Alto Hardware Manual Section 5: Miscellancous Peripherals 35

5.0 MISCELLANEOUS PERIPHERALS

The Alto can have a number of slow peripherals which appear to programs as memory locations in the
range 177000-1777778. The standard peripherals are described here.

5.1 Keyboard

The Alto keyboard contains 61 or 64 keys. It appears to the program as four 16 bit words in 4 adjacent
locations starting at KBDAD (177034B). Depressed keys correspond to zerocs in memory, idle keys
correspond to ones. Figure 6 shows layouts of the Microswitch and ADIL keyboards, including keytops
and the word number, bit number corresponding to cach key. All Alto Ts and the more recent Alto s
have Microswitch keyboards; earlier Alto IIs have ADI. keyboards, which are somewhat larger and have
columns of function keys on the left and right sides.

MICROSWITCH KEYBOARD

Bit KBDAD (1770348) KBDAD+1 (1770358) KBDAD+2 (177036B) KBDAD+3 (1770378)
0 5 3 1 R

1 4 2 ESC T

2 6 w TAB G

3 E Q F Y

4 7 S CTRL H

5 D A C 8

6 8] 9 J N

7 \' I B M

8 0 (zcro) X z LOCK

9 K o] <shift-teft> SPACE

10 - L . (period) [

11 P , (comma) H +

12 / " (quotc) RETURN <shift-right>

13 \ € <blank-bottom>
14 L <blank-middle> DEL XXX

15 BS <blank-top> XXX XXX

ADL KEYBOARD
Bit KBDAD (1770348) KBDAD+1 (1770358B) KBDAD+2 (1770368) KBDADA-3 (1770378)

0 S 3 1 R

1 4 2 ESC T

2 6 W TAB G

3 B Q . F Y

4 7 S CIRL H

5 D A C 8

6 U 9 J N

7 \Y I B M

8 0 (zcro) X zZ L.OCK
9 K 0 <shift-left> SPACE
10 - L . (period) [

11 p , (comma) s +

12 / " (quote) RETURN <shift-right>
13 \ (FR2)] « (FR3) FR1

14 LI (VL2) FR4 DEI(I'L1) F1LA

15 BS BW FL3 FRS

I'L. stands for the function kcys at the left of the keyboard; FR for those at the right.

Figure 6

Alto Hardware Manual Section 5; Miscellancous Peripherals 36

Note: Connecting an Alto I keyboard to an Alto II or an Alto 1I Microswitch keyboard to an Alto I
requires rewiring a conncector or installing an adaptor cable. An ADL keyboard requires additional logic
to conncct to an Alto 1.

5.2 Mouse

The mouse is a hand-held pointing device which contains two encoders which digitize its position as it is
rolled over a table-top. It also has three buttons which may be read as the three low-order bits of
memory location UTILIN (177030B), in the manner of the keyboard. Thc bit/button correspondences in
UTILIN are (depressed keys correspond to (’s in memory):

UTILIN[13] Top or Left Button (RED)
UTILIN[14] Bottom or Right Button (BLUE)
UTILIN{15] Middle Button (YEILOW)

The mouse coordinates arc maintained by the MRT microcode in locations MOUSELOC(424B)=X and
MOUSELOCH+ 1(425B)=Y in pagc one of thec Alto memory. These coordinates are relative, i.e., the
hardwarc only increments and decrements them. The resolution of the mouse is approximately 100
points per inch.

5.3 Keyset

The standard Alto includes a five-finger keyset which is presented to the program as 5 bits of memory
location UTILIN (1770308), similar to the keyboard. The bit/key correspondences in UTILIN are
(depressed keys correspond to 0's in memory):

UTILIN[8] Key 0 (left-most)
UTILIN[9] Key 1
UTILIN[10] Key 2
UTILIN[11] Key 3
UTILIN[12] Key 4 (right-most)

5.4 External Device Interface

Two memory locations, UTILIN (1770308) and uTiLouT (177016B), provide an interfacc to external
devices through a connector on the rear of the Alto. If a quantity is stored into UTILOUT, it is latched
and appears as 16 output signals; if a 1 bit is stored, a more negative logic level is generated (111, "low™).
For input, bits 0 to 5 and bit 7 of UTILIN are available; more positive logic levels (111, "high") are
reported as 1 bits. The remaining bits of this location arc used by the mouse, keyset and memory
configuration switch,

On the Alto 1, this connector also provides various power supply voltages. These are absent on Alto 11

The Alto II provides an additional 16-bit input port (the X bus), which can be read by accessing memory
locations 1770208-1770238. "The connector on the rear of the Alto I provides the low 2 bits of memory
address and a signal that indicates the X bus is being read, together with the 16 input data signals. More
positive logic lcvels: (rri. "high") are reported as 1 bits.

‘The two sections below describe two common devices connected to UTILIN/UTH.OUT, the Diablo HyType
printer and Versatec printer/plotter. The descriptions are for the programmer: the bit values (0 or 1)
refer to values that will be stored into UTHOUT or rcad from UTHIN by an Alto program.

Alto Hardware Manual Section 5: Miscellancous Peripherals 37

5.4.1 Diablo Printer

The Diablo HyType printer plugs into a connector on the rear of the Alto, and is controlled by
referencing two locations in Alto memory. None of the timing signals required by the printer are
generated automatically--all must be program generated. For detailed information on the printer, refer to
the Diablo manual.

Location UTILIN (177030B):

UTILINJ0] Paper rcady bit. 0 when the printer is ready for a paper scrolling opcration.

UTILIN[1] Printer check bit. Should the printer find itself in an abnormal state, it sets this
bit to 0.

UTILIN[2] Unused.

UTILIN[3] Daisy rcady bit. 0 when the printer is ready to print a character.

UTILIN[4] Carriage ready bit. 0 when the printer is rcady for horizontal positioning.

UTILIN[S] Ready bit. Both this bit and the appropriate other ready bit (carriage, daisy,
etc.) must be 0 before attempting any output operation.

UTILIN[6] (Memory configuration switch -- sce scction 5.5)

UTILIN[7] Unused.

[ocation uTtiLouT (1770168B):

Several of the output operations are invoked by “toggling” a bit in the ‘output status word. To toggle a
bit, sct it first to 1, then back to 0 immediately.

uUtiLouTt{0] Paper strobe bit. Toggling this bit causes a paper scrolling operation.

UTILOUTY1] Restore bit. Toggling this bit resets the printer (including clearing the "check”
condition if present) and moves the carriage to thc left margin.

UTILOU1([2] Ribbon bit. When this bit is 1 the ribbon is up (in printing position); when 0,
it is down.

UTILOU13] Daisy strobe bit. Toggling this bit causes a character to be printed.

uUliLour{4} Carriage strobe bit. Toggling this bit causcs a horizontal positioning operation.

UTILOUI[S-15] Argument to various output operations:

1. Printing characters. When the daisy bit is toggled bits 9-15 of this field
are interpreted as an ASCII character code to be printed (it should be
noted that all codes less than 40B print as lower case "w").

2. For paper and carriage operations the ficld is interpreted as a displacement
(-1024 to +1023), in units of 1/48 inch for paper and 1/60 inch for
carriage. Positive is down or to the right, negative up or to the left. The
value is represented as sign-magnitude (i.c., bit 5 is 1 for ncgative
numbers, 0 for positive; bits 6-15 are the absolute value of the number).

The printer is initialized by toggling the restore bit, then waiting for all ready bits to be 0. A typical
output sequence, say printing a character, involves examining the check bit for abnormal status, waiting
for both the rcady and daisy ready bits to be 0, then writing in the printer output location the character
code, the character code ORed with the daisy strobe bit, and the unmodified code again.

The device behaves more or less like a plotter, i.c. you must cxplicitly position cach character in
software; a print operation does not affect the position of cither the carriage or the paper. All coordinates

Alto Hardware Manual Scction 5: Miscellaneous Peripherals 38

in paper or carriage opcrations are relative; the device does not know its absolute position. Again, you
must kecp track of this in software.

WARNING: On Alto I, the printer cable should not be changed (connccted or disconnected) while Alto
power is on. ‘The printer power is derived from the Alto power supplics; changing the cable causcs a
large transicnt which usually crashes the processor and doces bad things to the disk drive. On Alto 11, the
printer is indcpendently powered and may thercfore be connected or disconnccted at any time.

5.4.2 Versatec Plotters and Printer/Plotters

Because of their delightfully simple hardware interface, all manner of Versatec equipment may be driven
from the Alto with ease. The description below gives the signal assignments and a small number of
coding tricks; the programmer should consult a Versatec manual for details (bulletin 6002, Matrix Basic
Interface Description is particularly helpful). The notation * is used below to indicate a signal whose
sense is inverted.

Location UTILIN (1770308):

UTILIN[1] ONLINE* On-line (inverted).
UTILIN[2] NOPAP No paper.
UTILIN[3] READY* Ready (inverted).

Location urn.our (1770168):

uTiout{0] REFED Remote form feed.

uUtt.out|i] CLEAR Clear print line,

uri.oul|2] RLTER Remote line terminate.

uTi.out{3] PICLK* Print clock (inverted).

UTILoU1[4] PRINT* Print sclect (inverted) -- print=0, plot=1

UTILOUT[S] SPP Simultancous print/plot.

UTILouU1[6] RESET Remote reset.

uni.out[7] REOTR Remote eand of transmission.

uriout[8-15] 1N0g* to INO1* Data bits to be sent to the Versatee (inverted). Bit 8 is
the most significant bit of the nibble; bit 15 is the least
significant.

None of the timing signals (PICLK) are gencrated automatically by the Alto--the programmer must cause
the signals to wave appropriately. The Alto II DIAGNOSE2 instruction is particularly helpful for
generating the clock signals. The control functions (RFFED, CLEAR, RUTER, RESET, REOTR) are gencrated
by raising and then lowering them:

LDA O FORMFEED
LDA 1 FTORMTOGGLE
LDA 3 UTILOUTADR

DIAGNOSE2
FORMIEED: 114000 i RFFED + PICLK* + PRINT*
FORMTOGGLE: 100000 ; RFFED

UTI1L.OUTADR: 177016

Data bytes must be sent with care, because the UTTLOUT data lines take a little time to sct up. The data
is first sct, then the clock bit is toggled, and then the clock bit is toggled again:

Alto Hardware Manual Scction 5: Misccllancous Peripherals 39

LDA 0 DATA

COM 0 0 ; Note that data must be inverted .

LDA 1 DATAMASK

AND 1 0 ; Save INO8*-INO1*,PICLK*,PRINT*., We're plotting
LDA 3 UTILOUTADR

STA 0 0 3 ; Let data settle--clock is "off"

LDA 1 DATATOGGLE

DIAGNOSE2 ; Toggle clock "on" then "off"

DATA: 111 ; ASCII code for "I"

DATAMASK : 014377 ; PICLK* + PRINT* + data mask
DATATOGGLE: 010000 PICLK*
UTILOUTADR: 177016

On Alto I, DIAGNOSE2 is not available, but its effect may be cmulated.

5.5 Parity Error Detection

The detection and reporting of parity errors is accomplished somewhat differently on Alto 1 and Alto 1.
In both machines, the processing of errors is undertaken by a high-priority microtask, which is invoked
very soon after an error occurs. The microtask reports a parity error by causing an interrupt on cmulator
interrupt channel 15, i.e., by ORing a onc into NWwW([15]. Bear in mind that parity crrors can.be generated
by memory references undertaken by any microtask; as a result, it may be some time between the
occurrence of the crror and the next execution of the emulator task and conscquent servicing of the
interrupt.

