NASA CONTRACTOR

NASA CR-1397

REPORT

A SURVEY OF CURRENT
DEBUGGING CONCEPTS

by Wallace Kocher

Prepm'ed by
WOLF RESEARCH AND DEVELOPMENT CORPORATION

Bladensburg, Md.
for Goddard Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION + WASHINGTON, D. C.

(LT

AUGUST 1969

WN ‘g4v) AuvHEIT Ho3L

TECH LIBRARY KAFB, NM

[

0oL0538
NASA CR-1397

A SURVEY OF CURRENT DEBUGGING CONCEPTS

By Wallace Kocher

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Contract No. NAS 5-9756-99 by
WOLF RESEARCH AND DEVELOPMENT CORPORATION
Bladensburg, Md.
for Goddard Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 — CFSTI price $3.00

TABLE OF CONTENTS

Section Page
I INTRODUCTION - - =~ = = = = = = = = = = - = = « - - - 1-1
1-1 Need for Debugging Development - - - - - - - - - - - 1-1
1-2 Scope of This Report - - - - = = = = = -« =« - -« - - - 1-1
1-3 Debugging Aspects, Definitions - - - - - - - - - - - 1-2
1-4 Categories of Programming Errors - - - - - - - - - - 1-3
1-5 Phases of Debugging - - - - - - - - - - - - - - - - 1-4
1-6 Error Diagnostic Procedures - - - - - - - - - - - - 1-4
I1 IMP-F PROGRAM DEBUG ING T S 2-1
2-1 Description of the Programs =- - - - - - = - - - - - 2-1
2-2 Programmer Comments - - = - = =« - = = - - - - - - - 2-2
2-3 Interview Guidelines - - - - - = - - - - - - - - - - 2-3
I11 CURRENT DEBUGGING CONCEPTS - - - - - = = - - - - - - 3-1
3-1 Current Concepts - - - - = = = = = = = - - = - - - - 3-1
3-2 Preliminary Testing - - - - = - - = - = - - - - 3-1
3-3 Checking the Flow Chart - - - - - - - - - 3-1
’3-4 Linking the Flow Chart to the Coding - - - 3-3
3-5 Concluding Steps of Preliminary Testing - 3-3
3-6 Assembling and Compiling - - - - = - - = = - - 3-4
3-7 Assembler Aids - - - - - - = = -« - - - - - 3-4
3-8 Compiler Aids - - = - - = = - = = - - - - 3-5

iii

S ey - - S Yo = -

Section

3-9

3-13
3-14

w
[}

23

3-29

TABLE OF CONTENTS (Continued)

Macro-Instructions - - - = = - = - = - - - 4

3-10
3-11
3-12

Debugging Macros - - - - - - - - - -
Advantages of Debugging Macros - - -

The SDC-SHARE Debugging Package - - -

Inserting Diagnostic Instructions - - - - -

Dumps

3-15

3-19

3-20

Traces
3-24
3-25
3-26
3-27
3-28

Postmortem Dumps - - - - - -~ - - - =
Snapshot Dumps - - - - - - -~ - - - -
Inconveniences of Present Techniques
Efforts to Improve Dumping Techniques

The ALCOR Illinois 7090/7094
Post Mortem Dump - - - - - - - - -

The UNIVAC 1108 Executive Systems
3-21 The Snapshot Dump - - - - - -

3-22 The Postmortem Dump - - - - -

- - - - - - - - - - - - - - - - - - -

Possibilities for Limiting the Trace
Trapping - - - = - = - - = = - - - -

Static Trace - - - = = = = =~ - o« - =«

Improved Approach to Tracing

The SEFLO Tracing Technique - - - - -

Dynamic Debugging - - - - - - - - - - - - -

3-30

FORTRAN Debugging Languages -

iv

Section

3-39

3-42

3-44

3-51
3-52

TABLE OF CONTENTS (Continued)

Page
3-31 One FORTRAN Debugging

Language - - - - = = = = - - - - 3-27

3-32 DIAGNOSE, Another FORTRAN
Debugging Language - - - - - - - 3-28

3-33 BUGTRAN, Another FORTRAN
Debugging Language - - - - - - - 3-30
3-34 TESTRAN, for IBM System/360 - - - - - - 3-32
3-35 Introduction to TESTRAN - - - - 3-32
3-36 Procedure - - - - =~ = = = - - - 3-33
3-37 The "Rip Stopper" Method - - - - - - - 3-35
3-38 The WATCHR III System - - - - - - - - - 3-36
TIDY and EDIT for FORTRAN - -~ - - - - - - - - 3-40
3-40 The TIDY program - - - - = = = = - = = 3-40
3-41 The EDIT Program - - ~ - - = - - = - = 3-42
Automatic Flowcharting - - - - - = = = = - - - 3-43
3-43 The AUTOFLOW System - - - - - - - - - - 3-43
Testing - - = = = = = = = = = = = = = - - - - 3-44
3-45 Purposes -~ - - = = - = = = = = = - - - 3-44
3-46 Problems - - - =~ - = = = =« « - - - - - 3-45,
3-47 Logical Tree - - = = = = = = = - - - - 3-45
3-48 Maintaining Test Data - - - - - - - - - 3-45
3-49 Satellite Test Data - - - - - = - = - - 3-46

3-50 Data Simulation Computer
Program - - - - = - = = = - = = 3-47
Program Correction - - - - - = = = = = « - - - 3-48
Restarting - - = = = = = = = = = = =« « = - - - 3-49

TABLE OF CONTENTS (Continued)

Section

Iv ON-LINE DEBUGGING - ~ - - - - - . e e e e e e e ..

4-1 On-Line Debugging Techniques - - - - « - - - - - - -

4-2 Criteria for an On-Line Debugging System

4-3 The Programmer-Controlled Breakpoint

4-4 Assembler-Language Program Debugging: The
DDT System - - = - = - = = - = « - - - - - - -

4-5 Higher-Level Language Debugging - - - - - - -
4-6 The LISP System - - - - = - = - - - - -
4-7 The QUIKTRAN System - - - - - - - - - -

4-8 The Incremental Compiler -

REFERENCES - - - - - = - - - - - - - - - - - - - e e = .-
BIBLIOGRAPHY - = - = = = = = o = o o o o o o o @ = o = - =
APPENDIX - SELECTED DEBUGGING REFERENCES - - - - - - - - -

vi

SECTION I
INTRODUCTION

1-1. NEED FOR DEBUGGING DEVELOPMENT

Debugging is a general term that refers to the loca-
tion and correction of errors that occur in computer pro-
grams. The debugging activity may consume considerable
portions of the total time required for the complete pro-
gram development. However, the importance of this area of
program development has often been minimized. The purpose
of this report is to place some emphasis on this important
area and to present some of the current debugging concepts
which may be considered for implementation.

Computers are continually becoming faster and more
complex, and applications becoming more exXtensive, more
intricate, and more time-critical. Thus, the need for a
greater effort in the area of debugging is obvious. Two
of the major factors which make program errors both harder
to find and harder to tolerate are time-constrained program-
ming and closed-loop applications. These are particularly
applicable to many of the space-related programs.

1-2. SCOPE OF THIS REPORT

The project that has furnished impetus to this
report is the IMP-F (Interplanetary Monitoring Platform).
Because the IMP-F computer program complex will form the
basis for future IMP efforts, it was necessary to document
the present version as fully as possible in order to reduce
the lead time and cost of developing the follow-on IMP

1-1

complexes. One important area (and the subject of this
paper) is debugging. This report includes, in addition

to the documentation of the IMP-F debugging effort, a

survey of current debugging concepts which may be considered
for implementation in future programs.

1-3, DEBUGGING ASPECTS, DEFINITIONS

For the purposes of this report, debugging will be
considered to include logical and clerical errors but not
machine malfunctions. To be more specific, debugging
includes prevention, detection, diagnosis, recovery, and
remedy of program errors. It is an on-going process that
lasts for the entire lifetime of the program. The following
definitions clarify the above mentioned aspects:1

a. Prevention - protective action taken against

the occurrence of errors or omissions.

b. Detection - determination of the occurrence
of an error or of an omission at the earliest
point possible so as to limit the consequences.

c. Diagnosis - analysis of the error that was
detected.
d. Recovery - provision for a means of bypassing

an error condition, especially one of an
intermittent nature, with a minimum loss of
time and effort.

e. Remedy - rapid remedial action employed to
prevent further occurrences of the same or
similar errors and omissiomns.

1-4. CATEGORIES OF PROGRAMMING ERRORS

Programming errors fall into two basic categories -
logical and clerical.

Logical errors are those which involve problem
analysis. Although they occur less frequently than clerical
errors they are usually more serious and more difficult to
detect. Since they often occur early in the program writing
process, they have a tendency to be overlooked. Frequently
they are a result of a misunderstanding of the problem and
requirements. Often, in very complex programs, errors result
from failure to cover all possible alternatives that may
arise, from improper identification of storage areas, etc.

Clerical errors are those errors which involve the
input deck or other input media; these errors are sometimes
referred to as physical errors, and errors made in writing
symbolic instructions. Numbers may be transposed, cards
may be omitted or mispunched, a symbolic name may be
spelled more than one way, to mention a few types of these
errors. Frequently these errors are the result of careless-
ness. One common source of such errors may be avoided by
keeping program listings and decks up to date; old versions
should be destroyed or at least marked.

— e e e ———_— e =

1-5. PHASES OF DEBUGGING

The debugging process is generally thought of as
consisting of several phases:2

a. Desk checking.

b. Assembled or compiled program checking.
C. Program-testing using test data.

d. Error diagnostic procedures.

e. Running of program using actual data.

1-6. ERROR DIAGNOSTIC PROCEDURES

In this report, emphasis is placed on the phase
dealing with error diagnostic procedures. A number of
programs and programming techniques are available for
diagnostic purposes. Their underlying principle is to
provide information about a particular portion or portions
of the program as control passes through the specified
instructions. The amount and location of the information
will vary depending on the nature of the error. Proposals
have been made for developing software that will allow
debugging to be conducted using the same language as the
source program; however, few of these have been implemented.
Few if any computer systems or major languages today.pro-
vide comprehensive symbolic debugging software packages.

SECTION II
IMP-F PROGRAM DEBUGGING

2-1. DESCRIPTION OF THE PROGRAMS

Information concerning the debugging of time-
correction and decommutation programs for the IMP-F space-
craft was collected through a series of interviews with
programmers and project managers associated with the pro-
ject.

The IMP-F time-correction and decommutation programs
were written in FORTRAN and the UNIVAC 1108 assembler langu-
age, SLEUTH 1II.

a. The time-correction programs perform two basic
operations:

1. Correct range time data by removing
discontinuities and filling in missing
time data.

2. Establish fairly precise correlation of
spacecraft events with range (earth-based)
time signals by correcting for propaga-
tion delay.

b. Decommutation operations are concerned with
stripping out, formatting, and providing
pertinent data for each experimenter.

2-2. PROGRAMMER COMMENTS

In general, the programmers associated with the
project felt the diagnostic system that was available within
the 1108 Executive system was adequate for their debugging
needs. The 1108 diagnostic system provided for snapshot
and postmortem dumps. However, some comments and sugges-
tions were made that may provide some insight into debug-
ging procedures that may be considered for implementation
in future IMP programs. Among these suggestions were the
following:

a. Debugging aids may be too expensive and involve
excessive overhead. They may require excessive
core storage and increase running time beyond
practical limits.

b. Care should be taken when implementing debugging
aids not to duplicate aids that are already
provided for by the manufacturer's system,

C. During the writing of the IMP-F programs, a
change in personnel occurred. The programmers
that took over the project felt a trace routine
would have been desirable, but that the imple-
mentation of a built-in trace routine should
have been accomplished during the design phase,
since a great deal of work is entailed when
such a routine is impiemented during later
phases.

d. The WOLF programmers assigned to the IMP-F
project were able to use snapshot dumps for
their tracing needs. However, a problem

associated with the postmortem dump was that
whenever the system was lost through a drum
failure, illegal instruction, system failure,
etc., then the dump was also lost.

e. Imbedded comments were not only useful for
debugging purposes but were valuable in
estimating running time.

f. Two specific suggestions were made concerning
future IMP programs:

1. The first was to develop routines that
would check experimenter's tape for known
characteristics such as label, format,
size, and special characters, and
especially data.

2. The second was to develop a better method
of obtaining test data.

2-3. INTERVIEW GUIDELINES

The following is a copy of the checklist of subjects
in conducting the interviews with the IMP-F programmers and
project managers.

CHECK LIST

1. Debugging techniques employed.

2. Preliminary phases.

2-3

a. Flow chart and coding

b. Clerical errors

c. Logical errors

Assembling and compiling phases, suggestions

for improvements.

