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Overview

& This drawing shows a'Block diagram of the Dandelion Disk Cantréller. It identifies the major components
of the system and their connections.

There are four major blocks in the Dandelion Disk Controller (DDC). They aie the Input Conditioning, .
Output Conditioning, Processor Interface and Serializer/DeSerializer circuits. Disk read data, disk clocks
and reference clocks arrive via the Input Conditioning circuits, as do disk status lines. The disk control
lines, disk write data and write clocks are sent via the Output Conditioning circuits. The Processor
Interface generates microcode service requests, detects the overrun condition and passes data, status and

“commands along the X-Bus. Disk data is converted from 16 blt parallel words to a serial data stream and
back in the Serializer/DeSerializer. -

: Constraints . ‘
Cost

The Dandelion is intended to be a relatively low cost workstation. To this end, the hardware it contains
should be minimized. This leads to low manufacturing, testlng and service costs. The guiding principle of

i the controller’s désign'hds béen that only functions which occuf tdo quickly for microcode to handle or

require hardware buffering are implemented in the controller. For example, step pulses may be sent
relatively slowly, so the step line is toggled by having the microcode send control words in which the step
line is alternately set and reset. .

Another result of the cost constraint is that one controller board should serve to control both the SA1000
and the SA4000 drives. It should be able to support drives with 2 to 32 heads. The effort required to
change the board from an SA1000 configuration to an SA4000 configuration should be minimized. In fact,
it should be limited to unplugging the cables to the SA1000 and plugging them into the SA4000.

Disk Format

The disk is divided into cylinders. Each cylinder represents a distinct position of the read/write heads.
Each cylinder is divided into tracks, one per read/write head. The SA1002 drive has 2 heads, the SA4100
has 32. Each track is divided into sectors. There are 28 sectors per track on the SA4000 type drives, 16
sectors per track on SA1000 type drives. Each sector is divided into three fields, Header, Label and Data.
The Header field is used to specify the sector’s physical position on the disk (cylinder, head and sector
numbers), the Label specifies the page’s position in the file system and the Data field holds the actual data.
Finally, each field is broken into 4 areas. A pattern of all zeros is followed by a synchronization word or
address mark which is followed by the field’s data and, lastly, a word of CRC checksum. The length of the
synchronization pattern varies between drives, it is 7 words on the SA1000 drive and 6 words on the

- SA4000 drive. A synchronization word of all ones is used to define the first word boundry on the SA4000

- drive. An address mark serves a similar purpose on the SA1000 drive. The Header field contains 2 words
of data, the Label field 12 words and the Data field 256 words. The CRC checksum word following the data
area of each field is used to implement an error detecting code.

One of the constraints on the design is that it must be possible to read, write or verify each field in all
sectors of a cylinder in one revolution. This means that in addition to the raw data rate constraint, it must
be possible for the microcode to carry out the inter-field, inter-sector and inter-track overhead operations
with the hardware available. A design which requires a great deal of setup between sectors or fields may
not be acceptable. It should be possible to perform any combination of operations on the fields of a sector.



An exception to this rule is that when a write is performed to one field, further fields of that sector must
either also be written or are assumed to be lost. The microcode must also be capable of aborting
operations on later fields based on the results of operations on earlier ones. For example, if the Header and

. Label fields of a sector are to be verified before the Data field is written, the Data wnte should be aborted if

- either the Header or Label verify operations fail.

The SA1000 drive does not contain a data separator, the SA4000 drive does contain ane. The controller

‘board sends and recieves MFM (Maodified Frequency Medulation) encoded data from the SA1000 drive and

_NRZ (Non Return to Zero) data from the SA4000. The SA1000 data rate is 4.27 MBits/Sec (234 ns/bit).

+ The SA4000 data rate is faster at 7.14 MBits/Sec (140 ns/bit).

. Dandelion Architecture

The Dandelion processor is implerhented using 2901 byte slice chips. These provide 16 registers readily
accessible to the microcode. There are five independent microcode tasks running at any one time, the

- Disk, Display, Ethernet, I/0 Processor and Mesa Emulator. These tasks share the 16 registers, along with

the 8 Link and 256 U registers. The Disk task is allowed two of the fast R registers, one link register and 40

U registers.

The 1/0 tasks are run in round-robin fashion. Each microcode’s turn is called a click, five clicks
comprise a round. The disk microcode task is allocated click number 2 in every round. If an 10 task does

' not use its click, the Emulator runs there instead. The processor can execute one main memory reference

in parallel with three microinstructions in each click. The time in which each microinstruction executes is
called a cycle RN :

The processor executes a microinstruction every 137 ns, a round every 2.05 microseconds. A single 16
bit word may be stored in main memory every round. The disk microcode can sustain a transfer rate of 16

bits/2.05 x 10°8 sec or 7.8 MBits/sec. Thus one can only be sure of the microcode executing one click per
word transferred from either the SA4000 or the SA1000.

Function Allocation

The verify operation requires that each bit be checked against a template from memory, a CRC
checksum be maintained, a memory address updated and a word count decremented. Four pieces of
information must be maintained, an address, a word count, the data to be verified and some sort of
checksum. While it would be possible to combine the address and word count by requiring all field
templates to begin (or end) on page or nibble boundries, this is rather inconvient and messy. The designer
has been unabile to find an encoding scheme which makes it possible to combine the data to be compared
and the checksum. These seem to be the only remotely workable combinations. Hence all four quantities
must be kept independently.

The four quantities must be divided between the two R registers in the processor and registers in the
controller. The lack of U register speed precludes their use. One must spend an entire click to update one
U register (read it, change it, then store it), yet the microcode is only allowed one click per word transferred.
Due to the main memory addressing scheme, the address must reside in one of the R registers. Were the
checksum to be done in microcode, the microcode would have to read the data to be checked. Because of
the close timing in SA4000 operations, the controller data is guaranteed to be stable during only one cycle

“in the click. Hence, the checksum could not be done in microcode and while the verification is done in

hardware because microcode would need two cycles to write thé memory data to be verified to the

-controller and read the disk data to compute its checksum. The disk data could be stabie during one or the

other cycle, but not both. It would be possible to compute the checksum and maintain the wordcount in the
controller while doing the address and verification in microcode, but the microcode would be messy and

- the status of an operation would be partially in microcode, partially in hardware. The controller as designed
- allocates the address and the wordcount to microcode and the data and checksum to hardware.



lnput Condmonmg

As explained above, one controller board should serve for both the SA1000 and SA4000 type drives.
.This means the board may receive either MFM (SA1000) or NRZ (SA4000) data from the disk. It may either
receive its data clock directly from the disk data separator (SA4000) or may derive it from MFM data
(SA1000). The clock used to encode or strobe write data may similarly be received from the disk (SA4000)

or be derived from the processor clock (SA1000).

The Input Conditioning circuitry has seven jobs. ‘
. 1. It buffers the disk status signals for use by the Processor Interface.

2. It uses one of the status lines to decide whether the drive is of the SA1000 or SA4000 type. This
indicator is used here, in the rest of the controller, in the microcode and in the software.

3. It either passes NRZ data received from a SA4000 disk or translates MFM data received from a SA1000
type disk, sending the resulting NRZ bit stream to the Serializer/DeSerializer.

4. It uses the SA1000/SA4000’ flag to pass on the correct clocks to the rest of the board.

5. It produces the AddressMarkFound signal by recognizing MFM address marks. These are used to
delineate fields when using the SA1000 drive A combination of Sector marks and synchronization words
are used in the SA4000 drive.

6. It produces the SectorMk signal by etther passing on the SA4000’s Sector signal or recording the value
of bit 14 of an SA1000 address mark. This is done so the microcode can identify a Header field.

. 7. It produces a consistent value of SeekComplete, either passing the SA1000 version directly or delaying
the SA4000 version until the read/write heads have settled.

Processor Interface

This section of the board is responsible for communication between the controller and the Dandelion
CP. It receives the X-Bus lines along with the control signals for the Disk controller's ports. Using these, it
transmits status and data to the CP or latches control and data words. The disk status is received from the
Input Conditioning section of the board, the direct commands (Step, FaultClear, etc) are sent to the disk
through the Output Conditioning section. The CRC and verify error status bits are received from the
Serializer/DeSerializer. Commands enabling transfer of data are sent there. The 18 bit data words used by
the Serializer/DeSerializer are routed through the Processor Interface. With the help of the BitCount state
bits from the Serializer/DeSerializer and the SA1000/SA4000’ flag, the Processor Interface generates
service requests to the microcode and maintains an overrun indicator. This flag is used to disable the
disk’s WriteEnable signal, ensuring that no more than one word of random data should be written if the
transfer is interrupted. This may happen if the processor fails or encounters a Kernel interrupt.

The Processor Interface is responsible for correctly sampling all error indicators. Some, like the CRC
error indicator are only valid on some word boundries, others are valid all the time. In addition, control lines
that should only change on word boundries (WriteCRC) are sampled in the Processor Interface.

Serializer/DeSerializer

The Dandelion transmits data in discrete 16 bit words, the disk drives in serial data streams. One of the
main tasks of the controller is to translate between these two representations. The Serializer/DeSerializer
contains a single 16 bit shift register and two 16 bit buffers. During read operations, the shift register is
loaded with NRZ data from the Input Conditioning circuits. On word boundries, the ReadData buffer is
loaded from the shift register. This is read by the CP in turn through the Processor Interface. During Write
operations, the CP sends data to the WriteData buffef. Thé shift register (SerialNRZ.0..15) is loaded with
these words on word boundries. Verify operations are similar to Write operation in that data sent through
the WriteData buffers is loaded into the SerialNRZ shift register. The data being read from the disk is
compared with that being shifted out the the register. If any bit mis-matches are detected, the VerifyError
signal is raised.



To find word boundries, a count of the number of bits in the shift register must be maintained. The
Serializer/DeSerializer computes this in BitCount.(0..3). The interpretation of this count varies depending
on the operation being performed and the part of the field being transferred. See the ‘
Serializer/DeSerializer description for more details.

As mentioned above, the verify check is done here. The error signal is cleared between each transfer.
The CRC check is also done here. The CRC shift register is held preset until the end of the synchronization
- :word passes. Its input is at the input of the shift register during read and verify operations and at the shift
register output during write operations. The WriteCRC signal causes the contents of the CRC
.generator/checker (a Fairchild 9401) to be inserted in to the output data stream. This signal is set by the
microcode after the last data word of a field is sent to the controller.

Output Conditioning

Control signals leaving the controller for the disk must be buffered. This is done in the Output
Conditioning circuits. The data is either passed on as NRZ data to a SA4000 drive or translated to MFM
format and pre-compensated before being sent to a SA1000 drive. The type of clock sent to the drive
depends on the drive. The SA1000 type drives require a TimingClock with frequency 1/16 of the bit rate.

_ .. The SA4000 type drives require a WriteClock with the same period as the bits in the data stream. The type
is clock is selected in the Input Conditioning circuits and passed through the Output Conditioning section.

v ...When connected to a. SA1000 type drive, the Qutput Conditioning circuits are also responsible for writing
address marks at the beginning of each field. These marks are used to identify- the clock|data phase of the
incoming MFM data, define the first word boundry in the field and tell what type of field is being read. The

. address mark is a sequence of pulses which form an illegal MFM string but still can be recognized by the
Input Conditioning circuits. Some pulse strings are illegal but may not be transmitted correctly. In
particular, any sequence having no pulses for two full bit times is an illegal MFM string, but may not be read
correctly by the drive because of its automatic gain control (it will keep increasing the gain until something
is found). .
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Overview

This drawing is a block diagram of the Processor Interface section of the Dandelion Disk Controller. This
section is responsible for buffering data sent between the Dandelion CP and the controller, transmitting
and receiving this data according to the Dandelion bus protocols and requesting service from the Disk
microcode. '

Constraints

The controller has been designed with the idea of minimizing the amount of hardware used. As much
functionality as possible has been left in the microcode and software. This results in fairly simple controller
hardware.

Many of the lines used to control the disk are set directly by microcode and are.ignored by the controller.
For example, the Step and Direction lines controlling the disk’s head motion are merely bits in the control
register that are relayed directly to the drive. The same is true for many of the status signals returned by the
. drive, they are read and interpreted by the microcode or softwgre. . ,

The controller contains one word of buffering for write and verify operations and one word for read
operations. The Dandelion architecture allows the designer to calculate the minimum and maximum
latency between a service request and the processor’s response and ensure an overrun never occurs in
normal operation. If the disk microcode stops servicing the hardware, write operations must be disabled to
restrict the amount of random data written on the disk.

Control Register

This 16 bit register receives its inputs from the X-Bus, sénding them to both the disk drive and to the
controller. Itis reset by IOPReset’. The control bits are arranged so that when reset, the controller is
dormant.

Status/Test Multiplexer

Three types of 16 bit quantities may be read from the controller. One is data from the disk, the second is
the status of the current disk operation, the third is a group of test points on the disk and display
controllers. The first will be discussed below under Read Data Register. The second two are
independently sent to the X bus. One might also think of them as being multiplexed via tri-state drivers.

The operation status is composed of some lines from the drive itself (TrackQ0, DriveNotReady, etc) and
some from the controller (Verify Error, Overrun, etc). These are the normal lines read using the «KStatus

~command to guide the execution of a disk operation. The test lines are read using the «KTest command by
diagnostic microcode to directly test the control and status lines leading to the disk.

Some of the Status signals should only be sampled on word boundries. The CRC error flag, for instance,
is only valid after the last bit of the CRC checksum has been seen. Sampling on word boundries also gives
the microcode a chance to turn off a data transfer before the final status flags have been changed to reflect
‘the random bits following the data. This sampling is done by the Word Status Register.



Write Data Register

Data is sent from the processor to the controller in 16 bit words. These are-in turn loaded into the
SerialNRZ shift register. The words are buffered in the Write Data register before being loaded into the shift
- register. The buffer is pre-loaded before a transfer begins and is loaded by the microcode in response to a
service request thereafter. By calculating the minimum and maximum latencies between request and
service, one may be assured that the buffer is always loaded after the previous word has been used but
before the current word is needed.

Read Data Register

Like the Write Data register, this is a single word of 16 bits. It is loaded from the SerialNRZ shift register
each time a word boundry passes. Just before it is loaded, a service request is sent, asking the disk
microcode to remove the word. As with the Write Data buffer, one may assure oneseilf that this will always
happen after the buffer is loaded but before it is loaded again.

Since the NRZ clock is used to drive both the state machine that produces WordBoundry’ and the shift
register, sampling SerialNRZ from that shift register with WordBoundry’ directly would be hazardous.
Instead, the Read Data buffer register is inserted before the actual Read Data register. This buffer register
is clocked with inverted NRZ clock, so it samples a stable shift register-(max prop delay = 35 ns, min bit
clock period = 140 ns and 70 > 35) and the Read Data register samples stable ReadData lines.

A wrap-around feature has been included in this controller allowing diagnostic microcode to verify that
data may be written and read correctly. The method for using the feature depends on the disk being
controlled. The SA4000 provides one clock used throughout the controller. The data sent out is
intercepted just before the final drivers and inserted into the input data stream. It is then shifted back into
the shift register. By having the microcode start a write operation, then perform reads instead of writes, one
may verify that the data being written is correclty re-received.

The'SA1000 supplies no clock. The clock used to write the data is derived from the stable processor
clock. If this clock were used for the entire controller, the.controller's data separator would not be tested.
To test the data separator, we allow it to re-produce the NRZ data using a clock derived from the re-
received MFM data stream. Because of jitter between the derived clock and the reference clock, we may
not reliably route the re-produced NRZ data back to the shift register. Hence one may not expect to see the
data sent in the ReadData register. The address mark recognizer section of the data separator does record
the polarity of bit 14 of the address mark however. One may test the controller by sending address marks
and sampling the Header tag status bit after each one. Each address mark must be send in its own field,
that is the TransferEnable bit should be reset between each one. The Header tag status bit should follow
bit 14 of the address mark just written.

Service Request / Overrun Machine

As seen above, the controller must be able to generate service request to its microcode and determine
when the requests have not been answered. This is the task of the Service Request / Overrun machine.
The timing of Service Requests is based on the BitCount within a word, the time within a field, the operation
?eing performed and the data rate of the disk. Only two disks are supported and the data rates of both are
ixed. B

During data transfer operations, it is crucial that the disk microcode keep pace with the hardware. If the
microcode is early or late, especially during write operations, disk data may be destroyed. The Overrun
section of this machine will set the Overrun signal whenever a buffer is needed by the controiler before it
has been serviced by the microcode. Thereafter, no data may be written and the Service Request signal is



set until the microcode finishes the operation and turns it off. The microcode should sampie the status at
the end of the operation, testing the Overrun signal. ’

Service requests may be used not only to synchronize the transmission of data but also to sense status
" conditions. For example, it would be wasteful to burn 1/5 of the processor to wait for an IndexFound
signal. The same holds true for a SeekComplete. These and other signals may be used to generate a
service request. The signals are chosen using the Operation field of the Control register.
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Overview

One of the main tasks of the controller is to translate from the processor’s discrete 16 bit data words to
the disk’s continuous serial data stream and back again. The 16 bit parallel-in, parallel-out shift register
shown in this drawing performs this function.

The disk format specifies a 16 bit CRC checksum on the end of each field of a record. The CRC
Generator/Checker shown in the drawing calculates the CRC during write operations and checks it during
Reads and Verifies.

The disk controller must be able to check the data on the disk against a template in main memory. The
. resuits of this check must be available in time to abort an operation on a later field. This check is done in
hardware by the Verify Checker.

The machine responsible for keeping track of the current state within a field and within a word is located
here. The Field State contains the signals WordBoundry’, PLdSerialNRZ’ and SyncWdFound. The Word .
state is given in BitCount.(0..3).

Constraints

The controller must be able to read, write and verify data with a minimum of hardware, hence the use of a
single shift register. :

A CRC code must be both generated for write operations and checked during read and verify operations.
The CRC generator input must sample the output data and produce the first bit of the checksum
immediately after the last bit of data. Its control signals must be synchronized on word boundries.

The verify checker hardware should be minimized, hence the use of a bit serial checker.

The Field and Word State machine must be able to produce the Field State signals that correspond to
the operation in progress. It must be able to command the Input Conditioning circuits to recognize the
address mark if one exists, it must recognize the synchronization word in a data field, it must be able to
signal the presence of word boundries in the serial data stream.

SerialNRZ Shift Register

Two 74199s make up this register. They have separate paraliel inputs and outputs, obviating the need
for in internal three state bus. The serial input and clock are supplied by the Input Conditioning circuits.
The parallel load signal, PLdSerialNRZ', is supplied as part of the Field State.

CRC Generator / Checker

The generator portion of this circuit must receive the output bit stréam. The checker portion must
"receive the input bit stream. The CRC checksum must be appended to the output data stream. This is
accomplished by having one multiplexer feed either the shift register input or output to the 9401 CRC chip
while another selects between the shift register output and the CRC checksum output. The first multiplexer



feeds input data to the CRC chip during read and verify operations and output data during write operations.
-The second multiplexer sends output data to the disk while WriteCRC is inactive, CRC checksum when
WriteCRC is active. ) :

The CRCError flag is a reflection of the state of the CRC register. ltis true while the register is non-zero.
This is most of the time. The flag is only valid for one bit time after the last bit if the incoming CRC
checksum has been read. The flag is sampled at this instant by the Processor Interface using the Field
State information.

Verify Checker

A field on the disk is compared to one in memory by having the controller receive the memory version via
disk microcode and the disk version simultaneously. The disk version of the field is shifted into the shift
register while the memory version is shifted out. The words are aligned such that the disk and memory
versions of bit n of a word arrive at the shift register input and output at the same time. The Verify checker
compares these two bit streams, signalling an error if they ever disagree. The Verify error signal is sampled -
by the Processor Interface on word boundries. This gives the microcode a chance to freeze the operation
so the results of the check through the last word are available.

The Processor Interface actually delays the Verify error signal by one word time before making it
available in the disk status word. This is done so the result of the verify check through the last data word of
the field is shown at the same time as the CRC check done through the CRC checksum word following the
data. Since the Verify Error signal is valid one word time before the CRC error signal and both should be
available to the microcode at the same time, the Verify Error signal is delayed.

Field and Word State Machine

Sections of the controller change their operation as a function of the time within a field. The Data
separator searches for an address mark at the beginning of the field, then decodes data. The CRC and
Verify checks are only valid if done over the data or data and checksum portions of the field. The shift
register must be pre-loaded with the first word to be verified, hence should be loading, not shifting, until the
data section arrives. There are other examples. The Field and Word Timing machine produces
WorgBoundry, PLdSerialNRZ’ and SyncWdFound to control these activities. Together they are known as
the Field State.

WordBoundry’ is used to load the 16 bit buffer registers and sample selected controller command and
status bits (WriteCRC, CRCError, VerifyError).

PLdSerialNRZ' is used to parallel load the shift regsiter with data to be written or verified. .

SyncWdFound is set as soon as the synchronization word has been recognized at the beginning of the
field. Itis used to control the CRC and Verify checkers as well as the Service Request and BitCount
generation. : R .

It is also necessary for sections of the controller to know the time within a word. This is produced as a
four bit number, BitCount.(0..3). It is first used by this machine to produce the Field State signals. The
Processor Interface also uses it to generate Service Request and Overrun. The definition of BitCount
changes with the state of the machine. While synchronizing with disk data, BitCount equals the number of
sync word bits seen so far. During the data transfer, BitCount equals the number of bits shifted into, but not
read from, the SerialNRZ shft register MOD 16. For example, during a read operation, the clock edge that
causes the shift register to be read shifts in a new bit, so BitCount ranges from 1 to 16 Mod 16 or [1, 2, 3, 4,
5,6,7,8,9,10, 11, 12, 13, 14, 15, 0]. The word boundry is on the 0000 to 0001 transition of BitCount.
During a write or verify operation, the clock edge that loads the shift register with a word immediately



follows the one that shifted the last bit of the previous word into SerialNRZ.0. Thus the shift register has at
- most 15 bits shifted in before they are replaced with a new parallel word. In these cases, BitCount takes on

thevalues[0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15]. The word boundry is on the 1111 to 0000

transition. See the description of the Field and Word State Machine description for complete information.
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= Contents: Description of DDC04.sil, the Output Conditioning circuitry of Dandelion Disk Controller.

Overview

The disk drive and controller are connected with two types of transmission lines, single-ended and

- differential. The control signals are sent on single-ended lines, the data and clock on differential. The
-+ Output Conditioning section of the controller supplies the appropriate drivers for both types.

When connected to a SA1000 type drive, the output data must be encoded in MFM format and pre-
compensated. The SA1000 drive also uses address marks to define field boundries. The address marks
are generated and the encoding is done here. When connected to a SA4000 type drive, the encoding

. circuitry is bypassed.

Constraints

Output lines must be driven as per the Shugart specifications. Open-collector drivers are 74086s and
7438s, the differential drivers are 75114s. The active pull-up output of the 75114 is connected, making
these active pull -up differential drivers. While this is not the recommended driver for the SA1 000, it works

; .qultewe“ S . haeaiid iinid

The MFM encoding is done according to standard MFM rules. NRZ bits are separated into clock and
data halves. A flux transition, indicated in this description by a "1", may occur in either haif. All NRZ 1s are
sent with clock|data = 01. NRZ Os are sent as clock|data = 10 unless the preceeding NRZ bitwasa 1. In
that case, the MFM encoding is clock|data = 00. ‘

The pre-compensation rules are taken from those used for the Shugart data separators. There is a four
bit shift register.used to calculate the pre-compensation for each bit. The valid bits in this register must be
safely written before the WriteEnable signal is turned off at the end of field. The SA4000 has a similar shift
register in its pre-compensation circuitry.” To allow its contents to be written, WriteEnable should not be
disabled for at least 4 bit times after the last bit has left the controller.

The fields on the SA1000 drive each begin with a VFO synchronization pattern of all zeros followed by
an address mark. This address mark is generated here. It differs from a normal MFM encoding of an NRZ
data pattern in that two clock transitions are deleted. The encoding machine deletes these transitions
whenever the proper NRZ pattern is present on its inputs and SyncWdFound is false.

The clock used to transmit the MFM data must be a stable reference clock, not the clock derived from
the incoming MFM data. Data written using the derived clock would have an unacceptable amount of jitter.

- This reference clock is supplied by the Input Conditioning circuitry.

The cabling for the SA1000 consists of one 50 conductor ribbon cable and one 20 conductor ribbon
cable ieading directly from the controller card to the drive. The SA4000 cabling starts with the same two
cables, but they plug into a connector on the back of the Dandelion chassis. From there, a single 50
conductor round-wire cable leads to the SA4000 drive in its own chassis. The wiring of the round-wire
cable may be done in whatever manner is necessary to derive the SA4000 signals from those used or
ignored by the SA1000.

- Open-Collector Drivers

As stated above, the drive control lines such as HeadSelect.(1..16), Directionin, Step and so on must be



driven using 7406 or 7438 open collector drivers. The WriteEnable line is disabled whenever.an overrun
condition occurs. At most one incorrect word can be written if a disk operation is incorrectly started or
interrupted.