When a parity error happens, the parity task storcs the contents of various R registers into some page 1
reserved locations given below. Unfortunately, the information recorded by the parity task is not
sufficient to determine preciscly where the parity error occurred. The intent of the collection is to save
values of the R registers most likely to be used as a source of memory addresses.

Address R-Register Use

6148 DCBR Disk control block fetch pointer

615 KNMAR Disk word fetch/store pointer

6161 DWA Display word fetch address

6178 CBA Display control block fetch address

6208 PC Current program counter in the emulator

621B SAD Temporary register for indirection in emulator
Alto 11

The Alto I memory contains circuitry for correcting single-bit errors and detecting double-bit errors.
The logic cxpects a good deal of set-up and in turn reports copious crror information. Interaction with
the crror control is cffected through three memory locations (1770248, 1770251 and 1770268). Dectailed
information on the operation of the crror correction mechanism is best obtained from the logic drawings.

Memory Lrror Address Register (MEAR = 177024B). This register is a 'shadow MAR’: it holds the
address of the first crror since the error status was last reset. If no error has occurred, MEAR reports the
address of the most recent memory access. Note that MEAR is set whenever an crror of any kind (single-
bit or double-bit) is dctected.

Mcmory Error Status Register (MESR = 1770258). This register reports specifics of the first error that
occurred since MISR was last reset. Storing anything into this register rescts the crror logic and cnables it
to detect a new crror. Bits arc "low true,” ic. if the bit is 0, the condition is true.

Alto Hardware Manual Section 5: Miscellancous Peripherals 40

MIESR[0-5] Hamming code reported from crror
MI:SR[6] Parity Error

MIESR[7] Memory parity bit

MIESR[8-13] Syndrome bits

MESR[14-15] Bank number in which error occurred

MESR[14-15] is an cxtension to the most significant end of MEAR. This ficld is only present if the
extended memory option is installed (sec section 2.3), otherwisc it reads out -l.

Memory Error Control Register (MECR = 1770268). Storing into this register is the means for
controlling the memory error logic. This register is set to all oncs (disable all interrupts) when the Alto
is bootstrapped and when the parity crror task first detects an error. ' When an ecrror has occurred, MEAR
and MIESR should be read before setting the MECR. Bits are "low true,” i.c. a 0 bit enables the condition.

MECR[0-3] Spare

MECR[4-10] Test Hamming code (used only for special diagnostics)
MECR[11] Test mode (uscd only for special diagnostics)
MECR[12] Cause interrupt on single-bit errors if zero

MECR[13] Causc interrupt on double-bit crrors if zero

MECR[14] Do not use crror correction if zero

MECR[15] Spare

Note that MECR[12] and [13] govern only the initiation of intcrrupts; MEAR and MESR hold information
about the first error that occurs after rescting MESR regardless of what kind of errors are to cause
intcrrupts.

ADDRESS MAPPING

The mapping of addresses to memory chips can be altered by the sctting of the "memory configuration
switch." 'This switch is located on the front of Alto I's, and at the top of the backplanc of the Alto II.
The current setting of the switch is reported in bit 6 of UTILIN (location 1770308): if this bit is 0, the
switch is in the "normal” position ("up” on Alto I, "back” on Alto 11), otherwise the switch is in the
"alternate” position. On Alto I, if the switch is in the alternate position, the first two 16K portions of
memory arce cexchanged (i.c., the memory address is modified by the algorithm: if MAR[0]=0 then
MAR[1]¢MAR[1] XOR 1). On Alto 11, if the switch is in the alternate position, the first and second 32K
portions of memory arc cxchanged (i.c., the memory address is modificd by the algorithm:
MAR[0]«MAR[0] XOR 1).

In order to fix many memory problems, it is necessary to know the mapping between memory addresses
(and bit numbers) to actual memory chips on the memory boards. Herewith the mapping, given in the
style of a program: the algorithm is given the memory address (address) and the bit position in the word
(bir). 'The function odd(x) returns true if the 16-bit number x is odd. The variable switch corresponds to
the sctting of the memory configuration switch (i.c., switch«UTILIN[G]).

Alto 1

The variables row and column are the "coordinates” of the memory chip on the given cardSlot, as printed
by the memory diagnostic. 'The chipNumber is the chip number on the memory board. Bit 16 is the
parity bit,

if address[0]=0 then (if switch=1 then address[1]«address[l] xor 1)
row «address[2-4]

cardSlot«(address[0-1)*4 + 13

if odd(address) then cardecard4-2

column«bit

if bit > 12 then [cardecard+1; columnebit-5 |

Alto Hardware Manual Section 5: Miscellancous Peripherals 41

chipNumber« 15 + column + 14*row
Alto 11

The Alto I memory system is organized around 32-bit doublewords. Stored along with cach double
word is 6 bits of hamming code and a parity bit for a total of 39 bits:

bits 0-15 even data word
bits 16-31 odd data word
bits 32-37 Hamming code
bit 38 parity Dbit

Things arc further complicated by the fact that two types of memory chips are used: 16K chips in
machines with the extended memory option (see section 2.3), and 4K chips for all others.

The bits in a 1-chip decp slice of memory are called a group. A group contains 4K or 16K double
words, depending on chip type. The bits of a group on a single board are called a subgroup. Thus a
subgroup contains 10 of the 40 bits in a group. There arc 8 subgroups on a memory board. Subgroups
arc numbered from the high 3 bits of the address: for 4K chips this means MAR[0-2]; for 16K chips (i.e.
an Alto with cxtended memory) this mcans BANK.MAR[0]: 1

Subgroup chip positions

7 81-90

6 71-80

5 61-70

4 51-60

3 41-50

2 31-40

1 21-30

0 11-20 Nearest the cdge connector

The location of the bits in group 0 is:

CARD 1 CARD 2 CARD 3 CARD 4
32 24 16 08 00 | 33 25 17 09 01 | 34 26 18 10 02 | 35 27 19 11 03
36 28 20 12 04 | 37 29 21 13 05 | 38 30 22 14 06 | XX 31 23 15 07
T T 1

N
chip position 11

Chips 15, 25, 35, 45, 55, 65, 75, and 85 on board 4 aren’t used. 1f you arc out of replacement memory
chips, you can use onc of these, but then the board with the missing chips will only work in Slot 4.

The algorithm for converting address and bit into cardSlot and chipNumber is (the variable xm’ is truc if
the Alto has cxtended memory):

if odd(address) then bitebit+16
a: if switch=1 then address[0]«address[0] xor 1
cardSlot« (bit mod 4) +1
chipNumber« bit/8 + 16 - (if odd(bit/4) then 5 clse 0) +
10 * (if xm then address0] clsc address[0-2]) +
(if xm then bank*20 clse 0)

A sceond cntry to this algorithm is with an address (usually rcad from MEAR), and a syndrome (usually
rcad from MISR, but remember that it must be complemented:; syndrome «(rv(MESR))[8-13] XOR 77B)).

Alto Hardware Manual Section 5: Miscellancous Peripherals 42

bitesyndromeMapping[syndromc] (sec table below)
if bit=-1 then ecrror ("impossible” syndrome)
center the algorithm above at a.

The syndromeMapping maps a 6-bit number (range 0 to 63) into the number of the bad bit (0 to 38)
or -1 if thc syndrome is incorrect:

0 1 2 3

0o 38 37 36 -l
10 34 29 14 -1
20 33 27 12 -1

W
[
—

18 -1 (syndrome valucs 0 to 7)
1
-1 20 -1

=N R O WD B
1
—

3 2 31 16 -1 24 -1
490 32 26 11 -1 -1 19 -1
so 1 30 15 -1 -123 -1
60 0 28 13 -1 ;121 -1
3 -1 17 -1 0 -1 25 -1

Alto Hardware Manual Section 6: Disk and Controller 43

6.0 DISK AND CONTROLLER

The disk controller is designed to accommodate one of a variety of DIABLO disk drives, including modcls
31 and 44. [Fach drive accommodates onc or two disks. FEach disk has two heads, onc per side.
Information is recorded on cach disk in a 12-sector format on cach of up to 406 (depending on the disk
model) radial track positions. Thus, each disk contains up to 9744 recording positions (2 hecads x 12
scctors x 406 track positions). Figure 7 tabulates various uscful information about the performance of the

disk drives.

DLEVICE DIABLO 31 DIABLO 44
Number of drives/Alto lor2 1
Number of packs 1 removable 1 removable
1 fixed
Number of cylinders 203 406
I'racks/cylinder/pack 2 2
Scctors per track 12 12
Words per scctor 2 header 2 header
8 label 8 label
256 data 256 data
Data words/track 3072 3072
Scctors/pack 4872 9744
Rotation time 40 25 ms
Scck time (approx.) 15+ 8.6%squi(dt) 8+ 3*sqri(dt) ms *
min-avg-max 15-70-135 8-30-68 ms
Average access to 1 megabyte 80 32 (using both, packs) ms
Transfer rate:
peak/avg 1.6/1.22 2.5/1.9 MHz
pcak/avg 10.2/13 6.7/8. s/ word
per scclor 33 21 ms
for full display 460 .266 sec
for 64k memory 1.03 .6 sec
whole drive 193 44(both packs) sec

* The notation dt stands for the number of tracks traveled during the seck.

Figure 7

The disk controller records three independent data blocks in cach sector. The first is two words long,
and is intended to include the address of the sector. This block is called the Header block. ‘The second
block is cight words long, and is called the Label block. The third block is 256 words long, and is the
Data block. Fach block may be independently read, written, or checked, except that writing, once begun,
must continue until the end of the seclor.

When a block is checked, information on the disk is compared word for word with a specified block of
main memory. During checking, a main memory word containing 0 has spccial significance. When this
word is encountered, the matching word read from the disk is stored in its place and does not take part
in the check. 'This feature permits a combination of reading and checking to occur in the same block.
(It also has the drawback of making it impossible to use the disk controller to check for words containing
0 on the disk.)

The Alto program communicates with the disk controller via a four-word block of main memory
beginning at location XBLK (5218). The first word is interpreted as a pointer to a chain of disk command
blocks. If it contains 0, the disk controller will remain idle. Otherwise, the disk controller will
commence cxccution of the command contained in the first disk command block. When a command is
completed successfully, the disk controller stores in KBLK a pointer to the next command in the chain
and the cycle repeats. If a command terminates in crror, a 0 is immediately stored in KBILK and the disk -

Alto Hardware Manual Section 6: Disk and Controller 44

controller idles. At the beginning of cach sector, status information, including the number of the current
scctor, is stored in KBLK+1. This can be used by the Alto program to sense the readiness of the disk
and to schedule disk transfers, for example. When the disk controller begins exccuting a command, it
stores the disk address of that command in KBLK-2. This information is later used by the disk
controller to decide whether seek operations or disk switches are necessary. It can be used by the Alto
program for scheduling disk arm motion. 1f the Alto program storcs an illegal disk address (like -1) in
this word, the disk controller will perform a seck at the beginning of the next disk operation. (This is
uscful, for example, when a disk driver wants to force a restore operation.) The disk controller also
communicates with the Alto program by interrupts (sce Section 3.2). At the beginning of cach sector
interrupts are initiated on the channcls specified by the bits in KBLK+3.

KBEK (521B): - Pointer to first disk command block.

KBLK+1 (522B): Status at beginning of current sector.

