
. ..

.-

WISCONSIN COMPUTER SOCIETY

NEWSLETTER

Volume #2, Issue #7 July 1977 Don Stevens, Editor

MEETING NOTICE ------·----
Our meeting will be held at 1:00 p.m., July 9, 1977, at the Waukesha
Technical Institute (Room 202 - Administration Building).

PROGRJ\M l\GENDA

Club member Todd L. Voros will be our Main Speaker. The topic of his
lecture will be SKETCHCODE - a proqramminq technique devised by Todd.
If you can, please study the article on SKETCHCODE in this Newsletter
before the meetinq. It could help you to better understand this new
proqrarnminq technique when presented at our meetinq.

CLUB MEMBERSHIP DUES COLLECTION ---------
Membership for the last 6 months of 1977 is $3.00. This will be the
last Newsletter for those who have not paid membership fee.

Send your $3.00 membership fee to:

CLUB QUESTIO~AIRF.

Donald Stevens
P.O. Box 159
Sheboygan Falls, Wisc. 53085

I have not received many of the completed ~uestionaires enclosed in the
,Tune Newsletter. BRING IN THESE QUESTIONAIRES TO THE JULY MEETING.

FOR S~LE - - - - - - - - - - - - - - - - Contact Don Stevens

One (1) ~B6A Solid State ~usic nAM Board - 8K Board

Two (2) MB2 Solid State Music RAM Boards - 4K Boards.

Note: These boards are made for S-100 Buss and are ton quality boards.

Please be advised of the openinq of the r1adison Computer Store, 1919
~onroe Street, ~Adison, Wisc. 53711. Huron qmith i~ store Manaqer.

The AMIDE corporation of :New York announces availabi.lity of a PDP·;,_9
simulator for the 8080. Priced around $20.00 and available in Pap~r
Tape or Tarbell Cassette

Heath Kit announces availability of:

8080 nased System ($375 includinq Octal Keyboard) & com~atible peripherals

LSI-11 Based System ($1295.00) & compatible peripherals

Paper Tape Reader/Punch - reads at 50 characters per second and punch
operates at 10 characters per second ($395)

Photos available at JULY MEETING

Centronics announces Compact Microprinter - 240 characters per second
and priced at $595.00

FREE FREE ATTENDANCE PRIZE COPIES OF JULY COMPUTER NOTES ~rorn ~ITS

GOOD THINGS TO READ

~omputer Design - June 1977

Microcomputer Interfacinq: Interfacing a 10-Bit DAC

A Task Scheduling Executive Program for Microcomputer Systems

Analysis of Multiple Microprocessor System Architectures

EON - JUNE 1977

Chapters 1 thru 13 of Software Design Course _('paqes 67 thru 200)

Electronic Design - June 7, 1977

Gettinq the bugs out of your Software

Interface Circuit that teams cassette recorder with a CRT to work
as a TTY/papertape unit

IEEE CIRCUITS & SYSTEMS - f'~~!_~77

A simple Cansette Interface

IEEE SPECTRUM - May 1977

Everybody's Doing It ('computinq' at home)

IEEE ~PECTRUM - April 1977

Analoq tests: The microprocessor scores

S K E T C H C 0 D E

A DOCUMENTl\.TION TECHNIQUE FOR HOME CO~PUTER HOBBYISTS AND PROGRA~ME~S

By: Todd L. Voros
Systems Software Specialist
A.O. Smith Corporation
Data Systems Division

**

Problem: How can we keep from rewriting the same code over and over
again for different computers?

.Problem: How can we help our colleaques understand our proqrarns
quickly and efficiently?

Problem: How can we simplify and ease the debugginq of our programs?

Answer: SKETOICODE

Sketchcode? Sketchcode is a documentation technique, that if properly
used can save time and effort when coding in any com?uter
languaqe.

~What it is not: Sketchcode is not flowchartinq.
Sketchcode is not a language.
Sketchcode is not hard to learn.

'•7hat it is:

Proqram:

To answer this que9tion, let us ask ourselves,
·"What are programs made of?"

An implementation of one or more algorithms intended to
solve a problem expressed in a machine digestible form.

What are alqorith~s composed of?

Processes that do not re~uire decisions
Decisions

What is the normal method of documenting an algorithm for computer
implementation? A: Flowcharting.

Does sketchcode replace Flowcharting? No, it comptiments it.

So what is sketchcode?

. ...-..,,

Sketchcode is an individualistic, stylistic pseudo ~
lanquaqe expressing the loqical flow of control through
a proqram through the use of certain elementary structures •

/hat are these elementary structures?

Things like: Loops

Decisions

Indentation of Loqical Levels of Control

~
I

~

How do we express a loop in Sketchcode?

