Dandelion Microcode Reference

14 Feb 30
R. Garner

~

This document describes Rev. D of the CP.
(previous revisions: 31 Oct 79, 8 Jan 80, 22 Jan 80)

XEROX

OPD SYSTEMS DEVELOPMENT
3408 Hillview Ave. / Palo Alto / California 94304

Contents

A. Branches and Disptaches 6
B. Shifting , 9
C. Link Registers & Subroutines 11
D. SU Registers ' . 14
E. Mesa Stack ‘ 15
'F. Mesa Instruction Buffer 18
G. Memory 21
_H. The Map 23
"1. Bus Sinks 27
J. Bus Sources . 27
K. Miscellancous Functions 28
L. Microcode Conventions 29
‘M. MASS ' 31
N. Burdock-Kernel : 36
0. Timing Constraints 39

Appendix: Antithetical List of Microinstructions

SRR T : : ¥

Where the files arc saved:

[Iris]<Workstation)Mass)Rch)Mass.image -,.bed
{Iris <Workstation>Mass>RevD>Mass.image ,.bed
[Iris < Workstation>Jarvis> Burdock.image

[Lris < Workstation>me>KernelDlion.fb

[Irisk Workstation>LH>DMR .press
[1ris <Workstation>LH>dmrl.bravo ,dmr2.bravo
[Iris]< Workstation>LH>DM RSil.dm

rA B asS aF aDg
|00 U I R T O O A T O I IO O

S50
cuo®

303
7
2
2
N
z
>

4 8 1" 14 18 20 24 28 a2 36

Field Description

rA 2901 A reg addr, U addr [0-3]

B 2901 B reg addr, RH addr

asS. . 2901 alu Source operand pair

aF ' 2901 alu Function

aD 2901 alu Destination/shift control

ep Even Parity

Cin 2901 Carry In, Shift Ends, writeSU (if en8U = 1)

enSuU enable SU reg file
mem MAR€ (if c1), MDR « (if ¢2), «MD (it c3)

S Function field Selector
X X Function
fY Y Function
fZ Z Function
INIA Next Instruction Address
a8 B.S. aE. —E __ sh,aD RlBle, Qe Ybuse
0 AQ 0 R+S 0 no write F F
1 A B 1 8§~ R 1 no write nowrite F
2 0,Q- 2 R— S 2 F . nowrite A
3 0,B 3 Ror$S 3 F nowrite F
4 0,A 4 Rand S 4 F/2 Q/2 F
5 D,A 5 ~RandS 5 F/2 nowrite F
8 D, Q . 6 Rxor8 6 2k 2Q |, F
7 D,0 i 7 ~R xor$S 7 2F nowrite F
sh « (EX =shift) or (X =cycle) or (fY =cycle)
" 1S[0-1] fYe, 1s[2-3] fZe. Sl adde(0-7]
0 DispBr 0 fZNorm 0,,stackP
1 fYNorm 1 Nibble 0,.stackP :
2 I00ut 2 Uaddr{4-7] tAfZ | tA, Y[12-15]if fZ=AltUaddr
3 Byte 3 [0XIn tAfZ | tA, Y[12-15] if fZ=AltUaddr
fX fXNorm 1Y fYNorm DispBr 100ut. fZ fZNorm 1OXIn,
0 pCall/Ret0 0 Exitkern NegBr IOPOData« 0 Refresh «X|Data
1 pCall/Reti 1 .EnterKern ZeroBr |IOPCli« 1 IBPtred «XStatus
2 pCail/Ret2 2 ClrintErr YOddBr KOData« 2 iBPtre«0 «KiData
3 pCall/Ret3 3 IBDisp MesaintBr KCle 3 Cin~pclié «KStatus
4 pCall/Retd 4 MesaintRq PgCarryBr XOData« 4 MapRef - «PStatus
5 pCall/Rets 5 stackPe CarryBr XCtle 5 pop «MStatus
6 pCall/Ret6 6 B+ XRefBr DCtIFifo+ 6 push «KTest
7 pCall/Ret7 7 cycle NibCarryBr DCtle 7 AltUaddr
8 Noop 8 Noop XDisp DBorder« 8 Noop «|OPiData
9 RHe 9 YDisp PCtl« 9 Noop «lOPStatus -
A shift A Refresh XC2npcDisp MClle A Noop «ErriBStkp
B c¢ycle B push YIODisp B Noop «RH
C Cinepcl6 C CIWDPRg IQODisp C LRot0O «ibNA
D MapRef D CiiOPRq XHDisp D LRot12 «ib
E pop E CIrXRq XLDisp E LRot8 «ibLow
F push F CIrKFlags PgCrOvDisp PQOData« F LRot4 «ibHigh
Notes

1. pCall when NI/\[7J =0, pRet when NIA[7]=1.

2. When writing SU (Cin=1, enSU=1) and doing Cin«pcl6, fXCin<pclé must be used. .

3. MAR ¢ causes aS«"0,B" & al"«"RorS” in bitsE)—?] of ALU: tests for PageCrossBr: cancels MDR « or IBDisp if PageCross true.
4, XBus[0-7,_is zerocd for fZ={7.F] and [$= Nibble/Byte.

* Refers to [Z and Y[12-15] of previous microinstruction.

Figure 1. Dandclion Microinstruction Format

7 Feb 80
Filed: <\Workstation>LH>MicroinstFormat-D.sil
Workstation>LH>DMR.press

pcﬂ;, 0,1 4

2901
e A A
1 1
1 1
1]
1 ; 1
! ~gn Y !
1 - Cin 1
1 1
i s Q »™Q »1S 1
| ~r.18 |
o —»0
: Cin,r.0,q.0 - F > :
i L B »1B8 r |
t - P A »A >R 1
! o e :
) 1 Cin,r.15,Carry 128 j T '
16 | DN A, [T FO
: +16 Neg
Y bus X bus P Ovr
1 .l] 1 - NibCarry
1 >4 LRotn 1 ' PgCa
16 L 16 yLarny
PgCross
Carry
} »{ SU y >
16 16 T
} P stackP | } Yo .
.4 4 . 1
(]
L]
8 .
| RH {>—+——->
8
l' YHbus
8
.‘ .
MAR
: .
LI Main 1
Memory MO 1l6 >
] > MDR
16
Mem Size Addressed by
R 16x16 rA, rB.
ibHigh . Q 1x16 as
i - RH 16x8 B8
4 SU 256x16 A fZ | rA,.Y | 0,,stackP
. o \ - ib 3x8 ibPtr
U »~ ib 1 ”~
16 8
ibl.ow (-
1]
4
{Z (Nibble constant) }- -
1Y, 1Z Bvte constant) Ay
é a8 I 10XO0ut (.
10ln | 16 4
16
1]OYOU(.
T (e

16
Figure 2. Dandelion Processor Data Paths

4 Jan 80
Filed: <Workstation> LH>CPDataPaths.press
{Workstation>LH>DMR.press

8 —+4
Controt pa]
Store { + »{ TPC } >
ie ‘ g 12 12
12
| Link H—>1 + pNIA \
e o/] >
4 12 fZL
/M mux-reg
_ SavedDispBr_
ZeroBr DispBr
NegBr
CarryBr—1
: |4 pIC | ﬂ [TC
XDisp — ‘ ! 4 J 4
YDisp =1 4 4 4

1ODisp =

Mux TCX

Mem Size Address Read Written

Link 8x4 X © anyc anyc
cs 4Kx48 NIA allc alic
TPC 8x12 Nt c2 c3

IC 8x4 Nt c2 cl

> denoates a register which is loaded at end of each cycle

+ denotes logical OR
(1B[4-7] is ored with INIA[8-11] and 18{0-3] replaces INIA[4-71)

Figure 3. Dandclion Processor Control Paths

-24 Qct 79
(Workstation>LH>CPControIPaths.sil
{Workstation>)LHYDMR.press

TC

'

A. Branches and Dispatches

source INIA dest

NegBr FO 1 sign of alu result (Not Y.0)
ZeroBr F=0 11 alu output equal to zero
YOddBr Y.15 11 . least significant Y bus bit
lMesalntBr Mesaint) . N Mesa Interrupt bit
NibCarryBr Cout.12 : 11 alu carry out of low Nibble
PgCarryBr Cout.8 11 alu carry out of low Byte
.CarryBr Cout.0 1 alu carry out
XRefBr X1 11 present & referenced map bit
10Disp bp.38,,bp.138, 10,,11 10 branches (bp = Backplane pin)
. XHDisp X.4,X.0 10,,11 X High bus :
XLDisp . X.8,,X.156 10,,11 X Low bus
PgCrOvDisp - PgCross,,OVR © 10,11 Page Cross & Overflow bits
XDisp X[12-15] 8,,9,,10,,11 X bus
YDisp Y{12-15] 8,,9,,10,,11 Y bus ’
XC2npcDisp X[12-13],,C2,,~pc16 8,,9,,10,,11 X bus, cycle2, ~pc16
YIODisp v[12-13],,bp.39,,bp.139 8,,9,,10,,11 10 branches (bp = Backplane pin)
IBDisp ib [4-11] Instruction Buffer
LODisp, pRet0 Link0 8,,9,,10,,11 LinkO dispatch (NIA.7 =1)
S R . : N HE :
" L7Disp, pRet7 Link7 8,,9,,10,,11 Link7 dispatch (NIA.7 = 1)

YN i RERTERE

PageCarry when doing subtraction (aF =S—R). PageCross equals PageCarry when doing addition (aF=R+8). Thus,
assuming one uses positive displacements, such as R+1 or R—1, PgCrossBr will consistently indicate when a page
boundary has been crossed. .

The aF=R—~S form of subtraction, unlike aF=8-R, does not cause PageCarry to be toggled on subtraction (since
aF.2=0). However, the aF=S—R form covers most of the common subtraction cases: . B—1, A—1, B—A, A—constant,
and Q-constant. 1t does not include D—1. In "A+B", if either A or B is negative, PgCross branch will always be
true. Moral: Always add or subtract positive displacements and PgCross branch will be true to you.

2. Even in the absence of ALU arithmetic, the NibCarryBr, PageCarryBr, and PgCrOvDisp branches can produce non-
zero results (i.e., branch). When aF="RandS", NibCarry and PageCarry are the logical inner product of R with S. If
aF=notRandS and aS="0.B", "0,A" or "0,Q", then NibCarryBr lests for the low nibble cqualing zcro and PgCarryBr
tests for the low byte cqualing zero. If aF="RorS", NibCarry is the logical inner sum of R with 5. If a§="0,8",
“0,A", "0,Q" or "D0", then NibCarryBr tests for the low nibble equaling OF. For the final coup de grace, if
aF="RxorS” and aS$="0,Q", "0,A", or "0,B", then NibCarryBr is true if the low nibble is 8, 0C, OE, or OF.

Notes:
L Branches take two microinstructions to specify. In the first microinstruction the branch or

dispatch condition (abbreviated DispBr) is declared by an fY. The sccond instruction should
contain a "BRANCH][Label0, Labell]” phrase. ‘

Reg « Reg xor RegA, ZeroBr, . ' ct;
BRANCH[NotZero, Zero], c2;
NotZero: Noop {here if result nonzero}, ' c3;
Zero: Noop {here if result zero}, c3;

2. The "atfx, y, Label]" macro is used to constrain the location of instructions. It tells MASS to
place the instruction at a control store location which is "x MOD y" and in the same "MOI) group”
as the instruction labeled "Label." Thus, the above example could be rewritten as (The "at"s are
NOT required.): :

Reg « Reg xor RegA, ZeroBr, ct;
BRANCH([NotZero, Zera), c2;
NotZero: Moop, {here if resuit nonzero} ’ ¢3, at[0,2,Zero};

Zero: Moop, {here if result zero} ¢3, at{1,2,NotZero};

1. PageCross branch (éalled PgCrossBr) is defined to be “PageCarry xor aF.2." This has the cffect of foggling

3. A dispatch specifies more than a single bit which is OR’d into INIA. Instead of a "BRANCH"
macro, dispatches are specified by "DISP2[Label]", "DISP3[Label]" or "DISP4[Label]" (abbreviated
DISPn), where n specifies the number of bits used for the dispatch. "at" clauses ARE required.

