ALTO: A Personal Computer System
Hardware Manual

May, 1979

Abstract
This manual is a revision of the original description of the Alto: "Alto, A Personal Computer

System.” It includes a complete description of the Alto I and Alto II hardware and of the standard
microcode (1:24, 11:3).

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road 7/ Palo Alto / California 94304

Xerox Corporation ©1978, 1979
All rights reserved.

Alto Hardware Manual

Table of Contents
Introduction

Microprocessor
Arithmetic section
Constant Memory
Main Mcmory
Microprocessor control

Fmulator

Standard Instruction Set
Interrupts

Bootstrapping

Hardware

Display Controller
Programming Characteristics
Hardware

Display Controller Microcode
Cursor

Miscellancous Peripherals
Keyboard

Mousc

Keysct

Diablo Printer

Parity Error Detection

Disk and Controller

Disk Controller Implementation

Fithernet i
Programming Characteristics
Ethernet Hardware
Ethernet Microcode

Control RAM, ROM, and S Registers
RAM-Rclated Tasks

Processor Bus and ALU Interface
Microinstruction Bus Interface
Microinstruction Memory Banks
Standard Emulator Access
Interpretation of Emulator Traps
M and S Registers

Restrictions and Caveats

Nuts and Bolts for the Microcoder
Standard Microcode Conventions
Microcode Techniques Which Need Not Be Rediscovered

Microinstruction Summary

Standard Reserved Memory Locations
Standard Reserved SI0 (STARTF) Bits
Standard Tasks

S-Group Instruction Summary

Alto 1/Alto 11 Differences

Summary of Known Features/Bugs in Released Microcode Versions

1.0 INTRODUCTION

This document is a description of the Alto, a small personal computing system originally designed at

PARC.

By "personal computer” we mean a non-shared system containing sufficient processing power,
y p

storage, and input-output capability to satisfy the computational needs of a single user.

A basic Alto system is:

*

An 875-linc television monitor, with a viewing area of about 8%" x 11", oricnted with the long
tube dimension vertical. The controller provides a 606 by 808 point display which is refreshed
from main memory at 60 ficlds (30 frames) per second. It has programmable polarity, a low
resolution mode which conserves memory space, and a 16 by 16 cursor whose position and
content arc under program control.

An unencoded 64-key keyboard.
A mouse (pointing device) and five-finger keyset.
Up to two Diablo Model 31 disk drives or a Model 44 disk drive.

An interface to the Ethernet, a 3 Mbps local network that can connect up to 256 Altos and other
computers scparated by as much as a mile. Most Ethernets are interconnccted by gateways and
leased lincs to form a nationwide internet.

A microprogrammed processor which controls the disk, display and Ethernet, and emulates an
instruction sct. The standard instruction sct for which emulation microcode is supplicd in the
microinstruction ROM is described in section 3.0.

64K 16 bit words of 850ns error corrected semiconductor memory, cxpandable to 256K.

1K microinstruction RAM that can be read and written with special microcode to cxtend the
standard instruction set or to emulate a different instruction set or to drive special 1/0 devices.

‘The processor, disk, and their power supplies are packaged in a small cabinet. The other 1/0
devices may be a few feet away, and are pleasingly packaged for desk top use.

Some options:

*

*

*

*

*

*

*

An cxpanded microinstruction memory consisting of either 2K of PROM or 3K of RAM.
A Diablo HyTlype printer.

A Versatec Printer/Plotter.

A controller for CalComp Trident disk drives.

A controller for MDS and Kennedy tape drives.

An Orbit, thc controller for a vast array of laser-scanned printers.

Communications controllers for BBN-1822, SDLC, BiSync and Async.

The remaining scctions of this document will discuss the hardware and microcode of the standard
configuration Alto. At present, two slightly different versions of the Alto exist: the Alto I and the Alto
Il Most passages of this document pertain to both machines; those that apply to one only are clearly

marked.

This document does not deal with the numerous non-standard peripheral devices that have been
interfaced to the Alto. Non-standard interfaces and their designers are tabulated in an appendix.

Alto Hardware Manual Section 1: Introduction 2

1.1 Guide to this Document

This document is a comprehensive description of the Alto. Information about hardware, microcode, and
CPU programming is sprinkled throughout. Programmers interested primarily in the CPU cmulator should
concentratc on the scctions labeled with an asterisk in the table of contents.

1.2 People

The Alto was originally designed by Chatles P. Thacker and Edward M. McCreight and was based on
requircments and ideas contributed by Alan Kay, Butler Lampson and other members of PARC’s
Computer Scicnces Laboratory and Systems Sciences l.aboratory. Bob Metcalfe and David Boggs
designed the Ethernet; Severo Ornstein and Bob Sproull designed the Orbit; Roger Bates designed the
‘Irident controller; David Boggs designed the tape controller; Tat Lam, Dick Lyon, Ed McCreight and
Dan Swinchart designed the Audio Board; Larry Stewart designed the BBN-1822 interface.

The machine was re-engincered as the Alto 11 for ITG/SDD to a specification developed by John Ellenby.
The engincering and production were carricd out by EOD Special Programs Group, managed by Doug
Stewart and coordinated on behalf of PARC and SDD by John Ellenby. The members of EOD/SPG who
worked on the project arc Doug Stewart, Ron Cude, Ron Freeman, Jim Leung, Tom ILogan, Bob
Nishimura, Abbey Silverstone, Nathan Tobol, and Ed Wakida.

This hardware manual has had a long history of modification and extension and has benefited from
endless toil by numerous individuals. The original manual was written by Chuck Thacker and Ed
McCreight. The last major revision was edited by Bob Sproull and Diana Merry. The present document
is the responsibility of Ed McCreight, David Boggs, and Ed Taft.

1.3 Conventions and Notation
Numbers in this document arc dccimal unless followed by "B"; thus 10 = 128,

Bits in registers are numbered from the most significant bit (0) toward the least significant bit. Ficlds
within registers arc given by following the register name with a pair of numbers in brackets: 1R[a-b]
describes the b-a+1 bit field of the IR register beginning with bit a and ending with bit b inclusive. 1R[a}
is short for 1Rrfa-a].

The symbol "«" is uscd to mean "is replaced by.” Thus IR[4-5] « 2 mecans that the 2-bit ficld of IR
including bits 4 and 5 is replaced by the bit values 1 and 0 respectively. The symbol "=" is used as an
cquality test.

Mcmory is by convention divided into 256-word "pages." Page n thus contains addresses Z56*n to
256*n+ 255 inclusive. The notation "rv(adr)” is used, as in BCP1, to denote "the contents of the memory
location with address adr.”

Alto Hardware Manual Section 2: Microprocessor 3

2.0 MICROPROCLESSOR

'This scction describes the Alto microprocessor structure. If your programming nceds on the Alto do not
extend to writing new microcode, this section is best left untackled. If you do need to decipher what
follows, it may be helpful to have a listing of the "standard" Alto microcode at your side.

The microprocessor is shown schematically in Figures 1 and 2. A principal design goal in this systcm
was to achicve the simplest structure adequate for the required tasks. As a result, the central portion of
the processor contains very little application-specific logic, and no specialized data paths. The entire
system is synchronous, with a clock interval of approximately 170 nsec. All microinstructions require one
cycle for their cxccution.

A sccond design goal was to minimize the amount of hardware in the 170 controllers. This is achicved
by doing most of the processing associated with 170 transfers with microprograms. To allow devices to
proceed in parallel with cach other and with CPU activity, a control structure was devised which allows
the microprocessor to be shared among up to 16 fixed priority tasks. Switching among tasks requires
very little overhead, and occurs typically every few microseconds.

2.1 Arithmetic Section

The arithmetic scction of the processor consists of two 32-word by 16-bit register files R and S, and five
registers, T, L, M, MAR, and 1R. The registers arc connected to the memory and to an ALU with a 16-bit
parallet bus. For historical reasons, the s and M registers arc viewed as part of the microinstruction RAM
and arc described in section 8.

The ALU is a SN74181 type, restricted so that it can do only 16 arithmetic and logical functions. The ALU
output feeds the L, M, and MAR registers. T may also be loaded from the ALU output under certain
conditions. L is connected to a shifter capable of left and right shifts by one place, and cycles of 8. It

has a mode in which it docs the peculiar 17-bit shifts of the standard instruction sct, and a mode which
allows doublc-length shifts to be done.

‘The IR register is used by the cmulator to hold the current emulated instruction -- sce section 3.5.
Attached to the bus is a 256-word read only memory (ROM) which holds arbitrary 16-bit constants.

The ficlds of the 32-bit microinstruction are:

FIELD NAME MEANING

0-4 RSELECT R Register Sclect

5-8 ALUF ALU Function

9-11 BS Bus Data Source

12-15 Il Function 1

16-19 2 Function 2

20 T load T

21 L load L & M

22-31 NEXT Next microinstruction address (subject to modificrs)

When microprogramming the Alto, it is important to understand where the machine’s state resides and
how it changes. At the beginning of a microinstruction cycle, the various registers (principally T, L, M,
and IR, but also various bits of statc such as ALUCO) contain values that remain unchanged throughout
cxccution of the microinstruction. During this time, the various non-state-rctaining data paths and
clements, such as the bus, ALU, and shifter, compute results based entircly on the initial values of these

3
SBANK ——

RSEL £ Monitor Transceive
| Drive I
l | I
Display : Ethernet
Control I | Control
R S 1
RSEL[0-2] ————>| > I
RSEL[3-4] —> 8x 5
13-4] M 32x 16 32x 16 RSEL “>| Constant Disk
"2 % 3| ROM Control
IR[3-4] —> BS -~>| 256x16
Processor
Bus 16
51 Mmpx
Drivers
& "~ - - 1
LOAD T T IR Parity "
"
- [2 vl B T i
0. R | ALU M I
ALUF[0-3] - o 39 K |- = Key
SKIP > m F
ALU Bus
Main
LOADL ———> L M MAR Memory
L |
l/\::gmzry 16 4x64Kx 16 + 7
- Busr S8 > Error Corrected
Shifter Dynamic MOS
Decode
& i)
Control

Figure 1 -- Processor Data Paths

RSEL ALUF I BS I F1 I F2 [T |L l NEXT

Alto Hardware Manual Section 2: Microprocessor 4

registers. However, the registers themselves do not change.

At the end of the cycle, if the microinstruction specifics that onc or more registers be loaded, they are
loaded instantancously and simultancously with the newly-computed values. These then serve as the
initial register values for the next microinstruction. As a result, it is possible (and in fact very common)
to both rcad and load a register during the same microinstruction. The R registers behave similarly
cxcept that it is not possible to both rcad- and load an R register during the same microinstruction.

R SELLCT

The R sclect field specifies one of the 32 R cells to be loaded or read under control of the bus source
field, or, in conjunction with the bus source field, onc of the 256 locations to be rcad from the constant
ROM. The R ficld is also used to address rcgisters in S -- scc section 8.