We write: DO WHILE (an expression) ;

PROCESSING

END;

Note PROCESSING is indented two blanks to the right • . All other
sketchcode processinq within that loop will be indented two blanks to
the riqht.

(an expression) is the evaluation of any number of variables we desire
resultinq in the assignment of a TRUE or a FALSE c ·ondition.

While the condition remains true, we execute statements inside the loop.

If the condition is false, we do not execute any statements in the loop;
we proceed to begin executinq the statement after the END; which tells
us where the loop ends. This is why the END; is not indented two columns
to the riqht like PROCESSING.

How can we qet out of a sketchcode DO loop?

By havinq PROCESSIN~ within the loop chanqe the value of
the variables tested by (an expression).

An example? Execute some processinq 10 times:

COUNT = 0

DO WHILE (COUNT less than 10) ;

PROCESS ·

COUNT = COUNT + l

END;

Of course, the expression that is tested for TRUE or FLASE could be
much more complex: ·

DO WHILE (I =3*X OR Q=7*SQRT(35.2-E));

And of course, we can put a loop inside a loop:

DO WHILE (I less than 10)

PROCESS

DO WHILE (J more than 12)
MORE PROCESSINr;

MORE PROCESSING

END;

END;

'.

Notice each DO has it's own closing END statement.

~Now if you think about this form of representation of the logical flow
of a proqram for a moment or two, you may beqin to see how some fairly
com~lex situations involvinq loops inside of loops could be clearly and
consisely expressed. Also note that the inner DO loop was indented two
columns to the right and processinq performed under it's control was itself
indented two columns to the riqht. ·

Thus~ ·The deeper a loop is (the more nested it is in the logical flot.,
of control of the proqram), the further to the right it will aopear
in the program's Sketchcode representation.

Also; Code that is indented to the far riqht will probably be executing
the most often by your program. Therefore, concentrate your
optimizinq efforts th~ first (if you make any such efforts) •

·- --------
However, programs are not composed entirely of loops, although they play
a very important part of proqramming.

Decisions are also of prime importance in directinq the flow of control
0£-a program. In Sketchcode, a decision is always represented as a
elementary structure of the form:

IF (expression)

THEN DO;

PROCESSING for TRUE expression

ELSE;

PROCESSI~G for FALSE expression

Notice, for readability that the THEN DO; and the ELSE; are indented two
columns to the right and their correspondinq processing is itself indented
two columns further right.

Since (an expression), is always true or false in Sketchcode, either
the processing under the THEN DO: will be executed and the processinq
under the __ ELSE; will be skipped, or the processinq under the THEN DO;
will be iqnored and the processing-under the ELSE; will be executed.

Sometimes in the flow of control ·of a program there occurs the situation
that some processing is to be done only if some condition is true; otherwise
nothing is to b~ done. This would tend to create a danglinq ELSE; so

·-- - - ----
Sketchcode allows the convention that a decision can also take the form:

IF (expression is true)

THEN:

PROCESSING

without a closing ELSE; condition. However, if the condition being
evaluated by the IF is false, all processing indented to the right of
the THEN~ is .!3.nored.

~
I

.,. \.

sometimes loops in a proqram are effectively never-endinq. To handle
this special case, Sketchcode permits a special form of the DO loop

~ notation:

DO FOREVER;

PROCESSING

END;

An example of 'DO FOREVER' miqht be where we wish the com~uter to read
data from the teletype forever and process it, give us an answer, and
await further input. This could be done as follows:

DO FOREVER;

READ INPUT
PROCESS INPUT

END;

Sometimes we wish to perform once-only initialization inside o~ a loop
in our programs. This would seem difficult to represent in Sketchcode
notation but is actually not. Takinq a combination of DO and IF simple
structures, we are able to build a SWITCH STRUCTURE: ·

INITSW 2 'initialize'

DO WHILE (an expression) ;

IF (INITSW = 'initialize)
THEN DO;

END;

PERFORM INITIALIZATION PROCESSING
SET INITSW = 'don't initialize'

ELSE;
PERFORM NOR~AL PROCESSING

The only tricky point to the above example is that the first time
through the above example, INITSW (our initialize/don't initialize
switch) will be set to 'initialize' so the THEN DO ; leg of the
IF will be executed on the first pass through the bo loop. Since
the last thinq the initialization processinq does is to set the
initialization switch to 'don't initialize', when performing the
2nd through last pass through the DO loop, the code under the ELSE;
branch of the IF will be executed!! Thus, we have managed to
provide a method tif once-only initialization inside of a DO loop.

Notice we did not forget the closinq END;, and of course keep in
~1ind that both the initialization and normal processing could have

deeper levels of DO's and IF's imbedded within them.