KBLK+2 (523B): Disk addrcss of most-recently started disk command.
KBLK+3 (524B). Scctor intcrrupt bit mask.

A disk command block is a ten-word block of memory which describes a disk transfer operation to the
disk controller, and which is also used by the controller to record the status of that operation. The first
word is a pointer to the next disk command block in this chain. A 0 means that this is the last disk
command block in the chain, When the command is complcte, the disk controller stores its status in the
sccond word. The third word contains the command itself, telling the disk controller what to do. The
fourth word contains a pointer to the block of memory from/to which the header block will be
transferred. The fifth word contains a similar pointer for the label block. The sixth word contains a
similar pointer for thc data block.

The seventh and cighth words of the disk command block control the initiation of interrupts when the
command block is finished. If the command terminates without crror, interrupts arc initiated on the
channcls specified by the bits in DCR+6. However, if the command terminates with an error, the bits in
DCB+7 arc used instcad.

'The ninth word is unused by the disk controller, and may be used by the Alto program to facilitate
chained disk opcrations. The tenth word contains the disk address at which the current operation is to
take place.

DCB: Pointer to next command block.

DCB+1: Status.

nCB+-2: Command.

DCB+3: Header block pointer.

DCB+-4: Label block pointer.

DCBA5: Data pointcr.

DCB+-6: Command complete no-crror interrupt bit mask.
DCB+T: Command complete error interrupt bit mask.
DCB--8: Currently unused.

DCB+9: Disk address.

A disk address word A contains the following ficlds:

FIELD RANGE SIGNIFICANCE
A[0-3] 0-138 Sector number.
Al4-12] 0-6258 (Modcl 44) Cylinder number.
0-3128 (Model 31)
A[13] 0-1 Hecad number.
A[14] 0-1 Disk number (sce also C[15]). 0 is removable pack

on Modcl 44, 1 is optional sccond Model 31 drive.

Alto Hardware Manual Section 6: Disk and Controller 45

A[15) 0

1 0 normatly.
1 if cylinder O is to be addressed via a hardware
"restorc” operation.

A disk command word C contains the following fields:

FIELD RANGE SIGNIFICANCE
C[0-7] 1108 Checked to verify that this is a valid disk command.
Ci8-9] 0-3 0 if Header block to be read.

1 if Hecader block to be checked.

2 or 3 if Hecader block to be written.
C[10-11] 0-3 0 if Label block to be read.

1 if Label block to be checked.

2 or 3 if Label block to be written.
C[12-13] 0-3 0 if Data block to be read.

1 if Data block to be checked.

2 or 3 if Data block to be written.

C[14] 0-1 0 normally.
1 if the command is to terminatc immediately after
the correct cylinder position is recached' (before any
data is transferred).

C[15] 0-1 XOR’ed with A[14] to yield hardwarc disk number.

A disk status word S has the following ficlds:

FIELD VALUES SIGNIFICANCE

S[0-3] 0-138 Current sector number.

S[4-7] 17n One can tell whether status has been stored by
setting this ficld initially to 0 and then checking for
non-z¢cro.

S[8] 0-1 1 means scek failed, possibly due to illegal cylinder
address.

-S[9] 0-1 1 means seck in progress.

S[10] 0-1 1 means disk unit not ready.

S[11] 0-1 1 means data or sector processing was late during the

' last scctor. Data and current sector number
unreliable.

S[12] 0-1 1 means disk interface was not transferring data last
sector.

S[13] 0-1 1 means checksum crror, Command allowed to
proceed.

S[14-15] 0-3 0 mcans command completed correctly.

1 mcans hardware crror (sce S[8-11]) or sector
overflow.

2 means check error. Command terminated instantly.
3 means disk command specificd illegal scctor.

Scveral clever programming tricks have been suggested to drive the disk controller. TFor an initial
program load, KBLK should be sct to point to a disk command block representing a read into location

Sector Cylinder Head | Drive Rst
1 i L 1 i 1 | 1 1 i
Disk Address
1 1 | | | 1 L] 1 1 | |
Header Label Data No :
Command Seal (1108) Action Action Action Xfer |Drive
L 1 1 L 1 1 1 1 1
L i
1
) 0: Read
Disk Command 1: Check
2 or 3: Write
1 1) ¥ L] L)
. Seek Not Data ChSm | Completion
Sector -1if done Fail Seek Rdy |Late Idle Error Code
1 1] 1 1 1
I
Disk Status 0: Good status
1: Hardware error
2: Check error
3: lllegal sector
0 Pointer to next KCB 521 Pointer to next KCB
1 Disk status 522 Status at beginning of sector
2 Disk command 523 Disk address of most recent KCB
3 Header record memory address 524 Sector interrupt bit mask
4 Label record memory address
5 Data record memory address Reserved Page 1 Locations
6 No-Error Interrupt bit mask
7 Error Interrupt bit mask
10 Reserved
1" Disk address

Disk Command Block (KCB)

Figure 8 -- Disk Data Structures

Alto Hardware Manual Section 6: Disk and Controller 46

STRT. Before sctting KBLX, the Alto program should put a JMP STRT instruction in STRT; aftcrward it
should jump to SIRT. The disk controller transfers data downward, from high to low addresses, so that
when location STRT is changed the reading of the block is complete. (Sec scction 3.4 on the standard
bootstrap loading microcode.)

Another trick is to chain disk recads through their label blocks. That is, the label block for sector n
contains part of the disk command block for reading sector n-+1, and so on.

6.1 Disk Controller Implementation

The following walk-through of an average day in the life of the standard disk controller is not intended
for the casual reader, but rather as a roadmap to ease the pain of Icarning the innermost workings of the
controller, If you really want to benefit from this next section, you should have a copy of the standard
disk controller microcode and logic drawings close at hand.

The disk controller consists of a modest amount of hardware and two microcode tasks (the sector task
and the word task). Communication with the emulator is via the four special main memory words, the
disk command blocks, and the interrupts described carlier. In following few paragraphs the actions of the
standard disk controller microcode are described. Occasionally it may be unclear whether the actor is
microcode or hardware. Referring to microcode listings and/or logic drawings will resolve any such
qucstions. :

The sector task is awakened by a scctor signal from the disk. When awakencd, it stores the status of the
disk and controller in the special disk status word (KBLK+1). In addition, if this scctor signal terminates
a disk command (for example, a data transfer during the previous scctor), the status of the disk and
controller are stored in the status word of the disk command block containing the terminated command,
and the command block pointer (KBLK) is advanced. If a command was terminated with an crror, KBLK
(DCB pointer) is set to 0 and KBI.K+2 (current disk address) is set to -1. The effect of this is to cause the
disk controller to abandon the current disk command chain and to forget where the disk arm is
positioned.

Next, the sector task considers the first command on the disk command block chain (by using KBLK). If
there is none, or if the disk unit is not rcady to accept a command, the sector task goes to sleep until the
next sector pulse. Otherwise, the scctor specificd in the new command is verified to be less than 13.
Then, the disk and cylinder specified in the new command arc compared with those stored in KBLK +2
(current disk address), and then the new disk address is stored in KBLK+2 and in the disk controller
hardwarc. Part of the new command is also stored in the hardware, If the comparison is uncqual, a seek
is initiated and the scctor task gocs to sleep until the next sector pulse.

If the comparison was cqual, the SEEKOK hardwarc flag is tested. If that is OK, then the no-transfer bit
of the disk command (bit 14 of the command word of the current disk command block) is tested to see
whether a data transfer is required. If not, the scctor task goes to sleep such that the command will
terminate at the next sector pulse. If a data transfer is required, the specified scctor number and the
current disk scctor number arc compared. 1f unequal, the scctor task goes to sleep until the next sector
pulsc. If sector numbers arc cqual, awakening of the word task is cnabled and the scctor task goes to
sleep such that the command will terminate at the next scctor pulsc.

The word task awakens when a word has been processed by the disk controller hardware and the word
task has bcen cnabled by the scctor task. First, a starting delay is computed, based on whether the
current record is to be read or written. Sccond, control is dispatched bascd on the current record
number. A record length and main memory starting address are computed based on the record number.
In addition, special starting delays arc computed for record number 0. ‘The disk unit is set into the delay
mode appropriate for the opcration (read/write) and the word task gocs to sleep the appropriate number
of times.

Alto Hardware Manual Section 6: Disk and Controller 47

Then a sync word is written (if writing) or awaited (if reading). Finally the main transfer loop is cntered.
Here the word count is decremented, a memory operation is started, and control is dispatched on the
transfer type. If read, the disk word is stored in memory. If write, the memory word is sent to the disk.
If check, the memory word is compared with 0. If non-zcro, the disk and memory words are compared.
An uncqual compare here terminates this sector’s operation with an crror immediately. If the memory
word is 0, it is replaced by the disk word. In any case, the checksum is updated and control returns to
the main transfer loop. Duc to the ALU functions available, the main transfer loop moves in scquence
from high to low main memory addresses.

After the word count reaches 0, the checksum is written or checked. A checksum crror will be noted in
the status word, but will not terminate this sector’s operation. A finishing delay is computed, based on
the current operation, the disk unit is set into a delay mode appropriate to the operation, and the delay
happens. Finally, all disk transfers are shut off, the record number is incremented, and control returns to
the beginning of the word task.

To accomplish all this, the disk controller hardware communicates with the microprocessor in four ways:
first, by task wakcup signals for the scctor and word tasks; second, by five task-specific I2’s which modify
the next microinstruction address; third, by seven task-specific F1’s, four of which activate bus destination
registers, and the remaining three of which provide uscful pulses; and fourth, by two task-specific BS’s.
The following tables describe the cffects of these.

1 VALUE NAME EFFECT

178 KDATA« ‘The KDATA register is loaded from BUS[0-15]. This register is the
data output register to the disk, and is also used to hold the disk
address during KADR« and seck commands. When used as a disk
address it has the format of word A in scction 6.0 above.

168 KADR« This causes the KADR register to be loaded from BUS[8-14]. This
register has the format of word C in section 6.0 above. In
addition, it causes the head address bit to be loaded from

KDATA[13].

158 KCOM « This causes the KCOM register to be loaded from BUS[1-5). The
KCOM register has the following interpretation:
(1) XFEROFF = 1 inhibits data transmission to/from the disk.

(2) woINHIB = 1 prevents the disk word task from awakening.

(3) BCLKSRC = 1 takes bit clock from disk input or crystal clock,
as appropriatc. BCLKSRC = 1 forces usc of crystal clock.

(4) wrro = 0 holds the disk bit counter at -1 until a 1-bit is read.
WI'F0 = 1 allows the bit counter to procced normally.

(5) SENDADR = 1 causes KDATA[4-12] and KDATA[15] to be
transmitted to disk unit as track address. SENDADR = 0 Inhibits
such transmission.

141 . CLRSTAT Causes all crror latches in disk controller hardware to reset, clears
KSTAT[13].
138 INCRECNO Advances the shift registers holding the KADR register so that they

present the number and read/write/check status of the next record
to the hardware.

128 KSTAT« KSTAT[12-15] arc loaded from BUS[12-15]. (Actually, BUS[I3] is
ORed into KSTA'M[13]) This cnables the microcode to enter
conditions it detects into the status register.

Alto Hardware Manual Section 6: Disk and Controller 48

11B STROBE Initiates a disk scck opcration. The KDATA register must have
been loaded previously, and the SENDADR bit of thc KCOMM
register previously set to 1.

