WIND RIVER

Wind River’

BOARD BRING-UP GUIDE

1.0

Copyright © 2006 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_namel/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Board Bring-Up Guide, 1.0

4 May 06
Part #: DOC-17526-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

INtroducCtion ... ——— 1
(@19 EX0 ¢ 11930 B 1T oT¥ T To |1 3V 3
Board Bring-UPcccccoiiiiiismmmmmriinissssssssnsssssssssss s snsssssssssss s s nsssssssnnnes 7
3.1 Goals and Objectives 7
3.2 Sequence of Events 7
Board Descriptor Filesccccciiiiiiiismmmmmmninnisssssss s ssssssnes 9
41 Introduction 9
4.2 Creating a New Board Descriptor File 10
Using the Predefined Layouts in JTAG Editorcccooovvereininnnnen 12

Using the Custom Option in the JTAG Editor Viewccccccooevueeeeee. 17

Editing Your Board Layout ..o 19

43 XML Board Files 20
43.1 XML Board File Fieldsccccocoviiiiiiiniiiiiiccccs 22
<DEVICE_TABLE> Fieldscccoceioiiiiiieininicieicccicceeeeeeeene 22

<DEVICE> FIelds ...coueeiiiiiiiiiiiiiieceseceeeceeeeeeee e 22

44 Manually Creating XML Board Files 23

fii

Wind River
Board Bring-Up Guide, 1.0

4.5 Layout, Routing and Design Considerations

4.6 JTAG Timing Parameters for Wind River Emulators

OCD CONNECIIONS .cuuiireeiirenirresirrmsssrenssrsnsssrenssrsnsssrasssrnnssssnssssenssssnnssnnns

51 Debug Connections

5.2 Creating a Target Connection

Tool Configuration ... ————

6.1 Introduction

6.2 Tool Configuration
6.2.1 CLOCK RALE vttt ettt et et e eanes
6.2.2 Drive TRESET LINE ..coovioviiiiiieeieeeeeeeteeeee ettt
6.2.3 Monitor Target Resetcccooviiiiiiiiiiiccccce,
6.2.4 Emulator HRESET CONrolccveeieeiiiiiiiiieieeeieeeeeeeeeeeee e
6.2.5 CPU ReSet TYPE .oveiiiiiiciiiicciiic e
6.2.6 Saving Changes ...
Board Initialization ... s e e e
71 Introduction
7.2 Background Mode
7.2.1 The IN CommMAaNdcooovvieeeiiiiieeeeeeeeeeeeeeee e
722 St VEIDOSE O .ttt
7.3 The INN Command
74 Registers
741 Downloading a Register Filecccccooiiiiniiiiiiice,
7.4.2 Enabling and Disabling Register Groupsccccceeveivviniririruininennne
74.3 Modifying Registers Manuallyccccccoevvnniccennnnicccceeeenee

39

40
40
40

43

10

Contents

Verifying Hardwarecccccccrerrccrccssnnnnnns 49
81 Introduction 49
8.2 Setting a Workspace 49
8.3 Diagnostic Functions 50
8.3.1 Simple RAM Testcocucuiiiiiiiiiiciciccccc s 50

8.3.2 FUIl RAM TESS ...ooveuiiiiiiieiiiriecirieereetce ettt 52

8.3.3 CRC Calculationccceeveueueeininininieieieieieicitcienseeeeeteve e 53

8.3.4 SCOPE TESLS ..ot 53

Read From LoCationccccoveeirieueueucuieiininineeeieieieeieeccseeeeeseveveveneaenes 53

Write To Location ..o 53

Write and Complement ..o 54

Write Rotating Value ..o 54

Write Then Readocoovieiiiiiiiiiiccccceeecce e 54

835 BUSTESS .ocouiiiiiiiiiiccc s 54
Address Bus Testcccciiiviniiiiiiiiiiiiiicieecceec e 54

Data Bus Testcccoiiiiiiiiiiiciicicc s 54

Testing MemMmOTYccccciiimmmmiririisese s amnnnes 55
9.1 Introduction 55
9.2 Testing Memory 55
9.21 Stepping an INStruction ... 56

922 Running Code ..ot 58

9.23 Setting Software Breakpointscccooovveieiniiiiciniiicinicecce 59

924 Setting Hardware Breakpointscccoooucuvioieiniiciniicciiceccce 61
Debugging in RAM ... e e se e e s e s e e s e s s e e s e s e r e e nnnnnnnee 65
10.1 Overview 65
10.2 Creating a Target Connection 65

Wind River
Board Bring-Up Guide, 1.0

10.3 Creating a Project 66
10.4 Downloading Code and Symbol Information 71
10.5 Debugging Code in RAM 74
10.5.1 Monitoring PrOCESSEScccociviviiieveieieieiciiiiiii s 75

10.5.2 Stepping Through Codec.cccooviiiiiiiiiiiicccc 75

10.5.3 Setting a Software Breakpointccccooveiirniicniniiiiciceeccie 76

10.5.4 Running a Program ... 77

10.5.5 Stepping Through a Programc.cccccoevveiniimeiicciniiceiceceeceie 78

10.5.6 Setting a Hardware Breakpointcccccooevveieiniicniiiniiicciccce 79

10.5.7 Disconnecting and Terminating Processescccccocoevueceiiinincninnnes 83
Programming Flash Memory e s e e e e e e ee e 85
11.1 Introduction 85
11.2 Testing Flash Workspace 86
Reading and Writing MEMOIYcccceeueuiiiiciniiiniiicccccccneennes 86

11.3 Getting Started 87
11.4 Flash Configuration Tab 88
11.4.1 Selecting a Flash DIIiVerccccooviiiiiiiniiciccccc e 89

11.4.2 Configuring Flash Memory Boundscccococovvviniiiiniicinicciccnnns 89

11.4.3 Configuring RAM WOTKSPAceccccouemrvieiniciiiceiceccccs 90

11.4.4 Selecting Flash Sectors for Erasurecccccocoeviirniiiiiiicniicicenes 90

11.5 Flash Add/Remove Files Tab 91
11.5.1 Adding Filescoooiiiiiiiiiiiiiiiie s 91

11.5.2 Removing Files ... 91

11.5.3 Converting .hex Files To .bin Formatcc.ccccocooviiiinniinn, 91

11.54 Setting The Download Offset Of A Fileccccccovviiccinnnicccienn. 92

11.5.5 Enabling A File For Downloadccccccoeiiiiiiiinniiiicccciee 92

Vi

Contents

11.6 Flash Programming Tab 93
11.6.1 Fast And Batch Program Tabscccccoceviiiiiiiinniiiiicccccciee 93

11.6.2 Erasing Flashcccccviiiiiiiiiiiiiccices 94

11.6.3 Programming Flash ..., 95

11.6.4 Verifying Flash Contentscccccooeevvininiiniiccniiccccccce, 95

11.6.5 Setting TIMEOULSo.ovrviviiiiccie s 95

11.7 Flash Memory/Diagnostics Tab 95
11.7.1 Viewing MemOTYcccooiriiiiiiiiiiiiiiciee e 96

11.7.2 Running Diagnostic Tests ... 96
Debugging in ROM ... cceese e s e sne e s e s e s s e e e n e e s nnnnnnnnnnes 99
12.1 Overview 929
12.2 Getting Started 100
12.3 Debugging in ROM 100
12.3.1 Stepping Through Boot Codeccccceiiiiiiininiiiiiice, 103

12.3.2 Setting Hardware Breakpointsccccciiiiiininiiiniiiiciiiciiinee, 104

Pins Mapped to Common Signalscccccceeremmriniimnnnnnisesssssnsnennes 107
A1 Introduction 107
A.2 PowerPC Processors -- JTAG 108
A.3 MIPS Processors -- JTAG 109
A4 ARM Processors -- JTAG 110
A.5 ColdFire Processors -- JTAG 111
A.6 BDM Processors 112

vii

Wind River
Board Bring-Up Guide, 1.0

B Internal Breakpoint Capabilitiesccccceeeemmmeeeeeeeeeeeeeeee e 113
Line Breakpoints ..o 114

Expression Breakpoints ..., 114

Hardware Breakpointscccocoviviiiiiiiiiiiiiiiiiiiicccccceenes 114

Importing Breakpointscccccoveiiiiiiiiiiiiiicicccccce 116

Exporting Breakpoints ... 116

Refreshing Breakpointsccccoceevieiciniicciiicececcecccccne 117

Disabling Breakpointsccccooeurirniniciniiciicscccecce e, 117

Removing Breakpoints ... 117

C Pin Terminations ..o ssssssss s sssssssssnnes 119
C.1 JTAG Pin Terminations 119
C.1.1 16-Pin JTAG CONNECLOT ..eovviriiiiieiiiiiieeieiesieeitetesie ettt 119

C.1.2 ARM 14-Pin JTAG CONNECLOT ...ccvivvieiieriiiesieeeeeieieeteeieeteve e ereesesaesaeens 121

C.1.3 ARM 20-Pin JTAG CONNECLOT ...ccvievieeieriiiesiieeeeieieereeieeeeae e eveeseaesaeens 123

C.14 ARMX (XScale) 20-Pin JTAG CONNECLOT ...ccveuveverreeeeiriiieieienrenieeeennens 124

C.2 EJTAG Pin Terminations 125
C.21 MIPS 14-Pin EJTAG CONNECLOTevveieuirrinieieiiriiieenieneeteieeieseesieeeeneens 125

C.2.2 MIPS Philips 20-Pin EJTAG Connectorccccccecvieiniiiviniircicciicnnnne 126

C.2.3 MIPS IDT 24-Pin EJTAG CONNECLOTeevrviierieriiieiereeriieseeeresieeeeennens 128

C.24 MIPS Broadcom 10-Pin EJTAG CoNnectorc.ccceceveeeereeeencreenennne. 130

C.25 MIPS NEC 26-Pin EJTAG CONNECLOTcvruirriiiiriinieieiinienieeeienienieeeaens 131

C.2.6 MIPS Toshiba 40-Pin EJTAG CONNectoroceceeeveeverereerenireeeririecnenes 133

C.3 BDM Pin Terminations 136
C3.1 PowerPC 5xx/8xx 10-pin BDM Connectorcccovveiiciieirinicnne. 136

C.3.2 Freescale ColdFire 26-Pin BDM CONNECLOTccevvevverirrerierieirienieeenns 137
ColdFire 26-Pin BDM Connector, Option Onecccccovvvveiiunninnne. 137

ColdFire 26-Pin BDM Connector, Option TWOcccccevvviviiiiininnnnee. 138

ColdFire 26-Pin BDM Connector, Option Threeccccccevururunnnnnne. 139

ColdFire 26-Pin BDM Connector, Option Fourcccccoeviniinnnnne. 140

C.4 Mictor Pin Terminations 141

viii

Contents

C41 AMCC 40x 38-pin Mictor Connector Pin-outccceevvvvrirncncnnee
C4.2 AMCC 44x 38-pin Mictor Connector Pin-outcccocevvvviriricnennnee

Wind River
Board Bring-Up Guide, 1.0

Introduction

This document describes procedures for using Wind River Workbench with the
Wind River Probe and Wind River ICE emulators to bring up a target board, from
the first power-up through running and debugging application code.

This document includes the following chapters:

1. Introduction -- Introduces the document.

2. On-Chip Debugging -- Describes of the theory of on-chip debugging.
3. Board Bring-Up -- Provides an overview of board bring-up procedure.

4. Board Descriptor Files -- Describes how to create, edit, and use board descriptor
files.

5. OCD Connections -- Describes making an OCD connection to a target using a
JTAG or BDM port.

6. Tool Configuration -- Describes hardware-specific configuration options for Wind
River emulators.

7. Board Initialization -- Describes how to use Wind River emulators to initialize the
target hardware.

8. Verifying Hardware -- Describes how to use Wind River Workbench to run
hardware diagnostics on your target.

9. Testing Memory -- Describes how to use Wind River emulators to suspend CPU
operations and force the target into background mode.

10. Debugging in RAM -- Describes how to create a project, download code and
symbol information, set software breakpoints, and step through code.

Wind River
Board Bring-Up Guide, 1.0

11. Programming Flash Memory -- Describes working with flash memory on your
target.

12. Debugging in ROM -- Describes using hardware breakpoints to debug in ROM.

A. Pins Mapped to Common Signals -- Provides a mapping reference for Wind
River-supported processor families.

B. Internal Breakpoint Capabilities -- Provides a detailed reference for line,
expression, and hardware breakpoints in Workbench.

C. Pin Terminations -- provides a detailed reference of pinouts for Wind
River-supported processor families.

On-Chip Debugging

Almost all embedded systems have hardware and software elements, which are
separate but interdependent. Since embedded systems generally do not have
keyboards, or any kind of user interface, debugging of their software elements
must be done externally.

An older solution to this problem was the in-circuit emulator, which substituted its
own internal processor for the central processing unit (CPU) of the embedded
system.

However, in-circuit emulators are expensive; and since they are made by
third-party vendors, there is often a long delay between a new target and a new
in-circuit emulator that can attach to it. A cheaper, and more easily implemented,
solution is on-chip debugging (OCD).

Many semiconductor manufacturers now integrate dedicated debug
microcircuitry into their chips. This approach adds hardware and software debug
capability to the existing JTAG or BDM ports. Since the debug operations occur on
a dedicated area of the chip itself, this solution is known as on-chip debugging.

OCD combines many features of software debug monitors and in-circuit
emulators. Like an in-circuit emulator, OCD provides low-level hardware access.
It does not need to use target memory; it does not need a target communication
channel; and it can edit memory and registers without halting the processor. Like
a software monitor, OCD lets you set breakpoints, stop and start the CPU, step
through code, examine memory, and run diagnostic tests; but unlike a software
monitor, OCD does not need good hardware to run.

Software defects that cause the operating system to crash will typically cause an
agent-based debug environment to fail. However, since an OCD connection is
implemented in the hardware, it is not as sensitive.

Table 2-1

Wind River
Board Bring-Up Guide, 1.0

An OCD connection remains active even on bad hardware. Using an OCD
connection, you can download low-level software even when the target board is
not functioning correctly, and the boot loader cannot run.

On-chip debugging capability varies from one processor family to another, but the
provided functionality is generally similar. As an illustration, Freescale ColdFire
processors use the following primitives for Background Debug Mode (BDM):

Freescale ColdFire OCD Primitives

Command Mnemonic Description

Read Register RDREG Read a data register and return the value.
Write Register WDREG Write a value to a data register.

Read Memory READ Read from a memory location.

Write Memory WRITE Write to a memory location.

Stop Processor BGND Assume control of the bus and put processor in

background mode.
Single Step STEP Step one instruction.

Resume GO Resume execution at the program counter's
current location.

Wind River tools use these low-level OCD primitives as building blocks to create
a higher level of primitives, thus allowing hardware and software verification.

OCD commands invoked while the processor is running “steal” bus cycles from
the CPU in the same way a Direct Memory Access (DMA) controller does.

As the debugger reads and writes to memory and registers, it halts the CPU and
restarts it. The CPU is not involved in OCD operations. The BGND instruction from
the OCD hardware will cause the CPU to halt, and the OCD hardware will assume
control of chip operations. A GO (Resume) command will flush OCD operations
and restart the CPU.

The Wind River Probe and Wind River ICE SX tools use the on-chip debug
capabilities embedded in the target processor. These tools are not true in-circuit
emulators, because they do not replace the target CPU with their own internal
processor. However, the functions they perform are similar, and this document will
refer to them as “emulators”.

2 On-Chip Debugging

OCD has many advantages over in-circuit emulation. It is cheaper; the debug
hardware is included by the silicon manufacturer, not by a third party; and unlike
an in-circuit emulator, the OCD hardware does not lag behind chip releases.

When you access the OCD services on the chip, all interaction between the
Wind River Probe or Wind River ICE SX and the target runs exclusively through
the OCD connection. This means that your system is effective for the entire
development process, even before board-level peripherals are stable.

ColdFire processors, and some older PowerPC processors (5xx and 8xx) use a
dedicated BDM port for OCD operations. A more recent approach is to attach the
OCD functions to the Joint Test Action Group (JTAG) interface to communicate to
the target CPU, and share this interface with boundary-scan board-circuit testing.
The JTAG interface follows the IEEE 1149.1 boundary-scan (JTAG/Test Interface)
specification.

The JTAG interface consists of a set of five signals, three JTAG registers, and a test
access port (TAP) controller. The TAP controller is typically embedded in the target
microprocessor or device. The information related signals are TDI (Test Data In)
and TDO (Test Data Out). The boundary-scan register chain (data) includes
registers controlling the direction of the input/output drivers, as well as registers
reflecting the signal value received or driven. The expectation and details of
particular CPU chains are encoded directly into the emulator firmware.

Each device sharing the JTAG interface employs a serial stream of relative data.
The data streams for all devices can be chained together. An associated process can
scan the combined chain to extract any particular device’s information.

For further information about JTAG operations, refer to the IEEE 1149.1
specification at http://standards.ieee.org.

Wind River emulators are non-intrusive; that is, they do not use target resources.
An emulator will not affect target memory, stack space, or the flash workspace.

On-chip debug agents reside inside cache and memory management units they
share the chip with, so the OCD hardware sees address and data values just like
the CPU sees them. Some processor families have dedicated output signals (other
than the JTAG pins) that can deliver information on the state of the processor.
Combined with external hardware (such as the Wind River ICE SX, in conjunction
with the Wind River Trace tool) these signals can log the real-time code execution
history to a trace buffer. This data is helpful when you need to debug problems that
only occur when the processor is running at full speed.

There is an industry standard, not yet widely adopted, created by the Global
Embedded Processor Debug Interface Forum, formally called IEEE-ISTO 5001. For

Wind River
Board Bring-Up Guide, 1.0

the standard, and a good deal of further information, see
http://www.nexus5001.org/standard.html.

Board Bring-Up

3.1 Goals and Objectives 7
3.2 Sequence of Events 7

3.1 Goals and Objectives

The goal of a board bring-up procedure is to verify the operation of a target board,
all the way from power-on to successfully running and debugging code.

This chapter provides a general overview of board bring-up procedure. Later
chapters go over the matter in detail.

3.2 Sequence of Events

In general, the procedure of bringing up a board uses the following general outline:

»= Attempt a “smoke test”-- that is, can you apply power to the board without
damaging it?

» Perform a “lamp check” - turn the LEDs on and off

Wind River
Board Bring-Up Guide, 1.0

»= Establish a JTAG or BDM connection to the emulator.

» Configure the emulator-target interface; set voltage, clock rate, signal logic.
= Enter background mode.

* Read and write core registers.

» Configure the target workspace.

* Runsimple RAM tests.

* Run bus tests on the address and data buses.

» Test low-level stepping and breakpoints.

= Execute low-level code.

= Test source-level stepping and breakpoints.

= Execute application.

* Debug application code in RAM.

= Test the target’s ability to erase and program flash memory.

* Debug application code in ROM.

Board Descriptor Files

4.1 Introduction 9

4.2 Creating a New Board Descriptor File 10

4.3 XML Board Files 20

4.4 Manually Creating XML Board Files 23

4.5 Layout, Routing and Design Considerations 25

4.6 JTAG Timing Parameters for Wind River Emulators 26

4.1 Introduction

In most cases you do not need to concern yourself with the JTAG board file.
However, if you are debugging multiple cores or if your JTAG scan chain has other
devices besides the core on it, your emulator requires a board descriptor file to
correctly set up the JTAG scan chain for your target.

The board file provides a description of each of the devices that are included in the
scan chain, and provides information about each device.

All Wind River target boards are shipped with a board descriptor file that works

for that target board. If you are using a Wind River target board, you can specify

the default board descriptor file for that target in the New Connection Wizard in
Wind River Workbench, as described in the Establishing Communications chapter of
your emulator’s Hardware Reference.

Wind River
Board Bring-Up Guide, 1.0

NOTE: If you choose to modify a board descriptor file that was shipped with
Wind River Workbench, save your modified file with a different name to prevent
overwriting the default file.

Board descriptor files are written in extensible markup language (XML). However,
it is easiest to create or modify board files using Workbench. The software allows
you to create and catalog scan chain devices such as processors, complex
programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs),
and application-specific integrated circuits (ASICs), and from that catalog create a
board file that properly describes the scan chain on your target.

A CAUTION: Your board file must list the devices included on your scan chain in the
same order as they are physically laid out on the target. If the board file and the
physical scan chain do not match, the board file for your target will not work.

4.2 Creating a New Board Descriptor File

Workbench uses JTAG Editor to create and modify board files. To use the JTAG
Editor view, you must first have an active project running. For information on
creating projects, see the Wind River Workbench User’s Guide.

To create a new board file:
1. Open your project in Workbench.
2. Select File > New > JTAG Board Layout.
The Create Board File dialog appears, as shown in Figure 4-1.

10

Figure 4-1

4 Board Descriptor Files
4.2 Creating a New Board Descriptor File

Create Board File Dialog

Create Board File
The folder is empty,

Enter or select the parent falder:

<

1= Test_OCD_Project {Wwind River Standalone (Mo Operating System) Pla

File name: | debugl.layout

Cancel

Wind River Workbench automatically populates the Parent Folder field with
your active project. In the File Name field, type a name for your board file. This
creates a .layout file, which JTAG Editor will use to create a .brd file in the next
step.

The example shown in Figure 4-1 creates a file called debugl.layout for the
project debugl.

Click Finish.
This opens the JTAG Editor view, as shown in Figure 4-2.

NOTE: JTAG Editor edits a .layout file, which is a graphic representation of the
board layout. A .brd file cannot be created until you have created a JTAG
layout, such as the one shown in Figure 4-4.

11

Wind River
Board Bring-Up Guide, 1.0

Figure 4-2 JTAG Editor

ZEMPCazeD: ﬁz" debugl layout £2 |

| [:‘.,:g Select

4, Margues

“—d Conneckion

= scan Chain -+
Single Core

Dual Core

3 Care

4 Core

-& Zuskom -+

4 TOT
) TDO
7] cru

[astciFPaa
] Peripheral

Using the Predefined Layouts in JTAG Editor

JTAG Editor includes predefined graphic layouts for one, two, three, and four
cores, which are displayed in the Editor toolbar to the left of the editing field,
as shown in Figure 4-3.