- [} « MD, XLDisp, c3;
DISP2{Table],) ct;
Table: Noop, {hereif MD.8,MD.15 = 0} ¢2, at[0,4,Table};
Noop, {hereif MD.8,MD.15 = 1} : : . ¢2, at[1,4,Table];
Noop, {hereif MD.8,,MD.15 = 2} c2, at[2,4,Table};
Noop, {hereif MD.8,MD.15 = 3} , ¢2, at[3,4,Table];

1. A two-way branch on a dispatch field is notationally accomplished by specifying a mask which
has 1's in those bit positions of the dispatch which should be ignored in the branch. The mask
should be the same width as the one implied by the dispatch. The mask is a third argument to the
"BRANCH" macro. The only legitimate values for the third argument have exactly one zero in
their binary (and a leading zero is used if needed); they are (1,2,3,5,6,7,08,0D,0E] "OF" is illegal
since it has no zero in its binary. "at" clauses are NOT required.

0 « RegLRot8, XDisp, ¢l
BRANCH[NotSet, Set, 08], {branch on bit 13 of X bus} c2;

NotSet: Noop, {hereif bit5 of Reg= 0}, . i ¢3, at[0B,10,Set};
Set: Noop, {hereif bit5 of Reg= 1}, ¢3, at[OF,10,NotSet];

5. A dispatch on a sub-ficld of a dispatch is again spéciﬁcd with a mask which says which bits of
the larger dispatch should be ignored. The mask is a second argument to the "DISPn" macro. "at"
clauses are NOT required. . .

{1 « RHReg, XDisp, i c3;
DISP4[Table, 9}, ct;

Table: Noop, {hereif RHReg.13,RHReg.14 = 0}, c2, at[9,10,Table};
Noop, {here if RHReg.13,RHReg.14 = 1}, ¢2, at{0B,10,Table};
Noop, {hereif RHReg.13,,RHReg.14 = 2}, . ¢2, at{0D,10,Table];
Moap, - {hereif RHReg.13,RHReg.14 = 3}, ¢2, at[OF,10,Table];

6. The "CANCELBR" macro is used to eancel pending branch/dispatch conditions by forcing the
argument address to have ones where pending bits would normally be OR'd in. CANCELBR may
be necessary ‘after a path of two instructions which specify branching or after a MAR« (see
Memory section). MASS will give a warning message where it thinks there should be a
CANCELBR. (It uses the principle that all DispBr's or pRet's should be followed by either a
BRANCH, DISPn, RET, or CANCELBR)

ZeroBr, c3;

NegBr, BRANCH(NZ, Z}, el

NZ: BRANCHI[Pos, Neg], c2;
Z: CANCELBR({Zero],) c2;
Zero: Noop, {placed "at{1,2]" by MASS} ' c3;

7. Pending bits of a dispatch or "pRet" are canceled by a mask which says which bits should be
ignored. The mask is the sccond argument to the CANCELBR macro. Thus mask =0F causcs the
argument address to be placed "at{OF,10L." ’

ZeroBr, c3;

pRet0, BRANCH[NZ, zl, ct;

NZ: RET[NZReturn], c2;
z CANCELBR([NotYet, OF], . c2;

Zero: Noop, {placed " at[OF,10]" by MASS} c3;

A general rule for the branch masks described above: - The "mask” always indicates bits which
should be ignored.

8. The "GOTOABS" macro sends control to an absolute control store' location.

GOTOABS], 3

B. Shifting

Single-bit shifts and rotates occur at the output of the ALU and the results can only go to an R
register (or Q on double length shifts). Four-bit rotates occur between the Y bus (ALU F output or
A bypass) and the X bus. If the result of the 4-bit rotate is destined for an R register, it must have
been placed onto the Y bus via the A bypass (which implies that aD=2). Single-bit shifting uses
the X ficld, single-bit rotating fX or fY, and 4-bit rotates fZ.

LShift1, RShift1 Left, Right Shift Rby 1 (fX=shift)
LRot1, RRot1 Left, Right Rotate Rby 1 (fX=cycleor fY = cycle)
DALShift1, DARShift1 i Double Arithmetic Left, Right Shift R,,Qby 1 (fX= shift)
DLShift1, DRShift1 Double Left, Right Shift R,,Q by 1 (fX =cycle or fY =cycle)
aD.1 X .
1 " shift Cin --)-E___K::P‘("'Ciﬂ
1 cycle e —
0 shift © o Cout =R Je=s =P 0 t&—Cin’
0 cycle . Cin TR 1= —» 0 J4— ~Cin

.-

aD.0 = 0 implies right shift

Notes:

1. The notation "SE«0", "SE«1", or "SBepcl6” is used to specify the shift ends. "SE«" is
equivalent to "Cin«".

Reg « LShift1 Reg, SE«1, {puts 1 into Reg.15} ci;
Reg « DALShift1 Reg, SE«1, {puts 1 into Q.15} ci;

2. A "DARShiftl" shifts Cout into the left side of the double length R, Q. (This is used in the
multiply instruction.) The 2901 can cause carries on logical operations (bclieve it or not).
Therefore, if you want to shift a 0 into the left side you must specify an arithmetic opcration which
produces no carry. -

Reg ¢ DARShift1 (Reg +0), ct1;

3. The single bit shifting operations use Cin for the shift ends. Therefore, if SU is being rcad and
shifted, or SU is being read and there is a shift operation in the ALU, the shift ends must be zero.
Note that SU can not be written simultancously with any typc of shifting operation (A bypass and
shift are not a lcgal aD combination). If shifting is combined with arithmetic, the shift ends must
be 0 unless a +1 operation is desired. Note that "Reg—Reg" implies a SE of L

Reg « RShift1 (RegA + Reg), SE«1, ct;
Reg « RShift1 (Reg + 1), SE«1, cl;
Reg « RShift1 (RegA ~ Reg - 1), SE«0, ct;
Reg ¢ Rshift1 Ureg, SE«Q, ct;

4. LRotn, when used in conjunction with A bypass, allows the ALU to be used for other purposes.
For instance, an R register can be rotated and placed onto the Xbus (where it can be branched on
or sent to RH or I0Out) while arithmetic is performed in the ALU. Note that the R register given
by rB must always be written when A bypass is used.

100ut « RegA LRot8, Reg « Reg + 1, c1;
rhReg « Reg LRot12, Reg « ~Reg, XDisp, ct;-
STK « RegA, rhReg « RegA LRot0, Reg « Reg + 1, ct;

5. An arbitrary 16 bit rotate takes 3 cycles (plus 1 to specify it). This example uses 2 R registers
and assumes the shift count is in RH. :

1 «rhReg, XDisp, ct;

T « LRot1 R, DISP4[Rot],) c2;
Rot: GOTOIShifto], c3, at[0,10,Rot};
: R « T, GOTO[Shift0], . c3, at[1,10,Rot};
R « LRot1 T, GOTO[Shift0], ' ¢3, at{2,10,Rot];
R « RRot1 R, GOTO[Shiftd], c3, at[3,10,Rot];
GOTO[Shift4], ' ¢3, at[4,10,Rot}; .
R « LRot1 R, GOTO[Shift4], c3, at[5,10,Rot};
R « LRot1 T, GOTO[Shift4], ' c3, at[6,10,Rot};
R « RRot1 R, GOTO[Shift8], ¢3, at[7,10,Rot};
- GOTO[Shift8], : ¢3, at{8,10,Rot];
R « LRot1 R, GOTO[Shift8], ¢3, at[9, 10,Rot];
R « LRot1 T, GOTO[Shift8], c3, at[A,10,Rot};
R « RRot1 R, GOTO[Shift12], ¢3, at{B,10,Rot];
GOTO[Shift12], ¢3, at{C,10,Rot];
R « LRot1 R, GOTO[Shift12], ¢3, at[D,10,Rot];
R « LRot1 T, GOTO[Shift12], ¢3, at[E,10,Rot};
R « RRot1 R, GOTO(Shifto], c3, at[F,10,Rot]; .
Shift0: GOTO[Donel], . ct;
Shift4: R ¢« R LRot4, GOTO[Done], c1;
Shifts: R « R LRot8, GOTO[Dane]}, s ’ ct;

Shift12: R « R LRot12, GOTO([Done}, ct;

C. Link Registers & Subroutines

Link registers, besides being used for subroutines, can be used to store’ 4-bits of state information
which can be branched on later. Constants or branch condition bits can be stored in Link registers.
Later, current branch conditions can be simultaneously OR’d with the saved statc bits. "pRetn"
acts like a dispatch/branch (DispBr) and "pCalln" is used to load a link register.When either a
"pRetn" or "pCalln” is specified, the following instruction must be constrained in some way.

Address bits of the following instruction are indicated by "TA.n", where n varies from 0 to 11 ("IA"
stands for "instruction address"). "NIA" ("next instruction address") is the 12-bit quantity which
addresses the control store -- while instruction "n" is executing, “n+1" is being accessed from the
control store. "INIA" refers to the contents of the 12-bit microinstruction field. In the CP, "inia”
is OR’d with the currently specified - dispatch/branch bits to form "NIA.”

1. Link registers are loaded from the low 4 bits of NIA--the control store address which is currently
being used to fetch the next microinstruction. Notationally, the instruction after an "L1«" must be
constrained such that its low 4 bits equal the constant to be loaded into the Link register. In
addition, 1A.7 of the next instruction must be 0 (MASS does this allocation). "Ln«" is equivalent
to "pCalln". The "at" is NOT required.

Set[FlagBB, 6);

L1 « FlagBB, {loads a8 into Link1} ct;
Noop, ’ ’ * ¢2, at[6,10);

2. If the microinstruction before the "pCalln" specifies a branch, dispatch or "pRetn"”, then the
.. specified bits will be OR’d into the value stored into the link register. The "at" is NOT required.

[] « Reg xor RegA, NegBr, . cl;
pCall5, BRANCH[Pos, Neg], {bit 3 of Link5 « {F negative THEN 1 ELSE 0} ¢2;
Noop, c3, at{0,2];

3. "LnDisp" is used to dispatch on the value of link register "n" and is equivalent to "pRetn".
Branch or dispatches can be simultaneously specified. The instruction after a "pRetn" must be
constrained so that the "BRANCH", "DISPn" or "RET" has the desired affect. In addition, IA.7 of
the next instruction must be 1 (MASS does this allogation).

The following example dispatches on "(0,,0,,Ureg.8,,Urcg.15) OR Link3" and places the result in
Link2: '

[] « Ureg, L3Disp, XLDisp, ct;
pCall2, DISP4[Table],) c2;

4. Each subroutine has an associated table of 16 possible return locations. On exit, the subroutine
_uses a link register (specific to the subroutine) to dispatch into the rcturn table. Thus a subroutine
usually only has 16 possible return locations (usually implying 16 possible call locations). Each
location of the rcturn table also has ia.7 sct to 1 since the table is preceded by a pRetn. Similarly,
cach location of the call table has IA.7 sct to O since cach "CALL" is preceded by a "pCalln”.
Thus, the "pCalln" can not immediately precede a return point since [A.7 can not be resolved. (Sce
example below). It is possible to have a "CALL" on a return point if RH registers are used instead
of Link registers for subroutines (Sge C.6).