F2 VALUE NAME EFFECT
108 INIT NEXTeNEXT OR (iff WDTASKACT AND WDINIT) then 378 else 0)
118 RWC NEXT«NEXT OR (if current record to be written then 3 elseif
current record to be checked then 2 else 0)
128 RECNO NEXT«NEXT OR MAP (current record number) where
' MAP(Q) = 0
MAP(1) = 2
MAP(2) = 3
MAP(3) = 1
138 XFRDAT NEXT«NEXT OR (if current command wants data transfer then 1
else 0)
148 SWRNRDY NEXT«NEXT OR (if disk not ready to accept command then 1 else
0
158 NFER NEXT¢NEXT OR (if fatal error in latches then 0 else 1).
168 STROBON NEXT«NEXT OR (if scck strobe still on then 1 else 0).
BS VALUE NAME EFFECT
3 «KSTAT The KSTAT register is placed on BUS. It has the format of a disk
status word.
4 «KDATA The disk input data register is placed on BUS.

A featurc of interest mostly to the diagnostic microcode writer is that if one rcads the disk input data
register while writing, what should appear is delayed written data correctly aligned on word boundaries.
This is a painless way of checking most of the data paths in the disk controller hardware.

Alto Hardware Manual Section 7: Kthernet 49

7.0 ETHERNET

An Ethernet is the principal means of communications between an Alto and the outside world. The
object was to design a communication system which could grow smoothly to accommodate several
buildings full of personal computers and the facilitics nceded for their support. The Ethernet is a
broadcast, multi-drop, packet-switching, bit serial, digital communications network: it connects up to 256
nodes, scparated by as much as 1 kilometer, with a 2.94 mcgabits/sec channel. Control of the Ethernet is
distributed among the communicating computers to eliminate the reliability problems of an active central
controller, to avoid a bottleneck in a system rich in parallelism, and to reducc the fixed costs which make
small systems uncconomical.

The Ethernet is intended to be an efficient, low-level packet transport mechanism which gives its best
cfforts to dclivering packets, but it is not error free. Even when transmitted without source-detected
interference, a packet may not reach its destination without error; thus, packets are delivered only with
high probability. Stations requiring a residual error ratc lower than that provided by this barc packet
transport mechanism must follow mutually agrced upon packet protocols.

Alto Ethernets come in three pieces: the transceiver, the interface, and the microcode. The transceiver is
a small device which taps into the passing Ether, inserting and extracting bits under the control of the
interface while disturbing the Ether as little as possible. The same device is used to conncect all types of
Ethernet interfaces to the Ether, so the transceiver design is not spccific to the Alto, and will not be
described here. The following sections describe the programming characteristics of the Alto Ethernet,
and then the implementations of the interface and microprogram,

7.1 Programming Characteristics

Programs communicate with the interface and the microcode via the emulator instruction SIO and 9
reserved locations in page 1. Word counts, buffer addresscs, etc., are put in the appropriate locations and
then SIO is cxccuted with an Ethernet command in ACO.

The special page 1 memory locations and their functions are:

EPLOC = 6008: Post location. Microcode and interface status information is posted in this
location when a command completes.

IBLOC = G601B: Interrupt bit location. The contents of this location is ORed into NWW when
a command completes, thereby causing interrupt(s) on the channcls
corresponding to the one bits in EBLOC,

LEELOC

- 602B: End count location. The number of words remaining in the main memory
buffer at command completion is stored here as part of the posting
operation.

ELLOC = 603B: Load location. This location is used by the microcode to hold a mask of
ongs shifted in from the right for gencrating random retransmission intervals,

ELLOC should be zeroed before starting the transmitter,

I

Il

LICLOC = 604B: Input count location. The emulator program should put the size of the
input buffer (in words) into this location before starting the receiver. If a
packet arrives that is longer than EICLOC, the recciver will post an Input

Buffer Overrun crror status.
LIPLOC

I

6058: Input pointer location. The emulator program should put a pointer to the
beginning of the input buffer into this location before starting the recciver.

Alto Hardware Manual Section 7: Ethernet 50

EOCIOC = 606B: Output count location. The emulator program should put the size of the
output buffer (in words) into this location before starting the transmitter. By
convention, packets should not be substantially longer than 256 words.

RBOPLOC = 6078: Output pointer location. The emulator program should put a pointer to the
beginning of the output buffer into this location before starting the
transmitter.

EILOC = 6108: Host address location. This location must contain zero in the left byte and

the host address in the right byte. The microcode matches this host address
against the first byte of a passing packet to dccide whether to accept it.

SIO passes commands to the interface and returns the host address of the Alto. Commands to the
Ethernet interface are encoded in the two low order bits of ACO and have the following mcaning (the
remaining bits of ACO may be interprcted by other devices and thus should be zero):

AC0[14-15]: 0 Do nothing
1 Start the transmitter
2 Start the receiver
3 Reset the interface and microcode.

The host address, returned in AC0[8-15] by SIO, is set by wircs on the Alto backpanel. This number is
normally put in EHI1.0C thereby causing packets with destination addresses matching the address set with
the wires to be accepted by the receiver. For more on addressing, sce below.

Upon completion of a command, EPLOC contains the status of the microcode in the left byte and the
status of the interface in the right byte. The possible valucs of the microcode status byte, EPLOC][0-7],
and their meanings are:

EPLOC[0-7] = O: Input done. If the hardware status byte is 3778, the interface believes the
packet was received without crror.

i
[a—

EP1.OC[0-7] Output done. If the hardware status byte is 3778, the intcrface belicves the
packet was sent without error. The number of collisions cxperienced while

sending the packet is log,(ELLOC/2+1)-1.

EPLOC[0-7] = 2: Input buffer overrun. The received packet was longer than the buffer, and
the excess words were lost. Buffer overrun causes an carly cxit from the
microcode input main loop, so it is likely that the CRC crror and Incomplete
transmission bits in the hardwarc status byte will be set.”

EPLOC[0-7] = 3: Load overflow. The transmitter cxpcrienced 16 consecutive collisions
(assuming ELLOC was zeroed before starting the transmitter) while trying to
transmit the packet described by BEOPLOC and BoOCLOC. DpLLOC[0] will be

one.
EPLOC[0-7] = 4: The command (input or output) specified a zcro length buffer.
1rLocf0-7] = 5: Reset. Generally indicates that a reset command (S10 with AC0[14-15] = 3)

was issued to the interface when it was idle or any command was issucd
when it was not idle.

EPLOC[0-7] = 6: Microcode branch conditions that should never happen cause this code to be
posted if they do happen.

EPLOC[0-7] = 7-3778: The microcode does not gencrate these valucs for status.

Note that the microcode statuses arc small integers and not individual bits as in the interface status byte.
Bits in the interface status byte, EPLOCI8-15], arc Jow true. When zero, their mcanings are:

Alto Hardware Manual Scction 7: Ethernet 51

EPLOC[8-9] Unused. These should always be one.

EPLOC[10] Input data late. The interface did not get enough processor cycles.

1pLOC[11] Collision.

EPLOC12] Input CRC bad.

1r1OC[13] Input command issued. (ACO[14] in last SIO)

£p1LOC[14] Output command issucd. (ACO[15] in last SIO)

rproc[15] Incomplete transmission. The received packet did not end on a word
- boundary.

Command completion can be detected in two ways: (1) zero EPLOC and wait for it to go non-zcro, or (2)
set bits in EBLOC corresponding to the channels on which interrupts are desired at command completion.

When a program wishes to send a packet, it must first turn off the receiver if it is on. If the receiver is
actively copying a packet into memory, the transmitter should wait for the receiver to finish (a maximum
of about 1.5 ms. assuming 250-300 word packets). The program can tell whether the receiver is actively
transferring or idle by zcroing the first word of the input buffer before starting the receiver. When the
program wants to start the transmitter, it checks the first word of the input buffer: if it is still zero, input
has not yct begun and the interface may be reset and the transmitter started with a high probability of
not missing an incoming packet. There is still a small window between testing the word and starting the
transmitter when a packet can arrive and be missed, but paragraph two of this chapter warned that the
Ethernet is not crror free anyway, so missing a few more packets should be harmless.

A program can determine the size of an input message (and though not too useful, the number of words
transferred to the interface by the output microcode) by subtracting the contents of EELOC from the
original buffer count in EICLOC or EOCLOC. The microcode never modifies the buffer count or pointer
locations.

To keep the receiver listening as much of the time as possible, if EICLOC is non-zero when an output
command is issued, the microcode will start the recciver "under’ the transmitter: while the transmitter is
counting down a random rctransmission interval after a collision, the receiver is listening. [f a message
arrives addressed to the receiver, the transmission attempt is aborted and the incoming message is
received into the buffer described by EICLOC and EIPLOC. The transmit command is nof cxecuted in this
case, and must be reissued. The microcode status byte in EPLOC will have an 'input don¢’ status value if
the transmission attempt was aborted by an incoming packet.

The first word of all Ethernet packets must contain the address to which the packet is destined in the left
byte, and the address of the sender (or ’source’) in the right byte. Reccivers cxamine at lcast the
destination byte, and in some cascs (not in Altos) the source byte to determine whether to copy the
message into memory as it passes by. Address zero has special meaning to the Ethernet. Packets with
destination zero arc broadcast packets, and all active receivers will receive them, 1f a program wishes to
receive all packets on the Ether regardless of address (useful for debugging and diagnostic programs), it
should put zero into EHLOC instead of the host number returned by S10. A host which does this is said
to be promiscuous. Address 3778 is reserved for Ethernet booting (see section 3.4). Address 3768 is
reserved as the destination for diagnostic messages.

By convention, the sccond word of all Ethernct packets is the packet type. Communication protocols
using the Ethernet should set the type word to describe the protocol to which the packet belongs (for
cxample Pup protocol packets have 10008 in the type word). The type word is purcly a software
convention; no Ethernet hardware or microcode interprets it.

Alto Hardware Manual Section 7: Ethernet 52

7.2 Ethernet Hardware

The Ethernct hardware consists of a FIFo buffer, an output shift register and phase encoder, a clock
recovery circuit, an input shift register, a CRC register, and one microcode task. The hardware is shown
in block diagram form in Figurc 8. Packets on thc Ether are phasc encoded and transmitter
synchronous: it is the responsibility of the receiver to decide where a packet begins (and thus establish
the phasc of the data clock), scparate the clock from the data, and descrialize the incoming bit stream.
‘The purpose of the write register is to synchronize data transfers between the input shift register whose
clock is derived from the incoming data, and the FIFO which is synchronous to the processor system
clock. The large FIFO is neccssary because the Ethernct task has relatively low priority, and the worst
casc latency from request to task wakcup is on the order of 20 microscconds. The phasc cncoder uses
the system clock (one Ethernet bit time is two clock periods).

Included in the clock recovery section is a one-shot which is retriggered by cach level transition of a
passing packet. This detects the envelope of a packet and is called its ‘carricr’. Ethernct phasc encoders
mark the beginning of a packet by prefixing a single 1 bit, called the sync bit, to the front of all
transmissions. 'The lcading edge of the sync bit of a packet will trigger the carrier one-shot of a listening
receiver and cstablish the receiver clock phase. The sync bit is clocked into the input shift register and
recirculated cvery 16 bit times thereafter to mark the presence of a complete word in the register. If
carriecr drops without the sync bit at the end of the register, the transmission was incomplete, and is
flagged in thce hardwarc status bits. When the shift register is full, the word is transferred to the write
register where it sits until the FIFO control has synchronized its presence and there is room to accept it.
If the shift register fills up again before the word has been transferred from the write register to the FIFO,
data has been lost and the input data latc flip flop is set.