The low order two bits of the R address (but not the constant ROM address) may be taken from ficlds in
IR under control of the functions. This allows the emulator to address its central registers casily,

ALU I'UNCTIONS

The ALUF ficld controls the SN74181 ALU. This device can do a total of 48 arithmetic and logical
opcrations, most of which are relatively uscless. The 4-bit ficld is mapped by a PROM into the 16 most
uscful functions,

ALUF T FUNCTION 3 82 81 SO M C OPERATION

0 * BUS 1 1 1 1 1 0 A

1 T 1 0 1 0 1 0 B

2 * BUSORT 1 1 1 0 1 0 A+B

3 BUS AND T 10 1 1 1 0 AB

4 BUS XOR'T 6 1 1 o0 1 0 A XOR B

S * BUS +1 6 0 0 0 0 0 APLUS 1

6 * BUS-1 1 1 1 1 0 1 AMINUS 1

7 BUS + T 1 0 0 1 o0 1 APLUS B

108 BUS - T 0 1 1. 0 0 O A MINUS B

11B BUS-T-1 6o 1 1 0 0 1 A MINUS B MINUS 1
12B *BUS+ T+ 1 10 0 1 0 O APLUSBPLUS 1
13B * RBUS + SKIP 0 0 0 0 0 BSKIP APLUS 1

14B * BUS.T (AND) 1 0 1 1 1 0 AB

15B BUS AND NOT T 0 1 1 1 1 0 A & NOT B
16B-17B UNDEIFINED

If 1 is loaded in an instruction containing an ALUF with a * in the T column, it will be loaded from the
ALU output rather than from BUS.

$3-S0 sclects the function; M selects logical or arithmetic mode by controlling carry propagation; C is the

carry into the 1SB. The carry output is forced to zero during logical operations (M=0). BUS is the A
input to the ALU; T is the B input.

BUS SOURCES

The bus data source (BS) ficld specifics one of 8 data sources for the bus:

BS NAME SOURCE

0 «RName Read R

1 RNance .oad R from shifter output (sce below)

2 (None) Enables no source to the BUS, leaving it all oncs
3 Task-specific Performs different functions in different tasks.

Alto Hardware Manual Section 2: Microprocessor S

4 Task-specific Performs different functions in different tasks.
b} «MD Mcmory data

6 «MOUSE BUS[12-15]« MOUSE; BUS[0-13]« -1

7 «DISP IR[8-15], possibly sign extended (sec scction 3.5)

RName« is not logically a source, but because it is gated to the bus during both reading and writing, it is
included in the source specificrs. loading R forces the BUS to 0 so that an ALU function of 0 and T may
be executed simultancously.

‘The bus has the property that if more than one source is gated to it during a single microinstruction, it
computes the AND of the source values. This is true regardless of the means by which the sources are
cnabled (BS, 1I'l, or I2).

This bus source decoding is not performed if F1=7 or F2=7. These functions use the BS field to provide
part of the address to the constant ROM.

SPECIAL FUNCTIONS

The two function ficlds specify the address modifiers, register load signals (other than those for R, S, L, M
and T), and other special conditions required in the processor. The first cight conditions specified by
cach ficld (cxcept BLOCK) arc interpreted identically by all tasks, but the interpretation of the second
cight depends on the active task. The task-independent functions are given below; the task-specific
functions arc included with the task descriptions.

FUNCTION 1:
Fl NAME MEANING
No Activity

1 MAR« Iz,gid MAR from ALU output; start main memory reference (see section

2 TASK Switch tasks if higher priority wakeup is pending (sce section 2.4).

3 BLOCK Disable the current task until re-cnabled by a hardware-generated
condition. Note: this function is reserved by convention only; it is not
donec by the microprocessor.-

4 “L LSH 1 SHIFTER OoUTPUT will be L shifted left onc place*

5 <L RSH 1 SHIFTER OouTPUT will be L shifted right one place*

6 «LLICY 8 SHIFTER OUTPUT will be 1 rotated left 8 places*

7 «CONSTANT Put on the bus the constant from the constant ROM location addressed by

RSELECT.BS

*Modified by DNs (Do Novel shifts) function, and MAGIC function. L LSH 1 and L RSH 1
ordinarily shift a zero into the vacated bit position.

FUNCTION 2:

2 NAME MLANING

0 No Activity

1 BUS=0 NEXTeNEXT OR (if (BUS=0) then 1 elsc 0).

2 S1IK0 NEXTeNEXT OR (if (SHIFTER OUTPUIK0) then 1 else 0).*
3 SH=0 NEXTeNEXT OR (if (SHIFTER OUTPUT=0) then 1 clse 0).*
4 BUS NEXTNEXT OR BUS[6-15]

Alto Hardware Manual Section 2: Microprocessor 6

5 ALUCY NEXT«NEXT OR ALUCO. ALUCO is the carry produced by the ALU during
the most recent microinstruction that loaded L. It is nor the carry
produced during exccution of the microinstruction that contains the
ALUCY function.

6 MD« Decliver BUS data to memory (sec section 2.3)

7 «CONSTANT Same as r1=7

*Note that the value of the SHIFTER OUIPUT is determined by the value of I as the
microinstruction begins exccution and the shifter function (I LSH 1, L RSH 1, or L 1CY 8)
specified during the current microinstruction (if no shifter function is spccified, the shifter output
is equal to L).

2.2 Constant Memory

The constant memory is a 256 x 16 PROM that holds arbitrary constants. The constant memory is gated
to the bus by F1=7, I2=7, or BS>4. The constant memory is addressed by the (8 bit) concatenation of
RSELECT and BS. 'The intent in enabling constants with BS>4 is to provide a masking facility, particularly
for the «MOUSE and «DISP bus sources. This works because the processor bus ANDs if more than one
source is gated to it. Up to 32 such mask constants can be provided for cach of the four bus sources
>4.

Alto I Note that it is not possible to use a constant other than -1 with the «MD bus source, because
mcmory parity is calculated on the bus, and a parity error will result if bits arc masked off in a word
fetched from memory.

2.3 Main Memory

Main memory references arc handled differently on Alto I and Alto 1. 1t is, however, possible to write
most microcode so that it will operatc correctly on both machines.

BASICS

Mecemory is addressed by a 16-bit number that refers to a 16-bit word in the memory. Addresses 0
through 1767778 arc truc memory storage locations; addresses 1770008 through 1777778 are used to
control 170 devices that are attached to the Alto memory bus. Some operations on memory are
performed on "double-words.” The double-word beginning at location adr (adr is cven) is a 32-bit
quantity cquivalent to the 16-bit contents of location adr, together with the 16-bit contents of location
adr+1. (Double-word references operate corrcctly only on true memory locations, not on 170 device
locations.)

MEMORY REFERENCES

Alto T and Alto T1: A memory reference is initiated by exccuting ©1=1, MARe. The results of a rcad
operation arc delivered somewhat later onto the bus with BS=5, «MD. A storc into the addressed
memory location is achicved with F2=6, MD«. The microprogram partially controls memory timing, and
must observe certain rules to insure correct operation.

a) A minimum of onc microinstruction must intervene between the initiation of a memory
reference and an MDe or «MD.

b) On both Alto I and Alto II, memory cycles last a total of 5 micro-cycles, although double-
word operations may extend the memory cycle to take a total of 6 micro-cycles. Although
the exact details of memory timing differ on Alto 1 and Alto 1I, both machines share the
property that the processor will suspend exccution of microinstructions if the memory

Alto Hardwarc Manual Section 2: Microprocessor 7

©)

d)

)

interface cannot process the function (MAR«, MD« or «MD) spccified; processing will resume
as soon as the interface is free. It is permissible to "abandon™ a memory reference that has
alrcady been started simply by not referencing MD within the first S cycles, or by starting a
ncw memory reference with MAR«,

The memory checks parity on all fetches, unless the cycle is a refresh cycle or the address is
between 1770008 and 1777778 inclusive, in which case an 170 device is being referenced.
Parity crrors result in activation of a high-priority task (task number 158) whose purpose is to
decal with the crror (see section 5.5). The Alto II checks memory parity on store as well as
fetch cycles.

If RSELECT = 378 during the instruction which starts the memory, a refresh cycle is assumed
and all memory cards are activated. This is used by the refresh task.

MAR« cannot be invoked in the same instruction as «MD of a previous access.

In the discussion that follows, we assume that a memory reference has been started with MARe«, and we
designate this instruction (micro)cycle 1. Examples of proper sequences are given below.

Alto 1

Alto 11

f)

g)

f

g)

During cycle 5, if F2=6, MDe, a store of bus data into the word addressed by MAR will
occur. The MD« may not be issued later than cycle 5. (Note: Some Alto I's have been
modified to allow a "double-word store.” On these machines, it is permissible to issuc two
MD« instructions in a row, the first coming in cycle 5, and the second in cycle 6. If MAR is
loaded with an even address adr, the two words will bc stored at adr and adr+1
respectively.)

During cycle 5 of a reference, if BS=S5, <MD, the reference is a fetch of the word addressed
by MAR. During cycle 6, if BS=5, «MD, the odd word of the doubleword addressed by MAR
is delivered. If MD is referenced during cycle 6, it also must have been referenced (by either
«MD or MD¢) during cycle S.

During cycle 4, if F2=6, MD«, a store of bus data into thc word addresscd by MAR will
occur. The MDe« may not be issued later than cycle 4. Alto II’s allow a "double-word
store:™ it is permissible to issue two MDe« instructions in a row, the first coming in cycle 3,
and the sccond in cycle 4. If MAR is loaded with an address adr, the two words will be
stored at adr and (adr XOR 1) respectively.

During cycle 5, if BS=35, «MD, the reference is a fetch of the word addressed by MAR.
During cycle 6, if BS=S5, «MD, the other word of the doubleword addressed by MAR is
dclivered. Again, if MAR is loaded with address adr, the two words fetched will be from
location adr and (adr XOR 1) respectively.

h) Because the Alto 1T latches memory contents, it is possible to exccute «MD anytime after cycle

EXAMPLES

5 of a rcference and obtain the results of the read operation.

Because the description above is a bit terse, we shall give scveral examples for Alto 1 operation, for Alto
I1 opcration, and for coding schemes that will work properly on both kinds of Altos. In the coding
examples, REQUIRED stands for some microinstruction (you supply it) that must appear in the sequence;
SUSPEND stands for a microinstruction which if omitted will cause exccution to suspend for one cycle
because the memory interface is not rcady; OPTIONAL stands for a microinstruction which may be
omitted without penalty. The notation ANY will be used to stand for an arbitrary 16-bit address; EVEN
will stand for an cven 16-bit address. All of these examples apply to cxtended memory references also
(described in the next section); simply substitute XMAR for MAR.