11

pCail7, {Link7 loaded before call point}
Noop, :
Noop,
CALL[Sub],
ReturnA: Noop, {return point0}

pCali7,
CALL{Sub],
ReturnB: Noop, {return point 1}

pCail7, CALL[Sub}, {only 1 call to Sub can be of this form}

ReturnC: Noop, {return point 2}
{The following type of call IS NOT POSSIBLE:
- pCall7, :

ReturnC: CALL[Sub], {call and return point}
Sub: Noop,

pRet7,

RET[ReturnA],
{Sub’s return dispatch table is

0: ReturnA

1: ReturnB

2: ReturnC}

5. Since condition bits can be simultancously specified with a "pRet",
return points. The same is true of "pCall” so conditional entry poi
significant bit of the return address is not masked, condition
returns (since the condition bits are saved in the Link register).

6. RH registers can also be used for subroutine calling. This
loss address constraints: The call points don’t need to be "at’
IAT=1

rhRet « 0,
Noop,
Noop,
CALL[Sub],
ReturnA: Noop, {return point0}

rhRet « 1,
CALL[Sub],
ReturnB: Noap, {return point 1}

rhRet « 2, CALL[Sub],
ReturnC: Noop, {return point 2}

Sub: Noop,

{1 « rhRet, XDisp,
RET[ReturnA],

{Sub’'s return dispatch table is
0: ReturnA
1: ReturnB
2: ReturnC}

c2;
c3, at{0,10};
ct;

c2;
¢2, at[0,10,ReturnA};

N1 H
c2, atf1,10];

¢2, at[1,10,ReturnA};
c2;
2, at[2,10,ReturnA};

c2;
¢2, atfx,10,ReturnA};}

¢3, at[2,10);

c3;
cl;

there can be conditional
are possible.
lls always imply conditioned

format is easier to usc since there are
* and return addresses need not have

c2;
c3;
ct;

c2;
¢2, at[0,10,ReturnA};

ct;
c2;
c2, at[1,10,ReturnAl;

c2;
c2, at[2,10,ReturnA];

If the least

12

7. By using RH registers more than 16 return points can be accomodated through multiple return-
dispatch tables. Two tables imply 32 call/return locations.

Sub: Noop, c3;
[1 « rhRet, XRefBr, ’ c2;
[] « rhRet, XDisp, BRANCH[Table1, Table2], c3;
Tablet: RET[ReturnA]}, c1, at{0,2,Table2};

Table2: RET[ReturnQ], _ : c1, at{1,2,Table1];

13

D. SU Registers

The Stack-U registers (abbreviated "SU") are addressed implicitly by the fS field. The "Cin" field
determines whether SU will be read or written. The SU addressing mode and Cin field only effect
the SU registers if the "EnSU" (Enable SU) field is 1.

1. When writing SU, Cin must be 1. If SU is being written via the A bypass, ALU arithmetic
must assume a Cin of 1. Similarly, if SU is becing placed on the X bus only, Cin must be 0.

RHreg « Ureg, Reg « Reg + RegA, . 3
Ureg « RegA,Reg « Reg + 1, cl;

2. If fS.2 is 0, the SU address comes from the stack pointer (stackP) The fZ ﬁeld is free to. be
interpreted as either fZNorm or a Nibble.

STK « RegA, Reg « RegA + OFF + 1, ’ c3;
Reg « STK, rhReg « RegA LRot0, XLDisp, ct;

3. If f8.2 is 1, the SU address is rA,,fZ. Since the aS value which combines a U with an R register
is "D,A" and since rA is also used to specify the high four U address bits, a given R register can
only be combined (in onc statement) with U registers which are in the block of 16 given by the
" value of the R register. If A bypass is used in a statement which uses a U register, the same
restriction is true. Statements which only rcad or write U registers are not affected.

Reg « Ureg; S » T c3;
Reg « Ureg xor RegA {RegA Ureg|0- 3]} cl;
Ureg « RegA, Reg « MD, {RegA = Ureg[0-3]} ct;

4. If £S.2 is 1 and fZ of the previous instruction was "AltUaddr", then the SU address is rA,,Y[12
15]. Here Y[12 15] is for the previous instruction (the same one which contained the AltUaddr).
This U register indexing mode can be used to efficiently load a block of 16 U registers from
memory (such as from an IOCB). The individual U registers can be used later, one at a time. The
following example assumes the 16 words in memory are hex aligned (rAddr is 0 mod 16).

MASS ‘expects a register of type UY, where the 4-bit register number refercnces the block of 16.
"AltUaddr” can not occur in ¢3, and a UY register should.not be used in cl--the addressing mode
can’t be used across clicks.

RegDef{Ublock, UY, OE];

Cont; MAR « [rhAddr, rAddr}, rAddr « rAddr + 1, ct;
[] « ~0 and rAddr, AltUaddr, NibCarryBr {tests for 0 nibble}, c2;
Ublock ¢« rData, rData « MD, BRANCH([Cont, Exit], c3;

5. The Alternate U addressing mode can be used with IOXIn (but not fZNorm or Nibble).

[} « <Uaddress>, AltUaddr, : c2;
Ublock « rData, [] « RH, XDisp, c3;

14

E. Mesa Stack

1. For the PrincOps stack, the stackP equals the number of words on the stack. Thus, the stackP=0
for an empty stack, and stackP=8 for a full stack. Also in the PrincOps stack, the stackP points
onc above the top of stack, thus a PrincOps Pop must decrement the stackP & return the top of
stack and a PrincOps push must write first, then increment the stackP.

"In the Dandelion, the top of stack is kept in TOS and TopOfStack-1 is kept on the top of the stack
“in the U register file (STK). The stackP always points at TOS-1 in the STK. Thus, to pop STK
one moves STK[stackP] to TOS and decrements the stackP, and to push one increments the stackP
and then moves TOS to STK[stackP]. In order to keep the values of stackP identical for the two
Stack representations, PrincOps stack locations 1-8 should be mapped into -U locations 2-9. For
example, If the PrincOps stack has onc entry, then TOS is full, stackP=1, and (with a stack push)
TOS could be saved in STK[2]. If the stack is empty, then TOS is empty, stackP=0, and (with a
stack push) TOS could be saved in STK[L].

Figure 4 shows the stack from empty to overflowing.

U[9] is necessary if one assumes one can always save TOS into STK, ie., if the stack is full
(stackP=8) and we save TOS, the place it will go is U[9]. For example, if JEQn is executed on a
full stack, then U[9] is necessary (This would nof be stack overflow). If a Mesa Push is tried on a
full t§ltaacl)(, the write into U[9] would occur before it could be stopped (This would be a stack
- overflow). - . .

Since stackP=8 & Push does not define stack overflow, we define overflow to be stackP=9 and
overflow. This implies that whenever a true Mesa Stack Push is desired, the stackP must be
incremented twice and decremented once. The idea is that stackP can always be incremented once
(to save TOS into STK) without fear of overflow,. but if we are truly putting one morc word on the
Stack, we must increment it once more. '

Stack underflow occurs when stackP=0 and a Pop is attempted.

The maximum sized Mesa stack is 14 words (overflow at stackP=15 and Push, underflow at
stackP=0 and Pop).

If a stack crror occurs, one additional emulator click beyond the one which erred can execute before
the emulator begins cxecuting control store location 0 in cl.

2. To ameliorate checking for stack overflow or underflow, the pop function ficlds have becn
asymmetrically encoded. The following tables show the allocation of pops and pushs among the
function fields and their effect on the stackP and the StackErrProm when multiple pops and pushs
are spccified in the same microinstruction.

X Y z
push push push
pop pop
functions stackP Check For
pop -1 underflow
push +1 overflow
fXpop, push 0 underflow (simulates a Pop)
push, fZpop 0 overflow (simulates a Push)
fXpop, fZpop -1 underflow (simulates a Pop-Pop)

fXpop, Zpop, push 0 underflow (simulates a Pop-Pop)

15

3. In general, the previously executed Mesa instruction may complete executing without saving
TOS into STK. Therefore each Mesa instruction implementation must, if neccessary, save TOS into
STK (at STK]stackP+1]) before it modifies TOS. According to PrincOps, if TOS is an argument to
the bytecode, TOS should be saved away (so it can be recovered by a Mesa PUSH) if either the

Mesa bytecode does not change the contents of the Stack or does not change the value of the stack -

pointer. SLn and JEQn are two cxamples.

Note that as a part of normal Stack maintenance, TOS must be saved mto STK if the Mesa opcode
is merely pushing data onto the Stack.

16

-
e}
@

Y

TOS

OuNWHTDNRO

O=PRNWAOONDO

Empty Stack

——

Full Stack

I —

Prhkbke

1 word Stack

coTos

C=NWHODNRO

V|

Saving TOS into full STK

(no overflow)

f (o7 T ——

I ~Y -25Y =% Dad o3 =2

CO=PNWHOONX

Figure 4. Mesa Stack examples

8Jan79
MesaStack.sil

2 word Stack

Tos]

CANOHPNONDE

TOS

© == 10

O=NLWLPOONDO

Stack Overflow

Ch]

zmwnaﬁno:

17

18

F. Mesa Instruction Buffer

The instruction buffer holds a maximum of 3 bytes--the minimum number necessary to complete a
Mesa instruction. Whenever a Mesa opcode compietes and there are not 3 bytes in the buffer, a
microcode (rap is caused which results in refilling of the buffer. The so-called "refill" microcode
executes in one click if 2 more bytes are needed and in two clicks if 4 are needed. The Refill code
also dispatches on the front byte of the buffer (so if 4 bytes were fetched, 3 are retained).

The instruction buffer has four possible states as given by the 2-bit "ibPtr" register:

state ibPtr
3 bytes (full) 0
2 bytes 1
1 byte -3
0 bytes (cmpty) 2

Thus the ibPtr counts 0, 1, 3, 2, 2, 2, ...

"«ib", "IBDisp"”, and "AlwaysIBDisp" cause the ibPtr to "increment” by 1. However, "«ibNA",
"«ibHigh", and " «ibLow" do not change the ibPtr. "IB«" causes ibPtr to be set to 1 if it was 2
and otherwise sets it to 0. "IBPtr«0" sets it to 1 and "IBPtre1" sets it to 3 (See Figure 5).

As shown below, the 3 bytes of the buffer are labeled IB[0], IB[1], and ibFront. IB[0],IB[1] is
parallel-loaded by a word from the X-bus when fY="IB«". ibFront is loaded if fY="1BDisp",
"AlwaysIBDisp", "«ib" or "IB«". "IB«" only loads ibFront if the old ibPtr=2. When it is
loaded, its value comes from IB[0] if the old ibPtr.l was 0 and from IB[1]} if the old ibPtr.1 was 1.
When ibFront is loaded by fZ="IBPtr«n", its value comes from IB[n].

18{0] 18[1)] 1B{0] 18(1] 18{0} iB[1] 18[o] 18[1]
(777 V77 ——"////// i [1] C] []
V777772 VI - Y
ibFront ibFront ibFront ibFront
ibPtr=0 bPr=1 _ ibPtr=3 ibPtr=2

Figure 6a: Mesa Instruction Buffer States

"«ib" and "«ibNA" cause ibFront to be placed onto the X-bus, while " «ibHigh" puts the high 4
bits, and "<«ibLow" the low 4 bits, of ibFront onto the X-bus.

MAR « [rhL, L +ib}, ') ci;
rhT « ibLow + 1, : c2;

"IBDisp"” causes a 256-way dispatch based on the value of ibFront. It can only occur in c2 (since
only 4 bits of branch/dispatch bits are saved across clicks). The high 4 bits of ibFront replace
INIA[4-7], while the low 4 bits of ibFront are OR’d with INIA[8-11]. INIA[0-3] are unaffected, so
there are 16 possible 256-way dispatch tables which can be used. The macro "DISPNI" is
cquivalent to "GOTO".