Ethernet transmitters accumulate a 16 bit cyclic redundancy checksum on the data as it is scrialized, and
append it to an outgoing packet after the last data word. As a recciver descerializes an incoming packet it
rccomputes the checksum over the data plus the appended CRC word. If the resulting recciver checksum
is non-zcro, the reccived packet is assumed to be in crror, and the condition is flagged in the hardware
status byte. Since the CRC is of no interest to the emulator program, a wakcup request to empty data
from the FIFO is only madce when it contains two or more words. This reduces the effective size of the
FIFO by onc word, but insures that the CRC will be left behind at the end of a packet.

The phasc encoder is started when the microcode has decremented the countdown to zero, there is no
carricr present, and cither the I'Iro is full, or if the message is less than 16 words long, all of it has been
transferred to the 11¥0. The phase encoder will not start up while there is carrier present. ‘This means
that collisions can only happen because of delay in sensing carrier between widely spaced transmitters.
Collisions arc detected at the transceiver by comparing the data the interface is supplying to the data
being reccived off the Ether. If the two arc not identical, a signal is rcturned to the interface which sets
the collision flip flop causing a wakeup request to the microcode which resets the interface. Countdowns
arc accomplished by sctting a flip flop from the microcode which will cause a wakcup rcquest on the
next occurrence of SWAKMRT. This makes the grain size of countdowns about 38 microscconds.

The interface and the transceiver are connccted together by three twisted pairs for signals plus two
supply voltages and ground supplicd from the interface. The signals arc (1) transmitted data to the

transceiver, (2) received data from the transceiver, and (3) the collision signal from the transceiver
indicating interference. ’

7.3 Ethernet Microcode

The FEthernet microcode uses a single task and 2 registers in R:

Alto Processor Bus

16
a Interface Buffer
/16 N "6 (16 words) "6
Input Shifter Output Shifter
Clock \r/ggit:ter
Phase Phase
Decoder : Encoder
Read data . Write data
/ Transceiver y:
1 1
Ethernet
Figure 9 -- Ethernet Control
Microcode Status DL Coll CRC |ICmd |OCmd
1 L 1 1 1 | 1

0: Normal input completion !

1: Normal output completion Hardware Status
2: Input buffer overrun

3: Load overflow

4: Zero length buffer

6: Reset by software

6: Impossible microcode condition

7-377b: Reserved

Alto Hardware Manual Section 7: Ethernet 53

ECNTR: The number of words remaining in the buffer.
EPNTR: Points at the word prior to that next to be processed.

The task and R registers are shared by input and output so that at any time they are (1) unused, (2)
transmitting a packet, or (3) receiving a packet. When an Ethernct SIO is issucd while the Ethernet
microcode is reset, the code dispatches on whether it is an input, output, or resct command.

Each Ethernet S10 has a result which is posted when the command completes. The state of the
microcode and hardwarc at the timc of the post is deposited in EPLOC, the contents of ECNTR is
deposited in EELOC, and the contents of EBLOC is ORed into NWW. Note that resetting the interface with
EBLOC non-zero will result in an interrupt.

An input command (SI0 with AC0[14:15] = 2) causes the microcode to start the input hardware searching
for the start of a packet and then block. When a packet begins to arrive, the hardwarc wakes up the
microcode which compares the packet’s address against the filtering instructions left in LHILOC by the
cemulator program, The packet will be accepted if any of three conditions is true: (1) If EHIL.OC is zero,
the receiver is said to be promiscuous - all packets are accepted; (2) if the destination address (left byte of
the first word) of the packet is zero, the packet is a broadcast packet - all reccivers accept broadcast
packets; or (3) if the destination byte matches the right byte of EHLOC - the packet was sent to that
specific host. If none of these conditions is met, the packet is rejected by restarting the receiver, which
causes it to ignore the current packet and to hunt for the beginning of the next packet. If the packet is
accepted, the microcode enters the input main loop.

The input main loop first loads ECNTR and EPNTR from FICLOC and EIPLOC. Note that EICLOC and
EIPLOC arc not rcad until the receiver is committed to transferring data to memory, which may be long
after the receiver was started; therefore, these locations should not be disturbed while the recciver is on.,
The main loop repeatedly counts down the buffer size in ECNTR and advances the buffer pointer in
EPNTR depositing packet words until cither the hardware says that the packet has ended or the buffer
overflows; in cither case, the input opcration terminates and posts.

An output command (S0 with AC0[14-15] = 1) causcs the microcode to compute a random
retransmission interval, wait that long, and then start transmitting the packet described by EOCLOC and
EOPLOC. 'The retransmission interval is computed by ANDing the contents of ELLOC with the contents of
R37, the low part of the real time clock (ELLOC is not modified). Then a one bit is left shifted into
11.0C and the high order bit of the result is tested. If the high order bit is on, the transmission attempt
is aborted with a ’load overflow’ microcode status. 'The above process is repcated cach time the
transmitter detects a collision while transmitting the packet. If ELLOC started out zero, cach collision will
double the value of BLLOC, thus doubling the mean of the random number gencrated by ANDing ELLOC
with the real time clock. If 16 consccutive collisions occur without successfully transmitting the packet,
the attempt is aborted.

The retransmission interval is decremented cevery 38.08 microseconds (the memory refresh task wakeup
signal is used for this) until it rcaches zero, at which time FCNTR and EPNTR are loaded from EOCLOC
and 1:OPLOC and the transmitter part of the interface is started. This may occur long after the emulator
program issucd the output command, so EOCLOC and EOPLOC should not be changed while the
transmitter is on. Note that the mean of the first retransmission interval will be zero, so the first
transmission attempt witl begin immediately. Actual transmission of the packet does not begin until the
1110 has been filled by the output main loop (or if the packet is smaller than the FIrFQ, until alt of the
packet is in the FIFO) and there is silence on the Ether. If EICLOC is non zero while the transmitter is
counting down a retransmission interval, the receiver is turned on and if a packet arrives with an
acceptable address, the transmission attempt is forgotten and the microcode enters the input main loop as
if an input command had been issued.

The output main loop repeatedly counts down the packet length in ECNTR and advances the address in
EPNTR taking words from the output buffer and putting them in the 111°0 until cither the main memory
buffer is empticd or a hardware condition aborts the operation. The output main loop is awakened for a

Alto Hardware Manual Section 7: Fthernet 54

data word once cvery 5.44 microseconds on the average. The microcode signals the hardware when the
main memory buffer is empty and waits for the hardware to terminate; it then posts status.

A reset command (SIO with AC0[{14-15] = 3) will always bring the interface back to a reset state. If the
receiver was on, it is stopped cven if a packet was pouring into memory. If the transmitter was on, it is
stopped, cven if it was in the middie of transmitting a packet (the result to the receiver of the interrupted
packet will almost certainly be an incomplete transmission and incorrect CRC). Status will immediately
be posted in EPLOC: the microcode will post the resct status (5) in the microcode status byte, and the
hardware will post the conditions at the time of the reset in the hardware status byte. The contents of
the ECNTR R register will be deposited in EELOC, and the contents of EBLOC will bc ORed into NWWw,
possibly causing intcrrupts. After doing this, the interface and microcode are reset and ready for another
command.

The task specific microcode functions for the Ethernet interface are summarized below.

EIDFCT * BS=4 Input Data Function. Gates the contents of the FIFO to BUS[0-15], and
increments the read pointer at the cnd of the cycle.

EILFCT * F1=13B Input Look Function. Gates the contents of the FIFO to BUS[0-15] but does
not increment the read pointer.

EPICT F1=148 Post Function. Gates interface status to BUS[8-15]. Resets the interface at
the end of the cycle.

EWFCT F1=158 Countdown Wakeup Function. Sets a flip flop in the interface that will
cause a wakeup to thc Ether task on the next tick of SWAKMRT. This
function must be issued in the instruction after a TASK. The rcsulting
wakecup is cleared when the Ether task next runs.

EODFCT F2=10B OQutput Data Function. IT.oads the 10 from BUS[0-15], then increments the
: writc pointer at the cnd of the cycle.

FOSI'CT F2=11p Output Start Function. Sets the OBusy flip flop in the interface, starting
data wakcups to fill the FIFO for output. When the FI11°0 is full, or ELrct has
been issued, the interface will wait for silence on the Ether and begin
transmitting,

ERBFCT F2=128 Reset Branch Function. This command dispatch function merges the ICMD
: and ocMD flip flops, into NEX1[6-7]. These flip flops are the mcans of
communication between the emulator task and the Ethernet task. The
emulator task sets them from BUS[14-15] with the STARTE function, causing
the FEthernet task to wakcup, dispatch on them and then reset them with

EPICT.

EEFCT ~ FR=138 End of transmission Function. This function is issucd when all of the main
memory output buffer has been transferred to the FIFO. EERFCT disables
further data wakeups.

EBICT =148 Branch Function. ORs a onc into NEX1{7]} if an input data latc is dctected,
or an S10 with AC0[14:15] non-zcro is issucd, or if the transmitter or receiver
goes done. ORs a onc into NEX1[6) if a collision is dctected.

LCBECT F2=158 Countdown Branch Function. ORs a one into NEXI[7] if th¢ 111°0 is not
cmpty.
BISFCT [2=168 Input Start Function. Scts the 1Busy flip flop in the interface, causing it to

hunt for the beginning of a packet: silence on the Ether followed by a
transition. When the interface has collected two words, it will begin
gencrating data wakcups to the microcode.

Alto Hardware Manual Section 7: Ethernet 55

* These functions have a peculiar timing restriction associated with them. The microinstruction that

cxccutes one of them must stop the clock for one cycle. On Alto 1, the microprogrammer must do
this using memory timing (i.e., by referencing MD in the same microinstruction, during the third or
fourth cycle of a memory reference). On Alto 11, the hardware automatically stops the clock for
one cycle when nccessary; however, duc to a design error, the instruction jollowing the one
specifying EIDICT or EILFCT is occasionally stopped instead. Conscquently, the programmer must
not permit a task switch to occur between these two microinstructions, nor start a memory
reference in the following microinstruction.

Alto Hardware Manual Section 8: Control RAM, ROM, and S Registers 56

8.0 CONIROL RAM, ROM, AND S REGISTERS

In addition to thc 1K microinstruction ROM containing the standard emulator and 170 microcode, an Alto
may contain additional microinstruction memory in the form of cithcr ROM or RAM; these are
accompanied by additional registers, called S registers, whose purpose and opcration are similar to the
standard R registers.

Several different configurations cxist, depending on the Alto vintage:

1K RAM All Altos have at least 1K of rcad/write microinstruction memory and one bank of 31 s
registers. (At onc time these were optional on Alto I, but they arc now considered standard.)

2K ROM Certain Alto ITs have 2K of read-only microinstruction memory rather than 1k. The first 1K
contain the standard cmulator and 170 microcode, and the second 1K may be programmed
with additional microcode. This configuration includes the 1K RAM and 31 S registers
described previously.

3K RAM Certain other Alto IIs have 3K of read/write microinstruction memory and 8 banks of 31 s
registers.

8.1 RAM-Related Tasks

The control RAM and s registers perform data manipulation (as distinct from microcode fetching)
functions in response to certain values of the F1 and BS ficlds of the microinstruction. Not all tasks are
likely to be interested in these functions. Moreover, not all tasks will have the appropriate values of the
I1 and BS fields uncommitted. A RAM-related task is defined as once during whose execution the control
RAM card will respond to ¥1 and BS fields of microinstructions. The standard Alto is wired so that the
cmulator task is the only RaM-related task. At most two other tasks can be made RAM-rclated by a
simple backpanel wiring change.