Now, what is the point we are lt:temptinq to make? The structures we
have defined are complet~ adequate for expressinq ~ problem capable

~of being implemented on al1obbyist home microprocessor system.

So what? Well, then so what is this?: WHERE WE~E THE GOTO STATE~·1ENTS??

Answer:

(OR JUMPS, OR BRANCHES IF YOU PREFETI)

There ~ren'~ any in Sketchcode.

Program logic always flows from top to bottom, throuqh various
levels of indentation on the way.

Proqram loops are ~lways clearly documented.

Sketchcode f~£~ you to provide a clear, concise definition
of what you are trying to do, yet permit individualistic style
to be used (our own examples certainly aren't part of any
'LEr.~L' proqramminq lanquaqe).

When a proqram's loqic is none in Sketchcode, it is easier
to follow and debuq.

If your alqorithm is written in Sketchcode, it can easily be
written for another, perhaps totally different microprocessor.

And last, but not least, if you really want to make your
programs self-documenting, includeyour program's Sketchcode
as part of the COMMENTS in the assembly languaqe version of
your program if you are writinq it in an assembler. However,
no . matter what the languaqe, Sketchcode assists in providing
better documentation and insight into your efforts.

~**************************

Brief Commentary:

A few hints from th~ author on the use and writinq of Sketchcode follow
from his experience in working with it for the la~t two years:

1. If you find yourself writing a lot of IF-THEN-ELSE, . IF-THEN-ELSE
clustered toqether in your Sketchcode, ask yourself the 0uestion:
"Is this reallv a DO loop in disquise?"

2. Remember that all IF's do not necessarily require an ELSE!

3. Don't forget to indent when qoinq to a deeper level of control!!

4. Remember that Table Searches are usually implemented by DO's.

---...._
)

I I

I I

s. Processinq performed under the leqs of an IF (the THEN DO and the ELSE)
can be switched by neryatinq the results of (an expression).

Thus, IF (X = 0)
THEN DO;

A=R
ELSE;

A=O+B

is the same as

IF (X not equal 0)
THEN DO;

l\=n+n
ELSE;

A=B

6. This ?Oint is tricky, but is worth consideration if your Sketchcode
somehow doesn't 'seem riqht':

If the F.LSE condition of the IF can be qotten to by some other co1e
prior to the IF test, then it is NOT an ELSE condition. Remove the
ELSE and the innentation of corif! under the ELSE.

7. Before you beqin to write dmr/n the very first machine or assembly
ranquaqe statement of your proqram, have the completed Sketchcode of
your nrogram in front of you and code your proqram from the Sketchcode!!!

8. Ask others to review your Sketchcode if you are workinq on a com~lex
task.

The followinry Proqram w~s written by Tom Doyle and ha$ been in use in
my 8080 System which has a Di~ital Group TV Readout and Cassette Interface.
The Video interface supports 512 ch~racters (32 characters by 16 lines) on
my Video '1oni tor.

This proqraM for automatic Scroll resides on Paqe 054 in my SysteM. The
buffer area assiqned in this proqram must occupy the top 512 bytes of an
area in memory where you have no memory for at least ~2 bytes above it.
Program can be relocated most any place in memory as lonrr it adheres to
above conditions. ~y Video Output Port is 064.

-...
I

,..........,,,

SCROLL ROUTINE FOR VIDEO READOUT -------------~-- by TOM Doyle.

054000/ 365 PUSH PSW
' . 054001/ 325 PUSH D

054002/ 345 PUSH H
.054003/ 376 CPl 015 Is it a carriage· return
054005/ 312 JZ 054044
054010/, 376 CPI 012 Is it a line feed
054012/ 312 JZ 054050
054015/ 376 CPI 177 Is it a TAB DELETE
054017/ 312 JZ OS4056
054022/ 376 CPI 010 Is it a backspace
054024/ 312 JZ 054064
054027/ 376 CPI 137 Is it .an " " Underscore
05403.l / 312 JZ 054064
054034/ 376 CPI 014 Is it "FF" 'CONTROL ·L
'054036/ 3 L2 JZ 054056
054041/ 315 CALL. 054127 Cali .Input
054044/ 341 POP H

. 054045/ . 321 POP D
054046/ 361 POP . PSW
054041/ 311 RET
054050/ 315 CAL.L 054207 Call Scroil - Line Feed
054053/ 303 JMP 054044
054056/ 315 CALL. 054332 Call Clear Screen .. TAB
054061/ 303 JMP 054044 ~---------

054064/ 076 MVI A 040 LXI " " ... Backspace
054066/ 0·52 LHL.D 055376 Bottom Less 2 ·~· · ~