Alto Hardware Manual

Simple fetch:
Alto 1

MAR¢ANY;
REQUIRED,;
SUSPIIND;
SUSPIIND;
wherecver«MD;

Simple store:
Alto 1

MAR€ANY;
RIIQUIRED;
SUSPIIND;
SUSPIND;
MDe«whatever;

Section 2: Microprocessor

Alto I

MAR<«ANY;
REQUIRED;
SUSPEND;
SUSPEND;
wherecvere«MD;

Alto 1I

MAR<«ANY,
REQUIRED;
OPTIONAL;
MDewhatever;

Simplc store, followed immediately by another memory cycle:

Alto 1

MAR«ANY;
REQUIRED,
SUSPEND;
SUSPEND;
MDewhatever;
MAR<«ANY,

Double-word fetch:
Alto 1

MAR¢«EVEN;
REQUIRED;
SUSPEND;
SUSPEND;
whereever«MD;
whereever«MD;

Double-word store/fetch;
Alto 1

MAR ¢LEVEN;
REQUIRED;
SUSPLND;
SUSPEND;
MDewhatever;
whereever«MD;

Alto 11 Alto 11

MAR€ANY; MAR€¢ANY;
REQUIRED; REQUIRED;
REQUIRED; . MDe«whatcever;
MD<«whatever; SUSPEND;
SUSPEND; SUSPEND;

MAR<«ANY; MAR<«ANY;

Alto 11

MAR<€ANY;
REQUIRED;
SUSPEND;
SUSPEND;
whereever«MD;
whercever«MD;

Alto 11

MAR<«ANY,
REQUIRED;
SUSPEND;
MDewhatever;
whereever«MD;

Double-word store (only on modified Alto Is):

Alto 1

MAR¢LVEN;
RUQUIRED;
SUSPIND;

Alto 11

MAR«ANY;
REQUIRED:
MDewhatever;

Alto Hardware Manual Section 2: Microprocessor 9

SUSPEND; MD<«whatcver;
MbDewhatever;
MDewhatcever;

The Alto I memory buffering permits a double-word "exchange™:

MAR€ANY:

REQUIRED;

MDencwContentsl; address = adr
MDencwContents?; address = adr XOR 1
LeMD; address = adr

TeMD; address = adr XOR 1
oldcontentslel, LeT;

oldcontents2«L,;

Microcode which uses thc memory timings below will work on cither vintage of Alto:
Simple fetch: (as Alto I).
Simple store: (as Alto II). <«<<< Nota Bene
Double-word fetch: (as Alto I).
Double-word storc/fetch: (as Alto 1II).
Others are not possible.

EXTENDLED MEMORY

Main memory on Alto I1s can be optionally expanded to up to 256K words in 64K banks. Each task has
associated with it four cxtra bank bits which are presented to the memory along with the 16 bit addresses
generated by the task’s microcode. Normal memory references arc microcoded in the usual way and use
two of the bank bits to specify the task’s normal bank. FExtended memory references are microcoded
slightly differcntly and use the two other bank bits to specify the task’s alternate bank. 'T'hus a task can
reference 64K very casily, another 64K with a little difficulty, and the other two 64K banks only after
loading its bank registers appropriately.

To signal that a memory reference should go to the alternate bank, the microinstruction which loads MAR
must also contain 12=6 (MD«). The microassembier will generate this conbination of functions for a
clausc whose left hand side is XMAR (i.c., XMAR« address will generate an instruction with F1=1 and
12=0).

The bank registers appcear as 16 words in the 170 area which can be read and written. I.ocation (1777408
+ N) is the bank register Jocation for task N. Booting the Alto clears the registers to zeros making all
references for all tasks go to bank zcro, thus making the machine operate as a standard Alto without the
cxtended memory option. Within a bank register, the layout is as follows:

BR[O-11] undcfined
BR[12-13] normal reference bank number
BR[14-15] extended reference bank number

'The highest 512 locations in cach bank are not mapped by the bank registers and always refer to the 170
arca. 'I'hat means that location 1777408 is the emulator’s bank register regardless of what the referencing
task’s bank register contains and regardless of whether it is referenced with a normal or an cxtended
memory reference.

No changes are necessary in order to run the display, disk, or Ethernet in different banks. The casicst
and lcast confusing way to do this is to load the bank registers for all concerned tasks (e.g. DVT, DIHT and .
~DWT for the display, or KSEC and KWD for the disk) with some other bank number. Then the device is

Alto Hardware Manual Section 2: Microprocessor 10

controlled by the relevant words of page 1 in its bank.

Programs which usc the extended memory must first initialize it to have correct parity. This involves
disabling parity interrupts, storing something in cvery word, flushing any parity interrupts that result, and
then reenabling parity interrupts. The standard bootstrap loaders initialize bank zero only.

All Alto TIs manufactured starting with the 7™ build have the extended memory option but are normally
shipped with memory chips for bank zero only. Somc earlicr Alto IIs have been modified in the ficld.
Machines with the extended memory option have engincering number 3 -- see the description of the
VERS instruction.

2.4 Microprocessor Control

Control of the Alto microprocessor is shared among 16 "tasks" arranged in a priority order. ‘The tasks
arc numbered 0 to 15: 0 is the lowest priority task and 15 is the highest. The lowest priority task is the
cmulator task which fetches instructions and executes them.

The only state saved for cach task is a "micro program counter,” MPC. The current task number, saved
in the current task register, addresses a 16 by 12 MPC RAM. The result is an MPC for the current task; it
is used to address a 1K by 32-bit read-only microinstruction memory (MI ROMO0) or a 1K by 32-bit
writcable microinstruction memory (MI RAMO), described in section 8. An optional feature of Alto IIs
extends the M1 ROM to 2K or the RAM to 3K -- see scction 8.

BRANCHING

'The microprocessor offers a limited branching capability which, although somewhat cumbersome, has
proven adequate for chores undertaken by Alto microcode. The basic idea is that special microprocessor
functions may modify the NEXT field, and consequently alter the flow of control. Modification is
accomplished by ORing various bits into the NEXT field,

Address modification is complicated slightly because the Alto pre-fetches one microinstruction ahead.
Conscquently, a branch condition modifies the NEXT field of the microinstruction following the one in
which the condition test is placed. This property is best illustrated with an cxample:

MI location Ml

1008 F2=2 (S1K0), NEXT=101B
1018 w NEXT=102B

1028 “

1038

When the instruction at location 1008 is being executed, the instruction at location 101B has alrcady been
fetched. Therefore, the S11K0 test modifics the NEXT ficld of the on-deck instruction, the one at 101B.
Thus the two possible execution sequences arc: (1) if 1.0 on entering the code above: 1008, 1013, 1028;
(2) if 1<0 on entering the code: 1008, 1018, 103B.

TASK SWITCHING

Only onc of the 16 tasks is exccuting microinstructions at any one time. Once a task begins exccution, it
continucs to cxecute until it invokes a task switch function that enables switching to another task. A task
is considered cligible for exccution if its hardwarc-gencrated "wakeup signal” is asscrted (these signals are
not accessible to the microprogram). The wakcup signals enter a priority encoder that calculates the
number of the highest-priority cligible task. When a running task invokes a task switch, control will

TCcmMmX»g

nwr»zZo0-0n

IR

TmMoUOOMmMOoU

P
rR E 8
o C y R A MPC RAM
R O 4 E S
| D N K 16 x 12
T E T
R
Y 2 10
Address
> Modification
Logic
CRAM Address
MPX
Address Address
Next
Control Control Microinstruction
Address
RAM ROM Bus
1K x 32 1K x 32
or or
3K x 32 2K x 32
Data Out Data Out
10
22
MIR
Instruction

Figure 2 -- Processor Control

Alto Hardware Manual ' Section 2: Microprocessor 1

switch to another task only if a higher priority task has a wakcup signal held true, or if the current task
no longer has a wakeup signal true. In the latter case, control goes to a lower priority task. The lowest
priority task is the CPU cmulator, which is always requesting wakeup.

If the processor cxecutes the TASK function (F1=2) during an instruction, the current task register is
loaded (at the end of the instruction) with the number of the highest priority task currently recquesting a
wakeup. This causes the next instruction to be fetched from the ROM location specified by the saved
task’s MPC. Onc additional instruction is exccuted by the current task before the switch becomes
cffective. This instruction may execute task-specific functions, but it must do no NEXT address
modification, since any such modification would affect the new task. The situation for two strcams of
instructions A-I* and J-M in two different tasks is shown bclow:

Instruction Instruction Address stored in
being exccuted being fetched MPC at end of cycle
A B C
B C D
c! D E
D J K
12 K L
K3 L M
L E F
E F G

Hnstruction C allows task switching. New task’s MPC = J.
2Instruction J does an opcration which removes its task’s wakeup request.
Mnstruction K allows task switching, and the original task is now highest priority.

The BLOCK function (F1=3) is used, by convention, to signal a hardware device associated with the
currently running task to remove its wakeup signal. This function is not accomplished by the Alto
microprocessor, but rather by the individual device interfaces.

Task switchcs must occur only at times when the current task has no statc in any register (except R
registers dedicated to the task) and has no main memory operation in progress, since there is no
provision in the hardwarce for saving this information. That is, all statc important to the task must have
been stored in safe places by the end of the microinstruction after the onc containing the TASK function.
It is not legal to place TASK functions in two consecutive microinstructions.

INITIALIZATION

The only way in which the microprogram can affect the task structure is to request a task switch. In
particular, it cannot affect the MPCs of tasks other than itself. This presents an initialization problem
which is solved by having cach task start at the location which is its task number (thus the emulator task
finds its first instruction to exccute at MPC=0). ‘l'ask numbers are written into the MPC RAM during a
reset cycle, which may be initiated manually or by a CPU instruction (sce SIO instruction in scction 3.3).
‘T'asks ordinarily begin execution in ROMO. In order to start tasks in the RAM, there is a mechanism for
modilying the initial MPC’s of tasks so that they will begin execution in RAMO (scc scction 8.4)

STANDARD TASKS

The standard Alto and its associated device controllers use many of the available tasks. Detailed
descriptions of the operation of most tasks are found in the sections of this manual relevant to the
hardwarc devices. Appendix 1D is a list of the standard tasks.

Alto Hardware Manual Section 3: Emulator 12

3.0 EMULATOR

‘The lowest-priority Alto task is called the Emulator task. This task is always requesting wakeup, but can
be interrupted by a wakcup request from any other task. In effect, the emulator task is the "background
job." The standard Alto microcode ROM includes standard emulator task microcode for fetching from
Alto memory, decoding, and interpreting instructions from the Standard Instruction Sct. In the rest of
this chapter we shall frequently use the term "emulator” to mean "standard emulator task microcode."”
This standard microcode can be cxtended or replaced, usually by cxecuting special emulator task
microcode in the microinstruction RAM.

This scction describes microcode versions installed after June 1976. To determine the vintage of a
machine’s microcode, sce descriptions of SI0O and VERS (section 3.2).

3.1 Standard Instruction Set

RIEGISTERS

The cmulator state is carried from instruction to instruction in several registers:

pC: The "program counter,” which contains the 16-bit address of the next instruction to be
fetched and cxecuted. It is actually implemented as R-register 6.

AC0, ACl, AC2, AC3: The accumulators, each of which contains 16 bits. Instructions arc available
for transferring contents of accumulators to and from memory registers and for performing
arithmetic and logical operations among accumulators, The notation AC(n) is often used to
refer to the contents of accumulator n (n=0,1,2,3). These accumulators arc implemented as
R-registers 3-0 respectively.

C: The "carry” bit which is modified by most arithmetic opcrations. It is implemented as special
hardware (sce scction 3.5).

MEMORY: The Alto has "64K™ 16-bit memory words, addressed by values ranging from 0 to
1767778, Addresses 1770005 to 1777778 arc rescrved for various 170 device uses (sce .
Appendix B). Memory on Alto 1Is can be cxtended to 256K in 64K banks (scc Section 2.3).

Additional R- and S-registers may be used temporarily during emulation of a single instruction.

INSTRUCTION FORMAT

The standard instruction set is best described by breaking it into four groups according to the way the
instructions arc formatted (sce Figure 3).

Scveral of the instructions compute an "cffective address” based on the valucs of the 1 (indirect), X
(index) and ISP (displacement) ficlds of the M-group, J-group and some S-group instructions. The
cffective address calculation is best described by a brief "program." First we define the function
Signlixtend(x) to represent the sign-cxtension of the 8-bit number x:

SignExtend(x) = if x 2> 2008 then x+ 1774008 else x.

