
2.2
U S E R ’ S G U I D E

U N I X V E R S I O N

Tornado
®

Copyright  2002 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,

microfilm, retrieval system, or by any other means now known or hereafter invented without the prior

written permission of Wind River Systems, Inc.

AutoCode, Embedded Internet, Epilogue, ESp, FastJ, IxWorks, MATRIXX, pRISM, pRISM+, pSOS,

RouterWare, Tornado, VxWorks, wind, WindNavigator, Wind River Systems, WinRouter, and Xmath are

registered trademarks or service marks of Wind River Systems, Inc.

Attaché Plus, BetterState, Doctor Design, Embedded Desktop, Emissary, Envoy, How Smart Things Think,

HTMLWorks, MotorWorks, OSEKWorks, Personal JWorks, pSOS+, pSOSim, pSOSystem, SingleStep,

SNiFF+, VxDCOM, VxFusion, VxMP, VxSim, VxVMI, Wind Foundation Classes, WindC++, WindManage,

WindNet, Wind River, WindSurf, and WindView are trademarks or service marks of Wind River Systems,

Inc. This is a partial list. For a complete list of Wind River trademarks and service marks, see the following

URL:

http://www.windriver.com/corporate/html/trademark.html

Use of the above marks without the express written permission of Wind River Systems, Inc. is prohibited.

All other trademarks mentioned herein are the property of their respective owners.

Corporate Headquarters

Wind River Systems, Inc.

500 Wind River Way

Alameda, CA 94501-1153

U.S.A.

toll free (U.S.): 800/545-WIND

telephone: 510/748-4100

facsimile: 510/749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Tornado User’s Guide, 2.2

30 Jul 02

Part #: DOC-14208-2D-01

iii

1 Overview ... 1

2 Setup and Startup .. 15

3 Launcher ... 65

4 Projects ... 93

5 Command-Line Configuration and Build ... 169

6 VxSim .. 217

7 Shell ... 245

8 Browser ... 307

9 Debugger ... 333

10 Building VxDCOM Applications .. 381

11 Customization ... 403

A Directories and Files .. 421

B Makefile Details .. 435

C Tcl .. 441

D Coding Conventions .. 449

E X Resources .. 483

F VxWorks Initialization Timeline ... 485

iv

v

Contents

1 Overview ... 1

1.1 Introduction .. 1

1.2 Cross-Development with Tornado ... 3

1.3 VxWorks Target Environment .. 4

1.4 Tornado Host Tools .. 5

Launcher .. 5
Project Management .. 6
Compiler .. 6
WindSh Command Shell ... 6
CrossWind Debugger .. 7
Browser .. 7
WindView Software Logic Analyzer ... 8
VxSim Target Simulator .. 8

1.5 Host-Target Interface ... 9

Target Agent ... 9
Tornado Target Server ... 10
Tornado Registry .. 11
Virtual I/O .. 11

1.6 Customer Services .. 12

Tornado 2.2

User’s Guide

vi

2 Setup and Startup .. 15

2.1 Introducing Tornado .. 15

2.2 Setting up the Tornado Registry .. 19

2.3 The Tornado Host Environment .. 20

2.3.1 Environment Variables for Tornado Components 21

2.3.2 Environment Variable For Solaris Hosts .. 22

2.3.3 Environment Variables for Convenience 23

2.3.4 X Resource Settings ... 23

2.4 Setting Up the Default Target Hardware .. 24

2.4.1 Default Target Configuration ... 24

2.4.2 Networking the Host and Target ... 25

Initializing the Host Network Software ... 26
Establishing the VxWorks System Name and Address 26
Giving VxWorks Access to the Host ... 27

2.4.3 Configuring the Target Hardware ... 27

Setting Up a Boot Mechanism .. 28
Setting Board Jumpers .. 29
Board Installation and Power .. 29
Connecting the Cables .. 30

2.5 Host-Target Communication Configuration .. 31

2.5.1 Network Connections ... 31

Configuring the Target Agent for Network Connection 31

2.5.2 END Connections .. 32

Configuring the Target Agent for END Connection 32

2.5.3 Serial-Line Connections .. 32

Configuring the Target Agent for Serial Connection 33
Configuring the Boot Program for Serial Connection 33
Testing the Connection ... 33
Starting the Target Server ... 35

Contents

vii

2.5.4 The NetROM ROM-Emulator Connection 35

Configuring the Target Agent for NetROM 36
Configuring the NetROM ... 36
Starting the Target Server ... 40
Troubleshooting the NetROM ROM-Emulator Connection 41

2.5.5 The Transparent Mode Driver (TMD) ... 43

Configuring the Target Agent for TMD .. 43
Configuring visionICE II/visionPROBE II 44
Starting the Target Server ... 45

2.6 Booting VxWorks .. 46

2.6.1 Default Boot Process .. 47

2.6.2 Entering New Boot Parameters ... 48

2.6.3 Boot Program Commands .. 49

2.6.4 Description of Boot Parameters ... 50

2.6.5 Booting With New Parameters .. 52

2.6.6 Alternate Booting Procedures .. 54

2.6.7 Booting a Target Without a Network .. 55

2.6.8 Rebooting VxWorks ... 55

2.7 Connecting a Tornado Target Server ... 56

2.8 Launching Tornado .. 57

2.9 Tornado Interface Conventions .. 58

2.10 Troubleshooting .. 59

2.10.1 Things to Check .. 59

Hardware Configuration .. 59
Booting Problems ... 60
Target-Server Problems .. 63

2.10.2 Technical Support .. 64

Tornado 2.2

User’s Guide

viii

3 Launcher ... 65

3.1 Introduction .. 65

3.2 The Tornado Launcher .. 65

3.3 Anatomy of the Launcher Window ... 66

3.4 Tools and Targets .. 68

3.4.1 Selecting a Target Server ... 69

3.4.2 Launching a Tool ... 71

3.5 Managing Target Servers .. 72

3.5.1 Configuring a Target Server ... 73

Simple Server Configuration for Networked Targets 75
Simple Server Configuration for WDB Serial Targets 75
Saved Configurations .. 75
Target-Server Action Buttons ... 76
Target-Server Configuration Options ... 76

3.5.2 Sharing and Reserving Target Servers .. 82

3.6 Tornado Central Services .. 83

3.6.1 Support and Information .. 84

3.6.2 Administrative Activities ... 84

3.7 Tcl: Customizing the Launcher .. 85

3.7.1 Tcl: Launcher Initialization File ... 85

3.7.2 Tcl: Launcher Customization Examples ... 86

Re-Reading Tcl Initialization .. 86
Quit Launcher Without Prompting ... 87
An Open Command for the File Menu .. 88

4 Projects ... 93

4.1 Introduction .. 93

4.2 Planning Your Projects .. 99

Contents

ix

4.2.1 Getting a Functional BSP .. 99

Using a Wind River or Third-Party BSP ... 100
Using a Custom BSP For Custom Hardware 100
Using the Simulator BSP ... 101

4.2.2 Creating a Bootable Project Based On a BSP 101

Using the VxWorks Simulator .. 101
Using a Real Target .. 102
Image Size Considerations ... 102

4.2.3 Developing and Adding Your Application Source Code 102

Adding Existing Application Source Code 102
Creating New Application Source Code .. 103
Building With Custom Build Rules ... 103
Developing Architecture-Independent Applications 104
Using Configuration Management .. 105
Configuring VxWorks ... 105
Structuring Your Projects .. 105

4.3 Creating a Downloadable Application ... 112

4.3.1 Creating a Project for a Downloadable Application 112

4.3.2 Project Files for a Downloadable Application 116

4.3.3 Working With Application Files .. 116

Creating, Adding, and Removing Application Files 117
Displaying and Modifying File Properties 118
Opening, Saving, and Closing Files .. 119

4.3.4 Building a Downloadable Application ... 119

Calculating Makefile Dependencies .. 120
Build Specifications .. 122
Building an Application .. 124

4.3.5 Downloading an Application ... 126

4.3.6 Adding and Removing Projects ... 127

4.4 Creating a Custom VxWorks Image .. 127

4.4.1 Creating a Project for VxWorks .. 128

4.4.2 Project Files for VxWorks .. 132

Tornado 2.2

User’s Guide

x

4.4.3 Configuring VxWorks Components ... 134

Finding VxWorks Components and Configuration Macros 136
Displaying Descriptions and Online Help for Components 136
Including and Excluding Components .. 137
Component Conflicts .. 140
Changing Component Parameters .. 141
Estimating Total Component Size ... 142

4.4.4 Selecting the VxWorks Image Type ... 143

4.4.5 Building VxWorks ... 144

Using the Build Menu ... 144
Using the Command Line .. 146

4.4.6 Booting VxWorks ... 146

4.5 Creating a Bootable Application .. 147

4.5.1 Using Automated Scaling of VxWorks ... 147

4.5.2 Adding Application Initialization Routines 147

4.6 Working With Build Specifications .. 148

4.6.1 Changing a Build Specification ... 149

Custom Makefile Rules ... 150
Makefile Macros ... 150
Compiler Options .. 151
Assembler Options .. 153
Link Order Options ... 153
Linker Options ... 154

4.6.2 Creating New Build Specifications ... 155

4.6.3 Selecting a Specification for the Current Build 155

4.7 Configuring the Target-Host Communication Interface 156

Configuration for an END Driver Connection 157
Configuration for Integrated Target Simulators 158
Configuration for NetROM Connection .. 158
Configuration for Network Connection ... 159
Configuration for Serial Connection ... 160
Configuration for tyCoDrv Connection ... 161
Scaling the Target Agent ... 161

Contents

xi

Configuring the Target Agent for Exception Hooks 162
Starting the Agent Before the Kernel .. 162

4.8 Configuring and Building a VxWorks Boot Program 164

4.9 Building a Custom Boot ROM .. 167

5 Command-Line Configuration and Build ... 169

5.1 Introduction .. 169

5.2 Building, Loading, and Unloading Application Modules 170

5.2.1 Using VxWorks Header Files ... 171

VxWorks Header File: vxWorks.h ... 171
Other VxWorks Header Files ... 172
ANSI Header Files ... 172
ANSI C++ Header Files .. 172
The -I Compiler Flag .. 172
VxWorks Nested Header Files ... 173
Internal Header Files ... 173
VxWorks Private Header Files ... 174

5.2.2 Compiling Application Modules Using GNU Tools 174

The GNU Tools ... 175
Cross-Development Commands .. 175
Defining the CPU Type ... 176
Compiling C Modules With the GNU Compiler 177
Compiling C++ Modules .. 178

5.2.3 Compiling Application Modules Using Diab Tools 179

The Diab Tools .. 179
Cross-Development Commands .. 180
Defining the CPU Type ... 180
Compiling C Modules With the Diab Compiler 181
Compiling C++ Modules .. 183

5.2.4 Static Linking (Optional) ... 183

5.2.5 Downloading an Application Module .. 184

5.2.6 Module IDs and Group Numbers ... 185

5.2.7 Unloading Modules ... 186

Tornado 2.2

User’s Guide

xii

5.3 Configuring VxWorks ... 186

5.3.1 The Board Support Package (BSP) .. 187

The System Library ... 188
Virtual Memory Mapping .. 189
Configuration Files .. 189
BSP Initialization Modules ... 189
BSP Documentation ... 189

5.3.2 The Environment Variables .. 190

5.3.3 The Configuration Header Files .. 191

The Global Configuration Header File: configAll.h 191
The BSP-specific Configuration Header File: config.h 191
Selection of Optional Features ... 192

5.3.4 The Configuration Module: usrConfig.c .. 192

5.3.5 Alternative VxWorks Configurations ... 193

Scaling Down VxWorks .. 193
Executing VxWorks from ROM ... 195

5.4 Building a VxWorks System Image ... 197

5.4.1 Available VxWorks Images .. 197

5.4.2 Rebuilding VxWorks with make ... 199

5.4.3 Including Customized VxWorks Code ... 200

5.4.4 Linking the System Modules ... 201

5.4.5 Creating the System Symbol Table Module 203

5.5 Makefiles for BSPs and Applications .. 203

5.5.1 Make Variables ... 205

Variables for Compilation Options ... 206
Variables for BSP Parameters ... 207
Variables for Customizing the Run-Time 208

5.5.2 Using Makefile Include Files for Application Modules 209

5.6 Creating Bootable Applications ... 210

5.6.1 Linking Bootable Applications .. 210

Contents

xiii

5.6.2 Creating a Standalone VxWorks System with a
Built-in Symbol Table .. 211

5.6.3 Creating a VxWorks System in ROM .. 212

5.7 Building Projects From a BSP ... 214

6 VxSim .. 217

6.1 Introduction .. 217

6.2 Integrated Simulator .. 218

Installation and Configuration ... 219
Starting VxSim .. 219
Changing the Simulator Boot Line .. 219
Rebooting VxSim ... 220
Exiting VxSim ... 220
Back End .. 220
System-Mode Debugging ... 221
File Systems .. 221
Symbols ... 221

6.3 Building Applications .. 222

Defining the CPU Type ... 222
The Toolkit Environment .. 222
Compiling C and C++ Modules .. 222
Linking an Application to VxSim .. 223

6.4 Architecture Considerations ... 223

Supported Configurations .. 223
Endianess .. 223
Simulator Timeout ... 224
The BSP Directory .. 224
Interrupts ... 225
Clock and Timing Issues ... 226

6.5 Configuring the VxSim Full Simulator ... 227

Installing VxSim Network Drivers .. 228
Configuring VxSim for Networking ... 234
Running Multiple Simulators .. 235

Tornado 2.2

User’s Guide

xiv

System Mode Debugging ... 236
IP Addressing ... 236
Setting up the Shared Memory Network 239

7 Shell ... 245

7.1 Introduction .. 245

7.2 Using the Shell .. 247

7.2.1 Starting and Stopping the Tornado Shell 247

7.2.2 Downloading From the Shell ... 248

7.2.3 Shell Features ... 249

7.2.4 Invoking Built-In Shell Routines ... 253

Task Management .. 254
Task Information .. 254
System Information ... 257
System Modification and Debugging ... 260
C++ Development ... 262
Object Display .. 263
Network Status Display .. 264
Resolving Name Conflicts between Host and Target 265

7.2.5 Running Target Routines from the Shell .. 265

7.2.6 Rebooting from the Shell .. 266

7.2.7 Using the Shell for System Mode Debugging 267

7.2.8 Interrupting a Shell Command .. 271

7.3 The Shell C-Expression Interpreter ... 272

7.3.1 I/O Redirection .. 272

7.3.2 Data Types .. 273

7.3.3 Lines and Statements .. 275

7.3.4 Expressions ... 275

Literals ... 275
Variable References ... 276
Operators .. 276
Function Calls .. 277

Contents

xv

Subroutines as Commands ... 278
Arguments to Commands .. 278
Task References .. 279

7.3.5 The “Current” Task and Address .. 279

7.3.6 Assignments ... 280

Typing and Assignment .. 280
Automatic Creation of New Variables .. 281

7.3.7 Comments ... 281

7.3.8 Strings .. 281

7.3.9 Ambiguity of Arrays and Pointers .. 282

7.3.10 Pointer Arithmetic ... 283

7.3.11 C Interpreter Limitations .. 283

7.3.12 C-Interpreter Primitives .. 284

7.3.13 Terminal Control Characters .. 286

7.3.14 Redirection in the C Interpreter ... 286

Ambiguity Between Redirection and C Operators 287
The Nature of Redirection .. 287
Scripts: Redirecting Shell I/O .. 288
C-Interpreter Startup Scripts .. 289

7.4 C++ Interpretation .. 290

7.4.1 Overloaded Function Names ... 290

7.4.2 Automatic Name Demangling ... 292

7.5 Shell Line Editing ... 292

7.6 Object Module Load Path ... 295

7.7 Tcl: Shell Interpretation .. 297

7.7.1 Tcl: Controlling the Target .. 298

Tcl: Calling Target Routines .. 299
Tcl: Passing Values to Target Routines .. 299

7.7.2 Tcl: Calling Under C Control .. 299

Tornado 2.2

User’s Guide

xvi

7.7.3 Tcl: Tornado Shell lnitialization ... 300

7.8 The Shell Architecture ... 301

7.8.1 Controlling the Target from the Host ... 301

7.8.2 Shell Components .. 303

7.8.3 Layers of Interpretation .. 304

8 Browser ... 307

8.1 A System-Object Browser ... 307

8.2 Starting the Browser .. 308

8.3 Anatomy of the Target Browser ... 309

8.4 Browser Menus and Buttons .. 310

8.5 Data Panels .. 312

8.6 Object Browsers .. 313

8.6.1 The Task Browser ... 314

8.6.2 The Semaphore Browser ... 315

8.6.3 The Message-Queue Browser .. 316

8.6.4 The Memory-Partition Browser ... 318

8.6.5 The Watchdog Browser ... 319

8.6.6 The Class Browser ... 320

8.7 The Module Browser ... 320

8.8 The Vector Table Window ... 323

8.9 The Spy Window .. 324

8.10 The Stack-Check Window ... 325

8.11 Browser Displays and Target Link Speed ... 327

Contents

xvii

8.12 Troubleshooting with the Browser ... 327

8.12.1 Memory Leaks .. 327

8.12.2 Stack Overflow ... 328

8.12.3 Memory Fragmentation .. 328

8.12.4 Priority Inversion ... 329

8.13 Tcl: the Browser Initialization File .. 331

9 Debugger ... 333

9.1 Introduction .. 333

9.2 Starting CrossWind .. 334

9.3 A Sketch of CrossWind .. 334

9.4 CrossWind in Detail ... 336

9.4.1 Graphical Controls ... 336

Display Manipulation ... 337
CrossWind Menus .. 338
CrossWind Buttons .. 344

9.4.2 Debugger Command Panel: GDB .. 353

GDB Initialization Files ... 353
What Modules to Debug ... 354
What Code to Display ... 355
Executing Your Program ... 356
Application I/O ... 356
Graphically Enhanced Commands ... 357
Managing Targets ... 358
Command-Interaction Facilities .. 358
Extended Debugger Commands ... 359
Extended Debugger Variables .. 360

9.5 System-Mode Debugging .. 362

9.5.1 Entering System Mode .. 362

Tornado 2.2

User’s Guide

xviii

9.5.2 Thread Facilities in System Mode ... 363

Displaying Summary Thread Information 363
Switching Threads Explicitly ... 364
Thread-Specific Breakpoints .. 365
Switching Threads Implicitly ... 366

9.5.3 Configuring VxWorks for System Mode Debugging 366

9.5.4 Tcl: Debugger Automation .. 367

9.5.5 Tcl: A Simple Debugger Example .. 368

9.5.6 Tcl: Specialized GDB Commands .. 369

9.5.7 Tcl: Invoking GDB Facilities ... 370

9.5.8 Tcl: A Linked-List Traversal Macro ... 373

9.6 Tcl: CrossWind Customization ... 374

9.6.1 Tcl: Debugger Initialization Files ... 375

9.6.2 Tcl: Passing Control between the Two CrossWind Interpreters .. 376

9.6.3 Tcl: Experimenting with CrossWind Extensions 377

Tcl: “This” Buttons for C++ .. 377
Tcl: A List Command for the File Menu ... 378
Tcl: An Add-Symbols Command for the File Menu 380

10 Building VxDCOM Applications .. 381

10.1 Introduction .. 381

10.2 The VxDCOM Development Process .. 382

10.3 Configuring a VxDCOM Bootable Image .. 383

10.3.1 Adding VxDCOM Component Support .. 383

10.3.2 Configuring the DCOM Parameters ... 384

10.4 Using the VxDCOM Wizard ... 385

10.4.1 Choosing the Project Type .. 385

10.4.2 Creating a COM/DCOM Skeleton Project 386

Defining the CoClass ... 386

Contents

xix

Choosing CoClass Options ... 390
Generating the Skeleton Files ... 391

10.4.3 Importing Existing Files into a New Project 392

Porting Existing Applications .. 392
Editing IDL Files .. 392
Adding Non-Automation Types .. 393

10.5 The Generated Output ... 393

Output Directories ... 393
Project Work Files ... 394
Server Output Files .. 395
Client Output Files ... 396

10.6 Implementing the Server and Client ... 396

10.7 Building and Linking the Application .. 397

10.8 Registering, Deploying, and Running Your Application 398

10.8.1 Registering Proxy DLLs on Windows ... 398

10.8.2 Register the Type Library .. 399

10.8.3 Registering the Server ... 399

10.8.4 Authenticating the Server ... 400

10.8.5 Activating the Server ... 401

11 Customization ... 403

11.1 Introduction .. 403

11.2 Setting Download Options ... 403

11.3 Setting Project Options .. 405

11.4 Setting Version Control Options .. 406

11.5 Installation and Licenses ... 408

Tornado 2.2

User’s Guide

xx

11.6 Customizing the Tools Menu ... 409

11.6.1 The Customize Tools Dialog Box .. 409

Macros for Customized Menu Commands 412

11.6.2 Examples of Tools Menu Customization 413

Version Control .. 414
Alternate Editor ... 415
Binary Utilities ... 415
World Wide Web .. 416

11.7 Alternate Default Editor ... 417

11.8 Tcl Customization Files ... 417

Tornado Initialization .. 417
HTML Help Initialization ... 418

Appendices ... 419

A Directories and Files .. 421

A.1 Introduction .. 421

A.2 Host Directories and Files ... 422

A.3 Target Directories and Files .. 424

A.4 Initialization and State-Information Files ... 432

B Makefile Details ... 435

B.1 Introduction .. 435

B.2 Customizing the VxWorks Makefile ... 435

B.3 Commonly Used Makefile Macros .. 436

C Tcl .. 441

C.1 Why Tcl? .. 441

Contents

xxi

C.2 Introduction to Tcl .. 442

C.2.1 Tcl Variables .. 442

C.2.2 Lists in Tcl .. 443

C.2.3 Associative Arrays ... 444

C.2.4 Command Substitution ... 445

C.2.5 Arithmetic ... 445

C.2.6 I/O, Files, and Formatting .. 445

C.2.7 Procedures ... 446

C.2.8 Control Structures .. 447

C.2.9 Tcl Error Handling ... 448

C.2.10 Integrating Tcl and C Applications ... 448

D Coding Conventions .. 449

D.1 Introduction .. 449

D.2 File Heading .. 450

D.3 C Coding Conventions .. 451

D.3.1 C Module Layout ... 451

D.3.2 C Subroutine Layout ... 453

D.3.3 C Declaration Formats ... 454

D.3.4 C Code Layout .. 457

D.3.5 C Naming Conventions .. 460

D.3.6 C Style .. 462

D.3.7 C Header File Layout .. 463

D.3.8 Documentation Format Conventions for C 466

D.4 Tcl Coding Conventions .. 470

D.4.1 Tcl Module Layout ... 470

D.4.2 Tcl Procedure Layout ... 471

Tornado 2.2

User’s Guide

xxii

D.4.3 Tcl Code Outside Procedures ... 473

D.4.4 Declaration Formats .. 474

D.4.5 Code Layout ... 475

D.4.6 Naming Conventions .. 478

D.4.7 Tcl Style ... 479

E X Resources .. 483

E.1 Predefined X Resource Collections .. 483

E.2 Resource Definition Files .. 483

F VxWorks Initialization Timeline ... 485

F.1 Introduction .. 485

F.2 The VxWorks Entry Point: sysInit() .. 486

F.3 The Initial Routine: usrInit() .. 486

F.4 Initializing the Kernel .. 488

F.5 Initializing the Memory Pool ... 489

F.6 The Initial Task: usrRoot() .. 490

F.7 The System Clock Routine: usrClock() .. 496

F.8 Initialization Summary ... 496

F.9 Initialization Sequence for ROM-Based VxWorks 499

Index .. 501

1

1
Overview

1.1 Introduction

Tornado is an integrated environment for software cross-development. It provides
an efficient way to develop real-time and embedded applications with minimal
intrusion on the target system. Tornado consists of the following elements:

■ VxWorks, a high-performance real-time operating system.

■ Application-building tools (compilers and associated programs).

■ A development environment that facilitates managing and building projects,
establishing and managing host-target communication, and running,
debugging, and monitoring VxWorks applications.

The Tornado interactive development tools include:

■ The launcher, an integrated target-management utility.
■ A project management facility.
■ Integrated C and C++ compilers and make.
■ The browser, a collection of visualization aids to monitor the target system.
■ CrossWind, a graphically enhanced source-level debugger.
■ WindSh, a C-language command shell that controls the target.
■ An integrated version of the VxWorks target simulator, VxSim.
■ An integrated version of the WindView logic analyzer for the target simulator.

The Tornado environment is designed to provide this full range of features
regardless of whether the target is resource-rich or resource-constrained. Tornado
facilities execute primarily on a host system, with shared access to a host-based
dynamic linker and symbol table for a remote target system. Figure 1-1 illustrates
the relationships between the principal interactive host components of Tornado

Tornado 2.2

User’s Guide

2

and the target system. Communication between the host tools and VxWorks is
mediated by the target server and target agent.

The run-time system (often called simply the run-time) is the code that is intended
for the final application, as distinguished from the complete Tornado
cross-development environment. The run-time includes the real-time kernel, and
typically also includes some selection of VxWorks library code as well as
application-specific code. It does not usually include the target agent, although in
some cases the target agent can be included to provide field debugging.

With Tornado, the cycle between developing an idea and observing its
implementation is minimized. Fast incremental downloads of application code are
linked dynamically with the VxWorks operating system and are thus available for
symbolic interaction with minimal delay.

Figure 1-1 Tornado Development Environment

Application

VxWorks

TARGET SYSTEMHOST SYSTEM

Shell

Target
Server

Target
Agent

Debugger

Browser

Target
Agent

VxWorks
Target

Simulator

Windview

Editor

Project

1

1

Overview

3

1.2 Cross-Development with Tornado

The Tornado cross-development environment ensures the smallest possible
difference between the target system during development and the system after
deployment. This is accomplished by segregating most development facilities on
the host system, while providing minimally intrusive access to the target. The
facilities of the run-time and the development environment are as independent of
each other as possible, regardless of the scale of the target application. You can use
the cross-development host to manage project files, to edit, compile, link, and store
real-time code, and to configure the VxWorks operating system. Application
modules in C or C++ are compiled with the Tornado cross-compiler. These
application modules can draw on the VxWorks run-time libraries to accelerate
application development. You can also run and debug real-time code on the target
while under host-system control.

The hardware in a typical development environment includes one or more
networked development host systems and one or more embedded target systems.
A number of alternatives exist for connecting the target system to the host, but
usually the connection is either an Ethernet or a serial link. If hardware or
hardware-specific code is not initially available, the integrated VxSim target
simulator can be used to begin application development.

A typical host development system is equipped with large amounts of RAM and
disk space, backup media, printers, and other peripherals. In contrast, a typical
target system has only the resources required by the real-time application, and
perhaps some small amount of additional resources for testing and debugging.

A fundamental advantage of the Tornado environment is that the application
modules do not need to be linked with the run-time system libraries or even with
each other. Tornado loads the relocatable object modules directly, using the symbol
tables in each module to resolve external symbol references dynamically. In
Symbol table resolution is done by the target server (which executes on the host).

Tornado minimizes object-module sizes during development because there is no
requirement to link the application fully. This shortens the development cycle
because less data is downloaded, thus shortening the development cycle. Even
partially completed modules can be downloaded for incremental testing and
debugging. The host-resident Tornado shell and debugger can be used
interactively to invoke and test either individual application routines or complete
tasks.

Tornado maintains a complete host-resident symbol table for the target. This
symbol table is incremental: the server incorporates symbols as it downloads each
object module. You can examine variables, call subroutines, spawn tasks,

Tornado 2.2

User’s Guide

4

disassemble code in memory, set breakpoints, trace subroutine calls, and so on, all
using the original symbolic names.

In addition, the Tornado development environment includes the CrossWind
debugger, which allows developers to view and debug applications in the original
source code. Setting breakpoints, single-stepping, examining structures, and so on,
is all done at the source level, using a convenient graphical interface.

1.3 VxWorks Target Environment

The complete VxWorks operating-system environment is included in Tornado.
This includes a multitasking kernel that uses an interrupt-driven, priority-based
task scheduling algorithm. Run-time facilities include POSIX interfaces, intertask
communication, extensive networking, file system support, and many other
features.

Target-based tools analogous to some of the Tornado tools are included as well: a
target-resident command shell, symbol table, and dynamic linker. In some
situations the target-resident tools are appropriate, or even required, for a final
application.

In addition to the standard VxWorks offering, Tornado is compatible with the
features provided by the optional component VxVMI. VxVMI provides the ability
to make text segments and the exception vector table read-only, and includes a set
of routines for developers to build their own virtual memory managers. When
VxVMI is in use, Tornado’s target-server loader/unloader takes account of issues
such as page alignment and protection.

Tornado is also compatible with the VxWorks optional components VxMP and
VxFusion. VxMP provides for synchronization of tasks on different CPUs over a
back plane, while VxFusion allows that synchronization to take place over any
kind of connection including Ethernet.

! CAUTION: When you run the VxWorks target-based tools, avoid concurrent use
of the corresponding tools that execute on the host. There is no technical restriction
forbidding this, but an environment with—for example—two shells, each with its
own symbol table, can be quite confusing. Most users choose either host-based
tools or target-based tools, and seldom switch back and forth

1

1

Overview

5

For detailed information on VxWorks and on its optional components, see the
VxWorks Programmer’s Guide and the VxWorks Network Programmer’s Guide. For
information on exactly what functions your architecture supports, see the
appropriate Architecture Supplement.

1.4 Tornado Host Tools

Tornado integrates the various aspects of VxWorks programming into a single
environment for developing and debugging VxWorks applications. Tornado
allows developers to organize, write, and compile applications on the host system;
and then download, run, and debug them on the target. This section summarizes
the major features of Tornado tools.

Launcher

The launcher lets you start, manage, and monitor target servers, and connects the
remaining interactive Tornado tools to the target servers of your choice. When you
select a particular target server, the launcher shows information about the
hardware and software environment on the target, as well as monitoring and
reporting on what Tornado tools are currently attached to that target. You can
reserve target servers for your own use with the launcher, or allow others to use
them as well.

In many ways the launcher is the central Tornado control panel. Besides providing
a convenient starting point to run the other tools, the launcher can also:

■ Aid in the installation of additional Tornado components.

■ Provide access to Wind River publications on the Internet.

■ Help you prepare and transmit support requests to the customer support
group at Wind River.

The launcher is described in 3. Launcher.

Tornado 2.2

User’s Guide

6

Project Management

The Tornado project facility simplifies organizing, configuring, and building
VxWorks applications. It includes graphical configuration of the build
environment (including compiler flags), as well as graphical configuration of
VxWorks (with dependency and size analysis). The project facility also provides
for basic integration with common configuration management tools such as
ClearCase.

The project facility is described in 4. Projects.

Compiler

Tornado includes the GNU compiler for C and C++ programs, as well as a
collection of supporting tools that provide a complete development tool chain:

■ cpp, the C preprocessor
■ gcc, the C and C++ compiler
■ make, the program-building automation tool
■ ld, the programmable static linker
■ as, the portable assembler
■ binary utilities

These tools are supported, commercial versions of the GNU tools originally
developed by the Free Software Foundation (FSF). The Tornado project facility
provides a GUI for the GNU tools that is powerful and easy to use.

For more information, see 4. Projects, GNU ToolKit User’s Guide, and GNU Make
User’s Guide.

In addition, the Diab compiler for C and C++, available as an optional product, is
fully integrated with Tornado. For more information, see 4. Projects,
5. Command-Line Configuration and Build, and the Diab C/C++ Compiler User’s Guide
for your target architecture.

WindSh Command Shell

WindSh is a host-resident command shell that provides interactive access from the
host to all run-time facilities. The shell can interpret and execute almost all
C-language expressions. It supports C++, including demangling to allow
developers to refer to symbols in the same form as used by the original C++ source
code. The Tornado shell also includes a complete Tcl interpreter.

1

1

Overview

7

The shell can be used to call run-time system functions, call any application
function, examine and set application variables, create new variables, examine and
modify memory, and even perform general calculations with all C operators. The
shell also provides the essential symbolic debugging capabilities, including
breakpoints, single-stepping, a symbolic disassembler, and stack checking.

The shell interpreter maintains a command history and permits command-line
editing. The shell can redirect standard input and standard output, including input
and output to the virtual I/O channels supported by the target agent.

The shell is described in 7. Shell.

CrossWind Debugger

The remote source-level debugger, CrossWind, is an extended version of the GNU
source-level debugger (GDB). The most visible extension to GDB is a
straightforward graphical interface. CrossWind also includes a comprehensive Tcl
scripting interface that allows you to create sophisticated macros or extensions for
your own debugging requirements. For maximum flexibility, the debugger console
window synthesizes both the GDB command-line interface and the facilities of
WindSh, the Tornado shell.

From your development host, you can use CrossWind to do the following:

■ Spawn and debug tasks on the target system.

■ Attach to already-running tasks, whether spawned from your application,
from a shell, or from the debugger itself.

■ Use breakpoints and other debugging features at either the application level or
the system level.

■ View your application code as C or C++ source, as assembly-level code, or in
a mixed mode that shows both.

The debugger is described in 9. Debugger. Also see the GDB User’s Guide.

Browser

The Tornado browser is a system-object viewer, a graphical companion to the
Tornado shell. The browser provides display facilities to monitor the state of the
target system, including the following:

■ Summaries of active tasks (classified as system tasks or application tasks).

Tornado 2.2

User’s Guide

8

■ The state of particular tasks, including register usage, priority, and other
attributes.

■ Comparative CPU usage by the entire collection of tasks.

■ Stack consumption by all tasks.

■ Memory allocation.

■ Summary of modules linked dynamically into the run-time system.

■ Structure of any loaded object module.

■ Operating-system objects such as semaphores, message queues, memory
partitions, and watchdog timers.

The browser is described in 8. Browser.

WindView Software Logic Analyzer

WindView is the Tornado logic analyzer for real-time software. It is a dynamic
visualization tool that provides information about context switches, and the events
that lead to them, as well as information about instrumented objects.

Tornado includes an integrated version of WindView designed solely for use with
the VxSim target simulator. WindView is available as an optional product for all
supported target architectures.

WindView is described in the WindView User’s Guide.

VxSim Target Simulator

The VxSim target simulator is a port of VxWorks to the host system that simulates
a target operating system. No target hardware is required. The target simulator
facilitates learning Tornado usage and embedded systems development. More
significantly, it provides an independent environment for developers to work on
parts of applications that do not depend on hardware-specific code (BSPs) and
target hardware.

Tornado includes an integrated version of the target simulator that runs as a single
instance per user, without networking support. Optional networking products
such as SNMP are not available for this version.

The VxSim full simulator is available as an optional product. It supports
multiple-instance use, networking, and most other optional products.

1

1

Overview

9

See the Tornado Getting Started Guide for a introductory discussion of target
simulator usage, and 4. Projects for information about its use as a development
tool.

1.5 Host-Target Interface

The elements of Tornado described in this section provide the link between the
host and target development environments:

■ The target agent is a scalable component of VxWorks that communicates with
the target server on the host system.

■ The target server connects Tornado tools such as the shell and debugger with
the target agent.

■ The Tornado registry provides access to target servers, and may run on any
host on a network.

Target Agent

On the target, all Tornado tools are represented by the target agent. The target
agent is a compact implementation of the core services necessary to respond to
requests from the Tornado tools. The agent responds to requests transmitted by the
target server, and replies with the results. These requests include memory
transactions, notification services for breakpoints and other target events, virtual
I/O support, and task control.

The agent synthesizes two modes of target control: task mode (addressing the target
at application level) and system mode (system-wide control, including ISR
debugging). The agent can execute in either mode and switches between them on
demand.

The agent is independent of the run-time operating system, interfacing with
run-time services indirectly so that it can take advantage of kernel features when
they are present, but without requiring them. The agent’s driver interface is also
independent of the run-time, avoiding the VxWorks I/O system. Drivers for the
agent are raw drivers that can operate in either a polling or an interrupt-driven
mode. A polling driver is required to support system-level breakpoints.

Tornado 2.2

User’s Guide

10

Run-time independence means that the target agent can execute before the kernel
is running. This feature is valuable for the early stages of porting VxWorks to a new
target platform.

A key function of the agent is to service the requests of the host-resident
object-module loader. If the agent is linked into the run-time and stored in ROM.
The target server automatically initializes the symbol table from the host-resident
image of the target run-time system as it starts. From this point on, all downloads
are incremental in nature, greatly reducing download time.

The agent itself is scalable; you can choose what features to include or exclude.
This permits the creation of final-production configurations that still allow field
testing, even when very little memory can be dedicated to activities beyond the
application’s purpose.

Tornado Target Server

The target server runs on the host, and connects the Tornado tools to the target
agent. There is one server for each target; all host tools access the target through
this server, whose function is to satisfy the tool requests by breaking each request
into the necessary transactions with the target agent. The target server manages the
details of whatever connection method to the target is required, so that each tool
need not be concerned with host-to-target transport mechanisms.

In some cases, the server passes a tool’s service request directly to the target agent.
In other cases, requests can be fulfilled entirely within the target server on the host.
For example, when a target-memory read hits a memory region already cached in
the target server, no actual host-to-target transaction is needed.

The target server also allocates target memory from a pool dedicated to the host
tools, and manages the target’s symbol table on the host. This permits the server to
do most of the work of dynamic linking—address resolution—on the host system,
before downloading a new module to the target.

A target server need not be on the same host as the Tornado tools, as long as the
tools have network access to the host where the target server is running.

Target servers can be started from the Tornado launcher, from the UNIX command
line, or from scripts. See 2.7 Connecting a Tornado Target Server, p.56 for a discussion

NOTE: The target agent is not required. A target server can also connect to an ICE
back end, which requires less target memory, but does not support task mode
debugging.

1

1

Overview

11

of starting a server from the UNIX command line, and see 3.5 Managing Target
Servers, p.72 for details on using graphical facilities in the launcher. For reference
information on target servers, see the tgtsvr entry in in Help>Manuals

Contents>Tornado Reference/Tornado Tools.

Tornado Registry

Tornado provides a central target server registry that allows you to select a target
server by a convenient name. The registry associates a target server’s name with
the network address needed to connect with that target server. You can see the
registry indirectly through the list of available targets. The Tornado registry need
not run on the same host as your tools, as long as it is accessible on the network.

To help keep server names unique over a network of interacting hosts,
target-server names have the form targetName@host, where targetName is a
target-server name selected by the user who launches a server (with the network
name of the target as a default). The registry rejects registration attempts for names
that are already in use.

It is recommended that a single registry be used at a development site, to allow
access to all targets on the network. To ensure that the registry starts up
automatically in the event of a server reboot, it should be invoked from a UNIX
system initialization file. A registry should never be killed; without a registry,
target servers cannot be named, and no Tornado tool can connect to a target.

For more information, see 2.2 Setting up the Tornado Registry, p.19.

Virtual I/O

Virtual I/O is a service provided jointly by the target agent and target server. It
consists of an arbitrary number of logical devices (on the VxWorks end) that
convey application input or output through standard C-language I/O calls, using
the same communication link as other agent-server transactions.

This mechanism allows developers to use standard C routines for I/O even in
environments where the only communication channel is already in use to connect
the target with the Tornado development tools.

From the point of view of a VxWorks application, a standard I/O channel is an
ordinary character device with a name like /vio/0, /vio/1, and so on. It is managed
using the same VxWorks calls that apply to other character devices, as described

Tornado 2.2

User’s Guide

12

in the VxWorks Programmer’s Guide: I/O System. This is also the developer’s point
of view while working in the Tornado shell.

On the host side, virtual I/O is connected to the shell or to the target server console,
which is a window on the host where the target server is running. See Target-Server
Configuration Options, p.76 for information about how to configure a target server
with a virtual console.

1.6 Customer Services

Wind River is committed to meeting the needs of its customers. As part of that
commitment, Wind River provides a variety of services, including training courses
and contact with customer support engineers, along with a Web site containing the
latest advisories, FAQ lists, known problems lists, and other valuable information
resources.

Customer Support

For customers holding a maintenance contract, Wind River offers direct contact
with a staff of software engineers experienced in Wind River products. A full
description of the Customer Support program is described in the Customer Support
User’s Guide available at the following Web site:

http://www.windriver.com/support

The Customer Support User’s Guide describes the services that Customer Support
can provide, including assistance with installation problems, product software,
documentation, and service errors.

You can reach Customer Support using either of the following methods:

■ E-mail. You can contact Wind River Customer Support by sending e-mail to
support@windriver.com.

■ 1-800-872-4977 (1-800-USA-4WRS) . Within North America, you can contact
Customer Support with a toll-free voice telephone call. For telephone access
outside North America, see the Support Web site shown above.

For Customer Support contact information specific to your products, please visit
the Support Web site.

1

1

Overview

13

WindSurf

Wind River Customer Services also provides WindSurf, an online support service
available under the Support Web site. WindSurf offers basic services to all Wind
River customers, including advisories, publications such as the Customer Support
User’s Guide, and a list of training courses and schedules. For maintenance contract
holders, WindSurf also provides access to additional services, including known
problems lists, available patches, answers to frequently asked questions, and demo
code.

Tornado 2.2

User’s Guide

14

15

2
Setup and Startup

2.1 Introducing Tornado

This chapter describes how to set up your host and target systems, how to boot
your target, and how to establish communications between the target and host. It
assumes that you have already installed Tornado.

You do not need much of this chapter if all you want to do is connect to a target
that is already set up on your network. If this is the case, read 2.3 The Tornado Host
Environment, p.20 and then proceed to 2.6 Booting VxWorks, p.46.

The process of setting up a new target has the following steps (described in detail
in the remainder of this chapter). Some of these steps are only required once, when
you begin using Tornado for the first time; some are required when you install a
new target; and only the last two are repeated frequently.

Tornado Configuration (once only)

1. Make sure that there is a Tornado registry running at your site.

2. Make sure your host environment includes the right definitions, on the host
system where you attach the target.

NOTE: For information about installing Tornado, as well as an introductory
tutorial using the integrated VxWorks target simulator, see the Tornado Getting
Started Guide.

Tornado 2.2

User’s Guide

16

Target Configuration (once for each new target)

3. Modify your host network tables so that you can communicate with your
target.

4. Create and install the VxWorks boot ROM (or equivalent) in your target.

5. Set up physical connections (serial, Ethernet) between your target and your
host.

6. Define a Tornado target server to connect to the new target.

Normal Operation (repeat to re-initialize target during development)

7. Boot VxWorks on the target. (VxWorks includes a target agent, by default.)

8. Launch or restart a Tornado target server on the host.

Target Servers and Target Agents

Tornado host tools such as the shell and the debugger communicate with the target
system through a target server. A target server can be configured with a variety of
back ends, which provide for various modes of communication with the target
agent. On the target side, VxWorks can be configured and built with a variety of
target agent communication interfaces.

Your choice of target server back end and target agent communication interface is
based on the mode of communication that you establish between the host and
target (network, serial, and so on). In any case, the target server must be configured
with a back end that matches the target agent interface with which VxWorks has
been configured and built. See Figure 2-1 for a detailed diagram of host-target
communications.

Target Agent Modes

All of the standard back ends included with Tornado connect to the target through
the WDB target agent. Thus, in order to understand the features of each back end,
you must understand the modes in which the target agent can execute. These
modes are called task mode, system mode, and dual mode.

NOTE: In general, this manual refers to Tornado directories and files with path
names prefixed by installDir. Use the actual path name chosen on your system for
Tornado installation.

2

2

Setup and Startup

17

■ In task mode, the agent runs as a VxWorks task. Debugging is performed on a
per-task basis: you can isolate the task or tasks of interest without affecting the
rest of the target system.

■ In system mode, the agent runs externally from VxWorks, almost like a ROM
monitor. This allows you to debug an application as if it and VxWorks were a
single thread of execution. In this mode, when the target run-time encounters
a breakpoint, VxWorks and the application are stopped and interrupts are
locked. One of the biggest advantages of this mode is that you can single-step
through ISRs; on the other hand, it is more difficult to manipulate individual

Figure 2-1 Tornado Host-Target Communication

Shell Debugger
Other

Browser Tools

Non-WDB
Agent

VxWorks

WTX
PROTOCOL

AGENTS

WDB TARGET AGENT
COMMUNICATION
INTERFACES

TARGET SERVER
BACK ENDS

HOST

TARGET (or simulator)

Target Server

NetROM
Comm

Interface

Serial
Comm

Interface

Network
Comm

Interface

WDB
NetROM

WDB
Serial

Non-WDB
Back End

WDB
Target
Agent

Pipe
Comm

Interface

WDB
Pipe

WDB
RPC

Tornado 2.2

User’s Guide

18

tasks. Another drawback is that this mode is more intrusive: it adds significant
interrupt latency to the system, because the agent runs with interrupts locked
when it takes control (for example, after a breakpoint).

■ In dual mode, two agents are configured into the run-time simultaneously: a
task- mode agent, and a system-mode agent. Only one of these agents is active
at a time; switching between the two can be controlled from either the
debugger (see 9.5 System-Mode Debugging, p.362) or the shell (7.2.7 Using the
Shell for System Mode Debugging, p.267). In order to support a system-mode
agent, the target communication path must work in polled mode (because the
external agent needs to communicate to the host even when the system is
suspended). Thus, the choice of communication path can affect what
debugging modes are available.

Communication Paths

The most common VxWorks communication path—both for server-agent
communications during development, and for applications—is IP networking
over Ethernet. That connection method provides a very high bandwidth, as well as
all the advantages of a network connection.

Nevertheless, there are situations where you may wish to use a non-network
connection, such as a serial line without general-purpose IP, or a NetROM
connection. For example, if you have a memory-constrained application that does
not require networking, you may wish to remove the VxWorks network code from
the target system during development. Also, if you wish to perform system-mode
debugging, you need a communication path that can work in polled mode. Older
versions of VxWorks network interface drivers such at netif do not support polled
operations and so cannot be used as a connection for system-mode debugging.

Note that the target-server back end connection is not always the same as the
connection used to load the VxWorks image into target memory. For example, you
can boot VxWorks over Ethernet, but use a serial line connection to perform
system-mode debugging. You can also use a non-default method of getting the
run-time system itself into your target board. For example, you might burn your
VxWorks run-time system directly into target ROM, as described in VxWorks
Programmer’s Guide: Configuration and Build. Alternatively, you can use a ROM
emulator such as NetROM to quickly download new VxWorks images to the
target’s ROM sockets. Another possibility is to boot from a disk locally attached to
the target; see VxWorks Programmer’s Guide: Local File Systems. You can also boot
from a host disk over a serial connection using the Target Server File System; see
2.6.7 Booting a Target Without a Network, p.55. Certain BSPs may provide other
alternatives, such as flash memory. See the reference information for your BSP;
Help>Manuals contents>BSP Reference in the Tornado Launcher.

2

2

Setup and Startup

19

2.2 Setting up the Tornado Registry

Before anyone at your site can use Tornado, someone must set up the Tornado target
server registry, a daemon that keeps track of all available targets by name. The
registry daemon must always run; otherwise Tornado tools cannot locate targets.

Usage of the Tornado registry is initially determined during the software
installation process, based on the installer’s choice of options for the registry. See
the Tornado Getting Started Guide for information about installation.

Only one registry is required on your network, and it can run on any networked
host. It is recommended that a development site use a single registry for the entire
network; this provides maximum flexibility, allowing any Tornado user at the site
to connect to any target.

If there is already a registry running at your site, you do not need the remainder of
this section; just make sure you know which host the registry is running on, and
proceed to 2.3 The Tornado Host Environment, p.20.1

No privilege is required to start the registry, and it is not harmful to attempt to start
a registry even if another is already running on the same host—the second daemon
detects that it is not needed, and shuts itself down.

To start the registry daemon from a command line, execute wtxregd in the
background. For example, on a Sun-4 running Solaris 2.x:

% installDir/host/sun4-solaris2/bin/wtxregd -V >/tmp/wtxregd.log &

This example uses the -V (verbose) option to collect diagnostic output in a logging
file in /tmp. We recommend this practice, so that status information from the
registry is available for troubleshooting.

To ensure that the registry remains available after a system restart, run wtxregd
from a system startup file. For example, on Sun hosts, a suitable file is /etc/rc2.
Insert lines like the following in the appropriate system startup file for your
registry host. The example below uses conditionals to avoid halting system startup
if wtxregd is not available due to some unusual circumstance such as a disk failure.

#
Start up Tornado registry daemon
#
if [-f /usr/wind/host/host-os/bin/wtxregd]; then

WIND_HOST_TYPE=host-os

1. Note that the same registry can serve both UNIX and Windows developers, as long as they
share a local network. Either flavor of host may run the registry; see the Tornado User’s Guide
(Windows version) for instructions on setting up a registry on a Windows host.

Tornado 2.2

User’s Guide

20

export WIND_HOST_TYPE
WIND_BASE=/usr/wind
export WIND_BASE
/usr/wind/host/host-os/bin/wtxregd -V -d /var/tmp >/tmp/wtxregd.log &
echo -n 'Tornado Registry started'

fi

The Tornado tools locate the registry daemon through the environment variable
WIND_REGISTRY; each Tornado user must set this variable to the name of
whatever host on the network runs wtxregd.

In some cases, you may wish to segregate some collections of targets; to do this, run
a separate registry daemon for each separate set of targets. Developers can then
use the WIND_REGISTRY environment variable to select a registry host.

One of the more exotic applications of Tornado is to set this environment variable
to a remote site; this allows the Tornado environment to execute remotely. Using a
remote registry can bridge two separate buildings, or even enable concurrent
development on both sides of the globe! As a support mechanism, it allows
customer support engineers to wire themselves into a remote environment. This
application often requires setting WIND_REGISTRY to a numeric Internet address,
since the registry host may not be mapped by domain name. For example (using
the C shell):

% setenv WIND_REGISTRY 127.0.0.1

If WIND_REGISTRY is not set at all, the Tornado tools look for the registry daemon
on the local host.

You can query the registry daemon for information on currently-registered targets
using the auxiliary program wtxreg. See the online Tornado API Reference for more
information about both wtxreg and wtxregd.

2.3 The Tornado Host Environment

Tornado requires host-system environment variables for the following purposes:

■ Tornado-specific environment variables reflect your development
environment: what sort of host you are using, where Tornado was installed on
your system, and where on your network to find the Tornado registry for
development targets.

2

2

Setup and Startup

21

■ Your shell search path must specify how to access Tornado tools.

2.3.1 Environment Variables for Tornado Components, p.21 discusses all Tornado
environment variables.

You can also set X Window System resources to allow the Tornado tools to benefit
from color or grayscale displays; see 2.3.4 X Resource Settings, p.23.

2.3.1 Environment Variables for Tornado Components

Specify the location of Tornado facilities by defining the following environment
variables on your development host:

WIND_BASE

installation directory for Tornado, also shown as installDir

WIND_HOST_TYPE

name of host type, also shown as hostType

WIND_REGISTRY

registry host; see 2.2 Setting up the Tornado Registry, p.19

WIND_HELP_SEPARATE_PROCESS

control whether to use an existing Netscape window or to launch a new
window each time help is invoked; set to 0 to use the existing window (the
default) or 1 to open a separate window.

PATH

shell search path; add installDir/host/sun4-solaris2/bin directory

LD_LIBRARY_PATH

dynamic library search path; add Tornado installDir/host/sun4-solaris2/lib
directory

WIND_PROJ_BASE

WIND_SOURCE_BASE

These variables are not needed for most Tornado installations. If you are using
sub-projects, you may need to use them. For more information, see
Example 4-2.

NOTE: A shortcut to setting these variables is to source either torVars.csh or
torVars.sh, which can be found in installDir/host/sun4-solaris2/bin.

Tornado 2.2

User’s Guide

22

Example Environment Setup Using C Shell

If you use the C shell, add lines like the following to your .cshrc to reflect your
Tornado development environment. After you modify the file, be sure to source it
and execute the rehash command.

The following example is for a Sun-4 host running Solaris 2.x, in a network whose
Tornado registry is on host mars:

setenv WIND_BASE /usr/wind
setenv WIND_HOST_TYPE sun4-solaris2
setenv WIND_REGISTRY mars
setenv PATH ${WIND_BASE}/host/sun4-solaris2/bin:${PATH}
setenv LD_LIBRARY_PATH ${WIND_BASE}/host/sun4-solaris2/lib:${LD_LIBRARY_PATH}

Example Environment Setup Using Bourne Shell (or Compatible)

If you are using the Bourne shell (or a compatible shell, such as the Korn shell or
Bash), add lines like the following to your .profile to reflect your Tornado
development environment. Be sure to source the file (using the “.” command) after
you modify the file.

The following example is for an Solaris host in a network whose Tornado registry
is on host venus:

WIND_BASE=/usr/wind; export WIND_BASE
WIND_HOST_TYPE=sun4-solaris2; export WIND_HOST_TYPE
WIND_REGISTRY=venus; export WIND_REGISTRY
PATH=$WIND_BASE/host/sun4-solaris2/bin:$PATH; export PATH
SHLIB_PATH=$WIND_BASE/host/sun4-solaris2/bin:$SHLIB_PATH; export SHLIB_PATH

2.3.2 Environment Variable For Solaris Hosts

If your development host runs Solaris 2, you must also modify the value of
LD_LIBRARY_PATH to include the shared libraries in /usr/dt/lib, /usr/openwin/lib,
and installDir/host/sun4-solaris2/lib.

If you use the C shell, include a line like the following in your .cshrc:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/usr/dt/lib:/usr/openwin/lib

If you use the Bourne shell (or a compatible shell), include lines like the following
in your .profile:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/dt/lib:/usr/openwin/lib
export LD_LIBRARY_PATH

2

2

Setup and Startup

23

2.3.3 Environment Variables for Convenience

Certain other environment variables, though they are not required for Tornado,
can make the tools fit in better with your site or with your habits. The following
environment variables are in this category:

EDITOR

When you request an activity in a Tornado tool that involves editing text files,
the Tornado tools refer to this variable to determine what program to run. The
default is vi, if EDITOR is not defined.

PRINTER

When any Tornado tool generates a printout at your request, it directs the
printout to the printer name specified in this variable. The default is lp, if
PRINTER is not defined.

2.3.4 X Resource Settings

Tornado has resource definitions to cover the range of X Window System displays.
For better use of color or grayscale displays with Tornado, set customization
resources in your X-resource initialization file (usually a file named .Xdefaults or
.Xresources in your home directory). There are three possible values for these
resources:

undefined
The general-purpose default; suitable for monochrome displays.

-color
For color displays.

-grayscale
For grayscale displays.

NOTE: X servers consult the resource-initialization file automatically only when
they begin executing. To force your display to use new properties immediately,
invoke the utility xrdb. For example, after modifying X resources in .Xdefaults,
execute the following:

% xrdb -merge .Xdefaults

Tornado 2.2

User’s Guide

24

The following example (for a color display) shows customization settings
specified explicitly for each of the Tornado tools:

Browser*customization: -color
CrossWind*customization: -color
Dialog*customization: -color
Launch*customization: -color
Tornado*customization: -color

Alternately, you can set customization globally for all tools that use this property.
The following example does this for a grayscale display:

*customization: -grayscale

For more information about X resources in Tornado, see E. X Resources.

2.4 Setting Up the Default Target Hardware

This section covers bringing up VxWorks on a hardware target with the relatively
simple configuration matching the default software image. The VxWorks
Programmer’s Guide elaborates on more advanced options, such as gateways, NFS,
multiprocessor target systems, and so on.

2.4.1 Default Target Configuration

VxWorks is a flexible system that has been ported to many different hardware
platforms.The default VxWorks run-time development configuration is shown in
Figure 2-2. The pre-built VxWorks images shipped with your BSP include all the
necessary components to run on this hardware configuration.

! WARNING: If you set the customization property globally, it may affect
applications from other vendors, as well as the Tornado tools.

NOTE: Before you set up your target hardware, you may find it productive to use
Tornado with the integrated target simulator. See the Tornado Getting Started Guide
for a tutorial introduction.

2

2

Setup and Startup

25

The configuration in Figure 2-2 consists of the following:

Chassis
A card cage with backplane and power supply.

Target CPU
A single-board computer (target) where VxWorks is to run.

Console
An ASCII terminal or a serial port on a workstation (required by the boot
program for initial setup).

File Server
A networked host where VxWorks binaries reside on disk; often the same
workstation used as the console.

For more detailed information about your particular target Board Support Package
(BSP), see Help>Manuals contents>BSP Reference in the Tornado Launcher.

2.4.2 Networking the Host and Target

IP networking over Ethernet is the most desirable way to connect a development
target to your host, because of the high bandwidth it provides. This section

Figure 2-2 A Resource-Rich Tornado Configuration

FILE SERVER CONSOLE CHASSIS

Ethernet

RS-232

VxWorks
target CPU

Tornado 2.2

User’s Guide

26

describes setting up simple IP connections to a target over Ethernet. To read about
other communication strategies, see 2.5 Host-Target Communication Configuration,
p.31.

Before VxWorks can boot an executable image obtained from the host, the network
software on the host must be correctly configured. There are three main tasks in
configuring the host network software for VxWorks:

■ Initializing the host network software.
■ Establishing the VxWorks system name and network address on the host.
■ Giving the VxWorks system appropriate access permissions on the host.

The following sections describe these procedures in more detail. Consult your
system administrator before following these procedures: some procedures may
require root permissions, and some UNIX systems may require slightly different
procedures.

Initializing the Host Network Software

Most UNIX systems automatically initialize the network subsystem and activate
network processes in the startup files /etc/rc2 and /etc/rc.boot. This typically
includes configuring the network interface with the ifconfig command and
starting various network daemons. Consult your UNIX system manuals if your
UNIX startup procedure does not initialize the network.

Establishing the VxWorks System Name and Address

The UNIX host system maintains a file of the names and network addresses of
systems accessible from the local system. This database is kept in the ASCII file
/etc/hosts, which contains a line for each remote system. Each line consists of an
Internet address and the name(s) of the system at that address. This file must have
entries for your host UNIX system and the VxWorks target system.

NOTE: If your UNIX system is running the Network Information Service (NIS), the
“hosts” database is maintained by NIS facilities that are beyond the scope of this
introduction. If you are running NIS, consult your UNIX system administration
manuals.

2

2

Setup and Startup

27

For example, suppose your host system is called mars and has Internet address
90.0.0.1, and you want to name your VxWorks target phobos and assign it address
90.0.0.50. The file /etc/hosts must then contain the following lines:

90.0.0.1 mars
90.0.0.50 phobos

Giving VxWorks Access to the Host

The UNIX system restricts network access through remote login, remote command
execution, and remote file access. This is done for a single user with the .rhosts file
in that user’s home directory, or globally with the /etc/hosts.equiv file.

The .rhosts file contains a list of system names that have access to your login. Thus,
to allow a VxWorks system named phobos to log in with your user name and
access files with your permissions, create a .rhosts file in your home directory
containing the line:

phobos

The /etc/hosts.equiv file provides a less selective mechanism. Systems listed in this
file are allowed login access to any user defined on the local system (except the
super-user root). Thus, adding the VxWorks system name to /etc/hosts.equiv
allows the VxWorks system to log in with any user name on the system.

2.4.3 Configuring the Target Hardware

Configuring the target hardware may involve the following tasks:

■ Setting up a boot mechanism.
■ Jumpering the target CPU, and any auxiliary (for example, Ethernet) boards.
■ Installing the boards in a chassis, or connecting a power supply.
■ Connecting a serial cable.
■ Connecting an Ethernet cable, if the target supports networking.

Table 2-1 Accessing Host from Target

Target listed in: Access

/etc/hosts.equiv Any user can log in.

.rhosts file in user’s home directory Only this user can log in.

Tornado 2.2

User’s Guide

28

The following general procedures outline common situations. Select from them as
appropriate to your particular target hardware. Refer also to the specific
information in the target-information reference entry for your BSP; see
Help>Manuals contents>BSP Reference in the Tornado Launcher.

Setting Up a Boot Mechanism

Tornado is shipped with the following VxWorks images.

In every case, you will need to create your own boot medium. Your board will
require one of the following media:

Boot ROM
Most BSPs include boot ROMs.

Floppy Disk
Some BSPs for systems that include floppy drives use boot diskettes instead of
a boot ROM. For example, the BSPs for PC386 or PC486 systems usually boot
from diskette.

Flash Memory
For boards that support flash memory, the BSP may be designed to write the
boot program there. In such cases, an auxiliary program is supplied to write
the boot program into flash memory is supplied by the board vendor.

Open Boot Prom
Some targets use the “Open Boot Prom” protocol developed by Sun
Microsystems. This is particularly common on (but not limited to)
SPARC-based BSPs.

For specific information on a BSP’s booting method, see
Help>Manuals contents>BSP Reference in the Tornado Launcher. Instructions for

Table 2-2 VxWorks Images Shipped with Tornado

Compiled with GNU Compiled with Diab

vxWorks vxWorks

vxWorks_rom vxWorks_rom

vxWorks_romCompress vxWorks_romCompress

vxWorks_romResident vxWorks_romResident

2

2

Setup and Startup

29

making a floppy disk for booting a Pentium target are in the VxWorks for Pentium
Architecture Supplement.

You may also wish to replace a boot ROM, even if it is available, with a ROM
emulator. This is particularly desirable if your target has no Ethernet capability,
because the ROM emulator can be used to provide connectivity at near-Ethernet
speeds. Tornado includes support for one such device, NetROM.2 For information
about how to use NetROM on your target, refer to 2.5.4 The NetROM
ROM-Emulator Connection, p.35. Contact the nearest Wind River office (see
copyright page) for information about support for other ROM emulators.

For cases where boot ROMs are used to boot VxWorks, install the appropriate set
of boot ROMs on your target board(s). When installing boot ROMs, be careful to:

■ Install each device only in the socket indicated on the label.
■ Note the correct orientation of pin 1 for each device.
■ Use anti-static precautions whenever working with integrated circuit devices.

See 4.8 Configuring and Building a VxWorks Boot Program, p.164 for instructions on
creating a new boot program with parameters customized for your site.

Setting Board Jumpers

Many CPU and Ethernet controller boards still have configuration options that are
selected by hardware jumpers, although this is less common than in the past. These
jumpers must be installed correctly before VxWorks can boot successfully. You can
determine the correct jumper configuration for your target CPU from the
information provided in the target-information reference for your BSP; see
Help>Manuals contents>BSP Reference in the Tornado Launcher.

Board Installation and Power

For bare-board targets, use the power supply recommended by the board
manufacturer (often a PC power supply).

If you are using a VME chassis, install the CPU board in the first slot of the
backplane. See Figure 2-3.

2. NetROM is a trademark of Applied Microsystems Corporation.

Tornado 2.2

User’s Guide

30

On a VMEbus backplane, there are several issues to consider:

P1 and P2 Connectors
The P1 connector must be completely bussed across all the boards in the
system.

Many systems also require the P2 bus. Some boards require power on the P2
connector, and some configurations require the extended address and data
lines of the B row of the P2 bus.

System Controller
The VME bus requires a system controller to be present in the first slot. Many
CPU boards have a system controller on board that can be enabled or disabled
by hardware jumpers. On such boards, enable the system controller in the first
slot and disable it in all others. The diagrams in the target-information
reference indicate the location of the system controller enable jumper, if any.

Alternatively, a separate system controller board can be installed in the first
slot and the CPU and Ethernet boards can be plugged into the next two slots.

Empty Slots
The VME bus has several daisy chained signals that must be propagated to all
the boards on the backplane. If you leave any slot empty between boards on
the backplane, you must jumper the backplane to complete the daisy chain for
the BUS GRANT and INT ACK signals.

Connecting the Cables

All supported VxWorks targets include at least one on-board serial port. This serial
port must be connected to an ASCII terminal (or equivalent device) for the default

Figure 2-3 Assembling VME Targets

CPU system controller

2

2

Setup and Startup

31

configuration. After the initial configuration of the boot parameters and getting
started with VxWorks, you may wish to configure VxWorks to boot automatically
without a terminal. Refer to the CPU board hardware documentation for proper
connection of the RS-232 signals.

For the Ethernet connection, a transceiver cable must be connected from the
Ethernet controller to an Ethernet transceiver.

2.5 Host-Target Communication Configuration

Connecting the target server to the target in a configuration other than the default
requires a little work on both the host and target. The next few subsections describe
the details for network connections, END connections, serial line connections, the
NetROM Emulator, and the transparent mode driver.

2.5.1 Network Connections

A network connection is the easiest to set up and use, because most VxWorks
targets already use the network (for example, to boot); thus, no additional target
set-up is required. Furthermore, a network interface is typically a board’s fastest
physical communication channel.

When VxWorks is configured and built with a network interface for the target
agent (the default configuration), the target server can connect to the target agent
using the default wdbpipe back end (see Target-Server Configuration Options, p.76).

The target agent can receive requests over any device for which a VxWorks
network interface driver is installed. The typical case is to use the device from
which the target was booted; however, any device can be used by specifying its IP
address to the target server.

Configuring the Target Agent for Network Connection

The default VxWorks system image is configured for a networked target. See
4.7 Configuring the Target-Host Communication Interface, p.156 for information about
configuring VxWorks for various target agent communications interfaces.

Tornado 2.2

User’s Guide

32

2.5.2 END Connections

An END (Enhanced Network Driver) connection supports dual mode agent
execution. This connection can only be used if the BSP uses an END driver (which
has a polled interface). With an END connection, the agent uses an END driver
directly, rather than going through the UDP/IP protocol stack.

Configuring the Target Agent for END Connection

See Configuration for an END Driver Connection, p.157 for information about
configuring the VxWorks target agent for an END connection.

2.5.3 Serial-Line Connections

Figure 2-4 illustrates a minimal cross-development configuration: the target is a
bare board, connected to the host development system by a single serial line. For a
configuration of this sort, use a combination of a boot mechanism that does not
require a network and an alternative Tornado communications back end.

Tornado can operate over a raw serial connection between the host and target
systems, and can operate on standalone systems that have no network connection
to other hosts.

When you connect the host and target exclusively over serial lines, you must:

■ Configure and build a boot program for the serial connection, because the
default boot configuration uses an FTP download from the host.

Figure 2-4 A Minimal Tornado Configuration

Tornado

RS-232

VxWorks
target board

Host

2

2

Setup and Startup

33

■ Reconfigure and rebuild VxWorks with a target agent configuration for a serial
connection.

■ Configure and start a target server for a serial connection.

For more information, see 4.7 Configuring the Target-Host Communication Interface,
p.156.

A raw serial connection has some advantages over an IP connection. The raw serial
connection allows you to scale down the VxWorks system (even during
development) for memory-constrained applications that do not require
networking: you can remove the VxWorks network code from the target system.

When working over a serial link, use the fastest possible line speed. The Tornado
tools—especially the browser and the debugger—make it easy to set up system
snapshots that are periodically refreshed. Refreshing such snapshots requires
continuing traffic between host and target. On a serial connection, the line speed
can be a bottleneck in this situation. If your Tornado tools seem unresponsive over
a serial connection, try turning off periodic updates in the browser, or else closing
any debugger displays you can spare.

Configuring the Target Agent for Serial Connection

To configure the target agent for a raw serial communication connection,
reconfigure and rebuild VxWorks with a serial communication interface for the
target agent (see Configuration for Serial Connection, p.160).

Configuring the Boot Program for Serial Connection

When you connect the host and target exclusively over serial lines, you must
configure and build a boot program for the serial connection because the default
boot configuration uses an FTP download from the host (see 4.8 Configuring and
Building a VxWorks Boot Program, p.164). The simplest way to boot over a serial
connection is by using the Target Server File System. See 2.6.7 Booting a Target
Without a Network, p.55.

Testing the Connection

Be sure to use the right kind of cable to connect your host and target.Use a simple
Tx/Tx/GND serial cable because the host serial port is configured not to use
handshaking. Many targets require a null-modem cable; consult the target-board

Tornado 2.2

User’s Guide

34

documentation. Configure your host-system serial port for a full-duplex (no local
echo), 8-bit connection with one stop bit and no parity bit. The line speed must
match whatever is configured into your target agent.

Before trying to attach the target server for the first time, test the serial connection
to the target. To help verify the connection, the target agent sends the following
message over the serial line when it boots (with WDB_COMM_SERIAL):

WDB READY

To test the connection, attach a terminal emulator3 to the target-agent serial port,
then reset the target. If the WDB READY message does not appear, or if it is
garbled, check the configuration of the serial port you are using on your host.

As a further debugging aid, you can also configure the serial-mode target agent to
echo all characters it receives over the serial line. This is not the default
configuration, because as a side effect it stops the boot process until a target server
is attached. If you need this configuration in order to set up your host serial port,
edit installDir/target/src/config/usrWdb.c.

Look for the following lines:

#ifdef INCLUDE_WDB_TTY_TEST
/* test in polled mode if the kernel hasn't started */

if (taskIdCurrent == 0)
wdbSioTest (pSioChan, SIO_MODE_POLL, 0);

else
wdbSioTest (pSioChan, SIO_MODE_INT, 0);

#endif /* INCLUDE_WDB_TTY_TEST */

In both calls to wdbSioTest(), change the last argument from 0 to 0300.

With this configuration, attach any terminal emulator on the host to the tty port
connected to the target to verify the serial connection. When the serial-line settings
are correct, whatever you type to the target is echoed as you type it.

3. Commonly available terminal emulators are tip, cu, and kermit; consult your host reference
documentation.

! WARNING: Because this configuration change also prevents the target from
completing its boot process until a target server attaches to the target, it is best to
change the wdbSioTest() third argument back to the default 0 value as soon as you
verify that the serial line is set up correctly.

2

2

Setup and Startup

35

Starting the Target Server

After successfully testing the serial connection, you can connect the target server
to the agent by following these steps:

1. Close the serial port that you opened for testing (if you do not close the port,
then it will be busy when the target server tries to use it).

2. Start the target server with the serial back end to connect to the agent. Use the
tgtsvr -B option to specify the back end, and also specify the line speed to
match the speed configured into your target:

% tgtsvr -V targetname -B wdbserial -bps 38400 &

You can also use the Tornado GUI to configure and start a target server (see
3.5 Managing Target Servers, p.72).

2.5.4 The NetROM ROM-Emulator Connection

The agent can be configured to communicate with the target server using the target
board’s ROM socket. Tornado supports this configuration for NetROM, a ROM
emulator produced by Applied Microsystems Corporation. Contact your nearest
Wind River office (listed on the back cover) for information about support for other
ROM emulators. Figure 2-5 illustrates this connection method.

Figure 2-5 Connecting a Target through NetROM

HOST

NetROM

TARGET

Ethernet

Tornado 2.2

User’s Guide

36

The NetROM acts as a liaison between the host and target. It communicates with
the host over Ethernet, and with the target through ROM emulation pods that are
plugged into the target board’s ROM sockets. The NetROM allows you to
download new ROM images to the target quickly. In addition, a 2 KB segment of
the NetROM’s emulation pod is dual-port RAM, which can be used as a
communication path. The target agent uses the NetROM’s read-only protocol to
transfer data up to the host. It works correctly even on boards that do not support
write access to the ROM banks.

This communication path has many benefits: it provides a connection which does
not intrude on any of your board’s I/O ports, it supports both task-mode and
system-mode debugging, it is faster than a serial-line connection, and it provides
an effective way to download new VxWorks images to the target.

For information about booting a target without a network, see 2.6.7 Booting a Target
Without a Network, p.55.

Configuring the Target Agent for NetROM

To configure the target agent for a NetROM communication connection,
reconfigure and rebuild VxWorks with a NetROM interface for the target agent.
Several configuration macros are used to describe a board’s memory interface to
its ROM banks. You may need to override some of them for your board. See
Configuration for NetROM Connection, p.158.

Configuring the NetROM

Before a target server on your host can connect to the target agent over NetROM,
some hardware and software configuration is necessary. The following steps
outline this process.

1. Configure the NetROM IP address from your host system.

When it powers up, the NetROM knows its own Ethernet address, but does
not know its internet (IP) address.

NOTE: The information about NetROM in this section is a summary of NetROM
documentation, with some supplementary remarks. This section is not a
replacement for the NetROM documentation. In particular, refer to that
documentation for full information about how to connect the NetROM to the
network and to your target board.

2

2

Setup and Startup

37

There are two ways of establishing an IP address for the NetROM:

■ Connect a terminal to the NetROM serial console, and specify the IP
address manually when you power up the NetROM for Step 4. This
solution is simple, but you must repeat it each time the NetROM is
powered up or restarted.

■ Configure a network server to reply to RARP or BOOTP requests from the
NetROM. On power-up, the NetROM automatically broadcasts both
requests. This solution is preferable, because it permits the NetROM to
start up without any interaction once the configuration is working.

Since the RARP and BOOTP requests are broadcast, any host connected to the
same subnet can reply. Configure only one host to reply to NetROM requests.

2. Prepare a NetROM startup file.

After the NetROM obtains its IP address, it loads a startup file. The pathname
for this file depends on which protocol establishes the IP address:

■ BOOTP: A startup-file name is part of the BOOTP server’s reply to the
BOOTP request. Record your choice of startup-file pathname in the
BOOTP table (typically /etc/bootptab).

■ RARP: When the IP address is established by a reply to the RARP request,
no other information accompanies the IP address. In this case, the
NetROM derives a file name from the IP address. The file name is
constructed from the numeric (dot-decimal) IP address by converting each
address segment to two hexadecimal digits. For example, a NetROM at IP
address 147.11.46.164 expects a setup file named 930B2EA4 (hexadecimal
digits from the alphabet are written in upper case). The NetROM makes
three attempts to find the startup file, with each of the following
pathnames: ./filename, /tftpboot/filename, and filename without any other
path information.

The startup file contains NetROM commands describing the emulated ROM,
the object format, path and file names to download, and so on. The following
example NetROM startup file configures the Ethernet device, adds routing
information, records the object-file name to download and the path to it, and
establishes ROM characteristics.

Example 2-1 Sample NetROM Startup File

begin
ifconfig le0 147.11.46.164 netmask 255.255.255.0 broadcast 147.11.46.0
setenv filetype srecord
setenv loadpath /tftpboot

Tornado 2.2

User’s Guide

38

setenv loadfile vxWorks_rom.hex
setenv romtype 27c020
setenv romcount 1
setenv wordsize 8
setenv debugpath readaddr
set udpsrcmode on
tgtreset

end

When you create a NetROM startup file, remember to set file permissions to
permit the TFTP file server to read the file.

For more information regarding NetROM boot requirements, refer to NetROM
documentation. Consult your system administrator to configure your host to reply
to RARP or BOOTP requests (or see host-system documentation for bootpd or
rarpd).

3. Connect NetROM to Ethernet network; plug NetROM pods into target ROM
sockets.

NetROM pod 0 differs from other pods because it implements the dual-port
RAM. This special port is used by NetROM both to send data to the board and

NOTE: The environment variable debugpath should be set to dualport (rather
than to readaddr) if you are using the 500-series NetROM boxes.

! WARNING: Do not power up either the NetROM or the target yet. Pod connections
and disconnections should be made while power is off on both the NetROM and
the target board.

! WARNING: Some board sockets are designed to support either ROM or flash
PROM. On this kind of socket, a 12V potential is applied to pin 1 each time the
processor accesses ROM space. This potential may damage the NetROM. In this
situation, place an extra ROM socket with pin 1 removed between the NetROM
pod and the target-board socket.

! WARNING: Take great care when you plug in NetROM pod(s). Double check the
pod connections, especially pin 1 position and alignment. A pod connection error
can damage either the NetROM itself, the target board, or both.

The pins coming out of the NetROM’s DIP emulation pods are very easy to break,
and the cables are expensive to replace. It is a good idea to use a DIP extender
socket, because they are much cheaper and faster to replace if a pin breaks.

2

2

Setup and Startup

39

to receive data from the board: that is, the dual port is the communication path
between the NetROM and the board.

4. Power up the NetROM (but not the target).

Once the required NetROM address and boot information is configured on a
host, the NetROM can be powered up. To verify that the NetROM has obtained
its IP address and loaded and executed the startup file, you can connect to a
NetROM command line with a telnet session.

The following example shows the expected response from a NetROM at IP
address 147.11.46.164:

% telnet 147.11.46.164
Trying 147.11.46.164
Connected to 147.11.46.164
Escape character is ‘^]’

NETROM TELNET
NetROM>

At the NetROM prompt, you can display the current configuration by entering
the command printenv to verify that the startup file executed properly.

5. Download test code to the NetROM.

One method is to type the newimage command at the NetROM prompt. This
command uses the TFTP protocol to download the image specified by the
loadfile environment variable from the path specified by the loadpath
environment variable (which is /tftpboot/vxWorks_rom.hex if you use the
startup script in Example 2-1). After the NetROM configuration is stable, you
can include this command in the startup file to download the image
automatically. Wait to be certain the image is completely downloaded before
you power up your target. This method takes about 30 seconds to transfer the
image.

A faster method is to use two host utilities from AMC: rompack packs a ROM
image into a compact file (with the default name outfile.bin); download ships
the packed file to the NetROM. This method takes only about five seconds to
transfer a new image to the target. This UNIX shell script shown in uses these
utilities to send an image to the NetROM whose IP address is recorded in the
script variable ip:

#! /bin/sh
if [$# != 1]; then

echo "Usage: $0 <filename>"
exit 1

fi

Tornado 2.2

User’s Guide

40

file=$1
ip=t46-154

if [-r "$file"]; then
echo "Downloading $file to the NetROM at $ip."
rompack -c 1 -r 27c020 -x $file 0 0
download outfile.bin $ip

else
echo "$0: \"$file\" not found"
exit 1

fi

echo Done.
exit 0

The rompack option flags specify how to pack the image within the emulator
pods. The -c 1 option specifies a ROM count of one, which means that the
image goes in a single ROM socket. The -r 27c020 option specifies the type of
ROM. The two trailing numbers are the base and offset from the start of ROM
space. Both are typically zero.

6. Power up your target.

The target CPU executes the object code in the emulated ROM. Make sure the
code is running correctly. For example, you might want to have it flash an LED.

Starting the Target Server

Start the target server as in the following example, using the -B option to specify
the NetROM back end.

% tgtsvr -V 147.11.46.164 -B netrom &

In this example, 147.11.46.164 is the IP address of the NetROM. (You can also use
the Tornado GUI to configure and start a target server; see Tornado Getting Started
Guide.)

If the connection fails, try typing the following command at the NetROM prompt:

NetROM> set debugecho on

With this setting, all packets sent to and from the NetROM are copied to the
console. You may need to hook up a connector to the NetROM serial console to see
the debugecho output, even if your current console with NetROM is attached
through Telnet (later versions of NetROM software may not have this problem). If
you see packets sent from the host, but no reply from the target, you must modify

2

2

Setup and Startup

41

the target NetROM configuration parameters described in section Configuration for
Network Connection, p.159.

Troubleshooting the NetROM ROM-Emulator Connection

If the target server fails to connect to the target, the following troubleshooting
procedures can help isolate the problem.

Download Configuration

It is possible that the NetROM is not correctly configured for downloading code to
the target. Make sure you can download and run a simple piece of code (for
example, to blink an LED — this code should be something simpler than a
complete VxWorks image).

Initialization

If you can download code and execute it, the next possibility is that the board
initialization code is failing. In this case, it never reaches the point of trying to use
the NetROM for communication. The code in target/src/config/usrWdb.c makes a
call to wdbNetromPktDevInit(). If the startup code does not get to this point, the
problem probably lies in the BSP. Contact the vendor that supplied the BSP for
further troubleshooting tips.

RAM Configuration

If the NetROM communication initialization code is being called but is not
working, the problem could be due to a mis-configuration of the NetROM. To test
this, modify the file wdbNetromPktDrv.c. Change the following line:

int wdbNetromTest = 0;

to:

int wdbNetromTest = 1;

NOTE: With a NetROM connection, you must inform the NetROM when you
reboot the target. You can do this as follows at the NetROM prompt:

NetROM> tgtreset

Tornado 2.2

User’s Guide

42

When you rerun VxWorks with this modification, the wdbNetromPktDevInit()
routine attempts to print a message to NetROM debug port. The initialization code
halts until you connect to the debug port (1235), which you can do by typing:

% telnet NetROM_IPaddress 1235

If the debug port successfully connects, the following message is displayed in the
telnet window:

WDB NetROM communication ready

If you do not see this message, the NetROM dual-port RAM has not been
configured correctly. Turn off the processor cache; if that does not solve the
problem, contact AMC for further trouble shooting tips:

If everything has worked up to this point, reset wdbNetromTest back to zero and
end your telnet session.

Communication

Type the following at the NetROM prompt:

NetROM> set debugecho on

This causes data to be echoed to the NetROM console when packets are
transmitted between the host and target. If you have a VxWorks console available
on your target, edit wdbNetromPktDrv.c by changing the following line:

int wdbNetromDebug = 0;

to:

int wdbNetromDebug = 1;

This causes messages to be echoed to the VxWorks console when packets are
transmitted between the host and target.

NOTE: There are two versions of wdbNetromPktDrv.c. The one for the 400 series
is located in target/src/drv/wdb and the one for the 500 series is located in
target/src/drv/wdb/amc500. Be sure to edit the appropriate one.

AMC web page: http://www.amc.com/
AMC tech-support: 1-800-ask-4amc

support@amc.com

2

2

Setup and Startup

43

Retry the connection:

(1) Kill the target server.

(2) Type tgtreset at the NetROM prompt.

(3) Reboot your target.

(4) Start the target server using the -Bd option to log transactions between the
target server and the agent to a log file. Use the target server -Bt option to
increase the timeout period. (This is necessary whenever the NetROM debug
echo feature is enabled, because debugecho slows down the connection.)

At this point, you have debugging output on three levels: the target server is
recording all transactions between it and the NetROM box; the NetROM box is
printing all packets it sees to its console; and the WDB agent is printing all packets
it sees to the VxWorks console. If this process does not provide enough debug
information to resolve your problems, contact Wind River technical support for
more troubleshooting assistance.

2.5.5 The Transparent Mode Driver (TMD)

The TM driver provides the same connection capability as an Ethernet or serial
cable would. However, the TM driver works through the Wind River visionICE
II/visionPROBE II hardware debug tools. Physically, the connection is
implemented over the BDM/JTAG/EJTAG emulation connection provided by the
tools. This can be advantageous if the target being used does not have an Ethernet
or serial port on it, or if the ports are required for something else. It can also be
useful when the target ports are available, but the software that controls them is
not yet working.

The Wind River TM driver supports both system and task level debugging. The
TM driver also supports the /vio (virtual I/O) sub-channel of the WDB protocol.

Configuring the Target Agent for TMD

The TMD is added to the current build by selecting the VxWorks tab in the project
dialog window. Expand the VxWorks entry associated with your project, and from

NOTE: You may need to hook up a connector to the NetROM serial console to see
the debugecho output, even if your current console with NetROM is attached
through telnet.

Tornado 2.2

User’s Guide

44

the list that appears, select development tool components>select WDB connection>WDB

visionTMD connection.

For the TMD to be added to the current build, the WDB visionTMD connection entry
must be made the active WDB connection. By default, when this project was built,
the WDB END driver connection was included in the project. That entry now appears
bolded because it is the active connection.

In order for the project to build correctly, only one WDB connection can be active.
To include the WDB visionTMD connection, right-click on Select WDB connection

and select Configure ‘select WDB connection’ on the pop-up menu. The properties
dialog wind appears.

Click on the Components tab, scroll down the list, and click on the WDB visionTMD

connection check box. The WDB END driver connection will automatically be
deselected. Click the Apply button to select the TMD component. If the Include

Component(s) dialog contains the correct information, click Ok to confirm it and
close the dialog box. The WDB visionTMD connection is now the active
connection.

Now that you have specified the TMD, rebuild VxWorks to include the component
in your image.

Configuring visionICE II/visionPROBE II

The debugger being used must be configured correctly to download the vxWorks
image created in the previous steps to the target. The debugger will also be used to
start the image running once it has been downloaded. Once the image is running
on the target, the TM Driver will also be available since the WDB agent that is
included in the vxWorks image uses the TM Driver as the connection mechanism.

Instructions for configuring the debugger and downloading and executing the
vxWorks image on the target are provided for two of Wind Rivers debuggers in the
Transparent Mode Driver User’s Guide.

NOTE: Only one connection can be active at a time. If more than one connection is
made active in the list, then the names of the folders where the error is located turn
red to alert you that there is a configuration error in the project. Making one of the
active connections inactive will correct the error.

2

2

Setup and Startup

45

Information on configuring visionICE II for network operation is available in the
visionICE II User’s Manual. In addition, the UDP Console Port must be set to
17185.

1. In the ethsetup menu, accessible from the NET> prompt (as described in the
manuals listed above), select option 5 to view the current port settings.

2. If [7], UDPCNSL is already set to 17185, no modifications are necessary, and you
may exit this menu.

3. If [7] is not set to 17185, type 6 to allow the port values to be changed.

4. Type 7, which will allow the UDPCNSL port setting to be changed, and change
it to 17185.

5. Type 0 to exit the Change Port Settings menu.

6. Type 8 to save the changes.

7. Type 9 to exit the ethsetup menu.

Starting the Target Server

Once the VxWorks image is running on the target, the host will be able to
communicate with the running WDB agent. To do this, a target server must be
configured and activated. Follow the following steps:

1. With the VxWorks image running on the target, return to the Tornado project
window. Select Tools>Target Server>Configuration from the main menu.

2. Click the New button at the top right side of the dialog window, enter a
description, and check the Add description to menu check box. In the space beside
Target Server Name, enter the same description as you placed in the Description

space. This will result in a link being created in the Tornado Tools menu that
will automatically launch the target server when selected.

3. Define Target Server Properties by selecting an item from the drop-down menu
and then completing the related properties as shown in Table 2-3.

! WARNING: Do not attempt to continue on to the next section without first
downloading a valid, working image to the target and executing it. You will not be
able to launch a target server or make use of the Tornado tools without this step
being complete.

Tornado 2.2

User’s Guide

46

To launch a correctly configured target server using the command line, enter the
following:

% tgtsvr.exe -n 127.0.0.1 -V -B wdbrpc -R C:/Tornado/2.2 -RW -c myCoreFile

For more information about using either the GUI or the command line to configure
target servers, see 2.7 Connecting a Tornado Target Server, p.56.

2.6 Booting VxWorks

Once you have correctly configured your host software and target hardware,
establish a terminal connection from your host to the target, using the serial port
that connects the two systems.4 For example, the following command starts a tip
session for the second serial port at 9600 bps:

% tip /dev/ttyb -9600

See your BSP documentation for information about the bps rate
(Help>Manuals contents>BSP Reference in the Tornado Launcher, or see the file
installDir/docs/BSP_Reference.html).

You are now ready to turn on the target system power and boot VxWorks.

Table 2-3 Target Server Properties Settings

Target Server

Properties
Parameter Values

Back End Available back ends: wdbrpc
TargetName/IP Address: If a visionICE II is being used, this is the IP
address of the visionICE II unit. If a visionPROBE II is being used,
this is the IP address of the host or a loopback address of 127.0.0.1
Keep defaults for other parameters

Core Files and

Symbols

Select the File option and enter the path to the VxWorks file
associated with the project.

Target Server File

System

Check Enable File System

Select Read/Write option

4. Commonly available terminal emulators are tip, cu, and kermit; consult your host reference
documentation.

2

2

Setup and Startup

47

2.6.1 Default Boot Process

When you boot VxWorks with the default boot program (from ROM, diskette, or
other medium), you must use the VxWorks command line to provide the boot
program with information that allows it to find the VxWorks image on the host and
load it onto the target. The default boot program is designed for a networked
target, and needs to have the correct host and target network addresses, the full
path and name of the file to be booted, the user name, and so on.5

When you power on the target hardware (and each time you reset it), the target
system executes the boot program from ROM; during the boot process, the target
uses its serial port to communicate with your terminal or workstation. The boot
program first displays a banner page, and then starts a seven-second countdown,
visible on the screen as shown in Figure 2-6. Unless you press any key on the
keyboard within that seven-second period, the boot loader will attempt to proceed
with a default configuration, and will not be able to boot the target with VxWorks.

5. Unless your target CPU has nonvolatile RAM (NVRAM), you will eventually find it useful
to build a new version of the boot loader that includes all parameters required for booting
a VxWorks image (see 4.8 Configuring and Building a VxWorks Boot Program, p.164). In the
course of your developing an application, you will also build bootable applications (see
4.5 Creating a Bootable Application, p.147).

Figure 2-6 Boot Program: Communication and Boot Banner Display

RS-232

target
CPU

Tornado 2.2

User’s Guide

48

2.6.2 Entering New Boot Parameters

To interrupt the boot process and provide the correct boot parameters, first power
on (or reset) the target; then stop the boot sequence by pressing any key during the
seven-second countdown. The boot program displays the VxWorks boot prompt:

[VxWorks Boot]:

To display the current boot parameters, type p at the boot prompt, as follows:

[VxWorks Boot]: p

A display similar to the following appears; the meaning of each of these
parameters is described in the next section. This example corresponds to the
configuration shown in Figure 2-7. (The p command does not actually display
blank fields, although this illustration shows them for completeness.)

boot device : ln
processor number : 0
host name : mars
file name : installDir/target/config/bspname/vxWorks
inet on ethernet (e) : 90.0.0.50:ffffff00
inet on backplane (b) :
host inet (h) : 90.0.0.1
gateway inet (g) :
user (u) : fred
ftp password (pw)(blank=use rsh) :
flags (f) : 0x0
target name (tn) : phobos
startup script (s) :
other (o) :

Figure 2-7 Boot Configuration Example

TARGET

phobos

HOST

mars

90.0.0.5090.0.0.1

installDir/target/config/bspname/vxWorks

user: fred

Ethernet

2

2

Setup and Startup

49

To change the boot parameters, type c at the boot prompt, as follows:

[VxWorks Boot]: c

In response, the boot program prompts you for each parameter. If a particular field
has the correct value already, press RETURN. To clear a field, enter a period (.),
then RETURN. If you want to quit before completing all parameters, type CTRL+D.

