s AR Formal

7 v , /l>
Fo [der ,’ EOSB U MORTH ', fvmz{m j ¢ DAvteLion Do r/a/)mn—./‘) 600;‘,,,} S lfes

Boot Slide 1 4/24/83

Dandelion Booting

® The initialization of the system state
(control store, main memory, IOP
memory, etc.) to that reguired before
the first software instruction {(Mesa
oncode) can be executed (the so-called
PrincOps Boot State)

® Boot Stages

]) ’)
] 1]]
]]]
1 1]
!] 1
]] 1
1 13]
[]]]
]] 1
]] :
E] Software :
1 1' [} E"
; | . Boot :
H | l H
1] i]
1 1]]
] 1]]
¥] {]
1]] 13
1 1]]
: : H :
Press Boot Begininstruction PrincOps Begin execution
Button execution Boot state of software boot

file

Boot Slide 2 4/24/83

- PrincOps Boot State

Operational CP microcode and iIOP
control code is loaded into control store
and IOP memory

Pilot Boot File loader (Germ) has been
loaded into the appropriate place in
main memory

I/O Page has been mapped to its
assigned virtual address

All other normal real memory (i.e.
excluding display bank and VM map)
has been mapped

The Mesa emulator has been prepared
to execute the first Mesa byte code of

the Germ

Boot Slide 3 4/25/83

Hardware Boot

- resetthe hardware

- put the CPin a Wait state

- cause the IOP to start execution at a specific
address in IOP memory

“Microcode Boot”

consists of multiple phases
saves EProm space |
“allows more flexibility with changes
overlays "one time” boot code

provides a powerful diagnostic strategy

- function:
delivers Mesa and I/0 microcode to control store
delivers IOP control program (Domino) to IOP memory
delivers Germ to main memory

initializes the VM map, and Mesa emulator
- runs PreBoot diagnostics
- source of boot files: EProm and Boot Device

- allows selection of:
Boot Device: rigid disk, floppy disk, Ethernet (2 sources)
Boot Mode: normal boot or diagnosticboot

- EProm contents

PreBoot diagnostics

IOP boot code |

Phase 0 CP microcode boot file
IOP interrupt links

Boot concepts

Boot files and boot blocks
Processing boot files
CP execution states

CP kernel and CP protected areas

Boot Slide 3.1 4/24/83

Boot Slide 4.4/24/83

Boot files

- name: *.db
- aseries of boot blocks, together with a checksum

- boot blocks vary in length
- structure:

BootBlock

BootBlock | L ieee-

9 R I Block Header
BootBlock

tBloc Block Body

I | T
| I Tl

BootBlock | TTveell_

Checksum

- Block Header indicates type of block:

Type

k_?ype = 0: special block
| Type#0: control store block

- - types of boot blocks:
control store
special
task program counter (TPC)
U register
IOP memory
ignore
start IOP address
last block

- examples of boot blocks:

Control store block TPCblock ' IOP memory block
n l CS address 0 I X I t 0 I X] 9
low word of instr. ‘TPCvalue IOP address
middle word of instr. Count (bytes)

high word of instr. t=1[0..7] byte 1 | byte 0
| | byte3 | byte2
low word of instr. 1
Last block
middie word of instr. astbloc
high word of instr.
0 X | 8

n = [1..15] Last block flags

Boot Slide 5 4/24/83

@ Processing boot files

- unpack the boot blocks, i.e. load the data into the
appropriate part of the Dandelion hardware

- special precautions are needed to process the
control store and TPC boot blocks

® CP execution states

- Run state: CPis executing in multitask fashion
- Stopped state: CPis executing in kernel task (7)
- Wait state: CPis notexecuting

® CPkernel

- Special CP microprogram that executes while the
CPisin the "stopped” state

- Can communicate with IOP

- Performs memory refresh

Boot Slide 6 4/25/83

Microcode Boot Phases

'@ Phase0

- Run PreBoot diagnostics (I0P)
- Determine boot device (I0P, CP)
- Process "Phase0.db” (from EProm) boot file (I0P)

@ Phase 1

- Start CP execution of “"Phase0” microcode (I10P)

=

Load “Initial.db” boot file {from Boot device)

into main memory (CP)

