*¥* Preliminary Draft ***

Dandelion Hardware Manual

Date: March 1982
Version: 2.2
Prepared by:  Ron Crane, Dan Davies, Robert Garner, and Roy Ogus

Release Stage: DRAFT/released/issued

XEROX

Office Products Division

Systems Development Department
3450 Hillview Avenue, Palo Alto, California 94304, USA

This document contains proprietary information and is for internal Xerox use only.



Dandelion Hardware Manual

Table of Contents
1.0 Overview

2.0 Central Processor (CP)
2.1 Introduction
2.2 Microinstruction Format
2.3 Registers and Data Paths
2.3.1 R and Q Registers and 2901 Data Paths
2.3.2 External 2901 Data Paths
.3 U Registers
4 RH Registers
.5 Instruction Buffer
.6 stackP Register
.7 pc16 Register
.8 Timing Limitations
2.4 Main Memory Interface
2.4.1 Real Address References
2.4.2 Virtual Address References
2.5 CP Control Architecture
2.5.1 Conditional Branching and Dispatching
2.5.2 Instruction Buffer Dispatch
2.5.3 Mint Register
2.5.4 Link Registers
2.5.5 Microcode Traps
2.5.5.1 IB-Refill Traps
2.5.5.2 Error Traps
2.5.6 Task Scheduling and Switching
2.5.6.1 Task Allocation

2.3
2.3
2.3
2.3
2.3
2.3

5.6.2 Click Allocation
5.6.3 Click Bandwidth Utilization
5.6.4 Tasking Hardware
5.6.5 Display Bank Interference
2.5.6.6 Kernel Task
2.5.6.7 CP-IOP Interface
2.6 Input/Output Interface
2.6.1 CP-IO Interface
2.6.2 Controller Latencies
2.6.3 10 Controller Design Rules
2.7 Example Microcode
2.8 Footnotes

2.
2.
2.
2.

3.0 Memory System
3.1 CP Interface Summary
3.2 Error Correction
3.3 Memory Timing
3.4 Row and Column Addressing

28

48



4.0 Display Controller and Clocks
4.1 Overview
4.2 Display Functions
4.3 Display Controller Hardware

4.4 Partitioning Functions Between Hardware and Microcode

4.5 Microcode - Hardware Interface
4.6 Using the Controller

4.7 Display Hardware Implementation
4.8 Clock Generation

5.0 Rigid Disk Controllers

5.1 Shugart Disk Controllers
5.1.1 Overview
5.1.2 Constraints
5.1.3 Microcode - Hardware Interface
5.1.4 Detailed Register Description
5.1.5 Microcode Usage

5.1 Trident Disk Controller

6.0 Ethernet Controller

7.0 LSEP Controller

7.0 Magnetic Tapé Controller

9.0 Input/Output Processor (IOP)
10.0 Backplane

11.0 Acknowledgements and History

58

72

92

92

92

92

95



1.0 Overview

This manual describes the Dandelion (Series 8000 Processor) hardware. There are no page-by-page
descriptions of schematic diagrams nor listings of PROMS and microcode. This manual should help
the microcoder understand the hardware and help the trouble-shooter understand the schematics. It
may also be used to get a general understanding of the machine.

-This introductory chapter looks at the major characteristics of each controller and processor in the

system. The logical boundaries of the Dandelion are shown in Figure 1. There are two main
processors: the Central Processor (CP) and the Input/Output Processor (I0P). The CP controls the
high bandwidth periperal devices and emulates the target language (e.g., Mesa). It is a high
performance, microprogrammable processor which has been optimized for cost. The IOP, on the
other hand, supervises the lower-speed devices, such as the mouse and keyboard, and controls the
booting process. It is also used as a base to run diagnostics. It employs a traditional microprocessor
(8085) in an 8-bit bus architecture. To the CP, the IOP appears as another high bandwidth 170
device.

Central Processor

The CP executes microcode to control device controllers and main memory. Only the CP can
access main memory. When devices request CP cycles (they get three per request), they can read or
write one memory location. The processor, together with the memory, are time-division multiplexed
among the device controllers in a round-robin fashion. The idea is that the (expensive) high-speed
processor is shared among the (inexpensive) controllers. The controllers can be made very small
because the round-robin nature of the memory access mechanism guaraniees maximum memory
* latencies compatible with the controller bandwidths (unlike general bus architectures).

Time is divided up into rounds, where a single round consists of five slots, called clicks. Each click
is preallocated to one (or more) of the device controllers. If a controller desires CP service or wants
to transfer a word to or from memory, it raises its wakeup request and the CP will schedule the
controller’s microcode task for the next click in the round allocated to the device. If a controller
does not desire any service. the click is allocated to the language Emulator instead. It can be seen
that the CP hardware must preserve the microprogram counters for each of the controller’s tasks.

Clicks are further divided into three cycles: exactly one microinstruction is executed in each cycle.
Memory requests must always be started in the first cycle (c1) of a click, thereby guaranteeing the
memory’s latency for the controllers (and eliminating the need for more interclick state). A cycle is
137 nanoseconds in duration, thereby setting the memory access time at 411 nanoseconds (39
Mbits/sse)c). The simplest and most frequently executed Emulator instructions complete in one click
(411 nS).

The CP executes microinstructions. from a 4K-by-48-bit, writeable control store. The heart of the
ALU is implemented with a high-speed 2901 bit-slice processor. There -is an auxiliary register file
of 256 words and a device used to rotate words 4, 8, or 12 bits. Every 48-bit microinstruction
contains the 12-bit address of the next instruction. Branching and dispatching are accomplished by
oring condition bits into the "next address" field.



Dandelion Hardware Manual

Data Rate .
(Mbits/sec) Main Memory
,1, A
Main Bank {
Central Processor | 4 g, 40 i
_Control | (CP) Y Bus. j
Clocks I Display (I g S
- Bank g o
- Display o
Controller
\/
Rigid Disk <
> Controlier 43/7.1/96 ::Rigid Disk
% Ethernet
Ethernet 10
Controller Transceiver
LSEP or MagTape a7 Fem———— -
Controller LSEP 1 MagTape !
Lecmm = J
Input/Output
Processor (IOP) s
CS BRd/W. -
Boot i I I | [
Floppy Keyboard Maintence Time- Host /| RS232
|oP Disk Bell W Panel of-Day Address |’ { RS368
Bus I I I
RAM L]
— (16K)
ROM
1 (6K)
|___[DomaA
Control ' .
Figure 1. Dandelion Overvew
.| Baud
Gen,
L1 Alto I
Umbilical




Overview 3

Main Memory

The Dandelion memory system is composed of two cards: the control card (MCC) and the storage
card (MSC), They each come in two versions; one using 16K chips, the other using 64K chips.
The versions of the cards using 64K chips are called MCC-X and MSC-X. Thus, the total memory
size can vary) from 64K to 768K words. The maximum size of real memory is 1024K words (20-bit
real address).

The memory system has some hardware support for virtual addresses. The mapping between real
and virtual page numbers is stored in a linear array (the Map) located in the real address space.
The maximum size of the Map is 16K words for the MCC (22-bit virtual addresses) and 64K words
for the MCC-X (24-bit virtual addresses). Smaller virtual addresses spaces can be used, reclaiming
real memory space. :

The memory system is logically divided into the display bank and the main bank. The display bank
is the lowest 64K of memory and has two ports: one for the display controller and one for the CP.
When the display is actually on and displaying bits, accesses to the display bank from the CP are
reduced by 47%.

The memory is single-bit corrected and double-bit error detected. A double-bit error encountered
in the Emulator causes the Emulator microcode to trap. Double-bit errors caused by 1/0 task
microcode are recorded but cause no traps. The display controller runs the display bank at a faster
rate than the CP and receives uncorrected data.

Display and Clocks

. The display controller reads words from a 51K-word bitmap in the memory display bank and -
produces video and synch signals for the 17" monitor. The screen has an active image of 808 lines
by 1024 bits. A frame (an even followed by an odd field) is repainted 38.7 times a second. The bit
rate to the monitor is 5SIMHz (19.6 nS). The phosphor is P40—white, with a long decay time
(used in the Alto).

The controller can divide each scan line into up to seven segments. The bits shown in each
segment may come from a different line in memory. Thus, windows can be scrolled vertically
without having to move the bits of the window in memory. The cursor is implemented in the
microcode as a 16-by-16 window (although it can be any size). In every frame, the microcode ors
the cursor with the appropriate words in the active region, these words are written into a temporary
area (in the display bank), and then this temporary area is used as the cursor window.

A total of 54 lines of top and bottom border are displayed. Each line consists of a repeated pattern
generated from the controller border pattern register which can be loaded from software. There are
also 32 bits of border on each end of every visible line. The display controller hardware
orchestrates the horizontal line events, while the display microcode decides when the line state
should change.

The display microcode also has the task of refreshing main memory. Two refresh pulses are
required for each 28.8 psec scan line with the normal controller communications. Furthermore, it
maintains a 32-bit counter, incremented once per scan line, which can be used by the Emulator to
measure short-duration events. The display microcode can also wake up an Emulator process at an
arbitrary scan line in every field.

The CP’s clocks are derived from the display clock: the display’s bit period of 19.59 nS is
multiplied by seven to give the CP’s cycle time of 137.14 nS. There are exactly 14 rounds per
horizontal display scan line.



4 Dandelion Hardware Manual

IOP

The Input/Output Processor (IOP) is an 8085 based processor which services the low speed 1/0
devices, can boot the CP, and read or write its microstore and task program counters. It is also a
convenient place from which to exercise the CP and the high speed devices (e.g., floppy disk
diagnostic programs). ,

The IOP supports the following low speed devices: (1) IBM-compatible floppy disk with both
single and double density and double sided diskettes; (2) Star Level 4 Keyboard interface. mouse
interface, and simple tone generator to drive the speaker in the keyboard; (3) TTY port interface
(RS232C DCE) to connect a Lear Siegler terminal or Diablo 630 character printer; (4) the
maintenance panel (4-digit 7-segment display plus 2 boot buttons); (5) the time-of-day clock; (6)
the CP control store and task program counters; (7) the CP-IOP communication port; (8) the Alto
umbilical debugging connection; and (9) the Ethernet host address PROM. In addition, located on
the Option card, the IOP supports (10) the LSEP UART and baud-rate generator and (11) a Z80-
SIO with RS232C and RS366 interfaces. The 48-bit Ethernet host address is located in a prom on
the IOP.

The IOP has 16K bytes of RAM and four, socketed EPROMS for 8K bytes of read-only memory.
The EPROM contains some simple 8085 diagnostics, the basic IOP boot supervisor, and some initial
CP boot microcode for the various sources of boot files (rigid or floppy disk or Ethernet).

The IOP communicates with the CP- via the CP-IOP port. This is a normal set of input/output
registers in the CP's 170 system. IOP task microcode can read or write main memory with
arguments supplied by the IOP through the port. The IOP can supply or accept data in a polled
fashion or with DMA (one byte per 4 microseconds).

The 32-bit time-of-day clock counts seconds based on the 60 Hz power line. The clock continues to
run when the Dandelion is turned off but is still plugged into the wall. This feature is disabled on
current hardware.

Rigid Disks

The HSIO board can operate either a Shugart SA1000 or a SA4000 drive, but not both and not
multiple drives. The two controllers share some common circuitry; a wire in the interface cable
distinguishes between the two types of drives. The SA1000 requires and expects phase encoded
data, whereas the SA4000 does not. Another version of the HSIO card, the HSIO-L, can support
up to 4 Trident T-300 or T-80 drives.

The following table summarizes the formatted capacity, average access time, and bit rates of the
three types of drives: )

drive capacity avg access bit rate
(Mbytes) (msec) (MHz)
SA1004 8.38 80 4,27
SA4008 23.17 75 7.14
T-300 237.8 30 9.6

The SA1000 clock rate (234 nS/bit) is derived by dividing the display rate (51‘ MHz) by 12.



Overview 5

Ethernet

The Ethernet controller contains: a phase encoder (based on a 20MHz crystal), a phase decoder
(Phase Lock Loop), serial-to-parallel and parallel-to-serial converters, a 16-word FIFO buffer, a 9.6
psec counter, a 51.2-usec interval counter, and a state machine to manage the buffer among
incoming and outgoing packets. The Ethernet task requires two clicks per round because of the
high data rate: 1.6 usecs per word. Moreover, the FIFO is required because of the software queue
overhead and the microcode overhead required to check the destination-address field of incoming
packets.

There is a single FIFO and CRC generator/checker shared between input and output. The
controller hardware and microcode, to the extent possible, operate this half-duplex buffer so. as not
to lose packets—an incoming packet has priority over a packet being staged for transmission. The
FIFO c;m hold more than one received packet. There is a "end-of-packet" marker maintained in
the buffer.

The microcode appends packets to an input queue maintained by the Emulator in main memory.
Similarly; it reads from an output queue set up by software. The microcode generates the
retransmission interval when there is a collision (it uses the 51.2-usec controller wakeup when
deferring).

The controller has a special mode (which also requires special microcode) which will Joopback a 15-
word packet. The packet can be sent either through the transceiver or only through the phase
encoder and decoder, thereby bypassing the transceiver and drop cable. In loopback mode, the
CRC checker is also verified with a microcode-supplied checksum.

. LSEP

The Low-Speed Electronic Printer (laser ROS or thermal) co;troller has two parts on the Options
card: a one-word "video" buffer, which is an [/O device controlled by the CP, and an IOP-
controlled UART which is used to send and receive commands and status.

The buffer is a simple two-word, ping-pong arrangement: one shift register is loaded while the
other is supplying data to the printer. The Raven microcode reads words from the display bank
and then zeros them (all in one click) in order to prepare for the next page. The "video" clock is
supplied by the printer. The speed of the command/status UART is set by an IOP controlled
baud-rate generator. :

The one click per round used by the LSEP is also shared with the special Refresh task needed when
the display is off.
MagTape

(to be added)



6 Dandelion Hardware Manual

Configuration

The figure on the next page shows the baseline configuration of the Dandelion using Shugart drives.
The cards measure 11x14 inches. No remote power up or down is included. There is a mechanical,
rocker-type, power switch on the front of the console under a cover.

Two momentary contact pushbuttons are included with a 4 digit maintenance panel under the cover
with the power switch at the front of the machine. One of the buttons (boot) is hardwired to the
8085’s reset line. If you push boot, the 8085 will boot the machine in the default way. If the
second button (alternate boot) is held down while boot is pushed, the 8085 will slowly display a
sequence of numbers in the maintenance panel which refer to alternate booting strategies. When
the user releases the AltBoot button the selected strategy will take place. The strategies include
booting from rigid disk, booting from floppy disk, from the Ethernet, and diagnostic boots. Note
that when the power is turned on, the standard boot takes place without the need to push any
buttons.

Whereas the SA1000 drive fits inside of the main cabinet, the SA4000 requires a separate housing.
If power is lost in the middle of writing a disk page, the page will be lost.



Workstation Configuration

Overview

Base Line Workstation

Unput AC (Line cord) I-él AC Filter '—Z Fuses and Power Switch
: 112.6 VAC I——
Backplane unswitched
slot number shown maint. pnl. power

le

Peripheral Notes:

1. Within console.

DC Power Supply <
5OVAC ovt | |oc

2. Separate housing,
power from console

Connector Panel Notes:

ONOGOLHN 2

D Series 25 Pin Socket
D Series 50 Pin Socket
D Series 25 Pin Socket
D Series 25 Pin Plug

D Serigs 25 Pin Socket
D Series 25 Pin Socket
D Series 25 Pin Socket
Kit

' AC 3. Separate housing,
6 ___r'.s‘ltn:ureag e M o d U' e I Harness Harness separate power
EM CTIRL
5 Memory Control | — Cooling Fans |
0 \ '
System Clacks
) ] ; 2
4 — Display Controller P41 1] LF Display
Rigid Disk Controller P42 ] SA100X (one drive) !
P43 OR
- S — : - E
o — 8 | ] SA4XXX (one drive)
3 Central Processor | Kit Only one rigid disk can be connected
- at one time, SA4xxx kit cables girectly
ap into the Workstation w/connector.
Floppy Controller P11 SA850 1
Maintenance Panel P12 Maint. Pnl./TOD Clk 1
Keyboard Interface P13 2] Keyboard/Speaker 2
1 1 Pointer Interface
Speaker Interface 2
Umbilical Interface P14 — IC socket
(EM/PP/P only) —1 I "
Char. Ptr. Interface P15 13 ] | Character Printer |
(or Aux. Media, or Terminal)
QOntion Tyrie | o
il I 4 R 3
Raven Controller . 4 | aven ' .
2 1 Ethernet Controller |5 | Tranceiver
RS-232-C DTE | 6 RS232 devic 8
S 32-C ooz | 6 | 32 | e \
RS-366 7 ] RS366 device
connector
panel on
rear of
console



2.0 Central Processor (CP)

2.1 Introduction

The Central Processor (CP) controls the high-speed 1/0 devices and the main memory of the
Dandelion. It provides short-latency memory access and ALU service for the integral 1/0
controllers and can emulate the Mesa Processor as defined by the Mesa Processor Principles of
Operation. It is composed of about 160 standard chips and resides entirely on one 11" by 15"
printed circuit card located in slot 3.

This chapter presents the hardware structures of the Central Processor and its interfaces with the ‘
rest of the Dandelion. Another manual, the Dandelion Microcode Reference (DMR), presents the

assembler microcode format and is interspersed with hardware details and examples.!

The CP is a microprogrammed, 16-bit general-purpose computer. The microstore can hold up to
4096 48-bit microinstructions? and can be read or written by the low-speed Input/Output Processor

(IOP). Each microinstruction is decoded and executed in 137 nanoseconds, a cyeled Al
microinstruction operations are completed in one cycle; instruction execution is not pipelined over
several cycles, except that while one is being executed its successor is being read from the
microstore.

Cycles are grouped into clicks, where one click equals three successive cycles labeled ¢1, ¢2, and

¢3. Cycles are always enumerated in order ¢1, ¢c2, ¢3, and then c1 again.* This sequence is never
interrupted or altered: accordingly. both targets of a two-way branch must be specified with the
same cvcle number. (Strictly speaking, this is necessary only if the target microinstructions contain
cycle-dependent operations.) The microcoder's task of aligning instructions so that they execute in
successive cycles is a necessary outcome of the fixed-tasking, click structure. Moreover, when one
desires code which is speed optimized, this structure usually requires the elimination of three
microinstructions instead of one.

While the three microinstructions of a click are executing, a memory read or write can be
performed: the address is sent to the memory in c1, a single data word may be sent during ¢2,
and data is returned from memory in ¢3. A memory operation can only be initiated in cycle 2.

Clicks are grouped into rounds. five successive clicks (numbered 0..4) comprise a round. which is
two microseconds in duration. Each click of a round is permanently allocated to one or more of the
[/0 controllers. If an I/0 controller does not request the service of its corresponding task
microcode, the Emulator-microcode task runs during that click instead of the device-microcode task.
When there is a transition between tasks, the hardware preserves the outgoing task’s microprogram
counter and restores it when it runs again.

The click is a basic microcode time unit: devices and the Emulator are serviced in units of clicks
and the microcode can transfer exactly one memory word in this time. For purposes of
synchronization, the click is an atomic operation. Since a click is 411 nanoseconds in duration, the
maximum memoly bandwidth available through the CP is 40 Mbits/s (2.4 megawords/s).

The CP is implemented using four 2901 bit-slice chips plus external memories and registers. The
2901 provides 17 registers readily accessible to the microcoder, the usual logical and arithmetic
functions, and single bit shifting. .

Available to the microprogrammer and external to the 2901 are four register sets (U, RH, 1B, and
Link), a four-bit rotator, the 1/0 registers and memory, and four Emulator registers (stackP, ibPtr,
pc16, and Mint). There are no task specific registers: all registers can be addressed by all tasks.



2.2 Microinstruction Format

The microinstruction format attempts to strike a balance between some naturally opposing
constraints:  control store width versus control store size, encoding schemes versus decoding
hardware constraints, and coverage of all possible data operations versus exclusion of impracticable
operations. The goal of the format is that frequently applied operations are encoded in the smallest
number of bits. Furthermore, it was designed so that the most important Mesa Emulator and 1/0
operations execute in one click. The format is illustrated and summarized in Figure 2.

A 48-bit microinstruction has three major parts: 2901-control bits, miscellaneous functions, and a
"goto"-address field. The field names are abbreviated as:

rA, rB R registers A and B ‘
asS, aF, aD ALU source address, function, destination address
ep even parity

Cin , 2001 carry input

enSuU enable stack/U registers

mem memory operation

fS function fields selector

X, fy, fZ function fields X, Y, and Z

INIA intermediate next instruction address.

The 2901-control bits occupy the first word: rA, rB, aS, aF, and aD. The "goto" address, INIA,
utilizes 12 bits. INIA is a control-store-destination address unless condition bits, specified by the
previous microinstruction, are ord into it, resulting in a branch or dispatch. Thus, every
microinstruction is a potential jump instruction.

The fS field is broken into two subfields: fS[0-1] and fS[2-3]. These control the deciphering of
the fY and fZ fields, respectively. Both the fY and fZ fields_have four possible enumerations as
defined by fS:

The fY field can, depending on fS[0-1]: (1) name a branch or multi-way dispatch, (2) specify a
miscellaneous function, (3) name an 1/0 register to be loaded, or (4) equal the high nibble of an §-
bit constant. These four functions are called DispBr, fYNorm, IOOut, and Byte.

The fZ field can (1) enumerate a miscellaneous function, (2) equal a 4-bit constant or the low half
of an 8-bit constant, (3) be the low half of a U register address, or (4) name an 1/0 register 1o be
read. These four classes are abbreviated fYNorm, Nibble, Uaddr, and IOXIn, respectively.



10

Dandelion Hardware Manual

Cem
rA B as aF aD g i2e s X fY fz INIA
| I S N O P 1t JnlUI"'III | S I I O T T OO N T T O O A O A |
4 8 11 14 16 20 24 28 32 36 47
Eiel D o
rA 2001 A reg addr, U addr [0-3]
B 2901 Breg addr, RH addr
aS 2901 alu Source operand pair
aF 2901 alu Function
ab 2901 alu Destination/shift controi
ep Even Parity
Cin 2901 Carry In, Shift Ends, writeSU (if enSU = 1)
enSU enable SU reg file
mem MAR« (if ¢1), MDR« (if c2), «MD (if c3)
S Function field Selector
X X Function
fy Y Function
fZz Z Function
INIA Next Instruction Address
as 8BS aE. B sh.al_ BUBle Qe Youse.
0 AQ 0 R+ 8 + Cin 0 no write F F
1 A.B 1 S=R = Cin' 1 no write no write F
2 0.Q 2 R— 8 = Cin' 2 F no write A
3 0.8 3 RorS 3 F no write F
4 0.A a4 Rand 8 4 Fr2 Q/2 F
5 D.A 5 ~Rand S 5 F/2 no write F
6 D, Q 6 RxorS 6 2F 2Q F
7 D, 0 7 ~Rxor$ 7 2F no write F
sh « (fX =shift) OR (fX = cycle) OR (fY = cycle)
0 DispBr 0 fZNorm 0,.stackP
1 fYtiorm 1 Nibble 0..stackP
2 100ut 2 Uaddr[4-7] rAfZ | rA,Y[12-15]* IF fZ= AltUaddr*
3 Byte 3 10XIn rAfZ | rA,Y[12-158]* IF fZ= AltUaddr*
* as executed by previous u-instr
1X fXNorm 1Y fYNorm. DispBr. 1QQut 2 ({ZNorm. 1OXin__
0 pCall/Ret0 0  ExitKern NegBr IOPQOData+« 0 Refresh «ElData
1 pCall/Ret 1 Enterkernel  ZeroBr IOPCtie 1 IBPtret «EStatus
2  pCall/Ret2 2  CirintErr NZeroBr KOData+ 2 IBPRir«0 «KiData
3 pCall/Ret3 3 1BDisp MesaintBr KCtle 3 Cinepci1é «KStatus
4  pCall/Ret4 4  MesaintRq PgCarryBr EOData+ 4  Banke KStrobe
5  pCail/Rets 5  stackP+ CarryBr EICtI+ 5 pop « MStatus
6 pCall/Reté 6 IBe XRefBr DCtIFifo« 6 push «KTest
7  pCail/Ret7 7 cycle NibCarryBr DCtl« 7  AltUaddr EStrobe
8 Noop 8 Noop XDisp DBorder+ "8 Noop «IOPIData
9 RHe 9 Map* YDisp PCtle 9 «I0OPStatus
A shift A Refresh XC2npcDisp MCtl« A «ErrniBnStkp
B cycle B push YIQDisp «TStatus B «RH
C Cinepcif C CirDPRq XwdDisp EQCtle C LRot0 «ibNA
D Map* D XHDisp KCmd« D LRot12 «ib
E pop E CirRefRq XLDisp «TIData E LRot8 «ibLow
F  push F  CIrkFlags PgCrOvDisp POData« F  LRot4 «ibHigh

pCall when NIA[7] = 0.

pRet when NIA[7] = 1.
Equivaient names: XDirtyDisp = XLDisp;

EtherDisp = YIODisp; TAddr« = CrDPRq; TCti« = PCtlv; TOData+ = POData«

Figure 1. Dandelion CP Microinstruction Format




Ccp 11

2.3 Registers and Data Paths

Figure 2 illustrates the registers and data paths layout for the CP. The area inside the dashed lines
represents the internal components of the 2901 ALU. The Y bus corresponds to the Y output of
the 2901 and the X bus is connected to the 2901 D input. Both the X and Y buses are available on
the backplane.

23.1 R and Q Registers and 2901 Data Paths

Figure 2 shows the 16-word, two-port register file called the R registers. One of the output ports is
labeled A and the other B. These are the "fast" registers of the CP and can be used to hold
temporaries, memory data and addresses, and arithmetic operands.

Every cycle, the contents of the R register given by the register-A (rA) field of the microinstruction
is available at the A port, and likewise for the B port. If rA=rB, then the same data appears at
both ports. _

If the alu-Destination (aD) field specifies a write back into an R register, the rB field specifies
which one: at the end of the cycle, register B is written with the ALU output (named F) or it is
written with F shifted one bit

The Q register holds 16 bits which can be written with the ALU output or its old value single-bit
shifted left or right. It is implicitly referenced by the aS field of the microinstruction and can be
used for double-word shifting.

The 2901 arithmetic unit has three inputs: R, S and Carryin (Cin). The R input can be set to the
output of the A port, the value of the X bus. or zero. The S input can be driven by the output of
the A or B ports, the value of the Q register, or zero. Cin can be either O or 1, or the value of the
single-bit Emulator register pc16. -

The 2901 can perform three arithmetic and five logical operations as specified by the alu-Function
(aF) field. Arithmetic follows the two's-complement conventions. Three of ‘the logical operations
are symmetrical with respect 1o R and S: logical or, and, and xor. The remaining two logical
operations complement R: ~R xor S and ~R and S.

Figure 3 shows a matrix of ALU computations as a function of possible aS and aF values. From
the table it is clear there are many possible ways to generate zero within the ALU. All one’s
(OFFFF) is easily produced for some functions if rA=rB.



12

Dandelion Hardware Manual

74 (Nibble constant) } -
a4
fy fZ (Byie constant) ! -
10In 8

Cin, pc16
_91.-__..-_--..------------....---.I..-..---..--_
] 1
1 1
[ '
! '
' 1
Cin', pc16' 1
? ' Y i
1 Cin |
1 Q 1
F[15] _— 0 s .
i b
I E 1Y bus
1
Cin, F[0], Q[0] 1= 1
X o— !
A R ! Y-bus dispatch
' ALY ' " YDisp
Cin, F[15), Cout T . 1 :
' R registers - * | ALU branches:
DD ot ... AR B 2
L NZeroBr
16 i Bl NegBr
Y bus LRotn X bus w| NibCarryBr
X PgCarryBr
. F Yeasvnd — >
) s - L] .
18 [ YOLi8LY[0-121 16 PgCrOvDisp
) X-bus branches:
XHDisp X.4,,X.0
} » U | > _ |xoisp  x8,X.15
18 registers 16 P xwdDisp  X.9,,X.10
XRefBr X.11
. XDisp x{12-15}
: > .
4 stackP 1 >
4
8 | registers 8
YH bus
1
T gl
8 MAR
f > Main
16 Memory | \p ] P
16
} i MDR
18 Mem num*width Addressed by
R 16x16 rA, rB
Q 1x16 aS
RH  16x8 B
} SU  256x16 rAfZ | rA,Y | O, stackP
ib 3x8 ibPtr
I Main 768Kx16 YH,.Y
16
Instruction
Bufter

100ut

Figure 2. Dandelion CP Data Paths



13

rA=rB = R
- asS | (AQ) (A,B) (0,Q) (0,B) (0,A) (D,A) (D,Q) (D,0) (A,B)
aF’ in

0 A+Q A+B Q B A X+A X+Q X 2R

R+S 1 A+Q+1 A+B+1 Q+1 B+1 A+1 X+A+1 X+Q+1 X+1 2R+1
sRr 10 Q-A-1 B-A-1 Q-1 B-1 A-1 A-X-1 Q-X-1 -X-1 -1
1 Q-A B-A Q B A A-X Q-X -X 0
rs |O]] AQ-1 A-B-1 -Q-1 -B-1 -A-1 X-A-1 X-Q-1 X-1 -1
1 A-Q B-A -Q -B -A X-A X-Q X 0
Rors || AorQ _AorB Q B A XorA XorQ - X R
Rand S Aand Q Aand B 0 0 0 Xand A Xand Q 0 R
~Rand § ~AandQ ~AandB Q B A ~XandA ~XandQ O 0
R xor S AxorQ A xor B Q B A Xxor A Xxor Q X 0
~R xor S ~Axor Q ~A xor B ~Q ~B ~A ~X xor A ~XxorQ ~X -1

Axor~Q  Axor~B X xor ~A X xor ~Q

Figure 3. ALU Operations as a function of aS, aF, and Cin.