Differential Drivers X

Shugart specifies an open collector driver for the SA1000 and an active pull-up differential driver for the
SA4000. Since the SA1000 and SA4000 must share cabling and board space and no extra differential pairs
exist on the SA1000 cables, we use the active pull-up drivers for both drives. This causes no problems.

The Disk Output Clock for the SA1000 is the Timing Clock. It has a period 16 times that of the NRZ bit
stream. It is used by the drive’'s stepping circuitry. When connected to an SA4000, The Disk Qutput Clock
is the WriteClock. This clock has the same period as the bit stream and is used to sample it at the drive.

The SA4000 receives and sends NRZ data, so when connected to a SA4000, the Disk Output Data is the
straight NRZOQutput. The SA1000 requires pre-compensated MFM data, so in that case the output data is
translated. The single-ended version of the Disk Qutput Data is re-received by the Input Conditioning
circuits to test the board's data paths. ‘

MFM Encoding, Pre-Compensation and Address Mark Generation

Only when the controller is attached to a SA1000 type drive is this section used. As the title impliés, it
has three main purposes.

The MFM encoding rules were explained in the Constraints section above. This section of the OQutput
Conditioning circuitry encodes data according to these rules using a 5 bit shift register and a prom.

The prom is also used to calculate the amount of pre-compensation required. Data is stored on a disk in
the form of transitions in the polarity of magnetic flux on the media. The read heads can sense these -
changes and return a series of pulses, one per change. After being stored, the flux transitions tend to
physically migrate away from each other across the media. The degree to which they do this is one limit to
the recording density. This tendency may be counteracted by grouping the pulses so they spread out to
the correct locations. This means writing the pulses on the beginnings of bursts a little late, those on the
ends of bursts a little early. In the case of the SA1000, "a little" is about 10 ns. This is what is meant by
"pre-compensation.”" The prom produces each MFM transition along with a number representing the
transition's pre-compensation interval. The pulse is then sent through a delay line and a multipiexer is used
to pick the proper delay line tap for the output data.

In order to read the disk, the controller must derive a number of signals from the bit stream. First, a cloek
must be found and the bit stream decoded. This is done on the SA4000 drive with a buiit-in data separator.
The encoding will only be done properly if the read heads are first enabled over a series of Os on the disk.
The SA1000 controller has its own data separator and uses address marks to determine the clock|data
phase of the incoming data. After this, the controller must find the word boundries in the bit stream. The
controller uses a sync word of all ones when connected to the SA4000 and the address mark for the
SA1000 drive. Having found the field, the microcode must decide which field it has read. The SA4000 drive
supplies sector marks and the microcode knows the first field after the sector mark is the Header field. The
address marks for the SA1000 drive each contain a tag set only for the Label and Data fields. This tag may
be checked by the microcode along with the error flags. It replaces the SectorFound flag.

The Address Mark writing process is quite similar to ordinary encoding. The microcode supplies a word
whose MFM encoding is almost an address mark. The proper clock transitions are deleted to create the
address mark when the this NRZ pattern is seen and SyncWdFound is false.



A stable reference clock must be used to write the MFM data. When the processor's 51 MHz clock is
i divided by 6, a 117 ns clock results. The nominal 1/2 bit period for the SA1000 disk is 115 ns. The 2%
difference in period is easily accepted by the Shugart drive and allows us to dispense with a separate
crystal for the reference. During SA1000 write operations, the NRZClock is obtained by dividing the MFM
reference clock by two. Under this scheme, all controller clocks will be stable.
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Overview

The Input Conditioning circuitry is responsible for buffered clock, drive status and data signals for the
controller. These signals are based on the signals arriving from the disk, the operation being performed
" and the type of disk drive.

The SA1000 drive sends MFM data containing an encoded clock to the controller. The SA4000 drive
sends NRZ data with a separate clock signal. The Input Conditioning circuitry either derives or passes the
NRZ bit stream and generates an NRZClock signal from either the data, the disk clock or a stable reference.
The method used depends on the SA1000/SA4000’ signal and the operation being performed.

Constraints

In order to produce a stable stream of output MFM data, the Output Conditioning circuitry needs a stable
reference clock. This is provided by dividing the 25.5 MHz HalfClk signal from the display controller by 3to
produce a clock with 117 ns period, RefMFMClock. Because of the use of this clock, the data rate on the
-SA1000 is 4.27 MHz, not the 4.34 MHz maximum specified by Shugart During write operations a stable
“ NRZClock is obtamed by dw;dmg the RefMFMClock by two. ' - .

Because of noise considerations, the single ended status lines from the disk drive must be received by
Schmitt-Trigger buffer gates.

It is necessary to be able to tell the difference between an SA1000 type drive and an SA4000 type drive.
As little extra hardware as possible should be employed for this purpose. Switches and jumpers are
discouraged because of manufactunn'g component and field service considerations. Our solution to this
problem involves letting a spare wire on the SA1000 50 pin connector be grounded when connected to the
SA4000. The line is normaily pulled up.

The Clock and Data lines are differentially driven, hence must be differentially received. During write
operations, the single ended version of the output data is re-received and used as input data. This is done
to allow diagnostic microcode to test the controller's data paths. One could install an additional differential
receiver and receive the differential data, but the added cost is not justified by the added coverage. One
would need the new receiver and a multiplexer to test one driver.

The SA1000 drive must be supplied with a TnmmgCIock at 1/16 the bit frequency or 1/32 the MFM clock
frequency. The SA4000 drive needs a WriteClock that is locked in phase with the output blt stream. These
two clocks are created here and the proper one is sent on.

A data separator is needed for four purposes. First, it must recognize the address marks that serve as -
field boundries for the SA1000. Second, it must derive the NRZ clock used to send the data. Third, it must
derive the NRZ data stream from the MFM bit stream. Lastly, in recognizing the address mark at the
beginning of each field, it marks the positions of the bit stream’s word boundries.

The SA4000 has hard sectoring and provides the controller with sector marks. This feature is simulated
on the SA1000 by writing and recogmzmg address marks and tags within address marks. The Input
Conditioning circuitry must recognize the address mark tags and choose whether to send on the tag value
or the drive’s Sector signal.



SeekComplete Delay

The Seek Complete signal returned by the SA1000 drive is delayed until the heads have settled on the
new cylinder. This is not true of the SA4000 drive. An extra delay must be added when the SA4000 drive is
used. This delay is only active on the inactive to active edge of SeekComplete, allowing the microcode to
sense the loss of SeekComplete immediately. It is implemented by using the drive’s Seek Complete signal
to clear a counter. The counter is incremented by Sector pulses from the drive after the drive's

- SeekComplete goes HI. When the counter reaches 29, it stops counting and the stop signal is used as the
delayed SeekComplete. This delay could have been implemented in software or microcode. The time base
used by the Mesa software is too coarse for efficient operation. A microcode routine would burn 1/5 of the
processor for about 20 ms on each seek, a high price to pay. For these reasons, the delay has been putin
hardware. -

The SA4000 has an additional feature allowing one to turn off the holding current to the stepper motor by
releasing DriveSelect. This may result in a considerable power savings. Upon re-activating DriveSelect,
one must wait 20 ms for the stepper to re-acquire the cylinder and settle. The SeekComplete Delay
facilitates this by allowing the absence of DriveSelect to clear the derived SeekComplete. Thus by waiting
for SeekComplete, normally part of any operation, one may be sure the heads have settled no matter what
their previous state.

Divide by 3 Clock Generator

The 25.5 MHz HaliClk signal from the processor is divided by 3 to produce a stable reference clock for
the controller during write operations. It is also used to calibrate the Data Separator during seek operations
ana to generate the SA1000’s TimingClock.

Schmitt-Trigger Buffers

Shugart specifies that the status signals from the disk should be received by Schmitt-Trigger buffers.
This is done here. The RawSA1/SA4’ signal is also received in this fashion in case the cable is noisy.

Differential Line Receivers

The Differential clock and data lines from the.drive are received using differential receivers. When
connected to the SA1000 drive, the clock receiver is not connected to a differential signal and is not used.

Input Select Multiplexer

~ As explained in the Constraints section, the method for generating a number of signals depends on the
the type of drive attached. The Disk Qutput clock should be locked in frequency and phase with the data if
connected to an SA4000 drive but should change at 1/16 the bit rate when connected to an SA1000. The
NRZ Clock always bears the same relation to the NRZInput, but it must either be received from the SA4000
drive or derived from the SA1000 input data. The NRZInput is similarly either received or derived as is the
SectorMk signal. The SeekComplete signal must either.be delayed by 20 ms (8A4000) or passed on directly
(SA1000). The Input Select Multiplexer is used to choose among these alternatives.

Wrap-Around Multiplexer



In order to test the controller’s data paths, diagnostic microcode may read either the data that has been
~written (SA4000) or the Tag bit of the written address mark (SA1000). Only the driver and receiver chips are
not tested in the SA4000 test, the circuitry between the data separator output and shift register input is not

tested in the SA1000 test. The Wrap-Around multiplexer is used to receive the written MFM or NRZ data

stream. This is either decoded, the address mark being detected, or shifted into the shift register. This
tests not only the shift reglster and multiplexers but also the Data Separator in the lnput Conditioning
circuitry and the Encoder in the Output Conditioning section. To use the SA4000 version of the test,
diagnostic microcode should begin a write operation, then read data instead of writing it. The shift register
should contain a shifted version of the pattern being written. The shift accounts for the time taken to get
‘through the output and input circuits. So long as the write buffer is not changed by the microcode, the
same pattern will be continuously written. Hence after two words are written, the shift register will almost
contain a rotated version of the output word. The MSB of the ReadData register will always contain the LSB
of the pattern written as this is left over when the ReadData register is loaded.

One does not read the re-received data in the SA1000 version of the test. This is because jitter between
the derived NRZ clock and the reference clock prevents reliable transmission of re-received data to the
shift registers. The encoder and data separator are tested by having them gererate and recognize an
address mark and display the value of its tag bit. The tag bit is available in the SectorFound status bit as
always and may be checked by microcode. Note the circuitry between the data separator output and shift

“register input is not tested. The controller may be able to pass the wrap-around test, yet not read or verify
correctly. The only way to do a complete wrap-around would be to run the entire controller from one clock.
It as deemed more important to test the data separator’s ability to derive a clock and recognize data than to
test this relatively small section of the cnrcu:t

.- Data Separator

The Data Separator is only used when the controller is connected to the SA1000. drive. Two functions
are incorporated into the it. At the beginning of a field, it recognizes MFM address marks used to set the
clock|data phase of the incoming data and define the first word boundry in the bit stream. During data
transfer, it derives the NRZ clock and data signals from the incoming MFM data. The Operation field
determines which function is being carried out. During seek operations, the data separator maintains
calibration using the RefMFMClock.
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Overview

* The Dandelion Disk Controller may be used to control either one SA1000 type drive or one SA4000 type
drive. The SA1000 drive requires 2 cables, one 50 conductor and orie 20 conductor. These ribbon cables
are called HSIO50 and HSIOZ20 respectively. The SA4000 is mounted in a separate enclosure and requires
one 50 conductor round-wire cable, called ExtDk50, for signals and one cable for power.

Constraints

It must be possible to directly connect the controller to the internally mounted SA1000 type drive using
the two cables HSIOS50 and HSIO20. No intermediate connectors are permissible. No wires may be re-
arranged in the cables, if a signal connects to pin n on the controller, it must connect to pin n on the
SA1000 drive.

The SA4000 drive and the Dandelion processor reside in separate metal enclosures. A single 50 pin
round-wire cable, ExtDk50, is used for signalling between them. One end of this connector plugs directly
into the SA4000 drive, the other into a connector in the rear of the Dandelion chassis. To connectthe
controller to a SA4000 type drive, HSIOS0 and HSIO20 are connected to one side of this rear connector and
ExtDk50 to the other side. The connector contains internal wiring to route the signals in the SA4000 cable
to their counterparts in the two SA1000 cables.

The use of switches or jumpers to configure the controller board to the drive used is strongly
discouraged. It should be possible to configure the controller to the drive by simply plugging HSIO50 and
HSIO20 into either the SA1000 drive or into the rear chassis connector to ExtDk50. To this end, one of the
pins is unused on the SA1000 drive and grounded when connected to the SA4000 drive (HSI050.4). The
pin is pulled up on the Controller card generating the signal RawSA1/3A4’,

HS1050 and HS1020

The pin assignments for these two connectors is given of the left side of the drawing. The extra signals
needed by the SA4000 drive have been assigned to unused and spare pins on the SA1000 cables. These
are marked "NA" and "SPARE" on the Shugart drawings respectively. These cables should be pin-for-pin
compatible with the SA1000 cable specifications.

Signals whose meaning depends on the drive used have been given "neutral” names. For example, the
signal called "MFM Write Data" on the SA1000 and "NRZ Write Data" on the SA4000 has been named
"DiskWriteData" in this cable.

ExtDk50

The pin assignments for this cable are given on the right side of the drawing. In addition, the locations of
the named signals in HSIO50 and HSIO20 are repeated here. This should be an aid in wiring the rear
chassis connector. The HSIO50 and HSI020 connections to the ExtDk50 ground returns have been made
arbitrarily. Given signal X uses pin n on ExtDk50 and pin m on HSIOxx, the ground return on pin n + 1 of
ExtDk50 is generally the ground return on m-1 of HSIOxx. For example, SeekComplete’ is ExtDk50.22 and
HSI050.8. The ground return on ExtDk50.23 is the one on HSIOS50.7. The ground return pin assignments



may be changed by the cable maker if desired.
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Overview

The controller receives its control signals and output data through these circuits. The control
[information is divided into two groups, Drive Control and Operation. The write data is buffered in a single
16 bitregister.

DiskControl Register

The register is loaded by the processor when a "KCtl « xx" type instruction is executed in microcode.
This may be done as part of a Mesa "Output" instruction. The command word is divided into two parts
intended for the drive and the controller. The meaning of the bits in the Drive Control field are explained in
the appropriate Shugart manuals. A quick list of Operation bit meanings is given below, the interested
reader should consult the drawings where the bits are used for details.

In the Drive Control field, the DriveSelect bit has been included even though only one drive may be
connected at a time. ' This is because releasing DriveSelect has useful side effects. The SA1000 type drives
lack a FaultClear input, Write Fauits are cleared by de-activating the DriveSelect signal. The SA4000 drive
has a feature enabling it to cut the power to its stepper motors when not selected. This can resultin a
substantial power savings. The power may be cut by software when the drive has been idle for some
nominal interval. - When re-selected, one must wait 20 ms before using the drive. This time interval may be
sensed using the SeekComplete signal which is-automatically cleared when the drive is de-selected.

The FaultClear bit is only active when an SA4000 drive is connected to the controller. Write Faults on the
SA1000 are cleared by turning off DriveSelect as explained above. An SA4000 WriteFault is cleared by
activating both DriveSelect and FauitClear. '

The FirmwareEnable bit is set whenever the disk microcode is running. In addition to acting as a status
bit for higher level software, it is used to generate a service request for overhead operations.

BTransferEnable is set whenever a data transfer is taking place. The transfer operation encompasses
the recognition and writing of the VFO synchronization pattern, sync word and the CRC checksum as well
as transferring the data. When reset, all the state machines used to transfer or recognize data are reset.
Because of the number of loads on this signal and the timing requirements, this signal is produced by a
74574. If the 74L.S273 were used, buffers would be needed. Timing is critical when stopping an operation.
The combined propagation delay of the LS273 and buffers would prevent the controller from reliably
stopping a transfer operation before status resulting the from the word after the CRC checksum had been
posted.. The critical signal is WordBoundry'. During read operations, it will rise at the 0000 to 0001 .
transition of BitCount, clocking in new status bits. The control word stopping the operation may arrive with
about 60 ns to go before this transition. With the use of 74S74s to produce both BTransferEnable and
WordBoundry’, we may be sure of holding WordBoundry’ LO.

The WriteCRC bit causes the CRC checksum to be written at the end of a field. The BTransferEnable
and BWriteEnable lines must also be true for this to be accomplished.

WakeupControl.(0,1) are used to specify the condition generating the microcode service request. The
conditions allowed are:

TransferEnable | WakeupControl.(0,1) Condition

000 FirmwareEnable
001 SeekComplete-



010 SectorFound (valid only on SA4000)

011 : IndexFound

100 Word Ready from Read operation

101 Word Needed for Write or Verify operation
110 <no wakeup>

111 <no wakeup>

The WriteEnable bit controls the write amplifier on the drive. In addition, it is used by the controller to
decide when a write operation is taking place. The WriteGate to the drive is enabled only when
. WriteEnable and TransferEnable are true and Overrun is false. A buffered version of WnteEnable called
_RWriteEnable is used on the controller.

WriteData Register

Data to be written or verified is stored in this register. When needed, it is loaded into the SerialNRZ shift
register. One 16 bit buffer is all that is needed even at the SA4000 data rate. Because of the Dandelion
architecture, we can guarantee it will always be serviced before the next word is needed.
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Overview

This drawing shows all circuits used to send data from the controller to the processor via the X-Bus. The
Status and Test drivers send either the status of the disk and controller in response to «KStatus’ or
diagnostic test data in response to +«KTest'. Data read from the disk is buffered in the ReadData register
and read when «KlData’ is LO.

Coanstraints

1t should be possible to read all signals being sent to this disk. Thisisdone soa dlagnostlc program may -
decide whether a disk problem lies in the drive or in the controller. Since extra bits are available after
reading all signals sent, the un-buffered versions of signals received from the drive are generally available.

Independent drivers are used for the KStatus and KTest ports to reduce the time needed to release the
X-bus. A design with less X-bus loading would use a 3-state multiplexer, such as the 745257, However, a
gate would be needed to enable the outputs when either « KStatus’ or «KTest’ went LO. The extra
propagatlon time of this gate and the multiplexer would cause X-bus data to be held into the next cycle.

The display controller has no status port, yet it should be possible to read the control signals being sent
to the drive. The Horizontal Sync (BHoriz), Vertical Sync (BVert’) and both polarities of the Video signal are
available on the Test port. Diagnostic microcode can be used to sample these signals.

The clock edge used to update WordBoundry’ is the same one used to change SerialNRZ.(0..15).

. Because of this, sampling SerialNRZ.(0..15) with WordBoundry is hazardous. A buffer is needed before
the ReadData register to ensure the data sampled is stable when WordBoundry' rises. This is the ReadData
Buffer Register. Word Boundry’ is discussed more fully in HSIO51.bravo



File: HSIO49.bravo in [IrisK Workstation>HSIO>DDC-Q-Rev.DocDm
Contents: A description of the Service Request and Overrun machine as well as the Word Status buffer in
the Processor Interface section of the Dandelion Disk Controller.

.Overview

This is a relatively complex drawing. The top two thirds shows a circuit that generates the Service
Request (KReq’) and the Overrun signal flag. The two registers at the bottom of the drawing sample status
-flags at WordBoundry' intervals. A tranfer operation is stopped by writing the proper control word. This
word will be written at some time during the first word following the CRC checksum. Since the status flags
are sampled only at WordBoundry mtervals, the microcoder may be sure data bits following the checksum

do not effect the status.

Constraints

An 170 microcode task in the Dandelion processor runs only on request from its associated controller,
Service requests are used not only to let the microcode execute set-up and overhead tasks but also as a
means of sensing conditions without busy waiting. Clicks not used by 1/0 tasks may be used by the

Emulator task.

It should be possible for the Emulator to awaken 1/0 microcode. This is done by having the Emulator
write a control word to the 1/0 hardware which will cause a service request. This control word should not
only specify a condition but assure the condition is true or will become true. In the disk controller design,
the wakeup condition is set to "FirmwareEnable'=1" and that bit is turned on.

Several conditions should be sensed without busy wéiting, a praétice which’wastes controll store space
and time needed by the Emulator. Conditions which occur relatively infrequently may be used to generate
Service Requests directly. Such signals as SeekComplete, SectorFound and IndexFound are prime

candidates.

The microcode could run during all of its clicks during a data transfer, sensing if it was needed each
time, but this would require more complex code and another hardware status bit. For the SA1000, it would
also waste about half of its clicks. Thus a service request is generated when a word should be transferred.

To calculate when a data service request should be sent, we examine Roy Ogus’s memo
[IrislKWorkstation>notes>OLatencies.notes. The relevant formulas are:
Write, Verify Operations: 3Tr(c+2)-a<p<r(6T - tSetup)
Read Operation: Tr(3c+5)-a<{p< r(§T - tSetup)'
Where:

= processor cycle time
= .137 microseconds

isk bit frequency
.27 MHz for SA1000
.1 MHz for SA4000

non u
\l-hCL

= max number of clicks from end of one service click until end of the next
= 5 for the disk task

a = number of bits transferred at a time
= 16 bits/word



p = time at which service request should be sent in bit times before buffer is used.

tSetup = setup time for memory data register
= 0.05 microseconds :

For the SA1000,
-+ Write, Verify Operations: -3.71<p <3.30
- Read Operation: -4.30< p<2.71,

For the SA4000,
Write, Verify Operations: 4.54 { p <5.51
Read Operation: 3.56< p<4.53

For example, a service request must be sent some time between 3.3 bit times before and 3.71 bit times
after the SerialNRZ buffer is loaded during a write or verify operation when connected to an SA1000. Thus
the request may be sent at any bit boundry from 3 bits before to 3 bits after the load. Similar interpretations
apply to the other conditions. Note the SA4000 conditions are very strict. The Write and Verify operations
require a pre-request of exactly 5 bit times, the Read operation exactly 4 bit times. One should also note

that control words are actually written at the end of their cycles. One cycle is equal to 15/16 of an SA4000
- bit time, so one should realize a control word will be written approxmately one bit time later than the second
number in the inequalities indicates.

Anather way of looking at these numbers is to calculate when the service resulting from a given service
request may arrive. Say we take an SA4000 read operation as an example. The Serializer/DeSerializer
maintains a count in BitCount that ranges from 0 to 15. This count gives the number of bits in SerialNRZ
that have been shifted in but have not yét been read out. On the NRZClock transition loading the ReadData
Buffer, the first bit of the next word is shifted into SerialNRZ.15 so BitCount goes io 1. Thus the buffer is
loaded on the 0000 (= 16 MOD 16) to 0001 BitCount transition.. As seen from the last equation above, the
service request must be sent to its synchronizer 4 bit times before this, when BitCount « 13. The earliest ,
the processor, which is not synchronous with the controller, may read the buffer is at time 13 + 4.53 MOD 16
or time 1.53. This is only one half of a bit time after the buffer was loaded! Thé earliest time a control word
(like the one that turns off the operation) will be written is about at time 1.5+ 1 or 2.5. The latest time at
which the processor will service the buffer is at time (13 + 16 + 3.56) MOD 16 or time 0.56. This is only
one half of a bit time before the buffer will be loaded again! The calculations of the latest service assume
that it will take place at the end of the cycle, so the latest a control word may arrive is also at time 0.56.
Obviously, these requirements are quite strict.

Since events in the controller and processor are asynchronous, the service request from the processor
must be synchronized. This is done by sending it through two flip-flops in series clocked by the processor.
clock. Even if the first flip-flop enters a meta-stable state, the chance that it will remain in one for one
processor clock time is less than the probability that the chip will fail completely. Thus a chain of two flip-
flops is sufficient for synchronization at this clock frequency. :

The CRCError flag is only valid on the clock transition immediately following the last bit of the CRC
checksum. The WordBoundry’ signal must rise on this transition. The same consideration applies for the
VerifyError signal. Luckily the ReadData buffer should also be loaded on the clock transition immediately
following the last bit of each word, so the same signal may be used in all applications. Note the
RawCRCError signal is produced by a very slow chip, the Fairchild 9401, and the WordBoundry’ signal by a
relatively fast one, the 74574. The 9401 is clocked by NRZClock!, which is one gate delay (74S04) behind
NRZClock which clocks the 74874. Thus we feel safe that RawCRCError will not change by the time
WordBoundry’ rises.

The SWriteCRC signal controls combinational gating that allows the output data stream to be fed by the
CRC chip’s internal register. Each data or checksum bit is made availabie for transmission on the rising
edge of NRZClock and transmitted during that clock. SWriteCRC should go true on the first NRZClock
transition following the last data word of a field. This is also when WordBoundry’ rises, so SWriteCRC may
be clocked by WordBoundry' with the status signals and the ReadData register.



Detecting Processor Service

The processor may reply to a data service request by reading the ReadData buffer («KliData'), writing the
WriteData register (KOData«’) or writing the control register (KCtl+'). The last choice is included so that
the WriteCRC command may be sent instead of a data word without causing an overrun condition. The
three signals used are produced by a decoder on the CP board so must by synchronized using preWaitClk’
here. . ‘

The processor clock is not synchrorized with the controller clock. The processor has a 137 ns clock,
the controller either a 140 ns or 234 ns clock depending on the disk being controlled. Because of the
asynchrony and its longer period, the controller cannot depend on sampling to sense the processor's 170
signals. . o :

The method used to trap the processor’s service signal forces the signal to toggle a flip-flop output,
called ServiceTrap. Thisis done near the top of the page. The toggle method makes it possible to sense
the service signal without wasting prom outputs or time resetting a set-reset type indicator. The trapped
signal is synchronized using two register elements in series. The actual prom input is generated by
detecting the fact that the transition has reached a third register element using the exclusive-or gate.