Phases beyond assembling.

a. 1108 package adequacy

b. Other concepts
c. Suggestions
Testing.

a. Tests employed

b. Generating test data

Editing or cleaning-up programs.

Management practices.

a. Coordination, etc.

b. Suggestions

On-1line debugging.

2-4

10.

11.

State-of-art,.
a. Techniques
b. Concepts

Greatest problem in debugging IMP-F, special
or unusual problems.

Knowledge of debugging literature.

SECTION III
CURRENT DEBUGGING CONCEPTS

3-1. CURRENT CONCEPTS

This section discusses debugging concepts surveyed
for future implementation in programs such as IMP-F. While
the concepts described. here may not be entirely new or
unknown, and while the list may not be complete, neverthe-
less these concepts represent a typical range of current
practices or developments, and as such may suggest known
approaches to the subject of debugging.

3-2. PRELIMINARY TESTING

Preliminary testing, manual checking or desk checking
consists of a detailed review of the program by the program-
mer. This phase of testing may be viewed as having two
parts, the first of which is a review of the general logic
and degree of completeness. The second part is a manual
dry run using sample data during which the programmer
keeps track of register contents, modified instructions,
switches, etc., while following the flow of the program.
Special emphasis may be placed on unlikely situations.

3-3. Checking the Flow Chart

During this phase of testing, the flow chart can
and should be utilized both for detecting errors and as
a logical tool for debugging procedures. The desired
level of detail for such flow charts would show every

decision or branch and every subroutine execution. Seven

basic checks should be performed on the flow chart.3
a. The beginning and end should be clearly
marked and present.
b. Each decision symbol should have at least two

alternatives, and each possible result of

the test should be represented by some flow
line. Such flow lines should be traced so as
to insure that the correct path is taken for
the specified condition. Each condition
should be provided for.

c. Operation symbols should have no more than

one exit and entry line.

d. Flow lines must. be connected at both ends,
each line must originate at some symbol and
terminate at a symbol or merge point.

e. On flow charts of that level of detail which
includes partial coding, no variable name may
appear on the right-hand side of a formula,
in a decision symbol, or as output if it has
not been defined somewhere in the program in an
input 1list or on the left-hand side of a formula
(any statement calling for the assignment of
values and quantities). Each variable name
which appears at least once in a program in
an input list (including the outputs of sub-
routines) or on the left-hand side of a formula
is unused if it cdoes not appear on the right-
hand side of a formula, in an output list
(including the quantities supplied to subroutines
by the main program), or in a conditional test.
It 1s, therefore, unneccessary.

3-2

f. Switches must be set or defined at some point
previous to usage in the flow chart, and each
possible position of the switch must be set at
least once somewhere on the chart.

g. Each loop must have the following features:

1. Initialization.

2. A process consisting of one or more
statements.

3. One or more tests to terminate loop.

4. A method for reiterating the loop.

3-4, Linking the Flow Chart to Coding

After the programmer is satisfied with the flow chart,
the coding is performed. During the coding process, care
should be taken to link the flow chart with the coding.

If changes in the flow chart are required, the above checks
should be considered to ensure that new errors have not been
propagated.

3-5. Concluding Steps of Preliminary Testing

The preliminary testing phase progresses from a
rough analysis through more detailed analysis to a detailed
check of the coding. 1If time permits, recopying of the
diagram may be desirable because close reexamination may
disclose errors previously hidden by sloppy drawing or
erasing. If time and personnel permit, it is extremely

3-3

helpful if a second person can assist in the preliminary
checking procedures. A listing of the cards should be made
and checked against the coding forms, looking for keypunch
errors and sequence.

3-6. ASSEMBLING AND COMPILING

Computer systems supply a certain amount of diagnostic
control in their assembly or compilation programs. However,
this type of diagnostic aid is in most cases designed to
assist the programmer only up to that time at which the com-
puter is able to interpret and execute the instruction sequences.
The diagnostic notations produced usually deal with clerical
type errors and seldom with logical errors. Some systems pro-
duce diagnostics that indicate the severity of the error,
i.e., absolute, probable, etc. An error-free compilation or
assembly does not indicate that the program is debugged, only
that certain types of coding errors have been eliminated. A
weakness of both compiler and assembler debugging aids lies
with the fact that the statements are examined singly. The
processor is for the most part unable to detect logical errors
in transfer of control.

3-7. Assembler Aids

Most assemblers produce a program listing with diag-
nostic notations adjacent to the instruction containing certain
errors. Errors of this nature include the following:

a. Undefined or multi-defined symbols.
b. Invalid operation codes.
C. Invalid operands in a symbolic expression.

3.,

d. Invalid or omitted address.
e. Improper use of certain pseudo-operations.

f. Invalid names in name field, such as names
containing unauthorized special characters, etc.

The diagnostic notations are generally singular. Some
systems produce two notations in the event that two detectable
errors occur in a single statement.

A list of symbol references (the part of a computer
listing sometimes called an external symbol dictionary, or
a concordance, or a cross-reference table) may be extremely
useful in revising as well as debugging a program. In the
event that a change is made that affects the definition of a
symbol, it is important that all references to that symbol
be checked. Special care is required when a coding sequence
is deleted, since it is likely that one or more symbols may
be affected.

3-8, Compiler Aids

The diagnostic notations produced by compiler systems
are similar to those produced by assemblers. They are
generally printed with the listing and where possible make
reference to particular statements. The following summary
shows typical diagnostics produced by one FORTRAN compiler:5

a. Individual statements:

1. Invalid statement - reserved word,
excessive length, etc.

3-5

Mixed arithmetic expressions - containing
real and integer constants and variables.

Misuse of parentheses - an unequal number
of left and right parentheses.

Illegal expression - two operators may have
been used in succession, etc.

Suoscripting a fixed-point variable.

Interaction of two or more statements:

Referenced statement is not present or
is unnumbered.

Omission of a DIMENSION statement when

subscript variables are used.

Undefined variables - a variable that appears
in an arithmetic expression (on the right
side of an arithmetic statement) that is

not defined or assigned a value esarliier

in the program.

Capacity of words or of memory:

1.

Table limits have been exceeded - during
compilation FORTRAN uses a number of tables;
if the programmer uses an excessive number
of statements or other features a diagnostic
notation results.

Memory capacity of machine is exceeded.

3. Number exceeding precision of computer -
number too large or too small, requiring an
. . *+38,
excessive number of decimal places (10 38)

is a typical 1limit of a 36-bit binary word
- computer.

d. Logic of program:

1. Flow is unable to reach at least one part
of the program because of branches; program
flow does not include one or more executable
statements.

2. Illegal entry to a DO loop - entering a
DO loop at any statement in the range of
the loop other than the '"DO' statement
itself.

3. Excessive levels of nested loops - this
limit is determined by the individual
computer.

A number of these diagnostic notations would be appli-
cable to any algebraic-language program (a.3, a.4, b.1, b.3,

c.1l, c.2, and d.1). Others only apply to FORTRAN and certain
other compilers (a.l1, 2.2, a.5, b.2, ¢c.3, d.2, and d.3).

3-9. MACRO-INSTRUCTIONS

3-10. Debugging Macros

Certain special macro-instructions may be used during
the running of an object program to provide debugging informa-
tion that is not normally supplied. Instead of using inter-
ruptions or trap features, the macro calls are inserted in

5-T

program. These macro-instructions expand into coding that
calls for output routines that are under control of the
operating system. Loops, when required, are also provided
for by these macro-instructions. The information produced
may appear in the same form as does a dump or trace.

Existing machine instructions may be modified by
macro-definitions to supply diagnostic information. An
example of this technique is to modify a storage instruc-
tion so as to write out the data being stored. However,

a more common technique is the insertion of macro-instructions
in the program for the specific purpose of providing diagnos-
tic information.

3-11. Advantages of Debugging Macros

Particular use is made of the writing or printing
instructions. Certain condition stipulations may be employed
as well as format specifications (similar to those in a
dump) such as hexadecimal, decimal, octal, or BCD. Reassembly
of the program is required in order to insert the additional
coding of the macro-instructions, a process that is not
necessary with the use of dumps or traces. There are, however,
several advantages to this technique:

a. Symbolic references may be made to locations
or blocks of locations that are to be dumped;
in the event that coding changes are made, there
is generally no need to change the macro calls,
which is often the case with control cards when
using snapshot dumps since their addresses are
absolute; however, many systems provide for
symbolic addressing for their dumping routines.

b. Flexibility is provided the programmer; he may
specify any sort of dump he wishes. They may
resemble traces or dumps or any combination of
the two. The macro-instructions used for dumping
are generally quite simple in structure, primarily
involving coding for a loop, for an output calling
sequence, and for storage of certain registers.
Because information may be displayed in various
formats, the dump may include symbolic information
which facilitates the identification of words
and registers.

c. Macro-instructions are relatively easy to write.
The advantage of writing macro-instructions for
dumping purposes over corresponding coding for
a monitor system or processor is that instructions
must be general in nature and each piece of
information must be stored in memory tables or
remain in instructions to be interpreted. The
coding enployed with the use of macro-instructions
is specific and is tailored to the user's needs;
also, the instructions remain in executable form
within the macro-instruction eXpansion.

3-12. The SDC-SHARE Debugging Package

The debugging package which is included in the SDC-
SHARE7 operating system uses a set of macro-instructions
that will produce selective dumps in the source language
at any point during the execution of the object program.
The execution of these macro-instructions does not affect
the operation of the object program. The debugging macro-
instructions are defined within the compiler and will be

inserted into locations specified by the object code during

3-9

compilation.

The debugging macro-instructions are classified

according to three categories: information macros, conditional

macros, and

a'

modal macros.

Information Macros. This type of macro-instruction

is responsible for the actual dumping of information.
This information is written on a tape during the
execution of the object program after which it is
translated and written on an output tape. The for-
mat for the output may be included in the informa-
tion macro, otherwise it will be described in a
dictionary by successive location symbols. The
dictionary 1is developed during compilation, each
entry containing a location symbol and a corres-
ponding format code to identify the contents of

the described cell in memory. Through the use

of this dictionary, symbolic output may be produced.
The format codes control the printout of all
information from the specified location to the
location of the next symbol encountered.

Conditional Macros. This type of macro-instruction

is used to control the execution of information
macros. These macro-instructions are placed
immediately beiore the information macros they
control; their coatrol is terminated when the

next nondebugging macro-instruction is encountered.
Through the use of these conditional macros,

a programmer may specify conditions which must

be satisfied before the information macro can

be performed.

Modal Macros. This type of macro-instruction

permits the program to specify the mode to be
used in interpreting subsequent information, or

3.10

to set or reset certain parameters used by the
debugging system. Besides defining the mode of
operation for either conditional or information
macros, they also provide internal controls for
the debugging supervisor and some control of
output format. Modal macros generally remain in
effect until countermanded by another modal macro
or another macro-instruction is encountered that
sets all modal macros to normal conditionms.

3-13. INSERTING DIAGNOSTIC INSTRUCTIONS

A relatively simple but effective aid in the debugging
process consists of inserting throughout the program temporary
diagnostic instructions which will print out messages that
display the results of the program at various stages. Generally
such insertions are placed at the conclusion of program seg-
ments. This technique will provide information as to the flow
of the program and it may also be used to indicate program
status (the existence of an error condition). In order to
ascertain the status of the prcgram, various tests are employed.
Through the use of a test deck (a set of test data for which
the results at various stages are known), the area in which
the program departs from the correct procedure can be detected.

The messages that are printed out may be used to show
the overflow of storage blocks or a diverging series of values.
Externally controlled status reports containing such informa-
tion as item counts, important results, calling-sequence
parameters, accession assumptions, pointers, and summary
totals may be produced. One may devise tests for all para-
meters and provide meaningful messages. In the event that
it is not possible to correct the error, it may be desirable
to allow the system to approximate the interim results and

z_11

continue, especially in the early stages of the system's
development. When the preceding condition occurs, it must

be clearly noted. Options should be available to list
selected subsets of inputs and outputs from peripheral devices
to each routine in the system.

A method of cross-control checking may be provided
by producing a printout of program assertions at the beginning
of each program segment and of program expectations at the end
of each program segment.

The inserted instructions and corresponding messages
should be coded in some consistent, recognizable way which
will permit their mechanical removal once the program is

finalized.

3-14. DUMPS

Dump is a term that is generally applied to a listing
of the contents of a storage device; it may include all or
part of the internal storage, as well as registers. Dumps
may be classified into several categories: snapshot dumps
(dynamic) or postmortem dumps (static).

3-15. Postmortem Dumps

The postmortem dump is performed at the termination
of the object program. This termination may result from
some form of error or by intentional instruction. At times
it may be advisable to list the entire memory except possibly
the monitor system, since the effects of errors are unpredic-
table and often wide-spread. In early testing this method of
dumping may be the only way to ensure that some unsuspected
infiuencing factor was not overlooked.