14 Dandelion Hardware Manual

The F output of the ALU can be written into an R register, loaded into the Q register, or placed
onto the Y bus. Although the F output is normally placed onto the Y bus, it is possible to route
output-port A of the R register file onto the Y bus. This mode is called A-bypass or "A-pass-
around.”

The two-bit alu-Destination (aD) field, in combination with a one-bit value called sh, specifies
whether R and/or Q is written and whether F or A-bypass is placed on the Y bus. The sh field is
defined by certain functions of the microinstruction word (see Figure 1 for sh’s definition). In
general, when sh = 1 the F output is shifted one bit position before being written back into R or
Q. This is accomplished inside the 2901 by 3-input multiplexers at the inputs to R and Q. What is
shifted into the ends of R or Q determines the type of shift.

When sh concatenated with aD (sh,,aD) equals 001, neither an R register nor Q is written. This
may be desired when writing an external register or when comparing two quantities. When sh,,aD
= 000, Q is loaded with the ALU output. When sh,,aD is equal to 010 or 011, an R register is
loaded with the ALU output. '

The Y bus gets the ALU output in all cases except when sh,,aD = 010, when it receives the A-
bypass value. Two general rules: When A-bypass is utilized an R register must be written and it
is not possible simultaneously to write R and Q with F.

When sh =1, a single-bit shifting operation is performed on the ALU output and/or Q. There are
two major types of shift operations (Figure 4): a double-word shift of F,,Q and a single-word shift
of F alone. These two types of shifting, combined with the two directions, are named by the four
values of aD when sh=1.

For single-word shifts, the Q register is unaffected and the R register gets the ALU output shifted
one bit to the left or right. The end of F which is vacated by the shift operation is replaced by Cin
or the bit shifted out of the opposite side of F (a single bit rotate).

For double-word shifts, both the ALU output and the Q register are shifted together. The low-
order bit of the ALU output is "connected" with the high-order Q bit to form a 32-bit quantity.
The high-order bit of F which is vacated by a right double shift can be written with Cin or the
Carryout (Cout) of the current ALU computation. Similarly, the low end of Q is written with the
complement of Cin (~Cin) if the shift direction is left. Note that the high bit of Q is written with
the complement of the low bit of F. A general rule: Shift inputs into Q are complemented.

In summary, the following 2901-related restrictions apply: (1) When A-bypass is utilized an R
register must be written, (2) it is not possible simultaneously to load R and Q, and (3) A-bypass
cannot be used with single bit shifts or when loading Q.



CpP 15
xShiftl: Cin == <—— Cin
xRotl: - :,:.':l 4.__1
DAxShiftl:  Cout — — Gin
DxShiftl:  cin —] Te—<—cin
function ab X or fY
RShift1 1 shift
LShift1 3 shift
RRoﬁ 1 cycle
LRot1 3 cycle
DARShift1 0 shift
DALShift1 2 shift
DLShift1 0 cycle
DRShift1 2 cycle

Figure 4. CP Single-Bit Shifting



16 Dandelion Hardware Manual

2.3.2 External 2901 Data Paths

There are two major 16-bit data buses external to the 2901: the X bus and Y bus. Both are
present on the backplane; however, they are not general purpose, bidirectional buses. The YH bus,
an 8-bit extension of the Y bus, is used for memory addressing.

The Y bus is driven only by the Y output of the 2901. It can be used to supply a memory address,
memory data, U register data, or device output data. :

The X bus is the major system bus and is connected to multiple drivers and multiple receivers.> X
bus sinks are: the D input of the 2901, the RH registers, the Instruction Buffer (IB), and controller
output registers. X bus sources are: the U registers, RH registers, the IB, constants, memory data,
and controller input registers. The IB, RH, and controller output registers receive data from the X
bus so that they can be loaded directly from memory in one cycle.

Data can be passed from the Y bus to the X bus via a 4-bit rotator, called LRotn. Data can be
rotated zero, four, eight, or twelve positions to the left, as specified by the fZ field. A zero rotation
allows Y bus data to be placed unaffected onto the X bus; an example is loading controller output
registers from the ALU output

Eight- or four-bit constants can be placed onto the X bus directly from the fY and/or fZ fields.
The upper 8 or 12 bits of the X bus are set to zero.

The following table lists the registers which are addressable by the CP and the buses to which they
are attached:

Register inputs from Register outputs to

MAR« YH, Y «MD X Memory
Map« " YH,Y
B« X ++«ib, «ibNA X Instruction Buffer

«ibLow, «ibHigh X[12-15]

~ibPtr X[10-11]
RH« X[8-15] «RH X[8-15]
Ue Y «U X
stackP« Y[12-15] ~stackP X[12-15]
MDR« Y EKErr X[8-9]
MCtl« Y +MStatus X Memory

~ KOData« X «KlData X Rigid Disk

EQOData« X «El|Data X Ethernet
POData« /TOData« X «TlIData X LSEP/MagTape
|OPOData« X «|OPIData X 10P
KCtl« X +«KStatus X Rigid Disk
KCmde« X «KTest X Rigid Disk
EICtl« X +~EStatus X Ethernet
EOCti« X
IOPCtl« X «|OPStatus X IOP
DCtl« X Display
DBorder« Y
DCtiFifo« Y
PCtl«/TCtle X «TStatus X LSEP/MagTape
TAddre X



233 U Registers

A 256-word register file, called the U registers, can be written from the Y bus and read onto the X
bus. These 16-bit general purpose, "slow" registers are used to hold a 16-word stack, virtual page
addresses, temporaries, counters, and constants.

- With respect to accessibility, U registers are situated between main memory and the R registers:
they cannot be both read and written in the same cycle, nor can they be used as an operand or
destination register in 16-bit ALU arithmetic.

As illustrated below, there are three ways to form an 8-bit U register address: normal, stack-pointer,
and alternate. -

0 3 4 7

L _m | 2z ] Nomal

I 0 l - stackP | stackPointer
L ra | voiz1s) | Alternate

Figure 5. U Register Addressing Modes

In the normal mode, true when fS[2] =1, the U register address is defined by the concatenation of
the rA and fZ microinstruction fields. This sharing of the rA field between R and U register
addresses has several implications. In general, a U register can be loaded into any R register since
the rB field defines the write address. However, an arbitrary U register and an arbitrary R register
cannot both be ALU operands unless the upper four bits of the U register address equal the R
register address, This addressing mechanism partitions the U registers into sixteen, 16-word banks
such that, in one cycle, a bank’s U register can only be combined with the bank’s corresponding R
register.

In the stack-pointer addressing mode, used when fS[2] =0, the U register is selected by the 4-bit
stackPointer register (stackP) from the low bank; that is, the address is 0,,stackP. The stackP is
not explicitly modified with this addressing mode and if an instruction uses this mode and also
executes a pop or push function, the stackP before modification is used to access the U register.

The alternate mode provides indirect addressing and is used when fS[2] =1 and fZ = AltUaddr for
the previously executed microinstruction. In this mode, the low nibble of the U address equals the
least significant Y bus nibble for the previously executed microinstruction—the same one that did
the AltUaddr. Thus, instead of rA,fZ, the U address is rA,,Y[12-15].

While reading or writing U registers, the fZ field can specify both a U register address and another
function. Specifically, when fS[2-3] = 3, fZ can take on IOXIn values. This is commonly used to
read an RH register or the IB while simultaneously writing a U register. When the stackPointer
addressing mode is used, the fZ field is free to be interpreted as either fZNorm or a Nibble.

The U registers are also controlled by two other microinstruction fields: enSU and Cin. The enSU
bit is 1 for any cycle which either reads or writes a U register. Cin must be 1 if writing, and 0 if
reading. Thus, if a U register is written and the ALU function is addition or subtraction, these
computations execute with Cin=1. Note that normal two’s complement subtraction implies Cin = 1.



18 Dandelion Hardﬁ'are Manual

2.3.4 RH Registers

Located on the X bus is the 16-by-8-bit RH register file, an extension of the R registers. The
principle application of this small memory is to hold the highest-order memory address Dbits.
Moreover, it can be utilized as general-purpose storage: for flags, counters, temporaries, and
subroutine return pointers (see DMR).

The RH registers are addressed by the rB field, and, since ihis field names. the R register to be
written, an RH register can only be written into its corresponding R register (or the Q register).

Like the U registers, the RH registers cannot be both read and written in the same cycle. An RH
register is written from the low byte of the X bus when fX = RH« and is read onto X[8-15] when
fZ = ¢RH. Whenever it is read onto the X bus, the high half of the bus is set to zero.

Every cycle, the 8-bit YH bus is driven with the value of the addressed RH register, thereby
supplying the high order memory address bits to the Memory Control card. . However, these bits are
only used by the memory if a MAR« or Map« is specified. As a corollary to the rule that RH
registers cannot simultaneously be read and written, an RH register cannot be loaded if the
microinstruction also executes a MARe« or Mape«.

2.3.5 Instruction Buffer

The Instruction Buffer (IB) was designed to hold up to three Emulator macroinstructions or data
bytes. It is used in a first-in, first-out manner. Data loaded into the IB from the X bus can be read
back onto the X bus or be used to define a 256-way dispatch in control store. The IB is loaded by
special Emulator "refill" microcode (sec. 2.6.4) while the actual control of the registers is
accomplished by a hardware state machine.

The IB is maintained by the Emulator in a way that guarantees all macroinstructions will find
necessary code segment operands there. Furthermore, the IB is where the 256-way dispatch is made
on the next macroinstruction to be executed. This dispatch (IBDisp) occurs in ¢2 so that the next
macroinstruction begins in cl, thereby adjoining the previous one. However, when IBDisp is
executed and the buffer is not full, a microcode trap occurs and the refill microcode loads the
buffer with more bytes from memory. If an I1BDisp is executed and there is a pending interrupt
(Mint= 1), special interrupt trap (IB-Refill) microcode runs instead of the refill microcode. Since
the IB is so small, IBDisp’s frequently trap; however, since the IB-Refill trap runs at memory speed.
this scheme of supplying operand bytes to the macroinstructions is very efficient.

This scheme is efficient from both memory bandwidth and page-fault handling perspectives. In the
former case, macroinstructions would otherwise have to call an operand-fetching subroutine, which
would waste time becoming cycle aligned. In the latter case, macroinstructions need not worry
about a page fault from the code segment. (The occurrence of a code segment page fault can add
major complications to the implementation of macroinstructions since the microcode must, before
processing the fault, restore the Mesa machine state to its value at the beginning of the instruction.)
The IB insures that macroinstructions can always find code segment arguments present in the IB. In
this sense, the IB is more like an operand data buffer than an instruction buffer.

The minimum number of bytes in the buffer required to prevent an IB-Refill trap is three (the
maximum size of a Mesa macroinstruction) and they only occur between the execution of
macroinstructions. The refill code completes in one click if the buffer requires two bytes and
finishes in two clicks if four are needed. Because the buffer is small, the only codebytes which do
not result in an IB-Refill trap are single-byte opcodes executed from even memory locations.

The instruction buffer itself consists of three 8-bit registers, called 1B[0], IB[1], and ibFront. IB[0]
holds the even code segment byte and IB[1] the odd. The bytes are shuffled through ibFront in
even/odd, sequential order. There are four states which enumerate the location of data bytes
among the holding registers. These states are indicated by the 2-bit register ibPtr and are defined



Ccp 19

below. The following diagram shows the four IB states (the cross-hatching indicates the position of
the data bytes):

state name . bytes in IB ibPtr

Sull 3 2

word 2 3

byte 1 1

empty 0 0
1B[0] 1B[1] _

77 vzl 1 C— 1 ] [ ] 1
777777 V777777 V777177 /]
ibFront

ibPtr = full ibPtr = word ibPtr = byte ibPtr = empty

Figure 6. Instruction Buffer States

There is a total of 8 microinstruction functions which affect the IB. In general, the functions
maintain the original even/odd byte ordering while updating ibPtr and ibFront. The following
table lists the functions and their effect on ibPtr, ibFront, and the X bus. A discussion of the table
follows, except that IB dispatches and IB-Refill traps are presented in sections 2.5.2 and 2.5.5.1.

function new ibPtr new ibFront X bus «
«ib ibPtr-1 IF ibPtr[1]=0 THEN IB[0] 0,,ibFront
ELSE IB[1]

«ibNA unchanged unchanged 0,,ibFront
«ibHigh - unchanged unchanged , 0,,ibFront[0-3]
«ibLow unchanged " unchanged 0,,ibFront[4-7]
IBDisp ibPtr-1 IB[ibPtr[1]] unaffected
AlwaysIBDisp ibPtr-1 IB[ibPtr[1]] unaffected
IBe IF empty THEN word  IF ibPtr=empty THEN X[0-7] unaffected

. ELSE full ELSE unchanged
iBe, IBPtre1 IF empty THEN byte IF ibPtr =empty THEN X[8-15]  unaffected

ELSE full ELSE unchanged

IBPtr«0 - word I1B[0] unaffected
IBPtre1 byte IB[1] unaffected
+«ErrnIBnStkp unchanged unchanged X[10-11]}«~ibPtr

Figure 7. Effects of IB-related Functions



20 Dandelion Hardware Manual

The IB is loaded from the X bus: the high-order, even byte is written into IB[0] and the low-order,
odd byte into 1B[1]. If the buffer is empty, then the X bus byte passes through IB[0] or IB[1] and
is loaded directly into ibFront in one cycle; thus, the data can be used immediately in the cycle
following the B load.

The default 1B write operation is to write ibFront with X[0-7]. However, if IBPtre1 is coincident
with IB«, then ibFront is written with X[8-15] instead, thereby throwing away the even data byte.
If there are one or two bytes in the buffer, then IB[0] and IB[1] are loaded and there is no feed
through into ibFront. .

ibFront can be read onto the X bus: when the microcoder specifies a «ib or «ibNA, ibFront is
placed onto X[8-15] and the high byte of the X bus is set to zero.

There are several variations to this basic read. With the «ibHigh function, ibFront[0-3] is placed
onto X[12-15]. Analogously, «ibLow places ibFront[4-7] onto X[1 2-15]. In both cases the upper
12 bits of the X bus are set to zero.

When «ib is executed, a funneling process occurs: ibFront is loaded with the next byte from either
IB[O] or IB[1] and ibPtr is "decremented” by one. ibPtr is gray code decremented: 2, 3, 1, and
then 0. Thus, the low order bit of ibPtr divides the values of ibPtr into two classes with respect to
refill: empty and not empty. (This scheme equates the empty and full states, but note that the
buffer is not full when the IB-Refill trap occurs.)

Several of the microcode functions have no effect on the state of the buffer: The «ibNA function
(used to read the IB without advancing ibPtr), «ibHigh, and «ibLow do not change ibPtr. Also,
like the RH and U registers, it is not possible simultaneously to read and write IB; hence, the
combination of IB« and «ib in the same cycle does nothing.

The functions IBPtr<0-and IBPtr<1. when uscd alone, merely load ibFront from IB[O] or IB[1],
respectively. They typically occur in the cycle after the IB has been loaded with a jump-target
codebyte, thereby selecting the even or odd destination opcode.

The complement of ibPtr can be read onto X[12-13] with the «ErrniBnStkp function.



2.3.6 stackP Register

The 4-bit stack pointer, stackP, is used to address one location from U register bank 0 (Sec. 2.3.3)
and can be incremented or decremented independently of the 2801. The pop function decrements
(modulo 16) and the push function increments (modulo 16) the stackP at the end of a cycle.
Unlike the U and RH registers, the stackP can be read and written in the same cycle.

The stackP can be loaded from Y[12-15] with an fY function. However, one cycle must intercede
between a stackP« and a microinstruction which uses the stack-pointer addressing mode and
expects the new value. A pop or push can be used in the intervening instruction and appropriately
modifies the value loaded.

The pop and push functions have been sprinkled throughout the microinstruction function fields to
ameliorate the checking of stack overflow or underflow. The push function occurs in all three
function fields while pop is in fX and fZ. An outcome of this arrangement is that when push is
specified in the same microinstruction as pop, the stackP does not change: it does not matter how
many pop’s or push’s there are; as long as there are both, the stackP is unaffected. Also, multiple
pops or pushs in the same instruction do not decrement or increment the stackP by more than
one. Multiple pop and push functions are used to check for stack overflow or underflow (sec.
2.5.5.2).

23.7 pc16 Register

The pc16 register is designed to serve as a low-order, 1-bit extension of an R register; namely, the
R register which holds the Emulator’s macroprogram counter (PC). That is, pc16 can be used as
the byte index of a PC memory address.

If X or fZ is Cin«pc16, the pc16 bit becomes the carry input of the 2901 and pc16 is inverted at
the conclusion of the cycle. Thus, Cin«pc16, in combination.with ALU addition and subtraction,
properly adjusts the 17-bit byte program counter PC,pc16 (See DMR).

Since Cin is also the shift ends (Sec. 2.3.1), Cinepc16 can be used to shift pc16 into the low-order
bit of an R register in one cycle, thereby reconstructing a byte program counter in an R register.

Due to the hardware implementation of the carry input, when the Cin field of the microinstruction
is 0, the fX version of Cinepc16 must be used. If Cin=1, then either the fX or fZ version of
Cinepc16 can be specified.



22 Da_ndelion Hardware Manual

23.8 Timing Limitations

The architecture of the CP allows the execution of microinstructions which will not always properly
complete. This is due to either "slow" X bus operands or "slow" destination registers; that is,
certain sources can not be loaded into certain destinations because the source value is not stable in
time. Basically, the delay time of the source plus the setup time of the destination must be less
than the cycle time, 137 nS. MASS will flag such instructions with a timing violation error.

All ALU internal register-to-register operations complete on time. All Y bué destinations can be
loaded as a result of any ALU operation which does not use the X bus as an operand (except for
the high 12 bits of a U register).

If the ALU operation uses an X bus operand (aS = D,A, D,Q, D,0), depending on the register, the
operation may not complete in time. In general, all X bus sources can at least be loaded into an R
register, which is a logical operation (aS = D,0, aF = RorS).

Figure 7 should answeér the question: “Is a microinstruction legal with respect to X bus timing?"
The table deals with all possible X bus sources and destinations: X-bus-source-to-X-bus_destination,
X bus ALU operands (aS = D,A, D,Q, D,0), and X bus branching and dispatching. Intersections
marked with a full, half, or quarter square blob indicate legal source/destination combinations or
branching phrases.

X + R represents the 3 arithmetic operations (aF = R+8, S-R, R-S) and X or R the 5 logical
operations (aF = RorS, RandS, ~RandS, RxorS, ~RxorS). B¢« implies the loading of an R
register; Q¢ has the same timing. pgCross refers to the automatic page cross branch with MAR«
and pageCross & OVR refer to PgCrOvDisp.

Branching and dispatching have different timing than the basic ALU operations and a potential
statement must meet both conditions. In general, zero, negative, or overflow branching is not
possible with any X bus operand.

The ALU performs arithmetic at three different speeds depending on which bits of the result you're
looking at. Thus, figure 7 has three numbers for arithmetic operations depending on which bits of
the result are of interest. ALU[Q-7] are the slowest since they depend on a carry from the
lookahead umii. ALU[8-11] are next as they depend on a ripple carry from the low nibble. Finally,
ALU[12-15] are fastest since Cin arrivies very early relative to X bus sources. Thus, the low nibble
always has the timing of a corresponding ALU logic operation.

Note that some "+1" or "-1" operations do not necessarily imply use of the X bus, but use Cin
instead. Thus, R « R + 1, NegBr is legal where R « R + 2, NegBr is not.

All arithmetic operations with the ALU internal zero as an operand (aS = 0,Q, 0,8, 0,A, or D,0)
complete on time. This obviously includes all X bus sources.



Ccp

X Source
x constant, L (AorB) [(A+B)
petud U {MD RH |ErrlBStkp | IOIn ALRotn| LRotn |} LRotn
X Source Time 75 97 74 59 63 91 102 i%i
BeXorR /R B A n | B — | —
B«XorR, ZeroBr s | ] | [ | - -
BeXorR, NZeroBr 68
B«X or R, NegBr 2| H | n | -_ -
«Xor R, YDisp 7 n [ ] - | —
BeLShift1 (X or R) ss| n ] H|— i
BeLRot1 X(XorR) | s | M ] || | — - | —
MAR« X or R 78 — n — - | —
Map« X or R 78 — n — - | —
MDR« X or R s|H|— | N n N — — | —
UeXorR 87| — -_ — —
IOYOute X or R o« | || n H|— — | —
BeX + R Zi L A | ] R —_ | -
B«X + R, ZeroBr o7 —_ -_
X | Bex + R, NegBr o1 —_ | —
O |BX + R.OVR %0 —_— ] -
p | B«x + R, CarryBr 81 ] - | =
? B«X + R, NibCarryBr | 60 r r r L4 -_ -
? B«X + R, PgCarryBr 65 | o .‘ J - -
i B¢X + R. pageCross 77 a‘ J - -
g MAR«X + R, pgCross | 72 ' i A |
BeX + R, YDisp 7 J o — | =
B«RShift1 (X +R) gi r r v F|— - | -
101
B«RRot1 (X +R) o r r r r| — —_ ] =
MAR« X + R 78 — ] —_ — | =
Map+ X + R 110 _— — — —_—
77
MDR« X + R n|lF | —|F | n|— - | —
UeX +R 1 ;g _— J— — —_
I0Out « X + R xlr r m | 4| — — | =
|_stackP< 51
Xbus « X, XDisp AN BN BN || NN | r
RH « X s|H BN n "R |
IB « X 48 BN BN | | N N |
I0Out + X 2|H| K| N | H N | r

n Timing OK across 16 bits of resuit

M OK across low byte

Figure 7. Allowable X-bus Operations

¥ ok across low nibble -




A4 Dandelion Hardware Manual

24 Main Memory Interface

This section discusses the interface between the CP and the memory system. As outlined earlier, a
memory address is sent to the Memory Controller in c1, any data to be written is sent during c2,
and returning data is available in ¢3. Every click is a potential memory operation: if the Emulator
kept the memory 100% busy and there were no 1/0, it would have available up to 2.4 megawords/s
(38 Mbits/s) of bandwidth. ' :

The memory system accepts two types of addresses: real or virtual. Real references result in a read
or write to the addressed location itself. Virtual references cause the memory system to ignore the
low byte of the address and then, using the remaining 16 bits, read or write the Map, located at real
address 10000 hex.

For both reference types, when the mem field is set in c2 a write occurs (MDR«) and when set in
¢3 a read occurs («MD). If both a read and write are specified in the same click, the original value
is returned and then the location is overwritten. Furthermore, if a click specifies a MDR<« or «MD
without a corresponding MAR<« then memory is not written and a potential memory Error trap
does not occur. .

As outlined in section x.xx, the memory system is available in a variety of sizes: real address size
from 192K to 768K words and virtual address size from 4 to 16 megawords. This section assumes
the maximum of both ranges: 20-bit real addresses and 24-bit virtual addresses.

2.4.1 Real Address References

When the mem bit is true in cycle 1, a real reference is caused. The microcoder specifies a real
reference by using the MAR« macro in ¢1. The memory address is sent to the Memory Control
card on the YH and Y buses. The Y bus can be driven from either the 2901’s F bus or A-bypass;
hence addresses can be ecither pre or postmodified. The YH bus, which supplies the high-order
address bits, is always driven by the RH register addressed by rB. Furthermore, YH[O-3] are
ignored by the memory.

Several important things happen with a MAR«: the 2901 is divided such that the high half
executes a fixed function. a special "address-overflow” branch is enabled, and an MDR« or IBDisp
in the next cicle is canceled if the branch is taken. Moreover, if a MAR« is executed with YH[4-7]
= 0 and the display controller is enabled and actually transferring bits to the monitor, then the
click is suspended (See sec. 2.5.6.5).

MARe<« Effect: Split 2901

If mem=1 in ¢1, the 2901 is divided such that the high half executes with its aS and aF inputs
equal to (0,B) and (aF or 3), while the low half executes the aS and aF values given by the
microinstruction. This causes the high byte of the ALU output to equal the high byte of the R
register addressed by rB (or its complement if aF is in [4..7]). Thus, assuming the Y bus is driven
from the F bus, the 20-bit real address is rhB[4-7],,rB[0-7],F[8-15].

This change in normal ALU function was required by the fact that the most significant memory
address bits must be ready very early in the click. Only logical operations would allow the address
to pass through the ALU quickly enough. The requirements are not so strict on the low order bits,
so arithmetic operations are allowed on the bottom byte. This change also facilitates the combining
of the virtual page number returned by a Map reference with the offset into the page contained in
the low byte of an R register (see the DMR for examples).

An outcome of this bipartition is that a carry out from the low half does not propagate into the
high half: the high byte of rB remains unchanged after a MAR« (unless aF is in [4..7]), even if A-
bypass is utilized. '



Cp 25

The real address modes are illustrated below. In summary, if A-bypass is not used, the upper 12
bits of the memory address (the page address) come from the RH/R pair named by the rB field,
while the lower 8 bits (the page displacement) are defined by the desired ALU operation. This
feature can be used to combine the real-page number, as read from the Map in the previous cycle,
with a displacement into the page. If A-bypass is specified, the lowest 16 address bits come from
the R register addressed by rA. Hence, the 20-bit real address is rhB[4-7],rA[0-15].

a 7 (4] 7 8 15

| me | | @807 | FB15] | Normal
YH bus Y bus

| rhB I | rA[0-15) | A-bypass

Figure 8. MAR Address Types

MARe« Effect: pageCross Branch

The second effect of a MAR« is that it automatically specifies a pageCross branch: 1 is or'd into
INIA[10] if the ALU operation results in a carry out from the low half. Thus, although the carry
out from the low byte does not propagate into the high byte. as discussed above, it can be detected
as a transfer of control. A true pageCross branch can imply that the real address is invalid and
that a remapping of the virtual address which originally generated it is necessary. Since pageCross
is not ord into INIA[11], other simple branches can be concurrently specified.

pageCross is defined to be (pageCarry xor aF[2]), where pageCarry is the carry out from the low
2901 byte. The xor has the effect of toggling pageCarry when doing subtraction; pageCross
equals pageCarry when doing addition. The aF = (R-S) form of subtraction does not cause
pageCarry to be inverted since aF[2] = 0; however, the aF = (R-S) form covers the most
common subtraction requirements. See the DAMR.

A complication of the MAR« automatic pageCross branch is that pageCross can indeed equal 1
if the 2901 executes a logical, instead of arithmetic, function. See the DMR,

MARe« Effect: Cancelation of c¢2 Functions

The third effect is that if pageCross = 1 during a MAR«, then a following MDR«, IBDisp, or
AlwaysiBDisp in c2 is ignored. This mechanism can be used to prevent writing into the wrong
page or dispatching on the next Emulator instruction when the corresponding virtual address should
%}/[rleemapped. This effect increases the need to avoid logic functions during a MAR«. See the



26 Dandelion Hardware Manual

24.2 Virtual Address References

When either the fX or fY fields equal Map« in cycle 1, a memory reference to the virtual-to-real,
page-translation Map is caused. The Map is a table whose first entry is at location 10000 hex, just
after the display bank. During a Map reference, the memory system uses the upper 16 bits of the
virtual address (14 bits in the case of a 22-bit virtual address) to index into the table. Each entry of
the table contains a 12-bit real-page number and four flags pertaining to the virtual page.
Currently, a 16K table is used by the Emulator. Figure 10 illustrates the process.