Network information must be entered to match your particular system
configuration. The Internet addresses must match those in /etc/hosts on your
UNIX host, as described in Establishing the VxWorks System Name and Address, p.26.

If your target has nonvolatile RAM (NVRAM), boot parameters are retained there
even if power is turned off. For each subsequent power-on or system reset, the boot
program uses these stored parameters for the automatic boot configuration.

2.6.3 Boot Program Commands

The VxWorks boot program provides a limited set of commands. To see a list of
available commands, type either h or ? at the boot prompt, followed by RETURN:

[VxWorks Boot]: ?

Table 2-4 lists and describes each of the VxWorks boot commands and their
arguments.

Table 2-4 VxWorks Boot Commands

Command Description

h Help command—print a list of available boot commands.

? Same as h.

@ Boot (load and execute the file) using the current boot parameters.

p Print the current boot parameter values.

c Change the boot parameter values.

l Load the file using current boot parameters, but without executing.

g adrs Go to (execute at) hex address adrs.

d adrs[, n] Display n words of memory starting at hex address adrs. If n is
omitted, the default is 64.

Tornado 2.2

User’s Guide

50

2.6.4 Description of Boot Parameters

Each of the boot parameters is described below, with reference to the example in
2.6.2 Entering New Boot Parameters, p.48. The letters in parentheses after some
parameters indicate how to specify the parameters in the command-line boot
procedure described in 2.6.6 Alternate Booting Procedures, p.54.

boot device
The type of device to boot from. This must be one of the drivers included in the
boot ROMs (for example, enp for a CMC controller). Due to limited space in
the boot ROMs, only a few drivers can be included. A list of included drivers
is displayed at the bottom of the help screen (type ? or h).

processor number
A unique identifier for the target in systems with multiple targets on a
backplane (zero in the example). The first CPU must be processor number 0
(zero).

m adrs Modify memory at location adrs (hex). The system prompts for
modifications to memory, starting at the specified address. It prints
each address, and the current 16-bit value at that address, in turn.
You can respond in one of several ways:

ENTER: Do not change that address, but continue prompting at the
next address.

number: Set the 16-bit contents to number.

. (dot): Do not change that address, and quit.

f adrs, nbytes, value Fill nbytes of memory, starting at adrs with value.

t adrs1, adrs2, nbytes Copy nbytes of memory, starting at adrs1, to adrs2.

s [0 | 1] Turn the CPU system controller ON (1) or OFF (0) (only on boards
where the system controller can be enabled by software).

e Display a synopsis of the last occurring VxWorks exception.

n netif Display the address of the network interface device netif.

Table 2-4 VxWorks Boot Commands (Continued)

Command Description

2

2

Setup and Startup

51

host name
The name of the host machine to boot from. This is the name by which the host
is known to VxWorks; it need not be the name used by the host itself. (The host
name is mars in the example of 2.6.2 Entering New Boot Parameters, p.48.)

file name
The full pathname of the VxWorks object module to be booted
(/usr/wind/target/config/bspname/vxWorks in the example). This pathname is
also reported to the host when you start a target server, so that it can locate the
host-resident image of VxWorks.6

inet on ethernet (e)
The Internet address of a target system with an Ethernet interface (90.0.0.50 in
the example).

inet on backplane (b)
The Internet address of a target system with a backplane interface (blank in the
example).

host inet (h)
The Internet address of the host to boot from (90.0.0.1 in the example).

gateway inet (g)
The Internet address of a gateway node if the host is not on the same network
as the target (blank in the example).

user (u)
The user name that VxWorks uses to access the host (fred in the example); that
user must have read access to the VxWorks boot-image file. VxWorks must
have access to this user’s account, either with the FTP password provided
below, or through the files .rhosts or /etc/hosts.equiv discussed in Giving
VxWorks Access to the Host, p.27.

ftp password (pw)
The “user” password. This field is optional. If you provide a password, FTP is
used instead of RSH. If you do not want to use FTP, then leave this field blank.

6. If the same pathname is not suitable for both host and target—for example, if you boot from
a disk attached only to the target—you can specify the host path separately to the target
server, using the Core file field (-c option). See 3.5 Managing Target Servers, p.72.

Tornado 2.2

User’s Guide

52

flags (f)
Configuration options specified as a numeric value that is the sum of the
values of selected option bits defined below. (This field is zero in the example
because no special boot options were selected.)

target name (tn)
The name of the target system to be added to the host table (phobos in the
example).

startup script (s)
If the target-resident shell is included in the downloaded image, this
parameter allows you to pass to it the complete path name of a startup script
to execute after the system boots. In the default Tornado configuration, this
parameter has no effect, because the target-resident shell is not included.

other (o)
This parameter is generally unused and available for applications (blank in the
example). It can be used when booting from a local SCSI disk to specify a
network interface to be included.

2.6.5 Booting With New Parameters

Once you have entered the boot parameters, initiate booting by typing the @
command at the boot prompt:

[VxWorks Boot]: @

Figure 2-8 shows a typical VxWorks boot display. The VxWorks boot program
prints the boot parameters, and the downloading process begins. The following
information is displayed during the boot process:

■ The boot program first initializes its network interfaces.

0x01 = Do not enable the system controller, even if the processor number
is 0. (This option is board specific; refer to your target
documentation.)

0x02 = Load all VxWorks symbols, instead of just globals.
0x04 = Do not auto-boot.
0x08 = Auto-boot fast (short countdown).
0x20 = Disable login security.
0x40 = Use BOOTP to get boot parameters.
0x80 = Use TFTP to get boot image.
0x100 = Use proxy ARP.

2

2

Setup and Startup

53

■ While VxWorks is booting, you can see the size of each VxWorks section (text,
data, and bss) as it is loaded.

■ After the system is completely loaded, the boot program displays the entry
address and transfers control to the loaded VxWorks system.

■ When VxWorks starts up, it begins just as the boot ROM did, by initializing its
network interfaces; the network-initialization messages appear again,
sometimes accompanied by other messages about optional VxWorks facilities.

After that point, VxWorks is up and ready to attach to the Tornado tools, as
discussed in 2.7 Connecting a Tornado Target Server, p.56.

The boot display may be useful for troubleshooting. The following hints refer to
Figure 2-8. For more troubleshooting ideas, see 2.10 Troubleshooting, p.59.

■ If the initial “Attaching network interface” is displayed without the
corresponding “done,” verify that the system controller is configured properly
and the Ethernet board is properly jumpered.

■ If “Loading...” is displayed without the size of the VxWorks image, this may
indicate problems with the Ethernet cable or connection, or an error in the
network configuration (for example, a bad host or gateway Internet address).

■ If the line “Starting at” is printed and there is no further indication of activity
from VxWorks, this generally indicates there is a problem with the boot image.

■ If “Attaching network interface” is displayed without the “done,” this may
indicate there is a problem with the network driver in the newly loaded
VxWorks image.

Figure 2-8 VxWorks Booting Display

Tornado 2.2

User’s Guide

54

2.6.6 Alternate Booting Procedures

To boot VxWorks, you can also use the command line, take advantage of
non-volatile RAM, or create new boot programs for your target.

Command-Line Parameters

Instead of being prompted for each of the boot parameters, you can supply the
boot program with all the parameters on a single line at the boot prompt
([VxWorks Boot]:) beginning with a dollar sign character (“$”). For example:

$ln(0,0)mars:/usr/wind/target/config/bspname/vxWorks e=90.0.0.50 h=90.0.0.1 u=fred

The order of the assigned fields (those containing equal signs) is not important.
Omit any assigned fields that are irrelevant. The codes for the assigned fields
correspond to the letter codes shown in parentheses by the p command. For a full
description of the format, see the reference entry for bootStringToStruct() in
bootLib.

This method can be useful if your workstation has programmable function keys.
You can program a function key with a command line appropriate to your
configuration.

Nonvolatile RAM (NVRAM)

As noted previously, if your target CPU has nonvolatile RAM (NVRAM), all the
values you enter in the boot parameters are retained in the NVRAM. In this case,
you can let the boot program auto-boot without having a terminal connected to the
target system.

Customized Boot Programs

See 4.8 Configuring and Building a VxWorks Boot Program, p.164 for instructions on
creating a new boot program for your boot media, with parameters customized for
your site. With this method, you no longer need to alter boot parameters before
booting.

BSPs Requiring TFTP on the Host

Some Motorola boards that use Bug ROMs and that place boot code in flash require
TFTP on the host in order to burn a new VxWorks image into flash. See your
vendor documentation on how to burn flash for these boards.

2

2

Setup and Startup

55

2.6.7 Booting a Target Without a Network

You can boot a target that is not on a network most easily over a serial line with the
Target Server File System (TSFS). The TSFS provides the target with direct access
to the host’s file system. Using TSFS is simpler than configuring and using PPP or
SLIP.

To boot a target using TSFS, you must first reconfigure and rebuild the boot
program, and copy it to the boot medium for your target (for example, burn a new
boot ROM or copy it to a diskette). See 4.8 Configuring and Building a VxWorks Boot
Program, p.164.

Before you boot the target, configure a target server with the TSFS option and start
it. See Target-Server Configuration Options, p.76.

The only boot parameters required to boot the target are boot device and file name
(see 2.6.4 Description of Boot Parameters, p.50). The boot device parameter should be
set to tsfs. The file name parameter should be set relative to the TSFS root directory
that is defined when you configure the target server for the TSFS. You can
configure the boot program with these parameters, or enter them at the VxWorks
prompt at boot time.

2.6.8 Rebooting VxWorks

When VxWorks is running, there are several way you can reboot VxWorks.
Rebooting by any of these means restarts the attached target server on the host as
well:

■ Enter CTRL+X from the Tornado shell or a target console. (You can change this
character to something else if you wish; see 7.7 Tcl: Shell Interpretation, p.297.)

■ Invoke reboot() from the Tornado shell.

■ Press the reset button on the target system.

■ Turn the target’s power off and on.

When you reboot VxWorks in any of these ways, the auto-boot sequence begins
again from the countdown.

Tornado 2.2

User’s Guide

56

2.7 Connecting a Tornado Target Server

To make a VxWorks target ready for use with the Tornado development tools, you
must start a target-server daemon for that target on one of your development
hosts. One way to accomplish that is from the Tornado launcher; for that approach,
see 3.5 Managing Target Servers, p.72.

You may also want to start a server from the UNIX command line, so that your
target is ready to use as soon as you enter the launcher. To start a target server this
way, run the command tgtsvr in the background. You must specify the network
name of your target (see Establishing the VxWorks System Name and Address, p.26) as
an argument.

The following example starts a server for the target phobos using the default
communications back end:

% tgtsvr -V vxsim0 &
tgtsvr.ex (vxsim0@seine): Mon Nov 30 14:09:46 1998
 Connecting to target agent... succeeded.
 Attaching C++ interface... succeeded.
 Attaching elf OMF reader for SIMSPARCSOLARIS CPU family... succeeded.

The -V (verbose) option shown above is not strictly necessary, but it is very useful
for troubleshooting. With this option, tgtsvr produces informative messages if it
cannot connect to the target.

For example, if you make an error in specifying the target name, tgtsvr exits when
it cannot find that target. Without the -V option, tgtsvr exits silently. With the -V
option, tgtsvr produces the following message for an unknown target:

% tgtsvr -V vxsim0 &
tgtsvr.ex (vxsim0@seine): Mon Nov 30 14:09:46 1998

Error: Target vxsim0 unknown. Attach failed.
Error: Backend initialization routine failed.

Problem during backend initialization.

There are a number of other tgtsvr command-line options to control the behavior
of your target server. The most notable options are the following:

-B Chooses alternative methods of communicating with the target. See
2.5 Host-Target Communication Configuration, p.31 to use other back ends.

-c Override the path to the VxWorks image on the host system.

For information on these and other command-line options, see the tgtsvr reference
documentation (either online, or in the online Tornado API Reference). The easiest
way to select and manage these options is with the Tornado launcher.

2

2

Setup and Startup

57

2.8 Launching Tornado

The launcher provides access to all other Tornado facilities. To start the launcher,
execute the following command:

% launch &

The list on the left of the launcher window shows the targets currently available on
your network. Click on one to select it, and you can see a display similar to
Figure 2-9, summarizing the characteristics of that target. To explore the Tornado
tools, click on any of the buttons along the bottom of the launcher screen.

See 3. Launcher for a detailed discussion of the launcher facilities. The remaining
chapters in this guide discuss each of the other Tornado tools (which you can reach
either from the command line or from the launcher).

Figure 2-9 Launcher Listing Targets

Tornado 2.2

User’s Guide

58

2.9 Tornado Interface Conventions

The following conventions apply uniformly to all of the Tornado graphical tools
(the launcher, the project facility, the browser, the debugger, and WindView):

Busy Box
The Wind River logo appears in the top right of the main window of each tool.
When the tool is busy, it indicates this by animating the logo.

Universal Menu Entries
The following menu commands are always present:

File>Quit

Shut down the tool.

About>Tornado

Identify the version of Tornado.

Help

Display online documentation; see Online Documentation, p.23.

Keyboard Selection from Menus
Every Tornado menu has a one-letter abbreviation, shown by underlining that
letter in the menu bar. Press the META shift and that letter to display the menu
from the keyboard rather than using the mouse. While the menu is displayed,
you can dismiss it without selecting a command by repeating the same
META-letter shortcut.

Within a menu, there are two ways of selecting and executing a command from
the keyboard. Each command name also has an underlined letter; press that
letter (no META shift at this level) to execute the command immediately. For
example, the key sequence META-F Q selects Quit from any File menu. You can
also use the arrow keys on your keyboard to highlight each successive menu
command in turn; press RETURN (or ENTER) to execute the currently
highlighted command.

Keyboard Operation of Forms (Dialogs)
When a form is displayed, the TAB key selects each text or scrolling-list field in
turn (shift-TAB selects them in reverse order). Type directly in a text field to
change its value; in scrolling lists, select a new value with the arrow keys.

When no scrolling list is selected, the arrow keys select in turn each of the
toggles or buttons on the form; RETURN (ENTER) switches the highlighted
toggle or presses the highlighted button.

2

2

Setup and Startup

59

Left Mouse Selects, Middle Mouse Drags
When there is selectable text in a Tornado display, use the left mouse button to
select it. For objects that can be dragged, use the middle mouse button.

Folder Hierarchies
Whenever hierarchical data is presented graphically, a folder icon appears at
each level of the hierarchy. Click on these folders to hide subordinate
information; click again on the folder to reveal it once again.

2.10 Troubleshooting

If you encountered problems booting or exercising VxWorks, there are many
possible causes. This section discusses the most common sources of error and how
to narrow the possibilities. Please read 2.10.1 Things to Check, p.59 before
contacting the Wind River customer support group. Often, you can locate the
problem just by re-checking the installation steps, your hardware configuration,
and so forth.

2.10.1 Things to Check

Most often, a problem with running VxWorks can be traced to configuration errors
in hardware or software. Consult the following checklist to locate a problem.

Hardware Configuration

■ Limit the number of variables.

Start with a minimal configuration of a single target CPU board and possibly an
Ethernet board.

■ Be sure your backplane is properly powered and bussed.

For targets on a VMEbus backplane, most configurations require that the P2 B row
is bussed and that there is power supplied to both the P1 and P2 connectors.

NOTE: Booting systems with complex network configurations is beyond the scope
of this chapter. See VxWorks Network Programmer’s Guide: Booting over the Network.

Tornado 2.2

User’s Guide

60

■ If you are using a VMEbus, be sure boards are in adjacent slots.

The only exception to this is if the backplane is jumpered to propagate the BUS
GRANT and INT ACK daisy chains.

■ Check that the RS-232 cables are correctly constructed.

In most cases, the documentation accompanying your hardware describes its
cabling requirements. One common problem: make sure your serial cable is a
null-modem cable, if that is what your target requires.

■ Check the boot ROMs for correct insertion.

If the CPU board seems completely dead when applying power (some have front
panel LEDs) or shows some error condition (for example, red lights), the boot
ROMs may be inserted incorrectly. You can also validate the checksum printed on
the boot ROM labels to check for defects in the ROM itself.

■ Press the RESET button if required.

Some system controller boards do not reset the backplane on power-on; you must
reset it manually.

■ Make sure all boards are jumpered properly.

Refer to the target-information reference for your BSP to determine the correct
jumper settings for your target and Ethernet boards.

Booting Problems

■ Check the Ethernet transceiver site.

For example, connect a known working system to the transceiver and check
whether the network functions.

■ Verify Internet addresses.

An Internet address consists of a network number and a host number. There are
several different classes of Internet addresses that assign different parts of the
32-bit Internet address to these two parts, but in all cases the network number is
given in the most significant bits and the host number is given in the least
significant bits. The simple configuration described in this chapter assumes that
the host and target are on the same network—they have the same network number.
(See VxWorks Network Programmer’s Guide: TCP/IP Under VxWorks for a discussion

2

2

Setup and Startup

61

of setting up gateways if the host and target are not on the same network.) If the
target Internet address is not on the same network as the host, the VxWorks boot
program displays the following message:

NetROM> tgtreset

0x33 corresponds to errno 51 (decimal) ENETUNREACH. (This is one of the POSIX
error codes, defined for VxWorks in /target/h/errno.h.)

If the target Internet address is not in /etc/hosts (or the NIS equivalent), then the
host does not know about your target. The VxWorks boot program receives an
error message from the host:

host name for your address unknown
Error loading file: status = 0x320001.

0x32 is the VxWorks module number for hostLib 50 (decimal). The digit “1”
corresponds to S_hostLib_UNKNOWN_HOST. See the errnoLib reference manual
entry for a discussion of VxWorks error status values.

■ Verify host file permissions.

The target name must be listed in either of the files userHomeDir/.rhosts or
/etc/hosts.equiv. The target user name can be any user on the host, but do not use
the user name root —special rules often apply to it, and circumventing them
creates security problems on your host.

Make sure that the user name you are using on the target has access to the host
files. To verify that the user name has permission to read the vxWorks file, try
logging in on the host with the target user name and accessing the file (for instance,
with the UNIX size command). This is essentially what the target does when it
boots.

If you have trouble with access permissions, you might try using FTP (File Transfer
Protocol) instead of relying on RSH (remote shell). Normally, if no password is
specified in the boot parameters, the VxWorks object module is loaded using the
RSH service. However, if a password is specified, FTP is used. Sometimes FTP is
easier because you specify the password explicitly, instead of relying on the
configuration files on the host. Also, some non-UNIX systems do not support RSH,
in which case you must use FTP. Another possibility is to try booting using BOOTP
and TFTP; see VxWorks Network Programmer’s Guide: File Access Applications.

■ Check host account .cshrc file.

Unless you specify an FTP password in your boot parameters, or include
NFS-client support in your VxWorks image, the default VxWorks access to

Tornado 2.2

User’s Guide

62

host-system files is based on capturing file contents through the rcmd() interface
to the UNIX host. For user accounts whose default shell is the C shell, this makes
it imperative to avoid issuing any output from .cshrc. If any of the commands in
.cshrc generates output, that output can interfere with downloading host files
accurately through rcmd(). This problem most often shows up while
downloading the VxWorks boot image.

To check whether the .cshrc file is causing booting problems, rename it temporarily
and try booting VxWorks again. If this proves to be the source of the problem, you
may want to set up your .cshrc file to conditionally execute any commands that
generate standard output. For example, commands used to set up interactive C
shells could be grouped at the end of the .cshrc and preceded with the following:

skip remaining setup if a non-interactive shell:
if (${?USER} == 0 || ${?prompt} == 0 || ${?TERM} == 0) exit

If noclobber is set in your .cshrc, be sure to un-set or move it to the section that is
executed (as shown above) only if there is an interactive shell.

■ Helpful Troubleshooting Tools

In tracking down configuration problems, the following UNIX tools can be helpful:

ping
This command indicates whether packets are reaching a specified destination.
For example, the following indicates this host is successful sending packets to
phobos:

% ping phobos
phobos is alive

ifconfig
This command reports the configuration of a specified network interface (for
example, ie0 or le0 on a Sun system). It should report that the interface is
configured for the appropriate Internet address and that the interface is up.
The following example shows that interface le0, whose address is 137.10.1.3, is
up and running:

% ifconfig -a
le0: flags=63<UP,BROADCAST,NOTRAILERS,RUNNING>
inet 137.10.1.3 netmask ffffff00 broadcast 137.10.1.0
lo0: flags=49<UP,LOOPBACK,RUNNING>
inet 127.0.0.1 netmask ff000000

arp -a
This command displays the “address resolution protocol” tables that map
Internet addresses to Ethernet addresses. Your target machine is listed if at

2

2

Setup and Startup

63

least one packet was transferred from your target to your host. The following
example shows saturn’s Internet address (92.0.9.54) and Ethernet address
(8:10:5:3:a5:c).

% arp -a
saturn (92.0.9.54) at 8:10:5:3:a5:c

etherfind
This command can be used on many UNIX systems to watch all traffic on a
network. You must have root access to execute etherfind. For example, to
monitor traffic between mars and phobos from a third machine, enter the
following:

etherfind between mars phobos
Using interface le0

icmp type
lnth proto source destination src port dst port
60 tcp mars phobos 1022 login
60 tcp phobos mars login 1022
60 tcp mars phobos 1022 login
...

etherfind displays the packet length, the protocol (for example, TCP, UDP), the
source and destination machine names, and the source and destination ports.

netstat
This command displays network status reports. The -r option displays the
network routing tables. This is useful when gateways are used to access the
target. In the following example, this node sends packets for 91.0.10.34
through gateway vx210:

% netstat -r
Routing tables
Destination Gateway Flags Refcnt Use Interface
91.0.10.34 vx210 UG 0 0 le0

Target-Server Problems

■ Check Back-End Serial Port

If you use a WDB Serial connection to the target, make sure you have connected
the serial cable to a port on the target system that matches your target-agent
configuration. The agent uses serial channel 1 by default, which is different from
the channel used by VxWorks as a default console (channel 0). Your board’s ports
may be numbered starting at one; in that situation, VxWorks channel one
corresponds to the port labeled “serial 2.”

Tornado 2.2

User’s Guide

64

■ Verify Path to VxWorks Image

The target server requires a host-resident image of the VxWorks run-time system.
By default, it obtains a path for this image from the target agent (as recorded in the
target boot parameters). In some cases (for example, if the target boots from a local
device), this default is not useful. In that situation, use the Core file field in the
Create Target Server form (3.5 Managing Target Servers, p.72) or the equivalent -c
option to tgtsvr (online Tornado API Reference) to specify the path to a host-resident
copy of the VxWorks image.

2.10.2 Technical Support

If you have questions or problems with Tornado or with VxWorks after completing
the above troubleshooting section, or if you think you have found an error in the
software, contact the Wind River customer support organization. Your comments
and suggestions are welcome as well. For information about customer support, see
1.6 Customer Services, p.12.

65

3
Launcher

3.1 Introduction

This chapter discusses the Tornado Launcher, the control panel for Tornado. Once
Tornado is configured and targets are set up on your network, all the information
you need to connect Tornado tools to a target is in this chapter.

3.2 The Tornado Launcher

The Tornado Launcher is a central control panel that ties together the whole suite
of Tornado tools and services. The launcher’s mission is to bring together tools and
targets; but, as the centerpiece of Tornado, the launcher also provides other
services.

Through the launcher, you can

■ inspect information about available targets and target servers
■ launch any Tornado tool attached to any available target server
■ start VxWorks target simulators
■ select among available target servers
■ create and manage target servers
■ install new Tornado components
■ consult Internet publications relating to Tornado or VxWorks
■ transmit support requests to Wind River, and query their status

Tornado 2.2

User’s Guide

66

The Tornado registry (a daemon that keeps track of all target servers) must be in
place on a host at your site before anyone can use Tornado. If the launcher finds no
registry, it offers to start one on the current host.1 For more information on the
registry and on other host-configuration issues, see 2. Setup and Startup.

To start the Tornado Launcher, invoke its name from the UNIX command line or
from any shell script or window-manager menu:2

% launch &

Notice the & in the preceding example. Because the launcher runs in its own
separate graphical window, it normally runs asynchronously from its parent shell.

To terminate the launcher, select Quit from the launcher File menu.

The launcher is a convenience, not a straitjacket. If you prefer, you can start
Tornado tools and manage target servers directly from a UNIX shell or shell script.

3.3 Anatomy of the Launcher Window

Most of the main launcher window (Figure 3-1) reflects the two main kinds of
objects it links together—tools and target servers:

The target list shows all target servers currently available in your development
network. The list scrolls vertically if its contents exceed the display area.

The toolbar has a button for every installed Tornado tool. The toolbar display area
scrolls horizontally if its contents exceed the space available. The toolbar
illustrated in Figure 3-1 displays the fundamental collection of Tornado tools:

1. By default the launcher has the registry create its database in installDir/.wind. If that direc-
tory is not writable, the database is created in homeDir/.wind.

2. If you have any trouble with this command, make sure that your host development envi-
ronment is correctly configured, as described in 2.3 The Tornado Host Environment, p.20.

NOTE: All tools started by the launcher inherit its working directory. You can select
other directories when necessary from within each tool, but it is usually convenient
to start the launcher from the directory where you expect to do most of your work.

3

3

Launcher

67

WindSh

The Tornado shell, an interactive window to the target that includes both a C
interpreter and a Tcl interpreter. The shell is described in detail in 7. Shell.

CrossWind

The Tornado graphical debugger, a powerful source-level debugger that
provides both graphical and command-driven access to target programs.
9. Debugger provides full documentation.

Browser

A viewer to explore and monitor target system objects, described in 8. Browser.

Project

A graphical facility for managing application files, configuring VxWorks, and
building applications and system images. See 4. Projects.

VxSim

The VxWorks target simulator. It is a port of VxWorks to the host system that
simulates a target operating system. No target hardware is required. See the

Figure 3-1 Tornado Launcher Main Window

target list

toolbar

Tornado 2.2

User’s Guide

68

Tornado Getting Started Guide for a introductory discussion of target simulator
usage, and 4. Projects for information about its use as a development tool.3

WindView

The Tornado logic analyzer for real-time software. It is a dynamic visualization
tool that provides information about context switches, and the events that lead
to them, as well as information about instrumented objects. See the WindView
User’s Guide.4

3.4 Tools and Targets

One way to think of the Tornado launcher is as a central plugboard which allows
you to connect any Tornado development tool to any networked target.

Figure 3-2 illustrates this concept. The launcher allows you to use targets just as
easily regardless of their nature or their physical connection. Figure 3-2 shows
several common variations on connections between a tool and a target:

– Tool 1 is connected to a target on the local Ethernet subnet.

– Tool 2 is connected over the local Ethernet to a target that is physically attached
to a remote host.

– Tool 3 is connected to a target that communicates directly with the local host
over a serial line.

All this is possible thanks to the target server, a dedicated daemon which represents
each development target to the development network. All details related to
physical connectivity are handled by the target server. Someone must configure
the target communications initially (see 2.4 Setting Up the Default Target Hardware,
p.24), but thereafter the target is immediately available to any authorized user on
the local network, with no further cabling or configuration.

3. Tornado includes a version of the VxSim target simulator that runs as a single instance per
user, without networking support (optional products such as VxMP are not available for
this version). The full-scale version supports multiple-instance use and includes
networking support. It is available as an optional product.

4. Tornado includes a version of WindView designed solely for use with the VxWorks target
simulator. WindView is also available as an optional product for all supported target archi-
tectures.

3

3

Launcher

69

For reference information about the target server, see the entry for tgtsvr in the
online Tornado API Reference (Help>Manuals Contents>Tornado Reference>Tornado

Tools>tgtsvr).

3.4.1 Selecting a Target Server

To select a target server, click on any of the server names in the target list. The
launcher highlights the selected target name, and fills the Information panel with a
scrollable description of the target configuration and target server. Figure 3-3
illustrates a launcher with a target server selected.

If no target servers are listed, or if none of the target servers listed represent the
target you need, see 3.5.1 Configuring a Target Server, p.73 below.

If you make a mistake, or if you wish to select another target, simply click on
another target-server name. Any tools that you have already launched remain
connected to the previous target (the plugboard analogy does not extend that far).

Figure 3-2 The Launcher as Network-Wide Plugboard

Tool 1

Tool 2

launcher

Tool 3

Tornado 2.2

User’s Guide

70

The information panel displays the following information about the selected
target:

Name
A unique string identifying the target server, which matches the selected entry
in the target list. Servers are shown as target@serverhost, where target is an
identifier (frequently the network name) for the target device itself, and
serverhost is the network name of the host where the target server is running.

Version
The target-server version number.

Status
This field indicates whether a target is locked (restricted to the user ID that
started the server), reserved (for the user shown below in the User field) or
unreserved. Anyone5 may connect to an unreserved target.

Figure 3-3 Launcher with a Selected Target

5. You can also restrict your target servers to permit connections only by a particular list of
users; see 3.5.2 Sharing and Reserving Target Servers, p.82.

3

3

Launcher

71

Runtime
The name and version number of the operating system running on the target.

Agent
The name and version number of the agent program running on the target.

CPU
A string identifying the CPU architecture (and possibly other related
information, such as whether this is a real target or a simulated one).

BSP
The name and version number of the Board Support Package linked into the
run-time.

Memory
The total number of bytes of RAM available on this target.

Link
The physical connection mechanism to the target.

User
The user ID of the developer who launched this target server, or of the user
who reserved it most recently.

Start
A timestamp showing when this target server was launched.

Last
The last time this target server received any transaction request.

Attached Tools
A list of all the tools currently attached to this target server. The list includes
all Tornado tools attached to this target by any user on the network, not just
your own tools.

3.4.2 Launching a Tool

Once you have selected a target server, click once on any button in the toolbar to
launch a tool on that target. You can launch as many instances of a tool as you like,
even attached to the same target. For instance, you may find it convenient to have
one instance per application task of CrossWind, or to run different shells for
different kinds of interaction.

You can also launch many of the Tornado tools from a UNIX shell (or shell script),
specifying the target name as an argument. See the chapter that describes each tool
for more information.

Tornado 2.2

User’s Guide

72

3.5 Managing Target Servers

The target-server architecture of Tornado permits great flexibility, but also
introduces a number of housekeeping details to manage situations like the
following:

■ the target you need to use does not have a server running
■ other developers keep interfering with your target over the net
■ you want some other developers to have access to your target, but not

everyone

The Target menu in the Tornado Launcher offers commands that allow you to
manage these chores and related details to do with target servers. The small
buttons immediately below the menu bar provide quick access to the same
commands.

The following list describes each button and Target menu command:

Button Menu Description

Create… Define and start up a new target server. See 3.5.1 Configuring
a Target Server, p.73.

Unregister Remove the selected target server from the Tornado
registry’s list of available servers. Do not use this command
routinely. Under most circumstances, the registry
automatically removes the entry for any target server that
has been killed (for example, due to a host system crash).
This command can also be used to do so. The registry honors
the Unregister command only if the server does not respond
to the registry.

CAUTION: Even if a target server is not responsive, it is not
always appropriate to unregister it; the server may simply
be too busy to respond, or a heavy network load may be
interfering. The Unregister command reminds you of this
possibility and requests confirmation before it takes effect.
Make sure the server is really gone before you unregister it.

Reattach Reconnect the selected target server to the underlying target.
This command is rarely necessary, because target servers
attempt to reconnect automatically when required. Use this
command after turning on or connecting a target that has
been unavailable, if you want to reattach a running server
explicitly (rather than by running a tool).

3

3

Launcher

73

3.5.1 Configuring a Target Server

To use a new target, you must first ensure the host and target are connected
properly. The details are unique to each target, but 2.4.2 Networking the Host and
Target, p.25 discusses some of the issues that are frequently involved. Your BSP
also contains a target-information reference that describes what to do for that
particular target. See Help>Manuals contents>BSP Reference.

To configure and launch a target server, select Create from the Target menu, or press
the launcher’s button. The launcher displays the form shown in Figure 3-4.
Many configuration options are available, but you can often skip all the optional
parameters, specifying only the target name (and perhaps the serial device, if your
target agent is configured for the WDB serial protocol).

Each time you specify a configuration option, the Target server launch command box
near the bottom of the form is updated automatically to show the tgtsvr command
options that capture your chosen configuration. (For text fields, the command line
is updated when you select another field or press RETURN.)

Reserve Restrict a target to your own use, or share it with others. See
3.5.2 Sharing and Reserving Target Servers, p.82.

Unreserve Share a target with others. See 3.5.2 Sharing and Reserving
Target Servers, p.82.

Kill Kill the currently selected target server. CAUTION: Close any
tool sessions that use a particular target before you kill that
target server. Killing a target server does not immediately
destroy any attached tools, but the tools lose the ability to
interact with the target. There is no way to reconnect a new
target server to such orphaned tool sessions.

Reboot Re-initialize the selected target server and reboot its target.

Tornado 2.2

User’s Guide

74

The tgtsvr command is the underlying command that runs in the background for
each target server as a UNIX daemon. The text in the Target server launch command

box can be edited. Its display has the following uses:

■ You can copy the text displayed, and insert it in any UNIX shell script to
launch a target server with this configuration automatically.

■ You can use the command-line display to explore the meanings of server
options interactively, in conjunction with the tgtsvr reference documentation
(located in the online Tornado API Reference).

■ You can type tgtsvr options directly in this box. This allows you to add options
that are not generated by the dialog boxes, such as those required for
third-party back-ends.

To start a target server and save your server configuration, press the Launch button
at the bottom of the Create Target Server form.

Figure 3-4 Form: Create Target Server

Always

Required for
WDB serial

Press to start
server and
save options

connections

required

3

3

Launcher

75

If a server does not respond when you select it, kill it () and try turning on the
Verbose toggle near the middle of the Create Target Server form to display diagnostic
messages when you start it again.

Simple Server Configuration for Networked Targets

For targets with network connectivity, only one field is required. Fill in the IP
address or network name for the target, in the box headed Target name or IP address.
After filling this in, you can launch a server immediately. The launcher saves each
configuration automatically (identified with the target-server name); thus, you can
retrieve a server’s configuration later to add more options.

Simple Server Configuration for WDB Serial Targets

If your target agent is configured for the WDB serial protocol, you must specify
what UNIX device name is connected to the target, in the Serial line device box
(entering the device name automatically selects wdbserial as the back end in the
Backend list field). You must also fill in a name for the target server in the Target

name or IP address box; in this case, the name is completely arbitrary, and is used
only to identify your target server.

Specifying the serial line speed is not required if you use the default speed of 9600
bps. However, it is best to use the fastest possible line speed when controlling your
target over serial lines. Select the fastest speed your target hardware supports from
the scrolling list headed Serial line speed. (The target agent must be compiled with
the same speed selected; see Configuration for Serial Connection, p.160.)

Saved Configurations

Each time you press the Launch button, the launcher saves the server configuration.
The configuration name is the same name used to register the target server: the
contents of the Target name or IP address box, or the name specified under Target

server name, if you use this box to define a different name for your server.6

6. Data for each saved configuration is stored in a file with the same name as the configuration,
in the directory .wind/tgtsvr under your home directory.

Tornado 2.2

User’s Guide

76

The following controls are available to manage saved configurations:

Saved configurations scrolling list
Select a configuration by clicking on a server name from this list (top left of the
form). The fields of the Create Target Server form are filled in as last specified
for that server name. (The last configuration you were working with is selected
automatically when you open the form.)

Delete button
Discard any configuration you no longer need by first selecting the
configuration name, then pressing this button (in the row at the bottom of the
form).

Target-Server Action Buttons

The command buttons at the bottom of the Create Target Server form perform the
following functions (see Figure 3-4):

Help

Display reference information for tgtsvr, using your default browser.

Delete

Delete the selected configuration from the Saved configurations list.

Launch

Start a target server using the currently specified configuration, and close the
Create Target Server form.

Quit

Discard the Create Target Server form without launching a server or saving.

Target-Server Configuration Options

This section describes all the configuration options you can specify in the Create

Target Server form(Figure 3-4), in the order they appear (left to right and top to
bottom).

Saved configurations

Select a saved configuration by clicking on a server name from this list.

Target name or IP address

The network name of the target hardware for networked targets, or an
arbitrary target-server name for other targets. You must always specify this
field.

3

3

Launcher

77

Target server name

To give the target server its own name (distinct from the network name of the
target), specify the name here. If you do not fill in this box, the target server is
known by the same name as the target. Use this field to distinguish alternative
configurations of a single target.

For serial targets, this box is never necessary, because the required Target name

or IP address entry already specifies an arbitrary name for the server.

Authorized users file

To restrict this target server to a particular set of users, specify the name of a
file of authorized user IDs here. If you do not specify an authorized-users file,
any user on your network may connect to the target whenever it is not
reserved. See 3.5.2 Sharing and Reserving Target Servers, p.82 for more
discussion of the authorized-users file.

Object module format

By default, the target server deduces the object-module format by inspecting
the host-resident image of the run-time system. You can disable this by
explicitly selecting an object format from this list.

Core file

 A path on the host to an executable image corresponding to the software
running on the target. This box is optional because the target agent reports the
original path from where the executable was loaded to the server. However, if
the file is no longer in the same location on the host as when your target
downloaded it (or if host and target have different views of the file system),
you can use this box to specify where to find the image on the host.

For example, if you are using a target programmed with a vxWorks_rom.hex,
vxWorks_romCompressed.hex, or any other on-board VxWorks image, you
must use the core file option to identify the location of a vxWorks file as the
core file; otherwise the target server will not be able to identify the target
symbols.

Target I/O Redirect

Turn on this toggle to redirect the target’s standard input, output, and error. If
Virtual console is selected, target I/O is redirected to the console window.

Shell I/O Redirect

Turn on this toggle to start a console window into which the target shell’s
standard input, output, and error will be directed. (This option is only
available when Virtual console is selected.)

Tornado 2.2

User’s Guide

78

Virtual console

Turn on this toggle to display the virtual console for this target server (a
dedicated xterm where any output or input through virtual I/O channels
takes place).7 Examples in this manual that involve input and output streams
from target programs assume the target server is running with this option set.
See Virtual I/O, p.11 for a discussion of the role of the virtual console.

Console Display

The name of an X Window System display to use as a target-server virtual
console. Fill in this box with the display server name and screen number, in the
usual X Window System format hostname:N. If the Display toggle is turned on
but this box is not filled in, the virtual console appears on display 0 of the same
host that runs this target server. (The alternative display must grant
authorization for your host to use it; see your X Window System
documentation.)

No symbols

Turn on this toggle to avoid initial loading of the symbol table maintained on
the host by the target server.

All symbols

Turn on this toggle to include local symbols as well as global symbols in the
target symbol table. The default is to include only global symbols, but during
development it can be useful to see all symbols.

Target/Host symbol table synchronization

Turn on this toggle to synchronize target and host symbol tables.
Synchronizing the two symbol tables can be useful for debugging. The symbol
table synchronization facility must be included in the target image to select
this option. For more information see 4.4.3 Configuring VxWorks Components,
p.134 and the reference entry for symSyncLib.

To use symbol and module synchronization, the WIND_REGISTRY

environment variable must be set to a host name or an IP address that the
VxWorks target can access. It cannot be left as the default value, localhost.

Use portmapper

Turn on this toggle to register a target server with the RPC portmapper. While
the portmapper is not needed for Tornado 2.2, this option is included for
development environments in which both Tornado 2.2 and Tornado 1.0.1 are
in use.

7. You can also create a virtual console from any Tornado tool using Tcl, with
wtxConsoleCreate. See the online Tornado API Reference: WTX TCL API.

3

3

Launcher

79

When both releases are in use, the portmapper must be used on the following:

■ Any host running a Tornado 2.2 registry that will be accessed by any host
running Tornado 1.0.1.

■ Any host running a Tornado 2.2 target server that will be accessed by any
host running Tornado 1.0.1.

To use the portmapper when either a Tornado registry or target server is
started from the command line, the -use_portmapper option must be
included. See the registry (wtxregd) and target server (tgtsvr) reference
documentation in the online Tornado API Reference: Tornado Tools Reference for
more information.

Verbose

Turn on this toggle to display target-server status information and error
messages in a dedicated window.8

Use this display for troubleshooting. The same status and error information is
saved in ~/.wind/launchLog.servername.

Locked

Turn on this toggle to restrict this target server to your own user ID. If you do
not turn on this toggle, any authorized user may use or reserve the server after
you launch it.

TSFS Read/Write

This is the default. Click the box to change this option to read only. The default
allows you to run WindView. Because read/write also allows other users to
access your host file system, you may with to set the TSFS option for your
target server to read only when you are not using WindView.

The TSFS provides the most convenient way to boot a target over a serial
connection (see 2.6.7 Booting a Target Without a Network, p.55).

TSFS Root directory

Type the path to the files you want the target to be able to access through the
target server in the Target Server File System root box. This is where WindView
log files are saved. For example:

/usr/windview/logfiles

8. To disable the automatic display of log files by the launcher, insert “set noViewers 1” in
your ~/.wind/launch.tcl initialization file.

Tornado 2.2

User’s Guide

80

If you use the TSFS for booting a target, it is recommended that you use the
base Tornado installation directory (installDir) or the root directory (/). If you
do not do so, you must use the Core File configuration option to specify the
location of the VxWorks image (see Core file, p.77).

Memory cache size

Specify the size of the target-memory cache (either in decimal or hexadecimal).
The target server maintains a cache on the host system, in order to avoid
excessive data-transfer transactions with the target. By default, this cache can
grow up to a size of 1 MB.

A larger maximum cache size may be desirable if the memory pool used by
host tools on the target is very large, because transactions on memory outside
the cache are far slower. See Scaling the Target Agent, p.161 for more
information about the memory pool managed by the server on the target.

Disable Automatic Growth of Target Server Memory Pool

By default, when there is not enough memory in the WDB pool to satisfy an
allocation request from the target server, the WDB pool automatically grows to
accommodate the request. You can disable automatic growth by checking the
box, or by typing -noG or -noGrowth in the option box.

Backend list

If your BSP requires a special communications protocol, select the
communications protocol here. The default, wdbrpc, is suitable for targets with
IP connectivity. The standard back ends are described in Table 3-1; see also
4.7 Configuring the Target-Host Communication Interface, p.156.

Table 3-1 Communications Back Ends for Target Server

Back End Name Description

default Initially selected; implicitly selects wdbrpc.

wdbrpc Tornado WDB protocol. This back end is the default. It is the most
frequently used back end, and supports any kind of IP connection
(for example, Ethernet). Serial hardware connections are supported
by this back end if your host has SLIP. On a serial connection, this
back end supports either system-level or task-level views of the
target, depending on the target-agent configuration.

wdbserial A version of the WDB back end specialized for serial hardware
connections; does not require SLIP on the host system. This back end
supports either system-level or task-level views of the target,
depending on the target-agent configuration.

3

3

Launcher

81

Serial line speed

If you choose the wdbserial back end, use this scrolling list to specify the line
speed (in bits per second) that your target uses to communicate over its serial
line. The default speed is 9600 bps; use the highest possible speed available, in
order to maximize the host tools’ access to target information.

When you change the line speed, you must also re-compile the target agent
with WDB_TTY_BAUD defined to the same speed (Configuration for Serial
Connection, p.160).

Serial line device

If you choose the wdbserial back end, use this text box to specify the serial
device on your host that is connected to the target. The default serial device is
/dev/ttya.

Backend Timeout

How many seconds to wait for a response from the agent running on the target
system (the default is 3 seconds). This option is supported by the standard
wdbrpc, wdbserial, and netrom back ends, but may not have an effect on other
back ends.

Backend Resend

How many times to repeat a transaction if the target agent does not appear to
respond the first time. This option is supported by the standard wdbrpc,
wdbserial, and netrom back ends, but may not have an effect on other back ends.

Backend log file

Log every WDB request sent to the target agent in this file. Back ends that are
not based on WDB ignore this option. As with the Verbose toggle, a dedicated
window appears to display the log.

netRom A back end that communicates over a proprietary communications
protocol for NetROM.

wdbpipe WDB Pipe back end. The back end for VxWorks target simulators. It
supports either system-level or task-level views of the target,
depending on the configuration of the target agent.

loopback Testing back end. This back end is not useful for connecting to
targets; it is intended only to exercise the target-server daemon
during tests.

Table 3-1 Communications Back Ends for Target Server

Back End Name Description

Tornado 2.2

User’s Guide

82

Backend log file max size

The maximum size of the backend log file, in bytes. If defined, the file is limited
to the specified size and written to as a circular file. That is, when the
maximum size is reached, the file is rewritten from the beginning. If the file
initially exists, it is deleted. This means that if the target server restarts (for
example, due to a reboot), the log file will be reset.

WTX Log file

Log every WTX request sent to the target server in the specified file. If the file
exists, log messages will be appended (unless a maximum file size is set in WTX

Log file max size, in which case it is overwritten).

WTX Log file max size

The maximum size of the WTX log file, in bytes. If defined, the file is limited to
the specified size and written to as a circular file. That is, when the maximum
size is reached, the file is rewritten from the beginning. If the file initially exists,
it is deleted. This means that if the target server restarts (for example, due to a
reboot), the log file will be reset.

WTX Log file filter

Use this field to limit the amount of information written to a WTX log file.
Enter a regular expression designed to filter out specific WTX requests. Default
logging behavior may otherwise create a very large file, as all requests are
logged.

3.5.2 Sharing and Reserving Target Servers

A target server may be made available to the following classes of user:

– the user who started the server

– a single user, who may or may not have started the server

– a list of specified users

– any user9

9. Strictly speaking, there is another layer of authorization defining who is meant by “any
user”. The file installDir/.wind/userlock is a Tornado-wide authorization file, used as the
default list of authorized users for any target server without its own authorized-users file.
The format of this file is the same format described below for individual target-server autho-
rization files.

3

3

Launcher

83

When a target server is available to anyone, its status (shown in the Information

panel of the main launcher window; see Figure 3-3) is unreserved. Any user can
attach a tool to the target, and any user can also restrict its use.

When you configure a target server, you can arrange for the server to be
exclusively available to your user ID every time you launch it, by clicking the Lock

toggle in the Create Target Server form. See 3.5.1 Configuring a Target Server, p.73.
Target servers launched this way have the status locked.

If a target server is not locked by its creator, and if no one else has reserved it, you
can reserve the target server for your own use: click on Target>Reserve, or on the

launcher button. The target status becomes reserved until you release the target
with the Unreserve command (). Unreserve on a target that is not reserved has
no effect, nor does Unreserve on a target reserved or locked by someone else.

This simple reserve/unreserve locking mechanism is sufficient for many
development environments. In some organizations, however, it may be necessary
to further restrict some targets to a particular group of users. For example, a Q/A
organization may need to ensure certain targets are used only for testing, while
still using the reserve/unreserve mechanism to manage contention within the
group of testers.

To restrict a target server to a list of users, create a list of authorized users in a file.
The format for the file is the simplest possible: one user name per line. The user
names are host sign-on names, as used by system files like /etc/passwd (or its
network-wide equivalent). You can also use one special entry in the authorization
file: a plus sign + to explicitly authorize any user to connect to the target server.
(This might be useful to preserve the link between a target server and an
authorization file when access to that target need only be restricted from time to
time.)

To link an authorization file to a target server, specify the file’s full pathname in the
Authorized users file box of the Create Target Server screen (see Figure 3-4).

3.6 Tornado Central Services

Because the launcher is the control panel for Tornado, it performs a number of
support functions as well as its central mission of connecting tools and targets.

Tornado 2.2

User’s Guide

84

Through the launcher menu bar, you can do the following:

■ Authorize other developers at your site to use Tornado
■ Install new Tornado product components
■ Submit, manage, and query support requests to Wind River
■ Point your World-Wide Web browser to Tornado- and VxWorks- related news

and information on the Web

3.6.1 Support and Information

The About menu has a single command, Tornado, which displays version
information for Tornado. This menu appears in all Tornado graphical tools.

The launcher’s Support and Info menus are a gateway to Wind River’s support,
training, and sales services. See 1.6 Customer Services, p.12 for more information on
these launcher facilities.

3.6.2 Administrative Activities

The Admin menu provides a number of conveniences to automate Tornado
administrative chores to the extent possible. The commands in this menu cover
installing updates or optional products and managing your site’s global
authorization file for Tornado.

Install CD

Begins by prompting you to mount a Tornado CD-ROM. Locate your
installation keys and mount the CD-ROM as explained in the Tornado Getting
Started Guide. The launcher runs the installation program for you.

FTP WRS

Wind River maintains a small archive of auxiliary software and useful
information available over the Internet by FTP. Click on this command to
connect to the Wind River FTP server. Follow the usual conventions for
anonymous FTP transfers: log in as anonymous, and provide your e-mail
address at the password: prompt.

Authorize

The Authorize command brings up an editor10 on the file
installDir/.wind/userlock. This file controls overall access to Tornado host
tools at your site. This file employs the same simple conventions described in

10. The editor specified in your EDITOR environment variable, or vi.

3

3

Launcher

85

3.5.2 Sharing and Reserving Target Servers, p.82 for a file to restrict a target server
to a list of users: the character + to indicate that all users are authorized, or the
sign-on names of authorized users, one on each line.

3.7 Tcl: Customizing the Launcher

All Tornado tools can be altered to your needs (and to your taste) by adding your
own Tcl code. This section has a few examples of launcher customization.

When you consider modifications to the launcher, you may want to read related
code in the standard form of the launcher. The Tcl code implementing the launcher
is organized as follows:

installDir/host/resource/tcl/Launch.tcl
The main launcher implementation file.

installDir/host/resource/tcl/app-config/Launch/01*.tcl
Supporting procedures and definitions (grouped into separate files by related
functionality) for the launcher.

installDir/host/resource/tcl/app-config/all/host.tcl
Defaults for global settings; may be redefined for specific host types.

installDir/host/resource/tcl/app-config/all/hostType.tcl
Host-specific overrides for global settings.

3.7.1 Tcl: Launcher Initialization File

When the launcher starts up, it looks for a file called .wind/launch.tcl in your home
directory. If that file is present, its contents are read with the Tcl source command

NOTE: If you are not familiar with Tcl, you may want to postpone reading this
section (and other sections in this book beginning with “Tcl:”) until you have a
chance to read C. Tcl (and perhaps some of the Tcl references recommended there).

An important reference for these examples, even if you are familiar with Tcl, is the
GUI Tcl Library reference available online from Help>Manuals contents>Tornado API

Reference. It describes the building blocks for the user interface (GUI) shared by the
Tornado tools.

Tornado 2.2

User’s Guide

86

before the launcher puts up its initial display. Use this file to collect your custom
modifications, or to incorporate shared customizations from a central repository of
Tcl extensions at your site.

3.7.2 Tcl: Launcher Customization Examples

When you begin experimenting with any new system (or language), errors are to
be expected. Any error messages from your launcher Tcl initialization code are
captured by the launcher, and a summary of the error is displayed in a window
similar to Figure 3-5.

To see the full Tcl error display, click on the Details button in the error display; click
Continue to dismiss the display.

The examples in this section use the Tcl extensions summarized in Table 3-2. For
detailed descriptions of these and other Tornado graphical building blocks in Tcl,
see Help>Manuals contents>Tornado API Reference>GUI Tcl Library.

Re-Reading Tcl Initialization

Because the launcher has no direct command-line access to Tcl, it is not as
convenient as other tools (such as WindSh or CrossWind) for experimentation with
Tcl extensions. The following example makes things a little easier: it adds a

Figure 3-5 Tcl Error Display

Table 3-2 Tornado UI Tcl Extensions Used in Launcher Customization Examples

Tcl Extension Description

noticePost Display a popup notice or a file selector.

menuButtonCreate Add a command to an existing menu.

3

3

Launcher

87

command to the File menu that reloads the .wind/launch.tcl file. This avoids
having to Quit the launcher and invoke it again, every time you change launcher
customization.

Example 3-1 Tcl Reinitialization

"Reinitialize" command for Launcher.
Adds item to File menu; calls Tcl "source" primitive directly.

menuButtonCreate File "Re-Read Tcl" T {
source ~/.wind/launch.tcl

}

Quit Launcher Without Prompting

When you select the Quit command from the launcher File menu, the launcher
displays the short form shown in Figure 3-6 to make sure you selected Quit

intentionally.

This sort of safeguard is nearly universal in graphical applications, but some
people find it annoying. If you would prefer to take your chances with an
occasional unintended shutdown, for the sake of having the launcher obey you
unquestioningly, this example may be of interest. It shows how to redefine the Quit

command to shut down the launcher without first displaying a query.

To discover what procedure implements the Quit command, examine the launcher
definitions in installDir/host/resource/tcl/Launch.tcl. Searching there for the string
“Quit” leads us to the following menuButtonCreate invocation, which shows that
the procedure to redefine is called launchQuit:

menuButtonCreate File Quit Q {launchQuit}

Figure 3-6 Form: Quit Confirmation

Tornado 2.2

User’s Guide

88

Example 3-2 Alternate Quit Definition

The following redefinition of the launchQuit procedure eliminates the safeguard
against leaving the launcher accidentally:

###
#
launchQuit - abandon the launcher immediately
#
This routine is a replacement for the launchQuit that comes with the
launcher; it runs when Quit is selected from the File menu in place of
the standard launchQuit, to avoid calling a confirmation dialog.
#
SYNOPSIS:
launchQuit
#
RETURNS: N/A
#
ERRORS: N/A
#

proc launchQuit {} {
exit

}

An Open Command for the File Menu

Because editing files is a common development activity, it may be useful to invoke
an editor from the launcher. This example defines a File>Open command to run the
editor specified by the EDITOR environment variable. The example is based on the
file selector built into the noticePost Tcl extension.

The code in this example collects the launcher initialization (adding commands to
the File menu, both for this example and for Example 3-1) in an initialization
procedure as recommended in D. Coding Conventions. In the example, the launcher
executes launchExtInit, which adds entries to the File menu. Of these two new
entries, Open calls launchFileOpen, which in turn calls launchEdit if the user
selects a file to open.

Example 3-3 Open Command and Customized File Menu Initialization

###
#
#
launchExtInit - collects personal launcher initialization
#
This routine is invoked when the launcher begins executing, and collects
all the initialization (other than global and proc definitions)
defined in this file.

3

3

Launcher

89

#
SYNOPSIS:
launchExtInit
#
RETURNS: N/A
#
ERRORS: N/A
#

proc launchExtInit {} {

"Reinitialize" command for Launcher.
Adds item to File menu; calls Tcl "source" primitive directly.

menuButtonCreate File "Re-Read Tcl" T {
source ~/.wind/launch.tcl

}

Add "Open" command to File menu

menuButtonCreate File "Open..." O {
launchFileOpen ;# defined in launch.tcl

}
}

###
#
#
launchFileOpen - called from File menu to run an editor on an arbitrary
file
#
This routine supports an Open command added to the File menu. It prompts
the user for a filename; if the user selects one, it calls launchEdit to
edit the file.
#
SYNOPSIS:
launchFileOpen
#
RETURNS: N/A
#
ERRORS: N/A
#

proc launchFileOpen {} {
set result [noticePost fileselect "Open file" Open "*"]
if {$result != ""} {

launchEdit $result
}

}

###
#
#
launchEdit - run system editor on specified file
#
This routine runs the system editor (as specified in the environment

Tornado 2.2

User’s Guide

90

variable EDITOR, or vi if EDITOR is undefined) on the file specified
in its argument.
#
SYNOPSIS:
launchEdit fname
#
PARAMETERS:
fname: the name of a file to edit
#
RETURNS: N/A
#
ERRORS: N/A
#

proc launchEdit {fname} {

we need to examine environment variables

global env

if { ([file readable $fname] && ![file isdirectory $fname]) ||
 ([file writable [file dirname $fname]] && ![file exists $fname])

 } then {

 # We have an editable file
 # Use the EDITOR environment variable, with vi default

 if [info exists env(EDITOR)] {
 set editor $env(EDITOR)

 } else {
 set editor vi

 }

 if [string match "emacsc*" $editor] {

 # looks like emacsclient. Don't run an xterm; just put this
 # in the background.

 exec $editor $fname &
 } else {

 # Run an xterm with the editor in it.

 exec xterm -e $editor $fname &
 }

 } else {

 # fname was unreadable or a directory

 noticePost info "Cannot open: <<$fname>>"
 }

}

###
#
#

3

3

Launcher

91

launch.tcl - initialization for private extensions to launcher
#
The following line executes when the launcher begins execution; it
calls all private launcher extensions defined in this file.
#

launchExtInit

Tornado 2.2

User’s Guide

92

93

4
Projects

4.1 Introduction

The project facility is a key element of the Tornado development environment. It
provides graphical and automated mechanisms for creating applications that can
be downloaded to VxWorks, for configuring VxWorks with selected features, and
for creating applications that can be linked with a VxWorks image and started
when the target system boots. The project facility provides mechanisms for:

■ Adding application initialization routines to VxWorks.

■ Organizing the files that make up a project.

■ Grouping related projects into a workspace.

■ Customizing and scaling VxWorks.

■ Defining varied sets of build options.

■ Building applications and VxWorks images.

■ Downloading application objects to the target.

NOTE: For a tutorial introduction to the project facility and its use with the
integrated version of the VxWorks target simulator and other Tornado tools, see
the Tornado Getting Started Guide.

Tornado 2.2

User’s Guide

94

Terminology

There are several key terms that you must understand before you can use the
project facility documentation effectively:

Downloadable application
A downloadable application consists of one or more relocateable object
modules,1 which can be downloaded and dynamically linked to VxWorks, and
then started from the shell or debugger. A novel aspect of the Tornado

! WARNING: Use of the project facility for configuring and building applications is
largely independent of the methods used prior to Tornado 2.x. (These methods
included manually editing the configuration files config.h or configAll.h, while
the project tool uses .cdf files). The project facility provides the recommended and
simpler means for configuring and building, although the configuration file
method may still be used (see 5. Command-Line Configuration and Build). To avoid
confusion and errors, the two methods should rarely be used together for the same
project.

One exception is for any configuration macro that is not accessible through the
project facility GUI (which may be the case, for example, for some BSP driver
parameters). You can use a Find Object dialog box to determine if a macro is
accessible or not (see Finding VxWorks Components and Configuration Macros, p.136).
If it is not accessible through the GUI, a configuration file must be edited, and the
project facility will implement the change in the subsequent build.

The order of precedence for determining configuration is (in descending order):

project facility
config.h
configAll.h

For any macro that is exposed through the project facility GUI, changes made after
creation of a project in either of the configuration files will not appear in the project.

A second exception may be building a project based on a BSP. If you have
customized your BSP by modifying config.h and other configuration files, you can
convert it to a project and combine it with your application in the project facility.
See 5.7 Building Projects From a BSP, p.214.

In general, changes to header files in the BSP or the BSP makefile are only carried
over to projects by recreating the projects. However, changes to .c files are
automatically picked up by existing projects.

4

4

Projects

95

development environment is the dynamic loader, which allows objects to be
loaded onto a running system. This provides much faster debug cycles
compared with having to rebuild and re-link the entire operating system. A
downloadable application can consist of a single file containing a simple “hello
world” routine, or a complex application consisting of many files and modules
that are partially linked as a single object (which is created automatically by
the project facility as projectName.out).

Bootable application
A bootable application consists of an application linked to a VxWorks image.
The VxWorks image can be configured by including and excluding
components of the operating system, as well as by resetting operating system
parameters. A bootable application starts when the target is booted.

Project
A project consists of the source code files, build settings, and binaries that are
used to create a downloadable application or a bootable application. The
project facility provides a simple means of defining, modifying, and
maintaining a variety of build options for each project. Each project requires
its own directory.

When you first create a project, you define it as either a downloadable
application or a bootable application. In this context, custom-configured
VxWorks images can be considered bootable applications.

Workspace
A workspace is a logical and graphical “container” for one or more projects. It
provides you with a useful means for working with related material, such as
associating the downloadable application modules, VxWorks images, and
bootable applications that are developed for a given product; or sharing
projects amongst different developers and products; and so on.

Component
A component is a VxWorks facility that can be built into, or excluded from, a
custom version of VxWorks or a bootable application. Many components have
parameters that can be reset to suit the needs of an application. For example,
various file system components can be included in, or excluded from,
VxWorks; and they each include a parameter that defines the maximum
number of open files.

1. The text and data sections of a relocateable object module are in transitory form. Because of
the nature of a cross-development environment, some addresses cannot be known at time
of compilation. These sections are modified (relocated or linked) by the Tornado
object-module loader when it inserts the modules into the target system.

Tornado 2.2

User’s Guide

96

Toolchain
A toolchain is a set of cross-development tools used to build applications for a
specific target processor. The default toolchains provided with Tornado are
based on the GNU preprocessor, compiler, assembler, and linker (see the GNU
ToolKit User’s Guide) except for the ColdFire architecture. ColdFire uses the
Diab toolchain. Diab is also available as an optional product for all
architectures except Pentium and 68K. In addition, many third-party
toolchains are also available. The tool options are exposed to the user through
various elements of the project facility GUI.

BSP
A Board Support Package (BSP) consists primarily of the hardware-specific
VxWorks code for a particular target board. A BSP includes facilities for
hardware initialization, interrupt handling and generation, hardware clock
and timer management, mapping of local and bus memory space, and so on.

Project Facility GUI

The main components of the project facility GUI are:

■ A project selection window, which allows you to begin creation of a new
project, or open an existing project.

■ An application wizard that guides you through creation of a new project.

■ A workspace window, which provides you with a view of projects, and the
files, VxWorks components, and build options that make them up. The
workspace window also provides access to commands for adding and deleting
project files, creating new projects, configuring VxWorks components,
defining builds, downloading object files, and so on.

■ A build toolbar, which provides access to all the major build commands.

■ A target list, which allows you to specify the same target servers in the
workspace that are available in the launcher.

As its name implies, the Workspace window provides the framework for the project
facility. The window displays information about projects files, VxWorks
components (if any), and build options in three tabbed views: Files, VxWorks, and
Builds (Figure 4-1).

4

4

Projects

97

The workspace allows you to:

■ Scale and customize VxWorks by adding and deleting components, as well as
display component dependencies and view object sizes.

■ Display information about the files, VxWorks components, and build options
that make up a project, or set of projects.

■ Add, open for editing, compile, and delete source code files.

■ Download applications to the target.

■ Specify and modify one or more builds for a project, display detailed build
information, and modify build options.

■ Add, delete, rename, or build a project.

A context-sensitive menu is available in each of the workspace views. A
right-mouse click displays the menu. The first section of the menu provides
commands relevant to the GUI object you have selected. The second section
displays commands relevant to the current page of the window. And the third
section displays global commands that are relevant to the entire workspace
(Figure 4-2).

Figure 4-1 Workspace Window Views: Files, VxWorks, and Builds

Tornado 2.2

User’s Guide

98

Many of the pop-up menu options are also available under the File, Project, and
Build menus.

Tornado will use your default editor. For information about using an alternate
editor, integrating configuration management tools (such as ClearCase) with the
project facility, and other customization options, see 11. Customization.

Workspace Icons

As you expand the tree structure in each workspace pane, the icons by each tree
element tell you what it is or what it contains.

Figure 4-2 Workspace Window Pop-up Menu

Table 4-1 Workspace Icons

Icon Location Description

All panes Workspace

Files and Builds

panes
Downloadable application

4

4

Projects

99

4.2 Planning Your Projects

This section explains the steps necessary to get your product development
underway. When you finish, you will be able to employ the features of the Tornado
cross-development environment to their greatest utility.

To achieve full project facility support from Tornado, you will need to:

■ Obtain or create a functioning BSP.
■ Create a project from this BSP.
■ Add your application code to this project, or to another in the same workspace.
■ Create a new boot image (may not be required).

4.2.1 Getting a Functional BSP

To get a functioning BSP, you can:

■ Use a Wind River- or third-party-supplied BSP (this includes the integrated or
optional simulator).

■ Create your own custom BSP to support custom hardware.

All panes Bootable system

VxWorks pane Component folder

VxWorks pane Selection folder

VxWorks pane Component

Builds pane Build specification

Files pane Source or object folder

Files pane Source file

Table 4-1 Workspace Icons

Icon Location Description

Tornado 2.2

User’s Guide

100

Using a Wind River or Third-Party BSP

Tornado 2.2 BSP

If your BSP was included with Tornado 2.2, you can create a bootable project from
it directly. Use the project wizard for a bootable application to create a project
based on your BSP or the pre-built project (bspName_vx.wpj) which is shipped
with every Wind River-supplied BSP.

Tornado 2.0 BSP

For information on migrating a Tornado 2.0-compliant BSP to Tornado 2.2, see the
Tornado Migration Guide.

Third-party or Tornado 1.0.1 BSP

If your BSP came from a third party or from Tornado 1.0.1, see the Tornado
Migration Guide or the Tornado 2.0 documentation.

You may wish to enable the Tornado 1.0.1 compatibility mode, which exposes
menu items to execute BSP builds in a BSP directory. (See 11. Customization.) Once
your BSP builds, you may proceed to create a bootable project from it immediately.
See 4.5 Creating a Bootable Application, p.147.

Using a Custom BSP For Custom Hardware

Creating a BSP

If you need to create your own BSP, refer to the VxWorks BSP Developer’s Guide (a
separate product available from Wind River). If you wish to develop the BSP and
the application code in parallel, you may wish to begin application development
on the VxWorks simulator. See Using the Simulator BSP, p.101.

Using a Pre-Existing BSP With the Project Facility

If you already have a custom BSP that is Tornado 2.0 compliant, see the Tornado
Migration Guide for information on migrating from 2.0 to 2.2.

If you already have a custom BSP but it is not Tornado 2.0 compliant, you will need
to modify it to conform to the guidelines outlined in the VxWorks BSP Developer’s
Guide in order to use it with the Tornado project facility. Once you have modified
it, verify that it builds properly before creating a project for it.

4

4

Projects

101

Using a BSP Outside the Project Facility

You may still use a non-compliant BSP by managing its customization and
configuration manually. For information on using manual methods, see
5. Command-Line Configuration and Build. You can still create downloadable projects
to hold your application code and download them to a target booted with a
non-compliant BSP.

Using the Simulator BSP

You can use the target simulator if you want to develop the BSP and application
code for your product in parallel, or if your target hardware is not yet ready. The
integrated simulator contains default VxWorks functionality sufficient for
supporting many applications. It does not have networking support; for this you
can use the full simulator (VxSim), which is available as an optional product.

4.2.2 Creating a Bootable Project Based On a BSP

Using the VxWorks Simulator

Integrated Simulator With Basic Functionality

If you are using the integrated simulator and do not need to customize it by adding
or removing VxWorks functionality, you need not create a bootable project until
you have your production BSP ready.

Integrated Simulator With Added Functionality

If you need additional VxWorks functionality, you must create a bootable project
immediately. Use the project wizard for a bootable application. You will use a
different base depending on what additional functionality you need.

■ No networking: If you do not need networking to support your application,
you can create a bootable project based on the integrated simulator, configure
it, and build it.

NOTE: If you do not make your BSP Tornado 2.0 compliant, Tornado will not be
able to provide project-based support for customizing, configuring, or building it.

Tornado 2.2

User’s Guide

102

■ Networking: If you need network support, you will need the VxWorks full
simulator (VxSim), which can be purchased from Wind River as an optional
product.

Creating a project and configuring it is identical for both the integrated and full
simulator.

Base this project on the simulator BSP (either the integrated simulator or the
optional product), or the pre-built, default simulator project (simhost_vx.wpj. At
this point, your project builds an image identical to the integrated simulator as you
received it from Wind River. Now add any components you need using the
VxWorks tab in the Workspace view (see 4.4.3 Configuring VxWorks Components,
p.134).

Using a Real Target

Create a bootable project using the project wizard. Base the project on your BSP. If
project creation fails, your BSP is probably not Tornado 2.2-compliant. See the
VxWorks BSP Developer’s Guide for information on how to make it compliant.

Image Size Considerations

Use size information to make sure your image fits in your target memory space.
The approximate image size information displayed in the Component Add Dialog

reports the size of the VxWorks code in your configuration and the increase or
decrease resulting from adding or removing components. This size is smaller than
your actual image size, as it does not reflect your BSP support code or any
application code you will be adding.

4.2.3 Developing and Adding Your Application Source Code

Adding Existing Application Source Code

Use Your Existing Build System

If you already have a working application, or if your application is very large, you
may want to use your own build system. You can use the project facility to link the
output of an external build into VxWorks and even start external builds (see
External Build System, p.106).

4

4

Projects

103

Alternatively, you may want to use the project facility to configure your VxWorks
image and produce a makefile. You can build your application outside Tornado
and call the project facility-generated makefile from your build to produce a final
image.

Integrate It With Your Bootable Project

Use this approach if your edit-compile-reboot cycle is relatively quick. Add the
files to the bootable project using the Add File(s) to Project context menu available in
the File tab of the Workspace view. Then edit the VxWorks initialization file,
usrAppInit.c, adding calls to your application’s initialization and startup routines.
The VxWorks application initialization component is required, and is included by
default. See 4.4 Creating a Custom VxWorks Image, p.127 and 4.5 Creating a Bootable
Application, p.147.

Create a Separate, Downloadable Project For Your Code

Use this method if rebooting your target is inconvenient, and if your code is
modular enough that it can be added to the running target without interrupting
execution or if you have the means to start and stop your application. Create a
downloadable project using the Downloadable Project Wizard. Add application files
with the Add File(s) to Project context menu. Build your downloadable project. Boot
the target using the appropriate image described in 4.2.2 Creating a Bootable Project
Based On a BSP, p.101. Download the partially linked and munched .out file
produced by your project.2 See 4.3 Creating a Downloadable Application, p.112.

Creating New Application Source Code

Use File>New from the main Tornado menu bar to create a new file and specify the
project into which it should be added.

Building With Custom Build Rules

If some of your source files require processing with tools not included with
Tornado, you may want to add custom build rules to process them.

2. For information about munching, see the VxWorks Programmer’s Guide: C++ Development.

Tornado 2.2

User’s Guide

104

You have two choices:

■ Create a build rule specific to the source file

This ensures that the custom rule will be invoked only to process the specified
source file. For example, you may wish to add a custom rule to process a yacc
file into a C source file. To create a custom rule, see 4.6 Working With Build
Specifications, p.148.

■ Create a custom rule for the build

A build-specific custom rule can invoke any command and reference any build
dependencies. The rule can be selected as the current build rule to build the
desired output explicitly or, if the Invoke this rule before building Project box is
checked, it will be built implicitly prior to building any of the built-in rules
(such as vxWorks, or project.a) for the project.

Developing Architecture-Independent Applications

The techniques for developing applications that are independent of target
architecture are described below.

Migrating Files

You may migrate application source files between any two projects that coexist in
the same workspace. Use the Add File(s) from Project context menu from the File tab.
If you have defined custom build rules for any of your source files, you will have
to replicate them in the destination project by hand.

NOTE: If you migrate source files from one project to another, you will need to
recreate the custom build rules for these files in the new project.

NOTE: Custom build rules cannot be copied between projects. If you will use
either form of custom build rules, and know that you will be migrating files
between projects, you may wish to put files with similar build settings into
separate projects. These projects can then be built and linked together. For more
information, see the hierarchical sub-project model discussed in Sub-Projects,
p.106.

4

4

Projects

105

Creating Sub-Projects

If you have a number of files that must be built with special build rules or flags, it
may be easier to create a new project to build these particular files, and then build
that project as a sub-project of your main project. For more information, see
Structuring Your Projects, p.105.

Using Configuration Management

Tornado provides basic configuration management integration. To enable and
configure it, see 11. Customization.

Configuring VxWorks

VxWorks must be configured to support the calls your application makes to it, or
you will not be able to link your image. If your BSP provides a “bare-bones”
VxWorks configuration, you may wish to use Project>Auto Scale to detect and add
most of the VxWorks functionality you require. Auto Scale will compile your code,
analyze the symbols in your object modules, map them to components, and offer
to include those components. There may be some components that Auto Scale does
not detect. If you Auto Scale, build, and still get link errors, you will need to add the
additional components from the workspace VxWorks tab. For information on using
Auto Scale, see 4.5.1 Using Automated Scaling of VxWorks, p.147.

Structuring Your Projects

You have three choices in how you organize the complete build of your application
into VxWorks.

Single Project

Add all your application source code to one bootable project. This method is the
simplest. All your source code is added to the bootable project, which already
contains the BSP code and is linked to the VxWorks libraries.

! CAUTION: It is important that you only migrate application source files between
projects. BSP-specific files, and those synthesized by Tornado for your project,
cannot be migrated. Only Tornado’s project wizards can be used to create or
reference these files.

Tornado 2.2

User’s Guide

106

External Build System

The Tornado workspace is very convenient for configuring VxWorks, building
small applications, or building, downloading, and debugging small parts of a large
application. It is not designed to handle a complete build of a large, modular
application, which often requires sub-projects (though this can be achieved using
custom rules and macros). For this reason, you may want to use an external build
system to build your application, then link it to VxWorks using the
EXTRA_MODULES or LIBS macros. You can write a custom rule to invoke your
external build process; see Sub-Projects, p.106. Alternatively, your build can kick off
a VxWorks build and link your application code as the final step.

Sub-Projects

Sub-projects allow you to create as many projects as are needed to hierarchically
organize and build your product. This approach accommodates existing
hierarchically-organized source code. You will want to use this approach if:

– some source files need different build settings or custom rules.
– a split of your code is desirable for organizational or structural reasons.

Tornado has only limited support for managing and building these hierarchical
sub-projects. You must use macros and custom rules to create the hierarchy and
structure the builds manually. For directions on how to organize your application
code into sub-projects, see Example 1, below.

Example 1 Using Sub-Projects

This example illustrates how a master project can be used to build several
sub-projects. The master project builds the sub-projects as .pl (partially linked)
modules. Then they are linked with the master project and munched (integrated
with code to call C++ static constructors and destructors) in the final build step.

In this example, the master project is a bootable project, and there are two
sub-projects that are downloadable projects. However, a downloadable project can
also serve as a master project. You could use this approach if you wanted to build
several downloadable sub-projects and link them into a single downloadable
project. You could also use this approach to integrate an external application build
into VxWorks. You need to modify the custom rules in the example to invoke your
external build (for example, using make).

Assumptions:

■ The bootable project is called Master and resides in a directory of the same
name. It contains a build specification called default based on the simpc

(Windows host simulator) BSP.

4

4

Projects

107

■ The two downloadable projects are called Project1 and Project2, and they also
reside in directories of the same name. Each contains a build specification
called SIMNTgnu based on the PC simulator toolchain.

■ Project1 contains a C source file called foo.c, containing a function called
Test().

■ Project2 contains a C source file goo.c, which in turn contains a function called
Test2().

■ Test(), which calls Test2(), is the main application entry point.

■ Dependencies have been generated for each of the two downloadable projects,
and they have been saved. This creates makefiles for them. Without the
makefiles, the build fails.

Go first to the Build tab. Expand the project Master. Double-click on the build
specification default to display the build property sheet. In the build property sheet,
select the Rules page.

You enter a new rule by filling in the Target, Dependencies, and Commands fields of
the Create or Edit Rule dialog box. For example, to add the clean rule, you type clean
in the Target field, CleanProject1 CleanProject2 vxWorks in the Dependencies field,
and nothing in the Commands field. For each rule, you must also uncheck the Invoke

this rule before building project checkbox.

The required rules are listed below in makefile syntax. The first example shows the
syntax. Fill in the appropriate boxes for each rule.

SYNTAX:
target : dependencies

commands

RULES:
../../Project1/SIMNTgnu :

- mkdir $@

Master : ../../Project1/SIMNTgnu/Project1.pl
../../Project2/SIMNTgnu/Project2.pl VxWorks

../../Project1/SIMNTgnu/Project1.pl : ../../Project1/SIMNTgnu
wind_force_make

$(MAKE) -C ../../Project1/SIMNTgnu -f ../../Project1/Makefile
BUILD_SPEC=SIMNTgnu Project1.pl

../../Project2/SIMNTgnu :
- mkdir $@

../../Project2/SIMNTgnu/Project2.pl : ../../Project2/SIMNTgnu
wind_force_make

$(MAKE) -C ../../Project2/SIMNTgnu -f ../../Project2/Makefile

Tornado 2.2

User’s Guide

108

BUILD_SPEC=SIMNTgnu Project2.pl

CleanProject1 : ../../Project1/SIMNTgnu
$(MAKE) -C ../../Project1/SIMNTgnu -f ../../Project1/Makefile

BUILD_SPEC=SIMNTgnu clean

CleanProject2 : ../../Project2/SIMNTgnu
$(MAKE) -C ../../Project2/SIMNTgnu -f ../../Project2/Makefile

BUILD_SPEC=SIMNTgnu clean

clean : CleanProject1 CleanProject2

If you wish your rules to be portable between architectures, substitute
(CPU)(TOOL) for SMNTgnu.

In the Rules pane, set the default build rule for project Master to be the rule Master.
Next, in the Build pane, in the MACROS tab for project Master, append to the
EXTRA_MODULES macro “../../Project1/SIMNTgnu/Project1.pl” and
“../../Project2/SIMNTgnu/Project2.pl” and click the Add/Set button.

Add to the source file usrAppInit.c, in project Master, a function prototype for, and
a call to, the function Test():

void Test(void);

void usrAppInit (void)
{
#ifdef USER_APPL_INIT
USER_APPL_INIT; /* for backwards compatibility */
#endif

/* add application specific code here */
Test();
}

When you build Master, all three will be built, munched, and linked into one
bootable image. (For information on munching, see the VxWorks Programmer’s
Guide: C++ Development.)

! CAUTION: The clean rule must have the correct case, and it cannot include any
commands. In this example, CleanProject1 and CleanProject2 are added as
dependencies to the default clean rule for VxWorks. The clean rule ensures that the
ReBuild All command rebuilds Project1, Project2, and VxWorks.

NOTE: You can use PRJ_LIBS to link extra modules to downloadable projects, in
the same way that EXTRA_MODULES is used for bootable projects.

4

4

Projects

109

To modify this example to integrate an external application build system, you
could, for instance:

■ Replace all instances of Project1.pl with the partial link product of your
external application build.

■ Replace the Project2.pl rule with a rule appropriate for starting your external
application build.

Example 4-2 Avoiding Absolute Paths

One problem that arises from using a version control system is that different users
may extract projects and source files to different locations (for example, in Visual
SourceSafe, or CVS), or map views to different drive letters (Clearcase on
Windows). It helps greatly if projects do not have any absolute paths written into
them.

If source files or subprojects are in a directory which is at the same directory level
as the parent project directory or deeper, they are recorded in the parent project file
with a path relative to the parent project directory. Organizing your source files
and projects in this way is recommended to avoid absolute paths in project files
and makefiles.

If you cannot organize your source files and projects in this way, we provide two
environment variables to allow you to define the root of your source directory tree
or your project directory tree: WIND_SOURCE_BASE and WIND_PROJ_BASE.

Below we give some examples showing how to avoid absolute paths to source files
or to sub-projects.

1. Avoiding absolute paths to source files

Suppose your project is in directory t:\source_root\myproj and your source
files are organized as follows:

t:\source_root\myproj\foo1.c
t:\source_root\src\foo2.c
t:\source_root\myproj\src\foo3.c

NOTE: The sub-project objects in the example (Project1.pl and Project2.pl) need
not have been generated by Tornado downloadable projects. They could also have
been the result of an external build system.

Tornado 2.2

User’s Guide

110

Your project will contain no absolute paths. Instead, the above files will be
recorded in the project file as follows:

$(PRJ_DIR)/foo1.c
$(PRJ_DIR)/../src/foo2.c
$(PRJ_DIR)/src/foo3.c

Organizing your source files and projects in any of these ways is the
recommended procedure for avoiding absolute paths in project files and
makefiles.

If you cannot organize your source files and projects in one of these ways, the
WIND_SOURCE_BASE environment variable allows you to define the root of
your source directory tree. To illustrate the use of WIND_SOURCE_BASE,
assume you wish to add the file:

t:\other_source_root\goo.c

If WIND_SOURCE_BASE is not defined, it appears in the project file with an
absolute path (we do not support $(PRJ_DIR)/../../). However, before you add
the file, you can use Tools->Options->Workspace to define:

WIND_SOURCE_BASE = t:\other_source_root

Then t:\other_source_roo\goo.c is recorded in the project file as:

$(WIND_SOURCE_BASE)/goo.c

The major drawback to the WIND_SOURCE_BASE variable is that all users of
myproj must have WIND_SOURCE_BASE defined or the workspace cannot
find goo.c.

2. Avoiding absolute paths to sub-projects

This example refers to a master project called master and various sub projects
called sub1, sub2,... The master project could be a bootable project and the
sub-projects could refer to external build systems or downloadable projects.

Assume the master project is in directory t:\prj_root\master and your
sub-projects are organized as follows:

t:\prj_root\sub1
t:\prj_root\master\sub2
t:\prj_root\subprojects\sub3
t:\prj_root\master\subprojects\sub4

4

4

Projects

111

In this case, your master project will contain no absolute paths. Instead, the
above directories will be recorded in the master project file as follows:

$(PRJ_DIR)/../sub1
$(PRJ_DIR)/sub2
$(PRJ_DIR)/../subprojects/sub3
$(PRJ_DIR)/subprojects/sub4

Organizing your projects in any of the above ways is the recommended
procedure for avoiding absolute paths in project files and makefiles.

If you cannot organize your projects in any of these ways, we provide the
WIND_PROJ_BASE environment variable to allow you to define the root of
your project directory tree. To illustrate the use of WIND_PROJ_BASE, assume
you wish to add the project:

t:\other_prj_root\sub5

If WIND_PROJ_BASE is not defined, then it appears in the master project file
with an absolute path (we do not support $(PRJ_DIR)/../../). However, before
you add the project you could use Tools->Options->Workspace to define:

WIND_PROJ_BASE=t:\other_prj_root

Now when you add t:\other_prj_root\sub5, this sub-project will be recorded
in the master project file as:

$(WIND_PROJ_BASE)/sub5

The major drawback to the WIND_PROJ_BASE variable is that all users of the
master project have to define WIND_PROJ_BASE, or the workspace is unable
to find sub5.

NOTE: WIND_SOURCE_BASE and WIND_PROJ_BASE must be set before a source
file is added or the variable is not recorded in the file path. The property page
always reflects the path from which a source file was originally loaded, not the
current path calculated from WIND_SOURCE_BASE (if it has changed). The build
always uses the correct value, but the source editor launches against the stale copy
of the file. To avoid confusion, reload the workspace whenever you change
WIND_SOURCE_BASE and WIND_PROJ_BASE.

Tornado 2.2

User’s Guide

112

4.3 Creating a Downloadable Application

A downloadable application is a collection of relocateable object modules that can
be downloaded and dynamically linked to VxWorks, and started from the shell or
debugger. A downloadable application can consist of a single “hello world”
routine or a complex application.

To create a downloadable application, you must:

1. Create a project for a downloadable application.

2. Write your application, or use an existing one.

3. Add the application files to the project.

4. Build the project.

You can then download the object module(s) to the target system and run the
application.

4.3.1 Creating a Project for a Downloadable Application

All work that you do with the project facility, whether a downloadable application,
a customized version of VxWorks, or a bootable application, takes place in the
context of a project.

Open a project workspace by clicking the Project button in the Tornado Launch

window. If the Create Project or Open Workspace window is open (the default when
you first open the Tornado Project window3), click the New tab. Then choose the
selection for a downloadable application, and click OK (Figure 4-3).

The application wizard appears (Figure 4-4). This wizard is a tool that guides you
through the steps of creating a new project.

First, enter the full directory path and name of the directory you want to use for
the project (only one project is allowed in a directory), and enter the project name.
It is usually most convenient to use the same name for the directory and project,
but it is not required.

3. You can modify the default behavior by un-checking the Show this window on startup box
at the bottom of the window.

4

4

Projects

113

You may also enter a description of the project, which will later appear in the
property sheet for the project. Finally, identify the workspace in which the project
should be created. Click Next to continue.

Identify the toolchain with which the downloadable application will be built. You
can do so by referencing an existing project, or by identifying a toolchain.

Figure 4-3 Create Downloadable Application

NOTE: You may create your projects anywhere on your file system. However, it is
preferable to create them outside of the Tornado directory tree to simplify the
process of future Tornado upgrades.

Figure 4-4 Application Wizard: Step One for Downloadable Application

Tornado 2.2

User’s Guide

114

Basing a project on an existing one means that the new project will reference the
same source files and build specifications as the one on which it was based. Once
the new project has been created, its build specifications can be modified without
affecting the original project, but changes to any shared source files will be
reflected in both.

For example, to create a project that will run on the target simulator, select A

toolchain and select the default option for the target simulator from the drop-down
list (Figure 4-5).4 Click Next.

The wizard confirms your selections (Figure 4-6). Click Finish.

The Workspace window appears, containing a folder for the project. Note that the
window title includes the name of the workspace (Figure 4-7).

Figure 4-5 Application Wizard: Step Two for Downloadable Application

4. The default toolchain names for target simulators take the form SIMSPARCSOLARISgnu.

NOTE: Pop-up menus provide access to all commands that can be used with the
objects displayed in, and the pages that make up, the Workspace window (use the
right mouse button).

4

4

Projects

115

Figure 4-6 Application Wizard: Step Three for Downloadable Application

Figure 4-7 Initial Workspace Window for a Downloadable Application

Tornado 2.2

User’s Guide

116

4.3.2 Project Files for a Downloadable Application

The project facility generates a set of files whose contents are based on your
selection of project type, toolchain, build options, and build configurations.
During typical use of the project facility you need not be concerned with these files,
except to avoid accidental deletion, to check them in or out of a source
management system, or to share your projects or workspaces with others. The files
are created in the directories you identify for the workspace and project. The files
initially created are:

projectName.wpj
Contains information about the project used for generating the project
makefile.

workspaceName.wsp
Contains information about the workspace, including which projects belong to
it.

Both of these files contain information that changes as you modify your project,
and add projects to, or delete projects from, the workspace.

When you build your application, a makefile is dynamically generated in the main
project directory, and a subdirectory is created containing the objects produced by
the build. The subdirectory is named after the selected build specification. If other
build specifications are created and used for other builds, parallel directories are
created for their objects.

4.3.3 Working With Application Files

The Files view of the Workspace window displays information about projects, and
the directories and files that make up each project (Figure 4-8).

The first level of folders in the Files view are projects. Each project folder contains:

■ Project source code files, which are added to the project by the user.

■ An Object Modules folder, which contains a list of objects that the project’s build
will produce. The list is automatically generated by the project facility.

■ An External Dependencies folder, which contains a list of make dependencies.
The list is automatically generated by the project facility.

Initially, there are only the default folders for Object Modules and External

Dependencies, and the projectName.out file. The file projectName.out is created as a
single, partially-linked module when the project is built. It comprises all of the

4

4

Projects

117

individual object modules in a project for a downloadable application, and
provides for downloading them to the target simultaneously.

Creating, Adding, and Removing Application Files

To create a new file, click File>New. Select the file type from the New dialog box.
Then select the project to which the file should be added. Finally, enter the file
name and directory, and click OK (Figure 4-9). The editor window opens, and you
can write your code and save the file.

Figure 4-8 Workspace Files View

! WARNING: Use of the projectName.out file is essential for downloading C++
modules, which require munching for proper static constructor initialization. You
should also use the projectName.out file for downloading C modules to avoid any
potential link order issues related to dynamic loading and linking.

Tornado 2.2

User’s Guide

118

Add existing files to a project by right-clicking in the Workspace window, selecting
Add Files or Add FIles from project from the pop-up menu, and then using the
associated dialog box to locate and select the file(s).

To link object files with your project, use the PRJ_LIBS macro or the Linker page of
the build specification property sheet (see Linker Options, p.154). To link library
(archive) files with your project, add the libraries to the list defined by the LIBS

macro in the Macros page of the build specification property sheet (see Makefile
Macros, p.150).

Remove files from the project by right-clicking on the file name and selecting
Remove from the pop-up menu, or by selecting the file name and pressing DELETE.

Displaying and Modifying File Properties

To display information about the properties of a file, right-click on the file name in
the Workspace window, and select Properties from the pop-up menu. The extent of
information displayed depends on the type of file and whether or not make

Figure 4-9 New File Dialog Box

! CAUTION: Adding a file to a project or removing a file from a project does not
affect its existence in the file system. The project facility does not copy, move, or
delete user source files; merely the project facility’s references to them. Removing
a file from one workspace context does not affect references to it in any others, nor
its existence on disk. However, if a file is included in more than one project or
workspace, an edit made in one context will be reflected in all. (If this behavior is
not desired, copy source files to another directory before adding them to a project.)

4

4

Projects

119

dependencies have been generated. In the case of source code, a Properties sheet for
the file appears, displaying information about make dependencies; general file
attributes such as modification date; and the associated make target, custom
dependencies, and commands used for the build process (Figure 4-10).

See Calculating Makefile Dependencies, p.120, for information about how and when
to calculate makefile dependencies. See Compiler Options, p.151 for information
about overriding default compiler options for individual files.

Opening, Saving, and Closing Files

The File and pop-up menus provide options for opening, saving, and closing files.
You can also use standard Windows-style shortcuts (such as double-clicking on a
file name to open the file in the editor).

4.3.4 Building a Downloadable Application

The project facility uses the GNU make utility to automate compiling and linking
an application.5 It automatically creates a makefile prior to building the project.
But before it can create a makefile, the makefile dependencies must be calculated.
The calculation process, which is based on the project files’ preprocessor #include
statements, is also an automated feature of the project facility.