Then EffAddr(), the function to compute the cffective address is:

1 2 3I4 5 6|7 8 9|10 11 |12 |13 14 15I
MFunc |DestAC | | X DISP
M-Group LDA (MFunc = 1) X =0: Page 0 addressing
STA (MFunc = 2) X = 1: PC-relative addressing
X = 2: Base-register (AC2)
X = 3: Base-register (AC3)
0 0 |JFunc | X DISP
J-Group JMP (JFunc =0)
JSR (JFunc = 1)
ISZ (JFunc = 2)
DSZ (JFunc = 3)
SrcAC DestAC AFunc SH CY NL SK
A-Group COM (AFunc = 0) L(SH=1) Z({CY=1) # (NL=1) SKP(SK=1)
' NEG (AFunc =1) R(SH=2) 0O(CY=2) SZC (SK=2)
MOV (AFunc = 2) S(SH=3) C(CY=3) SNC (SK = 3)
INC (AFunc = 3) SZR (SK = 4)
ADC (AFunc = 4) SNR (SK =5)
SUB (AFunc = 5) SEZ (SK =6)
ADD (AFunc = 6) SBN (SK =7)
AND (AFunc =7)
1 1 AugmentedFunc DISP
S-Group

Figure 3 -- Instruction Formats

Alto Hardware Manual Section 3: Emulator 13

EffAddr() =
[//The symbol "E" denotes cffective address
E ¢ (//Values of 1,X, and DISP arc from the instruction
if X=0 then DISP //"page 0 addressing”
clscif X=1 then SignExtend(DISP)+PC //"relative addressing”™
clscif Xx=2 then SignExtend(DISP)+AC(2) //"base register addressing”
clscif X=3 then SignExtend(DISP) -+ AC(3) //"base register addressing"
if 1 # 0 then Eerv(E) //Now do single-level indirection
I

The notation for these addressing modes is demonstrated below. The DISP value is always specified first;
the X valuc is not given cxplicitly, but is determined cither by the address of the label or by a modifier
"2" or ".3" which specifics base register indexing:

JMP LABEL2 ; If LABEL2 is in page 0, X=0; otherwise X=1.
JMP 16,3 ; DISP=15; 3 means use AC3 as base register.
JMP @3 ; The character @ causes I to be 1,

Note that instructions which compute an effective address always do so beforc any other operations.
Thus 1SR 1,3 computes the effective address of 14+AcC(3) before saving PC+1 in AC3.

MEMORY GROUP OPERATIONS

The DestaC ficld specifics one of the four accumulators (DestAC=0 for ACO, Destac=1 for ACl, ctc.).
The Mrunc ficld specifies one of two operations:

Mnemonic Mrunc Action

IDA 1 This operation loads an accumulator from memory. AC(DestAC)«rv(E).
STA 2 This operation stores an accumulator into memory, 1v(E)«AC(DCSLAC).

‘These instructions arc written by giving the mnemonic, followed by the accumulator number (DestAC),
followed by an cffective address notation:

STA 3 .+4 ; Store AC3 in the fourth location following here
IDA 0 4,2 ; Load ACO from address=4+AC(2)
LDA 0 @.+2 ; Load ACO from address contained in second location following here

JUMP AND MODIFY GROUP OPERATIONS
The Jrrunc field specifics one of four operations:

Mnemonic Ji'unc Action

MP 0 This operation causes a "jump"” by changing the valuc of the PC. PC«L.

JSR 1 ‘This operation is uscful when calling subroutines because it saves a return
address in AC3. AC(3)¢PC+1; PC«E.

ISZ 2 This operation increments the contents of a memory cell and skips if the

new contents are zero. tv(E)¢rv(r)+1; if rv()=0 then pcepc+1. This
instruction docs not alter the C bit.

DS7, 3 This instruction decrements the contents of a memory cell and skips if the
new contents are zero. rv(B)erv(i)-1; if rv()=0 then pCepC-+1. This
instruction does not alter the ¢ bit.

Alto Hardware Manual

Section 3: Emulator 14

These instructions are written by giving the mnemonic and the ecffective address notation:

JSR SUBR
JMP 1,3

; AC3 is left pointing to the location after this one
; Jump to AC(3)+1

ARITHMETIC GROUP OPERATIONS

All 8 of these instructions opcrate on the contents of the accumulators and the carry bit. Typically, a
binary opcration involves the contents of the "source accumulator” (SrcAC) and the "destination
accumulator” (DestAC) and leaves the result in the destination accumulator., The carry bit (C bit) and the
PC can also be modified in the process.

'The operation of the instructions is best explained by following the flow in Figure 4. The 16-bit contents
of the source and destination accumulators are fetched and passed to the function generator.

The carry generator produces an output that depends on the value of the € bit and the CY field of the

instruction:
Mnemonic
none
VA
0
C

CY

0

1
2
3

Output

C
0
1
1-c (i.e., the complement of C).

The function gencrator is controlled by the Arunc field; various values will be described below. It takes
two 16-bit numbers and a carry input and generates a 16-bit Result and a carryResult.

The shifter is controlled by the SH ficld in the instruction:

Mnemonic

none
L

R

S

SH

0
1

2

3

Action

No shifting; the 17 output bits arc the same as the 17 input bits.

Rotate the 17 input bits left by one bit. This has the effect of rotating bit
0 Ileft into the carry position and the carry bit into bit 15.

Rotate the 17 bits right by one bit. Bit 15 is rotated into the carry
position and the carry bit into bit 0.

Swap the 8-bit halves of thce 16-bit result. The carry is not affected.

The skip scnsor tests various of the 17 bits presented to it and may cause a skip (PCce«pPC+1) if an
appropriate condition is dctected:

Mnemonic

none
SKP
S7.C
SNC
S7ZR
SNR
SLiZ
SBN

SK

NN LW —~=O

Action

Never skip

Always skip

Skip if the carryResult is zecro

Skip if the carryResult is non-zero

Skip if the 16-bit Result is zero

Skip if the 16-bit Result is non-zero

Skip if cither carryResult or Result is zcro

Skip if both carryResult and Result are non-zero

To/From Memory

DestAC

s

Accumulators

Carry
SrcAC DestAC
Carry Generator
|1 16 16
Function Generator
1 16
Shifter
1 |16
Skip Sensor

Governed by NL

Figure 4 -- Instruction Execution

Alto Hardware Manual

Section 3: Emulator 15

The alert reader will detect that the SK ficld is microcoded. The skip condition can be described as:

(sk[2]#0) xor
((SK[0]#0 AND result=0) OR (SK[1]#0 AND carryResult=0))

skip =

where SK[0] is the first bit of the ficld, SK[1] the second and Sk[2]the third.

The NI bit in the instruction controls the operation of the switch in the illustration. If NI.=1, neither the
destination accumulator nor the carry bit is loaded; otherwise the destination accumulator is loaded from
Result and the carry bit from carryResult. The "no-load” featurc is useful for instructions whose only
usc is testing some value. The character # is appended to the mnemonic for operations if the NI bit is

to be set.

The ATunc operations are described below. Note that "Result” will be stored into the destination
accumulator (DcstAC) unless NL=1.

Mnemonic Alunc

COM

NEG

MOV

INC

ADC

SuB

ADD

AND

0
1

Operation
COMPLEMENT

NEGATE

MOVE

INCREMENT

Description

The function generator produces the logical complement
of AC(SrcAC). It passes the carry bit unaffected.
The function generator produces the two’s complement
of AC(SrcAC). If AC(SrcAC) contains zero, complement
the value of the carry supplied to the function generator,
otherwise supply the specified value.

The function gencrator passcs AC(SrcAC) and the carry
bit unaffected.

The Result produced is AC(SreAC)+1; the carry is
complemented if AC(SrcAC)=177777B.

ADD COMPLEMENT The Result produced is the sum of AC(DestAC) and

SUBTRACT

ADD

AND

the logical complement of AC(SrcAC). The carry bit is
complemented if the addition gencrates a carry.
Subtracts by adding the two’s complement of AC(SrcAC)
to AC(DestAC). The carry bit is complemented if the
addition generates a carry.

Adds AC(StcAC) to AC(DestAC). The carry bit is
complemented if the addition gencrates a carry.
The Result is the logical and of AC(SrcAC) and
AC(DestaC). The carry is passed unaffected.

The arithmetic instructions are written by citing the Al'unc mnemonic, followed optionally by the cy
mnemonic, followed optionally by the SH mnemonic, followed optionally by the NL mnemonic. Then
after a space, the source accumulator number is given, the destination accumulator number, and
optionally an SK mncmonic.

SuB 0 0
MOvZ 2 1
SuBzZL 1 1
ADC 0 0
SUB# 2 3 SNR

COM# 1 1 SZR
SuBz# 1 0 SzC
ADCZ# 1 0 SzC

For cxample:

Zero ACO by subtracting it from itself
Move AC2 to AC1, and zero C

Set AC1 to 1

Set ACO to 1777778

affects neither

Skips if AC1 is 177777B but leaves it unchanged
Skips if ACO<AC1 unsigned

Skips if ACOCAC1 unsigned

; Skips if AC2 and AC3 are unequal but

To subtract thc constant 1 from AcCl:

Alto Hardware Manual Section 3: Emulator 16

NEG 1 1
coM 11

To OR together the contents of ACO and Acl; result in ACO:

COM 1 1
AND 1 0
ADC 1 0

To XOR together the contents of ACO and ACl; result in ACO:

MOV 0 2
ANDZL 1 2
ADD 1 0
sus 2 0

To ncgate a double-length number in ACO and Acl:

NEG 1 1 SNR
NEG 0 0 SKP
COM 0 0

To add the double-length number in AC2,AC3 to one in ACO,ACI:

ADDZ 3 1 SZIC
INC 2 2
ADD 2 0

To subtract the double-length number in AC2,AC3 from onc in ACO,ACl:

SUBZ 3 1 SiZIC
SUB 2 0 SKP
ADC 2 0

The Bepl construct "if a gr b then ..." uses code which docs a subtract and checks the sign.
Unfortunately, this is not a truc signed compare because the subtract may overflow. With this
code, 2 gr 0 is true, but 0777778 gr 1000008 is falsc (0777778 is the largest positive number and
1000008 the largest negative). The code gencrated by Bepl looks like:

LDA 0 4,2 ; Pick up a

LDA 1 5,2 ; Pick up b

ADCL# 1 0 SZC ; Subtract and check sign
JMP falsePart ; Not true

JMP truePart ; True

The "true signed compare” for adb is:

LDA 0 4,2 ; Pick up a

LDA 1 5,2 ; Pick up b

SUBZR 2 2 ; Place 100000B in AC2

AND 1 2 ; AC2=(if b<0 then 1000008 else 0)

ADDL 0 2 ; CARRY=(if a and b signs differ then 1 else 0)

ADC# 1 0 SNC
JMP falsePart
JMP truePart

S-GROUP INSTRUCTIONS

Opcodes in the range 600008-777778, are assigned to the S-group, which comprises a variety of
miscellancous instructions and unimplemented operations. Bits 3 through 7 of the instruction determine
32 opcodes, cach of which may usc the displacement ficld (bits 8-15 of the instruction). Onc of these
opcodes (61xxx, 0<xxx<3778) uses the displacement ficld to represent up to 256 instructions which do
not requirc a displacement or a paramecter as part of the opcode.