054071/ 167 MOV M A
054072/ 043 INX H
054073/ 167 MOV M A
054074/ 042 SHl..D . 055376 Bottom Less 2.
054077/ 315 CAJ..l.. 054173 Call Pr.int
054102 / 04. LXI H 057375 Top Less 2
054105/ 315 CALL 054153 Call .Move Cursor
054110/ 315 CALL 054317 Call ~rint Cursor J

054113/ 303 JMP 054041& Jump Out
054116/ 076 MVI A 377 ... Home Up
054120/ ,323 OUT 064 Video Port
054122/ ·076 MVI A 000
054124i 323 OUT 064
054126/ 31 l RET
054127/ 052 l.Hl..D 055376 Bottom Less- 2 ... Input
054 .132/ 167 MOV M A . ,
054133/ 3l5 CALL 0511173 Call .Print
054136 / 315. CALL 054352 .Call EOB (End of Buffer)
054141/ 332 JC 054207 JC Scroll
054144i 053 DCX H
054145/ 042 SHl..D 055376 Bottom Less 2
0541501 303 JMP 054312 Jump Cursor
054153/ 076 MVI A 001 ... Move Curso.r
054155/ 323 OUT 064
054157/ 076 MVl A 000
0541611 323 OUT 064
054163/ 315 CALL 054352 Call EOB·
054166/ 330 RC
054167/ 053 ocx H
054170/ 303 JMP . 054153 .. Jump for Next Byte
054173/ 000 NOP 41 Print
054174/ 000 NOP
Ar!h t. .,Ill! i ,...,... ,. a.in

I I

..
054116 / 306
054800 I 32 3
054202'/ 076
054204/ 323
054206/ 311
054207 / 041
054212/ 02"1
054215/ 176
054216/ 022
054217/ 315
054222/ 332
054225/ 053
054226/ 033
054227 / 303
054232/ 041
054235/ 076
054237/ 167
054240/ 315
054243/ 332
054246/ 053
054247 / 303
0542·52 I 31 5
0542551 041
054260/ 176
054261/ 315
054264/ 315
054267/ 332
054272/ 053
05427~/ 303
054276/ 041
0543011 042
054304/ 041
054307/ 315
0543121 333
0543141 007

. 0543151 330
054316/ 000
054317/ 076
0543211 315
0543241 041
054327/ 303
054332/ 041
054335/ 076
054337/ 167
054340/ 315
054343/ 332
0543461 053
054347/ 303
05.43521 325
0543531 021
054356/ 17'4
054357 / 272
054360/ 302
054363/ 175
054364/ 273
054365/ 302
054370/ 067
054371/ 303
054374/ 067
054375/. 077
054376/ 321
054377/ ·31 l

ADI
OUT
MV·I
OUT
RE:T '
I.XI
LXI
MOV
STAX
CALL
JC
DCX '
DCX
JMP
LXI
MVI
MOV
CALL
JC
DCX
JM.P
CALL
LXl
MOV
CALL
CALL
JC
DCX
JMP
LXI
SHLD
l..XI
CALL
IN
RLC
RC
NOP
MV .l

CALL
LXI
JMP
L.Xl
MVI
MOV
CALL
JC
DCX
JMP
PUSH
LXI
MOV
OMP
JNZ
MOV 1

CMP
JNZ
STC
J'MP
STC
CMC
POP
RET

A

200
064

,! 000

H
0
A M
D

H
D

H
A
MA .

H

H
A M

H

H

H

A

H

H
A
M A

H

D
0
A H
D

A L
E

D

06'-I

057377 ,
060037

054352
054232

054215
056037
040

054352
054252

054235
054116
057377

054173'
054352
05427&

054260
056037
055376
057337
054153
377

137
os.q113
057376
054153
057377
040

054352
054252

054335

056000

054374

054374

054376

Top · -.-i----.:.- Scroll 1 Line
Top + 32

Call EOB · ·

Jump for Next Byte
Start of: B~ttom Line__-11Clear 'Jk)ttom

Line

Call EOB

Jump for1Next Byte
. Call Home Op .

Top of Memory Area
-----------~-·--·· --,..----'-- ,·-. --

Call Print
Call EOB

Jump for Next Byte
Bottom + 32
Bottom less 2
Top ~ess 32
Call Move Cursor
Input .Sense Switches

[
Reset .
Buffer Pointer

..... .__-{Move to
· Lower Left

...

I .

Move ASCII " " [Print Cursor
Call Print_-' SyWabol
Top less 1 [Advance
Jump to Move Cursor -' Count~r
Top of Memory Area ... Fill Buffer with

'Move ASCII 11 11 Spaces .

Call Check for Bottom of Buffer

Bottom of Memory· Area