" IBDisp, ST 2
DISPNI[OpTable], c3;

If IBDisp is executed and ibPtr does not equal 0 (full), a microcode trap is caused to location 400°x
for a buffer-empty refill or-500’x for a buffer-not-empty refill. If there is a pending Mesa interrupt
request (MInt=1), a microcode trap is caused to location 600’x or 700°’x. If either trap occurs the
buffer state does not change. "«ib", "IB«", "IBPtr«0", and "IBPtr«1" do not cause an instruction
-buffer trap. The Error microcode trap to location O has priority over the buffer traps.

"AlwaysIBDisp" will never trap--it ignores a pending Mesa interrupt request and a non-full buffer.
AlwaysIBDisp is encoded by fY="IBDisp" and fZ="IBPtr«1". If the microinstruction before
either an IBDisp or AlwaysIBDisp is a "MAR<«" and a PageCross occurs, the IBDisp or
AlwaysIBDisp will be canceled and the state of the buffer will remain unchanged.

19

c2 ’ c3

c2 c3 c1
" IB«MD Always|BDisp IB¢MD
Empty [] I]] W | 1 BSSS 7 |] 777777 Ny
(]
— VI Wil ARANRN
‘ I
AlwaysIBDisp 1B+MD
Lbyte [] L] L] [) I st \\A\\\Y
remainin;) N
Refll 7771777 — -z
. /A
’ -AlwaysIBDisp 1B«MD
3c‘g;ging I Sy L—&ﬁ’] 777777 B
Refill I, | ‘ AW
/111171
IB«MD 1BPtr«0Q AlwaysiBDisp IB«MD
Jump to bPr=" 7777777 SN \\\\\ [| 77777777 SSSASY
venme ATTIOY
a ' : Y4
1B+MD IBPtr1 AlwaysiBDisp IB#MD
Jump to bPr=" 7777777 Sy | | 1 C 1] {ARARANY
e 5 %Jﬁzza
ANARNANNY
. 1BDisp
FuliBDisy | ZZZZ7 S \\\\‘
INARARRN .
ANNRNRN\Y
«ib |BDisp
Full, «ib, 777777 N \\\\w 7 SO
IBDisp AANAAAAV : V177
: GOTO[2 bytes Refill]
) _«ib «ib 1BDisp
Full.«ib, 7777 BN \\\\V [__Elﬁ_j [] []
<ib.[BDisp AN ANNANRVY
) ') GOTO[! byte Refill]
cib «ib ' «ib IBDisp
Full, «ib, 202077 \\\\\ \\\\V [] |]] [] I)|
T Wil R :f:\L— —
GOTO[Empty Refill]

1171777

Figure 7. Mesa Instruction Buffer Sequences

9 Feb 80

ib.sil

G. Memory

The memory address register is 18 bits wide (expandable to 20 bits) for real addresses and 22 bits
for virtual addresses (expandable to 24). Using 16K chips, the memory size is 192K, using 64K
chips it is 768K.

1. "MAR «[rhReg, <arithPhrase>]" implies a real address reference. "MAR «" can only occur in
cl. The first argument specifies which RH register holds the high 2 address bits. The B field is
-set to the value of rhReg. Notationally, <arithPhrase> is anything that can occur on the right side
of an arithmetic statcment. ‘

An RH register should not be loaded simultancously with a MAR«.

The memory data register can only be loaded in c2. A "MDR«" has no cffect unless the previous
cl contained a MAR«. MDR can be loaded by any register, including SU and [OIn.

Data is only delivered from the memory in ¢3. A "«MD" has no cffect unless the previous cl

~executed a MAR «. Besides R and RH registers, MD can be loaded into IOQut or the Instruction -

Buffer or be the source of a branch/dispatch.

If a memory locatlon 1s both read and written in the same click, the old contents of the Iocauon is
returned:

MAR « [rhReg, Reg +0], v ‘ ol
MDR « RegB, . L c2;
RegB - MD, c3;

2. "MAR«" has 3 important side effects:

(a) "MAR«" forces aS="0,3" and aF="RorS" for the high half of the ALU. This causes the
output of the high half of the ALU (bits 0-7) to cqual the contents of the R register given by the rB
field. Thus, if A bypass is not used, the upper 10 bits of the memory address (the page address)
come from the RH-R pair given by the B field, while the lower 8 bits (the displacement within a
page) come from the source defined by <arithPhrase).

MAR ¢« [rhReg, RegA +0], : cl;

causes
YHbus ¢ rhReg, -
Ybusf0-7] « Reg[0-7], {NOT RegA[0-7]}
Ybus[8-15] « RegA[8-15].

If A bypass is used, the Y bus (and MAR) receive the complete R register given by the rA field,
but the ALU still delivers rB in the high half and the high 2 bits of address still come from RH[rB].
Thus,

MAR « [rhReg, RegA], Reg « RegA +1, {Reg[0-7] unchanged} ct;

causes
YHbus « rhReg,
Ybus[0-7] « RegA[0-7], {NOT RegA+1}
Ybus[8-15] « RcgA[8-15] + 1.

21

A consequence of forcing aS="0,B" and aF="RorS" in the high half of the ALU is that page
carries do notr propagate -into the high half.

MAR « Reg « [rhReg, Reg +OF +1], {Reg[0-7] unchanged} ct;-

:(b) "MAR«" automatically specifies a PageCross branch (See Sec. A). Thus, a change in the flow

of control will occur if a page boundary crossing has been indicated by the PageCross branch. This
usually implies that a rcmapping of the real address is necessary.

The P'lgeCross branch occurs in INIA.10 (Not the usual INIA.11 of 2- -way branches) Thus, the
"BRANCH[LabelX, LabelY, 1]" form must be -used after a "MARe".

MAR ¢ [rhReg, Reg +0F +1], o ct;
BRANCH[Continue, ReMap, 1], c2;
Continus: Reg « MD, . c3;
ReMap: Noop, c3;

' The implied PageCross branch can be canceled by a "CANCELBR[Label, 2]".

MAR « [rhCnt, RegA], Cnt « Cnt + 1, ct;
CANCELBR[Cont, 2], : c2:
Cont: Reg « MD xor. Reg. : . c3;

Since the 2901 produces carries on logxcal operations (believe it or not), you must exphmtly say
"MAR « [rh, R+0]" (where "MAR « [rh, R]" was desired) in order to prevent a PageCross

.- branch.. In general, if MASS doesn’t sec a "Reg+0", then the "MAR«" must be followed by -

either a BRANCH, DISPn, or a CANCELBR. If "Cm«pch" is present with "MAR«", then any
"MAR«" is an implied branch.

MAR « [rhReg, RegA + 0], ct1;
Noop, {CANCELRBR not required here} c2;

Since the automatic PageCross branch occurs in INIA.10, other branch conditions can be
simultaneously specifed.

MAR « Reg « [rhReg, Reg + 1], ZeraBr, ct;
DISP2[Table], c2;

Table: GOTO[Cont], {hereif no PgCross, Cnt#0} c3, at[0,4,Table}];
GOTO[Done], {hereif no PgCross, Cnt=0} c3, at[1,4,Table};
GOTO[ReMap], {here if PgCross, Cnt# 0} c3, at{2,4,Table];
GOTO[Done], {hereif PgCross, Cnt=0} c3, at[3,4,Table};

(c) If a PageCross occurs in a "MAR «", then a following "MDR «" or "IBDisp” is canccled. This
prevents writing into the wrong memory page (if A bypass was not used in the MAR«) or
dispatching on the next Mesa instruction if a page crossing has been indicated.

MAR « Reg « [rhReg, Reg + 1],
MDR « RegA, BRANCH[Cont, ReMap, 1], {MDR« canceled if we go to ReMap} c2;

3. (@) A memory address can be incremented cither before or after being sent to MAR.

MAR « Reg « {rhReg, Reg + 1],) 3 H
MAR « [rhReg, Reg}, Reg « Reg + 1, ct;

(b) The automatic PageCross branch can be used to indicate the end of a count sequence, where the
initial Cnt equals 256-count. rhCnt is used for bank select:

MAR « [rhCnt, Reg], Cnt « Cnt +1, ct;

22

H. The Map

The Map is a 16K linear table which is indexed by a 14-bit virtual. page number and contains a 10-
bit real page number (expandable to 12 bits) and some flags pertaining to the virtual page. The
Map is located immediately above the low 64K dxsplay bank, real addrcsses 10000’x to 13FFF’x.
Figure 6 illustrates the mapping process.

1. References to the Map are notationally indicated by "Map«"”. Either the fX or fZ field must be
set to "MapRef’. "Map«" causes NO side affects (such as those caused by "MAR«").

"Map+«" supplics to the memory system a 22-bit virtual address in YH,,Y An RH register, as
addressed by field B, holds the high 6 bits of the virtual address and an R reglster typically
supplies the low 16 bits. The upper .14 bits of this address. are used to index into the Map.

Map « [rhReg, Reg], - cl;
Map « Reg « [rhReg, Reg +OF + 1], ct;
Map « [rhReg, Reg], Reg « Reg + 1, - ct;

2. If "MapRef" is specified during a "MAR«", all of MAR «’s side affects occur (see above) and
the MapRef corrcctly causes a read from the Map. If a "MDR«" or "«MD" is executed without a
preceeding "Map«", the "MDRe«" or "«MD" have no effect.

3. A "Mape" will cause a microcode trap to location 0 (and set the EKErr register) in the
Emulator if either bits 0 or 1 of an Emulator virtual address are non-zero. (There is no trap for IO
microcode). The flow of normal Mesa byte code exccution stops and a Mesa Xfer occurs.

If a virtual address error occurs, one additional emulator click beyond the one which erred can
exccute before the emulator begins executing location 0 in cl. Since the Mesa PC and stackP can
change in this additional click, they can not be backed up to their original values. The memory
address is also lost

23

YH hus Y bus .
2 7 0 7 : 15
L J
Y
virtualPage[0-13]
Map
13FFF
© 10000
Flags . location within page
DP = Dirty & Present . F) (not mapped)
W = Write protect ol
D = Dirty B
RP = Referenced & Present
realPage[0-11]
J .
RH (£ R register Y
4) 7 0 7 15
Map Entry Format:
| realPage[4-11] [dpjw jd | |realPage[0-3] |
0 7 15

Figure 5. Dandclion Map Reference

9Feb 80
MapRef.sil

24

4, The following description is contained in [IriskKWorkstation>ExampleMap.mc.

{A map entry has the following format:

[__rp[a-11] dplwidlrp] rp[0-3] |
0 8 910 11 .
where,)))) :
: rp(0-11] [12-15},,[0-7] real page number. Implies max memory addr of 20 bits => 1,048,576 words
dp - .8 Dirty & Present. - - . : :
w 9 Write Protected.
d 10 Dirty

m 1 Referenced & Present

The map flags have the following interpretation::

w D R=RP bP Present

0 0 0 0 1 Untouched, unprotected page
0 0 1 0 1 Unwritten, read page

o . 1 0 1 1 {reserved for software}

0 1 1 1 1 Written page

1 0 0 0 1 Clean, protected page

1 0 1 0 1 Protected, read page

1 1 0 0 -0 Vacant page

1. 1 1 -0 -1 {reserved for software}

PrincOps defines vacant to be W,,D,,R = 6. (Version 1.0 has 6 or 7). Note that Referenced is equivalent to
Referenced and Present. .

~In addition to the three standard bits, W, D, and RP, the bit DP is mair;tained by the microcode. DP.is true if
the page is Dirty and Present.

These bits are utilized as follows: When the microcode is doing a MapRef with the intent of reading a word
from the page it branches on the RP bit (by using "XRefBr"). If RP is 0, then either the page has not been
referenced yet or it is not present; in either case more work must be done. If RP is 1, the microcode can
proceed assuming no map maintenance of any kind .is required.