Alto Hardware Manual Section 3: Emulator 17

Currently, only a small number of the available S-group instructions have been implemented. The
remaining unimplemented instructions all trap in one of two ways:

ROM trap PC is saved in location TRAPPC, and then a JMP@ TRAPVEC+OP instruction is simulated.
or is bits 3-7 of the trapping instruction.

TRAPPC 5278 When an unimplemented opcodce is exccuted by the emulator,
the PC is saved here. It points to the location after the
trapping instruction.

TRAPVIC 5308-5678 Contains pointers to the trap routines for the 32 opcodes (bits
3-7 of the trapping instruction). 'The first word corresponds
to opcode 60xxx, 0<xxx<3778.

RAM trap If no microinstruction RAM is present, the trap is handled as a ROM trap. If a RAM is
present, the microcode transfers to location TRAPI in the RAM with the trapping instruction
in 1, the instruction cycled by 8 bits in the R-register XRLG, and PC pointing to the
location after the trapping instruction.

This arrangement makes it convenient to extend the Alto’s standard instruction sct by implementing
additional functions in softwarc which is dispatched to via TRAPVEC, or in microcode which is dispatched
to via a RAM trap. An appendix tabulates the S-group instruction set opcodes and what cach does or how
it traps.

MUL 610208 Unsigned multiply:

Multiply the unsigned integers in AC1 and AC2 to gencrate a 32-bit product; add the product to
the integer in ACO. Leave the high-order part of the result in ACO and the low-order part in ACI.
AC2 is unaffected.

DIV 610218 Unsigned divide:

The double-length unsigned integer in ACO and ACl is divided by the unsigned integer in AC2.
The quotient is Ieft in ACL; the remainder in AC0. AC2 is unaffected. The instruction normally
skips the next instruction; if overflow occurs (ACO > AC2 unsigned), DIV does not skip.

CYCLE 600008 Left cycle ACO:

Ieft cycle (rotate) the contents of ACO by the amount specified in instruction bits 12-15, unless
this value is zero, in which case cycle ACO left by the amount specified in bits 12-15 of Acl.

JSRII 644008 Jump to subroutinc double indirect, PC relative:

AC3¢PC+1
pCerv(rv(prC+ SignExtend(pise)))

JSRIS 650008 Jump to subroutinc double indirect, AC2 relative:

AC3¢PC+1
PC+1v(rv(AC2-+ SignExtend(DISP)))

Alto Hardware Manual Section 3: Emulator 18

CONVERT 670008 Scan convert a font character:

The CONVERT instruction does scan conversion of characters, i.c., it transfers data between an
arca of main memory containing a font and an area of memory containing a bit map to be
displayed on th¢ Tv monitor.

CONVERT takes a number of arguments:

ACO contains the address of the destination word into which the upper left corner of the
character is to be placed, offset by NWRDS, the number of words to be displayed on each scan
line (ACO=DWA-NWRDS).

AC3 points to a character pointer in the font for the character to be displayed
(AC3=FONTBASE+CHARACTER CODE).

AC2+SignExtend(DISP) is the address of a two-word table:
word 0: NWRDS (number of words per to scan line); NWRDS < 128.

word 1: DBA, the destination bit address corresponding to the left hand edge of the
character. CONVERT interprets this bit address reversed from the normal
convention, i.c., 0 is the least significant bit, 15 thc most significant bit.

CONVERT requires that a 16 word mask table be set up starting at MASKTAB (460B) in page 1.
rv(MASKTAB+n)=(2t(n+1))-1 (0K _n¢ 15).

The format of an Alto font designed for use with CONVERT is given below; names of font files in
this format conventionally have an extension ".AL". The CONVERT instruction does not cxamine
the words at FONTBASE-2 and FFONTBASE-1; these are provided solely for convenience of software.

FONTBASE-2:

The height of a line of text in scan lines. This number incorporates the cffects
of the highest and lowest character in the font, i.e. it is max(1ID+ X11)-min(1iD)
where the max and min arc taken independently and HD and X1 are defined
below.

FONTBASE-1:

Bit 0: 0 = Fixed width font.
1 = Proportional width font.

Bits 1-7: Bascline -- number of scan-lines from top of highest character in
font to the baseline,

Bits 8-15: The width of the widest character in raster points.

FONTBASE to FONTBASLE+ 377B:
Sclf-relative pointers to word XW of the character descriptor block for the
character codes 0-377B.

FONTBASE-+4008 to FONTBASE+ 4008+ EXTCNT-1:

These locations contain sclf-relative pointers to word Xw of the character
descriptor blocks for extensions, i.e., portions of characters which are wider than
16 bits. EXTCNT is the total number of character cxtensions.

Alto Hardware Manual Section 3: Emulator 19

FONTBASE+4008+ EXTCNT to ¢nd:
Contains a number of character descriptor blocks of the form:

word 0 to word Xxw-1:
The bit map for the character and surrounding spaces. ‘The bit map
docs not include O’s at the top and bottom of the character, as the
character will be vertically positioned by CONVERT. The upper left-hand
bit of the character is in the MSB of word 0.

word XWw:
If the character is < 16 bits wide, this word contains (2*width)+1. If
the character is > 16 bits wide, this word contains 2* a pseudo-character
which is used as a character code to index an extension character in the
font. If this is the last extension block of a character, this word contains
(2* the width of the final cxtension), rather than the total width, The
pointer indexed by the character code points to this word.

word Xw+1:
In the left byte, HD. In the right byte, X1I. HD is the number of scan
lines to skip before displaying the character, XH is the height of the bit
map for this character.

The CONVERT instruction ORs the character bitmap into the display area. If the character docs
not require an cxtension, CONVERT skips, with the following information in the AC's:

AC0: unchanged

ACl: DBA AND 17B

AC2: unchanged

AC3: the width of the character in bits

If the character requires an extension, CONVERT returns does not skip. AC3 contains the pseudo-
character code for the cxtension, and AC’s 0-2 are as above.

RCLK 610038 Read Clock:

The microcode maintains a 26 bit rcal time clock which is incremented by the memory refresh
task at 38.08 microsccond intervals (more precisely, once every 224 ticks of the system clock,
whosc nominal frequency is 5.880000 MHz). The high-order 16 bits of this clock arc maintained
in location RTC (4308) in page 1 The low-order 10 bits are kept in R37. The remaining 6 bits of
R37 contain statc information unrclated to the time. RCLK loads ACO with the contents of
location RTC, and loads ACl with the contents of R37. The period of the full 26-bit clock is
about 40 minutes.

The contents of R37 are slightly different on Alto T and Alto IT: on Alto I, R37[0-9] contain the
low order clock bits; on Alto 11, R37[4-13] are used. Conscquently, on the Alto 1, the contents of
ACO and ACl returned by RCLK may be viewed as a 32-bit clock in units of .595 microscconds,
provided ACI[10-15] is first . zeroed.

SI0 610048 Start 1/0:

Start 170 is included to facilitate 170 control. It places the contents of ACO on the processor bus
and cxccutes the STARTE function (I71=178). By convention, bits of ACO must be 1" in order to
signal devices. Sce Appendix C for a summary of assigned bits.

Alto Hardware Manual Scction 3: Emulator 20

BLT
BLKS

SIT

If bit 0 of ACO is 1, and if an Ethernet board is plugged into the Alto, the machine will boot, just
as if the "boot button" were pressed (scc scctions 3.4, 84, and 9.2.2 for discussions of
bootstrapping).

S10 also returns a result in AC0. If the Ethernet hardware is installed, the scrial number and/or
Ethernet host address of the machine (0-3778) is loaded into AC0[8-15]. (On Alto I, the scrial
number and Fthernet host address are cquivalent; on Alto 11, the valuc loaded into ACO is the
Ethernct host address only.) If Ethernet hardware is missing, AC0[8-15] = 377B. Microcode
installed after June 1976, which this manual describes, returns ACO[0]=0. Microcode installed
prior to Junc 1976 returns ACO[0]=1; this is a quick way to acquire the approximate vintage of a
machinc’s microcode.

610058 Block transfer:
6100068 Block store:

These instructions use tight microcode loops to move a block of memory from onc place to
another (BL'T) or to store a constant value into a block of memory (BLKS). Block transfer and
block storc take the following arguments:

AC0: Address of the first source word-1 (BLT), or data to be stored (BLKS).
ACl: Address of the last word of the destination area.
AC3: Negative word count.

Becausce these instructions arc potentially time consuming, and keep their state in the AC’s, they
arc interruptable. If an interrupt occurs, the PC is decremented by one, and the AC’s contain the
intermediate state. On return, the instruction continues. On completion, the ACs are:

ACO: Address of last source word+1 (BLT), or unchanged (BLKS).
Acl: Unchanged. :
AC2: Unchanged.

AC3: 0.

The first word of the destination arca (ACl + AC3 + 1) is the first to be stored into.

610078 Start interval timer:

The microcode implements an interval timer which has a resolution of 38.08 microscconds, and a
maximum period of 10 bits. Because the principal application for this timer is to do bit sampling
for a serial EIA-RS232 compatible communications linc, the timer is specialized for this purposc.
It uses three dedicated locations in page 1:

ITTIME 5258 Contains the time at which the next timer interrupt should be caused. On
Alto I, the 10-bit time is stored in I'TTIME[0-9], and the remaining bits must
be zero. On Alto 1, the time is stored in ITTIMIE[4-13], and the remaining
bits must be zcro.

ITIBITS 4233 'T'his word contains one or more bits specifying the channel or channcls on
which the timer interrupt is to occur.

ITQUAN 4228 When the interval timer interrupt is caused, the microcode stores a quantity
in this location which decpends on the mode.

The SIT instruction ORs the contents of ACO into R37. The high 14 bits should be 0; the low-
order 2 bits determine the interval timer mode:

Alto Hardware Manual Scction 3: Fmulator 21

R37[14-15]
0 Off.

1 Normal mode. Every 38.08 microseconds, test to scc if (R37 AND
TIMEMASK) =ITTIME (on Alto I, TIMEMASK =177700B; on Alto 11, the proper
valuc for TIMEMASK is 7774B, but version 23 of Alto II microcodc uses a
value of 77008). If they arc cqual, causc an ‘interrupt on the channel
specified by ITIBITS. Store the current state of the EFIA interface in ITQUAN,
and sct R37[14-15] to zero. The state of the EIA interface is bit 15 of location
LIaLocC (1777018) in page 3778. This bit is O if the line is spacing, 1 if it is
marking,.

2 Same as 0.

Every 38.08 microseconds, check the state of the EIA line by reading EIALOC.
If the line is marking (FIALOC is non zcro), do nothing. If the line is
spacing, causc an interrupt on the channel specified by ITIBITS. Store the
current value of R37 in ITQUAN, and sct R37[14-15] to zcro.

The intention is that a program which does EIA input can use mode 3 to monitor the linc for the
arrival of a character, and can then use mode 1 to time the center of each bit. By storing the
statc of the line, the interrupt latency can be as much as 1 bit time without errors.

JMPRAM 610108 Jump to RAM: (see scction 8.5 for details)

Switches the emulator task micro PC to another microinstruction bank in ROM or RAM The next
cmulator microinstruction will be determined from the value in ACL (mod 1024) -- sce the
discussion of bank switching in section 8.4.

RDRAM 610118 Rcad RAM: (scc section 8.5 for details)
Reads the control RAM halfword addressed by ACl into ACo.