8.2 Processor Bus and ALU Interface

The Alto’s ALU output and processor bus are cach 16 bits wide and its microinstruction bus is 32 bits
wide, so loading the control RAM from the ALU output and rcading the control RAM (or ROM) onto the
processor bus is slightly clumsy. It is done by using the RAM-related 1'1’s WRTRAM and RDRAM (sce
Appendix A).

For both reading and writing, the control RAM address is specificd by the control RAM address register
(sec Figure 2), which is loaded from the ALU output whenever T is loaded from its source. This load
may take place as late as the microinstruction in which WRTRAM or RDRAM is asserted. The bits of the
ALU output have the following significance as a control RAM address:

BIT USE
0-1 Ignored (should be zero).

2-3 BANKSEL - Sclects RAM bauk in 3K RAM configuration; ignored when operating on
ROM.
0 RrRAMO
1 RrRAML
2 RAM2
3 Undefined

Alto Hardware Manual Section 8: Control RAM, ROM, and S Registers 57

4 RAM/ROM
0 Mecans operate on the control RAM.
1 Mecans operate on the control ROM. (This doesn’t quite work the way you might
think. Sce scction 8.8 for details.)

5 HALFSEL - Ignored when writing
0 Mcans read out the low-order 16-bits of the addressed word.
1 Mecans read out the high-order 16-bits of the addressed word.

6-15 Word address (0-1023).

Since it is expected that reading the control RAM will be a relatively infrequent operation, a single
asscrtion of RDRAM reads out only one half of a 32-bit control RAM (or ROM) word onto the processor
bus. To read out both halves, the control RAM address register must be loaded twice and RDRAM
invoked twice. Data resulting from RDRAM is AND’ed onto the processor bus during the microinstruction
following that in which the RDRAM was asserted.

In contrast, it is cxpected that writing into the control RAM will occur frequently, Therefore a single
application of WRTRAM writes both halves of a control RAM word at once, The M register contents (sce
scction 8.7) after the microinstruction containing the WRTRAM will be written into the high-order half of
the addressed control RAM word. The ALU output during the microinstruction following the WRTRAM
will be written into the low-order half. This protocol mates well with doubleword main memory reads.

8.3 Microinstruction Bus Interface

The correspondence of ALU output bits with microinstruction fields appears in the following table:

High/I.ow Order . Bit of ALU Meaning Value in
Hatfword Output Example

H 0-4 R Register Select 0

H 5-8 ALU Function Sclect 0

H 9-11 Bus Data Source S

H 12-15* Function 1 2

I. 0-3* Function 2 0

L 4 Load T 0

L 5* Load L 1

I. 6-15 Next micro address 3258

Ficlds denoted by * arc represented with their high-order bit inverted; this is an artifact of
hardwarc microinstruction decoding.

As an cxample, consider the representation of the microinstruction

LeMD, TASK, :LOCA;

where 1.OCA is 3258. The valucs for the various microinstruction ficlds arc listed in the table above.
After complementing the appropriate high-order bits and concatenating, we sce that the microinstruction
above would be represented as 1328 in its high-order halfword and 1003258 in its low-order halfword.

8.4 Microinstruction Memory Banks

An alert reader will by now have noticed that the NEXT field of cach microinstruction provides a 10-bit
address, and that more bits are required to fully address the microinstruction memory, The MI memory
is divided into up to four banks of 1024 instructions cach:

Alto Hardware Manual Section 8: Control RAM, ROM, and S Registers 58

NAME WHAT

MI ROMO The standard microcode ROM.

MI ROM1 Second bank of ROM in the 2K ROM configuration.
MI RAMO The standard microcode writeable RAM.

MI RAM1 Sccond bank of RAM in the 3K RAM configuration.
MI RAM?2 Third bank of RAM in the 3K RAM configuration.

Switching among banks is controlled in two ways: (1) a RAM related task alrcady running may “switch"”
banks, and (2) it possiblc to initiate a task in cither ROMO or RAMO.

Bank switching is accomplished with a special transfer mechanism, available only to the emulator task, in
the form of SWMODE, a RAM-related 1. SWMODE will switch the bank of the running task, taking effect
after the microinstruction following that in which the SWMODI: appears. In other words, the emulator
task SWMODE bchaves much like an address modifier. Tasks other than the emulator cannot switch
banks. The cffect of SWMODE depends on the ROM/RAM configuration, the bank in which the task is
currently exccuting, and the valuc of NEXT in the instruction following the one that asserts SWMODE.

In the 1K RAM configuration (ncither the 2K ROM nor the 3K RAM option installed):

If currently £0 to NEXT in
executing in

ROMO RAMO
RAMO ROMO

In the 2k ROM configuration (which includes 1K of RAM):

If currently and NEXT[1]=0 then else
cxccuting.in g0 to NEXT in £0 to NEXT in
ROMO RAMO ROM1
ROM1 ROMO RAMO
RAMO ROMO ROM1

In the 3K RAM configuration:

If currently NEXT[1]=0 NEXI[1}=1
exceuting in NEXT[2]=0 NEX1{2)=1 NEXT[2)=0 NEXT[2)=1
ROMO RAMO RAM2 RAM1 RAMO
RAMO ROMO RAM2 RAM1 RAM1
RAM1 ROMO RAM2 RAMO RAMO
RAM2 ROMO RAM1 RAMO RAMO

If the table above determines that control is to be transferrcd to the RAM, and the RAM is not installed,
control remains in the bank in which the task is currently exccuting.

Many Alto IIs have the 2K ROM capability but contain nothing in ROMI. In these Altos, the SWMODE
operation is normally configured so that it behaves as if ROMI didn’t exist (i.c., according to the first
table rather than the second). ‘This is determined by the chip in position 51 on the control board. If it is
labelled SW2K then ROM1 cxists, but if SW1K then it does not. The alternate chip is kept in unused
socket 76.

SWMODLI is actually defined in all RAM-related tasks, not just the emulator; however, it docs not work
correctly in tasks other than the cmulator in Altos with thc 2K ROM or 3K RAM configuration.

Fach of the 16 micro-tasks may be started cither in ROMO or in RAMO when a hardware resct
("bootstrap") operation is performed, regardless of whether the task is RAM-related. A 16-bit "reset mode

Alto Hardware Manual Scction 8: Control RAM, ROM, and S Registers 59

register” is used to determine which tasks will start in ROM0 and which will start in RAM0. The emulator
I'1 RMR« causes the reset mode register to be loaded from the processor bus. The 16 bits of the
processor bus correspond to the 16 Alto tasks in the following way: the low order bit of the processor
bus specifics the initial mode of task 0, the lowest priority task (emulator), and the high-order bit of the
bus specifics the initial mode of task 15, the highest priority task (recall that task 7 starts at location i the
reset mode register determines only which microinstruction bank will be used at the outset). A task will
commence in ROMO if its associated bit in the resct modc register contains the value 1; otherwise it will
start in RAMO. Upon initial power-up of the Alto, and after each reset operation, the reset mode register
is automatically sct to all ones, corresponding to starting all tasks in ROMO.

8.5 Standard Emulator Access

The standard emulator includes three instructions allowing basic access to the control RAM. More
sophisticated access may be implemented by using the basic access primitives to write other access
microcode into the control RAM and then transferring control to that microcode.

RDRAM (61011B) Read from Control RAM:
Reads the control RAM (or ROM) halfword addressed by ACl into AC0. The microcode is:

TeAC1, RDRAM:
L«ALLONES; (ANDed with control RAM data)
ACO<L, :START;

Note: In Alto IIs running microcode version 2, this instruction does not work reliably if the
Ethernet interface is running.

WRTRAM (610128B) Write into Control RAM:

Writes ACO into the high-order half and AC3 into the low-order half of the control RAM word
addressed by Aci. The microcode is:

TeACl;
LeACO, WRTRAM; (This loads the M register)
L€AC3;
START;

JMPRAM (610108) Jump to Control RAM:

This emulator instruction provides a software interface to the SWMODE instruction so that the
cmulator task may cnter another bank in RAM or ROM. The next emulator microinstruction will
be determined from the value in AC1 (mod 1024) -- sec the discussion of bank switching in
scction 8.4. Note that the instruction name (jump to RAM) is misleading, as SWMODFE, may jump (o
other places as well. Thc microcode for JMPRAM is:

TeACl, BUS, SWMODE;

:NOVEM; (NOVEM = 0)
This operation is fraught with peril. If done in crror it is the onc of the few cmulator
instructions which can causc the machine to plunge completely off the deep end. Although
clever coders can usc JMPRAM to determine whether or not a control RAM is installed, they arc
better advised to make this determination using WRTRAM and RDRAM (scc scction 9.2.4).

Alto Hardware Manual Scction 8: Control RAM, ROM, and S Registers 60

8.6 Interpretation of Emulator Traps

All unused opcodes except 774008-777778 (which is used by Swat, the Alto debugger) and 61xxxB, where
xxx is between 0 and 3778, transfer to microlocation RAMTRAP with the instruction in L, the instruction
cycled by 8 bits in the R-register XREG, and the cmulator’s R-register PC counted onc beyond the
trapping instruction:

RAMTRAP: SWMODL, :TRAP;
TRAP: ... :TRAPL:

The result of this is that if your machine has a control RAM, these instructions will cause control to enter
it at a location which is equal to TRAP1 in thc ROM microcode. If no RAM is present, the unimplemented
opcode will be handled as described in Scction 3.3.

87 M and S Registers

The control RAM card also includes an M register and 31 s registers. If the 3K RAM option is installed,
there are 8 banks of 31 S registers (see below). The M register is the analog of the basic Alto’s L register.
It provides data for the S registers, which are analogous to the basic Alto’s R registers. These additional
registers are provided to casc the tight constraint on R register availability which might limit the utility of
the control RAM.

The similaritics between the M and L registers and between the R and § registers are striking. Both M
and L arc loaded from the output of the ALU, and only when the Load 1. bit of the microinstruction is
active. R registers are loaded from I, and S registers are loaded from M. Both R and S registers output
data onto thc processor bus. Both R and S registers arc addressed by the RSELECT ficld of the
microinstruction. (Thus the same caveats which apply to the use of R37 apply to §37 (sce section 2.3 f).)
Loading and rcading of both R and § registers are controlled by the BS ficld of the microinstruction.

Nevertheless there are considerable differences. To begin with, the M and § registers arc active only
when a RAM-related task is exccuting. This means, for example, that in the highest-priority RAM-related
task it is not nccessary to save the value of M across a TASK, since no higher-priority task can change the
value of M. (It is perilous to take advantage of this "featurc”, however, since scveral non-standard Alto
peripherals make use of RAM-related tasks.)

Unlike the data path from the L register to the R registers, the data path from the M register to the S
registers contains no shifter. When an s register is being loaded from M, the processor bus reccives an
undefined value rather than being set to zero. The emulator-specific functions ACSOURCE and ACDFEST
have no cffect on S register addressing. And finally, when reading data from the $ registers onto the
processor bus, the RSELECT value 0 causes the current value of the M register to appcar on the bus.
(This explains why there arc only 31 useful S registers.)