The virtual address is made available to the Memory Control card on the YH and Y buses. The
low byte of the Y bus is ignored and, unlike MAR«, there are no ALU side effects. Since the Y
bus can be driven from either the 2901’s F bus or A-bypass, addresses can be either pre or
postmodified:

YH bus Y bus
| me | | F[015) | Normal
0 7 o 15
| e | | rA[0-15] | A-bypass

Figure 9. Map Address Types

For 24-bit virtual references, all of the YH bus is used. However, with early versions of the CP,
which assumed a maximum 22-bit virtual address. if either YH[O] or YH[1] are 1, an Error trap
resulted. .

The following figure shows the format of a Map entry. See the DMR for a description of how the
referenced, dirty, and present Map flag bits are maintained.

The mem field should not be set in ¢1 along with a Map+« unless MAR«’s side effects are explicitly
desired. Moreover, if YH[4-7] = 0, such clicks will be suspended due to display bank contention.



YH bus ’ Y bus
| I |
0 2 7 0 7
N \ J
~
virtualPage
Map
13FFF

111

location within page
10000 {not mapped)

)

/

0 3ya 70 4 7 Y
[dp[ w |d |rp rp[0-3} ” rp[a-11] |
RH register R register T

Figure 10. Virtual to Real Address Mapping

I rp[4-11] l dp | w Id l rp I rp[0-3] I
0 7 8 9 10 11 12 15
rp[0-11] Real Page Number
dp Dirty & Present flag
w Write Protect flag
d Dirty flag
p Referenced & Present flag

Figure 11. Map Entry Format



2.5 CP Control Architecture

This chapter discusses the algorithms used for controlling the execution of microinstructions and the
interface between the IOP and the CP. Figure 12 is a block diagram of the control paths and
registers.

As presented in the introduction, cycles are illimitably executed c1, 2, and ¢3. Every cycle, one
microinstruction is decoded and executed while the next is being read from the control store (except
in those clicks which have been suspended due to display bank contention). Since a device task
does not execute in consecutive clicks, there is hardware to save the microprogram counter of each
task while it is not running.

We first look at branching, dispatching, the Link registers, and the Error traps, as they can be
described without reference to the tasking structure.

2.5.1 - Conditional Branching and Dispatching

Every microinstruction can potentially branch: during each cycle, condition bits specified by the
executing microinstruction are or'd into the next instruction’s "goto"-address field (INIA) being read
from control store. At the end of the cycle, this results in an address (NIA) which is used to read
the next microinstruction. If the executing microinstruction does not specify a branch function,
then O is ord into INIA and, accordingly, a branch does not occur. When a microinstruction
specifies a dispatch function, up-to-four bits are or’d into the INIA field; selecting one of up-to-
sixteen target microinstructions. (The maximum of four dispatch bits was chosen in order to
minimize the number which must be saved between task switches.)

Thus. all branches and dispatches take two cvcles to complete: one cycle to specify the branch and
one to read out the target microinstruction. The microinstruction bits required to specify a branch
arc fS[0-1] = DispBr and the fY field which names the branch or dispaich (Figure 13).

The notation used to specify the branching behavior is as follows: A microinstruction is located in
control store at its Instruction Address. IA: the Next Instruction Address, NIA, is the control store
address register: and the Intermediate Next Instruction Address, INIA, is the 12-bit "goto" address
present in each microinstruction. Every cycle, the hardware or’s the condition bits specified by fY
(abbreviated UispBr) and together with a Link register specified by X into INIA, thereby producing
the NIA value used for the next cycle:

NIA[0-11] « INIA[O-11] or DispBr[0-3] or Link[0-3].

In the case of dispatches, it is not always necessary for the microcoder to provide target instructions
for each possible outcome. Any particular condition bit can be ignored by placing a 1 in its
corresponding position in INIA.  This method can also be used to cancel unwanted, pending
branches. See the DMR.

Figure 13 enumerates the available branches and dispatches. Note that. in some cases, there is
more than one way to branch on a particular bit and that any bit on the low half of the X bus can
be branched on: The NZeroBr exists so that code can be more readily shared.



na P
4Kxa8 arA{0.31 - g
prB[0-3 > ___[A[Q..ﬁ]_ - >
pasS[n.2 > M _.._LB.LQ_a]_ >
paflQ.2 > __aS1[0:2] - 5
paDQ-1 . __EE...Q..aﬂD.Zl_. >
L —RCIN-SE-wrSU I —ﬂDLQJJ—._;_ -
—>1A REnableSl) [ CIN-SEwiSU S
2 > mem
SIS0 2R 1S[0-3 S
£X[0-3 :
Control R 2 z g.; >
Store niZ10:3 > £Y10:3 S
sel = pMAR«
INIALQ.3)
Q. LMint {BPtr(1] m )
' sel = Refillint > NIAX[D-111'
DispBr INIA[4-7]
|3 I | ibFront{Q.3) N DNIA[O-11) > NIAI11T
E£Q '? ‘ sol = Good!BDisp TPC[0-11]
mm——%' sel = Swc2
PageCarry S INIA8-11] :
Carry ibEroni(4-7]
X.ll_é —_—
NibCarry 5 —0)
x“% 1
xX4X0 33 (<oRr[0.3]
L8410 5 . é D pICI0:3) ——
XConcig S
Link
. 8x4
XOaal o, ' Itiokto.ay
NIAX[8-11]" b
8x12 | TPC
D Q
A
A 8x40 ic ICY[0-8] TCl0.a1
= -
2 |
ICX 4:
NIAX! 1?

Figurg 12. CP Control Paths




30

NegBr
ZeroBr
NZeroBr
CarryBr
NibCarryBr
PgCarryBr
XRefBr
MesalntBr
XwdDisp
XHDisp
XLDisp
PgCrOvDisp
XDisp
YDisp -
XC2npcDisp
YIODisp

1BDisp
LnDisp

Dandelion Hardware Manual

source INIA
F[0] 11
F=0 R
F#0 1
Cout[0] 11
Coutf12] 11
Cout[8] 11
X[11] 11
Mint 11
X[9],,X[10] [10-11]
X[4],,X[0] 10-11]
X[8]..X[15] 10-11]
PgCross,,OVR [10-11]
X[12-15] [8-11
Y[12-15] [8-11
X[12-13},,c2,,~pc16 [8-11]
Y[12-13],,bp[39],,bp[139] [8-11]
ibFront [4-11]
Linkn [8-11

sign of alu result (not necessarily Y[0])
alu output equal to zero

alu output not equal to zero

alu carry out

alu carry out from low nibble

alu carry out from low byte
present & referenced Map bit
Emulator Interrupt (see 2.5.3)
write protect & dirty Map bits

X (high) bus

X (low) bus

pageCross & alu overflow

low nibble of X bus

low nibble of Y bus

X bus, cycle2, inverse of pc16
170 branches (bp =backplane pin)

Instruction Buffer
Link register (n=0..7)

Equivalent names: EtherDisp = YIODisp, XDirtyDisp = XLDisp.

Figure 13. Branches and Dispatches



cp 31

2.5.2 Instruction Buffer Dispatch

The instruction buffer dispatch, IBDisp, is a special dispatch since more than four bits are ord into
INIA.  Consequently, IBDisp can only occur in ¢1 or ¢2, and, by convention, it is restricted to c2.
See section 2.3.5 for a discussion of the instruction buffer.

Assuming that the instruction buffer is full, IBDisp can cause a 256-way dispatch based on the value
of ibFront: NIA[4-7] is set to the high nibble of ibFront and the low nibble of ibFront is or'd with
INIA[8-11]. (Due to the or operation into the low nibble of INIA, simultaneous Link register

dispatches are possible.®) INIA[0-3] is unaffected by the IBDisp (except by the four IB-Refill trap
values); therefore, up-to-twelve 256-way dispatch tables can be concurrently used.

If the buffer is not full (ibPtr # full) when an IBDisp is executed, or there is a pending interrupt,
then an [B-Refill trap occurs (See 2.5.5.1).

A special version of 1BDisp, called AlwaysIBDisp, never IB-Refill traps: AlwaysIBDisp dispatchs
on ibFront even if there is a pending interrupt (Mint = 1) or the buffer is not full. It is used in
the Emulator refill and jump microcode (sec 2.6.4) to dispatch on ibFront while the buffer is still
being filled. AlwaysiBDisp is encoded as fY = I|BDisp and fZ= IBPtre1.

If the microinstruction executed before an IBDisp or AlwaysIBDisp causes an IB-Empty Error trap,
or it contains a MAR+ and the 2801 computation results in pageCross = 1, then the IB dispatch
(or possible IB-Refill trap) does not occur and ibPtr remains unaffected. Since INIA is not modified
in this case, control transfers to the first entry of the macroinstruction dispatch table. (Accordingly,
Emulator opcode 0 should not be assigned to a macroinstruction.)

253 Mint Register

The 1-bit Mint register can be used to interrupt the-contiguous execution of Emulator
macroinstructions. When Mint is set in a antecedent cycle, IBDisp traps instead of dispatches
(1.5.5.1). Mint is set with fY = MesalntRq and cleared with fY = ClrintErr. (CirintErr also resets
the EKErr register) See the DAMR for user conventions.

254 Link Registers

The CP has eight, 4-bit Link registers which can be loaded from the low four bits of the control
store address. Generally, these Link registers can be used to hold four bits of state information
derived directly from the flow of control. Thus, previously determined state information can be
easily recalled by dispatching on a Link register. Moreover, macroinstructions can share common
code at various stages of their execution and Link registers can be used for subroutine call and
return structures. See the DMR.

The Link register addressed by X is written with the low nibble of NIAX (which equals NIA except
during a task switch in c2. see 2.5.6.4). A Link register is written when X is in [0..7] and NIA[7]
= 0: Link[fX] « NIAX[8-11].

A Link register is or’d into the low nibble of INIA when X is in [0..7] and NIA[7] = 1, causing a
potential 16-way dispatch. Since the Link register is designated by an fX function, the fY field is
free to specify other condition bits which can be or’d into INIA[8-11].

If the preceding microinstruction does not specify a branch or dispatch condition, then the Link
register is loaded with a constant. However, if the prior instruction contains a branch or dispatch,
the value loaded depends on the outcome of the branch or dispatch. (The low four bits of the 1B
dispatch value can also be recorded in this way.) See the DMR.



32 Dandelion Hardware Manual

2.5.5 Microcode Traps

There are two general classes of microcode traps: IB-Refill and Error. The former only occurs as
the result of IBDisp’s: hence between the execution of macroinstructions. There are four 1B-Refill
trap locations which are a function of ibPtr and Mint. Error traps can occur in any cycle and
always trap to location O in ¢1. The Error traps have priority over the 1B-Refill traps and cannot
be disabled. :

2.5.5.1 IB-Refill Traps

If an I1BDisp is executed and ibPtr # full or Mint = 1, then the ibFront dispatch does not occur
and instead an IB-Refill trap is caused. Specifically, ibPtr is unaffected, INIA[4-11] is not modified,
and NIA[0-3] is set to the 4-bit quantity 0,,1,,Mint,,ibPtr[1]. The following table summarizes the
interpretation of the IB-Refill trap locations. (If an IB-Refill trap occurs and Mint = O, then ibPtr
can not equal full)

NIA[0-3] Mint ibPtr
4 0 empty
5 0 not empty (i.e., byte or word)
6 1 empty or full
7 1 byte or word

AlwaysIBDisp never IB-Refill traps and a MAR« caused pageCross branch or I1B-Empty Error trap
cancels a potential IB-Refill trap.

2.5.52 Error Traps

Error traps can result when one or more predefined error conditions are detected in the CP or
memory. All error traps cause the instruction at microstore location O to be executed in c1 by the
Emulator or Kernel. depending on the error type. Error traps cannot be disabled.

The EKErr register. read onto X[8-9] with «ErrnIBnStkp, names the type of error:

EKErr Type

control store parity error

Emulator memory error
stackPointer overflow or underflow
IB-Empty error

WN - O

If. coincidentally, two or more errors occur at the same time, smaller values of EKErr are reported.
The error types are also accumulated until EKErr is reset: the minimum value is reported when
EKErr is read. Error traps have priority over the IB-Refill trap. See the DMR for example error-
handling microcode.

EKErr is reset by the ClrintErr function which, as a side effect, also resets any pending interrupts.

With early CP modules, an EKErr value of 1 can also imply that a 23- or 24-bit virtual address had
been used by the Emulator. In this case, the ErrorLogging register in the Memory Controller is
read to determine whether the error is actually a double-bit memory error. Since the Memory
Controller can now accept 24-bit virtual addresses, this interpretation of EKErr=1 is no longer
necessary (beginning with CP etch 4, Rev N). :



Ccp 33

CS Parity Error

If the parity of a microinstruction read by any task is odd, then control is transferred to location O
at the Kernel task level. Since the Kernel is the highest priority task, no other microcode tasks can
execute. The CS-parity-error signal is sampled by the IOP, which can consequently sense a failed
control store chip.

If the instruction read from microstore in ¢1 has bad parity, then the Kernel runs at location 0 in
the next c1. If the parity error occurs in c2 or c8, then there is a one click delay before the
Kernel executes at location O in ¢1. This intervening click can be executed by any task.

Emulator Memory Error

If the Memory Controller indicates a double-bit memory error in ¢3 during an «MD executed. by
the Emulator, then a trap to location O in ¢1 occurs at the Emulator task level.

The hardware requires the execution of one additional Emulator click between the ¢3 which errored
and the trap at location 0. Thus, other tasks and an additional Fmulator click can intervene
between the occurrence of the error and the trap code.

This trap only occurs for memory errors incurred by the Emulator task: device tasks must explicitly
utilize the ErrorLogging register in the Memory Controller. Yes, the memory address is lost (as
well as the syndrome if other memory reads occurred since the error). .

Stack Pointer Overflow or Underflow

If a pop or push is executed with the values of the stackPointer given in the following table. then
a trap to location 0 in ¢1 at the Emulator task level occurs (the stackP is still modified).

The hardware requires the execution of one additional Emulator click before the trap at location O.
Thus, other tasks and an Emulator click can intervene between the occurrence of the error and the
trap code.

Multiple pop’s and push’s can be specified per microinstruction in order to ameliorate the detection
of Stack overflow or underflow. For instance, fXpop (i.e., the pop in the fX field), fZpop, and
push executed together leave the stackPointer unmodified, yet simulate two pop’s with respect to
stack underflow detection. fXpop with push checks for stack overflow while not moving the
stackPointer, and, likewise, push and fZpop check for underflow. The following table enumerates
the cases.

functions stackP Trap is if stackP is
pop -1 underflow 0

push +1 overflow 15

fXpop, push 0 underflow 0

push, fZpop 0 overflow 15

fXpop, fZpop -1 underflow 0 or 1
fXpop, fZpop, push 0 underflow Oort

If the Emulator top-of-stack (TOS) element is kept in an R register and the rest of.the Stack in the
U registers, and it is assumed that TOS can always be stored away into the Stack, then these values
imply a maximum stack size of 14 words.



34 Dandelion Hardware Manual

IB-Empty Error

If an «ib, «ibNA, «ibLow, or «ibHigh is executed when ibPtr = empty, then an I1B-Empty Error
trap occurs to location 0 in ¢1 at the Emulator task level. If the IB-Empty Error occurs in ¢1, a
MDR« in the next cycle is canceled. (Furthermore, an IBDisp is ignored, but this fact is of no
particular value.) .

In normal operation (sec. 2.3.5) the IB is always guaranteed to have enough operand bytes (two)
before a macroinstruction begins executing. However, when the macroprogram counter points to
the last word of a page, the buffer is intentionally not refilled by the Emulator "refill” microcode
and the IB-Empty trap can occur, indicating that control has actually proceeded across a page
boundary. See the DMR.

If the IB-Empty error occurs in c1, then control transfers to location O in the next Emulator c1.
However, if the error occurs in ¢2 or ¢3, the hardware requires the execution of one additional
Emulator click before the trap at location 0. Consequently, other tasks and an Emulator click can
intervene between the occurrence of the IB-Empty error in ¢2 or ¢3 and the trap code. In
particular, if such a click executed a MDR« with an address which was a function of an 1B value
read in the previous ¢2 or c3, then a random memory location can be written.

The IB is not read during ¢2 or ¢3 of a macroinstruction’s last click. However, the microcoder
must ensure that, immediately following an «ib, «ibNA, «ibLow, or «ibHigh function executed in
c2 or ¢3, there is not a memory write with a MAR« or Map+ address which is a function of the IB
value read in ¢2 or c3. . (This is not checked for by MASS.)



2.5.6 Task Scheduling and Switching

A task is the microcode which supports an 10 device or the Emulator. A device task runs whenever
the device controller in the Dandelion asserts its "wakeup™ request. Since a device task can only
run during its pre-allocated clicks, a controller's maximum memory latency and maximum memory
bandwidth is an outcome of its preassigned location within the round.

The Emulator and Kernel tasks behave differently than device tasks. The Kernel task is a special
task used for communication between the CP and IOP (see 2.5.6.6). The Emulator task has no
fixed assigned slot in the round: it executes during a click which a controller has opted not to use.
Since devices do not utilize all of the bandwidth implied by the round structure, there is always a
minimum number of clicks available to the Emulator.

2.5.6.1 Task Allocation

The CP can control a maximum of 8 tasks. Currently, there are 6 wakeup lines (5 of them on the
backplane) which can request microcode service. The eight task numbers are allocated between the
devices, Emulator, and Kernel as follows: :

Emulator

Display or LSEP or MagTape
Ethernet

Refresh (Auxiliary)

Disk (Rigid)

IOP .

IOP control store read/write address
Kernel

NOODLWN-=O

The Dandelion is configured at boot time so that either the Display, or the LSEP, or the MagTape
can use task number 1, but all three can not simultaneously use task 2. Normally, the Display task
controls the refreshing of memory, but when the LSEP or MagTape (or other Option board
controller) is active instead of the Display, then the Refresh task has this responsibility. Similarly,
the Disk task cannot be simultaneously used by both the SA4000 and SA1000. Task 6 is currently
not assigned to an actual device: instead it is used by the IOP as an address register when reading
or writing the control store (see 2.5.6.7).

2.5.6.2 Click Allocation

There are two types of rounds: a standard 5-click round and an extended 10-click round. The
standard round is used with the HSIO board (Shugart SA4002 or SA1002 disks) and the extended
round with the HSIO-LD board (LDC, or LargeDiskController: Trident drives). The extended 10-
click round is an "even" S-click round followed by an "odd" 5-click round. In the even rounds, the
Ethernet task has claim to click 3, and in the odd rounds the Trident disk controller does.

Click 4 is special because the Display Controller hardware guarantees that memory references to the
display bank can never abort in this click. In order to refresh memory and maintain the cursor, the
Display and Refresh tasks are assigned to this click. When the Display is on, the Display task will
start in click 4 of the 11th round of a Display line. In contrast, the Refresh task will begin with the
Ist round of a Display scan line.

The LSEP also uses click 4 since its band buffers are located in the Display Bank. Moreover,
because of hardware pin limitations, the LSEP and Display wakeup requests are or’d together (on
the HSIO board). Thus, if both the Display and LSEP are enabled, their wakeup requests will be
irresolvable. (Note the single microcode function, CIrDPRq, is used to reset both their wakeup
requests.) Also in click 4, the Display-LSEP wakeup request has priority over the Refresh request.
Conversely, due to special hardware in the MagTape controller, the Refresh request has priority
over the MagTape request.



36 Dandelion Hardware Manual

The following tables show the standard and extended rounds:

Standard Round: Click
0
1
2
3
4
Extended Round: Click
0-0
0-1
0-2
0-3
0-4
1-0
1-1
1.2
1.3
1-4

2.5.6.3 Click Bandwidth Utilization

Task

Ethernet -

SAx000 Disk —

Iop -

Ethernet

Display- LSEP-MagTape OR Refresh

Task

Ethernet

Trident Disk

10P

Ethernet

Display-LSEP-MagTape OR Refresh

Ethernet

Trident Disk

I0P

Trident Disk
Display-LLSEP-MagTape OR Refresh

The followmg table summarizes the bandwidth availble to each device and the percentage which
remains for the Emulator when the controller is transferring data. (Pre- and post-data-transfer
overhead, which normally utilizes 100% of device clicks, is not included.) Note that the IOP only
transfers one byte per. click, so its maximum available rate is actually 3.9 Mbits/s.

Device BW allocated
(Mbits/s)
Ethernet(w/SAx000) 15.6
Ethernet(w/Trident) 11.7
SA4000 7.8
SA1000 7.8
Trident 11.7
Display (microcode) 7.8
I0P 7.8
LSEP & Refresh 7.8
MagTape & Refresh 7.8

BW used % remaining

(Mbits/s) for Emulator
10.0 36
10.0 15
7.14 9
4.27 45
9.6 18
1.1 86
2.0 26
3.7+1.1 .38
B+1.1 78

Even with the Ethernet, SA1000, and IOP concurrently transferring data and the Dlsplay microcode
refreshing memory, the Emulator still executes 60% of the time. ,



25.6.4 Tasking Hardware

The CP control hardware was designed to hide the details of task switching from the programmer.
Since tasks are frequently resumed and suspended by controller wakeup requests, the hardware
performs all the necessary start upand stop functions: every click it saves the current task’s
microprogram counters and pending condition bits and, when it is scheduled to run again, it
restores them. Figure 14 illustrates the process, outlined below.

Every c2 the Schedule Prom in the CP, on the basis of the controller wakeups and click number,
decides which task (Nt) will run in the next click. Also in c2, the Switch Prom, on the basis of Nt,
the currently executing task (Ct), and Wait (x.xx), decides whether to activate the task switching
logic (and, if so, sets Swec2 « 1). A task switch has two parts dealing with the outgoing and
incoming microprogram counter and conditions: (1) a restore process and (2) a save process.

(1) The Temporary Program Counter (TPC) array holds the eight 12-bit task microprogram
counters. If it is cycle 2 and a task switch is occuring, the TPC, as addressed by the next task
number, is the source of the control store address. The next task’s first micronstruction is
subsequently read in ¢3 and executed in the following c1. In short, NIA « TPC[Nt] at the end of
c2.

At the same time the next task’s microprogram counter is being read from TPC[Nt], the saved
condition bits are read out of the Temporary Conditions array, TC. and latched into the TC regsiter.
During ¢3, TC is or'd with the next task’s first microinstruction INIA field, which is being read from
the microstore. In summary, the saved condition bits are read during ¢2 from TC[Nt], latched into
the TC register, and in c3 ord with INIA.

(2) The current task's Next Instruction Address (which would have been loaded into NIA if there
were no task switch) is latched into the NIAX register at the end of ¢2 and then saved in the current
task’s TPC location during ¢3. In general, every ¢3, TPC[Nt] ¢ NIAX. (Note that in ¢3, Nt equals
the task currently executing.) .

Furthermore, the condition bits of the task currently executing (which would have been ord into
INIA) are latched into the TCX register at the end of ¢3 and then saved into the TC array in ¢1. In
general. every ¢1, TC[Nt] « TCX. (In c1, Nt actually equals the task which executed in the
previous click. The condition bits are saved in ¢1 because there is not enough time in ¢3 to write
them into a RAM)

The following table summarizes when the TPC and TC are read and written and the interpretation
of Nt:

cvcle operation Nt
end of c2 NIA « TPC[Nt] next task
.c3 TPC[Nt] « NIAX current task

end of c3 NIA « INIA or TC
end of ¢3 TCX « DispBr or Link
ct TC[Nt] « TCX previous task

The TPC and TC RAMs are written every click (except suspended clicks) even if there is not a
pending task switch. Consequently, if the Emulator is suspended because of Display bank
interference, it's correct restart address is available in the TPC.



38 Dandelion Hardware Manual

Save Restore
Process Process
-— NIAX « M2 NIA « M2
c1
~€— NIAX « M3 NIA « M3
Emulator .< c2 ,
NIA « TPC[2] = E1
- ~— NIAX « M4 -{TC AgLe S
~€— TPC[0] « M4
NIAX « E2
o1 TCX « 1 NIA « E20r 0
~€— TC[0] « 1
-€— NIAX « E3 NIA « E3

Ethernet < c2

~— NIAX « dispor 9 {N'A TR

c3 TC « TC[0
- -€— TPC[2] « dispor 9
. NIAX « Neg
/ o1 TCX « 0 NIA « Pos or 1
-€— TC[2] <0
-€— NIAX « M5 NIA « M5

Emulator { c2

Cc3

{Emuiator microcode for above example.}

M1: Noop, ct;
{Ethernet microcode for above example}
M2: Noop, c2;
M3: 0 « -1, NegBr, c3: E1: Noop c1;
E2: XBus « 9, XDisp, (4
M4: BRANCH([Pos. Neg]. c1; E3: DISP4[disp], 3;
Pos: GOTO[ME] c2;
Neg: Noop c2;
M5: Noop <3

Figure 14. Demonstration of Tasking Mechanism:

Where the Emulator task (0) is preempted by the Ethernet task (2) for one click.

This example demonstrates a pending branch across the task switch for the Emulator
and shows when the TPC and TC arrays are written and when NIAX is not equal to NIA.

The Save Process refers to the writing of the TPC & TC arrays, while the Restore Process refers
to.the reading out of TPC & TC.



Cp 39

2.5.6.5 Display Bank Interference

If any task references the dual-ported Display bank (lowest 64K of real memory) and the Display
controller is reading the bank, then the task is suspended for the duration of that click; that is, no
microinstructions are executed during the suspended click. Click suspension is always in multiples
of clicks and the c1-c2-c3 structure is not modified. Device tasks should not reference the Display
bank (unless the Display is off).

In particular, the Emulator task is suspended until either it is scheduled for click 4 or the Display
controller relinquishes the low bank. This reduces the Emulator’s maximum possible bandwidth
into the low bank by about half (47%) when the Display is active: from 38.9 to 18.3 Mbits/s 11

megaword/s).”

Clicks are suspended by the signal Wait which gates off all clocks which can change sensitive state
information. In the schematics, such clocks are labeled WaitClock, in contrast with the normal
AlwaysClock. Wait is defined

Wait- « (MAR« and YH[4-7]=0 and Disp-Proc'=0) or (IOPWait and c1)
or (Wait and c2) or (Wait and c3).

When Wait is true, the following registers and RAMs are not written: R, Q, U, RH, stackP, 1B[0],
IB[1], ibFront, ibPtr, Link, TC, TPC, Mint, pc16’, and Errors (Memory, stackPointer, CSParity,
IBEmpty). By contrast, the following are unaffected by Wait: MIR, NIA, NIAX, TCX, TC,
KernelReq, EKErr, and schedular task states (Nt, Ct, Pt, Swc3).

Since the Microinstruction (MIR) and Next Instruction Address registers’ (NIA) clocks are unaffected
during suspended cycles. the decoded signals from the MIR can change during an aborted click.
However, this does not result in a random sequence of decoded microinstructions: the MIR output
in c1, ¢2, and ¢3 is equal to the values it would have had if the click were not suspended. This is
because the microinstruction loaded into MIR is always defined by an NIA which is unaffected by
any invalid states generated during the suspended click: cycle 1’s MIR output is defined by the NIA
read from the TPC (in c2), cycle 2's by the value of INIA or TC (computed in ¢8), and cycle 3's by
INIA ord with conditions bits specified in ¢1 (which are not effected by WaitClock in c1).
Furthermore, if the Emulator is suspended for consecutive clicks, the MIR output is the same for
each click since NIA is reloaded from the TPC during suspended clicks.

2.5.6.6 _Kernel Task

The Kernel task is used for supporting the debugging of the CP (e.g., breakpoints, reading/writing
CP registers) and handling the CP-IOP communication while booting (e.g., memory refresh during
control store read/write). When the Kernel task is enabled, it executes in all clicks, preempting all
device tasks and the Emulator. . )

The Kernel task runs if there is a CSParityError, IOPWait is true (2.5.6.7), or the microcode
function EnterKernel is executed. If EnterKernel is executed in cf, the Kernel runs in the next
click. However, if executed in ¢2 or ¢3, an Emulator or device click can intervene before the
Kernel runs. When the Kernel task is started, the Switch Prom does not cause a task switch; hence,
a breakpoint microinstruction can specify an entry point into the Kernel.

The Kernel task request remains active until reset by the ExitKernel function. An ExitKernel is
overridden by a pending IOPWait or CSParityError. When ExitKernel is executed in c1, the next
click can be executed by another task (depending on which click the ExitKernel is in and the
wakeup requests). .