In order to correctly calculate the Overrun condition, we must calculate the longest time a signal can
take in getting though this chain. Say the service completes just before the end of period m. Because of
the delay in the gates and the flip-flop, the transition may not enter the synchronizer chain until the
beginning of period m + 2. It may not exit until time m + 3. Thus the Overrun machine should wait until 3 bit
times after the last legal service interval before declaring an overrun. During a read operation, the
ReadData buffer is loaded at time 1, so the check is made when BitCount = 4. During write or verify
operations, the WriteData buffer is read at time 0, so the overrun check is made when BitCount = 3.

Generating KReq’ and Overrun

A number of signals are needed to generate these two flags. As shown in the constraint section, the
machine must know the operation being performed, the time within the field and the BitCount. To generate
the Overrun flag, it also needs the Serviced flag and the number of requests pending in RegState.(0,1).

BitCount cycles through the numbers 0, 1, ... ,15 as explained above and in HSIO51 .bravo.
SyncWdFound goes true on the NRZClock edge that ushers in the first data bit of the field (this is
immediately after the sync word). WakeupControl.1 and BWriteEnable specify the operation in progress. A
read operation is being done when both are zero. When WakeupControl.1 is set and BWriteEnable reset, a
verify is being done. A write is in progress when both are set.

- While ReqState.(0,1) is less than or equal to 2, it specifies the number of service requests pending. Two
requests may be queued when a pre-request is sent during an existing request. When equal to 3,
RegState.(0,1) indicates an overrun condition.

For a detailed explanation of the conditions used to set ReqState and Overrun, read the amply
commented code used to create the Prom shown in the drawing. This is filed as SrvcRegProm.mesa in
[Iris}KWorkstation>HSIO>Proms>DDCProms-Rev-A.dm.

The general idea used goes as follows: Service Requests are sent at fixed intervals and serviced at
random times within the following word. A service request for an SA4000 write or verify operation is sent
whenever BitCount« 11, regardless of the state of SyncWdFound. Note a pre-request must be sent before a
verify operation so the second word to be verified will arrive while the first is being checked. A Service
request for an SA4000 Read Operation is sent after SyncWdFound is true and BitCount«13. Service
requests during SA1000 Read, Write and Verify operations are ail sent when BitCount«0.



Calculating the next value for ReqState is done in two steps. First a check for an overrun condition is
done. If this conditions does not hold, a check is made to seeiif the number of pending requests should be
increment or decremented. '

The overrun conditions occur if a) one already exists (it is cleared by stopping the transfer), or b) two
requests are pending (ReqState = 2), the relevant buffer is needed and it has not been serviced. Actually,
this is determined 3 bit times after the buffer is used because of the delay involved in creating the Serviced -
flag. As discussed in the previous section, the check is made when BitCount = 4 during a read and when
BitCount = 3 during a write or verify operation. This applies to both SA1000 and SA4000 operations.

If it is either not time to check for overrun, fewer than two requests are pencing or the buffer was
serviced at the last second, we check to see if the number of requests pending should be increased or
decreased. If no requests are pending, the Serviced line is ignored. If itis time to make a request _
(BitCount = 12 for an SA4000 read or 10 for an SA4000 write or verify or 15 for any SA1000 operation), the
ReqState is incremented. If a previous request was serviced (Serviced = true) and 0<ReqState<3, RegState
is decremented. If both conditions hold true, they cancel out as the new request replaces the old.

N'bte the conditions used to generate requests are different for the SA1000 and SA4000 type drives. The
Service Request prom uses the SA1000/SA4000’ signal to generate the proper request at the proper time.

At the beginning of a verify operation, a pre-request must be sent before the first word is checked. This
allows the second word to arrive in time. When using an SA4000 disk, this is done by sending a request
whenever BitCount = 11, even when the synchronization word is being recognized. When.connected to an-
SA1000 drive, BitCount skips 11, going directly to 15. Luckily, this is when the SA1000 sends all requests
anyway. . .

KReq’ Multiplexer and Synchronization

The 8:1 multiplexer in the middie of the page is used to select the condition producing the service
request. ltin turn is controlled by the BTransferEnable and WakeupControl lines. With these, the
microcoder may select the condition used to cause a service request. These have been discussed in the
Constraints section.

The service request is synchronized to the processor clock using two registers in series. While the first
may enter a meta-stable state, it will recover by the time the processor clock strobes the second register.
Hence, the request sent to the processor will be stable.

When debugging new microcode, the multiplexer is an excellent chip to watch, especially if the disk
stops unexpectedly. The process of verifying that a service request is being sent or determining why it is
not being sent usually begins here.

Status Word Buffer

Some of the status and control signals must only change on word boundries. This was discussed in the
Constraints section above. The register in which the signals are strobed is shown at the bottom of the
page. Some of these signals change on the rising edge of NRZClock, as does WordBoundry’. 1t would be
hazardous to sample the former with the latter. The buffer register inserted before the Status Word Buffer
samples the signals on the falling edge of NRZClock when they are stable. This is in turn sampled on the
rising edge of WordBoundry’ (which is in the rising edge if NRZClock) when it is stable. The status flags are
cleared under processor control by executing the ClrKFlags command. Note the ClrKFlags’ signal is ’
produced by a decoder on the processor so must be synchronized before being used.



Note also the WriteEnable signal is delayed 5 bit times here. This is to ensure it does not turn off while
bits are still in the SA1000 or SA4000 pre-compensation circuits. There are shift registers in these circuits
used to encode the NRZ data and calculate the proper pre-compensation intervals. If the processor
responds to the last service request of a write operation very quickly, it can disable WriteEnable before the
CRC checksum is entirely written. Having the microcode wait an extra word would solve the problem were
it not for the fact that the extra overhead causes a sector to. be too long. This has been determined
empirically. With the extra overhead, the microcode takes Ionger to process a sector than the disk head
takes to pass between two sector marks. Thus the WnteEnable is held up in hardware until the last bits
have been written out.
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Contents: Description of SerialINRZ shift register, CRC Checker/Generator and Verify checker in
Serializer/DeSerializer portion of Dandelion Disk Controller : .

Overview

Some of the more interesting data paths in the controller are on this drawing. The shift register used to -
do the serial to parallel and parailel to serial conversion is shown as the top two chips on the page. The
CRC Checker/Generator and associated circuitry are below it and the Verify checker is at the bottom of the
drawing.

Constraints

One of the main functions of the controllér is to convert data from the discrete 16 bit words used by the
processor to the continuous serial data stream used by the disk drive. A single shiit register may be used
for both tasks as only one operation is performed at a time.

It must be possible to both réad words frbm and Write words to the shift register. In order to avoid the
control circuitry associated with a tri-state bus, 74199s were chosen as the shift register chips. These have
separate pins for their parallel inputs and outputs. - .

Each sector is composed of three fields, Header, Label and Data. A 16 bit CRC checksum must be
generated and checked for each field. The first checksum bit must be available as soon as the last data bit
of the field has been written. The results of the CRC checker must be available as soon as the checksum
has been read in. This could all be done in microcode for the read and write operations. The checksum
would be a simple exclusive-or of all the words. Unfortunately, the verify operation would require that data
be both read from the disk to be checked and written to the disk to be verified. The SA4000 data is only
guaranteed to be stable during one cycle, so it may not be both read and written. For this reason, the CRC
is done in hardware.

The CRC Generator must use the shift register output cata to compute the checksum in order for the first
bit of checksum to be ready directly after the last bit of data. The CRC Checker must use the shift register
input data so its error flag will be ready as soon as the CRC checksum has been read in. Were we to relax
this constraint and allow an extra word of waiting time in each field of each sector, more time would be
needed to process a sector than exists between sector pulses on the SA4000. For these reasons, a
multiplexer is needed on the CRC Generator/Checker input. )

The CRC checksum must be appended to the data stream. This requires a multiplexer in the output data
stream. .

The CRC Checker/Generator must be enabled at exactly the same time relative to each field being read
or written. Obviously, the checksum calculated depends on the input bits, hence on the time during the
field at which the CRC chip is enabled. It is necessary to check every bit in the data portion of the field, the
synchronization word may be ignored. For these reasons, the CRC chip is enabled when SyncWdFound
goes true. This is on the NRZClock edge that presents the first data bit tothe chip.

Like the CRC chip, the Verify checker should be enabled when the first data bit appears. Thus .
SyncWdFound is used here too. Since the verify checker compares data bits at the shift register input with
memory template bits at the shift register output, the first bit of the memory template must also be present in
SerialNRZ.0. This is done by having the microcode pre-load the first data word into the WriteData register
and controlling the shift register parallel load input. This signal, PLdSerialNRZ’, is held LO until
SyncWdFound rises. Thus while the synchronization word is being recognized, every NRZClock transition
loads the SerialNRZ register with the first memory template word. Note that the WriteData register and



SerialNRZ shift register contents are cleared by the absence of BTransferEnable. Thus the first memory
template word must be sent after the control word starting the verify operation but before the sync word is
found. Thus it is necessary that both the control word and the first data word be sent in the same click
since the control word will cause the service request to be turned off until the sync word has been found.

SerialNRZ Buffer

This is a shift register as described above. It may be both loaded and read in as a single word. ltis
cleared between transfers so that the first word of a write will always be 0000...00. That is the VFO
synchronization pattern. ,

WriteData Multiplexer

The CRC checksum must be appended to the data field. This is done using this multiplexer. One half of
a dual 4:1 multiplexer was used so the other half could serve as an independent 2:1 multiplexer. This other
half is now used to supply a reference clock to the coniroller's Phase Locked Loop during seek operations.

CRC Generator/Checker

As explained above, a CRC chip both generates and verifieé a checksum over the data portion of each
field. A multiplexer is needed so the CRC chip may receive its input from the shift register input during read
and verify aperations and from the shift register output during write operations.

The Generator/Checker’s internal shift register is held equal to - 111...11 (preset) until the first bit of the
data portion of the field being written or checked is ready. Note the checksum of a field of zeros is not zero.
This fact allows us to detect an error in a field of zeros which has been cut short. This is a fairly common
pattern.

The RawCRCError signal is sampled in the Processor Interface machine. Itis valid on the first clock
edge after the last checksum bit has been sampled.

Verify Checker

The controller must be able to compare data on the disk with that in memory. This is done by sending
the memory data to the controller as the corresponding data is read from disk. These bit streams are
aligned so that memory data arrives at the shift register output at the same time the disk data arrives at the
input. The correspondmg memory and disk bits are compared using the exclusive-or gate shown, the
results being recorded in the D flip-fiop.

Once this flip-flop is set, the Q' output holds it set. When resetting this flip-flop, the Q' output is
immediately raised, relaxing the set input and allowing the Q cutput to be reset. The BitVerifyErr output is
sampled by the Processor Interface on WordBoundry’ intervals. The actual VerifyError signal sent in the
status word is delayed by one word time. This is done because it should become valid with CRCError. The
latter signal is not valid until the CRC checksum has been read, or one word time after the last data word.
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Contents: Description of Field and Word State Machine in Serializer/DeSerializer portion of Dandelion Disk
Controller

Qverview

In order to generate Service Requests to the processor, enable the error checkers and detect the word
boundries in the serial data stream, it is necessary to know the current position in both the field and the
word being transferred. These quantities are calculated in the circuits shown here.

BitCount.(0..3) records the position in the SerialNRZ shift register of the word being transferred.

SyncWdFound goes true on the first clock tick after the synchronization word or address mark has been
received. This enables the error checkers and forces the state machine to switch from synchronization
mode to transfer mode.

The PLdSerialNRZ' signal is used to parallel load the SerialNRZ shift register.

WordBoundry' is used to load the ReadData buffer with a word from the disk as well as to sample status
and control flags.

Constraints

The process of determining the word boundries in a bit stream has two parts. One must find the first
word boundry, then count bits from that point. The BitCount.(0..3) outputs of this machine may be used for
both purposes. When searching for a field boundry on the SA4000 drive, they.hold the number of valid
synchronization word bits found. The end of the synchronization ward marks the first word boundry. After
this, BitCount.(0..3) is incremented modulo 16 marking subsequent word boundries.

In order to tell the difference between these two modes of updating BitCount, another signal is needed.
This is SyncWdFound. When reset, BitCount is used to synchronize. When set, BitCount is always
incremented. Since it rises at the beginning of the data field, SyncWdFound also serves to enable the CRC
and Verify error checkers.

The field boundries are indicated by address marks, not synchronization words on the SA1000 drive.
This is because the SA1000 drive returns no sector pulses from which one could find fields. The address
marks contain illegal, but recognizable, MFM patterns so they will not be mistaken for ordinary data. The
address marks are recognized by the Input Conditioning circuits. The AddrMkFound signal is set at the
beginning of bit 14 of an address mark. The first rising edge of NRZClock occuring while AddrMkFound is
true supplies bit 15 to the Field and Word Status Machine. This forces the Word state machine to set
BitCount to 15. The value of BitCount automatically increases to 0 on the next NRZClock and
SyncWdFound is set, just as if the SA4000 synchronization word had been seen.

Note that two synchronization operations are happening in parallel when the SA1000 is connected. The
address mark machine is looking for an address mark while the Word and Field state machine is looking for
a sync word. We must be able to guarantee that a sync word is not seen until the address mark has been
found. This is complicated by the fact that the head will be traveling over arbirtary data fields looking for an
address mark. This problem is simply solved by connecting the derived NRZClock to AdrMkCnt.4 and the
NRZInput to AdrMKCnt.2. So long as nothing lookmg like an address mark goes by, AdrMkCnt.(0..4)
oscillates around 0, 1, 2 and 3, so AdrMKkCnt.2 is zero. When an address mark is being recognized,
AdrMkCnt.2 spends no more than 4 consecutive clock ticks at 1, so cannot look like a 16 bit
synchronization word. Thus BitCount.(0..3) will stay less than 4 until AddrMkFound arrives.



During write operations, the microcode supplies the VFO synchronization pattern (several words of
zeros), the synchronization word or NRZ version of the address mark, the data and a command used to
write the CRC checksum computed by the CRC chip for each field written. BitCount must be incremented
modulo 16 even during the synchronization pattern so Service Requests will be generated properly.
SyncWdFound, however, should not be set until the synchronization word or address mark is sent out. If it
were set early, the CRC Generator would not be properly initialized. This is the reason both the
synchroniztion word and address mark have a 1s in bit 15. This lets us set SyncWdFound as soon as
BitCount = 15 and CRClInput =1. :

Early versions of the controller would not set SyncWdFound or advance BitCount beyond 15 untila "1"
was seen during Read or Verify operations. When connected to an SA1000, a service request is sent
whenever BitCount = 15. If a string of clata errors caused by the PLL losing phase synchronization with the
incoming pulse stream occured at this time, multiple service requests would be'sent. This could result in
very strange data errors, sometimes in an overrun. In order to force the error indicators to more closely
reflect the error cause, the potential delay at BitCount = 15 was eliminated. That is, if BitCount = 15 and the
operation is Réad or Verify, BitCount always gets 0 and SyncWdFound is always set on the next rising
NRZClock edge. Now any data error will correctly be caught by the Verify or CRC checker.

While SyncWdFound is false, the number in BitCount.(0..3) is defined to be the number of sync word bits
recognized while finding the first word boundry. While transferring data it is defined to the number of bits
shifted into but not yet read from the shift register modulo 16. When the register is full during read
operations, the data is read and a new bit is shifted in on the same clock pulse. Thus the number of unread
bits ranges from 1 through 16 and BitCount ranges from 1to 2 to 3on up to 15 then 0 (0= 16 MOD 16). The
word boundry during read operations is on the 0000 to 0001 transition,

When the shift register is parallel loaded during write or verify operations, BitCount«0000. Thisis
because none of the resuiting bits in the register were shifted in, all were parallel loaded. The buffer is
shifted and bits are written or verified while re-received or verified data is shifted in. BitCount eventually
gets up to 1111. On the next clock pulse, the cycle starts over, the first bit of the new word is loaded to
replace the last bit of the old word in SerialNRZ.0. During write and verify operations, the word boundry is
on the 1111 to 0000 transition.

The SerialNRZ register is loaded when the NRZClock rises and PLdSerialNRZ' is LO. As seen above,
this should happen on the 1111 to 0000 transition of BitCount. Hence PLdSerialNRZ’ is lowered if the
operation is write or verify and BitCount= 1111, .

- There is no time during a verify operation to request the memory version of the first data word to be
verified after recognizing the synchronization word. The first word must be pre-loaded in the SerialNRZ
register. To both load it and prevent it from being shifted out while synchronizing, PLdSerialNRZ' is also
active while the operation is verify and SyncWdFound is false. The first word is repeatedly loaded while the
sync word is being found. Since both the WriteData register and the SerialNRZ shift register are cleared so
long as BTransferEnable is LO, the first data word must be sent after the control word that begins the verify
operation. This control word causes the hardware to turn off the Service Request until it needs the second
word of the field. Hence, the first data word must be sent in the same click as the initial control word.

WordBoundry' is used during all three types of operations. It is used to clock the ReadData register and
to clock the Word Status buffer. The former holds data read from the disk, the latter status and control lines
that should only change on word boundries. WordBoundry’ will always serve its purpose if its trailing, or
rising, edge rises on the current boundry between words. During read operations, it is LO while
BitCount = 0000 since the next clock edge is a word boundry. Dunng verify or write operations, itis LO
while BitCount = 1111 for the same reason. Note that WordBoundry' is produced by its own 74S74. Thisis
a simple solution to a complex problem. Both the status signals, like BitVerifyErr, and WordBoundry’
change in response to NRZClock, hence it is hazardous to-sample one with the other. For this reason, the
Word Status Buffer Register samples the status signals for the Word Status register on drawing HS1049.sil.
The WordStatus Buffer Register samples the signals on the falling edge if NRZClock so they will be stable
by the time WordBoundry’ changes. Unfortunately, the RawCRCError signal is produced by a very slow
chip, the F9401. The error flag may not be stable by the time NRZClock falls {~70 ns after it rises).
However, this very slowness allows us to guarantee it will not change within 10 ns after NRZClock rises. If



WordBoundry’ can be made to react to NRZClock very quickly, RawCRCError may be sampled directly.
This is what has been done. Note RawCRCError goes directly to the Word Sta’tus Register on HSI049.sil
and WordBoundry’ is produced by a fast 74574.

When not transmitting data, the hardware state variables should all be reset.. This is done by resetting the
prom output register when BTransferEnable is LO. This ensures that on initialization of a read or verify
operation, no bits of the synchronization word have been recognized. It also says that when beginning a
write operation, BitCount = 0000 so the: SerialNRZ register is full of data. This happens to be true since the
first word written is always 000...00 and the shift regsiter contents are cleared by the absence of
. BTransferEnable. .

Field and Word State Machine

The interesting points about this machine were described in the Constraints section above. ltis
implemented using two 1024x4 proms and a register. | have standardized on 1024x4 proms because of the
extra costs mvolved stocking multiple types of proms and because 512x8 proms are extremely difficult to
obtain.

. Alisting of the rules used to generate the prom contents may.be found in FIdWdProm.mesa in
[Iris]KWorkstation>HSIO>Proms>DDCProms-Rev-A.dm.
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Contents: Description of the MFM Encoding, Pre-Compensation and Address Mark Generation crrcurtry of
the Output Conditioning section of the Dandelion Disk Controller.

Overview

This section of the controller is used only when writing data to the SA1000 disk. It contains circuits for
.encoding the NRZ data stream into MFM, calculating the pre-compensation interval and generating
address marks.

The prom machine at the top of the page generates the MFM data to be V\rritten. The delay line and
muttiplexer below implement the pre-compensation delay.

Constraints

The SA1000 drive does not contain a data separatar, it is included in the controller. One section of a
‘data separator encodes MFM data, another decodes it. The decoding section is in the Input Conditioning
circuits of the controller in our implementation. The encoding section is shown here. Along with encoding
the data, a data separator must calculate a pre-compensation interval.

' Informatnon is carned on the disk medlum as a series of changes in the polanty of magnetic flux. These
transitions are written by changing the polarization of the write heads. The transitions may be sensed as
they drive a current in the read heads. Flux transitions written on the medium tend to migrate away from
each other, limiting the bit density. This tendenéy may be counteracted by grouping closely spaced
transitions even more closely. When these transitions spread out, they will be aligned properly. To do this,
transitions on the beginning of a group are wntten a little late, those on the end of group a little early. In our
case, "a little" is 10 ns. This process is called "pre- compensatlon

There is no separate clock recorded with the disk data, the data must be encoded so a clock may be
recovered from it. A simple scheme would be to record at least one flux transition with each bit to act as
the clock. The recording method must also allow a high bit density, i.e. as few flux changes per bit as
possible. The MFM (maodified frequency modulation) rule gives a reasonable compromise. Under MFM
encoding, each NRZ bit is broken into two halves, call them clock and data. A flux transition may be sentin
either half. Say we represent a flux transition by "1" in this discussion. An NRZ 1 is always encoded as
clock|data = 01, i.e., it has a flux transition in the data half of the bit. An NRZ 0 is encoded as clock|data =
10 unless the previous bit was an NRZ 1. In that case, the 0 is encoded as clock|data = 00. The point of
the exception is to eliminate transitions in consecutive bit halves (if there is a flux transition in the data half
of a bit, there is no transition in the adjoining clock halves and vice-versa). This rule results in a maximum
of one flux transition per bit (for a string of ail zeros or all ones) and a minimum of one every two bits (for a
string of alternating ones and zeros).

The data must be written on the disk using a stable reference clock. This gives the greatest margin of
error for motor rate changes and other variances. In order to-test the data separator in the Input
Conditioning circuits, the séparator must derive a clock from the re-received data. [f this clock were also
used to send the data, it would be subject to drift, so it may not be used. While performing a write
operation, MFMClock and NRZClock are derived from the stable processor clock. When the 51 MHz
display bit clock is divided by 6, a 117 ns clock is obtained. This is within 2% of the nominal 115 ns double
frequency clock used by the disk, so the 117 ns clock is used. Besides nat having to instail an extra crystal
and stable oscillator, this scheme has another benefit. Transitions are not packed quite so densely on the
disk so the error rate should be lowered. :

An accurate method must be found for delaying the output data 10 or 20 nanoseconds to implement pre-
compensation. Thisis done here with a tapped delay line and a multiplexer. Itis assumed the propagation
delays are the same for all the multiplexer’s data inputs. Note pre-compensation should only be enabled on



the more densely packed inner tracks. This is where ReducelW is set, so it is used as an enabling signal.

Encoder, Pre-Compensation and Address Mark Prom

This prom has several functions. The data being sent to the disk must be encoded using the NRZClock,
the present and the previous data bits. The pre-compensation interval must be calculated using the
present bit, the previous two bits and the next bit. Finally, the pattern existing when the address mark is
written must be recognized. This can be done using SyncWdFound, the present bit and the previous three
Gits.

Note the inputs to the encoder prom must be synchronized with the RefMFMClock. This is because they
would arrive too late in the prom cycle to be used if sampled directly.

All these functions may be done using the bit to be encaoded, the previous three bits and the next bit. it
would be possible to use a 5 bit shift register as the encoder input. Instead, the prom acts as the shift
register while using the bits as inputs. The data is shifted in as BNRZWriteData to NRZpWrData.4. ltis
shifted up through NRZpWrData.0, one shift on each Hl to LO transition of NRZClock. One might think LO
~ to Hl would be better, but the synchronizing register should allow a full NRZ bit time for its inputs to settle
(the CRC chip is slow) so its useful samples occur on the rising edge if NRZClock. Thus the prom machme
sees new data from the synchronizing register when NRZClock goes LO.

For a detailed listing of the prom contents, see the Mesa program used to generate the prom. Thisis
stored as EncodmgProm mesa in [Iris]KWorkstation>HSIO>Proms>DDCProms-Rev-A.dm. Since 256x4
proms are much easier to obtain than 512x8 proms, this machine has been constructed from the two 256x4
proms, not one 512x8.

The UnCompMFM is produced by examining NRZClock, NRZpWrData.3 and NZpWrData.2. The bitin
NRZpWrData.3 is the one being encoded. Since new data appears when NRZClock goes LO, this signals
the time to produce a clock as opposed to a data transition. When NRZpWrData.3isa 1, UnCompMFM is
sent as clockldata =01. When both NRZpWrData.3 and NRZpWrData.2 are 0, UnCompMFM is sent as
clock|data = 10. When NRZpWrData.3 = 0 but NRZpWrData.2 (the previous bit) equals 1, UnCompMFM is
sent as clock]data =00. This is the standard MFM encoding rule. There-is an exception to this rule used to
write address marks. This is explained below.

An address mark may be encoded as long as SyncWdFound is reset. During read and verify operations,
the write data is ignored anyway, so the encoding does no harm. The NRZ form of an address mark is
10100001 010000T1. In the MFM version, the zeros in bits 5 and 12 (italicized) are written without their
clock transitions. It is hoped that this duplication of illegal conditions will prevent normal glitches at the
ends of written fields from looking like address marks. The "T" in bit 14 represents a tag bit used to
distinguish Label and Data field address marks from Header field address marks. It is set in the Label and
Data field marks. Only two types of words are written while SyncWdFound is reset. One is the all zero word
used to synchronize the phase-locked loop section of the data separator. The other is the address mark.
The bit on which the clock transition is to be omitted is recognized by seeing NRZpWrData.0 is a 1 while
NRZpWrData.(1..3) are alf zero. Note Bit 15 of the address mark word is on the encoding and Field state
machine inputs at the same time. This is during the time Bit 13 is being encoded, so Bit 12 will have already
had the address mark written properly. On the next NRZClock edge, SyncWdFound will go HI turning off
the address mark encoding.