If RP was 0, then the microcode does a 4-way dispatch on W, D and acts according to the following table:

action .

set RP and do a real memory read

set RP and do a real memory read (changes flags=2 to flags=3)
set RP and do a real memory read

Page Fault

~-oog
_so_nolc

Similarly, when the microcode is referencing the Map with the intent of writing a word into the page it branches
on the DP bit (by using "XDirtyDisp" = "XLDisp". Note that the branch occurs in INIA.10). If DP is 0, then
either the page has not been written yet, or it is write protected, or it is not present; in any case more work
must be done. If DP is 1, the microcode can proceed assuming no map maintenance of any kind is required.

If DP was 0, then the microcode does a 4-way dispatch on W, D and acts accdrding to the following table:

action

set D and DP and do a real memory write
{Control shouldn't reach here}

Write Protect Fault

Page Fault

~o=oo

10 microcode can quickly check whether the page is present and the flags are corrre;'.t by using XDirtyDisp or
XRefBr. ‘

"MAR«"'s feature of forcing "0 or B" in the high half of the ALU is used to combine the real page number from
the Map with the displacement into the page given by the low byte of the virtual address.

25

Mesa Emulétor Note: For PageFaults and WriteProtectFaults, the Mesa PC and the stackP must be restored to
what they were at the begining of the Mesa instruction. The STK (and TOS), along with the rest of the Mesa
machine state, must be restored if it changed.

Example 1 assumes we have been given a virtual address in rhV,,V and we want to map it into a real address
and do a read. Example 2 is a possible implementation of the W1 opcode: a virtual. write within an MDS.
Example 2 uses a subroutine to update the map entry.

{Example 1:
Memory Read given virtual address in thV,V. R holds real address and data from memory.}

Start:

Map « [rhV, V],
Noop,
R « MD, thR « MD, XRefBr,

c1; {rA, fY, X or fZ unused}
c2'
c3; {rA, fZ unused}

{T he MAR« causes the ALU to output R[O- 7]..V[8 15] onto the'Y bus, where 'R[0-7] holds the low byte of the
real page number and V[8-15] holds the location in the page from the odriginal virtual address. The high 4 real
page bits are put onto the YH bus from rhR.}
RedoR: MAR « [rhR, V], BRANCH[MapUpDate, MapOK], ct1; {rA, X, fY, fZ unused}
MapOK: Noop, c2;

R « MD, GOTO[ProcessData], c3; {rA, X, Y, fZ unused}

{Either this is the first time we have referenced the page, or it is mapped out}

MapUpDate: Noop, . R H
{l « LRot12 R, XDisp, c3;
Map « [rhV, V], DISP4[FixRFlags, 8], cl;

c2, at[8,10,FixRFlags};

c2, at[0A,10,FixRFlags];
¢2, at[0C,10,FixRFlags];
c2, at[0&,10,FixRFlags];

FixRFlags: MDR « R or 10, GOTO[ReRead], {Set RP}
MDR « R or 10, GOTO[ReRead], {Set RP}
MDR « R or 10, GOTO[ReRead], {Set RP}
GOTO[RestoreStateAndPageFault],

{Set a pending branch so the BRANCH at RedoRead goes to MapOK} .
ReRead: 0 « 0, ZeroBr, GOTO[{RedoR], C ey

{Example 2: Mesa Opcode W1
Memory Write in MDS. Q holds virtual address. Subroutine to update map: LinkO holds the return address and
Link1 encodes the necessary state fixup.}

W1 Map « Q « [rhMDS, TOS + 1], L1 ¢ n, ct;

T « STK, pop, pCallo, * ¢2, at[n,10];

R « MD, rhR « MD, XDirtyDisp, ¢3, at[0,10];
RedoW: MAR « [rhR, Q + 0], {CALL}BRANCH[WMapUD, WMapOK, 1], ¢, at[o, RedoW];
WMapOK: MDR « TOS, TOS « T, c2;

PC « PC +0, Cin+pc16, DISPNI{@Noop], c3;

{Subroutine to do map updates for writes.}

WMapUD: Noop, ' c2;
: [} « LRot12 R, XDisp, . c3;
Map « [rhMDS, Q}, L1Disp, DISP4[FixWFlags, 1], ct;

FixWFlags: MDR « R or 0A0, pRet0, CANCELBR[ReWrite, OF],
MDR « R or 0AQ, pRet0, CANCELBR[ReWrite, OF],
T « sWriteProtect, DISP4[WTrap],
T « sPageFault, DISP4[WTrap},.

c2, at{0,10,x];
c2, at[2,10,x];
¢2, at[4,10,x];
¢c2, at[6,10,x];

ReWrite: 0 « 2, XDisp, RET{RedoW], c3;

WTrap: push, GOTO[FSadeIéaﬂlf], ' ¢3, at{n,10,WTrap];

26

I. Bus Sinks

Destination
MAR«
MDR«
STKe
stackP«
Ue

1B+

RHe«

KOData+
XOData«

- POData«
IOPOData¢« *
DCHiIFifo«
DBordere

KCtle
XCtle
MCti«
IOPCtl«
DCti«
PCtle

J. Bus Sources’

XK LHKN, L LHRKKK XX AL <<

Source Bus
YR,.Y

27

Memory Address Register

Memory Data Register

Stack (SU reg addr = 0,,stackP) (en8SU=1,Cin=1,{5.2=0)
Stack Pointer

U register (SU reg addr = fA,,fZ) (enSU 1,Cin=1,8.2=1)
Mesa Instruction Buffer

RH registers

Rigid Disk Qutput Data reg
Xerox Wire Output Data reg

- Printer Qutput Data reg
* 1OP Qutput Data reg

Display Qutput Data Control Fifo
Display Output Data horder register

Rigid Disk Control reg
Xerox Wire Control reg
Memory Control reg
IOP Control reg
Display Control reg
Printer Control reg

Note that Xbus bits [0-7] are set to zero when Nibble, Byte, or IOXIn values 8 through OF are

specified.

Source

« Y LRoto
« Y LRot4
« Y LRot8
«YLRot12

fZ
Y, fZ

«MD
«STK
«U
«RH

«ib
«ibNA
«ibLow
«ibHigh

+«KlData
«XIData
+«lOPIData

«ErriBSkP -
«~KStatus
«XStatus
«PStatus
+MStatus
«|OPStatus

HKRHINMHKNK XXX XXXX XXXX XX XXXX

Destination Bus

Left Rotate Y by O
Left Rotate Y by 4
Left Rotate Y by 8
Left Rotate Y by 12

0-OF 4-bit constants
0-OFF 8-bit constants

Memory Data

Stack (SU regs addr = 0,,stackP) (implies enSU=1, Cin=0,{S.2=0)
U register (SU regs addr = fA,,fZ) (impliesenSU =1, Cin=0, {8.2= 1)
RH registers

“Instruction Buffer

Instruction Buffer (doesn t advance 1BPtr)
ib[4-7}
ib[0-3]}

Rigid Disk Input Data
Xerox Wire Input Data
I0OP Input Data

EmuErrAB,,|IBPtr,,stackP

Rigid Disk Status

Xerox Wire Status

Printer Status

Memory Status (Syndrome, SE, DE, ErrLog)
I0OP Status reg

K. Miscellaneous Functions

Cinepci6
SE«pc16
Cin«0
Cin « 1
SE €0
- SE «1
. IBDisp

MesalntRq
1BPtr«0
1BPtre1

- AlwaysIBDisp
trapping)
CirintErr
EnterKern
ExitKern
Refresh
push
pop
CirDPRq
ClrKFlags
CIrlOPRqg
CIrXRq
Noop

Carryinto ALU or into Shift Ends is pc16
Carry in to ALU or into Shift Ends is pc16
Carry into ALU orinto Shift Ends.is 0
Carry in to ALU or into Shift Ends is1
Carry in to ALU or into Shift Ends isO
Carryiin to ALU or into Shift Ends is1

Causes a'microcode trap to 600x or 700x if Mesalnt pending, .

trap to 400x or 500x if buffer not full.
Sets Mesa Interrupt Request flag
ibFront « 1B[0]
ibFront « IB[1] (With IBDisp, changes to AlwaysiBDisp)

" Encoded by fY = IBDisp & fZ = IBPtr<1 (prevents IBDisp from

Clear error bits & interrupt req bit
Breakpoint - go to Kernel task

Leave Kernel task and commence regular task scheduling
Memory refresh(only in cycle1, Ignored in ¢2 or ¢3)
Increment stackP by 1 (trap to loc. 0 if overflow)
Decrement stackP by 1 (trap to loc. 0 if underflow)
Reset Display and Printer Requests

Reset Rigid Disk Flags

Reset IOP Request

Reset Xerox Wire Request

assure noop F fields

28

L. Microcode Conventions:

The file [IrisikKWorkstation>mc>form.dm embodies the 'fol]owing suggested conventions.

1. All microcode should be in either font Helvetica8 or Helvetica 10. (The [Hardcopy] section of
user.cm should be updated to cause Empress to use this font instead of Gacha8. Returns should be
used for spacing since Empress doesn’t ’know about paragraph looks and will otherwise squish the
paragraphs together. Empress will also change the tabs, but the source is still readable.)

2. The tab stops for Helvetica8 microcode are 140 pt., 160 pt., and 420 pt. "The stop at 160 keeps
lines with long labels from jumping over to the comment ficld when Bravo is not in hardcopy

mode. (160-140 is less than the length of most statements.) In form.mc, the tab stops for comments

are 140, 160, 180, 200, and 420 pts.)
3. The top of the microcode file should have at least the -following information;

{File name: <Name>.mc¢
Description: <what file contains>,
Author: <being>, ’
Created: <date>, -

Last Edited: <date & time>}

4. The general format of a line is:

<Label:> ‘ <Arrow claused, <functions>, iD.ispBr), iCaII/Ret), <GOTOfield>, {cycle>, <ab;

There should always be one space after a comma. Those statemcnts which are executed together
within the same click should be preceded and followed by a blank line. The <cycle> and <at>

clauses should be located after the 420 pt. tab. It also helps to locate the last comma at the 420
stop. For example:

TOS « TOS + 1, . c3;
Shift: * [l « ~17 and TOS . c1;
PC « PC +0, Cin¢pc16, pCall1 €2
TT « STK{TT « v} . c3;
TOS « T LRott, DISP4[MaskTbl], . ct1;

5. Comments can be imbedded within a line.

6. MASS generates the required "at” phrases after BRANCH’s, but not for dispatch tables. For

readability, it helps if "at" clauses are explicitly placed to identify their partners when more than

~one line away. For example, the "at” clause of "MulLoop" points to the instruction "MLDEnd",
which then points back to MulLoop.” -

MuiL.oop: 1 « Q, YDisp, . c1, at{0,2,MLDEnd];
TT « TT - 1, ZeroBr, BRANCH[MPlier0, Mplier1, YOdd], c2;
_ MPlier0: T « T, DRShift1, BRANCH[MuiLoop, MLDEnd], ¢3, atf];
MPlier1: T « T + TOS, DRShift1, BRANCH[MulLoop, MLDEnd], c3, atf];
MLDEnd: STK « T {long.high/rem}, pop {point at long.low/quot}, c1, at{t,2,MuiLoop];

7. If names consist of multiple parts, the first letter of cach sub-name should be capitalized. All
names should not be all capitalized. For example: MulLoop, JumpSign, MapOK. "i" should be used
instcad of the capital form "I", which is indistinguishable from 1" (small L) and similar to "1 (one).
Try to avoid a solitary "O" in a name since it looks like a "o" (zero).

29

8. All instances of user names and reserved words must follow the same capitalization, else MASS
will not recognize them. (Searching problems in Bravo are reduced.)

9. U register names should start with the letter "U" or "u", and RH register names with "RH" or
"rh”. For example: Uinterrupt, uTemp, RHrK, rhRtemp. .