12

4 Board Descriptor Files
4.2 Creating a New Board Descriptor File

Figure 4-3 JTAG Editor Toolbar

L.i Marguee

s Conneckion
g’ Scan Chain Lo

Single Core
Dual Core
3 Core

4 Care

S Cuskom >

(4 TDI
(%) TDO
[cPu

[] asiciFrza
m Peripheral

In the rare case where you need to debug more than four cores at the same
time, the JTAG Editor also includes a Custom option. See Using the Custom
Option in the [TAG Editor View, p.17, for more information.

4. In the JTAG toolbar, click Select.
5. Under Scan Chain, pick the number of cores you need to debug.

For example, if the debug1 project has two cores, click on Dual Core under the

Scan Chain heading and drag it into the editing field, as shown in Figure 4-4.

NOTE: The core icon must be clicked and dragged into the editing field. Just
clicking on it will not do anything.

13

Wind River
Board Bring-Up Guide, 1.0

Figure 4-4 Dual Core Layout

| [:‘g Select i ;I

£ Margues

ELE] ELE]
1 1

#—a _onneckion
CPU CPU

‘ Scan Chain b Undefined Undefined
Single Care
Dual Core
3 iCare

4 Core

S Cuskam !‘|

(%5 TD1
%) TDO
[]cru

[] asiciFraa
E] Peripheral

Kl | _'ILI

NOTE: You can only drag one predefined layout into the editing field at a time.
If you drag in a second layout, it will overlay the first, causing confusion.

The editing field now shows a graphic representation of the scan chain. Notice
that the two cores are labelled Undefined. They have no properties until you
assign them in the next step.

6. Double-click on the first core.

The Device Setup dialog appears, as shown in Figure 4-5.

14

Figure 4-5 Device Setup

4 Board Descriptor Files

4.2 Creating a New Board Descriptor File

Device Setup

! MPCESx
MIPS

Hame | Description | Designator [
MPC740 Motorola Power PC 740 Processor DES_7x¥_00
MPCTFS0 Motorola Power PC 750 Processar DES_7¥¥_01
PPC7S0CE IEM Power PC 730CK Processor DES_F¥e_0z2
PPC7S0CKE IEM Power PC 7S0CKE Processor DES_7i#k_03

P i

PPC7E0GE IEM Power PC 750GK Processor DES_7«¥_05
MPCTES Motorola Power PC 755 Processor DES_7x¥_06

Ok I Cancel |

Use the dialog to select your processor type. The example in Figure 4-5 shows
a PPC750FX processor.

7. Click OK.

You are returned to the Device Debug Perspective. The first core is now
defined as a PPC750FX, and the Properties view is displayed.

15

Figure 4-6

Figure 4-7

Wind River
Board Bring-Up Guide, 1.0

Defining the Core

‘mbedded Debug - JTAG Board Editor - Wind River Workbench 2.2 : I [=]
File Edit Wiew Navigate Search Project Run Target Window Help
If-Halm|3-0- - |28 | &0 -t 5 | BREmbedded pe...
<200 | o g 8 o o8 | o6 o ip ([1oow = D applcation ...
T Project Navigatar 52 = O|[Zxppcrsor: 0 || #¥Debug 52 Lt
v [l Selest 'y H%|3 2R -
&) | ==Y \ o= ‘ £, Marques 453 PPCTSOFY - WRFrobe_PPCTSOFY [Attach to Core(s) on Te
o
- Connection =9 PPCrSOF:
cru =48] System Context (Stopped)
j Scan Chain 2 PPC7S0FR Undefined En OxFFFO0100
- H] Makeflle
4 i o
P Breakpoints &3 R =]
[ssiciFrea
[Peripheral
B 1arget Ma... £ Kernel ob.u‘ i
-
Bloelc¥ oz
ulflocalhost) % i
WRErche_PPCTSOFX [connected] || Tsks | Froblems | ElProperties &2 Bu\IdC.H|Ermr Lr.u;|CF Optmns| 2 O (%52 Registers 52 =5
%l PPC7S0FX [stopped] 5l b S T
Propert | value + GPR
ASF Flle . ;IE
Description IBM Powser PC 7S0FX Processor + FRU
Designator DES_7X_04 o
IR Length & + L2CACHE
Memory Map DEFALLT e
Hams PPC7SOF
Register File
Target PPC7SO0F:
Type MICROPROCESSOR
| | ol | i

You can use the Properties view to finish defining the first core.

Properties View

Tasks | Problems | B Properties 2 Build ... | Error Log | CF Options | e ot |
[= 3 >
Properk I walue
ASF File
Crescripkion IEM Foweer PIZ FS0OFX Processar
Cresignakor DES_Fxx_04
IR Length S
MMermory Map DEFSLLT
Mame FPPZ7FSOFR
Feqgister File
Targek PPCZ7S0OFS
Twpe MICROPROCESSOR.
4| | |

16

8.

4 Board Descriptor Files
4.2 Creating a New Board Descriptor File

Click on any property to modify it.

Clicking on the Register File property will open a browser window; use the
browser to navigate to the .reg file you want to use.

Your first core is now defined. To define your second core, double-click on it and
repeat Steps 6 through 8.

If both cores use the same processor type, make sure you edit the Designator value
in the Properties view. Workbench does not allow two cores to have the same
unique designator. For example, in Figure 4-7 the first core’s designator is
DES_7XX_04. If your second core is the same processor type as the first, the same
designator will appear in the Properties window. Click on the Designator value to
change it to (for instance) DES_7XX_05.

Once you have defined all your cores, you can create your board file.

9.

10.

11.

Right-click on the editing area. In the dialog that appears, choose Export Board
File.

A browser window appears. Choose the folder you want to save your board
file in.

In the File Name field, type the name you wish to assign to your board file.
In the example, the board file name is debugl.brd.
Click Save.

Using the Custom Option in the JTAG Editor View

In the rare case where you need to debug more than four cores at the same time,
JTAG Editor uses a Custom option to create a new board file piece by piece.

1.
2.

In the JTAG toolbar (Figure 4-3), click Custom.
Construct your layout using the elements under the Custom heading.

The elements available are an input node (TDI) and a termination node (TDO),
as well as CPUs, ASICs, FPGAs, and peripherals. To add an element, click on
its icon and drag it into the editing field.

Figure 4-8 shows a partially completed layout with an input, a terminator,
three CPUs, and a peripheral device.

17

Wind River

Board Bring-Up Guide, 1.0

Figure 4-8 Partial Custom Layout

@

18

Input

0
¥
CPU
Undefined

an
1

cPU
= Undefined
Output g ¥
CPU
Undefined

KA

Undefined

Once you have your terminating nodes and devices laid out, you need to
connect them.

In the JTAG toolbar, click Connections.

When you move the cursor back into the editing field, it now looks like a
power cord.

Click on the input node.
Move the cursor to your first processor and click again.
A connection line joins the input node and the processor.

Click on the first processor, move the cursor to the second processor, and click
on it.

A connection line joins the two processors.

Continue this process until you complete the circuit by clicking on the
terminator node.

4 Board Descriptor Files
4.2 Creating a New Board Descriptor File

Figure 4-9 Completed Custom Layout

Y
- —

(= 1]

Undefined ‘?_,—‘L 'h-
cru

Undefired

i
\
cPU
Undefined

OTHER
Undefined

8. When you have connected all devices and nodes, click Connections again. The
cursor returns to normal.

Your custom board is now laid out. Define its properties and generate your .brd
file by following Steps 6-11 in Using the Predefined Layouts in [TAG Editor, p.12.

Editing Your Board Layout

To remove a device, node, or connection from your layout, use the Select button or
the Marquee button in the JTAG toolbar.

To use the Select button, click Select in the toolbar. Then click on any device, node,
or connection to highlight it and press Delete.

To use the Marquee button, click Marquee in the toolbar. You will see that the
cursor now appears as a crosshair in the editing field. Hold the mouse button
down and drag the cursor to create a box around the device you wish to highlight,
then press Delete.

19

Wind River
Board Bring-Up Guide, 1.0

NOTE: The Marquee button can only highlight devices, not nodes or connections.

You can also edit your layout using the Outline view in Workbench. In the
Workbench toolbar, click on Window. Select Show View > Outline.

The Outline view appears as shown in Figure 4-10.

Figure 4-10 Outline View

5= outline £2 Flash F... | % |

= m Undefined

= TOI

= Undefined
o Undefined
Undefined

The Outline view displays the elements of your layout in the order they were
added. Click on any element to highlight it and press Delete.

Using the Outline view in this way is handy if you have accidentally overlaid one
layout on top of another, or if you want to back up and start again. Use the list in
the Outline window to delete any or all of the contents of the JTAG editing field.

4.3 XML Board Files

Board descriptor files are created in extensible markup language (XML). You can
view the XML version of your board file by opening your .brd file in a text editor,
or by selecting File > Open in Workbench and navigating to the .brd file in the

20

Figure 4-11

4 Board Descriptor Files
4.3 XML Board Files

browser window that appears. The XML text will appear in the Workbench Editor.
An example board descriptor file is shown below.

Board File XML version

AR PPCTSORA: | P& 1T AG Board Editar W [}

<DEVICE_TAELE>
<TABLE_MODE»3LOW</TABLE_ MODE>
<TABLE_CLOCE>16Mhz</TABLE CLOCE:>
«<TABLE_MULTI>ENABLE</TABLE_MULTI>
<TABLE_TIED RESET>OFF</TABLE_TIED REZET>
<DEVICE>
<NAME>PPC750FE</NAME>
<DESCRIPTION>IEM Fower PC 750FX Processor</DESCRIPTICHN:
<TYPE>MICROPROCESIOR</ TYFE>
<TARGET>PPC7S50FE</ TARGET>
<SELREG FILE></SELREG_FILE>
<DE3IGNATOR>DES_7XX 04</DEIIGNATOR>
<IR_LEN>8</IR_LEN>
<ASF_FILE»</ASF_FILE>
<REG_FILES>
«</REG_FILES:>
<MEMORY MAP>
<MEMORY MODE>DEFAULT</MEMORY MODE:
</MEMORY MAP>
</DEVICE>
<DEVICE:>
<HNAME>FPC750FE</NAHME>
<DESCRIFTION>IBM Fower FC 750FX Processor</DESCRIPTICN:
<TYPE>MICROPROCESSOR</ TYPE>
<TARGET>PPCT7E50FE</ TARGET>
<3ELREG_FILE></SELREG_FILE>
<DESIGMATOR>DES_7XX 05</DESIGNATOR>
«<IR_LEN»8</IF_LEN»>
<A3F_FILE»</L3F_FILE>
<REG_FILES>
</REG_FILES:>
<MEMORY MAP>
<MEMORY_MODE>DEFAULT</MEMORY_ MODE:
</ MEMORY MAP>
</ DEVICE>
</DEVICE TAELE>

4 o

This is the debugl.brd board file created in Using the Predefined Layouts in JTAG
Editor, p.12. The first block of code contains comments that describe what the target
reference design is set for; the next blocks of code define the devices included in
the file.

For information on board file fields, see 4.3.1 XML Board File Fields, p.22.

|»

NOTE: If you choose to modify a board descriptor file shipped with your system,
it is best to save your modified file with a different name to prevent overwriting
the default file.

21

Wind River
Board Bring-Up Guide, 1.0

4.3.1 XML Board File Fields

The board descriptor file contains comments, <DEVICE_TABLE >fields, and one
or more <DEVICE> field-sets. A <DEVICE_TABLE> specifies common and
rudimentary scan-chain (signal) operational functions and provides a list of
<DEVICE> descriptions for each device sharing the JTAG interface.

<DEVICE_TABLE> Fields

<TABLE_MODE>

This field designates the scan-chain characteristics applicable to the devices on the
chain. It can be set to FAST or SLOW. This also relates to the optimization
implementation on the emulator. When in doubt, set it to SLOW.

<TABLE_CLOCK>

This field specifies the JTAG strobe rate, in MHz, for the information signals Test
Data In (TDI) and Test Data Out (TDO). This is analogous to the emulator
configuration option CF CLK clock_rate. They are not always automatically
synchronized, so check your emulator to make sure you have the CF CLK option
set to the same clock rate specified in the board file. The fastest JTAG clock rate is
16 MHz.

<TABLE_MULTI>

Set this field to ENABLE if you are debugging multiple targets on the same JTAG
interface. Otherwise set it to DISABLE.

<TABLE_TIED_RESET>

Set this field to ON only if your target board’s RESET and TRST signals on the JTAG
interface are physically connected (tied together.)
<DEVICE> Fields

<NAME>

A reference name for the target device.

<DESCRIPTION>

A reference description of the target device.

22

4 Board Descriptor Files
4.4 Manually Creating XML Board Files

<TYPE>

The valid types are MICROPROCESSOR, CPLD, FPGA, INTERFACE, and
OTHER.

<TARGET>

The CPU type. The run-time processes on Wind River emulators require this
information in order to match the exact JTAG scan chain and JTAG-specific
characteristics.

<DESIGNATOR>

A mandatory field that Workbench uses to distinguish between devices. Typically
this is set to U0, U1, U2....

Make sure you use a unique <DESIGNATOR> tag for each target device.
Workbench does not allow two devices to use the same designator.

<IR_LENGTH>

Use this field to specify the length, in bits, of the target device’s JTAG Instruction
Register. To find this information, consult the manufacturer’s specification for the
target device.

4.4 Manually Creating XML Board Files

If you need a custom board file, it is usually easiest to take one of the generic board
files from installDir/workbench-version/dfw/build/host/boardfiles and modify it to
suit your needs. Remember to save it with a different name if you want to preserve the
original file.

To create a board file that properly describes the scan chain on your target:
1. Open a text editor.

2. Begin the board file with the tag <DEVICE_TABLE>.

3. Lay out the header block.

The first block of XML defines mode, clock speed, and status of multi-core
debugging. An example would look like:

23

Wind River
Board Bring-Up Guide, 1.0

<TABLE_MODE>SLOW</TABLE_MODE>
<TABLE_CLOCK>16Mhz</TABLE_CLOCK>
<TABLE_MULTI>ENABLE</TABLE_MULTI>
<TABLE_TIED RESET>ON</TABLE_TIED_RESET>

This example is set for slow mode, with a clock speed of 16 MHz; it is enabled
for multi-core debugging, and it is set to issue RST reset commands (which
affect all cores) rather than IN reset commands (which affect only one core.)

The next blocks of XML define the devices included in the file. Workbench needs
this information so that it can position the devices in the correct location in the
25-bit data stream. The physical location of each device can also be determined by
its position in the board descriptor file.

4.

24

Lay out the block for the first device.

A device block begins with the tag <DEVICE>. An example would look like:

<DEVICE>
<NAME>MPC8260</NAME>
<DESCRIPTION>Motorola Power PC 8260 Processor</DESCRIPTION>
<TYPE>MICROPROCESSOR</TYPE>
<TARGET>MPC8260</TARGET>
<DESIGNATOR>UO</DESIGNATOR>
<IR_LEN>8</IR_LEN>

</DEVICE>

This example describes a PowerPC 8260 target.

Repeat Step 4 for every device on the JTAG scan chain.

Your board file must list the devices included on your scan chain in the same
order as they are physically laid out on the target. If the board file and the
physical scan chain do not match, the board file for your target will not work.

When you are finished, your board file should look something like this:
<DEVICE_TABLE>
<TABLE_MODE>SLOW</TABLE_MODE>
<TABLE_CLOCK>16Mhz</TABLE_CLOCK>

4 Board Descriptor Files
4.5 Layout, Routing and Design Considerations

<TABLE_MULTI>ENABLE</TABLE_MULTI>

<TABLE_TIED_RESET>OFF</TABLE_TIED_RESET>

<DEVICE>
<NAME>MPC8260</NAME>
<DESCRIPTION>Motorola Power PC 8260 Processor</DESCRIPTION>
<TYPE>MICROPROCESSOR</TYPE>
<TARGET>MPC8260</TARGET>
<DESIGNATOR>UO</DESIGNATOR>
<IR_LEN>8</IR_LEN>

</DEVICE>

<DEVICE>
<NAME>PPC750FX</NAME>
<DESCRIPTION>IBM Power PC 750FX Processor</DESCRIPTION>
<TYPE>MICROPROCESSOR</TYPE>
<TARGET>PPC750FX</TARGET>
<DESIGNATOR>U1</DESIGNATOR>
<IR_LEN>8</IR_LEN>

</DEVICE>

</DEVICE_TABLE>

This example describes two targets, but you can add as many <DEVICE>
blocks as you need to describe your JTAG scan chain.

6. When you are finished, save the file with the extension .brd.

4.5 Layout, Routing and Design Considerations

Wind River recommends the following routing requirements to minimize the
possibility of JTAG communication failures.

25

Wind River
Board Bring-Up Guide, 1.0

Position the first device in the JTAG scan chain between one half and two
thirds of the total routing length of the chain. This will minimize the reflections
back to the first device in the scan chain.

Route the TCK and TMS signals to approximately the same length from device
to device.

Provide a series dampening resistor as close as possible to the JTAG header for
the TCK, TMS and TDI signals. A series resistor should also be positioned on
the TDO output from device to device, and positioned as close as possible to
the source. The last device in the JTAG scan chain should minimize reflections.
These resistor values can be adjusted to match the impedance of the circuit
board trace.

Position the last device in the scan chain as close as possible to the JTAG
connector to minimize the trace length of the TDO signal back to the emulator.

Provide the ability to bypass any and all devices except the processor in the
scan chain with zero-ohm resistors or jumpers.

4.6 JTAG Timing Parameters for Wind River Emulators

Table 4-1

The
and

following table describes JTAG timing parameters for the Wind River probe
Wind River ICE.

JTAG Timing Parameters

TCK TDO TDO ™S T™MS TDI TDI
Min Prop MaxProp MinProp MaxProp Min Min Hold
Delay Delay Delay Delay Setup

Negative Edge -3 ns +3 ns -3ns +3 ns

Positive Edge 23 ns 3ns

26

OCD Connections

5.1 Debug Connections 27
5.2 Creating a Target Connection 28

5.1 Debug Connections

To create a target connection, create projects, and download code, you need a
Wind River Probe or a Wind River ICE SX.

For software-only tests, you can create a simulated connection using the Wind
River Instruction Set Simulator (ISS), which is available to all users of Wind River
Workbench OCD Edition. For instructions on using the Instruction Set Simulator,
see the Wind River Workbench On-Chip Debugging Guide.

The instructions in this document use a Wind River Probe connecting to a
PowerPC750FX target. The process for connecting with the ICE is similar; for
instructions on connecting with a Wind River ICE SX, see the Wind River ICE SX for
Wind River Workbench Hardware Reference.

27

Wind River
Board Bring-Up Guide, 1.0

5.2 Creating a Target Connection

To create a target connection using a Wind River Probe, use the following steps:
1. Open Wind River Workbench.
2. Right-click in the Target Manager view and select New Connection.

The Connection Type dialog appears, as shown in Figure 5-1.

Figure 5-1 Choose Connection Type

', New Connection

Connection Type

Flease select connection bvpe.

Wind River Generic GDB Remate Serial Pratocol Connection
Wind River Linux KGDE Connection

Sind River Linux User Mode Target Server Connection
Wind River OCD ICE Connection

wind River OCD 155 Connection

wind River OCD Probe Connection

3. Select Wind River OCD Probe Connection and click Next.

The Processor Selection dialog appears, as shown in Figure 5-2.

28

5 OCD Connections
5.2 Creating a Target Connection

Figure 5-2 Processor Selection

% New Connection

Wind River Probe Settings

Configure the designatar settings For the emulatar,

Designators

(%) Processor: | PPCTSOFY | [Seleck... l
(") Board file:

Designator Processar Processaor Plugin

PPZ7S0FE PPCFS0F PawerPC 7 Family Processar PIL..
Zammunications
USE Device Mame: |PRO40310 i

Help H < Back ” et =]

4. Click Select. From the list that appears, expand MPC7xx and select MPC750FX.
5. Click OK.

You are returned to the Processor Selection dialog.
6. Click Next.

The connection wizard passes through four screens: Target Operating System
Settings, Memory Mapping, Object Path Mappings, and Target State

Refresh. For the purposes of this chapter you do not need to use these screens.
Click Next until you come to the Connection Summary, as shown in Figure 5-3.

29

Wind River
Board Bring-Up Guide, 1.0

Figure 5-3 Connection Summary

% New Connection

Connection Summary

Plzase review the connection information

Connection name: | WRProbe_PPCTSOFX_0

SUMMarYy

Property Yalue
ADDR PRO40310

+ DESIGMATCORMAR
DEVICE ‘Wind River Probe
MNAME_MAFPING [*;*.unstripped], [*;*]
PATH_MAPPING [;1d
STYLE USBDEWICE

Immediately connect to target if possible

[Help H < Back l [Finish ” Cancel]

7. Make sure that the Immediately connect to target if possible checkbox is
selected and click Finish.

Workbench creates a target connection called WRProbe_PPC750FX in the Target
Manager view.

8. In the Target Manager view, click on the “+” sign next to the
WRProbe_PPC750FX target connection name to expand it.

Before Workbench can actually talk to the processor on the target system,
Workbench must attach to the core.

9. Right-click on PPC750FX [connected - stopped] and select Attach to Core.

Workbench is now attached to the core, and able to talk to the processor.
Workbench switches to displaying the Device Debug perspective.

30

Figure 5-4

5 OCD Connections
5.2 Creating a Target Connection

In the Workbench toolbar, select Window > Show View > OCD Command Shell.

The OCD Command Shell opens, as shown in Figure 5-4.

OCD Command Shell

[Connected to PPC?S0FR]

;ERRA

The prompt in the OCD Command Shell will read either >BKM> (background
mode) or >ERR> (error.)

There are several reasons an >ERR> prompt might appear; these will be addressed
further on.

The next step is to configure the emulator by setting certain configuration options,
as described in 6. Tool Configuration.

31

Wind River
Board Bring-Up Guide, 1.0

32

Tool Configuration

6.1 Introduction 33

6.2 Tool Configuration 34

6.1 Introduction

Wind River emulators can be configured in several different ways to specify
various settings such as electrical properties, connection logic, and clock rate. To
configure these settings Workbench uses configuration options, or CF options, which
can be set in the OCD Command Shell.

This document only describes the most important CF options, ones that are
common to all Wind River-supported processor families. For a full description of
all Wind River CF options sorted by processor family, see the Wind River Workbench
On-Chip Debugging Configuration Options Reference.

33

Wind River
Board Bring-Up Guide, 1.0

6.2 Tool Configuration

At the prompt in the OCD Command Shell (either >SBKM> or >ERR>) enter the
command CF with no arguments.