FFor the purposes of writing microcode, the S registers arc assigned numbers 408 through 778, and appear
to the microassembler as if they simply extended the R register address space. Ilence, for example, the M
register is defincd as R4o0,

In the 3K RAM configuration, there are 8 banks of 31 S registers rather than only a single one. Each
RAM-related task has associated with it a 3-bit register bank number that determines which bank is
referenced when a microinstriction specifies that an S register be read or loaded. There is an emulator FL
called 1:SRBe and a RAM-rclated 1 called SRB« that scts the register bank number for the currently-
cxccuting task from BUs[12-14]. It is illegal to exccute LiSRB« or SRBe in the last cycle before a task
switch, i.c., in the microinstruction after a TASK is exccuted.

Alto Hardware Manual Section 8: Control RAM, ROM, and S Registers 61

Note that the function code is different for emulator and non-emulator tasks: ESRBe is F1=15 and is
defined only in the emulator task, while SRB« is F1==13 and is defined in all RAM-rclated tasks besides
the emulator. (¥1=13 corresponds to RMRe« in the emulator. In Altos without the 3K RAM option,
F1=13 performs RMRe« in all RAM-rclated tasks, including thce cmulator.)

The register bank numbers are all reset to zero by a reset (bootstrap) operation, thereby causing the Alto
to behave the same as a standard Alto with a single bank of S registers shared among all RAM-related
tasks.

8.8 Restrictions and Caveats

1. Both RDRAM and WRTRAM causc the microprocessor’s system clock to stop for onc cycle. This may
yield unspecified results if the system clock is also stopped for some other reason (e.g., waiting for
memory data). As a general rule, the system clock should run without hesitation during the
microinstruction following a RDRAM or WRTRAM, cxcept for the effect of the RDRAM or WRTRAM itsclf,
On Alto 1, there is an additional timing problem which manifests itself in some machincs, for example, in
the following microcode sequence:

MAR «FFQO; Starts memory rcference

TeFIE; Loads the control RAM address register
LeMD, WRTRAM; Save away the high-order word in M
LeMD; Complctes the write into the RAM

What happens is that the last instruction suspends the system clock for one microinstruction, and some
Alto I memories cannot keep the memory data good for two microinstruction times, so a parity error may
occur. The data is actually stored in the RAM at the end of the first microinstruction time, so there is
probably no crror.in the data even if a parity interrupt subscquently occurs. This "phantom" parity crror
may be averted by the following code, which takes three morc microinstruction times, but does not
invoke the horrendous microcode overhead of parity error recording:

MAR «F00; Starts mecmory refercnce

NOP; Required for memory timing

LeMD; Save away the low-order word

TeMD; Save away the high-order word

TEMPeL, LeT;

TeFIE, WRTRAM; Loads the address register, starts the write.
LeTEMP; Complcte the write into the RAM

2. Unlike the control RAM, which can be addressed from 2 places, the control ROM gets its address only
from the MPC RAM. Conscquently, to recad ROM location x, the instruction following the one with
F1=12B (RDRAM) must reside at location (x mod 1024). Therefore, you'll probably want to put the
"rcading” code in the RAM:

TeACl, RDRAM, :X; Only ACI[4-5] arc relevant
X: L¢ALLONIS: Here the rcad takes place
ACO«1., .

Note also that only ROMO can be rcad by these means. There is no known way to rcad ROML.

3. Some Alto Is have been observed not to evaluate the BUS=0 function correctly when reading an s-
register during the first microinstruction after a task switch. The same operation in other than the first
microinstruction causes no difficulty.

Alto Hardware Manual Section 9: Nuts and Bolts for the Microcoder 62

9.0 NUTS AND BOLTS FOR THE MICROCODER

9.1 Standard Microcode Conventions

The microassembler which assembles microcode for the Alto is called Mu. ., By convention, microcode
source files have the extension .MU, and binary files have the extension .MB. Standard Alto I ROM
microcode versions will be called AltoCodex.MU; those for Alto 1 will be called AltollCodex.MU. A
microcodc source file can be divided into three largely separable pieces: the language definitions, which
tell Mu what names will be used for what octal values of what microcode ficlds; the constant definitions,
which declare all constants that may later be referenced, and which cause the constant memory to be laid
out; and the register declarations, microinstruction label declarations, and microinstructions.

In order for microprograms written to exccute in the RAM to be compatible with those in the ROM, at a
minimum the constants assumed by the RAM microcode must be a subsct of those declared by the ROM
microcode, and the subsct must reside in the same addresses. As a practical matter, onc should preface
onc’s RAM microcode by the same constant definitions which were used in the assembly of onc’s ROM
microcode. In order to facilitate and encourage this compatibility, the file AltoConstsxMU will be
maintained (the x corresponding to the latest AltoCodex) containing definitions and constants for both
Alto T and Alto II. ‘'These can be logically incorporated into other microcode assemblics via the
"include” feature of Mu (# AltoConstsx.MU;).

If onc or more microcode tasks pass control back and forth between ROM and RAM, it becomes necessary
to associatc addresses with microinstruction labels. It is possible to do this completely generally, based
on the microcode version number. A more limited solution is simply to fix the addresses of certain
uscful labels. The following addresses are guaranteed in all standard Alto I microcode versions after 20,
and all standard Alto Il microcode versions (and are included in AltoConstsx.MU):

ADDRESS LABEL SEMANTICS

208 START Beginning of emulator’s main loop; starts a new emulated
instruction.

378 TRAP1 RAM location to which unfamiliar traps are sent; ROM location
which implements trap scquence.

228 RAMCYCX Fast cyclic shift subroutine.

1058 BLT Block transfer subroutine.

1008 BLKS Block store subroutine.

1208 MUL Multiply subroutine.

1218 DIV Divide subroutine.

124 BITBLT BITBLT subroutine.

160B 10 Cyclic shift dispatch table.

7778 SWRET In ROM1 only -- sec below

A standard convention requires that location SWRET in ROMI1 have the following microcode:

SWRET: SWMODI;
START;

This sequence enables a program to discover whether ROM1 exists, i.c., whether the Alto has the 2K
PROM option (scc section 9.2.4).

Alto Hardware Manual Section 9: Nuts and Bolts for the Microcoder 63

9.2 Microcode Techniques Which Need Not Be Rediscovered

For the most part, since the Alto is such a simple machine, writing Alto microcode is a straightforward
cxercise in rule-following. However, during the course of writing the few-odd thousand microinstructions
which have cver been written by anybody for the Alto, a few microcoding techniques have emerged as
particularly ingenious or useful or both. They are recorded here for posterity.

The beginning microcoder is advised to acquire a copy of the standard microcode (AltoCodex.MU), and
to study it carcfully in conjunction with this manual. 'The knack comes -casily.

9.2.1 Microcode Subroutines

You have probably alrcady noticed that that the Alto hardware docs not provide an casy way of doing
microcode-level subroutine calls and returns. Several subroutine-call techniques have cvolved. Two of
these arc used for RAM-to-ROM subroutine calls, and these will be presented first.

PC CALL (used with BLT, BLKS, MUL, DIV, BITBLT)

This call takes advantage of the assumption that nobody in his right mind would want the
emulator to cxccute in the non-memory 170 area from 1770008 to 1777778, Therefore when one
of thesc ROM subroutines tcrminates, the R-register PC is examined. If it is outside the range
1770008-1777778, then control is passed to the beginning of the emulator’s main loop in the
ROM. Othcerwise, control is passed to location PC AND 777B in RAM or ROM1. The bank
dispatched to is dctermined by the SWMODE rules described in section 8.4.

Warning: Some of these ROM subroutines modify PC during cxccution, If BLT or BLKS or
BITBLT is tcrminated by an interrupt condition, PC is decremented by 1 so that the instruction
can be resumed later. If a DIV is successful, pC is incremented by 1 to causc a skip.

REGISTER CALL (used with RAMCYCX)

This call uses an R-register, in this case CYRET (R-register 5), to dispatch into a table of successor -
instructions, The cyclic shift subroutine, for example, is called from six placcs in the ROM. Each
of these places sets CYRET to the index of its successor instruction in the return dispatch table [0-
5], and then dispatches into the cycle table beginning at 10. The successor corresponding to
RAMCYCX dispatches into RAM or ROM1 using the low-order 10 bits of the pC register, according
to thc¢ SWMODE rules described in section 8.4.

IR CALLS

These calls use the cmulator’s IR register in various ways: somec straightforward and some
devious. The main advantages of IR calls arc that

1) several levels of return can be encoded into a single number, because it is fairly casy
to dispatch on various parts of IR, and

2) unlike R-registers, IR can be loaded in one microinstruction.
The most straightforward use of 1R is dispatching on its low-order 8 bits using the DISP bus

source. Since DISP is a bus source >3, a constant may be "and-ed" onto the bus with DISP,
allowing onc to dispatch on sub-ficlds of DISP,

Alto Hardware Manual Section 9: Nuts and Bolts for the Microcoder 64

The most devious use of IR involves a group of constants labeled sr0 to srl12, srl4 to srl7, and
sr20 to sr37 (as you might suspect, the numbers on these constant names arc octal)., If the
constant sri has been loaded into IR, then the following code will cause control to transfer to
location FOO OR i;

IDISP; (sce section 3.5)
:FOO;

The statement above is only true if i is less than 20B; otherwisc an additional dispatch on the
DpIsP ficld of IR is rcquired to get the desired effect:

FOO13: SINK «DISP, BUS;
:FOO20;

(This explains why there is no sr13. Any of sr20-sr37 will carry control to the 13Bth cntry in
F00’s dispatch table, where an additional level of dispatch can be used to differentiate among
them if necessary. You may be wondering what is special about 13B. You are in good company.)

922 The Silent Boot

Many of the cffects of a hardware "resct" operation (invoked by the boot button, or BUS[0]=1 in
conjunction with the emulator-specific ¥1 STARTF (178)) can be faithfully simulated by emulated software.
At least two important ones cannot. A resct operation is the only way of moving non-RAM-related tasks
back and forth between ROMO and RAMO, and the only way of guarantecing that all tasks are initialized.
However, the time required for a reset opcration is not necessarily longer than a few microseconds. On
both Alto Is and Alto lls a reset operation docs not alter the contents of the Alto’s R or S registers, its
microinstruction RAM, or its main memory. Therefore if these memorics contain appropriate contents it
is not really nccessary to go through the full disk or Ethernet bootstrap load sequence, since the major
purpose of those sequences is to initialize these memorics with desired contents.

‘The "silent boot" consists first of getting the desired contents into the RAM and main memory. RAMO
should contain an emulator task (beginning with address 0) which, for cxample, simply jumps into the
main loop of the ROM ecmulator code, skipping all the bootstrap code. For example:

NOVIM: SWMODE; (RAMO location 0, task 0's resct location,)
START; (to ROMO location 20B)

Sccond, the reset mode register should be set so that the reset operation will begin exccution of the
cmulator task in RAMO, and the other tasks wherever they are desired. Finally, the reset operation is
initiated, the emulator hiccoughs momentarily into RAMO, and then proceeds in ROMO as if nothing had
happened.