Figure 4-10 Source File Property Sheet

5. See the GNU Make User’s Guide for more information about make.

Tornado 2.2

User’s Guide

120

Binaries produced by a given build are created in a project subdirectory with the
same name as the name of the build specification (projectName/buildName).

Calculating Makefile Dependencies

To calculate makefile dependencies, select Dependencies from the workspace
pop-up menu. The Dependencies dialog box appears (Figure 4-11). Click OK.

After dependencies have been calculated, the files are listed in the External

Dependencies folder (Figure 4-12).

NOTE: All source files in a project are built using a single build specification
(which includes a specific set of makefile, compiler, and linker options) at a time.
If some of your source requires a different build specification from the rest, you can
create a project for it in the same workspace, and customize the build specification
for those files. One project’s build specification can then be modified to link in the
output from the other project. See Sub-Projects, p.106.

NOTE: The project facility allows you to create specifications for different types of
builds, to modify the options for any one build, and to select the build specification
you want to use at any given time easily. See 4.6 Working With Build Specifications,
p.148.

! CAUTION: Different versions of C++ run-time support are provided for the GNU
and Diab toolchains. For this reason, you cannot combine C++ objects compiled
with GNU with C++ objects compiled with Diab. All C++ applications must be
compiled with the same tool.

Figure 4-11 Dependencies Dialog Box

4

4

Projects

121

If you do not calculate dependencies before you start a build, Tornado prompts
you to do so for any project files for which dependencies have not previously been
calculated. Dependencies are not calculated for each build specification. If your
dependencies change for different build specifications (for example, if they are
CPU-dependent), then you may want to:

■ Create a new project for each build specification.

■ Regenerate dependencies when you switch build specifications.

Tornado assumes that your header files are in either your project directory or
installDir/target/h. If you have placed files in other locations, you need to make two
changes to your project build specification. Right-click on the name of your build
specification (for example, SIMSPARCSOLARISgnu). Select Properties from the
pop-up menu. On the C/C++ compiler tab, click the Include paths button. Add a
separate entry for each directory path.

The Advanced option allows you to speed up the build process by specifying paths
in which none of the dependencies could have changed since the last build. The
timestamps for the files in the specified paths are not checked (Figure 4-13).

Figure 4-12 External Dependencies

Tornado 2.2

User’s Guide

122

Build Specifications

Each build specification for a downloadable application consists of a set of options
for makefile rules and macros, as well as for the compiler, assembler, and linker. A
default build specification is defined when you create your project. To display its
property sheet, double-click on the build specification name in the Builds view of
the workspace to display the property sheet for the build specification.

Rules Tab

The Rules page (Figure 4-14) allows you to select from the following build target
options:

objects

Objects for all source files in the project.

archive

An archive (library) file.

projectName.out

A single, partially-linked and munched object that comprises all of the
individual object modules in a project. This is the correct module to download.

Figure 4-13 Dependency Calculation Option

4

4

Projects

123

For information on munching, see the VxWorks Programmer’s Guide: C++
Development. For more information on linking, see Linker Options, p.154.

projectName.pl

A single, partially-linked but not munched object that comprises all of the
individual objects modules in a project. This file is provided for sub-project
support. It is not intended for download since it has not been munched. See
Linker Options, p.154.

You can use the project facility to change the options for a given build specification,
create and save new build specifications, and select the specification to use for a
build. You can, for example, create one build specification for your project that
includes debug information, and another that does not. For more information, see
4.6 Working With Build Specifications, p.148.

Figure 4-14 Build Specification Property Sheet

NOTE: It is sometimes useful to build an application for the target simulator, and
then to create a new build specification to build it for a real target.

Tornado 2.2

User’s Guide

124

Macros Tab

The Macros tab contains pre-set build macros. Do not delete the pre-existing
macros; while you can reenter them, the value will be lost. You can add and delete
your own macros by typing in the Name window and then clicking the Add button.

Macros that are useful with bootable projects:

Macros that are useful with downloadable projects:

Environment Variables

If you are using the Diab tools, you must have two settings in place:

■ Be sure that installDir/host/diab/WIN32/bin is in the system path.

■ Be sure that the environment variable DIABLIB is set to installDir/host/diab.

There is a batch file called torVars.bat in installDir/host/x86-win32/bin that will set
DIABLIB for you.

Building an Application

To build a project with the default options, select the name of the project (or any
subordinate object in its folder) and then select Build 'projectName.out' from the

EXTRA_MODULES Extra object modules to link into the VxWorks
image.

LIBS Libraries against which VxWorks is linked.
POST_BUILD_RULE Shell commands to execute after the build has

completed.
RAM_HIGH_ADRS RAM address where the boot ROM data segment is

loaded. It must be a high enough value to ensure
loading VxWorks does not overwrite part of the
ROM program.

RAM_LOW_ADRS Beginning address to use for the VxWorks run-time
in RAM.

! WARNING: RAM_HIGH_ADRS and RAM_LOW_ADRS are also defined in config.h;
the two definitions must match!

PRJ_LIBS Libraries or modules against which a downloadable
application is linked.

POST_BUILD_RULE Shell commands to execute after the build has
completed.

4

4

Projects

125

pop-up menu. If you have created build specifications in addition to the default,
you can select the build specification you want to use from the Build Spec

drop-down list at the top of the workspace window before you start the build.

The Build Output window displays build messages, including errors and warnings
(Figure 4-15). Any compiler errors or warnings include the name of the file, the line
number, and the text of the error or warning text.

To force a rebuild of all project objects, select Rebuild All from the pop-up menu
(which performs a make clean before the build).

! WARNING: Tornado only calculates dependencies upon the first use of a file in a
build. Once an initial set of dependencies has been calculated, Tornado does not
attempt to detect changes in dependencies that may have resulted from
modification of the file. If you have changed dependencies by adding or deleting
#include preprocessor directives, you should regenerate dependencies.

Figure 4-15 Build Output

! WARNING: The default compiler options include debugging information. Using
debugging information with the optimization set to anything but zero may
produce unexpected results. See 4.6 Working With Build Specifications, p.148 for
information about modifying builds and creating new build specifications.

Tornado 2.2

User’s Guide

126

Build Toolbar

The Build toolbar provides quick access to build commands. Display of the toolbar
(Figure 4-16) is controlled with the View>Build Toolbar menu option.

The Build toolbar commands (Table 4-2) are also available from the main menus
and the Workspace pop-up menu.

4.3.5 Downloading an Application

Before you can download and run an application, you must boot VxWorks on the
target system, have access to a Tornado registry, and configure and start a target
server. For more information, see 2. Setup and Startup and 3. Launcher.

You can download an entire project from the project workspace by selecting
Download 'projectName.out' from the pop-up menu for the Files view, or by using the
download button on the Build toolbar. You can download individual object

Figure 4-16 Build Toolbar

Table 4-2 Build Toolbar Buttons

Button Menu Description

Build>Build Build project.

Build>Rebuild All Rebuild project (performing a make clean first).

Build>Compile Compile selected source file.

Build>Dependencies Update dependencies.

Project>Download Download object file (or boot image for target
simulator).

4

4

Projects

127

modules by selecting the file name and then selecting the Download 'filename.o'

option from the pop-up menu. However, you may inadvertently introduce errors
by downloading individual object modules out of sequence. We strongly
recommend that you always download the partially-linked projectName.out file.

C++ projects must be downloaded as projectName.out because this file is produced
from application files and munched for proper static constructor initialization.

To run a downloaded application, use WindSh or CrossWind. For more
information see 7. Shell and 9. Debugger.

To unload a project from the target, use the Unload 'projectName.out' option on the
pop-up menu.

4.3.6 Adding and Removing Projects

New projects can be added to a workspace by selecting the menu options File>New

Project and creating a new project when the workspace is open.

Existing projects can be added to a workspace by selecting File>Add Project to

Workspace, and using the file browser to select a project file (projectName.wpj).

Projects can be removed from a workspace by selecting the project name in the Files

view, and then selecting the Remove option from the pop-up menu, or by selecting
the project name and pressing DELETE.

4.4 Creating a Custom VxWorks Image

The Tornado distribution includes a VxWorks system image for each target shipped.
The system image is a binary module that can be booted and run on a target system.
The system image consists of all desired system object modules linked together
into a single non-relocateable object module with no unresolved external
references. In most cases, you will find the supplied system image adequate for
initial development. However, later in the cycle you may want to create a custom
VxWorks image.

NOTE: When you remove a project, you only remove it from the workspace. The
project directory and its associated files are not removed from disk.

Tornado 2.2

User’s Guide

128

VxWorks is a flexible, scalable operating system with numerous facilities that can
be tuned, and included or excluded, depending on the requirements of your
application and the stage of the development cycle. For example, various
networking and file system components may be required for one application and
not another, and the project facility provides a simple means for either including
them in, or excluding them from, a VxWorks application. In addition, it may be
useful to build VxWorks with various target tools during development (such as the
target-resident shell), and then exclude them from the production application.

Once you create a customized VxWorks, you can boot your target with it and then
download and run applications. You can also create a bootable application simply
by linking your application to VxWorks and adding application startup calls to the
VxWorks system initialization routines (see 4.5 Creating a Bootable Application,
p.147).

4.4.1 Creating a Project for VxWorks

All work that you do with the project facility, whether a downloadable application,
a customized version of VxWorks, or a bootable application, takes place in the
context of a project.

Open a project workspace by clicking the Project button in the Tornado Launch

window. If the Create Project or Open Workspace window is open (the default when
you first open the Tornado Project window6), click the New tab. Otherwise, click
File>New Project. Then choose the selection for a bootable application, and click OK

(Figure 4-17).

The application wizard appears (Figure 4-18). This wizard is a tool that guides you
through the steps of creating a new project.

First, enter the full directory path and name of the directory you want to use for
the project (only one project is allowed in a directory), and enter the project name.
It is usually most convenient to use the same name for the directory and project,
but it is not required.

6. You can modify the default behavior by un-checking the Show this window on startup box
at the bottom of the window.

4

4

Projects

129

You may also enter a description of the project, which will later appear in the
property sheet for the project. Finally, identify the workspace in which the project
should be created. Click Next to continue.

Figure 4-17 Create Bootable Application

NOTE: You may create your projects anywhere on your file system. However, it is
preferable to create them outside of the Tornado directory tree to simplify the
process of future Tornado upgrades.

Figure 4-18 Application Wizard: Step One for Bootable Application

Tornado 2.2

User’s Guide

130

Then you identify the BSP with which you will build the project. You can do so by
referring to an existing project, or by identifying a BSP that you have installed.

Basing a project on an existing project means that the new project will reference the
same source files as the one on which it was based, but it will start with copies of the
original project’s VxWorks configuration and build specifications. The build
specifications and VxWorks configuration for the new project can be modified
without affecting the original project, but changes to any shared source files will be
reflected in both.

For example, to create a project for a module that will run on a mbx860 target,
select An existing project and then select mbx860_gnu.wpj (or mbx860_diab.wpj if you
have purchased the Diab tools) from the drop-down list (Figure 4-19). Click Next.

If, on the other hand, you must base your project on a BSP, select A BSP and choose
one of the BSPs you installed or the appropriate simulator. If your BSP offers both
GNU and Diab toolchains, select a toolchain as well. Click Next.

The wizard confirms your selections (Figure 4-20). Click Finish.

The Workspace window appears.

NOTE: If you are creating a customized VxWorks image or a bootable application,
the project will be generated faster if you base it on an existing project rather than
on a BSP. This is because the project facility does not have to regenerate
configuration information from BSP configuration files. All Tornado 2.x BSPs
include both GNU and Diab project files for this purpose. Options for BSP projects
are available in the drop-down list for existing projects. For example, the mbx860
BSP project files are:

installDir/target/proj/mbx860_gnu/mbx860_gnu.wpj
installDir/target/proj/mbx860_diab/mbx860_diab.wpj

4

4

Projects

131

Figure 4-19 Application Wizard: Step Two for Bootable Application

Figure 4-20 Application Wizard: Step Three for Bootable Application

Tornado 2.2

User’s Guide

132

4.4.2 Project Files for VxWorks

The project facility generates, or includes copies of, a variety of files for a VxWorks
project. The names of the files that you may need to work with are displayed in the
workspace File view (Figure 4-21).

During typical use of the project facility you do not need to be concerned with
these files, except to avoid accidental deletion, to check them in or out of a source
management system, or to share your projects or workspaces with others. You will
need to edit userAppInit.c, however, when you create a bootable application (see
4.5 Creating a Bootable Application, p.147).

NOTE: Pop-up menus provide access to all commands that can be used with the
objects displayed in, and the pages that make up, the Workspace window (use the
right mouse button).

Figure 4-21 VxWorks Project Files

! CAUTION: Do not check in linkSyms.c, prjConfig.c, prjComps.h, or prjParams.h;
these files are regenerated whenever the project file changes.

4

4

Projects

133

The VxWorks project files serve the following purposes:

linkSyms.c
A dynamically generated configuration file (therefore not to be checked in)
that includes code from the VxWorks archive by creating references to the
appropriate symbols. It contains symbols for components that do not have
initialization routines.

prjConfig.c
A dynamically generated configuration file (therefore not to be checked in)
that contains initialization code for components included in the current
configuration of VxWorks.

romInit.s
Contains the entry code for the VxWorks boot ROM.

romStart.c
Contains the routines to load VxWorks system image into RAM.

sysALib.s
Contains system startup code, the first code executed after booting (which is
the entry point for VxWorks in RAM).

sysLib.c
Contains board-specific routines.

userAppInit.c
Contains a stub for adding user application initialization routines for a
bootable application.

The following files are created in the main project directory as well, but are not
visible in the workspace:

prjComps.h
A dynamically generated configuration file (therefore not to be checked in)
that contains the preprocessor definitions (macros) used to include VxWorks
components.

Tornado 2.2

User’s Guide

134

Makefile
The makefile used for building an application or VxWorks. Created when the
project is built, based on the build specification selected at that time.

prjParams.h
A dynamically generated configuration file (therefore not to be checked in)
that contains component parameters.

projectName.wpj
Contains information about the project used for generating the project
makefile, as well as project source files such as prjConfig.c.

workspaceName.wsp
Contains information about the workspace, including which projects belong to
it.

When you build the project from the GUI, a makefile is dynamically generated in
the main project directory, and a subdirectory is created containing the objects
produced by the build. The subdirectory is named after the selected build
specification. If other build specifications are created and used for other builds,
parallel directories are created for their objects.

You can also build your project from the command line. When you do so, you must
create the makefile first. See Using the Command Line, p.146.

The Files view can also display the default list of objects that would be built, and
the external dependencies that make up the new project, in the Object Modules and
External Dependencies folders, respectively.

4.4.3 Configuring VxWorks Components

The VxWorks view of the Workspace displays all VxWorks components available for
the target. The names of components that are selected for inclusion appear in bold
type. The names of components that are excluded appear in plain type. The names
of components that have not been installed appear in italics. Note that the names
of folders appear in bold type if any (but not necessarily all) of their components
are included. (Figure 4-22.)

4

4

Projects

135

Figure 4-22 VxWorks Components

NOTE: See the VxWorks Programmer’s Guide for detailed information about the use
of VxWorks facilities, target-resident tools, and optional components.

Tornado 2.2

User’s Guide

136

Finding VxWorks Components and Configuration Macros

You can locate individual components and configuration parameters in the
component tree, based on their macro names, with the Find Object dialog box. Open
the dialog box with the pop-up menu for the VxWorks view (Figure 4-23).

Displaying Descriptions and Online Help for Components

The component tree in the VxWorks view provides descriptive names for
components. You can display a component description property sheet, which
includes the name of the preprocessor macro for the component, by
double-clicking on the component name (Figure 4-24).

To display online reference documentation, double-click on the topic of your
choice displayed in the Help Link box of the property sheet. The corresponding
HTML reference material is displayed in a Web browser (Figure 4-24).

Figure 4-23 Find Object

NOTE: The Find Object dialog box is particularly helpful in conjunction with
VxWorks documentation, which discusses VxWorks configuration in terms of
preprocessor symbols, rather than the descriptive names used in the project facility
GUI.

4

4

Projects

137

Including and Excluding Components

VxWorks components that are not needed for a project can be excluded, and
components that have been excluded can be included again. The pop-up menu
provides Include and Exclude options for components you select in the VxWorks

view. You can also use the DELETE key to exclude options.

Tornado automatically determines component dependencies each time a
component is included or excluded. That is, it determines if a component you want
to include is dependent upon other components that have not been included in the
project, or if a component that you are deleting is required by other components.

Figure 4-24 VxWorks Component Properties and HTML Reference

Tornado 2.2

User’s Guide

138

When a component is included, any components it requires are automatically
included. When a component is excluded, any dependent components are also
excluded. In either case, a dialog box provides information about dependencies
and the option of cancelling the requested action. For example, if you exclude
POSIX clocks, the dialog box informs you that the ANSI time component would be
excluded (Figure 4-25).

You can also include folders of components. However, not all components in a
folder are necessarily included by default (nor would it always be desirable to do
so, as there might be conflicts between components). Tornado offers a choice about
what components to include. For example, if you include target shell components,
not all of the components are included by default, and you are prompted to accept
or modify the default selection (Figure 4-27).

Tornado automatically calculates an estimate of the change in the size of the image
resulting from the inclusion or exclusion, as well as the new image size. The Include

Figure 4-25 Exclude VxWorks Component

! WARNING: The results of calculating dependencies is not necessarily identical for
inclusion and removal. Including a component you previously excluded does not
automatically include the components that were dependent on that component,
and that were therefore excluded with it. For example, excluding the POSIX clocks

component automatically excludes the ANSI time component, which is dependent on
it. But if the POSIX clocks component is subsequently included, there are no
components required by it, so the ANSI time component is not automatically
included (Figure 4-26).

4

4

Projects

139

and Exclude dialog boxes display this information. (Also see Estimating Total
Component Size, p.142).

Some folders contain component options that are explicitly combinative or
mutually exclusive (in the sense of being potentially in conflict). These folders are
called selections, and their names are preceded by a checkbox icon in the folder
tree. You can make your selection or change either by opening the folder and
performing an include or exclude operation on individual components, or by
displaying the property sheet for the folder and making selections with the check
boxes on the Components page (Figure 4-27).

Figure 4-26 Include VxWorks Component

Figure 4-27 Including a Component Folder

Tornado 2.2

User’s Guide

140

Component Conflicts

If you include components that potentially conflict, or are missing a required
component, Tornado warns you of the conflict by displaying a message box with a
warning, and by highlighting the full folder path to the source of the conflict. The
property sheet for the folder also displays error information in its Errors page. For
example, if you attempt to include both symbol table initialization components, a
warning is first displayed. Once you acknowledge the warning, the folder names
development tool components, symbol table components, select symbol table initialization

are highlighted. You can display the property sheet for the folder for a description
of the problem and how to correct it. (See Figure 4-29 for all GUI elements.)

Figure 4-28 Including Conflicting Components

4

4

Projects

141

Changing Component Parameters

In the VxWorks view, the pop-up menu provides access to component parameters
(preprocessor macros). For example, selecting the operating system components

folder, then Params for 'operating system components' from the pop-up menu (or
double-clicking on the folder name), displays a dialog box that allows you to
change the values of the parameters defined for the operating system components
(Figure 4-30). Parameters specific to individual components can be accessed
similarly.

For more information about component parameters, see the VxWorks Programmer’s
Guide and the VxWorks Network Programmer’s Guide.

Figure 4-29 Component Conflicts

! WARNING: You can build VxWorks even if there are conflicts between the
components you have selected, but you may have linker errors or the run-time
results may be unpredictable.

Tornado 2.2

User’s Guide

142

Estimating Total Component Size

To calculate and display the estimated size of the components included in an
image, select the project name (in any of the workspace views), then select
Properties from the pop-up menu, and select the Size tab in the property sheet that
appears (Figure 4-31). Note that this estimate is for the components only, and does
not include the BSP or any application code.

Figure 4-30 Component Parameters

Figure 4-31 Total Component Size

4

4

Projects

143

4.4.4 Selecting the VxWorks Image Type

The default VxWorks is a RAM-based image. If you want to create something other
than the default images, use one of the other build specifications created when you
created your project:

■ default_rom
■ default_romCompress
■ default_romResident

These build specifications are identical to the default, except that instead of
building the vxWorks rule, default_rom, for example, is set up to build the
vxWorks_rom rule. (Figure 4-32).

The options available for a VxWorks image are:

vxWorks

A RAM-based image, usually loaded into memory by a VxWorks boot ROM.
This is the default development image.

default_rom

A ROM-based image that copies itself to RAM before executing. This image
generally has a slower startup time, but a faster execution time than
vxWorks_romResident. It is also available in alternate formats as vxWorks_rom.bin

and vxWorks_rom.hex. The .hex options are variants of the main options with
Motorola S-Record output. The .bin options are variants of the main options
with binary output.

Figure 4-32 Build Rules for VxWorks Images

Tornado 2.2

User’s Guide

144

default_romCompress

A compressed ROM image that copies itself to RAM and decompresses before
executing. It takes longer to boot than vxWorks_rom but takes up less space than
other ROM-based images (nearly half the size). The run-time execution is the
same speed as vxWorks_rom. It is also available in .bin and .hex formats.

default_romResident

A ROM-resident image. Only the data segment is copied to RAM on startup.
It has the fastest startup time and uses the smallest amount of RAM. Typically,
however, it runs slower than the other ROM images because ROM access is
slower. It is also available in .bin and .hex formats.

4.4.5 Building VxWorks

VxWorks projects are built in the same manner as downloadable applications. To
build a project with the default options, select the name of the project (or any
subordinate object in its folder) and then select the Build option from the pop-up
menu. The name of the build specification that will be used is displayed in the Build

Spec drop-down list at the top of the workspace window.

For more information about a generic build, see 4.3.4 Building a Downloadable
Application, p.119. For information about modifying builds and creating new build
configurations. see 4.6 Working With Build Specifications, p.148.

Using the Build Menu

The build menu allows you to choose boot ROMs or BSPs to build. Figure 4-33
illustrates the Build dialog box in a Tornado system that has a PowerPC BSP and the
Diab compiler installed.

Select a BSP

The drop-down list includes all BSPs you have installed. You will have at least
one integrated simulator BSP, and you have probably installed at least one
additional BSP.

NOTE: Project files used only for a ROM-based image can flagged as such, so that
they are only used when a ROM-based image is built. See Compiler Options, p.151.

4

4

Projects

145

Select an Image to build

The available BSP make targets appear in the drop down list. For information
on the targets, see Build Specifications, p.122.

The standard make target clean (which erases all objects that can be built by
the BSP makefile) is also in this list.

Select a tool

If you have installed both the GNU and Diab compilers, you can select which
one to use.

When you click OK in the build dialog box, Tornado builds the corresponding
object in the BSP directory. Output from the build goes to a Build Output window,
which you can use as a diagnostic aid.

To rebuild VxWorks, select the vxWorks target name in the Select an Image list. For
example, Figure 4-33 shows the vxWorks target selected for the ads860 BSP.

Figure 4-33 Rebuilding VxWorks from the Build Menu

! WARNING: Be sure not to use make clean in your VxWorks tree, in other words,
in installDir/target/src. The make clean command is designed to force a complete
rebuild of your project files. If you use it in installDir/target/src, you will remove
VxWorks objects for which you do not have source and which you will therefore
be unable to recreate.

NOTE: All source files in a project are built using a single build specification
(which includes a specific set of makefile, compiler, and linker options) at a time.
If some of your source requires a different build specification from the rest, you can
create a project for it in the same workspace, and customize the build specification
for those files. One project’s build specification can then be modified to link in the
output from the other project. See Linker Options, p.154.

Tornado 2.2

User’s Guide

146

Using the Command Line

Using the command line allows you to automate builds. Projects must be
created and configured in the GUI, and dependencies must be generated there
as well. However, makefile generation and building are possible from the
command line. To generate the makefile, use the makegen utility and to build,
use make:

■ Change to the build directory and type make with flags, for example:

% cd installDir/target/proj/Project1/mbx860_gnu
% makegen
% mkdir default_rom
% cd default_rom
% make -f ../Makefile BUILDSPEC=default_rom

Your build output will be in the default_rom directory and the build will
use the default_rom build specification.

4.4.6 Booting VxWorks

For information about booting VxWorks (and bootable applications), see
2.6 Booting VxWorks, p.46. VxWorks images for the target simulator can be
downloaded and booted with the pop-up menu Start command.

! WARNING: The default compiler options include debugging information. Using
debugging with the optimization set to anything but zero may produce
unexpected results. See 4.6 Working With Build Specifications, p.148 for information
about modifying builds and creating new build configurations.

4

4

Projects

147

4.5 Creating a Bootable Application

A bootable application is completely initialized and functional after a target has
been booted, without requiring interaction with Tornado development tools. For
information about developing your application, see 4.2.3 Developing and Adding
Your Application Source Code, p.102.

4.5.1 Using Automated Scaling of VxWorks

The auto scale feature of the project facility determines if your code, or your
custom version of VxWorks, requires any components that are not included in
your VxWorks project, and adds them as required. It also provides information
about components that may not be required for your application. To automatically
scale VxWorks, select Auto Scale from the pop-up menu in the VxWorks view of the
workspace window to display the Auto Scale dialog box, and click OK.

4.5.2 Adding Application Initialization Routines

When VxWorks boots, it initializes operating system components (as needed), and
then passes control to the user’s application for initialization. To add application
initialization calls to VxWorks, double-click on userAppInit.c to open the file for
editing, and add the call(s) to usrAppInit(). Figure 4-34, for example, illustrates
the addition of a call to runItAll(), the main routine in the application file
helloWorld.c.

NOTE: The auto scale feature detects only statically calculable dependencies
between the application code and VxWorks. Some components may be needed
even if they are not called by your application. This is especially true for servers
such as WDB, NFS, and so on.

Tornado 2.2

User’s Guide

148

4.6 Working With Build Specifications

The project facility allows you to create, modify, and select specifications for any
number of builds. Default build specifications are defined when you create your
project.

■ While a BSP is usually designed for one CPU, you can create build
specifications for different image types and optimization levels, specifications

Figure 4-34 Adding Application Initialization Calls to VxWorks

4

4

Projects

149

for builds that include debugging information and builds that do not, and so
on.

■ A downloadable project can have build specifications for different CPUs, for
example, for a simulator and a real target.

4.6.1 Changing a Build Specification

Each build specification consists of a set of options that define the VxWorks image
type (for VxWorks and bootable application projects), makefile rules, macros, as
well as compiler, assembler, and linker options.

You can change default or other previously defined build options by
double-clicking on the build name in the Builds view of the workspace window.
The build’s property sheet appears (Figure 4-35).

You can use the property sheet to modify:

■ build targets
■ makefile rules
■ makefile macros for the compiler and linker
■ compiler options
■ assembler options
■ linker options

NOTE: For detailed information about compiler, assembler, and linker options, see
the GNU ToolKit User’s Guide or the Diab C/C++ Compiler User’s Guide.

Figure 4-35 Build Property Sheet

Tornado 2.2

User’s Guide

150

For information about build targets for downloadable applications, see Build
Specifications, p.122. For information about build targets for bootable applications,
see 4.4.4 Selecting the VxWorks Image Type, p.143. Other features of the build
property sheet are covered in the following sections.

Custom Makefile Rules

The buttons at the bottom of the build property sheet allow you to create, edit, or
delete makefile rules (default project entries cannot be deleted; only those created
by a user can be deleted). When you click the New/Edit button, the Create or Edit Rule

dialog box appears (Figure 4-36). Once you have created or edited an entry, click
OK. Note that the default is to invoke the rule before building the project (see the
checkbox). If the default is not selected, the rule is only invoked if it is the rule
currently selected for the build (with the drop-down list in the Rules page of the
build property sheet) or if it is a dependency of the currently selected rule. New
rules are added to the projectName.wpj file and written to the makefile prior to a
build.

Makefile Macros

Select the Macros tab of the build specification property sheet to view the makefile
macros associated with the current project, build specification, and rules
(Figure 4-37).

Figure 4-36 Makefile Rule

4

4

Projects

151

You can use the Macros page to modify the values of existing makefile macros, as
well as to create new rules to be executed at the end of the build. Use the Delete

button to delete a macro from the build. To change an existing macro, modify the
value and click the Add/Set button. To add a macro, change the name and value of
an existing macro, and click the Add/Set button.

The recommended way to link library (archive) files to your bootable project is to
add the libraries to the list defined by the LIBS macro and the modules to the list
defined by the EXTRA_MODULES macro. Use the PRJ_LIBS macro for
downloadable projects.

Compiler Options

The C/C++ compiler page of the build specification property sheet displays compiler
options. You can edit the options displayed in the text box (Figure 4-38). You can
also click the Include Paths button and use the dialog box to enter and order your
include paths.

Figure 4-37 Makefile Macros

Tornado 2.2

User’s Guide

152

You can override the default compiler flags for individual files by right-clicking on
the file name in the Files view, selecting Properties from the pop-up menu, and
specifying a new set of options in the Build page of the property sheet. Un-checking
the Use default build rule for this file box allows you to edit the fields in this page
(Figure 4-40).

If the file should be used only when building a ROM-based image, check the Build

for ROM images only box. See 4.4.4 Selecting the VxWorks Image Type, p.143.

Figure 4-38 Compiler Options

Figure 4-39 Include Paths Dialog Box

! WARNING: The default compiler options include debugging information. Using
debug information with the optimization option set to anything but zero may
produce unpredictable results. Selecting Include debug info automatically sets
optimization to zero. This can be changed by editing the option.

4

4

Projects

153

Assembler Options

Select the assembler tab of the build specification property sheet to view assembler
options. You can edit the options displayed in the text box (Figure 4-41).

Link Order Options

Select the Link Order tab of the build specification property sheet to view module
link order (Figure 4-42). You can change the link order using the Down and Up

buttons to ensure that static C++ constructors and destructors are invoked in the
correct order.

Figure 4-40 Compiler Options for Individual Files

Figure 4-41 Assembler Options

Tornado 2.2

User’s Guide

154

Linker Options

Select the linker tab of the build specification property sheet to view linker options.
You can edit the options displayed in the text box (Figure 4-43).

To link an object or library (archive) file with a project, you can list the full path to
the file here. However, the recommended way to link library (archive) files is to
add the libraries to the list defined by the LIBS, EXTRA_MODULES, or PRJ_LIBS

macros on the Macros tab (see Makefile Macros, p.150).

Figure 4-42 Link Order Options

Figure 4-43 Linker Options

! WARNING: You cannot link another project object file (projectName.out) with the
project you are building. You must compile the other project as a library (Build
Specifications, p.122) or as a partial link (projectName.pl), and then link it with the
current project.

4

4

Projects

155

4.6.2 Creating New Build Specifications

You can create new build specifications for a project with the Add New Build

Specification window, which is displayed with the New Build option on the pop-up
menu. For example, one build specification can be created that includes debug
information, and another that does not; specifications can be created for different
image types, optimization levels, and so on. You can create a new build
specification by copying from an existing specification, or by creating it as a default
specification for a given toolchain (Figure 4-44).

Once you have created a new build specification, use the build specification
property sheet to define it (see 4.6.1 Changing a Build Specification, p.149).

4.6.3 Selecting a Specification for the Current Build

When you want to build your project, select the build specification from the Build

Spec drop-down list (Figure 4-45).

Binaries produced by a build are created in the buildName subdirectory of your
project directory.

Figure 4-44 New Build Specification

NOTE: Within a bootable project, you are restricted to the toolchains that support
the CPU required by the BSP. You can still create multiple build specifications (for
example, with different optimization levels or rules).

Tornado 2.2

User’s Guide

156

4.7 Configuring the Target-Host Communication Interface

To display the options for the communication interface for the target agent in the
VxWorks view, select development tool components>WDB agent components>select

WDB connection (Figure 4-46).

To select an interface, select it from the list and select the Include 'component name'

option from the pop-up menu. (You can also make a selection by double-clicking
on the select WDB connection option to display the property sheet, and then making
the selection from the Components page.)

Figure 4-45 Build Specification Selection

! WARNING: During development you must configure VxWorks with the target
agent communication interface required for the connection between your host and
target system (network, serial, NetROM, and so on). By default, VxWorks is
configured for a network connection. Also note that before you use Tornado tools
such as the shell and debugger, you must start a target server that is configured for
the same mode of communication. See 2.4.2 Networking the Host and Target, p.25;
and 3.5.1 Configuring a Target Server, p.73.

4

4

Projects

157

To display general information about a component, or to change its parameters,
simply double-click on its name, which displays its property sheet (see
Figure 4-47). The options for the target agent communication interface are
described below.

Configuration for an END Driver Connection

When VxWorks is configured with the standard network stack, the target agent can
use an END (Enhanced Network driver) connection. Add the WDB END driver

connection component. This connection has the same characteristics as the network
connection, but also has a polled network interface that allows system and task
mode debugging.

Figure 4-46 Target Agent Connection Options

NOTE: Also see Scaling the Target Agent, p.161 and Starting the Agent Before the
Kernel, p.162.

Tornado 2.2

User’s Guide

158

Configuration for Integrated Target Simulators

To configure a target agent for an image that will run with the VxWorks integrated
target simulator, add the WDB simulator pipe connection component.

Configuration for NetROM Connection

To configure the target agent to use a NetROM communication path, add the WDB

netROM connection component. (See 2.5.4 The NetROM ROM-Emulator Connection,
p.35).

Several configuration macros are used to describe a board’s memory interface to
its ROM banks. You may need to override some of the default values for your
board. To do this, display the component property sheet, and select the Params tab
to display and modify macro values (Figure 4-47).

WDB_NETROM_MTU

The default is 1500 octets.

WDB_NETROM_INDEX

The value 0 indicates that pod zero is at byte number 0 within a ROM word.

WDB_NETROM_NUM_ACCESS

The value 1 indicates that pod zero is accessed only once when a word of
memory is read.

Figure 4-47 NetROM Connection Macros

4

4

Projects

159

WDB_NETROM_POLL_DELAY

The value 2 specifies that the NetROM is polled every two VxWorks clock ticks
to see if data has arrived from the host.

WDB_NETROM_ROMSIZE

The default value is ROM_SIZE, a makefile macro that can be set for a specific
build. See Makefile Macros, p.150.

WDB_NETROM_TYPE

The default value of 400 specifies the old 400 series.

WDB_NETROM_WIDTH

The value 1 indicates that the ROMs support 8-bit access. To change this to 16-
or 32-bit access, specify the value 2 or 4, respectively.

The size of the NetROM dual-port RAM is 2 KB. The NetROM permits this 2 KB
buffer to be assigned anywhere in the pod 0 memory space. The default position
for the NetROM dual-port RAM is at the end of the pod 0 memory space. The
following line in installDir/target/src/config/usrWdb.c specifies the offset of
dual-port RAM from the start of the ROM address space.

dpOffset = (WDB_ROM_SIZE - DUALPORT_SIZE) * WDB_NETROM_WIDTH;

If your board has more than one ROM socket, this calculation gives the wrong
result, because the VxWorks macro ROM_SIZE describes the total size of the ROM
space—not the size of a single ROM socket. In that situation, you must adjust this
calculation.

Refer to the NetROM documentation for more information on the features
governed by these parameters.

Configuration for Network Connection

To configure the target agent for use with a network connection, add the WDB

network connection component. (See 2.5.1 Network Connections, p.31).

The default MTU is 1500 octets. To change it, display the component property
sheet, select the Params tab, select the WDB_MTU item and change the value
associated with it (Figure 4-48).

Tornado 2.2

User’s Guide

160

Configuration for Serial Connection

To configure the target agent to use a raw serial communication path, add the WDB

serial connection component. (See 2.5.3 Serial-Line Connections, p.32).

Figure 4-48 Network Connection Macro

Figure 4-49 Serial Connection Macros

4

4

Projects

161

By default, the agent uses serial channel 1 at 9600 bps.7 For better performance, use
the highest line speed available, which is often 38400 bps. Try a slower speed if you
suspect data loss. To change the speed, display the component property sheet,
select the Params tab, select WDB_TTY_BAUD and change the value associated with
it.

If your target has a single serial channel, you can use the target server virtual
console to share the channel between the console and the target agent. You must
configure your project with the CONSOLE_TTY parameter set to NONE and the
WDB_TTY_CHANNEL parameter set to 0. See Target-Server Configuration Options,
p.76 for more information regarding the target server virtual console.

When multiplexing the virtual console with WDB communications, excessive
output to the console may lead to target server connection failures. The following
actions may help resolve this problem:

■ Decrease the amount of data being transmitted to the virtual console from
your application.

■ Increase the timeout period of the target server (see Target-Server Configuration
Options, p.76).

■ Increase the baud rate of the target agent and the target server connection.

Configuration for tyCoDrv Connection

To configure a target agent to use a serial connection, add the WDB tyCoDrv

connection component. Display the component property sheet and select the
Params tab to display and modify macro values.

Scaling the Target Agent

In a memory-constrained system, you may wish to create a smaller agent. To
reduce program text size, you can remove the following optional agent facilities:

■ WDB banner (INCLUDE_WDB_BANNER)

■ VIO driver (INCLUDE_WDB_VIO)

■ WDB task creation (INCLUDE_WDB_START_NOTIFY)

7. VxWorks serial channels are numbered starting at zero. Thus Channel 1 corresponds to the
second serial port if the board’s ports are labeled starting at 1. If your board has only one
serial port, you must change WDB_TTY_CHANNEL to 0 (zero).

Tornado 2.2

User’s Guide

162

■ WDB user event (INCLUDE_WDB_USER_EVENT)

These components are in the development tool components>WDB agent

components>WDB agent services folder path.

You can also reduce the maximum number of WDB breakpoints with the
WDB_BP_MAX parameter of the WDB breakpoints component. If you are using a
serial connection, you can also set the INCLUDE_WDB_TTY_TEST parameter to
FALSE.

If you are using a communication path which supports both system and task mode
agents, then by default both agents are started. Since each agent consumes target
memory (for example, each agent has a separate execution stack), you may wish to
exclude one of the agents from the target system. You can configure the target to
use only a task-mode or only a system-mode agent with the WDP task debugging or
WDB system debugging options (which are in the folder path development tool

components>WDB agent components>select WDB mode).

Configuring the Target Agent for Exception Hooks

If your application (or BSP) uses excHookAdd() to handle exceptions, host tools
will still be notified of all exceptions (including the ones handled by your exception
hook). If you want to suppress host tool notifications, you must exclude the
component WDB exception notification. When this component is excluded, the target
server is not notified of target exceptions, but the target will still report them in its
console. In addition, if an exception occurs in the WDB task, the task will be
suspended and the connection between the target server and the target agent will
be broken.

Starting the Agent Before the Kernel

By default, the target agent is initialized near the end of the VxWorks initialization
sequence. This is because the default configuration calls for the agent to run in task
mode and to use the network for communication; thus, wdbConfig() must be
called after kernelInit() and usrNetInit(). (See F. VxWorks Initialization Timeline
for an outline of the overall VxWorks initialization sequence.)

In some cases (for example, if you are doing a BSP port for the first time), you may
want to start the agent before the kernel starts, and initialize the kernel under the
control of the Tornado host tools. To make that change, perform the following steps
when you configure VxWorks:

4

4

Projects

163

1. Choose a communication path that can support a system-mode agent
(NetROM or raw serial). The END communication path cannot be used as it
requires that the system be started before it is initialized.

2. Change your configuration so that only WDB system debugging is selected (in
folder path development tool components>WDB agent components>select WDB

mode). By default, the task mode starts two agents: a system-mode agent and
a task-mode agent. Both agents begin executing at the same time, but the
task-mode agent requires the kernel to be running.

3. Create a configuration descriptor file called fileName.cdf (for example,
wdb.cdf) in your project directory that contains the following lines:

InitGroup usrWdbInit {
INIT_RTN usrWdbInit (); wdbSystemSuspend ();
_INIT_ORDER usrInit
INIT_BEFORE INCLUDE_KERNEL

}

This causes the project code generator to make the usrWdbInit() call earlier in
the initialization sequence. It will be called from usrInit(), just before the
component kernel is started.8

After the target server connects to the system-mode target agent, you can resume
the system to start the kernel under the agent’s control. (See 7.2.7 Using the Shell for
System Mode Debugging, p.267 for information on using system mode from the
shell, and 9.5 System-Mode Debugging, p.362 for information on using it from the
debugger.)

After connecting to the target agent, set a breakpoint in usrRoot(), then continue
the system. The routine kernelInit() starts the multi-tasking kernel with
usrRoot() as the entry point for the first task. Before kernelInit() is called,
interrupts are still locked. By the time usrRoot() is called, interrupts are unlocked.

Errors before reaching the breakpoint in usrRoot() are most often caused by a
stray interrupt: check that you have initialized the hardware properly in the BSP
sysHwInit() routine. Once sysHwInit() is working properly, you no longer need
to start the agent before the kernel.

8. The code generator for prjConfig.c is based on a component descriptor language that spec-
ifies when components are initialized. The component descriptors are searched in a specific
order, with the project directory last in the search path. This allows the .cdf files in the
project directory to override default definitions in the generic .cdf files.

Tornado 2.2

User’s Guide

164

4.8 Configuring and Building a VxWorks Boot Program

The default boot image included with Tornado for your BSP is configured for a
networked development environment. The boot image consists of a minimal
VxWorks configuration and a boot loader mechanism. You need to configure and
build a new boot program (and install it on your boot medium) if:

■ You are working with a target that is not on a network.

■ You do not have a target with NVRAM, and do not want to enter boot
parameters at the target console each time it boots.

■ You want to use an alternate boot process, such as booting over the Target
Server File System (TSFS).

! CAUTION: When the agent is started before the kernel, there is no way for the host
to get the agent’s attention until a breakpoint occurs. There are two reasons for this:
1) For the NetROM connection, the agent cannot spawn the NetROM polling task
to check periodically for incoming packets from the host. 2) For other types of
connections, only system mode is supported and the WDB communication
channel is set to work in polled mode only. On the other hand, the host does not
really need to get the agent’s attention: you can set breakpoints in usrRoot() to
verify that VxWorks can get through this routine. Once usrRoot() is working, you
can start the agent after the kernel (that is, within usrRoot()), after which the
polling task is spawned normally.

! WARNING: If you are using the serial connection, take care that your serial driver
does not cause a stray interrupt when the kernel is started, because the
serial-driver interrupt handlers are not installed until after usrRoot() begins
executing: the calling sequence is usrRoot() ➠ sysClkConnect() ➠ sysHwInit2()
➠ intConnect(). You may want to modify the driver so that it does not set a
channel to interrupt mode until the hardware is initialized. This can be done by
setting a flag in the BSP after serial interrupts are connected.

4

4

Projects

165

Configuring Boot Parameters

To customize a boot program for your development environment, you must edit
installDir/target/config/bspname/config.h (the configuration file for your BSP). The
file contains the definition of DEFAULT_BOOT_LINE, which includes parameters
identifying the boot device, IP addresses of host and target, the path and name of
the VxWorks image to be loaded, and so on. For information about the boot line
parameters defined by DEFAULT_BOOT_LINE, see 2.6.4 Description of Boot
Parameters, p.50 and Help>Manuals contents>VxWorks Reference Manual>
Libraries>bootLib.

Building a Boot Image

To build the new boot program, select Build>Build Boot ROM from the Workspace

window. Select the BSP for which you want to build the boot program and the type
of boot image in the Build Boot ROM dialog box (Figure 4-50). Then click OK.

! WARNING: Configuration of boot programs is handled independently of the
project facility so normally you can configure your boot ROM differently than your
other images. However, any changes you make to config.h that are not masked by
project facility selections may be absorbed by your projects (see the warning in
4.1 Introduction, p.93). To prevent this, copy your BSP and create your boot image
from the copy.

Figure 4-50 Build Boot ROM

Tornado 2.2

User’s Guide

166

The three main options for boot images are:

bootrom

A compressed boot image.

bootrom_uncmp

An uncompressed boot image.

bootrom_res

A ROM-resident boot image.

TSFS Boot Configuration

The simplest way to boot a target that is not on a network is over the TSFS (which
does not involve configuring SLIP or PPP). The TSFS can be used to boot a target
connected to the host by one or two serial lines, or a NetROM connection.

To configure a boot program for TSFS, edit the boot line parameters defined by
DEFAULT_BOOT_LINE in config.h (or change the boot parameters at the boot
prompt). The “boot device” parameter must be tsfs, and the file path and name
must be relative to the root of the host file system defined for the target server (see
Configuring Boot Parameters, p.165 and Target-Server Configuration Options, p.76).

Regardless of how you specify the boot line parameters, you must reconfigure (as
described below) and rebuild the boot image.

If two serial lines connect the host and target (one for the target console and one
for WDB communications), config.h must include the following lines:

#undef CONSOLE_TTY
#define CONSOLE_TTY 0
#undef WDB_TTY_CHANNEL
#define WDB_TTY_CHANNEL 1
#undef WDB_COMM_TYPE
#define WDB_COMM_TYPE WDB_COMM_SERIAL
#define INCLUDE_TSFS_BOOT

If one serial line connects the host and target, config.h must include the following
lines:

#undef CONSOLE_TTY
#define CONSOLE_TTY NONE
#undef WDB_TTY_CHANNEL
#define WDB_TTY_CHANNEL 0

! WARNING: The TSFS boot facility is not compatible with WDB agent network
configurations. See 4.7 Configuring the Target-Host Communication Interface, p.156.

4

4

Projects

167

#undef WDB_COMM_TYPE
#define WDB_COMM_TYPE WDB_COMM_SERIAL
#define INCLUDE_TSFS_BOOT

For a NetROM connection, config.h must include the following lines:

#undef WDB_COMM_TYPE
#define WDB_COMM_TYPE WDB_COMM_NETROM
#define INCLUDE_TSFS_BOOT

With any of these TSFS configurations, you can also use the target server console
to set the boot parameters by defining the INCLUDE_TSFS_BOOT_VIO_CONSOLE

macro in config.h. This disables the auto-boot mechanism, which might otherwise
boot the target before the target server could to start its virtual I/O mechanism.
(The auto-boot mechanism is similarly disabled when CONSOLE_TTY is set to
NONE, or when CONSOLE_TTY is set to WDB_TTY_CHANNEL.) Using the target
server console is particularly useful for a single serial connection, as it provides an
otherwise unavailable means of changing boot parameters from the command
line.

When you build the boot image, select bootrom.hex for the image type (Building a
Boot Image, p.165).

See the VxWorks Programmer’s Guide: Local File Systems for more information about
the TSFS.

4.9 Building a Custom Boot ROM

If your boot strategy utilizes a boot ROM, and this boot ROM requires a new
driver, you will need to rebuild the boot ROM. Boot ROMs are not yet fully
supported as projects in Tornado 2.2. To build a boot ROM, Select Build>Build Boot

Rom from the Tornado main menu bar. From the dialog, select the BSP and boot
ROM target you wish to build.

If the boot ROM you wish to build is not shown, do the following:

1. Enable extended build options by using the Tools>Options menu from the main
menu bar to bring up the Tools Options dialog box. Select the Project pane and
select the appropriate check box.

2. Invoke the Build>Customize menu item to bring up the custom build dialog.
Click the Add button to bring up a template dialog. Enter menu text (for

Tornado 2.2

User’s Guide

168

example, “Build My boot ROM”), the name of the boot ROM image (for
example, bootrom.hex), and the BSP directory (for example,
installDir/target/config/mv162 for a Windows host).

3. Close the dialog, return to the Build menu, and invoke the newly created menu
item. This will build the boot ROM image in the BSP directory.

You can also use the command line as described in Using the Command Line, p.146.

169

5
Command-Line

Configuration and Build

5.1 Introduction

The Tornado distribution includes several VxWorks system images for each target
shipped. (See 4.4.4 Selecting the VxWorks Image Type, p.143.) A system image is a
binary module that can be booted and run on a target system. The system image
consists of all desired system object modules linked together into a single non-
relocatable object module with no unresolved external references.

In most cases, you will find the supplied system image entirely adequate for initial
development. However, later in the cycle you may want to configure the operating
system to reflect your application requirements.

This chapter describes in detail the manual cross-development procedures used to
create and run VxWorks systems and applications as well as how to configure the
system by directly editing configuration files.

The following topics are included:

■ Building, loading, running, and unloading VxWorks applications manually.
■ Using VxWorks configuration files and configuration options and parameters.
■ Creating common alternative configurations of VxWorks.
■ Rebuilding VxWorks system images, bootable applications, and ROM images

using manual methods.

There are two approaches to system configuration in Tornado 2.2:

■ Use the project facility and the GUI

You can use the project facility for configuring and building, with or without a
command-line or automated build. If this is your choice, you do not need any
of the information in this chapter. See 4. Projects.

Tornado 2.2

User’s Guide

170

■ Edit configuration files and build from the command line

The remainder of this chapter summarizes the steps and issues involved in this
choice.

VxWorks has been ported to numerous target systems and can support many
different hardware configurations. Some of the cross-development procedures
discussed in this chapter depend on the specific system and configuration you are
running. The procedures in this chapter are presented in generic form, and may
differ slightly on your particular system.

For information specific to an architecture family, see the appropriate VxWorks
Architecture Supplement. Information specific to particular target boards is
provided with each BSP.

5.2 Building, Loading, and Unloading Application Modules

In the Tornado development environment, application modules for the target
system are created and maintained on a separate development host. First, the
source code, generally in C or C++, is edited and compiled to produce a relocatable
object module. Application modules use VxWorks facilities by virtue of including
header files that define operating- system interfaces and data structures. The

! WARNING: Use of the project facility for configuring and building applications is
largely independent of the methods used prior to Tornado 2.x (which included
manually editing the configuration file config.h). The project facility provides the
recommended and simpler means for configuration and build, although the
manual method as described in this chapter may still be used.

To avoid confusion and errors, the two methods should not be used together for
the same project. The one exception is for any configuration macro that is not
exposed through the project facility GUI (which may be the case, for example, for
some BSP driver parameters). In this case, a configuration file must be edited, and
the project facility will implement the change in the subsequent build.

Note that the project facility overrides any changes made to a macro in config.h
that is also exposed through the project facility. If you are using the project facility,
only edit macros in config.h which can not be configured through the project
facility.

5

5

Command-Line Configuration and Build

171

resulting object modules can then be loaded and dynamically linked into a running
VxWorks system over the network.

The procedure for configuring a customized VxWorks image is described in
5.3 Configuring VxWorks, p.186. In the interim, you can use the default images
shipped with Tornado.

The following sections describe in detail the procedures for carrying out cross-
development manually (without using the project facility).

5.2.1 Using VxWorks Header Files

Many application modules make use of VxWorks operating system facilities or
utility libraries. This usually requires that the source module refer to VxWorks
header files. The following sections discuss the use of VxWorks header files.

VxWorks header files supply ANSI C function prototype declarations for all global
VxWorks routines. The ANSI C prototypes are conditionally compiled; to use
them, the preprocessor constant _ _STDC_ _ must be defined. ANSI C compilers
define this constant by default. VxWorks provides all header files specified by the
ANSI X3.159-1989 standard.

VxWorks system header files are in the directory installDir/target/h and its
subdirectories.

VxWorks Header File: vxWorks.h

The header file vxWorks.h contains many basic definitions and types that are used
extensively by other VxWorks modules. Many other VxWorks header files require
these definitions. Thus, this file must be included first by every application module
that uses VxWorks facilities. Include vxWorks.h with the following line:

#include "vxWorks.h"

NOTE: The notation $(WIND_BASE) is used in makefiles to refer to the Tornado
installation directory (installDir).

Tornado 2.2

User’s Guide

172

Other VxWorks Header Files

Application modules can include other VxWorks header files as needed to access
VxWorks facilities. For example, an application module that uses the VxWorks
linked-list subroutine library must include the lstLib.h file with the following line:

#include "lstLib.h"

The API reference entry for each library lists all header files necessary to use that
library.

ANSI Header Files

All ANSI-specified header files are included in VxWorks. Those that are compiler-
independent or more VxWorks-specific are provided in installDir/target/h while a
few that are compiler-dependent (for example stddef.h and stdarg.h) are provided
by the compiler installation. Each toolchain knows how to find its own internal
headers; no special compile flags are needed.

Many familiar UNIX header files are available under VxWorks. In one case the
VxWorks file name differs from the usual UNIX name: a_out.h is the VxWorks
equivalent of the UNIX a.out.h.

ANSI C++ Header Files

Each Wind River compiler has its own C++ libraries and C++ headers (such as
iostream and new). The C++ headers are located in the compiler installation
directory rather than in installDir/target/h. No special flags are required to enable
the compilers to find these headers.

The -I Compiler Flag

By default, the compiler searches for header files first in the directory of the source
module and then in its internal subdirectories. In general, installDir/target/h

NOTE: In previous Tornado releases we recommended the use of the flag
-nostdinc. This flag should not be used with the current release since it prevents the
compilers from finding headers such as stddef.h. In this release, host header files
will not be pulled in even though -nostdinc is not used.

5

5

Command-Line Configuration and Build

173

should always be searched before the compilers’ other internal subdirectories; to
ensure this, always use the following flag for compiling under VxWorks:

-I $(WIND_BASE)/target/h

Some header files are located in subdirectories. To refer to header files in these
subdirectories, be sure to specify the subdirectory name in the include statement,
so that the files can be located with a single -I specifier. For example:

#include "vxWorks.h"
#include "sys/stat.h"

VxWorks Nested Header Files

Some VxWorks facilities make use of other, lower-level VxWorks facilities. For
example, the tty management facility uses the ring buffer subroutine library. The
tty header file tyLib.h uses definitions that are supplied by the ring buffer header
file rngLib.h.

It would be inconvenient to require you to be aware of such include-file
interdependencies and ordering. Instead, all VxWorks header files explicitly
include all prerequisite header files. Thus, tyLib.h itself contains an include of
rngLib.h. (The one exception is the basic VxWorks header file vxWorks.h, which
all other header files assume is already included.)

Generally, explicit inclusion of prerequisite header files can pose a problem: a
header file could get included more than once and generate fatal compilation
errors (because the C preprocessor regards duplicate definitions as potential
sources of conflict). However, all VxWorks header files contain conditional
compilation statements and definitions that ensure that their text is included only
once, no matter how many times they are specified by include statements. Thus,
an application module can include just those header files it needs directly, without
regard to interdependencies or ordering, and no conflicts arise.

Internal Header Files

Internal header files are, for the most part, not intended for use by applications.
The following subdirectories are exceptions, and are sometimes required by
application programs:

■ installDir/target/h/net, which is used by network drivers for specific network
controllers.

Tornado 2.2

User’s Guide

174

■ installDir/target/h/rpc, which is used by applications using the remote
procedure call library.

■ installDir/target/h/sys, which is used by applications using standard POSIX
functions.

VxWorks Private Header Files

Some elements of VxWorks are internal details that may change and so should not
be referenced in your application. The only supported uses of a module’s facilities
are through the public definitions in the header file, and through the module’s
subroutine interfaces. Your adherence ensures that your application code is not
affected by internal changes in the implementation of a VxWorks module.

Some header files mark internal details using HIDDEN comments:

/* HIDDEN */
...
/* END HIDDEN */

Internal details are also hidden with private header files: files that are stored in the
directory installDir/target/h/private. The naming conventions for these files
parallel those in installDir/target/h with the library name followed by P.h. For
example, the private header file for semLib is
installDir/target/h/private/semLibP.h.

5.2.2 Compiling Application Modules Using GNU Tools

Tornado includes a full-featured C and C++ compiler and associated tools,
collectively called the GNU ToolKit. Extensive documentation for this set of tools is
available in the GNU ToolKit User’s Guide. This section provides some general
orientation about the source of these tools, and describes how the tools are
integrated into the Tornado development environment.

NOTE: The GNU tools are not available for the ColdFire architecture; the Diab
tools are the default toolset. Diab tools are available as an optional product for the
ARM/StrongARM/XScale, MIPS, PowerPC, and Hitachi SH architectures. See
5.2.3 Compiling Application Modules Using Diab Tools, p.179.

5

5

Command-Line Configuration and Build

175

The GNU Tools

GNU (“GNU’s Not UNIX!”) is a project of the Free Software Foundation started by
Richard Stallman and others to promote free software. To the FSF, free software is
software whose source code can be copied, modified, and redistributed without
restriction. GNU software is not in the public domain; it is protected by copyright
and subject to the terms of the GNU General Public License, a legal document
designed to ensure that the software remains free—for example, by prohibiting
proprietary modifications and concomitant restrictions on its use. The General
Public License can be found in the file COPYING that accompanies the source code
for the GNU tools, and in the section titled Free Software at the back of the GNU
ToolKit User’s Guide.

It is important to be aware that the terms under which the GNU tools are
distributed do not apply to the software you create with them. In fact, the General
Public License makes no requirements of you as a software developer at all, as long
as you do not modify or redistribute the tools themselves. On the other hand, it
gives you the right to do both of these things, provided you comply with its terms
and conditions. It also permits you to make unrestricted copies for your own use.

The Wind River GNU distribution consists of the GNU ToolKit, which contains
GNU tools modified and configured for use with your VxWorks target
architecture. The source code for these tools is available upon request.

Cross-Development Commands

The GNU cross-development tools in Tornado have names that clearly indicate the
target architecture. This allows you to install and use tools for more than one
architecture, and to avoid confusion with corresponding host native tools. A suffix
identifying the target architecture is appended to each tool name. For example, the
cross-compiler for the PowerPC processor family is called ccppc, and the
assembler asppc. The suffixes used are shown in Table 5-1. Note that the GNU
ToolKit User’s Guide refers to these tools by their generic names (without a suffix).

Table 5-1 Suffixes for Cross-Development Tools

Architecture Command Suffix

ARM, StrongARM, XScale arm

MC680x0 68k

MIPS mips

Tornado 2.2

User’s Guide

176

Defining the CPU Type

Tornado supports multiple target architectures. To accommodate this support,
several VxWorks header files contain conditional compilation directives based on
the definition of the variable CPU. When using these header files, the variable CPU

must be defined in one of the following places:

– the source modules
– the header files
– the compilation command line

To define CPU in the source modules or header files, add the following line:

#define CPU cputype

To define CPU on the compilation command line, add the following flag:

-DCPU=cputype

The constants shown in Table 5-2 are supported values for cputype.

Pentium pentium

PowerPC ppc

SuperH sh

VxSim Solaris,
VxSim PC

simso,
simpc

Table 5-2 Values for cputype for GNU Tools

Architecture Value

ARM, StrongARM,
XScale

ARMARCH4, ARMARCH4_T, ARMARCH5, ARMARCH5_T,
ARM7TDMI, ARM7TDMI_T, ARM710A, ARM810, ARMSA110,
XSCALE

MC680x0 MC68000, MC68010, MC68020,* MC68040, MC68060, MC68LC040†,
CPU32

MIPS MIPS32, MIPS64

Table 5-1 Suffixes for Cross-Development Tools (Continued)

Architecture Command Suffix

5

5

Command-Line Configuration and Build

177

With makefiles, the CPU definition can be added to the definition of the flags
passed to the compiler (usually CFLAGS).

In the source code, the file vxWorks.h must be included before any other files with
dependencies on the CPU flag.

As well as specifying the CPU value, you must usually run the compiler with one
or more option flags to generate object code optimally for the particular
architecture variant. These option flags usually begin with -m; see Compiling C
Modules With the GNU Compiler, p.177.

Compiling C Modules With the GNU Compiler

The following is an example command to compile an application module for a
VxWorks PowerPC 604 system:

% ccppc -mcpu=604 -mstrict-align -I ${WIND_BASE}/target/h -DCPU=PPC603 \
-DTOOL_FAMILY=gnu -DTOOL=gnu -c applic.c

This compiles the module applic.c into an object file applic.o.

Below are summary descriptions of the target-independent flags used in the
example. Flags that are specific to a particular target architecture are described in
the relevant architecture supplement. For more information on any of these flags,
see the GNU ToolKit User’s Guide.

Pentium PENTIUM2, PENTIUM3, PENTIUM4

PowerPC PPC403, PPC405, PPC440, PPC603, PPC604, PPC860

VxSim Solaris,
VxSim PC

SIMSPARCSOLARIS, SIMNT

SuperH SH7600, SH7700, SH7750

* MC68020 is the appropriate value for both the MC68020 and the MC68030 CPUs.
† MC68LC040 is the appropriate value for both the MC68LC040 and the MC68EC040.

Table 5-2 Values for cputype for GNU Tools (Continued)

Architecture Value

Tornado 2.2

User’s Guide

178

-g
Generate debugging information.

-c
Compile only to produce a relocatable object file. The result is an object
module with the suffix .o, in this case, applic.o.

-DCPU=CPU
Required; defines the CPU type.

-DTOOL_FAMILY=gnu
Optional; defines the compilation toolkit used to compile VxWorks. If not
entered, it is derived from -DTOOL=.

-DTOOL=gnu
Required; specifies the compilation toolkit and the tool environment. For more
information, see the GNU ToolKit User’s Guide.

-I$(WIND_BASE)/target/h
Include VxWorks header files. (See 5.2.1 Using VxWorks Header Files, p.171.)

-fno-builtin
Use library calls even for common library subroutines such as memcpy. Used
by VxWorks for historical reasons. There is no need for application code to use
this flag.

-Wall
Turn on all warnings. This flag is optional.

-ansi
Reject non-ANSI-compliant code. This flag is optional.

-O
Perform basic optimizations.

-O2
Perform most supported optimizations (except those involving a space-speed
trade-off

Compiling C++ Modules

The GNU compiler drivers can be used to compile both C and C++ source files.
C++ source files are recognized by their extension (typically .cc, .cpp, or .C). For
complete information on using C++, including a detailed discussion of compiling
C++ modules, see the VxWorks Programmer’s Guide: C++ Development.

5

5

Command-Line Configuration and Build

179

5.2.3 Compiling Application Modules Using Diab Tools

For more information about the Diab tools, see the Diab C/C++ Compiler User’s
Guide. The Diab tools are the only tools available for ColdFire. Diab tools are
available as an optional product for the ARM/StrongARM/XScale, MIPS,
PowerPC, and SuperH architectures.

The Diab Tools

The Diab C/C++ compiler suites are high performance programming tools. In
addition to the benefits of state-of-the-art optimization, they reduce time spent
creating reliable code because the compilers and other tools include many built-in,
customizable, checking features which help detect problems earlier.

The compilers are particularly helpful in speeding up or reducing the size of
existing programs developed with other tools.

With over 250 command-line options and special pragmas, and a powerful linker
command language for arranging code and data in memory, the Diab C/C++
compiler suites can be customized to meet the needs of any embedded systems
project. A number of options are specifically designed to be compatible with other
tools to ease porting of existing code.

If you are using the Diab tools, you need to be sure that two settings are in place:

■ Be sure that installDir/host/diab/WIN32\bin is in your path.

■ Be sure that the environment variable DIABLIB is set to installDir/host/diab.

There is a batch file called torVars.[c]sh in installDir/host/hostType/bin that will set
DIABLIB for you.

! CAUTION: Different versions of C++ run-time support are provided for the GNU
and Diab toolchains. For this reason, you cannot combine C++ objects compiled
with GNU with C++ objects compiled with Diab. All C++ applications must be
compiled with the same tool.

Tornado 2.2

User’s Guide

180

Cross-Development Commands

The Diab cross-development tools in Tornado are always called by the same
names: dcc, dld, and so forth. The architecture-specific version of the tool is
specified by the -t option in the command line or makefile. For Tornado 2.2, the -t
option always includes the architecture family and the VxWorks specifier, for
example:

-tPPC403FS:vxworks55

When you install Diab in the Tornado tree, the defaults are set correctly for the
architecture you installed. You can use the command dcc -Xshow-target to display
the value and dctrl -t to change it.

You may need to change the architecture family and its characteristics (for
example, PPC403FS). Detailed information is available in the Diab C/C++ Compiler
User’s Guide: Selecting a Target and Its Components.

Defining the CPU Type

Tornado supports multiple target architectures. To accommodate this, several
VxWorks header files contain conditional compilation directives based on the
definition of the variable CPU. When using these header files, the variable CPU

must be defined in one of the following places:

– the source modules
– the header files
– the compilation command line

To define CPU in the source modules or header files, add the following line:

#define CPU cputype

To define CPU on the compilation command line, add the following flag:

-DCPU=cputype

5

5

Command-Line Configuration and Build

181

The constants shown in Table 5-2 are supported values for cputype.

With makefiles, the CPU definition can be added to the definition of the flags
passed to the compiler (usually CFLAGS).

In the source code, the file vxWorks.h must be included before any other files with
dependencies on the CPU flag.

As well as specifying the CPU value, you must usually run the compiler with one
or more option flags to generate object code optimally for the particular
architecture variant. For detailed information, see Diab C/C++ Compiler User’s
Guide: Selecting a Target and Its Components.

Compiling C Modules With the Diab Compiler

The following is an example command to compile an application module for a
VxWorks PowerPC 604 system:

% dcc -g -tPPC403FS:vxworks55 -Xmismatch-warning=2 \
-ew1554,1551,1552, 1086,1047,1547 -Xclib-optim-off -Xansi \
-Xstrings-in-text=0 -Wa,-Xsemi-is-newline-ei1516,1643,1604 \
-Xlocal-data-area-static-only -W:c++:,-Xexceptions -Xsize-opt \
-Wall -I${WIND_BASE}/target/h -DCPU=PPC604 -DTOOL=diab -c applic.c

This compiles the module applic.c into an object file applic.o.

Table 5-3 Values for cputype for Diab Tools

Architecture Value

ARM ARMARCH4, ARMARCH4_T, ARMARCH5_T, ARMARCH5_T

ColdFire MCF5200, MCF5400

SuperH SH7600, SH7700, SH7700, SH7750

MIPS MIPS32, MIPS64

PowerPC PPC403, PPC405, PPC440, PPC603, PPC604, PPC860

StrongARM,
XScale

STRONGARM, XSCALE

Tornado 2.2

User’s Guide

182

Below are summary descriptions of the target-independent flags used in the
example. Flags that are specific to a particular target architecture are described in
the relevant architecture supplement. For more information on any of these flags
see the Diab C/C++ Compiler User’s Guide.

-g
Generate debugging information.

-tPPC403FS:vxworks55
Specifies the processor family and the compilation environment. See Cross-
Development Commands, p.180.

-Xname_or_number[=value]
Control the compilation process when behavior other than the default is
needed. Most -X options can be set either by name (-Xname) or by number
(-Xn). Options control such behaviors as debugging, optimization, and syntax.

-ewn[,n,...]
For each message number in the comma-separated list, change the severity
level of the message to warning.

-Wa,argument
Pass argument to the assembler.

-ein[,n,...]
For each message number in the comma-separated list, change the severity
level of the message to information (equivalent to ignore).

-W:c++:,-Xexception
Pass the argument -Xexception to the C++ compiler.

-D arch family
Specifies the architecture family.

-DCPU=CPU
Required; defines the CPU type.

-DTOOL_FAMILY=diab
Optional; defines the compilation toolkit used to compile VxWorks. If not
entered, it is derived from -DTOOL=.

-DTOOL=diab
Required; specifies the tool and tool environment. For more information, see
the Diab C/C++ Compiler User’s Guide.

5

5

Command-Line Configuration and Build

183

-I$(WIND_BASE)/target/h
Include VxWorks header files. (See 5.2.1 Using VxWorks Header Files, p.171)

Compiling C++ Modules

The Diab compiler uses dcc to invoke the C compiler and dplus to invoke the C++
compiler. For complete information on using C++, including a detailed discussion
of compiling C++ modules see the VxWorks Programmer’s Guide: C++ Development
and the Diab C/C++ Compiler User’s Guide.

5.2.4 Static Linking (Optional)

After you compile an application module, you can load it directly into the target
with the Tornado dynamic loader (through the shell or through the debugger).

In general, application modules do not need to be prelinked before being
downloaded to the target. The exception is when several application modules
cross reference each other. In this case, the modules should be linked to form a
single downloadable module. When using C++, this prelinking should be done
before the munch step (see the VxWorks Programmer’s Guide: C++ Development).

The following example is a command to link several application modules, using
the GNU linker for the PowerPC family of processors.

% ldppc -o applic.o -r applic1.o applic2.o applic3.o

Similarly, the following example is a command to link several application
modules, using the Diab linker for the PowerPC family of processors.

% dld -o applic.o -r applic1.o applic2.o applic3.o

This creates the object module applic.o from the object modules applic1.o,
applic2.o, and applic3.o. The -r option is required, because the object-module
output must be left in relocatable form so that it can be downloaded and linked to
the target VxWorks image.

! CAUTION: Different versions of C++ run-time support are provided for the GNU
and Diab toolchains. For this reason, you cannot combine C++ objects compiled
with GNU with C++ objects compiled with Diab. All C++ applications must be
compiled with the same tool.

Tornado 2.2

User’s Guide

184

Any VxWorks facilities called by the application modules are reported by the
linker as unresolved externals. These are resolved by the Tornado loader when the
module is loaded into VxWorks memory.

5.2.5 Downloading an Application Module

After application object modules are compiled (and possibly linked by the host
ldarch command), they can be dynamically loaded into a running VxWorks system
by invoking the Tornado module loader. You can do this either from the Tornado
shell using the built-in command ld(), or from the debugger using the Debug menu
or the load command.

The following is a typical load command from the Tornado shell:

-> ld <applic.o

This relocates the code from the host file applic.o, linking to previously loaded
modules, and loads the object module into the target’s memory. Once an
application module is loaded into target memory, any subroutine in the module
can be invoked directly from the shell, spawned as a task, connected to an
interrupt, and so on.

The shell ld() command, by default, adds only global symbols to the symbol table.
During debugging, you may want local symbols as well. To get all symbols loaded
(including local symbols), you can use the GDB command load from the debugger.
Because this command is meant for debugging, it always loads all symbols.

! WARNING: Do not link each application module with the VxWorks libraries.
Doing this defeats the load-time linking feature of Tornado, and wastes space by
writing multiple copies of VxWorks system modules on the target.

NOTE: The order in which modules are loaded using ld() is important. A
downloaded module can call into a previously downloaded module to resolve
symbols. However, the opposite is not true. For example, given two modules,
applic1.o and applic2.o, in which applic1.o can stand alone, but applic2.o relies on
symbols that are defined in applic1.o; ld() will perform the necessary linking only
if applic1.o is loaded before applic2.o.

5

5

Command-Line Configuration and Build

185

Alternatively, you can load all symbols by calling the shell command ld() with a
full argument list instead of the shell-redirection syntax shown above. When you
use an argument list, you can get all symbols loaded by specifying a 1 as the first
argument, as in the following example:

-> ld 1,0,"applic.o"

In the previous examples, the object module applic.o resides in the shell’s current
working directory. Normally, you can use either relative path names or absolute
path names to identify object modules to ld(). If you use a relative path name, the
shell converts it to an absolute path (using its current working directory) before
passing the download request to the target server. In order to avoid trouble when
you call ld() from a shell that is not running on the same host as its target server,
Tornado supplies the LD_SEND_MODULES facility; see 7. Shell. If you are using a
remote target server and ld() fails with a “no such file” message, be sure that
LD_SEND_MODULES is set to “on.”

For more information about loader arguments, see the discussion of ld() in the
reference entry for windsh.

For information about the target-resident version of the loader (which also
requires the target-resident symbol table), see the VxWorks Programmer’s Guide:
Target Tools and the VxWorks reference entry for loadLib. For information on
booting VxWorks, see 2.6 Booting VxWorks, p.46.

5.2.6 Module IDs and Group Numbers

When a module is loaded, it is assigned a module ID and a group number. Both the
module ID and the group number are used to reference the module. The module
ID is returned by ld() as well as by the target-resident loader routines. When
symbols are added to the symbol table, the associated module is identified by the
group number (a small integer). (Due to limitations on the size of the symbol table,
the module ID is inappropriate for this purpose.) All symbols with the same group
number are from the same module. When a module is unloaded, the group
number is used to identify and remove all the module’s symbols from the symbol
table.

Tornado 2.2

User’s Guide

186

5.2.7 Unloading Modules

Whenever you load a particular object module more than once, using the target
server (from either the shell or the debugger), the older version is unloaded
automatically. You can also unload a module explicitly; both the Tornado shell and
the target-resident VxWorks libraries include an unloader. To remove a module
from the shell, use the shell routine unld(); see the reference entry for windsh.

For information about the target-resident version of the unloader (which also
requires the target-resident symbol table and loader), see the VxWorks
Programmer’s Guide: Target Tools and the VxWorks reference entry for unldLib.

After a module has been unloaded, any calls to routines in that module fail with
unpredictable results. Take care to avoid unloading any modules that are required
by other modules. One solution is to link interdependent files using the static
linker ldarch as described in 5.2.4 Static Linking (Optional), p.183, so that they can
only be loaded and unloaded as a unit.

5.3 Configuring VxWorks

The configuration of VxWorks is determined by the configuration header files
installDir/target/config/all/configAll.h and
installDir/target/config/bspname/config.h. These files are used by the usrConfig.c,
bootConfig.c, and bootInit.c modules as they run the initialization routines
distributed in the directory installDir/target/src/config to configure VxWorks.

The VxWorks distribution includes the configuration files for the default
development configuration. You can create your own versions of these files to
better suit your particular configurations; this process is described in the following
subsections. In addition, if you need multiple configurations, environment
variables can be set so you can move easily between them.

Including optional components in your VxWorks image can significantly increase
the image size. If you receive a warning from vxsize when building VxWorks, or if
the size of your image becomes greater than that supported by the current setting
of RAM_HIGH_ADRS, be sure to see Scaling Down VxWorks, p.193 and 5.6 Creating
Bootable Applications, p.210 for information on how to resolve the problem.

5

5

Command-Line Configuration and Build

187

5.3.1 The Board Support Package (BSP)

The directory installDir/target/config/bspname contains the Board Support Package
(BSP), which consists of files for the particular hardware used to run VxWorks,
such as a VME board with serial lines, timers, and other devices. The files include:
Makefile, sysLib.c, sysALib.s, romInit.s, bspname.h, and config.h.

Wind River-supplied BSPs conform to a standard, introduced with BSP Version
1.1. The standard is fully described in the VxWorks BSP Developer’s Guide.

! WARNING: Use of the project facility for configuring and building applications is
largely independent of the methods used prior to Tornado 2.0 (which included
manually editing the configuration files config.h or configAll.h). The project
facility provides the recommended and simpler means for configuration and
building; the manual method is described in this section.

To avoid confusion and errors, the two methods should not be used together for
the same project. One exception is for any configuration macro that is not
accessible through the project facility GUI (which may be the case, for example, for
some BSP driver parameters). You can use a Find Object dialog box to determine if
a macro is accessible or not (see Finding VxWorks Components and Configuration
Macros, p.136). If it is not accessible through the GUI, a configuration file must be
edited, and the project facility will implement the change in the subsequent build.

The order of precedence for determining configuration is (in descending order):

project facility
config.h
configAll.h

For any macro that is exposed through the project facility GUI, changes made after
creation of a project in either of the configuration files will not appear in the project.

Another exception is that you may configure a BSP using manual methods and
then use provided make targets to create a project for application development.
See 5.7 Building Projects From a BSP, p.214.

Tornado 2.2

User’s Guide

188

The System Library

The file sysLib.c provides the board-level interface on which VxWorks and
application code can be built in a hardware-independent manner. The functions
addressed in this file include:

■ Initialization functions

– initialize the hardware to a known state
– identify the system
– initialize drivers, such as SCSI or custom drivers

■ Memory/address space functions

– get the on-board memory size
– make on-board memory accessible to the external bus (optional)
– map local and bus address spaces
– enable/disable cache memory
– set/get nonvolatile RAM (NVRAM)
– define the board’s memory map (optional)
– virtual-to-physical memory map declarations for processors with MMUs

■ Bus interrupt functions

– enable/disable bus interrupt levels
– generate bus interrupts

■ Clock/timer functions

– enable/disable timer interrupts
– set the periodic rate of the timer

■ Mailbox/location monitor functions (optional)

– enable mailbox/location monitor interrupts

The sysLib library does not support every feature of every board. Some boards
may have additional features, others may have fewer, others still may have the
same features with a different interface. For example, some boards provide some
sysLib functions by means of hardware switches, jumpers, or PALs, instead of by
software-controllable registers.

The configuration modules usrConfig.c and bootConfig.c in
installDir/target/config/all are responsible for invoking this library’s routines at the
appropriate time. Device drivers can use some of the memory mapping routines
and bus functions.

5

5

Command-Line Configuration and Build

189

Virtual Memory Mapping

For boards with MMU support, the data structure sysPhysMemDesc defines the
virtual-to-physical memory map. This table is typically defined in sysLib.c,
although some BSPs place it in a separate file, memDesc.c. It is declared as an array
of the data structure PHYS_MEM_DESC. No two entries in this descriptor can
overlap; each entry must be a unique memory space.

The sysPhysMemDesc array should reflect your system configuration, and you
may encounter a number of reasons for changing the MMU memory map, for
example: the need to change the size of local memory or the size of the VME master
access space, or because the address of the VME master access space has been
moved. For information on virtual memory mapping, as well as an example of
how to modify sysPhysMemDesc, see the VxWorks Programmer’s Guide: Virtual
Memory Interface.

Configuration Files

The file config.h specifies which VxWorks facilities are included in your system
image. The file bspname.h specifies BSP-specific capabilities.

BSP Initialization Modules

The following files initialize the BSP:

■ The file romInit.s contains assembly-level initialization routines.

■ The file sysALib.s contains initialization and system-specific assembly-level
routines.

BSP Documentation

The file target.nr in the installDir/target/config/bspname directory is the source of
the online reference entry for target-specific information. (You can also view the
HTML version of this document from the Tornado IDE: Help>Manuals

Contents>BSP Reference>bspname.) The target.nr file describes the supported board
variations, the relevant jumpering, and supported devices. It also includes an

! CAUTION: A bus error can occur if you try to access memory that is not mapped.

Tornado 2.2

User’s Guide

190

ASCII representation of the board layout with an indication of board jumpers (if
applicable) and the location of the ROM sockets.

5.3.2 The Environment Variables

You can use Tornado environment variables to build variations of system
configurations. In general, your Tornado environment consists of three parts: the
host code (Tornado), the target code, and the configuration files discussed in this
section. If you use the default environment, your UNIX environment variables are
defined as follows:

To use different versions of usrConfig.c, bootConfig.c, and bootInit.c, store them
in a different directory and change the value of CONFIG_ALL. To use different
target code, point to the alternate directory by changing the value of TGT_DIR.

You can change the value of CONFIG_ALL by changing it either in your makefile
or on the command line. The value of TGT_DIR must be changed on the command
line.

To change CONFIG_ALL in your makefile, add the following command:

CONFIG_ALL = $WIND_BASE/target/config/newDir

To change CONFIG_ALL on the command line, do the following:

% make ... CONFIG_ALL = $WIND_BASE/target/config/newDir

To change TGT_DIR on the command line, do the following:

% make ... TGT_DIR = $ALT_DIR/target

Host code: $WIND_BASE/host/hosttype/bin

Target code: TGT_DIR = $WIND_BASE/target

Configuration code: CONFIG_ALL = $TGT_DIR/config/all

NOTE: Changing TGT_DIR will change the default value of CONFIG_ALL. If this
is not what you want, reset CONFIG_ALL as well.

5

5

Command-Line Configuration and Build

191

5.3.3 The Configuration Header Files

You can control VxWorks’s configuration by including or excluding definitions in
the global configuration header file configAll.h and in the target-specific
configuration header file config.h. This section describes these files.

The Global Configuration Header File: configAll.h

The configAll.h header file, in the directory installDir/target/config/all, contains
default definitions that apply to all targets, unless they are redefined in the target-
specific header file config.h. The following options and parameters are defined in
configAll.h:

– kernel configuration parameters
– I/O system parameters
– NFS parameters
– selection of optional software modules
– selection of optional device controllers
– cache modes
– maximum number of different shared memory objects
– device controller I/O addresses, interrupt vectors, and interrupt levels
– miscellaneous addresses and constants

The BSP-specific Configuration Header File: config.h

The BSP-specific header file, config.h, is located in the directory
installDir/target/config/bspname. This file contains definitions that apply only to the
specific target, and can also redefine default definitions in configAll.h that are
inappropriate for the particular target. For example, if a target cannot access a
device controller at the default I/O address defined in configAll.h because of
addressing limitations, the address can be redefined in config.h.

The config.h header file includes definitions for the following parameters:

– default boot parameter string for boot ROMs
– interrupt vectors for system clock and parity errors
– device controller I/O addresses, interrupt vectors, and interrupt levels
– shared memory network parameters
– miscellaneous memory addresses and constants

Tornado 2.2

User’s Guide

192

Selection of Optional Features

VxWorks ships with optional features and device drivers that can be included in,
or omitted from, the target system. These are controlled by macros in the project
facility or the configuration header files that cause conditional compilation in the
installDir/target/config/all/usrConfig.c module.

The distributed versions of the configuration header files configAll.h and config.h
include all the available software options and several network device drivers. If
you are not using the project facility (see 4. Projects), you define a macro by moving
it from the EXCLUDED FACILITIES section of the header file to the INCLUDED

SOFTWARE FACILITIES section.1 For example, to include the ANSI C assert library,
make sure the macro INCLUDE_ANSI_ASSERT is defined; to include the Network
File System (NFS) facility, make sure INCLUDE_NFS is defined. Modification or
exclusion of particular facilities is discussed in detail in 5.3.5 Alternative VxWorks
Configurations, p.193.

5.3.4 The Configuration Module: usrConfig.c

Use of the VxWorks configuration header files to configure your VxWorks system
should meet all of your development requirements. Users should not resort to
changing the Wind River-supplied usrConfig.c, or any other module in the
directory installDir/target/config/all. If, however, an extreme situation requires
such a change, we recommend you copy all the files in installDir/target/config/all
to another directory, and add a CONFIG_ALL macro to your makefile to point the
make system to the location of the modified files. For example, add the following
to your makefile after the first group of include statements:

../myAll contains a copy of all the ../all files
CONFIG_ALL = ../myAll

! CAUTION: If any options from configAll.h need to be changed for this one BSP,
then any previous definition of that option should be undefined and redefined as
necessary in config.h. Unless options are to apply to all BSPs at your site, do not
change them in installDir/target/config/all/configAll.h.

1. To see the available macros with their descriptions, see installDir/target/config/all/confi-
gAll.h (for macros applicable to all BSPs) and installDir/target/config/bspname/config.h (for
macros applicable to a specific BSP).

5

5

Command-Line Configuration and Build

193

5.3.5 Alternative VxWorks Configurations

The discussion of the usrConfig module in 5.3.4 The Configuration Module:
usrConfig.c, p.192 outlined the default configuration for a development
environment. In this configuration, the VxWorks system image contains all of the
VxWorks modules that are necessary to allow you to interact with the system
through the Tornado host tools.

However, as you approach a final production version of your application, you may
want to change the VxWorks configuration in one or more of the following ways:

■ Change the configuration of the target agent.
■ Decrease the size of VxWorks.
■ Run VxWorks from ROM.

The following sections discuss the latter two alternatives to the typical
development configuration. For a discussion on reconfiguring the target agent, see
4. Projects.

Scaling Down VxWorks

In a production configuration, it is often desirable to remove some of the VxWorks
facilities to reduce the memory requirements of the system, to reduce boot time, or
for security purposes.

Optional VxWorks facilities can be omitted by commenting out or using #undef to
undefine their corresponding control constants in the header files configAll.h or
config.h. For example, logging facilities can be omitted by undefining
INCLUDE_LOGGING, and signalling facilities can be omitted by undefining
INCLUDE_SIGNALS.

VxWorks is designed to make it easy to exclude facilities you do not need.
However, not every BSP is organized in this way. If you wish to minimize the size
of your system, be sure to examine your BSP code and eliminate references to
facilities you do not need. Even though you exclude them, if your code refers to
them, your exclusion will be overridden.

Excluding Kernel Facilities

The definition of the following constants in configAll.h is optional, because
referencing any of the corresponding kernel facilities from the application
automatically includes the kernel service:

– INCLUDE_SEM_BINARY

Tornado 2.2

User’s Guide

194

– INCLUDE_SEM_MUTEX

– INCLUDE_SEM_COUNTING

– INCLUDE_MSG_Q

– INCLUDE_WATCHDOGS

These configuration constants appear in the default VxWorks configuration to
ensure that all kernel facilities are configured into the system, even if not
referenced by the application. However, if your goal is to achieve the smallest
possible system, exclude these constants; this ensures that the kernel does not
include facilities you are not actually using.

There are two other configuration constants that control optional kernel facilities:
INCLUDE_TASK_HOOKS and INCLUDE_CONSTANT_RDY_Q. Define these
constants in configAll.h if the application requires either kernel callouts (use of
task hook routines) or a constant-insertion-time, priority-based ready queue. A
ready queue with constant insert time allows the kernel to operate context
switches with a fixed overhead regardless of the number of tasks in the system.
Otherwise, the worst-case performance degrades linearly with the number of
ready tasks in the system. Note that the constant-insert-time ready queue uses 2 KB
for the data structure; some systems do not have sufficient memory for this. In
those cases, the definition of INCLUDE_CONSTANT_RDY_Q may be omitted, thus
enabling use of a smaller (but less deterministic) ready queue mechanism.

Excluding Network Facilities

In some applications it may be appropriate to eliminate the VxWorks network
facilities. For example, in the ROM-based systems or standalone configurations
described in 5.6 Creating Bootable Applications, p.210, there may be no need for
network facilities.

To exclude the network facilities, be sure the following constants are not defined:

– INCLUDE_NETWORK

– INCLUDE_NET_INIT

– INCLUDE_NET_SYM_TBL

– INCLUDE_NFS

– INCLUDE_RPC

Option Dependencies

Option dependencies are coded in the file
installDir/target/src/config/usrDepend.c, so that when a particular option is
chosen, everything required is included. This assures you of a working system
with minimum effort. Although you can exclude the features that you do not need

5

5

Command-Line Configuration and Build

195

by undefining them in config.h and configAll.h, you should be aware that in some
cases they may not be excluded because of dependencies.

For example, you cannot use telnet without running the network. Therefore, if in
your configAll.h file, the option INCLUDE_TELNET is selected but the option
INCLUDE_NET_INIT is not, usrDepend.c defines INCLUDE_NET_INIT for you.
Because the network initialization requires the network software, the
userDepend.c file also defines INCLUDE_NETWORK.

Because most of the dependencies are taken care of in usrDepend.c, that file is
currently included in usrConfig.c. This simplifies the build process and the
selection of options. However, you can change or add dependencies if you choose.

Executing VxWorks from ROM

You can put VxWorks or a VxWorks-based application into ROM; this is discussed
in 5.6.3 Creating a VxWorks System in ROM, p.212. For an example of a ROM-based
VxWorks application, see the VxWorks boot ROM program. The file
installDir/target/config/all/bootConfig.c is the configuration module for the boot
ROM, replacing the file usrConfig.c provided for the default VxWorks
development system.

In such ROM configurations, the text and data segments of the boot or VxWorks
image are first copied into the system RAM, then the boot procedure or VxWorks
executes in RAM. On some systems where memory is a scarce resource, it is
possible to save space by copying only the data segment to RAM. The text segment
remains in ROM and executes from that address space, and thus is termed
ROM resident. The memory that was to be occupied by the text segment in RAM is
now available for an application (up to 300 KB for a standalone VxWorks system).
Note that ROM-resident VxWorks is not supported on all boards; see the reference
entry for your target if you are not sure that your board supports this
configuration.

The drawback of a ROM-resident text segment is the limited data widths and
lower memory access time of the EPROM, which causes ROM-resident text to
execute more slowly than if it was in RAM. This can sometimes be alleviated by
using faster EPROM devices or by reconfiguring the standalone system to exclude
unnecessary system features.

Aside from program text not being copied to RAM, the ROM-resident versions of
the VxWorks boot ROMs and the standalone VxWorks system are identical to the
conventional versions. A ROM-resident image is built with an uncompressed

Tornado 2.2

User’s Guide

196

version of either the boot ROM or standalone VxWorks system image. VxWorks
target makefiles include entries for building these images; see Table 5-4.

Because of the size of the system image, 512 KB of EPROM is recommended for the
ROM-resident version of the standalone VxWorks system. More space is probably
required if applications are linked with the standalone VxWorks system. For a
ROM-resident version of the boot ROM, 256 KB of EPROM is recommended. If you
use ROMs of a size other than the default, modify the value of ROM_SIZE in the
target makefile and config.h.

A separate make target, vxWorks.res_rom_nosym, has been created to provide a
ROM-resident image without the symbol table. This is intended to be a standard
ROM image for use with the Tornado environment where the symbol table resides
on the host system. Being ROM-resident, the debug agent and VxWorks are ready
almost immediately after power-up or restart.

Table 5-4 Makefile ROM-Resident Images

Architecture Image FIle*

* All images have a corresponding file in Motorola S-record or Intel Hex format with
the same file name plus the extension .hex and one in binary format with the
extension .bin.

Description

MIPS and
PowerPC

bootrom_res_high ROM-resident boot ROM image. The
data segment is copied from ROM to
RAM at address RAM_HIGH_ADRS.

vxWorks.res_rom_res_low ROM-resident standalone system image
without compression. The data segment
is copied from ROM to RAM at address
RAM_LOW_ADRS.

vxWorks.res_rom_nosym_res_low ROM-resident standalone system image
without compression or symbol table.
Data segment is copied from ROM to
RAM at address RAM_LOW_ADRS.

All Other
Targets

bootrom_res ROM-resident boot ROM image.

vxWorks.res_rom ROM-resident standalone system image
without compression.

vxWorks.res_rom_nosym ROM-resident system image without
compression or symbol table. Ideal for
the Tornado environment.