This displays a list of all CF options available for your target processor, along with
their current settings.

>ERR>cf
Set BreakPoint SB[SB,IHBC] = SB
Vector Table Location VECTOR [HIGH, LOW, IGNORE] = LOW
Monitor Target reset RST[YES,NO,HALT,RUN] = YES
Target CPU TAR[AUTO, 603E, EC603E, 603P, 603R, 740, 745,
750, 750CX, 750CXE, 750FX, 750GX, 755, 7400, 7410] = 750FX
Target CPU(SLAVE) SLAVE [NONE, 8260] = NONE
Slave IMMR reset value SLIMMRVAL [AUTO,VALUE] = AUTO
JTAG clock rate (MHz) CLK[0.025...100,AUTO] = 16
Application IMMR Exclusion Range AIMMRER [OFF, START and END] = OFF
Application IMMR Value AIMMRVAL[VALUE] = 0e000000
Real time Preservation RTP[YES,NO] = NO
Little Endian Mode LENDIAN[YES,NO] = NO
Processor Mode MODE[32,64] = 64
Download Mode DLD[NORMAL, 8] = NORMAL
Emulator HRESET Control HRESET [ENABLE, DISABLE] = ENABLE
Data Parity Checking PAR[YES,NO] = NO
Set Work Space WSPACE [BASE and SIZE] = 00000000 77c
Set Stack Range STACK[OFF / LOWER and UPPER] = OFF
Target Console Redirection TGTCONS [BDM, COM1,COM2] = BDM
Drive TReset line TRESET [OPENC, ACTIVE] = ACTIVE
Invalidate Instruction Cache on GO INVCI[YES,NO] = YES
Reset Pulse Length N*1lms RPL[1..600] =1
Sense Power via HRESET SPOWER[YES,NO] = YES
Power On Reset Length N*1lms PONR[O0..500] = 0
CPU Reset Type RESET [HRESET, SRESET, HRESET UNFILTER,
SRESET UNFILTER] = HRESET
Trap exception TRPEXP[YES, NO, SOI, BREAKPOINTONLY] = YES
Issue an IN on coldstart INCOLD[YES,NO] = YES
Display L2 Data Cache Warning L2WARNING[YES,NO] = NO
Memory Management Unit Mode MMU [ENABLE, DISABLE] = DISABLE
Load Boot Table On IN BL[ENABLE, DISABLE] = DISABLE
Trigger In Report Mode BRKREP [REPONLY, BRKREP] = BRKREP
TMD Mode TMD[ENABLE, DISABLE] = DISABLE
Run Counter Length RCL[1000..FFFF] = 1000
Delay after Reset Nms DRST[0..10000] = 25

6.2.1 Clock Rate

The CLK option controls the rate at which the JTAG clock (or BDM clock) clocks
debug commands to the target.

34

6 Tool Configuration
6.2 Tool Configuration

Available clock rates, and default settings, vary between processor families. Enter
CF at the prompt and look for CLK in the list of CF options to see the available clock
rates for your target.

For a PowerPC 750FX target, the available rates (shown above) range from 0.025 to
100. The default is 16. To change the clock rate, say from 16 to 32, use the following
command:

>ERR>cf clk 32

6.2.2 Drive TRESET Line

The TRESET option controls the logic applied to the target reset (TRESET) signal
on the target.

The option can be set to OPENC or ACTIVE. It is set to ACTIVE by default.

When set to ACTIVE, the emulator uses transistor-transistor logic (TTL.) The
emulator drives the TRESET signal to both active and inactive states. On some
targets, the conditioning resistors cause excessive rise or fall time on the signal
when returning to an inactive state. This excessive time can cause the processor to
come out of reset in an incorrect state.

When set to OPENC, the emulator uses open-collector logic. The active driver is
released by tri-stating the line and allowing conditioning resistors on the target to
return the signal to the non-active state.

If you are driving the TRESET signal with an external line, you should set the
emulator to use open-collector logic. Otherwise you could have an external line
driving the TRESET signal LOW while the emulator is driving it HIGH, thus
causing bus contention and possible damage to the target or the emulator.

To set the TRESET option to OPENC, use the following command:
>ERR>cf treset openc
To change it back, use the following command:

>ERR>cf treset active

6.2.3 Monitor Target Reset

The emulator continuously monitors the TRESET signal. If a target reset occurs,
one of the following actions may be taken:

35

Wind River
Board Bring-Up Guide, 1.0

* YES - If a target reset occurs it is reported to the user, and the target is forced
out of background mode.

= NO - If a target reset occurs it is ignored. This is normally used if the code
contains a reset instruction, which causes a reset to the external hardware, but
does not reset the core.

* HALT - If a reset occurs, the target is trapped at the restart vector.
= RUN-Ifareset occurs, the target is restarted and remains in background mode.

By default, this option is set to YES. When set to YES, the target will start running
code after each reset. If you are doing low-level work -- for example, if you are
examining register settings -- you may want the target to halt after a reset so you
can get a target snapshot. To set this option to halt the target on a reset, use the
following command:

>ERR>cf rst halt
To change it back, use the following command:

>ERR>cf rst yes

6.2.4 Emulator HRESET Control
By default, the emulator asserts the hardware reset (HRESET) signal when
initializing the hardware.

To configure the emulator not to assert the HRESET signal when it initializes the
board, use the following command:

>ERR>cf hreset disable
To change it back, use the following command:

>ERR>cf hreset enable

6.2.5 CPU Reset Type

As stated above, the emulator asserts the hardware reset (HRESET) signal when
initializing the hardware. You can configure the emulator to assert the software
reset (SRESET) signal on an initialization instead.

To configure the emulator to assert the SREST signal instead of the HRESET signal
when it initializes the board, use the following command:

>ERR>cf reset sreset

36

6 Tool Configuration
6.2 Tool Configuration

To change it back, use the following command:
>ERR>cf reset hreset

You can also set this option to HRESET_UNFILTER or SRESET_UNFILTER. With the
_UNFILTER argument added, The emulator will not sample the reset signal when
it initializes the board.

6.2.6 Saving Changes

Most changes to configuration options do not take effect until you initialize the
board, as described in 7. Board Initialization.

37

Wind River
Board Bring-Up Guide, 1.0

38

71
7.2
7.3
7.4

Board Initialization

Introduction 39
Background Mode 40
The INN Command 43
Registers 43

7.1 Introduction

In order to establish communications with your target, you must first initialize it.
Also, if the code you are running on your target causes the connection to be lost,
you must initialize the target to restore that connection. Initialization is also
required if you change the register settings in the emulator and want them to be
reflected in the target.

The target is initialized whenever you first establish a connection using your
emulator. If you need to initialize the target when you are debugging, you can do
it using the IN or INN initialization commands, as described in this chapter.

39

Wind River
Board Bring-Up Guide, 1.0

7.2 Background Mode

In order for the emulator to work with the target, it must stop the target CPU and
put the target in background mode. When the target is in background mode, a
>BKM> prompt appears in the OCD Command Shell.

If an >ERR> prompt appears in the OCD Command Shell, the target is not in
background mode.

7.2.1 The IN Command

The IN command does two different things. First, it places the target board into
background mode. Second, it copies all of the register information that is stored in
the emulator’s NVRAM down to the target.

To initialize the board and enter background mode, enter the following command:
>ERR> in

The IN command may fail for several reasons. For example, if you have not
connected power to the target board, the output will resemble the following:

>ERR>in

PR R RS S SRS S S SRS S S SRS E SR SR EE SR SRR SRR R SRR RS SRR R R SRR R EEEEEEEEEEEEEEEEEEEESEES
Wind River Probe Initialization Sequence.

Copyright (c) Wind River Systems, Inc. 1999-2005. All rights reserved.

R e R R

Support Expires....... 4/20/06

Target Processor...... PPC750FX:UL
Wind River Probe Group ID#= 0
Wind River Probe Serial#= U1234567 Firmware= pr3.3_gab
Type CF For a Menu of Configuration Options
Initializing Background Debug Mode.............. Failed
Testing Communications to Hardware Interface....Passed
Driving HRESET to be High........... ..., Passed
Driving HRESET tO D€ LOW. . et vt it tneenenennennnn Passed
Waiting HRESET Low Acknowledge...............o... Failed
>ERR>

For a list of the tests the emulator runs during an IN sequence, see 7.2.2 Set Verbose
On, p.40.

7.2.2 Set Verbose On

To see the tests the emulator is running while attempting to enter background
mode, put the emulator in verbose mode using the following command:

40

7 Board Initialization
7.2 Background Mode

>ERR>set verbose on

Then enter the IN command again.

Here is a brief description of the tests with some possible reasons why each test
would fail.

Testing Communications to Hardware Interface

This tests the hardware connectivity, and examines the communications path
between the host and the emulator. If the test fails, ensure that you have the power
properly connected and turned on, that the emulator is correctly connected to the
host computer, and that your emulator hardware is properly connected to the
target.

Driving HRESET to be High

This function tests the RESET signal to verify that it is HIGH. The emulator is not
driving the RESET signal during this test, so the target must drive the RESET signal
via a pull-up resistor. If this test fails, check to see if the target board has a pull-up
resistor on the RESET signal to the HRESET pin of the connector. Also, check the
target board reset logic and verify that it is not continually driving RESET LOW.

Driving HRESET to be Low

The RESET signal is a bi-directional signal for your unit. The emulator drives the
RESET signal LOW and clocks it back in to verify that it is LOW. If this test fails,
you may have contention on your RESET signal. Check to see if a device on your
target board is continually driving RESET HIGH. Verify that the device on your
target board that is driving the RESET signal is an open-collector device with a
pull-up resistor.

Attempting JTAG communication

During this test, the emulator stops the processor and attempts to establish JTAG
communications. If this fails, check to see that your hardware is connected
properly, and that the tests preceding this one passed accordingly. It is also possible
that there is contention on your board.

Waiting for HRESET to be Released

The emulator only drives RESET low for a specified period of time. After RESET is
driven LOW for the allotted time, it tri-states the RESET driver and clocks the

RESET signal back in to see if the RESET signal went high. It continues to check for
RESET to go high until is sees it go high or until you type Ctrl+X. If this test fails,

41

Wind River
Board Bring-Up Guide, 1.0

check to see if your target board reset logic is still driving the RESET signal LOW.
Also check that your target board has a pull-up resistor to drive RESET HIGH.

Testing for target STOP State

This test verifies that the processor stopped during the preceding JTAG
Communications test by polling the processor status. If the target is still running,
this test fails.

Comparing Target CPU With CF Setting

This test verifies that you are properly configured for the appropriate target
processor by comparing the processor type on your target with the processor type
specified in your board file. If the test fails, use the CF TAR command to properly
configure your target. For example, if you are using a PPC750FX target, and this
test fails, enter the following commands:

>ERR>cf tar 750fx
>ERR>in

Attempting to Locate IMMR register

This test only completes for PowerPC 82xx targets. It attempts to verify the location
of the IMMR register, which serves as a pointer to all of the other registers. If it fails,
none of the internal registers are accessible. If the test fails, check the reset
configuration word, located in Flash, and ensure that it is set to the correct value.
To find the correct value for the reset configuration word for your target, see your
target’s target.ref file, located in installDir/vxworks-6.x/target/config/yourTarget.

Loading Internal Registers

Once background communications are established, the emulator downloads
register values from the debugger NV-RAM to the target. It will only download
register values for those register groups that are enabled. If this test fails, see the
information in 7.3 The INN Command, p.43.

Testing JTAG Communication

This test examines the JTAG communication between the emulator and the target
using the internal clock rate for which the emulator is configured. If this test fails,
set the internal clock to a lower rate using the following command:

>ERR>cf clk value

42

7 Board Initialization
7.3 The INN Command

Attempting to restore CPU context

This test restores the processor scan chains.

7.3 The INN Command

In order to get a processor into background mode, the emulator asserts the RESET
line of the processor and then releases it. The processor and its peripherals on the
target board are forced into their reset state, and all of the internal registers are
forced to their manufacturer’s reset value.

The INN command places the target in background mode without overwriting the
target’s registers, leaving them in their default reset state for the processor.

If the IN command fails to put the target in background mode, enter the following
command:

>ERR>1nn
R R R R R R R R R R S Rk R R I I

Wind River Probe Initialization Sequence.
Copyright (c) Wind River Systems, Inc. 1999-2005. All rights reserved.

Khhkkkhkhkkhkhhkkhkhkkhkhhkkhkhkkhkhhkkhkhkhkkkhkkhkhhkkhhkkhhkkkhkkhhkkhkhkhkkkkkkkkkkkkkkkkkkkkkk

Support Expires....... 4/20/06
Target Processor...... PPC750FX:UL
Wind River Probe Group ID#= 0
Wind River Probe Serial#= U1234567 Firmware= pr3.3_gab
Type CF For a Menu of Configuration Options
Initializing Background Debug Mode.............. Successful
>BKM>
Generally, if an IN command fails but an INN succeeds, it is usually caused by

incorrect register values in the emulator's NVRAM.

To configure register values, see 7.4 Registers, p.43.

7.4 Registers

Your emulator includes an area of non-volatile memory (NVRAM) where you may
store register settings for a target.

43

Wind River
Board Bring-Up Guide, 1.0

Once the register values are present in NVRAM, they are automatically loaded to
the target after each cold start, warm start, or IN initialization command. You can
select which register values are written to the target by enabling and disabling the
appropriate register groups.

Wind River uses low-level SCGA commands to configure registers. Since
configuring registers manually would require entering a large number of SCGA
commands, Wind River provides register files for many targets. A register file is a
Workbench-specific script that you can execute in the OCD Command Shell.

Register files are ASCII files using the extension .reg. For example, the register file
for the Wind River PPC750FX target is ppmc750fx.reg, located in
installDir/workbench-2.x/dfw/build/host/registers/PowerPC/7xx/WindRiver_PP
MC.

7.4.1 Downloading a Register File

Figure 7-1

To download a register file to the emulator, use the following steps:
1. Inthe OCD Command Shell, click the Settings button.
The OCD Command Shell Settings dialog appears, as shown in Figure 7-1.

OCD Command Shell Settings

% 0CD Command Shell Settings

QD Command Shell Settings

PPC7S0FR

PlayBack File | 208 EA A o= Livel MChppmc7 S0P, reg KR [¥] Display Background Communications
Input Log File w [append
Full Log File v [append

[Ok] [Cancel

Next to the PlayBack File field, click Browse.

Navigate to the register file you wish to use and click Open.
Click OK.

In the OCD Command Shell, click the Playback File button.

AR N

44

7 Board Initialization
7.4 Registers

The register file you selected is downloaded to your target. The commands
from the file appear in the OCD Command Shell.

This procedure only sets the register values in the emulator’s NVRAM, not on the
target. To copy the register values from the emulator to the target, you must
initialize the target with the IN command:

>BKM>in
Only enabled register groups are copied to the target.

7.4.2 Enabling and Disabling Register Groups

If you look at the ppmc750£fx.reg register file, you will see that it ends with several
lines that begin CF GRP ENABLED. Registers are stored in logical register groups.
When you issue an IN command, the emulator only copies down register settings
for register groups that are enabled. Register groups that are disabled on your
target do not have register data transferred.

Disabling a register group enables you to view the target register value, but
prevents it from being overwritten during target initialization.

NOTE: If you change a register value directly on the target of a register group that
is disabled, that register does not get overwritten by the emulator during an
initialization. Note, however, that the processor may still reset that register value
to the processor default during a target initialization.

To enable or disable a register group on your target, use the following steps:
1. At the >BKM> prompt, type the command CF GRP.
The first register group appears, as shown below:
>BKM>cf grp
Group (CF GRP (M/S) Name = ENABLED/DISABLED
CUSTOM (0=Disable 1=Enable) Enabled >

The name of the register group is displayed, along with its current status
(either ENABLED or DISABLED).

2. Type1 to enable the group or 0 to disable it.

3. Toleave the setting as it is and advance to the next register group, press the
ENTER key without typing 0 or 1.

4. Continue through the list of register groups enabling and disabling them as
required.

45

Wind River
Board Bring-Up Guide, 1.0

5. When the register groups are enabled or disabled, type CF UPLOAD GROUP at
the >BKM> prompt.

This displays a list of all of the register groups on your target with their current
settings as shown below:

>BKM>cf upload group

CF GRP GT64260_CPU ENABLED ; GROUP
CF GRP GT64260_SDRAM ENABLED ; GROUP
CF GRP GT64260_DEVICE ENABLED ; GROUP
CF GRP GT64260_GPP ENABLED ; GROUP
CF GRP GT64260_MPP ENABLED ; GROUP
>BKM>

7.4.3 Modifying Registers Manually

Wind River supplies register files for Wind River evaluation boards, as well as for
many third-party target boards.

If you are using a target for which Wind River does not supply a register file, you
may have to create one. For instructions on creating register files, see the Wind
River Workbench On-Chip Debugging Guide: Configuring Registers.

Remember that the register file sets the register values in the emulator NVRAM,
not on the target. The emulator copies the values you set in its NVRAM down to
the target when you initialize the target with an IN command. Without a register
file, the NVRAM contains default register values, typically made for a Wind River
evaluation board, which most likely are not suitable for your target. So the IN
command will not set the target registers properly.

Some target processors, for instance most PowerPC targets, come with default
register settings. If your target has default register settings, you can modify the
registers directly on your on your target manually, at least to the point where you
can download your boot ROM application code.

Remember that if you modify your registers manually, any initialization command
or target reset will overwrite your changes.

To modify registers manually, use the Registers view in Workbench. The Registers
view lets you view the bit-level detail for each register. The following sections
describe the Registers view and the bit-level detail provided.

The Registers View

When the Registers view is open in Workbench, all of the register groups for your
target are displayed with + signs beside them. Clicking on a + sign expands the

46

Figure 7-2

7 Board Initialization
7.4 Registers

register group, showing all of the registers that are included in that register group
along with the value that they are currently set to. An example of an expanded
register group is shown in Figure 7-2.

Expanded Register Group

>>4 = E

Local Variables | Memory BEE BT E ried

oD 6L B 7
Mame Enabled Yalue En
+ GPR.
+ CTRL
+ MU
+ FPU
Bl Pracr
—licke 000000000
FI 000
E 00
prncl 000000000
pmc2 000000000
prc3 000000000
proc 000000000
+ mmer 00000000
+ mirnerl 000000000
sia 0x00000000
+ L2CACHE
+ THERMAL
< >

NOTE: Figure 7-2 is only an example of an expanded register group. The groups
and the register values vary widely depending on your target architecture.

Bit-Level Detail

You can view the bit-level detail for any register by clicking on the + sign beside
the register in the register group.

NOTE: Before you can make any changes to your register settings, you need to
enable the register group that contains the register you want to modify, so that the
values download to the target when you initialize your system. If you do not
enable the register group, you can still modify the settings in the emulator but not
on the target. For more information, see 7.4.2 Enabling and Disabling Register
Groups, p.45.

47

Figure 7-3

Wind River
Board Bring-Up Guide, 1.0

You can make changes to any of the register settings by modifying each of the
bit-level settings for any register.

To modify bit-level values for your target, complete the following steps:
1. Inthe Registers view, double-click on the name of the register you wish to edit.

This opens the Properties view, which shows the name of the register you have
selected under the Property heading and its current setting under the Value
heading, as shown in Figure 7-3.

Properties View

Tasks | Problems Error Log | 20 Command Shell | CF Cptions il =0

|83 B 7
Property Yalue -~
I [
E Disable instruction cache thraokting
E bin 0b0
E dec 0
E oct]
“
4 >

2. Select the value under the Value heading and edit it as necessary.

3. Inthe Registers view, click the Refresh Values icon. The register information
reappears with your changes.

NOTE: Some registers are write-protected and cannot be edited.

For more information on registers, including creating custom registers and register
groups, see the Wind River Workbench On-Chip Debugging Guide: Configuring
Registers.

When you have initialized your target and entered background mode, with a
>BKM> prompt showing in the OCD Command Shell, you can proceed to test your
hardware, as described in 8. Verifying Hardware.

48

Verifying Hardware

8.1 Introduction 49
8.2 Setting a Workspace 49

8.3 Diagnostic Functions 50

8.1 Introduction

This chapter describes several tests and diagnostics you can use to verify that your
hardware is working correctly.

8.2 Setting a Workspace

The workspace is an area of RAM on the target that the emulator uses to download
the hardware diagnostic routines and flash programming algorithms.

You must tell your emulator where writable RAM is located on your target for this
purpose.

49

Wind River
Board Bring-Up Guide, 1.0

Depending on the device family and type, this space is limited to under 2 KB. Note
that more memory improves the speed of programming.

To configure the workspace, enter the parameters using the syntax
CF WSPACE base size

where base is the start address, and size is the minimum number of bytes of target
RAM required.

To find the base and size values for your target, consult your target’s target.ref file,
located in installDir/vxworks-6.x/target/config/yourlarget.

For a Wind River PPC750FX target, the base of the workspace is 00000000 and the
size is 6000. To set the workspace, enter the command

>BKM>cf wspace 0 60000

This sets the workspace at address 0 with a size of 0x00006000 bytes.

8.3 Diagnostic Functions

Wind River Workbench provides a set of RAM and bus diagnostics and utilities
that can be controlled by the emulator or run on the target.

Some of the following tests can run code directly on the target instead of through
the emulator by selecting the Run on Target checkbox. This allows the test to run
at the execution speed of the target processor.

8.3.1 Simple RAM Test

This test writes and reads back a simple pattern to the memory bounded by the
starting and ending addresses entered in the Start Address and End Address
fields. If an error occurs, the test stops and the error type and address are displayed
in the Output field.

The first diagnostic to be run is a Simple Ram Test on the area of memory used by
the workspace.

1. In the Workbench toolbar, select Window > Show View > Hardware
Diagnostics.

50

8 Verifying Hardware
8.3 Diagnostic Functions

2. In the Diagnostic field, select Simple RAM Test — Single Pass.

@

The workspace cannot be used to test itself, so make sure the Run on target
checkbox is unchecked.

4. In the Start Address field, enter 0.
5. In the End Address field, enter 6000.
6. In the Units field, select LONG.
7. Click Run.