- Process "Initial.db” (from main memory) file (IOP)

© Phase 2

- Start CP execution of "Initial” microcode (IOP)

=

=

=

=

Load "Mesa.db” boot file (from Boot device)
into main memory. This contains Mesa and I/O
microcode, and Domino code (CP)

Load the Germ into main memory (CP)
Initialize the VM map (CP)
Initialize the Mesa emulator (CP)

- Process “"Mesa.db” (from main memory) file (I0P)

® Transfer to Software booting

- Start CP execution of Mesa, /0 microcode (10P)
» Germ software starts executing (CP)

- Transfer to start of Domino code (I0OP)
» Domino software starts executing (10P)

® Boot files location (rigid disk booting)

- Phase0 boot file: located in EProm

- Initial boot file: located at fixed location on disk,
stored in consecutive sectors [cyl 0, hd 1, sec 0 on]

- Physical Volume Root Page (PVRP):

points to rest of boot files
located at fixed location on disk [cyl 0, hd 0, sec 0]
contains pointers to: |

- Mesa microcode boot file

- Germ boot file

- Diagnostic boot file

- Software boot file (e.g. Othello)

Protected areasin CP

- Control store and TPCimages |

Low 128 locations in control store contain CP "vital” functions
of 10P task code, memory refresh code, trap-catcher code,
loop code |

Image of protected control store area is kept in IOP memory

Image of TPC values is kept in IOP memory

Images are transferred to CP at end of boot phase

Writing control store and TPC values requires CP to be
stopped AND requires careful CP-IOP interaction to avoid

losing memory refresh

- Kernel microcode is never overlaid (32 locations)

e 4 e 4 e s b o 4 e e ¢ e &} A % e S A € R Y e o o o ¢ b s § G . —

Phase 0

B s e s 4 s e b e % s ¥ e G 3 b R e 5 e 4 e b R ¥ b A s S A h e 6 s e e s s o 4 e e -

Phase 1

Phase 2

Detailed description of rigid disk booting

Initialize

Run PreBoot diagnostics
Process Phase0.db
Transfer CS image

Transfer TPCimage

Start CP kernel

Start CP

Determine bootdevice

Wait for Flag

Process Initial.db boot file
(from main memory)

Stop CP

Transfer control store and

TPCimages

Start CP
[Start |OP]

Wait for Flag

Process Mesa.db boot file
(from main memory)

Stop CP

Transfer control store and

TPCimages

StartCP

Start 10P

Domino executes

CP kernel executes

CP exits kernel (to Run st

Determine boot device

Read Initial.db from disk
to main memory
Set Flag in main memory

~ Loopin protected area

CP enters kernel

CP exits kernel (to Run st

Read Mesa.db from disk
to main memory

Boot Stide 7 4/124/83

ate)

ate)

Read Germ from disk to memory
Initialize VM map, Mesa emulator

Set Flag in main memory

Loop in protected area
CP enters kernel

CP exits kernel (to Run st

Mesa emulator executes

ate)

the Germ

Boot Slide 8 4/25/83

Other topics
® Floppy booting

- Similar structure to rigid disk booting except that
the boot device is directly accessible from the IOP

- The lOP processes boot files directly from the
floppy disk

® Ethernet booting (Etherbooting)

- Similar structure to rigid disk booting

- Boot files are fetched from boot server over the
Ethernet

@ Diagnostic booting

- Allows the repeated execution of a collection of
special boot diagnostics

- Diagnostics have total control of machine, but
use the boot code to fetch and process boot files

- Implemented by repeating Phase 2 multiple times

Boot Slide 8 4/25/83

- Appendix

® Alternate boot codes
AltBoot code Typ‘e of boot

rigid* (diagnostic)

rigid*

floppy

ethernet

ethernet (diagnostic)

floppy (diagnostic)

alternate ethernet

Trident 1 (diagnostic)

Trident 2 (diagnostic)

Trident 3 (diagnostic)
0 - floppy cleaning

- O 0 A U Hh WN=0

* AltBoot 0 and 1 apply to the Shugart 1004, SA4008,
Quantum, or Trident 0 disk, whichever is installed in
the system

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13