5

5

Command-Line Configuration and Build

197

The data segment of a ROM-resident standalone VxWorks system is loaded at
RAM_LOW_ADRS (defined in the makefile) to minimize fragmentation. The data
segment of ROM-resident boot ROMs is loaded at RAM_HIGH_ADRS, so that
loading VxWorks does not overwrite the resident boot ROMs. For a CPU board
with limited memory (under 1 MB of RAM), make sure that RAM_HIGH_ADRS is
less than LOCAL_MEM_SIZE by a margin sufficient to accommodate the data
segment. Note that RAM_HIGH_ADRS is defined in both the makefile and
config.h. These definitions must agree.

Figure 5-1 shows the memory layout for ROM-resident boot and VxWorks images.
The lower portion of the diagram shows the layout for ROM; the upper portion
shows the layout for RAM. LOCAL_MEM_LOCAL_ADRS is the starting address of
RAM. For the boot image, the data segment gets copied into RAM above
RAM_HIGH_ADRS (after space for bss is reserved). For the VxWorks image, the
data segment gets copied into RAM above RAM_LOW_ADRS (after space for bss is
reserved). Note that for both images the text segment remains in ROM.

5.4 Building a VxWorks System Image

You can redefine the VxWorks configuration in two ways: interactively, as
described in 4. Projects, or by editing VxWorks configuration files as described in
5.3 Configuring VxWorks, p.186. In either case, after you alter the configuration,
VxWorks must be rebuilt to incorporate the changes. This includes recompiling
certain modules and re-linking the system image. This section explains the
procedures for rebuilding the VxWorks system image using manual techniques.

5.4.1 Available VxWorks Images

There are three types of VxWorks images:

■ Boot application images
■ Downloadable VxWorks images
■ ROM-based VxWorks images

Tornado 2.2

User’s Guide

198

Figure 5-1 ROM-Resident Memory Layout

BOOT IMAGE VXWORKS IMAGE

text
text

data

RAM_HIGH_ADRS

ROM_TEXT_ADRS

RAM_LOW_ADRS

ROM

RAM

data

data

bss

bss

ROM

RAM

data

ROM_TEXT_ADRS

LOCAL_MEM_LOCAL_ADRS LOCAL_MEM_LOCAL_ADRS

= copied to RAM

5

5

Command-Line Configuration and Build

199

Boot ROM images come in three flavors: compressed, uncompressed, and ROM-
resident.

Downloaded VxWorks images come in two basic varieties, Tornado and
standalone. (Here “Tornado” is a Vxworks image that uses the host-based tools
and symbol table, while “standalone” is an image that uses the target tools and
symbol table.)

ROMmed VxWorks images include:

5.4.2 Rebuilding VxWorks with make

VxWorks uses the GNU make facility to recompile and relink modules. A file
called Makefile in each VxWorks target directory contains the directives for
rebuilding VxWorks for that target. See the GNU Make User’s Guide for a detailed
description of GNU make and of how to write makefiles.

With a UNIX host, you must use the GNU version of make included with Tornado;
makefiles distributed by Wind River may, and often do, make use of features
supported only by GNU make. Ensure that your PATH variable has
installDir/host/hostType/bin ahead of the directory that contains your native OS
version of make.

To rebuild VxWorks, first change to the VxWorks target directory for the desired
target, and invoke make as follows:

% cd ${WIND_BASE}/target/config/bspname
% make

make compiles and links modules as necessary, based on the directives in the
target directory’s makefile.

bootrom normal compressed boot ROM
bootrom_uncmp uncompressed boot ROM
bootrom_res ROM-resident boot ROM

vxWorks basic Tornado uses host shell and symbol table
vxWorks.st standalone image has target shell and symbol table

vxWorks_rom Tornado in ROM (uncompressed)
vxWorks.st_rom vxWorks.st in ROM (compressed)
vxWorks.res_rom vxWorks.st ROM-resident
vxWorks.res_rom_nosym Tornado, ROM-resident

Tornado 2.2

User’s Guide

200

To rebuild VxWorks when only header files change, use one of the following
methods:

% make clean VxWorks

Or:

% make clean
% make

Either method removes all existing .o files, and then recreates the new .o files
required by VxWorks.

5.4.3 Including Customized VxWorks Code

The directory installDir/target/src/usr contains the source code for certain portions
of VxWorks that you may wish to customize. For example, usrLib.c is a popular
place to add target-resident routines that provide application-specific
development aids. For a summary of other files in this directory, see A. Directories
and Files.

If you modify one of these files, an extra step is necessary before rebuilding your
VxWorks image: you must replace the modified object code in the appropriate
VxWorks archive. The makefile in installDir/target/src/usr automates the details;
however, because this directory is not specific to a single architecture, you must
specify the value of the CPU variable on the make command line:

% make CPU=cputype TOOL=tool

This step recompiles all modified files in the directory, and replaces the
corresponding object code in the appropriate architecture-dependent directory.
After that, the next time you rebuild VxWorks, the resulting system image includes
your modified code.

The following example illustrates replacing usrLib with a modified version,
rebuilding the archives, and then rebuilding the VxWorks system image. For the
sake of conciseness, the make output is not shown. The example assumes the epc4
(I80386) BSP; replace the BSP directory name and CPU value as appropriate for
your environment.

% cd ${WIND_BASE}/target/src/usr
% cp usrLib.c usrLib.c.orig
% cp develDir/usrLib.c usrLib.c
% make CPU=PPC860
...

5

5

Command-Line Configuration and Build

201

% cd ${WIND_BASE}/target/config/epc4
% make
...

5.4.4 Linking the System Modules

The commands used to link a VxWorks system image are somewhat complicated.
Fortunately, it is not necessary to understand those commands in detail because
they are included in the makefile in each VxWorks target directory. However, for
completeness, this section gives an explanation of the flags and parameters used to
link VxWorks modules.

VxWorks operating system modules are distributed in the form of archive
libraries. One set of archives is provided for each target architecture. These
archives are located under installDir/target/lib. For more details about the archive
directory structure, see the Tornado Migration Guide: Binary Compatibility.

These modules are combined with the configuration module usrConfig.o by the
ccarch command on the host. (The file usrConfig.c is described in 5.3.4 The
Configuration Module: usrConfig.c, p.192.) The following are example commands for
building and linking a VxWorks system using the GNU compiler for PowerPC:

For a partial image (partially linked):

ccppc -r -nostdlib -Wl,-X -o vxWorks.tmp sysALib.o sysLib.o \
miiLib.obj usrConfig.o version.o -Wl,--start-group \
-L/vobs/wpwr/target/lib/ppc/PPC604/gnu \
-L/vobs/wpwr/target/lib/ppc/PPC604/common -lcplus -lgnucplus \
-lvxcom -lvxdcom -larch -lcommoncc -ldcc -ldrv -lgcc -lnet -los \
-lrpc -lsecurity -ltffs -lusb -lvxfusion -lvxmp -lvxvmi -lwdb \
-lwind -lwindview /vobs/wpwr/target/lib/libPPC604gnuvx.a -Wl,--end-group

For the final image (fully linked):

ldppc -X -N -e _sysInit -Ttext 00100000 -o vxWorks dataSegPad.o \
vxWorks.tmp ctdt.o -T /vobs/wpwr/target/h/tool/gnu/ldscripts/link.RAM

The meanings of the flags in this command are as follows:

-r Generate relocatable output.

-nostdlib
Do not use the standard system libraries.

-wl,option
Pass option as an option to the linker.

-X Eliminate some compiler-generated symbols from the symbol table.

Tornado 2.2

User’s Guide

202

-o vxWorks
Name the output object module vxWorks.

--start-group archives --end-group
The specified archives are searched repeatedly until no new undefined
references are created. archives should be a list of archive files. They may be
either explicit file names, or -l options.

-larch
List of all the archive files added to the list of files to link. ld searches its path-
list for occurrences of libarch.a for every archive specified.

-Lsearchdir
List of all the paths that ld will search for archive libraries. The directories are
searched in the order in which they are specified on the command line. All -L
options apply to all -l options, regardless of the order in which the options
appear.

-N Do not configure the output object module for a virtual-memory system.

-Ttext 1000
Specify the relocation address as a hexadecimal constant; in this example, 1000
hexadecimal. This is the address where the system must be loaded in the
target, and is also the address where execution starts. Some target systems
have limitations on where this relocation address can be.

-e _sysInit
Define the entry point to vxWorks. sysInit() is the first routine in sysALib.o,
which is the first module loaded by ldarch.

sysALib.o and sysLib.o
Modules that contain CPU-dependent initialization and support routines. The
module sysALib.o must be the first module specified in the ldarch command.

usrConfig.o
The configuration module (described in detail in 5.3.4 The Configuration
Module: usrConfig.c, p.192). If you have several different system configurations,
you may maintain several different configuration modules, either in
installDir/target or in your own directory.

version.o
A module that defines the creation date and version number of this vxWorks
object module. It is created by compiling the output of makeVersion, an
auxiliary tool in the installDir/host/host-os/bin directory.

5

5

Command-Line Configuration and Build

203

installDir/target/lib/libcpugnuvx.a
A VxWorks 5.4.x archive, included for backward compatibility. VxWorks is
completely specified by the libraries indicated by -l and -L. This library might
be used by optional or third-party products.

Additional object modules
You can link additional object modules (with .o suffix) into the run-time
VxWorks system by naming them on the ldarch command line. An easy way
to do this is to use the variable MACH_EXTRA in the BSP makefiles. Define this
variable and list the object modules to be linked with VxWorks. Note that
during development, application object modules are generally not linked with
the system (unless they are needed by the usrConfig module), because it is
more convenient to load them incrementally from the host after booting
VxWorks. See 5.6 Creating Bootable Applications, p.210 for more detail on linking
application modules in a bootable system.

5.4.5 Creating the System Symbol Table Module

The Tornado target server uses the VxWorks symbol table on the host system, both
for dynamic linking and for symbolic debugging. The symbol table file is created
by the supplied tool xsym. Processing an object module with xsym creates a new
object module that contains all the symbols of the original file, but with no code or
data. The line in the makefile that creates this file executes the command:

xsym < vxWorks > vxWorks.sym

The file vxWorks.sym is downloaded to the target to build the target symbol table
when INCLUDE_NET_SYM_TBL is included.

5.5 Makefiles for BSPs and Applications

Makefiles for VxWorks applications are easy to create by exploiting the makefiles
and make include files shipped with VxWorks BSPs. This section discusses how
the VxWorks BSP makefiles are structured. For more information, see . An example
of how to utilize this structure for application makefiles is in 5.5.2 Using Makefile
Include Files for Application Modules, p.209.

Tornado 2.2

User’s Guide

204

A set of supporting files in installDir/target/h/make makes it possible for each BSP
or application makefile to be terse, specifying only the essential parameters that
are unique to the object being built.

Example 5-1 shows the makefile from the installDir/target/config/mbx860
directory; the makefile for any other BSP is similar. Two variables are defined at the
start of the makefile: CPU, to specify the target architecture; and TOOL to identify
what compilation tools to use. Based on the values of these variables and on the
environment variables defined as part of your Tornado configuration, the makefile
selects the appropriate set of definitions from installDir/target/h/make. After the
standard definitions, several variables define properties specific to this BSP.
Finally, the standard rules for building a BSP on your host are included.

Example 5-1 Makefile for mbx860

Makefile - makefile for target/config/mbx860
#
Copyright 1984-2001 Wind River Systems, Inc.
Copyright 1997,1998 Motorola, Inc., All Rights Reserved
#
DESCRIPTION
This file contains rules for building VxWorks for the
MBX Board with a PowerPC 860 or PowerPC 821 processor.
#
INCLUDES
makeTarget
#*/

CPU = PPC860
TOOL = gnu

TGT_DIR = $(WIND_BASE)/target

include $(TGT_DIR)/h/make/defs.bsp
#include $(TGT_DIR)/h/make/make.$(CPU)$(TOOL)
#include $(TGT_DIR)/h/make/defs.$(WIND_HOST_TYPE)

Only redefine make definitions below this point, or your definitions will
be overwritten by the makefile stubs above.

TARGET_DIR = mbx860
VENDOR = Motorola
BOARD = MBX860

The constants ROM_TEXT_ADRS, ROM_SIZE, and RAM_HIGH_ADRS are defined
in config.h and Makefile. All definitions for these constants must be
identical.

ROM_TEXT_ADRS = FE000100 # ROM entry address
ROM_SIZE = 00080000 # number of bytes of ROM space

RAM_LOW_ADRS = 00010000 # RAM text/data address

5

5

Command-Line Configuration and Build

205

RAM_HIGH_ADRS = 00200000 # RAM text/data address

USR_ENTRY = usrInit

BOOT_EXTRA = mbxI2c.o mbxALib.o

MACH_EXTRA = mbxALib.o

RELEASE += bootrom.bin

Only redefine make definitions above this point, or the expansion of
makefile target dependencies may be incorrect.

include $(TGT_DIR)/h/make/rules.bsp

The following make include files define variables. These files are useful for
application-module makefiles, as well as for BSP makefiles.

defs.bsp
Standard variable definitions for a VxWorks run-time system.

The following include files define make targets, and the rules to build them. These
files are usually not required for building application modules in separate
directories, because most of the rules they define are specific to the VxWorks run-
time system and boot programs.

rules.bsp
Rules defining all the standard targets for building a VxWorks run-time
system (described in 5.4 Building a VxWorks System Image, p.197 and
5.6 Creating Bootable Applications, p.210). The rules for building object code
from C, C++, or assembly language are also spelled out here.

5.5.1 Make Variables

The variables defined in the make include files provide convenient defaults for
most situations, and allow individual makefiles to specify only the definitions that
are unique to each. This section describes the make variables most often used to
specify properties of BSPs or applications. The following lists are not intended to
be comprehensive; see the make include files for the complete set.

! CAUTION: Certain make variables are intended specifically for customization; see
Variables for Customizing the Run-Time, p.208. Be very cautious about overriding
other variables in BSP makefiles. They are described in the following sections
primarily for expository purposes.

Tornado 2.2

User’s Guide

206

Variables for Compilation Options

The variables grouped in this section are useful for either BSP makefiles or
application-module makefiles. They specify aspects of how to invoke the compiler.

CFLAGS

The complete set of option flags for any invocation of the C compiler. This
variable gathers the options specified in CC_COMPILER, CC_WARNINGS,
CC_OPTIM, CC_INCLUDE, CC_DEFINES, and ADDED_CFLAGS.

C++FLAGS

The complete set of option flags for any invocation of the C++ compiler.
This variable gathers together the options specified in C++_COMPILER,
C++_WARNINGS, CC_OPTIM, CC_INCLUDE, CC_DEFINES, and
ADDED_C++FLAGS.

CC_COMPILER

Option flags specific to compiling the C language. Default: -ansi
-nostdinc.

C++_COMPILER

Option flags specific to compiling the C++ language. Default: -ansi
-nostdinc.

CC_WARNINGS

Option flags to select the level of warning messages from the compiler,
when compiling C programs. Two predefined sets of warnings are
available: CC_WARNINGS_ALL (the compiler’s most comprehensive
collection of warnings) and CC_WARNINGS_NONE (no warning flags).
Default: CC_WARNINGS_ALL.

C++_WARNINGS

Option flags to select the level of warning messages from the compiler,
when compiling C++ programs. The same two sets of flags are available as
for C programs. Default: CC_WARNINGS_NONE.

CC_OPTIM

Optimization flags. Three sets of flags are predefined for each architecture:
CC_OPTIM_DRIVER (optimization level appropriate to a device driver),
CC_OPTIM_TARGET (optimization level for BSPs), and
CC_OPTIM_NORMAL (optimization level for application modules).
Default: CC_OPTIM_TARGET.

CC_INCLUDE

Standard set of header-file directories. To add application-specific header-
file paths, specify them in EXTRA_INCLUDE.

5

5

Command-Line Configuration and Build

207

CC_DEFINES

Definitions of preprocessor constants. This variable is predefined to
propagate the makefile variable CPU to the preprocessor, to include any
constants required for particular target architectures, and to include the
value of the makefile variable EXTRA_DEFINE. To add application-specific
constants, specify them in EXTRA_DEFINE.

Variables for BSP Parameters

The variables included in this section specify properties of a particular BSP, and are
thus recorded in each BSP makefile. They are not normally used in application-
module makefiles.

TARGET_DIR

Name of the BSP (used for dependency lists and name of documentation
reference entry). The value matches the bspname directory name.

ROM_TEXT_ADRS

Address of the ROM entry point. Also defined in config.h; the two
definitions must match.

ROM_SIZE

Number of bytes available in the ROM. Also defined in config.h; the two
definitions must match.

RAM_HIGH_ADRS

RAM address where the boot ROM data segment is loaded. Must be a high
enough value to ensure loading VxWorks does not overwrite part of the
ROM program. Also defined in config.h; the two definitions must match.
See 5.6 Creating Bootable Applications, p.210 for more discussion.

RAM_LOW_ADRS

Beginning address to use for the VxWorks run-time in RAM.

HEX_FLAGS

GNU objcopy flags. These vary by architecture; for more information, see
the GNU ToolKit User’s Guide.

LDFLAGS

Linker options for the static link of VxWorks and boot ROMs.

ROM_LDFLAGS

Additional static-link option flags specific to boot ROM images.

Tornado 2.2

User’s Guide

208

Variables for Customizing the Run-Time

The variables listed in this section make it easy to control what facilities are
statically linked into your run-time system. You can specify values for these
variables either from the make command line, or from your own makefiles (when
you take advantage of the predefined VxWorks make include files).

CONFIG_ALL

Location of a directory containing the architecture-independent BSP
configuration files. Set this variable if you maintain several versions of
these files for different purposes. Default: installDir/target/config/all.

LIB_EXTRA

Linker options to include additional archive libraries (you must specify
the complete option, including the -L for each library). These libraries
appear in the link command before the standard VxWorks libraries.

MACH_EXTRA

Names of application modules to include in the static link to produce a
VxWorks run-time. See 5.6 Creating Bootable Applications, p.210.

BOOT_EXTRA

Names of application modules to include in the static link to produce a
VxWorks boot image but not in a normal VxWorks image.

ADDED_MODULES

Do not define a value for this variable in makefiles. This variable is
reserved for adding modules to a static link from the make command line.
Its value is used in the same way as MACH_EXTRA, to include additional
modules in the link. Reserving a separate variable for use from the
command line avoids the danger of overriding any object modules that are
already listed in MACH_EXTRA.

EXTRA_INCLUDE

Preprocessor options to define any additional header-file directories
required for your application (you must specify the complete option,
including the -I).

EXTRA_DEFINE

Definitions for application-specific preprocessor constants (you must
specify the complete option, including the -D).

ADDED_CFLAGS

Application-specific compiler options for C programs.

ADDED_C++FLAGS

Application-specific compiler options for C++ programs.

5

5

Command-Line Configuration and Build

209

5.5.2 Using Makefile Include Files for Application Modules

You can exploit the VxWorks makefile structure to put together your own
application makefiles quickly and tersely. If you build your application directly in
a BSP directory (or in a copy of one), you can use the makefile in that BSP, by
specifying variable definitions (Variables for Customizing the Run-Time, p.208) that
include the components of your application.

You can also take advantage of the Tornado makefile structure if you develop
application modules in separate directories. Example 5-2 illustrates the general
scheme. Include the makefile headers that specify variables, and list the object
modules you want built as dependencies of a target. This simple scheme is usually
sufficient, because the Tornado makefile variables are carefully designed to fit into
the default rules that make knows about.2

Example 5-2 Skeleton Makefile for Application Modules

Makefile - makefile for ...
#
Copyright ...
#
DESCRIPTION
This file specifies how to build ...
#

It is often convenient to override the following with "make CPU=..."
CPU = cputype
TOOL = gnu

include $(WIND_BASE)/target/h/make/defs.bsp

Only redefine make definitions below this point, or your definitions
will be overwritten by the makefile stubs above.

exe : myApp.o

2. However, if you are working with C++, it may be also convenient to copy the .cpp.out rule
from installDir/target/h/make/rules.bsp into your application’s makefile.

NOTE: The target name exe is the Tornado convention for a default make target.
You may either use that target name (as in Example 5-2), or define a different
default rule in your makefiles. However, there must always be an exe target in
makefiles based on the Tornado makefile headers (even if the associated rules do
nothing).

Tornado 2.2

User’s Guide

210

5.6 Creating Bootable Applications

As you approach a final version of your application, you will probably want to add
modules to the bootable system image, and include startup of your application
with the system initialization routines. In this way, you can create a bootable
application, which is completely initialized and functional after booting, without
requiring any interaction with the host-resident development tools.

5.6.1 Linking Bootable Applications

Linking the application with VxWorks is a two-step process. You must include the
application initialization code in config.h, and you must modify the makefile to
link the application statically with VxWorks.

To include the application code in config.h, you must:

■ #define INCLUDE_USER_APPL (change #undef to #define)

■ Modify the code fragment that defines USER_APPL_INIT. A template is
provided; modify it as necessary to start your application:

#define USER_APPL_INIT \
{ \
IMPORT int myAppInit(); \
taskSpawn ("myApp", 30, 0, 5120, \

mpAppInit, 0x1, 0x2, 0x3, 0,0,0,0,0,0,0); \
}

To include your application modules in the bootable system image, add the names
of the application object modules (with the .o suffix) to MACH_EXTRA in the
makefile. For example, to link the module myMod.o, add a line like the following:

MACH_EXTRA = myMod.o

Building the system image with the application linked in is the final part of this
step. In the target directory, execute the following command:

% make vxWorks

Application size is usually an important consideration in bootable applications.
Generally, VxWorks boot ROM code is copied to a start address in RAM above the
constant RAM_HIGH_ADRS, and the ROM in turn copies the downloaded system
image starting at RAM_LOW_ADRS. The values of these constants are architecture
dependent, but in any case the system image must not exceed the space between

5

5

Command-Line Configuration and Build

211

the two. Otherwise the system image overwrites the boot ROM code while
downloading, thus killing the booting process.

To help avoid this, the last command executed when you make a new VxWorks
image is vxsize, which shows the size of the new executable image and how much
space (if any) is left in the area below the space used for ROM code:

vxsize 386 -v 00100000 00020000 vxWorks
vxWorks: 612328(t) + 69456(d) + 34736(b) = 716520 (235720 bytes left)

If your new image is too large, vxsize issues a warning. In this case, you can
reprogram the boot ROMs to copy the ROM code to a sufficiently high memory
address by increasing the value of RAM_HIGH_ADRS in config.h and in your
BSP’s makefile (both values must agree). Then rebuild the boot ROMs by executing
the following command:

% make bootrom.hex

The binary image size of typical boot ROM code is 128 KB or less. This small size
is achieved through compression; see Boot ROM Compression, p.213. The
compressed boot image begins execution with a single uncompressed routine,
which uncompresses the remaining boot code to RAM. To avoid uncompressing
and thus initialize the system a bit faster, you can build a larger, uncompressed
boot ROM image by specifying the make target bootrom_uncmp.hex.

5.6.2 Creating a Standalone VxWorks System with a Built-in Symbol Table

It is sometimes useful to create a VxWorks system that includes a copy of its own
symbol table. The procedure for building such a system is somewhat different
from the procedure described in 5.6.1 Linking Bootable Applications, p.210. No
change is necessary to usrConfig.c. A different make target, vxWorks.st, specifies
the standalone form of VxWorks:

% make vxWorks.st

The rules for building vxWorks.st create a module usrConfig_st.o, which is the
usrConfig.c module compiled with the STANDALONE flag defined. The
STANDALONE flag causes the usrConfig.c module to be compiled with the built-
in system symbol table, the target-resident shell, and associated interactive
routines.

The STANDALONE flag also suppresses the initialization of the network. If you
want to include network initialization, define STANDALONE_NET in either of the

Tornado 2.2

User’s Guide

212

header files installDir/target/config/bspname/config.h or
installDir/target/config/all/configAll.h.3

VxWorks is linked as described previously, except that the first pass through the
loader does not specify the final load address; thus the output from this stage is still
relocatable. The makeSymTbl tool is invoked on the loader output; it constructs a
data structure containing all the symbols in VxWorks. This structure is then
compiled and linked with VxWorks itself to produce the final bootable VxWorks
object module.

To include your own application in the system image, add the object modules to
the definition of MACH_EXTRA and follow the procedures discussed in
5.6.1 Linking Bootable Applications, p.210.

Because vxWorks.st has a built-in symbol table, there are some minor differences
in how it treats VxWorks symbols, in contrast with the host symbol table used by
the Tornado tools through the target server. First, VxWorks symbol table entries
cannot be deleted from the vxWorks.st symbol table. Second, no local (static)
VxWorks symbols are present in vxWorks.st.

5.6.3 Creating a VxWorks System in ROM

To put VxWorks or a VxWorks-based application into ROM, you must enter the
object files on the loader command line in an order that lists the module romInit.o
before sysALib.o. Also specify the entry point option -e _romInit. The romInit()
routine initializes the stack pointer to point directly below the text segment. It then
calls bootInit(), which clears memory and copies the vxWorks text and data
segments to the proper location in RAM. Control is then passed to usrInit().

A good example of a ROM-based VxWorks application is the VxWorks boot ROM
program itself. The file installDir/target/config/all/bootConfig.c is the
configuration module for the boot ROM, replacing the file usrConfig.c provided
for the default VxWorks development system. The makefiles in the target-specific
directories contain directives for building the boot ROMs, including conversion to
a file format suitable for downloading to a PROM programmer. Thus, you can
generate the ROM image with the following make command:

% make bootrom.hex

3. vxWorks.st suppresses network initialization, but it includes the network. The STANDA-

LONE option defines INCLUDE_STANDALONE_SYM_TBL and INCLUDE_NETWORK, and
undefines INCLUDE_NET_SYM_TBL and INCLUDE_NET_INIT. The alternative option
STANDALONE_NET includes INCLUDE_NET_INIT.

5

5

Command-Line Configuration and Build

213

Tornado makefiles also define a ROMable VxWorks run-time system suitable for
use with Tornado tools as the target vxWorks.res_rom_nosym. To generate this
image in a form suitable for writing ROMs, run the following command:

% make vxWorks.res_rom_nosym.hex

VxWorks target makefiles also include the entry vxWorks.st_rom for creating a
ROMable version of the standalone system described in 5.6.2 Creating a Standalone
VxWorks System with a Built-in Symbol Table, p.211. The image vxWorks.st_rom
differs from vxWorks.st in two respects: (1) romInit code is loaded as discussed
above, and (2) the portion of the system image that is not essential for booting is
compressed by approximately 40 percent using the VxWorks compress tool (see
Boot ROM Compression, p.213).

To build the form of this target that is suitable for writing into a ROM (most often,
this form uses the Motorola S-record format), enter:

% make vxWorks.st_rom.hex

When adding application modules to a ROMable system, size is again an
important consideration. Keep in mind that by using the compress tool, a
configuration that normally requires a 256-KB ROM may well fit into a 128-KB
ROM. Be sure that ROM_SIZE (in both config.h and the makefile) reflects the
capacity of the ROMs used.

Boot ROM Compression

VxWorks boot ROMs are compressed to about 40 percent of their actual size using
a binary compression algorithm, which is supplied as the tool compress. When
control is passed to the ROMs on system reset or reboot, a small (8 KB)
uncompression routine, which is not itself compressed, is executed. It then
uncompresses the remainder of the ROM into RAM and jumps to the start of the
uncompressed image in RAM. There is a short delay during the uncompression
before the VxWorks prompt appears. The uncompression time depends on CPU
speed and code size; it takes about 4 seconds on an MC68030 at 25 MHz.

This mechanism is also available to compress a ROMable VxWorks application.
The entry for vxWorks.st_rom in the architecture-independent portion of the
makefile, installDir/target/h/make/rules.bsp, demonstrates how this can be
accomplished. For more information, see also the reference manual entries for
bootInit and compress.

Tornado 2.2

User’s Guide

214

5.7 Building Projects From a BSP

In some cases, you may wish to change and customize your BSP using the
techniques described in this chapter, and then build the VxWorks image for use by
application developers using the project facility. This is the one case where you can
“mix” the two methods of configuration. Using one of these make targets creates
a project based on the BSP you have created with all your customizations. This
project can serve as a base for further development.

The following make targets are available:

make prj_default
Builds a single project using the default toolchain and building all four default
build specifications. These are default, default_rom, default_romCompress,
and default_romResident.

make prj_gnu
Builds a single project using the GNU toolchain and building all four default
build specifications.

make prj_diab
Builds a single project using the Diab toolchain and building all four default
build specifications.

make prj_diab_def
Builds a single project using the Diab toolchain and building a single, default
build specification.

make prj_gnu_def
Builds a single project using the GNU toolchain and building a single, default
build specification.

make bsp2prj
The same as prj_default_one, which is prj_default with only the single,
default build specification.

c:\> make [CPU=XXXX TOOL=YYYY] bsp2prj

! WARNING: If you make additional changes to the configuration files of your BSP
after you have begun using it with the project facility, these changes will not be
available for subsequent project facility use because the project files override
config.h and other configuration files.

5

5

Command-Line Configuration and Build

215

A Tcl script is also available for bsp2prj; you can run it from the UNIX
command line (order is important):

c:\> wtxtcl /vobs/wpwr/host/src/hutils/bsp2prj.tcl BSP [CPU TOOL]

Tornado 2.2

User’s Guide

216

217

6
VxSim

Integrated Simulator and Full Simulator (Optional)

6.1 Introduction

VxSim, the VxWorks simulator, is a port of VxWorks to the various host
architectures. It provides a simulated target for use as a prototyping and test-bed
environment. In most regards, its capabilities are identical to a true VxWorks
system running on target hardware. Users link in applications and rebuild the
VxWorks image exactly as they do in any VxWorks cross-development
environment using a standard BSP.

The difference between VxSim and the VxWorks target environment is that in
VxSim the image is executed on the host machine itself as a host process. There is
no emulation of instructions, because the code is for the host’s own architecture. A
communication mechanism is provided to allow VxSim to obtain an Internet IP
address and communicate with the Tornado tools on the host (or with other nodes
on the network) using the VxWorks networking tools.

Because target hardware interaction is not possible, device driver development
may not be suitable for simulation. However, the VxWorks scheduler is
implemented in the host process, maintaining true tasking interaction with respect
to priorities and preemption. This means that any application that is written in a
portable style and with minimal hardware interaction should be portable between
VxSim and VxWorks.

The basic functionality of VxSim is included with the Tornado tools and is
preconfigured to allow immediate access to the simulated target. The integrated
simulator does not include networking and provides only single instance usage.
The VxSim full simulator is an optional product providing for networking and
multiple instance usage.

Tornado 2.2

User’s Guide

218

The key differences between VxSim and other BSPs are summarized below. For a
detailed discussion of subtle implementation differences which may affect
application development, see 6.4 Architecture Considerations, p.223.

Integrated Simulator

VxSim has only a few differences from VxWorks:

■ Drivers. Because device drivers require direct hardware interaction, most
VxWorks device drivers are not available with VxSim.

■ File System. VxSim defaults to using a pass-through file system (passFs) to
access files directly on the workstation. (See the online reference for passFsLib
under VxWorks Reference Manual> Libraries.) Most VxWorks targets default to
using netDrv to access files on the host.

■ Networking. Networking is not available in the base product.

Full Simulator

The VxSim full simulator provides full network capability for your simulator. The
optional product also allows you to run more than one instance of VxSim on your
host.

In order to simulate the network IP connectivity of a VxWorks target, the VxSim
full simulator includes special drivers which operate using IP addresses. The PPP
network interface is available for UNIX hosts.

All interfaces provide an I/O-based interface for IP networking that allows VxSim
processes to be addressed at the IP level. When multiple programs are run, they
can send packets to each other directly. This is because the host hands the packets
back and forth; that is, the host OS effectively becomes a router with multiple
interfaces.

For more information on PPP, see the VxWorks Network Programmer’s Guide.

6.2 Integrated Simulator

All the functionality of the integrated simulator is available with the optional full
simulator. All the information in this section applies to both versions of VxSim. For
information specific to the full simulator product, see 6.5 Configuring the VxSim Full
Simulator, p.227.

6

6

VxSim

219

Installation and Configuration

Tornado 2.2 comes configured with basic VxSim on all hosts. Installing and starting
Tornado as described in the Tornado Getting Started Guide installs the integrated
VxSim.

Starting VxSim

You can start VxSim from the VxSim icon on the launcher or from the command
line using the command vxWorks. Available options are:

-p[rocessorNumber]
set the processor number [0-15] (default is 0)

-r[am bytes]
set the memory size (default is 3Mbytes: 0x00300000)

Changing the Simulator Boot Line

Because the hardware environment is different from the simulator environment,
bootChange() does not behave the same way on simulators as it does on real
targets.

! WARNING: On real targets, you can use bootChange() to boot another VxWorks
core file on the next reboot. On simulators, changing the core file using
bootChange() has no effect; in other words, on the next reboot, the simulator will
not start with the core file set in the boot line.

Table 6-1 Simulator Boot Parameters

Parameters Comments

boot device Only change for Shared Memory Network settings.*

processor number Do not change.

host name Do not change.

file name Ignored by the simulator.

inet on ethernet (e) Only change for Shared Memory Network settings.*

inet on backplane (b) Only change for Shared Memory Network settings.*

Tornado 2.2

User’s Guide

220

Rebooting VxSim

As with other targets, you can reboot VxSim by typing CTRL+X in the VxSim
window.

Exiting VxSim

Type CTRL+\ in the VxSim window.

Back End

The integrated simulator uses the pipe back end (INCLUDE_WDB_COMM_PIPE),
which is configured by default, to communicate with the target session.

host inet (h) Do not change.

gateway inet (g) Only change for Shared Memory Network settings.*

user (u) Do not change.

ftp password (pw) Refer to description of boot parameters.†

flags (f) Refer to description of boot parameters.†

target name (tn) Refer to description of boot parameters.†

startup script (s) Refer to description of boot parameters.†

other (o) Refer to description of boot parameters.†

* See Setting up the Shared Memory Network, p.239.
† See 2.6.4 Description of Boot Parameters, p.50.

NOTE: Like a real target with nonvolatile RAM (NVRAM), all values you enter in
the boot parameters are saved in a file simulating NVRAM. This file is created in
the same directory as VxWorks executable and is named
vxWorks.nvramprocessorNumber.

Table 6-1 Simulator Boot Parameters (Continued)

Parameters Comments

6

6

VxSim

221

System-Mode Debugging

System-mode debugging allows developers to suspend the entire VxWorks
operating system.1 One notable application of system mode is to debug ISRs,
which—because they run outside any task context—are not visible to debugging
tools in the default task mode. For more discussion of system mode, see the
chapters 7. Shell and 9. Debugger.

The Solaris integrated simulator is configured by default for system mode
debugging.

File Systems

VxSim can use any VxWorks file system.

The default file system is the pass-through file system, passFs, which is unique to
VxSim. passFs allows direct access to any files on the host. Essentially, the
VxWorks functions open(), read(), write(), and close() eventually call the host
equivalents in the host library libc.a. With passFs, you can open any file available
on the host, including NFS-mounted files. By default, the INCLUDE_PASSFS macro
is enabled to cause this file system to be mounted on startup.

For more information on passFs, see the library entry for passFsLib in the VxWorks
API Reference or HTML help. For more information on other VxWorks file systems,
see the VxWorks Programmer’s Guide: Local File Systems.

Symbols

Particular care must be taken when using absolute symbols from loaded object
modules in the simulators. The VxWorks simulators execute within the memory
space of a host operating system. Their actual execution address space is more
constrained than is the case for the real VxWorks operating system. Absolute
references to addresses must be carefully chosen in order to point to memory areas
actually existing and allocated to the simulator. The values of absolute symbols
defined within object modules are not modified by the loader so these values (in
other words, these addresses) must be set correctly by the code developers.

1. System mode is sometimes also called external mode, reflecting that the target agent operates
externally to the VxWorks system in this mode.

Tornado 2.2

User’s Guide

222

6.3 Building Applications

The following sections describe how to use the VxSim compilers. The
recommended way to build VxSim modules is to use the project tool. For complete
information on this tool, see 4. Projects. If you are using manual methods in your
project, the information required for manual builds and loading is summarized
below.

This information applies to using manual methods on both the built-in version of
VxSim and the optional networking product.

Defining the CPU Type

Setting the preprocessor variable CPU ensures that VxWorks and your applications
build with the appropriate features enabled. Define this variable to
SIMSPARCSOLARIS for your Solaris host.

The Toolkit Environment

All VxWorks simulators use the GNU C/C++ compiler.

Compiling C and C++ Modules

Only the GNU compiler is supported for SIMSPARCSOLARIS; the Diab compiler
is not supported. If you compile using the IDE build facilities, default build
settings are already in place. If you wish to modify the defaults, or if you wish to
build from the command line, the following information may be helpful.

The following is an example of a compiler command line for VxSim development.
The file to be compiled in this example has a base name of applic.

% ccsimso -g -ansi -DRW_MULTI_THREAD -D_REENTRANT -fvolatile
-fno_builtin -I. -I installDir/target/h -DCPU=SIMSPARCSOLARIS
-DTOOL_FAMILY=gnu -DTOOL=gnu -c applic.c

Option Definitions

The options shown in the example and other compiler options are detailed in the
online version of the GNU ToolKit User’s Guide. Wind River supports compiler
options used in building Wind River software; see the Guide for a list. Other
options are not supported, although they are available with the tools as shipped.

6

6

VxSim

223

Linking an Application to VxSim

Linking and loading for VxSim are identical to other BSPs. See 5. Command-Line
Configuration and Build.

6.4 Architecture Considerations

The information in this section highlights differences between VxSim (both the
integrated and full versions) and other VxWorks BSPs. These differences should be
taken into consideration as you develop applications on VxSim that will
eventually be ported to another target architecture.

VxSim uses the VxWorks scheduler, which behaves the same way as for any other
VxWorks architecture (see VxWorks Programmer’s Guide: Basic OS). The BSP is
extensible; for example, pseudo-drivers can be written for additional timers, serial
drivers, and so forth.

The rest of this section discusses some details of the VxSim implementation.
Differences between VxSim and other VxWorks environments are noted where
appropriate.

Supported Configurations

Most of the optional features and device drivers for VxWorks are supported by
VxSim. The few that are not are hardware devices (SCSI, Ethernet), ROM
configurations, and so on. The BSP makefile builds only the images vxWorks and
vxWorks.st (standalone VxWorks).

Endianess

The Solaris simulator uses a big-endian environment.

Tornado 2.2

User’s Guide

224

Simulator Timeout

Occasionally a simulator session loses its target server connection due to the many
things competing for CPU time on the host. If you find that your application is
frequently losing its target server connection, adjust the back end timeout (-Bt) and
back end retry (-Br) parameters when starting the target server with the launcher.
To do this from the launcher, add the new values using the Backend timeout and
Backend resend fields of the Create Target Server window. For example, you may
want to increase the back end timeout from 1 to 3 and the retry parameter from 3
to 4:

-Bt 3 -Br 4

You can also add this string to the tgtsvr command when you start the target server
from the command line.

The BSP Directory

Aside from the following exceptions, the VxSim BSP is the same as a VxWorks BSP:

■ The sysLib.c module contains the same essential functions: sysModel(),
sysHwInit(), and sysClkConnect() through sysNvRamSet(). Because there
is no bus, sysBusToLocalAdrs() and related functions have no effect.

■ The file unixSio.c ultimately calls the host operating system read() and
write() routines on the process’s standard input and output. Nevertheless, it
supports all the functionality provided by tyLib.c.

■ The configuration header config.h is minimal:

– It does not reference a bspname.h file.
– Most network devices are excluded.
– The boot line has no fixed memory location. Instead, it is stored in the

variable sysBootLine in sysLib.c.

■ The Makefile is the standard version for VxWorks BSPs. It does not build boot
ROM images (although the makefile rules remain intact); it can only build
vxWorks and vxWorks.st (standalone) images. The final linking does not
arrange for the TEXT segment to be loaded at a fixed area in RAM, but follows
the usual loading model. The makefile macro MACH_EXTRA is provided so
that users can easily link their application modules into the VxWorks image if
they are using manual build methods.

6

6

VxSim

225

■ The solarisDrv.a file is the library for solaris BSP drivers.

The BSP file sysLib.c can be extended to emulate the eventual target hardware
more completely.

Interrupts

Host signals are used to simulate hardware interrupts. For example, VxSim uses
the SIGALRM signal to simulate system clock interrupts, the SIGPROF signal for
the auxiliary clock, and the SIGVTALRM signal for virtual timer interrupts.
Furthermore, all host file descriptors (such as standard input) are put in
asynchronous mode, so that the SIGIO signal is sent to VxSim when data becomes
ready. The signal handlers are the VxSim equivalent to Interrupt Service Routines
(ISRs) on other VxWorks targets.

You can install ISRs in VxSim to handle these “interrupts.” Not all VxWorks
functions can be called from ISRs; see the VxWorks Programmer’s Guide: Basic OS.

To run ISR code during a future system clock interrupt, use the watchdog timer
facilities. To run ISR code during auxiliary clock interrupts, use the
sysAuxClkxxx() functions.

Table 6-2 shows how the interrupt vector table is set up.

Pseudo-drivers can be created to use these interrupts. Interrupt code must be
connected with the standard VxWorks intConnect() mechanism.

For example, to install an ISR that logs a message whenever host signal SIGUSR2

arrives, execute the following:

-> intConnect (17, logMsg, "Help!\n")

Then send signal 17 to VxSim from a host task, for example using the host kill
command. Every time the signal is received, the ISR (logMsg() in this case) runs.

Table 6-2 Interrupt Assignments

Interrupts Assigned To

1–32 host signals

33–64 host file descriptors 1-32 (SIGIO)

Tornado 2.2

User’s Guide

226

If a VxSim task reads from a host device, the task would normally require a
blocking read; however, this would stop the VxSim process entirely until data is
ready. The alternative is to put the device into asynchronous mode so that a SIGIO

signal is sent whenever data becomes ready. In this case, an input ISR reads the
data, puts it in a buffer, and unblocks some waiting task.

To install an ISR that runs whenever data is ready on some underlying host device,
first open the host device (use u_open(), the underlying host routine, not the
VxSim open() function). Put the file descriptor in asynchronous mode, using the
VxSim-specific routine s_fdint() so that the host sends a SIGIO signal when data
is ready. Finally, connect the ISR. The following code fragment does this on one of
the host serial ports:

...
fd = u_open ("/dev/ttyb", 2);
s_fdint (fd, 1);
intConnect (32 + fd, ISRfunc, 0);
...

Since VxSim uses the task stack when taking interrupts, the task stacks are
artificially inflated to compensate. You may notice this if you spawn a task of a
certain size and then examine the stack size.

Clock and Timing Issues

The execution times of VxSim functions are not, in general, the same as on a real
target. For example, the VxWorks intLock() function is normally very fast because
it just writes to the processor status register. However, under VxSim, intLock() is
relatively slow because it makes a host system call to mask signals.

! CAUTION: Do not use the preprocessor constants SIGUSR1 or SIGUSR2 for this
purpose in VxWorks applications, since those constants evaluate to the VxWorks
definitions for these signals. You need to specify your host’s signal numbers
instead.

! CAUTION: Only SIGUSR1 (16 on Solaris 2 hosts) and SIGUSR2 (17 on Solaris 2
hosts) can be used to represent user-defined interrupts.

6

6

VxSim

227

The clock facilities are provided by the host routine setitimer() (ITIMER_REAL for
the system clock; ITIMER_PROF for the auxiliary clock). The problem with using
ITIMER_REAL for the system clock is that it produces inaccurate timings when
VxSim is swapped out as a host process. On the other hand, the timing of VxSim
is, in general, different than on an actual target, so this is not really a problem.

The BSP system clock can be configured to use the virtual timer
(ITIMER_VIRTUAL) in addition to ITIMER_REAL; see sysLib.c. In this way, when
the process is swapped out by the host, VxSim does not count wall-clock elapsed
time as part of simulated elapsed time. VxSim still uses ITIMER_REAL to keep
track of the elapsed time during the wind kernel’s idle loop. Although the addition
of ITIMER_VIRTUAL results in more accurate relative time, the problem is that the
host system becomes increasingly loaded (due to the extra signal generation) and
as a result connections to the outside world (such as the network) become delayed
and can fail.

The spy() facility is built on top of the auxiliary clock (ITIMER_PROF). The task
monitoring occurs during each interrupt of the auxiliary clock to see which task is
executing or if the kernel is executing. Because the profiling timer includes host
system time and user time, discrepancies can occur, especially if intensive host I/O
occurs.

6.5 Configuring the VxSim Full Simulator

This section contains information pertaining only to the VxSim full simulator. (All
information in previous sections also pertains to that product, as well as to the
integrated version.) The VxSim full simulator provides networking facilities. Most
of the special considerations associated with it are network considerations.

NOTE: Because VxSim is a host process, it shares resources with all other processes
and is swapped in and out. In addition, the kernel’s idle loop has been modified to
suspend VxSim until a signal arrives (rather than busy waiting), thus allowing
other processes to run.

Tornado 2.2

User’s Guide

228

If you purchase the VxSim optional full simulator for networking, you must take
additional configuration steps:

■ Install the optional VxSim component using SETUP, either when you install
Tornado 2.2 or at a later time. (For more information, see theTornado Getting
Started Guide.)

■ Install the appropriate network driver on your host. (See Installing VxSim
Network Drivers, p.228.)

■ Configure VxWorks to use networking, rebuild it, and download it using
either the project facility or manual methods. (See Configuring VxSim for
Networking, p.234.)

■ Be sure to correctly set target server options for the full simulator from the
Create Target Server dialog of the launcher:

– Select wdbrpc as the back end in the Backend list. (This differs from the
integrated simulator which uses the wdbpipe backend; selecting the
wrong back end generates an error message)

– Set the IP address of the simulator in the Target name or IP address field.

Installing VxSim Network Drivers

The SETUP tool writes the appropriate host drivers on your disk, but they must be
installed on your host operating system. PPP is the network interface provided for
Solaris hosts.

! WARNING: Project facility configuration and building of projects is independent
of the methods used for configuring and building applications prior to Tornado 2.x
(which included manually editing config.h and configAll.h). Use of the project
facility is the recommended, and is much simpler. However, the manual method
may still be used (see 5. Command-Line Configuration and Build for details). Avoid
using the two methods together for the same project except where specific BSP and
driver macros are not available in the project facility.

! WARNING: The VxWorks Network Programmer’s Guide states that the PPP link can
serve as an additional network interface apart from the existing default network
interface. This is not the case with VxSim; the simulator only support one PPP
interface per simulator.

6

6

VxSim

229

Loading PPP on a Solaris 2.7 or 2.8 Host

First, use the command pkginfo to check whether the following packages are
installed on your host:

For example:

% pkginfo | egrep 'ppp|bnu'
system SUNWapppr PPP/IP Asynchronous PPP daemon configuration files
system SUNWapppu PPP/IP Asynchronous PPP daemon and PPP login service
system SUNWpppk PPP/IP and IPdialup Device Drivers
system SUNWpppkx PPP/IP and IPdialup Device Drivers (64-bit)
system SUNWbnur Networking UUCP Utilities, (Root)
system SUNWbnuu Networking UUCP Utilities, (Usr)

The SUNWpppkx package should only be installed on Solaris hosts running in
64-bit mode. Use the isainfo -b command to determine the mode in which your
Solaris 2.7 or 2.8 host runs. This command returns 32 or 64. If the packages are not
already installed, mount the Solaris installation disk and change your working
directory to the location of these packages (for example, on a Solaris 2.7 CD-ROM,
they can be found in /cdrom/sol7_599_sparc_sun_srvr/s0/Solaris_2.7/Product)
and install them using the following commands:

■ For a Solaris host running in 32 bits:

% isainfo -b
32
% su root
Password:
pkgadd -d 'pwd' SUNWbnur SUNWbnuu SUNWpppk SUNWapppr SUNWapppu

! CAUTION: If you have problems using the PPP driver after following the
directions below, you may have to reboot your Solaris machine to reload the
drivers. Hold down the STOP key (on some Sun workstations, this is the L1 key),
and hit the A key to enter the boot monitor. Then reboot the machine by issuing
boot -r from the boot monitor. The -r option tells the system to reconfigure for the
new device(s).

SUNWapppr PPP/IP Asynchronous PPP daemon configuration files
SUNWapppu PPP/IP Asynchronous PPP daemon and PPP login

service
SUNWpppk PPP/IP and IPdialup Device Drivers
SUNWpppkx PPP/IP and IPdialup Device Drivers (64-bit)
SUNWbnur Networking UUCP Utilities (Root)
SUNWbnuu Networking UUCP Utilities (Usr)

Tornado 2.2

User’s Guide

230

■ For a Solaris host running in 64 bits:

% isainfo -b
64
% su root
Password:
pkgadd -d 'pwd' SUNWbnur SUNWbnuu SUNWpppk SUNWpppkx SUNWapppr SUNWapppu

Next, as root, copy installDir/target/config/solaris/asppp.cf to the /etc directory.

cp installDir/target/config/solaris/asppp.cf /etc

Finally, start the PPP daemon aspppd by typing the following as root:

/etc/init.d/asppp start

The PPP driver is now installed and running on your Solaris system, and will be
restarted automatically when Solaris reboots.

The PPP configuration assigns IP addresses 192.168.255.1 through 192.168.255.16
to sixteen devices, and associates with them the peer system names vxsim0
through vxsim15 respectively, as configured in asppp.cf.

If those IP addresses are not suitable, you can update them in asppp.cf and modify
the VXSIM_IP_ADDR parameter from the workspace (the default is
“192.168.255.%d”). This parameter belongs to the hardware>BSP configuration

variants component. You may want to directly change that parameter in the bsp.cdf
and config.h files; in that case it needs to be done only once. Finally, copy the
asppp.cf file as explained above and rebuild your project or your BSP.

You can also use the following commands to start or stop the Solaris PPP driver
after the driver has been installed (you must have root privileges):

/etc/init.d/asppp start
/etc/init.d/asppp stop

If you get the following error message at simulator startup, you need to check
access rights to the file /tmp/.asppp.fifo:

Can’t open /tmp/.asppp.fifo
solaris_ppp_init failed
Attaching network interface ppp0...
ppp0: ppp 2.1.2 started by
ppp0: Connect: ppp0 <--> /tyCo/1
ppp0: timeout: could not establish link with peer.
Unable to initialize PPP connection.

! CAUTION: If you already have aspppd running, stop it with asppp stop before
proceeding.

6

6

VxSim

231

When you attempt to view permissions on the file, you may get the following:

% ls -l /tmp/.asppp.fifo
prw------- 1 root other 0 Oct 18 17:04 /tmp/.asppp.fifo|

In this case, as root, add the following command to the /etc/init.d/asppp file:

chmod a+rw /tmp/.asppp.fifo

Add the preceding command line at the end of the following code:

% su root
password:
vi /etc/init.d/asppp

Start the aspppd daemon
/usr/sbin/aspppd -d 1 ||
echo "aspppd not started, see /var/adm/log/asppp.log"

Save the file and restart PPP.

If you want to use Tornado 2.0 and Tornado 2.2 Solaris simulators on the same
machine, you should assign similar IP addresses for both simulators, that is, those
declared in the asppp.cf file. For Tornado 2.2, default addresses are of the form
192.168.255.Processor_Number+1, whereas, for Tornado 2.0, they are of the form
127.0.1.Processor_Number.

In order to use the two simulators simultaneously, you must modify either the
Tornado 2.2 IP addresses or the Tornado 2.0 IP addresses. The better solution is to
modify the Tornado 2.0 addresses, as follows:

■ In the file sysLib.c (in the directory installDir/target/config/solaris), modify the
values of the global variables vxsim_gateway and vxsim_ip_addr. Change
from:

...
#elif defined(INCLUDE_PPP)
char *vxsim_bootdev = "ppp";
char *vxsim_gateway = "g=127.0.1.254";
#else
...
char *vxsim_ip_addr = "127.0.1.%d";

To:

char *vxsim_gateway = "g=192.168.255.254";
char *vxsim_ip_addr = "192.168.255.%d";

! WARNING: The above problem is likely to occur on Solaris 2.8 hosts only.

Tornado 2.2

User’s Guide

232

■ Find the following line in the sysHwInit2() routine:

sprintf (target_ip, vxsim_ip_addr, sysProcNumGet ());

Replace it with the following:

sprintf (target_ip, vxsim_ip_addr, (sysProcNumGet () + 1));

When you have made these changes, rebuild your system.

Loading PPP on a Solaris 2.9 Host

First, use the command pkginfo to check whether the following packages are
installed on your host:

For example:

% pkginfo | egrep 'ppp|bnu'
system SUNWbnur Networking UUCP Utilities, (Root)
system SUNWbnuu Networking UUCP Utilities, (Usr)
system SUNWpppd Solaris PPP Device Drivers
system SUNWpppdr Solaris PPP configuration files
system SUNWpppdt Solaris PPP Tunneling
system SUNWpppdu Solaris PPP daemon and utilities
system SUNWpppdx Solaris PPP Device Drivers (64-bit)
system SUNWpppg GNU utilities for PPP

The SUNWpppdx package should only be installed on Solaris hosts running in
64-bit mode. Use the isainfo -b command to determine the mode in which your
Solaris 2.9 host runs. This command returns 32 or 64. If the packages are not
already installed, mount the Solaris installation disk and change your working
directory to the location of these packages and install them using the following
commands:

■ For a Solaris host running in 32 bits:

% isainfo -b
32
% su root

SUNWpppd Solaris PPP Device Drivers
SUNWpppdr Solaris PPP configuration files
SUNWpppdu Solaris PPP daemon and utilities
SUNWpppdt Solaris PPP Tunneling
SUNWpppdx Solaris PPP Device Drivers (64-bit)
SUNWpppg GNU utilities for PPP
SUNWbnur Networking UUCP Utilities (Root)
SUNWbnuu Networking UUCP Utilities (Usr)

6

6

VxSim

233

Password:
pkgadd -d ‘pwd‘ SUNWbnur SUNWbnuu SUNWpppd SUNWpppdr SUNWpppdt
SUNWpppdu SUNWpppg

For a Solaris host running in 64 bits:

% isainfo -b
64
% su root
Password:
pkgadd -d ‘pwd‘ SUNWbnur SUNWbnuu SUNWpppd SUNWpppdr SUNWpppdt
SUNWpppdu SUNWpppdx SUNWpppg

Next, still as root, copy installDir/target/config/solaris/vxsimppp to the /etc/init.d
directory. If you want PPP daemons to be automatically started during Solaris
startup, then you need to create a link in /etc/rc2.d:

cp installDir/target/config/solaris/vxsimppp /etc/init.d
ln -s /etc/init.d/vxsimppp /etc/rc2.d/S80vxsimppp

Finally, start the PPP daemons pppd by typing the following as root:

/etc/rc.d/init.d/vxsimppp start

The following table describe the configurable parameters of that script. The default
values will usually be appropriate, but make sure there is no conflict with other
applications.

Table 6-3 Configurable Parameters of vxsimppp

Parameters Default Description

PPP_MASTER_PSEUDO_TTY_PATH "/dev/ttyr%x" PPP master pseudo-terminal path. This value must
be coherent with the slave pseudo-terminal path
defined in the project facility (parameter
PPP_PSEUDO_TTY_PATH of the
INCLUDE_SOLARIS_NET_CONFIG component).
By default the master is "/dev/ttyr%x" and slave is
"/dev/ptyr%x".

ENABLE_REMOTE_ACCESS 1 (true) To enable remote access of VxSim targets, IP
forwarding must be enabled. This is done by setting
the Solaris kernel parameter ip_forwarding to true
using the ndd command. To disable this facility, reset
ENABLE_REMOTE_ACCESS to 0.

Tornado 2.2

User’s Guide

234

The PPP daemons are now installed and running on your Solaris system, and will
be restarted automatically when Solaris reboots.

The PPP configuration assigns IP addresses 192.168.255.1 through 192.168.255.16
to sixteen devices. You may want to match these IP addresses with host names in
/etc/hosts; for example: vxsim vxsim0 through vxsim15. If those IP addresses are
not suitable, you can modify VXSIM_IP_ADDR parameter from the workspace (the
default is “192.168.255.%d”). This parameter belongs to the hardware>BSP

configuration variants component. You may want to directly change that parameter
in the bsp.cdf and config.h files, in that case, it need be done only once. Finally,
rebuild your project or your BSP.

You can also use the following commands to start or stop the Solaris PPP driver
after the driver has been installed (you must have root privileges):

/etc/init.d/vxsimppp start
/etc/init.d/vxsimppp stop

Configuring VxSim for Networking

As with any other BSP, adding components to VxWorks requires including them,
rebuilding VxWorks, then downloading and restarting it. The easiest method for
doing this is to use the project facility. However, if you have used manual methods
in your project, you should continue to use those methods.

FIRST_VXSIM
LAST_VXSIM

0
15

This defines the simulator IP address range so by
default:
vxsim0 192.168.255.1
vxsim1 192.168.255.2
... ...
vxsim15 192.168.255.16

DEBUG 0 (false) Enables PPP connection debugging facilities. If this
option is given, pppd will log the contents of all
control packets sent or received in a readable form.
The packets are logged through syslog with facility
daemon and level debug. This information can be
directed to a file by setting up /etc/syslog.conf
appropriately (see syslog.conf manual).

Table 6-3 Configurable Parameters of vxsimppp (Continued)

Parameters Default Description

6

6

VxSim

235

For a discussion of networking as it relates to VxSim, see 6.5 Configuring the VxSim
Full Simulator, p.227.

Using the Project Facility

Use the Create Project facility to create a bootable VxWorks image.

■ On the VxWorks tab in the Project Workspace window, select the folder called
network components. Right click and select Include ‘network components’ from the
pop-up menu. Click OK to accept the defaults.

■ Change WDB connection from WDB simulator pipe connection to WDB network

connection; this change generates a project configuration error since WDB

system mode is incompatible with WDB network connection. To fix this conflict,
right click WDB system debugging and select Exclude.

For more information on using the configuration tool, see 4. Projects.

Using Manual Techniques

Edit target/config/solaris/config.h, and replace:

#if TRUE
#undef INCLUDE_NETWORK
. . .

With:

#if FALSE
#undef INCLUDE_NETWORK
. . .

Then rebuild and download VxWorks.

You must also change your target server configuration from wdbpipe to wdbrpc.
From the Create Target Server dialog of the launcher, select wdbrpc in the Backend

list, and set the IP address of the simulator in the Target name or IP address field.

For additional information on configuring BSPs using manual methods, see the
VxWorks Network Programmer’s Guide.

Running Multiple Simulators

When you install the optional VxSim component, your system is automatically
configured to run up to 16 simulators. When you start VxSim from the launcher,
you can specify the processor number from the Launch VxSim window. The
processor number must be a positive number ranging from 0 (first instance:

Tornado 2.2

User’s Guide

236

vxsim0) to 15 (last instance: vxsim15). To start VxSim from the command line, the
command takes the following form (where n is the processor number):

vxsim0 starts. To start additional instances, use the command line. The command
takes the following form (where n is the processor number):

% vxWorks -p n

System Mode Debugging

The full simulator does not support system mode debugging because of an
incompatibility with the RPC back end.

IP Addressing

All of the networking facilities available under VxWorks—for example, sockets,
RPC, NFS—are available with VxSim. For VxSim to communicate with the outside
world, it must have its own target IP address as provided through a network
interface.

Internet addressing is handled slightly differently among the available network
interfaces. For each VxSim process, there are three associated IP addresses:

■ Target IP – the address of each VxSim process, internal to your host.
■ Local IP – your host’s address on the VxSim network, internal to your host.
■ Host IP – your host’s address according to the network at your site.

! WARNING: Killing the full simulator with kill -9 will prevent PPP from cleanly
ending its connection. If you cannot exit the simulator using CTRL+\ in the VxSim
window or by using kill vxWorks_processId, then use kill -9 vxWorks_processId,
knowing you will have to restart PPP using the following commands:

Solaris 2.7 or 2.8 (as root):

/etc/init.d/asppp stop
/etc/init.d/asppp start

Solaris 2.9 (as root):

/etc/init.d/vxsimppp stop
/etc/init.d/vxsimppp start

6

6

VxSim

237

The target IP address and the local IP address communicate according to the
protocol of the chosen network interface. The host IP address is not directly
relevant to the VxSim network.

Addressing is according to processor number, such that when you run VxSim with
processor number n (with the command vxWorks -p n), the network addresses
packets as shown: .

PPP (Solaris 2.7, 2.8, and 2.9)

When you run VxSim with PPP and specify processor number n (with the
command vxWorks -p n), VxSim creates a network connection to the IP address
192.168.255.n+1 by communicating through a pipe. Normally, VxWorks uses PPP
over a serial device to connect to the host (see the VxWorks Network Programmer’s
Guide). The only difference with PPP is that a pipe replaces the physical serial link.

Only one process at a time can open the same PPP device. Thus, if you want
multiple VxSim targets to use PPP, you must give each of them a distinct processor
number. If another VxSim process is already running with the same processor
number, the following message is displayed during the startup of VxSim:

Target Name: vxTarget
Attaching network interface ppp0...
ppp0: ppp 2.1.2 started by

Figure 6-1 VxSim IP Addressing

Target IP 197.168.255.n+1
Local IP 192.168.255.254

VxSim

External

Ethernet

host IP

hostPPP

Network

Network

local IP n=1

target IP n=1

vxsim1

local IP n=0

target IP n=0

vxsim0

Target IP: 192.168.255.n+1

Local IP: 192.168.255.254

Tornado 2.2

User’s Guide

238

ppp0: Connect: ppp0 <--> /tyCo/1

ppp0: timeout: could not establish link with peer.
usrPPPInit() returned errno = 0x3d0001
Bind failed
wdbConfig: error configuring WDB communication interface

VxWorks

Copyright 1984-2001 Wind River Systems, Inc.

CPU: SunOS 5.7 [sun4u]
VxWorks: VxWorks5.5

BSP version: 1.2/1
Created: Jan 23 2002, 17:01:44

WDB: Agent configuration failed.

Setting Up Remote Access

You can add host-specific routing entries to the local host to allow remote hosts to
connect to a local VxSim “target.” IP addresses are set up only for the host where
the network simulation software is installed. The network interface does not have
to be installed remotely; the remote host uses the local host as the gateway to the
VxSim target.

In the example shown in Figure 6-2, host1 can communicate with vxsim0 or
vxsim1 if the following steps are taken:

Issue the following commands on host1 (as root):

% route add host 192.168.255.1 90.0.0.1 1
% route add host 192.168.255.2 90.0.0.1 1

Contrast Figure 6-2 below with Figure 6-1, to see the way addresses are set up,
paying particular attention to the addressing algorithm.

Verify the success of the above commands by pinging vxsim0 from host1:

% ping 192.168.255.1

To allow a VxSim process on one host to communicate with a VxSim process on a
different host, you must make sure that the two VxSim processes have different IP
addresses. You must also make additional host-specific routes using unique
addresses for each process.

6

6

VxSim

239

For example, to ping vxsim2 from host0 above, you must add an additional route
from host0 as follows:

% route add host 192.168.255.3 90.0.0.2 1

IP Forwarding

To enable remote access to a simulator, IP forwarding must be enabled. This can be
done using the following command (as root):

% ndd -set /dev/tcp ip_forwarding 1

Use the following command ti check current setting:

% ndd -get /dev/tcp ip_forwarding

Setting up the Shared Memory Network

Many VxWorks users connect multiple CPU boards through a backplane (for
example, VMEbus), which allows the boards to communicate through shared

Figure 6-2 Example of VxSim IP Addressing (PPP on Solaris)

NOTE: On Solaris 2.9, IP forwarding is enabled by default in the vxsimppp script.
To disable this facility, reset the ENABLE_REMOTE_ACCESS parameter to 0.

VxSim

External
90.0.0.1 90.0.0.2

host1host0

Network

Network

192.168.255.2

vxsim1

192.168.255.1

vxsim0

192.168.255.3

vxsim2

192.168.255.254192.168.255.254 192.168.255.254

Ethernet

Tornado 2.2

User’s Guide

240

memory. VxWorks provides a standard network driver to access this shared
memory so that all the higher level network protocols are available over the
backplane. In a typical configuration, one of the CPU boards (CPU 0)
communicates with the host using Ethernet. The rest of the CPU boards
communicate with each other and the host using the shared memory network,
using CPU 0 as a gateway to the outside world. For more information on this
configuration in a normal VxWorks environment, see VxWorks Network
Programmer’s Guide.

This configuration can be emulated for VxSim (the full simulator version).
Multiple VxSim processes use a host shared-memory region as the basis for the
shared memory network (see Figure 6-3).The full simulator uses the point-to-point
interface mode to communicate and does not support broadcasting. However,
inside the shared memory network, simulators use broadcast mode to
communicate.

Getting a shared-memory network configured for the first time can be tricky.
Follow these steps to configure both master and slave simulators:

1. The following components should be set in both simulator configurations:

Figure 6-3 VxSim Shared Memory Network

INCLUDE_SM_COMMON

INCLUDE_SM_NET

INCLUDE_SM_NET_ADDRGET

INCLUDE_SM_OBJ

INCLUDE_SM_SEQ_ADDR

192.168.255.1:ffffff00

Shared-Memory Network

161.27.0.1:ffffff00 161.27.0.2:ffffff00

master

host

PPP

90.0.0.1
Ethernet

(vxsim0)
Processor

(UNIX)

Number 1
(CPU1)(CPU0)

6

6

VxSim

241

2. To configure the master simulator, set the INCLUDE_SECOND_SMNET

component.

3. Add the target shell facility (required to add the route when the slave
simulator starts).

To set up a shared-memory network, use a subnet mask of 0xffffff00 to create a
161.27.0.0 subnet (from the 192.168.255.1 network) for the shared-memory
network. The following steps are required:

1. Use the bootChange() command from the Tornado shell to change the
following boot parameter on CPU 0. You must specify the subnet mask, as
follows:

inet on backplane (b): 161.27.0.1:ffffff00

The first time you boot the simulator CPU 0, the following message is
displayed at the beginning of startup. It indicates that the boot file with
shared-memory information is missing.

Attaching shared memory objects at 0xef680000... done
Attaching network interface ppp0...
ppp0: ppp 2.1.2 started by
ppp0: Connect: ppp0 <--> /tyCo/1
ppp0: local IP address 192.168.255.1
ppp0: remote IP address 192.168.255.254
done.
Attaching interface lo0...done
Backplane IP address required if no Proxy ARP

The bootChange() command creates a boot file containing the information
necessary to set up the shared memory network.

2. Restart VxSim by typing ^X. When VxSim boots, it sets up the shared-memory
network and prints the address of the shared-memory region it has created (in
the VxSim console window, with the other boot messages).

Attaching shared memory objects at 0xef680000... done
Attaching network interface ppp0...
ppp0: ppp 2.1.2 started by
ppp0: Connect: ppp0 <--> /tyCo/1
ppp0: local IP address 192.168.255.1
ppp0: remote IP address 192.168.255.254
done.
Attaching interface lo0...done
Initializing backplane net with anchor at 0xef680000... done.
Backplane anchor at 0xef680000... Backplane IP address = 161.27.0.1
Attaching network interface sm0... done.

Tornado 2.2

User’s Guide

242

3. Start CPU 1 (vxWorks -p 1), and then use bootChange() to set the following
boot parameters on CPU 1. For the boot device parameter, use the address
printed in step 2 (in this case, 0xef680000). Leave the inet on ethernet parameter
blank by typing a period (.).

boot device : sm=0xef680000
inet on ethernet (e) : .
inet on backplane (b) : 161.27.0.2:ffffff00
gateway inet (g) : 161.27.0.1

4. Quit CPU 1 and restart it. When it comes up again, it should attach to the
shared-memory network.

Attaching shared memory objects at 0xef680000... done
Backplane anchor at 0xef680000... Attaching network interface sm0...
done.
Attaching interface lo0...done

5. Add the route to the slave simulator’s routing table:

-> routeAdd ("192.168.255.0", "161.27.0.1")

6. To verify that everything is working correctly, ping CPU 1 (from a shell
attached to CPU 0) with the following command:

-> ping "161.27.0.2"

7. Until you configure your UNIX routing table with information on how to
reach the new subnet, you will be unable to use network communication
between CPU 1 and the host over the shared-memory network. To configure
the route from UNIX, use the following commands:

% su root
password:
route add net 161.27.0.0 192.168.255.1 1
exit
%

NOTE: Any time you need to attach a VxSim process within the subnet to the target
server, you must specify it by its new IP address rather than by the host name,
because all VxSim processors other than 0 are no longer directly accessible to the
external network. The processors use vxsim0 as the gateway. The host names
normally associated with VxSim IP addresses cannot be used, because the routing
table entries point to their usual IP addresses. For example, vxsim1 is normally
associated with IP address 192.168.255.2; with the shared-memory network active,
CPU 1 must be addressed through the subnet as 161.27.0.2.

6

6

VxSim

243

To attach a target session to CPU 1, increase the default time-out value if
necessary:

% tgtsvr 161.27.0.2 -Bt 10.

8. Verify that you can now communicate from the host to CPU 1 over the
shared-memory network by using ping from the host to CPU 1.

% ping 161.27.0.2

If you attempt to access CPU 1 through its normally associated IP address, it
appears to be unavailable:

% ping 192.168.255.2
ping: no answer

NOTE: The master simulator should always be started first, before all the slave
simulators. If you reboot the master simulator, wait for its entire initialization
(shell prompt) before rebooting all the slave simulators.

NOTE: The optional product VxMP can be used with the Solaris full simulator.
This product provides shared semaphores and other shared-memory objects to
multiple VxWorks targets over the backplane. VxMP is part of the full simulator
product. For more information on VxMP, see the VxWorks Programmer’s Guide:
Shared-Memory Objects.

Tornado 2.2

User’s Guide

244

245

7
Shell

7.1 Introduction

The Tornado shell, WindSh, allows you to download application modules, and to
invoke both VxWorks and application module subroutines. This facility has many
uses: interactive exploration of the VxWorks operating system, prototyping,
interactive development, and testing.

WindSh can interpret most C language expressions; it can execute most C
operators and resolve symbolic data references and subroutine invocations. You
can also interact with the shell through a Tcl interpreter, which provides a full set
of control structures and lower-level access to target facilities. For a more detailed
explanation of the Tcl interface, see 7.7 Tcl: Shell Interpretation, p.297.

WindSh executes on the development host, not the target, but it allows you to
spawn tasks, to read from or write to target devices, and to exert full control of the
target.1 Because the shell executes on the host system, you can use it with minimal
intrusion on target resources. As with other Tornado tools, only the target agent is
required on the target system. Thus, the shell can remain always available; you can
use it to maintain a production system if appropriate as well as for
experimentation and testing during development.

Shell operation involves three components of the Tornado system, as shown in
Figure 7-1.

1. A target-resident version of the shell is also available; for more information, see VxWorks
Programmer’s Guide: Target Shell.

Tornado 2.2

User’s Guide

246

■ The shell is where you directly exercise control; it receives your commands and
executes them locally on the host, dispatching requests to the target server for
any action involving the symbol table or target-resident programs or data.

■ The target server manages the symbol table and handles all communications
with the remote target, dispatching function calls and sending their results
back as needed. (The symbol table itself resides entirely on the host, although
the addresses it contains refer to the target system.)

■ The target agent is the only component that runs on the target; it is a minimal
monitor program that mediates access to target memory and other facilities.

The shell has a dual role:

■ It acts as a command interpreter that provides access to all VxWorks facilities
by allowing you to call any VxWorks routine.

■ It can be used as a prototyping and debugging tool for the application
developer. You can run application modules interactively by calling any
application routine. The shell provides notification of any hardware
exceptions. See System Modification and Debugging, p.260, for information
about downloading application modules.

The capabilities of WindSh include the following:

■ task-specific breakpoints
■ task-specific single-stepping
■ symbolic disassembler
■ task and system information utilities

Figure 7-1 Tornado and the Shell

DEVELOPMENT HOST TARGET

Symbol

Table

Target

Server

Tornado

Shell

Agent

VxWorks

Communications
Link

7

7

Shell

247

■ ability to call user routines
■ ability to create and examine variables symbolically
■ ability to examine and modify memory
■ exception trapping

7.2 Using the Shell

The shell reads lines of input from an input stream, parses and evaluates each line,
and writes the result of the evaluation to an output stream. With its default
C-expression interpreter, the shell accepts the same expression syntax as a C
compiler with only a few variations.

The following sections explain how to start and stop the shell and provide
examples illustrating some typical uses of the shell’s C interpreter. In the examples,
the default shell prompt for interactive input in C is “->”. User input is shown in
bold face and shell responses are shown in a plain roman face.

7.2.1 Starting and Stopping the Tornado Shell

There are two ways to start a Tornado shell:

■ From the Tornado Launch window: Select the desired target and press the
button.

■ UNIX command line: Invoke windsh, specifying the target server name as in
the following example:

% windsh phobos

In the first case, a shell window like that shown in Figure 7-2 appears, ready for
your input at the -> prompt. In the second case, WindSh simply executes in the
environment where you call it, using the parent shell’s window.

Regardless of how you start it, you can terminate a Tornado shell session by
executing the exit() or the quit() command or by typing your host system’s
end-of-file character (usually CTRL+D). If the shell is not accepting input (for
instance, if it loses the connection to the target server), you can use the interrupt
key (CTRL+C).

Tornado 2.2

User’s Guide

248

You may run as many different shells attached to the same target as you wish. All
functions called from a shell have their output redirected to the WindSh window
from which they received input unless you changed the shell defaults using
shConfig (see WindSh Environment Variables, p.252).

You can also redirect windsh input and output to other UNIX commands, as in the
following test (using the shell built-in command i() to report on what tasks are
running on the target) to look for a target-system task called tPortmapd:

% echo "i" | windsh -q ev386ex@yunque | grep tPortmapd
tPortmapd _portmapd 3a4280 100 PEND 2afc4 3a3f28 16 0

Because you can start as many Tornado shell sessions as you like, such
combinations of the Tornado shell and the UNIX shell do not interfere with
interactive windsh sessions.

7.2.2 Downloading From the Shell

One of the most useful shell features for interactive development is the dynamic
linker. With the shell command ld(), you can download and link new portions of
the application.

-> ld < /home/moduleDir/module.o

Because the linking is dynamic, you only have to rebuild the particular piece you
are working on, not the entire application. Download can be cancelled with
CTRL+C or by clicking Cancel in the load progress indicator window. The dynamic
linker is discussed further in 5.4.4 Linking the System Modules, p.201.

Figure 7-2 WindSh Initial Display

7

7

Shell

249

The WTX error (0x10197) EXCHANGE_TIMEOUT may occur when a WTX request
keeps the target server busy longer than 30 seconds (default timeout). This may
happen when loading a large object module. A Tcl procedure is available to change
the default timeout. From WindSh use wtxTimeout sec where sec is the number of
seconds before timeout:

-> ?wtxTimeout 120

7.2.3 Shell Features

The shell provides many features which simplify your development and testing
activities. These include command name and path completion, command and
function synopsis printing, automatic data conversion, calculation with most C
operators and variables, and help on all shell and VxWorks functions.

Target Symbol and Path Completion

Start to type any target symbol name or any existing directory name and then type
CTRL+D. The shell automatically completes the command or directory name for
you. If there are multiple options, it prints them for you and then reprints your
entry. For example, entering an ambiguous request generates the following result:

-> /usr/Tor [CTRL+D]
Tornado/ TorClass/
-> /usr/Tor

You can add one or more letters and then type CTRL+D again until the path or
symbol is complete.

Synopsis Printing

Once you have typed the complete function name, typing CTRL+D again prints the
function synopsis and then reprints the function name ready for your input:

-> _taskIdDefault [CTRL+D]
taskIdDefault() - set the default task ID (WindSh)

int taskIdDefault
(
int tid /* user-supplied task ID; if 0, return default */
)

-> _taskIdDefault

Tornado 2.2

User’s Guide

250

If the routine exists on both host and target, the WindSh synopsis is printed. To
print the target synopsis of a function add the meta character @ before the function
name.

You can extend the synopsis printing function to include your own routines. To do
this, follow these steps:

1. Create the files that include the new routines following Wind River Coding
Conventions. (See VxWorks Programmer’s Guide: Coding Conventions.)

2. Include these files in your project. (See Creating, Adding, and Removing
Application Files, p.117.)

3. Add the file names to the DOC_FILES macro in your makefile.

4. Go to the top of your project tree and run “make synopsis”:

-> cd installDir/target/src/projectX
-> make synopsis

This adds a file projectX to the host/resource/synopsis directory.

HTML Help

Typing any function name, a space, and CTRL+W opens a browser and displays the
HTML reference page for the function. Be sure to leave a space after the function
name.

-> i [CTRL+W]

or

-> @i [CTRL+W]

Typing CTRL+W without any function name launches the HTML help tool. If a
browser is already running, the reference page is displayed in that browser;
otherwise a new browser is started.

Typing CTRL+W without a typing a space after the function name launches the
HTML help tool if the function name is unique. If not, CTRL+W acts as CTRL+D

and returns a list of functions whose names begin with the string you entered.

Data Conversion

The shell prints all integers and characters in both decimal and hexadecimal, and
if possible, as a character constant or a symbolic address and offset.

-> 68
value = 68 = 0x44 = 'D'

7

7

Shell

251

-> 0xf5de
value = 62942 = 0xf5de = _init + 0x52

-> 's'
value = 115 = 0x73 = 's'

Data Calculation

Almost all C operators can be used for data calculation. Use “(” and “)” to force
order of precedence.

-> (14 * 9) / 3
value = 42 = 0x2a = '*'

-> (0x1355 << 3) & 0x0f0f
value = 2568 = 0xa08

-> 4.3 * 5
value = 21.5

Calculations With Variables

-> (j + k) * 3
value = ...

-> *(j + 8 * k)
(…address (j + 8 * k)…): value = …

-> x = (val1 - val2) / val3
new symbol "x" added to symbol table
address = …
value = …

-> f = 1.41 * 2
new symbol "f" added to symbol table
f = (…address of f…): value = 2.82

Variable f gets an 8-byte floating point value.

-> ddd=5.2
new symbol "ddd" added to symbol table.
ddd = 0xba0e2c: value = 5.2

-> eee=10.5
new symbol "eee" added to symbol table.
eee = 0xba0e24: value = 10.5

-> fff=(double)ddd+(double)eee
new symbol "fff" added to symbol table.
fff = 0xba0e1c: value = 15.7
->

Tornado 2.2

User’s Guide

252

WindSh Environment Variables

WindSh allows you to change the behavior of a particular shell session by setting
several environment variables. The Tcl procedure shConfig allows you to display
and set how I/O redirection, C++ constructors and destructors, loading, and the
load path are defined and handled by the shell.

Table 7-1 WindSh Environment Variables

Variable Result

SH_GET_TASK_IO Sets the I/O redirection mode for called functions.
The default is “on”, which redirects input and output
of called functions to WindSh. To have input and
output of called functions appear in the target
console, set SH_GET_TASK_IO to “off.”

LD_CALL_XTORS Sets the C++ strategy related to constructors and
destructors. The default is “target”, which causes
WindSh to use the value set on the target using
cplusXtorSet(). If LD_CALL_XTORS is set to “on”,
the C++ strategy is set to automatic (for the current
WindSh only). “Off” sets the C++ strategy to manual
for the current shell.

LD_SEND_MODULES Sets the load mode. The default “on” causes modules
to be transferred to the target server. This means that
any module WindSh can see can be loaded. If
LD_SEND_MODULES if “off”, the target server
must be able to see the module to load it.

LD_PATH Sets the search path for modules using the separator
“;”. When a ld() command is issued, WindSh first
searches the current directory and loads the module
if it finds it. If not, WindSh searches the directory
path for the module.

LD_COMMON_MATCH_ALL Sets the loader behavior for common symbols. If it is
set to on, the loader tries to match a common symbol
with an existing one. If a symbol with the same name
is already defined, the loader take its address.
Otherwise, the loader creates a new entry. If set to off,
the loader does not try to find an existing symbol. It
creates an entry for each common symbol.

7

7

Shell

253

Because shConfig is a Tcl procedure, use the ? to move from the C interpreter to the
Tcl interpreter. (See 7.7.2 Tcl: Calling Under C Control, p.299.)

Example 7-1 Using shConfig to Modify WindSh Behavior

-> ?shConfig
SH_GET_TASK_IO = on
LD_CALL_XTORS = target
LD_SEND_MODULES = on
LD_PATH = C:/ProjectX/lib/objR4650gnutest/;C:/ProjectY/lib/objR4560gnuvx
-> ?shConfig LD_CALL_XTORS on
-> ?shConfig LD_CALL_XTORS
LD_CALL_XTORS = on

7.2.4 Invoking Built-In Shell Routines

Some of the commands (or routines) that you can execute from the shell are built
into the host shell, rather than running as function calls on the target. These
facilities parallel interactive utilities that can be linked into VxWorks itself. By
using the host commands, you minimize the impact on both target memory and
performance.

The following sections give summaries of the Tornado WindSh commands. For
more detailed reference information, see the windsh reference entry (either online,
or in the online Tornado API Reference).

DSM_HEX_MOD Sets the disassembling “symbolic + offset” mode.
When set to “off” the “symbolic + offset” address
representation is turned on and addresses inside the
disassembled instructions are given in terms of
“symbol name + offset.” When set to “on” these
addresses are given in hexadecimal.

! WARNING: Most of the shell commands correspond to similar routines that can be
linked into VxWorks for use with the target-resident version of the shell (VxWorks
Programmer’s Guide: Target Shell). However, the target-resident routines differ in
some details.For reference information on a shell command, be sure to consult the
windsh entry in the online Tornado API Reference or use the HTML help for the
command. Although there is usually an entry with the same name in the VxWorks
API Reference, it describes a related target routine, not the shell command.

Table 7-1 WindSh Environment Variables (Continued)

Variable Result

Tornado 2.2

User’s Guide

254

Task Management

Table 7-2 summarizes the WindSh commands that manage VxWorks tasks.

The repeat() and period() commands spawn tasks whose entry points are
_repeatHost and _periodHost. The shell downloads these support routines when
you call repeat() or period(). (With remote target servers, that download
sometimes fails; for a discussion of when this is possible, and what you can do
about it, see 7.6 Object Module Load Path, p.295.) These tasks may be controlled like
any other tasks on the target; for example, you can suspend or delete them with
ts() or td() respectively.

Task Information

Table 7-3 summarizes the WindSh commands that report task information.

The i() command is commonly used to get a quick report on target activity. (To see
this information periodically, use the Tornado browser; see 8. Browser). If nothing
seems to be happening, i() is often a good place to start investigating.

Table 7-2 WindSh Commands for Task Management

Call Description

sp() Spawn a task with default parameters.

sps() Spawn a task, but leave it suspended.

tr() Resume a suspended task.

ts() Suspend a task.

td() Delete a task.

period() Spawn a task to call a function periodically.

repeat() Spawn a task to call a function repeatedly.

taskIdDefault() Set or report the default (current) task ID (see 7.3.5 The “Current” Task
and Address, p.279 for a discussion of how the current task is established
and used).

7

7

Shell

255

Table 7-3 WindSh Commands for Task Information

Call Description

checkStack() Show a stack usage summary for a task, or for all tasks if no task is
specified. The summary includes the total stack size (SIZE), the current
number of stack bytes (CUR), the maximum number of stack bytes used
(HIGH), and the number of bytes never used at the top of the stack
(MARGIN = SIZE - HIGH). Use this routine to determine how much
stack space to allocate, and to detect stack overflow. checkStack() does
not work for tasks that use the VX_NO_STACK_FILL option.

i() Display system information. This command gives a snapshot of what
tasks are in the system, and some information about each of them, such
as state, PC, SP, and TCB address. To save memory, this command
queries the target repeatedly; thus, it may occasionally give an
inconsistent snapshot.

iStrict() Display the same information as i(), but query target system
information only once. At the expense of consuming more intermediate
memory, this guarantees an accurate snapshot.

ti() Display task information. This command gives all the information
contained in a task’s TCB. This includes everything shown for that task
by an i() command, plus all the task’s registers, and the links in the TCB
chain. If task is 0 (or the argument is omitted), the current task is
reported on.

w() Print a summary of each task’s pending information, task by task. This
routine calls taskWaitShow() in quiet mode on all tasks in the system,
or a specified task if the argument is given.

tw() Print information about the object the given task is pending on. This
routine calls taskWaitShow() on the given task in verbose mode.

tt() Display a stack trace.

taskIdFigure() Report a task ID, given its name.

Tornado 2.2

User’s Guide

256

To display summary information about all running tasks:

-> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY

--------- ----------- -------- --- -------- ------- -------- ------- -----
tExcTask _excTask 3ad290 0 PEND 4df10 3ad0c0 0 0
tLogTask _logTask 3aa918 0 PEND 4df10 3aa748 0 0
tWdbTask 0x41288 3870f0 3 READY 23ff4 386d78 3d0004 0
tNetTask _netTask 3a59c0 50 READY 24200 3a5730 0 0
tFtpdTask _ftpdTask 3a2c18 55 PEND 23b28 3a2938 0 0
value = 0 = 0x0

The w() and tw() commands allow you to see what object a VxWorks task is
pending on. w() displays summary information for all tasks, while tw() displays
object information for a specific task. Note that the OBJ_NAME field is used only
for objects that have a symbolic name associated with the address of their
structure.

-> w

NAME ENTRY TID STATUS DELAY OBJ_TYPE OBJ_ID OBJ_NAME
---------- ---------- -------- --------- ----- ---------- -------- --------
tExcTask _excTask 3d9e3c PEND 0 MSG_Q(R) 3d9ff4 N/A
tLogTask _logTask 3d7510 PEND 0 MSG_Q(R) 3d76c8 N/A
tWdbTask _wdbCmdLoo 36dde4 READY 0 0
tNetTask _netTask 3a43d0 READY 0 0
u0 _smtask1 36cc2c PEND 0 MSG_Q_S(S) 370b61 N/A
u1 _smtask3 367c54 PEND 0 MSG_Q_S(S) 370b61 N/A
u3 _taskB 362c7c PEND 0 SEM_B 8d378 _mySem2
u6 _smtask1 35dca4 PEND 0 MSG_Q_S(S) 370ae1 N/A
u9 _task3B 358ccc PEND 0 MSG_Q(S) 8cf1c _myMsgQ
value = 0 = 0x0
->
-> tw u1

NAME ENTRY TID STATUS DELAY OBJ_TYPE OBJ_ID OBJ_NAME
---------- ---------- -------- --------- ----- ---------- -------- --------
u1 _smtask3 367c54 PEND 0 MSG_Q_S(S) 370b61 N/A

Message Queue Id : 0x370b61
Task Queueing : SHARED_FIFO
Message Byte Len : 100
Messages Max : 0
Messages Queued : 0
Senders Blocked : 2
Send Timeouts : 0
Receive Timeouts : 0

Senders Blocked:
TID CPU Number Shared TCB
---------- ---------- ----------
0x36cc2c 0 0x36e464
0x367c54 0 0x36e47c

7

7

Shell

257

value = 0 = 0x0
->

System Information

Table 7-4 shows the WindSh commands that display information from the symbol
table, from the target system, and from the shell itself.

The lkup() command takes a regular expression as its argument, and looks up all
symbols containing strings that match. In the simplest case, you can specify a
substring to see any symbols containing that string. For example, to display a list

Table 7-4 WindSh Commands for System Information

Call Description

devs() List all devices known on the target system.

lkup() List symbols from symbol table.

lkAddr() List symbols whose values are near a specified value.

d() Display target memory. You can specify a starting address, size of
memory units, and number of units to display.

l() Disassemble and display a specified number of instructions.

printErrno() Describe the most recent error status value.

version() Print VxWorks version information.

cd() Change the host working directory (no effect on target).

ls() List files in host working directory.

pwd() Display the current host working directory.

help() Display a summary of selected shell commands.

h() Display up to 20 lines of command history.

shellHistory() Set or display shell history.

shellPromptSet() Change the C-interpreter shell prompt.

printLogo() Display the Tornado shell logo.

Tornado 2.2

User’s Guide

258

containing routines and declared variables with names containing the string dsm,
do the following:

-> lkup "dsm"
_dsmData 0x00049d08 text (vxWorks)
_dsmNbytes 0x00049d76 text (vxWorks)
_dsmInst 0x00049d28 text (vxWorks)
mydsm 0x003c6510 bss (vxWorks)

Case is significant, but position is not (mydsm is shown, but myDsm would not
be). To explicitly write a search that would match either mydsm or myDsm, you
could write the following:

-> lkup "[dD]sm"

Regular-expression searches of the symbol table can be as simple or elaborate as
required. For example, the following simple regular expression displays the names
of three internal VxWorks semaphore functions:

-> lkup "sem.Take"
_semBTake 0x0002aeec text (vxWorks)
_semCTake 0x0002b268 text (vxWorks)
_semMTake 0x0002bc48 text (vxWorks)
value = 0 = 0x0

Another information command is a symbolic disassembler, l(). The command
syntax is:

l [adr[, n]]

This command lists n disassembled instructions, starting at adr. If n is 0 or not
given, the n from a previous l() or the default value (10) is used. If adr is 0, l() starts
from where the previous l() stopped, or from where an exception occurred (if there
was an exception trap or a breakpoint since the last l() command).