The pre-compensation intervals are derived from the Shugart controllers. A bit is either sent on time
(PreComp =01), 10 ns early (PreComp = 00) or 10 ns late (PreComp = 10). The interval encoding is given
below. The bitin NRZpWrData.3 is being encoded.

NRZpWrData.(1,2,3,4) PreComp.(0,1)
0001, 0110, 1110 00 (minimum delay)

0000, 0010, 0100, 01 (normal delay)
0101, 0111, 1001,



1010, 1100, 1101,
1111

0011, 1011, 1000, 10 (maximum delay)

Pre-Compensation Delay and Multiplexer

As explained above, the pre-compensation delay is actually implemented using a delay line and a
multiplexer. The pulse is fed into the delay line as the proper tap is chosen. By the time the pulse reaches
the first tap used, the multiplexer is set up. Note only the leading edge of the pulse is used by the drive.
Also note there is no danger of running pulses together since the MFM encoding rules ensure there are no
consecutive pulses. ‘ : )
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Overview

This is a fairly simple drawing. Shown are the differential and single-ended drivers used to buffer the
disk data and control signals. :

Constraints

Shugart specifies that differential drivers must be used for the data lines. The SA1000 disk specifies
open-collector differential drivers, the SA4000 specifies active pull-up drivers. Since it is necessary to use
the same physical chip for both disks to eliminate the need for jumpers, the active pull-up 75114s are used.
The fact that the SA1000 drive uses resistor pull-up while the 75114 is using active pull-up on the other end
of the wire is of no consequence.

Either NRZ or MFM data may be sent on the data lines. A multiplexer controlled by the SA1000/SA4000°
signal is used to choose between them. It is assumed that this will not affect the MFM pre-Compensation.
That is, if a pulse reaches the multiplexer 10 ns late, it will leave the multiplexer 10 ns late.- )

The specifications for the SA1000 disk require that the differential lines for the write data be in the
negative (DiskWriteData + at a lower voltage than DiskWriteData-) state while reading.. The SA4000
specification gives no requirement. Thus UWriteEnable may be used to enable the data driver. This signal
rises as soon as BWriteEnable but remains on for approximately 5 bit times after BWriteEnable falls. This
allows data remaining in the MFM encoder to be written at the end of an SA1000 write operation.

The SA1000 drive needs a clock for the stepping circuitry. It should have 1/16 the frequency of the bit
stream. The SA4000 drive requires a clock used to strobe each bit of the incoming NRZ data. The input
Conditioning section of the controller generates both clocks and sends the proper one on
DiskOQutputClock.

Both drives specify open collector buffer gates for the single ended control signals. These are driven
here with either open collector inverters or open collector nand gates.

Only the SA4000 drive requires a ReadGate signal. This is to be sent each time a non-write data transfer
is taking place. It must not be active at any time WriteGate is active, the disk will sense this as a WritefFault.
Clearly, ReadGate should be the combination of BTransferEnable and some version of WriteEnable which
causes it to be active during all non-write type operations. This version of WriteEnable must become active
more quickly than DWriteEnable at the beginning of a write so ReadGate is inactive by the time WriteGate
appears. This is not difficult since DWriteEnable is delayed 5 bit times from WriteEnable. The version of -
WriteEnable used must also become inactive more quickly than DWriteEnable but more slowly than
BTransferEnable. If it were faster than BTransferEnable, there would be a ReadGate pulse at the end.of
each write operation, causing a WriteFault. Finally, the version used must not be generated by a register
clocked by NRZClock or NRZClock’. The reason for this is a bit obscure. Since the signal is slower than
BTransferEnable, there will be a ReadGate pulse at the beginning of each write operation (transfer without
write = > read). This does not generate a WriteFauit because ReadGate should have returned to the
inactive state by the time DWriteEnable turns on WriteGate. However, whenever ReadGate is sent, the
drive turns off NRZClock while it locks on to the data being read. It had been generating the clock using
the SA4000's clock track. The write operation will be delayed until NRZClock reappears to turn off
ReadGate and turn on WriteGate via DWriteEnable. The time taken to acquire this clock is normally short
but may go up to a few microseconds. This delay at the beginning of write operations has two bad effects.
First, a subsequent read of the field may start before the synchronization pattern, causing the disk VCO to
decode the rest of the field incorrectly. Second, one may not be able to fit all the data needed for a sector
between the sector marks on the disk. The version of WriteEnable chosen is UWriteEnable. Ittwo gate



delays later than BWriteEnable. This makes it safely slower than BTransferEnable, safely faster than
DWriteEnable and keeps it independent of NRZClock or NRZClock’.

The WriteGate signal is required by both disk drives. It is active only when a write operation is taking
place and an overrun has not yet occured. By using the overrun flag to stop write operations, the-damage
caused by an incorrectly started or interrupted write operation is limited to a single sector.
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Contents: Description of H31054.sil, sHS!060.sil, pHSIO80.sil and pHSIO61.sil; the Analog Phase Locked
Loop in the data separator of the Input Condmonmg circuits for the Dandelion Disk Controller.

Overview

One task of the data separator used for the SA1000 drive is to synthesize a clock from the received data
stream. This is done using an analog phase locked loop. A digital circuit designed to perform the same
function was tried, but its error rate was at least 20 times that of the analog version.

The phase locked loop used here is copied from Shugart. Thay used it on their floppy disk controllers
and SA4000. It contains a adjustable potentiometer. It seems to be fairly sensitive to this adjustment. A 10
to 15 ns difference in the phase of the clock reiative to the average pulse arrival time seems to make a
significant difference in the soft error rate (factors of 10 to 100). - .

The timing elements used are discrete capacitors and inductors. The actual control element is a diode
‘whose capacitance changes as a function of bias voltage. This controls the oscillator’s loop capacitance,
hence its frequency.

Constraints

The bit stream arriving at the circuit is encoded using the MFM (modified frequency modulation) rules.
The disk drive returns a 50 ns pulse each time a flux transition is sensed. Say we divide each bit into two
halves, clock and data. We will represent the presence of a transition in a bit half by a 1, the absence by a
0. An NRZ 1 is encoded as clock|data =01. An NRZ 0 is encoded as clockldata 10 unless the previous
NRZ bit sentwas a 1 In that case, the zero is encoded as clock|data = 00.

From these rules, it can be seen that between one half and three halves of a bit may elapse between
received pulses It seems obvious that the oscillator should run at twice the NRZ bit rate so the MFM pulses
always arrive on cycle boundries. The frequency of the internal oscillator may only be adjusted when a new
pulse arrives. In particular, it might only receive a correction term once every three cycles, so care must be
taken to avoid over-correction. The oscillator should be quite stable, yet able to lock on to the data in a
new field quickly.

The phase locked loop should be capable of locking on to the signal in 60 bit times. Adding two words
for start-up uncertainty gives a 7 word lock-on pattern.

The oscillator may drift out of lock if shown érbitrary data for a reasonable length of time. During seek
operations the disk data outputs are arbitrary. During this period, the PLL is shown the reference clock, -
RefMFMClock.

Phase Locked Loop

The circuit is most easily understood by looking at HSIO54.sil, pHSIO60.sil and pHSIO61.sil. The
drawing sHSIO60.sil is a version of the circuit shown on pHSIOB0.sit and pHSIOE1.sil. Drawing sHSIO60.sil
is used for building the stichweld card. Printed circuit cards may have discrete components placed almost
arbitrarily while all stichweld discretes must be mounted on platforms.

As explained above, this circuit is copied from Shugart. The version of the circuit used on the SA4000 is
explained on page 7 of the SA4000 Fixed Disk Drive Service Manual.



The purpose of the PLL is to generate a clock that is exactly 180 degrees out of phase with the average
" pulse arriving from the disk. Using this clock, the rest of the data separator may decide whether a given
clock or data window contains a pulse from the disk, hence may decode the disk data. Data pulses from
the disk may jitter, that is some arrive early, some late. One may even see a string of early pulses, so
correction should not.be too drastic. Having the clock 180 degrees out of phase with the data gives the
maximum leeway for both mis-timed pulses and incorrect compensation.

The input pulses are caught in the flip-flops on HSIO54.sil; producing CompareEnable and InputPulse.
CompareEnable enables the InputArrived and ClockArrived flip-flops. InputPulse is delayed by 50 ns, then
sets InputArrived. The rest of the circuit attempts to adjust the phase and frequency of DrvMFMClock so
DrvMFMClock’ arrives at the same time as DellnputData. If InputArrived is raised before ClockArrived, the
frequency is raised to catch up. If ClockArrived is first, the oscillator frequency.is lowered. Whenever both
are set, ResetCompare’ goes LO, resetting the circuit. CompareEnable is used to ensure a comparison
takes place only when a pulse from the-disk actually arrives. The delay line gives the clock a reasonable
chance to arrive between the time the comparison circuitry is activated and InputArrived is set. Without the
delay, it would be impossible to detect an early clock pulse. ‘

We proceed now to pHSIO61.sil. InputArrived and ClockArrived are filtered at the top of the page,
producing PumpUp and PumpDown respectively. These are used by the totem-pole circuits on the bottom
of the page. Normally, both PumpUp and PumpDown are inactive (PumpUp’ and PumpDown’ are active).
This means the Q103-Q104 totem-pole is turned on. The LM741 and C134 provide an error correction term
with a long time constant. They change only very slowly in response to many consecutive bit errors.

When InputArrived or Clock Arrived becomes active, half of the Q103-Q104 totem-pole turns off and half
of the Q102-Q105 totem-pole turns on. Say PumpUp goes active. Then Q102 turns on, raising DCError.
This is the voltage used to control the oscillator. Similarily, if PumpDown arrives first, DCError is lowered.
This is filtered using the resistor-capacitor rnetwork involving C132, C131 and R126. When both signals
have arrived, the Q102-Q105 totem-pole is fully on. This would tend to send DCError to some value 1/2
way between PumpUpSupply and PumpDownSupply, but, as seen above, as soon as both InputArrived and
ClockArrived are set, they are both reset. '

The oscillator itself is shown on HSIOB80.sil. The main signal path starts with CIkO at the base of Q101,
proceeds through the transistor to Clk1, the nand gate to Clk2, R110 to Clk3, L102 to Clk4 and R111 back to
CIk0. The main timing elements of this Colpitts oscillator are L102,C118 and the VariCap, CR103. C107,
C108 and L101 filter the DC clock supply voltage. The nand gate provides negative feedback and
amplification. .

When power is applied initially, the oscillator tends to go to a neutral DC state. Since it has negative
feedback and a fair amount of filtering, it is stable without oscillating. To start it, one lowers DriveSelect,
then raises it again. With DriveSelect lowered, the circuit is forced far off its equlibrium point. When
DriveSelect is raised, the transition propagates through the transistor, is inverted by the nand gate, travels
through the resistor and finally the inductor. The state of Clk4 is inverted and a new transition follows the
old through the circuit. When it reaches Clk4, the cycle repeats.

The capacitance of the VariCap, CR103, is roughly proportional to the voltage across it. The greater the
VariCap capacitance, the slower the oscillator goes. Thus when InputArrived caused PumpUp to raise
DCError, the voltage difference was lowered and the oscillator frequency increased. The normal bias’
voltage is set using the potentiometer, P100.

Note that when a pulse train is arriving, changing the potentiometer changes the relative phase of
DrvMFMClock to that pulse train. If the DC component of the voltage at ClkAdj3 is raised, the equlibrium
value for DCError also rises to maintain the differential across the VariCap. Thus one may have very fine
control of the phase of DrvMFMClock relative to the average input pulse.



File: HSIOS5.bravo in [IrisKWorkstation>HSIO>DDC-Q-Rev.DocDm
-Contents: Description of the Input buffers and differential receivers in the Input Conditioning section of the
Dandelion Disk Controller. :

Overview -

Like the output buffer drawing, this one is very simple. It shows differentially driven signals being
‘received properly while open-collector signals are terminated and received with Schmitt-trigger gates.

Constraints

Differentiélly driven signals should be differentially received. The termination resistors for these signals
are on a separate page because their mounting differs between the stichweld and PWB versions of the
board.

The DiskReadClk receiver only functions when the controller is connected to an SA4000 type drive.
When connected to an SA1000, DiskReadClk + is.not connected and DiskReadClk- is grounded.
DiskReadClk will be stuck at some value which depends on how the receiver views an open line.
DiskReadClk is completely ignored when the controller is connected to an SA1000 drive.

Data from the disk may be énc‘oded using either MFM or NRZ rules. The DiskReadData receiver receives
either type of data. The multiplexer section of the Input Conditioning circuits must either decode this data
or pass it on directly. :

Open-collector signals must be pulled-up to some voltage above a TTL high level. This is done here as
recommended by Shugart with a 220/330 resistor network. The 220 resistors are connected to 5 volts, the
330 resistors to ground. This gives an approximate 100 ohm termination without excessive power drain.

The single-ended signals are subject to cable noise. Shugart recommends they be received using
Schmitt trigger gates as is done here. Many of the unbuffered signals are also available on the KTest port
as an aid to diagnostic microcode.
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" Contents: Description of Miscellaneous Clocks and Multiplexers for Input Condltlomng cnrcuats of the
Dandelion Disk Controller.

Overview

The circuits shown on this page are generally concerned with the SA1000 portion of the controller. Only
the Wrap Around multiplexer and the flip-flop producing SyncSA4Data are used when the SA4000 drive is
connected. On this page, the SA1000 varsions of the NRZ and MFM clocks are generated.

Constraints

The controller needs a stable time base when writing data to the disk. That data should be written at the
correct frequency and should have only pre-compensation jitter. For this purpose, The 25.5 MHz signal, :
HalfClock, from the display is divided by 3 to produce a 117 ns period clock, RefMFMClock. Thisisa
slightly de-rated version of the 115 ns clock specified by the SA1000 disk.

During write operations, the data written is returned to the Input Conditioning circuits. From here itis
either sent back to the shift register (SA4000) or to the Data Separator (SA1000). This allows diagnostic
microcode to test the data paths in the controller. A multiplexer is needed to select between the read and
write data for input to the shift register. This is the Wrap Around multiplexer.

This multiplexer has another use when the SA1000 drive is connected. While seek operations are being
performed, the analog phase locked loop should not be allowed to drift out of lock. The signal
RefMFMClock is used to maintain calibration as it specifies the nominal data rate. The control input to the
S$153 multiplexer is on drawing HSIO50.sil.

The clock supplied by the SA4000 disk is 180 degrees out of phase with the SA4000 read data. Thisis
done to minimize the effects of differing clock and data delays in the cables. The clock period is 140 ns.
Unfortunately, 70 ns may not be sufficient for the Field and Word State Machine prom to produce new data.
Hence a register is used to sample the received data, procucing SyncSA4Data. This means the input data
to the prom will change only on clock boundries and the prom will have a full bit time to produce each
output.

Because of jitter in the pulse stream, a pulse may arrive at any time within a cycle. Itis advantageous to
have a pulse detector that does not need to be reset. While a detector is being reset, it cannot sense input
pulses and may miss one. A detector meeting these requirements is shown here. Thei incoming pulse
toggles a flip-flop. The output of the flip-flip is sampled by a register producing SyncRcvMFM. As shown
on drawing HSIO57 .sil, this signal is sampled to produce MFMDetected.0 which is sampled on the next -
. DrvMFMClock to produce MFMDetected.1. When MFMDetected.0 differs from MFMDetected.1, a new
pulse has been detected. MFMDetected.0 should not enter a meta-stable state since DrvMFMClock is
offset from properly tracked data transitions by exactly one half of a clock period. Thus a pulse may arrive
approximately 67.5 ns early or late and still be decoded correctly:

During Read or Verify operations, the controller receives data from the-disk, so NRZClock should be
derived from that data. During Write operations, a stable reference clock should be used. The multiplexer
used to choose between these when controlling an SA1000 is shown at the bottom of the page. When .
receiving data, the clock is derived from the least significant bit of the address mark state count,
AdrMkCnt.4. This changes with each tick of the DrvMFMClock. When sending data, the NRZClock is
derived from the reference clock. The divider producing SATWrNZClock from RefMFMClock is shown on
drawing HSIOS8.sil.

The multiplexer is controlled by a signal that becomes active as soon as BWriteEnable goes Hl and



remains active 5 bit times after it goes LO. We note that AdrMkCnt.4 becomes inactive when
BTransferEnable drops. Having the multiplexer choose the reference clock as soon as BWriteEnable goes
true allows a write operation to begin without undue delay. DWriteEnable is produced by shifting
BWriteEnable through a shift register with NRZClock’. In order to ensure that DWriteEnable goes LO at the
end of a write operation, we must guarantee an NRZClock. Thus NRZClock remains active until
DWriteEnable drops.
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Contents: Description of Data Separator and Address Mark recogmzer in Input Conditioning circuits of the
Dandelion Disk Controller.

Overview

The circuits shown on this page are concerned with the SA1000 portion of the controller. The NRZ and
MFM clocks used when the SA1000 is connlected are generated on this drawing. The data pulses are
deocded and address marks are recognized here.

Constraints

Address marks must be recognized when an SA1000 is used. They serve three purposes. First, the end
of an address mark is used by the Word State machine to find the first word boundry in the field being read.
Second, in recognizing the address mark, the prom recognizes the phase of the incoming data, this is
reflected in AdrMkCnt.4. Third, a tag in bit 14 of the address mark is used to determine whether the
address mark belongs to a Header field or a Label or Data field. The presence of this bit is signalled by a
pulse on SA1Sector. This pulse is caught in the flip-flop shown on drawing HSIOS58.sil and made avaxlable
as the SectorFound status bit.

During SA1000 write operations, the data written is returned to the data separator. This allows
diagnostic microcode to test the data paths in the controller by comparing the Tag bit of the address mark
sent with that of the address mark received and decoded. A multiplexer is needed to select between the
read and write data for input to the data separator. This is the Wrap Around multiplexer shown on drawing
HSIO56.sil.

As a byproduct of the wrap-around function, the re-received data is decoded and made available to the
shift register. Unfortunately, the shift register clock is derived from RefMFMClock and the re-received NRZ
Clock is derived from DrvMFMClock. Because the phase of these two clocks cannot be predicted
accurately, one cannot guarantee the data clocked back into the shift register will match the data sent.
Thus the complete data path is not checked. It was deemed more important to check the data separator
and phase locked loop by having it regenerate the clock and data than to check the small data path
between the data separator and the shift register.

The address mark recognition circuitry must be disabled when the SA4000 is used. If AddrMkFound
were accidently raised during the synchronization process, the beginning of the field would be improperly
recognized. When false, the SA1000/SA4000’ signal disables the address mark recognition process.

Address Mark Recognizer

This state machine has a counter used to recognize address marks and a state bit telling it whether the
address mark has passed. The address mark in MFM code is: 01 0001 00 100010010001 001000 10 tt
01. The italicized zeros represent missing clock transitions. The "tt" is a tag bit used to distinguish
Header address marks from Label and Data address marks. This is used by the microcode to find the
Header fields. It is assumed that the two fields following a Header field are Label and Data in that order.

A detailed listing of the brbnh contents nia'y‘be found in AddrMkProm.mesa in
[IrisikKWorkstation>HSIO>Proms>DDCProms-Rev-A.dm. Note the circuit uses two 1024x4 proms instead of
one 512x8 prom. This was done because 512x8 proms were very difficult to obtain.

The machine starts in state 00000 after having been held reset by the absence of BTransferEnable. The



phase-locked loop synchronization pattern is all zeros. These are encoded as 10 10 10 ... . Seeing these,
the machine cycles through states 0, 1, 2 and 3, going to state 1 when the 0 is seen, state 2 for the next 1, 3
for the next 0 and back to 0 because of the next 1. When the first 01 of the address mark is seen, the
machine will either be in state 1 or state 3. If in state 1, the initial 0 causes it to remain in state 1 and the rest
of the address mark is recognized properly. If it was in state 3, the initial O drives it to state 4 and the next 1
back to state 2. From there, the rest of the address mark is recognized properly. The state in AdrMkCnt
advances as each correct bit is seen. If a bad transition is seen or a good one missed, the machine goes
back tostate 0 1 or 2,

When the count reaches 27 and PulselnWindow =0, the address mark has been recognized so
AddrMkFound is raised on the next clock edge. This tells the Field and Word state machine in the
Serializer/DeSerializer to prepare to recognize the end of the Sync word (or in this case the address mark).
In the Word state machine BitCount«15 on the next NRZClock edge and 00 on the edge afteer that when
SyncWdFound is set. The clock edge that raises AddrMkFound presents Bit 14 to both the address mark
recognizer and to the Word Machine, :

The tag bit must be sampled at the ond of NRZ bit 14 or when AderCnt =29, If itwas set, SA1 Sectof is
set for one cycle. This is caught by the flip-flop on drawing HS1058.sil and may be sampled by microcode
on the SectorFound bit of the KStatus port.

As one might think, the derived NRZ clock is taken directly from AdrMkCnt.4. The NRZ input data is
taken from AdrMKCnt.2. After recognizing the address mark and recording the value of the tag bit, the state
machine goes through states 0 and 1 each time an NRZ zero is decoded and states 4 and 5 for each NRZ
one. Note the potential race between AdrMkCnt.4 and AdrMkCnt.2 is avoided by having only one change at
atime. AdrMkCnt.3 was not used to generate the NRZ data for historical reasons. The address mark used
to begin with 10, not 01. This was changed to ensure a correctly encoded zero followed each bit containing
a dzleted clock transition. It would now be permissible to re-program the address mark proms and use
AdrMkCnt.3 if there were reasonable need.
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Contents: Description of Input Multiplexer in Input Conditioning circuits of Dandelion Disk Controller

Overview

The SA1000 and SA4000 drives differ in data encoding, data rate and the numbers and types of control
- and status signals needed. The controller given in these drawings serves both drives. The Input
Multiplexer serves to standardize the differing signals so they may be used by microcode in relatively similar
ways. For example, the SeekComplete signal leaving the Input Multiplexer is active only after the head
settling time even though this is not true of the version supplied by the SA4000 drive.

Constraints

As mentioned above, the SeekComplete signal used by the microcode should only become true after the
disk heads have settled. This is not true of the SA4000 signal. The controller delays the SA4000 -
SeekComplete by 29 sector counts, or at least 20 ms, before sending it on. Note the SeekComplete signal
* may also be delayed until the heads have settled after a DriveSelect. The SA4000 drive may be jumpered so
the absence of DriveSelect turns off the holding current to the stepper motor. This may result in a
substantial power savings. After DriveSelect is re-asserted, one must wait 20 ms for the heads to settle
after re-acquiring the cylinder. One may do this by waiting for SeekComplete to become true. This is most
easily done by setting the condition on which service requests are sent to "SeekComplete=1". -

The SectorfFound flag has two distinct, though related, meanings. When connected to an SA4000 drive,
it is a latched version of the Sector signal suppléed by the drive. That drive has a clock track and a counter.
It uses these in conjunction with the Index mark to generate periodic Sector pulses. The SA1000 drive has
no sector pulses. Bit 14 of each address mark is a tag bit which is made available on the SectorFound line.
This bit is set when the address mark belongs to a Label or Data field, reset when the address mark starts a
Header field. The bit may be used as error flag to be tested along with the VerifyError and CRCError flags
after a Header operation. When set, it means the field found was not a Header field, hence not the start of a
sector.

The signal SA1Sector rises at the beginning of Bit 15 of the address mark if the tag in Bit 14 was set.
Either this signal or the buffered sector pulse is caught in a status flip-flop for use in generating a Service
Request and as a status flag. All status flip-flops are reset by the microcode using the "CirKFlags"
command. '

The Index pulse from the SA4000 drive arrives once per disk revolution (~20 ms) and lasts only 1.1 us.
The microcode can sample the status flags every 2.05 us, not quickly enough to be sure of catching the
Index pulse. Because of this and because busy waiting slows the Emulator task, this signal is also caught
in a flip-flop for later use. The SA1000 also supplies an index puise. Both the SA1000 and SA4000 index.
pulses mark a particular spot on the disk. Microcode will generally use this to mark the start of sector 0.
Note the raw Index’ line from the disk is not available on the KTest port. It was deleted to make room for the
diagnostic signals used for the Display. The latched version is seen as IndexFound on the KStatus port.

Both the SA1000 and SA4000 drives require clocks from the controller but the clocks are quite different.
The SA1000 drive uses the clock to control its stepping circuitry. The SA1000 TimingClock should have
1/16 the frequency of the NRZ bit clock. The SA4000 uses the clock to sample the incoming NRZ
WriteData, hence its clock should be matched in frequency and phase with the outgoing data. The SA1000
clock is obtained by dividing the RefMFMClock by 32 since the MFM clock has twice the frequency of the
NRZ clock. The SA4000 clock is obtained directly from the ReadClock supplied by the drive. The
engineers at Shugart say the SA4000 write clock is only needed to account for cable delays. They assume
the clock and data under go the same delay so will still be in phase when they reach the drive. Thus the
clock may be used to sample the data reliably.