312

3-16. Snapshot Dumps

The snapshot dump is a selected or dynamic listing
of registers and specified memory locations printed out
upon the execution of strategically located dynamic-dump
instructions (breakpoints or checkpoints). The programmer
may insert these dump instructions in the program before it
is run the first time; or he may insert or change them before
a later run, after errors have appeared. This form of dump
is useful when the programmer has little or no idea as to
the location of the program error. If the program has
previously been segmented, it is relatively easy to insert
dynamic dump instructions so as to 1solate at least the
earliest error toc some particular segment. Then as the
general location of the error is identified, the snapshots
(dynamic dumps) are inserted more frequently within smaller
areas of the segments. Each segment may be checked indivi-
dually. The snapshot dump is an extremely useful debugging
aid for the programmer (who should know machine language).

3-17. Inconveniences of Present Techniques

The dumping techniques still widely used today, even
in some of the most modern and advanced computers, are
claimed to be obsolete, and produce very inconvenient
1istings.9 Criticisms of the dumping techniques include
the following:

1. If the program has run for some time, earlier
parts which may be meaningful are lost.

2. Great amounts of useless information are some-
times generated.

3-13

3. The listings are difficult to analyze. One must
perform a great deal of decoding; know the main
characteristics of a particular machine, its
internal language, the operating system, and the
object (machine) codes corresponding to instruc-
tions written in the source language.

3-18. Efforts to Improve Dumping Techniques

Various attempts have been made to refine and improve
the dumping techniques. These are, in essence, attempts to
overcome the previously listed criticisms.,

a. The use of symbolic address designations for the
purpose of dumping is provided for by certain
processor systems. The advantages of this
approach are evident - consider the advantages
of symbolic coding over machine language coding.
In order to facilitate such a technique a symbol
table associated with the program being debugged
must be accessible. The dumping routine must
convert the symbolic addresses on cards to
absolute addresses,

b. The operating system must assume temporary control
from the object program during the time that the
dumped information is being written out. A common
way of accomplishing this is through the use of
a trap. The trap is a special form of a conditional
breakpoint which is activated by the computer
itself or by conditions imposed by the operating
system, or, by a combination of these. The trap
causes control to pass to a specified memory loca-
tion within the operating system. A method of

3.1k

returning control to the object program must also
be provided for. When the operating system
encounters debugging control instructions, it
must provide means by which the trap will occur
at the specified locations. A record must be
made of the location in the object program from
which control was transferred to the operating
system.

c. The efforts made on improving dumping techniques
have been directed toward the pinpointing of
dump locations, increasing the selectivity of
the storage locations to be dumped, and editing
of the printed output.

3-19. The ALCOR Illinois 7090/7094 Post Mortem Dump

The ALCOR Illinois 7090/7094 Post Mortem Dump (PM-

Dump) provides an example of improved techniques in the area
of postmortem dumping.

a. The objectives of this effort include the
following:10
1. If the program runs successfully, the

execution time must not be increased.

2. Specialized knowledge in excess of what
was needed to write the program should not
be required for understanding the data
proevided by PM-Dump.

3. Events occurriung before the failure that

have a possible influence on its cause
should be recorded in PM-Dump.

3-15

4, All information that is not pertinent to
the determination of the cause of the
failure should be avoided.

5. Information pertaining to specific machine
characteristics should be held to a minimum.

The PM-Dump is not a single program but consists
of several programs, each of which generally per-
tains to one of the various stages of program
processing (translation, loading, execution).

1. During the translation phase the compiler
generates dump information which relates the
object code generated by the compiler to the
original source-language program. This
dump information provides the basis for
failure analysis. Since the information
which relates the source program to the
object code is available only at compilation
time, the compiler must save this information.
The modification of an existing compiler may
be a difficult and tedious task. The dump
information is moved to secondary storage
until later when it is used at dump time. A
loading map is useful but it is not necessary.
Such a map would be helpful in locating the
point of failure and in determining how to
access the proper dump information.

2, At the beginning of program execution, a
short routine indicates to the operating
system where control should be transferred
in the event of an unsuccessful termination.
This is the only routine that slows program

3-16

execution if a dump is requested. The
routine consists of about 100 machine
instructions which set switches in the
operating system or initialize a few error
routines.

At the time of the failure, the operating
system transfers control to a connecting
routine which saves the relevant contents
of memory (the program and working storage
areas) for the main dumping routine. This
routine then calls on the main dumping
routine and passes to it such information
as the type of failure and the contents of
the instruction counter. Because of the
relatively long length (about 3600 machine
instructions) of the main dumping program,
it is desirable to load it into main memory
only after a failure occurs. This is accom-
plished through the use of the connecting
routine.

The main dumping routine coordinates and
analyzes the information made available to
it by the previous routines, and presents
the programmer an analysis of the state of
the program and of its history at the time
of failure. The object code at execution
time is not affected by the dumping routine
except in the case of one call. During com-
pilation all preparations are made for the
dumping process and the analysis is performed
only after the failure has occurred. The
dumping routine provides the programmer
with the following information:

5-17

(a) Lists local information such as names
and values of variables and object codes
which concern the failure point in the
program.

(b) The name of the subprogram or procedure
is listed if the failure polint was not
in the main program.

(¢) A listing of names and present values
of variables is produced beginning with
the block in which the failure point
occurs and proceeding to surrounding
blocks until all blocks in a given
procedure have been processed. Unless
the block terminates in the main pro-
grams, the point from which it was
called is determined and is considered

a new failure point.

3-20. The UNIVAC 1108 Executive Systems

The UNIVAC 1108 executive systems provide for both

1 Snapshot dumps may be

postmortem and snapshot dumps.
initiated when a source language element is processed to
relocatable element form or when relocatable elements are
combined by the collector into an absolute program. Post-
mortem dumps are initiated by a control statement. Dumped
information is written in a diagnostic file, and is read

back for editing after the program being tested has terminated.

Library subroutines write out dumps, save and restore all

3-18

of the program's environment. The snapshot facility may be

employed by

any processor.

3-21. The Snapshot Dump

The selective nature of the snapshot dump is achieved

through the

use of seventeen procedures. These are divided

into three categories - conditional, dump, specification.

The conditional procedures may precede or be
interspersed among a list of dump procedures.
The purpose of the conditional procedures is to
determine when or if dump procedures are to be
activated.

The dump procedure generates a calling sequence
which writes out the information comprising the
desired dump. If no conditional procedures are
used, the dump procedures will always produce
output. These instructions enable the programmer
to select the locations and amount of information
to be dumped.

The specification procedures provide a buffer
area and format specifications. A number of
standard formats are provided by the system and
these would suffice in most cases; however, for
unusual situations, one may define special formats.
An area of core is defined into which information
from tapes or drums is read. The programmer is
also able to save dumps up to a certain point in
execution and then delete them at his discretion.
The overall control of calls to debugging proce-
dures is maintained by two instructions which

3-19

activate or deactivate references made to the
debugging procedures.

3-22. The Postmortem Dump

Each diagnostic routine that is part of the program
is processed serially. A common exit in diagnostic library
routine will check to see if the next instruction is a call
to the diagnostic system. This technique ensures that a
series of calls will not be interrupted by the activities
of another subprogram.

The postmortem dump executive control statement is
used to dump current core memory following the execution of
a task. These dumps may consist of overlay segments, elements,
or specified parts of elements. Several options are available
to the programmer for selecting output format and defining
core areas to be dumped.

3-23. TRACES

A trace is an interpretive diagnostic technique which
provides an analysis of each executed instruction resulting
in a listing of such information as the contents of words
and registers as they are modified and the order in which the
instructions are performed. This technique does not require
recompilation and is particularly useful for the programmer
who i1s having difficuity following the logic flow since the
trace provides a means by which one may follow the course of
a program as it is executed.

3-20

However, a detailed trace producing a line of informa-
tion for each instruction greatly slows down the execution of
the program and generates enormous and excessive listings.
This approach, particularly diastroﬁs on large systems, is
generally discouraged and reserved for use as a last resort,

Another problem associated with the tracing technique
is the lack of flexibility of many systems in that the pro- _
grammer cannot provide his own subroutines for extended usage,
therefore, the system software must provide the capability
for selective or conditional tracing techniques. Because of
the increasing sophistication of both computer hardware and
software, as exemplified by address indexing, indirect
addressing, automatic allocation of relocatable subroutines,
numerous resident monitor and library routines, paging,
chaining, and both manual and automatic overlay facilities,
there are increasing difficulties in following the flow of
a program, so that it is often desirable for the system soft-
ware to have an efficient trace routine available.

3-24. Possibilities for Limiting the Trace

Possibilities for limiting the trace include the

following:

a. Tracing only a single type of instruction such
as storage, loading, arithmetic, branching, index,
shifting, skipping, or in;ut/output instruction.

b. Tracing a combination of thes> specified
instructions.

c. Tracing only address modification.

d. Limiting the number of tracings performed on a

single loop.

3-21

e. Tracing in only selected parts of the program
while other parts run at normal speed.

f. Tracing only a single register or combination
of registers.

3-25. Trappin

As in the dumping technique, the operating system
must assume temporary control from the object program during
that time the diagnostic information is being written out.
This is generally accomplished through the use of hardware
interrupts or interpretive software routines (traps).

The IBM 7090 provides a special transfer trapping
mode which enables the object program to run at normal speed
and to slow down only when a transfer is executed and diag-
nostic information is written out. While running at normal
speed the flow of control passes sequentially from one
instruction to the next, except in the case of a skip after
which it passes to the next instruction. This technique
is particularly useful when one is only trying to establish

the structure of the program.

3-26. Static Trace

A static trace technique was developed by the Mitre

12 It is referred to

Corporation for use on the IBM 7090.
as the Masked Search Program. Through the use of specifi-
cation cards, the programmer specifies a mask and a block
of storage to be searched by the program. The Masked Search
Program then lists the locations that are in accordance with

the specification cards. An address mask may be used to

3.00

identify all locations that are related to a particular entry
point in a subroutine; after obtaining a list of the locations
having this entry point as their address, a listing of the
storage area being searched would normally tell where in

the search area the subroutine is being entered. Through the
use of an op-code mask the programmer can locate all instruc-
tions which change memory. One may also determine how certain
storage locations are used.

3-27. Improved Approach to Tracing

An approach increasing the speed and efficiency of
trace techniques is presented in a paper by Eugene I. Grunby.13
This approach is basically an attempt to allow the programmer
to exercise his skill and ingenuity in developing the trace
routine, and to provide flexibility in the selection of

subroutines thereby eliminating unwanted processing.

The method of allowing for this flexibility in
selecting subroutines is based on the use of a single trace
routine which makes available the same basic information to
each of a number of subroutines. The basic information pro-
vided by the trace routine generally includes the origin
and destination addresses that represent a change in sequen-

-

tial addressing. This approach enables the subprograms to
be independent. A set of subprograms each of which serves

a specific function may be developed. Each of these sub-
programs may call another, thus a composite of functions can
be selected to meet task requirements. The programmer is
able to select standard subprograms in any combination or

he may construct his own.
Mr. Grunby's approach also includes a method of

eliminating excessive and useless printout. The first step
is to eliminate all but the most essential information, the

3-23

addresses or origin and destination involved in a branch
instruction. A second step involves the use of a cyclic
table. Trace information is stored in a core table and is
used for a selective listing at the end of the job, but
because of the limitations of memory available, the trace
information is stored on a cyclic basis, overlaying from the
top to bottom. Options should be provided to allow the pro-
grammer to select the length of the table and make the most
efficient use of this limited storage area. Thirdly, use of
format options or other options which maximize output on the
printed line and that are generally supplied by most systems
should be employed when the table is being listed.

Among the most significant applications for the tracing
technique just described (as implemented on the UNIVAC 1107)
are the following:1

a. Dumping of preselected memory locations at the
time of each traced instruction.

b. Continuous testing for branches to invalid
destinations, and initiate an error routine when

the event occurs.

c. Continuous testing to determine if and when an
instruction or I/0 operation is exceeding
storage limitations and which one is at fault,
and initiation of an error routine when this
event occurs.

d. Computation of the distribution of operation
codes in executing program; it may at the pro-
grammer's request include library and resident

monitor routines.

3-24

e. Continuous detection and recording of points
where characteristic overflow, characteristic
underflow, divide overflow, occur.

f. Combinations of the preceding applications.

3-28. The SEFLO Tracing Technigue

SEFLO, SEquence-ELOw,.”

described in a paper by Abrom Hisler. This technique may
be used either for FORTRAN V or SLEUTH II on the UNIVAC
1108. SEFLO enables the programmer to follow changes in

a tracing technique, is

contents of selected registers and storage locations. The
package consists of two subroutines and the sequence cards
which call for the contents of trace whenever requested
during running of the object program.