The disassembler uses any symbols that are in the symbol table. If an instruction
whose address corresponds to a symbol is disassembled (the beginning of a
routine, for instance), the symbol is shown as a label in the address field. Symbols
are also used in the operand field. The following is an example of disassembled
code for an MC680x0 target:

-> l printf
_printf

00033bce 4856 PEA (A6)
00033bd0 2c4f MOVEA .L A7,A6
00033bd2 4878 0001 PEA 0x1
00033bd6 4879 0003 460e PEA _fioFormatV + 0x780
00033bdc 486e 000c PEA (0xc,A6)
00033be0 2f2e 0008 MOVE .L (0x8,A6),-(A7)

7

7

Shell

259

00033be4 6100 02a8 BSR _fioFormatV
00033be8 4e5e UNLK A6
00033bea 4e75 RTS

This example shows the printf() routine. The routine does a LINK, then pushes the
value of std_out onto the stack and calls the routine fioFormatV(). Notice that
symbols defined in C (routine and variable names) are prefixed with an underbar
(_) by the compiler.

Perhaps the most frequently used system information command is d(), which
displays a block of memory starting at the address which is passed to it as a
parameter. As with any other routine that requires an address, the starting address
can be a number, the name of a variable or routine, or the result of an expression.

Several examples of variations on d() appear below.

Display starting at address 1000 decimal:

-> d (1000)

Display starting at 1000 hex:

-> d 0x1000

Display starting at the address contained in the variable dog:

-> d dog

The above is different from a display starting at the address of dog. For example,
if dog is a variable at location 0x1234, and that memory location contains the value
10000, d() displays starting at 10000 in the previous example and at 0x1234 in the
following:

-> d &dog

Display starting at an offset from the value of dog:

-> d dog + 100

Display starting at the result of a function call:

-> d func (dog)

Display the code of func() as a simple hex memory dump:

-> d func

When you use cd() in the host shell, you are changing the working directory on
the host. It does not change the directory on the target. WindSh has no knowledge

Tornado 2.2

User’s Guide

260

of the target file system. Thus if you mount a drive on the target from the host shell
and try to cd() to it, you see the following:

-> cd "/ata0/"
couldn’t change working directory to "\ata0": no such file or directory
value = -1 = 0xffffffff

However, the result is different if you execute cd() and ls() on the target by
prefixing the commands with @:

-> @cd "/ata0/"
value = 0 = 0x0

-> @ls
IO.SYS
MSDOS.SYS
DRVSPACE.BIN

@cd and @ls only work if you have the component INCLUDE_DISK_UTIL included
in your target image.

The above also applies if you wish to use the target server file system (TSFS) from
WindSh: cd "/tgtsvr" does not work but @cd "/tgtsvr" does. To use TSFS you must
have the TSFS component, INCLUDE_WDB_TSFS, installed in VxWorks and start
the target server with the "-R dirName" or "-R dirName -RW" option.

System Modification and Debugging

Developers often need to change the state of the target, whether to run a new
version of some software module, to patch memory, or simply to single-step a
program. Table 7-5 summarizes the WindSh commands of this type.

Table 7-5 WindSh Commands for System Modification and Debugging

Call Description

ld() Load an object module into target memory and link it dynamically into
the run-time.

unld() Remove a dynamically-linked object module from target memory, and
free the storage it occupied.

m() Modify memory in width (byte, short, or long) starting at adr. The m()
command displays successive words in memory on the terminal; you
can change each word by typing a new hex value, leave the word
unchanged and continue by typing ENTER, or return to the shell by
typing a dot (.).

7

7

Shell

261

One of the most useful shell features for interactive development is the dynamic
linker. With the shell command ld(), you can download and link new portions of
the application. Because the linking is dynamic, you only have to rebuild the
particular piece you are working on, not the entire application. Download can be
cancelled with CTRL+C or by clicking Cancel in the load progress indicator
window. The dynamic linker is discussed further in 5.4.4 Linking the System
Modules, p.201.

The m() command provides an interactive way of manipulating target memory.

mRegs() Modify register values for a particular task.

b() Set or display breakpoints, in a specified task or in all tasks.

bh() Set a hardware breakpoint.

s() Step a program to the next instruction.

so() Single-step, but step over a subroutine.

c() Continue from a breakpoint.

cret() Continue until the current subroutine returns.

bdall() Delete all breakpoints.

bd() Delete a breakpoint.

reboot() Return target control to the target boot ROMs, then reset the target
server and reattach the shell.

bootChange() Modify the saved values of boot parameters (see 2.6.4 Description of
Boot Parameters, p.50).

sysSuspend() If supported by the target-agent configuration, enter system mode. See
7.2.7 Using the Shell for System Mode Debugging, p.267.

sysResume() If supported by the target agent (and if system mode is in effect),
return to task mode from system mode.

agentModeShow() Show the agent mode (system or task).

sysStatusShow() Show the system context status (suspended or running).

quit() or exit() Dismiss the shell.

Table 7-5 WindSh Commands for System Modification and Debugging (Continued)

Call Description

Tornado 2.2

User’s Guide

262

The remaining commands in this group are for breakpoints and single-stepping.
You can set a breakpoint at any instruction. When that instruction is executed by
an eligible task (as specified with the b() command), the task that was executing
on the target suspends, and a message appears at the shell. At this point, you can
examine the task’s registers, do a task trace, and so on. The task can then be
deleted, continued, or single-stepped.

If a routine called from the shell encounters a breakpoint, it suspends just as any
other routine would, but in order to allow you to regain control of the shell, such
suspended routines are treated in the shell as though they had returned 0. The
suspended routine is nevertheless available for your inspection.

When you use s() to single-step a task, the task executes one machine instruction,
then suspends again. The shell display shows all the task registers and the next
instruction to be executed by the task.

You can use the bh() command to set hardware breakpoints at any instruction or
data element. Instruction hardware breakpoints can be useful to debug code
running in ROM or Flash EPROM. Data hardware breakpoints (watchpoints) are
useful if you want to stop when your program accesses a specific address.
Hardware breakpoints are available on some BSPs; see your BSP documentation to
determine if they are supported for your BSP. The arguments of the bh() command
are architecture specific. For more information, run the help() command. The
number of hardware breakpoints you can set is limited by the hardware; if you
exceed the maximum number, you will receive an error.

C++ Development

Certain WindSh commands are intended specifically for work with C++
applications. Table 7-6 summarizes these commands. For more discussion of these
shell commands, see VxWorks Programmer’s Guide: C++ Development.

Table 7-6 WindSh Commands for C++ Development

Call Description

cplusCtors() Call static constructors manually.

cplusDtors() Call static destructors manually.

cplusStratShow() Report on whether current constructor/destructor strategy is manual
or automatic.

cplusXtorSet() Set constructor/destructor strategy.

7

7

Shell

263

In addition, you can use the Tcl routine shConfig to set the environment variable
LD_CALL_XTORS within a particular shell. This allows you to use a different C++
strategy in a shell than is used on the target. For more information on shConfig,
see WindSh Environment Variables, p.252.

Object Display

Table 7-7 summarizes the WindSh commands that display VxWorks objects. The
browser provides displays that are analogous to the output of many of these
routines, except that browser windows can update their contents periodically; see
8. Browser.

Table 7-7 WindSh Commands for Object Display

Call Description

show() Print information on a specified object in the shell window.

browse() Display a specified object in the Tornado browser.

classShow() Show information about a class of VxWorks kernel objects. List
available classes with:

-> lkup "ClassId"

taskShow() Display information from a task’s TCB.

taskCreateHookShow() Show the list of task create routines.

taskDeleteHookShow() Show the list of task delete routines.

taskRegsShow() Display the contents of a task’s registers.

taskSwitchHookShow() Show the list of task switch routines.

taskWaitShow() Show information about the object a task is pended on. Note that
taskWaitShow() can not give object IDs for POSIX semaphores
or message queues.

semShow() Show information about a semaphore.

semPxShow() Show information about a POSIX semaphore.

wdShow() Show information about a watchdog timer.

msgQShow() Show information about a message queue.

Tornado 2.2

User’s Guide

264

Network Status Display

Table 7-8 summarizes the WindSh commands that display information about the
VxWorks network.

In order for a protocol-specific command to work, the appropriate protocol must
be included in your VxWorks configuration.

mqPxShow() Show information about a POSIX message queue.

iosDrvShow() Display a list of system drivers.

iosDevShow() Display the list of devices in the system.

iosFdShow() Display a list of file descriptor names in the system.

memPartShow() Show partition blocks and statistics.

memShow() Display the total amount of free and allocated space in the
system partition, the number of free and allocated fragments,
the average free and allocated fragment sizes, and the maximum
free fragment size. Show current as well as cumulative values.
With an argument of 1, also display the free list of the system
partition.

smMemShow() Display the amount of free space and statistics on
memory-block allocation for the shared-memory system
partition.

smMemPartShow() Display the amount of free space and statistics on
memory-block allocation for a specified shared-memory
partition.

moduleShow() Show the current status for all the loaded modules.

moduleIdFigure() Report a loaded module’s module ID, given its name.

intVecShow() Display the interrupt vector table. This routine displays
information about the given vector or the whole interrupt vector
table if vector is equal to -1. Note that intVecShow() is not
supported on architectures such as ARM and PowerPC that do
not use interrupt vectors.

Table 7-7 WindSh Commands for Object Display (Continued)

Call Description

7

7

Shell

265

Resolving Name Conflicts between Host and Target

If you invoke a name that stands for a host shell command, the shell always
invokes that command, even if there is also a target routine with the same name.
Thus, for example, i() always runs on the host, regardless of whether you have the
VxWorks routine of the same name linked into your target.

However, you may occasionally need to call a target routine that has the same
name as a host shell command. The shell supports a convention allowing you to
make this choice: use the single-character prefix @ to identify the target version of
any routine. For example, to run a target routine named i(), invoke it with the
name @i().

7.2.5 Running Target Routines from the Shell

All target routines are available from WindSh. This includes both VxWorks
routines and your application routines. Thus the shell provides a powerful tool for
testing and debugging your applications using all the host resources while having
minimal impact on how the target performs and how the application behaves.

Table 7-8 WindSh Commands for Network Status Display

Call Description

hostShow() Display the host table.

icmpstatShow() Display statistics for ICMP (Internet Control Message Protocol).

ifShow() Display the attached network interfaces.

inetstatShow() Display all active connections for Internet protocol sockets.

ipstatShow() Display IP statistics.

routestatShow() Display routing statistics.

tcpstatShow() Display all statistics for the TCP protocol.

tftpInfoShow() Get TFTP status information.

udpstatShow() Display statistics for the UDP protocol.

Tornado 2.2

User’s Guide

266

Invocations of VxWorks Subroutines

-> taskSpawn ("tmyTask", 10, 0, 1000, myTask, fd1, 300)
value = …

-> fd = open ("file", 0, 0)
new symbol "fd" added to symbol table
fd = (…address of fd…): value = …

Invocations of Application Subroutines

-> testFunc (123)
value = …

-> myValue = myFunc (1, &val, testFunc (123))
myValue = (…address of myValue…): value = …

-> myDouble = (double ()) myFuncWhichReturnsADouble (x)
myDouble = (…address of myDouble…): value = …

For situations where the result of a routine is something other than a 4-byte integer,
see Function Calls, p.277.

7.2.6 Rebooting from the Shell

In an interactive real-time development session, it is sometimes convenient to
restart everything to make sure the target is in a known state. WindSh provides the
reboot() command or CTRL+SHIFT+X to make this easy.

When you execute reboot() or type CTRL+SHIFT+X, the following reboot sequence
occurs:

1. The shell displays a message to confirm rebooting has begun:

-> reboot
Rebooting...

2. The target reboots.

3. The original target server on the host detects the target reboot and restarts
itself, with the same configuration as previously. The target-server
configuration options -Bt (timeout) and -Br (retries) govern how long the new
server waits for the target to reboot, and how many times the new server
attempts to reconnect; see the tgtsvr reference entry in the online Tornado API
Reference, or in the HTML help.

7

7

Shell

267

4. The shell detects the target-server restart and begins an automatic-restart
sequence (initiated any time it loses contact with the target server for any
reason), indicated with the following messages:

Target connection has been lost. Restarting shell...
Waiting to attach to target server......

5. When WindSh establishes contact with the new target server, it displays the
Tornado shell logo and awaits your input.

7.2.7 Using the Shell for System Mode Debugging

The bulk of this chapter discusses the shell in its most frequent style of use:
attached to a normally running VxWorks system, through a target agent running
in task mode. You can also use the shell with a system-mode agent. Entering
system mode stops the entire target system: all tasks, the kernel, and all ISRs.
Similarly, breakpoints affect all tasks.

Depending on how the target agent is configured, you may be able to switch
between system mode and task mode; see 4.7 Configuring the Target-Host
Communication Interface, p.156. When the agent supports mode switching, the
following WindSh commands control system mode:

sysSuspend()
Enter system mode and stop the target system.

sysResume()
Return to task mode and resume execution of the target system.

NOTE: If the target server timeout (-Bt) and retry count (-Br) are too low for your
target and your connection method, the new target server may abandon execution
before the target finishes rebooting. The default timeout is one second, and the
default retry count is three; thus, by default the target server waits three seconds
for the target to reboot. If the shell does not restart in a reasonably short time after
a reboot(), try starting a new target server manually.

! CAUTION: When you use system mode debugging, you cannot execute
expressions that call target-resident routines. You must use sp() to spawn a task
with the target-resident routine as the entry point argument. A newly-spawned
task will not execute until you allow the kernel to run long enough to schedule that
task.

Tornado 2.2

User’s Guide

268

The following commands are to determine the state of the system and the agent:

agentModeShow()
Show the agent mode (system or task).

sysStatusShow()
Show the system context status (suspended or running).

The following shell commands behave differently in system mode:

b()
Set a system-wide breakpoint; the system stops when this breakpoint is
encountered by any task, or the kernel, or an ISR.

c()
Resume execution of the entire system (but remain in system mode).

i()
Display the state of the system context and the mode of the agent.

s()
Single-step the entire system.

sp()
Add a task to the execution queue. The task does not begin to execute until you
continue the kernel or step through the task scheduler.

The following example shows how to use system mode debugging to debug a
system interrupt.

Example 7-2 System-Mode Debugging

In this case, usrClock() is attached to the system clock interrupt handler which is
called at each system clock tick when VxWorks is running. First suspend the
system and confirm that it is suspended using either i() or sysStatusShow().

-> sysSuspend
value = 0 = 0x0
->
-> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
--------- ---------- -------- ----- ------- ------- ------- ----- -----
tExcTask _excTask 3e8f98 0 PEND 47982 3e8ef4 0 0
tLogTask _logTask 3e6670 0 PEND 47982 3e65c8 0 0
tWdbTask 0x3f024 398e04 3 PEND 405ac 398d50 30067 0

! WARNING: If you are running either CrossWind or Look! you must not use c()
from the shell to continue; instead continue from the debugger itself. Using c()
from the shell when the debugger is running will confuse the debugger.

7

7

Shell

269

tNetTask _netTask 3b39e0 50 PEND 405ac 3b3988 0 0

Agent mode : Extern
System context : Suspended
value = 0 = 0x0
->
-> sysStatusShow
System context is suspended
value = 0 = 0x0

Next, set the system mode breakpoint on the entry point of the interrupt handler
you want to debug. Since the target agent is running in system mode, the
breakpoint will automatically be a system mode breakpoint, which you can
confirm with the b() command. Resume the system using c() and wait for it to
enter the interrupt handler and hit the breakpoint.

-> b usrClock
value = 0 = 0x0
-> b
0x00022d9a: _usrClock Task: SYSTEM Count: 0
value = 0 = 0x0
-> c
value = 0 = 0x0
->
Break at 0x00022d9a: _usrClock Task: SYSTEM

You can now debug the interrupt handler. For example, you can determine which
task was running when system mode was entered using taskIdCurrent() and i().

-> taskIdCurrent
_taskIdCurrent = 0x838d0: value = 3880092 = 0x3b349c
-> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
--------- ---------- -------- ----- ------- ------- ------- ----- -----
tExcTask _excTask 3e8a54 0 PEND 4eb8c 3e89b4 0 0
tLogTask _logTask 3e612c 0 PEND 4eb8c 3e6088 0 0
tWdbTask 0x44d54 389774 3 PEND 46cb6 3896c0 0 0
tNetTask _netTask 3b349c 50 READY 46cb6 3b3444 0 0

Agent mode : Extern
System context : Suspended
value = 0 = 0x0

You can trace all the tasks except the one that was running when you placed the
system in system mode and you can step through the interrupt handler.

-> tt tLogTask
4da78 _vxTaskEntry +10 : _logTask (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
3f2bc _logTask +18 : _msgQReceive (3e62e4, 3e60dc, 20, ffffffff)
27e64 _msgQReceive +1ba: _qJobGet ([3e62e8, ffffffff, 0, 0, 0, 0])
value = 0 = 0x0
-> l
_usrClock

Tornado 2.2

User’s Guide

270

00022d9a 4856 PEA (A6)
00022d9c 2c4f MOVEA .L A7,A6
00022d9e 61ff 0002 3d8c BSR _tickAnnounce
00022da4 4e5e UNLK A6
00022da6 4e75 RTS
00022da8 352e 3400 MOVE .W (0x3400,A6),-(A2)
00022dac 4a75 6c20 TST .W (0x20,A5,D6.L*4)
00022db0 3234 2031 MOVE .W (0x31,A4,D2.W*1),D1
00022db4 3939 382c 2031 MOVE .W 0x382c2031,-(A4)
00022dba 343a 3337 MOVE .W (0x3337,PC),D2
value = 0 = 0x0
-> s
d0 = 3e d1 = 3700 d2 = 3000 d3 = 3b09dc
d4 = 0 d5 = 0 d6 = 0 d7 = 0
a0 = 230b8 a1 = 3b3318 a2 = 3b3324 a3 = 7e094
a4 = 38a7c0 a5 = 0 a6/fp = bcb90 a7/sp = bcb84
sr = 2604 pc = 230ba

000230ba 2c4f MOVEA .L A7,A6
value = 0 = 0x0

Return to task mode and confirm that return by calling i():

-> sysResume
value = 0 = 0x0

-> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
--------- ---------- -------- ----- ------- ------- ------- ----- -----
tExcTask _excTask 3e8f98 0 PEND 47982 3e8ef4 0 0
tLogTask _logTask 3e6670 0 PEND 47982 3e65c8 0 0
tWdbTask 0x3f024 398e04 3 READY 405ac 398d50 30067 0
tNetTask _netTask 3b39e0 50 PEND 405ac 3b3988 0 0
value = 0 = 0x0

If you want to debug an application you have loaded dynamically, set an
appropriate breakpoint and spawn a task which runs when you continue the
system:

-> sysSuspend
value = 0 = 0x0
-> ld < test.o
Loading /view/didier.temp/vobs/wpwr/target/lib/objMC68040gnutest//test.o /
value = 400496 = 0x61c70 = _rn_addroute + 0x1d4
-> b address
value = 0 = 0x0
-> sp test
value = 0 = 0x0
-> c

The application breaks on address when the instruction at address is executed.

7

7

Shell

271

7.2.8 Interrupting a Shell Command

Occasionally it is desirable to abort the shell’s evaluation of a statement. For
example, an invoked routine may loop excessively, suspend, or wait on a
semaphore. This may happen as the result of errors in arguments specified in the
invocation, errors in the implementation of the routine itself, or simply oversight
as to the consequences of calling the routine.

To regain control of the shell in such cases, press the interrupt character on the
keyboard, usually CTRL+C.2 This makes the shell stop waiting for a result and
allows input of a new statement. Any remaining portions of the statement are
discarded and the task that ran the function call is deleted.

Pressing CTRL+C is also necessary to regain control of the shell after calling a
routine on the target that ends with exit() rather than return.

Occasionally a subroutine invoked from the shell may incur a fatal error, such as a
bus/address error or a privilege violation. When this happens, the failing routine
is suspended. If the fatal error involved a hardware exception, the shell
automatically notifies you of the exception. For example:

-> taskSpawn -4
Exception number 11: Task: 0x264ed8 (tCallTask)

In cases like this, you do not need to type CTRL+C to recover control of the shell; it
automatically returns to the prompt, just as if you had interrupted. Whether you
interrupt or the shell does it for you, you can proceed to investigate the cause of
the suspension. For example, in the case above you could run the Tornado browser
on tCallTask.

An interrupted routine may have left things in a state which was not cleared when
you interrupted it. For instance, a routine may have taken a semaphore, which
cannot be given automatically. Be sure to perform manual cleanup if you are going
to continue the application from this point.

2. The interrupt character matches whatever you normally use in UNIX shells as an interrupt;
you can set it with the UNIX command stty intr. See your host system documentation for
details.

! CAUTION: CTRL+C does not interrupt non-blocking functions. If the task
transmitting the break request is of lower priority than the task to be interrupted,
the request is not conveyed until the original task completes.

Tornado 2.2

User’s Guide

272

7.3 The Shell C-Expression Interpreter

The C-expression interpreter is the most common command interface to the
Tornado shell. This interpreter can evaluate almost any C expression interactively
in the context of the attached target. This includes the ability to use variables and
functions whose names are defined in the symbol table. Any command you type
is interpreted as a C expression. The shell evaluates that expression and, if the
expression so specifies, assigns the result to a variable.

7.3.1 I/O Redirection

Developers often call routines that display data on standard output or accept data
from standard input. By default the standard output and input streams are
directed to the same window as the Tornado shell. For example, in a default
configuration of Tornado, invoking printf() from the shell window gives the
following display:

-> printf("Hello World\n")
Hello World!
value = 13 = 0xd
->

This behavior can be dynamically modified using the Tcl procedure shConfig as
follows:

-> ?shConfig SH_GET_TASK_IO off
->
-> printf("Hello World!\n")
value = 13 = 0xd
->

The shell reports the printf() result, indicating that 13 characters have been
printed. The output, however, goes to the target’s standard output, not to the shell.

To determine the current configuration, use shConfig. If you issue the command
without an argument, all parameters are listed. Use an argument to list only one
parameter.

-> ?shConfig SH_GET_TASK_IO
SH_GET_TASK_IO = off

For more information, see on shConfig, see WindSh Environment Variables, p.252.

The standard input and output are only redirected for the function called from
WindSh. If this function spawns other tasks, the input and output of the spawned

7

7

Shell

273

tasks are not redirected to WindSh. To have all I/O redirected to WindSh, you can
start the target server with the options -C -redirectShell.

7.3.2 Data Types

The most significant difference between the shell C-expression interpreter and a C
compiler lies in the way that they handle data types. The shell does not accept any
C declaration statements, and no data-type information is available in the symbol
table. Instead, an expression’s type is determined by the types of its terms.

Unless you use explicit type-casting, the shell makes the following assumptions
about data types:

■ In an assignment statement, the type of the left hand side is determined by the
type of the right hand side.

■ If floating-point numbers and integers both appear in an arithmetic
expression, the resulting type is a floating-point number.

■ Data types are assigned to various elements as shown in Table 7-9.

A constant or variable can be treated as a different type than what the shell
assumes by explicitly specifying the type with the syntax of C type-casting.
Functions that return values other than integers require a slightly different
type-casting; see Function Calls, p.277. Table 7-10 shows the various data types
available in the shell C interpreter, with examples of how they can be set and
referenced.

Table 7-9 Shell C Interpreter Data-Type Assumptions

Element Data Type

variable int

variable used as floating-point double

return value of subroutine int

constant with no decimal point int/long

constant with decimal point double

Tornado 2.2

User’s Guide

274

Strings, or character arrays, are not treated as separate types in the shell C
interpreter. To declare a string, set a variable to a string value.3 For example:

-> ss = "shoe bee doo"

The variable ss is a pointer to the string shoe bee doo. To display ss, enter:

-> d ss

The d() command displays memory where ss is pointing.4 You can also use
printf() to display strings.

The shell places no type restrictions on the application of operators. For example,
the shell expression:

 *(70000 + 3 * 16)

evaluates to the 4-byte integer value at memory location 70048.

Table 7-10 Data Types in the Shell C Interpreter

Type Bytes Set Variable Display Variable

int 4 x = 99 x
(int) x

long 4 x = 33
x = (long)33

x
(long) x

short 2 x = (short)20 (short) x

char 1 x = 'A'
x = (char)65
x = (char)0x41

(char) x

double 8 x = 11.2
x = (double)11.2

(double) x

float 4 x = (float)5.42 (float) x

3. Memory allocated for string constants is never freed by the shell. See 7.3.8 Strings, p.281 for
more information.

4. d() is one of the WindSh commands, implemented in Tcl and executing on the host.

7

7

Shell

275

7.3.3 Lines and Statements

The shell parses and evaluates its input one line at a time. A line may consist of a
single shell statement or several shell statements separated by semicolons. A
semicolon is not required on a line containing only a single statement. A statement
cannot continue on multiple lines.

Shell statements are either C expressions or assignment statements. Either kind of
shell statement may call WindSh commands or target routines.

7.3.4 Expressions

Shell expressions consist of literals, symbolic data references, function calls, and
the usual C operators.

Literals

The shell interprets the literals in Table 7-11 in the same way as the C compiler,
with one addition: the shell also allows hex numbers to be preceded by $ instead
of 0x.

Table 7-11 Literals in the Shell C Interpreter

Literal Example

decimal numbers 143967

octal numbers 017734

hex numbers 0xf3ba or $f3ba

floating point numbers 666.666

character constants 'x' and '$'

string constants "hello world!!!"

Tornado 2.2

User’s Guide

276

Variable References

Shell expressions may contain references to variables whose names have been
entered in the system symbol table. Unless a particular type is specified with a
variable reference, the variable’s value in an expression is the 4-byte value at the
memory address obtained from the symbol table. It is an error if an identifier in an
expression is not found in the symbol table, except in the case of assignment
statements discussed below.

Some C compilers prefix user-defined identifiers with an underbar, so that myVar
is actually in the symbol table as _myVar. In this case, the identifier can be entered
either way to the shell—the shell searches the symbol table for a match either with
or without a prefixed underbar.

You can also access data in memory that does not have a symbolic name in the
symbol table, as long as you know its address. To do this, apply the C indirection
operator “*” to a constant. For example, *0x10000 refers to the 4-byte integer value
at memory address 10000 hex.

Operators

The shell interprets the operators in Table 7-12 in the same way as the C compiler.

The shell assigns the same precedence to the operators as the C compiler. However,
unlike the C compiler, the shell always evaluates both sub-expressions of the
logical binary operators || and &&.

Table 7-12 Operators in the Shell C Interpreter

Operator Type Operators

arithmetic + - * / unary -

relational == != < > <= >=

shift << >>

logical || && !

bitwise | & ~ ^

address and indirection & *

7

7

Shell

277

Function Calls

Shell expressions may contain calls to C functions (or C-compatible functions)
whose names have been entered in the system symbol table; they may also contain
function calls to WindSh commands that execute on the host.

The shell executes such function calls in tasks spawned for the purpose, with the
specified arguments and default task parameters; if the task parameters make a
difference, you can call taskSpawn() instead of calling functions from the shell
directly. The value of a function call is the 4-byte integer value returned by the
function. The shell assumes that all functions return integers. If a function returns
a value other than an integer, the shell must know the data type being returned
before the function is invoked. This requires a slightly unusual syntax because you
must cast the function, not its return value. For example:

-> floatVar = (float ()) funcThatReturnsAFloat (x,y)

The shell can pass up to ten arguments to a function. In fact, the shell always passes
exactly ten arguments to every function called, passing values of zero for any
arguments not specified. This is harmless because the C function-call protocol
handles passing of variable numbers of arguments. However, it allows you to omit
trailing arguments of value zero from function calls in shell expressions.

Function calls can be nested. That is, a function call can be an argument to another
function call. In the following example, myFunc() takes two arguments: the return
value from yourFunc() and myVal. The shell displays the value of the overall
expression, which in this case is the value returned from myFunc().

myFunc (yourFunc (yourVal), myVal);

Shell expressions can also contain references to function addresses instead of
function invocations. As in C, this is indicated by the absence of parentheses after
the function name. Thus the following expression evaluates to the result returned
by the function myFunc2() plus 4:

4 + myFunc2 ()

However, the following expression evaluates to the address of myFunc2() plus 4:

4 + myFunc2

Tornado 2.2

User’s Guide

278

An important exception to this occurs when the function name is the very first item
encountered in a statement. This is discussed in Arguments to Commands, p.278.

Shell expressions can also contain calls to functions that do not have a symbolic
name in the symbol table, but whose addresses are known to you. To do this,
simply supply the address in place of the function name. Thus the following
expression calls a parameterless function whose entry point is at address 10000
hex:

0x10000 ()

You can assign the address of a function to a variable and then dereference the
variable to call the function as in the following example:

-> aaa=printf
-> (* aaa)("The clock speed is %d\n" ,sysClckRateGet())

Subroutines as Commands

Both VxWorks and the Tornado shell itself provide routines that are meant to be
called from the shell interactively. You can think of these routines as commands,
rather than as subroutines, even though they can also be called with the same syntax
as C subroutines (and those that run on the target are in fact subroutines). All the
commands discussed in this chapter fall in this category. When you see the word
command, you can read subroutine, or vice versa, since their meaning here is
identical.

Arguments to Commands

In practice, most statements input to the shell are function calls, often to invoke
VxWorks facilities. To simplify this use of the shell, an important exception is
allowed to the standard expression syntax required by C. When a function name is
the very first item encountered in a shell statement, the parentheses surrounding
the function’s arguments may be omitted. Thus the following shell statements are
synonymous:

-> rename ("oldname", "newname")
-> rename "oldname", "newname"

7

7

Shell

279

The following statements are also synonymous:

-> evtBufferAddress ()
-> evtBufferAddress

However, note that if you wish to assign the result to a variable, the function call
cannot be the first item in the shell statement—thus, the syntactic exception above
does not apply. The following captures the address, not the return value, of
evtBufferAddress():

-> value = evtBufferAddress

Task References

Most VxWorks routines that take an argument representing a task require a task
ID. However, when invoking routines interactively, specifying a task ID can be
cumbersome since the ID is an arbitrary and possibly lengthy number.

To accommodate interactive use, shell expressions can reference a task by either
task ID or task name. The shell attempts to resolve a task argument to a task ID as
follows: if no match is found in the symbol table for a task argument, the shell
searches for the argument in the list of active tasks. When it finds a match, it
substitutes the task name with its matching task ID. In symbol lookup, symbol
names take precedence over task names.

By convention, task names are prefixed with a u for tasks started from the Tornado
shell, and with a t for VxWorks tasks started from the target itself. In addition, tasks
started from a shell are prefixed by s1, s2, and so on to indicate which shell they
were started from. This avoids name conflicts with entries in the symbol table. The
names of system tasks and the default task names assigned when tasks are
spawned use this convention. For example, tasks spawned with the shell
command sp() in the first shell opened are given names such as s1u0 and s1u1.
Tasks spawned with the second shell opened have names such as s2u0 and s2u1.
You are urged to adopt a similar convention for tasks named in your applications.

7.3.5 The “Current” Task and Address

A number of commands, such as c(), s(), and ti(), take a task parameter that may
be omitted. If omitted, the current task is used. The l() and d() commands use the
current address if no address is specified.

Tornado 2.2

User’s Guide

280

The current task and address are set when:

■ A task hits a breakpoint or an exception trap. The current address is the
address of the instruction that caused the break or exception.

■ A task is single-stepped. The current address is the address of the next
instruction to be executed.

■ Any of the commands that use the current task or address are executed with a
specific task parameter. The current address will be the address of the byte
following the last byte that was displayed or disassembled.

7.3.6 Assignments

The shell C interpreter accepts assignment statements in the following form:

addressExpression = expression

The left side of an expression must evaluate to an addressable entity; that is, a legal
C value.

Typing and Assignment

The data type of the left side is determined by the type of the right side. If the right
side does not contain any floating-point constants or noninteger type-casts, then
the type of the left side will be an integer. The value of the right side of the
assignment is put at the address provided by the left side. For example, the
following assignment sets the 4-byte integer variable x to 0x1000:

-> x = 0x1000

The following assignment sets the 4-byte integer value at memory address 0x1000
to the current value of x:

-> *0x1000 = x

The following compound assignment adds 300 to the 4-byte integer variable x:

-> x += 300

7

7

Shell

281

The following adds 300 to the 4-byte integer at address 0x1000:

-> *0x1000 += 300

The compound assignment operator -=, as well as the increment and decrement
operators ++ and --, are also available.

Automatic Creation of New Variables

New variables can be created automatically by assigning a value to an undefined
identifier (one not already in the symbol table) with an assignment statement.

When the shell encounters such an assignment, it allocates space for the variable
and enters the new identifier in the symbol table along with the address of the
newly allocated variable. The new variable is set to the value and type of the
right-side expression of the assignment statement. The shell prints a message
indicating that a new variable has been allocated and assigned the specified value.

For example, if the identifier fd is not currently in the symbol table, the following
statement creates a new variable named fd and assigns to it the result of the
function call:

-> fd = open ("file", 0)

7.3.7 Comments

The shell allows two kinds of comments. First, comments of the form /* … */ can
be included anywhere on a shell input line. These comments are simply discarded,
and the rest of the input line evaluated as usual. Second, any line whose first
nonblank character is # is ignored completely. Comments are particularly useful
for Tornado shell scripts. See Scripts: Redirecting Shell I/O, p.288.

7.3.8 Strings

When the shell encounters a string literal ("…") in an expression, it allocates space
for the string including the null-byte string terminator. The value of the literal is
the address of the string in the newly allocated storage.

Tornado 2.2

User’s Guide

282

For instance, the following expression allocates 12 bytes from the target-agent
memory pool, enters the string in those 12 bytes (including the null terminator),
and assigns the address of the string to x:

-> x = "hello there"

Even when a string literal is not assigned to a symbol, memory is still permanently
allocated for it. For example, the following uses 12 bytes of memory that are never freed:

-> printf ("hello there")

If strings were only temporarily allocated, and a string literal were passed to a
routine being spawned as a task, then by the time the task executed and attempted
to access the string, the shell would have already released—possibly even
reused—the temporary storage where the string was held.

This memory, like other memory used by the Tornado tools, comes from the
target-agent memory pool; it does not reduce the amount of memory available for
application execution (the VxWorks memory pool). The amount of target memory
allocated for each of the two memory pools is defined at configuration time; see
Scaling the Target Agent, p.161.

After extended development sessions in Tornado shells, the cumulative memory
used for strings may be noticeable. If this is a problem, restart your target server.

7.3.9 Ambiguity of Arrays and Pointers

In a C expression, a nonsubscripted reference to an array has a special meaning,
namely the address of the first element of the array. The shell, to be compatible,
should use the address obtained from the symbol table as the value of such a
reference, rather than the contents of memory at that address. Unfortunately, the
information that the identifier is an array, like all data type information, is not
available after compilation. For example, if a module contains the following:

char string [] = "hello";

you might be tempted to enter a shell expression like sample 1:

-> printf (string)

7

7

Shell

283

While this would be correct in C, the shell will pass the first 4 bytes of the string
itself to printf(), instead of the address of the string. To correct this, the shell
expression must explicitly take the address of the identifier as shown in sample 2:

-> printf (&string)

To make matters worse, in C if the identifier had been declared a character pointer
instead of a character array:

char *string = "hello";

then to a compiler, sample 1 would be correct and sample 2 would be wrong! This
is especially confusing since C allows pointers to be subscripted exactly like arrays,
so that the value of string[0] would be “h” in either of the above declarations.

The moral of the story is that array references and pointer references in shell
expressions are different from their C counterparts. In particular, array references
require an explicit application of the address operator &.

7.3.10 Pointer Arithmetic

While the C language treats pointer arithmetic specially, the shell C interpreter
does not, because it treats all non-type-cast variables as 4-byte integers.

In the shell, pointer arithmetic is no different than integer arithmetic. Pointer
arithmetic is valid, but it does not take into account the size of the data pointed to.
Consider the following example:

-> *(myPtr + 4) = 5

Assume that the value of myPtr is 0x1000. In C, if myPtr is a pointer to a type char,
this would put the value 5 in the byte at address at 0x1004. If myPtr is a pointer to
a 4-byte integer, the 4-byte value 0x00000005 would go into bytes 0x1010–0x1013.
The shell, on the other hand, treats variables as integers, and therefore would put
the 4-byte value 0x00000005 in bytes 0x1004–0x1007.

7.3.11 C Interpreter Limitations

Powerful though it is, the C interpreter in the shell is not a complete interpreter for
the C language. The following C features are not present in the Tornado shell:

Tornado 2.2

User’s Guide

284

■ Control Structures

The shell interprets only C expressions (and comments). The shell does not
support C control structures such as if, goto, and switch statements, or do,
while, and for loops. Control structures are rarely needed during shell
interaction. If you do come across a situation that requires a control structure,
you can use the Tcl interface to the shell instead of using its C interpreter
directly; see 7.7 Tcl: Shell Interpretation, p.297.

■ Compound or Derived Types

No compound types (struct or union types) or derived types (typedef) are
recognized in the shell C interpreter. You can use CrossWind instead of the
shell for interactive debugging, when you need to examine compound or
derived types.

■ Macros

No C preprocessor macros (or any other preprocessor facilities) are available
in the shell. CrossWind does not support preprocessor macros either, but
indirect workarounds are available using either the shell or CrossWind. For
constant macros, you can define variables in the shell with similar names to the
macros. To avoid intrusion into the application symbol table, you can use
CrossWind instead; in this case, use CrossWind convenience variables with
names corresponding to the desired macros. In either case, you can automate
the effort of defining any variables you need repeatedly, by using an
initialization script.

For the first two problems (control structures, or display and manipulation of
types that are not supported in the shell), you might also consider writing auxiliary
subroutines to provide these services during development; you can call such
subroutines at will from the shell, and later omit them from your final application.

7.3.12 C-Interpreter Primitives

Table 7-13 lists all the primitives (commands) built into WindSh. Because the shell
tries to find a primitive first before attempting to call a target subroutine, it is best
to avoid these names in the target code. If you do have a name conflict, however,
you can force the shell to call a target routine instead of an identically-named
primitive by prefacing the subroutine call with the character @. See Resolving Name
Conflicts between Host and Target, p.265.

7

7

Shell

285

Table 7-13 List of WindSh Commands

agentModeShow()

b()

bd()

bdall()

bh()

bootChange()

browse()

c()

cd()

checkStack()

classShow()

cplusCtors()

cplusDtors()

cplusStratShow()

cplusXtorSet()

cret()

d()

devs()

h()

help()

hostShow()

i()

ipstatShow()

iStrict()

l()

ld()

lkAddr()

lkup()

ls()

m()

memPartShow()

memShow()

moduleIdFigure()

moduleShow()

mqPxShow()

mRegs()

msgQShow()

period()

printErrno()

printLogo()

pwd()

quit()

reboot()

repeat()

smMemPartShow()

smMemShow()

so()

sp()

sps()

sysResume()

sysStatusShow()

sysSuspend()

taskCreateHookShow()

taskDeleteHookShow()

taskIdDefault()

taskIdFigure()

taskRegsShow()

taskShow()

taskSwitchHookShow()

taskWaitShow()

tcpstatShow()

td()

tftpInfoShow()

ti()

tr()

ts()

icmpstatShow()

ifShow()

inetstatShow()

intVecShow()

iosDevShow()

iosDrvShow()

iosFdShow()

routestatShow()

s()

semPxShow()

semShow()

shellHistory()

shellPromptSet()

show()

tw()

udpstatShow()

unld()

version()

w()

wdShow()

tt()

Tornado 2.2

User’s Guide

286

7.3.13 Terminal Control Characters

When you start a shell from the launcher, the launcher creates a new xterm
window for the shell. The terminal control characters available in that window
match whatever you are used to in your UNIX shells. You can specify all but one
of these control characters (as shown in Table 7-15); see your host documentation
for the UNIX command stty.

When you start the shell from the UNIX command line, it inherits standard input
and output (and the associated stty settings) from the parent UNIX shell.

Table 7-15 lists special terminal characters frequently used for shell control. For
more information on the use of these characters, see 7.5 Shell Line Editing, p.292
and 7.2.8 Interrupting a Shell Command, p.271.

7.3.14 Redirection in the C Interpreter

The shell provides a redirection mechanism for momentarily reassigning the
standard input and standard output file descriptors just for the duration of the
parse and evaluation of an input line. The redirection is indicated by the < and >
symbols followed by file names, at the very end of an input line. No other syntactic

Table 7-14 Shell Special Characters

stty Setting
Common

Value
Description

eof CTRL+D End shell session.

erase CTRL+H Delete a character (backspace).

kill CTRL+U Delete an entire line.

intr CTRL+C Interrupt a function call.

quit CTRL+X Reboot the target, restart server, reattach shell.

stop CTRL+S Temporarily suspend output.

start CTRL+Q Resume output.

susp CTRL+Z Suspend the Tornado shell.

N/A ESC Toggle between input mode and edit mode.
This character is fixed; you cannot change it with stty.

7

7

Shell

287

elements may follow the redirection specifications. The redirections are in effect for
all subroutine calls on the line.

For example, the following input line sets standard input to the file named input
and standard output to the file named output during the execution of copy():

-> copy < input > output

If the file to which standard output is redirected does not exist, it is created.

Ambiguity Between Redirection and C Operators

There is an ambiguity between redirection specifications and the relational
operators less than and greater than. The shell always assumes that an ambiguous
use of < or > specifies a redirection rather than a relational operation. Thus the
ambiguous input line:

-> x > y

writes the value of the variable x to the stream named y, rather than comparing the
value of variable x to the value of variable y. However, you can use a semicolon to
remove the ambiguity explicitly, because the shell requires that the redirection
specification be the last element on a line. Thus the following input lines are
unambiguous:

-> x; > y

-> x > y;

The first line prints the value of the variable x to the output stream y. The second
line prints on standard output the value of the expression “x greater than y.”

The Nature of Redirection

The redirection mechanism of the Tornado shell is fundamentally different from
that of the Windows command shell, although the syntax and terminology are
similar. In the Tornado shell, redirecting input or output affects only a command
executed from the shell. In particular, this redirection is not inherited by any tasks
started while output is redirected.

For example, you might be tempted to specify redirection streams when spawning
a routine as a task, intending to send the output of printf() calls in the new task to

Tornado 2.2

User’s Guide

288

an output stream, while leaving the shell’s I/O directed at the virtual console. This
stratagem does not work. For example, the shell input line:

-> taskSpawn (...myFunc...) > output

momentarily redirects the shell standard output during the brief execution of the
spawn routine, but does not affect the I/O of the resulting task. To redirect the
input or output streams of a particular task, call ioTaskStdSet() once the task
exists.

Scripts: Redirecting Shell I/O

A special case of I/O redirection concerns the I/O of the shell itself; that is,
redirection of the streams the shell’s input is read from, and its output is written to.
The syntax for this is simply the usual redirection specification, on a line that
contains no other expressions.

The typical use of this mechanism is to have the shell read and execute lines from
a file. For example, the input lines:

-> <startup
-> < /usr/fred/startup

cause the shell to read and execute the commands in the file startup, either on the
current working directory as in the first line or explicitly on the complete path
name in the second line. If your working directory is /usr/fred, the two commands
are equivalent.

Such command files are called scripts. Scripts are processed exactly like input from
an interactive terminal. After reaching the end of the script file, the shell returns to
processing I/O from the original streams.

During execution of a script, the shell displays each command as well as any
output from that command. You can change this by invoking the shell with the -q
option; see the windsh reference entry (in the online Tornado API Reference).

An easy way to create a shell script is from a list of commands you have just
executed in the shell. The history command h() prints a list of the last 20 shell
commands. The following creates a file /tmp/script with the current shell history:

-> h > /tmp/script

The command numbers must be deleted from this file before using it a shell script.

Scripts can also be nested. That is, scripts can contain shell input redirections that
cause the shell to process other scripts.

7

7

Shell

289

C-Interpreter Startup Scripts

Tornado shell scripts can be especially useful for setting up your working
environment. You can run a startup script through the shell C interpreter5 by
specifying its name with the -s command-line option to windsh. For example:

% windsh -s /usr/fred/startup

Like the .login or .profile files of the UNIX shells, startup scripts can be used for
setting system parameters to personal preferences: defining variables, specifying
the target’s working directory, and so forth. They can also be useful for tailoring
the configuration of your system without having to rebuild VxWorks. For example:

■ creating additional devices
■ loading and starting up application modules
■ adding a complete set of network host names and routes
■ setting NFS parameters and mounting NFS partitions

For additional information on initialization scripts, see 7.7 Tcl: Shell Interpretation,
p.297.

! CAUTION: Input and output redirection must refer to files on a host file system. If
you have a local file system on your target, files that reside there are available to
target-resident subroutines, but not to the shell or to other Tornado tools (unless
you export them from the target using NFS, and mount them on your host).

! CAUTION: You should set the WindSh environment variable SH_GET_TASK_IO to
off before you use redirection of input from scripts or before you copy and paste
blocks of commands to the shell command line. Otherwise commands might be
taken as input for a command that preceeds them, and lost.

5. You can also use the -e option to run a Tcl expression at startup, or place Tcl initialization in
.wind/windsh.tcl under your home directory. See 7.7.3 Tcl: Tornado Shell lnitialization, p.300.

Tornado 2.2

User’s Guide

290

7.4 C++ Interpretation

Tornado supports both C and C++ as development languages; see VxWorks
Programmer’s Guide: C++ Development for information about C++ development.
Because C and C++ expressions are so similar, the WindSh C-expression
interpreter supports many C++ expressions. The facilities explained in 7.3 The Shell
C-Expression Interpreter, p.272 are all available regardless of whether your source
language is C or C++. In addition, there are a few special facilities for C++
extensions. This section describes those extensions.

However, WindSh is not a complete interpreter for C++ expressions. In particular,
the shell has no information about user-defined types; there is no support for the ::
operator; constructors, destructors, and operator functions cannot be called
directly from the shell; and member functions cannot be called with the . or ->
operators.

To exercise C++ facilities that are missing from the C-expression interpreter, you
can compile and download routines that encapsulate the special C++ syntax.
Fortunately, the Tornado dynamic linker makes this relatively painless.

7.4.1 Overloaded Function Names

If you have several C++ functions with the same name, distinguished by their
argument lists, call any of them as usual with the name they share. When the shell
detects the fact that several functions exist with the specified name, it lists them in
an interactive dialogue, printing the matching functions’ signatures so that you
can recall the different versions and make a choice among them.

You make your choice by entering the number of the desired function. If you make
an invalid choice, the list is repeated and you are prompted to choose again. If you
enter 0 (zero), the shell stops evaluating the current command and prints a
message like the following, with xxx replaced by the function name you entered:

undefined symbol: xxx

This can be useful, for example, if you misspelled the function name and you want
to abandon the interactive dialogue. However, because WindSh is an interpreter,
portions of the expression may already have executed (perhaps with side effects)
before you abandon execution in this way.

The following example shows how the support for overloaded names works. In
this example, there are four versions of a function called xmin(). Each version of

7

7

Shell

291

xmin() returns at least two arguments, but each version takes arguments of
different types.

-> l xmin
"xmin" is overloaded - Please select:

1: _xmin(double,double)
2: _xmin(long,long)
3: _xmin(int,int)
4: _xmin(float,float)

Enter <number> to select, anything else to stop: 1
_xmin(double,double):

3fe710 4e56 0000 LINK .W A6,#0
3fe714 f22e 5400 0008 FMOVE .D (0x8,A6),F0
3fe71a f22e 5438 0010 FCMP .D (0x10,A6),F0
3fe720 f295 0008 FB .W #0x8f22e
3fe724 f22e 5400 0010 FMOVE .D (0x10,A6),F0
3fe72a f227 7400 FMOVE .D F0,-(A7)
3fe72e 201f MOVE .L (A7)+,D0
3fe730 221f MOVE .L (A7)+,D1
3fe732 6000 0002 BRA 0x003fe736
3fe736 4e5e UNLK A6
value = 4187960 = 0x3fe738 = _xmin(double,double) + 0x28

-> l xmin
"xmin" is overloaded - Please select:

1: _xmin(double,double)
2: _xmin(long,long)
3: _xmin(int,int)
4: _xmin(float,float)

Enter <number> to select, anything else to stop: 3
_xmin(int,int):

3fe73a 4e56 0000 LINK .W A6,#0
3fe73e 202e 0008 MOVE .L (0x8,A6),D0
3fe742 b0ae 000c CMP .L (0xc,A6),D0
3fe746 6f04 BLE 0x003fe74c
3fe748 202e 000c MOVE .L (0xc,A6),D0
3fe74c 6000 0002 BRA 0x003fe750
3fe750 4e5e UNLK A6
3fe752 4e75 RTS

_xmin(long,long):
3fe7544e560000 LINK .W A6,#0
3fe758202e0008 MOVE .L (0x8,A6),D0
value = 4187996 = 0x3fe75c = _xmin(long,long) + 0x8

In this example, the disassembler is called to list the instructions for xmin(), then
the version that computes the minimum of two double values is selected. Next, the
disassembler is invoked again, this time selecting the version that computes the
minimum of two int values. Note that a different routine is disassembled in each
case.

Tornado 2.2

User’s Guide

292

7.4.2 Automatic Name Demangling

Many shell debugging and system information functions display addresses
symbolically (for example, the l() routine). This might be confusing for C++,
because compilers encode a function’s class membership (if any) and the type and
number of the function’s arguments in the function’s linkage name. The encoding
is meant to be efficient for development tools, but not necessarily convenient for
human comprehension. This technique is commonly known as name mangling and
can be a source of frustration when the mangled names are exposed to the
developer.

To avoid this confusion, the debugging and system information routines in
WindSh print C++ function names in a demangled representation. Whenever the
shell prints an address symbolically, it checks whether the name has been
mangled. If it has, the name is demangled (complete with the function’s class
name, if any, and the type of each of the function’s arguments) and printed.

The following example shows the demangled output when lkup() displays the
addresses of the xmin() functions mentioned in 7.4.1 Overloaded Function Names,
p.290.

-> lkup "xmin"
_xmin(double,double) 0x003fe710 text (templex.out)
_xmin(long,long) 0x003fe754 text (templex.out)
_xmin(int,int) 0x003fe73a text (templex.out)
_xmin(float,float) 0x003fe6ee text (templex.out)
value = 0 = 0x0

7.5 Shell Line Editing

The WindSh front end provides a history mechanism similar to the UNIX
Korn-shell history facility, including a built-in vi-like line editor that allows you to
scroll, search, and edit previously typed commands. Line editing is available
regardless of which interpreter you are using (C or Tcl6), and the command history
spans both interpreters—you can switch from one to the other and back, and scroll
through the history of both modes.

You can control what characters to use for certain editing commands. The input
keystrokes shown in Table 7-15 (7.3.13 Terminal Control Characters, p.286) are set by

6. The WindSh Tcl-interpreter interface is described in 7.7 Tcl: Shell Interpretation, p.297.

7

7

Shell

293

the host stty command (which you can call from the Tcl interpreter; see 7.7 Tcl: Shell
Interpretation, p.297). They must be single characters, usually control characters;
Table 7-15 includes these characters, but shows only common default values.

The ESC key switches the shell from normal input mode to edit mode. The history
and editing commands in Table 7-15 are available in edit mode.

Some line-editing commands switch the line editor to insert mode until an ESC is
typed (as in vi) or until an ENTER gives the line to one of the shell interpreters.
ENTER always gives the line as input to the current shell interpreter, from either
input or edit mode.

In input mode, the shell history command h() (described in System Information,
p.257) displays up to 20 of the most recent commands typed to the shell; older
commands are lost as new ones are entered. You can change the number of
commands kept in history by running h() with a numeric argument. To locate a
line entered previously, press ESC followed by one of the search commands listed
in Table 7-15; you can then edit and execute the line with one of the commands
from Table 7-15.

NOTE: Not all the editing commands that take counts in vi do so in the shell’s line
editor. For example, ni does not repeat the inserted text n times.

Table 7-15 Shell Line-Editing Commands

Basic Control

h [size] Display shell history if no argument; otherwise set history buffer to
size.

ESC Switch to line-editing mode from regular input mode.

ENTER Give line to shell and leave edit mode.

CTRL+D Complete symbol or path name (edit mode), display synopsis of
current symbol (symbol must be complete, followed by a space), or
end shell session (if the command line is empty).

[tab] Complete symbol or path name (edit mode).

CTRL+H Delete a character (backspace).

CTRL+U Delete entire line (edit mode).

CTRL+L Redraw line (works in edit mode).

Tornado 2.2

User’s Guide

294

CTRL+S and
CTRL+Q

Suspend output, and resume output.

CTRL+W Display HTML reference page for a routine.

Movement and Search Commands

nG Go to command number n.*

/s or ?s Search for string s backward in history, or forward.

n Repeat last search.

nk or n- Get nth previous shell command.*

nj or n+ Get nth next shell command.*

nh Go left n characters (also CTRL+H).*

nl or
SPACE

Go right n characters.*

nw or nW Go n words forward, or n large words. *†

ne or nE Go to end of the nth next word, or nth next large word. *†

nb or nB Go back n words, or n large words.*†

$ Go to end of line.

0 or ^ Go to beginning of line, or first nonblank character.

fc or Fc Find character c, searching forward, or backward.

Insert and Change Commands

a or A ...ESC Append, or append at end of line (ESC ends input).

i or I ...ESC Insert, or insert at beginning of line (ESC ends input).

ns ...ESC Change n characters (ESC ends input).*

nc SPACE ...ESC Change n characters (ESC ends input).*

cw ...ESC Change word (ESC ends input).

cc or S ...ESC Change entire line (ESC ends input).

c$ or C ...ESC Change from cursor to end of line (ESC ends input).

Table 7-15 Shell Line-Editing Commands (Continued)

7

7

Shell

295

7.6 Object Module Load Path

In order to download an object module dynamically to the target, both WindSh
and the target server must be able to locate the file. If path naming conventions are
different between WindSh and the target server, the two systems may both have
access to the file, but mounted with different path names. This situation arises
often in environments where UNIX and Windows systems are networked together,
because the path naming convention is different: the UNIX /usr/fred/applic.o may
well correspond to the Windows n:\fred\applic.o. If you encounter this problem,

c0 ...ESC Change from cursor to beginning of line (ESC ends input).

R ...ESC Type over characters (ESC ends input).

nrc Replace the following n characters with c.*

~ Toggle case, lower to upper or vice versa.

Delete Commands

nx Delete n characters starting at cursor.*

nX Delete n character to left of cursor.*

dw Delete word.

dd Delete entire line (also CTRL+U).

d$ or D Delete from cursor to end of line.

d0 Delete from cursor to beginning of line.

Put and Undo Commands

p or P Put last deletion after cursor, or in front of cursor.

u Undo last command.

* The default value for n is 1.
† words are separated by blanks or punctuation; large words are separated by blanks

only.

Table 7-15 Shell Line-Editing Commands (Continued)

Tornado 2.2

User’s Guide

296

check to be sure the LD_SEND_MODULES variable of shConfig is set to “on” or use
the LD_PATH facility to tell the target server about the path known to the shell.

Example 7-3 Loading a Module: Alternate Path Names

Your target server is running on a UNIX host. You start a WindSh on a Windows
host with LD_SEND_MODULES set to “off” (the default is “on”). You want to
download a file that resides on the Windows host called c:/tmp/test.o.

-> ld < c:/tmp/test.o
Loading c:/tmp/test.o
WTX Error 0x2 (no such file or directory)
value = -1 = 0xffffffff

This behavior is normal because the UNIX target server does not have access to this
path. To correct the problem, reset LD_SEND_MODULES to “on” (the default).

-> ?shConfig LD_SEND_MODULES on
-> ld < c:/tmp/test.o
Loading C:/tmp/test.o
value = 17427840 = 0x109ed80

For more information on using LD_SEND_MODULES, LD_PATH, and other
shConfig facilities, see WindSh Environment Variables, p.252.

Certain WindSh commands and browser utilities imply dynamic downloads of
auxiliary target-resident code. These subroutines fail in situations where the shell
and target-server view of the file system is incompatible. To get around this
problem, download the required routines explicitly from the host where the target
server is running (or configure the routines statically into the VxWorks image).
Once the supporting routines are on the target, any host can use the corresponding
shell and browser utilities. Table 7-16 lists the affected utilities. The object modules
are in wind/target/lib/objcputypegnuvx.

Table 7-16 Shell and Browser Utilities with Target-Resident Components

Utility Supporting Module

repeat() repeatHost.o

period() periodHost.o

tt() trcLib.o,
ttHostLib.o

Browser spy panel spyLib.o

7

7

Shell

297

7.7 Tcl: Shell Interpretation

The shell has a Tcl interpreter interface as well as the C interpreter interface. This
section illustrates some uses of the shell Tcl interpreter. If you are not familiar with
Tcl, we suggest you skip this section and return to it after you have gotten
acquainted with Tcl. (For an outline of Tcl, see C. Tcl.) In the interim, you can do a
great deal of development work with the shell C interpreter alone.

To toggle between the Tcl interpreter and the C interpreter in the shell, type the
single character ?. The shell prompt changes to remind you of the interpreter state:
the prompt -> indicates the C interpreter is listening, and the prompt tcl> indicates
the Tcl interpreter is listening.7 For example, in the following interaction we use the
C interpreter to define a variable in the symbol table, then switch into the Tcl
interpreter to define a similar Tcl variable in the shell itself, and finally switch back
to the C interpreter:

-> hello="hi there"
new symbol "hello" added to symbol table.
hello = 0x3616e8: value = 3544824 = 0x3616f8 = hello + 0x10
-> ?
tcl> set hello {hi there}
hi there
tcl> ?
->

If you start windsh from the Windows command line, you can also use the option
-Tclmode (or -T) to start with the Tcl interpreter rather than the C interpreter.

Using the shell’s Tcl interface allows you to extend the shell with your own
procedures, and also provides a set of control structures which you can use
interactively. The Tcl interpreter also acts as a host shell, giving you access to UNIX
command-line utilities on your development host.

For example, you can call stty from the Tcl interpreter to change the special
characters in use—in the following, to specify the quit character as CTRL+B and
verify the new setting (the quit character is normally CTRL+X; when you type it in
the shell, it reboots the target, restarts the target server, and resets all attached
tools):

tcl> stty quit \002
tcl> stty
speed 9600 baud; line = 0;
quit = ^B; eof = ^A; status = <undef>; min = 1; time = 0;
-icanon -echo

7. The examples in this book assume you are using the default shell prompts, but you can
change the C interpreter prompt to whatever string you like using shellPromptSet().

Tornado 2.2

User’s Guide

298

7.7.1 Tcl: Controlling the Target

In the Tcl interpreter, you can create custom commands, or use Tcl control
structures for repetitive tasks, while using the building blocks that allow the C
interpreter and the WindSh commands to control the target remotely. These
building blocks as a whole are called the wtxtcl procedures.

For example, wtxMemRead returns the contents of a block of target memory
(given its starting address and length). That command in turn uses a special
memory-block datatype designed to permit memory transfers without
unnecessary Tcl data conversions. The following example uses wtxMemRead,
together with the memory-block routine memBlockWriteFile, to write a Tcl
procedure that dumps target memory to a host file. Because almost all the work is
done on the host, this procedure works whether or not the target run-time
environment contains I/O libraries or any networked access to the host file system.

tgtMemDump - copy target memory to host file
#
SYNOPSIS:
tgtMemDump hostfile start nbytes

proc tgtMemDump {fname start nbytes} {
set memHandle [wtxMemRead $start $nbytes]
memBlockWriteFile $memHandle $fname

}

For reference information on the wtxtcl routines available in the Tornado shell, see
the online Tornado API Reference.

All of the commands defined for the C interpreter (7.2.4 Invoking Built-In Shell
Routines, p.253) are also available, with a double-underscore prefix, from the Tcl
level; for example, to call i() from the Tcl interpreter, run the Tcl procedure __i.
However, in many cases, it is more convenient to call a wtxtcl routine instead,
because the WindSh commands are designed to operate in the C-interpreter
context. For example, you can call the dynamic linker using ld from the Tcl
interpreter, but the argument that names the object module may not seem intuitive:
it is the address of a string stored on the target. It is more convenient to call the
underlying wtxtcl command. In the case of the dynamic linker, the underlying
wtxtcl command is wtxObjModuleLoad, which takes an ordinary Tcl string as its
argument, as described in the online Tornado API Reference: WTX Tcl API.

7

7

Shell

299

Tcl: Calling Target Routines

The shParse utility allows you to embed calls to the C interpreter in Tcl
expressions; the most frequent application is to call a single target routine, with the
arguments specified (and perhaps capture the result). For example, the following
sends a logging message to your VxWorks target console:

tcl> shParse {logMsg("Greetings from Tcl!\n")}
32

You can also use shParse to call WindSh commands more conveniently from the
Tcl interpreter, rather than using their wtxtcl building blocks. For example, the
following is a convenient way to spawn a task from Tcl, using the C-interpreter
command sp(), if you do not remember the underlying wtxtcl command:

tcl> shParse {sp appTaskBegin}
task spawned: id = 25e388, name = u1
0

Tcl: Passing Values to Target Routines

Because shParse accepts a single, ordinary Tcl string as its argument, you can pass
values from the Tcl interpreter to C subroutine calls simply by using Tcl facilities to
concatenate the appropriate values into a C expression.

For example, a more realistic way of calling logMsg() from the Tcl interpreter
would be to pass as its argument the value of a Tcl variable rather than a literal
string. The following example evaluates a Tcl variable tclLog and inserts its value
(with a newline appended) as the logMsg() argument:

tcl> shParse "logMsg(\"$tclLog\\n\")"
32

7.7.2 Tcl: Calling Under C Control

To dip quickly into Tcl and return immediately to the C interpreter, you can type a
single line of Tcl prefixed with the ? character (rather than using ? by itself to toggle
into Tcl mode). For example:

-> ?set test wonder; puts "This is a $test."
This is a wonder.
->

Tornado 2.2

User’s Guide

300

Notice that the -> prompt indicates we are still in the C interpreter, even though
we just executed a line of Tcl.

For example, you may occasionally want to use Tcl control structures to
supplement the facilities of the C interpreter. Suppose you have an application
under development that involves several collaborating tasks; in an interactive
development session, you may need to restart the whole group of tasks repeatedly.
You can define a Tcl variable with a list of all the task entry points, as follows:

-> ? set appTasks {appFrobStart appGetStart appPutStart …}
appFrobStart appGetStart appPutStart …

Then whenever you need to restart the whole list of tasks, you can use something
like the following:

-> ? foreach it $appTasks {shParse "sp($it)"}
task spawned: id = 25e388, name = u0
task spawned: id = 259368, name = u1
task spawned: id = 254348, name = u2
task spawned: id = 24f328, name = u3

7.7.3 Tcl: Tornado Shell lnitialization

When you execute an instance of the Tornado shell, it begins by looking for a file
called .wind/windsh.tcl in the directory specified by the HOME environment
variable (if that environment variable is defined). In each of these directories, if the
file exists, the shell reads and executes its contents as Tcl expressions before
beginning to interact. You can use this file to automate any initialization steps you
perform repeatedly.

You can also specify a Tcl expression to execute initially on the windsh command
line, with the option -e tclExpr. For example, you can test an initialization file before
saving it as .wind/windsh.tcl using this option, as follows:

% windsh phobos -e "source ./tcltest" &

Example 7-4 Shell Initialization File

This file causes I/O for target routines called in WindSh to be directed to the
target’s standard I/O rather than to WindSh. It changes the default C++ strategy

! CAUTION: You may not embed Tcl evaluation inside a C expression; the ? prefix
works only as the first nonblank character on a line, and passes the entire line
following it to the Tcl interpreter.

7

7

Shell

301

to automatic for this shell, sets a path for locating load modules, and causes
modules not to be copied to the target server.

Redirect Task I/O to WindSh
shConfig SH_GET_TASK_IO off
Set C++ strategy
shConfig LD_CALL_XTORS on
Set Load Path
shConfig LD_PATH "/folk/jmichel/project/app;/folk/jmichel/project/test"
Let the Target Server directly access the module
shConfig LD_SEND_MODULES off

7.8 The Shell Architecture

7.8.1 Controlling the Target from the Host

Tornado integrates host and target resources so well that it creates the illusion of
executing entirely on the target itself. In reality, however, most interactions with
any Tornado tool exploit the resources of both host and target. For example,
Table 7-17 shows how the shell distributes the interpretation and execution of the
following simple expression:

-> dir = opendir ("/myDev/myFile")

Parsing the expression is the activity that controls overall execution, and
dispatches the other execution activities. This takes place on the host, in the shell’s
C interpreter, and continues until the entire expression is evaluated and the shell
displays its result.

To avoid repetitive clutter, Table 7-17 omits the following important steps, which
must be carried out to link the activities in the three contexts (and two systems)
shown in each column of the table:

– After every C-interpreter step, the shell program sends a request to the target
server representing the next activity required.

– The target server receives each such request, and determines whether to
execute it in its own context on the host. If not, it passes an equivalent request
on to the target agent to execute on the target.

Tornado 2.2

User’s Guide

302

The first access to server and agent is to allocate storage for the string
"/myDev/myFile" on the target and store it there, so that VxWorks subroutines
(notably opendir() in this case) have access to it. There is a pool of target memory

Table 7-17 Interpreting: dir = opendir ("/myDev/myFile")

Tornado Shell

(on host)

Target Server & Symbol Table

(on host)

Agent

(on target)

Parse the string
"/myDev/myFile".

Allocate memory for the
string; return address A.

Write "/myDev/myFile";
return address A.

Parse the name
opendir.

Look up opendir;
return address B.

Parse the function call
B(A); wait for the result.

Spawn a task to run opendir()
and signal result C when done.

Receive C from target agent
and pass it to host shell.

Parse the symbol dir.

Look up dir (fails).

Request a new symbol
table entry dir.

Define dir; return symbol D.

Parse the assignment
D=C.

Allocate agent-pool memory
for the value of dir.

Write the value of dir.

7

7

Shell

303

reserved for host interactions. Because this pool is reserved, it can be managed
from the host system. The server allocates the required memory, and informs the
shell of its location; the shell then issues the requests to actually copy the string to
that memory. This request reaches the agent on the target, and it writes the 14 bytes
(including the terminating null) there.

The shell’s C-expression interpreter must now determine what the name opendir
represents. Because opendir() is not one of the shell’s own commands, the shell
looks up the symbol (through the target server) in the symbol table.

The C interpreter now needs to evaluate the function call to opendir() with the
particular argument specified, now represented by a memory location on the
target. It instructs the agent (through the server) to spawn a task on the target for
that purpose, and awaits the result.

As before, the C interpreter looks up a symbol name (dir) through the target server;
when the name turns out to be undefined, it instructs the target server to allocate
storage for a new int and to make an entry pointing to it with the name dir in the
symbol table. Again these symbol-table manipulations take place entirely on the
host.

The interpreter now has an address (in target memory) corresponding to dir, on the
left of the assignment statement; and it has the value returned by opendir(), on the
right of the assignment statement. It instructs the agent (again, through the server)
to record the result at the dir address, and evaluation of the statement is complete.

7.8.2 Shell Components

The Tornado shell includes two interpreters, a common front end for command
entry and history, and a back end that connects the shell to the global Tornado
environment to communicate with the target server. Figure 7-3 illustrates these
components:

Line Editing
The line-editing and command history facilities are designed to be
unobtrusive, and support your access to the interpreters. 7.5 Shell Line Editing,
p.292 describes the vi-like editing and history front end.

C-Expression Interpreter
The most visible component is the C-expression interpreter, because it is the
interface that most closely resembles the application programming
environment. The bulk of this chapter describes that interpreter.

Tornado 2.2

User’s Guide

304

Tcl Interpreter
An interface for extending the shell or automating shell interactions, described
in 7.7 Tcl: Shell Interpretation, p.297.

WTX Tcl
The back-end mechanism that ties together all of Tornado; the Wind River Tool
Exchange protocol, implemented as a set of Tcl extensions.

7.8.3 Layers of Interpretation

In daily use, the shell seems to be a seamless environment; but in fact, the
characters you type in WindSh go through several layers of interpretation, as
illustrated by Figure 7-4. First, input is examined for special editing keystrokes
(described in 7.5 Shell Line Editing, p.292). Then as much interpretation as possible
is done in WindSh itself. In particular, execution of any subroutine is first
attempted in the shell itself; if a shell built-in (also called a primitive) with that
name exists, the built-in runs without any further checking. Only when a
subroutine call does not match any shell built-ins does WindSh call a target
routine. See 7.2.4 Invoking Built-In Shell Routines, p.253 for more information. For a
list of all WindSh primitives, see Table 7-13.

Figure 7-3 Components of the Tornado Shell

Developer
Commands

Line Editing and History

C

Interpreter

Tcl

Interpreter

WTX Tcl Back End

Target

Server

TORNADO
SHELL

7

7

Shell

305

Figure 7-4 Layers of Interpretation in the Shell

line
editor?

shell
built-in?

target
routine

Host

Target

CTRL+H, CTRL+S, …

i(), lkup(), sp() …

dosFsMkFs(), semTake(), …

Tornado 2.2

User’s Guide

306

307

8
Browser

8.1 A System-Object Browser

The Tornado browser conveniently monitors the state of your target. The main
browser window summarizes active tasks (classified as system tasks or application
tasks), memory consumption, and a summary of the current target memory map.
Using the browser, you can also examine:

■ detailed task information
■ semaphores
■ message queues
■ memory partitions
■ watchdog timers
■ stack usage by all tasks on the target
■ target CPU usage by task
■ object-module structure and symbols
■ interrupt vectors

These displays are snapshots. They can be updated interactively, or the browser
can be configured to automatically update its displays at a specified interval. When
any displayed information changes, in any browser display, the browser highlights
the affected line. (The style of highlighting depends on the capabilities of your X
Window System display server, but always includes boldface display for the
changed data.)

Tornado 2.2

User’s Guide

308

8.2 Starting the Browser

There are two ways to start a Tornado browser:

■ From the launcher: select the desired target and press the button.

■ From the UNIX command line: run browser, specifying the target server’s
name as the argument as in the following example:

% browser mv177-rhp@cibuco &

In either case, the first display is the main target-browser window, shown in
Figure 8-1.

Figure 8-1 Target Browser Window

button bar

sash

Show box

loaded
modules

memory
consumption

graphs

application
task list

system
task list

state indicator

DATA PANELS

8

8

Browser

309

8.3 Anatomy of the Target Browser

The main browser window, shown in Figure 8-1, provides an overview of the
attached target, and also allows you to control other browser functionality.

Data Panels
The panels labeled along the left hand side of Figure 8-1 (system task list,
application task list, memory-consumption graphs, and loaded modules)
provide overall information about your target system. See 8.5 Data Panels,
p.312 for a more detailed description.

Button Bar
Buttons to give you fresh snapshots of your target, to request specialized
displays containing overall target information, and to adjust browser
parameters. 8.4 Browser Menus and Buttons, p.310 describes each button.

State indicator
Using the controls in the browser’s button bar, you can change how the
browser behaves. The state indicator bar summarizes the current state of
toggles that affect the browser. The states listed in below may appear in the
state indicator.

Sash
The sash allows you to allocate space between the panels of the main
target-browser window. To reapportion the space above and below the sash,
drag the small square up or down with your mouse pointer.

Show box
A text entry box where you can request display of system objects. See 8.6 Object
Browsers, p.313.

Alphabetical Sort all symbols alphabetically by name. Non-default state.
Converse: Numerical.

Numerical Sort all symbols by numerical value. Default state. Converse:
Alphabetical.

Cumulative Show total CPU usage in the spy window. See 8.9 The Spy
Window, p.324. Default state. Converse: Differential.

Differential Show CPU usage within the sampling interval in the spy

window. See 8.9 The Spy Window, p.324. Non-default state.
Converse: Cumulative.

Update Sample target state and update displays periodically, rather
than on demand. Non-default state.
Converse: blank.

Tornado 2.2

User’s Guide

310

8.4 Browser Menus and Buttons

The browser’s menu bar offers the standard Tornado menu entries: you can
abandon the browser session by selecting File>Quit, query the Tornado version
from the About menu, and peruse the Tornado Online Manuals from the Help menu.

The row of buttons immediately below the menu bar provides browser-specific
controls, with the following meanings:

You can use the browser config form produced by the button (Figure 8-2) to
change the following browser parameters:

Symbol sort

This toggle switches between numeric or alphabetic sorting order for symbols
displayed by the browser, and updates the state indicator to match.

Immediate-update Use this button to update all browser displays
immediately. This button causes an immediate
update even if a periodic update is running.

Periodic-update This button is a toggle: press it to request or cancel
regular updates of all browser displays. When
periodic updates are on, the browser reflects this by
displaying the word Update in its state indicator,
below the button bar.

Stack-check This button produces a stack-usage histogram for
all tasks in the target system (see 8.10 The
Stack-Check Window, p.325).

Interrupt Vectors This button produces an interrupt vector table for
all possible interrupt vectors. It appears only for
those targets which support the interrupt vector
table.

Spy This button is a toggle: press it to bring up a
histogram displaying CPU utilization by all
running tasks (see 8.9 The Spy Window, p.324). Press
the button a second time to stop data sampling for
the histogram.

Parameter adjustment Press this button to adjust the parameters that
govern the browser’s behavior. Figure 8-2 shows
the browser config form displayed when you press
this button.

8

8

Browser

311

Spy mode

This toggle switches the spy window between cumulative and differential
modes (see 8.9 The Spy Window, p.324).

Spy report time

This text box specifies how many seconds elapse between browser updates
while spy mode is on.

Spy collect frequency

This text box specifies how many times per second to gather data for the spy
window.

Browser update time

This text box specifies how often browser windows are updated if spy mode is
not on, but periodic updates are running.

Figure 8-2 Form: Browser Parameters

Tornado 2.2

User’s Guide

312

8.5 Data Panels

The main browser window includes several information panels (labeled along the
left of Figure 8-1) to provide an overview of the state of the target system.

System Task List
Summary information on all operating-system tasks currently running on the
target. To hide this task list (leaving more space for the application-task
summary), click on the folder labeled WRS Tasks. To bring up the list again,
click again on the same folder.

Application Task List
Summary information on all application tasks currently running on the target.
To hide this task list, click on the folder labeled User Tasks. To bring up the list
again, click again on the same folder.

The task-summary display (for either system or application tasks) includes the
task ID, the task name (if known), and the task state.

You can display detailed information on any of these tasks by clicking on the
summary line for that task; see 8.6.1 The Task Browser, p.314.

Memory-Consumption Graphs
The two bar graphs in this panel show what proportions of target memory are
currently in use.

The upper bar shows the state of the memory pool managed by the target
agent.1 This represents target memory consumed by Tornado tools, for
example with dynamically-linked modules or for variables defined from the
shell.

The lower bar shows the memory consumed by all tasks in the target system,
including both application (user) tasks and system tasks.

The agent-memory pool is not part of VxWorks’ memory. If the target server
wants to allocate more memory than available in the agent-memory pool, it
will allocate memory from the VxWorks memory pool and add it to the
agent-memory pool.

Clicking on the lower bar produces a more detailed display of system memory
(the memory display described in 8.6.4 The Memory-Partition Browser, p.318,
applied to the system-memory partition; this display is shown in Figure 8-12).

1. To set the size of this memory pool, see Scaling the Target Agent, p.161.

8

8

Browser

313

In both bars, the shaded portion and the numeric label inside the bar measure
the memory currently in use; the small triangle above the bar is a “high-water
mark,” indicating the largest amount of memory that has been in use so far in
the current session; and the numbers below the bar indicate the total memory
size available in each pool. All memory-size numbers are byte counts in
decimal.

Loaded-Module List
The bottom panel in the main target browser lists each binary object file
currently loaded into your target. This includes the VxWorks image (including
any statically linked application code) and all dynamically-loaded object
modules.

8.6 Object Browsers

The Show box (in the middle of the main browser window) gives you access to the
browser’s specialized object displays. Type either the name or the ID of a system
object in the text-entry field to the left of this panel. Then press the Show button (or
simply press the ENTER key) to bring up a browser for that particular object.

Another way to bring up the specialized browser displays is to click on the name
of an object in the module browser (8.7 The Module Browser, p.320). If the object is
a recognized system object, the browser for it is displayed just as if you had copied
the name to the Show box.

For example, Figure 8-3 shows the Show box filled in with a request to display a
browser for an object called graphSem:

To dismiss specialized object browsers, use the window manager’s controls.

Figure 8-3 Filling in the Show Box

Tornado 2.2

User’s Guide

314

8.6.1 The Task Browser

To see more detailed information about a particular task, click on any browser
window displaying the task name or task ID. For example, you can click on any
task’s summary line in the main target browser. The browser displays a window
for that task, similar to Figure 8-4.

The task name appears on the title bar, to help you observe multiple tasks side by
side. At the top of the task browser you can see global task attributes, and
information about stack allocation and usage. The last major region shows the
hardware registers for this task; their precise organization and contents depends
on your target architecture. As usual, a scrollbar is displayed if more room is
needed.

Notice the folder icons; the lines they mark categorize the task information. You
can hide any information that is not of interest to you by clicking on any open
folder, or expose such hidden information by clicking on any closed folder.
Figure 8-5 shows another task browser running on the same target architecture,
but with most of the hardware registers hidden.

Task-browser windows close automatically when the corresponding tasks are
deleted.

Figure 8-4 Task Browser (Initial Display)

click on
folders
to hide

task name

task attributes

stack layout

processor
registers

detail

8

8

Browser

315

8.6.2 The Semaphore Browser

To inspect a semaphore, enter either its name or its semaphore ID in the main target
browser’s Show box. A specialized semaphore browser appears, similar to the one
shown in Figure 8-6. The semaphore browser displays both information about the
semaphore itself (under the heading Attributes), and the complete queue of tasks
blocked on that semaphore, under the heading Blocked Tasks. The title bar shows
the semaphore ID, to help you distinguish browser displays for multiple
semaphores.

Figure 8-6 shows a binary semaphore with one blocked task in its queue. As in
other browser windows, you can click on the folders to control detail. To start a

Figure 8-5 Task Browser (Hiding Registers)

Figure 8-6 Semaphore Browser

click
on folders
to expose

detail

click here
to launch

task
browser

semaphore ID

Tornado 2.2

User’s Guide

316

browser for any queued task, click on the task name or ID; both are displayed for
each task.

POSIX semaphores have a somewhat different collection of attributes, and the
browser display for a POSIX semaphore reflects those differences. Figure 8-7
shows an example of a browser display for a POSIX semaphore. Similarly, the
semaphore browser adapts to shared-memory semaphores; Figure 8-8 exhibits
that semaphore display.

Semaphore-browser windows are closed automatically when the corresponding
semaphore is deleted.

8.6.3 The Message-Queue Browser

To inspect a message queue, enter its name or message-queue ID in the main target
browser’s Show box. A message-queue browser like the one in Figure 8-9 is
displayed.

Figure 8-7 POSIX Semaphore

Figure 8-8 Shared-Memory Semaphore

8

8

Browser

317

As well as displaying the attributes of the message queue, the message-queue
browser shows three queues. Receivers Blocked shows all tasks waiting for
messages from the message queue. Senders Blocked shows all tasks waiting for
space to become available to place a message on the message queue. Messages

Queued shows the address and length of each message currently on the message
queue. As shown in Figure 8-10, shared-memory message queues have a very
similar display format (differing only in the title bar).

Just as for semaphores, the message-queue browser also has a POSIX-attribute
version (not shown).

Figure 8-9 Message Queue

Figure 8-10 Shared-Memory Message Queue

Tornado 2.2

User’s Guide

318

If a message queue contains longer messages, you can resize the browser window
to exhibit as much of the message as is convenient. Figure 8-11 shows a
shared-memory message queue in a display widened for this purpose.

Message-queue browser windows are closed automatically when the
corresponding message queue is deleted.

8.6.4 The Memory-Partition Browser

Just as is the case for all other specialized browser windows, the memory-partition
browser comes up when the browser recognizes a memory partition ID (or a
variable name containing one) entered in the Show box. Figure 8-12 shows
memSysPartId, the VxWorks system memory partition.

By default the memory-partition browser displays the following:

■ The total size of the partition.

■ The number of blocks currently allocated, and their total size in bytes.

■ The number of blocks currently free, and their total size in bytes.

■ The total of all blocks and all bytes allocated since booting the target system
(headed Cumulative).

■ For each block currently on the free list, its size and address.

Figure 8-11 Message Queue Browser: Wider Display

8

8

Browser

319

As for other object browsers, you can control the level of detail visible by clicking
on the folder icons beside each heading.

8.6.5 The Watchdog Browser

When the Tornado browser recognizes a watchdog-timer ID (or a variable
containing one) in the Show box, it displays a window like those shown in
Figure 8-13.

Before you start a timer, the display resembles the one on the left of Figure 8-13;
only the state field is particularly meaningful. After the timer starts counting,
however, you can see the number of ticks remaining, the address of the routine to
be executed when the timer expires, and the address of its parameter.

Figure 8-12 Memory-Partition Browser

Figure 8-13 Watchdog Browser

inactive
timer

active
timer

Tornado 2.2

User’s Guide

320

8.6.6 The Class Browser

VxWorks kernel objects are implemented as related classes: collections of objects
with similar properties. Each class has an identifier in the run-time; the symbol
names for these identifiers end with the string ClassId, making them easy to
recognize. When you enter a class identifier in the Show box, the browser displays
a window with overall information about the objects in that class. For example,
Figure 8-14 shows the display for semClassId (the semaphore class).

You can get a list of the class identifiers in your run-time by executing the following
in a shell window:

-> lkup "ClassId"

8.7 The Module Browser

To inspect the memory map of any currently loaded module, click on the line that
lists the module in the loaded-module list (the bottom panel in the main browser
window).

The browser opens a specialized object-module browser resembling Figure 8-16
for the selected module.

Figure 8-14 Class Browser (Semaphore Class)

8

8

Browser

321

The object-module browser displays information in the following categories:

Module

Overall characteristics of the object module: its name, the loader flags used
when the module was downloaded to the target, the object-module format
(OMF), and the group number. (The group number is a sequence number
recorded in the symbol table to identify all of the symbols belonging to a single
module.)

Figure 8-15 Loaded-Module List in Main Browser Window

Figure 8-16 Object-Module Browser

click here
for module

browser

Tornado 2.2

User’s Guide

322

Segments

For each segment (section) of the object module: the segment type (text, bss, or
data), starting address, and size in bytes.

Symbols

The bulk of the object-module browser display is occupied by a listing of
symbols and their addresses. Symbols are displayed in either alphabetical or
numeric order, depending on what browser state is in effect when you request
a module browser.

Each symbol’s display occupies one line. The symbol display includes the
symbol’s address in hexadecimal, a letter representing the symbol type (Table 8-1),
and the symbol name (in its internal representation—C++ symbols are displayed
“mangled”, and all compiled-language symbols begin with an underbar).

For symbols that represent system object, clicking on the symbol name brings up
the specialized object browser; see 8.6 Object Browsers, p.313.

Symbol displays are grouped by category. There is one category for the symbols in
each section, plus a category headed Other_Symbols that contains uninitialized
globals and unrecognized symbols.

Table 8-1 Key Letters in Symbol Displays

Symbol Key
Symbol Type

Global Local

A a absolute

B b bss segment

C common (uninitialized global symbol)

D d data segment

T t text segment

? ? unrecognized symbol

8

8

Browser

323

8.8 The Vector Table Window

To inspect the interrupt/exception vector table, click Vector Table in the browser
window selector. (This facility is available for all target architectures except
PowerPC, and ARM.) The display is similar to Figure 8-17.

Vectors are numbered from 0 to X (X = number of interrupt/exception vectors).
The connected routines or addresses are displayed, or if no routine is connected the
following key words are be displayed:

Std Excep. Handler

standard exception handler

Default Trap

default trap (Sparc)

Uninit. Int

uninitialized interrupt vector

Corrupted Int

corrupted interrupt vector

Figure 8-17 Vector Table Window

Tornado 2.2

User’s Guide

324

If you set a new vector from WindSh and then update the browser, the new vector
is highlighted as shown in Figure 8-18.

8.9 The Spy Window

Pressing the spy button produces a window similar to Figure 8-19. This spy
window reports on CPU utilization for each task on your target, as a percentage of
CPU cycles. Besides tasks, the spy window always includes the following
additional categories for CPU-cycle usage: time spent in the kernel, time spent in
interrupt handlers, and idle time. These additional categories appear below all task
data; you may need to use the scrollbar to see them.

Spy data is reported in one of two modes (selected with the browser config form
shown in Figure 8-2). Reports in Cumulative mode (noted on the state indicator line)
show total CPU usage since you first display the spy window. Reports in Differential

Figure 8-18 New Interrupt Vector

New vector

8

8

Browser

325

mode reflect only the CPU usage since the last update. The spy mode for the
window is also noted in the title line: in cumulative mode, the title bar reads spy

(total time), while in differential mode it reads spy (delta time).

The spy window uses the facilities of the VxWorks target software in spyLib
(which is automatically downloaded to the target when you request a spy window,
if it is not already present there). For related information, see the reference entries
for spyLib.

8.10 The Stack-Check Window

When you press the stack-check button , the browser displays a stack-check
window similar to Figure 8-20. The stack-check window summarizes the current
and maximum stack usage for each task currently running.

Figure 8-19 Spy Window

Tornado 2.2

User’s Guide

326

The display for each task presents three values:

– The stack size allocated for each task, shown as a number of bytes beneath the
bar representing that task.

– The maximum stack space used so far by each task is indicated graphically by
the small triangle above the task’s bar.

– The portion of the stack currently in use, shown in two different ways: as a
number of bytes, displayed within the bar graph for each task, and as a
proportion of that task’s stack space, indicated graphically by the shaded
portion of each task’s bar.

Figure 8-20 Stack-Check Window

NOTE: It is possible for a task to write beyond the end of its stack while not writing
to the last part of its stack. This will not be detected by checkStack(), the
underlying routine for the stack-check window.

current
stack
size

maximum
stack space
used

task

stack size

8

8

Browser

327

8.11 Browser Displays and Target Link Speed

If your communications link to the target is slow (a serial line, for example), use
the browser judiciously. The traffic back and forth to the target grows with the
number of objects displayed, and with the update frequency. This traffic may
seriously slow down overall Tornado performance, on slow links. If you
experience this problem, try displaying fewer objects, updating browser displays
on request instead of periodically, or setting updates to a longer interval.

8.12 Troubleshooting with the Browser

Many problem conditions in target applications become much clearer with the
browser’s visual feedback on the state of tasks and critical objects in the target. The
examples in this section illustrate some of the possibilities.

8.12.1 Memory Leaks

The browser makes memory leaks easy to notice, through the
memory-consumption bar graphs in the main browser window: if the allocated
portion of memory grows continually, you have a problem. The
memory-consumption graph in Figure 8-21 corresponds to a memory leak in an
application that has run long enough to almost completely run out of memory.

Figure 8-21 A Memory Leak as Seen in the Browser

Tornado 2.2

User’s Guide

328

8.12.2 Stack Overflow

When a task exceeds its stack size, the resulting problem is often hard to trace,
because the initial symptom may be in some other task altogether. The browser’s
stack-check window is useful when faced with behavior that is hard to explain: if
the problem is a stack overflow, you can spot it immediately. The affected task’s
stack display shows a high-water mark at the right edge, as in the example in
Figure 8-22.

8.12.3 Memory Fragmentation

A more subtle memory-management problem occurs when small blocks of
memory that are not freed for long periods are allocated interleaved with
moderate-sized blocks of memory that are freed more frequently: memory can
become fragmented, because the calls to free() for the large blocks cannot coalesce
the free memory back into a single large available-memory pool. This problem is
easily observed by examining the affected memory partition (in simple
applications this is the VxWorks system memory partition, memSysPartId) with
the browser. Figure 8-23 shows an example of a growing free-list with many small
blocks, characteristic of memory fragmentation.

Figure 8-22 Stack Overflow on Task u9

8

8

Browser

329

8.12.4 Priority Inversion

The browser’s displays are most useful when they complement each other. For
example, suppose you notice in the main browser window (as in Figure 8-24) that
a task expected to be high priority is blocked while two other tasks are ready to
run.

An immediate thing to check is whether the three tasks really have the expected
priority relationship (in this example, the names are chosen to suggest the
intended priorities: uHi is supposed to have highest priority, uMed medium
priority, and uLow the lowest). You can check this immediately by clicking on each
task’s summary line, thus bringing up the windows shown in Figure 8-25.

Unfortunately, that turns out not to be the explanation; the priorities (shown for
each task under Attributes) are indeed as expected. Examining the CPU allocations
with the spy window (Figure 8-26) reveals that the observed situation is ongoing;
uMed is monopolizing the target CPU. It should certainly execute by preference to
the low-priority uLow, but why is uHi not getting to run?

Figure 8-23 Fragmented Memory as Seen in the Browser

Tornado 2.2

User’s Guide

330

Figure 8-24 Browser: uHi Pended

Figure 8-25 Task Browsers for uHi, uMed, uLow

Figure 8-26 uMed Monopolizing CPU (Spy Window Excerpt)

8

8

Browser

331

At this point examining the code (not shown) may seem worthwhile. Doing so,
you notice that uMed uses no shared resources, but uHi and uLow synchronize
their work with a semaphore.

Examining the semaphore with the browser (Figure 8-27) confirms the dawning
suspicion: uHi is indeed blocking on the semaphore, which uLow cannot release
because uMed has preempted it.

Having diagnosed the problem as a classic priority inversion, the fix is
straightforward. As described in VxWorks Programmer’s Guide: Basic OS, you can
revise the application to synchronize uLow and uHi with a mutual-exclusion
semaphore created with the SEM_INVERSION_SAFE option.

8.13 Tcl: the Browser Initialization File

When the browser begins executing, it first checks for a file called
.wind/browser.tcl in your home directory. If this file exists, its contents are sourced
as Tcl code.

For example, it may be convenient to download object modules from the browser.
The following browser.tcl code defines a button and a procedure to implement
this.