The NRZClock used by the controller is either derived from the data (SA1000) or received directly from
the drive (SA4000), having been derived from the data there. This choice is made here.

Like the NRZClock, the NRZInput data is derived by a data separator either on the controller or on the
drive. When derived on the controller, AdrMkCnt.2 reflects the value of the data bit as explained in
HSIO57.bravo. Note that when the SA1000 is attached and data is being received, NRZClock rises in the

middle of the data bit. This is to avoid a race between the data in AdrMkCnt.2 and the clock in AdrMkCnt.4.
in all other cases, NRZClock rises on the edge of the data bit.
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Contents: Description of sHSI059.sil and pHSIOS59.sil, the disk connectors on sttchweld and PWB boards.

Overview

Cable numbering conventions differ between the stichweld and PWB boards, hence the need for two
drawings. The drawing sHSIOS9.sil shows the stichweld, pHSIOS58.sil shows the PWB version.

The SA1000 drive connects to its controller with a 50 conductor and a 20 conductor ribbon cable. The
stichweld card has positions for 37 pin connectors. Drawing sHSIO59.sil shows a mapping between the 50
conductor cable and a 37 pin D-type connector and a mapping between a 20 conductor cable and a 16 pin
DIP socket connector. No 20 pin DIP socket connectors are available.

An additional connector must be built to connect the SA4000 drive. For a specification of this connector
see drawing DDCO06.sily. The new connector maps both the 50 and 20 conductor cables, there called
HSIO50 and HSIO20, into a single 50 conductor cable, called ExtDk50. The disk drive must be configured
so that all status and data lines are available on the single 50 pin cable.

The four 51 ohm termination resistors are also shown on these drawings because the method of
specifying them also differs between stichweld and PWB boards.

Constraints

The most obvious constraint in the cabling on the stichewld board is that a 50 conductor cable must be
connected to a 37 pin connector. This is done by eliminating spare lines and some ground returns. An
effort has been made to keep the number of breaks in consecutive numbering to a minimum. Where there
are breaks, they are concentrated in one area so the cablemaker may focus attention there. The ground
. returns eliminated have come from between signals that seldom change (DriveSelects).

The 20 conductor data cable has been mapped to a 16 pin connector by leaving off the first four lines.
These were not used by the drive.

The PWB board has room for the full 50 and 20 pin connectors. Drawing pHSIOS9.sil shows how they are
connected. ltalicized pin numbers denote unused pins.
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NRZInput

WriteData.(0..15)

ey,

SerialNRZ.0 (o]
BNRZWriteData
1
SerialNRZ shift register I X
WriteCRC
: CRC Generator/
: 1 Checker
-
o N
PRawCRCError
WriteEnable
) Verify Checker
BitVerifyErr
s N l50
Fleld and Word Timing Machine
[ 4
: Field State
R AR ISR e e M,
tlo

Opera
S

P RN RO

BitCount.(0..3)
"«}?.9-

Fietd St_atg Ed _{SynchFound, PLdSerialNRZ’, WordBoundry’}
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Drive Control Lines

Overrun

Cpen-Collector Drivers

- TransferEnable

Disk Qutput Cléck

Differential Drivers

BNRZWriteData

MFM Encoding, Pre-Compensation and

Address Mark Generation

Operation

NRZClock

RefMFMClock

SA1000/SA4000°

Buffered Drive
Control Lines

Differential
DiskOutputClock

Diftorential
DiskWriteData

DiskWriteData

Project
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Reference Clock Generator

HaltClock

RefMFMClock

/3
56
Schmitt-Trigger Buffors
Drive Status Lines Buitered Drive Status
& T T B SRR SRS R
RawB8A1/SA4’ - SA 1000/ SA4000’
See kComplete Delay
Delays by 32 ’
I—_ 1 Sector pulses
S3FT l 58 [ __ sadskcompiete 0
' l SA1SkGompiete 1 SeekComplete
ERERTE A ' EEETE 1 I . .. §A4Sector 0
SAiSector 1 SectorFound
Timing Clock Generator
/32 0 DiskOutputClk
Differential Line Recelvers . l 58
Differential Read
Clock Buffered Disk Read Clock o
NRZClock
Wrap-Around Mux NRzZClock’
Ditterential Disk
Read Data 00 SA4000 Data Latch
inputData (¢}
' o1 ‘ } 7 NRZInput
DiskReadClk
I
Disk Output Data 11 lnpdl Select Multiplexer
l Note the SectorFound
TransferEnable MSB output is latched.
WriteEnable LsSB
. SectorTag Latch The NRZInput signal .
j equals the mux output
PulselnWindow sampled by NRZClock
‘ StrbSectTag
DrvMFMClock . I 58
Derived NRZ Clock
Derived NRZ Data
AddrMkFound
[54,56,60,61 [57
Digital Phase Locked Loop Address Mark Recognizer
this is described in HSIOS4.bravo
XEROX Project Dandelion Dlsk Controiler File Designer Rev § Date Page
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The 170 portion of the Dandelion Disk Cabling is arranged as follows:

Chassis

wontroller Card SA 1000 drive ) Controller Card Connector SA4000 Drive

HS1050

HS1050
e e stk s

RGO B ExtDk50

W o SRR P e

OR

HS1050 Is a 50 pin ribbon cable, connects directly as J1 connector on SA1000 drive or to chassis connector for SA4000.
HS1Q20 is a 20 pin ribbon cable, connects directly as J= connector on SA1000 drive or to chassis connector for SA4000.
ExtDK50 is a 50 conductor round wire cable, it connects the SA4000 chassis connector to the J1 connector on the SA4000 drive

The connections on the HSI0 card are pin-for-pin compatiblie with those on the SA1000 type drives.

The signals are arranged on the cables as shown helow.

~Connector| Signal . .

All Odd numbered pins from HS1050.1 through
HS1050.49 are connected to signal grounds in

both the drive and the connector card. ExtDk50 HS10xx  Signal Name
HS51050.2 ReducelW’ ExtDk50.1 HSIO50.4* GND
HS1050.4 RawSA1/S5A4’ ExtDk50.2 HSI050.14 HeadSelectt?
HS1050.6 Sector’ ' . ExtDk50.3 HSI050.13 GND’
HS1050.8 SeekComp.Iete' ExtDk50.4 HSI050.18 HeadSelect2’
HS51050.10 HeadSelect4’ LI . . ExtDk50.5 HSI050.17 GND
HSI060.12 HeadSelect8’ ExtDk50.6 HSI050.10 HeadSelect4’
HS1050.14 HeadSelect1’ ExtDk50.7 HSI050.9 GND
HSI050.16 HeadSelect18’ ExtDk50.8 HSI050.12 HeadSelect8
*HS1082.18 HeadSelect2’ - « - ExtDk50.9. HSI050.11 GND -
HS51050.20 index’ ExtDk50.10 HSI050.20 Index’
HS510560.22 Ready’ . ExtDk50.11 HSI050.19 GND
HS1050.24 <not used> ExtDk50.12 HSI050.22 Ready’
HS1050.26 DriveSelect1’ ExtDk50.13 HSI050.21 GND
HS$S1050.28 DriveSelect2’ ExtDk50.14 HSI050.6 Sector’
HS1050.30 DriveSelect3’ ExtDk50.15 HSI050.5 GND
HS1050.32 FaultClear’ ExtDk5§0.16 HSI050.26 DriveSelect1’
HSI1050.34 Directionin’ ExtDk50.17 HS!1050.25 GND
HS1050.38° Step?’ ExtDk50.18 HSI1050.28 DriveSelect2’
HS1050.38 ReadGate’ ExtDk50.19 HS1050.27 GND
HSI050.40 WriteGate’ ExtCk$50.20 HS1050.30 DriveSelect3’
HS1050.42 TrackQ0Q’ ExtDk50.21 HSI050.29 GND
HS81050.44 WriteFault’ ExtDk50.22 HSI050.8 SeekComplete’
HS1050.46 <not used> ExtDk50.23 HSI050.7 GND
HS$1050.48 <not used> ExtDKk50.24 HS1050.34 Directionin’
HS1050.50 <not used> ExtDk50.25 HSIQ50.33 GND

ExtDk50.26 HSIOS50.36 Step’
ExtDk50.27 HSI050.35 GND
ExtDk50.28 HSI050.26 FaultClear’
ExtDk50.29 HSI1050.25 GND
ExtDk50.30 HSI050.40 WriteGate’

ExtDk50.31 HSI1050.39 GND

:g:ggg'; é’;fé“sed) ExtDk50.32 HSIO50.42 Track00’
HS1020.3 <hot usedd ExtDk50.33 HSI050.41 GND
HS1020.4 GND ExtDk§0.34 HSI050.44 WriteFault’
HS1020.5 DiskReadClk + ExtDk50.35 HSI050.43 GND
HS1020.6 DiskReadClk- ' ExtDk50.36 HS1050.38 ReadGate’
HS1020.7 ot used) ExtDk50.37 HSI050.37 GND
HS1020.8 GND ExtDk50.38 HSI050.16 HeadSelect16’
HS1020.9 DiskOutputClk + ExtDk50.39 HSI020.13 DiskWriteData +
HS1020.10 DIskOutgutCﬂ(- . ExtDk50.40 HS1020.14 DiskWriteData-

ExtDk50.41 HSI020.15 GND
HEEEr ano _ ExtDk50.42 HSI020.10 DiskOutputClk-
HS1020.13 DiskWriteData + ExtDk50.43 HSI020.9 = DiskOutputCik +
HS1020.14 DiskWriteData- gxtgtgo.m :s;ozo.n G:\JD N
HSI020.15 aND : xtDk50.45 HS1020.5 DiskReadClk +
HS1020.18 GND ExtDk50.46 HSI020.6  DiskReadClk-
H51020.17 DiskReadData + B o PO O eadD
HS$1020.18 ~  DiskReadData- xtDk50.48 9-17 DiskReadData +
H31020.18 GND ExtDk50.49 HSI1020.18 DiskReadData-
HS1020.20 GND ExtDk50.50 HSI020.19 GND

* grounding this line indlcates the controller is connected to an
SA4000 type drive.
Project Dandelion Disk Controller File Designer Rev } Date Page
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This file is in:

High Speed Input/Output Board

HS10 Board

1. HSICO -

2. pHSIOOT -

3. HSIOO02.sily -
4. HSIO03.sily -
5. HS1004.sily -
8 HSIO0S.sily -

8. HSIOO7.sily -

3. HSI024 - Dis,
5

7.
8. (p[s)HSI029 -

8. HSI047 -
9. HSIO48 -
10. HS1049 -

11. HSIO50 -
12. HSIOS1 -
13. HSIOS52 -
14. HSIOS3 -
16. HSIOS4 -
16. HSIOSS -
17. HSI056 -
18. HSIOS7 -
19. HSIOS8 -
20. sHSIOS59 -
21, pHSIOS9 -
22. sHSIO60-
23. pHSIOBO -
24. sHSIO6T -
25, pHSIOGT -

7. HSIOOQG.sily-

Logic Drawings

this page

drawings of fuses

Display controller parts list
Display controller parts list
Disk controller parts tist
Disk controller parts list
Stichweld layout

propased PWB layout

Display Controller

1. HSI022 - 51 MHz Clock Dividers and ECL Terminators
2. HSIO23 - Cycles, Clicks and Display counter

play Output Machine and Control register

4. HSIO25 - Data FIFO and Border Register

. HSIO26 - Control FIFO-Data Path )

6. HSI027 - Read Machine; Word Counter & End Conditions
HSIO28 - LCAS & LRAS’ Generation

! Discretes, Connectors

Disk Controller

Control and Write Data registers

Status / Test Mulitiplexer, ReadData Register

Service Request, Overrun and Word Status Buffer

Serializer / DeSeriallzer

Field/ Word Machine

MFM Encoding, Pre-Compensation and Address Mark Gen.

Disk Output Buffers and Drivers

Logic for Phase Decoder -

Disk Input Buffers and Receivers

Miscellaneous Input Clocks and Muitiplexing

Data Separator and Address Mark Detection

input Multiplexer
Disk Cables Connections for stichweid card
DiskCables, Terminators for PWB card
Discrete Phase Decoder Oscillator, Stichweld version
Discrete Phase Decoder Oscillator, PWB version
Discrete Phase comparator, Stichweid Version
Discrete Phase comparator, PWB version

Other Documentation

[Iris]<Workstation>HSIOYHSIO-Rev-l.press
[Iris]<Workstation>HSIO>HSIO-L.dm
[Iris]<Workstation>HSIO>HSIO-L.dm

[Iris]<Workstation>HSIO>DDC-Rev-A.DocDm
[Iris]<Workstotion>)HSIO>DDC-Rev-A.press
[IRIS][<Workstation>HSIO>Proms>DDCProms-Rev-A.dm

[Iris]<Workstation>HSIO>WSD-Rev-C.DocDm
[Iris]<Workstation>)HSIO>WSD-Rev-C.press
[Irisj<Workstation>HSIO>Proms>DisplayProms-Rev-A.dm

All logic drawings In Press format
All design Automation info about HSIO board
Wirelist for this rev of HSIO board

Disk Documentation in Sil and Bravo formats
All Disk Documentation in Press format
Disk Prom Programs

Display Documentation drawings, Timing Diagrams
All Display Logic, Timing diagrams in Press format
Display Prom Programs
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El Segundo, Californla 90245 Drawing No. Rev.
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Rev. | Drawing Title These drawings and specifications,and the d&ta
A . . contained therein, are the exclusive property
_ Dandelion High Speed 1/0 Board of Xerox Corporation and or Rank Xerox,Ltd.
S 3. Clock & Display Controller issued in strict confidence and shall not, without
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tion Rank Xerox,Ltd., be reproduced, copled or
used for any purpose whatsoever, except the
manufacture of articles.for Xerox Corporation
or Rank Xerox, Ltd,
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Item Na. Drawing Title Drawing No. No. Req. Remarks
TTL Integrated Circuit SN74500 2 7
SN74502 1
SN74504 3
ML
SN74837 2 ’
SN74LS74 1
SN74S74 1
T ; : g :
SN741L.885 2
_? : 5{71741.3139: . § PR | . ;
SN74L5163 7
SN74L5175 ’ 1 ’
SN748175 1
SN745225 8
SN748241 3
SN74L8273 " 1
SN748373 2
TTL integrated Circuit SN745374 5
TTL PROM Fairchild 93427 1 EndCnt Prom
| Display Prom
TTL PROM Fairchiid 93453 2 Vert Prom
ECL Integrated Circuit 10016 3
10102 2
10103 1
10104 1
10124 4
10125 - - 3
10131 3
10141 2
10158 - 1
10178 2
ECL Integrated Circuit 10231 3
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Clock & Display Controller

of Xerox Corparation and or Rank Xerox,Ltd.
issued in strict confidence and shall not, without
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TSIt S SN i rsoworsos | 1 |

o P g 1201 aeoonmstoSnd | roswxxxot s | Ewivto1000meto-2V.

Resistor .25 watt 5% 220 ohms 703W30688 2 R1,R2

Resistor .25 watt 5% 100 ohms 703w298388 3 R3,R4,R5

Capacitor .01 uF 25V, 702wW07118 2 C10,C11

Inductor ' Nytronics SWD-56 . 5.6 uH 1.0% 705W00022 . | 2 L10,L11

Inductor  Nytronics SWD-56  1.0uH  10% 70sw00013 | 1 L2

Fuse . Slow Blow \ | 1§ amp 708W11502 5 .1 7F()01 \

Fuse Stow Blow - 7 amp 708W11302 1 1 éF0<)2

Capacitor iBypaé.s ! 35 uF, 50 V 702W10701 ' ‘ 2 ‘cot , C02.

D.Iode, Protection 1N4 148 707W00273 2 CR20, CR21

0.1 uF bypass capcitors to be supptled 1 per
every 2 chip positions

wn
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701 South Aviation Boulevard”

XEROX

El Segundo, California 90245 Drawing No. Rev.
MATERIAL LIST mL Q
Rev. ['Drawing Title These drawings and specifications,and the data
0 . contained therein, are the exclusive property
_ Dandelion High Speed 1/0 Board of Xerox Corporation and or Rank Xerox,Ltd.
sl Disk Controller issued in strict confidence and shall not, without
Yo the prior written permissiOn of Xerox Corpora-
tion Rank Xerox,Ltd., be reproduced, copied or
used for any purpose whatsoever, except the
manufacture of articles for Xerox Corporation
or Rank Xerox, Ltd.
[ Model No. : + | Date Sheet
7/16/80 1 of 3
ltem No. Drawing Title Drawing No. No. Req. Remarks
TTL Integrated Clrcuit SN74800 2
SN74502 1
SN74504 3
ML
SN74086 2
SN74S08 1
SN74LS10 1
" SN7414 ' 2
7
, Sb{..4538 y : 2
- SN74S574 9
" sN7asse 1
SN74S5151 2
SN745153 1
SN748175 2
SN74199 2
SN748240 4
SN743257 3
SN74LS273 14
SN748374 -3
SN74LS5393 2
SN75107 1
TTL Integrated Circuit SN75114 1
TTL PROM Fairchild 93427 2
TTL PROM Falrchild 93453 5
CRC Chk/Gen. _ Fairchiid 9401 1
Digital Delay Line DDU-4-5050 744W00002 2 taps at 10, 20, 30, 40, 50 ns
Operational Amplifier LM741 (uA741) 733W00021 1 8 pin Mini-Dip
Connector 10 position 713wW12220 1 Display connector
Connector 20 position 713W10320 1 Disk Data connector
Connector 50 position 713W10820 1 Disk Control/Status conn.
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701 South Aviation Boulevard
El Segundo, California 90245 Drawing No. Rev.
MATERIAL LIST ML Q
Rev. | Drawing Title These drawings and specifications,and the data
Q M o contained therein, are the exclusive property
_ Dandelion High Speed 1/0 Boar of Xerox Corporation and or Rank Xerox,Ltd.
. Disk Controller . issued In strict contfidence and shall not, without
| — . the prior written permissiOn of Xerox Corpora-
tion Rank Xerox,Ltd., he reproduced, copled or
used for any purpose whatsoever, except the
manufacture of articles for Xerox Corporation
or Rank Xerox, Ltd.
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7/16/80 2 o 3
item No. Dvrawlng Title Drawing Na. No. Req. Remarks
Resistor pack Beckman 898-5-R220/330 703W30491 . 2'
Capcitor 50V, 5%, A7 pF 102P20275 1 "c124
5%, 100.pF 102P20279 2 ci18.Cc123
ML
10% 0.0027 uF 702W30527 1 6131
10% 0.027 uF 702W31727 1 c132
' ' €107,C120-122, C133,
. +80%, -20%, 0.1 uF 702W05218 7 C140.C141
3 . 1
10% 0.47 ufF 702W05708 1 C134
Capcitor §0 \'A 10'%, Tantalum, 1.0 uF 702W31905 i 2 c108,C119
Diode, 0.5 watt, 1N4148 703W00273 1 CR101
Diode, 0.5 watt, 2.4V Zener, 1N52218 707W00150 ’ 2 CR102,CR104
Diode, VariCap, Mv1404 1 CR103
Inductor, 10%, 10 uH 705W00025 1 L102
tnductar, 10%, 22 uH 705W00029 1 L101
Resistor 0.25 watt 5% 47 ohm 703W29088 5 R10-14 ¢
100 ohm 703wW29888 2 R111,R128
110 ohm 703W29988 1 R126
150 ochm 703W30288 1 [ R114
180 ohm 703wW30488 2 R136,R124
200 ohm 703W30588 4 R115,R116,R133,R135
240 ohm 703W30788 1 R137
270 ohm 703Wxxx88 1 R109
470 ohm 703w31488 1 R110
510 ohm 703W31588 5 R103,R112,R117,R120,
R121
910 ohm T 703wW32188 2 R122,R123
1.0 KOhm 703wW32288 9 R127
1.1 KOhm 702W32388 2 R132,R134
2.0 KOhm 703w32988 2 R125,R138
4.7 KOhm 703w33888 1 R105
Resistor 0.25 watt 5% 200 KOhm 703W37788 1 R113
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Item No. _Drawing Title Drawing No._ | No. Req. Remarks
Potentiometer, 0.75 W, 10% 5.0 KOhm ) 703W00922 1 R104
ML Transistor, 2N5770 3 Q101,Q104,Q105
Transistor, 2NS771 2 Q102,Q103




1 10 20 30 40 50 51 60 70 80 90 100
101 150 151 200
Note: Allchips inside region enclosed by heavy black line are insarted upside down in sockets.
51 ohm resistars plugged into 2-19 and 3-18 of a1, a2 and into 1-20 of b2.
a b ¢ d e f g h i
- . 8§37 - §02 837 - Term. A LS374 LS374 S374 8374 S225
Y | CAS,RAS’, Cycle3,pCk’, | LRAS,LCAS, . 19
DCAS' Ctr. pWCK’,P/F’ ' ppCIk(2) 316E161261 Border 0-7 Border8-15 | DDataO-7 DData 8-15 PpDDataFif 13-15
18 S241  * 10125 10125 10231 §373 S373 S225 s225 S$225
Cycles, CAS,RAS, LCas,LRas . ) ) . y ) 18
Clicks Wpulse ppCik PCasDly.Dis/ P} LRas,LCas CtiFifReg 0-7 | CtiIFifReg 8-15 Cti Fito 6-10 | CtiFifo 11-15 | DDataFIf 8-12
17 LS163 10231 10231 10158 s225 LS273 §225 8225 S225
0 Cyctes RAS,PRas | casppCik  [PreLRAS. CtlFifo 1-5 | CtiReg.8-15 | CtiFifo0 DDataFit 0-4 | DDataFif5-7 | 17
L3163 10016 10102 Term. B 5241 LS139 LS163 LS163 LS85
18] ciicks ECL1,pRAS BufX:[0..7] | ByteSei DAddr 10-12 | DAddr 13-15 | AComp 13-15| 16
Clk Ctr. Full’ Setup 3166161261 i
15| s7a - | 10178 10016 10176 = S241 5175 ‘Ls163 Ls8s S00
HalfCk LRAS-LCAS Buix.[8..15] | OQutMachine ‘ DPReq,RDA 15
Vart. Clk, DCasDly} LRas,LCas Gen, Tick&7’ T Byte Sync. EndPromCtr AComp 10-12 | F/P’,ULCF
14 10131 10102 10103 * Term. D 10124 93427 LS178 SO0 *
LRAS preLRAS (2) | pDis/Pr,0Ctr. DCt1,DCtiFlfo,| 14
preLCAS’ Full (2) Video, 316£161261 | CGen, ELin g "dCountPron) EndCtPrmReg| ngoiqe
13 10124 10131 Term. C 10104 10016 10125 10124 S04 LS74
C3,Cik,Pblk, | Setup .| RCtrPE,PPLC DCFit,DBor,DG¢ BPBS 13
Inv. - preDisn/Proc] 3168161281:} yigo0 ysre” OutCtr. . OutMach,LTick _DByte 0-3 _§DAdr(2).inhRd| DPReq
B |} ) t g h
: S374 * . ‘anra | i . -
LS273 Ls273 10141 10141 10124 S374 5
12 Proc. Syne, - 1
D 352%‘};5"".':‘9" RTINS SR OutSR 0-3 OutSR 4.7 | DByte 4.7 DProm Reg.
coi o | PTUTReG ||| GiskEnti[0.07] | | DiskGntl.[8..15] L b IR O (R L
11| s240 s240 $240 $240 po%%%q vidae ! Term. E 1 93453 93453 14
i , . L] s} | . 3
‘| kstat.[0..71 | kStat.[8..15] | KTest[0..7] ‘| KTest.[8..15] Clock Qual. |8 Bix 316E161261 y DisplayProm| VertProm
S04 QutPlat LS163 LS163 S04
N S74 LS10 L5273 Ls273 MFMCK, NRZCK Ctr,HSyn, |10
- : Serviced’, KCtl, KOData DProm 0-3 DProm 4-7 VSyn,WP’
S ReIMEMCIK | ResetSkComp WrDat.[0..7] WrDat.[8..15] SSrved, Cikl PuliUp
o| Ls273 Ls273 sa74 5374 s151 508 Protect s38  * Clock
» SA4SeekComp|  Plat Gated5MHz 51.0aMHz | 9
PRdDat.[0..7] PRdDat.[8..15]] RdDat.[0..7] | RdDat.[8..15] KReq’ Select Buf51MHz N
' a b c ] f g - h
-
. RDIV16, S04 *
8 F9401 N199 N199 L8273 LsS273 2207330 ) 8
Display
DelTransferEnb ~ Testability Testability
CRC Gen/Check | SerlalNRZ.[0..7] | SerialNRZ.[8..15] SrvReq Machine Pullups
S74 $257 * F93453 10125 * S04 * |Fakelocof
7| tsa73 . VerityError, [CRCIn,InpData FO93453 | AddrMk Req 1§TTLVIdeo,  JDisk extraRPack | 7
WordStatReg | BNRZWirData | ServicaTrap BAINRZClk SrvRegProm_ | AdrMkC.[2.4] TTLVideo® Testability usedin PWB
6 Ls273 L$273 586 * LS273 LS273 F93453 4 573
rvce, VerErr, | Field, Word Addr Mark AddrMk Req MWordBoundry’ 6
WordStatBut EncodarSync guls'eTrap State Machine| Recog. Mach.}| AdrMkC.0,1
F93453 F93453 574
5| S74 Fo3427 s257 Field, Word Field, Word 5
IndxFound | Encoder Prom State Machine State Machine | SyncXferEnb,
BTransftEnb NRZWrDt.[0..3] | Input Multiplex ] 8itCnt.[0,2] BitCnt.3,WdBd | SyncSA4Dat
4 F93427 LS273 S74 L8393 S74 S00 FPLAT FPLAT
Encoder Prom AddrMkFnd, PulseTrap, ResetComp, | Phase Decode} PumpFeed- 4
UnCompMFM | Encoder Mach| SectorFound | DelSeekComp SyncRevMFM | OrvMFMCIk | Oscillator Back
3 DDU-4-5050 S151 RDiVig ¢ S257 * 574 DDU-4-5050 FPLAT FPLAT
220/330 DkWrDat, InputEnable DellnputData Oscillator DCError, 3
PreComp Dly | PreComp Slct | OpnColl term. | SeekComplete ClockEnable P Bias & Controll PumpBias
NOG NO6 N14 . N14 S04 * §74 FPLAT FPLAT
2 HdSlct[1,2,4,8]] Sky source, ICRC Ctl, TrkO0 Ready, WrFault WrEnable’, InputArrived | Phase Comp. | Phase Comp. 2
DkRdData Terny Drve Ctl lines BkComplindex[SA1/SA4’ Sec I0PReset ClockArcrived| Bias & Filter | Bias & Filter
75107 DConn 75114 S38 . S02 LS393 FPLAT
1 bkRrdDat, Data DkWrtData, | ReadGate’ AbortWrite’, 1
KRdClk Revr. | Connector DkOutClk Xmit | WriteGate’ SkCmpClk TimingClock | Potentiometer
T a b c d e f g h i
Area above medium width line used for display, clocks. Below is Disk controller. a12,e11, 10 and g8 are ahared.
QOrient. - :
1 | 170 Connector Area(Top) | 170 Connector Area (Bottom)
XEROX ] Project Reference File Designer Rev |Date
EOD Dandelion|High Speed 1/0 Board Layout HS1007.sily Crane, Davies | Q | 7/23/80