3-29. DYNAMIC DEBUGGING

Tracing and dumping each has its advantages and limi-
tations. Any concept that employs the advantages of each in
a single technique can be referred to by a number of titles,
but for the purpose of this discussion shalil be referred to
as dynamic debugging. This concept implies that the process
takes place as the program is in progress and that a certain
degree of analysis is performed, producing diagnostic informa-
tion in addition to a listing such as that produced by traces

and dumps.16

The basic concept of dynamic debugging is simply
to provide the programmer with a snapshot-type dump each time

that predefined criteria are met.

3-25

The main restrictions placed on dynamic debugging are

the resultant size of available memory and the ingenuity required

of the programmer writing the analysis program. The following

is an illustrative list of the diagnostic information this technique

may provide.

a.

17

Contents of the location counter, showing the
current location of the program.

Contents of all other control and arithmetic
registers along with the status of such things
as overflow indicators.

Contents of certain memory locations or blocks
of locations. The option to specify mode and
format may be desirable; the locations and
formats are specified in the debugging program
and formats are likely to change from one point
in the program to another.

A record of the occurrences of a certain condition,
as tallied in a counter. Through the use of

such a counter, parameters may be specified for
various tests, i.e., listing will be produced

a certain number of times or not produced until
after the condition has occurred a specified

number of times.
A record (desirable under certain circumstances)

of a specified number of the last executed
branches.

3-26

3-30. FORTRAN Debugging Languages

Since FORTRAN was used on the IMP-F project and is
particularly applicable to this type of programming, it is
well to consider more specifically those debugging aids
associated with FORTRAN. Since the compiler naturally checks
for simple clerical errors, and since the FORTRAN language
is essentially closed with respect to vocabulary, syntax,
and structure, the compiler is able to check the basic tests
outlined in discussions of preliminary testing.

3-31. One FORTRAN Debugging Language

Since earlier FORTRAN compilers did not include an
independent debugging facility, this often forced programmers
to rely on the machine language for diagnostic purposes. A
debugging language in a FORTRAN format is now available.18
This language was designed so that reference may be made to
specific statements within the body of the FORTRAN program
without becoming an actual part of that program. Many of
the statements in the FORTRAN language itself such as GO TO,
CALL, RETURN, and STOP are included in this system. Much
use is made of subroutines. Conditional situations are
particularly applicable to the use of logical IF statements.
The DUMP statement provides a convenient method for printing
out information when there are no particular format require-
ments. The DUMP statement, much like the FORTRAN READ and
WRITE statements, specifies a list of information to be
listed; these specifications may be within the statement or
in another statement referenced by the DUMP statement.
Through the use of a Hollerith field or quotation marks one
may provide notes or messages with the information listing.

3-27

The LIST statement enables one to reference the same
information by more than one DUMP statement without repeating
a list with each DUMP statement. When necessary one may dump
the entire program with the statement LIST PROGRAM. One may
cause dumps at certain intervals, thus limiting the amount
of output through the use of an ON statement.

A single card must proceed each debugging request or
group of debugging requests. This card may set maximum limits
on the number of requests honored, regardless of type and the
maximum number of lines that may be printed, all other diag-
nostic information being lost. This control card almost forces
the programmer to set explicit limits on his debugging request.
However, the 1limit control features may be left off of the
control cards; thus, no upper bounds are set.

Since this FORTRAN debugging system allows the execu-
tion of a program composed of many parts and having been
compiled separately, it is necessary to specify not only which
statements are to be affected, but in which subprogram (functiomn
or subroutine) those statements are to be found. Each sub-
program is referenced by its name. A code is used to indicate
that there are no more debugging requests.

3-32. DIAGNOSE, Another FORTRAN Debugging Language

DIAGNOSEL?

detect the following three common errors which occur during

is a debugging program that is used to

the execution of FORTRAN-63 programs.

a. Erroneous subscripts.
b. Undefined variables.
c. Erroneous DO-loop parameterxs.

3-28

When one of the above conditions occurs during the
execution of a program, operation is halted and an error
message written on a standard outpu. unit and an error
routine is activated for dumping purposes. The error message
is composed of a statement number, variable name, and type
of error.

The input when operating with DIAGNOSE consists of
source decks, binary decks, and data. DIAGNOSE produces a
new souce deck by inserting calls to certain library subrou-
tine in the original source deck. The logical flows and the
program results are in no way affected up to the point at
which the error occurs.

DIAGNOSE makes two passes through the source deck,

as follows:

a. The first pass produces four lists and outputs
part of the original program along with other
information and a scratch tape. The four lists

are:
1. Arrays and dimensions.
2. Statement numbers.
3. Terminal statement numbers and DO loops.
4. Statement numbers of replacement and CALL
statements.
b. The second pass performs analysis on DO statements,

replacement statements, IF statements, and CALL
statements. During the second pass adjustments
are made on statement numbers to insure that the

flow. of the program remains unchanged. 'For each

3-29

of the above statements, DIAGNOSE may insert CALL
statements to two or more routines that do the

following:

1. Identifies statement currently being checked.
2. Checks subscripts.

3. Checks the value that has been assigned

to a particular variable.
4. Checks variable parameters of a DO loop.

DIAGNOSE produces an intermediate program that will
require approximately twenty percent more memory and roughly
doubles the running time of the original program. DIAGNOSE
requires a compilable program (one that is free of syntax
eTTors).

3-33., BUGTRAN, Another FORTRAN Debugging Language

BUGTRAN20

FORTRAN, The checkpoint method requires nearly exact inter-

is another debugging system that applies to

mediate results which are frequently unavailable; and the
trace routine, as it is commonly used, is cumbersome and

expensive. Thus, BUGTRAN was developed to help overcome

these shortcomings.

a. The BUGTRAN system includes a variable trace,
flow trace, trace of program entries and exits,
snapshot dumps, conditional termination of the
program, and an option to print the comments of
the source program. The option to apply BUGTRAN
to only specified parts of the program is provided
for. The system does not place any requirements

5-20

on the compiler, such as generating symbol tables,
or affecting the operation of the program. A
mechanical means of removing the debugging from
the program is also provided for. The following
is a summary of BUGTRAN features:

1. Check Variables - a list of variables is
specified in a BUGTRAN control statement.
If one of these variables appears on the
left-hand side of an arithmetic substitu-
tion statement or as the index of a DO
statement, 1t will generate a call to the
BUGTRAN output routine.

2. Check Flow - all GO TO, ASSIGN and IF
statements generate calls to the BUGTRAN
output routine.

3. Dump - a statement number along with the
variables to be dumped is specified in a
BUGTRAN control card. The dump is executed
immediately before the execution of the
specified statement. This is accomplished
through a generated call to the output
routine.

4, Check Entries - a call is generated to the
output routine each time that a SUBROUTINE,
FUNCTION, END or RETURN statement is
encountered.

5. Print Comments - all comments generate a
call to the BUGTRAN output routine, causing
the comment to appear in the output.

5-31

6. Terminate - a statement number and a con-
ditional IF clause are specified on a BUGTRAN
control card. The condition is tested
immediately before the execution of the
specified statement, and if the condition
is satisfied the program is terminated.

b. A syntax table approach is used to interpret the
FORTRAN and BUGTRAN statements. A syntax table
is first used to interpret the BUGTRAN control
cards. Another syntax table is then generated
based on the type modifications specified by the
control card to process the FORTRAN statements.
Only those FORTRAN statements which are specified
are provided for in the syntax table. The major
advantages of the syntax table are the following:

1. It is possible to use the same scanner to
recognize the various types of statements
by merely changing the syntax tables.

2, Changes in the source language require

modification of the syntax tables only.

3-34., TESTRAN, IBM System/360

3-35. Introduction to TESTRAN

TESTRANZI, or test translator, is a facility offered
by the IBM System/360 Operating System. TESTRAN aids in
detecting faulty logic by providing printed information con-
cerning the actual operation of the program. This facility
describes the changing contents of storage areas, registers,
and control blocks, and shows the manner in which control
flows from one group of instructions to another.

3-32

Requests for TESTRAN services are coded in a TESTRAN
source module. Each of these statements is a coded TESTRAN
macro-instruction, which is replaced with a series of con-
stants by the assembler. 1In effect, these constants are a
control statement that directs the TESTRAN interpreter to
perform a specific operation. The decision to perform the
next sequential macro-instruction or a logical branch to
another macro-instruction is determined by the operation
being performed.

3-36. Procedure

The structure of a TESTRAN statement resembles that of
a basic assembler language statement. Every statement includes
an operation code and one or more operands. A symbolic name
may precede the operation code and a comment may follow the
operands. The operation code and first operand combine to
define the type of operation to be performed and are used as

generic names for statements.

a. The general functions of TESTRAN statements are
the following:

1. Recording functions which provide dumps and
traces of the problem program.

2. Linkage functions which control linkage to
the TESTRAN interpreter.

3. Decision-making functions which provide
condition testing and condition branching.

4. Branching functions which provide uncondi-
tional branching and subroutine capabilities.

3-33

5. Assignment functions which control values
of variables in the problem program and of
special variables used in decision making.

During execution, TESTRAN is able to test for
predefined error conditions and take corrective
action when necessary. Usually, after corrective
action is first taken, the final results of the
program are still erroneous, but continued pro-
cessing would permit the possibility of finding
the additional errors.

The TESTRAN statements are combined with the pro-
gram to be tested by either of the following
methods:

1. The TESTRAN and the problem program source
modules are assembled together and result

in a single module.

2, The TESTRAN and the problem program source
modules are assembled separately, resulting
in separate object modules; these are then
processed by the linkage editor to form a
single load module.

The single load module is then loaded and executed.
Requests for testing services are interpreted by
the TESTRAN interpreter which is a part of the
control program that receives control during
program interruptions. Test information along
with control information copied from the unloaded
form of the load module is placed in a TESTRAN
data set by the TESTRAN interpreter.

3-3k

e. The TESTRAN editor prints the test information
in the form of dumps and traces. Like the assembler
and the linkage editor, the TESTRAN editor is a
processing program that is executed as a job step.
It puts test information into a meaningful symbolic
format by using control information copied from
the load module. This control information includes
symbol tables and a control dictionary for each
object module that is part of the load module.
Both the control dictionary, which is produced
as a standard feature of the assembler, and the
symbol table, which is an optional feature of the
assembler, are placed in the load module as an
optional feature of the linkage editor.

3-37. The "Rip Stopper' Method

A major part of the conventional debugging effort
rests in going back from that point at which the error mani-
fests itself to its point of origin. Frequently, the faulty
program destroys the information that would permit tracking
activity. A concept that would permit the identification of
an error condition in time to preserve the necessary diagnos-

tic information is presented in a paper by Mark Halpern.22

The "rip stopper" concept, presented by Mr. Halpern,
requires a processor that is able to operate in two modes
(debugging and production). During operation in the debugging
mode, the processor would require the following programmer-
supplied information:

a. Minimum and maximum limits, and where appropriate,

increment size for each numerical variable in the
program.

b. Limits within which transfers are legitimate.

-

5-35

While operating in the debugging mode, all computation and
transfer of control would be executed interpretively. If
any limits are violated, action specified by the programmer
is initiated.

Provision should be made for the option to generate,
upon demand, coding that is interpretively executed, like
that produced by the debugging mode, with the purpose of
computing the execution time of the compiled instructions
rather than testing their validity.

The print-out of diagnostic information should be
structured, interpreted, captioned, and ordered so as to
follow the steps taken in normal debugging procedures. Tables
should be in tabular form, character strings in linear form,
numerics in the appropriate external format and base mode, and
labels and comments should be used freely. Parts of a single
logical item that are scattered throughout the memory must
be collected and presented in a unified form.

3-38. The WATCHR III System

An excellent example of a comprehensive debugging pack-
age is the WATCHR 11123
University for the CDC 6600 computer. It has the ability to
provide traces of selected instructions or of all instructions,

system that was developed at New York

of changes affecting selected variables, of flow of the object
program, of changes affecting selected registers, of selected
loads, and of selected subroutine calls. Traps may be provided
on selected addresses, selected locations stored into, selected
addresses loaded from, and selected operation codes. Provision

is made for dumping part of core at any time and anywhere within

3-36

the field length, and all of the user's registers at any time.
The dump may be in octal, integer, floating point, or alpha-
numeric; excessive duplication is suppressed. Error checking
facilities are provided for out-of-bounds jumps, memory
references, arithmetic errors, etc., indefinite and infinite
results, invalid stores and loads, infinite loops, incorrect
values for selected variables. When an error condition is
encountered, a trace of the preceding 600 instructions 1is
automatically given. .The WATCHR III system makes provision
for the user to examine core or registers during the run, and

for recovery if fatal errors occur.