40 Dandelion Hardware Manual

2.5.6.7 CP-IOP Interface

The IOP interfaces with the CP as both a standard 170 controller and as a boot loader/debugger.
This section deals with the booting interface: the control lines used to load the control store and
initialize the tasks’ microprogram counters (TPCs). The following signals are used between the IOP
and CP: '

SwTAddr high level causes Nt = IOPTPCHigh[0-2] and
NIAX[0-4] = IOPTPCHigh[3-7] and
NIAX[5-11] = IOPData bus

10PWait high level sets Kernel wakeup request and
WaitClock is suspended

WrTPCHigh positive edge writes IOPTPCHigh with |OPData bus

WrTPCLow pulse causes TPC[Nt] « NIAX

CSWE(n] pulse writes a control store byte with IOPData bus

ReadCSEn’ places CS byte, TPC, & TC onto IOPData bus

ReadCS[n] selects CS, TPC, & TC bits to use with ReadCSER’

The basic algorithm for reading or writing control store is to first write TPC[6] with the address of
the location to be accessed and then read or write data bytes (addressed by CSWE[n]' or
ReadCS[n]) while allowing the Kernel to Refresh memory if necessary. Although all of the tasks’
. TPCs can be initialized. the TC registers cannot be loaded by the IOP.

In general, when reading or writing a TPC location or CS byte, both SwTAddr and IOPWait must
be high and the value of Nt (loaded into IOPTPCHigh) must be 8 or 7. When SwTAddr is true,
Nt and NIAX are defined by the IOPTPCHigh register instead of their normal sources. This allows
the TOP to address and supply data direcdy to the TPC RAM.

Setting 10PWait causes the Wait line to be high. Thus, registers clocked by WaitClock cannot be
loaded with spurious data while a TPC or CS location is being written. (Moreover, the
CSParityError trap cannot occur.) |IOPWait also sets the Kernel wakeup request so that the Kernel
task runs when IOPWait is removed.

While IOPWait=1 and Nt = 6 or 7, the Switch Prom causes a continuous task switch; that is,
Swc2 is always true and NIA is set to the value of TPC[6] or TPC[7]. In this state, the Kernel
microcode does not run and its TPC does not change. However, after writing one byte of control
store or one TPC location, it may be necessary to refresh main memory. In this case, IOPWait and
SwTaddr are reset and, since the IOPWait caused the Kernel wakeup request to be set, the Kernel
begins running at the saved TPC location and executes the required number of Refresh functions
or performs a function enumerated by the IOP via the normal 170 interface (e.g., «lOPiData,
«|OPStatus).

The following table shows which control store bytes are read or written with ReadCSEn' and
CSWE([n]’. Note that when writing the control store the inverse of the data must be supplied on
iOPData.

ReadCS = CSWE[n] IOPDatal0-7]

rA, B

a8, aF, aD

ep, Cin, EnableSU, mem, fS
fY, INIA[O-3]

X, INIA[4-7]

fZ, INIA[8-11]

TC, TPC[0-3]

TPC[4-11]

NOOAWN-=2O
TO0QOU0OP



Ccp 41

2.6 Input/Qutput Interface

The CP and the high speed devices were mutually designed within one framework and are
inexorably bound together: the I/0 bus is the same as the CP’s main data bus (the X bus), the 170
register control is directly encoded into the microinstruction format, and the devices depend on the
preallocated click structure for guaranteed memory latency and bandwidth. This intimate
relationship between the devices and the processor exists in order to absolutely minimize the overall
system cost. By sharing the ALU among several controllers, overlapping memory accesses with
ALU computation, and guaranteeing memory latency, very small IO controllers can be built. This
section exists because it is possible to design different disk or display controllers on the HSIO
board, new high speed controllers on the Option board, and new Memory systems.

2.6.1 CP-10 Interface

The following signals and buses are used between the CP and a typical device controller, called
Dev:

X bus 16-bit data to or from memory or 2901

Y bus 16-bit data from 2901 )

DevReq’ task wakeup request to CP Schedule Prom

DevCtl«’ signal from CP to load controller control register from X or Y Bus
DevOData«’ signal from CP to load controller data register from X Bus
«DevStatus’ signal from CP to place controller status onto X Bus
«DeviData’ signal from CP to place controller data onto X Bus
CirDevRq’ signal from CP to reset controller wakeup request

. DevStrobe’ signal from CP for general use by controller

IODisp CP branch on a controller state

Wait . level from CP to gate off WaitClock

Normal CP-Controller interaction (for input) goes something like: (1) A controller receives a word
of data, (2) the controller activates its wakeup request, (3) the controller’s task runs in its allocated
click, (4) the microcode reads the data from the controller to main memory or 2901, and (5) the
controller resets its wakeup request. In general, the wakeup request is either explicitly turned off by
the task via CirDevRg' or is turned off by the controller when it senses a <«DeviData’,
DevOData+’, or DevStrobe’. It is explicitly assumed that a controller only causes wakeups when
data transfers are pending (or when directed by its task) in order to minimize the impact on the
Emulator. :

A device’s wakeup request must be turned off by the end of the cvcle 1 which follows the service
click in order to prevent a task from accidentally running again. Since the device's wakeup request
must be 2-level synchronized, this implies that the reset-wakeup function must be executed in ¢1 or
c2 for those devices which have a two-click minimum separation.

In general, all controller control registers should be clock’d with WaitClock so that spurious device
actions are prevented while writing control store. If a control signal can be used by an Emulator
click which could be suspended, it should also be gate’d with WaitClock. Device tasks should not
reference the Display bank unless the Display is off.



42 Dandelion Hardware Manual

2.6.2 Controller Latencies

A controller’s data buffer size depends on how often the buffer is serviced and what kind of
wakeup scheme is employed. There are two basic wakeup strategies: post and prerequesting. In
the former case, the wakeup request is raised after the device buffer is available to be read/written
by the CP. In prerequesting, the wakeup request is raised before the device buffer is actually
available. Only the SAx000 disk uses prerequesting. Where a task must process some of the data
and cannot transfer a word per click, then a FIFO is usually used as a buffer (as in the Ethernet).
However, when little or none of the data must be examined by the microcode, then a sunple
register buffer is sufficient (as in the rigid disk controllers and LSEP).

In order to avoid overruns with the \postrequesting scheme, the maximum microcode service latency
plus the wakeup-request synchronizer delay must be less then the data rate:

Lm + Spax < /T,
where b is the number of bits of buffering, r is the data rate of the device (in Mbits/s), L o is the
maximum latency (in Mseconds). and s_,. is the synchronizer delay (equal to 2T, where T = .137
msec). If the task microcode transfers one word per click, then

L. = 3dT + 4T for output, and
L . = 3dT + 3T for input,
where d is the maximum seperaﬁon between device clicks. If the microcode does not always

ransfer a word per click, then L . is correspondingly greater.

For prerequesting, the wakeup request cannot be made too early, thus the constraint

Smin * Lmin ~ ‘handorr > -

where t,, . o is the time for the CP to read the buffer (equal to T) or the controller to read the
buffer (about .05 Mmsec)). If prerequesting begins p device bit times before the buffer is ready, then

sin = 2T - p/r. and
max = 1 - D/
Since L, ;. = ST for output and 4T for input, p must satisfy the following conditions in order for

prerequesting to work (t, . . = 0 for output):
[fT3d + 6) - b] < p < 6T for output, and
[fT3d + 5) - b] < p < 4T for input.

For SA4000 write or verifty operations: 4.54 < p < 5.51 !



Ccp 43

2.6.3 10 Controller Design Rules

Since replacement or augmented controllers are being designed for the Dandelion, the following
design rules should be-followed in order to guarantee correct operation. Figure 15 illustrates the
proper application of the CP interface signals.

(1) CP control signals such as DevReq', DevCtl«’, «DevIData’, ClirDevRq’, and DevStrobe'
originate from an SN74S138 decoder and therefore must not be used in an asynchronous way, such
as the clock input of a register. These CP signals must be synchronized to the CP clock or gate’'d
with pAlwaysClk or pWaitClk.

(2) Controller input buffers must be either an SN74S240 or SN74S374 (or equiv) and the CP
control signal which enables them onto the X bus, such as «DeviData' or «DevStatus’. must be
connected directly to the output enable input without being gate’d in any way.

(3) If there is more than one output register on the board, the X bus must be buffered with an
SN74S8241 (or equiv) before routed to the registers. The CP control signals which load the output
registers, such as DevOData«’ or DevCti«’, can be modified per the constraints of a clock qualifier
signal (see (5)).

(4) The device wakeup request signal, DevReq’, must come from an SN74S374 (or S74, or equiv)
and must be synchronized by at least 2 such FF's. .

(5) The clock qualifying structure shown in figure 8 must be used: the S02 is located in the
position nearest backplane pins 1-10 and the "qualifier" gates are no further away then the center of
the board, their preferred location. Clock qualifier terms should be valid by 94 nanoseconds after
the positive (active) edge of AlwaysClk. Clock’d registers should be no more than 10" from their
qualifier gate.

pWaitClk must be used for any register which, if spruiously loaded during a control store boot, can
activate a device function (e.g., disk write enable). Such registers should also be reset by IOPReset’
which is ord with the power supply on/off reset.



Dandelion Hardware Manual

——

BufX.n,

S241

2/

S

DevOData DeviData
LS374 8374
Do Qo <D0 Qo
o1 Qif i1 Qa1f
D2 Qzr D2 Q2F
D3 Q3 D3 Q3
D4 Q4 © D4 Qar
D5 Q5 105 Q5
D8 Qs -106 Qe
D7 Qrr D7 - Q7F
cK. _Qc CK_oc

DevCtl

ic S00

:_ﬂmevRu' LS374

‘,DO Qo F

Q
=
[»]
et
T

1
jw}
w
[9]
w

TT T

S240

WakeupRequest

WaitClk

Attention

8374 S$374 __D.ﬂBﬂa._! l

AlwaysClk AlwaysClk

8374 8374 __IIQD.IS.D_.[ ]

AlwaysClk AlwaysClk

Figure 15. Controller Hardware Demonstrating 170 Rules & CP Interface



cp 45

2.7 Example Microcode

Just as a melody, in order to be heard, requires both notes and intervals, the CP hardware should
be viewed in light of its corresponding microcode. The following microcode examples illustrate how
and in what time frame certain elementary functions are accomplished. There are seven examples,
some simplified: Mesa Emulator Load Local n, Read n, Jump n, Refill, and the Ethernet, Disk,
and LSEP inner loops. See the DMR for a description of the microcode format.

(1) The Mesa Emulator Load Local 1 (LL1) macroinstruction indexes the local frame pointer and
then push’s the addressed word from memory onto the Stack. It executes in one click if the
indexing operation does not cross a page boundary and in three if a page cross occurs. If the Map
flags must be updated (RMapFix), another two clicks are required.

@LL1: MAR « Q « [rhL, L+1], L1«L1.PopDec, push, c1, opcode[1'b];
LLn: STK « TOS, PC « PC+PC16, IBDisp, L2«L2.LL, BRANCH|[LLa,LLb,1], ¢2;
LLa: TOS « MD, push, {Zpop, DISPNI[OpTable), c3;
LLb: Rx « UwL, c3;
LSMap:  Noop, ct1;
Q « Q - Rx, L2Disp, c2;
Q « Q and OFF, RET[LSRtn], c3;
LLMap: Map « Q ¢ [rhMDS, Rx +Q], ¢, at[3,10,LSRtn];
. Noop, c2;
Rx « rhRx « MD, XRefBr, c3;
MAR « [rhRx, Q + 0], LO<LO.R, BRANCH[RMUD,$], c1;
IBDisp, GOTOI[LLa], c2;
RMUD: CALL[RMapFix], c2;

(2) The Mesa Emulator Read 1 (R1) macroinstruction indexes the virtual address on the top of .
Stack and then push’s the addressed word from memory onto_the Stack. It exccutes in two clicks.
Four are required if the page has been read the first time: that is, the Map flags must be updated.

@R1: Map « Q « [rhMDS. TOS + 1]. L1«L1.Dec, pop. ¢1. opcode[101'b];
push, PC « PC + PC16, c2;
Rx « rhRx « MD, XRefBr, c3;
MAR « [rhRx, Q + 0}, LO~LO.R, BRANCH[RMUD,$], ct;
iBDisp, GOTOI[LLa], c2;

(3) The Mesa Emulator Jump 2 (J2) macroinstruction increments the PC by 2 bytecodes and then
refills the instruction buffer. It executes in two clicks. Five are required if the jump crosses a
page boundary.

@J2; MAR « PC « [rhPC, PC + 1], push, c1,0pcode[201'b];

STK « TOS, L2 « L2.PopOincrX, Xbus«0, XC2npeDisp, DISP2{inPNoCross], ¢2;
jnPNoCross: 1B « MD, pop, DISP4[JPtr1Pop0, 2], ¢3, at[0,4,jnPNoCross];
inP1Cross:  Q « OFF + 1, LO « LO.JRemap, CANCELBR[UpdatePC, OF], c3, at[2,4,jnPNoCross];
JPtriPop0:  MAR « [thPC, PC + 1], IBPtre1, push, GOTO[Jgo], c1, at{2,10,JPtr1Pop0];
JPtrOPop0:  MAR « [rhPC, PC + 1], IBPtr«0, push, GOTO[Jgo], ct, at[3,10,JPtr1Pop0]);

Jgo: TOS « STK, AlwaysIBDisp, LO « LO.NERefill.Set, DISP2[NoRCross], c2;



46 Dandelion Hardware Manual

(4) The Mesa Emulator instruction buffer refill code executes in one click if the buffer was not
empty and in two if it was. Four to six clicks are required if the refill occurs across a page
boundary.

{Buffer Empty Refill. Control goes from NoRCross to RefillNE since RefillE+1 does not contain an [BDisp.}

RefillE: MAR « [rhPC, PC], PC « PC-1, LO « LO.ERefill, c1, at{400];
PC « PC+1, DISP2[NoRCross], c2;

{Bufier Not Empty Refill.}

OpTabile: {"Noop" location of Instruction Dispatch table}

RefilINE: MAR « [rhPC, PC + 1], c1, at[500];
Always|BDisp, LO « LO.NERefill.Set, DISP2[NoRCross], c2;

NoRCross: IB « MD, uPCCross « 0, DISPNI[OpTable], ¢3, at[0,4,NoRCross];

RCross: Q « OFF + 1, GOTO[UpdatePC], ¢3, at[2.4,NoRCross];

(5) The Ethernet input inner loop transfers one word per click until either a page boundary is
crossed (ERead + 2 or ERead + 3). the maximum sized packet has been exceeded (EiToolLong), or
the controller has signaled an abnormal condition (ERead+1 or ERead + 3).

{main input loop}

EinLoop: MAR « E « [rhE, E + 1], EtherDisp, BRANCH[$,EiToolong], ct;
MDR « ElData. DISP4[ERead, OC], c2;

ERead: EE + EE - 1, ZeroBr, GOTO[EInLoop]. c3, at{0C.10.ERead];
E « uESize. GOTO[EReadEnd]. ¢3, at{0D.10,ERead];
E « ElData, uETemp2 « EE, GOTO[ERCross], ¢3, at[OE.10,ERead];
E « ElData, uETemp2 « EE. L6«L6.ERCrossEnd, GOTO{ERCross], ¢3, at{OF.10.ERead];

(6) - The SAx000 disk write and verifv inner loop transfers one word per click until the required
number of words have been sent

wrtVerbLp: MAR « [RHRCnt, RCnt], RCnt « RCnt+1. c1, at[0.2.FinWrtVer];
RAdr « RAdr-1, ZeroBr, CANCELBR([S. 2]. c2;
KOData « MD. BRANCH[WrtVerLp. FinWrtVer], c3;

(7) The LSEP output inder loop outputs a band buffer entry from the display bank and then clears
the entry. This continues until the required number of words have been transferred, which is
detected by nligning the data on a page boundary.

scan: MAR« [displayBase1. rX + 0], CIrDPRag. ct;
MDR« rY{= zero}, rX« rX+1, PgCarryBr, c2;
POData« MD. BRANCH[scan, endLine]. c3;



cp 47

2.8 Footnotes

1 All of the microcode-related specifications and rules presented in this chapter are validated by the
microcode assembler and control-store-allocation program (MASS).

2 The writeable control store is expensive: out of the 160 chips total, 70 are microstore chips.

A special version of the CP has been built which has a 16K control store partitioned into four, 4K
banks. The 2-bit Bank register can be loaded from NIAX with fZ = Banke. All non-Emulator
tasks are forced to execute from bank 3. Error trap location O exists in each bank.

3 Where did this (prime) number come from? All system timing is based on the Display’s bit time,
19.59 nS (51.04 MHz, £ .05%). There are 7 bit times in a cycle and 210 cycles (14 rounds) in one
horizontal display line. More precisely, the cycle time is 137.14 =+ .57 nsec.

Alternatively, the cycle time (137) equals the inverse of the fine structure constant: a fundemental
dimensionless constant equal to 2p times the square of the electron charge in electrostatic units,

divided by the product of the speed of light and Planck’s constant (2pe2/ch) !

4 This sequence has been likened to the triple time meter of a waltz!

5 Because there are so many sources-and sinks on the X bus, it has a nonnegligible capacitance: it
has been measured at 337 pF!

6 The oring of a Link register with the low 4 bits of the IB byte during an IBDisp is not
encouraged as this feature will not exist in a future version of the processor.

' The 18.3 Mbits/s into the display bank is approximated as follows: There are 70 clicks per
display scan line and, of these, the Display controller uses 4*10 = 40 clicks for a normal scan line.
Furthermore, the display microcode uses 2 clicks for memory refresh. During 808 of the total 897
scan lines, the display controller is actually pumping bits out to the monitor. Thus, the Display
controller and microcode use about (808/897)(42/70)(38.4 Mbits/s) = 20.6 Mbits/s of the
bandwidth, lcaving 38.9-20.6 = 18.3 Mbits/s for the Emulator.



48

3.0 Memory System

The memory system has two, 16-bit ports: one to the central processor (CP) and one to the display
controller The CP shares the lowest 64K bank with the display and has exclusive use of the upper
banks. Single-bit error correction and double-bit error detection is performed on all words
delivered to the CP, but words used by the display are not corrected. The memory cycle time for
the CP is 411 nanoseconds (nS), but for the display controller is either 293 (full) or 215 (page) nS.

The memory can be configured in at least five different sizes depending on the mix of Memory
Control Cards (MCCs) and Memory Storage Cards (MSCs). The lowest 64K words (Display bank)
are located on the memory control card along with the error correction and port logic. The storage
card holds additional memory chips plus data and address drivers. The timing signals for the
memory system are generated by display controller (sec. x.xx) and are synchronous to the processor
clocks. Figure 17 is a block diagram of the memory controller.

The MCC comes in one of two sizes: 64K or 256K words. Likewise, the MSC has either 128K or
512K words (the large version is called MSC-X). With some modifications, the 256K MCC card
(called MCC-X) can be used with the 128K storage card. The maximum real memory size is
1,048,576 words. The following configurations are standard:

MCC MSC Total size (words)
64K none 65,536 (64K)
64K 128K 196,608 (192K)
256K none 262,144 (256K)
256K 128K 393,216 (384K)
256K 512K 786,432 (768K)

From the micropogrammer's perspective, the CP controls all accesses to the memory: the CP’s X,
Y. and YH buses are used to supply addresses and transfer data. Device controllers can only use
memory via their corresponding microcode tasks. (See section 2.4, "Main Memory Interface.”) The
Display controller is the excemption: it actually constructs its own memory timing signals (RAS
and CAS) in order to acheive the maximum bandwidth possible through its port (sec. X.xx). The
Display controller does not use the X and Y buses, but has its own 16-bit address and data buses.
The following figure is a block diagram of the memory system:

I“* Y, YH,X a—
Processor .
mem,MCtl+, «MStatus,Refresh Memory Storage
MapRef saddr s
| = MemErr 1 Control 7>
7
& - Card
Task # ” 3 > SDI >
Control Z\ Processo! Low 64K
. N T
& Data Disp/Proc Clocks S .{.SD.O_%_
DCtl+, X \|
-  Banksel O]
Clocks | Memory Clocks . 3]
RAS,CAS,WPulse Controt
2 Write'
LRAS LCAS ” > CRefresh’
Display ] i MRef’
—>1 BAS. CAS
| DAddress 16 ] -
DData 16
4 61 Lines




Memory System 49
—83% > Prror Log
X-Bus Register
<-Mem 1 Syndrome
= Generator
Error Corrction
Data Paths
00
<hoza
SDI s,
Y-Bus, Memory -
Data Register Data

Control & Check bit Data sections Buffers

Control 1 Clocks Generator, & of chips for ECC
MC Reg. & Display
"I Address ]

Registers 88 (or 22) chip

& Refresh Low Bank Memory Array

Counter Selection

rogic & Address
~Daddress I RAS Drivers .
- 2 Y RAS’, CAS,

RAS/CAS - - & Write’

Multiplexers ~Address Lines &

for CAS, & Terminations

normal, Write
DisnzPrac’ s MapRef, Drivers

Display SAddr RankSel

Figure 17. Memory Control and Low 64K Bank



50 ) Dandelion Hardware Manual

31 CP Interface Summary

This section provides a summary of each of the functions of the memory system as viewed from the
central processor. Figure 18 summarizes the functions. For a complete description of the
microcode interface, see section 2.4.

Read

A read operation is started by placing the memory address on the Y and YH busses and asserting
mem in the first cycle of a click. The data can be read back to the X bus during the third cycle by
asserting mem then. All data read by the processor is error corrected unless the correction inhibit
bit is set in the Memory Control (MCtl) register.

Write

The first cycle of a write operation is dedicated to sending the address to memory. It is identical to
the first cycle of a read operation. The data to be stored must be delivered to the memory -during
the second cycle of a click, by asserting mem in the second cycle, and placing the data on the Y
bus. Error correction check bits are always calculated and stored automatically by the memory
system. If a write operation in the second cycle is followed by a read in the third, the data existing
before the write is returned.

Map Reference

The Dandelion’s virtual memory map is kept in main memory. A map-reference-type memory read
is identical to a standard read, except the bits supplied by the Y and YH busses are shifted to
facilitate indexing into the Map. Microcode uses this feature to provide a 22-bit virtual memory
system with the MCC and a 24-bit system with the MCC-X.

The virtual memory is divided into 256 word pages. The Map+« function discards the low 8 virtual
address bits (since they reference the word location on the page), moving the high 14 bits (virtual
page number) to the low 14 or 16 bits used for the real map address. The location of the 16K
map is fixed between locations 10000 and 13FFF (hex) in real memory.

Each 16 bit entry in the Map contains 10 to 12 bits of real page number and four flags describing
the page (present, dirty, referenced, etc). To derive a real address from a virtual one, the
microcoder uses the map function (Map+), checks the flags and appends the original low order 8
bits to the 10 or 12 bits fetched (sec. 1.4.2). The presence of a Map+« function in cycles 2 or 3 has
no effect on the memory. mem should not be asserted, unless its side effects are desired (sec.
1.4.2).

Refresh

The memory controller contains circuitry to facilitate memory refresh. Each memory chip is
organized as a 128x128 (or 256x128x2) bit matrix. When the row address is received, all bits in the
specified row are read. The column address is used to select one of them. At the end of the
memory cycle, all 128 bits are rewritten to perform a refresh. Hence, a row of a chip may be
refreshed by reading any bit in that row. If the column address is suppressed during refresh, a
substantial section of the chip remains quiescent, saving power. During each refresh cycle, the
memory controller broadcasts only a 7 (or 8) bit row address and row address strobe (RAS) to every
memory chip. This row address is supplied by a counter on the MCC that is incremented at the
end of the cycle.

Refresh is initiated by asserting the Refresh function from the CP during cycle 1 of a click when
the display is quiescent. The Refresh line is ignored during cycles 2 and 3 and whenever the
display accesses memory. All memory chips require that 128 rows be refreshed at least every 2
milliseconds. A horizontal line on the display takes 28.8 microseconds, hence, the memory should



Memory System 51

be refreshed at least 1.85 times per horizontal line. The standard display code performs two refresh
cycles each line. The display microcode was chosen to do this because it can guarantee that the
display hardware is inactive. Note that any displayless configuration of the Dandelion must contain
some combination of hardware and microcode to perform the refresh task. The Refresh task is used
in this case.

Display Lockout

The low 64K of the memory is shared between the display and the CP. The display has priority.
When actually scanning a line, the display consumes clicks 0 through 3, leaving click 4 for the CP.
Thus, one click out of 5 is available for use by display handling microcode and accessesby the
Emulator to the low bank. As discussed in section 2.5.6.5, "Display Bank Interference,” the lockout
(plus refresh & display microcode functions) reduces by about half the Emulator’s maximum
possible bankdwidth into the display bank: from 38.9 to 18.3 MBits/s.

Lockout occurs only if the processor and display attempt to access the low bank at the same time.
Accesses to the high banks are not affected. Lockout does not occur during retrace intervals
(horizontal and vertical), or during any other period of display inactivity (such as when the display
is disabled). By convention, time critical hardware tasks using the first 4 clicks must never attempt
access to the low (display) memory bank since a lockout could occur causing extra delay. In
particular, one could not fill the bit map directly from an 1/0 device such as the disk or Ethernet
without first disabling the display. See the display controller description for exact details of display
timing. -

Lockout is implemented by generation of a wait signal in the CP whenever a bank 0 (low 64K
bank) access is attempted and the display is already using the low bank. The processor suspends
the microcode which started in that click. and continues the normal arbitration of what runs in the
next click. In this manner, lockout in one click does not hold up operation in the following click.



52 ' Dandelion Hardware Manual

MARe  Memory Address Register

YH Bus Y Bus

g ignored |4Is| Bl 7l|o 15
| : 20-bit real address ]

MARe«  mem during ¢t
Action:  Contents of YH[4-7],.Y[0-15] is used as memory address.

MDR+  Memory Data Register Y Bus l
15

0

MDR«  mem during ¢2

" Action: Contents of Y Bus go into memory location specified by contents of MAR as loaded during first cycle of click.
No write occurs if the low 84K bank is selected and it is aiready being used by the display.

« MD Memory Data [ X Bus
«MD mem during ¢3 0 15
Action: . Memory data to X-Bus is single error corrected if MCtl bit 15 is set. The status of a given read operation
can be found by looking in MStatus before the next memory read (~MD) is done. The occurance of both
single and double errors are indicated here. This operation gives the contents of the memory cell specified
during cycle 1, independent of whether a write was specified during cycle 2.
Map+ Map Reference
YH Bus Y Bus
Q Z Q 718 15

I 16 (or 14) -bit virtual nage number I
Map+ inc1 only

Acton: This action is the same as a MAR« except that the physical address is derived differently.
An access is started in the 65K - 80K bank of memory. The location accessed is specified by the page number.

Refresh

Refresh during cycle 1 of click. ' Ignared in ¢2 and ¢3.

Action: A RAS only cycle is initiated in all memory chips. Row Address is supplied from an internal 7 (or 8) bit counter
which  is incremented once per occurance of refresh. )
DO NOT USE refresh if the display is using the low bank of memory during that cycle. No refresh will occur.
This can be guaranteed if used only in click 4.

MCti«  Memory Control Register Y Bus
EN|Pt Pt |Pt]|A |B |C |D {E |F EN
MCti« during any cycle. Cir.jo |1 2 Cor
0 23]l al sl gl 718 1 ot10l11t12 1181141145

clear error log ___4\ I Il IU';:;
- for this | Set bit = 1 to invert
Task corresponding check bit Set = 1

written into memory. Inhibit
Testing only. Correction
Action:  Normally this register is set to 0. A-F can be set to one to test syndrome bits and error indications.

individual bits of the error iog can be cleared by setting bit 4 and using P10-2 to specify the bit to be cleared.
Bit 15, Inhibit correction, affects only the data being read. Check bits are always generated and stored in
memory during writes.

X Bus
« MStatus Memory Status
A |B |C |D |E |F |S |D |TO|T1|{T2|T3|T4|T5|T6|T7
« MStatus during any cycle. Err| Err
Q 11 2t a3l at sl a6l 71 81 0110111 132113114 115§

Action:
This register is loaded every time memory data l 5 Bit I fl\ l Errorlog

is read by the processor («+MD). High byte has If bit = 1 then a double memory

status of most recent memory access. Low byte Single Error e
ror h;

latches any occurance of double error on a per Double Error g’sz (Tg‘?% T%?cs?r:?edl :; :?ﬂ?::g

task basis. Register is 0 if no errors logged. bit was cleared

Figurg 18. CP Memory Interface Summary




Memory System 53

3.2 Error Correction

Since soft errors can occur in the memory (alpha particles from the package, etc.) error correction
circuitry is included in the memory system. Six check bits added to the 16 bit word provide single
error correction and double error detection (SEC-DED). No explicit indication of single errors is
provided, although the status of any particular operation can be read from the Status & Errors
(MStatus«) register after an operation. Error correction can be disabled, and the check bit positions
in memory selectively set by writing into the MCtl register and reading the MStatus register.