Figure 8-27 uHi Blocked on Semaphore

Tornado 2.2

User’s Guide

332

Example 8-1 Browser Extension: a Download Button

BUTTON: "Ld" -- Download an object module under browser control

toolBarItemCreate Ld button {loadDialog}

set currentWdir [pwd] ;# default working dir for loadDialog

###
#
#
loadDialog - load an object module from the browser
#
This routine supports a "load" button added to the browser's button bar.
It prompts for a file name, and calls the WTX download facility to load it.
#
SYNOPSIS: loadDialog
#
RETURNS: N/A
#
ERRORS: N/A

proc loadDialog {} {
global currentWdir

cd [string trim $currentWdir "\n"]
set result [noticePost fileselect Download Load "*.o"]
if {$result != ""} {

set currentWdir [file dirname $result]
wtxObjModuleLoad $result
update ;# Show new object module in browser

}
}

333

9
Debugger

9.1 Introduction

The design of the Tornado debugger, CrossWind, combines the best features of
graphical and command-line debugging interfaces. The most common debugging
activities, such as setting breakpoints and controlling program execution, are
available through convenient point-and-click interfaces. Similarly, program
listings and data-inspection windows provide an immediate visual context for the
crucial portions of your application.

For more complex or unpredictable debugging needs, a command-line interface
gives you full access to a wealth of specialized debugging commands. You can
extend or automate command-line debugger interactions in the following
complementary ways:

– A Tcl scripting interface allows you to develop custom debugger commands.

– You can extend the point-and-click interface, defining new buttons that attach
to whatever debugging commands (including your own debugger scripts)
you use most frequently.

The underlying debugging engine is an enhanced version of GDB, the portable
symbolic debugger from the Free Software Foundation (FSF). For full
documentation of the GDB commands, see GDB User’s Guide.

Tornado 2.2

User’s Guide

334

9.2 Starting CrossWind

There are two ways to start a debugging session:

■ From the launcher: Select the desired target and press the button.

■ From the UNIX command line: Invoke crosswind, specifying the target
architecture with the -t option as in the following example.

% crosswind -t ppc &

If you start the debugger from the command line, you must still select a target.
You can either use the Targets menu (see CrossWind Menus, p.338 for details) or
the target wtx command (see Managing Targets, p.358).

9.3 A Sketch of CrossWind

Figure 9-1 illustrates the layout of the main debugger window. This section
discusses each part of the window briefly. The following sections provide more
detail.

The menu bar ➊ provides access to overall control facilities: the File menu lets you
load application modules, or exit; the Targets menu provides a quick way to switch
tasks or targets; the Source menu lets you choose among source-code display
formats; the Tcl menu re-initializes the graphical front end after any customization
to its Tcl definitions; and the Windows menu controls the display of auxiliary
debugger windows. For detailed descriptions of these menus, see CrossWind
Menus, p.338. As usual, the About menu leads to Tornado version information, and
the Help menu leads to the Tornado online manuals.

The buttons ➋ are the quick path to common debugger commands. Most of them
are grouped into related pairs. Table 9-1 shows a summary of each button’s
purpose. For more detailed descriptions of these buttons, see CrossWind Buttons,
p.344.

The program-display panel ➌ is empty when the debugger begins executing. The
debugger automatically displays the current context here, whenever a command
or an event sets the context. In the case of Figure 9-1, the display is the effect of the
list command, often a useful way to start. Once there is a display in the
program-display panel, you can select symbols or lines inside that display to serve
as arguments to the button bar in area ➋.

9

9

Debugger

335

Figure 9-1 CrossWind Display

Table 9-1 Summary of CrossWind Buttons

Button Description Button Description

Breakpoint. Move up the subroutine stack.

Temporary breakpoint. Move down the stack.

Hardware breakpoint. Call up editor.

Interrupt. Print selected symbol.

Step to the next line of code. Dereference pointer.

Step over a function call. Monitor symbol value.

Continue program execution. Monitor value at pointer.

Finish the current subroutine. Define a new button.

➊

➋

➌

➍

➎

Tornado 2.2

User’s Guide

336

The command panel ➍ allows you to interact directly with the debugger, issuing
commands such as the list command. Type the add-symbols command here if
needed to load symbol information for any modules the debugger cannot find on
its own; see What Modules to Debug, p.354.

The state indicator line ➎ reports on the state of the debugger connection. At the left
of this line, the debugger shows the name of the source file (if any) for the code
being debugged. At the right of the line, the debugger indicates what it is
connected to (if anything) by showing one of the messages shown in Table 9-2.

9.4 CrossWind in Detail

This section describes the debugger commands and controls in detail.
9.4.1 Graphical Controls, p.336 is a complete discussion of all graphical debugger
controls. 9.4.2 Debugger Command Panel: GDB, p.353 discusses when to use the
command panel rather than graphical controls, and what commands are
particularly useful because of their effects on the graphical context.

9.4.1 Graphical Controls

The debugger provides three kinds of graphical controls: menus, buttons, and
mouse-based manipulation of other display elements.

Table 9-2 Messages in CrossWind State Indicator Line

Message Status

No Target No target currently selected.

Target: WTX server Connected to a target in task mode, but not to any
particular task.

Target: WTX Task/Stopped Connected to a task, which is stopped.

Target: WTX Task/Exception Connected to a task, which is stopped due to an exception.

Target: WTX Task/Running Connected to a task, which is running.

Target: WTX System Connected to a target in system mode.

9

9

Debugger

337

Display Manipulation

scrollbars
Whenever the amount of text in either main panel exceeds the available space,
the debugger displays scrollbars to allow you to view whatever portion of
either display you are interested in. As shown in Figure 9-1, you can scroll the
command panel either vertically or horizontally, and you can scroll the
program-display panel vertically. (Make the window wider if you need to see
wider lines in your source program.)

sash
If you refer again to Figure 9-1, you can see that the two major portions of the
debugger display are the program-display panel ➌ and the command panel ➍.
As in other Tornado tools, the separator line between these two panels
includes a sash (). The sash allows you to allocate space between the two
panels. To change the amount of space each panel takes up in the overall
display, drag the small square up or down with your mouse.

left click
Clicking the left mouse button selects the entire word under the pointer in the
program-display panel (but not in the command panel). This is often useful for
selecting a symbol as an argument to one of the debugger buttons.

right click
Clicking the right mouse button anywhere in the program-display panel sets
a breakpoint on the line under the pointer.

A right click on any line with an existing breakpoint (marked in the margin of
the program-display panel) removes that breakpoint.

left drag
As with other X applications, you can drag the left mouse button over any
displayed text to select it (whether as an argument to another control in the
debugger, or to copy into another window).

middle drag
Use the middle mouse button to drag certain controls and symbols between
the button bar and the program-display panel. For example, drag the pencil
(using the middle button) to a particular source line, to edit that line; or drag
the program-counter symbol to another source line to continue executing until
that line is reached.

context
The debugger displays this icon in the program-display panel, at the left of the
next line to be executed, each time your program stops. Drag the context

Tornado 2.2

User’s Guide

338

pointer (using the middle mouse button) to another line to allow execution to
continue until the program reaches the line you indicate. The shading of the
context pointer becomes gray if the program is running, or if the stack level
displayed is not the current stack level. (For another way of doing this, see the
discussion of the continue button in CrossWind Buttons, p.344.)

CrossWind Menus

The menu bar at the top of the debugger display provides commands for overall
control of the debugger display or debugging session (Figure 9-2).

The following paragraphs describe the effect of each debugger-specific menu
command.

File Menu

File>Quit

Ends the debugging session. If a target is attached, Quit also kills any
suspended routines from the debugging session.

(If you want to leave the target undisturbed when you quit, first use the Detach

Task command under Targets, or type the GDB command detach in the
command panel.)

File>Download

Load an object module into target memory, link it dynamically into the
run-time, and load its symbols into the debugger. This command displays a
file selector, as shown in Figure 9-3, to choose the object module.

In the file selector, choose files or directories from the two scrolling lists by
clicking on a name. You can type directly in the Filter text box to change the
selection criteria. The Filter button redisplays the scrolling lists for a new
directory or a new file-name expansion constraint; click the Load button when
the file you want to download is selected. Double-clicking on a directory is
equivalent to selecting the directory and then pressing Filter; double-clicking
on a file is equivalent to Load.

Figure 9-2 CrossWind Menu Bar

9

9

Debugger

339

Targets Menu

The commands in the Targets menu allow you to select or change debugging
targets.

Targets>Attach Task

Attach the debugging session to a task that is already running. This command
displays a scrolling list of the tasks that are running on the target (Figure 9-4).
When you select one, the debugger stops the task.

Figure 9-3 Download File Selector

! CAUTION: Because the download is controlled by the target server, a
download can fail when the server and CrossWind have different views of the
file system. See Extended Debugger Variables, p.360.

In the command panel, you can use a form of the load command to get around
this problem. See What Modules to Debug, p.354.

! CAUTION: If you select a command from the Targets menu while the debugger is
attached to a running task, the command does not take effect until the next time
the task stops. You can force the task to stop by pressing the interrupt button.

Tornado 2.2

User’s Guide

340

Usually, a newly-attached task stops in a system routine; thus, the debugger
displays an assembly listing in its program-display panel. Use the up-stack
button to view a stack level where source code is visible, or use the finish
button to allow the system routine to return to its caller.

Targets>Attach System

Switches the target connection into system mode (if supported by the target
agent) and stops the entire target system.

Targets>Detach Task/System

If the debugger is currently attached to a task, it releases the current task from
debugger control. This allows exiting the debugger, or switching to system
mode, without killing the task that was being debugged. If the debugger is
currently attached to the target system, it sets the agent to tasking mode (if
supported) and the target system resumes operation.

Targets>Kill Task

Delete the current task from the target system without exiting the debugger.

Targets>Connect Target Servers

Connect the debugger to a target. This command displays a scrolling list of all
targets available through the Tornado registry (Figure 9-4). If the debugger is
already connected to a target, selecting a new target releases the current target
from debugger control.

Figure 9-4 Attach Task Selector

9

9

Debugger

341

Source Menu

The commands in the Source menu control how your program is displayed.

Source>C/C++

Displays the original high-level language source code (usually C or C++). This
style of display is only available for modules compiled with debugging
information. When this display is available, it is also the default style of
program display.

Source>Assembly

Displays only assembly-level code (a symbolic disassembly of your program’s
object code). This style of display is the default for routines compiled without
debugging information (such as VxWorks system routines supplied as object
code only).

Source>Mixed

Displays both high-level source and a symbolic disassembly, with the
assembly-level code shown as close as possible to the source code that
generates the corresponding object code. This display style is only available
for modules compiled with debugging information.

Figure 9-6 shows the debugger using mixed-mode code display. (Notice also
that the sash was dragged all the way down for this figure, thus devoting the
maximum available area to the program-display panel.)

Figure 9-5 Connect

Tornado 2.2

User’s Guide

342

Tcl Menu

The Tcl menu provides a way to re-initialize the debugger. Because the debugger
can be customized on the fly (see 9.6 Tcl: CrossWind Customization, p.374), this

Figure 9-6 Mixed-Mode Code Display

NOTE: For some source lines, compilers can generate code that is not contiguous,
because it is sometimes more efficient to interleave the object code from separate
lines of source.

In this situation, the mixed-mode display rearranges the assembly listing to group
all object code below the line that generates it. The debugger indicates any
rearranged chunks of the assembly with an asterisk at the start of each
non-contiguous segment in the mixed-mode display.

9

9

Debugger

343

provides a way to restore the environment after experiments with custom
modifications.

Tcl>Reread Home

Re-initializes the definitions from homeDir/.wind/crosswind.tcl in your home
directory (see 9.6.1 Tcl: Debugger Initialization Files, p.375).

Tcl>Reread All

Re-initializes the complete graphical environment defined in Tcl resource files,
including both the basic CrossWind definitions from your home directory and
the definitions from installDir/host/resource/tcl/CrossWind.tcl.

Windows Menu

The Windows menu controls auxiliary debugger displays. All such displays are
automatically updated whenever the control of execution passes to the
debugger—for example, at each breakpoint, or after single-stepping.

Windows>Backtrace

Displays an auxiliary window with the current stack trace, like the one in
Figure 9-7.

Windows>Registers

Displays an auxiliary window that shows the machine registers for the task
you are debugging. Because registers are different for each architecture, the
precise contents of this window differ depending on your target. Figure 9-8
shows a register-display window for a 68K target. As with the register displays
in task browsers (see 8.6.1 The Task Browser, p.314), registers are grouped by
category, and you can control the level of detail by clicking on the folder icons
that head each category.

Figure 9-7 Stack Display

Tornado 2.2

User’s Guide

344

Help Menu

The Help menu has the standard entries On CrossWind (the debugger’s reference
entry), Manuals Index (the online search tool), and Manuals Contents (the start of the
Tornado online manuals). It also has one additional entry. The GDB Online

command brings up an auxiliary viewer for the command-language usage
summaries built into GDB.

CrossWind Buttons

Just below the menu bar is a row of buttons called the button bar. These buttons
provide quick access to the most important debugger functionality. The following
paragraphs describe each button:

Sets a breakpoint on the current line, or on a selected symbol. For example,
if you have just single-stepped through a portion of your program, press
this button to stop execution the next time your program executes this line.
Alternately, to stop at the beginning of a routine, click on the routine name
(either where it is defined, or anywhere that the subroutine is called), then
press this button.

Figure 9-8 Register Display

click here
to hide

detail

9

9

Debugger

345

The debugger uses the same symbol that appears on the breakpoint button
to indicate the breakpoint location in the program-display panel’s left
margin.

You can also set a breakpoint on any particular line by right-clicking on
that line, or by dragging the breakpoint symbol from the button-bar (with
the middle mouse button) down to the line where you want to break.

To delete a breakpoint, click with the right mouse button anywhere on a
line that is already marked with the breakpoint icon, or drag the
breakpoint icon back to the break button. You can also use the debugger
delete command with the breakpoint number (as originally shown in the
command panel, or as displayed with info break). The delete command
with no arguments deletes all breakpoints.

To disable a breakpoint, drag the breakpoint icon to the hollow breakpoint
symbol in the button bar (the temporary-breakpoint button), or use the
disable command with the breakpoint number.

Sets a temporary breakpoint. This button works almost the same way as
the breakpoint button above; the difference is that a temporary breakpoint
stops the program only once. The debugger deletes it automatically as
soon as the program stops there. The hollow breakpoint symbol on the
button marks temporary breakpoints in the program-display panel, so
that you can readily distinguish the two kinds of breakpoints there.

You can delete or disable temporary breakpoints in the same ways as other
breakpoints—delete by right-clicking on a line displaying a breakpoint
symbol, by dragging the breakpoint symbol up to the solid breakpoint
symbol in the button bar, or by using the delete command; disable by
dragging to the hollow breakpoint symbol, or by invoking the disable
command.

Launches a hardware breakpoint window that allows you to set and delete
hardware breakpoints, if they are supported by the target (Figure 9-9).

The hardware breakpoint window lists all hardware breakpoints currently
set on the target. Hardware breakpoints set during the current CrossWind
session are marked with an asterisk (*).1

NOTE: The breakpoints you set in this way will affect only the task to which the
debugger is attached. If you want your breakpoint to stop all tasks when the
attached task hits the breakpoint, set it using gbreak from the command line.

Tornado 2.2

User’s Guide

346

To add a hardware breakpoint, click on the Add button to display the Set

Hardware Breakpoint window (Figure 9-10). If you had previously selected
a symbol in the source window, the Address or Symbol Name field would be
filled automatically with the symbol. Otherwise, you can enter
information about where the breakpoint should be set using standard
GDB syntax. For example, enter “value” to set the breakpoint on the
symbol value; enter “'testHwBp.c'::value” to set the breakpoint on symbol
value in file testHwBp.c; enter “*ptr” to set the breakpoint on the address
pointed to by ptr; enter “0x10000” to set the breakpoint at address 0x10000;
and so on.

Then select the breakpoint type from the Breakpoint Type list, and click the
OK button.

To delete a breakpoint, click on its name in the Hardware Breakpoints

window, and then the Delete button. You can only delete hardware
breakpoints set during the current CrossWind session.

If the target agent is running in task mode, a hardware breakpoint is set on
all the system tasks. If the agent is running in system mode, a hardware
breakpoint is set on the system context.

1. The hardware breakpoint list is refreshed at a regular interval (five seconds by default). It
allows you to see the hardware breakpoints set or removed by other tools (such as the shell,
WindSh). To change the polling interval or simply suppress polling, edit your
installDir/.wind/crosswind.tcl file (set hwBpPollInterval to 0 to suppress polling). If polling
is suppressed, the hardware breakpoint list is only updated when the Add or Delete buttons
are used.

Figure 9-9 Hardware Breakpoints Window

9

9

Debugger

347

Interrupt. Sends an interrupt to the task that the debugger is controlling.
For example, if your program keeps running instead of following an
expected path to a breakpoint, press this button to regain control and
investigate. Pressing this button is equivalent to keying the interrupt
character (usually CTRL+C).

Figure 9-10 Set Hardware Breakpoint Dialog Box

NOTE: CrossWind does not manage hardware breakpoints in the same manner as
standard GDB breakpoints. The hardware breakpoint interface is provided as a
simple means of setting hardware breakpoints on the target (which is why it is only
possible to set hardware breakpoints on all the tasks or on the system context, and
not only on the task to which the debugger is attached).

When a data access hardware breakpoint stops the program, the context icon
indicates the line of code that has been executed. However, on some processors a
data access exception is generated only after the data has been accessed and the
program counter has been incremented. For those processors, CrossWind marks
the line after the one that was executed when the data hardware breakpoint was
hit.

NOTE: GDB software watchpoints are very intrusive. They should only be used
with real-time programs if the overhead is acceptable.

Tornado 2.2

User’s Guide

348

Steps to the next line of code. The precise effect depends on the style of
program display you have selected. If the program-display area shows
high-level source code only (the default), this button advances execution
to the next line of source, like the step command. On the other hand, if the
program-display panel shows assembler instructions (when either
Assembly or Mixed selected from the Source menu, or execution is in a
routine compiled with no debugging symbols), this button advances
execution to the next instruction—the equivalent of the stepi or si
command.

Steps over a function call. This is a variant of the button: instead of
stepping to the very next statement executed (which, in the case of a
function call, is typically not the next statement displayed), this button
steps to the next line on the screen. If there is no intervening function call,
this is the same thing as the button. But if there is a function call, the

button executes that function in its entirety, then stops at the line after
the function call.

The display style has the same effect as with the button: thus, the
button steps to either the next machine instruction or the next source
statement, if necessary completing a subroutine call first.

Continues program execution. Click this button to return control to the
task you are debugging, rather than operating it manually from the
debugger after a suspension. If there are no remaining breakpoints,
interrupts, or signals, the task runs to completion.

To continue only until the program reaches a particular line in your
program, drag this icon (using the middle mouse button) from the button
bar to the line in the display panel where the program is to suspend once
more. This has the same effect as dragging the context pointer, but is more
convenient when you scroll the program-display window away from the
current point of suspension.

This button issues the continue command.

Finishes the current subroutine. While stepping through a program, you
may conclude that the problem you are interested in lies in the current
subroutine’s caller, rather than at the stack level where your task is
suspended. Use this button in that situation: execution will continue until
the current subroutine completes, then return control to the debugger in
the calling statement.

This button issues the finish command.

9

9

Debugger

349

Moves one level up the subroutine stack. The debugger usually has the
same point of view as the executing program: in particular, what variable
definitions are visible depends on the current subroutine. This button
changes the context to the current subroutine’s caller; press it again to get
to that subroutine’s caller, and so on.

This button does not change the location of the program counter; it only
affects what data and symbols are visible to you. If you continue or step
the program, it still takes up where it left off, regardless of whether you
have used this button.

This button issues the up command, and has the same effect on a following
finish or until command as up. The location of the temporary breakpoint
that is set for finish or until depends on the selected frame, which is
changed by up.

Moves one level down the stack. This is the converse of the button, and
like it, affects the data you can see but not the state of your program.

This button issues the down command, and has the same effect on a
following finish or until command as down. The location of the
temporary breakpoint that is set for finish or until depends on the selected
frame, which is changed by down.

Calls up an editor (specified by your EDITOR environment variable—or vi
if EDITOR is not defined) on the current source file. To specify the starting
context, drag the editor button to a line in the region you wish to edit,
using the middle button on your mouse.

Prints a symbol’s value in the command panel. Begin by left-clicking on
the symbol of interest, in the program-display panel; the debugger
highlights the symbol. Then press this button to display its value.

This button issues the print command, and echoes the command and its
output—the symbol value—to the command panel.

Tornado 2.2

User’s Guide

350

Prints the value at a pointer location. This button has a similar effect to the
print button above, except that it de-references the selected symbol. Use
this button to inspect data when you have a pointer to the data, rather than
the data itself.

This button issues the print * command, and echoes the command and its
output—the value at the selected pointer location—to the command
panel.

Launches an inspection window that monitors a symbol’s current value.
This auxiliary display is automatically updated each time control returns
to the debugger.

Several different kinds of data-inspection windows are available,
depending on data structure; the debugger chooses the right one
automatically.

Figure 9-11 shows the two simplest displays: for ordinary numeric data,
and for a pointer. In both cases, the numeric value of the variable is
displayed in a small independent window. The name of the variable being
displayed appears next to the numeric value. The window’s title bar also
shows the name of the variable displayed, preceded by a parenthesized
display number.2

The debugger indicates whether the displayed variable is a pointer, by
placing an asterisk to its left (as with pNode in Figure 9-11). To follow a
pointer variable, click on its name in the display window; a new display
pops up with the selected value.

If the displayed variable is a C struct (or a C++ class object), the debugger
uses a special structure browser that exhibits the data structure graphically,
using a folder icon to group nested structures. Figure 9-12 shows an
example of a structure browser.

Figure 9-11 Display Windows: Numeric and Pointer Data

2. Display numbers are useful with the GDB commands delete display, disable display, and
info display, which you can execute in the command panel. See GDB User’s Guide for
details.

9

9

Debugger

351

You can click on any folder in a structure browser to hide data that is not
of current interest (or to reveal it, once a folder is closed). You can also click
on pointers (highlighted in bold type) to follow them; this provides a
convenient way of exploring list values interactively.

Launches an inspection window on the value at a pointer location. When
you want to see the contents of a pointer immediately, rather than going
through a display of the pointer address, click this button rather than the
previous one. the debugger displays one of the same set of windows
described above.

Both this button and the previous one issue the display /W command.
(The /W display format is a CrossWind enhancement. See Graphically
Enhanced Commands, p.357 for more information.)

Defines a new button, or delete an existing one. You can add your own
buttons (with text labels) to the button bar by clicking this button. The
debugger displays a form where you can specify the name of the button,

Figure 9-12 Display Window: Structure Browser

click here
to follow
pointers

click here
to hide

detail

Tornado 2.2

User’s Guide

352

as well as one or more debugger commands to execute when the button is
pressed.

To delete a button (whether a standard one, or a user-defined one), drag it
(using the middle mouse button, as usual) to the button icon. Standard
buttons come back the next time you start the debugger; user-defined
buttons are similarly persistent if their definitions are recorded in your
homeDir/.wind/crosswind.tcl initialization file.

Figure 9-13 shows the new-button form. In this example, a button labeled
Home is defined to execute the GDB frame command. Because the frame
command controls context in the program-display panel, a button with
this definition is a convenient way to get the display panel back to the
location where your program is suspended, after scrolling elsewhere.
After completing the form, press the OK box at the bottom; your new
button appears at the right of the menu bar.

CrossWind automatically saves your button definition by writing Tcl code
at the end of your homeDir/.wind/crosswind.tcl initialization file. For
example, the button definition above writes the following there:

toolBarItemCreate Home button {ttySend "frame\n"}

For buttons with more elaborate effects, consider first defining a new
debugger command as described in 9.5.4 Tcl: Debugger Automation, p.367;
then you can hook up the new command to a new button. You can also
attach buttons to commands resulting from the GDB define command (see
GDB User’s Guide: Canned Sequences of Commands).

Figure 9-13 New-Button Form

9

9

Debugger

353

For examples of how to record your own button definitions in a
CrossWind initialization file, see Tcl: “This” Buttons for C++, p.377.

9.4.2 Debugger Command Panel: GDB

CrossWind is designed to provide graphical access to those debugger actions that
are best controlled graphically, but also to exploit the command-line GDB interface
when that is the best way to perform some particular action. For example, the
housekeeping of getting subroutines started necessarily involves typing
subroutine names and argument lists. So that you do not have to switch back and
forth between menus, buttons, and dialogs or forms for commands of this sort, the
debugger exploits the command panel, which is inherently best suited to
commands with typed arguments. The command panel provides full access to the
GDB command language described in the GDB manual, GDB User’s Guide.

The following sections summarize some particularly useful commands, and
describe commands added by Wind River that are not part of other versions of
GDB.

GDB Initialization Files

One use of the command panel is to experiment with text-based commands for
debugger actions that you might want to perform automatically.

When the debugger first executes GDB,3 it looks for a file named .gdbinit: first in
your home directory, then in your current working directory. If it finds the file in
either directory, the debugger commands in it are executed; if it finds the file in
both directories, the commands in both are executed.

A related initialization file under your home directory, called
homeDir/.wind/gdb.tcl, is specifically intended for Tcl code to customize GDB with
your own extensions written in Tcl. The Tcl code in this file executes before

NOTE: As a convenience, the GDB command interpreter repeats the previous
command when you press ENTER (or RETURN) on an empty line, except for a few
commands where it would be dangerous or pointless. See GDB User’s Guide: GDB
Commands for more information. Press ENTER in the debugger only when you
want to execute or repeat a command.

3. The graphical interface to the debugger has a separate initialization file
homeDir/.wind/crosswind.tcl, which runs after .gdbinit.

Tornado 2.2

User’s Guide

354

.gdbinit. See 9.5.4 Tcl: Debugger Automation, p.367 for a discussion of extending
GDB through Tcl. See also 9.6.1 Tcl: Debugger Initialization Files, p.375 for a
discussion of how the various CrossWind initialization files interact.

What Modules to Debug

You can use the following commands to establish the debugging context:

add-symbol-file filename
Specifies an object file on the host for the debugging session.

When the module you want to debug is already on the target (whether linked
there statically, or downloaded by another Tornado tool), the debugger
attempts to locate the corresponding object code on the host by querying the
target server for the original file name and location. However, many factors
(such as differing mount points on host and target, symbolic links, virtual file
systems, or simply moving a file after downloading it) often make it necessary
to specify the object file explicitly; you can do so with the add-symbol-file
command.

The debugger recognizes the abbreviation add for this command.

load filename
This command is equivalent to the Download command in the File menu. You
may sometimes find it preferable to invoke the command from the command
panel—for example, when you can use your window manager to cut and paste
a complex pathname instead of iteratively applying a file selector.

load filename serverFilename
Use this version of the load command when the target server you are using is
on a host with a different view of the file system from your CrossWind session.
For example, in some complex networks different hosts may mount the same
file at different points: you may want to download a file /usr/fred/applic.o
which your target server on another host sees as /fredshost/fred/applic.o.4

Use the serverFilename argument to specify what file to download from the
server’s point of view. (You must also specify the filename argument from the
local point of view for the benefit of the debugger itself.)

See 7.6 Object Module Load Path, p.295 for a more extended discussion of the
same problem in the context of the shell.

4. See also the description of wtx-load-path-qualify in Extended Debugger Variables, p.360 for
another way of managing how the debugger reports load pathnames to the target server.

9

9

Debugger

355

unload filename
Undo the effect of load: remove a dynamically linked file from the target, and
delete its symbols from the debugger session.

The load and unload commands both request confirmation if the debugger is
attached to an active task. You can disable this confirmation request, as well as all
other debugger confirmation requests, with set confirm. See GDB User’s Guide:
Controlling GDB.

What Code to Display

After a debugging session is underway, the program-display panel keeps pace
with execution: when the program hits a breakpoint, the corresponding source is
centered on the display panel, and each time you step or continue program
execution, the display scrolls accordingly.

When you begin your debugging session by attaching to an existing task, the
display panel is filled immediately as a side effect of stopping the task. In other
situations, it may be convenient to use one of the commands in this section for an
initial display.

list linespec
Displays source code immediately in the program-display panel, with the
display centered around the line you specify with the linespec argument. The
most common forms for linespec are a routine name (which identifies the place
where that subroutine begins executing) or a source-file line number in the
form filename:num (the source file name, a colon, and a line number). For a full
description of linespec formats, see GDB User’s Guide: Printing Source Lines.

search regexp
Displays code centered around the first line (in the current source file) that
contains the regular expression regexp, instead of specifying what line to
display. The command rev is similar, but searches backwards from the current
context. See GDB User’s Guide: Searching Source Files.

break fn
Sets a breakpoint at fn. Instead of first displaying source code, then setting
breakpoints using the graphical interface, you can set a breakpoint directly (if
you know where to go!). The argument fn can be a function name or a line
number. See GDB User’s Guide: Setting Breakpoints.

The break command does not produce a display directly, but sets things up so
that there is at least one place where your program suspends. You can use run

Tornado 2.2

User’s Guide

356

to start the program (except in system mode); when the program suspends at
the breakpoint, the display panel shows the context.

Executing Your Program

Just as with the Tornado shell, you can execute any subroutine in your application
from the debugger. Use the following commands:

run routine args
This is the principal command used to begin execution under debugger
control. Execution begins at routine; you can specify an argument list after the
routine name, with the arguments separated by spaces. The argument list may
not contain floating-point or double-precision values. (This command is not
available in system mode; use the shell to get tasks started in that mode. See
7.2.7 Using the Shell for System Mode Debugging, p.267.)

call expr
If a task is already running (and suspended, so that the debugger has control),
you can evaluate any source-language expression (including subroutine calls)
with the call command. This provides a way of exploring the effects of other
subroutines without abandoning the suspended call. Subroutine arguments in
the expression expr may be of any type, including floating point or double
precision.

When you run a routine from the debugger using one of these commands, the
routine runs until it encounters a breakpoint or a signal, or until it completes
execution. The normal practice is to set one or more breakpoints in contexts of
interest before starting a routine. However, you can interrupt the running task by
clicking on the interrupt button or by keying the interrupt character (as set on
your host with stty intr; usually CTRL+C) from the debugger window.

Application I/O

By default, any tasks you start with the run command use the standard I/O
channels assigned globally in VxWorks. However, the debugger has the following
mechanisms to specify input and output channels:

■ Redirection with < and >

Each time you use the run command, you can redirect I/O explicitly for that
particular task by using < to redirect input and > to redirect output. For both
input and output, ordinary pathnames refer to files or devices on the host

9

9

Debugger

357

where the debugger is running, and pathnames preceded by an @ character
refer to files or devices on the target. For example, the following command
starts the routine appMain() in a task that gets input from target device
/tyCo/0 and writes output to host device /dev/ttyp2:

(gdb) run appMain > /dev/ttyp2 < @/tyCo/0

■ New Default I/O with tty Command

The debugger command tty sets a new default input and output device for all
future run commands in the debugging session. The same conventions used
with explicit redirection on the run line allow you to specify host or target
devices for I/O. For example, the following command sets the default input
and output channels to host device /dev/ttyp2:

(gdb) tty /dev/ttyp2

■ Tcl: Redirection of Global or Task-Specific I/O

Tcl extensions are available within the debugger’s Tcl interpreter to redirect
either all target I/O, or the I/O channels of any running task. See 9.5.7 Tcl:
Invoking GDB Facilities, p.370 for details.

Graphically Enhanced Commands

Certain GDB commands, even though typed in the command panel, are especially
useful due to the CrossWind graphical presentation. Among these are list, search,
and rev, discussed already in What Code to Display, p.355. The following commands
are also especially useful because of CrossWind graphical extensions:

display /W expr
The and buttons provide a convenient way to generate active displays
of symbol and pointer values, allowing you to monitor important data as your
application executes under debugger control. However, sometimes the most
useful data to monitor is the result of an expression—something that does not
appear in your program, and hence cannot be selected before clicking a button.

In this situation, you can use the CrossWind /W format with the GDB display
command to request an inspection window from the command panel. Because
you type the expression argument directly, you can use any source-language
expression to specify the value to monitor. An inspection window appears,
which behaves just like those generated with buttons (CrossWind Buttons,
p.344).

Tornado 2.2

User’s Guide

358

frame n
Displays a summary of a stack frame, in the command panel. But it also has a
useful side effect: it re-displays the code in the program-display panel,
centered around the line of code corresponding to that stack frame.

Used without any arguments, this command provides a quick way of restoring
the program-display panel context for the current stack frame, after you scroll
to inspect some other region of code. Used with an argument n (a stack-frame
number, or a stack-frame address), this command provides a quick way of
looking at the source-code context elsewhere in the calling stack. For more
information about stack frames in GDB and about the GDB frame command,
see GDB User’s Guide: Examining the Stack.

Managing Targets

Instead of using the Targets menu (CrossWind Menus, p.338), you can select a target
from the command panel with the target wtx command. The two methods of
selecting a target are interchangeable; however, it may sometimes be more
convenient to use the GDB command language—for example, you might specify a
target this way in your .gdbinit initialization file or in other debugger scripts.

target wtx servername
Connects to a target managed by the target server registered as servername in
the Tornado registry, using the WTX protocol. Use this command regardless of
whether your target is attached through a serial line or through an Ethernet
connection; the target server subsumes such communication details. (See
2.7 Connecting a Tornado Target Server, p.56.) There is no need to specify the full
registered name as servername; any unique abbreviation (or any regular
expression that uniquely specifies a server name) will do.

Command-Interaction Facilities

The following GDB facilities are designed to streamline command-line interaction:

– Command-line editing, using either Emacs-like (the default) or vi-like
keystrokes, as described in GDB User’s Guide: Command Line Editing. By
default, command-line editing in the debugger is Emacs-like.5 To make it more

5. There is one exception: the Meta key is not available, because it is reserved for keyboard
shortcuts that select items from menus. Instead, use the ESC key as a Meta prefix, as usual
in Emacs and related programs when no Meta key is available.

9

9

Debugger

359

consistent with the WindSh vi-like editing facilities, write the following line in
a file named .inputrc in your home directory:

set editing-mode vi

– Command history and history expansion in the style of the UNIX C shell, as
described in GDB User’s Guide: Using History Interactively.

– TAB-key completion of commands, program symbols, and file names,
depending on context, as described in GDB User’s Guide: Command Completion.
(This is most useful with C++ symbols, where completion is supplemented by
interactive menus to choose among overloaded symbol definitions.)

– Specialized commands to give information about the state of your program
(info and its sub-commands), the state of the debugger (show and its
sub-commands), and brief descriptions of available commands and their
syntax (help; the same summaries are also available through GDB Online in the
Help menu).

– CTRL+L clears the input and output displayed in the command panel.

Extended Debugger Commands

The command area also provides two kinds of extended commands:

■ Shell Commands

You can run any of the WindSh primitive facilities described in 7.2.4 Invoking
Built-In Shell Routines, p.253 in the command panel, by inserting the prefix
“wind-” before the shell command name. For example, to run the shell td()
command from the debugger, enter wind-td in the command panel.

Because of GDB naming conventions, mixed-case command names cannot be
used; if the shell command you need has upper case characters, use lower case
and insert a hyphen before the capital letter. For example, to run the
semShow() command, enter wind-sem-show.

Tornado 2.2

User’s Guide

360

■ Server Protocol Requests

The Tornado tools use a protocol called WTX to communicate with the target
server. You can send WTX protocol requests directly from the GDB command
area as well, by using a family of commands beginning with the prefix “wtx-”.
See Tornado API Programmer’s Guide: WTX Protocol for descriptions of WTX
protocol requests. Convert protocol message names to lower case, and use
hyphens in place of underbars; for example, issue the message
WTX_CONSOLE_CREATE as the command wtx-console-create.

Extended Debugger Variables

You can change many details of the debugger’s behavior by using the set
command to establish alternative values for internal parameters. (The show
command displays these values; you can list the full set interactively with help
set.)

The following additional set/show parameters are available in CrossWind beyond
those described in GDB User’s Guide:

inhibit-gdbinit
Do not read the GDB-language initialization files homeDir/.gdbinit and
${PWD}/.gdbinit, discussed in 9.6.1 Tcl: Debugger Initialization Files, p.375.
Default: no (that is, read initialization files).

wtx-ignore-exit-status
Whether or not to report the explicit exit status of a routine that exits under
debugger control. When this parameter is on (the default), the debugger
always reports completion of a routine with the message “Program terminated
normally.” If your application’s routines use the exit status to convey
information, set this parameter to off to see the explicit exit status as part of the
termination message.

! CAUTION: The debugger does not include the shell’s C interpreter; thus, the
“wind-” commands are interfaces only to the underlying Tcl implementations
of the shell primitives. For shell primitives that take no arguments, this makes
no difference; but for shell primitives that require an argument, you must use
the shell Tcl command shSymAddr to translate C symbols to the Tcl form. For
example, to call the shell built-in show() on a semaphore ID mySemID, use
the following:

(gdb) wind-show [shSymAddr mySemId]

9

9

Debugger

361

wtx-load-flags
Specifies the option flags for the dynamic loader (Download in the File menu, or
load in the command panel). These flags are described in the discussion of ld()
in VxWorks Programmer’s Guide: Configuration and Build. Default:
LOAD_GLOBAL_SYMBOLS (4).

wtx-load-path-qualify
Controls whether the debugger translates a relative path specified in the load
argument to an absolute path when instructing the target server to download
a file. By default, this value is set to yes: this instructs the debugger to perform
this translation, so that the target server can locate the file even if the server
and the debugger have different working directories.

However, in some networks where the debugger and target server have
different views of the file system, a relative pathname can be interpreted
correctly by both programs even though the absolute pathname is different for
the two. In this case, you may wish to set wtx-load-path-qualify to no.

wtx-load-timeout
As a safeguard against losing contact with the target during a download, the
debugger uses a timeout controlled by this parameter. If a download does not
complete in less time than is specified here (in seconds), the debugger reports
an error. Default: 30 seconds. To reset this parameter to 120 seconds, use:

(gdb) set wtx-load-timeout 120

wtx-task-priority
Priority for transient VxWorks tasks spawned by the run command. Default:
100.

wtx-task-stack-size
Stack size for transient tasks spawned by the run command. Default: 20,000.

wtx-tool-name
The name supplied for the debugger session to the target server. This is the
name reported in the launcher’s list of tools attached to a target. Default:
crosswind. If you often run multiple debugger sessions, you can use this
parameter to give each session a distinct name.

Tornado 2.2

User’s Guide

362

9.5 System-Mode Debugging

By default, in CrossWind you debug only one task at a time. The task is selected
either by using the run command to create a new task, or by using attach to debug
an existing task. When the debugger is attached to a task, debugger commands
affect only that particular task. For example, when a breakpoint is set it applies
only to that task. When the task reaches a breakpoint, only that task stops, not the
entire system. This form of debugging is called task mode debugging. (All the
material in 9.4 CrossWind in Detail, p.336 applies to task mode debugging).

Tornado also supports an alternate form of debugging, where you can switch
among multiple tasks (also called threads) and even examine execution in system
routines such as ISRs. This alternative mode is called system mode debugging; it is
also sometimes called external mode.

Most of the debugger features described elsewhere in this manual, and the
debugging commands described in GDB User’s Guide, are available regardless of
which debugging mode you select. However, certain debugging commands
(discussed below in 9.5.2 Thread Facilities in System Mode, p.363) are useful only in
system mode.

9.5.1 Entering System Mode

To debug in system mode, first make sure your debugger session is not attached to
any task (type the command detach, or select Detach from the Targets menu).

Then issue the following command:

attach system
Switches the target connection into system mode (if supported by the target
agent) and stops the entire target system.

Or, select Target>Attach System from the CrossWind menu.

The response to a successful attach system is output similar to the following:

(gdb) attach system
Attaching to system.
0x5b58 in wdbSuspendSystemHere ()

NOTE: The run command is not available in system mode, because its use of a new
subordinate task is more intrusive in that mode. In system mode, use the shell to
start new tasks as discussed in 7.2.7 Using the Shell for System Mode Debugging,
p.267, then attach to them with the thread command.

9

9

Debugger

363

Once in system mode, the entire target system stops. In the example above, the
system stopped in wdbSuspendSystemHere(), the normal suspension point after
attach system.

9.5.2 Thread Facilities in System Mode

In system mode, the GDB thread-debugging facilities become useful. A thread is
the general term for processes with some independent context, but a shared
address space. In VxWorks, each task is a thread; the system context (including
ISRs and drivers) is also a thread. GDB identifies each thread with a thread ID, a
single arbitrary number internal to the debugger.

You can use the following GDB commands to manage thread context.

info threads
Displays summary information (including thread ID) for every thread in the
target system.

thread idNo
Selects the specified thread as the current thread.

break linespec thread idNo
Sets a breakpoint affecting only the specified thread.

For a general description of these commands, see GDB User’s Guide: Debugging
Programs with Multiple Threads. The sections below discuss the thread commands
in the context of debugging a VxWorks target in system mode.

Displaying Summary Thread Information

The command info threads shows what thread ID corresponds to which VxWorks
task. For example, immediately after executing attach system to stop a VxWorks
target, the info threads display resembles the following:

(gdb) info threads
4 task 0x4fc868 tExcTask 0x444f58 in ?? ()
3 task 0x4f9f40 tLogTask 0x444f58 in ?? ()

! CAUTION: Not all targets support system mode, because the BSP must include a
special driver for that purpose (see 2.5 Host-Target Communication Configuration,
p.31). If your target does not support system mode, attempting to use attach
system produces an error.

Tornado 2.2

User’s Guide

364

2 task 0x4c7380 + tNetTask 0x4151e0 in ?? ()
1 task 0x4b0a24 tWdbTask 0x4184fe in ?? ()

(gdb)

In the info threads output, the left-most number on each line is the debugger’s
thread ID. The single asterisk at the left margin indicates which thread is the
current thread. The current thread identifies the “most local” perspective: debugger
commands that report task-specific information, such as bt and info regs (as well
as the corresponding displays) apply only to the current thread.

The next two columns in the thread list show the VxWorks task ID and the task
name; if the system context is shown, the single word system replaces both of these
columns. The thread (either a task, or the system context) currently scheduled by
the kernel is marked with a + to the right of the task identification.

The remainder of each line in the info threads output shows a summary of each
thread’s current stack frame: the program counter value, and the corresponding
function name.

The thread ID is required to specify a particular thread with commands such as
break and thread.

Switching Threads Explicitly

To switch to a different thread (making that thread the current one for debugging,
but without affecting kernel task scheduling), use the thread command. For
example:

(gdb) thread 2
[Switching to task 0x3a4bd8 tShell]
#0 0x66454 in semBTake ()
(gdb) bt
#0 0x66454 in semBTake ()
#1 0x66980 in semTake ()
#2 0x63a50 in tyRead ()
#3 0x5b07c in iosRead ()
#4 0x5a050 in read ()
#5 0x997a8 in ledRead ()
#6 0x4a144 in execShell ()
#7 0x49fe4 in shell ()
(gdb) thread 3

! CAUTION: The thread ID of the system thread is not constant. To identify the
system thread at each suspension, you must use info threads whenever the
debugger regains control, in order to see whether the system thread is present and,
if so, what its ID is currently.

9

9

Debugger

365

[Switching to task 0x3aa9d8 tFtpdTask]
#0 0x66454 in semBTake ()
(gdb) print/x $i0
$3 = 0x3bdb50

As in the display shown above, each time you switch threads the debugger
exhibits the newly current thread’s VxWorks task ID and task name.

Thread-Specific Breakpoints

In system mode, unqualified breakpoints (set with graphical controls on the
program-display window, or in the command panel with the break command and
a single argument) apply globally: any thread stops when it reaches such a
breakpoint. You can also set thread-specific breakpoints, so that only one thread
stops there.

To set a thread-specific breakpoint, append the word thread followed by a thread
ID to the break command. For example:

(gdb) break printf thread 2
Breakpoint 1 at 0x568b8
(gdb) cont
Continuing.
[Switching to task 0x3a4bd8 + tShell]

Breakpoint 1, 0x568b8 in printf ()

(gdb) i th
8 task 0x3b8ef0 tExcTask 0x9bfd0 in qJobGet ()
7 task 0x3b6580 tLogTask 0x9bfd0 in qJobGet ()
6 task 0x3b15b8 tNetTask 0x66454 in semBTake ()
5 task 0x3ade80 tRlogind 0x66454 in semBTake ()
4 task 0x3abf60 tTelnetd 0x66454 in semBTake ()
3 task 0x3aa9d8 tFtpdTask 0x66454 in semBTake ()

* 2 task 0x3a4bd8 + tShell 0x568b8 in printf ()
1 task 0x398688 tWdbTask 0x66454 in semBTake ()

(gdb) bt
#0 0x568b8 in printf ()
#1 0x4a108 in execShell ()
#2 0x49fe4 in shell ()

Internally, the debugger still gets control every time any thread encounters the
breakpoint; but if the thread ID is not the one you specified with the break
command, the debugger silently continues program execution without prompting
you.

Tornado 2.2

User’s Guide

366

Switching Threads Implicitly

Your program may not always suspend in the thread you expect. If any breakpoint
or other event (such as an exception) occurs while in system mode, in any thread,
the debugger gets control. Whenever the target system is stopped, the debugger
switches to the thread that was executing. If the new current thread is different
from the previous value, a message beginning “Switching to” shows what thread
suspended:

(gdb) thread 2
(gdb) cont
Continuing.
Interrupt...
Program received signal SIGINT, Interrupt.
[Switching to system +]

0x5b58 in wdbSuspendSystemHere ()

Whenever the debugger does not have control, you can interrupt the target system
by clicking on the interrupt button or by keying the interrupt character (usually
CTRL+C). This usually suspends the target in the system thread rather than in any
task.

When you step program execution (with any of the commands step, stepi, next, or
nexti, or the equivalent buttons or), the target resumes execution where it
left off, in the thread marked with + in the info threads display. However, in the
course of stepping that thread, other threads may begin executing. Hence, the
debugger may stop in another thread before the stepping command completes,
due to an event in that other thread.

9.5.3 Configuring VxWorks for System Mode Debugging

In order for system mode debugging to work properly, the items in Table 9-3 must
be set correctly.

! CAUTION: Because the thread ID for the system context is not constant, it is not
possible to set a breakpoint specific to system context. The only way to stop when
a breakpoint is encountered in system context is to use a non-task-specific
breakpoint.

9

9

Debugger

367

9.5.4 Tcl: Debugger Automation

CrossWind exploits Tcl at two levels: like other Tornado tools, it uses Tcl to build
the graphical interface, but it also includes a Tcl interpreter at the GDB command
level. This section discusses using the Tcl interpreter inside the CrossWind
enhanced GDB, at the command level.

Tcl has two major advantages over the other GDB macro facility (the define
command). First, Tcl provides control and looping (such as for, foreach, while, and
case). Second, Tcl procedures can take parameters. Tcl, building on the command
interface, extends the scripting facility of GDB to allow you to create new
commands.

Table 9-3 Definitions for System Mode Debugging

Define Required Value

#define WDB_COMM_TYPE WDB_SERIAL

#define WDB_MODE WDB_MODE_DUAL

#define INCLUDE_PC_CONSOLE

#define PC_CONSOLE

#define CONSOLE_TTY

#define NUM_TTY

#define WDB_TTY_CHANNEL

#define WDB_TTY_DEV_NAME

#define WDB_TTY_BAUD As appropriate.

NOTE: For information about using Tcl to customize the CrossWind GUI, see
9.6 Tcl: CrossWind Customization, p.374. The discussion in this section is mainly of
interest when you need complex debugger macros; you might want to skip this
section on first reading.

Tornado 2.2

User’s Guide

368

9.5.5 Tcl: A Simple Debugger Example

To submit commands to the Tcl interpreter within GDB from the command panel,
use the tcl command. For example:

(gdb) tcl info tclversion

This command reports which version of Tcl is integrated with GDB. All the text
passed as arguments to the tcl command (in this example, info tclversion) is
provided to the Tcl interpreter exactly as typed. Convenience variables (described
in GDB User’s Guide: Convenience Variables) are not expanded by GDB. However, Tcl
scripts can force GDB to evaluate their arguments; see 9.5.7 Tcl: Invoking GDB
Facilities, p.370.

You can also define Tcl procedures from the GDB command line. The following
example procedure, mld, calls the load command for each file in a list:

(gdb) tcl proc mload args {foreach obj $args {gdb load $obj}}

You can run the new procedure from the GDB command line; for example:

(gdb) tcl mload vxColor.o priTst.o

To avoid typing tcl every time, use the tclproc command to assign a new GDB
command name to the Tcl procedure. For example:

(gdb) tclproc mld mload

This command creates a new GDB command, mld. Now, instead of typing tcl
mload, you can run mld as follows:

(gdb) mld vxColor.o priTst.o

You can collect Tcl procedures in a file, and load them into the GDB Tcl interpreter
with this command:

(gdb) tcl source tclFile

If you develop a collection of Tcl procedures that you want to make available
automatically in all your debugging sessions, write them in the file
homeDir/.wind/gdb.tcl under your home directory. The GDB Tcl interpreter reads
this file when it begins executing. (See 9.6.1 Tcl: Debugger Initialization Files, p.375
for a discussion of how all the CrossWind and GDB initialization files interact.)

9

9

Debugger

369

9.5.6 Tcl: Specialized GDB Commands

The CrossWind version of GDB includes four commands to help you use Tcl. The
first two were discussed in the previous section. The commands are:

tcl command
Passes the remainder of the command line to the Tcl interpreter, without
attempting to evaluate any of the text as a GDB command.

tclproc gdbName TclName
Creates a GDB command gdbName that corresponds to a Tcl procedure name
TclName. GDB does not evaluate the arguments when gdbName is invoked; it
passes them to the named Tcl procedure just as they were entered.

tcldebug
Toggles Tcl debugging mode. Helps debug Tcl scripts that use GDB facilities.
When Tcl debugging is ON, all GDB commands or other GDB queries made by
the Tcl interpreter are printed.

tclerror
Toggles Tcl verbose error printing, to help debug Tcl scripts. When verbose
error mode is ON, the entire stack of error information maintained by the Tcl
interpreter appears when a Tcl error occurs that is not caught. Otherwise,
when verbose error mode is OFF, only the innermost error message is printed.
For example:

(gdb) tcl puts stdout [expr $x+2]
can’t read "x": no such variable

(gdb) tclerror
TCL verbose error reporting is ON.

(gdb) tcl puts stdout [expr $x+2]
can’t read "x": no such variable

while executing
"expr $x..."

invoked from within
"puts stdout [expr $x..."

NOTE: To execute tclproc commands automatically when GDB begins
executing, you can place them in .gdbinit directly (see GDB Initialization Files,
p.353), because tclproc is a GDB command rather than a Tcl command.
However, if you want to keep the tclproc definition together with supporting
Tcl code, you can exploit the gdb Tcl extension described in 9.5.7 Tcl: Invoking
GDB Facilities, p.370 to call gdb tclproc in homeDir/.wind/gdb.tcl.

Tornado 2.2

User’s Guide

370

Tcl also stores the error stack in a global variable, errorInfo. To see the error stack
when Tcl verbose error mode is OFF, examine this variable as follows:

(gdb) tcl $errorInfo

For more information about error handling in Tcl, see C.2.9 Tcl Error Handling,
p.448.

9.5.7 Tcl: Invoking GDB Facilities

You can access GDB facilities from Tcl scripts with the following Tcl extensions:

gdb arguments
Executes a GDB command (the converse of the GDB tcl command). Tcl
evaluates the arguments, performing all applicable substitutions, then
combines them (separated by spaces) into one string, which is passed to GDB’s
internal command interpreter for execution.

If the GDB command produces output, it is shown in the command panel.

If Tcl debugging is enabled (with tcldebug), the following message is printed:

execute: command

If the GDB command causes an error, the Tcl procedure gdb signals a Tcl error,
which causes unwinding if not caught (for information about unwinding, see
C.2.9 Tcl Error Handling, p.448).

gdbEvalScalar exprlist
Evaluates a list of expressions exprlist and returns a list of single integer values
(in hexadecimal), one for each element of exprlist.6 If an expression represents
a scalar value (such as int, long, or char), that value is returned. If an
expression represents a float or double, the fractional part is truncated. If an
expression represents an aggregate type, such as a structure or array, the
address of the indicated object is returned. Standard rules for Tcl argument
evaluation apply.

6. A more restricted form of this command, called gdbEvalAddress, can only evaluate a single
expression (constructed by concatenating all its arguments). gdbEvalAddress is only
supported to provide compatibility with Tcl debugger extensions written for an older
debugger, VxGDB. Use the more general gdbEvalScalar in new Tcl extensions.

9

9

Debugger

371

If Tcl debugging is enabled, the following message is printed for each
expression:

evaluate: expression

If an expression does not evaluate to an object that can be cast to pointer type,
an error message is printed, and gdbEvalScalar signals a Tcl error, which
unwinds the Tcl stack if not caught (see C.2.9 Tcl Error Handling, p.448 for
information about unwinding).

gdbFileAddrInfo fileName
Returns a Tcl list with four elements: the first source line number of fileName
that corresponds to generated object code, the last such line number, the lowest
object-code address from fileName in the target, and the highest object-code
address from fileName in the target. The argument fileName must be the source
file (.c, not .o) corresponding to code loaded in the target and in the debugger.

For example:

(gdb) tcl gdbFileAddrInfo vxColor.c
{239 1058 0x39e2d0 0x39fbfc}

gdbFileLineInfo fileName
Returns a Tcl list with as many elements as there are source lines of fileName
that correspond to generated object code. Each element of the list is itself a list
with three elements: the source-file line number, the beginning address of
object code for that line, and the ending address of object code for that line. The
argument fileName must be the source file (.c, not .o) of a file corresponding to
code loaded in the target and in the debugger.

For example:

(gdb) tcl gdbFileLineInfo vxColor.c
{239 0x39e2d0 0x39e2d4} {244 0x39e2d4 0x39e2ec} ...

gdbIORedirect inFile outFile [taskId]
Redirect target input to the file or device inFile, and target output and error
streams to the file or device outFile. If taskId is specified, redirect input and
output only for that task; otherwise, redirect global input and output. To leave
either input or output unchanged, specify the corresponding argument as a
dash (-). Ordinary pathnames indicate host files or devices; arguments with an
@ prefix indicate target files or devices. For target files, you may specify either
a path name or a numeric file descriptor.

Tornado 2.2

User’s Guide

372

For example, the following command redirects all target output (including
stderr) to host device /dev/ttyp2:

(gdb) tcl gdbIORedirect - /dev/ttyp2

The following command redirects input from task 0x3b7c7c to host device
/dev/ttyp2, and output from the same task to target file descriptor 13:

(gdb) tcl gdbIORedirect /dev/ttyp2 @13 0x3b7c7c

gdbIOClose
Close all file descriptors opened on the host by the most recent gdbIoRedirect
call.

gdbLocalsTags
Returns a list of names of local symbols for the current stack frame.

gdbStackFrameTags
Returns a list of names of the routines currently on the stack.

gdbSymbol integer
Translates integer, interpreted as a target address, into an offset from the
nearest target symbol. The display has the following format:

symbolName [+ Offset]

Offset is a decimal integer. If Offset is zero, it is not printed. For example:

(gdb) tcl puts stdout [gdbSymbol 0x20000]
floatInit+2276

If Tcl debugging is on, gdbSymbol prints the following message:

symbol: value

gdbSymbolExists symbolName
Returns 1 if the specified symbol exists in any loaded symbol table, or 0 if not.
You can use this command to test for the presence of a symbol without
generating error messages from GDB if the symbol does not exist. This
procedure cannot signal a Tcl error.

When Tcl debugging is on, gdbSymbolExists prints a message like the
following:

symbol exists: symbolName

9

9

Debugger

373

9.5.8 Tcl: A Linked-List Traversal Macro

This section shows a Tcl procedure to traverse a linked list, printing information
about each node.7 The example is tailored to a list where each node has the
following structure:

struct node
{
int data;
struct node *next;
}

A common method of list traversal in C is a for loop like the following:

for (pNode = pHead; pNode; pNode = pNode->next)
...

We imitate this code in Tcl, with the important difference that all Tcl data is in
strings, not pointers.

The argument to the Tcl procedure will be an expression (called head in our
procedure) representing the first node of the list.

Use gdbEvalScalar to convert the GDB expression for a pointer into a Tcl string:

set pNode [gdbEvalScalar "$head"]

To get the pointer to the next element in the list:

set pNode [gdbEvalScalar "((struct node *) $pNode)->next"]

Putting these lines together into a Tcl for loop, the procedure (in a form suitable for
a Tcl script file) looks like the following:

proc traverse head {
for {set pNode [gdbEvalScalar "$head"] } \

{$pNode} \
{set pNode [gdbEvalScalar "((struct node *)$pNode)->next"]} \

{puts stdout $pNode}
}

In the body of the loop, the Tcl command puts prints the address of the node.

To type the procedure directly into the command panel would require prefacing
the text above with the tcl command, and would require additional backslashes
(one at the end of every line).

7. Remember, though, that for interactive exploration of a list the structure browser
(Figure 9-12) described in CrossWind Buttons, p.344 is probably more convenient.

Tornado 2.2

User’s Guide

374

If pList is a variable of type (struct *node), you can execute:

(gdb) tcl traverse pList

The procedure displays the address of each node in the list. For a list with two
elements, the output would look something like the following:

0xffeb00
0xffea2c

It might be more useful to redefine the procedure body to print out the integer
member data, instead. For example, replace the last line with the following:

{puts stdout [format "data = %d" \
[gdbEvalScalar "((struct node *) $pNode)->data"]]}

You can bind a new GDB command to this Tcl procedure by using tclproc
(typically, in the same Tcl script file as the procedure definition):

tclproc traverse traverse

The traverse command can be abbreviated, like any GDB command. With these
definitions, you can type the following command:

(gdb) trav pList

The output now exhibits the contents of each node in the list:

data = 1
data = 2

9.6 Tcl: CrossWind Customization

Like every other Tornado tool, the CrossWind graphical user interface is “soft”
(amenable to customization) because it is written in Tcl, which is an interpreted
language. The online Tornado API Reference describes the graphical building blocks
available; you can also study the Tcl implementation of CrossWind itself. You can
find the source in host/resource/tcl/CrossWind.tcl.

9

9

Debugger

375

9.6.1 Tcl: Debugger Initialization Files

You can write Tcl code to customize the debugger’s graphical presentation in a file
called homeDir/.wind/crosswind.tcl. Use this file to collect your custom
modifications, or to incorporate shared customizations from a central repository of
Tcl extensions at your site.

Recall that the debugger uses two separate Tcl interpreters. Previous sections
described the .gdbinit and homeDir/.wind/gdb.tcl initialization files that initialize
the debugger command language (see 9.5.4 Tcl: Debugger Automation, p.367).

The following outline summarizes the role of all the CrossWind customization
files. The files are listed in the order in which they execute.

installDir/.wind/gdb.tcl
Use this file to customize the Tcl interpreter built into GDB itself (for example,
to define Tcl procedures for new GDB commands). This file is unique to the
CrossWind version of GDB. When issuing commands intended for GDB, you
must prepend them with gdb.

homeDir/.gdbinit
Use this file for any initialization you want to perform in GDB’s command
language rather than in Tcl. This file is not unique to CrossWind; it is shared by
any other GDB configuration you may install.

${PWD}/.gdbinit
Akin to the .gdbinit in your home directory, this file also contains commands
in GDB’s command language, and is not unique to the CrossWind
configuration of GDB. However, this file is specific to a particular working
directory; thus it may be an appropriate place to record application-specific
debugger settings.

homeDir/.wind/crosswind.tcl
Use this file to customize the debugger’s graphical presentation, using Tcl: for
example, to define new buttons or menu commands. This file is unique to the
CrossWind version of GDB.

You can prevent CrossWind from looking for the two .gdbinit files, if you choose,
by setting the internal GDB parameter inhibit-gdbinit to yes. Because the
initialization files execute in the order they are listed above, you have the
opportunity to set this parameter before the debugger reads either .gdbinit file. To
do this, insert the following line in your homeDir/.wind/gdb.tcl:

gdb set inhibit-gdbinit yes

Tornado 2.2

User’s Guide

376

9.6.2 Tcl: Passing Control between the Two CrossWind Interpreters

You can use the following specialized Tcl commands to pass control between the
two CrossWind Tcl interpreters.

uptcl
From the Tcl interpreter integrated with the GDB command parser, uptcl
executes the remainder of the line in the CrossWind graphical-interface Tcl
interpreter. uptcl does not return a result.

downtcl
From the graphical-interface layer, downtcl executes the remainder of the line
in the Tcl interpreter integrated with GDB. The result of downtcl is whatever
GDB output the command generates. Use downtcl rather than ttySend if your
goal is to capture the result for presentation in the graphical layer.

ttySend
From the graphical-interface layer, ttySend passes its string argument to GDB,
exactly as if you had typed the argument in the command panel. A newline is
not assumed; if you are writing a command and want it to be executed, include
the newline character (\n) at the end of the string. Use ttySend rather than
downtcl if your goal is to make information appear in the command panel
(this can be useful for providing information to other GDB prompts besides
the command prompt).

The major use of uptcl is to experiment with customizing or extending the
graphical interface. For example, if you have a file myXWind containing
experimental Tcl code for extending the interface, you can try it out by entering the
following in the command panel:

(gdb) tcl uptcl source myXWind

By contrast, downtcl and ttySend are likely to be embedded in Tcl procedures,
because (in conjunction with the commands discussed in 9.5.7 Tcl: Invoking GDB
Facilities, p.370) they are the path to debugger functionality from the graphical
front end.

Most of the examples in 9.6.3 Tcl: Experimenting with CrossWind Extensions, p.377,
below, center around calls to downtcl.

9

9

Debugger

377

9.6.3 Tcl: Experimenting with CrossWind Extensions

The examples in this section use the Tcl extensions summarized in Table 9-4. For
detailed descriptions of these and other Tornado graphical building blocks in Tcl,
see the online Tornado API Reference.

Tcl: “This” Buttons for C++

In C++ programs, one particular named value has great special interest: this,
which is a pointer to the object where the currently executing function is a member.

Example 9-1 defines two buttons related to this:

– A button, akin to the button, to display the address of this in the
command panel.

– A button, akin to the button, to launch a dedicated window that
monitors the value where this points.

The Tcl primitive catch is used in the second button definition in order to avoid
propagating error conditions (for instance, if the buttons are pressed with no code

Table 9-4 Tornado UI Tcl Extensions Used in Example 9-2.

Tcl Extension Description

dialogCreate Define the layout of a form (dialog box). Includes a list of all
graphical controls (such as buttons, text boxes, lists). The
description of each control ends with the name of a Tcl
callback used when the control is acted on.

dialogPost Display or update a named form (dialog).

dialogUnpost Remove a form (dialog) from the screen.

dialogGetValue Report the current value of a dialog graphical element (the
contents of a text box, or the current selection in a list).

noticePost Display a popup notice or a file selector.

menuButtonCreate Add a command to an existing menu.

toolBarItemCreate … button Add a new button (and associated command string) to the
button bar.

toolBarItemCreate … space Add space before new buttons in the button bar.

Tornado 2.2

User’s Guide

378

loaded) from GDB back to the controlling CrossWind session. This does not
prevent GDB from issuing the appropriate error messages to the command panel.

Example 9-1 Buttons for C++ this Pointer

Make a nice gap before new buttons

toolBarItemCreate " " space

BUTTON: "t" Print C++ "this" value.

toolBarItemCreate " t " button {
ttySend "print this\n"

}

BUTTON: "t*" Launch "inspect" window on current C++ class (*this)

toolBarItemCreate " t*" button {
catch {downtcl gdb display/W *this}

}

Tcl: A List Command for the File Menu

Example 9-2 illustrates how to add extensions to the CrossWind graphical
interface with a simple enhancement: adding a menu command to list the
displayed program source centered on a particular line.

In Example 9-2, the procedure xwindList uses downtcl to run the GDB list
command. To tie this into the graphical interface, the example adds a new
command List from… to the File menu. The new command displays a form
(described in the dialogCreate call) to collect input specifying an argument to the
list command. When input is complete, the form in turn runs xwindList, through
a call-back attached to its OK button. Figure 9-14 shows the new menu command
and form defined here (and the Example 9-3 menu command).

Example 9-2 List Command

FORM: a form to prompt for list argument
(part of "List from..." command addition to "File" menu)

dialogCreate "List from?" -size 290 100 {
{text "line spec:" -hspan}
{button "OK" -left 2 -right 48 -bottom .+5 xwindList}
{button "Dismiss" -left 52 -right 98 -bottom .+5
{dialogUnpost "List from?"}}

}

9

9

Debugger

379

MENU COMMAND: "List", additional entry under "File"

menuButtonCreate File "List from..." S {
dialogPost "List from?"

}

###
#
#
xwindList - procedure for "List" command in CrossWind "File" menu
#
This procedure sends a "list" command to GDB. It is intended to be
called from the "List from?" dialog (posted by the "Display" command
in the CrossWind "File" menu). Do not call it from other contexts;
it interacts with the dialog.
#
SYNOPSIS:
xwindList
#
RETURNS: N/A
#
ERRORS: N/A
#

proc xwindList {} {
set lspec [dialogGetValue "List from?" "line spec:"]
catch {downtcl gdb list $lspec}

gdb does not send back error indication,
but it does display any errors in command panel

dialogUnpost "List from?"
}

Figure 9-14 List Menu Command and Form Defined in Example 9-2

Tornado 2.2

User’s Guide

380

Tcl: An Add-Symbols Command for the File Menu

As explained in What Modules to Debug, p.354, you sometimes need to tell the
debugger explicitly to load symbols for modules that were downloaded to the
target using other programs (such as the shell).

Example 9-3 illustrates a File menu command Add Symbols to handle this through
the graphical user interface, instead of typing the add-symbol-file command.

Example 9-3 Add-Symbols Command

MENU COMMAND: "Add Symbols", additional entry under "File"

menuButtonCreate File "Add Symbols..." S { xwindAddSyms }

###
#
#
xwindAddSyms - called from File menu to add symbols from chosen object file
#
This routine implements the "Add Symbols" command in the File menu.
It prompts the user for a filename; if the user selects one, it tells
GDB to load symbols from that file.
#
SYNOPSIS:
xwindAddSyms
#
RETURNS: N/A
#
ERRORS: N/A
#

proc xwindAddSyms {} {
set result [noticePost fileselect "Symbols from file" Add "*.\[o|out\]"]
if {$result != ""} {

we violate good taste here by not capturing or testing the result
of catch, because GDB poats an error message in the command panel
when the file cannot be loaded.

catch {downtcl gdb add-symbol-file $result}
}

}

381

10
Building VxDCOM Applications

10.1 Introduction

This chapter describes the step-by-step process of creating and building VxDCOM
applications using Tornado. To more easily create VxDCOM applications, the basic
VxDCOM support includes the following tools:

an application wizard
Lets you easily generate skeleton code for a basic VxDCOM application,
without having to define CoClasses and interfaces in IDL (the Interface
Definition Language).

a C++ template class library
Facilitates writing client and server implementation code.

an IDL compiler
Compiles IDL file, generating the necessary proxy/stub and header files
required by VxDCOM.

For a detailed description of the VxDCOM technology, see the VxWorks
Programmer’s Guide: VxDCOM Applications.

Tornado 2.2

User’s Guide

382

10.2 The VxDCOM Development Process

VxDCOM clients and servers for VxWorks can be created either as bootable or
downloadable applications. The following step-by-step overview summarizes the
VxDCOM development process:

Step 1: Create a Bootable Image with VxDCOM Support

Build a VxWorks bootable image with VxDCOM support components. You will
need this image whether you are creating a bootable or a downloadable
application. This step is covered in Configuring a VxDCOM Bootable Image on p. 383.

Step 2: Configure Any DCOM Component Parameters

Optionally configure the parameters for the DCOM components. This step is
covered in Configuring the DCOM Parameters on p. 384.

Step 3: Generate Skeleton Project Files with the VxDCOM Wizard

Run the VxDCOM wizard from the command line. Use the wizard to define the
CoClass and interfaces, to choose the server model and client skeleton program.
This generates skeleton files for header prototypes, coclass definitions, interface
and library definitions, and so on. These steps are described in Using the VxDCOM
Wizard on p. 385.

Step 4: Implement the Server and Client

Complete the implementation of the server by editing the CoClass files to
implement the interface methods. These files also contains (auto-generated) code
to auto-register the server. This step is covered in the Implementing the Server and
Client on p. 396.

Step 5: Add the Files to Project and Build It

Choose a bootable or downloadable application model. You can use either the
project facility or the makefile, generated by the wizard, to build your application.
Build and link the application. This step is covered in Building and Linking the
Application on p. 397.

(a) Build the application.
(b) Ensure that it is correctly linked with proxy/stub code.
(c) Build the client program, if your project includes one.

10

10

Building VxDCOM Applications

383

Step 6: Register and Deploy Your VxDCOM Application

Deploy your application by registering the type library and setting the proper
configurations for server authentication. These steps, listed below, are described in
Registering, Deploying, and Running Your Application on p. 398.

(a) Register any necessary proxy DLLs on Windows.
(b) Register the type library.
(c) Register the server.
(d) Authenticate the server.
(e) Run the application and activate the server.

10.3 Configuring a VxDCOM Bootable Image

Whether you choose to create a bootable or downloadable client or server, you
need a VxWorks bootable image that contains a kernel and VxDCOM support. You
need such an image for all VxDCOM applications.

If you are creating a bootable application, add your VxDCOM application files to
the bootable system image. If you are creating a downloadable application, add
your VxDCOM files to this downloadable module. Then download that module to
the bootable system containing the VxDCOM support.

10.3.1 Adding VxDCOM Component Support

After you have created the kernel, add the appropriate VxDCOM support
components. Some components are required for all VxDCOM applications, some
are required only for DCOM, and some are optional, providing additional
functionality. This section describes VxDCOM support and when to add it to your
kernel.

Tornado 2.2

User’s Guide

384

COM Core Component

This component is called COM_CORE and provides support for C COM projects as
well as C++ COM and DCOM projects.

COM Support Component

The COM support component is required for all C++ COM and DCOM
applications.

DCOM Support Components

The DCOM and DCOM_PROXY support components are required for DCOM
applications. The DCOM component provides support for distributed COM. The
DCOM_PROXY component provides support for proxy/stub code. Both of these
components require the basic COM support, described above.

OPC Program Support

The DCOM_OPC support component is required if you are writing your own OPC
server. If you are using the VxOPC product it is not required. For more
information, see the VxWorks Programmer’s Guide: VxDCOM Applications.

ComShow Routines Support

The COM_SHOW support component is required only if you want to use the COM
show routines. Including this component adds diagnostic routines that may be
used to interrogate the registry held within the VxWorks run-time.

DCOMShow Routines Support

The DCOM_SHOW component is required only if you want to debug the VxDCOM
wire protocol. Including this component adds a significant overhead; therefore, it
should only be used at the request of Wind River Customer Support to provide
debug information. It should not be shipped as part of a production system.

10.3.2 Configuring the DCOM Parameters

If your application includes DCOM, you can optionally configure parameters for
this component. Change the parameter values from within the project facility by
selecting Properties from the popup menu on the appropriate binary component.

10

10

Building VxDCOM Applications

385

The DCOM parameter descriptions, their default values, and the value ranges are
described in VxWorks Programmer’s Guide: VxDCOM Applications.

10.4 Using the VxDCOM Wizard

The VxDCOM Wizard lets you generate a completely new VxDCOM project, or
import an existing COM or DCOM server. To run the wizard, type at the command
line:

% installDir/host/hostType/bin/torVars.bat
% comwizard projDir

where the projDir is the directory for your project. The files generated by the
wizard are generated in this directory. The directory name you type in is the
default name for your CoClass for new projects. You have an option to modify this
name in the wizard.

10.4.1 Choosing the Project Type

The first page of the VxDCOM wizard, shown in Figure 10-1,lets you choose the
project type.

The options are:

Create COM/DCOM Skeleton Project

Create skeleton files for a new COM or DCOM component. For details, see
Creating a COM/DCOM Skeleton Project on p. 386.

Import existing files into new Project

Create a project using existing COM application code. For details, see
Importing Existing Files into a New Project on p. 392.

Choose the type of project and click Next.

Tornado 2.2

User’s Guide

386

10.4.2 Creating a COM/DCOM Skeleton Project

If you are creating a new project, you simply specify your server type and
implementation language, and define your CoClass and interfaces using the
wizard GUI. You do not have to write then in IDL (Interface Definition Language);
nor do you have to write proxy/stub code.

From the information you enter, the wizard generates the primary IDL definition
file and the additional files appropriate to the server model and client program
selected. These output files are described in The Generated Output on p. 393.

Defining the CoClass

Figure 10-2 shows the CoClass Input dialog of the wizard. From this dialog you
define the CoClass by adding interface methods and parameters. This dialog
defaults to a CoClass named for the argument you passed to comwizard.

You can modify the name of the CoClass (or any items), by highlighting the item
and choosing Edit.

Figure 10-1 Choosing the VxDCOM Project Type

10

10

Building VxDCOM Applications

387

To define the CoClass, you add interfaces and interface methods, and you specify
parameter types for those methods. You typically do this in steps:

■ Add one or more interfaces to the CoClass.

■ For each interface, add one or more methods.

■ For each method, add one or more parameters, specifying the attribute and
type of each.

When your CoClass definition is complete, click Next.

Adding Items

To add an item, highlight the item and choose Add, as shown in Figure 10-3. This
opens the appropriate Add dialog. These dialogs let you enter names for new
interfaces, interface methods, or interface method parameters.

Figure 10-2 Defining the CoClass

Tornado 2.2

User’s Guide

388

Adding Method Parameters

When adding interface method parameters, you must also specify the attribute
and type of each parameter. As shown in Figure 10-4, edit boxes for the parameter
attribute and type appear with defaults. To change these, select the correct option
from the dropdown listboxes. Once you click Apply, your selections will appear in
the CoClass definition.

■ Method Parameter Attributes. When selecting interface method parameters, all
[out] parameters and [out] parameter combinations must be pointers. The
attribute options for these parameters are part of the IDL language and are
documented in the IDL reference section of the VxWorks Programmer’s Guide:
VxDCOM Applications.

■ Method Parameter Types. When selecting the data type of the interface method
parameter, the dropdown listbox displays a list of automation data types, as
shown in Figure 10-5. Using automation data types provides built-in
marshaling support under DCOM.

It is also possible to use non-automation types, however these are not available
from the VxDCOM wizard dialog and may require additional linking. If you need
to use non-automation data types, see the Adding Non-Automation Types, p.393.

Figure 10-3 Adding Interfaces

10

10

Building VxDCOM Applications

389

Figure 10-4 Adding Method Parameters

Figure 10-5 Method Parameter Data Types

Tornado 2.2

User’s Guide

390

The widl tool compiles both automation data types and non-automation data
types. The types compiled by widl are listed in the VxWorks Programmer’s Guide:
VxDCOM Applications.

Choosing CoClass Options

Once your CoClass definition is complete, clicking Next displays the CoClass
Options dialog of the wizard, shown in Figure 10-6. From this dialog you specify
the CoClass server model, implementation language, and any optional client
programs. Then click Next.

Server Models

Choose the Server Model for which you want to generate project files.

COM
A COM server model uses the COM technology entirely within the VxWorks
system. A COM server is limited to communication with a COM C or C++
client on the same VxWorks target. You can use COM components to design
object-oriented code based on the internal use of COM interfaces.

Figure 10-6 Choosing CoClass Options

10

10

Building VxDCOM Applications

391

DCOM
A DCOM server model uses a distributed, component-based system
(Distributed COM). DCOM extends the basic COM technology across process
and machine boundaries by using a client-server application-level protocol for
remote procedure calls. You can use a VxDCOM server, for example, to
connect the desktop PC with distributed objects over a network.

Language

Choose the language used to implement the server CoClass.

C++
This language can be used for either COM or DCOM applications.

C
This language can be used only for COM, not DCOM, applications.

Client Skeleton Programs

Depending upon the server model, you can select from among several client
application types. If you have a COM server, you can have only one C++ COM
client project. If you have a DCOM server, you can choose more than one client
program and clients of any type. Choosing a client program is optional.

C++ COM Client Program
The client must exist on the same VxWorks communication server as the
VxWorks COM server.

C++ DCOM Client Program
The DCOM client can reside on either a VxWorks target or on a PCs running
Windows NT. The communication server must be a VxWorks DCOM target
server. When a client is on a PC, or another target, the DCE network layer is
used. When the client is on a target, even though DCOM calls are made, it
detects that the client is on the same host, and uses COM instead.

Visual Basic DCOM Client Program
A Visual Basic client program (such as Excel Basic, Word Basic, Access Basic,
and so on) must reside on a PC running Windows NT. The client is written in
Visual Basic, and the communication server is a DCOM VxWorks target server.

Generating the Skeleton Files

The last dialog of the wizard, Project Creation, appears. Simply click Finish to
generate your project.

Tornado 2.2

User’s Guide

392

10.4.3 Importing Existing Files into a New Project

Porting Existing Applications

If you have an existing COM application, choose the option to Import existing files

into new Project and choose Next. This brings up the Import Existing Project dialog
shown in Figure 10-7.

The files to add are the .idl file, the server implementation file, and the CoClass
header file.

Editing IDL Files

If you wish to edit your .idl file by hand, you can refer to the VxWorks Programmer’s
Guide for details on the IDL file structure and the correct syntax for defining
elements in that file. Remember to specify an HRESULT as the return type for all
interface methods and to use automation data-types and directional attributes
appropriately for your interface parameters.

Figure 10-7 Adding Existing VxDCOM Files

10

10

Building VxDCOM Applications

393

If you do not use automation data types, refer to Adding Non-Automation Types,
p.393 below. As a guide for writing in these files you can use the wizard GUI
dialogs and wizard generated IDL files, and the CoMathDemo.idl file.

If for any reason you need to add additional interface definitions manually to the
auto-generated .idl file, for each additional interface you must:

■ Generate a new GUID (you can use the UUIDGEN utility to do this).

■ Specify this value as the [uuid] attribute of your interface.

Adding Non-Automation Types

If you are using non-automation data types, the simplest way to add them is to
generate all of the simple automation data types for the interface first using the
wizard, generate the skeleton code. Then edit the .idl file and server
implementation file by hand, adding the interface methods that could not be
added with the wizard because they use non-automation types.

If you are defining interface methods that use non-automation types, you would
not use the [oleautomation] attribute in your interface definition.

For more information on IDL, see the Microsoft documentation. Be aware that
some of that information applies only to RPC interfaces and not to COM interfaces.

10.5 The Generated Output

The wizard generates output files in several subdirectories of your project name
directory referred to here as basename. The content of those directories differs
depending upon the options you selected in the wizard.

Output Directories

When the wizard finishes running it generates output files and creates 2
directories, which are:

■ basename
■ basename/Client

Tornado 2.2

User’s Guide

394

Subsequent sections describe the additional files that appear in these two
directories. Depending upon the type of server and client you selected in the
wizard, the content of these directories differs.

Project Work Files

These are the primary files to identify for working with your project. You can use
these files to write code, compile, edit, or browse. Some are used for compiling,
linking, building, and deployment of your application.

Makefile
The makefile used for building the project from the command line. Using this
file is the default method for building the downloadable module. For details,
see 10.7 Building and Linking the Application, p.397.

basename.idl
This is the IDL file, identified by the .idl extension. This file is automatically
compiled by widl when you build your Tornado project.

basenameImpl.cpp
This is the CoClass implementation file for your server, identified by the
Impl.cpp extension. This is the file in which you implement the interface
methods of your server CoClass.

basenameImpl.h
This is the CoClass header file, identified by the Impl.h extension. This file
contains definitions and prototypes generated from the items you defined in
the wizard.

Client/basenameClient.cpp
This is the skeleton implementation file for your client if you choose COM as
your server and client model. It is identified by the Client.cpp extension. You
edit this file to add client code to activate the COM server.

Client/basenameDCOMClient.cpp
This is the skeleton implementation file for your DCOM client application. It
is identified by the DCOMClient.cpp extension. You edit this file to add client
code to activate the DCOM server.

Client/basename.rgs (DCOM -only)
This is the registry-script file, identified by the .rgs extension. This file is used
by the VxDCOM build tools to register the CoClass after it has been built. It is
generated only when the DCOM server is selected. You only need to edit this

10

10

Building VxDCOM Applications

395

file if you are writing a DCOM application, in which case you modify the
‘vxworks.target’ entry.

Client/nmakefile (C++ Client only)
This is the host-side (client) makefile, always generated as nmakefile. It is
used (with nmake) to build the MFC client application for Win32 or for
VxWorks.

Server Output Files

The COM and DCOM server files differ only in the proxy stub code file used for
marshaling.

COM Server Output

These are the files output to the basename directory for a COM server application.

■ basename.h
■ basename.idl
■ basenameImpl.cpp
■ basenameImpl.h
■ basename_i.c

DCOM Server Output

These are the files output to the basename directory for a COM server application.

■ basename.h
■ basename.idl
■ basenameImpl.cpp
■ basenameImpl.h
■ basename_i.c
■ basename_ps.cpp

This file is output to the basename/Client directory, whether or not a client type is
selected from the wizard:

■ basename.rgs file

Tornado 2.2

User’s Guide

396

Client Output Files

If you selected more than one client program with your server choice, then all files
necessary for each client are output into the basename/Client directory. Remember
that, for DCOM server projects, the basename/Client directory also contains the
basename.rgs file. However, this file is only used by DCOM clients to register the
type library.

COM Client Output

For a COM client, the following files are generated in the Client directory:

■ basenameClient.cpp

DCOM C++ Client Output

For a DCOM C++ client, the following files are generated in the Client directory:

■ basenameDCOMClient.cpp

■ nmakefile

DCOM Visual Basic Client Output

For a DCOM Visual Basic client, the following files are generated in the Client
directory:

■ basenameClient.bas

10.6 Implementing the Server and Client

Once your system is created, you are ready to implement your CoClass methods
for the server component and write the code for any client programs.

■ COM server code in the implementation file basenameImpl.cpp, located in
your project directory.

■ COM client code in the implementation files, which are either
basenameClient.cpp for a C++ COM client, or basenameDCOMClient.cpp for a
C++ DCOM client. The client implementation files are located in the /Client
subdirectory of your project directory.

10

10

Building VxDCOM Applications

397

The VxWorks Programmer’s Guide: VxDCOM Applications describes this process.
That chapter includes a reference for WOTL, the C++ template library used to
write VxDCOM applications. It also covers the topics of using real-time extensions,
adding OPC interfaces, working with HRESULT return values, and details of the
SAFEARRAY types supported under VxDCOM.

10.7 Building and Linking the Application

Add the appropriate files, generated by the wizard, to your project. These files
include the implementation code for the server and client. If you are creating a
bootable application, add the files to the bootable system image. If you are creating
a downloadable application, add the files to a downloadable module, ensuring
that the module is downloaded to a bootable system containing the required
VxDCOM support for you application.

Then, build the project. Although you can use the project facility from the IDE to
build, the recommended method is to use the wizard-generated Makefile from the
command line. The generated Makefile automatically runs widl. If you are
building from the project facility, you must run widl manually. Running widl
generates the proxy/stub code, the identification GUIDs, and the interface header
prototypes. The build process also links the proxy/stub code.

Linking Proxy/Stub Code

The proxy/stub components generated by widl are required for the marshaling
method used to remotely invoke interface methods across task boundaries.1 In
order for your application to use marshaling, server and client code must be linked
with proxy/stub code. The proxy/stub code source file is basename_ps.cpp and the
derived object file is basename_ps.o. You will find these in the workspace under
each client and server component. The proxy/stub code is automatically linked to
your client and server components when the system is built in the IDE.

On an NT machine, proxy/stub code is not required for automation data types.

1. Win32 uses type library based marshaling. VxDCOM generates custom marshaling code
that is linked into the object module.

Tornado 2.2

User’s Guide

398

Building the Win32 Client

To build the client application for Win32, be sure that you have Visual C++
installed with the path to nmake configured in the command shell. Then, from the
command line, run:

nmake -f nmakefile

10.8 Registering, Deploying, and Running Your Application

This section describes registering proxy DLLs, the type library, and the server,
authenticating and activating the server.

10.8.1 Registering Proxy DLLs on Windows

If your project uses non-automation types, you must register the proxy DLLs on
Windows.

Typically, when you define your interface you use automation data types. These
are the types you can select from the VxDCOM wizard for your interface method
parameters. When you use these types, the parameters are defined by the
[oleautomation] attribute, to indicate that they are automation types. This signals
to the Win32 Automation Marshaler that no extra Win32 proxy/stub DLLs are
required because the marshaling of these types is handled automatically.

However, if your project requires non-automation types then you cannot specify
the [oleautomation] attribute nor automate the marshaling of the parameter types.
For interfaces that use non-automation types, you must generate and install your
own Win32 proxy/stub DLLs. The DLL containing the interface proxy must be
distributed with all client applications that use that new interface.

The specific non-automation types that widl can compile are described in the
VxWorks Programmer’s Guide: VxDCOM Applications.

The details of generating Win32 proxy/stub DLLs is outside of the scope of this
document. Please refer to the Win32SDK MIDL documentation for details.

10

10

Building VxDCOM Applications

399

10.8.2 Register the Type Library

The type library is a binary file with a .tlb extension, that stores information about
a DCOM object's properties and methods in a form that is accessible to other
applications at run time. Windows’ client applications use a type library to
determine which interfaces an object supports and how to invoke the interface
methods. For this reason, the type library must be registered. To register the type
library, run installDir\host\x86-win32\bin\vxreg32.exe. This command adds the
type library to the Windows Registry at its current location, so that the object can
be accessed from the Windows host. If you add interfaces to the IDL file, the type
library must also be re-registered so that the interface becomes known to the
Windows Automation Marshaler.

The registry will contain an entry called ‘vxworks.target’ that needs to be modified
to point to the actual target, so that it is available from, for example, Visual Basic.
There are two ways to change the target machine entry and register the type
library:

■ Edit the basename.rgs file (generated by the wizard) by changing the
‘vxworks.target’ entry to the target IP address, and then run vxreg32 as
described above.

■ Run vxreg32 first, and then change the Windows registry entry for the target
by opening up DCOMCNFG and using that tool to change the location.

10.8.3 Registering the Server

You must register your DCOM server classes in the VxWorks COM registry, so that
client applications can locate them. There is one server-class per object-module.
The object-module contains the server-class code, the proxy/stub code, and a
registration object. This registration object registers the server-class with the
VxWorks Registry when its constructor runs, guaranteeing that modules are
automatically registered, regardless of whether they are pre-linked or
downloaded. This auto-registration process does not rely on constructor ordering
and can, thus, be safely performed at any point during system initialization.

To automatically register a DCOM server at load time or system startup, include
the AUTOREGISTER_COCLASS macro in the CoClass implementation file. This
will create an entry for the class in the VxWorks COM registry.
AUTOREGISTER_COCLASS associates the CoClass with its CLSID, and registers
the module name in the VxRegistry against its CLSID.

Tornado 2.2

User’s Guide

400

This macro is automatically included when the skeleton implementation file is
generated. Thus, you do not need to add the macro code yourself (unless you work
with files that were not auto-generated.)

The AUTOREGISTER_COCLASS macro takes three arguments: the server
implementation CoClass, priority-scheme, and the default priority. The priority
parameters are used as part of the real-time extension priority schemes, and are
discussed in the VxWorks AE Programmer’s Guide: Writing COM and DCOM Clients
and Servers.

10.8.4 Authenticating the Server

The DCOM registry under VxWorks is not the complex, multi-purpose registry
that Win32 supports, but is designed specifically for that purpose of:

■ Allowing COM server classes to register their CLSIDs (class-IDs).

■ Providing a link to an instantiation procedure, given that CLSID.

■ Determining the correct proxy/stub configuration for any given interface,
given its IID (unique identifier).

Therefore, the VxWorks registry works on a simple associative lookup method,
keyed by the interface and class identifiers. The value that can be stored in the
registry-entry is simply a string, which is used by various internal functions to look
up proxy/stub classes, system-provided objects (such as the standard marshaler),
and other objects identified by these values.

VxWorks also exposes non-Win32-compliant API calls to provide access to this
registry. However, user/application code does not need to use these APIs, since
widl automatically generates the code for registration of server-classes.

VxDCOM can participate in the basic NTLM authentication procedures when
acting as a server, but not as a client. It can recognize incoming authentication
requests from NT and correctly take part in the challenge/response transaction,
but by default will not take any action based upon those transactions. Future
versions of VxDCOM may more fully support the NTLM security system
depending upon NT domain security, network trusts, and so on. However, for now
the safest and most predictable approach is to disable client-side security by using
either the registry/DCOMCNFG tool or by calling CoInitializeSecurity().

10

10

Building VxDCOM Applications

401

10.8.5 Activating the Server

After you have completed these steps you can run your program. See the VxWorks
Programmer’s Guide: VxDCOM Applications for descriptions of the MathDemo
program client code, which activates the demo server component.

All VxDCOM threads must be created with VX_FP_TASK.

Tornado 2.2

User’s Guide

402

403

11
Customization

11.1 Introduction

Tornado allows you to customize certain tools in the Project window and to add
menu entries for other tools you may wish to use. Clicking Tools>Options in the
Project window displays a command to customize download options and version
control tool usage. The Tools>Customize opens a dialog box for adding menu items.

11.2 Setting Download Options

The Download page provides options for handling symbols when objects are
downloaded to the target (Figure 11-1).