Note: In Alto lIs running microcode version 2, this instruction does not work reliably if the
Ethernet interface is running.

WRTRAM 610128 Writec RAM: (sce section 8.5 for details)

Writes ACO into the high-order half and AC3 into the low-order half of the control RAM word
addressed by AC1,

VERS 610148 Version:

ACO is loaded with a number which is coded as follows:
bits 0-3 Alto engincering number

Oorl Alto 1

2 Alto H

3 Alto 11 with extended memory
bits 4-7 Alto build number.
bits 8-15 Version number of the microcode.

"This instruction permits programs to know the differences among various kinds of Altos. Use of
the Alto build number (bits 4-7) has been abandoned; its contents are undefined. The two
flavors of Alto maintain scparate cnumerations of microcode versions (see scction 9 for some

Alto Hardware Manual Scction 3: Emulator 22

DREAD

DWRITE

DEXCHI

conventions).

610158 Double-word read (Alto II only):

ACO« rv(AC3); ACle rv(AC3 XOR 1)

610168 Double-word write (Alto II only):

rv(AC3)e ACO; rv(AC3 XORrR 1)«Acl

610178 Double-word cxchange (Alto II only):

te 1v(AC3); rv(ac3)« ACO; ACO«t
te rv(AC3 XOR 1); rv(AC3 XOR 1)« AcCl; ACl« t

DIAGNOSEL 610228 Diagnostic instruction (Alto II only):

This instruction starts a special double-word write cycle that also writes the Hamming code check
bits.

rv(1770268)« AC2 (set Hamming code)
rv(AC3)« ACO; rv(AC3 XOR 1)« AcCl

DIAGNOSE2 610238 Diagnpstic instruction (Alto II only):

BITBLT

This instruction writes the same memory location with two different values in quick succession:

rv(AC3)e ACO
rv(AC3)« Ac0 xor AcCl
ACO« ACO xor ACl

610248 Bit-boundary block transfer:

An instruction for moving bits around in memory. It is patticularly helpful for dealing with the
display bit map. BITBLT requires the RAM to be present in order to usc some S registers (418
through 51B). If the RAM is not present, BITBLT will trap as if it were an unimplemented
operation,

CALLING SEQUENCE

The BIreLr function is invoked with:

Acl: 0
AC2: pointer to BBtable, which must be cven,

Only AC2 is prescrved by BITBLT.

The most common crrors when using this instruction are failing to align the BBTable on an even

word boundary, failing to zero Acl, and failing to zero FUNCTION[0-9].

The format of the BBrable is:

Alto Hardware Manual Scction 3: Emulator 23

Word Name Remarks

0 FUNCTION Operation, SourceType, Bank, etc
1 unused

2 DBCA Destination BCA

3 DBMR* Destination BMR

4 DLX* Destination LX

S DTY* Destination TY

6 DW* Dcstination w

7 DH* Destination H

8 SBCA Source BCA

9 SBMR Source BMR

10 sLx* Source LX

11 STY* Source TY

12 Gray0 Four words to specify gray block...
13 Grayl

14 Gray2

15 Gray3

*These should all be positive values, although if DH<O or DW<0 then BITBLT is a NOP.

Trick: since BITBLT uscs all of the accumulators, BCPL programmers must save AC2, the stack
pointer, somewhere. Put it in word 1 of the BBTable, since AC?2 still points at the table after the
instruction finishes, making it casy to recover.

The instruction is interruptable as it begins consideration of cach scan line. If an interrupt
happens, the state of its progress is saved in ACI and the PC is hacked up so that on return from
the interrupt, BITBLT will finish its job. This is the reason why ACl must be zero when starting
the instruction.

DEFINITIONS

A bit map is a region of memory defined by BCA and BMR, where BCA is the base core address
(starting location) and BMR is thc bit map raster width in words; the number of scan lines is
irrclevant for our purposes. (If both BMR and BCA are even, then the bit map may be displayed
on the screen using standard Alto facilities.)

A block is a rectangle within a bit map. It has four corners which nced not fall on word
boundaries. A block is described by 6 numbers:

BCA Bit map’s basc corc address

BMR Bit map’s width in words

1X Block’s left X ("x offset” from first bit of scan-line)
Y Block’s top Y ("y offset” from first scan-linc)

w Block’s width in bits

H Block’s height in scan-lincs

Ixample: A block is used to designate a sequence of bits in memory, such as a 16 wide 14 high
region containing the bit pattern of a font character. In this case, BCA points to the font
character, BMR is 1, X and Ty arc 0, w is 16, and H is 14. If source and destination blocks
overlap, they had better have the same BCA.

Alto Hardware Manual Section 3: Emulator U

BLOCK OPERATIONS

The basic block operations operate by storing some bits into a "destination block."” 'The source
of these bits varies; often it is another block, the "source block." 'There are various functions
that BITBLT can perform,

The FUNCTION word of the BBTable contains a number of fields:

FUNCTION[0-9] Must be zero

FUNCTION][10] Source block is in the alternatc bank
FUNCTION][11] Destination block is in the alternatc bank
FUNCTION[12-13] SourceType

FUNCTION[14-15] Operation

The operation field specifics the operation to be performed on the source and destination blocks:

Opcration Name Action
0 Replace Destination Block « Source _
1 Paint Destination Block ¢« Source OR Destination
2 Invert Destination Block « Source XOR Destination
3 Erase Decstination Block « (NOT Source) AND Destination

The SourceType specifies how the Source as used in the above 4 opcrations is to be computed.
The cncodings are:

SourceType Meaning

0 Source is a block of a bit map

1 Source is the complement of a block of a bit map

2 Source is the logical "and” of a source block and the "gray block™ (sce
below).

3 Source is thc "gray block.”

The "gray block" is conceptually a block of infinite extent in which a pattern of dots is repeated.
The pattern is specified by four words (Gray0 through Gray3). These give the patterns to write
into the destination block wherce called for, one gray word per scan linc, The words will align
with destination block word boundarics, but BITBLT will use Gray0 through Gray3 in the order in
which BITBLT processes scanlines (cither top to bottom (DTY<STY) or bottom to top (DTY>STY)).

The most common usc of these gray valucs is to gencrate a uniform pattern. 'While the BITBLT
instruction takes care of going through thesc valucs appropriately, the table must be phased
properly to climinate seams. Spccifically, if A B C D are the desired 16-bit word-aligned valucs of
gray for scan-lincs 0 1 2 3 (mmod 4), then two adjustments must be made:

Iet Q = D1y + 1.

If bry < sty, then cxchange B and D and let Q = -(DTY+DH+2).
Rotate the pattern left (i.c, A«B, B«C, etc) a total of (Q AND 3) times.
Set Gray0«a, Graylen, Gray2¢cC, Gray3«D

When the source is a block of bit map, the width and height paramcters of the block are not
nceded: the width and height of the destination block are also used as the width and height of
the source block. 1t is permissible for the source and destination blocks to overlap, such as when
sliding an cxisting block around within a bit map; BUIBLT will move words in the order required
for the correct results. However, if the source and destination blocks do overlap, they must
belong to the same bit map (i.e.,, NDBCA=SBCA and DBMR=S$BMR),

Alto Hardware Manual Scction 3: Emulator

TIMING DETAILS
The microcode has roughly the following speed characteristics:

Horizontally, along onc raster line (so to speak):

storc constant 13 cycles/word
move block 23 cycles/word
if skew not zero add 6
if source not zcro add 7
1st or last word add 13
function not store add 6

Vertical loop overhead (time to change raster lines):

14-21 cycles/scanline, depending on source/dcst alignment
add 6 if function uses gray

Initial sctup overhead (time to start or resume from interrupt):
approximately 240 cycles

Total for a typical character, 8 wide by 14 high:
approximately 1500 cycles

25

These timings all in units of Alto microinstruction cycles and do include all memory wait time
and do not include any degradation due to competing tasks, such as the display or disk. For
typical characters on the Alto screen, BITBLT is about 2/3 the speed of CONVERT.

XMLDA 610258 Extended Memory Load Accumulator (Alto IT only)

T.oads ACO from the location addressed by ACl in the alternate bank.

XMSTA 610268 Extended Memory Store Accumulator (Alto 1T only)

Stores ACO into the location addressed by ACl in the alternate bank. If the the addressed bank
of memory has not been installed, the instruction yields undcfined results and will probably

causc a parity crror. Sec section 2.3.

Alto Hardware Manual Section 3: Emulator 26

3.2 Interrupts

'The emulator microcode provides 15 channels of vectored interrupts. The microcode implements only a
single level of interrupts; however, a multi-level priority interrupt system may casily be implemented in
software (scc below).

Interrupts may be caused in two ways:

microcode This method is used by 170 device microcode. A device usually has a dedicated location
in which the CPU program places a word containing ones in thc bit positions
corresponding to the channels on which to cause interrupt(s) upon completion of 170
activity. The emulator is guaranteed to notice an interrupt caused in this way within
one instruction.

software This method is used by a CPU program. A program causcs interrupts by ORing into
location WW onc bits corresponding to the channels on which interrupts should occur.
The emulator is not guarantced to notice an interrupt caused in this way until an EIR
instruction is execcuted.

When an interrupt occurs, further interrupts are disabled and the state of the interrupted CPU program is
contained in AC0-3, CARRY, and PC, which must be saved and rcstored by the interrupt routine.
Interrupts can occur between instructions or during long instructions, in which case the instruction’s
intermediate state is saved in the accumulators and PC is backed up so that the interrupted instruction is
re-cxecuted when the interrupt is dismissed.

If two interrupts are requested simultaneously, the one with the highest-numbered channel will be
serviced first,

The interrupt system uses a number of fixed locations in page 1:

ACTIVE 4538 This word contains oncs for the channcls on which interrupts arc permitted to
occur. Bit N is sct to onc to cnable channel N. Bit 0 is reserved and should
not be sct by any program.

WW 4521 This word contains bits for channcls on which interrupts are pending. This
information is only valid while the interrupt system is cnabled. Bit
conventions are the same as for ACTIVE. WW is nof updated when interrupts
arc disabled -- wakcups caused from microcode accumulate in NwWw until
interrupts arc enabled.

PCLOC 5008 When an interrupt is initiated, the PC is saved here, If the CPU program allows
nested interrupts, this location must be saved before re-enabling interrupts.

INTVEC 501B-5178 Contains pointers to the service routines for the 15 interrupt channcls. The
ficst word cotresponds to channel 15 (bit 15) and the last corresponds to
channel 1 (bit 1). Channel 15 is pcermanently assigned to handling main
memory parity errors.

The interrupt system uses four instructions:

Alto Hardware Manual Scction 3: Emulator 27

DIR 610003 Disable interrupts:
Disables the interrupt system. If more than one interrupt is initiated on a channcl while
interrupts are disabled, only onc¢ will occur when interrupts are rc-cnabled.

DIRS 610138 Disable interrupts and skip if on:
Disables the interrupt system and skips the next instruction if interrupts were cnabled at the start
of this instruction.

EIR 610018 Enable interrupts:
Enables the intcrfupt system. Interrupts initiated while interrupts were disabled occur afier this
instruction.

BRI 610028 Branch and return from interrupt:
Simulates a IMP @PCLOC instruction, and then cnables the interrupt system, Interrupts initiated
while interrupts were disabled occur after this instruction.