Workbench displays the test result in the Output field. The output of a successful
test will resemble that in Figure 8-1. n

Figure 8-1 Successful Simple RAM Test

Tasks | Problems | Properties | Build Console | Error Log | OCD Command Shell EHar-:ll.-'-.lare Diagnostics X

Choose Diagnostic oukput
Diagnostic

simple ram test running

Simnple RAM test - Single pass L3 est camplete

Descripkion

he Single RAM Test Single Pass writes and reads back a
imple pattern to the memory bounded by the starting
nd ending addresses entered in the fields below. IF an
rror occurs, the test stops and the error bype and
ddress will be displayed.

Start address: 0:00000000
End address: 0:00006000
Units LOMG L

D Fun on karget

Run

If the test fails, the Address Bus Test diagnostic and the Data Bus Test diagnostic
may determine the cause of the failure; see 8.3.5 Bus Tests, p.54.

If the RAM test of the memory used by the workspace passed, the rest of the
memory in the target system can now be tested at full bus speed.

1. Inthe Diagnostic field, select Simple RAM Test — Single Pass.
2. Select the Run on Target checkbox.

3. In the Start Address field, enter 14000.

4. Inthe End Address field, enter 20000000.

51

Wind River
Board Bring-Up Guide, 1.0

5. In the Units field, select LONG.

6. Click Run.

Workbench displays the test result in the Output field.

If the message Test Complete appears, then the diagnostic passed.

If the test fails, try re-seating the SDRAM module and repeat the test. If the test still
fails, then run the Address Bus Test diagnostic and the Data Bus Test diagnostic
to determine the cause of the failure. See 8.3.5 Bus Tests, p.54.

8.3.2 Full RAM Tests

A Full RAM test writes a “walking” 1 on each bit of RAM and reads it back. This
is a very lengthy test and can detect bus configuration errors, typically on a new
printed circuit board.

This test sets and then clears each bit to try to locate memory defects bounded by
the starting and ending addresses entered in the Start Address and End Address
fields. If an error occurs, the test stops and the error type and address will be
displayed in the Output field.

NOTE: A complete Full RAM test would take several years to finish, so make sure
you specify a very small region of memory to be tested.

Full RAM tests are designed to check for cell disturbance and addressing
problems. These tests perform the following actions:

A Single Pass test will run the test only once. A Continuous test will repeat the test
over the same address until you click Stop.

1. In the Diagnostic field, select Simple RAM Test — Single Pass.
2. Select the Run on Target checkbox.

3. In the Start Address field, enter 0.

4. In the End Address field, enter 0000100.

5. In the Units field, select LONG.

6. Click Run.

Workbench displays the test result in the Output field.

If the message Test Complete appears, then the diagnostics passed.

52

8 Verifying Hardware
8.3 Diagnostic Functions

If the test fails, try re-seating the SDRAM module and repeat the test. If the test still
fails, then run the Address Bus Test diagnostic and the Data Bus Test diagnostic
to determine the cause of the failure. See 8.3.5 Bus Tests, p.54.

8.3.3 CRC Calculation

Workbench and the emulator support the calculation of a Cyclic Redundancy
Check (CRC) on all addresses in the range specified. The CRC test will checksum
a block of data in the target for the address range you specify in the CRC
Calculation dialog. The CRC algorithm is based on the following polynomial:

X716 + x5 +x"2 + 1
Workbench uses this polynomial as follows:

Workbench reads a location and uses the value read, x, to calculate the CRC. Then
Workbench adds the result to the value calculated for the previous address. This
process continues until Workbench has checked the entire specified memory
range.

The CRC sum will be returned if the communications with the emulator and target
are working. To interrupt the test, click Stop.

8.3.4 Scope Tests

Read From Location

The Read From Location Scope Test performs a memory read of designated length
from the address entered in the From Address field.

Write To Location

The Write To Location Scope Test performs a memory write of designated length
of the value entered in the Data Value field to the address in the To Address field.

53

Wind River
Board Bring-Up Guide, 1.0

Write and Complement

The Write and Complement Scope Test performs a memory write of designated
length of the value entered in the Data Value field to the address in the To Address
field; the value is then complemented.

Write Rotating Value

Write Then Read

The Write Rotating Value Scope Test performs a memory write of the value entered
in the Data Value field to the address in the To Address field. The value is then
rotated through all of the bit positions with respect to the designated length of the
memory address.

The Write and Read Scope Test performs a memory write of designated length of
the value entered in the Data Value field to the address in the To Address field; the
value is then read back.

8.3.5 Bus Tests

Address Bus Test

Data Bus Test

This test detects faults in the address bus over the range bounded by the starting
and ending addresses entered in the Start Address and End Address fields. This
test can be interrupted by clicking the Stop button.

This test detects faults in the data bus over the range bounded by the starting and
ending addresses entered in the Start Address and End Address fields. This test
can be interrupted by clicking the Stop button.

When you have tested your hardware successfully, you must test your ability to
read and write memory, as described in 9. Testing Memory.

54

Testing Memory

9.1 Introduction 55
9.2 Testing Memory 55

9.1 Introduction

Before handling more complex application code, the target system must be able to
handle low-level assembly instructions.

Wind River Workbench includes a simple diagnostic to test the target’s ability to
write to memory, set breakpoints, and run and step code. This diagnostic writes a
loop of NOP instructions at a specified memory address.

9.2 Testing Memory

To run the memory diagnostic, use the following steps.
1. At the >BKM> prompt in the OCD Command Shell, enter DF E 14000.
This writes a NOP loop at address 0x14000.

55

Wind River
Board Bring-Up Guide, 1.0

2. Enter the command DI 14000.
This command disassembles the instructions at 0x14000.
3. Enter the command SR PC 14000.
This command sets the Program Counter to address 0x14000.

The output should resemble that shown below.

>BKM>df e 14000

>BKM>di 14000

$00014000 : 0x60000000 :ppc nop

$00014004 : 0x60000000 :ppc nop

$00014008 : 0x60000000 :ppc nop

$0001400C : 0x60000000 :ppc nop

$00014010 : 0x7C0004AC :ppc sync

$00014014 : 0x4BFFFFFO :ppc b 0x14004
$00014018 : 0x00000000 :ppc dc.l 0x0
$0001401C : 0x00000000 :ppc dc.l 0x0
$00014020 : 0x00000000 :ppc dc.l 0x0
$00014024 : 0x00000000 :ppc dc.l 0x0
$00014028 : 0x00000000 :ppc dc.l 0x0
$0001402C : 0x00000000 :ppc dc.l 0x0
$00014030 : 0x00000000 :ppc dc.l 0x0
$00014034 : 0x00000000 :ppc dc.l 0x0
500014038 : 0x00000000 :ppc dc.l 0x0
$0001403C : 0x00000000 :ppc dc.l 0x0
$00014040 : 0x00000000 :ppc dc.l 0x0
$00014044 : 0x00000000 :ppc dc.l 0x0
$00014048 : 0x00000000 :ppc dc.l 0x0
$0001404C : 0x00000000 :ppc dc.l 0x0

>BKM>sr pc 14000
>BKM>

Now there is a simple program in the target’s memory, and the Program Counter
has been set to 0x14000.

9.2.1 Stepping an Instruction

First, test to see if the system can handle the step instruction command.
In the Debug view, click the Step Into button.

The Disassembly view opens, with the Program Counter now at 14004, as shown
in Figure 9-1.

56

9 Testing Memory
9.2 Testing Memory

Figure 9-1 Disassembly View

IC| diabasm.s |C| cdemo.c IC] strutils.c IC] calendar.c =2 WRProbe_PPCFSOFY B2 =8
Syskem Conkext
@ 00014004 @ nop ~
00014008: nop
0001400c: nop
00014010z sYnc
oo014014: h 0x14004
00014018: . long]
0001401c: . long]
0o014020¢: . long]
00014024 : . long]
00014028: . long]
0001402c: . long]
00014030z . long]
00014034: . long]
00014038: . long]
0001403 : . long]
00014040: . long]
00014044 : . long]
00014045 : . long]
0001404c: . long]
00014050z . long]
00014054 : . long]
00014058 : . long]
0001405¢c: . long]
00014060 : . long]
00014064 : . long]
00014068 : . long]
0001406¢c: . long] 2
ARAtanTA . Vo A

Also, the System Context in the Debug view now reads 0x14004, as shown in
Figure 9-2.

Figure 9-2 System Context
o 0

b= & BT RS
= & WRProbe_PPC7SOF [Attach to Target]
=4 PPCTSOF (System Mode)
= %Eﬂ System Context (Stopped - Step End)
el -
= 104

57

Wind River
Board Bring-Up Guide, 1.0

9.2.2 Running Code

Next, test to see if the processor can run the simple program at full bus speed.

In the Debug View, click the Resume button to start the target. In the Debug view,
the System Context changes to Running, and a >RUN> prompt appears in the
OCD Command Shell.

Wait a few seconds and then click the Suspend button to stop the target. In the
Debug view, the System Context changes to Stopped -- User Request, as shown
in Figure 9-3.

Figure 9-3 System Context
CErER =

D & 2T RS OE
=l @ WwRProbe_PPC7S0FY [Attach to Target]
=48 PPCTSOFY (System Mode)
= ﬂ"ﬂ Syskem Context (Stopped - User Request)
pr— .
E=a0::14010

Also, the Disassembly view updates to show the new location of the Program
Counter, as shown in Figure 9-4.

58

9 Testing Memory
9.2 Testing Memory

Figure 9-4 Program Counter at 14010

C| diabasm.s C| cdemo.c C| strutils.c C| calendar.c =2 WRProbe_PPCTSORY 58 =0
System Context
ooo01l4004: nop -~
ooo01i4008: nop
0001400 nop
O Qo0014010: Iyne
oo014014: a] Ox14004
00014015: . long a
ooo0il401e: . long a
ooo0140z20: . long a
00014024: . long a
o0014028: . long u]
0001402 . long a
00014030: . long a
o0014034: . long u]
o0014038: . long a
0001403 c: . long a
oo014040: . long u]
00014044 . long a
00014045: . long a
o001404e: . long u]
o0014050: . long a
o0014054: . long a
o0014055: . long u]
0001405 . long a
aool4060: . long a
00014064 - long u] “

9.2.3 Setting Software Breakpoints

Next, test to see if the target can set a software breakpoint.

In the Disassembly view, double-click to the left of address 0x14008 (in the gutter.)
Workbench places a software breakpoint at address 0x14008, as shown in
Figure 9-5.

59

Wind River
Board Bring-Up Guide, 1.0

Figure 9-5 Planted Software Breakpoint

|C| diabasm.s |C| cdemo.c |C| strutils.c |C| calendar.c
System Context
o0014004: nop L]
Ho0014008: nop
o001400c: nop
i 00014010¢: sync
o0014014: h Ox14004
o0014018: . long a
o001401c: . long a
oo0140z0: . long a
o0014024: . long a
o00140z268: . long a
o001402c: . long a —
o0014030: . long a
o0014034: . long a
o00140368: . long a
o001403c: . long a
oo014040: . long a
o0014044: . long a
o0014045: . long a
o001404c: . long a
oo014050: . long a
00014054 : . long o
O0014058: . long a
o001405c: . long a
oo014060: . long a
oo014064: . long u} v

The breakpoint at address 0x14008 appears in the Breakpoints view.

Figure 9-6 Breakpoints View

=g

In the Debug view, click the Resume button to start the processor. The program
will run until it hits the breakpoint. Output appears in the OCD Command Shell,

60

9 Testing Memory
9.2 Testing Memory

showing that the system has stopped and showing the current location of the
Program Counter, as shown below:

>RUN>

IBREAK! - [msgl2000] Software breakpoint; PC = 0x00014008 [EVENT Taken]
>BKM>

This output shows that the software breakpoint at address 0x14008 has been hit.
In the Debug view, the System Context changes to Stopped -- Breakpoint Hit.

Figure 9-7 System Context
S =

1l 3 & e R
= % wWRProbe_PPC7S0FY [Attach to Target]
=4 PRCTSOFY (System Mode)
= ﬁﬁﬂ System Context (Stopped - Breakpoint Hit)
= O+ 14005

= (114005

To remove the software breakpoint, double-click on the breakpoint icon to the left
of address 0x14008 in the Disassembly view.

9.2.4 Setting Hardware Breakpoints

Next, test to see if the system can handle setting hardware breakpoints.

In the Disassembly view, right-click to the left of address 0x1400C (in the gutter)
and select Add Hardware Breakpoint. Workbench places an internal hardware
breakpoint at address 0x1400C, as shown in Figure 9-8.

61

Wind River
Board Bring-Up Guide, 1.0

Figure 9-8 Planted Hardware Breakpoint

|C| diabasm.s |C| cdemo.c |C] strutils.c |C| calendar.c == WRProbe_PPCT7SOFY &3 =08
System Context
00014004 : nop L’
00014005 : nop
#oooie00e: nop
00014010: sync
ooo014014: h Ox14004
o0014015: long a
0001401c: long a
o0014020: long a
00014024 : . long a
00014025 . long a
0001408 . long a .
o0014030: . long a
00014034 : long a
00014035: long a
0001403 c: long a
00014040: . long a
00014044 : . long a
00014045 : . long a
0001404 : long a
o0014050: long a
00014054 : long a
00014055: long a
0001405e: . long a
oo0014060: . long a
00014064 : . long u] w

The hardware breakpoint at address 0x1400C appears in the Breakpoints view.

Figure 9-9 Breakpoints View -- Hardware Breakpoint

In the Debug view, click the Resume button to start the processor. The program
will run until it hits the breakpoint. Output appears in the OCD Command Shell,

62

9 Testing Memory
9.2 Testing Memory

showing that the system has stopped and showing the current location of the
Program Counter, as shown below:

>RUN>

IBREAK! - [msgll001] Internal hardware breakpoint; PC = 0x0001400c [EVENT
Taken]

>BKM>

This output shows that the hardware breakpoint at address 0x1400C has been hit.
In the Debug view, the System Context changes to Stopped -- Breakpoint Hit.

To remove the hardware breakpoint, double-click on the breakpoint icon to the left
of address 0x1400C in the Disassembly view.

If all these steps perform successfully, the target can run and debug low-level
assembly code. The next step is to run and debug application code, as described in
10. Debugging in RAM.

63

Wind River
Board Bring-Up Guide, 1.0

64

10

Debugging in RAM

10.1 Overview 65

10.2 Creating a Target Connection 65

10.3 Creating a Project 66

10.4 Downloading Code and Symbol Information 71
10.5 Debugging Code in RAM 74

10.1 Overview

This chapter describes the process of running and debugging application code in
RAM using Wind River Workbench.

10.2 Creating a Target Connection

To download and run code and symbol information, you must have an active
target connection.

65

Wind River
Board Bring-Up Guide, 1.0

To create a target connection, create projects, and download code, you can use a
Wind River Probe, a Wind River ICE SX, or the Wind River Instruction Set
Simulator (ISS), which is available to all users of Wind River Workbench OCD
Edition.

To create a target connection, use the procedure described in 5. OCD Connections.

10.3 Creating a Project

In order to download and run code and symbol information in RAM, you must
have an active project open.

Several example projects are included in Wind River Workbench for
demonstration purposes. To open a new demonstration project, use the following
steps:

1. Select File > New > Example.

The New Example wizard appears, as shown in Figure 10-1.

66

10 Debugging in RAM
10.3 Creating a Project

Figure 10-1 New Example Wizard

¥ New Example

Select a wizard

Creates a new O5-agnostic sample project

Wizards:

= = Examples
=% Embedded Linux Sample Project
1% Mative Sample Praoject
{8 Standalone Sample Project

i ¥xworks Downloadable Kernel Madule Sample Project
B9 YxWarks Real Time Process Sample Project
% wind River Linux Sample Project

2. Select Standalone Sample Project and click Next.

A sample project template appears, as shown in Figure 10-2.

67

Wind River
Board Bring-Up Guide, 1.0

Figure 10-2 Sample Project Template

% New Project Sample

Sample Project Template R
Select a sample praject template. @

Available Examples: InFormation:
on Programm C Demonstration Program ~
1= C++ Demaonstration Program This program demonstrates warious C
1=* The Ball Demonstration Program language features including struckures,

(& The Panel Demanstration Program character arrays, linked lisks, and recursion.

‘au can build and download this program
to your simulator or target board. The
default RAM location For the program is
000014000, To change the default
memary address, edit the simple.k linker
command File,

Features
v

The following features are demonstrated

Mext = Finish l [Cancel

3. Click Finish.

Workbench creates the sample project in the default workspace directory, and
the project name c_demo_sa appears in the Project Navigator view.

4. In the Project Navigator view, expand the c_demo_sa project.

A number of available build specs appear.

68

10 Debugging in RAM
10.3 Creating a Project

Figure 10-3 c_demo_sa

Symbal Browser =0

(M0 ARM-0:00000000-BE-diab_DEEUG
(20 ARM-0:00000000-LE-diab_DEELIG
(20 ARM-0:04000000-BE-diab_DEEUG
(20 ARM-0:04000000-LE-diab_DEEUIG
(2 ARM-0:05000000-BE-diab_DEEUG
(20 ARM-0:05000000-LE-diab_DEEUIG
(20 MCF-0x00000000-BE-diab_DEEUIG
(20 MCF-0x20000000-BE-diab_DEEUIG
(20 MCF-0x40000000-BE-diab_DEEUIG
(M0 MIPS52-4KE c-BE-16bit-diab_DEELIG
(M0 MIPS52-4KE c-BE-32hit-diab_DEELIG
(0 MIPS32-4KEc-LE-16bit-diab_DEBUG
(M MIPS32-4KE c-LE-32bit-diab_DEBUG
(0 MIPS3z-4K-BE-32hit-diab_DEEUG
(M0 MIPS5z-4K:x-LE-32bit-diab_DEELIG
(0 MIps5z-BCM-BE-32hit-diab_DEEUG
(0 MIPS5z-BCM-LE-32hit-diab_DEELIG
(M MIPS5z-1DT-BE-32bit-diab_DEELIG
(0 MIPS3z-1DT-LE-32bit-disb_DEBUG
(M0 MIPS5z-PHI-BE-32bit-diab_DEELIG
(0 MIPS3z-PHI-LE-32bit-disb_DEBUG
(0 MIPS5z-PNX-BE-16bit-disb_DEBUG
(M0 MIPS5z-PMY-BE-32bit-disb_DEBUG
(0 MIPS3z-PNY-LE-16hit-diab_DEEUG
(M0 MIPS3z-PNY-LE-32hit-diab_DEEUG
(0 MIPS3z-WISS-BE-32hit-diab_DEEUG
(0 MIPS32-WISS-LE-32bit-diab_DEELIG
(M0 MIPSE4-20K c-BE-diab_DEBUG

(0 MIPSE4-20K c-LE-diab_DEEUG

(M MIPSE4-SKc-BE-diab_DEBUG

(0 MIPSE4-SKe-LE-diab_DEEUG

(M MIPSE4-RMI000_PO-BE-diab_DEEUG
[MIPSE4-RMI000_PO-LE-diab_DEEUIG
(M MIPSE4-RMI000_P1-BE-diab_DEEUG
(0 MIPSE4-RMI000_P1-LE-diab_DEEUIG
(M MIPSE4-RMI000-BE-diab_DEBUG
[MIPSE4-RMI000-LE-diab_DEEUG
(0 MIPSE4-TR49-BE-diab_DEEUG

(M0 MIPSE4-T49-LE-disb_DEBUG

(M0 MIPSE4-YR4131-BE-diab_DEELIG
(M MIPSE4-YR4131-LE-disb_DEBUG

G o0 patmss A unEEnn BE diok _CEDLL

5. To build the sample project, right-click on the c_demo_sa top-level folder and
select Build Options > Set Active Build Spec.

The Set Active Build Spec and Debug Mode dialog appears, as shown in
Figure 10-4.

69

Wind River

Board Bring-Up Guide, 1.0

Figure 10-4 Set Active Build Spec and Debug Mode Dialog

b

Debug mode {use debug mode Flags)

% Set Active Build Spec and Debug Mode E|

PPCa03diab A~
PPCa03diab-WISS

MIPSS2-4KEc-BE- 1 6hit-diab

MIPSS2-4KEc-LE- 16hit-diab

MIPSS2-4kEc-BE-32hit-diab

MIPSS2-4kEc-LE-32hit-diab

MIPS32-4kx-BE-32bit-diab

MIPS32-4Kx-LE-32hit-diab

MIPSS2-BCM-BE-32hit-diab

MIPSS2-BCM-LE-S2bit-diab

MIPSS2-10T-BE-532hit-diab

MIPS32-10T-LE-32hit-diab

MIPS32-PHI-BE-32hit-diab

MIPS32-PHI-LE-32hit-diab

MIPSS2-PM¥-BE- 1 6hit-diab w

[oK H Cancel l

8.
9.

Select the build spec for your target family. This document uses the Wind River
PPC750FX for its examples, so Figure 10-4 shows the PowerPC build spec.

Select Debug mode (use debug mode flags) so Workbench will generate
symbolic debug information.

Click OK.
Right-click on the c_demo_sa folder and select Build Project.

Workbench builds the sample project using the Wind River Compiler. The results
of the project build appear in the Build Console view, as shown in Figure 10-5.

70

10 Debugging in RAM
10.4 Downloading Code and Symbol Information

Figure 10-5 Build Console View

Errar Log | Terminal 0 | OCD Comrnmand Shell 4 = 0O

b B 4 AR T
_ @A &l

echo "building PPCE03diab_DEBUGSlinklist. o";dec -g -kdebug-dwartz -EPPCE0ZES: simple -DTOOL_FAMILY=diab -DTOOL=d

flinklist.o" -c "linklist.c"

building PPCe03diab_DEBUG /linklist.o

echo "building PPCE03diab_DEBUG dake, 0" doc -g -Xdebug-dwarfz -tPPCE03ES: simple -DTOOL_FAMILY=diab -DTOOL=diz

e.0" -c "date.c”

building PPCe03diab_DEBUG /date.o

echo "building PPCE03diab_DEBUG math. o";doc -g -Xdebug-dwarfz -tPPCE03ES: :simple -DTOOL_FAMILY=diab -DTOOL=di

h.o" -c "math.c"

building PPC603diab_DEBUG /math.o

echo "building PPC603diab_DEBUG)addone, o";das -tPPCE03ES: simple -DTOOL_FAMILY=diab -DTOOL=diab -DPowerPC -

building PPCe03diab_DEBUG/addone.o

echo "building PPCE03diab_DEBUGcdemo. elf; did -o "PPCE03diab_DEBUG cdemo, elf” -tPPCE03ES: simple cdemo-POWERF

Sdiab_DEEBLUG strutils . 0 PPCE03diab_DEBUG engineer .o PPCG03diab_DEBEUG/calendar. o PPCa03diab_DEEUG/linklist. o PPC

" 1; then echo "building Fun plink ukility"; plink. PPC603diab_DEEUG) cdema.elf;Fi

building PPCE03diab_DEBUG/ cdemo.elf

make: built targets of C:fwindRiverfworkspace/c_demo_sa

Build Finished in Project "c_demo_sa": 2006-05-01 11:05:57 ({Elapsed Time: 00:08)

Tasks | Problerns | Properties

< >

NOTE: When using projects other than the supplied demonstration projects: you
must compile your programs using debugging symbols (the -g compiler option) to
use most debugger features. The compiler settings used by the Wind River
Workbench project facility’s Managed Builds include debugging symbols.