The options are as follows:

System Symbol Table

The system symbol table offers two check box options:

LOAD_LOCAL_SYMBOLS

Only local symbols are added to the system symbol table

LOAD_GLOBAL_SYMBOLS (default)
Only external symbols are added to the system symbol table

Tornado 2.2

User’s Guide

404

In order to obtain the other symbol options, you can:

■ Check nothing, the equivalent of LOAD_NO_SYMBOLS, which adds no
symbols to the system symbol table.

■ Check both boxes, the equivalent of LOAD_ALL_SYMBOLS, which adds all
symbols to the system symbol table.

Common Symbol Resolution

The common symbol resolution options are mutually exclusive.

LOAD_COMMON_MATCH_NONE

Allocate common symbols, but do not search for any matching symbols
(the default)

LOAD_COMMON_MATCH_USER

Allocate common symbols, but search for matching symbols in
user-loaded modules

LOAD_COMMON_MATCH_ALL (default)
Allocate common symbols, but search for matching symbols in
user-loaded modules and the target-system core file

C++ Constructors

The C++ constructors options are mutually exclusive:

LOAD_CPLUS_XTOR_AUTO (default)
C++ ctors/dtors management is explicitly turned on

Figure 11-1 Download Page

11

11

Customization

405

LOAD_CPLUS_XTOR_MANUAL

C++ ctors/dtors management is explicitly turned off

Miscellaneous

LOAD_HIDDEN_MODULE (default is not set)
Load the module but make it invisible to WTX_MSG_MODULE_LIST

The Set Defaults buttons resets the options to their defaults.

See Help>Manuals Contents>Tornado API Reference>WTX Protocol>
WTX>WTX_OBJ_MODULE_LOAD for more information about these options.

11.3 Setting Project Options

Select Options in the Tools menu, then click Projects to specify certain project
attributes. The Projects page is shown in Figure 11-2.

! WARNING: The first time you start Tornado, you must open the
Tools>Options>Download tab and set the defaults. Otherwise you may receive
unexpected results.

Figure 11-2 Projects Page

Tornado 2.2

User’s Guide

406

The following choices are available on the Projects page:

Enable extended Build Options

Checking the Enable extended Build Options box causes Standard BSP Builds to be
added to the Build tab. For more information on command-line builds, see
5. Command-Line Configuration and Build.

Component Properties

Checking the Show advanced component properties box adds the Definition tab to
the component property window. The Definition page shows the internal
schema and attributes for the component. This may be helpful for authoring or
debugging components.

Build Environment Variables

The Build Environment Variables section displays two environment variables,
WIND_SOURCE_BASE and WIND_PROJ_BASE, that provide flexibility in
locating and sharing project files. In most cases these variables are not needed.
For information on when you might need them and how to use them, see
Sub-Projects, p.106.

For example, using Tornado 1.0.1-style Build menu customizations, you can add a
command that compiles the default make target in the same directory as the file
currently open or selected in the Project tool. Use the $filepath macro in Working

Directory and leaving Build Target blank in the Customize Builds dialog box.

11.4 Setting Version Control Options

If your organization uses a source-control (sometimes called configuration
management) system to manage changes to source code, you probably need to
execute a command to “check out” a file before you can make changes to it. Select
Options in the Tools menu, then click Version Control to create commands to
automatically check out or check in an open file using your version control system
(Figure 11-3).

11

11

Customization

407

The following choices are available on the Version Control page:

Checkin

The Checkin text box allows you to enter the command that checks a file in to
your version control system. The button at the end of the box opens a pop-up
menu which has a Browse item to help you locate the command and macros to
provide the Tornado context (see Table 11-1).

Checkout

The Checkout text box allows you to enter the command that checks a file out
of your version control system. The button at the end of the box opens a
pop-up menu which has a Browse item to help you locate the command and
macros to provide the Tornado context (see Table 11-1).

Figure 11-3 Version Control Page

Table 11-1 Macros for Version Control

Menu Entry Macro Description Example

File name $filename Name of the active file, without path
information.

zap.c

Comment $comment Prompt for a checkin or checkout
comment; any parameter needed by the
tool can also be entered.

See Figure 11-4.

Tornado 2.2

User’s Guide

408

Defaults

Selecting an item from the Defaults drop-down list box automatically fills in the
appropriate commands for the selected version control system.

Commands created with the Checkin and Checkout text boxes appear on the pop-up
menu accessed by right-clicking on the source file in the Tornado Editor window or
the Project window.

11.5 Installation and Licenses

Press the Reconfigure Licensing button to launch the Tornado SETUP program. You
can change the license settings that you specified from SETUP when you installed
Tornado.

Figure 11-4 Modify Comment Window

NOTE: If you use Visual SourceSafe as your version control system, you must also
have “Assume project based on working folder” checked in SourceSafe. This is not
the default, but it affects only command-line SourceSafe use. Go to SourceSafe
Explorer, Tools->Options->Command Line Options, check this option, and exit
SourceSafe Explorer: the change does not take effect until you exit SourceSafe
Explorer.

11

11

Customization

409

11.6 Customizing the Tools Menu

You can add entries to the Tools menu to allow easy access to additional tools.
Before you add any commands in this part of the menu, Tornado displays the
placeholder No Custom Tools as a disabled menu entry. The Customize command in
the Tools menu allows you to add (or remove) entries at the end of the Tools menu.

11.6.1 The Customize Tools Dialog Box

Click Tools>Customize to open the Customize Tools dialog box (Figure 11-6).

The Menu Contents list box in the Customize Tools dialog box shows all custom
commands currently in the Tools menu. When you select any item in this list, you
can edit its attributes in the three text boxes near the bottom of the dialog box.

Figure 11-5 Installation and Licenses Page

Tornado 2.2

User’s Guide

410

The Customize Tools dialog box has the following buttons:

Add

Activates the list and check boxes at the bottom of the Customize Tools dialog
box and enters New Tool in the Menu Text list box. Replace New Tool with the
command description; when you click OK, the new menu item appears in the
Tools menu.

Remove

Deletes the selected menu item from the Tools menu.

Move Up

Moves the selected menu item up one line in the Menu Contents list box and
changes the displayed order on the Tools menu.

Move Down

Moves the selected menu item down one line in the Menu Contents list box and
changes the displayed order on the Tools menu.

OK

Applies your changes to the Tools menu.

Cancel

Discards your changes without modifying the Tools menu.

Figure 11-6 Customize Tools Dialog Box

11

11

Customization

411

The three text boxes near the bottom of the Customize Tools dialog box allow you to
specify or change the attributes of a custom command.

Menu Text

Contains the name of the custom command, as it appears in the Tools menu.

Tool Command

Specifies the instructions to execute your command. You can place anything
here that you could execute at the command prompt or in a batch file. Click the
button at the right of the box to see a pop-up menu including a browse option
and a list of macros which allow you to capture Tornado context in your
commands. See Macros for Customized Menu Commands, p.412 for explanations
of these macros.

Working Directory

Use this field to specify where (in what directory) to run the custom command.
You can edit the directory name in place, or click the button at the right of this
field to bring up a menu similar to the Tool Command menu. It includes a
directory browser where you can search for the right directory and the same
list of macros. To use the Tornado working directory, leave this field blank.

At the bottom of the Customize Tools dialog box are the following check boxes:

Prompt for Arguments

When this box is checked, Tornado prompts for command arguments using a
dialog box, when you click the new command. The command line is displayed
in a window where you can add additional information. (See Figure 11-7.)

Redirect to Child Window

When this box is checked, Tornado redirects the output of your command to a
child window—a window contained within the Tornado application window.
Otherwise, the command runs independently, either as a console application
or a Windows application.

Figure 11-7 Command Line Arguments Dialog Box

Tornado 2.2

User’s Guide

412

Close Window On Exit

When this box is checked, Tornado closes the window associated with your
tool when the command is done. This only applies when you also check the
Redirect to Child Window box to redirect command output to a child window.

Macros for Customized Menu Commands

The pop-up menu opened by the buttons to the right of the text boxes provides
several macros for your use in custom menu commands. These macros allow you
to write custom commands that are sensitive to the context in the editor, or to the
global Tornado context. For example, there are macros for the full path of the file
in the active editor window, and for useful fragments of that file’s name. Table 11-2
lists macros for editor context; in this table, the phrase active file refers to the file that
is currently selected in the project facility.

Table 11-3 lists macros for the project facility context.

Table 11-2 Menu-Customization Macros for Editor Context

Menu Entry Macro Description Example

File path $filepath Full path to the active file. /usr/xeno/zap.c

Dir name $filedir Directory containing the active file. /usr/xeno

File name $filename Name of the active file, without path
information.

zap.c

Base name $basename Name of the active file, without the file
extension.

zap

Table 11-3 Menu-Customization Macros for Project Context

Menu Entry Macro Description Example

Project dir $projdir The name of the
directory of the
current project.

/usr/xeno/proj/widget

Project

build dir

$builddir The name of the
directory for the
current build of the
current project.

/usr/xeno/proj/widget/default

11

11

Customization

413

Table 11-4 lists macros for the global Tornado context.

11.6.2 Examples of Tools Menu Customization

When creating a menu command be sure to check Redirect to Child Window for all
applications that do not automatically open their own shell or window. Otherwise
the command will attempt to run in the window that launched Tornado, if that
window is still open. Thus an editor or version control command should be
redirected, but a call to a browser need not be.

Derived

object

$derivedobj The name of the
derived object of the
currently selected
source file in the
current project.

/usr/xeno/proj/widget/default/zap.o

Table 11-4 Menu-Customization Macros for Global Context

Menu Entry Macro Description Example

Target

name

$targetName The full name of the target server
selected in the Tornado Launch

toolbar.

vxsim@ontario

Target $target The name of the target selected in the
Tornado Launch toolbar.

vxsim

Tornado

inst. dir

$wind_base Installation directory recorded in the
environment variable WIND_BASE.

/usr/wind

Tornado

host type

$wind_host_type Host type recorded in the
environment variable
WIND_HOST_TYPE.

sun4-solaris2

Tornado

registry

$wind_registry Registry recorded in the
environment variable
WIND_REGISTRY

mars

Table 11-3 Menu-Customization Macros for Project Context (Continued)

Menu Entry Macro Description Example

Tornado 2.2

User’s Guide

414

Version Control

This example illustrates how to use the Customize Tools dialog box to add an
Uncheckout command to the Tools menu: the command cancels the checkout of
whatever file is currently open in Tornado (that is, the file visible in the current
editor window). Figure 11-8 illustrates the specification for a ClearCase command
to uncheckout a module.

The Menu Text entry indicates that the command unchecks out a file, but is not
specific to any particular file. The Tool Command field uses the $filepath macro
(Macros for Customized Menu Commands, p.412) to expand the current file to its full
path name.

In this example, the Prompt for Arguments and Redirect to Child Window boxes are
checked. When the new Uncheckout command in the Tools menu is executed, the
predefined argument list appears as a default in a dialog box (shown in
Figure 11-9), to permit specifying other arguments if necessary.

Figure 11-8 Uncheckout Command for Tools Menu

Figure 11-9 Prompt for Arguments Dialog Box

11

11

Customization

415

Alternate Editor

Figure 11-10 illustrates the specification for a command to run the UNIX vi editor
on the file that is currently open in Tornado. The Menu Text contains a useful name,
while the Tool Command field uses the actual execution command and $filepath to
identify the current file. In this case, Prompt for Arguments is not checked; thus the
editor runs immediately. Again, Redirect to Child Window is checked so that the
editor will open in a new window.

Binary Utilities

Tornado includes a suite of software-development utilities described in the GNU
ToolKit User’s Guide: The GNU Binary Utilities. If you execute any of these utilities
frequently, it may be convenient to define commands in the Tools menu for that
purpose.

Figure 11-11 illustrates the specification for a command to run the sizearch utility,
which lists the size of each section of an object module for target architecture arch.
In this example, the Tool Command field constructs the path and name of the object
file generated from the current source file using
$filedir/SIMSPARCSOLARISgnu/$basename. The Working Directory field is filled in
using the browse option to locate the appropriate version of sizearch in the correct
directory.

Figure 11-10 Custom Editor Command for Tools Menu

Tornado 2.2

User’s Guide

416

World Wide Web

You can add a Tools command to link your Web browser directly to announcements
from Wind River (and to related Internet resources). Figure 11-12 shows the
specification for a Wind River Web Page command. (For a description of the
information available on the Wind River home page, see 1.6 Customer Services,
p.12.

Tornado itself does not include a Web browser. If you do not have a Web browser,
or your system does not have direct Internet access, ignore this example; it
provides convenient access to information, but no essential functionality.

Figure 11-11 Object-Module Size Command for Tools Menu

Figure 11-12 Web Browser Command for Tools Menu

11

11

Customization

417

11.7 Alternate Default Editor

In order to use an editor other than the default you must set the environment
variable EDITOR to the command name. In order to use some other window
besides xterm in which to execute a build, set the WIND_BUILDTOOL environment
variable to that command.

Example 11-1 Configuring emacs For Editing and Building

To use emacs as your default editor and build tool requires two steps:

(1) Set the Tornado environment variables as follows:

EDITOR='gnuclient -q'
WIND_BUILDTOOL='gnudoit -q'

(2) Add these lines to your .emacs file if they are not already present:

;set up server mode
(setq gnuserv-frame (selected-frame))
(gnuserve-start)

You can also add emacs to the Tools menu as described in Alternate Editor, p.415.
You will still need to perform Step (2) in order to be able to call emacs from the
menu.

11.8 Tcl Customization Files

When Tornado begins executing, it checks for initialization files of the form
.wind/filename.tcl in two places: first under installDir (that is, in the directory
specified by the WIND_BASE environment variable), and then in the directory
specified by the HOME environment variable (if that environment variable is
defined). If any files are found, their contents are sourced as Tcl code when
Tornado starts.

Tornado Initialization

The Tornado.tcl file allows you to customize the Tools menu and tool bar, as well
as other elements of the Tornado window. For example, you can have your own
dialog box appear based on a menu item you add to any menu. For more

Tornado 2.2

User’s Guide

418

information about the Tcl customization facilities available, see the Tornado API
Programmer’s Guide or the online Tornado API Reference.

HTML Help Initialization

The windHelp.tcl file allows you to specify a different HTML browser. The default
is NetScape Communicator. To change the default, create windHelp.tcl with the
following contents:

set htmlBrowser "newbrowser -install"

419

Appendices

Tornado 2.2

User’s Guide (UNIX)

420

421

A
Directories and Files

A.1 Introduction

All Wind River products are designed to install in a single coordinated directory
tree. The directory root is shown as installDir in our documentation. The overall
layout of the tree segregates files meant for the development host (such as the
compilers and debugging tools), files for the target system (such as VxWorks, BSPs,
and configuration files), and files that perform other functions (Table A-1).

Table A-1 Contents of the Installation Directory

Directory/File Description

.wind Directory for customization files and files that capture Tornado
application state. Described in.A.4 Initialization and State-Information
Files, p.432

LICENSE.TXT Text of Wind River License agreement. This is a plain-text file that you
can examine with any editor.

README.TXT Last-minute information about the current Tornado release. This is a
plain-text file that you can examine with any editor.

SETUP Directory of SETUP program, including the DOCS subdirectory where
PDF versions of documentation are located.

docs Directory of online documentation in HTML format.

host Directory of host-resident tools and associated files. Described in more
detail in A.2 Host Directories and Files, p.422.

lmEnvVar.txt Records license manager information from installation.

Tornado 2.2

User’s Guide

422

A.2 Host Directories and Files

Table A-2 is a summary and description of the Tornado directories and files below
the top-level host directory.

man Directory of man page-style reference entries for VxWorks.

share Directory of protocol definitions shared by both host and target
software.

target Directory of VxWorks target-resident software and associated files.
Described in more detail in A.3 Target Directories and Files, p.424.

setup.log Log file for SETUP program. This is a plain-text file that you can
examine with any editor.

Table A-2 installDir/host

Directory/File Description

include Directory containing header files for the Tornado tools.

host-os Host-specific directory to permit Tornado installations for
multiple hosts to be installed in a single tree, and share files in
other directories.

host-os/bin Directory containing executables for the Tornado tools (both
interactive tools and the GNU ToolKit binaries) on a particular
host. This directory must be on your execution path to use
Tornado conveniently.

host-os/include Directory containing OS-specific header files.

host-os/jre118 Directory containing Java Runtime Environment-related files.

Table A-1 Contents of the Installation Directory (Continued)

Directory/File Description

A

A

Directories and Files

423

host-os/lib Directory containing both static libraries (libname.a) and shared
libraries (name.sl) for the interactive Tornado tools.
Subdirectories include backend (implementing the
communications back ends available to the target server) and
gcc-lib (containing the separate programs called by the GNU
compiler driver).

host-os/host-type Routines and scripts required by the host machine.

host-os/x-wrs-vxworks Directory containing component programs and libraries for the
GNU ToolKit configured for architecture x.

java Directory containing various .jar files.

resource Directory containing host-independent supporting files for the
Tornado interactive tools.

resource/X11 A directory subtree containing data files and directories (such as
font definitions, printer descriptions, and color definitions)
related to the X Window System.

resource/app-defaults Directory containing default X resource definitions for the
Tornado interactive tools.

resource/bitmaps Directory containing icons, button definitions, and
busy-animation sequences for the Tornado tools.

resource/doctools Directory containing tools for creating reference entries from
source code.

resource/help Directory containing online help.

resource/loader Directory containing object-module format information for the
Tornado dynamic linker.

resource/synopsis Directory containing entries that support WindSh command
completion and look-up.

resource/target Directory containing the target information database.

resource/tcl Directory containing Tcl source code for the Tornado tools,
including sub-directories with dialog descriptions and other
definitions for each tool.

resource/test Directory containing tests for the WTX protocol.

Table A-2 installDir/host (Continued)

Directory/File Description

Tornado 2.2

User’s Guide

424

A.3 Target Directories and Files

Table A-3 is a summary and description of the Tornado directories and files below
the top-level target directory.

resource/userlock Global authorization file for Tornado users.

resource/vxdcom Directory containing VxDCOM images and template.

resource/wdb Mappings for WDB protocol extensions.

resource/wind_host_type Returns the host type of the host to facilitate setting the
environment variable WIND_HOST_TYPE.

src Directory containing source for host utilities and examples,
including demo (VxWorks sample programs) and windview
(WindView and triggering sample programs).

tcl Directory containing the standard Tcl and Tk distribution.

Table A-3 installDir/target

Directory File Description

config Directory containing files used to configure and
build particular VxWorks systems. It includes
system-dependent modules and some
user-alterable modules. These files are
organized into several subdirectories: the
subdirectory all, which contains modules
common to all implementations of VxWorks
(system-independent modules), and a
subdirectory for each port of VxWorks to
specific target hardware (system-dependent
modules).

Table A-2 installDir/host (Continued)

Directory/File Description

A

A

Directories and Files

425

config/all Subdirectory containing system configuration
modules. Note that this method of configuration can
be replaced by the project facility (see 4. Projects).

bootInit.c System-independent boot ROM facilities.

configAll.h Generic header file used to define configuration
parameters common to all targets.

usrConfig.c,
bootConfig.c

Source of the configuration module for a
VxWorks development system (usrConfig.c),
and a configuration module for the VxWorks
boot ROM (bootConfig.c).

config/bspname Directory containing system-dependent
modules for each port of VxWorks to a
particular target CPU. Each of these directories
includes the files listed below. In addition,
drivers specific to each BSP are located here. See
4.4.4 Selecting the VxWorks Image Type, p.143.

00bsp.cdf Project facility configuration file that overrides
the generic BSP components in
comps/vxWorks/00bsp.cdf with BSP-specific
versions of components and parameters.

00html.cdf Project facility configuration file for HTML.

Makefile Makefile for creating boot ROMs and the
VxWorks system image for a particular target.

bootrom,
bootrom.hex

VxWorks boot ROM code, as object module
(bootrom) and as an ASCII file (bootrom.hex) in
Motorola S-record format or Intel hex format
(i960 targets), suitable for downloading over a
serial connection to a PROM programmer. For
more information see 4.8 Configuring and
Building a VxWorks Boot Program, p.164.

bspname.h Header file for the target board.

config.h Header file of hardware configuration
parameters.

Table A-3 installDir/target (Continued)

Directory File Description

Tornado 2.2

User’s Guide

426

romInit.s Assembly language source for initialization
code that is the entry point for the VxWorks boot
ROMs and ROM-based versions of VxWorks.

sysLib.c, sysALib.s Two source modules of system-dependent
routines.

target.nr The source for the BSP-specific reference entry.

vxWorks,
vxWorks.sym

Complete, linked VxWorks system binary
(vxWorks), and its symbol table (vxWorks.sym)
created with the supplied configuration files.

config/comps Directory containing source and configuration
files.

config/hostname Directory containing host-related configuration
files.

h Directory containing all the header (include)
files supplied by VxWorks. Your application
modules must include several of them in order
to access VxWorks facilities.

h/arch Directory containing architecture-dependent
header files.

h/arpa Directory containing a header file for use with
inetLib.

h/dhcp Directory containing header files for use with
dhcp.

h/drv Directory containing hardware-specific headers
(primarily for drivers). Not all of the
subdirectories shown are present for all BSPs.

h/make Directory containing files that describe the rules
for the makefiles for each CPU and toolset.

h/net Directory containing all the internal header
(include) files used by the VxWorks network.
Network drivers will need to include several of
these headers, but no application modules
should need them.

Table A-3 installDir/target (Continued)

Directory File Description

A

A

Directories and Files

427

h/netinet Directory containing Internet-specific header
files.

h/private Directory containing header files for code
private to VxWorks.

h/resolv Directory containing header files for use with
name service.

h/rip Directory containing header files for use with
rip.

h/rpc Directory containing header files that must be
included by applications using the Remote
Procedure Call library (RPC).

h/sys Directory containing header files specified by
POSIX.

h/tffs Directory containing header files for use with
TrueFFS.

h/tool Directory containing header files for Diab and
GNU.

h/types Directory containing header files used for
defining types.

h/wdb Directory containing header files for use with
WDB.

idl Directory containing COM-related files.

lib Directory containing the machine-independent
object libraries and modules provided by
VxWorks.

lib/libcputoolvx.a An archive (ar) format library containing the
object modules that make up VxWorks.

lib/objcputooltest Directory containing vxColor.o, a test program,
for the specified target.

lib/archfamily A directory of sub-directories containing
BSP-specific libraries.

Table A-3 installDir/target (Continued)

Directory File Description

Tornado 2.2

User’s Guide

428

proj Directory containing the default VxWorks
images and the default location for projects to be
created.

src Directory containing all source files for
VxWorks.

src/arch Directory containing makefiles to build source.

src/config Directory containing files used to force inclusion
of specific VxWorks modules.

ansi_5_0.c Used to include all 5.0 ANSI C library routines.

assertInit.c Used to include the assert ANSI C library
routine.

cplusdiabComplex.c,
cplusdiabComplexIo.c,
cplusdiabIos.c,
cplusdiabIosLang.c,
cplusdiabStl.c,
cplusdiabString.c,
cplusdiabStringIo.c,
cplusgnuComplex.c,
cplusgnuComplexIo.c,
cplusgnuIos.c,
cplusgnuIosLang.c,
cplusgnuStl.c,
cplusgnuString.c,
cplusgnuStringIo.c

Used to include the various groups of C++
routines.

ctypeInit.c Used to include the ctype ANSI C library
routines.

intrinsics.c Used to include support for
toolchain-dependent intrinsics.

localeInit.c Used to include the locale ANSI C library
routines.

mathInit.c Used to include the math ANSI C library
routines.

Table A-3 installDir/target (Continued)

Directory File Description

A

A

Directories and Files

429

stdioInit.c Used to include the stdio ANSI C library
routines.

stdlibInit.c Used to include the stdlib ANSI C library
routines.

stringInit.c Used to include the string ANSI C library
routines.

timeInit.c Used to include the time ANSI C library
routines.

usrAta.c Used to include the ATA intialization routines.

usrBreakpoint.c Used to include the breakpoint management
routines.

usrDepend.c Used to check module dependences for
constants defined in configAll.h and config.h.

usrDsp.c Used to activate dsp support.

usrExtra.c Used to include extra modules that are needed
by VxWorks but not referenced in the VxWorks
code.

usrFd.c Used to mount a dosFs file system on a boot
diskette (i386/i486 targets only).

usrIde.c Used to mount a dosFs file system on a boot IDE
hard disk drive (i386/i486 targets only).

usrKernel.c Used to configure and initialize the wind kernel.

usrLoadSym.c Used to load the VxWorks symbol table.

usrMmuInit.c Used to initialize the memory management unit.

usrNetwork.c Used to configure and initialize networking
support.

usrPcmcia.c Used to configure and initialize PCMCIA
support.

usrScript.c Used to execute a startup script when VxWorks
first boots.

Table A-3 installDir/target (Continued)

Directory File Description

Tornado 2.2

User’s Guide

430

usrScsi.c Used to configure and initialize SCSI support.

usrTffs.c Used to configure and initialize TrueFFS
support.

usrWdb.c Used to configure and initialize the Tornado
target agent.

usrWindview.c Used to configure and initialize WindView.

src/demo Directory containing sample application
modules for demonstration purposes, including
both the source and the compiled object
modules ready to be loaded into VxWorks.

src/demo/1 Directory containing a simple introductory
demo program as well as a server/client socket
demonstration.

src/demo/
cplusplus

Directory containing the factory example
application.

src/demo/color Directory containing the VxColor example
application.

src/demo/dg Directory containing a simple datagram facility,
useful for demonstrating and testing datagrams
on VxWorks and/or other TCP/IP systems.

src/demo/start Directory containing the program used with the
Tornado Getting Started Guide tutorial.

src/demo/wind Directory containing the windDemo example
application.

src/drv Directory containing source code for supported
board device drivers.

src/usr Directory containing user-modifiable code. Not
every file in the directory is listed here.

Makefile Contains the makefile rules for building the vx
library.

Table A-3 installDir/target (Continued)

Directory File Description

A

A

Directories and Files

431

devSplit.c Provides a routine to split the device name from
a full path name.

memDrv.c Pseudo-device driver that allows memory to be
accessed as a VxWorks character (non-block)
device.

ramDiskCbio.c RAM-disk driver with a CBIO interface which
can be utilized directly by dosFsLib without
using dcacheCbio.

ramDrv.c Block device driver that allows memory to be
used as a device with VxWorks local file
systems.

usrLib.c Library of routines designed for interactive
invocation, which can be modified or extended
if desired.

src\wdb Directory containing target agent
communication support.

wdbUdpLib.c Implements communication methods for the
target agent using a lightweight UDP/IP stack.

wdbUdpSockLib.c Initializes UDP socket routines for the target
agent.

The following directories are included only with a VxWorks source license.

src/arch Directory containing VxWorks source code for
architecture-specific modules.

src/cplus Directory containing source code for the Wind
C++ Foundation Classes.

src/libc Directory containing the source files for the
ANSI C library.

src/math Directory containing the source files for various
math routines (non-ANSI).

src/netwrs Directory containing the source files for the
VxWorks network subsystem modules.

Table A-3 installDir/target (Continued)

Directory File Description

Tornado 2.2

User’s Guide

432

A.4 Initialization and State-Information Files

You can define initialization files to customize each of the Tornado tools. These
files, if they are present, are collected in a directory called .wind in your home
directory. Some Tornado tools also use this directory to store state information, and
some demos and optional products store both initialization and state information
here.

src/netinet Directory containing the source files for Internet
network protocols.

src/os Directory containing the source code for
VxWorks kernel extensions (for example: I/O,
file systems).

src/ostool Directory containing the source code for
VxWorks tools.

src/rpc Directory containing the source code for RPC
that has been modified to run under VxWorks.

src/util Directory containing source code for the
VxWorks utilities.

src/wind Directory containing source code for the
VxWorks kernel.

Table A-4 .wind Initialization Files

Directory/Files Description

browser.tcl Optional Tcl initialization code for the browser. .

crosswind.tcl Optional Tcl initialization code for the debugger front end.

gdb.tcl Optional Tcl initialization code for the debugging engine itself.

launch.tcl Optional Tcl initialization code for the launcher.

Table A-3 installDir/target (Continued)

Directory File Description

A

A

Directories and Files

433

windsh.tcl Optional Tcl initialization code for the shell.

wtxtcl.tcl Optional Tcl initialization code for wtxtcl, the Tcl interpreter with
WTX-protocol extensions. See the Tornado API Programmer’s Guide:
Extending Tornado Tools.

Table A-5 .wind State-Information Files

Directory/Files Description

launchLog.server Log file for target-server verbose output, if requested from the launcher.

profile A file of identification information used for your Tornado support
requests. This information is collected and updated through the
launcher’s Support menu.

tgtsvr A directory collecting your saved target-server configurations.
Target-server configurations are defined and viewed through the
launcher’s Target menu.

tsr A directory recording the history of your Tornado support requests. This
information is managed through the launcher’s Support menu; see
1.6 Customer Services, p.12.

Table A-4 .wind Initialization Files (Continued)

Directory/Files Description

Tornado 2.2

User’s Guide

434

435

B
Makefile Details

B.1 Introduction

Each BSP has a makefile for building VxWorks. This makefile, called Makefile, is
abbreviated to declare only the basic information needed to build VxWorks with
the BSP. The makefile includes other files to provide target and VxWorks specific
rules and dependencies. In particular, a file of the form depend.bspname is
included. The first time that make is run in the BSP directory, it creates the
depend.bspname file.

The Makefile in the BSP directory is used only when building from the traditional
command line. It is not used when building projects from the project tool. Each
build option for a project has its own makefile that the tool uses to build the project
modules.

When projects are created from a BSP, the BSP makefile is scanned once and the
make parameters are captured into the project. Any changes made to the BSP
makefile after a project has been created do not affect that project. Only projects
built from the BSP after the change is made are affected.

B.2 Customizing the VxWorks Makefile

The BSP makefile provides several mechanisms for configuring the VxWorks
build. Although VxWorks configuration is more commonly controlled at
compile-time by macros in configAll.h and bspname/config.h.

Tornado 2.2

User’s Guide

436

Most of the makefile macros fall into two categories: macros intended for use by
the BSP developer, and macros intended for use by the end user. When building a
VxWorks image, the needs of these two audiences differ considerably. Maintaining
two separate compile-time macro sets lets the make separate the BSP-specific
requirements from user-specific requirements.

Macros containing EXTRA in their name are intended for use by the BSP developer
to specify additional object modules that must be compiled and linked with all
VxWorks images.

Macros containing ADDED in their name are intended for use by the end-user on
the make command line. This allows for easy compile time options to be specified
by the user, without having to repeat any BSP-specific options in the same macro
declaration.

B.3 Commonly Used Makefile Macros

Of the 135 or so makefile macros, this document discusses only the most
commonly used.

MACH_EXTRA

You can add an object module to VxWorks by adding its name to the skeletal
makefile. To include fooLib.o, for example, add it to the MACH_EXTRA definition
in Makefile. This macro causes the linker to link it into the output object.

Finally, regenerate VxWorks with make. The module will now be included in all
future VxWorks builds. If necessary, the module will be made from fooLib.c or
fooLib.s using the .c.o or .s.o makefile rule.

MACH_EXTRA can be used for drivers that are not included in the VxWorks driver
library. BSPs do not usually include source code for Ethernet and SCSI device
drivers; thus, when preparing your system for distribution, omit the driver source
file and change the object file’s name from .o to .obj (update the makefiles, too).
Now the end user can build VxWorks without the driver source, and rm *.o will
not inadvertently remove the driver’s object file.

NOTE: See the BSP Developer’s Guide for important information on BSP distribution
standards. Acceptable makefile customization is limited by the guidelines
described in that section.

B

B

Makefile Details

437

LIB_EXTRA

The LIB_EXTRA makefile variable makes it possible to include library archives in
the VxWorks build without altering the standard VxWorks archive or the driver
library archive. Define LIB_EXTRA in Makefile to indicate the location of the extra
libraries.

The libraries specified by LIB_EXTRA are provided to the link editor when building
any VxWorks or boot ROM images. This is useful for third-party developers who
want to supply end users with network or SCSI drivers, or other modules in object
form, and find that the MACH_EXTRA mechanism described earlier in this chapter
does not suit their needs.

The extra libraries are searched first, before Wind River libraries, and any
references to VxWorks symbols are resolved properly.

EXTRA_INCLUDE

The makefile variable EXTRA_INCLUDE is available for specifying additional
header directory locations. This is useful when the user or BSP provider has a
separate directory of header files to be used in addition to the normal directory
locations.

EXTRA_INCLUDE = -I../myHdrs

The normal order of directory searching for #include directives is:

$(INCLUDE_CC) (reserved for compiler specific uses)

$(EXTRA_INCLUDE)

.

$(CONFIG_ALL)

$(TGT_DIR)/h

$(TGT_DIR)/src/config

$(TGT_DIR)/src/drv

EXTRA_DEFINE

The makefile variable EXTRA_DEFINE is available for specifying compile time
macros required for building a specific BSP. In the following example the macro
BRD_TYPE is given the value MB934. This macro is defined on the command line
for all compiler operations.

EXTRA_DEFINE = -DBRD_TYPE=MB934

Tornado 2.2

User’s Guide

438

By default a minimum set of macro names are defined on the compiler command
line. This is primarily used to pass the same memory addresses used in both the
compiling and linking operations.

These default macro definitions include:

-DCPU=$(CPU)

ADDED_CFLAGS

Sometimes it is inconvenient to modify config.h to control VxWorks configuration.
ADDED_CFLAGS is useful for defining macros without modifying any source
code.

Consider the hypothetical Acme XYZ-75 BSP that supports two hardware
configurations. The XYZ-75 has a daughter board interface, and in this interface
either a Galaxy-A or a Galaxy-B module is installed. The drivers for the modules
are found in the directory src/drv/multi.

The macro GALAXY_C_FILE determines which driver to include at compile-time.
The file named by GALAXY_C_FILE is #included by sysLib.c.

The default configuration (Galaxy-A module installed) is established in config.h:

#ifndef GALAXY_C_FILE

#define GALAXY_C_FILE "multi/acmeGalaxyA.c"

#endif /* GALAXY_C_FILE */

When make is called normally, VxWorks supports the XYZ-75 with the Galaxy-A
module installed. To override the default and build VxWorks for the
XYZ-75/Galaxy-B configuration, do the following:

% make ADDED_CFLAGS=’-DGALAXY_C_FILE=\"multi\/acmeGalaxy02.c\"’ vxWorks

For ease of use, you can encapsulate the lengthy command line within a shell script
or independent makefile.

To ensure that a module is incorporated in vxWorks, remove the module’s object
file and vxWorks before running make.

ADDED_MODULES

The ADDED_MODULES makefile variable makes it possible to add modules to
VxWorks without modifying any source code.

While MACH_EXTRA requires the makefile to be modified, ADDED_MODULES

allows one or more extra modules to be specified on the make command line. For

B

B

Makefile Details

439

example, to build VxWorks with the BSP VTS support library included, copy
pkLib.c to the target directory and enter the following:

% make ADDED_MODULES=pkLib.o vxWorks

One disadvantage of using ADDED_MODULES is that makefile dependencies are
not generated for the module(s). In the above example, if pkLib.c, pkLib.o, and
vxWorks already exist, you must remove pkLib.o and vxWorks before running
make to force the latest pkLib.c to be incorporated into vxWorks.

CONFIG_ALL

Under extreme circumstances, the files in the config/all directory might not be
flexible enough to support a complex BSP. In this case, copy all the config/all files
to the BSP directory (config/bspname) and edit the files as necessary. Then redefine
the CONFIG_ALL makefile variable in Makefile to direct the build to the altered
files. To do this, define CONFIG_ALL to equal the absolute path to the BSP’s
config/bspname directory as shown in the following example:

CONFIG_ALL = $(TGT_DIR)/config/bspname/

The procedure described above works well if you must modify all or nearly all the
files in config/all. However, if you know that only one or two files from config/all
need modification, you can copy just those files to the BSP’s config/bspname
directory. Then, instead of changing the CONFIG_ALL makefile macro, change one
or more of the following (which ever are appropriate).

USRCONFIG

The path to an alternate config/all/usrConfig.c file.

BOOTCONFIG

The path to an alternate config/all/bootConfig.c file.

BOOTINIT

The path to an alternate config/all/bootInit.c file.

DATASEGPAD

The path to an alternate config/all/dataSegPad.s file.

CONFIG_ALL_H

The path to an alternate config/all/configAll.h file.

TGT_DIR

The path to the target directory tree, normally $(WIND_BASE)/target.

Tornado 2.2

User’s Guide

440

COMPRESS

The path to the host’s compression program. This is the program that
compresses an executable image. The binary image is input through stdin, and
the output is placed on the stdout device. This macro can contain
command-line flags for the program if necessary.

BINHEX

The path to the host’s object-format-to-hex program. This program is called
using HEX_FLAGS as command line flags. See target/h/make/rules.bsp for
actual calling sequence.

HEX_FLAGS

Command line flags for the $(BINHEX) program.

BOOT_EXTRAA
Additional modules to be linked with compressed ROM images. These
modules are not linked with uncompressed or ROM-resident images, just
compressed images.

EXTRA_DOC_FLAGS

Additional preprocessor flags for making man pages. The default
documentation flags are -DDOC -DINCLUDE_SCSI. If EXTRA_DOC_FLAGS is
defined, these flags are passed to the man page generation routines in addition
to the default flags.

441

C
Tcl

C.1 Why Tcl?

Tcl is a scripting language which is designed to be embedded in applications. It can
be embedded in applications that present command-line interfaces (the Tornado
shell, for example) as well as in those that do not (such as the browser). Almost any
program can benefit from the inclusion of such a language, because it provides a
way for users to combine the program’s features in new and unforeseen ways to
meet their own needs. Many programs implement a command-line interface that
is unique to the particular application. However, application-specific command
line interfaces often have weak languages. Tcl holds some promise of unifying
application command languages. This has an additional benefit: the more
programs use a common language, the easier it is for everyone to learn to use each
additional program that incorporates the language.

To encourage widespread adoption, John Ousterhout (the creator of Tcl) has placed
the language and its implementation in the public domain.

Tk is often mentioned in conjunction with Tcl. Tk is a graphics library that extends
Tcl with graphical-interface facilities. Tornado does not currently use Tk, but you
may find Tk useful for your own Tcl applications.

Tornado 2.2

User’s Guide

442

C.2 Introduction to Tcl

Tcl represents all data as ordinary text strings. As you might expect, the
string-handling features of Tcl are particularly strong. However, Tcl also provides
a full complement of C-like arithmetic operators to manipulate strings that
represent numbers.

The examples in the following sections exhibit some of the fundamental
mechanisms of the Tcl language, in order to provide some of the flavor of working
in Tcl. However, this is only an introduction.

For documentation on all Tcl interfaces in Tornado (as well as on C interfaces), see
the Tornado API Programmer’s Guide from Wind River.

For the Tcl language itself, the following generally available books are helpful:

■ Ousterhout, John K.: Tcl and the Tk Toolkit (Addison-Wesley, 1994) – The
definitive book on Tcl, written by its creator.

■ Welch, Brent: Practical Programming in Tcl and Tk (Prentice Hall, 1995) – Useful
both as a quick Tcl reference and as a tutorial.

C.2.1 Tcl Variables

The Tcl set command defines variables. Its result is the current value of the
variable, as shown in the following examples:

Table C-1 Setting Tcl Variables

Tcl Expression Result

set num 6 6

set y hello hello

set z "hello world" hello world

set t $z hello world

set u "$z $y" hello world hello

set v {$z $y} $z $y

C

C

Tcl

443

The expressions above also illustrate the use of some special characters in Tcl:

SPACE

Spaces normally separate single words, or tokens, each of which is a syntactic
unit in Tcl expressions.

" … "
A pair of double quotes groups the enclosed string, including spaces, into a
single token.

$vname
The $ character normally introduces a variable reference. A token $vname
(either not surrounded by quotes, or inside double quotes) substitutes the
value of the variable named vname.

{ … }
Curly braces are a stronger form of quoting. They group the enclosed string
into a single token, and also prevent any substitutions in that string. For
example, you can get the character $ into a string by enclosing it in curly
braces.

With a single argument, set gives the current value of a variable:

C.2.2 Lists in Tcl

Tcl provides special facilities for manipulating lists. In Tcl, a list is just a string, with
the list elements delimited by spaces, as shown in the following examples:

Table C-2 Evaluating Tcl Variables

Tcl Expression Result

set num 6

set z hello world

Table C-3 Using Tcl Lists

Tcl Expression Result Description

llength $v 2 Length of list v.

lindex $u 1 world Second element of list u.

set long "a b c d e f g" a b c d e f g Define a longer list.

Tornado 2.2

User’s Guide

444

The last examples use curly braces to delimit list items, yielding “lists of lists.” This
powerful technique, especially combined with recursive command substitution
(see C.2.4 Command Substitution, p.445), can provide a little of the flavor of Lisp in
Tcl programs.

C.2.3 Associative Arrays

Tcl arrays are all associative arrays, using a parenthesized key to select or define a
particular element of an array: arrayName(keyString). The keyString may in fact
represent a number, giving the effect of ordinary indexed arrays. The following are
some examples of expressions involving Tcl arrays:

lrange $long 2 4 c d e Select elements 2 through 4 of list
long.

lreplace $long 2 4 C D E a b C D E f g Replace elements 2 through 4 of list
long.

set V "{c d e} f {h {i j} k}" Define a list of lists.

lindex $V 1 f Some elements of V are singletons.

lindex $V 0 c d e Some elements of V are lists.

Table C-4 Using Tcl Arrays

Tcl Expression Result Description

set taskId(tNetTask) 0x4f300 Get element tNetTask of array taskId.

set cpuFamily(5) m68k m68k Define array cpuFamily and an
element keyed 5.

set cpuFamily(10) sparc sparc Define element keyed 10 of array
cpuFamily.

set cpuId 10 10 Define cpuId, and use it as a key to cpuFamily.

set cpuFamily($cpuId) sparc

Table C-3 Using Tcl Lists (Continued)

Tcl Expression Result Description

C

C

Tcl

445

C.2.4 Command Substitution

In Tcl, you can capture the result of the command as text by enclosing the
command in square brackets […]. The Tcl interpreter substitutes the command
result in the same process that is already running, which makes this an efficient
operation.

The last example selects from a list of lists (defined among the examples in
C.2.2 Lists in Tcl, p.443). This and the previous example show that you can nest Tcl
command substitutions readily. The Tcl interpreter substitutes the most deeply
nested command, then continues substituting recursively until it can evaluate the
outermost command.

C.2.5 Arithmetic

Tcl has an expr command to evaluate arithmetic expressions. The expr command
understands numbers in decimal and hexadecimal, as in the following examples:

C.2.6 I/O, Files, and Formatting

Tcl includes many commands for working with files and for formatted I/O. Tcl
also has many facilities for interrogating file directories and attributes. The
examples in Table C-7 illustrate some of the possibilities.

Table C-5 Examples of Tcl Command Substitution

Tcl Expression Result

set m [lrange $long 2 4] c d e

set n [lindex $m 1] d

set o [lindex [lrange $long 2 4] 1] d

set x [lindex [lindex $V 2] 1] i j

Table C-6 Arithmetic in Tcl

Tcl Expression Result

expr (2 << 2) + 3 11

expr 0xff00 & 0xf00 3840

Tornado 2.2

User’s Guide

446

C.2.7 Procedures

Procedure definition in Tcl is straightforward, and resembles many other
languages. The command proc builds a procedure from its arguments, which give
the procedure name, a list of its arguments, and a sequence of statements for the
procedure body. In the body, the return command specifies the result of the
procedure. For example, the following defines a procedure to compute the square
of a number:

proc square {i} {
return [expr $i * $i]

}

If a procedure’s argument list ends with the word args, the result is a procedure
that can be called with any number of arguments. All trailing arguments are
captured in a list $args. For example, the following procedure calculates the sum
of all its arguments:

proc sum {args} {
set accum 0
foreach item $args {
 incr accum $item
}
return $accum

}

Table C-7 Files and Formatting in Tcl

Tcl Expression Description

set myfile [open myfile.out w] Open a file for writing.

puts $myfile [format "%s %d\n" \
"you are number" [expr 3+3]]

Format a string and write it to file.

close $myfile Close the file.

file exists myfile.out 1

file writable myfile.out 1

file executable myfile.out 0

glob *.o testCall.o foo.o bar.o

C

C

Tcl

447

Defined Tcl procedures are called by name, and can be used just like any other Tcl
command. The following examples illustrate some possibilities:

The technique illustrated by the last example—constructing a procedure name “on
the fly”—is used extensively by Tornado tools to group a set of related procedures.
The effect is similar to what can be achieved with function pointers in C.

For example, in Tornado tools, events are represented in Tcl as structured strings.
The first element of the string is the name of the event. Tcl scripts that handle
events can search for the appropriate procedure to handle a particular event by
mapping the event name to a procedure name, and calling that procedure if it
exists. The following Tcl script demonstrates this approach:

proc shEventDispatch {event} {
 set handlerProc "[lindex $event 0]_Handler"

 if {[info procs $handlerProc] != ""} {
 $handlerProc $event
 } {
 #event has no handler--do nothing.
 }

}

C.2.8 Control Structures

Tcl provides all the popular control structures: conditionals (if), loops (while, for,
and foreach), case statements (switch), and explicit variable-scope control (global,
upvar, and uplevel variable declarations). By using these facilities, you can even
define your own control structures. While there is nothing mysterious about these
facilities, more detailed descriptions are beyond the scope of this summary. For
detailed information, see the books cited at the beginning of C.2 Introduction to Tcl,
p.442.

Table C-8 Calling a Tcl Procedure

Tcl Expression Result

square 4 16

square [sum 1 2 3] 36

set x "squ" squ

set y "are" are

xy 4 16

Tornado 2.2

User’s Guide

448

C.2.9 Tcl Error Handling

Every Tcl procedure, whether built-in or script, normally returns a string. Tcl
procedures may signal an error instead: in a defined procedure, this is done with
the error command. This starts a process called unwinding. When a procedure
signals an error, it passes to its caller a string containing information about the
error. Control is passed to the calling procedure. If that procedure did not provide
for this possibility by using the Tcl catch command, control is passed to its caller in
turn. This recursive unwinding continues until the top level, the Tcl interpreter, is
reached.

As control is passed along, any procedure can catch the error and take one of two
actions: signal another error and provide error information, or work around the
error and return as usual, ending the unwinding process.

At each unwinding step, the Tcl interpreter adds a description of the current
execution context to the Tcl variable errorInfo. After unwinding ends, you can
display errorInfo to trace error information. Another variable, errorCode, may
contain diagnostic information, such as an operating system dependent error code
returned by a system call.

C.2.10 Integrating Tcl and C Applications

Tcl is designed to integrate with C applications. The Tcl interpreter itself is
distributed as a library, ready to link with other applications. The core of the Tcl
integration strategy is to allow each application to add its own commands to the
Tcl language. This is accomplished primarily through the subroutine
Tcl_CreateCommand() in the Tcl interpreter library, which associates a new Tcl
command name and a pointer to an application-specific routine. For more details,
consult the Tcl books cited at the beginning of C.2 Introduction to Tcl, p.442.

449

D
Coding Conventions

D.1 Introduction

This document defines the Wind River standard for all C code and for the
accompanying documentation included in source code. The conventions are
intended, in part, to encourage higher quality code; every source module is
required to have certain essential documentation, and the code and
documentation is required to be in a format that has been found to be readable and
accessible.

The conventions are also intended to provide a level of uniformity in the code
produced by different programmers. Uniformity allows programmers to work on
code written by others with less overhead in adjusting to stylistic differences. Also
it allows automated processing of the source; tools can be written to generate
reference entries, module summaries, change reports, and so on.

The conventions described here are grouped as follows:

■ File Headings. Regardless of the programming language, a single convention
specifies a heading at the top of every source file.

■ C Coding Conventions.

■ TCL Coding Conventions.

Tornado 2.2

User’s Guide

450

D.2 File Heading

Every file containing C code—whether it is a header file, a resource file, or a file
that implements a host tool, a library of routines, or an application—must contain
a standard file heading. The conventions in this section define the standard for the
heading that must come at the beginning of every source file.

The file heading consists of the blocks described below. The blocks are separated
by one or more empty lines and contain no empty lines within the block. This
facilitates automated processing of the heading.

■ Title: The title consists of a one-line comment containing the tool, library, or
applications name followed by a short description. The name must be the
same as the file name. This line will become the title of automatically generated
reference entries and indexes.

■ Copyright: The copyright consists of a single-line comment containing the
appropriate copyright information.

■ Modification History: The modification history consists of a comment block: in
C, a multi-line comment. Each entry in the modification history consists of the
version number, date of modification, initials of the programmer who made
the change, and a complete description of the change. If the modification fixes
an SPR, then the modification history must include the SPR number.

The version number is a two-digit number and a letter (for example, 03c). The
letter is incremented for internal changes, and the number is incremented for
large changes, especially those that materially affect the module’s external
interface.

The following example shows a standard file heading from a C source file:

Example D-1 Standard File Heading (C Version)

/* fooLib.c - foo subroutine library */

/* Copyright 1984-1995 Wind River Systems, Inc. */

/*
modification history

02a,15sep92,nfs added defines MAX_FOOS and MIN_FATS.
01b,15feb86,dnw added routines fooGet() and fooPut();

added check for invalid index in fooFind().
01a,10feb86,dnw written.
*/

D

D

Coding Conventions

451

D.3 C Coding Conventions

These conventions are divided into the following categories:

■ Module Layout
■ Subroutine Layout
■ Code Layout
■ Naming Conventions
■ Style
■ Header File Layout
■ Documentation Generation

D.3.1 C Module Layout

A module is any unit of code that resides in a single source file. The conventions in
this section define the standard module heading that must come at the beginning
of every source module following the standard file heading. The module heading
consists of the blocks described below; the blocks should be separated by one or
more blank lines.

After the modification history and before the first function or executable code of
the module, the following sections are included in the following order, if
appropriate:

■ General Module Documentation: The module documentation is a C comment
consisting of a complete description of the overall module purpose and
function, especially the external interface. The description includes the
heading INCLUDE FILES: followed by a list of relevant header files.

■ Includes: The include block consists of a one-line C comment containing the
word includes followed by one or more C pre-processor #include directives.
This block groups all header files included in the module in one place.

■ Defines: The defines block consists of a one-line C comment containing the
word defines followed by one or more C pre-processor #define directives. This
block groups all definitions made in the module in one place.

■ Typedefs: The typedefs block consists of a one-line C comment containing the
word typedefs followed by one or more C typedef statements, one per line. This
block groups all type definitions made in the module in one place.

■ Globals: The globals block consists of a one-line C comment containing the
word globals followed by one or more C declarations, one per line. This block

Tornado 2.2

User’s Guide

452

groups together all declarations in the module that are intended to be visible
outside the module.

■ Locals: The locals block consists of a one-line C comment containing the word
locals followed by one or more C declarations, one per line. This block groups
together all declarations in the module that are intended not to be visible
outside the module.

■ Forward Declarations: The forward declarations block consists of a one-line C
comment containing the words forward declarations followed by one or more
ANSI C function prototypes, one per line. This block groups together all the
function prototype definitions required in the module. Forward declarations
must only apply to local functions; other types of functions belong in a header
file.

The format of these blocks is shown in the following example (which also includes
the file heading specified earlier).

Example D-2 C File and Module Headings

/* fooLib.c - foo subroutine library */

/* Copyright 1984-1995 Wind River Systems, Inc. */

/*
modification history

02a,15sep92,nfs added defines MAX_FOOS and MIN_FATS.
01b,15feb86,dnw added routines fooGet() and fooPut();

added check for invalid index in fooFind().
01a,10feb86,dnw written.
*/

/*
DESCRIPTION
This module is an example of the Wind River Systems C coding conventions.
...
INCLUDE FILES: fooLib.h
*/

/* includes */

#include "vxWorks.h"
#include "fooLib.h"

/* defines */

#define MAX_FOOS 112 /* max # of foo entries */
#define MIN_FATS 2 * min # of FAT copies */

/* typedefs */

D

D

Coding Conventions

453

typedef struct fooMsg /* FOO_MSG */
{
VOIDFUNCPTR func; /* pointer to function to invoke */
int arg [FOO_MAX_ARGS]; /* args for function */
} FOO_MSG;

/* globals */

char * pGlobalFoo; /* global foo table */

/* locals */

LOCAL int numFoosLost; /* count of foos lost */

/* forward declarations */

LOCAL int fooMat (list * aList, int fooBar, BOOL doFoo);
FOO_MSG fooNext (void);
STATUS fooPut (FOO_MSG inPar);

D.3.2 C Subroutine Layout

The following conventions define the standard layout for every subroutine.

Each subroutine is preceded by a C comment heading consisting of documentation
that includes the following blocks. There should be no blank lines in the heading,
but each block should be separated with a line containing a single asterisk (*) in the
first column.

■ Banner: This is the start of a C comment and consists of a slash character (/)
followed by 75 asterisks (*) across the page.

■ Title: One line containing the routine name followed by a short, one-line
description. The routine name in the title must match the declared routine
name. This line becomes the title of automatically generated reference entries
and indexes.

■ Description: A full description of what the routine does and how to use it.

■ Returns: The word RETURNS: followed by a description of the possible result
values of the subroutine. If there is no return value (as in the case of routines
declared void), enter:

RETURNS: N/A

Mention only true returns in this section—not values copied to a buffer given
as an argument.

Tornado 2.2

User’s Guide

454

■ Error Number: The word ERRNO: followed by all possible errno values
returned by the function. No description of the errno value is given, only the
errno value and only in the form of a defined constant.1

The subroutine documentation heading is terminated by the C end-of-comment
character (*/), which must appear on a single line, starting in column one.

The subroutine declaration immediately follows the subroutine heading.2 The
format of the subroutine and parameter declarations is shown in D.3.3 C
Declaration Formats, p.454.

Example D-3 Standard C Subroutine Layout:

/**
*
* fooGet - get an element from a foo
*
* This routine finds the element of a specified index in a specified
* foo. The value of the element found is copied to <pValue>.
*
* RETURNS: OK, or ERROR if the element is not found.
*
* ERRNO:
* S_fooLib_BLAH
* S_fooLib_GRONK
*/

STATUS fooGet
(
FOO foo, /* foo in which to find element */
int index, /* element to be found in foo */
int * pValue /* where to put value */
)
{
...
}

D.3.3 C Declaration Formats

Include only one declaration per line. Declarations are indented in accordance
with Indentation, p.458, and are typed at the current indentation level.

The rest of this section describes the declaration formats for variables and
subroutines.

1. A list containing the definitions of each errno is maintained and documented separately.
2. The declaration is used in the automatic generation of reference entries.

D

D

Coding Conventions

455

Variables

■ For basic type variables, the type appears first on the line and is separated from
the identifier by a tab. Complete the declaration with a meaningful one-line
comment. For example:

unsigned rootMemNBytes; /* memory for TCB and root stack */
int rootTaskId; /* root task ID */
BOOL roundRobinOn; /* boolean for round-robin mode */

■ The * and ** pointer declarators belong with the type. For example:

FOO_NODE * pFooNode; /* foo node pointer */
FOO_NODE ** ppFooNode; /* pointer to the foo node pointer */

■ Structures are formatted as follows: the keyword struct appears on the first
line with the structure tag. The opening brace appears on the next line,
followed by the elements of the structure. Each structure element is placed on
a separate line with the appropriate indentation and comment. If necessary,
the comments can extend over more than one line; see Comments, p.460, for
details. The declaration is concluded by a line containing the closing brace, the
type name, and the ending semicolon. Always define structures (and unions)
with a typedef declaration, and always include the structure tag as well as the
type name. Never use a structure (or union) definition to declare a variable
directly. The following is an example of acceptable style:

typedef struct symtab /* SYMTAB - symbol table */
 {
 OBJ_CORE objCore; /* object maintanance */
 HASH_ID nameHashId; /* hash table for names */
 SEMAPHORE symMutex; /* symbol table mutual exclusion sem */
 PART_ID symPartId; /* memory partition id for symbols */
 BOOL sameNameOk; /* symbol table name clash policy */
 int nSymbols; /* current number of symbols in table */
 } SYMTAB;

This format is used for other composite type declarations such as union and
enum.

The exception to never using a structure definition to declare a variable
directly is structure definitions that contain pointers to structures, which
effectively declare another typedef. This exception allows structures to store
pointers to related structures without requiring the inclusion of a header that
defines the type.

Tornado 2.2

User’s Guide

456

For example, the following compiles without including the header that defines
struct fooInfo (so long as the surrounding code never delves inside this
structure):

CORRECT:

typedef struct tcbInfo
{
struct fooInfo * pfooInfo;
...
} TCB_INFO;

By contrast, the following cannot compile without including a header file to
define the type FOO_INFO:

INCORRECT:

typedef struct tcbInfo
{
FOO_INFO * pfooInfo;
...
} TCB_INFO;

Subroutines

There are two formats for subroutine declarations, depending on whether the
subroutine takes arguments.

■ For subroutines that take arguments, the subroutine return type and name
appear on the first line, the opening parenthesis on the next, followed by the
arguments to the routine, each on a separate line. The declaration is concluded
by a line containing the closing parenthesis. For example:

int lstFind
(
LIST * pList, /* list in which to search */
NODE * pNode /* pointer to node to search for */
)

■ For subroutines that take no parameters, the word void in parentheses is
required and appears on the same line as the subroutine return type and name.
For example:

STATUS fppProbe (void)

D

D

Coding Conventions

457

D.3.4 C Code Layout

The maximum length for any line of code is 80 characters.

The rest of this section describes the conventions for the graphic layout of C code,
and covers the following elements:

■ vertical spacing
■ horizontal spacing
■ indentation
■ comments

Vertical Spacing

■ Use blank lines to make code more readable and to group logically related
sections of code together. Put a blank line before and after comment lines.

■ Do not put more than one declaration on a line. Each variable and function
argument must be declared on a separate line. Do not use comma-separated
lists to declare multiple identifiers.

■ Do not put more than one statement on a line. The only exceptions are the for
statement, where the initial, conditional, and loop statements can go on a
single line:

for (i = 0; i < count; i++)

or the switch statement if the actions are short and nearly identical (see the
switch statement format in Indentation, p.476).

The if statement is not an exception: the executed statement always goes on a
separate line from the conditional expression:

if (i > count)
i = count;

■ Braces ({ and }) and case labels always have their own line.

Horizontal Spacing

■ Put spaces around binary operators, after commas, and before an open
parenthesis. Do not put spaces around structure members and pointer
operators. Put spaces before open brackets of array subscripts; however, if a

Tornado 2.2

User’s Guide

458

subscript is only one or two characters long, the space can be omitted. For
example:

status = fooGet (foo, i + 3, &value);
foo.index
pFoo->index
fooArray [(max + min) / 2]
string[0]

■ Line up continuation lines with the part of the preceding line they continue:

a = (b + c) *
(d + e);

status = fooList (foo, a, b, c,
d, e);

if ((a == b) &&
(c == d))
...

Indentation

■ Indentation levels are every four characters (columns 1, 5, 9, 13, …).

■ The module and subroutine headings and the subroutine declarations start in
column one.

■ Indent one indentation level after:

– subroutine declarations
– conditionals (see below)
– looping constructs
– switch statements
– case labels
– structure definitions in a typedef

■ The else of a conditional has the same indentation as the corresponding if.
Thus the form of the conditional is as follows:

if (condition)
{
statements
}

else
{
statements
}

D

D

Coding Conventions

459

The form of the conditional statement with an else if is:

if (condition)
{
statements
}

else if (condition)
{
statements
}

else
{
statements
}

■ The general form of the switch statement is:

switch (input)
{
case 'a':

...
break;

case 'b':
...
break;

default:
...
break;

}

If the actions are very short and nearly identical in all cases, an alternate form
of the switch statement is acceptable:

switch (input)
{
case 'a': x = aVar; break;
case 'b': x = bVar; break;
case 'c': x = cVar; break;
default: x = defaultVar; break;
}

■ Comments have the same indentation level as the section of code to which they
refer (see Comments, p.478).

■ Section braces ({ and }) have the same indentation as the code they enclose.

Tornado 2.2

User’s Guide

460

Comments

■ Place comments within code so that they precede the section of code to which
they refer and have the same level of indentation. Separate such comments
from the code by a single blank line.

– Begin single-line comments with the open-comment and end with the
close-comment, as in the following:

/* This is the correct format for a single-line comment */

foo = MAX_FOO;

– Begin and end multi-line comments with the open-comment and
close-comment on separate lines, and precede each line of the comment
with an asterisk (*), as in the following:

/*
* This is the correct format for a multiline comment
* in a section of code.
*/

foo = MIN_FOO;

■ Compose multi-line comments in declarations and at the end of code
statements with one or more one-line comments, opened and closed on the
same line. For example:

int foo
(
int a, /* this is the correct format for a */

/* multiline comment in a declaration */
BOOL b /* standard comment at the end of a line */
)

{
day = night; /* when necessary, a comment about a line */

/* of code can be done this way */
}

D.3.5 C Naming Conventions

The following conventions define the standards for naming modules, routines,
variables, constants, macros, types, and structure and union members. The
purpose of these conventions is uniformity and readability of code.

D

D

Coding Conventions

461

■ When creating names, remember that the code is written only once, but read
many times. Assign names that are meaningful and readable; avoid obscure
abbreviations.

■ Names of routines, variables, and structure and union members are composed
of upper- and lowercase characters and no underbars. Capitalize each “word”
except the first:

aVariableName

■ Names of defined types (defined with typedef), and constants and macros
(defined with #define), are all uppercase with underbars separating the words
in the name:

A_CONSTANT_VALUE

■ Every module has a short prefix (two to five characters). The prefix is attached
to the module name and all externally available routines, variables, constants,
macros, and typedefs. (Names not available externally do not follow this
convention.)

■ Names of routines follow the module-noun-verb rule. Start the routine name
with the module prefix, followed by the noun or object that the routine
manipulates. Conclude the name with the verb or action the routine performs:

■ Every header file defines a preprocessor symbol that prevents the file from
being included more than once. This symbol is formed from the header file
name by prefixing __INC and removing the dot (.). For example, if the header
file is called fooLib.h, the multiple inclusion guard symbol is:

__INCfooLibh

■ Pointer variable names have the prefix p for each level of indirection. For
example:

FOO_NODE * pFooNode;
FOO_NODE ** ppFooNode;
FOO_NODE *** pppFooNode;

fooLib.c module name
fooObjFind subroutine name
fooCount variable name
FOO_MAX_COUNT constant
FOO_NODE type

fooObjFind foo - object - find
sysNvRamGet system - NVRAM - get
taskSwitchHookAdd task - switch hook - add

Tornado 2.2

User’s Guide

462

D.3.6 C Style

The following conventions define additional standards of programming style:

■ Comments: Insufficiently commented code is unacceptable.

■ Numeric Constants: Use #define to define meaningful names for constants. Do
not use numeric constants in code or declarations (except for obvious uses of
small constants like 0 and 1).

■ Boolean Tests: Do not test non-booleans as you test a boolean. For example,
where x is an integer:

CORRECT:

if (x == 0)

INCORRECT:

if (! x)

Similarly, do not test booleans as non-booleans. For example, where
libInstalled is declared as BOOL:

CORRECT:

if (libInstalled)

INCORRECT:

if (libInstalled == TRUE)

■ Private Interfaces: Private interfaces are functions and data that are internal to
an application or library and do not form part of the intended external user
interface. Place private interfaces in a header file residing in a directory named
private. End the name of the header file with an uppercase P (for private). For
example, the private function prototypes and data for the commonly used
internal functions in the library blahLib would be placed in the file
private/blahLibP.h.

■ Passing and Returning Structures: Always pass and return pointers to
structures. Never pass or return structures directly.

■ Return Status Values: Routines that return status values should return either
OK or ERROR (defined in vxWorks.h). The specific type of error is identified
by setting errno. Routines that do not return any values should return void.

D

D

Coding Conventions

463

■ Use Defined Names: Use the names defined in vxWorks.h wherever possible.
In particular, note the following definitions:

– Use TRUE and FALSE for boolean assignment.
– Use EOS for end-of-string tests.
– Use NULL for zero pointer tests.
– Use IMPORT for extern variables.
– Use LOCAL for static variables.
– Use FUNCPTR or VOIDFUNCPTR for pointer-to-function types.

D.3.7 C Header File Layout

Header files, denoted by a .h extension, contain definitions of status codes, type
definitions, function prototypes, and other declarations that are to be used
(through #include) by one or more modules. In common with other files, header
files must have a standard file heading at the top. The conventions in this section
define the header file contents that follow the standard file heading.

Structural

The following structural conventions ensure that generic header files can be used
in as wide a range of circumstances as possible, without running into problems
associated with multiple inclusion or differences between ANSI C and C++.

■ To ensure that a header file is not included more than once, the following must
bracket all code in the header file. This follows the standard file heading, with
the #endif appearing on the last line in the file.

#ifndef __INCfooLibh
#define __INCfooLibh

...
#endif /* __INCfooLibh */

See D.3.5 C Naming Conventions, p.460, for the convention for naming
preprocessor symbols used to prevent multiple inclusion.

■ To ensure C++ compatibility, header files that are compiled in both a C and
C++ environment must use the following code as a nested bracket structure,
subordinate to the statements defined above:

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

...

Tornado 2.2

User’s Guide

464

#ifdef __cplusplus
}
#endif /* __cplusplus */

Order of Declaration

The following order is recommended for declarations within a header file:

(1) Statements that include other header files.

(2) Simple defines of such items as error status codes and macro definitions.

(3) Type definitions.

(4) Function prototype declarations.

Example D-4 Sample C Header File

The following header file demonstrates the conventions described above:

/* bootLib.h - boot support subroutine library */

/* Copyright 1984-1993 Wind River Systems, Inc. */

/*
modification history

01g,22sep92,rrr added support for c++.
01f,04jul92,jcf cleaned up.
01e,26may92,rrr the tree shuffle.
01d,04oct91,rrr passed through the ansification filter,

-changed VOID to void
-changed copyright notice

01c,05oct90,shl added ANSI function prototypes;
added copyright notice.

01b,10aug90,dnw added declaration of bootParamsErrorPrint().
01a,18jul90,dnw written.
*/

#ifndef __INCbootLibh
#define __INCbootLibh
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

/*
 * BOOT_PARAMS is a structure containing all the fields of the
 * VxWorks boot line. The routines in bootLib convert this structure
 * to and from the boot line ASCII string.
 */

/* defines */

D

D

Coding Conventions

465

#define BOOT_DEV_LEN 20 /* max chars in device name */
#define BOOT_HOST_LEN 20 /* max chars in host name */
#define BOOT_ADDR_LEN 30 /* max chars in net addr */
#define BOOT_FILE_LEN 80 /* max chars in file name */
#define BOOT_USR_LEN 20 /* max chars in user name */
#define BOOT_PASSWORD_LEN 20 /* max chars in password */
#define BOOT_OTHER_LEN 80 /* max chars in "other" field */
#define BOOT_FIELD_LEN 80 /* max chars in boot field */

/* typedefs */

typedef struct bootParams /* BOOT_PARAMS */
{
char bootDev [BOOT_DEV_LEN]; /* boot device code */
char hostName [BOOT_HOST_LEN]; /* name of host */
char targetName [BOOT_HOST_LEN]; /* name of target */
char ead [BOOT_ADDR_LEN]; /* ethernet internet addr */
char bad [BOOT_ADDR_LEN]; /* backplane internet addr */
char had [BOOT_ADDR_LEN]; /* host internet addr */
char gad [BOOT_ADDR_LEN]; /* gateway internet addr */
char bootFile [BOOT_FILE_LEN]; /* name of boot file */
char startupScript [BOOT_FILE_LEN]; /* name of startup script */
char usr [BOOT_USR_LEN]; /* user name */
char passwd [BOOT_PASSWORD_LEN]; /* password */
char other [BOOT_OTHER_LEN]; /* avail to application */
int procNum; /* processor number */
int flags; /* configuration flags */
} BOOT_PARAMS;

/* function declarations */

extern STATUS bootBpAnchorExtract (char * string, char ** pAnchorAdrs);
extern STATUS bootNetmaskExtract (char * string, int * pNetmask);
extern STATUS bootScanNum (char ** ppString, int * pValue, BOOL hex);
extern STATUS bootStructToString (char * paramString, BOOT_PARAMS *

pBootParams);
extern char * bootStringToStruct (char * bootString, BOOT_PARAMS *

pBootParams);
extern void bootParamsErrorPrint (char * bootString, char * pError);
extern void bootParamsPrompt (char * string);
extern void bootParamsShow (char * paramString);

#ifdef __cplusplus
}
#endif /* __cplusplus */

#endif /* __INCbootLibh */

Tornado 2.2

User’s Guide

466

D.3.8 Documentation Format Conventions for C

This section specifies the text-formatting conventions for source-code derived
documentation. The Wind River tool refgen is used to generate reference entries
(in HTML format) for every module automatically. All modules must be able to
generate valid reference entries. This section is a summary of basic documentation
format issues; for a more detailed discussion, see the Tornado BSP Developer’s Kit
User’s Guide: Documentation Guidelines.

Layout

To work with refgen, the documentation in source modules must be laid out
following a few simple principles. The file sample.c in
installDir/target/unsupported/tools/mangen provides an example and more
information.

Lines of text should fill out the full line length (assume about 75 characters); do not
start every sentence on a new line.

Format Commands

Documentation in source modules can be formatted with UNIX nroff/troff
formatting commands, including the standard man macros and several Wind
River extensions to the man macros. Some examples are described in the sections
below. Such commands should be used sparingly.

Any macro (or “dot command”) must appear on a line by itself, and the dot (.)
must be the first character on the logical line (in the case of subroutines, this is
column 3, because subroutine comment sections begin each line with an asterisk
plus a space character).

Special Elements

■ Parameters: When referring to a parameter in text, surround the name with
the angle brackets, < and >. For example, if the routine getName() had the
following declaration:

D

D

Coding Conventions

467

void getName
(
int tid, /* task ID */
char * pTname /* task name */
)

You might write something like the following:

This routine gets the name associated with a specified task ID and copies
it to <pTname>.

■ Subroutines: Include parentheses with all subroutine names, even those
generally construed as shell commands. Do not put a space between the
parentheses or after the name (unlike the Wind River convention for code):

Note that there is one major exception to this rule. In the subroutine title, do
not include the parentheses in the name of the subroutine being defined:

CORRECT:

/***
*
* xxxFunc - do such and such

INCORRECT:

/***
*
* xxxFunc() - do such and such

Avoid using a library, driver, or routine name as the first word in a sentence,
but if you must, do not capitalize it.

■ Terminal Keys: Enter the names of terminal keys in all uppercase, as in TAB or
ESC. Prefix the names of control characters with CTRL+; for example, CTRL+C.

■ References to Publications: References to chapters of publications should take
the form Title: Chapter. For example, you might say:

For more information, see the VxWorks Programmer’s Guide: I/O System.

References to documentation volumes should be set off in italics. For general
cases, use the .I macro. However, in SEE ALSO sections, use the .pG and .tG

macros for the VxWorks Programmer’s Guide and Tornado User’s Guide,
respectively.

CORRECT: taskSpawn()

INCORRECT: taskSpawn (), taskSpawn(), taskSpawn

Tornado 2.2

User’s Guide

468

■ Section-Number Cross-References: Do not use the UNIX
parentheses-plus-number scheme to cross-reference the documentation
sections for libraries and routines:

CORRECT:

sysLib, vxTas()

INCORRECT:

sysLib(1), vxTas(2)

Formatting Displays

■ Code: Use the .CS and .CE macros for displays of code or terminal
input/output. Introduce the display with the .CS macro; end the display with
.CE. Indent such displays by four spaces from the left margin. For example:

Table D-1 Format of Special Elements

Component Input Output (mangen + troff)

library in title sysLib.c sysLib

library in text sysLib (same)

subroutine in title sysMemTop sysMemTop()

subroutine in text sysMemTop() (same)

subroutine parameter <ptid> (same)

terminal key TAB, ESC, CTRL+C (same)

publication .I "Tornado User’s Guide" Tornado User’s Guide

VxWorks Programmer’s
Guide in SEE ALSO

.pG "Configuration" VxWorks Programmer’s Guide:
Configuration

Tornado User’s Guide in
SEE ALSO

.tG "Cross-Development" Tornado User’s Guide: Shell

emphasis \f2must\fP must

D

D

Coding Conventions

469

* .CS
* struct stat statStruct;
* fd = open ("file", READ);
* status = ioctl (fd, FIOFSTATGET, &statStruct);
* .CE

■ Board Diagrams: Use the .bS and .bE macros to display board diagrams under
the BOARD LAYOUT heading in the target.nr module for a BSP. Introduce the
display with the .bS macro; end the display with .bE.

■ Tables: Tables built with tbl are easy as long as you stick to basics, which
suffice in almost all cases. Tables always start with the .TS macro and end with
a .TE. The .TS should be followed immediately by a line of options terminated
by a semicolon (;); then by one or more lines of column specification
commands followed by a dot (.). For more details on table commands, refer
to any UNIX documentation on tbl. The following is a basic example:

.TS
center; tab(|);
lf3 lf3
l l.
Command | Op Code
_
INQUIRY | (0x12)
REQUEST SENSE | (0x03)
TEST UNIT READY | (0x00)
.TE

General stylistic considerations are as follows:

– Redefine the tab character using the tab option; keyboard tabs cannot be
used by tbl tables. Typically the pipe character (|) is used.

– Center small tables on the page.
– Expand wide tables to the current line length.
– Make column headings bold.
– Separate column headings from the table body with a single line.
– Align columns visually.

Do not use .CS/.CE to build tables. This markup is reserved for code examples.

■ Lists: List items are easily created using the standard man macro .IP. Do not
use the .CS/.CE macros to build lists. The following is a basic example:

.IP "FIODISKFORMAT"
Formats the entire disk with appropriate hardware track and
sector marks.
.IP "FIODISKINIT"
Initializes a DOS file system on the disk volume.

Tornado 2.2

User’s Guide

470

D.4 Tcl Coding Conventions

These conventions are divided into the following categories:

■ Module Layout
■ Procedure Layout
■ Code outside of procedure
■ Code Layout
■ Naming Conventions
■ Style

D.4.1 Tcl Module Layout

A module is any unit of code that resides in a single Tcl file. The conventions in this
section define the standard module heading that must come at the beginning of
every Tcl module following the standard file heading. The module heading
consists of the blocks described below; the blocks are separated by one or more
blank lines.

After the modification history and before the first function or executable code of
the module, the following sections are included in the following order, if
appropriate:

■ General Module Documentation: The module documentation is a block of
single-line Tcl comments beginning by the keyword DESCRIPTION and
consisting of a complete description of the overall module purpose and
function, especially the external interface. The description includes the
heading RESOURCE FILES followed by a list of relevant Tcl files sourced
inside the file.

■ Globals: The globals block consists of a one-line Tcl comment containing the
word globals followed by one or more Tcl declarations, one per line. This block
groups together all declarations in the module that are intended to be visible
outside the module.

The format of these blocks is shown in the following example (which also includes
the Tcl version of the file heading):

Example D-5 Tcl File and Module Headings

Browser.tcl - Browser Tcl implementation file
#
Copyright 1994-1995 Wind River Systems, Inc.
#

D

D

Coding Conventions

471

modification history

02b,30oct95,jco added About menu and source browser.tcl in .wind.
02a,02sep95,pad fixed communications loss with license daemon (SPR #1234).
01c,05mar95,jcf upgraded spy dialog
01b,08feb95,p_m take care of loadFlags in wtxObjModuleInfoGet.
01a,06dec94,c_s written.
#
DESCRIPTION
This module is the Tcl code for the browser. It creates the main window and
initializes the objects in it, such as the task list and memory charts.
#
RESOURCE FILES
wpwr/host/resource/tcl/shelbrws.tcl
wpwr/host/resource/tcl/app-config/Browser/*.tcl
...
#*/

globals

set browserUpdate 0 ;# no auto update by default

D.4.2 Tcl Procedure Layout

The following conventions define the standard layout for every procedure in a
module.

Each procedure is preceded by the procedure documentation, a series of Tcl
comments that includes the following blocks. The documentation contains no
blank lines, but each block is delimited with a line containing a single pound
symbol (#) in the first column.

■ Banner: A Tcl comment that consists of 78 pound symbols (#) across the page.

■ Title: One line containing the routine name followed by a short, one-line
description. The routine name in the title must match the declared routine
name. This line becomes the title of automatically generated reference entries
and indexes.

■ Description: A full description of what the routine does and how to use it.

■ Synopsis: The word SYNOPSIS: followed by a the synopsis of the
procedure—its name and parameter list between .tS and .tE macros. Optional
parameters are shown in square brackets. A variable list of arguments is
represented by three dots (...).

■ Parameters: For each parameter, the .IP macro followed by the parameter
name on one line, followed by its complete description on the next line.

Tornado 2.2

User’s Guide

472

Include the default value and domain of definition in each parameter
description.

■ Returns: The word RETURNS: followed by a description of the possible
explicit result values of the subroutine (that is, values returned with the Tcl
return command).

RETURNS:
A list of 11 items: vxTicks taskId status priority pc sp errno
timeout entry priNormal name

If the return value is meaningless enter N/A:

RETURNS: N/A

■ Errors: The word ERRORS: followed by all the error messages or error code
(or both, if necessary) raised in the procedure by the Tcl error command.

ERRORS:
"Cannot find symbol in symbol table"

If no error statement is invoked in the procedure, enter N/A.

ERRORS: N/A

The procedure documentation ends with an empty Tcl comment starting in
column one.

The procedure declaration follows the procedure heading and is separated from
the documentation block by a single blank line. The format of the procedure and
parameter declarations is shown in D.3.3 C Declaration Formats, p.454.

The following is an example of a standard procedure layout.

Example D-6 Standard Tcl Procedure Layout

###
#
browse - browse an object, given its ID
#
This routine is bound to the "Show" button, and is invoked when
that button is clicked. If the argument (the contents of...
#
SYNOPSIS
.tS
browse [objAddr | symbol | &symbol]
.tE
#

D

D

Coding Conventions

473

PARAMETERS
.IP <objAddr>
the address of an object to browse
.IP <symbol>
a symbolic address whose contents is the address of
an object to browse
.IP <&symbol>
a symbolic address that is the address of an object to browse
#
RETURNS: N/A
#
ERRORS: N/A
#

proc browse {args} {
...

}

D.4.3 Tcl Code Outside Procedures

Tcl allows code that is not in a procedure. This code is interpreted immediately
when the file is read by the Tcl interpreter. Aside from the global-variable
initialization done in the globals block near the top of the file, collect all such
material at the bottom of the file.

However, it improves clarity—when possible—to collect any initialization code in
an initialization procedure, leaving only a single call to that procedure at the
bottom of the file. This is especially true for dialog creation and initialization, and
more generally for all commands related to graphic objects.

Tcl code outside procedures must also have a documentation heading, including
the following blocks:

■ Banner: A Tcl comment that consists of 78 pound symbols (#) across the page.

■ Title: One line containing the file name followed by a short, one-line
description. The file name in the title must match the file name in the file
heading.

■ Description: A description of the out-of-procedure code.

Tornado 2.2

User’s Guide

474

The following is a sample heading for Tcl code outside all procedures.

Example D-7 Heading for Out-of-Procedure Tcl Code

###
01Spy.tcl - Initialization code
#
This code is executed when the file is sourced. It executes the module
entry routine which does all the necessary initialization to get a
runnable spy utility.
#

Call the entry point for the module

spyInit

D.4.4 Declaration Formats

Include only one declaration per line. Declarations are indented in accordance
with Indentation, p.476, and begin at the current indentation level. The remainder
of this section describes the declaration formats for variables and procedures.

Variables

For global variables, the Tcl set command appears first on the line, separated from
the identifier by a tab character. Complete the declaration with a meaningful
comment at the end of the same line. Variables, values, and comments should be
aligned, as in the following example:

set rootMemNBytes 0 ;# memory for TCB and root stack
set rootTaskId 0 ;# root task ID
set symSortByName 1 ;# boolean for alphabetical sort

Procedures

The procedure name and list of parameters appear on the first line, followed by the
opening curly brace. The declarations of global variables used inside the procedure
begin on the next line, one on each separate line. The rest of the procedure code
begins after a blank line.

D

D

Coding Conventions

475

For example:

proc lstFind {list node} {
global firstNode
global lastNode

...
}

D.4.5 Code Layout

The maximum length for any line of code is 80 characters. If more than 80
characters are required, use the backslash character to continue on the next line.

The rest of this section describes conventions for the graphic layout of Tcl code,
covering the following elements:

■ vertical spacing
■ horizontal spacing
■ indentation
■ comments

Vertical Spacing

■ Use blank lines to make code more readable and to group logically related
sections of code together. Put a blank line before and after comment lines.

■ Do not put more than one declaration on a line. Each variable and function
argument must be declared on a separate line.

■ Do not put more than one statement on a line. The only exceptions are:

– A for statement where the initial, conditional, and loop statements can be
written on a single line:

for {set i 0} {$i < 10} {incr i 3} {

– A switch statement whose actions are short and nearly identical (see the
switch statement format in Indentation, p.476).

The if statement is not an exception. The conditionally executed statement
always goes on a separate line from the conditional expression:

if {$i > $count} {
set i $count

}

Tornado 2.2

User’s Guide

476

■ Opening braces ({), defining a command body, are always on the same line as
the command itself.

■ Closing braces (}) and switch patterns always have their own line.

Horizontal Spacing

■ Put spaces around binary operators. Put spaces before an open parenthesis,
open brace and open square bracket if it follows a command or assignment
statement. For example:

set status [fooGet $foo [expr $i + 3] $value]
if {&value & &mask} {

■ Line up continuation lines with the part of the preceding line they continue:

set a [expr ($b + $c) * \
($d + $e)]

set status [fooList $foo $a $b $c \
$d $e]

if {($a == $b) && \
($c == $d)} {
...

}

Indentation

■ Indentation levels are every four characters (columns 1, 5, 9, 13, …).

■ The default tab width must be eight characters (assumed to be at columns 1, 9,
17, ...). The intermediate indentations are achieved with spaces.

■ The module and procedure headings and the procedure declarations start in
column one.

■ The closing brace of a command body is always aligned on the same column
as the command it is related to:

while { condition }{
statements

}

foreach i $elem {
statements

}

D

D

Coding Conventions

477

■ Add one more indentation level after any of the following:

– procedure declarations
– conditionals (see below)
– looping constructs
– switch statements
– switch patterns

■ The else of a conditional is on the same line as the closing brace of the first
command body. It is followed by the opening brace of the second command
body. Thus the form of the conditional is:

if { condition } {
statements

} else {
statements

}

The form of the conditional statement with an elseif is:

if { condition } {
statements

} elseif { condition } {
statements

} else {
statements

}

■ The general form of the switch statement is:

switch [flags] value {
a {

statements
}

b {
statements
}

default {
statements
}

}

If the actions are very short and nearly identical in all cases, an alternate form
of the switch statement is acceptable:

switch [flags] value {
a {set x $aVar}
b {set x $bVar}
c {set x $cVar}

}

Tornado 2.2

User’s Guide

478

■ Comments have the same indentation level as the section of code to which they
refer (see Comments, p.478).

■ Opening body braces ({) have no specific indentation; they follow the
command on the same line.

Comments

■ Place comments within code so that they precede the section of code to which
they refer and have the same level of indentation. Separate such comments
from the code by a single blank line.

– Begin single-line comments with the pound symbol as in the following:

This is the correct format for a single-line comment

set foo 0

– Multi-line comments have each line beginning with the pound symbol as
in the example below. Do not use a backslash to continue a comment
across lines.

This is the CORRECT format for a multiline comment
in a section of code.

set foo 0

This is the INCORRECT format for a multiline comment \
in a section of code.

set foo 0

■ Comments on global variables appear on the same line as the variable
declaration, using the semicolon (;) character:

set day night ;# This is a global variable

D.4.6 Naming Conventions

The following conventions define the standards for naming modules, routines and
variables. The purpose of these conventions is uniformity and readability of code.

■ When creating names, remember that code is written once but read many
times. Make names meaningful and readable. Avoid obscure abbreviations.

D

D

Coding Conventions

479

■ Names of routines and variables are composed of upper- and lowercase
characters and no underbars. Capitalize each “word” except the first:

aVariableName

■ Every module has a short prefix (two to five characters). The prefix is attached
to the module name and to all externally available procedures and variables.
(Names that are not available externally need not follow this convention.)

■ Names of procedures follow the module-noun-verb rule. Start the procedure
name with the module prefix, followed by the noun or object that the
procedure manipulates. Conclude the name with the verb or action that the
procedure performs:

D.4.7 Tcl Style

The following conventions define additional standards of programming style:

■ Comments: Insufficiently commented code is unacceptable.

■ Procedure Length: Procedures should have a reasonably small number of
lines, less than 50 if possible.

■ Case Statement: Do not use the case keyword. Use switch instead.

■ expr and Control Flow Commands: Do not use expr in commands such as if, for
or while except to convert a variable from one format to another:

CORRECT:

if {$id != 0} {

CORRECT:

if {[expr $id] != 0} {

INCORRECT:

if {[expr $id != 0]} {

fooLib.tcl module name
fooObjFind procedure name
fooCount variable name

fooObjFind foo - object - find
sysNvRamGet system - non volatile RAM - get
taskInfoGet task - info - get

Tornado 2.2

User’s Guide

480

■ expr and incr: Do not use expr to increment or decrement the value of a
variable. Use incr instead.

CORRECT:

incr index

CORRECT:

incr index -4

INCORRECT:

set index [expr $index + 1]

■ wtxPath and wtxHostType: Use these routines when developing tools for
Tornado. With no arguments, wtxPath returns the value of the environment
variable WIND_BASE with a “/” appended. With an argument list, the result of
wtxPath is an absolute path rooted in WIND_BASE with each argument as a
directory segment. Use this command in Tornado tools to read resource files.
The wtxHostType call returns the host-type string for the current process (the
environment variable WIND_HOST_TYPE. if properly set, has the same value).
For example:

source [wtxPath host resource tcl]wtxcore.tcl
set backenddir [wtxPath host [wtxHostType] lib backend]*

■ catch Command: The catch command is very useful to intercept errors raised
by underlying procedures so that a script does not abort prematurely.
However, use the catch command with caution. It can obscure the real source
of a problem, thus causing errors that are particularly hard to diagnose. In
particular, do not use catch to capture the return value of a command without
testing it. Note also that if the intercepted error cannot be handled, the error
must be resubmitted exactly as it was received (or translated to one of the
defined errors in the current procedure):

CORRECT:

if [catch "dataFetch $list" result] {
if {$result == "known problem"} {

specialCaseHandle
} else {

error $result
}

INCORRECT:

catch "dataFetch $list" result

D

D

Coding Conventions

481

■ if then else Statement: In an if command, you may omit the keyword then
before the first command body; but do not omit else if there is a second
command body.

CORRECT:

if {$id != 0} {
...

} else {
...

}

INCORRECT:

if {$id !=0} then {
...

} {
...

}

■ Return Values: Tcl procedures only return strings; whatever meaning the
string has (a list for instance) is up to the application. Therefore each constant
value that a procedure can return must be described in the procedure
documentation, in the RETURNS: block. If a complex element is returned,
provide a complete description of the element layout. Do not use the return
statement to indicate that an abnormal situation has occurred; use the error
statement in that situation.

The following illustrates a complex return value consisting of a description:

Return a list of 11 items: vxTicks taskId status priority pc
sp errno timeout entry priNormal name

return [concat [lrange $tiList 0 1] [lrange $tiList 3 end]]

The following illustrates and simple return value:

This code checks whether the VxMP component is installed:

if [catch "wtxSymFind -name smObjPoolMinusOne" result] {
if {[wtxErrorName $result] == "SYMTBL_SYMBOL_NOT_FOUND"} {

return -1 # VxMP is not installed
} else {

error $result
}

} else {
return 0 # VxMP is installed

}

Tornado 2.2

User’s Guide

482

■ Error Conditions: The Tcl error command raises an error condition that can be
trapped by the catch command. If not caught, an error condition terminates
script execution. For example:

if {$defaultTaskId == 0} {
error "No default task has been established."

}

Because every error message and error code must be described in the
procedure header in the ERRORS: block, it is sometimes useful to call error in
order to replace an underlying error message with an error expressed in terms
directly relevant to the current procedure. For example:

if [catch "wtxObjModuleLoad $periodModule" status] {
error "Cannot add period support module to Target ($status)"

}

483

E
X Resources

E.1 Predefined X Resource Collections

The following X resource settings are described in 2.3.4 X Resource Settings, p.23:

Browser*customization
CrossWind*customization
Dialog*customization
Launch*customization

When you set these properties to -color or -grayscale (or leave them unset, for a
monochrome display), the Tornado tools start up with X resource definitions
tailored by the Tornado designers for each of those three kinds of display.

E.2 Resource Definition Files

If you wish to exercise more detailed control over the X resources (colors, fonts,
bitmaps, and so on) used by Tornado, refer to the X resource files in the Tornado
distribution (listed in this section) to select the properties you wish to override.

The documentation for X resources used by Tornado consists of comments in the
resource files themselves.

Tornado 2.2

User’s Guide

484

If you choose to override Tornado X resource values, we recommend that you do
not edit these files in place; instead, use them as references, and override the
resource settings as you wish in the .Xdefaults or .Xresources file in your home
directory.