A double error signal is available and also latched on a per task basis in the MStatus register. Thus,
a task, upon entering a critical data transfer phase, could clear its particular bit, perform the task,
and then check to see if its bit was set (double error). If an error did occur, its effect would be
limited to events in that interval, over which some corrective action might be taken. If the emulator
task caused the double bit error, a kernel trap is taken to location 0. See section 2.5.5.2, "Error
Traps.” :

The following calculations yield probabilities of errors due to independent random processes in each
chip. They do not include correlated events such as power line transients or static discharges which
could affect all of the chips at the same time. A memory with 22 bits/word is assumed.

If the chips are assumed 10 (hard) fail at a rate of one per 2.5 million years (.04%/1000hr), then the
mean time to a chip failure in a memory system with 12 banks (192K or 768K) is 9470 hours 13
months). By contrast, the mean time to failure with 4 banks (256K) is 28,410 hours (3 years, 3
months). ’

The soft error rate for the chips is assumed to be 1%/1000 hours. Following are the probabilities of
0. 1. and 2 soft errors in a 22 bit word in a 10 hour period. 10 hours was selected as the interval
over which errors could accumulate, with the system being reset after 10 hours. The mean time
between single errors is 38 intervals and the mean time between double errors is approximately
36.200 intervals. (It should be pointed that these probabilities are those that one would expect to
measure with a program which continually scans through all memory cells looking for an error. If a
program is confined to a small segment of memory, it would perceive a proportionately smaller
probability of soft error.)

Prob:(‘-l single error in 22 bit word in 12 bank system in 10 hr. interval) =.0263
Prob.(1 double error in 22 bit word in 12 bank system in 10 hr. interval) =2.76 x 107



54 ' Dandelion Hardware Manual

The following table shows the interpretation of the syndrome bits which can be read with the
«MStatus function after a memory read. The code table shows how the syndrome bits A-F are
generated. When checking, syndrome bit F is parity over the entire word.

or (A-F) E Meaning

0 0 no errors Oor >2 errors
0 1 not possible

1 0 double bit error

1 1 single bit error

The SEC-DED code was optimized for 9-input parity chips. The following code table shows how
the syndrome bits A-F are generated. Each row represents the inputs to a single parity chip. For
example, syndrome bit A is the xor of data bits 0-3 and 10-13. Bit O will be inverted (corrected)
during reading when A-F equals 110001 (from the column under 0). Any of the syndrome bits can
be inverted when being generated by setting the corresponding bit in the MCtl register.

01 2 3 4 5 6 7 8 9 1011 121314 15a b c d e f
A ¥ + + + + + + + +
B + + + + + + + + +
C + + + + + + + +
D + + + + + o+ + + +
E + + o+ + + + + + +
F + + + + + + + + +



Memory System 55

33 Memory Timing

Typical processor timing is shown in figure 19 below. The memory address must be valid on the Y
and YH busses early enough that the proper bank is selected and address lines valid for RAS' (row
address strobe). The column address bits are latched by the RAS' signal. The CAS' (column
address strobe) signal occurs 42 nS after the RAS’ signal and latches the column address in the
memory chips. Data becomes valid at the output of the chips at a maximum of 150 nS after RAS’
or 100 nS after CAS’, whichever is later.

When writing into memory, the data to be written must be supplied during the second cycle of a
click. The data is actually written in the latter half of the third click. Notice that up until the
presence of the write pulse, all signalling is identical to a read cycle. The memory chips latch and
hold the old data on their outputs during a write pulse if it occurs more than 150 nS after the RAS’
signal. Thus, it is possible to write into a location and read data from it, all in the same memory
cycle,

0 . 137 274 411
Cycle 1 Cycle 2 Cycle 3
Clk
98 nS 39 nS
. | | | .
RAS'
MemChips : :______134_135__9 : 2n$ '9‘ F
| ; }
] ]

| —>! k=30 ns

Address I_ZQ.DS_e >
MemChing Row L Column Address 40nS ' F
[

Address
I
LN
|
|

%ns —> &
Chips
Data 250 nS ~,
Availagle | Cor:(e)cted Data
X-Bus

CAS'

MemChips 176 nS

\

' -~
|30 nS

250 nS

Datain

MemChips

\ 4

Write
Enable
MemChips

Normal Memory References through Processor Port




56 ' Dandelion Hardware Manual

The display port supports both full and page mode accesses. The data delivered to the display port
is not error corrected. The full access cycle time is 280 nS and the page mode access time is 200
nS. While the full access time is smaller than that specified in the data sheets (320 nS) for
continuous operation, it is the average that is important, and the average cycle time in this case is
342 nS (6 full accesses per round, counting click 5). A page mode access occurs when the RAS’
signal goes low and the CAS’ signal cycles several times, strobing several different column addresses
into the memory chips while retaining the same row address. (Because bit 12 is used during RAS, the
maximum number of sequential page mode accesses between full accesses is 7, since bit 12 will change on every 8th
access. The insertion of full accesses at the appropriate times is handled by the display controller.)

In normal operation, the display controller will seize the low bank of memory for 4 clicks of every
round. It will start with a full access which is aligned on a click boundary, and then proceed with
page and full accesses until the end of click 4. The other page or full accesses will not necessarily
be synchronized with any click or cycle boundaries. They are packed so as to maximize the number
of accesses during the 4 clicks the display has the memory.

’

. | Click 1 ‘ Click 2 I Click 3 I Click 4
| ] ]
Full | Page | Page Full ] Page
10008,
LRAS' Q0 nS >,
DAdgr Addr N ] Addr - Addr - Addr - Addr ] Ador -
RAS | CAS N+1 CAS N+2 CAS N+3 RAS]JCAS N+4 CAS N+5 CAS

opsis_ 11 I [
L L L L

LCAS'
180 nS . 140 nS 180 nS

Displav: Full and Page Mode Accesses




Memory System

34 Row and Column Addressing

57

In the case of 16K chips (to which the Dandelion was originally desinged), one of the seven bits for
the row address must come from the low byte. The maximum settling time of the high nibble of

the low byte is too long if a carry from the low nibble occurs (sec. 2.3.8).
(instead of bit 8) of the low byte is used during RAS.

Consequently, bit 12
Consistent juggling occurs for map

references so that this is invisible to the microcoder. The following figure shows how the row and
column address bits map into the Y and YH buses for 16K chips:

MAR«
YH
La 7 Ho 1 |2 7 |8 11|12|13 15
' Bank Address
— Row Address
—— ees——  Column Address
Map«
YH Y
o1oo[2 7||o 3|4[5 7 |8 15
Eee——— _ - Bank Address
—— Row Address

L] amenssmmm——  Column Address

When 64K chips are used. the row and column bits are "correct.” The following table shows how
they are derived from the Y and YH bus. (If it is known that only 64K chips are present in the
system, the restriction that X bus arithmetic can not occur with Map« is no longer valid.)

MAR«
YH Y
4 7 HO 7 |8 15
R ——— Bank Address
Row Address
Column Address
Map«
YH Y
0O 0 0 110 7 ”0 7 |8 15
L] Bank Address
Row Address

Column Address



38

4.0 Display Controller and Clocks

4.1  Overview

This chapter describes the Dandelion display controller. It is located on the. high speed 170 (HSIO)
board. Only the Display hardware is covered. The minimum microcode requirements are given.

4.2 Display Functions

The Dandelion large format display has the following parameters:
* 10" high by 12.8" wide bit map display.
* Separate Video, . Horizontal and Vertical sync signals.
* Visible area = 808 lines x 1024 bits.
* Refresh rate = 38.7 frames/second (one frame every 25.8 ms)
* Memory used (808+16)*64 = 52736 words in low 64k bank (16 lines for cursor).

* Border area = 26 lines at top. 26 lines at bottom, 32 bits at each side. Contents of user-
settable register is repeated-to form border pattern. Size of top and bottom borders set
by microcode.

* Total frame (visible + non-visible) = 897 lines x 1083 bits.

The display hardware supports the scrolling of windows on the screen. These windows and cursors
may be moved or scrolled vertically without actually moving bits in memory. Horizontal
displacement requires the memory images to be moved. .

Memory refresh is also performed by the display microcode.
4.3 Display Controller Hardware

The display controller uses a partitioned. two-port memory to reduce the loss of processor
bandwidth while the display is running. The display controller blocks processor access to the low
64K memory bank only when it is acquiring data bits during an active horizontal line. The
processor has complete access to the low bank at all other times (i.e. during one click in each round
while the picture is being displaved. while the beam is turned off (blanking) and while the border is
being displayed). When not being used by the display hardware, the low memory bank is identical
in performance to the high banks. The display hardware cannot access the higher banks of memory
and has no effect on processor access to these banks.

The following functions are performed by the display controller hardware/microcode.

1. Read data from memory and shift out blocks of 1024 bits.

2. Provide horizontal sync, vertical sync, and blanking signals.

3.  Perform memory Tefresh.

Some versions of display microcode will automatically display a 16x16 cursor given its position.

Others support smooth (continuous) scrolling of display windows. The hardware is constructed to
support these features but does not supply them directly. :



Display Controller and Clocks 59

4.4 Partitioning Functions Between Hardware and Microcode

The tasks required of the display controller span a wide range of times (shifting bits, reading words,
providing blanking and sync signals and composing fields and frames). It is important to minimize
the amount of hardware used for any individual Dandelion controller while not requiring an
excessive amount of the processor for a single I/0 function. For the display controller, a horizontal
line period (28.8 uS) was chosen as the dividing point between functions implemented in hardware
and microcode. Memory accesses, parallel to serial conversion, and horizontal sync generation are
done in hardware. Line counting, vertical sync, cursor insertion, scrolling support and memory
refresh are handled with microcode. The hardware is capable of displaying only a single horizontal
line. The microcode assembles the lines necessary to make a coherent picture.

45 Microcode - Hardware Interface

Display microcode uses three registers to control the display hardware. They are described below
and summarized in the next figure. Use of this interface to operate the display will be described in
the next section. The following terms appear in the discussion. '

Line Segment - A subset of a horizontal line in which the displayed words come from contiguous
memory locations. A line segment can be between 1 and 64 words long. The line segments which
comprise a horizontal line must total 64 words in length. Each entry in the control FIFO (First-In-
First-Out buffer) described below specifies one line segment.

Window - A rectangular region on the display made up of line segments on successive scan lines.
The boundaries of the windows considered here are horizontal or vertical. The hardware does not
preclude windows of arbitrary shape. :

Cursor - This is a special case of window which is 16 scan lines high and two words wide.
Contained in this region is a 16x16 array which is bit aligned.“The remaining area in the two word
wide area not covered by the 16x16 array is typically loaded with those bits from the main bit map
over which the cursor is placed. The resulting image shows a 16x16 bit-aligned cursor.

Control Register

This register contains 7 bits which control the display operation.

On - This bit enables requests to the processor for service during the display click.
These requests begin at the end of every horizontal line and end when disabled by the
display microcode. This bit does not affect memory accesses nor does it cause picture or
border to be displayed. Its only function is to allow the processor to execute display-task
microcode.

Blank (Bk) -  Setting this bit always causes the video beam to be turned off. No memory
accesses will occur when this bit is set. Typically, the blanking bit will be set during
vertical retrace.

Picture (Pic) - Setting this bit will cause memory accesses unless Blank is also set (in
which case there is no picture and there are no memory accesses). The contents of the
control fifo is used to specify which locations are accessed and displayed. If both Pic and
Bk are cleared, the border pattern will be displayed for all bits within a line and no
memory accesses will occur. This is done to create the top and bottom picture borders.

Invert (Inv) -  Setting this bit causes the video signal to the monitor to be inverted. All
areas of the screen (border and picture) shown while this bit is set will be inverted.



60

Dandelion Hardware Manual

Qdd (OD) - Setting this bit indicates to the controller that the odd field of a frame is
being scanned. This is used by the controller to determine whether vertical sync pulse
should start and stop at the beginning or middle of a line. It starts at the middle for an
odd line. This bit should not be changed during a vertical sync pulse, since changing it
during the sync pulse would cause the end of the sync pulse to occur at a different location
in a line from where it started. Neglecting this could cause interlace problems on monitors
triggered on the trailing edge of vertical sync. (Most of our monitors are triggered on the leading
edge of vertical sync.) .

Vertical (Vt)) - Vertical sync pulse line goes low when this bit is set. The exact time of the
transition relative to a horizontal line time is determined by the odd bit.

Clear Control Fifo’ (CCF) - When set to zero, this bit causes the contents of the control fifo
to be declared invalid. The bits are not actually set to zero but the fifo is declared to be
empty. Normally this bit is kept set to one. The Control Fifo should be cleared during
each vertical retrace as a safety measure.



Display Controller and Clocks

Dandelion Display Controller Registers

Control Register {on X Bus)

DCtl may be written in any ¢ycle.

Register controls display operation.

Itis cleared to 0 by IOPReset when

system is powered on. When cleared, the display will
receive only horizontal sync, video will be the contents

of border register at power-up, and there will be

no

display requests to the processor. There will be no

vertical synchronization or blanking.

Vertical sync is a strobed version of the
vertical bit in the control register. To produce

Interlaced scan, vertical sync is strobed and changes at the

beginning ot the line for even lines and middle of
the line for odd lines, as specified by bit 11.

Control Fifo Register (onYBus)

DCtIFifo may be written in any cycle.

One word is written into Fifo for each
cycle in which DCtIFifo is asserted.

Used to specify a location (line segment) in
memory from which to retrieve

data for display. The low

10 bits specify the line number,

and the high 6 bits specity

the Last Word to be read

betore changing line segments. If this Last
Word is not 63 (end ot line) then the next

61
Not Used C jvt.]ODfInv] Pic] Bk} On
CF
0 81 9j10)11112§13}114}15
Clear Control Fifo’ —-' l
Vertical Sync
Odd Line/Even line’
Invert all visible region
0 - Border pattern everywhere
No memory accesses.
1- Picture in center of screen
Memory accesses except during
bianking.
Blank Line
No memory accesses.
Enable Display Request ===
Line Number (YYY)
e lmg’:e(x""‘:m (High 10 bits of 16 bit address
9 8 in low 64K memory bank) 15
| MSB LSBI LMSB LS8

Selects location (word #)

alo

ng horizontal line

after which display wilil

jump to a new linein

me

reads data.

Fifo entry is used to identify the next line number trom which a
group of words will be taken. Note that the low 6 bits (word #)
used for the address is incremented from O to 63 in egch line. The control tifo only permits selecting the line number and the
location along the line at which a transition is made from one line to another. Thus, as viewed on the monitor screen, this

mechanism facllitates vertical movement of Images, but not horizontal movement, since low 6 bits of address come from word counter.

mory from which it

and

0

Horizontal line starts reading data at
in main memory,

ontinues reading until location

AFTER whic

advances to the next control Fifo

One control word is loaded into the fifo for each continuous segment of words in a horizontal line. Thus, a normal line with
no cursor or window will have one control word. A line with a cursor in the middle will have 3 control words.
While the tifo size is 16 words, no more than 10 entries should be for a single line. The last control word

for aline should specity word 63 (decimal). The controlier will "wrap around" tothe next scanlinein a field if necessary to advance to

the word number specified in a control fifo entry. Control words can be loaded into the Fifo any time before the

line in which they are used. Care must be taken not to insert extra control words, and lose

sync. Clearing control fifo during

hit

location specifying the next line segment:
on the same output line.

vertical sync will purge the fifo. The control Fifo is cleared by setting bit 9 ot control register to 0.
Display Memory (Low 64K bank of physical address space) Example of Control Fito Use
Line’ Mem. Contents of
e 64 Words ——mrer——3] Line ontents o Contents of control
g Agd r- y Display Memory fifo just before beginning
(o] 1 2| » n 63 2 A B [o4 of line X.
[
64 e 127 s|{o |E F 21
1281 L) 191 4 G H | 63| 5
19.2 1024 5 J K L
. Hines 4\ 4\ T 4\ Line X as displayed on screen.
" s ns 0 25 32 63
65344 e 65407 l 26 33 I elels [t [+ |
65408 . 65471 Word # along line
1023 65K 65472' L L] 85535 * 32 Bits of border pattern
1 ] 1 byte repeated 4 times.
MSB LSB
Border Pattern Register (on Y Bus) High Pattern Byte Low Pattern Byte
DBorber may be written in any cycle. 0 71s 15

Border pattern is repeated
on every line during the first
and last 32 bits scanned. The

High pattern is repeated on
lines4n+2,4n+3 wheren
is an integer.

high and low patterns are used on alternate pairs of lines. Lines
are numbered starting from O at the top of the_ screen. The border pattern
will be repeated all across a horizontai line it bits 13 (Pic) and 14 (Blank) of the control register are both 0.

Low pattern is repeated on
lines 4n,4n+1 wherenis an
integer.




62 Dandelion Hardware Manual

Control Fifo Register

This register contains two fields; last word and line number which are used to specify a line segment.

Last word is used to specify the number of the last word position (relative to lines aligned
on 64 word boundaries in memory) to be used for a given line segment. Last word is the
high 6 bits of the control fifo entry, and typically remains constant for a given window.
The last word field of the control fifo entry for the last segment in a horizontal line must be
63. .

Line number is used to calculate the memory addresses in which bits for the displayed line
segment are found. The controller hardware maintains a 6 bit counter for addressing words
within a horizontal line. This counter always counts from 0 througn 63 as the line is
displayed. The low 6 bits of the current memory address are the controller’s 6 bit count.
The high 10 memory address bits come from the line number. When the controller’s count
matches the last word from the current control fifo entry, the next fifo word containing the
next line number is fetched. Using this mechanism, the user can define the mapping
between memory address and screen position. Note the low 6 bits of memory address are

~ not involved the mapping; they always specify the word’s horizontal position on the screen.
The display hardware supports only vertical displacements. For example, word 0000 in
memory may be shown on any line of the display but must always be the first word in the
line. This line number is typically incremented by 2 (because of interlacing) for successive
lines within a window. .

Border Pattern Register

This register contains the two border pattern bytes. Only one of the bytes is used in any given scan
line. The low border byte is used during lines 4n, and 4n+1 (lines 0,1.4,5.8,9..) and the high
border byte is used during lines 4n+2 and 4n+3 (lines 2,3,6,7,10,11....). The proper byte is
repeated 4 times at the beginning and end of each horizontal line to form the side borders. If the
Picture and Blank control bits are both off, the byte is also used to fill the picture area. The top
and bottom borders are created in this fashion. The border pattern register need only be loaded
once.

4.6 Using the Controller

In the Dandelion architecture, the processor is shared among a number of microcode tasks. One of
these is a high level language emulator; the others control I/O devices. The processor is used in
round-robin fashion by the tasks. Each 1/0 task is assigned one or more clicks in the processor
round. There are five clicks per round. A task may perform one main memory access in parallel
with three microinstructions in a click. The display is assigned click number 4 of each round.
Clicks not used by their assigned [/O tasks are available to the emulator.

Each round takes 2.055 uS to execute. There are exactly 14 rounds per horizontal scan line (the
processor clocks are derived from the display clock so there is no skew). Thus the display
microcoder must ensure that any action scheduled to take place in one scan line can be done in 14
clicks. : :

This section outlines the actions the microcode must take to get an image in the low 64K of
memory shown on the display. The following figure shows what is loaded into each register during
the various parts of a frame. Note that the only differences between the "odd" and "even” fields of
a frame are the setting of the odd field bit in the control register, the line offset used when loading
the control fifo and the length of the vertical sync pulse.



Display Controller and Clocks 63

Note also that the parameters for line n must be loaded during line n-1. For example, parameters
for the first picture line are loaded during the last border line at the top of the screen. Assuming
the microcode used to set the control and control fifo registers runs once per scan line; the proper
order is:

Second to last Top Border line: Send a 41X to DCt (display line of border).

Last Top Border line: Send a 41'X to DCtl, load DCtFifo with parameters for first line of screen.

First Picture Line: Send 45X to DCtl (display picture) and load DCtFifo with parameters for

- second picture line.

Register Loading Sequence to Get Bit Map on Display

Function Eg:;:%' ::F‘zt:;e Control Fifo
periunctlox Loaded once perlinein
# Lines during first line even and odd fields.
> 1 End Vert Sync, Blk 3
13 Top Border 41 18 ——
Last Word = 63
404 Even Field 45 16 Line Number = even #'s
13 Bottom Border 41 16
18 Start Odd V Sync 73 16 —
1 End Vert Sync, Bik 3 —me——
13 | Top Border 4
Last Word = 63
404 Odd Field 45 16 Line Number = odd #'s
13 Bottom Border 41 16
17 Start Even V Sync 63 16 —

897 lines total  448.5 lines/field ‘r W /{

To add a cursor. the control fifo is loaded with 2 or 3 segments per line for a run of 8 lines in each
field. This is shown in the next figure. Showing a window in addition to the cursor requires more
segments per line. For both the cursor and the window, some computation must be made once per
frame to determine the control fifo entries. In addition, the cursor bitmap must be updated each
time the cursor moves.



Dandelion Hardware Manual

Register Loading Sequence to Get Bit Map with Cursor

897 lines total

448.5 lines/tieid

T et bone

The size of the bitmap required may be . reduced if more border patternis shown or

lines from memory are shown more than once on the screen.

Memory

¥+y

Cursor Window
\1‘16 lines ‘

Cursor
Lines -[ o]

T —-]

63

)

792-x-y

807

—}

— Active bitmap

in Memory

4

Actual cursoris bit aligned inside
cursor window. Remainder of
cursor window contains bit pattern
copied from main bit map.

808

=

— Cursor Buffer
—

823

in Memory

During Cursor lines, each line Is divided into 3 segments. The middle segment

comes from the cursor bitmap.

Segment 1 WordOtoa
Segment 2 Worda+1toa+2

Segment 3 Word a+ 3to63

Horizontal cursor position is set by horizontal position of cursor image in Cursor Butter.
Vertical cursor position is set by line number at which the image is displayed.

Control Register During Cursor,2 or 3
Control Fifo
# Lines Function Loaded only once Loaded once perlinein °°M.r°‘ fifo entries
per function even and odd fields per iine are used.
during first line :
1 End Vert Sync, Bik 3 Last Line
Word| Number
13 Top Border 41 16
. Last Word = 63 [ a lx*yoznw
X Even Fleld 45 16 Line Number = even #'s
8 | EvenCursor 45 .o 3 Seg. forcursor = I b |808 +2n l
. Last Word = 63
396-x Even Fisld 45 4¢ Line Number = even #'s I 63 Ixoy +2n l
13 Bottom Border 41 18
18 Start Odd V Sync 73 18 ————
1 End Vert Sync, Blk 3 —
13 Top Border 41 18
Last Word = 63
y Odd Field 4516 Line Number = odd #'s I a |x¢y+1+2nl
8 Odd Cursor 45 18 3 Seg. for cursor — | b IBOS +2n I
: Last Word = 63 -
396-y Odd Field . 45 N ~ y
16 Line Number = odd #'s L63 x+y+1 +2n I
13 Bottom Border a1 16
nis line increment within
17 Start Even V Sync s 16 cursor rangingfromOto 7

for successivelinesina
field.

Display Screen

111
2]

T gl




Display Controller and Clocks - 65

4.7 Display Hardware Implementation
Display Controller (Horizontal line generator)

The display hardware handles only those functions which repeat on a horizontal line basis. If the
processor had provided these functions, a great deal of its bandwidth would have been required for
a fairly simple, repetitive task. Similar hardware for counting lines and controlling windows is not
used because the processor bandwidth required for these tasks is available.

Horizontal Events

A horizontal line contains 32 bits of border pattern on the left, 1024 bits of picture, 32 bits
of right border, and 382 bits of blanking. A horizontal sync pulse starts 8 bits after
blanking starts and ends 8 bits before blanking ends.

Vertical Events

A frame consists of an even and an odd field, each of which contains 13 lines of top border
pattern, 404 lines of picture, 13 lines of bottom border, and 18.5 (18 tines in one field and 19
lines in other) lines of blanking during which vertical retrace takes place. The section
covering controller use further describes vertical events. No further mention of vertical
events will appear in this section.

The next two figures show a functional block diagram of the display controller and output machine
timing diagrams. It has three principal parts; the output machine, a data fifo, and the read
machine. Associated with the output machine is the control register. The border pattern register is
associated with the data fifo. The read machine contains the control fifo and associated control fifo
register. end condition logic to terminate memory accesses at the end of a round and at the end of a
line, and the LRAS and LCAS memory clock generation. —Following are descriptions of these
sections.



Dandelion Hardware Manual

Display System Functional Block Diagram

Monitor
Video
Horiz.
Vert. Endl ine’ 10 Onti .
Qutput Machine . Service Request
P SUC Sctinsios DPReq’
Clocks >, j&———————  CIrDPReq’
19.6n8 Horizontal Line Machine E—_—_
Qutput source selection " R
" . Microcode Synchronization
Paraltel to serial conversion guarantees these signals
are stable when used.
Clear ata g:.g;cte Read
Read 4 8 4 Data
Data / Control
Fifo / y/
1 .
> Dama Sync Register
Reguest On
FIFO Blank
Picture On
é Invert
16x16 FIFO Even/QOdd
16 1 x 16 Border Reg. : Vertical Sync.
Clear Ctl. Fifo'
Memory.
Load
Clock
16 Load Control
. Read ] Register
3 Clear Cth, Fifo
LCAS Machine
Disp/Proc.’
Laad Border Pattern.
Control Fifo DBorder+'
End Conditon Detection
LRAS & LCAS Generation | = Load Control Fifo
ﬁ.lmks___>‘ Data Fifo Loading DCtiFifo«'

Y Bus



Display Controller and Clocks 67

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1469
| ] | ] | ] | ] | ] ] | ] ] ] |
le Horizontal Line = 1470 bit times >
F Bit Numbers 210 cycles 146911
0 Cycle Numbers . -

i Details on
l—r'l_)etanls on | 184.72 I page 18

page 18
9.28 1159 | 1160
71172 "
\V_—_—- Border Pattern 32 bits W Video
7777 Picture " ¥T7TTIT Blanking // 7T

0 103 "104 ' 1127 {1128 1469

13.86 160.14
. 12413 Big =0 158 | 159 PPic
AR M SR AR A W &8 I B E e .- TE R B E GG S ST EESEES eSS -

'- - aEEEEE S0 0D® S5 MmN eSS e 6N RGNS SE D RGP e DTGNS
71 8 163 | 164 PBIk
718 165 | 166 PHorz’
2 44 16586
63 |64 1167 11168 Horizontal
1 108
O_u 2 105 I.I 107 VertClk 209
Even Odd .
I l . Vertical
158

u PReq’
Click‘4, Cycle 3 —'V ,
208 n_o

EndLine

’ LowBank Accesses I
» Us U«UsUe U7 Us W Hwoliulin
There are low bank accesses during rounds 1-10 for a iine with 1 segment. Some amount of round 11 is used for lines with
2-10 segments. While not recommended, round 12 is availabie for lines with more than 10 segments. Care must be taken here

Last & First Access ]

timing on page 21
1 u

since the data fifo can go empty in this round if more than 10 segments are specified. Word must be strobed into DataFifo
at least 330 ns before it is read out. At beginning of line, DataFifo is filled to 13 words at the end of round 2.