However, Workbench does not support code compiled with -02 optimization.

10.4 Downloading Code and Symbol Information

To run the sample code, right-click on cdemo.elf in the Project Navigator view and
select Reset and Download.

The Reset and Download view appears, as shown in Figure 10-6.

71

Wind River
Board Bring-Up Guide, 1.0

Figure 10-6 Reset and Download

WRProbe_PPC750FX - PPC750FX

Modify attributes and launch.

Mame: | WRProbe_PPCTSOFY - PPCTSOFY |

* Main |@ Reset | # Download | # Instruction Pointer | # Run Options | ** Projects to Build | %2 source | B Common

Connection
Connection ko use: |WRPr0be_PPC?SDF>< (lacalhast)

onnect | WRProbe PPCFSOFX - WRProbe_PPCTSOFY is connected.

+ | []Hide unconnected
|

Core: |PRCTSOFX |

[Apply H Revert]

[Debug H Close]

When opened from this folder, the Resetand Download view is pre-configured for
this project.
Leave the settings at their defaults and click Debug.

The OCD Console view opens, as shown in Figure 10-7.

72

10 Debugging in RAM
10.4 Downloading Code and Symbol Information

Figure 10-7 OCD Console

Tasks | Problems | Properties | Build Console | Error Log | Terminal 0| Trace | OCD Command Shell

Reset and Download

Testing Communications to Hardware Interface. ... Passed
Driving HRESET to be High Passed
Driving HRESET to be Low.. . Passed
‘Waiting HRESET Low Acknowledge. ..o Passed

Attempting JTAG communication. ... Passed
‘Waiting for HR.eset to be released. . Passed
Testing for target STOP State....... Passed
Comparing target CPU with CF setting Passed
‘Waiking for HRESET High Acknowledge Passed

Tesking ITAG Cornrnunication. ... o Passed

Loading Internal Registers, . Passed

Testing ITAG Cornrunication, , Passed

Getting walue of cf mmu option .. Passed

Attempting to restore CPU contexd Passed
C:iwindRiveriwaorkspace\c_demo_sa\PPCa03diab_DEBUG,cdemo.elf 0 LT)
Loading symbols... Completed at Default Offset (<1 sec)

Specified not to Run

* Reset and Download Completed *

< »

The OCD Console view shows the progress of the download operation, as
Workbench downloads the sample code to the target.

The Editor opens showing the Program Counter set at the beginning of the
application code, as shown in Figure 10-8.

73

Figure 10-8

Wind River

Board Bring-Up Guide, 1.0

Editor

IC| cdemo.c IC] strutils.c IC| calendar.c =27 WWRProbe_PPCTSOFH =0
.ifdef PowerPC L
b o o o e e o o o o o o e o o o o o
.gection .text,,C
.globl _start,START,ENTRY
.extern main
@+]
START:
EHTRY:
= start:
3 r addis rll,r0, 5P INITRha # Initial Stack Pointer
addi ri,ril, SP INITAL
addis rl13,r0, SDA EASE Bha # Small Data Lres
addi r13,r13, SDA BASE @1
addis rZ,r0, 3DAZ EBASE [ha # Swall Data Lres 2
addi r2,rZ, SDAZ BASE Bl
addi ro,r0,0 # Push 0 onto =stack
stwu r0,-64irl)
@[]
hl main
@[]
deadloop:
b deadloop
@[]
.glohl addone
S P b’
£

You are now ready to run and debug the application.

10.5 Debugging Code in RAM

Use the Debug view to monitor, control, and manipulate the processes and tasks
that you are actively debugging. The Debug view shows only the processes that

are currently under debugger control.

74

10 Debugging in RAM
10.5 Debugging Code in RAM

Figure 10-9 Debug View
e O

Ok & 2 TR S B

= 89 WRISS_MPCES40 [Attach to Target]
= 42" MPCE540 (System Mods)
= ﬁﬂ S';.fustem Context (Stopped)

=g ctart() - diabasm.s:44

10.5.1 Monitoring Processes

When you start processes under debugger control, or attach the debugger to
running processes, they appear in the Debug view labeled with unique colors and
numbers. You can change the color assigned to a process or thread by right-clicking
the process or thread and selecting Color > specific color.

10.5.2 Stepping Through Code
The Editor shows the source file diabasm.s, showing the c_demo_sa project’s
initialization assembly.
In the Debug view, click the Step Into button.

The Program Counter moves to the second assembly instruction. If you open the
Memory view or the Registers view, you can see them update memory and
register values as you step through instructions.

Click the Step Into button seven more times, to step through all the initialization
code and reach the first branch instruction:

bl main

75

Wind River
Board Bring-Up Guide, 1.0

This is where the application branches out of assembly into C code.
Click the Step Into button again.

The application branches into main() and the Editor opens the source file cdemo.c,
as shown in Figure 10-10.

Figure 10-10 C Source

C| disbasm.s €| cdema.c 53 | strutils.c 22 WRProbe_PPCTSORY C! lirkist.c > =03
int initval; /% initialization walue for calculation %/ A
char *globhalstring[3]:; /% Uninitializeded array of string pointers

char bell[2] = {BELL_CHAR, '%0'}:

-+-ll|"t**ﬁ‘1“%‘1"T1“1‘1"1“1"1"1“1“1"tﬁﬁﬁ‘1“%‘1"T1“1‘1"1“1"1"1“1“1"ﬁﬁﬁﬁ'1“%‘1"%‘1“1‘1"ﬁ**t**ﬁ**ﬁtﬁ*#*wﬁﬁ**t**ﬁ
int main()
{
rolatile long demo counter;

3 volatile int pfa_dewmo=0;
int sum = 0;
rolatile char cwvar; /% zample char variable %/

REC_TYPE1l gr
volatile int localIntl;
rolatile long locallongl:

/% Setup the global string array %/

globalstring[0] = "zero®;
globalstring[1l] = "one™;
globalstring[2] = "two™;

/% Initialize the rectest structure */
rectest. long integer = OxFFFFEEEE;
rectest.short_integer = 5555;

rectest.integer_array[0] = 0;

rectest.integer_array[1l] = 10;

rectest.integer_array[2] = 20;

rectest.integer_array[3] = 30;

rectest.string pointer = "Wind River's Tool Product Family™;

b
@ s
< >

10.5.3 Setting a Software Breakpoint

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist. For a full explanation of Workbench breakpoints,
see B. Internal Breakpoint Capabilities.

In the left ruler of the Editor (the gutter), double-click to the left of the source line

globalstring[2] = “two”;

76

10 Debugging in RAM
10.5 Debugging Code in RAM

This sets a software breakpoint on that source line. The breakpoint appears in the
Breakpoints view.

Figure 10-11 Planted Software Breakpoint

Breakpoints X =08

In the Debug view, click the Resume button. The program runs until it hits the
breakpoint. The System Context changes to Stopped -- Breakpoint Hit.

Figure 10-12 System Context -- Stopped

& 0us x NG C
Ok & e =
= & WRProbe_PPCTSOFY [Attach ko Target]
=57 PPCTSOFY (System Mode)
= ﬁﬁj Sy;stem Context {Stopped - Breakpoint Hit)
Bl rnain) - cdemo.c:113

=" diabasm.s:55

Breakpoint information also appears in the OCD Command Shell:

>RUN>

IBREAK! - [msgl2000] Software breakpoint; PC = 0x00014074 [EVENT Taken]
>BKM>

10.5.4 Running a Program

To run your downloaded program, click Resume in the Debug view. The program
will run until it hits a breakpoint. If there are no breakpoints or interrupts, the
program will run to completion or until you click Suspend.

77

Wind River
Board Bring-Up Guide, 1.0

When the program is running, the System Context changes to Running, as shown
in Figure 10-13, and a >RUN> prompt appears in the OCD Command Shell.

Figure 10-13 System Context -- Running

= oetus x NG _°
oo L = =
= @ WRProbe_PPCTS0F: [Attach ko Target]
BB a4 PPC7S0F: (System Mode)
System Conkext (Running)

If there are no breakpoints, you can stop the program by clicking the Suspend
button in the Debug view or by entering the HA command at the >RUN> prompt
in the OCD Command Shell.

The Editor updates to show the current location of the Program Counter and the
System Context in the Debug view changes to Stopped -- User Request.

Figure 10-14 System Context -- Stopped

* oot x N —C
Ok & T R E B =
= ﬁ WRProbe_PPC7S0Fs [Attach ko Target]
-4 PPCTSOFY {System Mode)
= ‘3:."'3: System Conkext (Stopped - User Request)
e [-

= [i)

= calendar() - calendar.c:122
=" main() - cdema.c: 184
=" diabasm.s:58

10.5.5 Stepping Through a Program

To single-step without going into other subroutines, click Step Over instead of
Step Into.

While stepping through a program, you may conclude that the problem you are
interested in lies in the current subroutine’s caller, rather than at the stack level

78

10 Debugging in RAM
10.5 Debugging Code in RAM

where your process is suspended. In this situation, if you click Step Return,
execution continues until the current subroutine completes, then the debugger
regains control in the calling statement.

10.5.6 Setting a Hardware Breakpoint

The availability of hardware breakpoints varies by architecture. You can only set
as many hardware breakpoints as there are debug registers available on your
target.

Once a hardware breakpoint is trapped, the debugger will behave in the same way
as for a standard breakpoint and stop for user interaction.

For a full description of hardware breakpoints in Workbench, see B. Internal
Breakpoint Capabilities.

In the Breakpoints view, click on the Menu button and select Add Data
Breakpoint.

The Data Breakpoint dialog appears, as shown in Figure 10-15.

If an error message appears, you may have exceeded the number of allowed
hardware breakpoints (four for most targets). Right-click in the Breakpoints view
and select Remove All. Then select Menu > Add Data Breakpoint again.

If an error message still appears, your target may not support hardware
breakpoints.

79

Wind River
Board Bring-Up Guide, 1.0

Figure 10-15 Data Breakpoint Dialog

) Data Breakpoint Properties

Breakpoint Address and General Attributes st AIIOn 6, i)

) Please specify Address Expression

Select debug karget faor karget-specific information
& ppCTSORY
Mone - preserve current settings

@ &eneral Skatus Scope @ Hardware

Address Expression | |

[continue on Break

Conkinue Delay (ms)

Cancel

You can use data hardware breakpoints to find out which routines are modifying
a specific variable.

The Address Expression can be a symbol or a specific address in hex. You can use
the address 0x0 in the Address Expression field to set a data hardware breakpoint
to catch null pointers. You can set the Address Expression field to an address in
the stack area to set a data hardware breakpoint to find out if the stack grew to that
point.

The following example sets a symbol in the Address Expression field.
1. Click Browse.

The Select Symbol dialog appears, showing a list of available symbols that can
take a hardware breakpoint.

80

10 Debugging in RAM
10.5 Debugging Code in RAM

Figure 10-16 Select Symbol

Chaonse the symbal From the list. Debug symbals can only be
retrieved if there is an active debug session

Debug target

& PPC7SORY

Filter {regular expression)

Matching symbols

send_manth - globalfunction *~
SeniorTestEngineer - globalvariable
stakus - globalvariable
stremp - globalfunction
strcpy - globalfunction
swapiells - globalfunction
test_engineer - globalvariable
testEits - globalvariable
TestEngineer - globalvariable
wait_count - globalvariable
t_index - gla le:
wear1997 - globalvariable

[1E2|

l OF, H Cancel]

2. Scroll down and highlight the symbol wait_index.
3. Click OK.

The global variable wait_index is now the address for the data hardware
breakpoint.

The hardware breakpoint on wait_index appears in the Breakpoints view.

81

Wind River
Board Bring-Up Guide, 1.0

Figure 10-17 wait_index

Breakpoints X

In the Debug view, click Resume.

The program runs until it hits the hardware breakpoint. Workbench halts the
processor when it locates wait_index and displays that source line in the Editor.

82

Figure 10-18 Hardware Breakpoint Hit

C| cdemo.c 22 C| strutils.c

globallongl = calendar({ locallongl §:

@ ey
g.a = 55;

strepy (d.b, "December™) ;

g.o = 12345678L;
g.zolor = red:

C| calendar.c

10 Debugging in RAM
10.5 Debugging Code in RAM

e = O | %5 pebug 52 =0

-~ -

g &

= % WRProbe_PPC7S0FY [Attach ko Target]
=4 PPCTSOFY (System Mode)
= i':.'ﬂ System Conkext (Stopped - Breakpoi
=" main{) - cdemo,c:195
=" diabasm.s:58

sum = 0;
3 wait_index = O;:
wait_count = 5; < >
gquick index = 5;
- Og Breakpoints 52 =0
recordvar.color = red; 4 8& w | fe | [@ B <!==D =
‘f-g, wait_index (*Flanted*, Restricted Scope;
* £
while (wait_index < walt_count)
i
wait_index = addone(wait_index): w ¢ 3
4 4
))2 = E
i i i | » Elal
Tasks | Problems Properties | Build Consale | & ©CD Command Shell &3 [3 f%) & v
[Connected to PPC7S0F] > p4 4 2 a0 S T8
'BREEAK! = [WSYLJUUUJ HOITWALE PIEaKpOINT; FPL = UXUOUL e Value Descr &
>BEN> 3
~BEM> n DI e
r k4 Ener
R 12 0x0001CFan Gerer
LA EleE ' 000015FEE Gener
»RUN>ha r4 0x00014FED Gener
>BEM»go [Ox00SESE0C Gener
>R tE Q00000000 Gener
S BEM> 7 O:3FFO0EAT GEner
SR>] Ox24F27DBG Gener
e Ox00000011 Gener
ri0 O 00000000 Gener
'BRELK! - [w=gllO0l] Internal hardware breakpoint: PC 11 0x00BCEL4E Gener
ey rz 000000000 Gener
>BKM> 4 r13 00001 025C Gener ¥
< ¥ b ?

10.5.7 Disconnecting and Terminating Processes

Disconnecting from a process or core detaches the debugger, but leaves the process

or core in its current state.

Terminating a process actually kills the process on the target.

83

Wind River
Board Bring-Up Guide, 1.0

NOTE: If the selected target supports terminating individual threads, you can
select a thread and terminate only that thread.

84

11

Programming Flash Memory

11.1 Introduction 85

11.2 Testing Flash Workspace 86

11.3 Getting Started 87

11.4 Flash Configuration Tab 88

11.5 Flash Add/Remove Files Tab 91
11.6 Flash Programming Tab 93

11.7 Flash Memory/Diagnostics Tab 95

11.1 Introduction

In order to erase and program target flash memory, you must first set up your
target registers properly, as described in 7. Board Initialization.

The Flash Programmer view provides the ability to flash images into flash chips
present on your target.

To program flash correctly you need to know the physical characteristics of your
flash bank. For instance, your target may have one flash device connected to a
64-bit bus. Or it may have a bank of several flash devices, for example two flash
devices, each wired at 16 bits, connected along a 32-bit bus. If you are using a Wind
River-supported target, this information can be found in the file

85

Wind River
Board Bring-Up Guide, 1.0

installDirlvxworks-6.x/target/config/yourTarget/target.nr
or
installDirlvxworks-6.x/target/config/yourTarget/target.ref

If you are not using a Wind River-supported target, consult your target’s
documentation. The design primitives of your target board should be included in
its board specification and schematics.

11.2 Testing Flash Workspace

The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download, and breakpoints, which are
used to stop an erase and program operation at completion.

Reading and Writing Memory

Once you have established communications with the target, use the following
procedure to make sure you can write to and read from the target. In this example
we assume that the RAM workspace is 0x00F00200.

NOTE: A RAM workspace address of 0x00F00200 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your target’s target.ref file, located in
installDir[vxworks-6.x/target/config/yourInrget/target.ref.

Wherever the RAM workspace is located on your target, you must make sure that
memory is writable there.

At the >SBKM> prompt, enter dm 00F00200 and press ENTER. Doing so displays the
memory on your target at address 0.

Next, enter sm 00F00200 1234 and press ENTER to set the memory at address 0 to
the value 1234. Enter dm 00F00200 to display the memory at that address again.

If you are communicating properly with your target, output is similar to that
shown below:

86

11 Programming Flash Memory
11.3 Getting Started

>BKM>dm 00£00200

00F00200: FF7C EFFE FEFF E3FE 0DO1 OFBE FOFD BFB6 .‘
>BKM>sm 00£00200 1234
>BKM>dm 00£00200

00F00200: 1234 EFFE FEFF E3FE 0DO1 OFBE FOFD BFB6 .4.............
>BKM>

Occasionally, you may have difficulty programming flash memory on your target
if software breakpoints are not being hit properly. Test this functionality before you
continue.

To use the test, enter the following commands at the >SBKM> prompt in the OCD
Command Shell:

>BKM>df e 0

>BKM>di 0 6

$00000000 : 0x60000000 :ppc nop
$00000004 : 0x60000000 :ppc nop
$00000008 : 0x60000000 :ppc nop
$0000000C : 0x60000000 :ppc nop
$00000010 : 0x7C0004AC :ppc sync
$00000014 : 0x4BFFFFFO :ppc b 0x4
>BKM>go 0
>RUN>dr pc
PC = 00000004
>RUN>dAr pc
PC = 00000010
>RUN>sb 8
>RUN>
IBREAK! - [msgl2000] Software breakpoint; PC = 0x00000008 [EVENT Taken]
>BKM>
>BKM>rb
>BKM>

11.3 Getting Started

Once you have connected to Wind River Workbench, as described in your
emulator’s Hardware Reference, and configured your target registers, as described
in 7. Board Initialization, you are ready to begin programming flash.

1. In the toolbar, click on Window, then select Show View > Flash Programmer.

The Flash Programmer view appears.

87

Wind River
Board Bring-Up Guide, 1.0

Figure 11-1 Flash Programmer View

Tasks | Problems | Properties | Build Console | OCD Command Shell BRI BRI e e o OCD Statistical ... | 72 =0

Programring |Add,l'Remove Files | Configuration || Memory/Diagnostics

Flash Settings Flash Programming
Flash Driver: | | Fast Program |Batch Program
Flash Bank: | | ta | |

Send "IN" before each operation
Workspace: | | to | | 0 a

[CJEnatle pre-Flash ’Browse] | |

Erase Seckars

[JEnable post-flash ’Browse] | |

Erase from: | v |

Erase ta: | A |

[Erase] [Wogram] [se,l'Progr] [Verify] [.ﬁ.bort]

Current Timeouts (in seconds)

Program; | | [Edit]
Erase: | | [Edit]
Progress Messages

[]| I

The Flash Programmer view has four tabs: Configuration, Add/Remove Files,
Programming, and Memory/Diagnostics. Use these tabs to configure your flash
address and RAM workspace, choose files for download, execute erase and
program operations, and check the results of your operations.

11.4 Flash Configuration Tab

Use the Configuration tab to configure the base address and workspace address
for flash memory. You can also select which sectors of flash memory to erase and
program, and enter the physical description of your flash devices.

88

11 Programming Flash Memory
11.4 Flash Configuration Tab

Figure 11-2 Configuration Tab

Programming | Add/Remove Files | Configuration | Memary Diagnostics
Device Selection Configuration
Current: Flash Bank Addresses
o AMD 3 [[] override valid address checking
+- 29LY004T Base: | Oxe0000000 Last:
+- 29LY004E
+- 2OLW00SET RAM Workspace
+- 29LY00SEE Start: | 0x00F00Z00 End:
+- 29F010 e T
+- 29F040 122
= 29F080/51 Sectars
= 1024 x 8§
1 Device # Sectar A
2 Devices i} 0xe0000000
4 Devices 1 0xe0040000
& Devices 2 MeNNRINNN ¥
+ 29F016/17 Select al | | Clear al
L. TOEMRT T M

11.4.1 Selecting a Flash Driver

In the Device Selection field, browse to a description of your flash bank.
Figure 11-2 shows an example of a flash bank consisting of four 8-bit AMD 29F0808
devices.

NOTE: For AMD flash devices, “F” and “LV” devices are interchangeable in
Workbench.

11.4.2 Configuring Flash Memory Bounds

In the Configuration field, enter the Base value for your flash bank address. In
Figure 11-2 the address used is 0xe0000000. The Last field will populate
automatically.

NOTE: Workbench erases flash memory sector by sector. That means that no matter
where the address you enter in the Base field is located within the flash sector,
Workbench will still erase the entire sector.

Workbench also allows greater user control by allowing manual configuration of
the flash memory bounds.

89

Wind River
Board Bring-Up Guide, 1.0

For example, you may want to set the flash memory bounds manually to avoid
erasing the target’s reset configuration word.

You can manually configure the flash memory bounds by checking the Override
Valid Address Checking checkbox. When this box is checked, Workbench will
allow you to enter any addresses in the Base and Last fields.

NOTE: If the values you enter result in a memory address range that is outside
your target board’s flash programming area, erase and program operations will
not perform correctly.

11.4.3 Configuring RAM Workspace

The flash programming algorithm needs to run on the target. This requires a RAM
workspace, to which the algorithm will download.

In the RAM Workspace field, enter the Start value for the area of flash memory
you wish to erase and program. In the Size field enter the desired size of the
workspace in bytes. In Figure 11-2 the starting address used is 0x00F00200 and the
workspace size is 3992. The End field populates automatically.

NOTE: A RAM workspace address of 0x00F00200 is not appropriate for all targets.
For Wind River-supported targets, you can find the necessary RAM workspace in
your processor’s target.ref file, located in
installDir/vxworks-6.x/target/config/yourTarget/target.ref, or target.ref.linux file,
located at http://www.windriver.com/support.