_l 1 10 20 30 40 50 51 60 70 80 90
101 110 | 1lzo | 130 |mo 150 = 151 160 170' l130 190
a b 'c d e f g h i i 'k I 'm 'n o 'p
L- Y
l I I I l I I I I I I l ' l l l l l l I l I l l l | | | Service
11 at® b19 c19 | b12 | at1 b1l e16 ei5 ¢11 di1 | et9 {19 | h18 | g19 ht19 | a12 requests
S37 S02 S37 |LS273] S240 S240 S241 S241 S240 $240| L8374 LS374] S225| S374 S374| 5374
Clocks, MemCtl X bus Y Bus DAddr DDatg
1 at8 at7 a16 | ¢12 | ¢10 c09 do9 d10 {17 | ei8 118 | g18 g18 h15 hi6 116
S241 1S163 LS163| L5273} LS273 S374 $374 L5273 LS273| $373 S373] S225 LS163 LS85 L5163 LS85
9| b18 d18 d19 d17 c¢18 | a06 a07 |ao05 i14  hi7 18 117 H9 @17 17 I I
MC125 MC231 Term A MC158 MC125 8 LS273 LS273{S74 | SO0 S225 8225 S225 S$225 S225 S225 | |
, 0 T I T 0 v O R B L
~Diskgtat Buf Display Control -
gl b17 c17 d16 ¢15 bi14 § a09 b09 |b3O | h13 'h14 g14 {16 I I 15 {113  h10 |hos
MC231 MC231 Term B F16 MC131§ 1LS273 L5273/ LS10| S04 LS175 93427 LS139 | | S00 LS74 LS163 | S04
‘ {0 O
ea Q. u
B Clocks, MemCti Clocks Testability
7]l b15  c16 ¢13 di5 ¢14 § at5 at0 | 109 610 el1f | 915 {15 hi2  hit i11  gio |gos
MC 176 MC102 Term C MC176 MC102§ 574  S74 SDBI S04 500 |LS163 S175 $374 FU3453 F93453 LS163| RDIV16
51 Mhz
6| 413 b13 e14 bis ai3 § at4  hoo c07  ¢06 |go6 bOS 08 a08 | e07 €08 09
MC104 MC131 TermD F16 MC124§K1114 S33 S74 S86 |S74 F9401 F93453 LS273 S151
| l | | l | N199 N199
VerifyError Disk Service Req
I l Disk Data I I I l
5 . . f02 {03 bo7 do6é dos | tos |ho7
Reserved for Discrete S74 DDU-4 |S153 LS273F93453 LS273| S04
MFM Phase Decoder Fldwd State
B Phase Decode Tnput Mux. Mise
4 104 €03 cO05 c04 {01 b06 | do4 | e05 | eO1
S00 S74 S257 S74 1S393| LS273| tS393F93453] S02
3 13 g11  g12 {14 e04 €06 t06 (07 f05 | dO7 | bO4 204 hO5 |cO03 €02  dOfi
TermF  F16TermE MC124 MC124 8 S74 LS273F93453 F93453 S74 | S257| 1LS273F93427 F93427RDIVI6 S04  S38
Font 4 ‘ '
Macros Video Synthesis MFM Docoding MFM Encoding Disk Ctl & Status buffers
s-22 | 2 111 d14  f12  e12 {13 gi3 i10 | a01  ¢01 | d03 b03 a03 |a02 ¢02 bO2 do2
t-24 MC131 MC103 MC141 MC141 MC125 MC124 § S04 | 75107 75114/ S257 S151 DDU-4 [NO6 N14 NO8 N14
v-28 L) L L] LJ
Dick Data But |- - .
v-40 . .
a b c d e f g h i i k | m n 0 p
] 1 1 1 - ] 1 1 1 1 1 ] i } 1 1 1 i 1
area inside thick Black line contains ECL circuitry.
10-position connector 20-position connector 50-position connector
Dip Display SA100X SA100X or SA4XXX
Orient. .
XEROQX | Project Reference File Designer Rev | Date
SDD Dandelion] HSIO module PC layout detail HSI1008.sily Davies Q} 7/16/80




. #TPOO1

?tb
_1—1

EE BackVCC 2 | Fuse vCC
. #F1 1RT
+5V supply
. 15 amp
Gi— 708W11502
GND 2 ”:‘IE°‘ 1
Rt ¥ .
35 uF, 50V
702W10701
. #TPQO2
_ 1? tb
700 BackVEE 2 | Fuse |4 VEE
#F3 1RT
200 -8V supply
7Tamp
708W11302
GND 1 #{Ezozz
1LFT °
35uF, 50V
702W10701
Project ) File Designer Rev } Date
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PWA Layout Considerations

1. ECL wiring should be on the chip side of the ground plane in the ECL area. TTL wiring should be
placed on the other (back) side of the ground plane in the ECL part ot the board.
2. TheECL Clock signal 5§ 1MHz should be driven from the middle and terminated on each end with
100 ohms to - 2 voits.
. The impedance of the traces used for ECL wiring should have an impedance of approximately 100 ohms.
. The system clock outputs from each board should be checked as part of the manufactu Ing process to
assure that there is no timing skew between the clocks. This should certainly be done on early production
boards. Continuation of tests on Iater batches can be determined by the results of testing the early batches
of boards.
5. Do not change the aliocation of MC124 gates. The InhibitRead’ slgnal is used with the common enable on one
of the packages.
"6. The maximum voitage induced on any ECL trace from anotherECL or TTL trace should be 0.1 V.
7. RAS’ and CAS should go through gates located In the same MC124 and 74837 packages.
8. LRAS’ and LCAS should go through gates located In the same 10231, 10124, and 74S37 packages. ’
Q. Voltages used on this board: +5V, -5.2V ' )
10. Allifocations to ba provided with IC sockets. .
11. lengthsofthe X, Y, DData and DAddr busses on this board should be minimized.
12. Carsshould be taken to.isolate the analog circuits in the phase decoder from nolse. All analog grounds
should be tied together and connected to the logic ground at one point. Similar care should be taken
with the VCC and VEE signals used by the analog circuits.
13. The Open-collector drivers and Schmitt trigger reciavers used to buﬂer the disk cable signal should be placed
closa to the disk cable connectors.
XEROQX | Project File Designer Rev |} Date Page
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be wired upside down in socket. This pravents cutting of
ground connections on stitchweld card.

The suffix! prevents Route from attempting automatic

terminator assignment since DO stitchweld card has none defined.
Subnet wiring order for a net is done by appending to the net-name
a! foltowed by the wiring sequence number of the node in the net.
Automatic terminator assignment is inhibited by use of ! as the
last character in the character string of the nat. This must occur
after the subnet feature if it is also being used.

. EnbS1MHz _ 2 o
s38|\.3 Gated5 1MHz’
‘1 th9a
2.5 5.3 ECLRAS"4 vce
preCAS't1_6 3 TA1311 5 .
— TA1315 7] 8 , 9]
#%bisd —n22 S 2 ECLCAS’!1 2 MC12s
K1114A Pully & ,
RFout |8_Raw51Mhz 4‘.——1’— c MC231 ECLCAS"S | 3 " #%nisa
0 L% simuzis ol - ofd % pCAs
D~ ol |s74 i #wet7a vbb!
14 pin DIP package at15a.
51 MHz Clock TTL Qutput 3 c 6 HalfClk
re 25.5 MHz for SA1000
T[__Test?’ 1.6 5y 3.9
preRAS__7[ g
0° ql2
e MC231
© Buf51MHz’ 51MHz!16 , ,
- 51MHz!8 9| Q...:}_E_QLR_A..?’_!.L ECLRASY3 |
= 1SCr| #%bi7a
pT}
i HaEN , 3 .
Cycle.3’ 5
o 12y
PullUp 6 ECLCveiad"5 101 8™ 15 5ropastt
ECLRAS'IS 5 2 preCAS’I1
Tick67'131 1 A %p17H ) w15
ke AL l# %b1sb -
R -} WPulse rso=
138 ECLWPuisels 7 # %b18b
Tiek7’!1
ECLWPulse!3 7 3.7 .
ECL1! 11 COYT1 3 Tick56°!1 Signal is low during
: TGiP0  HOHS ecLwpuise! MC102 ticks 6 & 7. 12y
dlo1  wipERiTnell # %cisb 7 meke7us 10[ 5 |,
Fo2  h2 D~ ak
p3  H3f : MC231
s| F16 #%biea LwoBit3 7 4 Tichk56 ! "We _ laectppcikii
PE A %b15d a® 4 %c17h
C MRCE’ * #TP0O3 5 ¢
3[12] 68 tb MC176 S1MHz’ 19d
Testotz 1 Tick5615 7] MC176{ 4 _Ticka7't1 3TM
. c | #%b1sn # %15
9 110 .
51MHz!8 51MHz! 5 1MHz
1
13 9 Testa"
MC102 # %c16d
Note: The prefix #% in front of chip position causes the chip to

GND 11 1o PullUp
110e
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co 5 pCycle.3 2 b19a
: BO Hojﬂ a 1 Cycle.3 -
GND a2y hihS pCycle.2’ So2 2 18 Cycle.!’ rzn
3lpa 34 pCycie.1 & 2133
Pulilp 7
Tiofer at7
LS183 4 16  Cycle.2’
CL’CK LD’ - 003 ]
Test1’ 1] 2] 9 ¢ a18b
peClk | )
The scheduling prom on
the CP looks at this signal
to decide whethe to give
the Ethernet/Disk click to
the Ethernet or to the Disk.
GND = > Ethernet all the time
since this disk controllér cannot - GND -
ppClk 5 lower its service request in time-
4 preClk’ 13 S04 12 Clk . to stop two services from one
GND (6 service request.
] b19b e10f .
' 8 [ 14 Click.0 751 -
co |15 i 102 )
[} B0 Hols! ! al18c¢c
5 a1 H1 2 pClick.0
ala)  hif pClick. 1 8 [ 12 click.1 53]
' GND (3] 05 ' Ha 44 pClick.2 a18d :
s 1LS163 :
15 3 13 Ep 17 3 Click.2 5
Clk Is § 1MHzZ’ + 15nS aiat ET a18 - wpooa | 13 a18e
CL’CKLD’
51 MHz + 25 nS 2T 5 tb S37 .11
BpCycle.3 1 12 2194 -
ai8i a18j 5241
ppCik ResetClick ~ ,
GND 13 AT o
al8g EndLine GND PullUp
[
' 11 . e . CHO DProm.00Q
alsh 5 a1 Rt DProm.O1
4 82 MEE DProm.02
3 Ba 3 4 DProm.0
7 .
fb_g LS163 Dlsplay PROM
Counter
CL'CK LD g10 P
1IBE - a
Testi’ 46 to 255
InrHiPrAddr .
5
. 80 CHO 1 DProm.04
5 B1 H1H2 DProm.05
4 82 H2 K DProm.06
GND __| 31ga H3l 4 DProm.07
PuliUp 7 Ep
'—m-‘ET LS163
CL'CKLDY} h10
Test1’ e
1 s04 2 EndLine’ 1;—_1—3_2
i10a t Schottky Load
Can be used for
Pa«;lg‘lgesg:(:nt task which does
'75 so2 memory refresh
'33 S04 if display is not
4 LS163 present.
.25 837
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4.5 nS

_DByte.0!5 12 mMC141 TC1!3 11 0 Btack 5%

yte. 0o . !

2 Do Qo —_— v
DByte.1!5 11 pvidiz 7" s "
DByte.215 9 g; g; TC213 10| 0~ qf2 Video't
~Byte 315 6 : , MC131

* B %ats Invert 11 A2e Me g # %M 1a Videol
vl P —nvert I3 Blank!510[ s |,.  51MHz12 ol . a
1Q] SR, D~ otk CCr Connector is 15 pin
SL ) #%t11b 44 Female D connector
C DLDR LdsSrR7 11 c 14 PVidi2 located on bottom edge
Stirzza 4l 51130 paiksyne 10 ! R Tmcia1 Connectorpmeand =~ 78
TE2! ) . 138 LdWrd 5] discretes on sSWSDQ9.sil
Ldwird’!2 & S00 },6 ReadDataFifo
, |MC141 #%a13c 5 LdWrd PPIcSyneDly 4 |i15b
g:z :-j : :: 00 QO’.;.J.@.L!  Vbbti3! 7 MC125
DByte.615 a0t g;% ; Cofanatl ) # %1130 © #TPO06" #TPOO7
DByte.7!5 8102 a5 igloe  HoRETTRIE— oo |, 12 ByteSel LS139A0’ Qw 1@,)-:1:
Lasmns | 7] o2 3‘01 {2704 =2 #%113¢ PPicSyic 3 At
Ty 2102 H2i3™ 7R3 T35 b4 Bytesel [2|AS2 ‘U IG HighDataOut
Qs D3 H3 13_ByteCk AS1 A2 Bataout
| tp12 5| F16 # %e13a 15 A3 -
c oLpR| TRU2 54, #%113d #TPOOS gor [12 LowBorderout
51MHz!126 3] 5kiak ¢ MRCE! i ‘ 131 <, 1 [ HighBorderOut,
tb 1 11
3f124 o8 pric a4l S17° |5 ppicsyne 1i — |Bs* B2 §° On Oun
L51muz o °°"9 En' eai| (1g #TPOOB . #TP009
PPicSyne 5 | D1 Q1 PPicSyncDi R EET
TD3!11 12] 9 TB1!12 Q1§ ' [ 5] vstpataBorder
roas 13 .g:c*.o:s PHoriz’ 12|, 85,‘:1) Horiz epelserv
) #%d13d  pBlk  13].. A2HS PBIKSync a
C : 14 : 2[5
Qa'te D
o AiMbz cker| t1s B | is7a .
Common gate input of MC 124 T81!13 12| MC176[15 _LdSR'!1 o[ 1 , i13a
Is connected fo InhibitRead’. 4 %d15g awteck ° [ puny _ CliDataRife" 34n g |
‘ ‘ ' . 1R Bor-der Pattern
R Byte Select
Display PROM. . . .. , mp_l v
" #TPO10 ° #TPO11 . Prom Regqister
DProm.00 15], £93453 th @P th 3
pemal e R T ! pPHoriz’ 3| 3374 1> pHodz’
pLOM.s a7 pPBIk 4 5 PBIk Horiz' 3| N4 BHoriz
DProm.03 A6 12] 5PD/P =101 QA E—557F S04
porom.o] 21as 92 [ pPPic glos Q2 pric T100
T —=Aa 13 pvicik 13107 gal3 Vencik
B —as @1 pCDFifo 14| 2 S2H5 CliDataFife’
Plo < 8 A2 14 pPReq’ 17 D6 QGWE PReq’
BIk S BE 1 pi 8lp7 a7l
I © « it "~ Lex_oct| M2 Vert 5 5 BVert’
cs' cs'| #TPO12 #TPO13 : T 504
8] 10l GND 110c
* #TPO14 #TPO15
15[ F93453 b O b
TeA9 ) )
=1A8 g5t
A7
o
31p4 13
4 Q1 -
21as 3374
. GND é A2 0014 ClrDPReq'13 ) 3
—Gdd 1A 1 1& : al2f
AQ H1 @ tt tt Clk 8pDispReq 2
cs' ¢s'| #TPO16 #TPO17 ,
TstDispVetPm 8] 10] . ErinterRieg 13 on___1]i
VertProm DispReg’ 12|

Butx.8 — 3 91'5327%0% 5374
BufX.9__ (Clear Gontrol Fifo) a1y Q32__ciciFito 8 pDPReq’7 | °°" ' 16 DPReq! oy
BuiX.10 (Verticg_ljync) 7 02 Q2 [< pVert a12d
BufX.11_ (Odd Line 8 9 0Odd #TP018
BufX.12 (Invert Picture) - 13 3131 gz 12 nvert th Puliy Clk
BulX.13__(Picture/Border] Talpe galis_pic 1 —p'-—'—_ml
BufX. 14 (Blank Line] . 710 qell6_Blk s
ButX.15 (On) 18152 Q78 0On 16 D |9 _Vert

\ tt s74
710Gt 5 6 DCtie 2 e e #TPO19 VertCik 11 8 Vert
3 Enbpctt 1 C oot
preWaitci’ L7 M18¢ 4 Control R | atsb

Register puuué 13]

Terminators shown on clock page.

E I0PReset’
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High Byte s374 $225
576—RRata.00 31, """ (12 BDD.0O 4100 Qohs TTLDB.O 5 & mc124
T761—DData.01 1.7 Q1/2—BDD.01 5151 Q1h4
~5{__DData 02 __ 71, Q2|6BDD.02 61, R iE PullUp 61 . DARyte.011
4 DData.03___8 9 8DD.03 7 12 /"~ #%gi3a
. 5 D3 Q3 D3 Q3}
Yt Data.04 13157 Qali2_BDD.04 810a Qal X
P> DData,05 14 15 _BDD.05
178 D5 Q5 = vC
== DData.06___17 16_BDD.06 164 .
979 —pbata.07 —181°° 9875 Bbp.07 18]CKI CKG
179 : —24D7 Q7 R CLR’ ORE
cK_oc’]gte —oe IR
T 8 CKACKB] h17 DByte.1!1
I 1719] #%g13b
GND
TTLDB.2 10 2
4 §0,652%% ol
5 14 15 DByte.2!1
512! Q3 : ¥/ #%giac
21D2 Q2|3
D3 oa:tf
ReadDataFifo D4 Q4
) 16l TTLDB.3 11 3
4 ek cxc?
CLR’ OR} 14 DByte.3!1
HighDataOQut 9 oE’ IRH o F%g13d
DCASDIY’ g:(;:glxa 7
Low Byte
=L 0Data.08 | 3] 8374 1> sop.os 405225 ohis
DData.09 | 4 5 BDD.09 ; 14 TTLDB.4 5 4
181 et et D1 Qs 21D Qi MC124
082 g, D2  Q2F—=r= °1p2 Q2p=
TeslDbata. 11 | 8,5 Qal2 __BDD. 7103 Qal2 Pullip 81 /)2 DByte.4!1
=— DData.12 138 12 _BDD.12 8 1 S/ # %g12a
083 —¢ 5 £ =1D4 Qafs—s = D4 Q4
183 ata.13 4105 051, :33.12 X
ogat—oDa: Lt 410 ng  qpf1S-BDD-14 181cKI  CKC; o vee
184 S —D7 Q7 — 5{CLR’ on-% -
i , i —1OE’ IRF TTLDB.S 7
Sk ocinte, Ckackn] s —\T.?
JBE! 0l DByte.5!1
S #%gizb
DCAS' LGND
4 s225 |,
5109 g?‘a TTLDB.6 10 \T,yz
6 13
7 S i) 015 DByte.6!1
{04 i8] | #%gizc
16 3
] CKI  CKQ
ClrDataFifo’ 18
Lo DataOut 9 gg}' ?:f In.0ne.7 11 ‘\fa
CKACKB| i19 ol14 DByte.7!1
1] 19 S/ #%gi2d
DBordere’ 3 4_DBordere 10
80413b S00 .8 _EnbDBoarder
preWaitClk’ 9
i14e
¥.00 3| LS374 |,
Y.0 409 QorF
: D1 Qt
Y.02 Pl P [
Y.03 8 9 .
y g =403 Q315 Border Pattern Register
Y.0 =21D4 Q4=
Y.05 4 5
- 05 Qs
Y.06 17 16
¥.07 51%8 Q%3
: D7 Q7
CK_oc'] et9
HighBordarOut 1] 1
* #TPO20
th * #TPO21
v.08 3 055374‘30 2 1 @;3) tb ° #TP0O22
¥.09 4104 Q12 1 (?) tb * #TPO23
Y.10 7 8 1 tb
- D2 Q2
Y. 8 9 1
V1 75103 Q35
BE 14124 Q45 ]
Y 77105 Qsfk=2 é
. B . 1
Y14 1tioe  asfiS - b tt
A5 D7 Q7 - b tt . #TP024
. t . #TPO25
1‘131" gerl e éu . #TP026 -
rLowBorderQut - #TPO27
EndlLine goes low once per horizontal line.
DCASDIy’ is DCAS’ delayed by 20 nS.
Read signal goes low for 20 nS before low data byte is latched by the shift reqgister.
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$225
DO Qo-tz
g; g;j_a #TP028
D3 a3l th
81pa Qal! 1 ) EndAddr. 10
18lck  cxdf
5]CLR*  OR
oE’ IRP
CKACKB| 917
1] 19
WTPO29
th #TPO30
High Byte saza | 918 1 @P th ¥ TPO31
0ag}—1-00 3100 Qof2 DCF.00 s225 |, 1 @“’ , ,
¥.01 y 5 DCE.0 4 15 1 EndAddr.11
145 2 D1 Q1 LR Do . aof = L
= Y.02 7 6 DCF.02 5 4 EndAddr.12
052 |55 D2 Q2 S D1 Q1l= = <
- .03 8 9 DCF.03 [ 1 EndAddr.13
152 =1p3  Q3f% 2 D2 Q2
o5 51— Y.04 310a  aal2 DGF.04 7103 Qali2 EndAddr. 14
22 Y.05 14 15 DCF.05 8 ; EndAddr.15
153 2{ps Qs o D4 Q4
5241 Y.06 b aalle OCF .06 1
154 Y.07 18 D7 a7 9 DCF.07 13 CKI Cch it 1
: . CLR' ORE #TPO32 tt
EN—E 2o’  iRpa #TP0O33 .
. CKACKB] o17
GND 19
TstEndAddrHi
al,,5228 s DAdr.00 557
Low Byte f18 5 14 DAddr.01
$373 D1 Qil= . 167
- Y.08 3 2 DCF.08 6 k DAJdr.02
055 DO Qo0 D2 Q2 < 068
2 Y.09 4 5 DCF.09 7 2 DAddr.03
1550 2 PO DCF.10 g]2® Q¥ DAddr.04 163
~=g : D2 Q2 A D4 Q4 : 069
A B g DCF.11
vz 3103 Q53 DCE.12 18
— T D4 Qaps TARE TaCKI  CKGS
57 ey 17105 Q532 AT 5ICLR’  ORE
058 NT 15106 Q6he AT OF’ IR}
158 R D7 Q7 2 CKACKB| g18
EN_ OC' e
T 1
-
preClic’ | GND
4 5225 5 DAddr.086
={Do Qof oh 168
ddr.06 =
2401 Qp =2 07
K ddr.07 5
+{D2 Q2p° T 17
p dr.08 5
g k3 a3 DAddr.09 0#2
. D4 Q4 : 172
UnLdCHFife 18l exd
CIrCtIFito 18 {ci R
eI S{CLR’  ORE
. == oF’ Ri»
CKACKB| h18
1] 19
DCtIFifoe’ 4 2 _DCHFifor 5
(024 S0t S00 ), 6 EnbDCtIFifo
preWaitClk’ 41i14b °
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. -
15 X(;.SBS
EndAddr.10 1 Yo X>Y
13 X1
EndAddr.11 :2 Y1 X=Y
EndAddr.12 11 52 x<v
10
T g g 9] 33 TTiLastTick 12
#TPO35 293 nSFull
. th access. > = £ |hts
T5163,,]15_Asact 9 9 | conod 4[ 3] 2]  GND
PullUp E BO HO“-;' 13d Mm \
GND 5 2 . . DAddr.10 =
= Bl Hi 073
X ORI L ‘ : DAddr 11 013
[ 353 nahd : DAddr.12 o4
7
ig[EP gie 15] 583 5
CL CK LD] EndAddr.13 ~ 1 YO Xy Could also use
i -1 X1 -dé AMD 25L52521
Tost1’ 1] 2T 9 AB3CE EndAddr.14 :1 yq X=Y 8 bit comparator.
X2 /
LoDAdrCarey EndAddr.15 THYe X< 130
—= X3
“#TP0O36 91vs 6
20 35 th > = XL
LS163 15 1 11 10 4{ 31 2] GND .
PullUp & Cony S04 _—Puiup '
GND 520 Moy h13e DAddr.13
222181 Hil , : - 174
4 o113 DAddr.14
3182  H2hg DAddr.15 D15
.t 83 H3| ~ 175
27
13) Ep
ET h16
CL'CK LD .
it1’ 1] 2] 9 "
) ) DCAS' Increments counters. State machine
g CcaAs' LoDAdrCarry’ . generates EndRndRead when the alloted
. number of accesses for the mix of page and
DCAS8’Is active . full accesses has been reached for a given
only when round {4 clicks out of 5). Page/Full’ goes
Disp/Proc.’ is low whenever the conditions for a full access
high. are met. '
When the word counter reaches 63, it resats
to O and the InhibitRead signal Is asserted,
#TP040 which prevents the Read Machine from restarting
@ b until it is reset by ClrDataFifo’.
1
'#‘3’03,7 #TPO41 " #TP044
1 (OP th @ tb
1 1
#(_';'P?:B #TP0O42 #TP0O45
9 1@ th 1@ th
EndCount PROM -
e #TP043 #7TP046
e F93427 @ th @ th
ECLO __151,7 914 1o | - (16008 ! EndRndRead’
stsco 15 _ECt.1 i Q3
6, 11 ECt.2 2 LS175 Goes low during
5: g? 3? P WC.0 3 22 Q2 10 | PCt.0 4 po QO 2 ECL.0 last access of
Sle2 W2t Wel dias 11 | pct.a s|  aofd Ecr.q found.
3|g3 3P WC.Z a2 Q1 D1 Q1 f=
i LABSCL 81,5 12 | pct.2 12] . QR ECt.2
PullUp 7 £p | Page/Full’_5 AO Qo - . D2 02, 1 =
104 : cs' Cs asactial . O2s nhibitRead 13 | S\(12 InhibitRead”
crrekepy| 918 a[ 13 ozt h13t
1 2{ 9 CK CL h14 .
9 1
TsteEndCntPrm ) ClrDataFifo’
+ s’
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- Common gate Input

tothis 10124 Is

connected to InhibitRead’.