10. Arithmetic clauses (i.e., arrow clauses) should have a space before and after the «. The -—

- character can be used for the minus sign instead of -, which is microscopic in size (in all fonts). In
Bravo type-in mode, this minus sign is entered by typing: n Ct-S ESC Look g (see p.57 Bravo
manual). It looks like a B in bravo. For example:

T ¢ ~17 xor T, stackP « 17, ' c2;
TT«TOS - T,) . c3;

11. The allocation and definition of registers used in the complete microcode system are given in
[Iris]< Workstation>Dandelion.df. » '

Dandelion.df should ONLY be accessed via the Librarian Access Tool. Thus, "Mesa Access
checkQutReason/r Dandelion/o" is used to check Dandelion.df out and move it to your disk, and
"Mesa Access Dandelion/i” is used to return it to Iris.

The following files are needed on your disk: RunMesa.run, Mesa.image (or BasicMesa.image), and
[IgorKAlphaTools>Access.bed.

Your usercm should include the following entry:

[Librarian]

Server: Marion

NamePrefix: WorkStation
- NameSuffix: df

[Iris)K Tools>Documentation>Access.press is a one page summary of the Access tool.

30

M. MASS

1. Overview

There are two types of source files. There are macro-and-defs files and there are microcode source
files. The macro-and-defs files have a ".df" extension and microcode files have a ".mc" extension.
“.df* files do not contain microinstructions and are global to an assembly. ".mc" files may have
macros and defs. Intermediate files are produced for each micro-code source file to allow
subscquent partial re-assemblies: ".ml", ".si", and ".eb" files are produced from every ".mc" file.
The ".fb" is the Burdock loadable file of allocated microinstructions. The ".ft" is a human readable
~ form of the ".fb" file. Burdock also reads the MASS produced ".st" symbol table file.

While MASS is running, the cursor is reversed once per statement processed. During the allocation
phase, a square cursor is displayed with the number of enclosed dots incrcasing to six. If errors are
found in the file, MASS pauses with the cursor showing "hit me". As soon as any keyboard
character is struck, MASS returns to the Alto executive (which may continue on to Bravo if the S
macro was previously invoked).

The ".er" status file contains MASS version information and the errors encountered. Along with

‘the complete statement which is in crror, the phrase which caused the error is written into the status

file. MASS actually displays an error message for each possible (and unsuccessful) way to encode
the statement.

2. File Summary

The following files are used (u) or generatéd (g) by MASS in pass 1 or 2.

.mc u MicroCode source

Jdf u macro and Defs source File .

.cb ug Early Binary (output of Pass 1, one per ".mc" file)

.ml ug Label constraint records & Reserves (output of Pass 1, one per ".mc" file)
Si ug Symbol Intermediate (output of Pass 1, one per ".mc¢"” file)

fb ug Final Binary (output of Pass 2)

ft g Final binary Text (output of Pass 2)

st g Symbol Table (output of Pass 2)

er g status-crror (output of Pass 2)

3. Command Line Switches

noswitch usc name for “.mc" input file and ".eb"”, ".ml", & ".si" output files.
/d designates a ".df" file

/0 use name for ".er”, ".fb", ".ft", and ".st" output filés

/2 pass 2 only for this file (it has been previously assembled)

/x satisfy imports from this file & exclude its locations from allocation

K|

4. Sample Assembly Descriptions

MASS regs/d macros/d acode aout/o
Passl:
' reads: regs.df, macros.df, acode.mc

writes: acode.eb, acode.ml, acode.si

Pass2:
reads acode.ml, acode.si.
writes aout.st
allocates acode
reads acode.cb
form final binary of acode
writes aout.fb, aout.ft, aout.er

MASS configla/d sourcel/2 source2 source3/x sourceout/:
Passl: :
© reads: configla.df, source2.mc
writes: source2.ml, source2.eb, source?.si
Pass2:
reads sourcel.ml, sourcel.si
" source2.ml, source2.si
sourcel.fb
writes sourceout.st
allocates sourcel, source2 .
reads sourcel.eb, source2.eb
form final binary of sourcel, source2
writes sourceout.fb, sourccout.ft, sourceout.er

5. MASS Format descriptions:

Comments: All text between squiggly bracket pairs "{" and "}" is comment. The brackets nest, so
they must be properly paired. (This is so sections of code which alrcady contain comments can be
commented out)

Labels & numbers: The case of letters in names and macros is important and must be consistent.
Hexadecimal numbers are assumed, although a decimal number is specified by a trailing ’d and an
octal number by a trailing 'b. Hex numbers which start with A-F must be prefixed by a zero: OF
= 0Fx = 15d = 17.

Source Line Format: A line of source which defines a single microinstruction is a list of clauses
which are terminated by semicolons. Clauses are separated from one another by commas. A clause
is cither a function field name, a macro invocation, or an arrow (arithmetic) clause. A name
followed by a colon is the label of the microinstruction. Microinstructions can have multiple labels.
Spaces arc ignored (and this docs not mean they are significant in variable names). Parcntheses are
used in arithmetic clauses (where they may improve readability but are ignored by MASS) and in
macro definitions. Brackets arc used to denote the argument list to macros (and used in
"MAR«[...]", "Map«[...]", and "[J¢"). ‘

Cycle Numbers: Each source linc must have a cycle number macro: cl, ¢2, ¢3, or ¢*. c* inhibits
wrong cycle warning from MASS. This is primarily used by the Kernel, but can be used in loops
which are not a muitiple of three micro-instructions and short subroutines which don’t contain cycle
constrained opcrations. Such loops must always exit on the same cycle number and should not
contain "MAR«", "MDR«", or "«MD" since thesc depend on exccuting in cycle 1, 2, or 3,
respectively. Burdock can not breakpoint instructions with a c*.

32

Register definition: All registers must be defined before their names are used. The macro
"RegDef" s used to associate a name with a type (R, RH, U or UY) and a register number.

RegDef{Reg, R, 4];
RegDef{Ureg, U, 47];
RegDetfrhReg, RH, 4];
RegDef[Ublock, UY, 4];

Arrow formats: Arrow statements, like all clauses, are isolated by commas. They may have one or
two dcstinations, as in

BeBorA, ‘ ‘et
B«SUe«BorA, . ct;

The right side of an arrow clause (the -source) consists of a single entry, a double entry with an
operator, or a triple entry with two (identical) operators. It is also possible for an entry to have a

qualifying unary operator ("~" or "="). For example: : -
B« ~A, ct;
BeA +1, c1;
BeA+Ba+t, cl;
B« ~AandB, cl;

Constants can be 4 or 8 bits >long.

Note that. a special form must be used for —1:

Reg « OFE, ‘ et
Reg + ~OF xor Reg, cl;
Reg + —85, . 1 H
Reg « ~Reg xor Reg, {used instead of Reg « — 1, or Reg « ~0}, ct

MASS expects the single-bit-shift phrases to precede any arithmetic clauses and 4-bit rotate phrases
(LRotn) to follow the quantity to be rotated. Parenthescs are ignored. - See scctions A.l and A.2.

Reg « LShift1 Reg, ct;
Reg « RShift1 (Reg and OF), . c2;
Reg « LRot1 (Reg +1), c3;
Reg « Reg LRot4, ct;
Reg « (Reg LRot8) or Reg, * c2;
rhReg « (RegA + Reg) LRot12, c3;

Default Labels: A "$" can be used in BRANCH and CANCELBR macros to refer to the location
of thc next statement.

ZeroBr, BRANCH[MapUpDate, $}, ! ct;
CANCELBR[$], : c2:

External variables: The macro "IMPORT" indicates which labels of the ".mc" file have been
- defined elsewhere. The "EXPOR'T" macro specifics labels which other modules will import. When
MASS is assembling a group of files together, called an "assembly unit”, (a combination of “.mc"
and/or ".ml"/".si" files) it is illegal to have the same label defined twice or imported and defined.
I’abels dcfined in IMPORT macros will be assigned valucs from the EXPORT of a previous
assembly unit by using the /x switch on its name.

Macro Definition: A macro is defined by supplying a name for the macro and a text string which
will replace the name. Macros return nothing or a single number or variable (never a pair of
arguments, for instance). Arguments (up to 9) may be supplied in the macro call and are referred
to in the expansion by "#n" for n=0to 9. The "#0" is replaced by the number of arguments in
the. macro call, and #1-9 will be replaced with the appropriate argument (or null if there is none).
Parentheses must be used to enclose arguments containing commas. For cxample:

3

MacroDef[NewMacro, (OldMacro1[# 1], OldMacro2[# 2, # 3])};

Macro Invocation: The invocation of a macro is caused by supplying the macro and optionally up
to nine arguments. Arguments are separated by commas, and-if an argument contains a comma, it
must be enclosed within parentheses. Macro calls can not appear on the left side of arrow clauses,
and only unargumented macros (such as macros defined by Set) can appear on the right side.

If an ".mc" file contains macro definitions, they remain valid . for subsequent ".mc" files which are
part of the same assembly unit.

Reserved Names: None of the function ficld or builtin macro names should be used as user names.
- For example, RH, ib, Q, XStatus, c1, Refresh, xor, and pop are all reserved. Mull and Apass are

(AP]

also reserved names. «" should not be present in user names.

6. Bravo S macro:

The S macro facilitates ping ponging between Bravo and MASS. 1t assumes "standard” file naming
conventions. In particular, corresponding to a "Name.mc" microcode file, there is a "Name.cm"
command file, and errors are placed into a "Name.er" file. A typical "Name.cm” file is:

MASS Dandelion/d Name/o Name

The macro is invoked by "BRAVO/S Name" This causes the ".mc" and ".er" files to be fetched
into bravo. When leaving bravo (and the top file window contains Namc.mc), it is invokcd by
typing "QS<return>”, which causes delction of the old ".er” file, execution of the ".cm" command
file, and rc-entry to bravo via the S entry macro. [Ins](Workstauon)MASS)user cmshce contains
the bravo macros.

7. Conditional Code Generation

The "IfEqual”,"1fGreater”, "IfAndZero" and "SkipTo" macros can be used so that MASS will not
assemble sections of code.- The values of the variables used by the macros can be set on the
command line by phrases of the form "[varName,value]" (no spaces). MASS treats the bracketed
pair as an argument to the "Set" macro.

8. Builtin Macros:

Addlargl, ..., arg9]
Mulfargl, ..., arg9}
Andlargl, ..., arg9]
Orfargl, ..., arg9]

-- adds up to 9 arguments

-- multiplies up to 9 arguments
-- ands up to 9 arguments

-- ors up to 9 arguments

Xorfargl, ..., arg9]
1.Shiftfargl, arg2]

RShiftfargl, arg2)]

Sub[argl, arg2]

GOTO[label]

CALI Jlabel]

GOTOA BS{value]
BRANCH][label0, labell, mask]
CANCELBR [label, mask]
DISP2[label, mask]
DISP3{label, mask]
DISP4{label, mask]
DISPNI{[label]

RETlabel]

-- xors up to 9 arguments
-- left shift argl by arg2

-- right shift argl by arg2 -
-- argl — arg2

-- mask optional

-- mask optional

-- 2-bit dispatch, mask optional
-- 3-bit dispatch, mask optional
-- 4-bit dispatch, mask optional
-- 8-bit IBDisp dispatch.

34

IfEqual[x, y, equalVal, unequalVal]
IfGreaterix, y, equalVal, unequal Val]
IfAndZero[x, y, equal Val, unequalVal]
SkipTof[label]

EXPORTTlabell, ..., label9]
IMPORT[label], ..., label9]
at[offset, modulo, label]
Reserve[LowAddr, HighAddr]

Set[varName, value]
allowed.
MacroDef[macroName, expansion]

-- IF x =y THEN equalVal ELSE unequalVal

-- IF x>y THEN equalVal ELSE unequalVal

-- IF x&y=0 THEN equalVal ELSE unequalVal

-- MASS skips code until label! (! must be appended to label)

-- Declares up to 9 values exportable

-- Declares up to 9 values importable

-- modulo defaults to 4096, label to current label
-- micro-insts can’t be allocated within this range.