11.4.4 Selecting Flash Sectors for Erasure

The Sectors field automatically populates with the starting addresses of sectors of
flash memory. Click on a sector to select it. You can select all sectors by clicking the
Select All button. The Clear All button will deselect all sectors.

Before you erase all sectors, make sure you know what resides in the flash. For
example, PowerPC 82xx processors read their reset configuration word from
FE000000 out of the flash device, so for 82xx processors, erasing the entire device
may cause problems with resetting the board.

90

11 Programming Flash Memory
11.5 Flash Add/Remove Files Tab

11.5 Flash Add/Remove Files Tab

Use the Add/Remove Files tab to select files for downloading to flash memory.

Figure 11-3 Add/Remove Files Tab

Frogramming | AddiRemaove Files | Configuration | Memory Diagnostics

Skatus File Path Statt 4d... End Add.. Enabled

AN ()

11.5.1 Adding Files
To add a .bin file, click on the Add File button. This will open the Choose File for
Flash Download dialog. Use the dialog to navigate to the directory where your
.bin file is located. Select the file you want and click Open. The file will appear in
the File Path field.

11.5.2 Removing Files

To remove a file from the list, highlight it and then click the Remove File button.

11.5.3 Converting .hex Files To .bin Format
Clicking on the Convert File button will open the Choose File for Flash

Download explorer window and automatically set the Files of Type: field to .hex.
Workbench will automatically look for a folder labeled firmware. If your .hex files

91

Wind River
Board Bring-Up Guide, 1.0

are stored in another folder, use the explorer to navigate to it. Select the file you
want and click Open. The file will be converted to .bin format and appear in the
File Path field.

11.5.4 Setting The Download Offset Of A File

In some cases, before you program the file into flash, you may need to set a
memory offset bias to divert the data to other areas of the flash bank.

Each file is built with a start address. This start address may or may not be the
address where you want the image to reside on the board. If you take the start
address of the image away from the address where you want the image to reside
on the board, then you end up with the proper bias address.

For example, if the image was built with a start address of 0x00 and you wanted
the image to reside at the reset vector OxFFF00100, then the offset bias would be
FFF00100.

You can use the Add/Remove Files tab to edit the starting address of a .bin file to
offset the file into flash. Click on the value under the Start Address heading to
highlight it. Edit the value as needed.

11.5.5 Enabling A File For Download

Figure 11-4

Enable a file by clicking on the checkbox under the Enabled heading. If you get an
error message such as the one shown inFigure 11-4, you must either change the
start address of your file or use the Configuration tab to change your flash address
range.

Enabling File Error Message

Zannot enable for download
Part of this file Falls outside of wour Flash address range

92

11 Programming Flash Memory
11.6 Flash Programming Tab

11.6 Flash Programming Tab
Use the Programming tab to execute your operations in flash.

Figure 11-5 Programming Tab

Tasks | Problems | Properties | Build Console | 0CD Command Shell BEaNEERT

2
Prograrmmming | AddfRemave Files || Configuration || Memory [Diagnostics
Flash Setkings Flash Programming
Flash Driver: | | Fast Program | Batch Program
Flash Bark: | | ko | |
[[]5end "IN" before each operation
Workspace: | | ko | |

[]Enable pre-flash [Browse] | |

Erase Sectars

[]Enable post-Flash [Browse] | |

Erase from: | vl

Erase to: | vl

[Erase] [3rogram] [se,l’Progr] ['v'eriFy] [Abort]

Current Timeouks (in seconds)

Program: | | [Edit]
Erase: | | [Edit]
Progress Messages

[1

11.6.1 Fast And Batch Program Tabs

There are two tabs in the Flash Programming area of the Programming tab: Fast
Program and Batch Program.

In the Fast Program tab you can select and execute individual operations, such as
erasing or programming a sector of flash memory.

93

Wind River
Board Bring-Up Guide, 1.0

Figure 11-6 Fast Program Tab
Fast Program | Batch Program

[]5end "IN" before each operation

[]Enable pre-flash
[]Enable post-flash

[Erase] [:‘rcugram] [se,l'F‘ru:ugr] ['-.-'eriFy] [.ﬁ.l:u:urt]

In the Batch Program tab, you can set all your operations to execute as a batch.
Check the operations you want to perform and click Execute.

Figure 11-7 Batch Program Tab

Fast Prograrn | Batch Program

[Initialize

[CEnable pre-flash
[JErase

[CIPragram

[werify

[ClEnable post-flash

11.6.2 Erasing Flash

Clicking the Erase button will erase the contents of the flash memory sectors you
selected in the Configuration tab.

94

11 Programming Flash Memory
11.7 Flash Memory/Diagnostics Tab

You can also check the Erase box in the Batch Program tab to perform the erase as
part of a batch execution.

11.6.3 Programming Flash

Clicking the Program button will program the flash memory sectors you selected
in the Configuration tab with the files you selected in the Add/Remove Files tab.

You can also check the Program box in the Batch Program tab to perform the
program as part of a batch execution.

11.6.4 Verifying Flash Contents

Clicking the Verify button will execute a byte-by-byte comparison between the file
you just downloaded and the file already in memory. If there is a discrepancy, it
will break at that address and deliver an error message.

You can also check the Verify box in the Batch Program tab to perform the memory
comparison as part of a batch execution.

11.6.5 Setting Timeouts
To set an program or erase timeout, click the Edit button to highlight the Erase or

Program field in the Current Timeouts area. Enter a timeout value in seconds. If
you enter an invalid number, the timeout will reset to the default setting.

11.7 Flash Memory/Diagnostics Tab

Use the Memory/Diagnostics tab to view the contents of flash memory and to run
diagnostic tests to verify your ability to write and erase flash.

You must set up the Configuration tab before using the Memory/Diagnostics tab.

95

Wind River
Board Bring-Up Guide, 1.0

Figure 11-8 Memory/Diagnostics Tab

Programming I Add/Remove FiIesI Configuration Memory/Diagnostics I

Yiew address: IDxFFfDDDDD Prograrm | Erase I Abort |
Address o e e e e e e e e [e -
FFFOOO10 5B 44 75 eC 79 zZ0 32 30 ZC 20 32 30 30 30 g0 5D [July 20, ZC
FFFOOOZO 30 31 32 33 34 35 36 3V 38 39 61 B2 63 64 65 66 0O1lZ3456759ak
FFFOOO30 87 B8 69 eh BE 6C D GE &F 7O Tl Y2 T3 74 7S 76 ghijklmnopor
FFFOOO40 77 78 79 T7A z1 40 23 24 25 BE 26 24 25 29 5F 2B wxyz!@#§stec
FFFOOOS0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FFFOOO&0 oo oo Qo 00 oo 0o 00 00 0o 00 00 00 OO OO0 00 oo

FFFOOO7O0 Ak 55 66 99 AL 55 A6 99 AL 55 A6 99 AL 55 66 99 uf Uf UL
FFFOOOS0 Ai 55 66 99 AL 55 66 95 Ak 55 466 99 AL 55 66 99 mE UL£ UL
FFFOOOS0 hi 55 66 99 AL 55 66 95 Ak 55 466 99 AL 55 &6 99 mE UL£f UL
FFFOOOAD Ai 55 66 99 AL 55 66 95 Ak 55 466 99 AL 55 66 99 mE Uf£f UL
FFFOOOQEOD hi 55 66 99 AL 55 66 95 ARk 55 466 99 AL 55 66 99 mE Uf£f UL
FFFOOQCO hi 55 66 99 AL 55 66 95 ARk 55 466 99 AL 55 66 99 mE Uf£f UL
FFFOOQDO Ai 55 66 99 AL 55 66 95 Ak 55 466 99 AL 55 66 99 mE UL£f UL
FFFOOOED hi 55 66 99 AL 55 66 99 Ak 55 46 99 AL 55 66 99 Ut Uf UL
FFFOOOFO hi 55 66 99 AL 55 66 99 Ak 55 46 99 AL 55 66 99 Ut Uf UL o

-

a | N
—~Messages

|

11.7.1 Viewing Memory

Enter the address you wish to view in the View Address field. The area below
displays the bit-level detail. To change the view, edit the address in the View
Address field and click Refresh. You can also use the scrollbar on the right to scroll
up and down from the starting address to the end address.

11.7.2 Running Diagnostic Tests
To test your ability to write to flash memory, click the Start Program Diagnostic
button. This writes a bit pattern to flash.
You may see a Target Exception message. This requires no action.

If the write operation is successful, you should see the pattern *WRS_FLASH*
repeated under the ASCII heading in the Memory/Diagnostics tab, as shown in
Figure 11-9.

96

11 Programming Flash Memory
11.7 Flash Memory/Diagnostics Tab

Figure 11-9 Successful Program Diagnostic

Prograrmrming I AddiRermaove Files I Corfiguration Memary/Tiagnostics I

Yiew address: |D><FFFUDDDD Refresh | Pragram | Erase |

I EEE R E e e
SF 46 4C 41 53 48 24 SF Zzh 57 52 53 SF 46 4C 41 _FLASH®_*URS_FLA
S3 48 24 S5F 2& 57 52 53 SF 46 4C 41 53 48 2 SF SHY *URS FLASHT
2h 57 52 53 S5F 46 4C 41 53 48 2A SF 24 57 52 53 *URS_FLASH_*WR3
SF 46 4C 41 53 48 24 SF zh 57 52 53 SF 46 4C 41 _FLASH®_*WRS_FLA
53 48 24 S5F 2& 57 52 53 SF 46 4C 41 53 48 24 SF SHY *URS FLASHY
24 57 52 53 5F 46 4C 41 53 48 2A SF 24 57 52 53 *URS_FLASH_*WR3
SF 46 4C 41 53 48 24 SF zh 57 52 53 SF 46 4C 41 _FLASH®_*WRS_FLA
53 48 2L S5F 2h 57 52 53 SF 46 4C 41 53 48 2 SF SHY *URS FLASHY
24 57 5z 53 5F 46 4C 4L 53 48 2A SF 24 57 52 53 *WRS_FLASH_ *WR3
SF 46 4C 41 53 48 24 SF zh 57 52 53 SF 46 4C 41 _FLASH®_*WRS_FLA
53 48 2L S5F 2k 57 52 53 SF 46 4C 41 53 48 24 SF SHY *URS FLASHY
24 57 5z 53 5F 46 4C 4L 53 43 2A SF 24 57 52 53 *URS_FLASH_ +WR3
SF 46 4C 41 53 48 24 SF 2k 57 52 53 SF 46 4C 41 _FLASH®_*WRS_FLA
53 48 2L S5F 2h 57 52 53 SF 46 4C 41 53 48 2 S5F SHY *URS FLASHY
24 57 5z 53 5F 46 4C 4L 53 43 2zA SF 24 57 52 53 *WRS_FLASH_ +WR3

< | _’l_v

—Messages

I

If the write operation is unsuccessful, the diagnostic will never complete. You will
need to click the Abort Diagnostic button to stop the write operation. Check to
make sure that you have the right flash device selected in the Device Selection
area in the Configuration tab, and that you are using the correct base address.

To test your ability to erase flash memory, click the Start Erase Diagnostic button.
This will erase the selected flash sectors.

You may see a Target Exception message. This requires no action.

If the erase operation is successful, the selected sectors will be erased and the space
under the ASCII heading in the Memory/Diagnostics view will be empty.

If the erase operation is unsuccessful, the diagnostic will never complete. You will
need to click the Abort Diagnostic button to stop the erase operation. Check to
make sure that you have the right flash device selected in the Device Selection
area in the Configuration tab, and that you are using the correct base address.

97

Wind River
Board Bring-Up Guide, 1.0

98

12

Debugging in ROM

12.1 Overview 99
12.2 Getting Started 100
12.3 Debugging in ROM 100

12.1 Overview

The procedure described in 10. Debugging in RAM uses software breakpoints.
Software breakpoints work by replacing the destination instruction with an
interrupt; therefore it is impossible to debug code in ROM using software
breakpoints.

To debug code in ROM you must use hardware breakpoints, which work by setting
a break condition and comparing the condition with the execution stream. This
chapter describes using Workbench to debug code in ROM with hardware
breakpoints.

99

Wind River
Board Bring-Up Guide, 1.0

12.2 Getting Started

To debug code in ROM, you must have an active target connection.

To create an active target connection, follow the steps described in 5. OCD
Connections.

NOTE: You cannot use the Instruction Set Simulator to simulate debugging in
ROM, because you must have an actual target in order to set hardware
breakpoints.

You do not need to have an active project to debug code in ROM.

12.3 Debugging in ROM

Use the Debug view to monitor, control, and manipulate the processes and tasks
that you are actively debugging. The Debug view shows only the processes that
are currently under debugger control.

1. Inthe Target Manager view, right-click on your target name and select Attach
to Core.

The Disassembly view opens, with the Program Counter set to the start of the
reset vector.

100

12 Debugging in ROM
12.3 Debugging in ROM

=0

Systern Context
o fEEO00100: 1i ri,2 ~

fEf00104: nop

£E£00105: hl OxFFFOO138

fEf0010c: heol 0x1E, OxF,0xFFFO7154

fEfo0110: andi. r9,rl9,0x67658

fEfO00114: andis. r0,rl,0x3139

fEf00115: addi ril,rzZ0,0xED32

fffo0iic: addic ri,rl6,0x3220

fEfO00120: clrslwi r9,r27,0x26,0xD

fEf00124: subfic ri,rlS,0x6976

fEEO00125: oris rig,ri1l, 0x2053

fEfo0ize: . long Ox79737465

fE£00130: xoris ri9,ril,0x2C20

fEE00154: ha Ox16E63ZC

fEEO00135: mr ril,r3

fEf0015e: xor r4,r4,r4

fEf00140: mr ro,r4

fEfO00144: isvyne

LLf00145;: mtmsr rd

fEfO0014c: isvyne

fE£f00150: ®or ro,r0,x0

fEf00154: mtspr sprgl, r0

fEfO00155: mtspr sprgl,r0

fEfO0015c: mtspr sprg, 0

fEf00160: mtspr sprgi, 0

fEfO00164: ®or r4,r4,rd

FEFOO16S: mtar 0,rd b

2. In the Target Manager view, select OCD Reset and Download.
3. Select the Reset tab.
4. Set the reset type to INN -- Reset.

This will initialize the target, but leave the target registers as close to reset
value as possible.

NOTE: Because the target registers are not set, the target software watchdog
timers are still active. This can cause some targets, such as PowerPC82xx
targets, to drop out of background mode.

Leave the Play register file box unchecked.
Select the Download tab.
Click Add Files...

® N o @

In the browser window that appears, navigate to the boot ROM file for your
target.

101

Wind River
Board Bring-Up Guide, 1.0

10.
11.

12.
13.
14.
15.
16.

Tasks | Problems | Properties | Error Log | Terminal O | ©CD Command Shell

Since this example uses a Wind River PPMC750FX target, the boot ROM file is
located in
installDir/[vxworks-6.x/target/config/wrPpmc750fx/bootrom_uncmp.

Click Open.
You are returned to the Download tab.
Uncheck the Download checkbox.

Make sure the Load Symbols checkbox is selected and the Verify field is set to
None.

Select the Instruction Pointer tab.

Uncheck the Set instruction pointer after download checkbox.
Select the Run Options tab.

Make sure the Do not run checkbox is selected.

Click Debug.

The OCD Console view opens to show the results.

CF Options | 3 =8

Reset and Download
~
Testing Communications ko Hardware Interface. ... Passed
Driving HRESET ko be High. ..o Passed
Driving HRESET to be Low.......... Passed
‘Waiting HRESET Low Acknowledge Passed
Attempting JTAG communication, .. Passed
‘Waiting For HReset to be released. Passed
Testing for target STOP State...... Passed
Comparing target CPU with CF setting. . Passed
‘Waiting For HRESET High Acknowledge, Passed
Tesking ITAG Communication.......... Passed
Tesking ITAG Communication. ... Passed
Getting walue of of mmu option ... Passed
Attempting ko restore CPU conkext.. ..o, Passed
Loading symbols. ..
CiwWindRiverwoworks-6. 3 targetconfighwrPpmc7S0F <ibootrom_uncrmp Specified not to Download
Specified nat to Run
* Reset and Download Completed * 3
< ¥

1

02

12 Debugging in ROM
12.3 Debugging in ROM

12.3.1 Stepping Through Boot Code

In this example, the first line of the reset vector is a Load Immediate command:
£££00100 1i r2, r3

In the Debug view, click the Step Into button.

The Program Counter moves to the No-Operation command on the next line:
£££00104 nop

In the Debug view, the System Context changes to Stopped -- Step End, and the
view updates to show the new location of the Program Counter.

* oebus x -
1] & I =
= % WRProbe PPC7S0FX [Atkach to Target]
=457 PPCTSOFY (System Made)

= %Eﬁﬂ Syskem Context (Stopped - Step End)
=" G

If you have data views, such as the Watch view, Memory view, or Registers view
open, you can see them update as you step through code.

In the Debug view, click Step Into again.
The Program Counter moves to the Branch and Link instruction on the next line:
£££00108 bl 0XFFF00138

In the Debug view, click Step Into one more time.

The branch instruction executes and the Program Counter jumps to address
FFF00138. The Debug view updates to show the Program Counter at address
FFF00138.

103

Wind River
Board Bring-Up Guide, 1.0

| Do % N _C
(= i I % == =
[=l & WRProbe PPC7S0F: [Attach to Target]
=4 PPCTSOFY (System Mode)
= ﬂ*"ﬁﬂ Syskern Context (Stopped - Step End)
!
" nxFFFO0108

12.3.2 Setting Hardware Breakpoints

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist. Use the Breakpoints view to keep track of your
breakpoints and their conditions.

To debug in ROM you must use hardware breakpoints. The availability of
hardware breakpoints varies by architecture. You can only set as many hardware
breakpoints as there are debug registers available on your target.

Once a hardware breakpoint is trapped, the debugger will behave in the same way
as for a standard breakpoint and stop for user interaction.

For a full description of hardware breakpoints in Workbench, see B. Internal
Breakpoint Capabilities.

In the Disassembly view, right-click in the left ruler (the gutter) to the left of the
Exclusive Or instruction at address FFF00150:

f££f00150 xor r0,r0,xr0

From the context menu that appears, select Add Hardware Breakpoint.

The breakpoint appears in the Disassembly view and is displayed in the
Breakpoints view.

104

12 Debugging in ROM
12.3 Debugging in ROM

>

® R & - w | e S
bl 0:FFFOD150 (Hardwa 5

Breakpoinks

In the Debug view, click the Resume button.
The code runs until it hits the hardware breakpoint at address FFF00150.

In the Debug view, the System Context changes to Stopped --Breakpoint Hit.

= oo X N — 0
b= & 3. R 5O ~
=l @ R Probe_PPC7S0F. [Atkach ko Target]
= PPCTEOFY (System Mods)
= Swstem Conkext (Stopped - Breakpoint Hik)
=" [
=" 0xFFFO0103

The following message appears in the OCD Command Shell:
>RUN>

IBREAK! - [msgll00l1] Internal hardware breakpoint; PC = Oxf£ff00150 [EVENT
Taken]

>BKM>

To remove the hardware breakpoint, double-click on the breakpoint icon in the
Disassembly view gutter, or right-click on the breakpoint in the Breakpoints view
and select Remove.

105

Wind River
Board Bring-Up Guide, 1.0

106

Pins Mapped to Common
Signals

A.1 Introduction 107

A.2 PowerPC Processors -- JTAG 108
A.3 MIPS Processors -- JTAG 109
A.4 ARM Processors -- JTAG 110
A.5 ColdFire Processors -- JTAG 111
A.6 BDM Processors 112

A.1 Introduction

This appendix describes mapped pins to common signals for Wind
River-supported processor families.

For all families described in this appendix, “n” is set as an ACTIVE LOW.

107

Wind River

Board Bring-Up Guide, 1.0

A.2 PowerPC Processors -- JTAG

Table A-1

PowerPC -- JTAG

:ll:mber Function Description

1 TDO Test Data Out

2 nQACK Quiescent Acknowledge
3 TDI Test Data In

4 nTRST Test Reset (reset JTAG clock)
5 nQREQ Quiescent Request

6 JTAG_VIO JTAG Voltage Output

7 TCK Test Clock

8 CHKSTPIN Checkstop Input

9 TMS Test Mode Select

10 PIN10 Hardwired

11 nSRESET Software Reset

12 GND Ground

13 nHRESET Hardware Reset

14 NC Not Connected

15 CHKSTPO Checkstop Output

16 GND Ground

108

A.3 MIPS Processors -- JTAG

Table A-2

MIPS -- JTAG

A Pins Mapped to Common Signals
A.3 MIPS Processors -- JTAG

Pin
Number Function

Description

1 nTRST Test Reset (reset JTAG clock)
2 GND Ground

3 TDI Test Data In

4 GND Ground

5 TDO Test Data Out

6 GND Ground

7 ™S Test Mode Select

8 GND Ground

9 TCK Test Clock

10 GND Ground

11 nRESET Processor Reset

12 NC Not Connected

13 DINT Debugger Interrupt
14 JTAG_VIO JTAG Voltage Output

109

Wind River
Board Bring-Up Guide, 1.0

A.4 ARM Processors -- JTAG

Table A-3 ARM -- JTAG

:ll:mber Function Description

1 JTAG_VIO JTAG Voltage Output
2 NC Not Connected

3 nTRST Test Reset (reset JTAG clock)
4 GND Ground

5 TDI Test Data In

6 GND Ground

7 ™S Test Mode Select

8 GND Ground

9 TCK Test Clock

10 GND Ground

11 RTCK Return Test Clock

12 GND Ground

13 TDO Test Data Out

14 GND Ground

15 nRESET Processor Reset

16 GND Ground

17 DBGRQ Debug Request

18 GND Ground

19 DBGACK Debug Acknowledge
20 GND Ground

110

A Pins Mapped to Common Signals
A.5 ColdFire Processors -- JTAG

A.5 ColdFire Processors -- JTAG

Table A-4 ColdFire -- JTAG

:ll:mber Function Description

1 NC Not Connected

2 nBKPT Hardware Breakpoint

3 GND Ground

4 DSCLK Development Serial Clock
5 GND Ground

6 NC Not Connected

7 nRESET Reset

8 DSDI Debug Serial Data Input

9 VCC_IOR1-3 Board Voltage via jumpers
10 DSDO Debug Serial Data Output
11 GND Ground

12 PST3 Trace pin

13 PST2 Trace pin

14 PST1 Trace pin

15 PSTO Trace pin

16 DDATA3 Trace pin

17 DDATA2 Trace pin

18 DDATA1 Trace pin

19 DDATAO Trace pin

20 GND Ground

21 NC Not Connected

22 NC Not Connected

111

Wind River
Board Bring-Up Guide, 1.0

Table A-4 ColdFire -- JTAG

:ll:mber Function Description

23 GND Ground

24 PSTCLK Trace clock

25 VCC_CPURI-1 CPU Voltage via jumpers

26 nTEA Transfer EEPROM Acknowledge

A.6 BDM Processors

Table A-5 BDM Processors

:ll:mber Function Description

1 VFLSO Visible Flash Status bit 0
2 nSRESET Software Reset

3 GND Ground

4 DSCK Debug Serial Clock

5 GND Ground

6 VFLS1 Visible Flash Status bit 1
7 nHRESET Hardware Reset

8 DSDI Debug Serial Data Input
9 BDM_VIO Voltage Input/Output
10 DSDO Debug Serial Data Output

112

Internal Breakpoint
Capabilities

Emulators use breakpoints to implement single stepping, since the embedded
processor’s single step mode, if it has one, is not useful for stepping through C
code.