3 cycles/ click 210 cycles/ line Bit Time = 19.59 nS Cycle Time = 137.14 nS

5 clicks/ round 7 bits/ cycle Bit clock = 51.04 MHz Round Time = 2.0572uS

14 rounds/line 1470 Bit times/line Line Time = 28.8 uS

Figure x. Timing For Output Machine



Dandelion Hardware Manual

14 |

;8
N
g o
mm —t
[i4
a
-
N ~ N> NN NEEERRY NS NSNS NN N N
XN N N NN} N NN NN NN NSNS X

N N N N N N N N N N O N S OSSN UONRSGOUNSSOUN SO GOSN
HNNU/N/U/N/N/HUUUNHHNNUN/UHH
™~ /// /// ///// N //////////

R R e e e e e
SIRTTIIJT2330 o SIS
SISO NN

N N N N N N N N N N N N N U A O S O N SO AR
e e e e
.////////.///U///////////N////

NONSUN SO RO SOOI NN NSO
A A A
SISO SIS ~

N N N N N N N N N U N A U U RO RO AR AN

N e e e e

e S NN

1470 Bits

AR S RS e S R R SO RN AR s R r eSS s S Y S
T i IR I IO I I I R
SIS N NN NN ~ RN

N AROROROSSONS NN
T
////////////r// /Il/////// N

RS S R S R SR R R S S RS R S
e

Line = 28.8 uS

.
NNUSNOUON RO NONNN NN OO
NNUN/U/U/N/U/U bl A .
NONDNONINONYN NONINININYN

NN N N N N N N N N N A U N AU AN USROS
A I I I SSS S S S SSSS
//// N ///////// /// ////////

NN OSSN OSSN NN RO OUNRANONNY
R N T R ¥ A3
SOSSNDNININDNY O SOSNOISISINSYS

R e e e R R R R R N
U/N/////////////////////////
/U/////N/U/////////////U/.///

OSSN AN RO OO, NN RUNRURNRON SO
T e ey
//r//////////l/ /////// NN

NN N N N N N N N N N N N N N S U A U A O A O AN
NNRRRRRRRIRRENNRNNNNNNNSSSNSSSSS
/////////////N/U///U///U/U////

NSO RO OO, NSNS
NUNN/N/N/NNN/H N IS
NSNS ////////// //r//////////

NN N S N N N N N N N S NN O SO SO S ONSNOS
U/U/U/U/U/U/, e e i
/////////U//./////////U/N///z

OSSN AUONAUN SO ONN, RN e
A e T e e
ANOSSNNONONIONONS NSNS

NN N N N N N N N S N N U N A ORI AR RO AN
AN RN AN N RN N RN N X RN

J
N SN N TN N NN IS SONSSNONN NN NN

28

Vertical

Retrace

8

_

Border

- 00N

797

Odd
Field

799

Vertical

Retrace

.

Border

* Memory accesses occur in round 11 only for muliti-segment lines (i.e. cursor or window).

= Even Field + Od

Blank Llnes (retrace)

.5‘

order Pattern Lines +

ield

&

5

1 Frame
Field =

igg?xctive Lines +

Low 64K bank

click 5 by dispiay & memory refresh.

Memory used by display
Processor use during display

7]
D

Figure x. Resource Use During Display Frame



Display Controller and Clocks 69

Output Machine and Control Register

The output machine will be described in terms of the actions that take place during the output of a
horizontal line. Each horizontal line starts with 32 bits of border pattern, followed by 1024 bits of
data from memory, followed by 32 bits of border pattern, and ending with a blanking period during
which the horizontal retrace takes place. This sequence repeats every horizontal line and is shown
in the output machine timing diagram.

The output machine is controlled by a prom state machine with 210 states (1 state per machine
cycle). It is cycled through these states by the display prom counter, which is a part of the system
clock. The timing diagram shows the outputs of the prom register marked with asterisks. There are
two time references in this figure. There are 1470 bits per line and they are marked on the top of
the figure. There are 210 cycles of 7 bit times each, which are labeled in italics.

Starting at' bit position 0 (look at line labeled video), the F16 counter in the output machine has just
been resynchronized to 0 by the EndLine and Tick7’ pulse. The output shift register and blanking
register aré strobed at the beginning of bit § and every 8th bit thereafter during a horizontal line.
Thus,. shift register loading, blanking, and unblanking are done on byte intervals.

The first 32 bits of a line come from the border pattern register. The selection of the high or low
byte is done by a flip-flop which is toggled every horizontal line in a field. This produces the signal
BPBS' (border pattern byte select). This signal is always reset by a vertical sync pulse so the first
line of a field comes from the low byte of the border pattern register. (More specifically, it is the first
line after the trailing edge of the vertical sync pulse. Note that since the first few lines of a field are often blanked. it
may not correspond to the first visible line.)

On the first cycle boundary after the 4th border byte is loaded, PPic goes to a logic 1, such that the
next byte loaded comes from the high byte of the data fifo. Byte selection is performed by the high
bit of the bit counter. The fifo is clocked after the high byte is loaded. This process continues
until all 64 words have been loaded into the shift register and shifted out. While the low byte of
"the 64th word is being shifted out, PPic goes low so that the next byte to go out comes from the
border register. While the 4th border byte is being shifted out, PBlk comes on so that blanking
starts on the next byte boundary. Blanking continues until the end of bit 71 (after the counter
wraps around), after which the next horizontal line starts with the border pattern again.

The horizontal sync pulse starts 8 bit times after blanking starts and ends 8 bit times before
blanking ¢nds. Both horizontal and vertical sync signals pass through a low pass filter which
increase the rise and fall times to approximately 100 nS. This helps reduce high-frequency radiation
from the cable going to the monitor.

Data Fifo

A 16 word data fifo provides buffering and solves the problem of synchronization between the
memory system and the output machine. (While both memory and output machine run from the same clock,
the largest common period is the 19.6 nS clock period which is too fine to be of any value) Data is strobed into
the holding register and fifo with DCAS’ and DCASDIy’, respectively, both of which come from the
read machine. Words are read out of the fifo with the signal ReadDataFifo, which comes from the
output machine. The outputs of both the data fifo and border register are multiplexed onto a byte
wide tri-state bus, then through TTL-ECL converter to the parallel input of the output shift register
in the output machine. Selection of the appropriate output byte is done by the output machine.
The output machine controls the read machine such that the fifo never overflows or underflows
during a line.

Read Machine

The read machine does memory accesses during the first 4 clicks of a round. It always starts at the



70 Dandelion Hardware Manual

beginning of a round and continues to either the end of the round or the last word of a line has
been accessed, whichever occurs first. Reads in a round are initiated by a signal, PD/P, from the
output machine. The read machine will determine the mix of full and page mode accesses
necessary and do the maximum number of memory accesses possible within a round. The low 6
bits of the memory address always count from 0 to 63. The high 10 bits (line number) are specified
in the control fifo entry. The last word to be used from a given line is also specified in the control
fifo entry (6 bits) and is used to advance to the next fifo entry when that word number is reached.
The three parts of the read machine (control fifo, end condition logic, and LRAS, LCAS
generation) are described in the following paragraphs.

Control Fifo

The control fifo contains 16 entries. Each entry identifies a line segment using 10 bits to specify the
line number and 6 bits to specify the last word in the segment. The control fifo is loaded from the
Y-Bus, unloaded by a signal from the end condition logic, and cleared by a bit from the control
register. The microcode must take care to load only the entries for one scan line per horizontal line
wakeup on the average. The control fifo should be cleared once per vertical field to eliminate the
effects of noise and assure its state at the beginning of a field.

Word Counter & End Condition Logic

The word counter counts from 0 to 63, synchronous with the memory accesses used to fill the data
fifo. The output of this counter is compared with the 6 bit last word field of the current control
fifo entry. When they are’'equal, the control fifo is advanced to the next entry. There is also logic
to determine: when a full (RAS and CAS) memory reference should take place. A full reference
must take place whenever one of the RAS bits at the memory chips changes. This can occur on the
first reference in a round, when the control fifo is advanced, and on every 8th memory reference
due to the arrangement of bits in the memory system.

The number of accesses in a round depends on the number of full (293 nS) and page mode (215
nS) accesses that occur. A maximum of 5 full accesses, 4 full and 2 page accesses, or 1 full and 6
page accesses can occur. Thus the total number of accesses can range from 5 to 7. A prom state
machine looks at the combination of accesses and drops the signal EndRndRead’ during the last
access of a round. The accesses in a round can end early if word 63 is reached. The signal
InhibitRead also becomes true after word 63, locking out any further reads, independent of PD/P
signal from output machine, until is reset by the signal ClrDataFifo’ from the output machine.
Details of the state machine and other logic timing are in the Clock and Display drawing package.

LRAS-LCAS Generation

The signals LRAS and LCAS are the clocks for the low bank of the memory system. These signals
are identical to RAS and CAS for processor memory references (411 nS cycles), but have a faster
full cycle time (293 nS) and a page mode cycle (215 nS) when the display is using the low bank
(indicated by Disp/Proc’ in the high state). In all cases, CAS follows RAS by 49 nS. Both of these
generators are simple state machines using one counter and discrete logic for decoding. They have
a 19.6 nS cycle. time.

48 Clock Generation

The CP cycle clock (137.14 nS) is derived by dividing the display’s bit clock by seven. The next
figure shows the relationships between the clocks generated on the HSIO card.



This line is LH __ﬁ\

transition of Cik

Figure x. System Clocks (Backplane Timing)

Display Controller and Clocks )
1 Round
Click 0 I Click 1 ' Click 2 l Click 3 | Click 4

| 1 203l 20 sl 2 sl 21 311 [ 2173
Click.0 le. 411 n8 —9: \ : ' :
' I ! : ; :
Click.1 | 1 ] ] 1 i
l 58 —>) & i l ! ,
Click.2 1 ] x' ] ] |
" l : { : : :
ool | I ! : : \
o s =Dl 2 1 ! :
R I S sy O O o S
Cycled' : i 1 ll I | II I_j
o \ l \ | Goes high '
EndLine : : : : : 9nce every I_--—j
:13194 %‘fe"enswpicaa : ) {137 ns | : : i o ] '
g%uuuu—u—uuuu,uuu,uuu
L My
uuuﬂmuuuuuuuuu
2 s ' \ '

RAS' [

]
H‘ITOnS | ' l . '

CAS I

51MHz l
S | | e [
“ 1 ] ] i
] i | 1 ] I



72

5.0 Disk Controllers

Two types of rigid disks can be controlled by the Dandelion. Section 5.1 discusses the Shugart disk
controller located on the HSIO card. Section 5.2 describes the Trident disk controller, which is
found on the HSIO-L card.

5.1 Shugart Disk Controller

5.1.1 Overview

This chapter is concerned with the Dandelion’s controller for the Shugart SA4000 and SA1000 type
disks. It identifies the major components of the system and their connections. It is assumed that
the reader will have read the SA4000 Fixed Disk Drive OEM Manual and SA1000 Fixed Disk Drive
OEM Manual from Shugart. This chapter is concerned with the function of the disk controller, not
of the disk drive.

There are four major blocks in the Dandelion Disk Controller . They are the Input Conditioning,
Output Conditioning, Processor Interface and Serializer/DeSerializer circuits. Disk read data, disk
clocks and reference clocks arrive via the Input Conditioning circuits, as do disk status lines. The
disk control lines, disk write data and write clocks are sent via the Output Conditioning circuits.
The Processor Interface generates microcode service requests, detects the overrun condition and
passes data, status and commands along the X-Bus. Disk data is converted from 16 bit parallel
words to a serial data stream and back in the Serializer/DeSerializer.

5.1.2 Constraints
Cost

The Dandelicn is intended to be a relatively low cost workstation. To this end, the hardware it
contains should be minimized. This leads to low manufacturing, testing and service costs. The
guiding principle of the controller’s design has been that only functions which occur too quickly for
microcode to handle or require hardware buffering are implemented in the controller. For example,
step pulses may be sent relatively slowly, so the step line is toggled by having the microcode send
control words in which the step line is alternately set and reset.

Another result of the cost constraint is that one controller board should serve to control both the
SA1000 and the SA4000 drives. It is able to support drives with 2 to 32 heads. The effort required
to change the board from an SA1000 configuration to an SA4000 configuration is small. In fact, it
is limited to unplugging a set of SA1000 cables and plugging in a set of SA4000 cables.

Disk Format

The disk is divided into cylinders. Each cylinder represents a distinct position of the read/write
heads. Each cylinder is divided into tracks, one per read/write head. The SA1004 drive has 4
heads, the SA4008 has 8 and the SA4104 has 16. Each track is divided into sectors. There are 28
sectors per track on the SA4x00 type drives, 16 sectors per track on SA1000 type drives. Each
sector is divided into three fields, Header, Label and Data. The Header field is used to specify the
sector’s physical position on the disk (cylinder, head and sector numbers), the Label specifies the
page’s position in the file system and the Data field holds the actual data. Each field is broken into
4 areas. A pattern of all zeros is followed by a synchronization word or address mark, the field’s
data and a word of CRC checksum. The length of the synchronization pattern is 7 words on both



Shugart Disk Controllers 73

drive types. A synchronization word of all ones is used to define the first word boundry on the
SA4000 drive. An address mark serves a similar purpose on the SA1000 drive. The Header field
contains 2/ words of data, the Label field 12 words and the Data field 256 words. The CRC
checksum word following the data area of each field is used to implement an error detecting code.

The controller hardware does not preclude other disk formats. It is designed to read, write or verify
an individq’xal field of a sector. The length of each field, the number of fields per sector and the
number of' sectors per track is set by the microcode. There is a restriction on the number of sectors
on SA4000 type disks. The SeekComplete signal on those disks is sent before the heads have really
settled so the controller adds a delay of 29 sector pulses before passing it on. Thus SA4000 type
disks should have no more than 28 sectors per track (the 29 sectors pulses is intended to delay at
least 20 mS) or should be prepared to add some sort of extra delay in microcode.

One of the constraints on the design is that it must be possible to read, write or verify each field in
every sectdr of a cylinder at the rate of one revolution per track. This means that in addition to the
raw data rate constraint, the inter-field, inter-sector and inter-track setup required by the hardware
must be xrpmrmzed A design which requires a great deal of setup between sectors or fields may
not be ac ceptab]e It should be possible to perform almost any combination of operations on the
fields of alsector. An exception to this rule is that when a write is performed to one field, further
fields of that sector must either also be written or are assumed to be lost. The microcode must also
be capable of aborting operations on later fields based on the results of operations on earlier ones.
For example, if the Header and Label fields of a sector are to be verified before the Data field is
written, the Data write should be aborted if either the Header or Label verify operations fail.

The SA1000 drive does not contain a data separator, the SA4000 drive does contain one. The
controller board sends and recieves MFM (Modified Frequency Modulation) encoded data to and
from the SA1000 drive and NRZ (Non Return to Zero) data to and from the SA4000. The SA1000
data rate is 4.27 MBits/Sec (234 ns/bit). The SA4000 data rate is faster at 7.14 MBits/Sec (140
ns/bit). The SA1000 data rate is governed by a clock in the Dandelion, the SA4000 data rate is set
by drive itself.

Function Allocation

The most complex operation on a field is verify. It requires that each bit be checked against a
template from memory, a CRC checksum be maintained, a memory address updated and a word
count decremented. Four pieces of information must be maintained, an address, a word count, the
data to be verified and some sort of checksum. While it would be possible to combine the address
and word ¢ount by requiring all field templates to begin (or end) on page or nibble boundries, this
is not generally acceptable. The designer has been unable to find an encoding scheme which makes
it possible to combine the data to be compared and the checksum. These seem to be the only
remotely workable combinations. Hence all four quantities must be kept independently.

The four quantities must be divided between the two R registers in the processor and registers in
the controller. The lack of U register speed precludes their use. One must spend an entire click to
update one¢ U register (read it, change it, then store it), yet the microcode is only allowed one click
per word transferred. Due to the main memory addressing scheme, the address must reside in one
of the R registers. This leaves the other R register available for either the checksum, data to be
verified or the word count.

Were the R register to be used for the checksum, the hardware would contain the word count and
the data to be verified. This scheme would have the advantage of substituting a simple counter for
a more complex CRC chip. However, the microcode would have to both read the disk data to
maintain the checksum and send memory data to the controller to be verified. This scheme has
latency difficulties. The disk controller and processor use different, unsynchronized clocks. After
sending a Service Request, the controller expects an interval of random, but bounded, length will
pass before microcode reads or writes the proper buffer. The Service Request is sent so that the



74 Dandelion Hardware Manual

controller will have the buffer ready before the minimum service time and will not require it again
before the maximum service time. As seen from the processor side, there is a window during which
each Service Request must be served. If the service takes place too soon, the buffer may not be
ready; if it is too late, the controller may have used the buffer again. In the case of the SA4x00
type disks, the service window is barely one cycle wide. The Service Request is sent so this is cycle
2 during Read operations and cycle 3 during Write and Verify operations. Sending and receiving
data in one click would require 2 cycles, hence a 2 cycle service window. This is reason the
microcode cannot maintain the checksum while the controller does data verification.

It would be possible to compute the checksum and maintain the word count in the controller while
doing the address and verification in microcode. Unfortunately, the microcode would be messy and
the status of an operation would be partially in microcode, partially in hardware. The controller as
designed allocates the address and the word count to microcode and the data and checksum to
hardware.

5.1.3 Microcode - Hardware Interface

The controller has been designed with the idea of minimizing the amount of hardware used. As
much functionality as possible has been left in the microcode and software. This results in fairly
simple controller hardware.

Many of the lines used to control the disk are set directly by microcode and are ignored by the
controller. For example, the Step” and Direction lines controlling the position of the disk’s
read/write heads are merely bits in the control register that are relayed directly to the drive. The
same is true for many of the status signals returned by the drive, they are read and interpreted only
by the microcode or software.

The controller contains one word of buffering for write and verify operations and one word for read
operations. As explained above, the Dandelion architecture allows the designer to calculate the
minimum and maximum latencies between a service request and the processor’s response to ensuré
an overrun never occurs in normal operation. If the disk microcode stops servicing the hardware.
the overrun flag is set and write operations are disabled to restrict the amount of random data
written on the disk.

This section will begin with an overview of the status, control and data registers then proceed with a
detailed description of each.

Control Register

This 16 bit register receives its inputs from the X-Bus, sending them to both the disk drive and to
the controller. It is reset by IOPReset’. The control bits are arranged so that when reset, the
controller and disk are dormant. It is expected that IOPReset’ will be held active while power to
the machine is being turned on or off.

Status and Test Registers

Three types of 16 bit quantities may be read from the controller. One is data from the disk, the
second is the status of the current disk operation, the third is a group of test points on the disk and
display controllers. The first will be discussed below under Read Data Register. The second two
are independently sent to the X bus. The operation status is composed of some lines from the drive
itself (Track00, DriveNotReady, etc) and some from the controller (Verify Error, Overrun, etc).
These are the normal lines read using the «KStatus command to guide the execution of a disk
operation. The test lines are read using the «KTest command by diagnostic microcode or software
to directly test the control and status lines leading to the disk.



Shugart Disk Controllers ‘ 75

Some of the Status signals should only be sampled on word boundaries. The CRC error flag, for
instance, is only valid after the last bit of the CRC checksum has been seen. Sampling on word
boundries lalso gives the microcode an entire word time, as opposed to one bit time, to freeze the
final status flags of a data transfer. This sampling is done by the Word Status Register.

Write Dala Register

Data is sent from the processor to the controller in 16 bit words. The words are buffered in the
Write Data register before being loaded into a shift register. The buffer is automatically cleared
before a transfer begins. It is loaded by the microcode in response to each service request during a
ransfer. By calculating the minimum and maximum latencies between request and service, one
may be aspured that the buffer is always loaded after the previous word has been used but before
the current word is needed.

Read Data Register

Like the Write Data register, this is a single word of 16 bits. It is loaded from the controller’s shift
register each time a word boundry passes. Just before it is loaded, a service request is sent, asking
the disk microcode to remove the word. As with the Write Data buffer, one may assure oneself
that this will always happen after the buffer is loaded but before it is loaded again.

A wrap-arpund feature has been included in this controller allowing diagnostic microcode to verify
that data may be written and read correctly. The method for using the feature depends on the disk
being controlled. The SA4000 provides one clock used throughout the controller. The data sent
out is intercepted just before the final drivers and inserted into the input data stream. It is then
shifted back into the shift register. By having the microcode start a write operation, then perform
reads instead of writes, one may verify that the data being written is correctly re-received. Note
that the re-received data will be a rotated version of the data sent.

The SA1000 drive supplies no clock. The clock used to write the data is derived from the stable
processor ¢clock. If this clock were used for the entire controller, the controller's data separator
would not:be tested. The data separator is tested by allowing it to re-produce the NRZ data using a
clock derived from the re-received MFM data stream. Because of jitter between the derived clock
and the reference clock, we may not reliably route the re-produced NRZ data back to the shift
register. Hence one may not expect to see the data sent in the ReadData register. The address
mark recognizer section of the data separator does record the polarity of bit 14 of the address mark
however.. It appears on the Header tag bit in the KStatus register. One may test the controller by
sending address marks and sampling the Header tag status bit after each one. Each address mark
must be sant in its own field, that is, the TransferEnable bit should be reset between each one. The
‘Header tag status bit should match bit 14 of the address mark just written.

Service Request / Overrun Machine

As seen above, the controller must be able to generate service request to its microcode and
determine: whether the requests have been answered. - This is the task of the Service
Request/Overrun machine. The timing of Service Requests is based on the BitCount within a
word, the 'time within a field, the operation being performed and the data rate of the disk. Only
two disk types are supported and the data rates of both are fixed.

During data transfer operations, it is crucial that the disk microcode keep pace with the hardware.
If the midrocode is early or late, especially during write operations, disk data may be destroyed.
The Overrun section of this machine will set the Overrun signal whenever a buffer is needed by the
controller before it has been serviced by the microcode. Thereafter, no data may be written (the
disk’s WriteEnable line is turned off) and the Service Request signal is set until the microcode
finishes the operation and turns it off. The microcode should sample the status at the end of every
operation, testing the Overrun signal. An unexpected consequence of turning off WriteEnable very




76

Dandelion Hardware Manual

early in the writing of a field is that the drive will often get a WriteFault error. If WriteFault and
Overrun occur together during debugging, it is best to investigate the Overrun first.

Service requests may be used not only to synchronize the transmission of data but also to sense
status conditions. For example, it would be wasteful to burn 1/5 of the processor waiting 20 ms for
an IndexFound signal. The same holds true for a SeekComplete. These and other signals may be
used to generate service requests directly. The microcode may then yield its click to the emulator
while waiting.

'6.1.4 Detailed Register Description

KCtl Register

The signals are chosen using the Operation field of the Control register.

=

— _Lﬁ

Head Select Drive | Fault Reduce| Step | Direct | Firm- | Trans- | Write Wakeup Control | Write
ware fer
16 | 8 | 4 ' 2 I 1 Select | Clear w in Enable | Enable | CRC 0 1 Enable
KStatus Register
Head Select’ Seek Track | Firm- index Sector A1000 | Drive Write Over- | CRC Verity
Found/ i
Com- ware Header / Not run
16 l 8 l 4 I 2 I 1 plete Q0 Enable | Found Tag A4000’| Ready | Fault Error Error
KTest Register
Disk Disk Disk Disk Seek Direct- | BHoriz | Reduce| TTL- Sector’'| Drive Bvert’ | TTL- Step’ | Read Write
Read | Read Output | Write | Com- tion Video Video’
- Clk Data Clk Data plete’ |In’ iw’ Select’ Gate’ Gate’ '




Shugart Disk Controllers 77

Control Register

The register is loaded by the processor when a "KCtl « xx" type instruction is executed in
microcode. This may also be done as part of a Mesa "Output” instruction. The command word is
divided into two parts intended for the drive and the controller. The meaning of the bits in the
Drive Control field are explained fully in the appropriate Shugart manuals. They are listed below
with a brief description. A list of Operation bit meanings is given below. Use of all bits in the
control word will be given in the section on microcode usage. Control lines required by the drive
but not 1isted below are the responsibility of the controller, not the microcode.

Drive Control

HeadSelegt]l - HeadSelectl6: These 5 bits are used to select one of the read/write heads. They are
not latched by the drive; all commands must contain them. For example, when one writes a fleld
by sendmg a write command and a write CRC in succession, the proper head select bits must be
present in' both commands. To ensure the drive’s setup times are met, a command word containing
the proper HeadSelect lines should be sent at least 20 uS before one containing the HeadSelect lines
and the operation to be performed.

DriveSele¢t: The DriveSelect bit has been included even though only one drive may be connected
at a time. This is because releasing DriveSelect has useful side effects. The SA1000 type drives
lack a FaultClear input, Write Faults are cleared by de-activating the DriveSelect signal. - The
SA4000 drive has a feature enabling it to cut the power to its stepper motors when not selected.
This can result in a substantial power savings. The power may be cut by software when the drive
has been idle for some nominal interval. When re-selected, one must wait 20 ms before using the
drive. This time interval may be sensed using the SeekComplete signal which is automatically
cleared when the drive is de-selected.

FaultClear: The FaultClear bit is only active when an SA4000 drive is connected to the controller.
Write Faults on the SA1000 are cleared by turning off DriveSelect as explained above. An SA4000
WriteFault is cleared by activating both DriveSelect and FaultClear then de-activating FaultClear.
If the WriteFault remains, the drive is probably broken.

ReducelW: This bit is only significant when writing on the SA1000 type drives. These drives
require the write current to be reduced on cylinders 128 through 255. This bit should be set by the
microcode when writing on these cylinders. During read and verify operations on SA1000 disks and
during alﬂ operations on SA4000 disks, this bit is ignored.

Step, Dzrgcuonln The position of the read/write heads on both the SA1000 and SA4000 disks is
controller by a stepper motor. The heads will move one cylinder for each complete pulse of the
Step line.! A pulse is sent by sending two control words. In the first, the Step line is set, the the
second, it is reset. The direction of movement is governed by the DirectionIln line. When
Directionln is set during a series of step commands, the heads will move towards the higher
numbered cylinders in the middle of the disk. To satisfy the disk’s setup times, a command word
containiné the proper DirectionIn bit should be sent at least one cycle before the first Step pulse It
is also recommended that microcode should wait for SeekComplete before beginning any stepping
operation.

Both the 'SAlOOO and SA4000 drives have two stepping modes, normal and buffered. In normal
mode, a 1 microsecond pulse is sent every millisecond. The heads move every time a pulse is sent.
This mode is used during a recalibration so the Track00 signal may be sensed. In buffered step
mode, a series of Step pulses with a mimimum period of 2 uS and minimum width of 1 uS is
accumulated in the drive. Once 350 uS have elapsed without pulses, the drive moves the heads. If
more step pulses arrive once the heads are in motion, their final position is undefined. Thus,
buffered step mode should be used by microcode, not software, so pulse timing may be rigidly
controlled.



78 | Dandelion Hardware Manual

Operation Control

FirmwareEnable: The FirmwareEnable bit is set whenever the disk microcode is running. In
addition to acting as a status bit for higher level software, it is used to generate a service request for
overhead operations. '

TransferEnable: TransferEnable is set whenever a data transfer is taking place. A data transfer
encompasses exactly one field of a sector. Writing or reading the data of a sector will generally
require three data transfers (verify header, verify label and write or read data). The transfer
operation includes the recognition or writing of the VFO synchronization pattern, sync word or
address mark and the CRC checksum as well as transferring the data. When TransferEnable is
reset, all the state machines used to transfer or recognize data are reset.

WriteCRC: The WriteCRC bit causes the CRC checksum to be written at the end of a field. The
BTransferEnable and BWriteEnable lines must also be true for this to be accomplished. Proper use
of this bit in writing a field will be explained in the section on microcode usage.

WakeupControl.(0,1): These bits together with TransferEnable are used to specify the condition
generating the microcode service request. The conditions allowed are:

TransferEnable | WakeupControl.(0.1) Condition
0 00° FirmwareEnable
0 0 SeekComplete
0 10 SectorFound (valid only on SA4000)
0 1 IndexFound
1 00 - Word Ready from Read operation
1 01 Word Needed for Write or Verify operation
1 10 <no wakeup>
1 11 <{no wakeup>

WriteEnable: The WriteEnable bit controls the write amplifier on the drive. In addition, it is used
by the controller to decide when a write operation is taking place. The WriteGate to the drive is
enabled onl: when WriteEnable and TransferEnable are true and Overrun is false.

Status Register

The status register is read using the "+ ~KStatus” clause in microcode. All status bits are inverted
on the X bus because use of the comparable non-inverting drivers was forbidden when the board
was designed. The bits will be described as though the inverstion were not present. It is expected
that when the user either reads the bits into the CP or uses them as X bus branch conditions, the
inversion will be taken into account.

There are two main purposes for status bits: diagnostic and operational. Some bits are included so
diagnostic code may attempt to isolate a fault to either the drive or the controller. Operational bits
are needed for normal operations. Diagnostic bits are generally those sent to the drive and also
read back by the controller. '

HeadSelect]’-HeadSelectl6’: These are diagnostic lines. They should give an inverted version of
the head select lines in the control register. They are used to check that the proper head is actually
being selected.




