Network
	4.3.3� Subnet Configuration

	4.4� UDP, User Datagram Protocol
	4.5� TCP, Transmission Control Protocol
	4.6� Configuring the Network Stack
	4.6.1� Network Protocol Scalability
	4.6.2� Setting #defines for the IP, TCP, UDP, and ICMP Protocols
	4.6.3� Network Memory Pool Configuration
	4.6.4� Testing Network Connections

	4.7� ARP and Proxy ARP for Transparent Subnets
	4.7.1� ARP Introduction
	4.7.2� Proxy ARP Overview
	4.7.3� Routing Issues and the Proxy Server
	4.7.4� Proxy ARP Protocol
	4.7.5� Broadcast Datagrams
	4.7.6� Special Configuration Needs for Multi-Homed Proxy Clients
	4.7.7� Single-Tier Configuration for Shared-Memory Networks under Proxy ARP
	4.7.8� Proxy ARP and Its Consequences for Subnet Configuration

	5
	Network Configuration Protocols
	5.1� Introduction
	5.2� DHCP, Dynamic Host Configuration Protocol
	5.2.1� Configuring VxWorks to Include the DHCP Components
	5.2.2� Configuring the DHCP Client
	5.2.3� Configuring DHCP Servers
	Configuring the Supported DHCP Server
	Adding Entries to the Database of a Running DHCP Server
	Storing and Retrieving Active Network Configurations
	Configuring the Unsupported DHCP Server

	5.2.4� Configuring the Supported DHCP Relay Agent
	5.2.5� DHCP Within an Application

	5.3� BOOTP, Bootstrap Protocol
	5.3.1� BOOTP Configuration
	About the BOOTP Database
	Editing the BOOTP Database to Register a VxWorks Target

	5.4� SNMP, Simple Network Management Protocol

	6
	Dynamic Routing Protocols
	6.1� Introduction
	6.2� RIP, Routing Information Protocol
	6.2.1� VxWorks Includes Supplemental Debugging Routines for RIP
	6.2.2� Configuring RIP

	6.3� OSPF, Open Shortest Path First
	6.3.1� Including OSPF in VxWorks

	7
	Networking APIs
	7.1� Introduction
	7.2� BSD Sockets
	7.2.1� Stream Sockets (TCP)
	7.2.2� Datagram Sockets (UDP)
	Using a Datagram (UDP) Socket to Access IP Multicasting

	7.3� Zbuf Sockets
	7.3.1� Zbuf Calls to Send Existing Data Buffers
	7.3.2� Manipulating the Zbuf Data Structure
	Zbuf Byte Locations
	Creating and Destroying Zbufs
	Getting Data In and Out of Zbufs
	Operations on Zbufs
	Segments of Zbufs
	Example: Manipulating Zbuf Structure
	Limitations of the Zbuf Implementation

	7.3.3� Zbuf Socket Calls
	Standard Socket Calls and Zbuf Socket Calls

	8
	DNS: Domain Name System
	8.1� Introduction
	8.2� Domain Names
	8.3� The VxWorks Resolver
	8.3.1� Resolver Integration
	8.3.2� Resolver Configuration

	9
	SNTP: A Time Protocol
	9.1� Introduction
	9.2� Using the SNTP Client
	9.3� Using the SNTP Server

	10
	RPC: Remote Procedure Calls
	10.1� Introduction

	11
	File Access Applications
	11.1� Introduction
	11.2� RSH and FTP
	11.2.1� Allowing Remote File Access with RSH
	11.2.2� Creating VxWorks Network Devices that use RSH or FTP
	11.2.3� Setting the User ID for Remote File Access with RSH or FTP
	11.2.4� File Permissions

	11.3� NFS
	11.3.1� VxWorks Target as Client
	Creating VxWorks Network Devices that Use NFS
	Setting the User ID for Remote File Access with NFS

	11.3.2� VxWorks Target as Server
	Initializing an NFS-Exportable File System
	Exporting a File System through NFS
	Properties of NFS-Exported File Systems
	Limitations of the VxWorks NFS Server

	11.4� TFTP
	11.4.1� Host TFTP Server
	11.4.2� VxWorks TFTP Server
	11.4.3� VxWorks TFTP Client

	12
	rlogin and telnet: Host Access Applications
	12.1� Introduction
	12.2� rlogin
	12.3� telnet
	12.4� remLib

	13
	Booting over the Network
	13.1� Introduction
	13.2� About the Boot Program
	13.2.1� How the Boot Program Gets Its Boot Parameters
	13.2.2� The General Format of a Boot Line
	13.2.3� Boot Parameters Needed for DHCP, BOOTP, and Network Device Initialization
	13.2.4� Boot Parameters Returned from DHCP or BOOTP
	13.2.5� Boot Parameters Needed to Set Up Remote File Access and Get the VxWorks Image
	13.2.6� Optional Boot Parameters

	13.3� Setting the VxWorks Boot Parameters
	13.3.1� Supplying Boot Parameters Using #define Values
	13.3.2� Supplying Boot Parameters Manually
	13.3.3� Supplying Boot Parameters from a DHCP or BOOTP Server

	13.4� Booting from the Ethernet
	13.4.1� Troubleshooting

	13.5� Booting from the Shared-Memory Network
	13.6� Booting from the Serial Line
	13.6.1� Booting VxWorks Using SLIP
	13.6.2� Booting VxWorks Using PPP

	14
	Upgrading 4.3 BSD Network Drivers
	14.1� Introduction
	14.2� Structure of a 4.3 BSD Network Driver
	14.2.1� Etherhook Routines Provides Access to Raw Packets

	14.3� Upgrading to 4.4 BSD
	14.3.1� Removing the xxOutput Routine
	14.3.2� Changing the Transmit Startup Routine
	14.3.3� Changes in Receiving Packets
	14.3.4� Creating a Transmit Startup Routine

	Index