Software breakpoints work by replacing the destination instruction by a software
interrupt. Therefore, it is impossible to debug code in ROM using software
breakpoints.

Hardware breakpoints work by setting a break condition and comparing it against
the execution stream. You can use hardware breakpoints to debug code in RAM,
ROM, flash memory, or even unused address spaces.

Complex breakpoints involve conditions. An example might be, “Break if the
program writes value to variable if and only if function_name was called first.” A
software-only debugger setting a complex breakpoint must interpret the program
while watching for the trigger condition, which slows performance. Emulators
implement complex breakpoints in hardware, so there is no performance penalty.

In Wind River Workbench, you can use the Breakpoints view to keep track of all
breakpoints, along with any conditions.

You can create breakpoints in different ways: by double-clicking or right-clicking
in the Editor’s left overview ruler (also known as the gutter), by opening the
various breakpoint dialogs from the pull-down menu in the Breakpoints view
itself, or by selecting one of the breakpoint options from the Run menu.

Wind River Workbench supports three kinds of breakpoints: line breakpoints,
expression breakpoints, and hardware breakpoints.

113

Wind River
Board Bring-Up Guide, 1.0

Line Breakpoints

Set a line breakpoint to stop your program at a particular line of source code.

To set a line breakpoint with an unrestricted scope (that will be hit by any process
or task running on your target), double-click in the left gutter next to the line on
which you want to set the breakpoint. A solid dot appears in the gutter, and the
Breakpoints view displays the file and the line number of the breakpoint. You can
also right-click in the gutter and select Add Global Line Breakpoint.

To set a line breakpoint that is restricted to just one task or process, right-click in
the Editor gutter and select Add Breakpoint for selected thread. If the selected
thread has a color in the Debug view, a dot with the same color will appear in the
Editor gutter, with the number of the thread inscribed inside it.

Either of these actions opens the Line Breakpoint dialog, where you can create and
adjust the properties of the breakpoint.

Expression Breakpoints

Set an expression breakpoint using any C expression that will evaluate to a
memory address. This could be a function name, a function name plus a constant,
a global variable, a line of assembly code, or just a memory address. Expression
breakpoints appear in the Editor’s gutter only when you are connected to a task.

Breakpoint conditions are evaluated after a breakpoint is triggered, in the context
of the stopped task or process. Functions in the condition string are evaluated as
addresses and are not executed. Other restrictions are similar to the C/C++
restrictions for calculating the address of a breakpoint using the Expression
Breakpoint dialog.

Select Add Expression Breakpoint from the pull-down menu in the Breakpoints
view to open the Expression Breakpoint dialog, where you can create and adjust
the properties for the breakpoint.

Hardware Breakpoints

Some processors provide specialized registers called debug registers that can be
used to specify an area of memory to be monitored. For instance, IA-32 processors
have four debug address registers, which can be used to set data breakpoints or
control breakpoints.

114

B Internal Breakpoint Capabilities

Hardware breakpoints are useful if you want to stop a process when a specific
variable is written or read. For example, with hardware data breakpoints, a
hardware trap is generated when a write or read occurs in a monitored area of
memory. Hardware breakpoints are fast, but their availability is
machine-dependent. On most CPUs that do support them, only four debug
registers are provided, so you can only watch a maximum of four memory
locations in this way.

There are two types of hardware breakpoints:
* A hardware data breakpoint occurs when a specific variable is read or written.

» A hardware instruction breakpoint or code breakpoint occurs when a specific
instruction is read for execution.

Once a hardware breakpoint is trapped—either an instruction breakpoint or a data
breakpoint—the debugger will behave in the same way as for a standard
breakpoint and stop for user interaction.

Adding Hardware Instruction Breakpoints
There two ways to add a new hardware instruction breakpoint:

In the gutter on the left of the source file, right-click and select Add Hardware
Code Breakpoint. Alternately, double-click in the gutter to add a standard
breakpoint and then, in the Breakpoints view, right-click the breakpoint you just
added and select Properties. In the last pane (Hardware) of the Properties dialog,
select Enable Hardware Breakpoint.

Adding Hardware Data Breakpoints

Set a hardware data breakpoint when:

* Thedebugger should break when an event (such as a read or write of a specific
memory address) or a situation (such as data at one address matching data at
another address) occurs.

» Threads are interfering with each other, or memory is being accessed
improperly, or whenever the sequence or timing of runtime events is critical
(hardware breakpoints are faster than software breakpoints).

Select Add Data Breakpoint from the pull-down menu in the Breakpoints to open
the Hardware Data Breakpoint dialog, where you can create and adjust the
properties for the breakpoint.

115

Wind River
Board Bring-Up Guide, 1.0

Converting Line or Expression Breakpoints Into Hardware Code Breakpoints

To cause the debugger to request that a line or expression breakpoint be a
hardware code breakpoint, select the Hardware check box on the Hardware tab of
the Line Breakpoint or Expression Breakpoint dialog.

This request does not guarantee that the hardware code breakpoint will be planted;
that depends on whether the target supports hardware breakpoints, and if so,
whether or not the total number supported by the target have already been
planted. If the target does not support hardware code breakpoints, an error
message will appear when the debugger tries to plant the breakpoint.

NOTE: Workbench will set only the number of code breakpoints, with the specific
capabilities, supported by your hardware.

NOTE: If you create a breakpoint on a line that does not have any corresponding
code, the debugger will plant the breakpoint on the next line that does have code.
The breakpoint will appear on the new line in the Editor gutter. In the Breakpoints
view, the original line number will appear, with the new line number in square
brackets [] after it.

Importing Breakpoints

To import breakpoint properties from a file:

1. Select File > Import > Import Breakpoints, then click Next. The Import
Breakpoints dialog appears.

2. Select the breakpoint file you want to import, then click Next. The Select
Breakpoints dialog appears.

3. Select one or more breakpoints to import, then click Finish. The breakpoint
information will appear in the Breakpoints view, and the next time the context
for that breakpoint is active in the Debug view, the breakpoint will be planted.

Exporting Breakpoints

To export breakpoint properties to a file:

116

B Internal Breakpoint Capabilities

1. Select File > Export > Export Breakpoints, then click Next. The Export
Breakpoints dialog appears.

2. Select the breakpoint whose properties you want to export, and type in a file
name for the exported file. Click Finish.

Refreshing Breakpoints

Right-click a breakpoint in the Breakpoints view and select Refresh Breakpoint to
cause the breakpoint to be removed and reinserted on the target. This is useful if
something has changed on the target (for example, you downloaded a new
module) and the breakpoint is not automatically updated.

To refresh all breakpoints in this way, select Refresh All Breakpoints from the
pull-down menu in the Breakpoints view.

Disabling Breakpoints
To disable a breakpoint, clear its check box in the Breakpoints view. This retains all
breakpoint properties, but ensures that it will not stop the running process. To
re-enable the breakpoint, select the box again.

Removing Breakpoints

To remove a breakpoint:

= Right-click on a breakpoint in the Editor gutter and select Remove
Breakpoint.

» Select a breakpoint in the Breakpoints view and select Remove.

117

Wind River
Board Bring-Up Guide, 1.0

118

Pin Terminations

C.1 JTAG Pin Terminations 119
C.2 EJTAG Pin Terminations 125
C.3 BDM Pin Terminations 136
C.4 Mictor Pin Terminations 141

C.1 JTAG Pin Terminations

C.1.1 16-Pin JTAG Connector

The following processors use this pinout:

= AMCC 40x
= AMCC44x

AMCC 40x and 44x can also use 38-pin Mictor connectors for run control.
See C.4 Mictor Pin Terminations, p.141.

» PowerPCb5xxx
* PowerPC6xx
* PowerPC7xx
» PowerPC74xx
* PowerPC82xx

119

Wind River
Board Bring-Up Guide, 1.0

= PowerPC83xx
= PowerPC85xx

The connector type on your board should be as follows:

*= 16 (2 by 8) 0.025" square posts

= (.10" between centers of adjacent posts

= 0.23" height of each post

A sample connector is Samtec part number TSW-108-07-S-D.

Figure C-1 shows the pinouts for this connector.

Figure C-1 16-pin JTAG Connector Pinouts

mo 1l N 9 NGO
W 3 W W | 47R
farEe 5| M M | & EXPSEMSE
Tk 7/l W | 8 NG
m™ms ¢ W |10 NC
SRESET 11| W | 12 GND
MHRESET 13| @ W | 14 NG
icHstro 16| Il | 16 GRD

The following table contains the Wind River-recommended pull-up/pull-down
resistor values that must be placed on the target. Signals not shown should not
have pull-ups or pull-downs.

120

C Pin Terminations
C.1 JTAG Pin Terminations

Table C-1 16-pin Connector JTAG Terminations

Signal Name Description
TRST External 4.7K pull-up
EXPSENSE External 1K pull-up

NOTE: These are the termination values for the Wind River reference design. It is
important that you verify that the pull-up and pull-down values you use are
appropriate for the board that you are working with.

C.1.2 ARM 14-Pin JTAG Connector

The connector type on your board should be as follows:

» 14 (2by 7) 0.025" square posts

» (.10" between centers of adjacent posts

» (.23" height of each post

A sample connector is Samtec part number TSW-107-07-S-D

The pin-outs of this connector are shown in Figure C-2.

121

Wind River
Board Bring-Up Guide, 1.0

Figure C-2 ARM 14-Pin JTAG Connector Pinouts

B3V)SPU 1|m ®m |2 @D
nNTRST 3| m m (4 @D
T o/ BB GND
™ms 7|m B |3 &b
TK 9 m m |10 GD
O 11| m m |12 pCERST

B3V)SPUTZ|m m |14 GD

JTAG Terminations

The following table contains the Wind River-recommended pull-up/pull-down
resistor values that must be placed on the target. Signals not shown should not
have pull-ups or pull-downs.

Table C-2
Signal Name Description
TCK - Test Clock External 5K pull-down
TMS - Test Mode External 5K pull-up on PCB
TDI - Test Data In External 5K pull-up on PCB
TDO - Test Data Out External 5K pull-up on PCB

nTRST - Reset TAP Controller External 2K pull-up on PCB
/nICERST (nPOR) External 2K pull-up on PCB

122

C Pin Terminations
C.1 JTAG Pin Terminations

NOTE: These are the termination values for the Wind River reference design. It is
important that you verify that the pull-up and pull-down values you use are
appropriate for the board that you are using.

C.1.3 ARM 20-Pin JTAG Connector

The connector type on your board should be as follows:

*» 20(2by 10) 0.025" square posts

» (.10" between centers of adjacent posts

» (.23" height of each post

A sample connector is Samtec part number TSM-110-01-S5-DV.

The pin-outs of this connector are shown in Figure C-3.

Figure C-3 ARM 20-Pin JTAG Connector

vief 1| I W | 2 wsew
nR=T 3 WM W | 4 GuD

o 5|l W |6 GHD

™s 7|l M |8 GHD
T 9|l W |10 GND
Rick 11| W | 12 GND
oo 13| @ W | 14 GND
nrsT 15 |l E | 16 GND
peEcRa 17 |l W | 18 GND
pecacki1a | Il M | 20 GuD

123

Wind River
Board Bring-Up Guide, 1.0

JTAG pull-ups and pull-downs are not provided for the 20-pin connector. Please

refer to the specifications from the board manufacturer to determine the
appropriate pull-ups and pull-downs for your board.

C.1.4 ARMX (XScale) 20-Pin JTAG Connector

The connector type on your board should be as follows:

= 20 (2by 10) 0.025" square posts

*= 0.10" between centers of adjacent posts

= 0.23" height of each post

A sample connector is Samtec part number TSM-110-01-T-DV.

The pin-outs of this connector are shown in Figure C-4.

Figure C-4 ARMX 20-Pin JTAG Pinout

vief [3.0V) 1) I W | o wsiery 3.5V
nmET 3 W ’m 4 oMD
o 5| W |60
e 7|0 W | 8cD
|l W |10 G
o 11| M| 12 GND
oo 1a| W[14 GHD
rHREsET 15| M M| 19 GHND
M IR B =
e v |l M| 20 e

124

C Pin Terminations
C.2 EJTAG Pin Terminations

JTAG Terminations

The following table contains the Wind River-recommended pull-up/pull-down
resistor values for this target. Signals not shown should not have pull-ups or
pull-downs.

Table C-3 ARMX (XScale) JTAG Terminations

Signal Name Description
/TRST External 4.7K pull-down
/HRESET External 2.7K pull-up

NOTE: These are the termination values for the Wind River reference design. It is
important that you verify that the pull-up and pull-down values you use are
appropriate for the board that you are using.

C.2 EJTAG Pin Terminations

C.2.1 MIPS 14-Pin EJTAG Connector

The standard MIPS 14 pin connector is as follows:

» 14 (2by 7) 0.025” square posts

* (.10” between the centers of adjacent posts

» (.23” height of each post

A sample connector is Samtec part number TSW-107-07-S-D.

The pinout of this connector is shown in Figure C-5.

125

Wind River
Board Bring-Up Guide, 1.0

Figure C-5 MIPS 14-Pin EJTAG Connector Pinout

ETRST N 1| m m |2 GND
ETDI 3l m m |4 GND
ETDO 5| m m |& GND
ETMS 7| m ®m |8 GND
ETCK ol m m |10 GND

GRST N11| m m |12 GND
EDINT13 | m m |14 VIO

EJTAG Terminations

Table C-4 contains the Wind River recommended pull-up/pull-down resistor
values for this target. Signals not shown should not have pull-ups or pull-downs.

Table C-4 MIPS 14-Pin EJTAG Terminations

Signal Name Description

ETCK External 1K pull-up
ETM External 1K pull-up
ETDI External 1K pull-up
ETRST_N External 1K pull-down
EDINT External 1K pull-up
GRIST_N External 1K pull-up

C.2.2 MIPS Philips 20-Pin EJTAG Connector

Philips processors come with a 14- to 20-pin adapter that allows users to connect
to their target. The Philips 20-pin connector is as follows:

126

C Pin Terminations
C.2 EJTAG Pin Terminations

= 20(2x10) 0.016” square posts

= (0.050” between centers of adjacent posts

= 0.120” height of each post

A sample connector is Samtec part number FISH-110-01-L-DV.

The pin-out for the Philips 20-pin connector is shown in Figure C-6.

Figure C-6 MIPS Philips 20-Pin EJTAG Connector Pinout

Jogmin 1|0 W |2 SND

Jrog tdiding 2|l W4 GND

Jiog dofetag tiee S|l W ¢ GND
Joagtm: 7| MW |8 GND

Jog ek 2l B |10 GND
JTAG_RST 11{ R W12 &ND
SisleBe=A N EIN BN NIFRENE
Etag pcst{1] 15/ M M |16 o
Efiog pcen2] 17(M |18 GhD
Eroo ootk 19 M W |20 SHND

NOTE: There are two adapters that ship with the tools, and one of them must be
used to connect to the target. The only difference between the two adapters is that
on one of them the pins are rotated 180 degrees. Use whichever adapter makes
connecting to the target easier. Ensure that Pin 1 on the adapter is correctly aligned
with Pin 1 on the target, and also with Pin 1 on your emulator.

EJTAG Terminations

Table C-5 shows the Wind River recommended pull-up/pull-down resistor values
that must be placed on the target. Signals not shown should not have
pull-ups/pull-downs.

127

Wind River
Board Bring-Up Guide, 1.0

Table C-5 MIPS Philips 20-Pin EJTAG Terminations

Signal Name Description
jtag_trst_n 10K pull-up resistor
jtag_tdi 10K pull-up resistor
jtag_tdo/ejtag_tpo 33 ohm series resistor
jtag_tms 10K pull-up resistor
jtag_tck 10K pull-up resistor
jtag_rst 10K pull-up resistor
ejtag_pcst[0] 33 ohm series resistor
ejtag_pest[1] 33 ohm series resistor
ejtag_pcst[2] 33 ohm series resistor

C.2.3 MIPS IDT 24-Pin EJTAG Connector
IDT processors come with a 14 to 24 pin adapter that allows users to connect to
their target. The IDT 24 pin connector is as follows:
= 24(2x12) 0.016” square posts
= (.050” between centers of adjacent posts
= 0.120” height of each post
A sample connector is Samtec part number FISH-112-01-L-DV.

Pinouts for the IDT 24-pin connector are shown in Figure C-7.

128

C Pin Terminations
C.2 EJTAG Pin Terminations

Figure C-7 MIPS IDT 24-Pin ETAG Connector Pinout

fmgwstn 1| M W | 2 GND
jagtdidn 2| WM | 4 oGND

jtag tdoeitag tpe 5 | I W £ GND
tagtms 7 W 8 GND

jrag ek o I H | 10 GND
jg_rstn 11| @ W | 12 GND
estag pest0] 13 Il W | 14 GND
etag pest[i] 15| I W | 1& GND
gtag_pestZ] 17| 1 W | 15 GND
ejtag dete 15| | B | 20 GND

sjtag debughoot 21| [l W | 22 GND
vio 22| Il H | 24 GND

EJTAG Terminations

Table C-6 shows the Wind River recommended pull-up/pull-down resistor values
for this target. Signals not shown should not have pull-ups or pull-downs.

Table C-6 MIPS IDT 24-Pin EJTAG Terminations

Signal Name Description
jtag_trst_n 10K pull-up resistor
jtag_tdi 10K pull-up resistor
jtag_tdo/ejtag_tpo 33 ohm series resistor
jtag_tms 10K pull-up resistor

129

Wind River
Board Bring-Up Guide, 1.0

Table C-6 MIPS IDT 24-Pin EJTAG Terminations

Signal Name Description

jtag_tck 10K pull-up resistor

jtag_rst_n 10K pull-up resistor

ejtag_pcst[0] 33 ohm series resistor

ejtag_pest[1] 33 ohm series resistor

ejtag_pcst[2] 33 ohm series resistor

ejtag_dclk 33 ohm series resistor

ejtag_debugboot 10K pull-down resistor

VIO Must be connected to the VCC I/0O supply

C.2.4 MIPS Broadcom 10-Pin EJTAG Connector

Some Broadcom targets use the standard MIPS 14-pin connector, and some use this
10-pin connector. Make sure you use the pinout that matches what is on your
target.

Broadcom processors come with a 14 to 10 pin adapter that allows users to connect
to their target. The Broadcom 10 pin connector is as follows:

= 10 (2x5) 0.025” square posts

= (.10” between centers of adjacent posts

= 0.23” height of each post

A sample connector is Samtec part number SSQ-105-02-T-D.

The pin-out for the Broadcom 10-pin connector is shown in Figure C-8.

130

C Pin Terminations
C.2 EJTAG Pin Terminations

Figure C-8 MIPS Broadcom 10-Pin Connector Pinout

wmsT 1| @ W | 2 cND
W3 m M| 4cND
mo 5| MW | 6 GND
™S 7|l W | 8 GND
K ' m WM | 10 GND

EJTAG Terminations

Table C-7 shows the Wind River recommended pull-up/pull-down resistor values
for this target. Signals not shown should not have pull-ups or pull-downs.

Table C-7 MIPS Broadcom 10-Pin EJTAG Terminations

Signal Name Description

TCK 1K pull-up resistor
TMS 1K pull-up resistor
TDI 1K pull-up resistor
TRST 1K pull-down resistor

C.2.5 MIPS NEC 26-Pin EJTAG Connector
NEC processors come with a 14- to 26-pin adapter that allows users to connect to
their target. The NEC 26 pin connector is as follows:
» 26 (2x13) pins in a plastic shroud
» 1.27 mm between centers of adjacent posts
» 10mm high
A sample connector is KEL part number 8811-026-170S.

131

Wind River
Board Bring-Up Guide, 1.0

The pinout for the NEC 26 pin connector is shown inFigure C-9.

Figure C-9 MIPS NEC 26-Pin EJTAG Connector Pinout

TReeLk A1 | 1 B | 1 GnND
TRepaTtao A2 | Il I | B2 GND
Trepata1t A3 |] I | 83 cnD
TRcpaTA2z A4 | | B | B4 GND
TRCDATA3 A5 | [l I | B5 GND

TRCEND A6 | ll I | B6 GND

Jtovrmopne# A7 | 1 I | 87 GND

Jtck A3 |l B | B2 GND

Jims A9 | I [| B2 cnND

Jtoo Afo| [l M |B10 GND

JrsT# A11|] I | 811 NiC

Bregioz A12| [l W [B12 ne
Nc A13|] B |B13 (JTMS + 4.7K ohms)

EJTAG Terminations

Table C-8 shows the Wind River recommended pull-up/pull-down resistor values
that must be placed on the target. Signals not shown should not have pull-ups or
pull-downs.

Table C-8 MIPS NEC 26-Pin EJTGAG Terminations

Signal Name Description

TRCCLK 33 ohm series resistor
TRCDATAO 33 ohm series resistor
TRCDATA1 33 ohm series resistor
TRCDATA2 33 ohm series resistor
TRCDATA3 33 ohm series resistor
TRCEND 33 ohm series resistor

132

C Pin Terminations
C.2 EJTAG Pin Terminations

Table C-8 MIPS NEC 26-Pin EJTGAG Terminations

Signal Name Description

JTDI 1K pull-up resistor
JTCK 1K pull-up resistor
JTMS 1K pull-up resistor
JTDO 33 ohm series resistor
BRKGIO 1K pull-up resistor

C.2.6 MIPS Toshiba 40-Pin EJTAG Connector

Toshiba processors come with a 14- to 40-pin adapter that allows users to connect
to their target.