The system will operate on any central processor binary
code, simulates the action of the CPU, and collects information
as directed by switch settings. At any time switches may be
set or unset, selections may be made. Also at any time the
object program may be placed under or removed from under
WATCHR's control.

The following is a summary of WATCHR III features and

options:2
a. Traces:

1. Instruction trace - instructions may be
selected by means of their operation codes
for tracing; any operation code or combina-
tion of operation codes may be selected for

tracing.

2. Register trace - registers in any combina-
tion or order may be selected for tracing.
Thereafter, whenever a selected register
acquires a new numerical value, both the
old and new values are printed out.

3-37

b.

Program trace - the logical flow or sequence
of instructions is made available through
the use of the MAP option. Pairs of
addresses will be printed out periodically.
The occurrence of a branch is indicated with
starting of a new pair of signals.

Memory reference (load) trace - analogous

to the trace of changed locations except that
it provides for a long comment giving the
function served by the variable being loaded.
The purpose of this feature is to enable

the programmer to see how the program under
observation actually operates.

Subroutine call trace - analogous to the
register trace. Return jumps are traced and
space is provided for comments denoting the
purpose of each subroutine.

Traps:

The trap is used to initiate the trap routine.
A trap routine is any instruction or set of

instructions the programmer may wish to execute

if trap conditions are satisfied. Traps always

occur before execution of the instruction in

question. Any number of traps may be set and

they will be able to operate simultaneously.

1.

Trap on operation code - the programmer may
assign the starting address of a trap rou-
tine to any operation code or combination
of operation codes.

3-38

Trap on address - when program control
arrives at a specified address a trap rou-
tine is initiated.

Trap on storage into a specified location -
analogous to a trap on address except that
the addresses selected are locations into
which stores may be made or are expected
to be made.

Trap on load from a specified location -
analogous to a trap on storage into a
specified location except that the address
chosen is to be trapped on when its con-
tents are loaded into a register.

ReEorts:

1.

Snapshot dump - a parameter list is used to
dump current contents of selected locatioms.

Interpreted dump - this dump may be called
on as often as desired and may be in octal,
integer, floating point, BCD, or alpha-
numeric. Provision is also made for giving
an alphanumeric label to each dump.

Reports - these are given automatically when
a fatal error is encountered. Reports con-
sist of the following:

a. Up to 50 most recent branch instructions.

b. Up to 50 most recent return jumps.

3-39

c. Up to 50 most recent stores.:

d. Up to 600 most recent executed instruc-
tions.

A program running under the control of WATCHR III
will take from 40 to 300 times longer. WATCHR III requires
16K of control memory. The number of test runs required in
the preparation of a program should be about 5 times less
with the judicious use of the package. With the employment
of WATCHR III the overall usage of computer time should be
less than or equal to the total computer time used without
WATCHR III. The total program preparation time should be
shortened by a factor of 5 to 10.

3-39, TIDY AND EDIT FOR FORTRAN

Two programs have been developed for the purpose of
editing FORTRAN programs. The employment of such programs
would greatly facilitate future changes in the program and
the debugging of such changes. The correction of errors that
appear after the program has been in operation for some time
would be greatly simplified. The following is a summary of

these two systems,.

3-40, The TIDY Program

TIDY2®

routine, and prepares and punches a new version of the pro-

processes the old FORTRAN program routine-by-

gram. The new program has the following characteristics.

a. Statement numbers are left-justified and in
ascending consecutive order.

3-L0

Only those statements which are referenced by
other statements are assigned statement numbers.

Statement number references are updated to con-
form to the new statement number assignments.

FORMAT statement are collected from within the
body of each routine and placed at the end.

The only FORMAT and CONTINUE statements retained
are those that are referenced within the routine.

Spaces are deleted or inserted as necessary to

ensure uniformity and improve readability.

Comment cards are inspected for comments starting
in the statement number field; if found, they

are right-shifted so as to start in column seven.

Consecutive blank comment cards in excess of two
are deleted.

All statements in each new routine are labeled
in card columns 73 through 79 with a unique
letter-number combination. The alphabetic
character(s) indicate routine, while the number
indicates the position of the statement in the
routine.

Column 80 of each END statement is punched with
a'" - " sign (11 punch). This will permit
automatic page ejection when listing TIDY-
processed routines on machines that have the
"x-skip" feature.

3-41

k. Certain FORTRAN II statements are rewritten as
FORTRAN IV statements.

A number of options are available which enable one to
modify some of the above characteristics. 1In addition to
the editing function, TIDY offers a limited set of diagnostics.
Errors and trouble areas such as missing or duplicate statement
numbers, incorrect parenthesis counts, illegal DO-loop indexing,
illegal statements, and inaccessible parts of the program are
noted. Pseudo-statement numbers are generated when references
are found to nonexisting statement numbers to enable the pro-
grammer to make corrections with a minimum of repunching.
One option provides a list of corresponding old and new state-
ment numbers.

3-41. The EDIT Program

EDIT2®

f, g, and j of TIDY are also performed by EDIT. The major

is very much like TIDY. Characteristics a, d,

emphasis of EDIT deals with the renaming of variables. The
variable names used in writing FORTRAN programs often make
the flow of the program hard to follow. Natural conditions
which are largely responsible for the above condition include
the following:

a. Programmers may use variable names that are
convenient to work with but are devoid of
meaning.

b. Awkward expedient variable names often result

from hasty changes made during the debugging
phase.

542

c. Poor selection of variable names was made
initially, but later, after the program is
almost completed, the programmer arrives at
a greatly improved symbolism that he would
prefer to use.

It is often desirable to change the names of variables
but this would entail an amount of work that is in excess of
the value gained. However, EDIT provides a simple solution
as detailed in source document.

3-42. AUTOMATIC FLOWCHARTING

Recently, various proprietary systems have been put
on the market that aid in debugging the original source pro-
gram and provide documentation, by generating from the source
program a flowchart and diagnostics that give a picture of
the program logic in its earliest stages, even before assembly
if desired, thus facilitating debugging.

3-43. The AUTOFLOW System

One of these flowcharting systems is called AUTOFLOWZS,
marketed by Applied Data Research, Inc. AUTOFLOW can generate
flowcharts directly from source programs written in assemblerx
language, FORTRAN, or COBOL. The input to the computer is
the AUTOFLOW program and the user's source deck (or tape);
the resulting computer printout is a flowchart using standard
symbols (decision, processing, connectors, terminals, etc.),
plus a listing of the cross-reference table, and a listing of
diagnostics (if any). The program comments become a signifi-
cant part of the flowchart.

3-43

This type of flowchart can make instantly visible to
the programmer any errors in missing destinations in branching
instructions, undefined external references, errors in address
arithmetic, etc.

After the initial flowchart has assisted in correcting
the coding, then the programmer has the option of improving
the clarity of the flowchart for final documentation by
repunching and rerunning the deck, adding special chart-
oriented codes to the assembler language, FORTRAN, or COBOL
cards. Through the use of these codes, the level of the

flowchart detail may be made more meaningful.

3-44. TESTING

3-45. PurEoses

Program testing has two basic purposes.29

a. To insure that the program has been coded
correctly and that the coding matches the
logical design.

b. To insure that the logical design matches the
basic requirements of the task as it is
defined in the job specification.

As each segment of the program is developed, rigorous
test data should be prepared and that segment should be
tested. After testing each segment separately, the entire
sytem is ready for testing.

34,

3-46. Problems

The fact that the program is operative and runs to
a satisfactory completion does not insure that all of the
exceptional conditions, and their permutations and combina-
tions, have been tested. The consideration of exceptional
and unusual conditions frequently accounts for a large per-
centage of the program's instructions. Unless one is careful
to provide for these exception conditions in his test data,
it is quite possible to reach the end of the program while
checking out only a small proportion of the program. Because
of the many combinations and permutations of conditions
-inherent in a given program, it is practically impossible
to test all conditions which may actually occur. Thus it
is not uncommon for a program that has been operating success-
fully for some time to fail onme day due to an unusual set of
conditions.

3-47. Logical Tree

The use of a logical tree can be a valuable aid in
selecting the various combinations of input data for testing
purposes. This technique also aids in locating program
errors. The systematic formulation of test data will eliminate
duplication of test situations and will significantly expand
the number of different test conditions. Through the systema-
tic selection of all realistic combinations of input date,
the programmer may test all segments of a given program.

3-48. Maintaining Test Data

It may be desirable to maintain a test sequence that
may be run periodically. One cannot assume that a feature
which worked on one version will work on another. It may

5-k45

also be desirable to provide a set of test data that will

generate most system error diagnostics.31

3-49, Satellite Test Data

Data that are used in testing programs that are to pro-
cess satellite telemetry data are derived from the following

. 32
sources.

a. Data generated manually by the programmer.

b. Data acquired from the satellite during
ground testing.

c. Actual data tapes from previous satellites which
have the same basic telemetry format.

The first two sources have a major limitation in that
the test data produced do not reflect adequately the actuai
perturbations present in telemetry data. The third source
partially overcomes the above limitations but it too is of
limited utility. Often none of the data available from pre-
vious satellites have a suitable format or have been obtained
via the same set of data links as the given satellite. Also
information concerning the specific type and location of noise
perturbations in a given data tape is not available to the
programmer. Thus the program may not detect a particular
perturbation in the data and the programmer will be unaware

of this deficiency.

3-46

3-50. Data Simulation Computer Program

Because of these shortcomings and the necessity of
high reliability, another source of data has been developed -
Data Simulation Computer Program. The benefits derived
from this program include the following:

a. Test data will be provided that realistically
take into account the various specified noise
conditions.

b. An increased degree of reliability other than
achieved through the use of other sources.

c. Time and effort spent in generating test data
is reduced.

d. Reduction in clerical and keypunch errors.
e. Reduce time of testing cycle.
f. Useful criteria for accepting contractor-

produced programs.

The Data Simulation Program33 was written for the
UNIVAC 1107 computer. A high degree of flexibility was
incorporated to provide for differences in telemetry systeas
and formats, varying degrees and types of noise conditions,
variations in experiment-data characteristics, differences
in formats, etc. The user provides a deck of punched cards
containing all definitions and parameters for the simulation
along with user subroutines for special computations. The
primary output is a digital tape which contains the simulated

5-47

test data. A secondary output is a listing of input para-
meters, selected data channel and record printouts, errors
inserted during simulation, and summary statistics for each
simulated file.

3-51. PROGRAM CORRECTION

Basically there are two approaches to program correc-
tion - re-compilation and load-time patching. When a large
program and a small error are involved, re-compilation is
inefficient and is of greater expense than the correction
warrants. Load-time patching does not provide a listing
thus the documentation does not match the card deck. For
the programmer who knows only the higher-level language
there is no choice, he must re-compile. The option is avail-
able to the programmer who has the program listing and knows
the assembly language.

A third possibility for making program corrections
exists.34 This approach employs a miniature assembly pro-
gram, packaged as a closed subroutine, which is loaded with
the object program that is to be corrected. The routine
is activated by the programmer who specifies the input and
output buffers and key words which indicate patching loca-
tions in the input stream. The key-word signals that a
patch location follows; the input stream is diverted to a
work area, where the symbolic language patch is assembled.
When the key word for the end of the patch is encountered,
control will be transferred to the patch or back to the
object program as directed.

Several advantages are incurred through the use of

this subroutine technique. It is faster than either of the
other two techniques and it provides documentation. Another

3-18

advantage over the two conventional methods is that it is
not confined to unconditional load-time changes. It may be
called upon to modify the object program at any time during
the run, and these changes may be made contingent on any
condition that may be tested by the programmer. Several
versions of the same procedure may be tested during one run,
this is-made possible by having the constant availability
of an assembler. The reduced turn-around time can be an
important consideration.

3-52. RESTARTING

An area closely related to testing is that oz
restarting. Often much time and expense may be saved by
allowing for the restarting of a program at various points.
By employing this technique one does not need to start at
the beginning of the program each time an error condition
occurs. The technique of intermittent restarting may be
implemented by incorporating a sequence of checks, perhaps
at the end of each segment. If any of these checks reveals
an error at that point, operations should cease and the
program restarted at the last point that was known to be
correct after correcticns are implemented. In the event
that a precgram is to be restarted at an intermediate point,
due to an error check stop, operator mishap or mackine
malfunctioa, it is rnecessary to save information about the
status of the program at that point. Such information would
include the contents of all memory storage areas, both
internal and external. One approach to saving this informa-
tion is to dump memory at every cneck point, always saving
the last dump. Upon restarting, this iniormation would be

o
relocated.”>”

3-k9

SECTION IV
ON-LINE-DEBUGGING

4-1. ON-LINE DEBUGGING TECHNIQUES

Although the main emphasis of this paper is intended
to be on conventional or batch debugging, some mention of
on-line debugging is in order. The current consensus among
computer professionals is that on-line applications repre-
sent the wave of the future.36 On-line computer activity
probably represents about one percent of the total present
computer activity; however, in five years it may represent
fifty percent and in ten years it may represent nearly all

computer activity.37

On-1line debugging is conducted by a programmer who
is in direct communication with the computer. The type-
writer or teletype is most commonly used. The programmer
makes changes, tests, then again makes changes in a continu-
ous process with quick response from the computer until
satisfactory results are achieved. On small computers or
in the early days of computing when the computer was com-
pletely dedicated to the programmer and his program, the
on-line ("hands-on') mode of debugging was a standard prac-
tice; but now it is not used as much, where programs are
run "remote'" on large computers. However, the arrival of
large-scale time-sharing systems has made this mode of
operation feasible on large computers.