-- sets variable named in argl to value of arg2; "-" not

RegDef[regName, regType, regAddress] -- regType = {U, R, RH, UY}

PrintVar[varName]
Print[Messag¢]
SetTask[task]
StartAddressflabel]

-- print variable in ".er" file

-- puts "Message” in “.er" file (only letters, numbers, and ".")
-~ in effect untill the next SetTask. task in [0..7]

-- Burdock initilizes task’s TPC to this value.

35

N. Burdock-Kernel

1. Overview

This section deals with 4 of Burdock’s numerous windows: the CP Panel, State Analyzer, Files, and
an Empty window. The Empty window can be used to load source files such as ".mc" or ".ft" files.
The Files window accepts the file names for the ".fb", ".st", and ".cpr"” files. The Analyzer window
reads and formats the output of the Tektronics 7904 (DF1 formatter) logic analyzer. The CP Panel
reads and writes CP registers and exccutes CP related commands.

2. CP Panel - Commands

The CP Panel can exccute one of the following commands: Boot, Load, Start, Sto_p, Continue,
Break, Unbreak, or LoadReal.

The "Boot™ command boots the IOP, if necessary, and then loads the CP kernel (KernelDlion.fb).
All the TPC’s are initialized to "OFDF", which currently is an microinstruction which loops on itself
and resets the display controller. Note that while the kernel is executing at the kcrnel task level, no
other tasks in the. Dandelion can run.

"Load"” loads the ".fb" file into the control store and reads the ".st" syrribol table file into Burdock.
The file name come from the Files window. If the original source files contained "SetTask" and
"StartAddress” macros, the specified TPC's arc initialized.

"Start” loads the emulator (task 0) TPC with the value of the given label and then causes the CP to
stop exccuting the kernel. Normal task scheduling begins, and if multiple tasks are enabled, it is
not known which will begin executing first (smce the kernel will stop executing on an arbntrary click
within a round).

Since the CP-task- specxﬁc rcglster which holds condition bits betWeen clicks (the TC register) can
not be written, the microinstruction which will be started must contain a "CANCELBR{Label, 0F]",
ie, the address of the seccond instruction executed must be "at[0F,10]".

"Stop" causes the kernel task to run, thereby blocking all other tasks from running. The tasks
which were running are interrupted on a click boundary, so the TPC’s and TC’s for the tasks
remain valid. It is not possible to determine which click boundary the stop occured on.

"Continue" exits the kernel given the current values of the TPC's. Like Start, it is not known
which task will begin execcuting first.

"Break" sets a breakpoint at the address given by the label. Burdock saves the breakpointed
microinstruction in an internal table and replaces it with the appropriate instruction which will cause
entry into the kernel. If the control store is examined from Burdock, the breakpoints will be visible
- and not the original instructions. "UnDBreak" restorcs the breakpointed location with its original
contents.

There are 4 types of breakpoints: cyclel, cycle2, shortCycle3, "and cycle3. Their breakpoint
identification numbers arc [10..1F], [20..2F], [1..7], and 0, respectively. Thus, there are 16 cyclel, 16
cycle2, and 8 cycle3 breakpoints available. (Burdock can be expanded to accomodate 256 cyclel
and 256 cycle2 breakpoints). The cyclel and cycle2 breakpoints correctly save all possible pending
dispatch/branch bits (i.c., they correctly breakpoint an instruction containing a DISP4{] or RET[]).
However, there is only one ¢3 breakpoint (id _num 0) which has this property. The other seven ¢3
breakpoints (called shortCycle3 breakpoints) only correctly handle instructions containg at most 2-
way BRANCH?s, i.e., it may not be possible to correctly resume from a shortCycle3 breakpoint sct
on a statement which spccifics a DISP4, DISP3, DISP2, or RET. (This restriction is necessary in
order to save memory data if the click causes a memory read. The kernel could be changed in
order to provide more versatile cycle3 breakpoints at thc cost of losing memory data.)

36

Clicks which contain memory reads ("«MD") can be correctly restarted after a breakpoint, but
cycle2 of clicks which contain "MDR «" can not be (since the memory address is lost). Clicks
containing memory reads are restarted by loading main memory location 0 (OFFDD instead?) with
the data which was arriving from memory during the breakpointed click and then restarting the
memory to read from mem[0] when resuming from the breakpoint.

If a cyclel breakpoint is executed, the kernel will always run-in the following task. However, if a
cycle2 or cycle3 breakpoint is executed, the breakpointed task must run for at least one more click
in order for the breakpoint to take effect, This is never a problem with the emulator (since it will
eventually run), but could be a problem with an 10 task if the task’s request were disabled during
the breakpointed click, thercby preventing it from executing again. Note that fo: cycle2 and cycle3
breakpoints it is not known which other tasks may have run between the breakpointed click and the

" kernel entry.

If "Start” is used instead of "Continue” after a breakpoint, the second instruction executed must be
"at[OF,101." This requirement is not necessary if the TC register of the task does not have any non-
zero bits where the low 4 bits of the address of the second instruction has zero bits. For example, if

the TC register is 0, then any microinstruction can be Started. If the TC register is 1, then only

" microinstructions which are followed by an instruction at an odd address can be started. (The TC
register for a task can be written by executing a single microinstruction at the task level which sets
the bits accordingly.) : :

3. CP Panel - Registers

After the CP has been booted, its registers can be read and written via absolute addresses. After a
program has bcen loaded, Burdock can read and write registers given their symbolic names.
Burdock ignores capitalization in all names. The control store, TPC, and TC registers can be read
or written before the CP is booted. :

The format for reading and writing a register with absolute addresses is ".name address” or "address
.name”. An address without a ".name" is assumed to be a real memory address. Burdock
recognizes the following register names:

.name address range

q '

. 0..0F]

th 0..0F

u 0..0FF] '

tc 0.7] read only

.tpc 0.7)

Jdink 0.7

doxin 0..0F] address is value of fZ--rcad only
.ioout 0..0F] address is value of fY--writc only
<10 0..0FFF control store real--first word
crl 0..0FFF - control store real--sccond word
cr2 0..0FFF control store real--third word
.mr - 0.3FFFF] memory rcal -address

.mv " [0.3FFFFF] memory virtual address

.map 0..3FFF] index into Map

.ib doesn’t effect ibPtr

ibPtr can only be set to 1 or 3
stackP | - .
.pcl6

Mint Mesa Interrupt

EKErr error register--read only

37

Currently, if the display task (1) was executing at the time of a breakpoint, a 2 (or 0) should be
written into ".joout 7" in order to disable the display controller, thereby preventing it from reading
the low bank so that the low bank can be read/written correctly by the kernel. (This is also

necessary for proper resumption after a cycle2 or cycle3 breakpoint of a click which reads memory.)

. This problem will be fixed.
4. State Analyzer Window

- For CP debugging, the low 12 bits of the state analyzer are connected to the control store address
lines (NIA[0..11]'). The upper 4 bits are available for other inputs (such as cycle number, task
aumber, etc). The Analyzer Tool can format, filter, and search the addresses for matches. The
"mask” is and’d with all displayed addresses and the "xor" mask is used to invert appropriate bits.
The dcfault for the xor mask is OFFF since the control store address lines are inverted.

. The addresses can be displayed in one of 4 modes: NIA (symbolic labels), hex, octal, or binary.
Since NIA’ is displayed, the occurrence of a label corresponds to the cycle when the instruction is
being read from the control store--the indicated instruction is executed in the following cycle. Thus,

if cl is being displayed in the top bits; it actually corresponds to microinstructions labeled ¢2 in the

source file,
5. Real Memory _Loader

The LoadReal command loads real memory with the ".cpr” file given by the Files window. Such a
file contains one or more blocks in the following format:

<count>KaddrHigh><addrLow>,<{datal>....{dataCount).

A program exists (stored on [IriskKDDavies>MakeBinFile.bcd) which translates text files into this
format.

6. Command. files

<Will be documented later>

7. Microcode Error Traps

If a microcode trap occurs to location 0, the kernel will treat it as a breakpoint (id=0FF’x).
"Reserve[0, 0]" must be present in your program unless you are going to handle the error. The
.EKErr register identifies the microcode trap:

Control Store Parity Error

Emulator Double-bit Memory Error

Stack Overflow or Underflow

Emulator Virtual Address Out of Range (322 bits)

WO

38

O. Timing Coﬁstraints - Allowable Bus Operations:

The following two figures should answer the question: "Can my microinstruction accomplish its task
in time (i.e. before the end of the cycle)?” The first table deals with the X-bus, and the following
with the Y-bus.

Note that ALL operations which do not output onto the X or Y bus (i.e. internal 2901 register to -

register operations) complete on time (see schematics for timing information). (Note that +1 or -1
do not imply use of the X-bus.)

If your microinstruction contains an X-bus operand, then Figure 7 will tell you whether that
microinstruction will complete in time. At the intersection.of the appropriate "X Source” column
and the "X Operation” row, if the number is not in bold type (i.e. any cycle times less than 140
nS), then the microinstruction is OK from a timing viewpoint.

MASS checks for the timing viclations given in the f‘oilowing tables. The macro
"SuppressTimingWarning"” can be used to prevent an error message where the timing is OK for a
partial result (for example, addition in the low 4 bits).

The ALU performs arithmetic at 3 different speeds depending on which bits of the result you're
looking at. Bits[0-7] are the slowest (they depend on a carry from the lookahead unit; Bits[8-11] are
next (they depend on a ripple carry from the low nibble); and Bits[12-15] are fastest (Cin arrivies
very early relative to Xbus sources). The low nibble always has the timing of a corresponding ALU
"~ logic operation. For example "Reg « Ureg or Reg" has the same timing as "Reg « Ureg + Reg"”
for the low 4 bits only.