The pinout for the Toshiba 40 pin connector is shown in Figure C-10.

133

Wind River
Board Bring-Up Guide, 1.0

Figure C-10 MIPS Toshiba 40-Pin Connector Pinout

tReseT1| | | | zone
owonTs | | Il | 2o
mos | Il I |sonc
ms7 | | | | o
Teke | | IR | oono
veet| [l IR | zone
reseTiz|] IR | 4o
PCSTO 15 . . 18 GND
resTii7 | | R | 2ono
pesT21e | | I | 2oono
pesta21 |]l W | zono
PCST4 23 . . 24 GND
pewk2s |] | | oo
pests27 | | I | om0
PCSTE 29 . . 30 GND
resT7 | | IR | :2ono
restass | | R | 2 CN0
ecias | | | sone
=Rl N R
TPC3 39 . . 40 GND

134

C Pin Terminations
C.2 EJTAG Pin Terminations

EJTAG Terminations

Table C-9 shows the Wind River recommended pull-up/pull-down resistor values
for this target. Signals not shown should not have pull-ups or pull-downs.

Table C-9 MIPS Toshiba 40-Pin EJTAG Terminations

Signal Name Description

TRESET 10K pull-up resistor
TDI/DINT 10K pull-up resistor
TDO 33 ohm series resistor
™S 10K pull-up resistor
RESET 10K pull-up resistor
PCSTO 33 ohm series resistor
PCST1 33 ohm series resistor
PCST2 33 ohm series resistor
PCST3 33 ohm series resistor
PCST4 33 ohm series resistor
DCLK 33 ohm series resistor
PCST5 33 ohm series resistor
PCST6 33 ohm series resistor
PCST7 33 ohm series resistor
PCST8 33 ohm series resistor
TPC1 33 ohm series resistor
TPC2 33 ohm series resistor
TPC3 33 ohm series resistor

135

Wind River
Board Bring-Up Guide, 1.0

C.3 BDM Pin Terminations

C.3.1 PowerPC 5xx/8xx 10-pin BDM Connector

Figure C-11

Table C-10

The connector type on your board should be as follows:

*» 10 (2by 5) 0.025" square posts

» (.10" between centers of adjacent posts

» (.23" height of each post

A sample connector is Samtec part number TSW-105-07-5-D.

Figure C-11 shows the pinouts for this connector.

10-pin BDM Connector Pinouts

iowPovASO 1| I M | o spEsEr
GND 3l M | 4 DSCKICK
co 5| Il W | 6 P _BI/MWPIAVELST
/HRESET 7| M W | & DSDITDI
33v 9|l @ W | 10 DSDOTDO

The following table contains the Wind River-recommended pull-up/pull-down
resistor values that must be placed on the target. Signals not shown should not
have pull-ups or pull-downs.

PowerPC 5xx/8xx BDM Terminations

Signal Name Description
DSCK/TCK External 10K pull-down
DSDI External 10K pull-down

136

C Pin Terminations
C.3 BDM Pin Terminations

NOTE: These are the termination values for the Wind River reference design. It is
important that you verify that the pull-up and pull-down values you use are
appropriate for the board that you are working with.

C.3.2 Freescale ColdFire 26-Pin BDM Connector

The signal pin-out of the ColdFire BDM connector varies by ColdFire processor
type. This section describes the signal pin-outs for each of the four standard 26 pin
ColdFire BDM connectors based on the ColdFire processor type.

Table C-11 breaks down the connector options by processor type.

Table C-11 ColdFire Connector Options By Processor Type

Processor Connector Option
MCF5202, MCF5204, MCF5206, Option One: ColdFire 26-pin BDM Connector
MCF5206E

MCF5249, MCF5249L, MCF 5250, Option Two: ColdFire 26-pin BDM Connector
MCEF 5251, MCF5272, MCF5307,
MCF5307A, MCF5307B

MCF5211, MCF5212, MCF5213, Option Three: ColdFire 26-pin BDM Connector
MCF5214, MCF5216, MCF5232,

MCF5233, MCF5234, MCF5235,

MCF5270, MCF5271, MCF5274,

MCf£5274L, MCF5275, MCF5275L,

MCF5280, MCF5281, MCF5282

MCF5407, MCF5470, MCF5471, Option Four: ColdFire 26-pin BDM Connector
MCF5472, MCF5473, MCF5474,

MCF5475, MCF5480, MCF5481,

MCF5482, MCF5483, MCF5484,

MCF5485

ColdFire 26-Pin BDM Connector, Option One

* 26 (2by 13) 0.025" square posts
» (.10" between centers of adjacent posts

» A sample connector is Samtec part number TSW-113-07-S-D

137

Wind River
Board Bring-Up Guide, 1.0

The pin-outs for the 2 by 13, 0.10" on center ColdFire BDM target connector are as

follows:
Figure C-12 26-Pin BDM Connector: Option One
RESERVED 1 HE B 2 BKPT
GND 3 H B 4 DSCLK
GND 5 HE N 6 RESERVED
RESET 7 m W |8 Dsl
VCC_CPU 8 HE B |10 DSO
GND 1" HE B 12 PST2
PST2 13 H N 14 P5T1
PSTO 15 HE N 16 DDATA3
DDATAZ 17| W W |18 DDATA1
DDATAD 19 HE B 20 GND
RESERVED 21 HE B 22 RESERVED
GND 23 H N 24 CLK_CPU
VvVcC_CPU 25| m ®m |26 TEA

ColdFire 26-Pin BDM Connector, Option Two

» 26(2by 13) 0.025" square posts
» (.10" between centers of adjacent posts
» A sample connector is Samtec part number TSW-113-07-S-D

The pin-outs for the 2 by 13, 0.10" on center ColdFire BDM target connector are as
follows:

138

C Pin Terminations
C.3 BDM Pin Terminations

Figure C-13 26-Pin BDM Connector: Option Two

RESERVED 1 N 2 BEPT
GND 3 N 4 DSCLK
GND 5 HE N & RESERVED
RSTl 7 m N 8 D3l
VCC_CPU 9 H B |10 DsO
GND 11] W N |]1i12 PST3
PSTZ 13| B W |14 PST1
PSTO 15| W W |16 DDATAS
DDATAZ 17 m B 18 DDATA1
DDATAD 19%] W N |20 GND
RESERVED 21| W N |22 RESERVED
GND 23] W W 24 PSTCLK
VCCCPU 25! M W |25 TA

ColdFire 26-Pin BDM Connector, Option Three

= 26(2by 13) 0.025" square posts
» 0.10" between centers of adjacent posts
* A sample connector is Samtec part number TSW-113-07-S5-D

The pin-outs for the 2 by 13, 0.10" on center ColdFire BDM target connector are as
follows:

139

Wind River
Board Bring-Up Guide, 1.0

Figure C-14 26-Pin BDM Connector: Option Three

RESERVED 1 m N |2 BKPT
GND 3 H N |4 DSCLK
GND 5 B B |6 RESERVED
RESET 7 H E |8 DSsI
VCC CPU 9 H B |10 DSO
GND 11| m ®m |12 P513
PSTZ 13| W W |14 PST
PSTO 15| W W |16 DDATA3
DDATAZ 1/] W W |18 DDATA1
DDATAD 19| W N |20 GND
RESERVED 21| m N |22 RESERVED
GND 23| m ®m |24 CLKOUT
VCCCPU 25| m W |26 TA

ColdFire 26-Pin BDM Connector, Option Four

= 26(2by 13) 0.025" square posts
» 0.10" between centers of adjacent posts
* A sample connector is Samtec part number TSW-113-07-S5-D

The pin-outs for the 2 by 13, 0.10" on center ColdFire BDM target connector are as
follows:

140

C Pin Terminations
C.4 Mictor Pin Terminations

Figure C-15 26-Pin BDM Connector: Option Four

RESERVED 1 2 BKPT
GND 3 4 DSCLK
GND & 6 RESERVED
RSTI 7 8 DSl
VCC_CPU 9 10 DsO
GND M 12 PSTDDATAT
PSTDDATAE 13 PSTDDATAS

PSTDDATA4 15
PSTDDATA2 17
PSTDDATAD 19

16 PSTDDATA3
18 PSTDDATA1
20 GND

EEEEEEEEEEEEER
EEEEEEEEEEEEDR
—
=

RESERVED 21 22 RESERVED
GND 23 24 PSTCLK
VCC_CPU 25 26 TA

C.4 Mictor Pin Terminations

The AMCC 40x and 44x processors use a 38-pin Mictor connector when connection
to the Wind River Trace. The Mictor connector can also be used for run control.

The recommended manufacturer’s part number for this 38-pin Mictor connector is
part number AMP 2-767004-2.

C.4.1 AMCC 40x 38-pin Mictor Connector Pin-out

This connector’s pin-out information for the AMCC 40x processor is shown in
Figure C-16.

141

Wind River

Board Bring-Up Guide, 1.0

Figure C-16 AMCC 40x 38-pin Mictor Connector

MAZ 1
MAC 3
M/C S
HALT 7
M/C 9
TOO 11
MAC 13
TCK 15
TS 17
O 19
TRST 21
HRESET 23
M 25
MACZT
MAZ 29
MAC 31
MAZ 33
MAC 35
M 35

GHD 39
GHD 40
GND A1
GHD 42

2M/C
4 MIC

B TRCCLK
g M/C
10MCE
12VREF
14 NAC
16 N/C
18 MAC
20N/C
22N/
24 7510
26T520
28TS1E
30 TS2E
32T53
34 T54
36 TS5
I8 T56

This connector’s pin-out information for the AMCC 40x processor is shown in

Figure C-17.

142

C.4.2 AMCC 44x 38-pin Mictor Connector Pin-out

Figure C-17 AMCC 44x 38-pin Mictor Connector

NC
NC
NC
HALT
NC
TDO
NC
TCK
T™MS
TDI
TRST
NC
BSO
BS1
BS2
ESO
ES1
ES2
ES3

O N W =

11
13
15
17
19
21
23
25
27
29
31
33
35
37

—

39
®

[

—— GND 8
GND &
GND &

L — GND &

*

<4+ —GNDE

C Pin Terminations
C.4 Mictor Pin Terminations

NC
NC
TRCCLK
NC
NC
VREF
NC
NC
NC
NC
NC
ES4
TS0
TS1
TS2
TS3
TS4
TS5
TS6

143

Wind River
Board Bring-Up Guide, 1.0

No terminations are required for any of the trace signal pins. For JTAG
terminations, see C.1.1 16-Pin JTAG Connector, p.119.

144

Fields 22
Fields 22

Symbols

22,23

Numerics

38-pin Mictor Connector Pin-out 141, 142

A

Adding Files 91

Adding Hardware Data Breakpoints
Adding Hardware Instruction Breakpoints

Address Bus Test 54

ARM 14-Pin JTAG Connector 121
ARM 20-Pin JTAG Connector 123
ARM Processors -- JTAG 110

ARMX (XScale) 20-Pin JTAG Connector
Attempting JTAG communication 41
Attempting to Locate IMMR register

Attempting to restore CPU context 43

B

Background Mode 40

Index

BDM Pin Terminations 136
BDM Processors 112
Bit-Level Detail 47
Board Bring-Up 7
Board Descriptor Files 9
board files 10,13

creating new 10

XML 20
Board Initialization 39
breakpoints

verifying with target 87
Breakpoints view 104
Bus Tests 54

C

Clock Rate 34

ColdFire 26-Pin BDM Connector, Option Four 140
ColdFire 26-Pin BDM Connector, Option One 137
ColdFire 26-Pin BDM Connector, Option Three 139
ColdFire 26-Pin BDM Connector, Option Two 138
ColdFire Processors -- JTAG 111

Comparing Target CPU With CF Setting 42
Configuring Flash Memory Bounds 89
Configuring RAM Workspace 90

Configuring Registers Manually 46

Converting .hex Files To .bin Format 91
Converting Line or Expression Breakpoints Into

145

Wind River
Board Bring-Up Guide, 1.0

Hardware Code Breakpoints 116

CPU Reset Type 36
CRC Calculation 53
creating

new board files 10
Creating a New Board Descriptor File 10
Creating a Project 66
Creating a Target Connection 28, 65

D

Data Bus Test 54
Debug Connections 27
debugger
disconnecting and terminating processes 83
Debugging Code in RAM 74
Debugging in RAM 65
Debugging in ROM 99, 100
Diagnostic Functions 50
Disabling Breakpoints 117
Disconnecting and Terminating Processes 83
Downloading a Register File 44
Downloading Code and Symbol Information 71
Drive TRESET Line 35
Driving HRESET to be High 41
Driving HRESET to be Low 41

E

Editing Your Board Layout 19

EJTAG Pin Terminations 125

EJTAG Terminations 126,127,129, 131, 132, 135
Emulator HRESET Control 36

Enabling A File For Download 92

Enabling and Disabling Register Groups 45
Erasing Flash 94

Exporting Breakpoints 116

Expression Breakpoints 114

146

F

Fast And Batch Program Tabs 93
Flash Add/Remove Files Tab 91
Flash Configuration Tab 88
Flash Memory /Diagnostics Tab 95
Flash Programmer view 93

batch program tab 94

Configuration tab 88

fast program tab 93

Files tab 91

getting started 87

Memory /Diagnostics tab 95
Flash programming

erasing flash 94

setting timeouts 95

verifying flash contents 95
Flash Programming Tab 93
Freescale ColdFire 26-Pin BDM Connector
Full RAM Tests 52

G

Getting Started 87
Goals and Objectives 7

H

Hardware Breakpoints 114

Importing Breakpoints 116
Internal Breakpoint Capabilities 113
Introduction 1,9, 33, 39, 49, 55, 85, 107

J

JTAG Editor

137

defining a core 16
defining a graphic layoutin 13
editing a board layout 19
JTAG Editor view 11
selecting a processor type 15
toolbar 12
using the custom option 17
JTAG editor 11
JTAG Pin Terminations 119
JTAG Terminations 122, 125
JTAG Timing Parameters for Wind River
Emulators 26

L

Layout, Routing and Design Considerations 25
Line Breakpoints 114
Loading Internal Registers 42

M

Manually Creating XML Board Files 23

MIPS 14-Pin EJTAG Connector 125

MIPS Broadcom 10-Pin EJTAG Connector 130
MIPS IDT 24-Pin EJTAG Connector 128

MIPS NEC 26-Pin EJTAG Connector 131
MIPS Philips 20-Pin EJTAG Connector 126
MIPS Processors -- JTAG 109

MIPS Toshiba 40-Pin EJTAG Connector 133
Monitor Target Reset 35

Monitoring Processes 75

O

OCD Connections 27
On-Chip Debugging 3
Overview 65,99

Index

P

Pin Terminations 119
Pins Mapped to Common Signals 107
PowerPC 5xx/8xx 10-pin BDM Connector
PowerPC Processors -- JTAG 108
processes

disconnecting debugger 83
Programming Flash 95
Programming Flash Memory 85

R

Read From Location 53
Reading and Writing Memory 86
Refreshing Breakpoints 117
register groups

disabling 45

enabling 45
Registers 43
Registers view 46
Removing Breakpoints 117
Removing Files 91
Running a Program 77
Running Code 58
Running Diagnostic Tests 96

S

Saving Changes 37

Scope Tests 53

Selecting a Flash Driver 89

Selecting Flash Sectors for Erasure 90
Set Verbose On 40

Setting a Workspace 49

Setting Breakpoints 104

Setting Hardware Breakpoints 61
Setting Software Breakpoints 59
Setting The Download Offset Of A File 92
Setting Timeouts 95

Setting Up a Project 100

Simple RAM Test 50

147

136

Wind River
Board Bring-Up Guide, 1.0

Stepping an Instruction 56 X
Stepping Through a Program 78

XML Board File Fields 22
XML board files 20
T XML Board Files 20

target

software breakpoints, verifying 87
Testing Communications to Hardware Interface 41
Testing Flash Workspace 86
Testing for target STOP State 42
Testing JTAG Communication 42
Testing Memory 55
The IN Command 40
The INN Command 43
The Registers View 46
Tool Configuration 33, 34

U

Using the Custom Option in the JTAG Editor View
17
Using the Predefined Layouts in JTAG Editor 12

\'

Verifying Flash Contents 95
Verifying Hardware 49
Viewing Memory 96

w

Waiting for HRESET to be Released 41
Workbench

views

Breakpoints 104

Write and Complement 54
Write Rotating Value 54
Write Then Read 54
Write To Location 53

148

	Wind River Board Bring-Up Guide
	1 Introduction
	2 On-Chip Debugging
	3 Board Bring-Up
	3.1 Goals and Objectives
	3.2 Sequence of Events

	4 Board Descriptor Files
	4.1 Introduction
	4.2 Creating a New Board Descriptor File
	Using the Predefined Layouts in JTAG Editor
	Using the Custom Option in the JTAG Editor View
	Editing Your Board Layout

	4.3 XML Board Files
	4.3.1 XML Board File Fields
	<DEVICE_TABLE> Fields
	<DEVICE> Fields

	4.4 Manually Creating XML Board Files
	4.5 Layout, Routing and Design Considerations
	4.6 JTAG Timing Parameters for Wind River Emulators

	5 OCD Connections
	5.1 Debug Connections
	5.2 Creating a Target Connection

	6 Tool Configuration
	6.1 Introduction
	6.2 Tool Configuration
	6.2.1 Clock Rate
	6.2.2 Drive TRESET Line
	6.2.3 Monitor Target Reset
	6.2.4 Emulator HRESET Control
	6.2.5 CPU Reset Type
	6.2.6 Saving Changes

	7 Board Initialization
	7.1 Introduction
	7.2 Background Mode
	7.2.1 The IN Command
	7.2.2 Set Verbose On

	7.3 The INN Command
	7.4 Registers
	7.4.1 Downloading a Register File
	7.4.2 Enabling and Disabling Register Groups
	7.4.3 Modifying Registers Manually

	8 Verifying Hardware
	8.1 Introduction
	8.2 Setting a Workspace
	8.3 Diagnostic Functions
	8.3.1 Simple RAM Test
	8.3.2 Full RAM Tests
	8.3.3 CRC Calculation
	8.3.4 Scope Tests
	Read From Location
	Write To Location
	Write and Complement
	Write Rotating Value
	Write Then Read

	8.3.5 Bus Tests
	Address Bus Test
	Data Bus Test

	9 Testing Memory
	9.1 Introduction
	9.2 Testing Memory
	9.2.1 Stepping an Instruction
	9.2.2 Running Code
	9.2.3 Setting Software Breakpoints
	9.2.4 Setting Hardware Breakpoints

	10 Debugging in RAM
	10.1 Overview
	10.2 Creating a Target Connection
	10.3 Creating a Project
	10.4 Downloading Code and Symbol Information
	10.5 Debugging Code in RAM
	10.5.1 Monitoring Processes
	10.5.2 Stepping Through Code
	10.5.3 Setting a Software Breakpoint
	10.5.4 Running a Program
	10.5.5 Stepping Through a Program
	10.5.6 Setting a Hardware Breakpoint
	10.5.7 Disconnecting and Terminating Processes

	11 Programming Flash Memory
	11.1 Introduction
	11.2 Testing Flash Workspace
	Reading and Writing Memory

	11.3 Getting Started
	11.4 Flash Configuration Tab
	11.4.1 Selecting a Flash Driver
	11.4.2 Configuring Flash Memory Bounds
	11.4.3 Configuring RAM Workspace
	11.4.4 Selecting Flash Sectors for Erasure

	11.5 Flash Add/Remove Files Tab
	11.5.1 Adding Files
	11.5.2 Removing Files
	11.5.3 Converting .hex Files To .bin Format
	11.5.4 Setting The Download Offset Of A File
	11.5.5 Enabling A File For Download

	11.6 Flash Programming Tab
	11.6.1 Fast And Batch Program Tabs
	11.6.2 Erasing Flash
	11.6.3 Programming Flash
	11.6.4 Verifying Flash Contents
	11.6.5 Setting Timeouts

	11.7 Flash Memory/Diagnostics Tab
	11.7.1 Viewing Memory
	11.7.2 Running Diagnostic Tests

	12 Debugging in ROM
	12.1 Overview
	12.2 Getting Started
	12.3 Debugging in ROM
	12.3.1 Stepping Through Boot Code
	12.3.2 Setting Hardware Breakpoints

	A Pins Mapped to Common Signals
	A.1 Introduction
	A.2 PowerPC Processors -- JTAG
	A.3 MIPS Processors -- JTAG
	A.4 ARM Processors -- JTAG
	A.5 ColdFire Processors -- JTAG
	A.6 BDM Processors

	B Internal Breakpoint Capabilities
	Line Breakpoints
	Expression Breakpoints
	Hardware Breakpoints
	Importing Breakpoints
	Exporting Breakpoints
	Refreshing Breakpoints
	Disabling Breakpoints
	Removing Breakpoints

	C Pin Terminations
	C.1 JTAG Pin Terminations
	C.1.1 16-Pin JTAG Connector
	C.1.2 ARM 14-Pin JTAG Connector
	C.1.3 ARM 20-Pin JTAG Connector
	C.1.4 ARMX (XScale) 20-Pin JTAG Connector

	C.2 EJTAG Pin Terminations
	C.2.1 MIPS 14-Pin EJTAG Connector
	C.2.2 MIPS Philips 20-Pin EJTAG Connector
	C.2.3 MIPS IDT 24-Pin EJTAG Connector
	C.2.4 MIPS Broadcom 10-Pin EJTAG Connector
	C.2.5 MIPS NEC 26-Pin EJTAG Connector
	C.2.6 MIPS Toshiba 40-Pin EJTAG Connector

	C.3 BDM Pin Terminations
	C.3.1 PowerPC 5xx/8xx 10-pin BDM Connector
	C.3.2 Freescale ColdFire 26-Pin BDM Connector
	ColdFire 26-Pin BDM Connector, Option One
	ColdFire 26-Pin BDM Connector, Option Two
	ColdFire 26-Pin BDM Connector, Option Three
	ColdFire 26-Pin BDM Connector, Option Four

	C.4 Mictor Pin Terminations
	C.4.1 AMCC 40x 38-pin Mictor Connector Pin-out
	C.4.2 AMCC 44x 38-pin Mictor Connector Pin-out

	Index