Much of the work done in the area of on-line debugging
has been described only in unpublished reports or passed
on orally. However, an excellent paper by Thomas G. Evans
and D. Lucille Darley pregents a survey of on-line debugging
techniques.38 Included in their paper are some possible
future developments as well as a list of references.

L1

4-2. CRITERIA FOR AN ON-LINE DEBUGGING SYSTEM

The following principles may be considered as good

criteria for an on-line debugging system.

39

Flexible control over the program must be pro-
vided to the programmer. The programmer must
be able to specify this control in terms of
natural units, small and large, of the language
in question and be able to carry this control
down to the finest level of detail.

Using the notation of the language of the pro-
gram the programmer must be able to examine
and "incrementally" modify both data and pro-
gram at any time.

The debugging control language should be
designed so that a minimum of typing is required
and information provided the programmer is com-
patible, concise, and aids rapid comprehension.

Provision should be made for the automatic
updating of the user's symbolic file to reflect
the in-core representation of tne program.

4-3. THE PROGRAMMER~CONTROLLED BREAKPOINT

Perhaps the central notion of on-line debugging is

the programmer-controlled breskpoint.

40 This concept allows

the programmer to specify, generally in symbolic forms, a

point or points in the program at which he wishes to inter-

rupt the flow and return to the debugging routine. Upon

entering the debugging routine, the stite of the active

y-2

registers is stored in order to permit subsequent continua-
tion from the breakpoint. The programmer examines his pro-
gram at this breakpoint and may make any desired changes
before continuing.

4-4, ASSEMBLER-LANGUAGE PROGRAM DEBUGGING: THE DDT SYSTEM

When considering on-1line debugging facilities a
separation may be made between those that deal with the
assembler language and those that deal with higher level
languages.

ppT4? (Digital Debugging Tape) is one of the better
known on-line debugging programs that deals with an assembler-
language program. One of the most important characteristics
of this program is the care devoted to the design of the
typing conventions. Single-letter commands and a structure
in which frequently desired states can be easily reached
from the present state minimize typing and aid rapid inter-
action. Convenient ways of typing contents of a given
register in various formats such as symbolic, decimal, or
octal are also provided. A number of extensions have been
made on the DDT system. The following 1is a summary OI some

of these extensions.42

a. Because DDT can accept instructions in symbolic
assembler-language form, it already nearly
serves as an ''on-line assembler' capable of
processing the on-line writing and testing of
small programs. In conventional DDT, the intro-
duction, in a line of coded input, of a symbol
not previously defined by the programmer results
in an error. Edwards and Minsky have added to
the conventional DDT an "undefined symbol"

4-3

feature. This feature results in a special
symbol table entry. These entries are linked
together and when the symbol is ultimately
defined by the programmer its previous occur-
rences are filled in appropriately.

DDT provides an unlimited freedom to patch a
program. This is accomplished by inserting the
desired coding in some available space, then
planting a transfer to this insertion whenever
desired. Sometimes extensively patched programs
result. The process of editing or cleaning up
such a program is long and susceptible to errors.
At least two attempts have been made to facili-
tate this editing effort.

1. One version of such an editing facility
was developed by Deutsch and Lamson.
In response to a request by the programmer
to insert a specified piece of symbolic
coding, the debugging program performs the
following:

(a) Edits the changes into the symbolic
program stored on the drum.

(b) Assembles the addition into a "patch
area'" of core and automatically links
the resulting code to the main program
by copying instructions and inserting
transfers.

L-L

Thus, the patched binary program in core

is equivalent to the edited symbolic ver-
sion stored on the drum. At the termination
of the debugging session the updated symbolic
program is stored among the programmer's
files.

Another effort to solve the same problem
was developed for the M-460 computer.44

As in the previous approach, the on-line
programmer presents insertions, deletions,
or a mixture of both, written in a symbolic
assembler language, to the debugging pro-
gram. The debugging program performs the
following:

(a) Symbolic changes are stored along
with the original symbolic program.
At the end of the debugging session,
both are edited and the programmer is
provided with an updated symbolic file.

(b) Instead of the patch being made to
correspond with the programmer's
changes, the part of the program
affected by the change is relocated
appropriately in core. This reloca-
tion process is possible only because
the relocation information resulting
from the assembly of the program 1is
collected into a list structure which
is used by the debugging program when-
ever a change is called for and it 1is
then updated accordingly. The list

k-5

structure is also used by the relo-
cation loader. The symbol table
passed by the assembler to the
debugging program must also be
updated each time.

3. Although this approach may be time-consuming,
it has several advantages over the "automatic
patching" approach:

(a) The patched binary and the edited
symbolic program may behave differently
in situations where the location of
words in core relative to each other
is important.

(b) Core may be left in a rather confusing
state which may require relatively
frequently reassembly for readability.

In addition to the flexibility in the placement
and moving of breakpoints provided for in DDT,
a facility which permits the programmer to make
the breakpoints conditional has been added to
some systems. Tests are supplied on-line by the
programmer and are executed when the breakpoint
condition is reached to determine if control 1is
to be turned over to the programmer. Several
systems have implemented the use of ''‘canned
tests.'" Older versions and a few of the newer
versions of DDT provide an option whereby the
programmer can specify a certain number of
times a point must occur before the break can
be executed.

4-6

d. The provision for some form of instruction-by-
instruction tracing may be desirable. Generally
such a feature has been omitted in favor of
breakpoints. Tracing facilities may share
much of the breakpoint machinery. The program-
mer should be able to specify a location in his
program and ask either for control or for a
printing or both whenever a specified point is
reached and associated conditions are satisfied.4S

e. Another desirable but not widely found feature
of current on-line debugging systems is extensi-
bility. Extensibility provides the capability

in terms of available primitives.46

f. An option often found in the DDT system allows
the programmer to conduct a search between spe-
cified limits in core for all words matching
a given word in the bits specified by a given

mask.47

4-5. HIGHER-LEVEL LANGUAGE DEBUGGING

4-6. The LISP System

The concepts or techniques of on-line assembler
language debugging are the same as those employed in the
on-line debugging systems of higher-level languages, tne
systems for higher-level languages are generally better
developed and more widely used.

One well-known on-line debugging system developed
for higher-level languages is the LIS.P48 system. The
following is a summary of some of the features of various

LISP49 systems.

a. Extensive tracing facilities were originally
made available to the on-line programmer. This
feature was later extended and made conditional
in both the MAC and M-460 LISP systems.

b. An editing program, not a conventional text
editor but a program permitting the user to
modify the list in which LISP functions are
stored for interpretation, is provided for on
some LISP systems. The editing feature has
greatly facilitated the ease in making program
changes.

c. Conditional breakpoints which may be inserted
at any point in a LISP function definition were
provided for in some LISP systems. Conditional
breakpoints and tracking make it possible to
use the full capacity of the LISP language for
on-1line composition of the conditions. This
permits relatively simple coding of an elaborate
logical condition for which the counterpart in
assembly language might be quite complex. Greater
selectivity may be achieved by suppressing irrel-
evant tracking and breaskpoints through the
"canning"'" of a few special predicates used in
writing conditions. It is possible to find an
error condition at a breakpoint while running a
test case, call the editor to make a correction,

run the program on a simpler test case to verify

L-8

the correctness of the change, then continue
with the execution of the original test case
from the breakpoint.

d. The MAC and M-460 LISP systems contain both an
interpreter for LISP functions stored as list
structures and a compiler for LISP functions in
symbolic code. These interpreted and compiled
functions may be intermixed. The interpreter
makes implementation of debugging facilities
relatively simple. The insertion of breakpoints
at arbitrary locations is easily implemented
by modifying the list structure corresponding
to the program.

4-7. The QUIKTRAN System

QUIKTRAN50 is a debugging system based on the inter-

pretation of FORTRAN statements. Modifications of the
FORTRAN program are made freely by inserting and deleting
statements. The capability of examining and modifying
variables is provided. A number of modes of tracking are
available. Extensive run-time diagnostics are made possible
by the interpretive mode. The system employs a form of
non-conditional breakpoint capability. The non-conditional
breakpoint means that a statement can be inserted at any
point in the program which, when reached, has the effect of
transferring control to the programmer.

4-8., The Incremental Compiler

The concept of an "incremental compiler" is presented
by K. Lock at the California Institute of Technology.51

49

The basic idea is to compile each program statement separately
and place the resulting code, together with a copy of the
symbolic form of the statement, certain pointers, and other
information, depending on the type of statement, in a con-
tiguous block of core. These blocks are linked together

in 1lists. With the implementation of this concept only
those portions of a program to be changed need to be recom-
piled. Insertions and deletions at the statement level
proceed with modifications of the 1list. The breakpoint
capability occurs at statement level since control is
returned to the monitor between each statement.

L-10

10.
11.

12.

13.

14,
1s.

REFERENCES

ington: CEIR, Inc., 1968) p. 5.

Computer Program Documentation and Debugging (Wash-

Gordan Davis, An Introduction to Electronic Computers
(New York: McGraw-Hill Book Co., 1965) p. 199.

Herbert D. Leeds and Gerald M. Weinberg, Computer
Programming Pundamentals, 2nd ed. (New York: McGraw-
Hill Book Co., 1966) pp. 362, 363.

CEIR, Inc., op. cit., p. 45.

Com uters, (New York: John Wlley and Sons, Inc.
196%5 pp. 404, 405.

Ibid., pp. 413, 414,

J. R. Dingeldine and D. E. Bear, Reference Manual for
the SDC-SHARE Operating System Volume 9 - Debugging

(Santa Monica: System Development Corporation, 1964)
pp. 3, 4, 12, 19.

CEIR, Inc., op. cit., p. 41.

Rudolf Bayer, et al, The ALCOR Illinois 7090/7094
Post Mortem Dump (Illinois: Boeing Scientific
Research Laboratories, 1967), p. 1.

Ibid., pp. 2, 3.

UNIVAC 1108 Executive Programmer's Reference (Sperry
Rand Corporation, 1966), Section 17, pp. 1-15.

G. S. Stoller, Masked Search Program, (Bedford:
Mitre Corporation, 1965), p. 2.

Eugene I. Grunby, An Improved Approach to Trace
Routines, (Greenbelt: Goddard Space Flignt Center,

1965), pp. 1l-4.
Ibid., pp. 3, 4.

A. Hisler, "SEFLO-Sequence Flow, a Program Debugging

Tool," (Greembelt: Goddard Space Flight Center, 1968),

pp. 1, 2.

R-1

16.

17.

18.

19.

20.

21.

23.

24,
25.

26.

27.
28.

29.

30.

Daniel D. McCracken, Harold Weiss and Lee Tsia-Hwa,
Programming Business Computers, (New York: John
Wiley and Sons, Inc., 1959), p. 236.

Ibid., p. 237.

Leeds, op. cit., p. 387.

J. A. Thompson, Diagnose, A Routine to Debug FORTRAN
Programs, (Oak Ridge: Union Carbide Corporation,
1965) .

Earl H. Ferguson and Elizabeth Berner, '"Debugging
Systems of Source Language Level," Communications
of ACM 6, 8 (August 1963), pp. 430-434,

IBM System/360 Operating System TESTRAN (IBM Corpor-
ation 1967), pp. 8-13.

Mark Halpern, "Computer Programming: The Debugging
Epoch Opens," Computers and Automaticn 14, 11
(November 1965), pp. 28, 29.

E. Draughon, WATCHR III, A Program Analyzing and
Debugging System for the CDC 6600 User's Manual
(New York: New York University, 1966).

Ibid.

Harry M. Murphy, Jr., TIDY, A Computer Code for
Renumbering and Editing FORTRAN Source Programs,
(AIbuquerque: Air Force Weapons Laboratory, 1966).

Forest McMains, EDIT, A FORTRAN Program for Renaming
Variables in a Source Program , (Dover, New Jersey,
Picatinny Arsenal, 1967).

Ibid.