Rreg « Ureg - 1, YDisp, {only low 4 bits OK} c2;
Rreg « RHreg + 1, YDisp, {only low 4 bits OK} c2;

39

X Source

D - * * * » (A .or. B) (A +B)
fetup] SU |MD | RH Nibble| Byte | IB ErrIBStkP} I0In A LRotn] LRotn |LRotn
Xe 75 | 97 | 64 { 50 | 56 | 59 | 59 63 91 102 |
131
max (59, X«) 75 | o7 | 64 | 59 | 59 | 59 | 59 63 91 102 1 ﬁ
BeX .or A 40f115 |137 |104 [99 | 99 | 99 | 9 103 131 _ —_
BeX.or. A, ZeroBr | ss 133 |55 {122 {117 {117 {117 17 |11 |49 —_— —_
BeX .or. A, NegBr sg {133 {155 |122 [117 |17 |17 | 117 121 {149 _— _
l«X .or.A, YDisp 68§43 165 |132 f127 |27 |127 | 127 131 159 _ _
BeX.or A, LShiftl | spl125 [147 |114 j109 |109 {109 | 109 |113 — —_ —_
BeX.or. A, LRotl 500134 |7156 |123 |118 {118 |118 { 118 122 —_ —_— —
MAR«X .or. A 78153 |— |2 |137 137 f137 | w7 §274 — — —_
MDR X .or. A 45 |120 |— (109 |104 104 |104 | 104 108 —_— _ —_
SU«X.or. A 87| — | 184 |151 146 {146 | 146 | 146 50 | — _— —_
I0YOut«X .or. A 64 1139 | 7161 |128 j123 j123 123 | 123 127 —_ —_— —_—
74 V14T | 1/1 135 L33 133 133 133 137 103
BeX + A 651140 | 162 1129 |124 [124 {124 | 124 128 | 156 — —
: _ L aof1s 1137 104] 99 | 99 | 99 99 103 {13t
BeX + A, ZeroBr o5 170 192 | 154 | 154 | 154 |154 | 154 158 | 186 _ —_
X I BeX + A, NeghBr a7 |162 | 184 151 |146 | 146 146 | 146 | 150 | 178 —_ _
O | BeX + A OvBr oo li65 {187 |154 | 149 V149 {149 | 109 153|131 — —
P | BeX + A, NibCarry | sa §133 |155 1122 {117 |17 {117 | 117 121 | 149 L — —_—
(o] -

. BeX + APgCarryBr] 65} 140 | 162 {129 1124 |124 |124 | 124 128 — — —
r | BeX + APgCrossBr | 77 }152 |17¢4 | 141 {136 |136 |136 | 136 140] 168 —_ —_
i‘ BeX + A CarryBr | so {149 {171 | 145 |139 139 {139 | 139 44 | 147 —_— —_—
i | BeX + A, YDisp 68 {143 165 |132 |127 |127 127 | 127 131 {171 —_— -
0 80) 164 [I88 {148 (138 [198 [148 | 148 132 '

n | BeX + A, RShiftl go 1155 1177 144 [139 {139 |139 | 139 143 _ _— —
501125 1147 1114 1109 {109 1109 | 109 113 .
99 1774 17196 | 138 1138 [138 1158 | 158 162 -
B«X + A, RRotl gol765 | 187 (154 | 149 | 149 | 149 | 149 153 —_ —
god13s 1757 1124 {119 1119 119 | 119 123
MAR«X + A 78 1153 | — | 142 |137 {137 137 | 137 141 — — _—
78
77 1132 136 {136 (136 136 | 136 133)
MDR«X + A 70144 |— 134 {129 {129 |129 | 129 133 —_ —_ —
451120 109 (104 {104 104 | 104 108
119 76 {178 1178 {178 TI78 [178 132
SUeX + A 112)— 1209 {176 V171 Vi71 {171 | 171 174 | — —_ —_
T T T T T 151139
96
10YQuteX + A gof16e 186 |153 |148 |18 |13 | 18 |152 | — — | —
S S e
80
10YOut«X.+ A 7alms {170 1137 [132 132 32 | 132 36 | — — | —
5314 L agdi23 Vrgs f112 J107 jl07 lio7 | 107 111
53
[« X. XDisp 321107 (129 } 96 | ot J 9L | 9 91 % (123 134 ﬁ?
’ 167
RH « X 36111 [133 {100 | 95 | 95 | 95 95 99 127 138 ;g;
_ . 1 . v 14
IBeX 371112 |134 {101 | 96 | 96 | 9 9% 100]128 139 %
: 3T
I0XOuteX (LS374) | 22 97 {117 | 84 | 79 | 79 | 719 79 83 |11l 122 {g
* Timing {or bits[0-7] of these sources is that of Nibble. stackP « has timing of the slow I0YOut.

The 3 numbers for arithmetic operations correspond to bits{0-7], bits[8-11], & bits{12- 15}, respectively.

Figure 7. Allowable X-bus Opcrations
9 [Feb 80
Filed on <Workstation>1.FI>AllowableXbus.sil
<{Workstation>LII>DDMR.press

Y Source

sctupg A.or.B | A(bypass) |A+ B

109

Y« 80 69 105

a3

36 | 116 105 114

MAR« ¥ 1| 9 %0 116

ag | 116 105 119

112

Y| MDRe 3 83 7 108
26

0 154
5 SU« 45 | 125 . 14 59
P 128
r stackP« 6 86 75 115
112

? 39
i 0« .YDisp 32 | 112 101 121
0 .
n : 124
Uaddr{4-7]« 15 95 84 120

98

(S374) %

* Bits[0-7] have timing of Y « (B .or. 0), except in the A bypass case.

The 3 numbers for arithmetic operations correspond to bits[0-7], bits{8-11}, & bits{12-15], respectively.

Figure 8. Allowable Y-bus Operations

9 Feb 80
Filed on < Workstation>L.LH>AllowableYbus.sil
<Workstation>L11>DMR .press

41

Api)endix: Antithetical List of MicroInstructions

<.

This appendix contains a list of some example microinstructions in addition to examples of illcgal
ones. Those microcode statements which can be written but don’t work as intended have three

possible reasons for their shortcomings:

1. Timing error,
2. Syntax error, or
3. Characteristic of a processor data path.

SU 1= STK| U register;

A= the R register addressed by rA;

B:: = the R register addressed by rB;

R:: = an R register addressed by either rA or rB;
Rot1::= LRot1 | RRot1;

Shift1 :: = LShift1 | RShift1;)

LRotn :: = LRotO| LRot4 | LRot8 | LRot12;

constant :: = Nibble | Byte;

ArithBr :: = NegBr | ZeroBr | OvBr | CarryBr | PgCarryBr;
LogicBr :: = NegBr | ZeroBr;

XDispBr::= XpcDisp | XhDisp | XwdDisp | XiDisp | XDisp;
©:= alu logic operation (R or S, R and S, ~Rand S, R xor 8, ~R xor Sy
X i = alu arithmetic operation R+8S8-RR-g)y;

2= alu arithmetic or logic operation:

Geneval:

Possible: Not Possible:
B«Re°R,

B«R=ER, .

Q«RODR, B«Q«RDR,

YBus ¢ A, [« RPR,

YBus « A,B« R R,
. YBus « A, Q«R DR,

SU registers;

Possibla: Not Possible:
BeSU©°A, B+« SU = A,
B«SUoqQ,

SUe«R9R, . - SU€«R=*ER,
B¢SU«RoR, ’

SU«AB«ROR,
SU«AB¢R +R +1,
"SU«ABeR - R,
SU « A,B « 8U,
SU«SUD A,
SU«AB«R=tR, Cinepc17,

SU«AB«R + R, Cin+Q,
SU¢ABeR-R-1,

(2
(2
&)

M
(1

(2)
(2)
(2) & (3)
(&)

42

Constaats:
Possible:

B « -constant,
BeA® constant,

B«0,

{B « 100,} B« OFF + 1

{B « OFF00,} B « ~OFF

{B « OFFFF,} B« ~BxorB

{B « 7FFF,} B « RShift1 (~B xor B)
{B « 1FF} B « LShift1 OFF, SE«1
SU«0

{SU « OFFFF.,} SU « ~Axor A

RH registers:
Possible:

B « RH[B] @ A,

B « RH[B] & A,

RH([B] « su,

RH[B] « SU,B « SU © A,

RH[B] « 8U,B « R D R, .
RH[B] « constant,

RH[B] « constant, 8 « R D R,

RH(B] « ib,

RH[B] « ib,B « R DR,

STK « A, B « RH[B] D A,

Memory:
Possible:

R « MD,

R « R °MD,

Q+«R°MD,

RH{B] « MD, :
RH[B] « MD,B« R D R,
RH[B] « MD, B « MD, SU « A,
MAR « [rh[B], A,B « B D R,
MAR « [rh[B], A], B « IOIn, -
MAR « [rh[B], A], B-« RH[B],
MAR « [rh[8], A}, B « SU,
MAR « [rh(B], A], B « constant,
MAR « [rh[B], B D R],

MAR « B « [rh{B], B & R],
Map « Q « [rh[B],R @ R],
MAR « [rh[B}, constant],

MDR « R R,
MDR «A,B«R®DR,
MDR « SU © A,
MDR « RH[B],

Not Possible:

STK « éonstant.
U « constant,
B « SU € constant,

Not Possible:

A « RH(B],

"RH[B] « RH[B]

U«A,B«RH[B] D A,
Not Po.s;sible.-
R «R % MD,

R « MD Shift,
SU « MD,

MAR « [rh[B], SU], (1)

MDR « SU @D A, {OKin bits[12-15]}

43

(1)
(2
(2 &(3)

e

()

M
)
(1)

(M

101In/100ut:
Possible:

BelOn® A,

RH([B] « IOIn,

MDR « IOln,

RH[B] ¢ 10In, B « [OIn D A,

100ut « (R °© R) LRotn,
100ut « Q LRotn,
100ut « MD,

100Qut « IOin,

I0Qut « RH[8B],

I00ut « 8SU,

ICQut « A LRotn,
10Qut « ib,

stackP:
Possible:

stackP « R D R,)
stackP « stackP @ A,
stackP « Nibble,

stackP « 10in,

stackP « RH[B],

RH([B] « stackP,

LRotn:
Possible:

B « A LRotn, {A bypass}
[] « (A ° B)LRotn,"

[l « QLRotn,

B « A 2 (A LRotn),

RH[B] « ALRotn, B « R D R,
RH[B] « (R ° R) LRotn, _

STK « A,RH[B] « ALRotn,B«R + R + 1,
STK « A, RH[B] « (R © R) LRotn,

Not Possible:

SU + (10In & A) LRotn, %))
I00ut « (R =% R) LRotn, V)]

Not Possible:

stackP « stackP + constant, . (2)&(3)
stackP « MD, (1)

Not Possible:

B « (R & R) LRotn,) (2) & (3)
Q « ALRotn, (2 &(3)
B+ QLRotn, (2) &(3)
B « B D (ALRotn), @

SU « (R €D R) LRotn, @ 8&@13)
SU « ALRotn, (2) & (3)
MDR « A LRGtn, (2) & (3)
B « SU LRotn, (2 &(3)
B « (A LRotn) Rot1, (2) & (3)
B « (R D R LRotn) Shiftt, (2) & (3)

RH[B] « A LRotn,

RH[B] « (R = R) LRotn, {OK in [12-15]} (1)

"RH[B] « (RH[B] & A) LRotn, (2) & (3)

U « A, RH[B] « (R ° R) LRotn, (2)

Single Bit Shifting:
Possible:

B « (R ° R) &hift1,
B « (R ° R) Rott,

B « (R + R) Shift1, SE«0,
B« (R - R - 1) Shift1, SE«0,
B « (SU © A) Shift1, SE«0,

B « (constant £ A) Shift1, {only [8-15]}
B « R X R, DR$hift1,
B « R & R, DLShiitd,

- Branching:
Possible:

8 « R @ R, Branch,
YBus « A, B « R €D R, Branch,
B « Xbus ° A, LogicBr,

B « Xbus £ A, CarryBr, {except for SU, MD}
B « Xbus = A, PgCarryBr, {except for SU, MD}

B e R X1, ArithBr, .
B« R ® R, YDisp,
B « RH[B] ° A, YDisp,

YBus « A, B « R @D R, YDisp,
{1 « SU, XDispBr,

{] « 10In, XDispBr,

[] « constant, XDispBr,

[] « ib, XDispBr,

[l « RH[B], XDispBr,

{] « stackP, XDispBr,

[« MD, XDispBr,

B « A LRotn, XDispBr,

B « A © (A LRotn), XDispBr,
0 « (R ° R) LRotn, XDispBr,

Not Possiblé:
Q « (R ° R) Shiftt, @
Q¢ (R°R)Rott, P
B « (R £ R) Shift1, , 4
‘B« (RER)Rott, (1)
YBus « A, B « RShift1, -)
fl « R Shift1, (2)
B« (R + R + 1) Shift1, SE<0 2
B « (R - R) Shift1, SE«0 e))
B « (SU ° A) Shift1, SE«1, @
SU « B Shiftd, @
SU « A, B « R Shift,)

B « (constant = A) Rott {OKin [12-15]}

Not Possible:

B « MD ° A, LogicBr,)
B« Xbus A, ZeroBr, N ¢))
B « Xbus & A, NegBr, (1
B « SU ° A, YDisp,)
B« MDA YDisp,)

0 « (R % R) LRotn, XDispBr, {bits[12= -15 OK} (1)

45

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45