% ‘3.7
ol LastTick”3___ 11| mc176{14_TD711
14 Fullll o
¥ %oldc # %d15¢
O~ Page .
1-Full # %tide MC102 TD7!15 2 of MC125
2.5 4 _TTLLastTick
Fullls 7 5; TRETTE #%H3a
Seerm———— []
Full is set during last 0 alfmc131 1oRASIS 1o qlaTAAN Vbbi13!
tick if next access RCES 6 c #%b14a i [
Is a full acceoss.
51MH2!12 9 |3 preL.RASH 1.5 59 3.9
CCr'ls TA41s 7] s
3./ 7% v —10 "~ ql2 mc231
51MHz!4 6 #%d18a
LRAS-L.CAS Counter a—— s TASI1 TASI5 6 5
2 5.5 . " U @ )
% %c16¢ ; Cofigeasrnekll CCr 2| _~#%ci18b
. - =
TB5!5 1(1"‘;(1’ :0 15 _CL.
EX o ; 2 _Ct.2 RAS’ output
gcLi! 7102 : 2 changes at
D:;HB or before
’ "
RCtrPE"! 5 PE’ preDisp/Proec.’!3 9 sB . end of tick7.
2.5 |_C MRCE] #%c15a 5 |#%d171 |mMc158
13[12% 6
51MHz118 SetUp!s recas'ts 121 %917¢] 15 tR1011
- e —————— E 5 D Q .
Ct.115 ) 8 preLCAS’!E 13! B
. 2 RCE'! > . VGC .
Mc1o2 RCE’ goes low during 5.3 .
# %142 counts 6,7,14, & 15. tB1015 10l MC176|13 TBEl 2 MC125
ct.215 7 Only counts 6 & 15 . fomeies 4 |
. 3 are important. #Pdi15e TAB!S | 3 % %c18a
. v
12
#%c14b 18615 101 S 1,5 Taste | vobe1s
. _stTiek'S 7 129 _ ol TAG!!
- | 3 PPLC!Y PPLCIS 10f s MC231
Ct.o!5 6 MC104 PPLC is high . |° Q[ MC131 stmmzis 11l |, #%d18b
O 9]
: #%d13b during counts | #%b14b <0
LastTick’!s & ato 14. Mc 14 precasn -
) a 13 b
2 RCUPE'1 R LCAS
CountReset’!3 4 MC104 T3 ——-
#%d13a
PD/P 4.2 4 10 o '
Goes high during retcas’1 10l Mc176{13 TD1111 11| MC176]14 TD1211 12 |MC176 |15 _TA111 TA15 | 114 12 RCASDI
clickd cycla 3 e : : : - # %c18c
Changes 25-45 A %b15e A %b 15t #Peb15g
nS after 51 MHz : S
cycle boundary Tick7'!'3 e
at end of tick7 MC102 .
PD/P 5 4 StartRead’!1 StartRead’12 12 15 Fulil1 MG176
-] MC124 #%c1ad
InhibitRead" 6 | #%f14a ¢ | #%d15n
X 51MHz!20 9
vee 9
EndRndRead’ 7
Goes low #%c16a I Mode change on Click Boum:iarles Only I
during last
access of round. TC7!5
5 129
Common gate input 7 S
fo this 10124 ls o oo 5 a1 M oloispsproe.
Py 3 bt P .
connected to inhibitRead’. CountReset'!2 6 c #°%b13a #db13b preDisp/Proe.'15 15 #—L———-—-%cwd
3_TC51 11
51MHz114 9 a 14__TB7!
._.__L_.__CCRQ C o4 _TB7H,
3 R
13]
Tick7'15 ,
2 Tcely ICBIS TB7!5__ 5| 2 _TBOM 6 3 preDisp/Proc.’!1
MC103 ) MC176 MC176
#%a14a #%d15b #%d15¢
Terminators are shown on the clock page.
XERQ X | Project File Designer Rev ] Date
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. #RS
. Mz iLFT ___VvCC
“#L12 1RT 100 ohri
Gated51MHz’ 2 lx x X\1 Buf51MHz’
1
1.0uH * it
. #TP113
Video’! D)
. #R1 ° # CR20
VEE 2 .\ A A1 1RT 2 -'>|11 GND
220 ohrh iRT -
Video! /\:,D
. #R2 _ * #CR21 )
VEE 2 ‘\/\/\.1 1RT 2 !\VIJ 1 GND
220 ohrh ART -
#L10
BHoriz 2{x x X\1 . HSync @
s.8uH - 'RT GND
y —-——-—@ HSync Return
. #C10
evD 2”1 Fumsyne 27 AR34| o
0.01uF IRT 100 ohm
©O#L11 o
BVert’ 2 1 VSyne? @
.1RT
5.6uH J G—ND—® VSync Return
. #C11
# R4
GND 2 1 FilVSyne’ 2° 1
= -} Y ~ 1RT
o.01uF IRT 100 ohm .
Y 8>
' ND ’
(7 ) .VEEreturn
98 Shield
RDIV16
#%d19x A
| _=GND =VCC
8' 16|
ROIVi6
# %d16x B
=GND =VCC
8| 16 These RDIV16’s are being used as
ECL terminations so must be wired
to conform with the ECL conventions.
RDIV16
#%c13x C
=GND =VCC
Bl 16
RDIViG6
# %e14x D
=GND =VCC
. 8{ .18
RDIV16
#%g11x E
=GND =VCC
8! 16
VEE GND
Project Dandelion Display Controller File Designer Rev | Date
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Buffer X bus to reduce loading.

o NG BufX.0 CERe 2 [N 3 Bufx.8
L e16a |7 o152
XA AN suxa ZELX-2 a[N$*"_ surxs
| et6b _ e15b
CaapX2 AR BufX.2 [aepX-10 8 [ 9341 BufX.10
/?,awc /?/9150
X.3 a [N\§3! BufX.3 s [N\g2 BufX.11
) e18d e15d
[ 17 Ng24 BufX.4 Car[NgeH BufX.12
e16e |1 o15e
X.5 15[ N3241 BufX.5 15[ g4 BufX.13
A et6t A a5t
e 13[4 BufX.8 WIESL 13[4 BufX.14
A e16g |1 e15g
Xz 1 NPY suixz Taa1X:18 1[N suixas .
_1"e16n |1 e15n
5341 5341 5347 5241
e16i a18j . . e15i e15]
EN’ EN _— EN’ EN
7 9 vee 7 15
GND pully . GND PullUp [
} Pulivp | gr— pELALD A

2
:16\§MC125 ___ TTLvideo
Video 3 ;
,v/ #%g7a

) . vbbg7 1} This is used to test the vidéo lines being sent to the monitor
Video' 3 c128 .
ot 3 TTLVideo’
) z #%g7h ;
#TP108 : CH#TP112
. © th COP th
" #1P100 .
©) tb
M #TP110 C#TP114
O @ tb
a1t 1
@P th
1 1 RDIV16 *
. 2| RDY SVCEhs Enb51MHz
3 ) 4
Hros ol
[
>{ros Ro11 {12 -
7'* RD6& RD10 -'0
= RD7 ° RD9 -5
=GND RD8 H Most other resistots used on HSIO82.sil
98
TstDataBorder’ 1 S04 2 TstDataBorder
h8a
TstEndAddrHi’ 3 504 4 TstEndAddrHi
~ hsb -- -
TstDispVrtPm’ 5 S04 ] TstDispVrtPm
h8c¢c
TstEndCntPrm’ 9 S04 8 TsStEndCntPrm
h8d
11 504 10 Test1
h8e
Project File Designer Rev | Date
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A B
- RDIVi8 RDIV18
18119 Hro1 =vee| BN lslro1  =vec| GNP ,
B6IS p 15__T85!9 PPLCIS! 5 _RCHLPE"O!
L 21 Rp2  RD14 I 21RD2 RD14 :
A11G 14_TBSI9 EGL1! 3 4 _preRASION
L RD3 RD13 2T —E RD3 RD13 |-
A4IS z 3 TA6(9 ECLWPulselgl 4 3_Ct.219
- RD4 RD12 P51 RD4 RD12 H3-E ,
SreCAS 191 5| Ao R332 [iz_TAsio Ct. 1191 5 Ros. ot [iZ_TBi0M]
51MHZ' 19! 6l hoe  Rbio [LL_ECLppCikTal TA1319] 6| poa’ ROl [T _TCalor
ECLCAS 1] 7 0 _praDisp/ Froe.'19! Tick67'191 7 10 TB719]
RD7  RDS fo s iMuzI! RD7  RDY ool
VEE| =GND RD8 ] VEE| =GND RDS
#%d19 #%d16
C D
RDIV16 RDIV16
RD1 =vcc| OGN0 BVidiol rRp1  =vcc|, GNP
5 preLRASIO! D719t 2 _ s _TE3191
RD2 RD14 ki 21 Rp2  RD14 [H2—1E
RD3 RD13 H? $791 31 Rp3  RD13 |44 1D419
3_TB1119! DGyte 410 4 73 CountReset 19!
RD4 RD12 M : : RD4  RD12 |3
Test2!9! 2 DByte 510 5 2 1D3(9
RDS RD11 H Byte.519 RD5S RD11
SetUpiotl 6 RD6 RD10 1 ]1 DByte.719 & RD6 RD10 1 _Ct.ol9l
RCE'19 7 0_ Tick56"9! DByte.615 7 0 LastTick'181
RD7 . RDg [LOTICkSSHOL RD7  RD9 ast
vee| =GND: RD8 1o} VEE|'=GND RDS |#
#%ci13 #%al14
E F
TD1!1S RDIV1G GND TwoBit!9! 1| . RDIV16 GND
o Urot | =veel S ) - Urot =vec .
C212 p 15 _Blank’!9! TESIO! 3 5 Tick7’191
JG212 RD2 'RD14 H2—Bl 3 21 RD2  RD14
D219 3| po2  RDY2 M2 simnziaol DByte 0191 3| RD2 RO e
ECLRAS3] r 3 LdWrd ol DByta. 119} 4 3 _Tcslat
ECLRA 4 Rpa RD12 H3-L ; : 21 RD4  RD12
D121 5 2 ECLCycled 1ol TCB191 5 3
ID1218 RD5 RD11 H 3 RD5 RD11 M
51119 5 GSR (91 Dbyte, 3191 5 1
proLCASTEY 7| RDS  RD10 IHG—rcoig DByte.210! 7] D8  RD10 Mo
LASION RD7  RD9 OS2 ;2191 RD7  RD9 H
VEE|{ =GND RDB ' vee| =GND  RD8 [P
#%g11 # %7

Termination Packages A, B, C, D, E above are

100 ohm termination to -2 V
316E161261

Allen-Bradley pait no.

Note:

Pin 18 on each termination package is connected
to GND and Pin 8 to VEE (-5.2 V). This is done on
pWSDO9.sil and sWSDO09.sil where there is more room.

This connection make the termination compatible

with normal ECL power rules.

The prefix #% in front of chip position causes the chip to
be wired upside down in socket. This prevents cutting of

ground connections on stitchweld card.
The suffix! prevents Route from attempting automatic

terminator assignment since DO stitchweld card has none defined.
Subnet wiring order for a net is done by appending to the net name
a ! followed by the wiring sequence number of the node in the net.

Automatic terminator assignment is inhibited by use of ! as the
last character in the character string of the net. This must occur
-after the-subnet feature if it Is also being used.

XERQX { Project
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File
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Control Registar

BufX.0 3 Dé‘s”%c 2 HeadSclect 16
ButX. 4 D1 a1 5 HeadSelect8
BufX.2 7 D2 Q2 8 HeadSelect4
BufX.3 81pa a3 9 HeadSelact2
BufX.A 3 D4 Q41: HeadSelect1
BufX.5 410s asHS DriveSelect
BufX.8 7 D6 as 16 FauitClear
BufX.7 18 D7 Q7 19 ReducelW
b12
cK CL Drive
TV Control
KCtICIk l )
#TPOAT
1@3’) th
BufX.8 3 DCIJ_SN%G 2 ) Step
BufX.9 4 p1 a1 5 Directionin -
ButX.10 7 D2 a2 6 FirmwareEnable me
8 Qg
BufX,12 E FOA e WriteCRC
BufX.13 14 15 N WakeupControl.0
BuiX., 14 17 gg gg 18 . WakeupControl, 1 Operation
BufX.15 18 D7 Q7 19 . WriteEnable
c12 '
CK_CL’ 13 N14 12 WriteEnable’ 11 S04 10 _BWriteEnable
" 1 c2t e20 1
tt
, o #TP049
Bufx.21 : 120, 8 ls BTransferEnable,
, } 874 j 1
122 KCtle 1 @' 2 Ketle 2 3 .. Ceqy .a5b BTransferEnable is clocked tt
, e10a $00 C ,l§ separately to reduce prop.
prowallClie 1 o11a QT delay. if the LS273 were #TP048
13 used, an additional driver
|0PResset’ ' would be needed and WordBoundry might not be
turned off in time at the end of a transfer.
Ky 4l 15273 ]s stransterEnante 7| 55%"% |6 DeiTransterEnb
i8¢ 18d
15373 NRZClock
8}
CK CL’
NRZClock 1r 1
BTransterEnable
WriteData Register
BufX.0 31,6573 l2 WriteData.0
BufXx.1 4 D1 a1 WriteData. 1
BufX.? 7 D2 aQz 8 WriteData.2
BufXx.3 8 D3 Q3 2] WriteData.3
ButX.4 13 Da 04‘2 WriteData.4
BufX.5 41ps asH2 WriteData.5
BufX.6 17 D6 Qé 18 WriteData.§
ButX.7 18 D7 Q7 19 WriteData.7
c10
CK_CL’
11 1
WrDatCik '
Butx.8 31565273 |2 WriteData.8
ButX.9 4 D1 a1 5 WriteData.9
BufX.10 7 D2 Q2 B WriteData.10
BufX.11 8 D3 Q3 9 WriteData.
Bufx.12 3 D4 - Qa4 2 WriteData.12
ButX.13 14 D5 Q:‘E WriteData. 13
BufX.14 - 17 D6 «f-uog“b WriteData. 14
BufX.15 18 D7 a7 19 WriteData. 15
d10
CK _Cv’
KOData«' 3 ». KQDatae 5 o 11 1
preWaitCIk’ e10b 4|S00 ;
el1b
BTransferEnable
Project Dandelion Disk Controller ) File | Designer Rev | Date
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Status/Test Multiplexer

HeadSelect16’ 21 ~18 X.0 DiskReadClk 2 18 X.0
, aila clta
HeadSelect8’ _ 4 16 X.1 DiskReadData 4 16 X1
. altb ¢ct11b
HeadSelect4’ (<] 14 _ X.2 DiskOutputClk 8 14 X.2
atic , ctte
HeadSalect2’ 8 12 X.3. DiskWriteData 8 12 X.3
- ) atfid ctid
HeadSelect1’ 17 3 X.4 SeekComplete’ 17 3 X.4
alle clle .
SaskComplete 15 5 X.5 Directlonin’ 15 5 X.5
attf . ciit
Track00 13 7 X.6° BHorlz 13 7__ X.8
a1 cit
FirmwareEnable : 11 9 X.7 ReducelW’ 11 9 X.7
alih c1th
IndexFound 2 18 X.8 TTLVideo 2 18 X.8
bila dtla
SectorFound 4 18 X.9 Sector’ 4 16 X.9
b11b d11b
SA1000/SA4000’ 8 14 X.10 DriveSelect’ 8 14 X.10
btic di1e
DriveNotReady 8 12 . X.11 BVert® 8 12 X.11
' : b11d ) ' ~Td11d’
WriteFault - 17 3 - X.12 TTLVideo’ 17 \3 X.12
i b11e | ~Pdi1e
Overrun 15 5 X.13 Step’ 15 5 X.13
b1t ’ dtif
CRCError 13 N 7 X.14 eadGate’ 13 7 X.14
b11 : s dt1
VerityError 11 9 X.15 WriteGate’ 11 9 X.15
b11h . . dtih
$240 S$240 5240 $240 S240 5240 S240 $240
atil ERRT b11i bi1j c11i clt) dtii d11j
EN’ EN’ EN’ EN' EN’ EN’ EN’ EN’
1 19 1 19 , 1 19 1 19
133 «KStatug’ ( 33','-'(.'-9St [
ReadData Buffer Register ReadData Regsiter
SerialNRZ.0 3|,a3278 12 PRoadData.0 31507 %0l2 X.0
SerialNRZ. 4 D1 a1 5 PReadData, 4 D1 a1 5 X.1
SerialNRZ.2 7 D2 Qa2 6 PReadData.2 7 D2 a2 € X.2
SerigiNRZ.3 8 1pa aal® PReadData.3 81p3 a3l X.3
SerialNRZ.4 13 12 PReadData.4 13 12 X.4
z A D4 Q4f = D4 Q4fs =
SerialNRZ.5 4 DS as 15 PReadData.5 14 D5 ashS X.5
SerialNRZ.6 7 D6 Q6 16 PReadData.6 17 D8 Q6 16 X.6
SerialNRZ.7 8 19 PReadData.? 18 19 X.7
i D7 Qa7 D7 Q7
a9 c9
CK CL CK oC’
11 1]__SKY T 1
SerialNRZ.8 33273 L2 PReadData.8 31000 4 0l2 X.8
SerialNRZ.9 4 D1 Q1 5 PReadData.g 4 D1 a1 5 X.9
SerialNRZ.10 7 6 PReadData.10 7 [ X.10
= D2 Q2 = - D2 Q2 r
SerialNRZ. 8 D3 . 039 ._PReadData.11 8 D3 039 X.11
SerialNRZ.12 3154 Qal2 PReadData.1? 13154 PE X.12
SerialNRZ_12 4155 0515 PReadData.13 14 05 as 5 X.13
SerialNRZ.14 7 D6 asHS8 PReadData_ 14 17 D6 QsHS8 X.14
SarialNRZ.15 18 19 PReadData.15 8 19 X.18
D7 Q7 D7 Q7
b9 d9
CK_CL’ CK_0o¢C’
NRZClock’ 11] 1[__SKY 11 1
WordBoundry’
w31 ~KiData’
02
=L
Project Dandelion Disk Controller : Flle ‘ Designer Rev ] Date
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KCtie’ 2 SKY 1
KlData’ 1 12 Serviced’ g 8 SServiced
KODatar 731510 SService 71 -S10f :
’ bi10a b10c
preWaitClk’
ServiceTrap
SKY
4l
2 s
D I
2740
c7a
SServiced 3 LS§273 L8273 LS273
(o] Q 8 3 D o 2__SSrveTrap 4 D Q 5 SrvcDet.1 7 D Q (4] SryvcDet.0
R’ e8hb e8¢ &8d #TPO50
Test1’ 1] NRZClock  .4rnogy  NRZClock | NRZClock © tb
' ‘ @P th : L2
1 #TP0S2 . Serviced
_ Service Redues!/ Overrun Prom Q) tb - 1 7 cBa
1
BitCount.Q 15|, 193453 S ool a| LS373 - - #TPOS5
BitCount. 1 16 A8 11 1 tb HDO QOp# Used above ‘th
BitCount.Z A7 Q3 : #TPO54 D1 Q1R Used above 1 #TPO58
BitCount.3 A8 12 O tb a D2 Q2 -; Used above @ th
LI H
SA1000/5A4000° 21,5 Q PRegState.0 ! 103 a3k, 1 ReqState.0
BWriteEnable 31aa ~ s ’qqutate 3 r D4 Q4 ReqState 1 .
Serviced 4 e} = . —{ D5 Q5= Y
ey —1A3 —1 PPRawOverrun € PRawOverrun
WakeupControl.1 71, 14 S AA000REq =108 Q63 DataReq
RegState.O [} Al Qo D7 a8 Q7=
ReqState. 1 5 »
AO o7 CK_CL
cs' Cs ST, ‘ moN
TstSrveRgPrm 8 10' .
NRZClock
DelTransferEnb
FirmwareEnable 4 This Is a two stage synchronizer for
SeekComplete 3| D9 S151 Kreq. It synchronizes KReq’ with the
Sndet X Fgundd . 2 g; processor clock.
ectorFoun
Datafieq : =107 YH sopeq o 2__pKReg' 4 5_KReg’
. (14 w D @ D a
GND___ 13 gg a12b at2¢
112 07 " 5374 Clke
BTransferEnable 9 at2j
WakeupControl.0 10154 09 . CK OC
WakeupControl.1 1152 11 1
51 g ‘ GND
aND 7 .
Clk from the dispiay
Word Status Register
LS273
WriteCRC 31p0 aol2 SWriteCRC ¢
DeiVerityError : 4 D1 al 5 VerityError
RawCRCError 7 D2 Q2 6 CRCError
Word Status Buffer Register 18' D3 Q3| :r'
. _ o 3: 04 Q4
BitVerityErr 3 oc'fs”%o 2 RawVerifyError 1 gg gg i DelVerityError
PRawOverrun 4 D1 a1 5 RawOverrun 18 07 . Q7 19 Overrun
7 a7
BWriteEnable _ gz o2 DWE cK_cL
DWE 1 3 D4 04‘2 DWE2 1 1
DWE? 2l “[i5 __ DWE4
DWE3 17106  qoll6_ DWE
DWEA4 8 D7 Q7 19 - DWriteEnable
ag
» | This "Shiit Register”
NRZClock’ ﬁ}( $L delays WriteEnable until ;Mordﬁ'oug dry’ ha‘s been‘slgzchetjf
—_— ; the Pre-comp shift reg ".;;" N Zo';' usrr;'g ach c hso'k
WordBoundry’ SKY | in the SA4000 or here is empty will arrive belore the ecker
Y. can change the RawCRCError flag.
y S374 ,
87} ClrKFlags 8 D Q 9 SyncClrKFiags. 1_@ Y #TPOS7
4 al2e
Clk
Project Dandelion Disk Controller File Designer Rev | Date
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SerialNRZ Shift Register and Error Checking