AUTOFLOW Computer Documentation System (Applied Data
Research, Ianc., 1967).

Dick H. Brandon and Frederick Kirch, "Standards for
Computer Programming,'" Computers and Automation
(May 1964), p. 22.

Joan C. Miller and Clifford J. Maloney, "Systematic
Mistake Analysis of Digital Computer Programs,"
Communications of the ACM 6, 2 (February 1963),

pp. 58-62.

31.

32.

33,
34,
35.
36.
37.

38.

39.
40.
41.
42.
43,

44,
45,
46.
47.
48,

49,
50.

51,

CEIR, Inc., op. cit., p. 42.

Bernard G. Narrow and Richard C. Lee, A Generalized
Satellite Telemetry Data Simulation Program,
(Greenbelt: Goddard Space Flight Center, 1966),

p. 2.

Ibid., pp. 1-4.

Halpern, op. cit., p. 30.

Sherman, op. cit., p. 407.

CEIR, Inc., op. cit., p. 48.

Thomas, G. Evans and Lucille D. Darley, On-Line

Debugging Techniques: A Survey (Bedford: Air Force
Cambridge Research Laboratories, 1966).

Ibid., p. 48.
Ibid., p. 39.
Ibid., p. 39.
Ibid., p. 39.
L. P. Deutsch and B. W. Lamson, "DDT Time Sharing

Debugging System Reference Manual," (California:
University of California, 1965).

Evans, op. cit.

Daniel G. Bobrow, et al, The BBN LISP Systen,
(Bedford: United States Air Force, 1967).

Evans, op. Ccit.

T. M. Dunn and J. H. Morrissey, "Remote Computing -
An Experimental System,'" Proceedings SJCC, 1964.

K. Lock, "Structuring Programs for Multi-Program

Time-Sharing On-Line Applications,'" Proceedings
of FJCC, 1965.

R-3

BIBLIOGRAPHY
Books

Davis, Gordon B., An Introduction to Electronic Computers,

New York: McGraw-HilIl Book Company, 1965.

Leeds, Herbert D., and Weinberg, Gerald M., Computer
Programming Fundamentals, 2nd Ed. New York: McGraw-
Hill Book Company, 1966.

McCracken, Daniel D., Weiss, Harold, Tsia-Hwa, Lee,
Programming Business Computers, New York: John
Wiley and Sons, Inc., 1958,

Sherman, Phillip M., Programming and Codlngrchltal Computers,

New York: Johﬁ"W11ey and Sons, Inc., 1963.

Manuals

Applied Data Research, Inc., AUTOFLOW Computer Documentation
System, October 1967.

Deutsch, P. L. and Lamson, B. W,, DDT Time Sharing Debugging
System Reference Manual, Document #30.40.10 (Rev.),
University of Califbrnia, May 1965.

Dingeldine, J. R., and Bear, D. E., Reference Manual for the

California, December 1964,

Draughon, E., WATCHR II1, A Program Analyzing and Debugging
System for the BCD 6600 Tiser's Manual. Report 5%
AEC Comput1n5 and Applied Matnematics Center Courant
Institute of Mathematical Sciences, New York Univer-
sity, July 1966.

IBM Corporation. IBM System/360 Operating System TESTRAN.
Systems Reference Library. Form C28-6648-0 File
Number S360-37. February 1967,

Sperry Rand Corporation. UNIVAC 1108 Executive Programmer's

Reference Manual, 1966.

Reports

Bayer, Rudolf, et al. The ALCOR Illinois 7090/7094 Post
Mortem Dump (AD 660014). Information Sciences
Report No. 3, Information Sciences Laboratory,
Boeing Scientific Research Laboratories, August 1967,

Bobrow, Daniel G., et al., The BBN LISP System. Report
prepared for United States Air Force, Bedford,
Massachusetts. July 1967.

Dunn, T. M., and Morrissey, J. H., "Remote Computing - An
' Experimental System,'" Proceedings SJCC, 1964,

Evans, Thomas G., and Darley, D., Debug, an Extension to
Current On-Line Debugging Techniques, Report by
Air Force Cambridge Research Labs., Bedford, Mass.,
November 1964.

Evans, Thomas G., and Darley, D. Lucille, On-Line Debuggzing
Techniques: A Survey. (AD650016). Report by
Air Force Cambridge Research Laboratories, Office
of Aerospace Research, L. G. Hanscom Field, Bedford,
Massachusetts, January 1967.

Grunby, Eugene I. An Improved Approach to Trace Routines,
(N65-29802, X-545-65-15) Report by Goddard Space
Flight Center, Greenbelt, Matyland. February 1965.

McMains, Forest. EDIT, A FORTRAN Program for Renaming
Variables in a Source Program. A report by Data
Processing Systems Office, Picatinny Arsenal, Dover,
New Jersey, July 1967.

Murphy, Harry, M., Jr. TIDY, A Computer Code for Renumbering

and Editing FORTRAN Source Programs. A report by
Air Force Weapons Laboratory, Kirtland Air Force
Base, New Mexico. October 1966.

Narrow, Bernard G. and Lee, Richard C., A Generalized
Satellite Telemetry Data Simulation Programn. Report
by Goddard Space rlignt Center, Greembelt, Maryland.
November 1966.

Stoller, G. S., Masked Search Program (AD 610062) A Techni-
cal Documentary Report No. ESD-TDR-64-629) Prepared
by Mitre Corporation, Bedford, Massachusetts.
January 1965.

B-2

Thompson, J. A., DIAGNOSE, A Routine to Debug FORTRAN
Programs (N66-23235). Report for Oak Ridge National
Laboratory operated by Union Carbide Corporation
for the U.S. Atomic Energy Commission, June 1965.

Articles and Periodicals

Brandon, Dick H. and Kirch, Frederick "Standards for Computer
Programming" Computers and Automation, May 1964,
Pp. 22-28, 43.

Ferguson, H. Earl, and Berner, Elizabeth, "Debugging Systems
at a Source Language Level," Communications of ACM
6, 8 (August 1963), 43-434,

Halpern, Mark, "Computer Programming: The Debugging Epoch
Opens,' Computers and Automation 14, 11 (November
1965), 28-31,

Lock, X., "Structuring Programs for Multi-Program Time-
Sharing On-Line Applications,'" Proceedings of FJCC,
1965.

Miller, Joan C., and Maloney, Clifford J., "Systematic
Mistake Analysis of Digital Computer Programs,'
Communications of the ACM, 6, 2 (February 1968),
58-62.

Unpublished Material

CEIR, Inc., Institute for Advanced Technology, "Computer
Program Documentation and Debugging,'" Documentation
and Debugging Seminar, Washington, 1968.

Hisler, Abrom. ''SEFLO-SEQUENCE FLOW, A Computer Program
Debugging Tool," Preliminary report by Goddard
Space Flight Center, Greenbelt, Maryland, January
1968.

B-3

APPENDIX

SELECTED DEBUGGING REFERENCES

The following is a selected list of sources that
deal in some way with debugging. Abstracts of many appear
in the Technical Abstract Bulletin Index published by the
Defense Documentation Center (DDC), the Research and
Development Reports abstract journal published by the U. S.
Department of Commerce, the Scientific and Technical Aero-
space Reports (STAR) index published by the National
Aeronautics and Space Administration, and the Computing
Reviews published by the Association for Computing Machin-
ery. Key words and phrases have been noted for some of
the sources. "AD" numbers refer to DDC documents and "S"
numbers refer to STAR documents.

APPENDIX
Books

Davis, Gordon B., An Introduction to Electronic Computers,

Leeds,

New York, McGraw-Hill Book Company, 1565.

Herbert D., and Weinberg, Geraid M., Computer
Programming Fundamentals, 2nd Ed., New York, McGraw-
HiI1l Book Company, 1966.

Pages 358-394

Program testing, preliminary testing, assembly
output, test cases, philosophy of segmentation,
aids to testing, SHARE (DB) IBM 7090, dumping,
conditional debugging macros, tracing, program
testing, program testing in FORTRAN, FORTRAN
debugging system

Library of Congress 65-21588

McCracken, Daniel D., Weiss, Harold, Tsia-Hwa, Lee,

Programming Business Computers, New York, John
Wiley and Sons, Inc. 1959.

Randell, B., and Russell, L. J., ALGOL 60 Implementatiomn,

Scott,

A.,P.I.C. Studies in Data Processing, No. 5,
Academic Press, 1964, xir +418.

Compiler, with error-checking and debugging
facilities

Source: ACM Computing Review
Theordore G., Computer Programming Techniques,

Garden City, New York, Doubleday and Company,
Inc., 1964.

Sherman, Philip M., Programming and Coding Digital
Comguters, New York, John Wiley and Sons, Inc.,

Stark, Peter A., Digital Computér Programming, New York,
Macmillan Company, 1967.

Program debugging

Manuals

Appel, Klaus, Reference Manual for Easy, An Automatic
Programming System for the ALWAC Computer, Report
by Uppsala University, Sweden, October 1963.

ALWAC debugging systems

Deutsch, P. L. and Lamson, B. W.,, DDT Time Sharing Debugging

System Reference Manual, Document #30.40.10 (Rev.),
University of California, May 1965.

Dingeldine, J. R., Reference Manual for the SDC - SHARE
Operating System, Volume 9, Debugging Systen,
Report by System Development Corporation, Santa
Monica, California, December 1964.

SHARE, debugging, SOS macros
AD-456058

Draughon, E., WATCHR III - A Program Ana1y21ng and Debugging
_1§tem for the CDC 6600 - User's Manual, Report by
Courant Institute of Mathematical SC1ences, New York
University, New York, July 1966.

CDC 6600, debugging system
N68-81549
Griffith, E. L., SCF Computer Program Systems Manual Trace

Program Report by System Development Corporation,
Santa Monica, California, November 1963.

Trace, debugging tool

AD-428179

A-k

IBM. IBM 7090/7094 IBSYS Operating System Version 13 IBJOB

Processor Debugging Package. Systems Reterence
Library, (January 1965).

File No. 7090-27
Form C28-63930

IBM. IBM System/360 Operating System Programmer's Guide

to Debugging. File No. S360-20, Form C28-6670-0.

IBM Corporation. IBM System/360 Operating System TESTRAN.
Systems Reference Library. Form C28-6648-0 File
Number S360-37. February 1967.

Sperry Rand Corporation. UNIVAC 1108 Executive Programmer's
Reference Manual, 1966,

A-5

Reports

Ammerman, Anne B., Diesen, Larry R., and Thombs, Herman W.,
Displaytron - A Graphical Display Oriented Conversa-
tional FORTRAN Facility for and IBM 360/40 Computer,
Report by Naval Weapons Laboratory, Dahlgren,
Virginia, July 1967.

Displaytron, on-line, FORTRAN IV, 360/40
AD-656583

Armour Research Foundation of Illinois Institute of
Technology, Advanced Studies of Computer Programming,
Report prepared for U. S. Army Signal Research and
Development Agency, January 1961.

MOBIDIC program debugging systems

AD-251951

Arnold, L. J., 160-A Utility Program Descriptions Milestone
11 160-A Core Dump onto Printer, Report by System
Development Corporation, Santa Monica, California,
December 1963.

Core dump
AD-427900
Barbier, John, and Morrissey, Computer Compiler Organization

Studies, Report by Morrissey (John) Assoclates, Inc.,
New York, May 1966.

N67-40182
AD-658196

Bayer, Rudolf, et al., The ALCOR Illinois 7090/7094 Post
Mortem Dump (AD 660014). Information Sciences
Report No. 3, Information Sciences Laboratory, Boeing
Scientific Research Laboratories, August 1967. :

A-6

Bell Aerosystems Company, Aero-Space Environment Simulation
System (ASESS), Volume III: Program Modification and
Implementation on the Digital Computer, Report
prepared for A.F.S.S., Electronic Systems Division,
Buffalo, New York, November 1964.

FORTRAN IV, snapshot, program checkout
N66-20024
AD-610715

Best, G. C., United Kingdom Atomic Energy Authority, Harwell,
England; Electronics and Applied Physics Division,
AUTOTOGGLE - An Aid to PDP8 Program Debugging,

July 1966.

Debugging program for PDP8 computer
N66-39821

Source: NASA/STAR

Bobrow, D. G., Darley, D. L., Deutsch, L. P., Murphy, D. L.,
and Teitelman, W., The BBN 940 LISP System Interim
Scientific Report, Report by Bolt, Beranek, and
Newman, Inc., Cambridge, Massachusetts, July 1967.

BBN 940 LISP System, tracking, conditional
breakpoints, debugging

AD-656771
N67-36746

Brown, W. S., "An Operating Enviromment for Dynamic-Recursive
Computer Programming Systems,' of VIII(6), June 1565,
pp. 371-77.