EXAMPLLES

The code below is a sample interrupt handler for onc channel, say channel 10. Tt permits nested
interrupts from higher priority channels, where the priority is determined by software. This is
accomplished by turning off all lower-priority channcls and re-enabling interrupts (which were disabled
by thc microcode at the onset of this interrupt). Before dismissing the interrupt, it is necessary to disable
the interrupt system and turn the lower-priority channels back on.

Interrupt: STA 0 SavedACO ; save the interrupted program state

STA 1 SavedAC1
STA 2 SavedAC2
STA 3 SavedAC3
MOVR 0 ©

STA 0 SavedCarry
LDA 0 @PCLOC

STA 0 SavedPC

LOA 0 QACTIVE ; disable lower priority channels
STA 0 SavedActive

LDA 1 ChanMask

AND 1 0

STA 0 BACTIVE

EIR ; re-enable interrupts

. ; service the interrupt

DIR ; disable interrupts

LDA 0 SavedActive

STA 0 @ACTIVE ; re-enable lower priority channels
LDA 0 SavedPC ; restore the interrupted program state
STA 0 @rCLOC

LDA 0 SavedCarry

MOVL 0 0

LDA 3 SavedAC3
LDA 2 SavedAC2
LDA 1 SavedAC1
LDA 0 SavedACO

BRI ; dismiss the interrupt
SavedACO: 0 ; these locations must be private to this channel
SavedAC1: 0
SavedAC2: 0
SavedAC3: 0

Alto Hardware Manual Section 3: Emulator 28

SavedCarry: 0
SavedPC: 0
SavedActive: 0

PCLOC: 500
ACTIVE: 453
ChanMask: 37 ; contains ones for higher priority channels

It is customary (though not esscntial) to assign interrupt channel prioritics such that channcl 15 has the
highest priority and channcl 1 the lowest. In this case, the ChanMask for channel /s interrupt routine will
consist of 15-i one bits right-justified. In any casc, ChanMask must contain zero in the bit corresponding to
the intcrrupt channel being scrviced.

The code below initiates interrupts on the channels corresponding to one bits in AC0. It must disable
interrupts to prevent ww from being changed by microcode-initiated interrupts.

Causelnt: COM 0 0
DIR
LDA 1 GwWW
AND 0 1
ADC 0 1 ; AC1 « ACO OR AC1
STA 1 Qww

EIR ; the interrupt happens after this
WW: 452

If a channel’s ACTIVE bit is 0 when viewed from non-interrupt level, then the channel is not in use. The
code below scarches ACTIVE: for the highest priority free channel. It is carcful not to assign the parity
interrupt channel. It then initializes an interrupt handler on that channel and returns a word with a one
in the bit position of the assigned channcl. It must not be called from interrupt level.

; enter with ACO = the address of the interrupt handler

InitChan: STA 0 INTHANDLER
SuB 11 ; ACL « 0
SuUBZL 0 0 ; ACO « 1
LDA 2 QACTIVE
FFC: MOVZL 0 0 SZC
JMP fail ; no interrupt channels free.
INC 1 1
AND# 0 2 SZR ; free?
JMP FFC ; no. Try the next one
ILDA 2 INTVEC ; install handler in INTVEC
ADD 1 2
LDA 3 INTHANDLER
STA 302
LDA 2 @ACTIVE ; turn on the channel
ADD 0 2 ; cant carry: equivalent to OR

STA 2 GACTIVE
; ACO = one-bit mask designating the assigned channel

INTVEC: 501
INTHANDLER: 0 i temp

The code below destroys the interrupt channcls corresponding to one bits in AC0. It must not be called
from interrupt level.

DestroyInt: COM 0 O
I.LDA 1 GACTIVE
AND 0 1

Alto Hardware Manual Section 3: Emulator 29

STA 1 GACTIVE

IMPLEMENTATION

In addition to the main memory locations, the interrupt system uscs one R-register: NWW, ncw interrupts
waiting. Bit 0 of Nww is 0 if the interrupt system is cnabled and onc if it is disabled. This is why there
arc only 15 channcls of interrupts and why ww[0] should never be set. 170 device microcode ORs bits
into this register to causc interrupts. (NWW OR WW) expresses all pending interrupts.

‘The main loop of the emulator checks NWw during the fetch of each emulated instruction. If NWW is
greater than zero (i.c., NWW[0] is not sct meaning the interrupt system is on, and at Icast one bit is sct in
NWW[1-15] mcaning an interrupt is pending on some channel) then the microcode computes (NWW OR
WW) AND ACTIVE. If this quantity is nonzero (i.c., an interrupt is pending and its channel is active) then
an interrupt is caused. If not, NWW OR WW is stored in WW, NWW is zeroed, and the instruction is
restarted.

If an interrupt is caused, the microcode stores the program counter in PCLOC, scts NWW[0] to disable
further interrupts, clears the bit in NWw and in Ww corresponding to the channcl on which the interrupt
is occurring, and loads PC with rv(INTVEC+ 15-CHANNEL).

When the interrupt system is disabled (by exccuting DIR or DIRS or initiation of an interrupt), the
microcode scts NWW[0]. When the interrupt system is enabled (by exccuting EIR or BRI), the microcode
clcars Nww[0] and ORs WW into NWW.

This organization is optimized to minimize the cost (in additional microinstructions in the emulator main
loop) of the most common case where the interrupt system is cnabled and no interrupts are pending.
When a bit appears in NWW while the interrupt system is active, it is cither cleared by causing an
interrupt or flushed into Ww where it is checked less often, since the cost of deciding that an interrupt is
pending but that the channel is inactive is too high to tolerate on cach pass through the main loop. The
assumption in flushing inactive bits into WW is that the CPU program will enable interrupts shortly after
changing ACTIVE, and doing so will cause the pending bits in Ww to be reconsidered.

3.3 Bootstrapping

‘The emulator contains microcode for initializing the Alto in certain ways, and thereby "bootstrapping” a
runnable program into the machine. A "boot,” which is invoked cither by pressing the small button at
the rear of the keyboard or by exccuting an appropriate SIO instruction (sce scction 3.3), simply resets all
micro-PC’s to fixed initial valucs determined by their task numbers. Unless the Reset Mode Register
specifics otherwise (sce section 8.4), the emulator task is started in the PROM and performs a number of
opcrations:

1. The current value of PC is stored in memory location 0. The emulator accumulators are not
altered during booting,

2. ‘I'he display is turned off; ie. rv(4208)«0.
Interrupts are disabled.

4. The first keyboard word (KBDAD, 177034B) is read to determine what sort of boot is to be
done:

Disk Boot: If the <BS> key is not depressed, the microcode interprets any depressed keys
reported in this keyboard word as a real disk address. If no keys arc depressed,
this rcsults in a rcal disk address of 0.

Alto Hardware Manual Section 3: Emulator 30

The single disk scctor at the given address is rcad: the 256 data words arc read
into locations 1 to 400B inclusive; the label is rcad into locations 402B to 411B
inclusive. When the transfer is complete, PC«1, and the emulator is started.
The disk status is stored in location 2, so the bootstrapping code must skip this
location,

Ether Boot: If the <BS> key is depressed, the microcode anticipates breathing life into the
Alto via the Ethernet. The Ethernet hardware is set up to read any packet with
destination Alto number 377B into locations 1 to 400B inclusive. If a packet
arrives with good status and with memory location 2 (i.c., the sccond word of the
packet) equal to 602B (a "Breath-of-Life" packet), pC+3, and the emulator is
started.

More information regarding boot loaders and boot file formats is found with
Buildboot documentation in the Alto Subsystems Manual.

3.4 Hardware

There is a small amount of special hardwarc which is used exclusively by the emulator. This hardware is
controlled by the task specific F2’s, and by the «DISP bus source.

The IR register is used to hold the current instruction. It is loaded with iRe (F2=14B). IR« also merges
bus bits 0,5,6 and 7 into NEXT[6-9], which does a first level instruction dispatch.

The high order bits of IR cannot be read directly, but the displacement ficld of 1R (8 low order bits), may
be read with the «DISP bus source. If the X field of the instruction is zero (i.e., it specifies page 0
addressing) then the DISP field of the instruction is put on BUS[8-15] and BUS[0-7] is zcroed. If the X
ficld of the instruction is nonzero (i.e. it specifics PC-rclative or base-register addressing) then the DISP
ficld is sign-cxtended and put on the bus.

BUS[8-15]« 1R[8-15]
BUS[0-7]« if IR[6-7]=0 then 0 clscif IR[8]=0 then 0 else -1

There arc two additional 12's which assist in instruction decoding, IDISP and «ACSOURCE. The IDISP
function (12=158) does a 16 way dispatch under control of a PROM and a multiplexer. The valucs arc
tabulated below:

Conditions ORed onto NEXT Comment

if IR[0] = 1 then 3-1R[8-9] complement of SH field of IR
clseif IR[1-2] = 0 then IR[3-4] IMP, JSR, 1SZ, DSZ

clscif 1R[1-2) =1 then 4 LDA

clseif IR[1-2] = 2 then S STA

clscif IR[4-7] = 0 then 1

clseif R[4-7] = 1 then 0

clseif IR[4-7] = 6 then 168 CONVERT

clscil 1R[4-7) = 16B then 6

clsc IR[4-7]

«ACSOURCE (12=168B) has two roles. First, it replaces the two-low order bits of the R select ficld with
the complement of the SreAC ficld of IR, (IR[1-2] XOR 3), allowing the emulator to address its
accumulators (which arc assigned to RO-R3). Second, a dispatch is performed:

Alto Hardware Manual Section 3: Emulator 31

Conditions ORed onto NEXT Comment

if IR[0]=1 then 3-1R[8-9] the complement of the SH ficld of IR
clscif 1R[1-2] # 3 * then IR[S] the Indirect bit of IR

elseif IR[3-7] = 0 then 2 CYCLE

elseif [3-7] =1 then 5 RAMTRAP

clseif 1R[3-7] = 2 then 3 NOPAR -- parameterless opcode group
clscif IR[3-7} = 3 then 6 RAMTRAP

clseif IR[3-7] = 4 then 7 RAMTRAP

clscif IR[3-7] = 11B then 4 JSRII

clscif IR[3-7] = 128 then 4 JSRIS

clseif IR[3-7] = 16B then 1 CONVERT

elscif 1R[3-7] = 37B then 178 ROMTRAP -- used by Swat, the debugger
clse 168 RAMTRAP »

ACDEST, I2=13B, causcs (IR[3-4] XOR 3) to be used as the low-order two bits of the RSELECT field. This
addresses the accumulators from the destination field of the instruction. The sclected register may be
loaded or read.

The ecmulator has two additional bits of state, the SKiP and CARRY flip flops. CARRY is distinct from the
microprocessor’s A1LUCO bit, tested by the ALUCY function. CARRY is sct or cleared as a function of IR and
many other things (scc section 3.1) when the DNS« (do novel shifts, 2=128) function is exccuted. In
particular, if IR[12] is true, CARRY will not change. DNS also addresses R from (3-IR[3-4]), causcs a store
into R unless IR[12] is set, and scts the SKip flip flop if appropriate (see scction 3.1). The cmulator
microcode increments PC by 1 at the beginning of the next emulated instruction if SKIP is sct, using
BUS+SKIP (ALUE=13B). IR« clears SKIP.

Note that the functions which replace the low bits of RSELECT with IR affect only the sclection of R; they
do not affect the address supplicd to the constant ROM.