SerialNRZ bufter
WriteData. 15 a|, N199 la SerialNRZ.15
WriteData. 14 51g QB [$] SerialNRZ.14
WriteData. 13 c QE 8 SerialNRZ. 13
WriteData. 12 91p aphe SerialNRZ.12 -
WriteData. 6 E QE i5 SarialNRZ.11
WritebData.10 8 F QF17 SerialNRZ.10
WriteData.9 20 G achS SerialNRZ.9
WriteData.8 22 H H: 1 i SerialNRZ.8
NRZInput 24, 1&
Cilx tt
PLdSerialNRZ' 23 SL’ ' #TPOS58
GND 111~
= Cl ¢c8
CK CL’
NRZClock 13[ 14 . .
BTransferEnable
WriteData.7 al, N9 la SerialNRZ.7
WriteData. 5 B i 6 SerialNRZ.8 _
WriteData.5 7 ¢ QEE SerialNRZ.5_
WriteData.4 9 b QDN SerialNRZ.4
WriteData.3 16 E QE15 SerialNRZ.3
WriteData.2 8 F aF 7 SerialNRZ.2
WriteData. . 20 | ~ QCJQ SerialNRZ.1
WriteData.0 2210 . qnld: 4 SerialNRZ.0_ ... '
SerialNRZ.8 2] L1 @ u #TPOS9
Ll
PLdSerlalNRZ’ Y A 8|, 2253
GND 1140, 51 x1 7 __BNRZWriteData
‘ chocL 37 x2 O
, 3
NRZClock 13[ 14 X3 b7hb
BTransferEnable :
SWriteCRC 2| 5293
SA13kComplete — 14 5y b7d
Used with other 1/2 of mux to show RefMFMClock to PLL during Seeks EX' EY’
: i] 15
* #TPOBO . ‘ GND
NRZInput 2527 s P
SenaiNAZ0 318 76 || cRelaput 11§ 9497 a2 crepata
N—— 1
WriteEnable
NRZClock’ 1 cK’ tt .
, .#TPos1  #IP062
SWriteCRC i 1 N14 2 SWriteCRC 10 CWE tbh o
%2a —4 I MR ! -
SyncWdFound N 2 p ER 13 RawCRCError
1 a8
O tt S0 S1 82 .
. #TP063 GND 3[s5]8
BitVerifyErr’
NRZInput 10}
. s’ .
SerialNRZ.0 DS74Q 9 BitVerityErr
NRZClock 11 °7b
[ 8
Q
. R,
13!
SyncWdFound
Project Dandelion Disk Controller Flle Designer Rev | Date
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#TPOGA

©) th : CRTPO71
W #1P0BS e
O tb : #TPO72
1 . O tb
#TPO68
Add rMkFound O w 1 #1Po73
1 ) @ th .
s sy 1
F93453 . ) . o
;s GND . . . I8he e <] Ll g LS273 1, - SAddrMkFound.
BitCount.O 6 = DO QOt: S
= —>1A8 111 PBitCount.0 4 5 BitCount.Q__
BitCount. 4 A7 Q3 SBItC 3 5 D1 [e]] G Bite 1
BitCount. 2 i ’ | S hitCount 2 £p2 Q22 TR
BitCount. 2 e oL S =1p3 Q35 Sl OUR LS
SyncWdFound 3 A5 PBitCount.3 3ipa Qab? Count.3
2 A4 13 PSyncWdFound 14 5 SyncWdFound
SAddrMkFourd 4 Q1 5 —1D5 Qst ,
A3 PPLdSerialNRZ &) PLdSerialNRZ
VakeupControl.1 7 A2 14 ] D6 Q6 3
BWriteEnable 8 Qo . & D7 Q7 55
LRClnput 51ho 1 ko cu
ds © . #TPO67 T
CS' CS’ 1 1
o] 8 ©t #TPo63 O u
' ©u #TPo69 1} #TPO74
5 [ F93453 ] Qu
16 A9 11 #TPO75
17 ﬁ?, aapd tt
AG 12 . #TPO76
ias - Q9
o o
5142 qoft L©u #trPo70
51A1 SKY
AQ :
e5 |
CS’ CS’ 4
10f 8 PWordBoundry’ - 2 s’ . .
TstFldWdProm ‘ - D> als WordBoundry
S74
NRZClock 3 | 963
- — C of8
Rl
i
DelTransferEnb
Using an 874 Instead of the L§273 speeds up
WordBoundry’ so it will change before the
RawCRCError indicator from the 9401 CRC
Checker. This allows us to latch the CRCError
signal directly using WordBoundry’. The
RawCRCError signal is too slow tolatch into the
Word Status buffer register using NRZClock’. There
is then a race between WordBoundry’ and
RawCRCError after NRZClock rises. Using the faster
S74 here ensures WordBoundry’ wins.
Project Dandelion Disk Controller ' Fite Designer Rev { Date
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NRZpWrData.4

NRZpWrData.3
NRZpWrData.?
NRZpWrData.
RZpWrData.0
#TPO77
©) tb
1
The inputs to the encoder . #(:,r P?JS
must be synchronized to 1
its clock. They arrive tco #TPO79
late for the prom if read O tb
directly. . 1 #TPOBO
Fo3427 1@ o
15273 .
DO Qo 15147 9 PNRZpWrData.0 3 | 15273 1,
D1 a1 i @3 PNRZpWrData. 14 7 45I8
=D2 Q2] A5 10| PNRZpWrData.2__ 7., Q28
1; D3 Q3f¥, SHas @2 I PNRZpWrData.3 8102 g4l
. D4 Qata A3 11 PNRZpWrData.4 13 2
ShRzwdteData 12los  asfi2 fla2 Q1 PUnCompMEM 14102 3315 TinCompMFm
A S 75106 Q6Hg - 21 A1 12 PPreComp.0 7ine  qell® PreComp.0
oc D7 , . Q7}5 , 21p0 . Q0 ; PPreComp. | 8 19 PreComp. 1
b6 L S B b5 D7 b4 Q7
CK ¢cL’ CcS’ C8 ck cv |
11 1 14] 13 1 1
TstEncodeProm i
15 F93427
1AL asf 1Ou #1rosi
3 .
314° Qo %— L@u #Tros2
4
| ENRZWiteData 71ns  Qif- 1 ©u #TPO83
| _| ESyncWdFound 6 Al 12 1
ENRZClock 51h0 . Qo @t #TPO84
a
CS' _Cs’
L @u #Tross ‘4 13
L1 ©u #Trose
1 ®u #TPO87
TstEncodeProm
RefMFMClock
BWriteEnable
4 .
3 DO S151 #TPO88
> 101 th
DDU-4 =1D2 1 :
gg%z MFMW 20 15 32 Y_g BMFMWiriteData
10 MEMWr30 14 W’
UnCompMEM Lo §2e MEMWT40 13108
a3 qof¥ 2007
ReducelW 9 Although inputs D3 and D7
p?ecgm 0 10 sS4 are never chosen, Iheyare
PreComD'1 152 b3 attached to prevent decoder
P ~ S1 glitches on switching.
7
When ReducelW Is true, pre-
compensation should be GND
enabled (inner tracks).
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BNRZW iteData 2,525 la . DiskWriteData
BMFMWriteData 3 8 d3b
. ﬂ[u 3 | DiskWriteData +
$A1000/SA4000’ 1158 L""° N75114
GND_15 £ 85257 2 DiskWriteData-
V,
d3t Note that active pull-up
outputs are used for both the
UWriteEnable . SA 1000 and SA4000 drives though
. they are not required for SA1000
DiskOQutputClk 9™ ™ iz[u 13 I DiskQutputClk +
: 10 Lo
SKY [ 1aN75114 i 0utputCik-
v,
I
HeadSelect1 1 NOB 2 HeadSeleet1
a2a
HeadSelect2 . 3 NOB 4 HeadSelect2’
a2b '
HeadSelectd . ~ : : 5 NOS 6 HeadSelectd
i : : a2c -
HeadSeleci3 9 NOB 8 HeadSelect8’
a2d
HeadSelact16 1 NOS 2 HeadSelect16’
b2a
ReducelW 3 NOS 4 ReducelW’
b2b
]
Directionin 5.1 noe [} Directionin’
b2e
Step 9 Inoaod : Step’
. b2d
FaultClear 11 noarple FaultClear’ .
b2e
DrlveSe{ect 1?3 NOB 12 DriveSelect’
. b2f
DWeriteEnable is defayed 5 bit times to let
Pre-comp shift reg clear out at end of write operation.
DWriteEnable M S
’ 338 (] WriteGate’
RawOverrun AbortWrite’ 4
- - - dib
I0PReset’ 3
BTransterEnable 2
3 ReadGate’
UWriteEnable’ 1538
The use of UWriteEnable prevents a race between dia
WriteGate’ and ReadGate’. If BWriteEnable were used, there would be
a race between BTransferEnable and BWriteEnable when finishing a write op
that could glitch ReadGate’, causing a WriteFault. Since BTransferEnable is faster than UWriteEnable, there is a ~20 ns glitch
in ReadGate at the beginning of a Write Op. This causes NRZClock to pause, but only temporily.
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DellnputData

l‘s“"Kv - | PPU4 Lo 1npRisD10 I =
4 Q4 4
' 3 Q3 2] s
SKY 2 b ) o5 Inputpuise 1], Q2 V] DS74n 5 InputArrived
574 Q1 f2
e3a 13 8 3| %2
InputData 3 QO C 6 InputArrived’
C Q,_ﬁ
R!
R’ 3
* L
13 12 1
<1 ———© t1 #TP121
: InpPIsD10’
Test1’ SKY
g 101 : 10
SKY 12 D S'c 9 _ CompareEnable 12 D S’e 9 ClockArrived
S74 S74 :
e3b’ f2b
InputData 11 C Q,_Q . 11 (o] 8 ClockArrived’
R’ R)
13 13 1
DrvMEMClock’ ©u #TP122
2
, |s00 P2
fda
ResetCompara’
Project Dandeﬂon Disk Controller File Designer Rev | Date
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DiskReadClk-

DiskReadClk +

DiskReadData-

DiskReadClk

2 g!>q75107
1
5 4
| 6]
SKY L & ala

DiskReadData +

s~ N75107
12 8 9 DiskReadData
SKY 618 /ats
VEE_ 13 wsrat

This is a Beckman RPack number
898-5-R220/330.

SaeekComplete’ 1 RDIV1_6v
TrackQ0’ 3 RD1 =VCC 5
dex’ 5]R02 RD14 B
F?eaed v 5 RD3  RD13
X ! — RD4 RD12
WritaFault 5 os RO 5
Redtar 51RPe  Ro1o !
RawSA1/S5A4° 7 RD7 A9 '
=GND RDS8
c3

SeekComplete’

PrinterReq’

Pull this up so display request will work even
if Options board is unpilugged.

SA1SkComplete

SiN1a 08
t2¢
Track00® 9 N1d 8 : Track00
c2d
Index’ 11N aplo * indax
c2e
Ready’ 1 Nn1a~p2—Ready 3 In1aod DriveNotReady
d2a d2b
WiriteFault’ 5 Ni4 6 WriteFaulit
d2¢ ———
RawSA1/SA4’ 9 Nid 8 SA1000'/SA4000 11 N14 10 SA1000/SA4000’
d2d d2e
Sector’ 13 Nid 12 SAd4Sector
d2t
Project Dandelion Disk Controller File Designer Rev ] Date
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Testi’

A 10}
SKY 21,8 |5 smetMEMClock ___——12];, ' 1o RefMFMClock
574 574
32 10a 11]2 10b ’
C R C :] This signal has a 33%
R,Q R.G duty cycle
HalfClk ! sky 19 the SA4000 clock tralls the change
In data by only about 70°'ns. Thisis
RefMFMClock’ no enough time to guarantee the
HalfClk is a 25.5 MHz clock generated ) SKY FldWdProm reacts the to the new
in the CLOCKS section of the display o~ data. To fix this, we synchronize
1t is divided by three here to produce a 12 o the SA4000 data with its clock.
117 ns clock to run the disk 02 ol8 . SyncSA4Data
874 ’ i
DiskReadClk 11| 18P
. C of
R!
13 sky

Show Reference ¢lock to PLL - -
during Seek Operations so it

RefMEMClock 0 ngsa cannot drift out of lock.
DigskReadData 1 X1 9.
. 112 X2 OX .o Thi
] s Is NRZ data if an SA4000 transter
=1 X3 b7e Wrap-Around Multiplexer is happenning, MFM Data If there is .
: . CallbOrData 5 032570 7 an SA1000 transfer. InputData
DiskWriteData 8 B d7c . 1&
Test1’ . ‘ . . . tt
Néte the delayed version of the v i : #TPO89 ! S AR
Input Data is used. This s because SKY
it is the properly 180 degrees out 4 10f .
of phase with ti,e DrvMFMClock. 2 s* 12 s’ s
It Iags InputData by 50 ns. D~ qls PuiseTrap r—p > ql2 SyncRcvMFM
S74 S74
DellnputData 3 g"'a 6 : } 11 gf" 5
Q Q')
R’ R’
SKY 1] 13
PulseTrap’
DevMFMClock
Test1’ ’
»
AdrMKkCnt.4 1115257 1o SA INRZClock
SAIWMNRZClock 1908 a7d while reading or verifying the SA 1000
BWriteEnable 8 . disk the NRZClock should be derived from
}802 10 13 UWriteEnable 1 | SB S257 the data stream. While writing, itis
DWriteEnable 9 GND_15] E' d71 synchronized with RefMFMClock like the rest
: elc of the controller.
tt SA1WrNRZClock is produced as part of the
. #TPO90 TimingClock divider in the Input Multiplexer.
) UWriteEnable’
We note'that AdrMkCnt.4 ceases to be active when TransferEnable drops.
A clock is needed to start a write operation, so SATNRZClock Is set to the
always active SATWrNRZClock as saon as WriteEnable goes active. To ensure
the DWriteEnable shift regiter delay is cleared, wo keep SA 1NRZClock set to
SA 1WrNRZClock untii DWriteEnable goes lo. .
Profect Dandelion Disk Controller File Designer Rev
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SyncRevMFM ’ The derived NRZ data Is suppllied on

AdrMkCnt.2, the derived NRZClock
on AdrMkCnt.4. The clock changes
only in the middie of a data bit, not
atits end. The Data and clock are
not valid until AddrMkFound is.
S P?bg 1 _ - #7TPO98
1 O) th
= P:’:z 1} #1Poge
1 Q) tb
Address Mark Recognizer Proms #(:)I‘P:)bss T 1 #TP100
, ' .= [ 793453 AR @? tb
GND 5 A9 1
SA1000/SA4000’ 16 L8273
AddrMkFound 1715 aath! 3100 -aold e gotacted 0
AdrMkCnt.0 D1 Qif2 Mhdelectod.
AGTMRENE 3 —AB Q2 12 PSA1Sector 7 D2 a2l SA1Sector
AdeMkent =4AS5 < PAdrMkCnt.O 81p3 asl2 AdrMkCnt.0
e £ =1A4 13 PAdrMKCnt. 3 2 AdrMkCnt.
AdrMkCnt.3 4 A3 Q1 BAdTMKCNT.2 y. D4 (oL AdTMKGAE
AdrikCnt 4 7 I SIVENLe__—2ibs  QsH= Srilent.g
= A2 14 PAdrMkCnt.3 16 AdrMkCnt.3
MRt aled ) Siar Qo SAdrvkCntd_18]0°  25f AdrMKCnt.4
greclec. AO 8 o6
a CK_ cCL’ 1
CS’ Cs’ :
T0[ 8] "1 Ou .
1' #TP101
p F934563
g A9 : : : @ tt
7|82 aafd L©u #T1PO9s 1| #TP102:
; oo
A6 12 1 tt
21a5 Q2 -Qu #TP095 . #TP103
~——1A4 13 1 KY
ilaa o1 L@ u #TPogs _ 4r—§-—
5 A2 Qo 14 ___PAddrMkFound : 2 o s 5 AddrMkFound
A1l Q
5 AQ 1 . 874
17 a3 cda
cg’ cs' it C o8
To[ 8 . #TPO97 R*
TstAddrMkPrm 7
DrvMFMClock
SKY
4
SKY 2 S? \
D" ol SyncXferEnb 1
D4 © tl #TP104
3 ‘(‘58 &
A" Q,
R
BTranstarEnable 1]
Project Dandelion Disk Controller ' File Designer Rev | Date
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Sk8 4 1
@t #TP105
Sk4 5§
Sk1_9
LS3%%le 153931 (Sk16104 The SA4000’s SeekComplete
acks & Qc is delayed by 29 Sactor
A’ QB _g A’ QB (o} pulses, to make sure of at
QA “1 QA 1 : least 28 sectors. This gives
da a" d4b a 20 ms delay for the heads
cL cL SA4SkComplete to settle
SKY 4 5 r- 12
DriveStiect 31is10 ] RSeekComplete 1 H #TP106
I’ y b10b : ‘ 51,°2%7, 1z SeekComplete
SA1SkCompiete [3] B d3c
SA1000/5A4000°
SKY
10
12 S'n 9 SectorFound
. 574
SA4Sactor 2 082570 4 Sector 11 54!’ g
SA1Sactor 3 B c5b R'Q’
SA1000/8A4000° 13
SyncClrKFlags’ i 1 .
SKY
_‘E"Zﬂ
2 D S‘Q 5 IndexFound
S74
Sa
Index . : 3|2 .
— - C Q’-ﬁ
. Rl
SyncClrKFlags’ . 1]
LS393ls __ one1sthRet LS39314
Qb QO
RefMEMClock 1, ac 13 A QC io
a8 981 _TiminaClock
f1a f1b
CL CL
2 12 SA 1WNRZClock
Testl
DiskReadClk ) 51,5257, Iz DiskOutputClk
|6 | B8 c¢5¢
DiskReadClk v 11 05?57() 9 NRZClock
SA1NRZClock 10 B c5d I
; 9 @:3 NRZClock
e10d
SyncSA4Data 14] 5257 hp NRZInput
AdrMKCnt.2 — — 1318 cse
SA 1000/ SA4000° 1
‘ GND_15] 50 5287
c5¢
XEROX Project Dandelion Disk Controller File Designer Rev | Date
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This 50 pin connector is in location D of the HSIO board.

250
248
246
LYV, - WriteFault’ this 20 pin connector occupies position C
) on the HSIO board.
@ -EE Track00’ .
WritoGate’ L),
240 - ‘ (8 DiskReadData-
ReadGate’ : @ DiskReadData +
Step’ (239 ‘
@ (Z3D) DiskWriteData- _
Directionin’ 534 DiskWriteData + @
FaultClear’ @3— —C62
232 GID DiskOutputClk-
Drive Selects 2 and 3 are (330) DiskOutputClk + \,—_3:9)
set to "Never Selected."” erD)
SKY ~
(229 (55 57 DiskReadCIk-
DriveSelect’ @ S @ DiskReadClk +
(229—
224 . 53
@ @ Ready’ D 51
< :: :>-——-- GND
550 Index’ .
HeadSelect2’ @ -
HeadSelect18’ @ g
HeadSelect1’ 573 @
HeadSelect8’ G CIE, ‘
HeadSelectd' 370 D
(Zo9— ,
@ - SeekCompleta
@ -EEB Sector’
@ - RawSA1/SA4’
ReducelW’ @ -
(Zop—--~—CHD
DiskReadClk + 1%2#!410 51 o0hm, 10%
DiskReadClk- 1" 1LF 2.# R11 51 ohm, 10%
DiskReadData 1 JLET 2¢R12 | 51.0hm 10%
DiskReadData- 1 IET 24 R13 GND 51 ohm, 10%
This resistor supplies logical one to the board
itis afso 51 ohms
vCC 11 2% R14 : SKY
Project Dandellon Disk Controller ' File Designer Rev | Date
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100 pF, 50V, 5%
«#CUHIBILFT

1 ” 2 __GND

Ly o et o Rl e A

b A ST Mgk,

TS A T S e

270 ohm 1N4148 10 uH, 10%
DriveSelect 5- #R109;  gpygeiect 1 ¥ $R10] Cka ' 2 (#szw Clk3
2rveselect AN~ }:} m
1RT 1LFT - 1RT * 22 uH, 10%
- #C108 - #1101
ghp__ 2 #G108, ClkSupply 27 1 vee
niry e
1 "1.0uF, 35V, 10% 1 1RT ‘<
100 ohm 3 +| #cio7 #R110
#R112 2 #R1TY g o #Q101 T ;T?:F 50V, ggthm
iTOP TRN -1 uF, 30V, 2
2] 5100hm 2 1RT - 2N5§770 2l ano
CIKAdIO sc122 —
L Chic1 5
2 2 T otur,s0v - S00 8 L Clhk2
#c120 “| #c119 -1 uF, Y 4|tab
| 1Bot | 18OT 2 Clkadja - #R113, 1
== 0.1uF == 1.0 uF, - |2CKAdI2 274 A A1 #R103
—— - }-50V;* 4 35V, 10% “4RT
#P100 ClkAd]3 . 1TOP
1 1 b _| rPOT 200 KOhm 510 ohm
1 : 2
ClkAd] 1 this is a 5K potentiometer, : VEE
0.75 W, 10% VariCap,
1 MV1404
#R105 g #GR108 BufDCError
1TOP b
4.7 KOhm RT - 1
2 +| #c124 +] #c123
== 1TOP == 1TOP
47 pF, 100 pF,
GND . o] oV’ Ll sov "
5% 5%
.#R1T
DCError 2 '\/\/\.1 GND
1RT
510 ohm
DisableMEMCIK’
) ”TP:;” DrvMFMClock
TSIMEMClock’ 10 13 )
S00 8 $00 Y11 DrvMFMClogk’
Clk2 9 |t4c 12 | t4d -
All resistors shown above are 0.25 watt, 5% parts
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910 ohm

inputArrived __2: #R123 PumpUp
-{RT °
910 ohm
wputArrived’  2° &1/3'21 PumpUp’
! 1RT °* 200 ohm
2.#R1151 PumpUpBias 1'#012120.tuF,50V
1RT ° ILFT '
2 #R118 2: #R11% 1500nm | oND
2: #7120, yee 1RT * RT *
200 ohm B
1RT B100hm 2 # CCR|1°21 IN5221, _ VCC
2.4 v Zener
ClockArrived 2° #R1321 ) 1RT . PumpDown
1RT 1.1 KOhm :
Clockarrived' 2 #R13% X PumpDown’
1RT 1.1 KOhm .
2° '””351 PumpDownBias 1 # T:L‘m?' uF .
1RT 2000hm 1LFT
p- #R121, oo o+ #R133200 0hm o+ #R136, ND
1RT 5100hm N A
o 1RT * RT *
. . 180 ohm
VEE__ 2 #g?‘of‘
1RT 1N5221, 2.4 V Zener
. . T #C133 . #R124 ST . #R125 : : - -
iy CGND 2 H . 1 _VCC 2 AN 1 PumpUpSupply 2 ,\/W1 PumpFeedBack
IRT ° 1RT 1RT °
180 ohm 2 KOhm f
0.1 uF, 50V ) 3
#Q103
PumpUp 2 TRN Normally, both PumpUp and
2N5771 : PumpDown are olf. If data
pulse Is ahead of clock, PumpUp
1 3l turns on first, driving DCError
#Q102 positive. This decreases the
PumpUp’ 2 TRN capicitance of the VariCap
2N5771 in the oscillator, making it
. speed up. The opposite
1 happens if the clock is first.
The 741 seems to Integrate
_ the corrections, perhaps to
provide jitter tolerance?, DCError
0.47 uF, 50V 1
. #R127 T #C134
PumpBias 2 ] EPumpBlas: T2 +L #c132 0.027uF
GND 2° #R1281 . 1RT -~ 1LFT . T 1T0P sovV
— NN 1 KOhm | — 10%
1RT - et | 2
vceC VEE
100 ohm 71 __a FiIDCErrof .
Ve V-
. 2 LM741
a INV 1 1
|~ #atos GND_3 outt® #C131 #R128
PumpDown 2 TRN 4 NINV = yToP 1TOP
2N5770 #A100 0.0027uF 1100hm
OFF10OFF2 2 50V 10%
3 1% 58 2
GND
#Q104°
PumpDown’ 2 l/ TRN
P 2ns770
.. (... - - - - - -
c#C141 . #R137. . #R138
GND 2 ” . 1 _VEE 2 VW‘ PumpDownSupply 2 '\/\N'
1RT . 1RT ° 1RT °
0.1 uF, 50V 240 ohm 2 KOhm

“1 resistors shown are 0.25 watt, 5% parts. All capcitors.shown on this page have 10% tolerances.
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C#TP117
@ tb

1
#TP115 C#TP118
@ tb © tb
1 1 .
T#TP118 . . C#TP119
@P tb @ th
1 1
T #TP120 -
th
1 RDIV16
- RD1 =VCC
>={R02 RD14 --2 .
4l' RD3 RD13 -"3
H RD4  RD12 M .
g” RDS5 RD114 : DisableMFMCIk’
7] RD6  RD10 k=
RD7 RDY [5=
=GND RDS8 )
g8
Most other resistors on TstSrchqPrm' 1 504 2 TstSrvcRqPrm
this pkg used on dwg h7a
HS1030.sil :
TstFldWdProm’ ° 3 S04 4 TstFidWdProm
h7b
TstEncodeProm’ 5 504 6 TstEncodeProm
h7¢
TstAddrMkPrm’ 9 sorpd TstAddrMkPrm
h7d
TstMFMClock’
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