Shugart Disk CQntrollers 79

SeekComplete: This signal indicated the read/write heads are ready for use. It is set when the
drive is ready , it is selected and the heads are not in motion. Head motion can be divided into
two parts. | First the stepper motor guides the heads to a new cylinder. Second, after they arrive,
they vibrate for a few milliseconds. The first interval is called the seek time, the second is called
the head settling time. The head settling time for both the SA1000 and SA4000 drives is about 20
mS. This ican be much larger than the seek time for short seeks. The SA1000 drives supply their
own head| settling delay so their SeekComplete really means the heads have stopped. The
SeekComplete signal from the SA4000 drives means only that the stepper motor has arrived, the 20
mS must be added externally. This is done in the controller hardware (by counting 29 sector
pulses). Thus as far as the user is concerned, SeekComplete always means the heads have moved
and settled. This counting of 29 sector pulses when an SA4000 type disk is attached is the
controller hardware’s only assumption about the number of sectors on a track. If the number of
sectors on!the SA4000 or SA4100 type of disk is increased, some sort if external delay will be
needed. :

Track00: This status line becomes active whenever the disk’s read/write heads are over cylinder 0.
It is probably only valid when SeekComplete is asserted. It is used by microcode and software to
recalibrate|the heads. Note there are a few cylinders beyond cylinder, just as there a few beyond
the maximum cylinder. A recalibration algorithm should take this into account. In particular,
simply stepping out from the current position is not guaranteed to lead to cylinder 0.

FirmwareEnable: This bit is used to indicate the microcode is active. It directly reflects the
FirmwareEnable control bit. It is mostly by convention that this bit is set while the microcode is
active:; it would be possible to turn it off when the service requests are derived from another source.
The convention is useful when synchronizing software with disk microcode.

IndexFound: The index pulse from the drive occurs once per revolution and lasts between 1 and
10 uS. Itis used to mark a specific position on the disk, usually the beginning of sector 0 on all
tracks. The IndexFound bit is a latched version of the drive’s index pulse. The latch is cleared
using the "CIrKFlags" clause in microcode. the IndexFound flag may also be used to generate
service requests.

SectorFound/HeaderTag’: The meaning of this bit depends on the drive connected. When an
SA4000 or SA4100 type drive is being controlled, a latched version of the drive’s sector pulse is
available here. The latch may be cleared using the "CIrKFlags" clause in microcode. The
SectorFound flag is commonly used to generate a service request so the microcode may detect the
start of a sector.

The SA1000 drives have no sector pulse. In order to find the beginning of a sector, the microcode
commands| the controller to verify each field as it arrives. The address mark used for header fields
differs from that used for label and data fields. The header address mark has a 0 in bit 14, the
address mark used for label and data fields has a 1 there. After reading a field, the value of bit 14
is displayed on this status bit when an SA1000 type drive is connected. Using it, microcode may
verify that the field seen was indeed a header field in addition to having the correct data and CRC.
The polarity was chosen so this bit could be used as an error indicator when looking for the correct
header (1 => not a header). Use of this bit is explained further in the section on microcode usage.

SA1000/SA4000’: This bit is set when an SA1000 type drive is attached to the controller. It is
reset when an SA4000 or SA4100 type drive is attached. The two classes of drives require
completely different cables. This bit is connected to a line that is grounded in the SA4000 and
SA4100 cables and is pulled up in the SA1000 cable. Note the controller gives no hint about the
number o{ heads per track or other drive variables. Determination of other disk parameters is

initially done using experimentation. It is expected that configuration information will be recorded
on the disk for normal use.



80 Dandelion Hardware Manual

DriveNotReady: The drive’s Ready line is inverted and sent here. The Ready line indicates the
drive has power, is warmed up, is selected and is generally ready for use. The line is inverted here
so it may be used as an error flag (not ready => error). Software and/or microcode should wait
for this line to become active after power on before initiating any operations. In addition, it should
be checked after each operation to ensure the disk hasn’t broken.

WriteFault: Each type of drive can detect some internal error conditions. On the SA4000 and
SA4100 drives these include WriteGate without write current in the selected head or vice versa,
multiple heads selected, WriteGate active when Ready inactive and WriteGate and ReadGate active
simultaneously. The SAI1000 set is less comprehensive including only write current without
WriteGate and multiple heads selected. When a WriteFault occurs (not necessarily only during
write operations), it is latched in the drive. This status bit is a buffered version of the drive’s latch.
In general, service personnel prefer that software not automatically clear this line when an error is
detected. This gives them some chance to see which condition caused the problem. This line
should be cleared at the beginning of an operation. On the SA4000 and SA4100 type drives, it is
cleared by asserting both DriveSelect and FaultClear in a command word, then sending a command
with only DriveSelect. The SA1000’s WriteFault is cleared by de-selecting the drive (writing a
command word with DriveSelect=0) for at least 500 ns. If, because of some hardware condition,
an Overrun occurs, the controller will immediately clear WriteEnable. This sometimes causes a
WriteFault. The WriteFault will then persist through subsequent operations until cleared though
the Overrun may vanish with the next operation. When having a WriteFault problem, it is best to
see if it is caused by an Overrun.

Overrun: It is important to minimize damage to the disk if the processor runs wild and spuriously
enables a write operation. If the controller’s service requests for data are not answered, the Overrun
bit will be set and WriteEnable turned off. If this happens early in the field being written, the
drive will sometimes detect a WriteFault as explained above. Presence of this bit means either the
controller or the drive is broken or that the jumpers on the drive are not correct. Disk microcode
should check this status bit after every operation.

CRCError: The controller contains a 16 bit cyclic redundancy code (CRC) generator and checker.
‘The WriteCRC control bit is used to append the generator’s contents to each field written. After
cach field read or verified, this bit should be checked by microcode to ensure the field had the
correct CRC. Like all the error bits, this one is set only when there has been an error. The
CRCError bit is valid only just after the checksum word has been processed by the checker. There
is a one word window for the microcode to stop the transfer, freezing the status. This is discussed
in the microcode usage section. The CRCError bit is reset using the microcode’s "ClrKFlags”
clause before each operation.

VerifyError: The verify operation compares bits on the disk with a template in memory. It is used
mainly to find headers and check labels. The verify operation is implemented by writing the
template to the controller while it is reading the disk data. If one or more of the bits differs, the
VerifyError bit is set. It is reset using the "CIrKFlags" clause in microcode.

Test Register

This register is used by diagnostic code to read signals on the cables leading: from the HSIO board.
In this way, the diagnostic code may decide whether a particular fault lies in the HSIO card or in
the attached peripheral. The register is read using the "« ~KTest" clause in microcode.

DiskReadClk: This signhal is used only when controlling SA4000 and SA4100 drives. It allows the
processor direct access to the disk’s 140 ns clock. Since this clock is not synchronized with the
processor clock, any given sample of it may return either a 1 or a 0. Diagnostic code should read it
repeatedly to see if it changes state. The online diagnostics require detection only of stuck-at faults.



Shugart Disk Controllers 81

DiskReadData: This is the data directly from the disk. The SA4000 and SA4100 disks return NRZ
(Non Return to Zero) data; the SA1000 returns 50 ns MFM (Modified Frequency Modulation)
pulses. Again, the diagnostic microcode only hopes to catch this line changing state with repeated
samples.

DiskOQutputClk: The SA4000 drives use this clock to sample the controller’s write data. The
SA1000 drives use it as a time base for seek operations. It is another signal diagnostic code can
sample.

. DiskWriteData: This can actually be controlled by the diagnostic ‘code. By writing words of either
all O’s or all 1's this line can be set to 0 or 1.

SeekComplete’: This is a version of SeekComplete directly from the cable. The controller delays
an multiplexes this line before sending it to the KStatus port (see above). _

DirectionIn’: This is one of the signals sent to the drive that is re-received from the cable. It is
used to test the control register and the drivers.

BHoriz: Display signals are also available in this register. This is the horizontal sync signal sent to
the monitor. It is active for ~7 uS every 28.8 uS. As usual, it may be sampled by diagnostic code.

ReduceIW': The version of the ReducelW signal (see Control Register above) on the interface
cable to the SA1000 disk is available here. It may be directly controlled by the diagnostic code.

TTLVideo: This is the positive true version of the video signal sent to the monitor. Since this has
a minimum pulse width of 19.59 ns, it probably shouldn’t be sampled arbitrarily. One may set the
border pattern to all zeros or all ones then have the display controller send all border pattern. In
this way, the video signal will usually take on the known value. About 1/4 of the time (7/28.8) it
will always be set to zero for horizontal retrace. -

Sector’: The SA4000 and SA4100 drives send a pulse at the beginning of each sector. The pulses
are 1.1 uS in duration and occur roughly every 710 uS. By diligent sampling, diagnostic code may
see this line change state.

DriveSelect’: Like ReducelW and Directionln, this line is available directly from the interface cable
to test the control register and drivers.

BVert’: This is the display’s vertical sync signal. It is active LO. It may be set or reset directly in
the DCtl register.

TTLVideo’: This is the negative true version of the display's video signal. It was included in
additon to TTLVideo so that both halves of the differential driver might be tested.

Step’:  This is another cable signal available to test the control register and drivers.

ReadGate’: Only the SA4000 and SA4100 drives use ReadGate’. It is set by the controller during
all read and verify transfers. Diagnostic code may start a read or verify operation then sample this
signal.

WriteGate’: This is the version of write enable sent to the drive. If data is not supplied by
microcode after turning on WriteEnable, this signal should remain active LO for one word time,
then go inactive. If the controller is serviced by either writing or reading data or writing a control
word each time a service request is sent, this signal should remain active.



82 Dandelion Hardware Manual

ReadData Register

Data read from the disk resided in one 16 bit buffer. It is read by microcode using the "«
KIData" clause. When a tranfer is in progress, one word must be read each time the controller
requests service. Since the controller will request service in consecutive disk clicks, the disk
microcode may use only 1 click to transfer the data. In addition, when SA4000 or SA4100 drives
are connected, the data in the ReadData register is only valid in cycle 2. The timing is so close that
it could only be valid in one of the cycles. Cycle 2 was chosen so the data could be written to
memory.

WriteData Register

Data to be written or verified is stored in this register using the "KOData «" clause. The register
holds a single 16 bit word and must be filled each time the controller sends a service request. As -
with all data tranfers, the microcode has only 1 click to read memory, increment the memory
address, decrement the word count and decide if the end of the transfer has been reached. When
the SA4000 or SA4100 is connected, the "KQOData «" statement should only be executed in cycle 3.
Generally data is written to the disk from memory and memory data is available in cycle 3. Note
that one may substitute a read from KIData or a write to KCtl for the write to KOData in cycle 3.
The read from KIData might be used during a wrap-around test and the write to KCitl is always
used to send the WriteCRC command at the end of a field.



Shugart Disk Controllers : 83

5.1.5 Microcode Usage

The most useful document for one starting to write microcode for the disk is existing disk code.
The Pilot disk microcode is stored on [IdunKWDlion>DiskDlionA.mc  and
[IdunKWDIlion>DiskDlionB.mec. This code is amply commented. It is broken into two files only
because it is too large for Bravo to handle. The disk microcode also makes use of two definitions
files stored on [IdunKWDlion>, DiskDlion.df and Dandelion.df,

The beginning microcoder should read the Dandelion Microcode Reference to become acquainted
with a great many interesting and obscure Dandelion facts. This discussion will assume a
reasonable facility with Dandelion microcode.

The DiskDlion microcode was written to provide adequate performance while taking as few
microinstructions as possible. It was decided that the SA4000 and SA4100 type disks would have 28
sectors per track (same as the Dolphin) and the SA1000 disks would have 16. Each sector has the
three standard fields, Header, Label and Data. The Header field has 2 words and the Data field
has 256. The Label field was originally 8 words long but finally grew to 12 words. The microcode
had to be written so operations could be carried out on runs of consecutive sectors crossing track
boundries. It was hoped that the microcode could fit in 128 control store words but 256 words was
acceptable. The current code fits in 236 words.

The requirement for processing consecutive sectors puts severe timing constraints on the code. It
limits the amount of inter-field, inter-sector and inter-track overhead allowed. The original code
took a compact command representation, parsed it and generated the necessary control words. This
code not only did not meet the timing requirements, it was also much too large. The second
version of the code required the user to specify series of disk operations as small program of simple -
instructions in the IOCB. This took advantage of the fact that the same task might be needed many
times in a run of pages, but code to implement that task would only occur once. An instruction to
the disk microcode might be Increment and Skip If Zero or TranferField. This approach also
allowed the user great flexibility at the head level; diagnostics could use the standard disk
microcode and the disk format could be changed without changing the microcode. The resulting
code took only 128 words but did not satisfy the performance requirements. The final version is
based on the second one, with a "Transfer Run of Pages” command and a "Load Parameters”
added. The parameters specify the operation 1o be performed on each field, the length and location
of each field in memory and the error mask to be used.

This document will assume that the reader wishes to know how to use the controller hardware, not
how to load parameters or determine a disk format. The controller hardware is designed to assist
with the transfer of a single field within a sector. It has no knowledge of the number of cylinders,
heads or sectors on the disk (except as noted in the explanation of the SeekComplete status bit).
The DiskDlion microcode has a subroutine called TransferField that accepts as input the field’s
operation, length and location in memory. It is used for all read, write and verify operations. The
rest of this chapter will be concerned with the TransferField subroutine.

Although the same routine is used to perform all operations on all fields with both the SA1000 and
SA4000 type disks, the operations will be explained - separately. The reader may use the
TransferField routine as an example of how they may be combined. General principles which
apply to all operations will be explained first.

The controller hardware contains no information about the length of the field it is processing.
When writing, it writes the data given until it receives a disabling control word instead of a data
word. The same is true of reading and verifying. The length of each field is determined by
microcode.

Timing, especially for the SA4000 and SA4100 disks, is critical. Those drives contain data
separators which should only be enabled when the heads are over synchronization gaps containing



84 Dandelion Hardware Manual

all zeros. The microcode calculates the position of the read/write heads by dead reckoning. It can

sense the index and sector pulses from the drive and can know the number of microinstructions

executed since the pulse. As a result of this, the number of microinstructions executed between

calls to TranferField cannot be a function of the operation being executed. In fact, the number’
clicks executed between the end of a field and the beginning of the next field must be independent

of operation. Of course, it is reasonable for the number of instructions to be a function of the field.

For example, the number of clicks executed between the end of the Label field and the beginning

of the Data field should not depend on the operations performed on either the Label or Data fields

though it may differ from the number of clicks between the Header and Label fields.

" Writing on the SA4000 and SA4100
Each field on an SA4000 or SA4100 has 4 parts. These are:
Name length value

Synchronization gap 7 words 0000
Synchronization word 1 word FFFFX
Data 2 words Header Field, or
12 words Label Field, or
256 words Data Field
CRC checksum word 1 word calculated CRC checksum

The data separator in the drive needs at least 8 uS (~4 word times) to acquire the data stream. The
microcode can only know the position of the read heads to an accuracy of plus or minus one click.
Delaying one click after the nominal beginning of the synchronization pattern gives a real delay of
from zero to two clicks. To ensure at least a 1 click delay, the code must wait for two clicks. This
means the real delay could be three clicks so the synchronization gap is 3+4 or 7 words (where the
time between clicks ~= 1 word time).

Code for writing on the SA4000 or SA4100 disk should proceed as specifed below. Writing the
Header field is used as the example, differences between the Header and other field will be
explaned later.

1. Prepare t.he parameters used for writing the Header field.

2. Send a command to the controller containing the number of the head to be used, DriveSelect,
FirmwareEnable and WakeupControl=3. This causes the next click to take place just after the next
sector mark has been found. If the field is not the Header field, this step must be skipped. The
command word would be 0426'x + 800'x*HeadNumber. Note that if the Header for Sector 0 is
desired, one must have the microcode find the index mark and count 27 sectors marks before
starting this step. Having done this, the next sector mark must belong to sector 0. One could
simply find the index mark and start writing if one were willing to make the operation of writing
the first sector different than that of writing the rest of them.

3. After finding the sector mark, Ny clicks may be used for further field set up. The minimum

time between when the Find Sector control word is sent and the write is started should be 10 uS (5
clicks) to give the drive time to select the heads properly.

4. The control word is sent starting the write. This control word contains the number of the head
to be used, DriveSelect, FirmwareEnable, TransferEnable WakeupControl=1 and WriteEnable. It
is 0433°’x + 800’x*HeadNumber.

5. The controller will write the first two words of synchronization pattern automatically. The -
microcode should provide 5 more words of ¢ to KOData; all in cycle 3.



Shugart Disk Controllers 85

6. The microcode supplies one word of FFFF’x to the controller in cycle 3. This is the
synchronization word used by the controller hardware to find the word boundries in the serial bit
stream when the field is read.

7. Microcode should execute a loop which transfers one data word per click to the KOData port.
All transfers should take place in cycle 3. See the DiskDlionB.mc file for an example of such a
loop.

8. A control word should be sent causing the CRC checksum to be appended to the field. The
control word is identical to the one used to start the write operation with the addition of the
WriteCRC bit. It is 043B’x + 800’x*HeadNumber. ,

9. The same control word should be sent again. The controller is pipelined to the extent that one
word is being sent to the disk while the next word is received from the processor. Thus the
controller cannot be stopped now as this would cause the CRC to be chopped off. Some word
must be sent to the controller to prevent an Overrun condition. Sending the same control word is
as easy as anything else.

10. A command should be sent disabling the Controller. It should contain the number of the head
to be used in the next field, DriveSelect and FirmwareEnable. It is 0420’x +800’x*HeadNumber.

11. The DriveNotReady, WriteFault and Overrun status bits should be checked. If there was an
error, the operation should probably be aborted. The disk task’s double bit memory error flag in
the MStaws register should also be checked. The errors recorded while the disk task is reading
memory do not cause a trap but they are recorded.

The process of writing fields other that the Header is quite similar. Step 2 may be eliminated since
the sector has been found and the head number established. The number of clicks used for setup
should be minimized, there is no minimum value. One should take care that the number of clicks
executed between fields is independent of the operation performed on the fields.

Writing on the SA1000

This is intentionally quite similar to writing on the SA4000. The differences are that the SA1000
has no sector marks, it uses an address mark instead of a synchronization word and one is required
to wait for 2 clicks to elapse after starting the CRC write intead of 1.

Because of the fact that there are no sector marks on the SA1000, the position of a Header directly
determines the position of a sector. For this reason, individual sectors cannot be formatted: one
must format an entire track in one run. The microcode finds the index mark and writes sectors as
fast as possible. Once a track is formatted, it is, of course, possible to write the Label and Data
fields of its sectors individually. Shown below is the sequence used to write the Header of Sector 0
on a track. When writing other Headers in the formatting run, the step used to find the index mark
is eliminated.

Because address marks are used to define the beginning of fields, all previous address marks on a
track must be erased before formatting. This is done in the Pilot system by having the head tell the
microcode to write a very long sector (the length of a track). Any legal MFM pattern is adequate.



86 Dandelion Hardware Manual

The format for a field on the SAl000 is:

Name length value
Synchronization gap 7 words 0000
Address Mark 1 word Al4l’x - Header Field
_ Al43¥x - Label or Data Field
Data 2 words Header Field, or

12 words Label Field, or
256 words Data Field
CRC checksum word 1 word calculated CRC checksum

1. Prepare the parameters used for writing the Header field.

2. Send a command to the controller containing the number of the head to be used, DriveSelect,
FirmwareEnable and WakeupControl=2. This causes the next click to take place just after the
index mark has been found. If the field is not the Header field of Sector 0, this step must be
skipped. The command word is 0424'x + 800’x*HeadNumber.

3. After finding the sector mark, Ny, clicks may be used for further field set up. The minimum

time between when the Find Sector control word is sent and the write is started should be 10 uS (5
clicks) to give the drive time to select the heads properly.

4. The control word is written starting the write. This control word contains the number of the
head to be used, DriveSelect, FirmwareEnable, TransferEnable, WakeupControl=1 and
WriteEnable. It is 0433'x + 800'x*HeadNumber.

5. The controller will write the first two words of synchronization pattern automatically. The
microcode should provide 5 more words of 0 to KOData; all in cycle 3.

6. The microcode writes the data word Al4l'x to the controller in cycle 3. This triggers the
writing of the Header’s address mark. The real address mark is an illegal MFM string. It can be
distinguished from ordinary data and is used by the controller hardware to find the start of a field.

7. A loop should be executed which transfers one data word per click to the KOData port. All
transfers should take place in cycle 3. See the DiskDlionB.mc file for an example of such a loop.

8. A control word should be sent causing the CRC checksum to be appended to the field. The
control word is identical to the one used to start the write operation with the addition of the
WriteCRC bit. It is 043B’x + 800’x*HeadNumber.

9. The same control word should be sent two more times. The controller is pipelined to the
extent that one word is being sent to the disk while the next word is received from the processor.
Thus the controller cannot be stopped now as this would cause the CRC to be chopped off. It
additionally appears that if a short tail is not written after the CRC, it cannot be read correctly.
This is why two ‘extra cycles are taken. A word must be sent to the controller in each cycle to
prevent an Overrun condition. Sending the same control word is as easy as anything else.

10. A command should be sent disabling the Controller. It should contain the number of the head
to be used in the next-field, DriveSelect and FirmwareEnable. It is 0420°x+800’x*HeadNumber.

11. The DriveNotReady, WriteFault and Overrun status bits should be checked. If there was an
error, the operation should probably be aborted. The disk task’s double bit memory error flag in
the MStatus register should also be checked. The errors recorded while the disk task .is reading
memory do not cause a trap but they are recorded.



Shugart Disk Controllers 87

Writing other fields in the same sector differs only in that Step 2 can be eliminated and the address
mark written in Step 6 is A143’x. This allows the microcode to distinguish between Headers and
other fields when the fields are read. It is still important that the number of clicks executed
between fields is independent of the operations performed on those fields.

Reading Data from the SA4000 and SA4100

The main differences between reading and writing are that one must find the synchronization gap
instead of creating it and read data instead of writing it. The operations for reading a Header will
be shown. The differences involved in reading other fields will be explained later.

1. Prepare the parameters used for reading the Header field.

2. Send a command to the controller containing the number of the head to be used, DriveSelect,
FirmwareEnable and WakeupControl=3. This causes the next click to take place just after the next
sector mark has been found. If the field is not the Header field, this step must be skipped. The
command word would be 0426’x + 800°x*HeadNumber.

3. After finding the sector mark, Ny +2 clicks must be used for further field set up. Note that
this is same N, used when writing a field. The extra two clicks are used to guarantee that the read

heads are inside the synchronization gap when they are enabled. The minimum time between when
the Find Sector control word is sent and the read is started should be 10 uS (5 clicks) to give the
drive time to select the heads properly.

4. The control word is sent starting the read. This control word contains the number of the head
to be used, DriveSelect, FirmwareEnable. TransferEnable and WakeupControl=0. It is 0430'x +
800’x*HeadNumber.

5. The controller will find the synchronization word automatically. The first service request
announces that the synchronization word is in the KIData buffer. This should be read. It may
then either be saved or discarded. It is provided for diagnostic purposes.

6. The microcode should execute a loop which transfers one data word per click from the KIData
port. All transfers should take place in cycle 2. See the DiskDlionB.mc file for an example of such
a loop. Note that if the buffer address calculated in cycle 1 crosses a page boundry, the memory
write operation will be aborted. Data pages in the Pilot world are always page aligned so the last
click executed when transferring data must not increment the memory address. See the Dandelion
Microcode Reference for further details.

7. An extra word or command must be read or written. This gives the controller time to process
the CRC checksum at the end of the field. If the extra transfer is left out, the controller will detect
an Overrun. - If a command is sent, it should be the original read command.

8. A command should be sent disabling the Controller. It should contain the number of the
head t be wused in the next field, DriveSelect and FirmwareEnable. It is
0420°x+ 800’x*HeadNumber. :

9. The DriveNotReady, WriteFault, Overrun and CRCError status bits should be checked. If
there was an error, the operation should probably be aborted.



88 Dandelion Hardware Manual

As usual, Step 2 is eliminated and the time is Step 3 is decreased when reading other fields. Note
that the delay in the read version of Step 3 is always 2 clicks longer than in the write version of the
corresponding field. For example, if there are 4 clicks between the times a Header operation is
stopped and the write of a Label is started, there should be 6 clicks between the times a Header
operation is stopped and a Label read is started. The extra two clicks are provided by TransferField
in this code, so the time between calls to TransferField must be independent of the operation.

Reading from an SAI1000

Headers are very seldom read. They are written only when the disk is being formatted. Normally
they are verified. To read Header n of a track, one usually finds the index mark and reads the next
n+1 Headers; all into the same buffer. This complication is not germane to this discussion. The
process of reading Sector zero’s Header will be shown, the normal modifications required to read
other Headers and other fields will be pointed out.

1. Pi‘epare the parameters used for reading the Header field.

2. Send a command to the controller containing the number of the head to be used, DriveSelect,
FirmwareEnable and WakeupControl=2. This causes the next click to take place just after the
index mark has been found. If the field is not Sector zero’s Header field, this step must be skipped.
The command word would be 0426'x + 800'x*HeadNumber.

3. After finding the index mark, Ny +2 clicks must be used for further field set up. Note that
this is same Ny used when writing a field. The data separator used for the SA1000 is on the

controller board and has no requirement about being turned on over the synchronization gap. The
reading process should. however, begin promptly so Sector zero's Header will be found first.

4. The control word is sent starting the read. This control word contains the number of the head
to be used, DriveSelect, FirmwareEnable, TransferEnable and WakeupControl=0. It is 0430°’x +
800'x*HeadNumber. :

5. The controller will find the address mark automatically. The first service request announces
that the address mark is in the KIData buffer. This should be read. It may then either be saved or
discarded. It is provided for diagnostic purposes.

6. The microcode should execute a loop which transfers one data word per click from the KIData
port. All transfers should take place in cycle 2. See the DiskDlionB.mc file for an example of such
a loop. Note that if the buffer address calculated in cycle 1 crosses a page boundry, the memory
write operation will be aborted. Data pages in the Pilot world are always page aligned so the last
click executed when transferring data must not increment the memory address. See the Dandelion
Microcode Reference for further details.

7. An extra word or command must be read or written. This gives the controller time to process
the CRC checksum at the end of the field. If the extra transfer is left out, the controller will detect
an Overrun. Note if a command is sent, it should be the original read command.

8. A command should be sent disabling the Controller. It should contain ﬁhe number of the head
to be used in the next field, DriveSelect and FirmwareEnable. It is 0420’x +800’x*HeadNumber.

9. The HeaderTag, DriveNotReady, WriteFault, Overrun and CRCError status bits should be
checked. If there was an error, the operation should probably be aborted. Note the HeaderTag
status bit here is set if the field read was not a Header. It is available on the status bit that would
have been used for SectorFound if an SA4000 had been connected.



Shugart Disk Controllers 89

As usual, Step 2 is deleted when not looking for Sector zero’s Header field. Label and Data fields
are generally read by verifying all fields encountered until a match for the desired sector’s Header
field is found, then reading the next fields in order. There is no requirement that the SA1000 data
separator be turned on over a field of zeros but it should be enabled at least 4 word times before
the address mark of the field to be read or verified.

Verifying Data on the SA4000 and SA4100

A verify operation combines the read and write operations. Data is read both from the disk and
from memory and compared on the controller board. As far as the microcode is concerned, a verify
starts like a read with the data separator enabled to find the field. Once the field is found, a verify
is like a write in that data is sent to the controller.

The procedure for verifying a Header will be shown. As explained above, this is by far the most
common operation performed on Headers. DiskDlion microcode uses the verify operation to locate
the Header for the proper sector. Microcode could easily be written that woke up on every
SectorFound pulse and maintained a current sector number. This was not done for simplicity.

1. Prepare the parameters used for verifying the Header field.

2.  Send a command to the controller containing the number of the head to be used, DriveSelect,
FirmwareEnable and WakeupControl=3. This causes the next click to take place just after the next
sector mark has been found. If the field is not a Header field, this step must be skipped. The
command word would be 0426’x + 800’x*HeadNumber.

3. After finding the sector mark, Np,+2 clicks niust be used for further field set up. Note that
this is same Ny, used when writing a field. The extra two clicks are used to guarantee that the read

heads are inside the synchronization gap when they are enabled. The minimum time between when
the Find Sector control word is sent and the read is started should be 10 uS (§ clicks) to give the
drive time to select the heads properly.

4, The control word is sent to start the verify. This control word contains the number of the head
to be used. DriveSelect, FirmwareEnable, TransferEnable and WakeupControl=1. It is 0432’x +
800’x*HeadNumber. In the same click as the control word is written, but after it is written, the first
memory template word must be sent to the controller. It must be sent in the same click because
the next service request will not be generated until the controller has started comparing the first
memory and disk words. It must be sent after the control word because the WriteData buffer is
held cleared until then. All words sent before the verify operation is enabled are lost.

5. The controller will find the synchronization word automatically. The first service request
announces that the second template word is needed for comparison. This is the beginning of the
verify loop.