Clark, George A., Jr.,"Technical Problems of Simulation
Development,' Report by Defense Supply Agency,
Alexandria, Virginia, 1967.

AD-813899

A-T7

Dunn, T. M., and Morrissey, J. H., "Remote Computing - An
Experimental System," Proceedings SJCC, 1964.

Erickson, W. J., Pilot Study of Interactive Versus Non-
interactive Debugging, Report by System Development

Corporation, Santa Monica, California, December 1966.

Determining economics of different types of computer
systems

Evans, Thomas G., and Darley, D., Debug, an Extension to
Current On-Line Debugging Technigues, Report by Air
Force Cambridge Research Laboratories, Bedford,
Massachusetts, November 1964.

Debug computer program, UNIVAC M-460
AD-168825

Evans, Thomas G., and Darley, D. Lucille, On-Line Debugging

Techniques: A Survey, Report by Air Force Research
Laboratories, L. G. Hanscom Eield, Massachusetts,
1966.

Gildea, Robert A. J., Evaluation of ADAM: An Advanced Data

Management System, Report by Mitre Corporation,
Bedford, Massachusetts, August 1967.

Debugging facilities, suggestions
N68-12069
AD-661273
Grant, E. E., An Empirical Comparisoan of On-Line and Off-

Line Debugging, A Report by System Development
Corporation, Santa Monica, California, May 1966.

On-1line and off-line debugging

AD-633907

Griffith, E. L., Utility Program Descriptions Milestone 11
Memory Dump Routine, Report by System Development
Corporation, Santa Monica, California, May 1964.

Dump
AD-446860

Grunby, Eugene I., An Improved Approach to Trace Routines,
Report for National Aeronautics and Space Admin-
istration, Goddard Space Flight Center, Greenbelt,
Maryland, February 1965.

Trace routines, proposes solutions to excess of
printed diagnostic material, considerably extended
execution time, also provisions for programmers to
provide own coded subroutines, UNIVAC 1107

N65-29802
Source: NASA/STAR

Hisler, Abrom, Propellant Utilization Time Trace (PUTT)
A Documentation Case Study, Report by Telemetry
Computation Branch, Goddard Space Flight Center,
Greenbelt, Maryland, September 1967.

Debugging techniques used on PUTT
I-560-67-399

IBM Corporation, Computer Programming Techniques for
Intelligence Analyst Application, Report No. 1,
Revort by Thomas J. Watson Researcn Center, Yorktown
Heights, -New York for RADC Griffiss AFB, New York,
August 1964.

Automated debugging techniques
AD-605267
N64-29932

A-9

Informatics, Inc., Display Oriented Computer Usage Systen,
Interim Technical Report October 64 - April 66,
Bethesda, Maryland, June 1966.

FORTRAN, on-line, DOCUS
AD-487385"

Jacoby, K., and Layton, H., "Automation of Program Debugging,"
Preprints of papers presented at the 16th National

Meeting of the ACM, Los Angeles, September 5-8,
1961; ACM, New York.

Source: ACM Computing Review

Kramfus, I. R., and Yakushin, Debugging Program for Training

Computers.
N67-27843

Lampson, Butler W., "Interactive Machine Language Programming,"
Proc. AFIPS Fall Joint Computer Conference, Part 1,
pp. 473-481.

SDS 930, macro-assembler and debugging faciiity
Source: ACM Computing Review
Magnuson, Robert A., Extended Use of Macro Assemblers,

Report by Research Analysis Corporation, MclLean,
Virginia, July 1965.

Debugging, techniques
AD-470105
McMains, Forrest, Edit, A FORTRAN Program for Renaming

Variables in a Source Program, lechnical Report by
Picatinny Arsenal, Dover, New Jersey, July 1967.

Edit, FORTRAN IV
AD 659-340

Mitre Corporation, First Congress on the Information
System Sciences, Session 12, Programming Information
Processing Automata, Bedford, Massachusetts, October
1963.

Debugging
AD-422475

Murphy, Harry M., TIDY, A Computer Code for Renumberlng and
Editing FORTRAN Source Programs, Report by AFSC, Air
Force Weapons Laboratory, Kirtland Air Force Base,
New Mexico, June 1966.

TIDY, FORTRAN, editing, renumbering
N67-20677
AD-642099
Narrow, Bernard G., and Lee, Richard C., A Generalized
Satellite Telemetry Data Simulation Program, Report

by NASA Goddard Space Flight Center, Greenbelt,
Maryland, November 1966.

Data simulation program which generates test tapes
used for debugging and testing

Paul, Manfred, and Wiehle, Hans Ruediger, Bayer, Rudolf,
Gries, David, The ALCOR Illinois 7090/94 Post Mortem
Dump, Report by Boeing Scientific Research Laboratories,
Seattle, Washington,

Post mortem dump technique

7090 Algol-60

Stoller, G. S., Masked Search Program, Report by Mitre
Corporation, Bedford, Massachusetts; January 1965.

Masked search program, static trace, debugging or
modifying 7090 program

N65-35592

AD-610062

Sutherland, W. R., On-Line Graphical Specification of
Computer Procedures, Report by Massachusetts
Institute of Technology, Lexington, Massachusetts,
May 1966.

On-Line, Debugging
AD-639734
Sweeney, M. J., 160-A Diagnostic Program (SFCHEX) Milestone 5,

Report by System Development Corporation, Santa Monica,
California, July 1965.

CD6 160A, dump, selective dump, diagnostic program
AD-469872
Thompson, J. A., DIAGNOSE, A Routine to Debug FORTRAN

Programs, 'Report for Oakridge National Laboratory,
Tennessee, June 1965,

DIAGNOSE, CDC 1604, debugging, erroneous subscripts
and DO-loop parameters, use of variables that have
no values assigned to them

N66-23235
Source: NASA/STAR

Yourdon, Edward, "A Debugging Environment for Real-Time
Systems,'" Real-Time Systems Design. Information

and Systems Institute, Cambridge, Massachusetts,
1967, pp. 137-151.

Dynamic Debugging, Real-Time

Source ACM Computing Reviews

A-12

Articles and Periodicals

Apple, C. T., "The Program Monitor - a Device for Program
Performance Measurement," Proc. ACM 205h National
Conference, pp. 66-75.

IBM, evaluating software performance
Source: ACM Computing Review
Barron, D. W., and Hartley, D. F., "Techniques for Program

Error Diagnosis on EDSAC 2," Computer Journal, 6,
1 (April 1963), 44-49.

Post-mortem, trace, irrevocable stops on mistake
conditions

Source: ACM Computing Review
Boehm, E. M., and Steel, T. B., Jr., "The SHARE 709 System:

Machine Implementation of Symbolic Programming,"
Journal of ACM, 6, 2 (April 1958), pp. 134-140.

Brandon, Dick H. and Kirch, Frederick '"Standards for
Computer Programming,' Computers and Automation,
May 1964, pp. 22-28, 43.

Chapin, Ned, "Logical Design to Improve Software Debugging -
a Proposal," Computer Automation, 15, 2 (February 1966),
Pp. 22-24.

Hardware- features to assist programmer, console
trace, small memory snapshot, elaboration of rumn
and dump

Source: ACM Computing Review

Constantine, Larry L., "Design and Reduction of Bugs,"
Concepts in Program Design, pp. 115-126.

Rules of program design to help reduce bugs

Source: ACM Computing Review

A-13

Evans, Thomas G., and Darley, D. Lucille, "Debug - an
Extension of current on-line Debugging Techniques,
Communications of ACM, 8, 5 (May 1965), pp. 321-326.

Debug, checkout of assembly language programs,
UNIVAC M-460, RAP, TIC, STUD prelocating assembler,
typewriter program for inspection of memory and
control of program execution, text-editing

Source: ACM Computing Review
Ferguson, H. Earl, and Berner, Elizabeth, '"Debugging Systems

at a Source Language Level," Communications of ACM,
6, 8 (August 1963), pp. 430-434. '

FORTRAN preprocessor called BUGTRAN traces, dumps,
output format which inciudes symbolic variable names
and statement numbers

Source: ACM Computing Review
Greenwald, I. D., and Kane, Maureen, '"The SHARE 709 System:

Programming and Modification,'" Journal of ACM, 6,
2 (April 1959), pp. 218-133. '

Halpern, Mark, "Computer Programming: the Debugging Epoch
Opens,'" Computer Automation, 14, 11 (November 1965),
pp. 28-31. -

References, debugging, arresting, identifying,
correcting, examples

Source: ACM Computing Review
King, Claude F., "Computer Programming for Control of Space

Vehicles,'" Peaceful Uses of Automation in Cuter Space,
pp. 409-414. ' "

Source: ACM Computing Review

Lietzke, Majo?ie P., "A Method of Syntax - Checking ALGOL 60,"
Communications of ACM, 7, 8, (August 1964), 475, 478,

SHARE ALGOL 60 TRANSLATOR, Syntax checker used as
diagnostic, compiler, recursive subroutines, error
recovery, error correction

Source: ACM Computing Review

A-1k

Lunelli, M., and Macchi, V., "Technichee tempi per la messa
a punto dei programmi (techniques and times for
program debugging)," Atti del convegno sui linguaggi
simbolici di programmazione, AICA - January 1962, 90-95,
(Italian).

Debugging, time requirements

Source: ACM Computing Review

McCarthy, J., Boilemn, S., Fredkin, E., and Lickliaer, J.C.R.,
"A Time-Sharing Debugging System for a Small Computer,"
Proc. AFIPS 1963 Spring Joint Computer Conference,

Detroit, Michigan, May 1963.

Typewriter-console command, time-shared, TX-O computer
at MIT, interrupt and examine any location in memory

Source: ACM Computing Review
Miller, Joan C,, and Maloney, Clifford J., "Systematic Mistake

Analysis of Digital Computer Programs,' Communications
of the ACM, 6, 2 (February 1963), 58-62.

Perlis, A.J., "Construction of Programming Systems Using
Remote Editing Facilities," Proc. of IFIP Congress 65,
Vol. 1, 229,

Description of Debugging aids, experimental program-
ming languages

Source: ACM Computing Review
Schwartz, Jules I., Coffman, Edward G., and Weissman, Clark,

"Potentials of a Large-Scale Time-Sharing System,"
Proceedings of 2nd Congress Info. Sys. Sci., 15-32.

Time-sharing, large-scale
Source: ACM Computing Review
Senko, M.E., "A Control System for Logical Block Diagnosis

with Data Loading,'" Communications of the ACM, 3, 4
(1960), 236-240.

Smith, Lyle B., "A Comparison of Batch Processing and
Instant Turnaround,'" Communications of ACM, 10, 8
(August 1967), 495-500.

Instant turnaround, Syntax correction, provides
a more nearly correct program when logic debugging
begins

Source: ACM Computing Review
ver Steeg, R. L., "TALK - a High-Level Source Language

Debugging Technique with Real-Time Data Extraction,”
Communications of ACM, 7, 7 (July 1964), 418-419.

Technique for extracting the values of specified

data during the execution of a compiled program,

extracted data is processed by a separate editing
program producing an annotated listing

Source: ACM Computing Review
Weinberg, G. M., "An Experiment in Automatic Verification

of Programs," Communications of ACM, 6, 10 (October
1963), 610-613.

Common mistakes in writing and keypunching, FORTRAN
symbolic debugging system, multiple access computer
system

Source: ACM Computing Review
Wengert, R. E., "A Simple Automatic Derivative Evaluation

Program,'" Communications of ACM, 7, 8 (August 1964),
463-464.

Debugging tool for programs which contain derivatives

Source: ACM Computing Review
Related to paper by R. D. Wilkens

Wilkens, R. D., "Investigation of a New Analytical Method
for Numerical Derivative Evaluation,'" Communications
of ACM, 7, 8 (August 1964), 465-471.

Numerical derivative evaluation uses as a debugging
too, detecting and pinpointing overflow

Source: ACM Computing Review
Related to paper by Wengert, R. E.

Wilkerson, M., "The JOVIAC Checker, an Automatic Checkout
System for Higher Level Language Programs," Proc.
Western Joint Computer Conference, Los Angeles,
California, (May 9-11, 1961), 397-404.

Recording test results

Zimmerman, Luther L., "On-Line Program Debugging - A Graphic
Approach,'" Computers and Automation, 16, 11 (November
1967), 30-3%F.

GBUG an on-line assembly language debugging program,
graphic terminals

Source: ACM Computing Review

Unpublished Material

C-E-I-R Inc., Institute for Advanced Technology, ''Computer
Program Documentation and Debugging,'" Documentation
and Debugging Seminar, Washington, 1968.

Hisler, Abrom, "SEFLO - Sequence Flow A Computer Program
Debugging Tool," Goddard Space Flight Center,
Greenbelt, Maryland, January 1968.

NASA-Langley, 19698 — 8 CR-1397 A-17