Two additional cmulator specific functions, BUSODD (F2=108) and MAGIC (F2=11B), are not pcculiar to
cmulation, but are included for their general uscfulness. BUSODD merges BUS[15] into NEXI[9]. MAGIC is
a modificr applied to L 181 1 and 1. RSH 1 to allow double length shifts. I LSH 1 and L RSH | normally
shift zero into the vacated bit position in the shifter output. MAGIC places the high order bit of T into
the low order bit of the shifter output on left shifts, and places the low order bit of T into the high order
bit position of the shifter output on right shifts. (The microassembler accepts 1. MLSH 1 to spccify the
combination of L 1SH 1 and MAGIC, and similarly for L. MRSII 1)

The STARTE function (F1=17B) is gencrated by the SIO instruction, and is used to define commands for
170 hardware, including thc FEthernet.

The RSNF function (1'1=168B) is decoded by the Ethernet interface, which gates the host address wired on
the backplane onto BUS[8-15]. BUS[0-7] is not driven and will therefore be -1. If no Ethernet interface is
present, BUS will be -1.

Alto Hardware Manual Section 4: Display Controller 32

4.0 DISPLAY CONTROLLER

4.1 Programming Characteristics

The display controller handles transfers between the main memory and the CRT. The CRT is a standard
875 line raster-scanned TV monitor, refreshed at 60 ficlds per second from a bit map in main memory.
The CRT contains 606 points horizontally, and 808 points vertically, or 489,648 points total.

The basic way in which information is presented on the display is by fetching a series of words from Alto
main memory, and scrially extracting bits to become the video signal. Therefore, 38 16-bit words are
required to represent cach scan line; 30704 words are required to fill the screen.

The display is defined by one or more display control blocks in main memory. Control blocks (DCB'’s)
arc linked together starting at location DASTART(420B) in page 1:

DASTART: Pointer to word 0 of the first (top on the screen) DCB, or 0 if display is off.

DASTART+1: Vertical ficld interrupt bit mask. Every 1/60 sccond, this word is OR’ed into

NWW to cause interrupts, even if the display is off (i.c., rv(DASTART)=0).

Display control blocks must begin at even addresscs in memory, and have the following format:

DCB: Pointer to next DCB, or 0 if this is the last.
DCB+1: Bit 0: 0 = high resolution mode
1 = low resolution mode
Bit 1: 0 = black on whitc background presentation
1 = white on black background

Bits 2-7 (111AB): On each scan line of this block, wait 16*11TAB bits before
displaying information from memory.

Bits 8-15 (NWRDS): Each scan line in this block is defined by NWRDS 16 bit
words. (NWRDS must be even). In order to skip space on the
screen without requiring bit-map, sect NWRDS to 0.

DCB+2 (SA): Bit map starting address, which must be even.
DCB+3 (S1.C): 'This block defines 2*SLC scan lines, SLC in cach field.

At the start of cach ficld, the display controller inspects DASTART and DASTART+1. An interrupt is
initiated on the channel(s) specificd by the bit(s) in DASTART+1. The controller then exccutes each DCB
scquentially until the display list or the ficld ends. At normal resolution, the first scan linc of the first
(even) ficld of a block is taken from location SA to SA+NWRDS-1, the first scan linc of the odd field is
taken from locations SA+NWRDS to SA+2*NWRDS-1. During each display ficld, the bit map address is
incremented by an cxtra NWRDS between cach pair of scan lines. In low resolution mode, the video is
generated at half speed, and cach scan line is displayed twice (once in cach ficld). During cach ficld, the
bit map address is not incremented by an extra NWRDS between the display of adjacent scan lines. This
makes the format of the bit map in memory identical for both modcs--only the size of the presentation is
affected by the mode.

4.2 Hardware

‘The display controller consists of a sync generator, a data buffer and scrializing shift register, and three
microcodc tasks which control data handling and communicate with the Alto program. ‘T'he hardware is .
shown in block form in Figure 5. The 16 word buffer is loaded from the Alto bus with the DDRe

Alto Hardware Manual Section 4: Display Controller 33

function (F2=108, spccific to the display word task DWT, illegal in an instruction which stops the clocks).
The purpose of the intermediate buffer is to synchronize data transfers between the main buffer, which is
synchronous with the 170ns. master clock, and the shift register, which is clocked with an asynchronous
bit clock. The sync gencrator provides this clock and the vertical and horizontal synchronization signals
required by the monitor,

The bit clock is disabled by vertical and horizontal blanking, and its rate can bc set by the microcode to
cither 50 or 100 ns. by the function SETMODE (12=11B, specific to the display horizontal task DUT). This
function examines the two high order bits of the processor bus. If bit 0=1, the bit clock rate is set to
100ns period (at the start of the next scan line), and a 1 is merged into NEXT[9]. SETMODE also latches bit
I of the processor bus and uses the value to control the polarity of the video output. A third function,
EVENFIELD (12=108, specific to DIIT and to the display vertical task DVT), merges a 1 into Nex1[9) if the
display is in the cven field.

The display control hardware also gencrates wakeup requests to the microprocessor tasking hardware.
The vertical task DVT is awakened once per ficld, at the beginning of vertical retrace. The display
horizontal task is awakened once at the beginning of each ficld, and thercafter whenever the display
word task blocks. DIIT can block itsclf, in which case neither it nor the word task can be awakened until
the start of the next ficld. The wakcup request for the display word task (DWT) is controlled by the state
of the 16 word buffer. If DWT has not exccuted a BLOCK, if DHT is not blocked, and if the buffer is not
full, DWT wakeups arc generated. 'The hardware scts the buffer empty and clears the DWT block flip-flop
at the beginning of horizontal retrace for every scan line.

4.3 Display Controller Microcode

The display controller microcode is divided into three tasks. The highest priority task is DVT, the display
vertical task, the next is DIT, the horizontal task, and the third is DWT, the display word task. The
display controller uses 6 registers in R:

CBA: Holds the address of the currently active DCB+1.

AECL: Holds the address of the end of the currently active scan line’s bit map in main
memory.

SIC: Holds the number of scan lines remaining in the currently active DCB.

IITAB: Holds the number of tab words remaining on the current scan line.

DWA: Holds the address of the bit map doubleword currently being fetched for

transmission to the hardware buffer.
MTEMP; Is a temporary cell.

The vertical task initializes the controller by setting SLC to 0 and CBA to DASTART+1. It also merges the
contents of DASTART+1 into NWw, which will cause an intcrrupt if the specificd channel is active. DVT

also sets up information required for the cursor (see below), TASKs and becomes inactive until the next
ficld.

DIT starts by initiating a fetch to the word addressed by CBA. It checks st.¢, and if it is zcro, the
controller is finished with the current DCB, and the link word of the DCB is fetched. If this word is non-
zero, it replaces CBA and processing of a new DCB is begun, 1f the link word is zero, DT blocks until
the start of the next ficld.

If the check of Si.¢ indicates that more scan lines remain in the current DCB, SLC is decremented by one
and the fetch of (CBA) is used to obtain the sccond word of the DCB, rather than the link word. The
contents of this word arc used to set the display mode and polarity, and the tab count is extracted and
put into HTAB. NWRDS is extracted, and usced to increment DWA and ALCI, by the appropriatc amount,
depending on the mode and ficld. All the registers required by DWT have now been sct up, and DHT
TASKs and becomes inactive until DwWT blocks.

Alto Hardware Manual Section 4: Display Controller 34

If a ncw DCB is required, DHT fetches all four words of the new DCB, and initializes all the registers.
During all scan lines of a DCB cxcept the first, DHT only accesses the first doubleword of the block.

DWT has the sole task of transferring words from memory to the hardware. When it first awakens during
horizontal retrace, it checks HTAB. If it is non-zero, it enters a loop which outputs HTAB 0's to the
display. When HTAB is zcro, a second loop is entered which fetches a doubleword from the location
specificd by DWA. DWA is compared with AECL, and if they are equal, DWT blocks until the next scan
linc. DWA is incremented by 2, in preparation for the fetch of the next doubleword. If DWA#AECL,
DWT continues to supply words to the buffer whencver it becomes non-full,

4.4 Cursor

Because of the difficulty of inserting a cursor at the appropriate place in the display bit map at
reasonable speed, a hardware cursor is included in the Alto. The cursor consists of an arbitrary 16x16 bit
patch, which is merged with the video at the appropriate time. The bit map for the cursor is contained
in 16 words starting at location CURMAP(431B) in page one, and the x,y coordinates of the cursor are
specified by location CURLOC (426B) and CURLOC+1 (427B) in page 1. The coordinate origin for the
cursor is the upper Ieft hand corner of the screen. The cursor presentation is unaffected by changes in
display resolution. Its polarity is that of the current DCB, or the last DCB processed if it is located on an
arca of the screen not defined by a bc. The cursor may be removed from view in a number of ways.
The most cfficient in terms of processing time is to set the x coordinate to -1.

The cursor hardware consists of a 16-bit shift register which holds the information to be displayed on the
current scan line, and a counter which is incremented by the bit clock, and determines the x coordinate
at which the shift register begins shifting,.

The hardware is loaded during horizontal retrace by the cursor task microcode, which simply copies the x
coordinate and bit map scgment from the R memory into the hardware.

The valucs of x and the bit map arc sct up in R by a section of the memory refresh task, whose wakeup
and priority arc arranged so that it runs during cvery scan line after DWT has done all necessary output
and DI has sct up the information required by DWT for the next scan linc. MRT checks the current y
position of the display, and if it is in the range in which the cursor should be displayed, fetches the
appropriatc bit map scgment from CURMAP. When the cursor y position is exceeded by the display, a
flag is sct in MRT to disable further processing. The x and y coordinates of the cursor are fetched from
CURLOC and CURLOC++1 at the beginning of each display ficld by a scction of the display vertical task
microcode.

Cursor processing is distributed as it is to minimize the amount of processing which must be done during
the monitor’s horizontal retrace time. This time is approximately 6 microscconds, and it must include the
worst casc latency imposed by tasks at lower priority than the display, plus the worst case disk word
processing time (the disk word task is at higher priority than the display), plus the time necessary for
DWT to partially fill the display buffer, plus cursor processing time.

Alto Processor Bus

16
16-word
Buffer
Cursor .
Shift Register ”
1-word Buffer
Display . Digital Video
Shift Register 7 Mixer .
Bit
Generator N
Buffer
& Control
Figure 5 -- Display Control

Pointer to next DCB

: i | | I : } : | } | }
Resol |BkGnd Horizontal Tab Words per Scan Line
| L 1 1 1 1 i [] 1 [1 [l
Bit map address
1 } } | i | } } } } } } } } }
Scan Lines

1 i | | 1] 1 1 1 1] []

	Table of Contents
	1.0 Introduction
	1.1 Guide to this Document
	1.2 People
	1.3 Conventions and Notation

	2.0 Microprocessor
	2.1 Arithmetic Section
	2.2 Constant Memory
	Fig. 1 -- Processor Data Paths
	2.3 Main Memory
	2.4 Microprocessor Control
	Fig. 2 -- Processor Control

	3.0 Emulator
	3.1 Standard Instruction Set
	Fig. 3 -- Instruction Formats
	Fig. 4 -- Instruction Execution
	3.2 Interrupts
	3.3 Bootstrapping
	3.4 Hardware

	4.0 Display Controller
	4.1 Programming Characteristics
	4.2 Hardware
	4.3 Display Controller Microcode
	4.4 Cursor
	Fig. 5 -- Display Control