6. The microcode should execute a loop which transfers one template word per click to the
KOData port. All transfers should take place in cycle 3. See the DiskDlionB.mc file for an
example of such a loop.

7. Two extra words or commands must be written. This gives the controller time to process the
CRC checksum at the end of the field. If the extra transfers are left out, the controller will detect
an Overrun. If commands are sent, they should equal the original verify command.

8. A command should be sent disabling the Controller. It should contain the number of the head
to be used in the next field, DriveSelect and FirmwareEnable. It is 0420°x +800'x*HeadNumber.



90 Dandelion Hardware Manual

9. The DriveNotReady, WriteFault, Overrun, CRCError and VerifyError status bits should be
checked. If there was an error, the operation should probably be aborted. Note that if the verify
operation is being used to find the. proper Header, errors in the DriveNotReady, WriteFault and
Overrun are fatal whereas CRC and Verify errors only indicate the wrong Header was found. One
should try every Header on the track before giving up.

The usual remarks about eliminating Step 2 and shortening the delay in step 3 apply when verifying
Label or Data fields. A Verify or CRC error found when verifying a Label or Data field is always
fatal. Pilot normally issués operations of the form: verify Header, verify Label, read or write Data.

Verifying Data on an SA1000

Verifying Headers is also the principle method used to find sectors on the SA1000 disks. Since the
SA1000 has no sector marks however, one cannot guarantee where the reading process will begin
unless the index mark is sensed. For this reason, address marks are used. These are MFM patterns
that meet the data separator timing requirements but cannot occur in normal data. When enabled,
the controller waits until an address mark is found before starting the verify operation. It is also
quite likely that the first address mark found will not belong to a Header field. For this reason,
Header address marks have a 0 in bit 14 while Label and Data address marks have a 1 there. This
bit is shown on the Header Tag status bit. It may be used as an error indicator when reading or
verifying Header fields. ‘

For the sake of consistency, the process of verifying Sector zero’s Header will be shown, though one
seldom begins a verify operation by finding the index mark on the SA1000.

1. Prepare the parameters used for verifving the Header field.

2. Send a command to the controller containing the number of the head to be used, DriveSelect,
FirmwareEnable and WakeupControl=2. This causes the next click to take place just after the
index mark has been found. If the field to be verified is not Sector zero's Header field, this step
must be skipped. It is normally skipped anyway. The command word would be 0426'x +
800’x*HeadNumber.

3. After firding the index mark, Ny +2 clicks may be used for further field set up. Note that this
is same Ny, used when writing a field. The data separator used for the SA1000 is on the controller

board and has no requirement about being turned on over the synchronization gap. The reading
process should however begin promptly so Sector zero’s Header will be found first if this is desired.

4, The control word is written starting the verify. This control word contains the number of the
head to be used, DriveSelect, FirmwareEnable, TransferEnable and WakeupControl=1. It is
0432'x + 800°’x*HeadNumber. In the same click as the control word is written, but after it is
written, the first memory template word must be sent to the controlier. It must be sent in the same
click because the next service request will not be generated until the controller has started
comparing the first memory and disk words. It must be sent after the control word because the
Writ?Data buffer is held cleared until then. All words sent before the verify operation is enabled
are lost ,

5. The controller will find the address mark automatically. The first service request announces
that the second template word is needed for comparison. This is the beginning of the verify loop.

6. The microcode should execute a loop which transfers one template word per click to the
KOData port. All transfers should take place in cycle 3. See the DiskDlionB.mec file for an
example of such a loop.



Shugart Disk Controllers 91

7. Two extra words or commands must be written. This gives the controller time to process the
CRC checksum at the end of the field. If the extra transfers are left out, the controller will detect
an Overrun. Note if a command is sent, it should be the original verify command.

8. A command should be sent disabling the Controller. It should contain the number of the head
to be used in the next field, DriveSelect and FirmwareEnable. It is 0420’x+800’x*HeadNumber.

9. The HeaderTag, DriveNotReady, WriteFault, Overrun, CRCError and VerifyError status bits
should be checked. If there was an error, the operation should probably be aborted. Note that if
the verify operation is being used to find the proper Header, errors in the DriveNotReady,
WriteFault and Overrun are fatal whereas HeaderTag, CRC and Verify errors only indicate the
wrong field was found. One should try every field on the track before giving up.

When Label or Data fields are verified, Step 2 is left out and the delay in Step 3 can be shortened.
The HeaderTag bit is also ignored at the end of a Label or Data field operation.

Conclusion

This concludes the section on usage of the controller. The grand scheme for using the disk
proceeds as follows:

1. After power on, wait for DriveNotReady to drop.
2. Clear the WriteFault line as shown in the Control Register section.

3. Recalibrate the read/write heads by stepping 20 cylinders in, then 222 (202+20 for SA4000 or
SA4100) or 276 (256-+20 for SA1000) out, looking for TrackOO after each step is complete.

4, Seek to the desired cylinder by having the microcode issue the proper number of pulses on the
Step line with the desired direction set on Directionln.

5. Perform the desired data transfer as outlined above.

6. If there are errors, retry. If the errors involve the WriteFault line, clear it and retry. If
WriteFault errors persist, make sure Overrun isn’t responsible. If the errors indicate the proper
sector can’'t be found, try recalibrating.

7. Repeat Steps 4 through 7 as necessary.

5.2 Trident Disk Controller

(To be added)



92

- (To

(To

(To

(To

be

be

be

be

added)

added)

added)

added)

6.0 Ethernet Controller

7.0 LSEP Controller

8.0 Magnetic Tape Controller

9.0 Input/Output Processor (IOP)



0P 93
Address Bus Latch
-—‘ Backplane
8 CpuAddr L 8 1P AddrHi
A by 7 1
CPU p. 1
L8373 Address
i8085A 8 _couap A PAdd Bus
_ AD e[l 1 |PAddrl o :
— p. 1
p. 1
\ Addr Addr Addr
DmaCycle . 10P
Prom RAM RAM
8K) (8K) (8K) Memory
a p.2 p. 3-4 p. 23-24
2716 2114 2114
8 MemD
7 !
L 170 Data
S243 5 Bus
1PDat:
T 1T 1 1 L [ =
p. 6
. PData’ r l In15 l p. 18 r |é.15 l p. 14
Floppy CPControl Keyboard Maintenance Contro! Host
State, Status — Panel Store Address
Time.of-Day
Clock
p. 29 p. 28
Keyboard Cable MPanel Cable
On OPTIONS module:
RS232C Xerox
Floppy
Alternate
170 Data
[ I 8 IPADaIZ Bus
7
8257 7o a251A 8253 8255 Alto
. 7 D. . 2, X
2 £.8 £.22 £.22 Umbilical
Dma Controller Floppy Printer Timer Alto PPI
Digk UART
Controller
Printer cable On separate module
O p.28
Floppy Cable
p. 28

BLOCK DIAGRAM: 170 PROCESSOR DATA PATHS



94 Dandelion Hardware Manual
1
Address Bus Latch
CpuAdd p. 1 8 o
A Rl L v |12 AddrHi S
CPU -
L8373
8
CoyAD 1PAddrt
AD DLy - rto - :
p.1
p. 1
CpuRd’
CpuWr'
LS245
A eRE2ALIC |PAddrl o
e P 7
DMA LS373
D Dma 1P AddrHi
p.7 p.7
8 IPA
: Data.,
7/
—DRmaiemBd. LS04 L8353 IPMemBd’ ]
DmatemWe:
, IPMemWwr'
L_DmaloRd MUX —{
DmalOwr DO IPIORd! ::
CouBd |
) 1PIOWr"
Ls244 faue ; —{—1
IPIORg! p.1
IPIQWT!
. 7
g |PAddri0]

BLOCK DIAGRAM: 170 PROCESSOR CONTROL ORGANIZATION

Address

Bus

Control

Bus



Dandelion Backplane

. Files
Physical arrangement
170 Processor (IOP) [tris]KWorkstation>Backplane>
Options Backplane-C.press
Processor :
High Speed 170 (HSIO) Backplane-C.dm
Memory Control
Csci);r;ponent [ Storage
Top Edge 1 el
1,101 | | ]
wol | |11 lzog
Bottom Edge
100,200
Rear Side of Backplane
Backplane Signals
Card. Central  |HighSpeed | M
0P Options entra 1g0 spee emory Storage
Processor 1/0 Control
Total Signal 170 max.
lines used 131 166 140 141 155 66 per card
170 Floppy LSEP/Ethernet SA4XXX
Connectors Keyboard RS232/RS366 SA100X
on front of Printer Display
boards MaintenanceP
Alto umb. —_
Power distribution
Backplane Power & Ground 30 lines total Top Bottom
- Edge Back Side Edge
Voltage Backplane Pins 10 200
+12.V 1101 1 100
+ SV 50,51,150.151 : Component
Gnd 10,20,30,40,60,70,80,90,110,120,130,140,160.170,180,190 Side
.5V 100,200
-12V 98,198 2- 100 pin connectors
Pins on .1" centers
No Conn 97,99,197,199 8" between pins 50 & 51
AMP # 530826-3
Termination of clock signals
1oP OPTIONS cP HSIO | MEMCTRL STORAGE
+5V 220 220 sv
-‘\/\/\/—-‘ l—-d\/\/\/— +
ppCLK 220 220 ppCLK
D -’\/\/\4—-' I—'—‘ NN~ GND

1 termination

1 termination
220

RAS'
I—-'VV\F +5V CAS

220 .
LA~~~ anp LRAS

LCAS
4 terminations
Terminations are placed on the IOP and STORAGE cards.
XEROX |Project Backplane Description File Designer Rev | Date
SDD Dandelion General Characteristics WSBackplane.sil Ogus C 9/26/80




OPTIONS HSIO
0.2 0. 2 |[Cycle.1’ Click.0 0.2 {Cyclet’ Click.0 02 |Cyclet’ Click.0 o
03 0 3|Cycle.2’ Click.1 G 3 |Cycle2 Click.1 03 |Cycle2' Click.1 [+3
04 0 4|Cycle.3 Click.2 0 4 |Cycled' Click.2 04 {Cycled' Click.2 o
O 5 |Spare22 Spare23 0: 5Spare22 Spare23 05 05 [RAS’ LRAS' [+
0 3 |Spare2 O 3 [Spare2 ¢ 3] 06 [CAS LCAS O
0 7 |Spare20 Spare21 0 7 |Spare20 Spare21 0 7 {Spare20 Spare21 07 |WPulse DR/C [+
O 3 |Spare18 Spare19 O 8 |Spare18 Spare19 O 3 |Spare18 Spare19 08 0
10 AlonCGLEK O 21pnClLK O 2ionClK 09 1ppCLK o
1 1 |Spare16 Spare17 1 1|Spareté Spare17 1 1 |AliowWrite 11 JAllowWrite 1
1 2 IOPClk 1. 2 [IOPClk 12 12 1
1 3 |Spare14 Spare15 1: 3 {Spare14 Spare15 1 3|MAR« mem 13 |MAR« mem 1
1 4 |Spare12 Spare13 1. 4 |Spare12 Spare13 14 «MStatus’ 14 «MStatus’ 1
1: 5 {IOPDataOut BRCIk 1: 5 HOPDataOut BRClk 1 5 {MapRef MCti+’ 15 |MapRef MCtle’ 1
1 3 |SelTroyMode Spare 1 8 |SeiTroyMode Spare9 1 6 |Refresh’ 16 |Refresh’ 1
1 7 |Wait IOPReset’ 17 [Wait IOPReset' 1 7 [Wait IOPReset’ 17 [Wait I0OPReset’ b
1 3| Trindex TrHdLd 1i 8] Trindex TrHdLd 1 8 |Spare26 Spare27 18 |Spare26 Spare27 %
hiER 2 IrStep 1 2{TrBeady JrStep 1 9{Sparedd Spare25 19 1Spare24 S L1
2 1|IOPQData«’ IOPCti«' 2 1|IOPOData«" IOPCtI+' 2 1|IOPOData«’ I0PCtl«' 21 2
2 2|TrTK00 TrDirln 2 2|TrTKOO TrDirln 2 2 |KOData«' KCtl«’ 22 {KOData«' KCtie' 2
23 2 3|EOData«+’ EICtte! 2 3|EOData«’ EiCtl«’ 23 |EOData«’ EICtI+’ 2
2 4 |TrWrProt TrWrGQate 2 4| TrWrProt TrwrGate 2 4 |DCtiFifo«’ DCtie' 24 |DCtIFifo«’ DCtie’ 2
2 5 |TrRdData TrWrData 2:5|TrRdData TrWrData 2 5 |DBorder«’ 25 |DBorder+’ 2
21 3 |EWrite’ EOCti«' 2 3 |EWrite’ EQCtl«’ 2 3 |EWrite' EOCti+' 26 |EWrite' EQCH«’ 2
2 7 |KCmd+’ 100utSp4d«’ 2 7 {KCmd«' 100utSpa+" 2 7 |KCmd«' 100utSp4«’ 27 |[KCmd«' 100utSpa«’ 2
28 2 3|POData«' PCti+* 2 8 |POData«’ PCtie’ 28 |POData«" PCti«' 2
|2 3.!Spared Spare7 2 3]Spared Spare7 2 2iSpared Soare7 29 1Spared Sopare? 2
31 : 3 1 |EiData’ EStatus’ 3 1 |EiData’ EStatus’ 31 |ElData’ EStatus' 3
3 2 |Spare4 Spare5 3 2 |Spared Spare5 3 2 |+KiData' «KStatus' 32 | «KiIData’ «KStatus’ 3
33 33 KWrite' 3 3 |+KTest' KWrite' 33 |«KTest' KWrite' 3
3 4|{+IOPiData’ «IOPStatus’ 3 4|«~IOPIData’ «iOPStatus’ 3 4|«IOPIData’ «|OPStatus’ 4 3
3 5| «10inSp2’ 3 5]+10InSp2" PriReq’ 3 5|~I0InSp2’ PriReq’ 35 | ~10InSp2’ PriReg’ 3
3 3 |IOPALE Spare3 3 3 {IOPALE Spared 3 3 [IOPALE Spare3 36 |IOPALE Spare3 I
3 7 |CSParErr 3 7 |CSParErr EndLine’ 3 7 |CSParErr EndLine’ 37 EndLine’ 3
3 3{10Disp.0 IODisp. 1 3 3|IODisp.0 iODisp.1 3 8 ]IODisp.0 I0Disp.1 38 {{ODisp.0 10ODisp. 1 3
13 21YI0Disp 0 YIODiso.1 3 21YIODisn0 YIODisn 1 323] isn.0 YIODisp. 1 29 1YIODisn 0 YIODisn.1 3
4 1}|X.0 ' X.1 4 1]IX.0 X.1 41 {X.0 X1 41 [X.0 X1 4
4 21X.2 X.3 4 21X.2 - X.3 4 21X.2 X.3 42 1X.2 X.3 4
4 3iX.4 X.5 4 3|X.4 X.5 4 3iX4 X.5 43 |X.4 X.5 &
4 41X.68 X.7 4 41X.6 X.7 4 41X.6 X7 44 |X.6 X.7 14
4 51X.8 X.9 4 5|X.8 X.9 4 5|X.8 X.9 45 iX.8 X.9 4
4 31X.10 X.11 4 3|X.10 X.11 4 35|X10 X.11 46 |X.10 X1 4
4 7IX12 X.13 4 71X.12 X.13 47|X12 X.13 47 |X.12 X138 4
4, 31X.14 X.156 4 31X.14 X.15 4 3(X.14 X.15 48 |X.14 X.15 4
|4 4231Y.0 Y.l 4321Y.0 Y.1 491Y.0 Y.1 &
52 521y.2 Y.3 52(v.2 Y.3 621v.2 Y.3 S
53 53|v.4 Y.5 53|v.4 Y.5 531|Y.4 Y.5 &
54 54|Y.6 Y.7 54|Y.6 Y.7 54|Y.6 Y.7 5
55 55]y.8 Y.S 55|v.8 Y.9 651v.8 Y.9 5
53 531Y.10 Y. 11 &38]Y.10 Y. 11 561Y.10 Y. 11 &
57 57]yY.12 Y.13 §71Y.12 Y.13 &7 |y.12 Y.13 5
538 531Y.14 Y.15 53]Y.14 Y.15 581Y.14 Y.15 5
15 2] : bo 5 3] : : 15 2lyHO YH.1 59 1YH.Q YH1 5
6 1 |DmaRegA' DmaAckA' 6 1 |DmaRegA’ DmaAckA' 6 1]|YH.2 YH.3 61 |YH.2 YH.3 (3]
6. 2 {DmaReqB’ DmaAckB' 6 2 |DmaReqgB’ DmaAckB’ 6. 2|YH.4 YH.5 62 |YH.4 YH.§ &
6 3|DmaCycle ExtWaitReq' 6 3 |DmaCycle ExtWaitReq' 6 3|YH.6 YH.7 63 |YH.6 YH.7 8
6 4 |IOPIntReq0 IOPIntReq1 6 4 |IOPIntReq0 IOPIntReq1 6 4 |P1.0 P11 64 |PL.O0 Pt.1 6
6 5 [IOPIntReq2 IOPIntReg3 6 5 |IOPIntReq2 I0PIntReq3 6 5Pt.2 65 |Pt.2 3
6 3 |IOPSel.0' 10PSel. 1" © 3 |IOPSel.0" IOPSel.1" 6 3 |Disp-Proc’ MemErr 66 |Disp-Proc' MemErr &
6 7 |IOPSel.2' IOPSel.3' 6 7 [IOPSel.2' 10PSel.3 67 67 {DAddr.0 DAddr.1 6
6 8 |IOPSel.4' I0PSel.5' 6 3 [IOPSel.4' IOPSel.5' 635 68 |DAddr.2 DAddr.3 &
31 6 2 IOPAddr .00 |QPACdr 01 62 60iDAddrd _ DAddrs &
7 1 |IOPAddr.02 IOPAddr.03 7 1 {IOPAddr.02 IOPAddr.03 71 71 |DAddr.6 DAddr.7 7
7. 2 |IOPAGdr.04 IOPAddr.05 7. 2 |IOPAddr.04 IOPAddr.05 7.2 72 |DAddr.8 DAddr.9 7
7: 3|IOPAddr.06 IOPAddr.07 7: 3|IOPAddr.06 IOPAddr.07 73 73 |DAddr.10 DAddr.11 7
7 4 |[IOPAddr.08 IOPAddr.09 7. 4 {IOPAddr.08 IOPAddr.09 7.4 74 |DAddr.12 DAddr.13 7
7: 5 {IOPAddr.10 IOPAddr.11 7: 5 |IOPAddr.10 IOPAddr. 11 75 75 |DAddr.14 DAddr.15 7
7 5 [IOPAddr.12 IOPAddr.13 7: 3 ||IOPAddr.12 IOPAddr.13 73 JIOPAddr.12 IOPAddr. 18 76 |DData.0 - DData.1 K
7 7 |IOPAddr.14 IOPAddr.15 7 7 |IOPAddr.14 IOPAddr.15 7 7 |IOPAddr.14 IOPAddr.15 77 |DData.2 DData.3 7
7: 8 |SpareD Spare1 7: 8 |Spare0 Spare1 7: 8 |Spare0 Spare1 78 |DData.4 DData.5 7
17, 2] : 173 : ! 7 3 79 1DData & DData.Z i
8 1 |CSWE.a' CSWE.b’ 8 1 |CSWE.a' CSWE.b’ 8 1 |CSWE.a' CSWE.b' 81 |DData.8 DData.9 8
8 2 |CSWE.c’' CSWE.d' 8 2 |CSWE.c' CSWE.d’ 8 2 |CSWE.¢’ CSWE.d' 82 |DData.10 DData.11 8
8 3|CSWE.e' CSWE.f' 8 3|CSWE.e’ CSWE.f 8 3 |CSWE.e' CSWE.f' 83 |DData.12 DData.13 8
8 4IOPReq’ CirlOPReq’ 8 4 [lIOPReq" ClirlOPReq’ 8 4 [IOPReq’ CirlOPReq’ 84 [DData.14 DData.15 . 8
85 8 5 |DPReq’ CirDPReq’ 8 5 |DPReq’ CirDPReg’ 85 |DPReq’ CirDPRegqg' 8
88 8 5 |EReq’ CirRefReq’ 8 5 |[EReq’ CirRefReq’ 86 |EReq’ CirRefReq’ -]
8 7 [IOPMemwWr’ IOPI/OWr' 8 7 [IOPMemWr' IOPI/OWr' 8 7 |KReq’ CiIrKFlags' 87 |KReq' CirKFlags' 8
& 3 |RefReq’ ReadCSEn' 8 3 |RefReq’ ReadCSEn' 8 8 |RefReq’ ReadCSEn’ 88 |RefReq’ 8
I8 2] it ls3l ! i I8 2| it QORound 8
9 1 |WrTPCHigh' WrTPCLow 9 1 {WrTPCHigh' WrTPCLow 9 1 |WrTPCHigh' WrTPCLow 91 - 9
9 2}IOPData.0 IOPData. 1 9. 2 |IOPData.0 IOPData.1 9 2 |IOPData.0 I0PData. 1 92 9
9 3|IOPData.2 IOPData.3 g 3{IOPData.2 IOPData.3 9 3|IOPData.2 IOPData.3 a3 =3
9 4 110PData.4 IOPData.5 9 4[IOPData.4 IOPData.5 9 4 iOPData.4 IOPData.5 94 g
S 5 [IOPData.6 IOPData.7 9 5 [lOPData.6 |OPData.7 & 5 [IOPData.6 |OPData.7 95 &
9 3] r SwTAddr 3lSwTAddr SwTAddr' 9 3 1SwTAddr _SwTAddr' o8 =
1-100 101-200 1-100 101-200 1-100 101-200 1-100 101-200
Ab ove diagram is rear view (wiring side) of backplane. Dandel_: ion Backplane Signals - 1 Rev 9/26/80
AL L NUMBERS ARE IN DECIMAL. Stamen1-4.sil in: [Iris}<Works itation>Backplane>Backplane-C.dm Ogus

I I PJUIhWN-".DlDNO)UlﬁwN—"DU)\ID)UIOUN-‘FJUIN(”UI5(AJN-"UUJVO)UIBUN| ,UWVG}UI&WN—".Uw\lolulDOJNJPUNWM&WM“’DUNWU#QN*P&NWUﬂWNI



MEM CTRL

STORAGE
0z 1 [Cycle1” - 0z ! 0z 1]
0¢ ) |Cycle2: 0} 0c 3 Dandelion Backplane - 2
0< . |Cycled 0« 4 04 |
0f i |RAS’ LRAS' 0f i |RAS LRAS’ 0fi
0¢ i |CAS LCAS o€ i |CAS LCAS Of 3 rev C 9/26/80
07 * [WPulse DR/C 07" 07°
(o] (v 3] OF § Ogus
o< 1 ppCLK 0¢ VopCLK 0 1
11 | AllowWrite 1 11
2 h s ,
:;‘ 33\";9 mem :Z, Banko 1:2‘ Physical arrangement of cards:
14, «MStatus’ 141 141 1oP
1€ i IMapRef MCite’ 1€ 1€ Options
1€ i |Refresh’ CRefresh’ 1€ i |Refresh’ CRefresh’ 1€ Processor
17 * |Wait 17" 17" HSIO
1€ 1 |SDO.00 $DO.01 1€ 3{SDO.00 SDO.01 1€} Mem.Cll
1¢ L1SDO.02 SDO.O3 1€ L1SDO Q2 spO.O’ 1€ L] Component |- S'tora
21 [SDO.04 SDO.05 21 |SDO.04 SDO.05 21 Side r oe
2z 1 |sD0.06 SDO.07 221 |sD0.06 SDO.07 A
2:118D0Q.08 SDO.09 2¢1|SDO.08 SDO.08 204 L_>
24:.18D0.10 8DO. 1 24:18D0.10 SDO. 1 241
28 |SD0.12 SDO.13 2¢|SD0.12 SDO.13 £
2¢|SDO.14 SDO.15 2¢1{sDO.14 8DO.15 23
27 '|SDO.18 SDO.17 27’ |sD0.18 8DO.17 27" 1 | I I | l |1°1
2€1|SDO.18 SDO.18 26 1|SDO.18 SDO.19 2F §
2c 1 1SDO.20 SDO .21 2¢ 1 1SDO.20 SDO.21 2 ||
: hn = I
2+ |SAddr.00 SAddr.01 a2 ! |SAddr.00 SAddr.01 3! 1ee 2@
32 1 |SAddr.02 SAddr.03 37 1 {SAddr.02 SAddr.03 3
3¢ :|SAddr.04 SAddr.05 341 |SAddr.04 SAddr.05 341
3t i |SAddr.06 SAddr.07 3¢ i |SAddr.06 SAddr.07 3t .
3 |Y1Lateh YoLatch 3 |Y1iLatch YoLatch 35 Rear Side of Backplane
37 ' |Bank1’ Bank2' 37 " |Bank1' Bank2' 37
3¢ § {MRef’ Write' 3¢ § |[MRef’ Write’ 3D
C ) 361 3€ 1
';}1 X.0 X.1 41 a1 ] Power & Ground
4z '1X.2 X.3 4z z! Voltage | Pins
4z3|x.4 X.5 4z 45
ac . IX.6 X.7 ac . as . +12V 1,101
4Li1X.8 X.9 4cs £i +5V__}50.51,150.151
4¢i|x.10 X.11 a5 465
47" |x.12 X.13 a7’ 47" GND 10.20,30.40.60
46 11x.14 X.15 48 4 a8} 70,80,90,110,120,
4 11Y.0 Y 1 C i < L 130.140,160.170,
- T 1 - 180.190
5z 1]Y.2 Y.3 52! 5z !
s5c1|v.a .5 52 1 5% 1 6V __ 100200
6e.|v.6 v.7 5¢: 54 12V 98,198
£i]v.8 Y.9 € i £
5€;1Y.10 Y11 565 5€ ; No Conn | 97.99,197,199
57 |v.12 Y.13 57° 57
ily.14 Y15 56} 561
5¢ 1 | YH.0 YH1 5 | 56 ] Card Edge Connector
61 |YH.2 YH.3 61 61
6z 1| YH.4 YH.5 2! 6z ! Top Bottom
623 |YH.6 YH.7 61 621 Edge Back Side Edge
6. (PO P11 64 643 10 e00
8 |Pt.2 68 i 6
6¢ i |Disp-Proc’ MemErr j 6F § 1
67 ' |DAddr.0 DAddr. 1 67" 67° Component
6¢ 1 |DAddr.2 DAGdr.3 66} 68 3 sSide
6 1 |DAdGr 4 DAGdr5 &S 1 < |
71 |[DAddr.6 DAddr.7 71 71
7z '|DAddr.8 DAdar.9 7! Z! 2. 100 pin connectors
7% 1 |DAGdr.10 DAddr. 11 754 2y Pins on.1° centers
7¢ . {DAddr.12 DAddr.13 74 741 6" between pins 50 & 51
7¢ i |DAddr.14 DAddr.15 7€ 7€ v
7€ i |DData.0 DData.1 7€5 7€ 3 2- AMP # 530826-3
77 ' |OData.2 DData.3 7 77’
7¢ i |DData.4 DData.5 7€) 7€}
17¢ 1iDData 6 DData7 S\ righ
81 |DData.8 DData.9 81 81
2 |DData.10 DData.11 8! z !
8 1 |DData.12 DData.13 85 8¢ )
8<:|DData. 14 DData.15 8414 841
8¢ 1 |SDI.20 SDI.21 82 i|sSbl.20 SDIL21 e
8 i|sDI.18 SDL19 8¢ |SD118 SDIL19 8¢ 3
87 ' |SDI.16 SDI17 87 '|spt16 SDI17 a7
8e1|sSDL14 SDL15 8¢ 118D 14 SDL15 g€ §
ac LlsbLi2. Sptia ac1lspl12 KK U
91 |SDL10 SDIL11 o1 [SDI.10 SD111 91
g: '|spl.os SDI.09 9z ' {SDI.08 SD1L09 X
2 +|SDI.06 SDI.O7 2 1|SDI.06 SDLO7 gz
o<+ |SDL.O4 SDI.05 9¢ i |SDI.04 SDI.05 04 |
9t i |[SD1.02 SDI.03 9t i |SD1.02 SDI.03 OF i
Efs SDLOG SDLO1 of i1spion SDLOY U
1.100 101-200 1-100 101-200 Stamens-6.sil in:

Above diagram is rear view (wiring side) of bacl plane.

All num bers are in DECIMAL.

[lris ;J<Workstation>Backplane>Backplane-C.dm



	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97