The following files contain the Tornado X resource definitions:

installDir/host/resource/app-defaults/Tornado
Comprehensive definitions for all resources common to all the Tornado tools.

installDir/host/resource/app-defaults/Tornado-grayscale
Grayscale-monitor overrides for resources common to all the Tornado tools.

installDir/host/resource/app-defaults/toolName
Comprehensive definitions for all resources specific to the Tornado tool
toolName (where toolName is one of Browser, CrossWind, Dialog, or Launch).

installDir/host/resource/app-defaults/toolName-color
Color-monitor overrides specific to a particular Tornado tool.

installDir/host/resource/app-defaults/toolName-grayscale
Grayscale-monitor overrides specific to a particular Tornado tool.

! WARNING: The names and values of all X resource strings other than the
*customization properties are subject to change from one Tornado release to the
next.

485

F
VxWorks Initialization Timeline

F.1 Introduction

This section covers the initialization sequence for VxWorks in a typical
development configuration. The steps are described in sequence of execution. This
is not the only way VxWorks can be bootstrapped on a particular processor. There
are often more efficient or robust techniques unique to a particular processor or
hardware; consult your hardware’s documentation.

For final production, the sequence can be revisited to include diagnostics or to
remove some of the generic operations that are required for booting a development
environment, but that are unnecessary for production. This description can
provide only an approximate guide to the processor initialization sequence and
does not document every exception to this time-line.

The early steps of the initialization sequence are slightly different for ROM-based
versions of VxWorks; for information, see F.9 Initialization Sequence for ROM-Based
VxWorks, p.499.

For a summary of the initialization timeline, see Table F-1. The following sections
describe the initialization in detail by routine name. For clarity, the sequence is
divided into a number of main steps or function calls. The key routines are listed
in the headings and are described in chronological order.

Tornado 2.2

User’s Guide

486

F.2 The VxWorks Entry Point: sysInit()

The first step in starting a VxWorks system is to load a system image into main
memory. This usually occurs as a download from the development host, under the
control of the VxWorks boot ROM. Next, the boot ROM transfers control to the
VxWorks startup entry point, sysInit(). This entry point is configured by
RAM_LOW_ADRS in the makefile and in config.h. The VxWorks memory layout is
different for each architecture; for details, see the appendix that describes your
architecture.

The entry point, sysInit(), is in the system-dependent assembly language module,
sysALib.s. It locks out all interrupts, invalidates caches if applicable, and
initializes processor registers (including the C stack pointer) to default values. It
also disables tracing, clears all pending interrupts, and invokes usrInit(), a C
subroutine in the usrConfig.c module. For some targets, sysInit() also performs
some minimal system-dependent hardware initialization, enough to execute the
remaining initialization in usrInit(). The initial stack pointer, which is used only
by usrInit(), is set to occupy an area below the system image but above the vector
table (if any).

F.3 The Initial Routine: usrInit()

The usrInit() routine (in usrConfig.c) saves information about the boot type,
handles all the initialization that must be performed before the kernel is actually
started, and then starts the kernel execution. It is the first C code to run in VxWorks.
It is invoked in supervisor mode with all hardware interrupts locked out.

Many VxWorks facilities cannot be invoked from this routine. Because there is no
task context as yet (no TCB and no task stack), facilities that require a task context
cannot be invoked. This includes any facility that can cause the caller to be
preempted, such as semaphores, or any facility that uses such facilities, such as
printf(). Instead, the usrInit() routine does only what is necessary to create an
initial task, usrRoot(). This task then completes the startup.

F

F

VxWorks Initialization Timeline

487

The initialization in usrInit() includes the following:

Cache Initialization

The code at the beginning of usrInit() initializes the caches, sets the mode of the
caches and puts the caches in a safe state. At the end of usrInit(), the instruction
and data caches are enabled by default.

Zeroing Out the System bss Segment

The C and C++ languages specify that all uninitialized variables must have initial
values of 0. These uninitialized variables are put together in a segment called bss.
This segment is not actually loaded during the bootstrap, because it is known to be
zeroed out. Because usrInit() is the first C code to execute, it clears the section of
memory containing bss as its very first action. While the VxWorks boot ROMs clear
all memory, VxWorks does not assume that the boot ROMs are used.

Initializing Interrupt Vectors

The exception vectors must be set up before enabling interrupts and starting the
kernel. First, intVecBaseSet() is called to establish the vector table base address.

After intVecBaseSet() is called, the routine excVecInit() initializes all exception
vectors to default handlers that safely trap and report exceptions caused by
program errors or unexpected hardware interrupts.

Initializing System Hardware to a Quiescent State

System hardware is initialized by calling the system-dependent routine
sysHwInit(). This mainly consists of resetting and disabling hardware devices
that can cause interrupts after interrupts are enabled (when the kernel is started).
This is important because the VxWorks ISRs (for I/O devices, system clocks, and
so on), are not connected to their interrupt vectors until the system initialization is
completed in the usrRoot() task. However, do not attempt to connect an interrupt

NOTE: There are exceptions to this in some architectures; see the appendix that
describes your architecture for details.

Tornado 2.2

User’s Guide

488

handler to an interrupt during the sysHwInit() call, because the memory pool is
not yet initialized.

F.4 Initializing the Kernel

The usrInit() routine ends with calls to two kernel initialization routines:

usrKernelInit() (defined in usrKernel.c)
calls the appropriate initialization routines for each of the specified
optional kernel facilities (see Table F-1 for a list).

kernelInit() (part of kernelLib.c)
initiates the multitasking environment and never returns. It takes the
following parameters:

– The application to be spawned as the “root” task, typically usrRoot().

– The stack size.

– The start of usable memory; that is, the memory after the main text, data,
and bss of the VxWorks image. All memory after this area is added to the
system memory pool, which is managed by memPartLib. Allocation for
dynamic module loading, task control blocks, stacks, and so on, all come
out of this region. See F.5 Initializing the Memory Pool, p.489.

– The top of memory as indicated by sysMemTop(). If a contiguous block
of memory is to be preserved from normal memory allocation, pass
sysMemTop() less the reserved memory.

– The interrupt stack size. The interrupt stack corresponds to the largest
amount of stack space any interrupt-level routine uses, plus a safe margin
for the nesting of interrupts.

– The interrupt lock-out level. For architectures that have a level concept, it
is the maximum level. For architectures that do not have a level concept, it
is the mask to disable interrupts. See the appendix that describes your
architecture for details.

kernelInit() calls intLockLevelSet(), disables round-robin mode, and creates an
interrupt stack if supported by the architecture. It then creates a root stack and TCB
from the top of the memory pool, spawns the root task, usrRoot(), and terminates

F

F

VxWorks Initialization Timeline

489

the usrInit() thread of execution. At this time, interrupts are enabled; it is critical
that all interrupt sources are disabled and pending interrupts cleared.

F.5 Initializing the Memory Pool

VxWorks includes a memory allocation facility, in the module memPartLib, that
manages a pool of available memory. The malloc() routine allows callers to obtain
variable-size blocks of memory from the pool. Internally, VxWorks uses malloc()
for dynamic allocation of memory. In particular, many VxWorks facilities allocate
data structures during initialization. Therefore, the memory pool must be
initialized before any other VxWorks facilities are initialized.

Note that the Tornado target server manages a portion of target memory to
support downloading of object modules and other development functions.
VxWorks makes heavy use of malloc(), including allocation of space for loaded
modules, allocation of stacks for spawned tasks, and allocation of data structures
on initialization. You are also encouraged to use malloc() to allocate any memory
your application requires. Therefore, it is recommended that you assign to the
VxWorks memory pool all unused memory, unless you must reserve some fixed
absolute memory area for a particular application use.

The memory pool is initialized by kernelInit(). The parameters to kernelInit()
specify the start and end address of the initial memory pool. In the default
usrInit() distributed with VxWorks, the pool is set to start immediately following
the end of the booted system, and to contain all the rest of available memory.

The extent of available memory is determined by sysMemTop(), which is a
system-dependent routine that determines the size of available memory. If your
system has other noncontiguous memory areas, you can make them available in
the general memory pool by later calling memAddToPool() in the usrRoot() task.

Tornado 2.2

User’s Guide

490

F.6 The Initial Task: usrRoot()

When the multitasking kernel starts executing, all VxWorks multitasking facilities
are available. Control is transferred to the usrRoot() task and the initialization of
the system can be completed. For example, usrRoot() performs the following:

– initialization of the system clock
– initialization of the I/O system and drivers
– creation of the console devices
– setting of standard in and standard out
– installation of exception handling and logging
– initialization of the pipe driver
– initialization of standard I/O
– creation of file system devices and installation of disk drivers
– initialization of floating-point support
– initialization of performance monitoring facilities
– initialization of the network
– initialization of optional facilities
– initialization of WindView (see the WindView User’s Guide)
– initialization of target agent
– execution of a user-supplied startup script

To review the complete initialization sequence within usrRoot(), see
installDir/target/config/all/ usrConfig.c.

Modify these initializations to suit your configuration. The meaning of each step
and the significance of the various parameters are explained in the following
sections.

Initialization of the System Clock

The first action in the usrRoot() task is to initialize the VxWorks clock. The system
clock interrupt vector is connected to the routine usrClock() (described in F.7 The
System Clock Routine: usrClock(), p.496) by calling sysClkConnect(). Then, the
system clock rate (usually 60Hz) is set by sysClkRateSet(). Most boards allow
clock rates as low as 30Hz (some even as low as 1Hz), and as high as several
thousand Hz. High clock rates (>1000Hz) are not desirable, because they can cause
system thrashing.1

1. Thrashing occurs when clock interrupts are so frequent that the processor spends too much
time servicing the interrupts, and no application code can run.

F

F

VxWorks Initialization Timeline

491

The timer drivers supplied by Wind River include a call to sysHwInit2() as part of
the sysClkConnect() routine. Wind River BSPs use sysHwInit2() to perform
further board initialization that is not completed in sysHwInit(). For example, an
intConnect() of ISRs can take place here, because memory can be allocated now
that the system is multitasking.

Initialization of the I/O System

If INCLUDE_IO_SYSTEM is defined in configAll.h, the VxWorks I/O system is
initialized by calling the routine iosInit(). The arguments specify the maximum
number of drivers that can be subsequently installed, the maximum number of
files that can be open in the system simultaneously, and the desired name of the
“null” device that is included in the VxWorks I/O system. This null device is a
“bit-bucket” on output and always returns end-of-file for input.

The inclusion or exclusion of INCLUDE_IO_SYSTEM also affects whether the
console devices are created, and whether standard in, standard out, and standard
error are set; see the next two sections for more information.

Creation of the Console Devices

If the driver for the on-board serial ports is included (INCLUDE_TTY_DEV), it is
installed in the I/O system by calling the driver’s initialization routine, typically
ttyDrv(). The actual devices are then created and named by calling the driver’s
device-creation routine, typically ttyDevCreate(). The arguments to this routine
includes the device name, a serial I/O channel descriptor (from the BSP), and input
and output buffer sizes.

The macro NUM_TTY specifies the number of tty ports (default is 2),
CONSOLE_TTY specifies which port is the console (default is 0), and
CONSOLE_BAUD_RATE specifies the bps rate (default is 9600). These macros are
specified in configAll.h, but can be overridden in config.h for boards with a
nonstandard number of ports.

PCs can use an alternative console with keyboard input and VGA output; see your
PC workstation documentation for details.

Tornado 2.2

User’s Guide

492

Setting of Standard In, Standard Out, and Standard Error

The system-wide standard in, standard out, and standard error assignments are
established by opening the console device and calling ioGlobalStdSet(). These
assignments are used throughout VxWorks as the default devices for
communicating with the application developer. To make the console device an
interactive terminal, call ioctl() to set the device options to OPT_TERMINAL.

Installation of Exception Handling and Logging

Initialization of the VxWorks exception handling facilities (supplied by the module
excLib) and logging facilities (supplied by logLib) takes place early in the
execution of the root task. This facilitates detection of program errors in the root
task itself or in the initialization of the various facilities.

The exception handling facilities are initialized by calling excInit() when
INCLUDE_EXC_HANDLING and INCLUDE_EXC_TASK are defined. The excInit()
routine spawns the exception support task, excTask(). Following this
initialization, program errors causing hardware exceptions are safely trapped and
reported, and hardware interrupts to uninitialized vectors are reported and
dismissed. The VxWorks signal facility, used for task-specific exception handling,
is initialized by calling sigInit() when INCLUDE_SIGNALS is defined.

The logging facilities are initialized by calling logInit() when
INCLUDE_LOGGING is defined. The arguments specify the file descriptor of the
device to which logging messages are to be written, and the number of log message
buffers to allocate. The logging initialization also includes spawning the logging
task, logTask().

Initialization of the Pipe Driver

If named pipes are desired, define INCLUDE_PIPE in configAll.h so that pipeDrv()
is called automatically to initialize the pipe driver. Tasks can then use pipes to
communicate with each other through the standard I/O interface. Pipes must be
created with pipeDevCreate().

F

F

VxWorks Initialization Timeline

493

Initialization of Standard I/O

VxWorks includes an optional standard I/O package when INCLUDE_STDIO is
defined.

Creation of File System Devices and Initialization of Device Drivers

Many VxWorks configurations include at least one disk device or RAM disk with
a dosFs, rt11Fs, or rawFs file system. First, a disk driver is installed by calling the
driver’s initialization routine. Next, the driver’s device-creation routine defines a
device. This call returns a pointer to a BLK_DEV structure that describes the device.

The new device can then be initialized and named by calling the file system’s
device-initialization routine—dosFsDevInit(), rt11FsDevInit(), or
rawFsDevInit()—when the respective constants INCLUDE_DOSFS,
INCLUDE_RT11FS, and INCLUDE_RAWFS are defined. (Before a device can be
initialized, the file system module must already be initialized with dosFsInit(),
rt11FsInit(), or rawFsInit().) The arguments to the file system device-initialization
routines depend on the particular file system, but typically include the device
name, a pointer to the BLK_DEV structure created by the driver’s device-creation
routine, and possibly some file-system-specific configuration parameters.

Initialization of Floating-Point Support

Support for floating-point I/O is initialized by calling the routine floatInit() when
INCLUDE_FLOATING_POINT is defined in configAll.h. Support for floating-point
coprocessors is initialized by calling mathHardInit() when INCLUDE_HW_FP is
defined. Support for software floating-point emulation is initialized by calling
mathSoftInit() when INCLUDE_SW_FP is defined. See the appropriate
architecture appendix for details on your processor’s floating-point support.

Tornado 2.2

User’s Guide

494

Inclusion of Performance Monitoring Tools

VxWorks has two built-in performance monitoring tools. A task activity summary
is provided by spyLib, and a subroutine execution timer is provided by timexLib.
These facilities are included by defining the macros INCLUDE_SPY and
INCLUDE_TIMEX, respectively, in configAll.h.

Initialization of the Network

Before the network can be used, it must be initialized with the routine
usrNetInit(), which is called by usrRoot() when the constant
INCLUDE_NET_INIT is defined in one of the configuration header files. (The source
for usrNetInit() is in installDir/target/src/config/usrNetwork.c.) The routine
usrNetInit() takes a configuration string as an argument. This configuration string
is usually the “boot line” that is specified to the VxWorks boot ROMs to boot the
system (see Tornado Getting Started). Based on this string, usrNetInit() performs
the following:

■ Initializes network subsystem by calling the routine netLibInit().

■ Attaches and configures appropriate network drivers.

■ Adds gateway routes.

■ Initializes the remote file access driver netDrv, and adds a remote file access
device.

■ Initializes the remote login facilities.

■ Optionally initializes the Remote Procedure Calls (RPC) facility.

■ Optionally initializes the Network File System (NFS) facility.

As noted previously, the inclusion of some of these network facilities is controlled
by definitions in configAll.h. The network initialization steps are described in the
VxWorks Network Programmer’s Guide.

F

F

VxWorks Initialization Timeline

495

Initialization of Optional Products and Other Facilities

Shared memory objects are provided with the optional product VxMP. Before
shared memory objects can be used, they must be initialized with the routine
usrSmObjInit() (in installDir/target/src/config/usrSmObj.c), which is called from
usrRoot() if INCLUDE_SM_OBJ is defined.

Basic MMU support is provided if INCLUDE_MMU_BASIC is defined. Text
protection, vector table protection, and a virtual memory interface are provided
with the optional product VxVMI, if INCLUDE_MMU_FULL is defined. The MMU
is initialized by the routine usrMmuInit(), located in
installDir/target/src/config/usrMmuInit.c. If the macros
INCLUDE_PROTECT_TEXT and INCLUDE_PROTECT_VEC_TABLE are also
defined, text protection and vector table protection are initialized.

Wind River compilers support the C++ language. Run-time C++ support is
enabled by defining INCLUDE_CPLUS. Additional C++ facilities can also be
included by defining the appropriate INCLUDE_CPLUS_XXX macros. For more
details see the VxWorks Programmer’s Guide: C++ Development.

Initialization of WindView

Kernel instrumentation is provided with the optional product WindView. It is
initialized in usrRoot() when INCLUDE_WINDVIEW is defined in configAll.h.
Other WindView configuration constants control particular initialization steps; see
the WindView User’s Guide: Configuring WindView.

Initialization of the Target Agent

If INCLUDE_WDB is defined, wdbConfig() in
installDir/target/src/config/usrWdb.c is called. This routine initializes the agent’s

! CAUTION: The shared memory objects library requires information from fields in
the VxWorks boot line. The functions are contained in the usrNetwork.c file. If no
network services are included, usrNetwork.c is not included and the shared
memory initialization fails. The project facility calculates all dependencies but if
you are using manual configuration, either add INCLUDE_NETWORK to
configAll.h or extract the bootline cracking routines from usrNetwork.c and
include them elsewhere.

Tornado 2.2

User’s Guide

496

communication interface, then starts the agent. For information on configuring the
agent, see 5.3 Configuring VxWorks, p.186.

Execution of a Startup Script

The usrRoot() routine executes a user-supplied startup script if the target-resident
shell is configured into VxWorks, INCLUDE_STARTUP_SCRIPT is defined, and the
script’s file name is specified at boot time with the startup script parameter (see
Tornado Getting Started). If the parameter is missing, no startup script is executed.

F.7 The System Clock Routine: usrClock()

Finally, the system clock ISR usrClock() is attached to the system clock timer
interrupt by the usrRoot() task described F.6 The Initial Task: usrRoot(), p.490. The
usrClock() routine calls the kernel clock tick routine tickAnnounce(), which
performs OS bookkeeping. You can add application-specific processing to this
routine.

F.8 Initialization Summary

Table F-1 shows a summary of the entire VxWorks initialization sequence for
typical configurations. For a similar summary applicable to ROM-based VxWorks
systems, see F.9 Initialization Sequence for ROM-Based VxWorks, p.499.

Table F-1 VxWorks Run-time System Initialization Sequence

Routine Activity File

sysInit() (a) lock out interrupts sysALib.s

(b) invalidate caches, if any

(c) initialize system interrupt tables with default
stubs (i960 only)

F

F

VxWorks Initialization Timeline

497

(d) initialize system fault tables with default stubs
(i960 only)

(e) initialize processor registers to known default
values

(f) disable tracing

(g) clear all pending interrupts

(h) invoke usrInit() specifying boot type

usrInit() (a) invoke optional sysHwInit0() usrConfig.c

(b) invoke cacheInit()

(c) zero bss (uninitialized data)

(d) save bootType in sysStartType

(e) invoke excVecInit() to initialize all system and
default interrupt vectors

(f) invoke sysHwInit()

(g) invoke usrKernelInit()

(h) enable caches

(i) invoke kernelInit()

usrKernelInit() The following routines are invoked if their
configuration constants are defined.

usrKernel.c

(a) classLibInit()

(b) taskLibInit()

(c) taskHookInit()

(d) semBLibInit()

(e) semMLibInit()

(f) semCLibInit()

(g) semOLibInit()

Table F-1 VxWorks Run-time System Initialization Sequence (Continued)

Routine Activity File

Tornado 2.2

User’s Guide

498

(h) wdLibInit()

(i) msgQLibInit()

(j) qInit() for all system queues

(k) workQInit()

kernelInit() Initialize and start the kernel. kernelLib.c

(a) invoke intLockLevelSet()

(b) create root stack and TCB from top of memory
pool

(c) invoke taskInit() for usrRoot()

(d) invoke taskActivate() for usrRoot()

(e) usrRoot()

usrRoot() Initialize I/O system, install drivers, and create
devices as specified in configAll.h and config.h. See
usrConfig.c for a complete list of optional kernel
facilities initialized.

usrConfig.c

(a) Initialize memory partitions and MMU

(b) sysClkConnect()

(c) sysClkRateSet()

(d) selectInit()

(e) iosInit()

(f) if (INCLUDE_TTY_DEV and NUM_TTY)
ttyDrv(),

then establish console port, STD_IN,
STD_OUT, STD_ERR

(g) initialize exception handling with excInit(),
logInit(), sigInit()

(h) initialize the pipe driver with pipeDrv()

(i) stdioInit()

Table F-1 VxWorks Run-time System Initialization Sequence (Continued)

Routine Activity File

F

F

VxWorks Initialization Timeline

499

F.9 Initialization Sequence for ROM-Based VxWorks

The early steps of system initialization are somewhat different for the ROM-based
versions of VxWorks: on most target architectures, the two routines romInit() and
romStart() execute instead of the usual VxWorks entry point, sysInit().

ROM Entry Point: romInit()

At power-up the processor begins executing at romInit() (defined in
installDir/target/config/bspname/romInit.s). The romInit() routine disables
interrupts, puts the boot type (cold/warm) on the stack, performs
hardware-dependent initialization (such as clearing caches or enabling DRAM),
and branches to romStart(). The stack pointer is initialized to reside below the data
section in the case of ROM-resident versions of VxWorks (in RAM versions, the
stack pointer instead resides below the text section).

Copying the VxWorks Image: romStart()

Next, the romStart() routine (in installDir/target/config/all/bootInit.c) loads the
VxWorks system image into RAM. If the ROM-resident version of VxWorks is
selected, the data segment is copied from ROM to RAM and memory is cleared. If
VxWorks is not ROM resident, all of the text and code segment is copied and
decompressed from ROM to RAM, to the location defined by RAM_HIGH_ADRS

in Makefile. If VxWorks is neither ROM resident nor compressed, the entire text
and data segment is copied without decompression straight to RAM, to the
location defined by RAM_LOW_ADRS in Makefile.

(j) mathSoftInit() or mathHardInit()

(k) wdbConfig(): configure and initialize target
agent

(l) run startup script if target-resident shell is
configured

Table F-1 VxWorks Run-time System Initialization Sequence (Continued)

Routine Activity File

Tornado 2.2

User’s Guide

500

Overall Initialization for ROM-Based VxWorks

Beyond romStart(), the initialization sequence for ROM-based VxWorks
resembles the normal sequence, continuing with the usrInit() call.

Table F-2 summarizes the complete initialization sequence. For details on the steps
after romInit() and romStart(), see F.8 Initialization Summary, p.496.

Table F-2 ROM-Based VxWorks Initialization Sequence

Routine Activity File

1. romInit() (a) disable interrupts romInit.s

(b) save boot type (cold/warm)

(c) hardware-dependent initialization

(d) branch to romStart()

2. romStart() (a) copy data segment from ROM to RAM; clear
memory

bootInit.c

(b) copy code segment from ROM to RAM,
decompressing if necessary

(c) invoke usrInit() with boot type

3. usrInit() Initial routine. usrConfig.c

4. usrKernelInit() Routines invoked if the corresponding
configuration constants are defined.

usrKernel.c

5. kernelInit() Initialize and start the kernel. kernelLib.c

6. usrRoot() Initialize I/O system, install drivers, and create
devices as configured in configAll.h and config.h.

usrConfig.c

Application
routine

Application code. Application
source file

501

Index

Symbols

? (C/Tcl interpreter toggle) 297
quick access 299–300

@ command (booting) 52
@ prefix (WindSh) 265

A

About menu
Tornado command 58

add command (CrossWind) 354
Add New Build Specification window 155
ADDED_C++FLAGS 208
ADDED_CFLAGS 208, 438
ADDED_MODULES 208, 438
address(es), memory

current, setting 279
add-symbol-file command (CrossWind) 354
Admin menu (launcher) 84

Authorize command 84
FTP Wind River command 84
Install CD command 84

agent, see target agent
agentModeShow() 261

mode switching, under 268
animation 58
ANSI C

function prototypes 171
header files 172

-ansi compiler option 178
application files

adding 118
closing 119
creating 117
displaying information about 118
linking files with 118
modifying 118
opening 119
removing 118
saving 119
VxWorks, for 132

application I/O (CrossWind) 356
application modules 3, 170–186

see also bootable applications; downloadable
applications

see also loadLib; unldLib
bootable 95
compiling with Diab

C 181
C++ 183

compiling with GNU
C 177
C++ 178

CPU type, defining
Diab, using 180
GNU, using 176

displaying information about (browser) 320

Tornado 2.2

User’s Guide

502

downloadable 94
group numbers 185
linking 183
loading 184–185, 354
make variables 205–208
makefiles

include files, using 209
module IDs 185
unloading 186, 355

application wizard
custom VxWorks images, creating 128
downloadable applications, creating 112

applications
see also bootable applications; downloadable

applications; projects
adding source code 102
architecture-independent 104
creating new source code 103
custom build rules, using 103
linking to VxSim 223
VxSim, building 222
VxWorks for, configuring 105

architecture-independent development 104
architecture-specific development

CPU type
Diab, defining for 180
GNU, defining for 176

Diab compiler invocations 181
GNU compiler invocations 177
VxSim, simulated target 217–243

arrays (WindSh) 282–283
Assembly command (CrossWind) 341
assignments (WindSh) 280–281
Attach System command (CrossWind) 340
attach system command (CrossWind) 362
Attach Task command (CrossWind) 339
Authorize command (launcher) 84
AUTOREGISTER_COCLASS 399

B

b() 261
mode switching, under 268
using 262

back ends, communications 80–82
backplane

installing boards in 29–30
processor number 50

Backtrace command (CrossWind) 343
Bash

host environment, configuring 22
bd() 261
bdall() 261
bh() 262
BINHEX 440
board support packages (BSP) 96, 187–190

boot media 28
creating 100
creating projects 130
documentation 189
header file (config.h) 191
initialization modules 189
make variables 205–208
parameter variables 207
pre-existing, using

project facility, outside the 101
project facility, with 100

simulator, using 101
system library 188
third-party 100
Tornado 1.0.1, using 100
Tornado 2.0, using 100
Tornado 2.2, using 100
virtual memory mapping 189

boards, see target board
boot images 165
boot media 28
boot programs

boot parameters, configuring 165
building 165
configuring 164–167
TSFS, for 166

boot ROM
custom, building 167

boot ROMs
compression 211, 213
installing 28
reprogramming 54
ROM-resident system images 196

IX

Index

503

BOOT_EXTRA 208, 440
bootable applications 95, 210–213

creating 147
initialization routines, adding application 147
size of 210

bootChange() 261
BOOTCONFIG 439
booting 46–55

@ command 52
alternative procedures 54
commands 49
networks, initializing 494
parameters 48–52

command-line format 54
displaying current, at boot time 48
nonvolatile RAM 54
reprogramming boot ROMs 54
setting 48–49

startup scripts 496
troubleshooting 60–63

boot display, using 53
BOOTINIT 439
bootrom 166, 199
bootrom_res 166, 196, 199
bootrom_res_high 196
bootrom_uncmp 166, 199
bootrom_uncmp.hex 211
Bourne shell

host environment, configuring 22
break command (CrossWind) 355
break thread command (CrossWind) 365–366
breakpoints

commands for handling, built-in shell 262
deleting 345
disabling 345
hardware, setting 345
setting

buttons, using CrossWind 344–345
command line, using 355

temporary, setting 345
threads, setting in 365–366

browse() 263
browser (HTML)

specifying 418
browser (Tornado) 307–332

application module information,
displaying 320

application task list 312
behavior of, controlling 310
buttons 310
class information, displaying 320
CPU utilization, reporting 324
customizing 331
interrupt/exception vector table,

displaying 323
limitations 327
loaded module list 313
memory consumption graphs 312
memory partition information, displaying 318
menu bar 310
message queue information, displaying 316
object information, displaying 313–320
quitting 310
semaphore information, displaying 315
spy utility 324
stack checks, displaying 325
starting 308
state indicator bar 309
symbols, setting sort order for 310
system task list 312
task information, displaying 314
troubleshooting with 327–331
updating displays 310

time intervals, setting 311
watchdog information, displaying 319

browser command 308
browser.tcl 331
BSP, see board support packages
bsp2prj 214
bss segment 487
Build dialog box 144
Build Output window 125
build specifications 148–155

see also Properties

Build specification window
assembler options, specifying 153
changing 149
compiler options, specifying 151
creating new 155
current build, selecting for 155

Tornado 2.2

User’s Guide

504

downloadable application 122
link order, specifying 153
linker options, specifying 154
makefile macros, specifying 150
makefile rules, working with 150
pre-set build macros 124
property sheets, working with 149–154

Build toolbar
buttons 126
displaying 126

building
boot programs 165
boot ROM, custom 167
build rules, custom 103
custom VxWorks 144

command line, using a 146
downloadable applications 119–127
VxSim applications 222

built-in functions 178
bus, see VMEbus
busy box 58
buttons

browser, Tornado 310
Build toolbar 126
CrossWind 344–353
launcher, Tornado 72
toolbar

Browser 67
CrossWind 67
Project 67
VxSim 67
WindSh 67
WindView 68

C

-c compiler option 178
C interpreter (WindSh) 272–289

addresses, setting current 279
arguments, using 278
arrays 282–283
assignments 280–281
commands, built-in 253–265

differentiating from target routines 265

list of 284
comments 281
data types, handling 273–274
function calls 277–279
limitations 283–284
literals 275
operators 276

redirection vs. relational 287
pointers 282–283
redirecting I/O 286–289

shConfig, using 272
scripts 288–289
statements, handling 275
strings 281

declaring 274
subroutines as commands 278
tasks

current, setting 279
referencing 279

Tcl
expressions, embedding 299
interpreter

quick access to 299–300
toggling to 297

variables 276
creating 281

c() 261
mode switching, under 268
omitting task parameters 279

C++ support 290–292
commands, built-in (WindSh) 262
compiling application modules

Diab, using 183
GNU, using 178

demangling function names 292
initializing 495
overloaded function names,

reconciling 290–291
C++_COMPILER 206
C++_WARNINGS 206
C++FLAGS 206
C/C++ command (CrossWind) 341
cables, connecting 30–31
cache

initializing 487

IX

Index

505

cache, target server 80
call command (CrossWind) 356
CC_COMPILER 206
CC_DEFINES 207
CC_INCLUDE 206
CC_OPTIM 206
CC_WARNINGS 206
cd() 257
CFLAGS 206

Diab compiler 181
GNU compiler 177

character arrays, see strings
characters, control, see control characters
checkStack() 255
classes (kernel objects)

displaying information about (browser) 320
classShow() 263
clocks

system 496
code

see also application modules; code examples;
object code; source code

code examples
CrossWind extensions 378–380
launcher, customizing 86–91
makefiles

sample (mv147) 204
skeleton for application modules 209

shConfig, using 253
sytem mode debugging 268

coding conventions 449–482
C 451–469

code layout 457–460
declaration 454
documentation 466–469
header files 463
module headings 451
naming 460
programming style 462
routines 453

file heading 450
Tcl 470–482

code layout 475–478
declarations 474
module headings 470

naming 478
outside procedures 473
procedures 471
programming style 479

COM
authenticating servers 400
building projects 397
creating applications 382
proxy and stub code, linking 397
registering

proxy DLLs (Windows) 398
servers 399
type library 399

support for, adding 383
Win32 clients, building 398

COM 384
COM wizard 385–395

automation datatypes 388
clients, choosing 391
generated files 393

COM_CORE 384
COM_SHOW 384
command-line parameters 54
commands, built-in (WindSh) 253–265

C++ development 262
debugging 260

command line, in the 359
displaying objects and object

information 263–264
list of 284
network information, displaying 264
network status, displaying 264
show routines 263–264
system information, obtaining 257–259
system modification 260
target routines, differentiating from 265
target-resident code, requiring 296
task information, obtaining 254
tasks, managing 254

commands, universal menu 58
comments (WindSh) 281
compiler environment

VxSim 222

Tornado 2.2

User’s Guide

506

compiler options
see also specific compiler options
build specifications, and 151
debugging and optimization, problems

with 152
Diab 182
GNU 177

compiling
C modules

GNU, using 177
C++ modules

Diab, using 183
GNU, using 178

make variables 206
component tree (VxWorks view) 136
components, VxWorks 95

configuring 134
conflicts among, identifying 140
dependencies, calculating 137
descriptions of 136
displaying 134
excluding 137
finding 136
including 137
parameters, changing 141
size of, estimating image 142

compress tool 213
COMPRESSION 440
compression, boot ROM 211, 213
config target directory 424
config.h 191

VxSim 224
CONFIG_ALL 190, 208, 439
CONFIG_ALL_H 439
configAll.h 191

see also configuration
configuration 169–197

see also config.h; configAll.h; configuration
header files

alternatives 193
module (usrConfig.c) 192
option dependencies 194
options (INCLUDE constants) 192
project facility for, using 170

configuration header files 191

configuration management, see version control
configuring

directories and files 424
host environment 20–24
jumpers 29
network software, host 25–27
standalone PCs 32
target 24–25
target hardware 27–31
target servers 73–82
VxSim for networking 234

Connect Target Servers command
(CrossWind) 340

console devices 491
CONSOLE_BAUD_RATE 491
CONSOLE_TTY 491
context-sensitive help

workspace, in 97
continue command (CrossWind) 348
control characters (shell) 286

see also specific control characters; tyLib(1)
conventions

coding 449–482
C 451–469
file heading 450
Tcl 470–482

interface (GUI) 58–59
Makefile macros 436

core file 77
cplusCtors() 262
cplusDtors() 262
cplusStratShow() 262
cplusXtorSet() 262
CPU type, defining

Diab, for 180
GNU, for 176
VxSim 222

Create Project window 112
Create Target Server form 76

options, specifying 76–82
Create... command (launcher) 72
cross-development 3–12, 170–213

commands
Diab 179
GNU 175

IX

Index

507

cross-development, Diab
commands 180

CrossWind 333–380
see also debugging; GDB User’s Guide
application modules

loading 354
unloading 355

auxiliary debugger displays, controlling 343
breakpoints, setting

buttons, using GUI 344–345
command line, using 355

buttons 344–353
defining new 351–353
summary of 334

code, displaying
regular expressions, containing 355
selecting display mode 341
specified line 355

command-line facilities 358
command-line interface 353–361
commands 353–361

information about, displaying 359
shell, built-in 260

command line, in the 359
customizing 374–380

code examples 378–380
debugger state, providing information

about 359
detaching session from task 362
download options 361
download timeout 361
editor, invoking 349
execution while debugging, starting 356
exit status reporting 360
expressions, evaluating 356
GDB Tcl interpreter 367–374

commands, submitting 368–369
expressions, evaluating 370
GDB command line, using 368
GDB facilities, invoking 370–372
GUI Tcl interpreter, switching to 376
I/O file descriptors, closing 372
linked lists, traversing 373–374
list of Tcl elements, returning 371
naming new commands 368

redirecting I/O 371
routine names, returning 372
scripts, debugging GDB-based 369
symbolic addresses 372
symbols

returning local 372
testing for 372

verbose error printing 369
GDB, running 353–361
.gdbinit, disabling 360
GUI Tcl interpreter 374–380

extensions, creating
code examples 377–380

GDB Tcl interpreter, switching to 376
initialization files 375
inspection windows, launching 350–351
interrupts 347
I/O, redirecting 356
name, debugger session 361
object files, specifying 354
pointer values, displaying 357
program state, providing information

about 359
quitting 338
registers, displaying machine 343
single-stepping 348
stack frame summaries, displaying 358
stack size 361
stack traces, displaying current 343
starting 334
state indicator 336
structure browsers 350
subroutines

finishing current 348
moving through stack 349

symbol values
displaying 357
monitoring 350–351
printing 349

system mode 362–366
targets

connecting to 358
task execution, continuing 348
task mode 362
task priority 361

Tornado 2.2

User’s Guide

508

Tcl, using 342
threads, managing 363–366
WTX protocol requests, sending 360

crosswind command-line command 334
crosswind.tcl 343

debugger GUI, customizing 375
re-initializing debugger 343

CTRL+C (interrupt key) 286
shell commands, interrupting 271
shell, terminating the 247

CTRL+D
completing symbol and path names 249
end-of-file 247
function synopsis, printing 249

CTRL+H (delete) 286
CTRL+L (clear input/output) 359
CTRL+Q (resume) 286
CTRL+S (suspend) 286
CTRL+SHIFT+X (reboot) 266
CTRL+U (delete line) 286
CTRL+W

function reference page, displaying 250
HTML help, launching 250

CTRL+X (reboot) 286
CTRL+X (reboot)

VxSim 220
CTRL+Z (suspend shell) 286
Customize Tools dialog box 409–416

macros, using 412
customizing Tornado 403–418

see also initialization files
download options, setting 403
editor, specifying alternate 417
Tcl files, using 417
Tools menu 409–416

alternate editor command, creating
(example) 415

binary utilities commands, creating
(example) 415

macros for custom commands 412
version control command, creating

(example) 414
Web link to Wind River, creating

(example) 416
Tornado 1.0.1 compatibility, setting 406

version control 406
customizing VxWorks 127–146

see also components
booting VxWorks 146
building VxWorks 144
command line, using a 146
components, configuring 134
image type, selecting 143
project files, creating 132
projects, creating 128

D

-D arch compiler option 182
d() 259

omitting address parameter 279
strings, displaying 274

data types 273–274
data variables (WindSh) 276

creating 281
DATASEGPAD 439
DCOM 384
DCOM (VxDCOM option)

authenticating servers 400
building projects 397
creating applications 382
demo, supporting the 384
proxy and stub code, linking 397
registering

proxy DLLs (Windows) 398
servers 399
type library 399

support for, adding 383
Win32 clients, building 398

DCOM wizard 385–395
automation datatypes 388
generated files 393

DCOM_OPC 384
DCOM_PROXY 384
DCOM_SHOW 384
-DCPU compiler option

Diab 182
GNU 178

IX

Index

509

debugger (CrossWind) 333–380
see also CrossWind; debugging

debugging
see also CrossWind; GDB User’s Guide
commands, built-in shell 260

command line, in the 359
disassembling 258
remote source-level (CrossWind) 333–380
shell, from the 246
system mode

code example 268
VxSim, using 236

delete character (CTRL+H) 286
delete command (CrossWind) 345
DELETE key

projects, removing 127
delete-line character (CTRL+U) 286
demangling, see name demangling 292
depend.bspname file

generating 435
dependencies

component 137
makefile 120

Dependencies dialog box 120
detach command (CrossWind) 362
Detach menu command (CrossWind) 362
Detach Task/System command (CrossWind) 340
development environment 1–12, 190
devs() 257
Diab tools

downloadable applications, and 124
dialogs, see forms
directory, installation 421
disable command (CrossWind) 345
disassembler (l()) 258
display /W command (CrossWind) 357
docs directory 421

see also online documentation
documentation

online reference pages (on host) 189
documentation guidelines

conventions
C format 466–469

dosFs file systems
initializing 493

dosFsDevInit() 493
dosFsInit() 493
down command (CrossWind) 349
Download command (CrossWind) 338
download options 403
downloadable applications 94

building 119–126
errors and messages, displaying 125
specifications, providing 122

creating 112–127
Diab tools, and 124
downloading 126
project files, creating 116
projects, creating new 112

downtcl command (CrossWind) 376
dragging with mouse 59
drivers

installing 491, 493
drivers, see threads
DSM_HEX_MOD 253
-DTOOL compiler option

Diab 182
GNU 178

-DTOOL_FAMILY compiler option
Diab 182
GNU 178

dual mode, definition 18

E

-e _romInit entry point option 212
edit mode, shell (WindSh) 292–295

see also ledLib(1)
input mode toggle (ESC key) 286

EDITOR host environment variable 23
specifying 417

editor, alternate
specifying 417
Tools menu command for, creating

(example) 415
-ei compiler option 182
end-of-file character (CTRL+D) 247
entry point 486

ROM-based VxWorks 212, 499

Tornado 2.2

User’s Guide

510

environment variables, host 21–23, 190
EDITOR 23
HOME 300
LD_LIBRARY_PATH (Solaris 2) 22
PATH 21
PRINTER 23
shell behavior, controlling 252
UNIX

$WIND_BASE 190
CONFIG_ALL 190
TGT_DIR 190

WIND_BASE 21
WIND_HELP_SEPARATE_PROCESS 21
WIND_HOST_TYPE 21
WIND_REGISTRY 21

environment, see cross-development; development
environment; host environment; target
environment

eof (stty) 286
erase (stty) 286
errorInfo global variable 370
errors

Tcl 448
unwinding 448

ESC key (input/edit mode toggle) 286
/etc/hosts 26
/etc/hosts.equiv 27
Ethernet

cable connections 31
-ew compiler opton 182
exception handling

see also signals; excLib(1); sigLib(1)
initializing 492

excInit() 492
excTask() 492
excVecInit() 487
exit() 247

CTRL+C, using 271
expressions, C language (WindSh), see data

variables; function calls; literals; operators
External Dependencies folder

makefile dependencies, listing 120
External Dependencies folder 116
external mode, see system mode
EXTRA_DEFINE 208, 437

EXTRA_DOC_FLAGS 440
EXTRA_INCLUDE 208, 437
EXTRA_MODULES 124

F

File menu
Add Project to Workspace command 127
CrossWind

Download command 338
Quit command 58

browser, in 310
CrossWind, in 338

file names, shell and target server 295–296
files

configuration header 191
Find Object dialog box 136
finish command (CrossWind) 348
flags, see compiler options
floating-point support

initializing 493
floatInit() 493
flow-control characters (CTRL+Q and

CTRL+S) 286
-fno-builtin compiler option 178
folders 59
forms, operating with keyboard 58
frame command (CrossWind) 358
Free Software Foundation (FSF) 175

see also GNU ToolKit User’s Guide
FTP (File Transfer Protocol)

password, user 51
FTP Wind River command (launcher) 84
function calls (WindSh) 277–279

arguments, passing 277
nesting 277
parentheses, omitting 278
reference page, displaying HTML 250
stepping over 348
synopses, printing 249

IX

Index

511

G

-g compiler option
Diab 182
GNU 178

GDB (GNU debugger)
see also CrossWind; debugging
running 353–361
Tcl interpreter 367–374

gdb command (CrossWind) 370
GDB Online command (debugger) 344
gdbEvalScalar command (CrossWind) 370
gdbFileAddrInfo command (CrossWind) 371
gdbFileLineInfo command (CrossWind) 371
.gdbinit 353
gdbIOClose command (CrossWind) 372
gdbIORedirect command (CrossWind) 371
gdbLocalsTags command (CrossWind) 372
gdbStackFrameTags command (CrossWind) 372
gdbSymbol command (CrossWind) 372
gdbSymbolExists command (CrossWind) 372
General Public License (GNU) 175
GNU binary utilities, working with 415
GNU ToolKit 175

General Public License 175

H

h target directory 426
h() 257

scripts, creating shell 288
using 293

hardware
initializing 487

header files 171–174
see also configuration header files; INCLUDE

constants
ANSI 172

function prototypes 171
CPU type

Diab, defining for 180
GNU, defining for 176

hiding internal details 174
internal VxWorks 173

nested 173
private 174
searching for 172
Tornado tools 422
VxWorks-supplied 426

help
context-sensitive

workspace, in 97
online

reference documentation 136
help command (CrossWind) 359
Help menu 58

browser 310
debugger

GDB Online command 344
On CrossWind command 344

help() 257
HEX_FLAGS 207, 440
hierarchical displays 59
history facility, shell 292
HOME host environment variable 300
host

access to, VxWorks 27
directory and file tree 422–424
network software

configuring 25–27
initializing 26

type, naming 21
host directory 422–424
host environment

configuring 20–24
Bash, Bourne shell, or Korn shell, using 22
C shell, using 22

host shell, see shell
host-os host directory 422
hostShow() 265

I

-I compiler option 172
Diab 183
GNU 178

i() 255
mode switching, under 268

Tornado 2.2

User’s Guide

512

icmpstatShow() 265
ifShow() 265
INCLUDE constants 192

see also specific constants
include files

see also header files
configuration headers 186
make facility 205

include host directory 422
INCLUDE_COM 384
INCLUDE_COM_SHOW 384
INCLUDE_CPLUS 495
INCLUDE_DOSFS 493
INCLUDE_EXC_HANDLING 492
INCLUDE_EXC_TASK 492
INCLUDE_FLOATING_POINT 493
INCLUDE_HW_FP 493
INCLUDE_INSTRUMENTATION 495
INCLUDE_IO_SYSTEM 491
INCLUDE_LOGGING 492
INCLUDE_MMU_BASIC 495
INCLUDE_MMU_FULL 495
INCLUDE_NET_INIT 494
INCLUDE_PASSFS 221
INCLUDE_PIPE 492
INCLUDE_PROTECT_TEXT 495
INCLUDE_PROTECT_VEC_TABLE 495
INCLUDE_RAWFS 493
INCLUDE_RT11FS 493
INCLUDE_SIGNALS 492
INCLUDE_SM_OBJ 495
INCLUDE_SPY 494
INCLUDE_STARTUP_SCRIPT 496
INCLUDE_STDIO 493
INCLUDE_SW_FP 493
INCLUDE_TIMEX 494
INCLUDE_TTY_DEV 491
INCLUDE_USER_APPL 210
INCLUDE_WDB 495
INCLUDE_WDB_BANNER 161
INCLUDE_WDB_COMM_PIPE 220
INCLUDE_WDB_START_NOTIFY 161
INCLUDE_WDB_TTY_TEST 162
INCLUDE_WDB_USER_EVENT 162
INCLUDE_WDB_VIO 161

info command (CrossWind) 359
info threads command (CrossWind) 363–364
inhibit-gdbinit (CrossWind) 360
initialization 485–499

see also usrConfig(1)
board support package 189
C++ support 495
cache 487
dosFs file systems 493
drivers 491
exception handling facilities 492
floating-point support 493
hardware 487
interrupt vectors 487
I/O system 491
kernel 488–489
logging 492
memory pool 489
MMU support 495
multitasking environment 488–489
network 494
pipes 492
rawFs file systems 493
rt11Fs file systems 493
sequence of events, VxWorks 485

ROM-based 499–500
summary 496–499

shared-memory objects (VxMP option) 495
standard I/O 493
sysInit() 486
system clock 490
target agent 495
usrInit() 486–489
usrRoot() 490–496
virtual memory (VxVMI option) 495
WindView 495

initialization files 432
browser 331
CrossWind 375
GDB 353
launcher 85
shell (WindSh) 300

initializing
network software, host 26

Install CD command (launcher) 84

IX

Index

513

installation
drivers 491, 493

installing
see also Tornado Getting Started Guide
boards in backplane 29–30
boot ROMs 28
directory 21
VxSim optional product 228

interaction, common features 58–59
Interface Definition Language (IDL) 392–393

editing files 392
Internet

addresses
host, of 51
target, of 51

interrupt key (CTRL+C) 286
shell commands, interrupting 271
shell, terminating the 247

interrupt service routines (ISR), see threads
interrupt/exception vector table 323
interrupts

thrashing 490
vectored

initializing 487
VxSim

Solaris 225–226
interrupts, sending (CrossWind) 347
intLockLevelSet() 488
intr (stty) 286
intVecBaseSet() 487
intVecShow() 264
I/O

redirecting 286–289
debugging, during 356
shConfig, using 272

virtual 11
I/O system

initializing 491
standard input/output/error 492
standard I/O

initializing 493
ioGlobalStdSet() 492
iosDevShow() 264
iosDrvShow() 264
iosFdShow() 264

iosInit() 491
ipstatShow() 265
iStrict() 255

J

jumpers 29

K

kernel 4
excluding facilities 193
execution, start of 486
initializing 488–489

kernelInit() 488–489
keyboard

forms (dialogs), using with 58
menus, using with 58

keyboard shortcuts
CTRL+C (interrupt) 286
CTRL+D

completing symbol and path names 249
end-of-file 247
function synopsis, printing 249

CTRL+H (delete) 286
CTRL+Q (resume output) 286
CTRL+S (suspend output) 286
CTRL+SHIFT+X (reboot) 266
CTRL+U (delete line) 286
CTRL+W

HTML help, launching 250
reference pages, displaying HTML 250

CTRL+X (reboot) 286
CTRL+Z (suspend shell) 286
ESC key (input/edit mode toggle) 286
shell line editing 292–295

kill (stty) 286
Kill command (launcher) 73
Kill Task command (CrossWind) 340
killing

see also quitting
target servers 73

Tornado 2.2

User’s Guide

514

Korn shell
host environment, configuring 22

L

l() 258
omitting address parameter 279

launcher 65–91
access, restricting 84
browser, starting 308
buttons 72
connecting tools and targets 68
customer support, accessing Wind River 84
customizing with Tcl 85–91

code examples 86–91
initialization file 85
quitting 66
starting 66
target list 66
toolbar 66
training, accessing WRS 84

ld() 184–185, 248, 260
using 261

LD_CALL_XTORS 252
LD_COMMON_MATCH_ALL 252
LD_LIBRARY_PATH host environment variable

(Solaris 2) 22
LD_PATH 252
LD_SEND_MODULES 252

working with 296
LD_SEND_MODULES facility 185
ldarch linker

flags 201
LDFLAGS 207
lib target directory 427
LIB_EXTRA 208, 437
LIBS 124
LICENSE.TXT 421
line editor 292–295

see also ledLib(1)
linking

application modules 183
dynamic 248, 261
system image, VxWorks 201–203

flags 201–203
object modules, additional 203

VxSim, and 223
linkSyms.c 133
list (Tcl) 443
list command (CrossWind) 355
literals (WindSh) 275

see also strings
lkAddr() 257
lkup() 257
load command (CrossWind) 354
load command (debugger) 184–185
LOCAL_MEM_LOCAL_ADRS 197
logging facilities

initializing 492
login, remote, see remote login
logInit() 492
logo, Wind River 58
logTask() 492
ls() 257

M

m() 260
MACH_EXTRA 203, 208, 436
make facility (GNU) 199–200
Makefile 435–440

customizing 435–440
macros 436–440

bootConfig.c file, alternate 439
bootInit.c file, alternate 439
compile-time macros, specifying 437
compression program 440
configAll.h file, alternate 439
configuration files, modifying 439
conventions 436
dataSegPad.s file, alternate 439
defining without modifying source

code 438
header directory locations, adding 437
host object-format-to-hex program 440
library archives, including 437

IX

Index

515

object modules, adding 436
linked to compressed ROM

images 440
without touching source 438

preprocessor flags, adding 440
target directory tree 439
usrConfig.c file, alternate 439

Makefile 134
Makefile (VxWorks) 199

linking system images 201
VxSim 224

makefile rules, custom 150
makefiles 203

bootable applications, modifying for 210
code examples

sample (mv147) 204
skeleton for application modules 209

creating 203, 209
dependencies, calculating 120
include files 205
rebuilding VxWorks 199–200
variables, include file 205–208

BSP parameters, for 207
compiling, for 206
customizing run-time, for 208

makeSymTbl tool 212
malloc() 489
mangling, see name demangling
mathHardInit() 493
mathSoftInit() 493
memAddToPool() 489
memDesc.c 189
memory

see also memory pool; shared-memory objects;
virtual memory; memLib(1);
memPartLib(1)

allocation 489
availability of, determining 489
consumption of, reporting (browser) 312
fragmentation, troubleshooting 328
leaks, troubleshooting 327
target, manipulating 261

memory partitions
displaying information about (browser) 318

memory pool

adding to 489
initializing 489

memPartLib 489
memPartShow() 264
memShow() 264
menus

see also specific GUI menus
commands, universal 58
operating with keyboard 58

message queues
displaying information about (browser) 316

migrating
files between projects 104

MIPS
ROM-resident images 196

Mixed command (CrossWind) 341
MMU

initializing 495
moduleIdFigure() 264
modules

see also application modules; tasks
optional (INCLUDE constants) 192

moduleShow() 264
mouse

dragging with 59
selecting with 59

mqPxShow() 264
mRegs() 261
msgQShow() 263

N

name demangling (C++) 292
netLibInit() 494
NetROM ROM emulator 35–43

target agent for, configuring 36–40
troubleshooting 41–43

netstatShow() 265
Network Information Service (NIS) 26
networks

configuring simple 25–27
excluding from VxWorks 194
initializing 494
status, displaying 264

Tornado 2.2

User’s Guide

516

VxSim 227–243
NUM_TTY 491

O

-O compiler option 178
-O2 compiler option 178
Object Modules folder 116
On CrossWind command (debugger) 344
online documentation

function reference pages, displaying 250
HTML help, launching 250
reference pages (on host) 189

OPC interfaces (DCOM)
non-automation types 392

Open Boot Prom protocol 28
operators (WindSh) 276

redirection vs. relational 287
OPT_TERMINAL 492
optional VxWorks features (INCLUDE

constants) 192
optional VxWorks products

VxMP 4
VxSim, target simulator 8, 217
VxVMI 4
WindView 8

Options command (Tools menu) 403

P

passFs (VxSim) 221
PATH host environment variable 21
path names

shell and target server 295–296
performance monitoring

tools for, including 494
period() 254

target-resident code, requiring 296
PHYS_MEM_DESC 189

see also sysPhysMemDesc[]
pipeDevCreate() 492
pipeDrv() 492

pipes
initializing 492

pointers (WindSh) 282–283
arithmetic, handling 283

POST_BUILD_RULE 124
PowerPC

ROM-resident images 196
PPP

installing
VxSim/Solaris, for 229

print * command (CrossWind) 349
print command (CrossWind) 349
PRINTER host environment variable 23
printErrno() 257
printf()

strings, displaying 274
printLogo() 257
priority inversion

troubleshooting 329
prj_default 214
prj_diab 214
prj_diab_def 214
prj_gnu 214
prj_gnu_def 214
PRJ_LIBS 118
prjComps.h 133
prjConfig.c 133
prjParams.h 134
processor number 50
project facility 93–164

bootable applications, creating 147
BSPs with, using pre-existing 100
customizing VxWorks 127–146
downloadable applications, creating 112–127
GUI 96
makefile dependencies, calculating 120
manual configuration, versus 94, 187
target-host communication interface,

configuring 156–164
terminology 94

project files, see application files
projectName.wpj 134

IX

Index

517

projects 93–167
see also applications; bootable applications;

customizing VxWorks; downloadable
applications; sub-projects; target agent

adding 127
application source code, adding 102
architecture-independent 104
architecture-independent applications 104
boot programs, using new 164–167
BSP, getting a functioning 99
build rules, custom 103
creating 127

based on existing project 130
bootable applications, for 147
BSP simulator, using 101
downloadable applications, for 112
project wizard, using 102

customized VxWorks, for 128
definition 95
external build 106
linking to 154
organizing the build 105
planning 99–111
removing 127
sub-projects 106–111

Properties: Build specification window 122
Macros tab 124

makefile macros, viewing 150
Rules tab 122

pwd() 257

Q

quit (stty) 286
Quit command (File menu) 58
quit() 247
quitting

browser 310
CrossWind 338
launcher 66
shell 247

R

-r linker option 183
RAM_HIGH_ADRS 197, 207
RAM_LOW_ADRS 197, 207

entry point 486
rawFs file systems

initializing 493
rawFsDevInit() 493
rawFsInit() 493
Reattach command (launcher) 72
reboot character (CTRL+X) 286
reboot character (CTRL+X)

VxSim 220
Reboot command (launcher) 73
reboot() 261

using 266
rebooting 55

shell, from the 266
rebuilding VxWorks image 199–200
redirection, I/O (WindSh) 286–289

shConfig, using 272
reference entries

conventions, writing 466
refgen tool (Wind River) 466
Registers command (CrossWind) 343
registry, Tornado 11

remote, using a 20
segregating targets 20
setting up 19–20

remote file access, restricting 27
remote login security 27
repeat() 254

target-resident code, requiring 296
Reread All command (CrossWind) 343
Reread Home command (CrossWind) 343
Reserve command (launcher) 73
resource host directory 423
rev command (CrossWind) 355
.rhosts 27
ROM

applications in 212–213
VxWorks in 195, 212–213

ROM, see boot ROM; NetROM ROM emulator
ROM_LDFLAGS 207

Tornado 2.2

User’s Guide

518

ROM_SIZE 207, 213
ROM_TEXT_ADRS 207
romInit() 499
romInit.o 212
romInit.s 133, 189
romStart() 499
romStart.c 133
routestatShow() 265
routines

conventions
C layout 453
documentation 467
naming 461

routines, see function calls; commands, built-in
RPC (Remote Procedure Calls)

excluding from VxWorks 194
rt11Fs file systems

initializing 493
rt11FsDevInit() 493
rt11FsInit() 493
run command (CrossWind) 356
run-time image (on host) 77

S

s() 261
mode switching, under 268
omitting task parameters 279
using 262

scalability 193–195
VxWorks features 192

scripts
shell 288–289
startup 289

scripts, startup 496
search command (CrossWind) 355
security 27
selecting with mouse 59
semaphores

displaying information about (browser) 315
semPxShow() 263
semShow() 263
serial lines

targets, configuring 32–35

testing 33
Set Hardware Breakpoint window 346
SetTimer() 227
SETUP directory 421
setup.log log file 422
SH_GET_TASK_IO 252
share directory 422
shared-memory networks

VxSim 239
shared-memory objects (VxMP option)

initializing 495
shConfig (Tcl)

code example 253
redirecting I/O 272
shell environment variables, setting 252

shell (WindSh) 245–304
see also C interpreter; C++ support; commands,

built-in
C control structures 284
C interpreter 272–289
C++ support 290–292
calculating in 251
commands, built-in 253–265

differentiating from target routines 265
list of 284

components 303–304
control characters 286
data conversion 250
debugging from 246
displaying information from 257–259
edit mode 292–295

see also ledLib(1)
environment variables, setting 252
function synopsis, printing 249
history 292
interpretation, layers of 304–305
interrupting (CTRL+C) 271
linker, dynamic 248
path names, typing 249
preprocessor facilities 284
quitting 247
reboot character (CTRL+X) 286
rebooting from 266
redirecting I/O 286–289

shConfig, using 272

IX

Index

519

starting 247
strings 274
subroutines as commands 278
suspend character (CTRL+Z) 286
system mode 267–270
target from host, controlling 301
target routines from, running 265
target symbol names, typing 249
Tcl interpreter 297–301

initializing with 300
types

compound 284
derived 284

shellHistory() 257
shellPromptSet() 257
show command (CrossWind) 359
show routines 263–264
show() 263
shParse utility (Tcl) 299
si command (CrossWind) 348
sigInit() 492
simulator, see VxSim
simulator, target (VxSim) 8
single-stepping

commands for handling, built-in shell 262
function calls, stepping over 348
next line of code 348

smMemPartShow() 264
smMemShow() 264
source code (VxWorks)

customizing 200
source code directories (VxWorks) 428
source control, see version control
Source menu (CrossWind) 341

Assembly command 341
C/C++ command 341
Mixed command 341

sp() 254
mode switching, under 268

sps() 254
spy utility 494
spy utility (browser) 324

see also spyLib(1)
data gathering intervals, setting 311
mode, setting 311

target-resident code, requiring 296
update intervals, setting 311

src target directory 428
stack traces

displaying current 343
stacks

overflow, troubleshooting 328
usage, checking (browser) 325

STANDALONE flag 211
standalone systems, using 32
standalone VxWorks systems 211
STANDALONE_NET 211
standard file headings 450
standard I/O

initializing 493
standard input/output/error 492
start (stty) 286
starting

browser, Tornado 308
CrossWind 334
launcher 66
shell, Tornado 247
target servers 56
Tornado 57

startup
see also initialization
entry point 486

ROM-based 212
scripts 496
VxWorks, sequence of events 485–499

ROM-based 499–500
startup scripts 289
state-information files 433
statements (WindSh) 275
_ _STDC_ _ 171
step command (CrossWind) 348
stepi command (CrossWind) 348
stop (stty) 286
stopping, see quitting
strings 281

shell, and the 274
stty command 286
sub-projects 106–111
subroutines, see function calls; commands, built-in
subroutines, see routines

Tornado 2.2

User’s Guide

520

susp (stty) 286
suspend shell character (CTRL+Z) 286
symbol table

creating VxWorks system 203
displaying information from 257–259
group numbers, module 185
standalone systems, in VxWorks 211
synchronizing 78

symbols
values, monitoring 350–351
VxSim 221

sysALib.s 133, 189
entry point 486

sysClkConnect() 490
sysClkRateSet() 490
sysHwInit() 487
sysHwInit2() 491
sysInit() 486
sysLib.c 133, 188

VxSim 224
sysMemTop() 489
sysPhysMemDesc[] 189
sysResume() 261

mode switching, under 267
sysStatusShow() 261

mode switching, under 268
sysSuspend() 261

mode switching, under 267
system address 26
system clock 496

initializing 490
system image 169

boot ROM
compressed 199
ROM-resident 196
uncompressed 199

building 197–203
downloading 486
excluding facilities 193–195
VxWorks 199

linking 201–203
ROMmed 199
standalone 199

system images 127
see also customizing VxWorks

size of, considering 102
type, selecting 143
VxWorks

creating custom 127–146
system information, displaying 257–259
system library 188
system mode 17

debugging 362–366
code example 268
threads, managing 363–366

initiating, from CrossWind 362
shell 267–270
target agent 9

system mode debugging
VxSim 221

system modules, see system image
system name 26

T

-T option (Tcl) 297
target

see also browser (Tornado)
configuring 24–25

ROM emulation 35–41
serial-only 32–35

connecting to tools 68
directory and file tree 424–432
information from, displaying 257–259
memory, manipulating 261
monitoring state of (browser) 307–332

target agent 9
END drivers, configuring 157
exception hooks, configuring for 162
initializing 495
kernel, starting before 162
NetROM, configuring for

macros, specifying 158
networks, configuring for 159
scaling 161
serial connections, configuring for 160
simulators, configuring integrated target 158
system mode 9
task mode 9

IX

Index

521

tyCoDrv connections, configuring 161
target board

backplane, installing boards in 29–30
cables, connecting 30–31
configuration header for 191
configuring 27–31
jumpers, setting 29
processor number 50

target directory 424–432
target environment 4–5
target list (launcher) 66
Target menu (launcher)

Create... command 72
Kill command 73
Reattach command 72
Reboot command 73
Reserve command 73
Unregister command 72
Unreserve command 73

Target Server File System (TSFS)
boot program for, configuring 166

target servers 10
see also launcher; WTX protocol
access, restricting 83
agent, connecting target 16–35
back ends, communications 80–82
configuring 73–82

networked targets 75
options 76–82
serial targets 75

Create Target Server buttons 76
file names 295–296
locking 83
managing 72–83
memory cache 80
path names 295–296
reserving 82–83
restricting users 77
saved configurations, working with 75
selecting 69–71
sharing 82–83
starting 56
symbol table synchronizing 78
troubleshooting 63–64
unreserved 83

virtual console, using a 78
WTX log setup 82

target wtx command (CrossWind) 358
target.nr 189
TARGET_DIR 207
Targets menu (CrossWind)

Attach System command 340
Attach Task command 339
Connect Target Servers command 340
Detach command 362
Detach Task/System command 340
Kill Task command 340

target-specific development
VxSim, simulated target 217–243

task mode 17
debugger 362
target agent 9

taskCreateHookShow() 263
taskDeleteHookShow() 263
taskIdDefault() 254
taskIdFigure() 255
taskRegsShow() 263
tasks

see also threads
CPU utilization, reporting 324
current, setting 279
debugging

detaching CrossWind session 362
multiple tasks, switching among 362

displaying information about (browser) 314
execution, continuing 348
IDs 279
information about, obtaining 254
interrupting (CrossWind) 347
managing 254
names 279
referencing 279
registers for, displaying machine 343

taskShow() 263
taskSwitchHookShow() 263
taskWaitShow() 263
Tcl (tool command language) 441–448

arithmetic expressions 445
arrays, associative 444
browser initialization files 331

Tornado 2.2

User’s Guide

522

C applications, integrating with 448
coding conventions 470–482
command substitution 445
control structures 447
CrossWind GDB interpreter 367–374
CrossWind GUI interpreter 374–380
customizing

browser, Tornado 331
initialization files 417
launcher 85–91
shell 300

error handling 448
files 445–446
formatting 445–446
I/O 445–446
launcher initialization file 85
linked lists, traversing 373–374
lists 443
procedures, defining 446–447
shell (WindSh) 297–301

C interpreter
quick access from 299–300
toggling to 297

initialization files 300
target, controlling the 298–299

Tk graphics library 441
unwinding 448
variables 442

tcl command (CrossWind) 368–369
tcl host directory 424
Tcl menu (CrossWind) 342

Reread All command 343
Reread Home command 343

Tcl_CreateCommand() 448
tcldebug command (CrossWind) 369
tclerror command (CrossWind) 369
-Tclmode option (Tcl) 297
tclproc command (CrossWind) 369
tcpstatShow() 265
td() 254
terminal characters, see control characters
terminating, see quitting
tftpInfoShow() 265
TGT_DIR 190, 439
tgtsvr command 74

see also target servers
starting target servers 56

thrashing 490
thread command (CrossWind) 364
thread IDs 363

breakpoints and system context 366
threads 362

see also tasks
breakpoints, setting 365–366
managing 363–366
summary information, displaying 363–364
switching

explicitly 364
implicitly 366

ti() 255
omitting task parameters 279

tickAnnounce() 496
timeout

back end 81
NetROM 43
resetting

target server 267
wtx-load-timeout (CrossWind) 361
wtxTimeout (WindSh) 249

timers
subroutine execution 494

Tk graphics library (Tcl) 441
toolbars

launcher 66
toolchain 96
Tools menu

adding/removing custom commands
409–416

Customize command 409
customizing 409–416

alternate editor, for 415
binary utilities, for 415
version control, for 414
Web link to Wind River, for 416

No Custom Tools placeholder 409
Options command 403

tools, development 4–9, 180
see also browser; debugger; editor; project

facility; shell; target server

IX

Index

523

adding/removing Tools menu
commands 409–416

connecting to targets 68
Diab 179
environment variables, setting host 21–22
GNU 175
launching 71
using, guidelines for 4

Tornado 1.0.1 compatibility 406
Tornado command

About menu 58
Tornado.tcl 417
-tPPC403FS:vxworks55 compiler option 182
tr() 254
troubleshooting 59–63

boot display, using 53
booting problems 60–63
hardware configuration 59–60
memory fragmentation 328
memory leaks 327
NetROM ROM emulator connection 41–43
priority inversion 329
stack overflow 328
target-server problems 63–64

ts() 254
tt() 255

target-resident code, requiring 296
ttyDevCreate() 491
ttyDrv() 491
ttySend command (CrossWind) 376
tw() 255

U

udpstatShow() 265
#undef 193
unld() 186, 260
unload command (CrossWind) 355
unloading, see application modules; unldLib
Unregister command (launcher) 72
Unreserve command (launcher) 73
unwinding (Tcl) 448
up command (CrossWind) 349
uptcl command (CrossWind) 376

USER_APPL_INIT 210
userAppInit.c 133

initialization calls, adding 147
usrClock() 496
USRCONFIG 439
usrConfig.c 192
usrDepend.c 194
usrInit() 486–489
usrKernelInit() 488
usrMmuInit() 495
usrNetInit() 494
usrRoot() 490–496
usrSmObjInit() (VxMP option) 495

V

variables
uninitialized 487

variables, see data variables; environment variables,
host; Tcl variables

version control
customizing 406
Uncheckout command, creating (example) 414

version() 257
virtual console

creating 78
virtual I/O 11
virtual memory

VxVMI option
initializing 495
vector table protection 495

VMEbus
backplane, installing boards in 30
system controller 30

VX_NO_STACK_FILL 255
VxMP (option) 4
VxOPC 384
VxSim 8, 217–243

BSP differences 224
built-in product 218–221
clocks 226
compiler environment, configuring 222
compiler options 222
CPU type, defining 222

Tornado 2.2

User’s Guide

524

debugging, system mode 221
endianess 223
exiting 220
file systems 221
interrupts

Solaris 225–226
multiple simulators, running 235
networking facilities 227–243

configuring for 234
debugging, system mode 236
installing 228

PPP (UNIX) 229
IP addressing 236
remote access 238
shared memory (UNIX) 239

optional product 218
rebooting 220
starting 219
symbols, using 221
timeouts 224
unsupported features 223

vxsize command 211
VxVMI (option) 4
VxWorks 4–5

booting 46–55
configuring 24–25
optional products

VxMP 4
VxSim, target simulator 8
VxVMI 4
WindView 8

project files 132
rebooting 55
rebuilding 199–200
scalable features (INCLUDE constants) 192,

193–195
simulator (VxSim) 217–243

vxWorks 199
VxWorks features 193–195
vxWorks.h 171
vxWorks.res_rom 199
vxWorks.res_rom_nosym 199, 213
vxWorks.res_rom_nosym_res_low 196
vxWorks.res_rom_res_low 196
vxWorks.st 199, 211

vxWorks.st_rom 199, 213
vxWorks.sym symbol table 203
vxWorks_rom 199

W

w() 255
-W:c++ compiler option 182
-Wa compiler option 182
-Wall compiler option 178
watchdogs

displaying information about (browser) 319
WDB_BP_MAX 162
WDB_COMM_TYPE 33
WDB_NETROM_INDEX 158
WDB_NETROM_MTU 158
WDB_NETROM_NUM_ACCESS 158
WDB_NETROM_POLL_DELAY 159
WDB_NETROM_ROMSIZE 159
WDB_NETROM_TYPE 159
WDB_NETROM_WIDTH 159
wdbConfig() 495
wdShow() 263
.wind directory 432
wind kernel, see kernel
Wind River logo 58
$WIND_BASE 190
WIND_BASE host environment variable 21
WIND_BUILDTOOL environment variable 417
WIND_HOST_TYPE host environment variable 21
WIND_PROJ_BASE 109
WIND_REGISTRY host environment variable 20
WIND_SOURCE_BASE 109
windHelp.tcl 418
Windows menu (CrossWind) 343

Backtrace command 343
Registers command 343

WindSh 245–304
see also C interpreter; C++ support; shell

windsh command 247
Tcl interpreter, starting 297

windsh.tcl 300
WindView 8

initializing 495

IX

Index

525

wizards
D/COM 385–395

workspace 95
adding project to 127

Workspace window 96
project files, working with 116

workspaceName.wsp 134
World Wide Web

Tools menu link to Wind River, creating
(example) 416

WTX protocol 358
see also target servers
debugger, sending requests in 360
target server options 82

wtx-ignore-exit-status (CrossWind) 360
wtx-load-flags (CrossWind) 361
wtx-load-path-qualify (CrossWind) 361
wtx-load-timeout (CrossWind) 361
wtx-task-priority (CrossWind) 361
wtx-task-stack-size (Crosswind) 361
WTXTCL protocol 298
wtx-tool-name (CrossWind) 361

X

-X compiler option 182
X Window System

color and grayscale, setting 23
customizing 483–484
target-server virtual console, using 78

xsym tool 203

	Tornado User's Guide
	Contents
	1 Overview
	1.1� Introduction
	1.2� Cross-Development with Tornado
	1.3� VxWorks Target Environment
	1.4� Tornado Host Tools
	Launcher
	Project Management
	Compiler
	WindSh Command Shell
	CrossWind Debugger
	Browser
	WindView Software Logic Analyzer
	VxSim Target Simulator

	1.5� Host-Target Interface
	Target Agent
	Tornado Target Server
	Tornado Registry
	Virtual I/O

	1.6� Customer Services

	2 Setup and Startup
	2.1� Introducing Tornado
	2.2� Setting up the Tornado Registry
	2.3� The Tornado Host Environment
	2.3.1� Environment Variables for Tornado Components
	2.3.2� Environment Variable For Solaris Hosts
	2.3.3� Environment Variables for Convenience
	2.3.4� X Resource Settings

	2.4� Setting Up the Default Target Hardware
	2.4.1� Default Target Configuration
	2.4.2� Networking the Host and Target
	Initializing the Host Network Software
	Establishing the VxWorks System Name and Address
	Giving VxWorks Access to the Host

	2.4.3� Configuring the Target Hardware
	Setting Up a Boot Mechanism
	Setting Board Jumpers
	Board Installation and Power
	Connecting the Cables

	2.5� Host-Target Communication Configuration
	2.5.1� Network Connections
	Configuring the Target Agent for Network Connection

	2.5.2� END Connections
	Configuring the Target Agent for END Connection

	2.5.3� Serial-Line Connections
	Configuring the Target Agent for Serial Connection
	Configuring the Boot Program for Serial Connection
	Testing the Connection
	Starting the Target Server

	2.5.4� The �NetROM ROM-Emulator Connection
	Configuring the Target Agent for NetROM
	Configuring the NetROM
	Starting the Target Server
	Troubleshooting the NetROM ROM-Emulator Connection

	2.5.5� The Transparent Mode Driver (TMD)
	Configuring the Target Agent for TMD
	Configuring visionICE II/visionPROBE II
	Starting the Target Server

	2.6� Booting VxWorks
	2.6.1� Default Boot Process
	2.6.2� Entering New Boot Parameters
	2.6.3� Boot Program Commands
	2.6.4� Description of Boot Parameters
	2.6.5� Booting With New Parameters
	2.6.6� Alternate Booting Procedures
	2.6.7� Booting a Target Without a Network
	2.6.8� Rebooting VxWorks

	2.7� Connecting a Tornado Target Server
	2.8� Launching Tornado
	2.9� Tornado Interface Conventions
	2.10� Troubleshooting
	2.10.1� Things to Check
	Hardware Configuration
	Booting Problems
	Target-Server Problems

	2.10.2� Technical Support

	3 Launcher
	3.1� Introduction
	3.2� The Tornado Launcher
	3.3� Anatomy of the Launcher Window
	3.4� Tools and Targets
	3.4.1� Selecting a Target Server
	3.4.2� Launching a Tool

	3.5� Managing Target Servers
	3.5.1� Configuring a Target Server
	Simple Server Configuration for Networked Targets
	Simple Server Configuration for WDB Serial Targets
	Saved Configurations
	Target-Server Action Buttons
	Target-Server Configuration Options

	3.5.2� Sharing and Reserving Target Servers

	3.6� Tornado Central Services
	3.6.1� Support and Information
	3.6.2� Administrative Activities

	3.7� Tcl: Customizing the Launcher
	3.7.1� Tcl: Launcher Initialization File
	3.7.2� Tcl: Launcher Customization Examples
	Re-Reading Tcl Initialization
	Quit Launcher Without Prompting
	An Open Command for the File Menu

	4 Projects
	4.1� Introduction
	4.2� Planning Your Projects
	4.2.1� Getting a Functional BSP
	Using a Wind River or Third-Party BSP
	Using a Custom BSP For Custom Hardware
	Using the Simulator BSP

	4.2.2� Creating a Bootable Project Based On a BSP
	Using the VxWorks Simulator
	Using a Real Target
	Image Size Considerations

	4.2.3� Developing and Adding Your Application Source Code
	Adding Existing Application Source Code
	Creating New Application Source Code
	Building With Custom Build Rules
	Developing Architecture-Independent Applications
	Using Configuration Management
	Configuring VxWorks
	Structuring Your Projects

	4.3� Creating a Downloadable Application
	4.3.1� Creating a Project for a Downloadable Application
	4.3.2� Project Files for a Downloadable Application
	4.3.3� Working With Application Files
	Creating, Adding, and Removing Application Files
	Displaying and Modifying File Properties
	Opening, Saving, and Closing Files

	4.3.4� Building a Downloadable Application
	Calculating Makefile Dependencies
	Build Specifications
	Building an Application

	4.3.5� Downloading an Application
	4.3.6� Adding and Removing Projects

	4.4� Creating a Custom VxWorks Image
	4.4.1� Creating a Project for VxWorks
	4.4.2� Project Files for VxWorks
	4.4.3� Configuring VxWorks Components
	Finding VxWorks Components and Configuration Macros
	Displaying Descriptions and Online Help for Components
	Including and Excluding Components
	Component Conflicts
	Changing Component Parameters
	Estimating Total Component Size

	4.4.4� Selecting the VxWorks Image Type
	4.4.5� Building VxWorks
	Using the Build Menu
	Using the Command Line

	4.4.6� Booting VxWorks

	4.5� Creating a Bootable Application
	4.5.1� Using Automated Scaling of VxWorks
	4.5.2� Adding Application Initialization Routines

	4.6� Working With Build Specifications
	4.6.1� Changing a Build Specification
	Custom Makefile Rules
	Makefile Macros
	Compiler Options
	Assembler Options
	Link Order Options
	Linker Options

	4.6.2� Creating New Build Specifications
	4.6.3� Selecting a Specification for the Current Build

	4.7� Configuring the Target-Host Communication Interface
	Configuration for an END Driver Connection
	Configuration for Integrated Target Simulators
	Configuration for NetROM Connection
	Configuration for Network Connection
	Configuration for Serial Connection
	Configuration for tyCoDrv Connection
	Scaling the Target Agent
	Configuring the Target Agent for Exception Hooks
	Starting the Agent Before the Kernel

	4.8� Configuring and Building a VxWorks Boot Program
	4.9� Building a Custom Boot ROM

	5 Command-Line Configuration and Build
	5.1� Introduction
	5.2� Building, Loading, and Unloading Application Modules
	5.2.1� Using �VxWorks Header Files
	�VxWorks Header File: vxWorks.h
	Other �VxWorks Header Files
	ANSI Header Files
	ANSI C++ Header Files
	The -I Compiler Flag
	�VxWorks Nested Header Files
	Internal Header Files
	�VxWorks Private Header Files

	5.2.2� Compiling Application Modules Using GNU Tools
	The GNU Tools
	Cross-Development Commands
	Defining the CPU Type
	Compiling C Modules With the GNU Compiler
	Compiling C++ Modules

	5.2.3� Compiling Application Modules Using Diab Tools
	The Diab Tools
	Cross-Development Commands
	Defining the CPU Type
	Compiling C Modules With the Diab Compiler
	Compiling C++ Modules

	5.2.4� Static Linking (Optional)
	5.2.5� Downloading an Application Module
	5.2.6� Module IDs and Group Numbers
	5.2.7� Unloading Modules

	5.3� Configuring VxWorks
	5.3.1� The Board Support Package (BSP)
	The System Library
	Virtual Memory Mapping
	Configuration Files
	BSP Initialization Modules
	BSP Documentation

	5.3.2� The Environment Variables
	5.3.3� The Configuration Header Files
	The Global Configuration Header File: configAll.h
	The BSP-specific Configuration Header File: config.h
	Selection of Optional Features

	5.3.4� The Configuration Module: usrConfig.c
	5.3.5� Alternative VxWorks Configurations
	Scaling Down VxWorks
	Executing VxWorks from ROM

	5.4� Building a �VxWorks System Image
	5.4.1� Available VxWorks Images
	5.4.2� Rebuilding �VxWorks with make
	5.4.3� Including Customized �VxWorks Code
	5.4.4� Linking the System Modules
	5.4.5� Creating the System Symbol Table Module

	5.5� Makefiles for BSPs and Applications
	5.5.1� Make Variables
	Variables for Compilation Options
	Variables for BSP Parameters
	Variables for Customizing the Run-Time

	5.5.2� Using Makefile Include Files for Application Modules

	5.6� Creating Bootable Applications
	5.6.1� Linking Bootable Applications
	5.6.2� Creating a Standalone �VxWorks System with a Built-in Symbol Table
	5.6.3� Creating a �VxWorks System in ROM

	5.7� Building Projects From a BSP

	6 VxSim
	6.1� Introduction
	6.2� Integrated Simulator
	Installation and Configuration
	Starting VxSim
	Changing the Simulator Boot Line
	Rebooting VxSim
	Exiting VxSim
	Back End
	System-Mode Debugging
	File Systems
	Symbols

	6.3� Building Applications
	Defining the CPU Type
	The Toolkit Environment
	Compiling C and C++ Modules
	Linking an Application to VxSim

	6.4� Architecture Considerations
	Supported Configurations
	Endianess
	Simulator Timeout
	The BSP Directory
	Interrupts
	Clock and Timing Issues

	6.5� Configuring the VxSim Full Simulator
	Installing VxSim Network Drivers
	Configuring VxSim for Networking
	Running Multiple Simulators
	System Mode Debugging
	IP Addressing
	Setting up the Shared Memory Network

	7 Shell
	7.1� Introduction
	7.2� Using the Shell
	7.2.1� Starting and Stopping the Tornado Shell
	7.2.2� Downloading From the Shell
	7.2.3� Shell Features
	7.2.4� Invoking Built-In Shell Routines
	Task Management
	Task Information
	System Information
	System Modification and Debugging
	C++ Development
	Object Display
	Network Status Display
	Resolving Name Conflicts between Host and Target

	7.2.5� Running Target Routines from the Shell
	7.2.6� Rebooting from the Shell
	7.2.7� Using the Shell for System Mode Debugging
	7.2.8� Interrupting a Shell Command

	7.3� The Shell C-Expression Interpreter
	7.3.1� I/O Redirection
	7.3.2� Data Types
	7.3.3� Lines and Statements
	7.3.4� Expressions
	Literals
	Variable References
	Operators
	Function Calls
	Subroutines as Commands
	Arguments to Commands
	Task References

	7.3.5� The “Current” Task and Address
	7.3.6� Assignments
	Typing and Assignment
	Automatic Creation of New Variables

	7.3.7� Comments
	7.3.8� Strings
	7.3.9� Ambiguity of Arrays and Pointers
	7.3.10� Pointer Arithmetic
	7.3.11� C Interpreter Limitations
	7.3.12� C-Interpreter Primitives
	7.3.13� Terminal Control Characters
	7.3.14� Redirection in the C Interpreter
	Ambiguity Between Redirection and C Operators
	The Nature of Redirection
	Scripts: Redirecting Shell I/O
	C-Interpreter Startup Scripts

	7.4� C++ Interpretation
	7.4.1� Overloaded Function Names
	7.4.2� Automatic Name Demangling

	7.5� Shell Line Editing
	7.6� Object Module Load Path
	7.7� Tcl: Shell Interpretation
	7.7.1� Tcl: Controlling the Target
	Tcl: Calling Target Routines
	Tcl: Passing Values to Target Routines

	7.7.2� Tcl: Calling Under C Control
	7.7.3� Tcl: Tornado Shell lnitialization

	7.8� The Shell Architecture
	7.8.1� Controlling the Target from the Host
	7.8.2� Shell Components
	7.8.3� Layers of Interpretation

	8 Browser
	8.1� A System-Object Browser
	8.2� Starting the Browser
	8.3� Anatomy of the Target Browser
	8.4� Browser Menus and Buttons
	8.5� Data Panels
	8.6� Object Browsers
	8.6.1� The Task Browser
	8.6.2� The Semaphore Browser
	8.6.3� The Message-Queue Browser
	8.6.4� The Memory-Partition Browser
	8.6.5� The Watchdog Browser
	8.6.6� The Class Browser

	8.7� The Module Browser
	8.8� The Vector Table Window
	8.9� The Spy Window
	8.10� The Stack-Check Window
	8.11� Browser Displays and Target Link Speed
	8.12� Troubleshooting with the Browser
	8.12.1� Memory Leaks
	8.12.2� Stack Overflow
	8.12.3� Memory Fragmentation
	8.12.4� Priority Inversion

	8.13� Tcl: the Browser Initialization File

	9 Debugger
	9.1� Introduction
	9.2� Starting CrossWind
	9.3� A Sketch of CrossWind
	9.4� CrossWind in Detail
	9.4.1� Graphical Controls
	Display Manipulation
	CrossWind Menus
	CrossWind Buttons

	9.4.2� Debugger Command Panel: GDB
	GDB Initialization Files
	What Modules to Debug
	What Code to Display
	Executing Your Program
	Application I/O
	Graphically Enhanced Commands
	Managing Targets
	Command-Interaction Facilities
	Extended Debugger Commands
	Extended Debugger Variables

	9.5� System-Mode Debugging
	9.5.1� Entering System Mode
	9.5.2� Thread Facilities in System Mode
	Displaying Summary Thread Information
	Switching Threads Explicitly
	Thread-Specific Breakpoints
	Switching Threads Implicitly

	9.5.3� Configuring VxWorks for System Mode Debugging
	9.5.4� �Tcl: Debugger Automation
	9.5.5� Tcl: A Simple Debugger Example
	9.5.6� Tcl: Specialized GDB Commands
	9.5.7� Tcl: Invoking GDB Facilities
	9.5.8� Tcl: A Linked-List Traversal Macro

	9.6� Tcl: CrossWind Customization
	9.6.1� Tcl: Debugger Initialization Files
	9.6.2� Tcl: Passing Control between the Two CrossWind Interpreters
	9.6.3� Tcl: Experimenting with CrossWind Extensions
	Tcl: “This” Buttons for C++
	Tcl: A List Command for the File Menu
	Tcl: An Add-Symbols Command for the File Menu

	10 Building VxDCOM Applications
	10.1� Introduction
	10.2� The VxDCOM Development Process
	10.3� Configuring a VxDCOM Bootable Image
	10.3.1� Adding VxDCOM Component Support
	10.3.2� Configuring the DCOM Parameters

	10.4� Using the VxDCOM Wizard
	10.4.1� Choosing the Project Type
	10.4.2� Creating a COM/DCOM Skeleton Project
	Defining the CoClass
	Choosing CoClass Options
	Generating the Skeleton Files

	10.4.3� Importing Existing Files into a New Project
	Porting Existing Applications
	Editing IDL Files
	Adding Non-Automation Types

	10.5� The Generated Output
	Output Directories
	Project Work Files
	Server Output Files
	Client Output Files

	10.6� Implementing the Server and Client
	10.7� Building and Linking the Application
	10.8� Registering, Deploying, and Running Your Application
	10.8.1� Registering Proxy DLLs on Windows
	10.8.2� Register the Type Library
	10.8.3� Registering the Server
	10.8.4� Authenticating the Server
	10.8.5� Activating the Server

	11 Customization
	11.1� Introduction
	11.2� Setting Download Options
	11.3� Setting Project Options
	11.4� Setting Version Control Options
	11.5� Installation and Licenses
	11.6� Customizing the Tools Menu
	11.6.1� The Customize Tools Dialog Box
	Macros for Customized Menu Commands

	11.6.2� Examples of Tools Menu Customization
	Version Control
	Alternate Editor
	Binary Utilities
	World Wide Web

	11.7� Alternate Default Editor
	11.8� Tcl Customization Files
	Tornado Initialization
	HTML Help Initialization

	Appendices
	A Directories and Files
	A.1� Introduction
	A.2� Host Directories and Files
	A.3� Target Directories and Files
	A.4� Initialization and State-Information Files

	B Makefile Details
	B.1� Introduction
	B.2� Customizing the VxWorks Makefile
	B.3� Commonly Used Makefile Macros

	C Tcl
	C.1� Why Tcl?
	C.2� Introduction to Tcl
	C.2.1� Tcl Variables
	C.2.2� Lists in Tcl
	C.2.3� Associative Arrays
	C.2.4� Command Substitution
	C.2.5� Arithmetic
	C.2.6� I/O, Files, and Formatting
	C.2.7� Procedures
	C.2.8� Control Structures
	C.2.9� Tcl Error Handling
	C.2.10� Integrating Tcl and C Applications

	D Coding Conventions
	D.1� Introduction
	D.2� File Heading
	D.3� C Coding Conventions
	D.3.1� C Module Layout
	D.3.2� C Subroutine Layout
	D.3.3� C Declaration Formats
	Variables
	Subroutines

	D.3.4� C Code Layout
	Vertical Spacing
	Horizontal Spacing
	Indentation
	Comments

	D.3.5� C Naming Conventions
	D.3.6� C Style
	D.3.7� C Header File Layout
	Structural
	Order of Declaration

	D.3.8� Documentation Format Conventions for C
	Layout
	Format Commands
	Special Elements
	Formatting Displays

	D.4� Tcl Coding Conventions
	D.4.1� Tcl Module Layout
	D.4.2� Tcl Procedure Layout
	D.4.3� Tcl Code Outside Procedures
	D.4.4� Declaration Formats
	Variables
	Procedures

	D.4.5� Code Layout
	Vertical Spacing
	Horizontal Spacing
	Indentation
	Comments

	D.4.6� Naming Conventions
	D.4.7� Tcl Style

	E X Resources
	E.1� Predefined X Resource Collections
	E.2� Resource Definition Files

	F VxWorks Initialization Timeline
	F.1� Introduction
	F.2� The VxWorks Entry Point: sysInit(�)
	F.3� The Initial Routine: usrInit(�)
	Cache Initialization
	Zeroing Out the System bss Segment
	Initializing Interrupt Vectors
	Initializing System Hardware to a Quiescent State

	F.4� Initializing the Kernel
	F.5� Initializing the Memory Pool
	F.6� The Initial Task: usrRoot(�)
	Initialization of the System Clock
	Initialization of the I/O System
	Creation of the Console Devices
	Setting of Standard In, Standard Out, and Standard Error
	Installation of Exception Handling and Logging
	Initialization of the Pipe Driver
	Initialization of Standard I/O
	Creation of File System Devices and Initialization of Device Drivers
	Initialization of Floating-Point Support
	Inclusion of Performance Monitoring Tools
	Initialization of the Network
	Initialization of Optional Products and Other Facilities
	Initialization of WindView
	Initialization of the Target Agent
	Execution of a Startup Script

	F.7� The System Clock Routine: usrClock(�)
	F.8� Initialization Summary
	F.9� Initialization Sequence for ROM-Based VxWorks

	Index