92.3 Debugging the Emulator

As someday it may happen that a bug must be found in a new version of the emulator, microcodes
should be awarc of a nice trick. Supposc you have an Alto with a working cmulator in its ROM, and
load the suspect emulator into the RAM. Your courage lcads you to exccute a JMPRAM with AC1 =208
(START), and hope that the necw emulator behaves. But alas, the machine dives into oblivion. Now the
trick applics: before jumping into the RAM version, plant a JIMPRAM (with AC1 =20B) somewhere in the
Nova code that you know will be executed. Now go to the RAM with the horrid IMPRAM. If the suspect
cmulator has not died by the time it exccutes the IMPRAM you planted, control will return to the benign
ROM. 'This method, together with the obvious search technique, may locate an offending emulator
instruction. '

Alto Hardware Manual Scction 9: Nuts and Bolts for the Microcoder 65

9.2.4 How to tell if extended ROM or RAM exists

A standard convention assures that location 777B in ROMI, if it exists, contains thc code:

SWRET: SWMODE;
:START;

First, we storc the following snatch of code in RAMO, with INRAM located at location 7778:

INRAM: L¢ACO+1, SWMODE;
ACO«L, :START;

Now we store 0 in AC0, and usc the JMPRAM emulator instruction to branch to location 7778. This will
causc cither the SWRET or INRAM code to be exccuted; in any case, the emulator instruction following the
JMPRAM will cventually be exccuted. If ACO has been set to 1, ROM1 does not exist; otherwisc ROM1 does
cexist,

To determine whether the 3K RAM option is present, use WRTRAM to writc different values into
corresponding locations in two diffecrent RAM banks, then use RDRAM to rcad back the first location
written. If the 3K RAM option is present, the location will still contain the valuc written into it; if the
option is absent, it will have bcen clobbered by the value intended for the second RAM bank.

9.2.5 rAM Utility Area

It sometimes happens that a small picce of microcode must be loaded into the RAM so that the emulator
can cxecute it by doing a JIMPRAM to it; it will then return to the emulator. For example, such a piece
of codce is required in order to set the reset mode register. By convention, we reserve a utility area of
RAMO for this purpose. The normal procedure is to save the contents of this arca (using RDRAM), store
the picce of code that is to be exccuted (using WRTRAM), exccute the code (using JIMPRAM), and then
restore the original contents. Writers of microcode should avoid placing code in the utility arca that is
not part of the cmulator task, as it may be temporarily altered for these utility operations.

‘The normal utility arca is 7748 through 1003B inclusive. The alert reader will recognize thaf IMPRAM can
successfully transfer into this arca in RAMO when coming from ROMO (locations 1000B-10038 are
accessible) or from ROM1I (locations 774B-777B are accessible). A program will therefore nced to know
where it is exccuting (ROMO or ROM1) and use an appropriate entry point to the utility area.

9.2.6 Other Information

Correct operation of most Alto peripherals depends vitally on their tasks recciving adequate scrvice. This
in turn depends on two things:

1. A task must have sufficient priority to gain however many cycles it needs for service, at the
cxpense of lower-priority tasks. The choice of priority must be made carcfully when the
interface is designed.

2. Other tasks at the same and lower prioritics must be well-behaved. In particular, they must
perform task switches no further apart than the maximum latency permitted for the task in
quegstion,

Alto Hardware Manual Section 9: Nuts and Bolts for the Microcoder 66

It is believed that the standard Alto peripheral most sensitive to task latency is the Diablo disk controller
when connected to a Modcel 44 disk drive. This is due to the fact that the data rate is relatively high and
the controller has only 16 bits of buffering.

It has been determined empirically that task latency greater than 20 microinstruction times causcs Diablo
Modecl 44 disks to cncounter data-late errors. Thercfore, when writing microprograms, it is cssential that
you issuc a TASK at lcast once every 20 microinstructions (preferably once €very 15). When counting
microinstruction times, do not forget to include the cycles during which the processor is suspended due
to memory references.

Alto Hardware Manual 67
APPENDIX A - MICROINSTRUCTION SUMMARY
FIELDS: 04 RSELECT
5-8 ALUF
9-11 BS
12-15 Fi*
16-19 2+
20 1.OADT
21 IOAD L & M*
22-31 NEXT
*High-order bit complemented by RDRAM and WRTRAM.
All subscquent numbers on this page are in octal.
ALUF:
0. BUS 4. BUSXORT 10: BUS-T 14: BUS.T*
1. T S5: BUS+1* 11: BUS-T-1 15: BUS AND NOT T
2: BUS OR T* 6: BUS-1* 12: BUS+T+1* 16: UNDEFINED
3: BUSANDT 7. BUS+T 13: BUS+ SKIP* 17: UNDEFINED
*[oads T from ALU output
BUS SOURCE (standard):
0: «RLOCATION 4: (task-specific)
1: RLOCATION« 5: «MD
2: None (BUS«¢-1) 6: «MOUSE
3: (task-specific) 7. «DISP
F1 (standard):
0: - 4: «LISH1
1: MARe S: «LRSH 1
2: TASK 6: «[LLCYS
3: BLOCK 7. «CONSTANT
F2 (standard):
0: - 4: BUS
1: BUS=0 5: ALUCY
2: SH<KO 6. MDe
3 S =0 7. «CONSTANT
BUS SOURCE (task-specific):
0 416 7 RAM
CpPU KSEC.KWD ETHER Related
3: «SLOCATION «KSTAT - «SLLOCATION
4: SLOCATION« «KDATA EIDFCT SLOCATION«
IF1 (task-specific):
0 4,16 7 11 12 13 14 RAM
CPU KSEC,KWD ETHER DWT CURT DHT DVT Related
10 SWMODE - - - - - - (SWMODE)
11: WRTRAM STROBE - - - - - WRTRAM
12: RDRAM KSTAT« - - - - - RDRAM
13: RMRe INCRECNO ELFCT - - - - SRB«
14: - CLRSTAT EPFCT - - - - -
15: ESRBe KCOMM « EWFCT - - - - -
16: RSNF KADR« - - - - - -
17: STARTF KDATA« - - - - - -
12 (task-specific):
0 4,16 7 11 12 13 14 RAM
CPU KSECKWD ETHER DWT CURT DIT DVT Related
10: BUSODD INIT EODICT DDR « XPREG « EVENFIELD EVENFIELD -
11: MAGIC RWC FOSFCT - CSR e« SETMODIE . -
12: DNSe RECNO ERBEFCT - - - - -
13: ACDEST XEFRDAT EEFCT - - - - -
14; IR« SWRNRDY EBFCT - - - - -
15: IDISP NIFER LCBI'CT - - - - -

16: ACSOURCE

STROBON
17: -

EISFCT

Alto Hardware Manual 68

APPENDIX B - STANDARD RESERVED MEMORY LOCATIONS

All numbers are in octal.

Iocation Name Contents

Page 0:

0-17 Set to 77400B by OS (Swat)

Page 1 .

400-412 Used by standard bootstrap operation

420 DASTART Display list header (Std. Microcode)

421 - Display vertical ficld interrupt bitword (Std. Microcode)
422 ITQUAN Interval timer stored quanti%(Std. Microcode)

423 ITBITS Interval timer bitword (Std. Microcode)

424 MOUSEX Mouse X coordinate gStd. Microcode,

425 MOUSLY Mouse Y coordinate (Std. Microcode

426 CURSORX Cursor X coordinate éSld. Microcode

427 CURSORY Cursor Y coordinate (Std. Microcode

430 RIC Real Time Clock (Std. Microcode)

431-450 CURMAP Cursor bitmap (Std. Microcode)

452 ww Interrupt wakeups waiting (Std. Microcode)

453 ACTIVE Active 1nterrupt bitword %Std. Microcode)

457 . Zero (Extension of MASKTAB by convention; set by OS)
460-477 MASKTAB Mask table for convert (Std. Microcode; sct by OS)

500 PCLOC Saved interrupt PC (Std. Microcode)

501-517 INTVEC Interrupt Transfer Vector (Std. Microcode)

521 KBLK Disk command block address (Std. Microcode)

522 KSTAT Disk status at start of current sector (Std. Microcodc)
523 KADDR Disk address of latest disk command (Std. Microcode)
524 - Scctor interrupt bit mask (Std. Microcode)

525 ITTIME Interval timer time (Std. Microcode)

527 TRAPPC ‘frap saved PC (Std. Microcode)

530-567 TRAPVEC ‘I'rap vector (Std. Microcode)

570-577 - Timer data (OS

600 IFPLOC Ethernet post location (Std. Microcode)

601 EBLOC Lthernet interrupt bit mask (Std. Microcode)

602 EELOC Iithernet ending count (Std. Microcodeg

603 ELLOC Lithernet load location (Std. Microcode

604 EICLOC Lithernet input buffer count (Std. Microcode

605 LIPLOC Ethernet input buffer pointer (Std. Microcode)

606 EOCLOC Fthernet output buffer count (Std. Microcode

607 EOPLOC Ethernet output buffer pointer (Std. Microcode)

610 EHLOC I‘thernet host address (Std. Microcode)

611-612 - Reserved for Fthernet expansion (Std. Microcode)

613 - Alto 1711 indication that microcode can interrogate (0=Allo I, -1=Alto II)
614 DCBR Posted by parity task when a main memory parity crror is detected.
615 KNMAR " (Std. Microcode)

616 DWA)

617 CBA "

620 PC "

621 SAD "

(Note: Disk and Ethernet bootstrap loaders run in 622-777.)

700-707 . Saved registers (Swat)

Page 376B:

177016-177017 UTILOUT Printer output (Std. Hardware)

177020-177023 XBUS Utility input bus (Alto {I Std. Hardwarc)

177024 MEAR Memory Error Address Register (Alto 1l Std. Hardware)
177025 MISR Memory error slatus register (Alto 11 Std. Hardwarc)
177026 MIECR Memory error control register (Alto IT Std. Hardware)
177030-177033 UTILIN Printer status, mousc, keyset (all 4 locations return same thing)
177034-177037 KBDAD Undecoded keyboard (Std. Hardwarc)

Page 377B:
177740-177157 BANKREGS FExtended memory option bank registers -- sce section 2.3

Alto Hardware Manual 69

APPENDIX C - RESERVED SIO BITS

Bit 0 1000008 Standard Alto: Software boot feature -- Sec SIO. section 3.3
Bit 14 00000218 Standard Alto: Ethernet
Bit 15 0000018 Standard Alto: Ethernet

APPENDIX D - STANDARD TASKS

Task Namec Section Description

0 Emulator 3 Lowest priority. Wakeup always true.

1 - - unused

2 - - unused

3 - - unused

4 KSEC 6 Disk sector task

5 - - unused

6 - - unused

7 ETHER 7 FEthernet task

108 MRT - Memory refresh task. Wakeup every 38.08 microseconds.
118 DWT 4 Display word task

12B CURT 4 Cursor task

138 DIIT 4 Display horizontal task

148 DVT 4 Display vertical task. Wakeup every 16.666 milliseconds.
158 PART 55 Parity task. Wakeup generated by parity error.,

163 KWD 6 Disk word task

178 - - unused

Alto Hardware Manual 70

APPENDIX E - S-GROUP INSTRUCTION SUMMARY

Opcode Trap location Name
60000-60377 CYCLE
60400-60777 531 RAM trap
61000-61377 532 Parameterless opcodes to 61026, ROM trap for rést
61400-61777 533 RAM trap
62000-62377 534 RAM trap
62400-62777 535 RAM trap
63000-63377 536 RAM trap
63400-63777 537 RAM trap
64000-64377 540 RAM trap
64400-64777 JSRII
65000-65377 JSRIS
65400-65777 543 RAM trap
66000-66377 544 RAM trap
66400-66777 545 RAM trap
67000-67377 CONVERT
67400-67777 547 RAM trap
70000-70377 550 RAM trap
70400-70777 551 RAM trap
71000-71377 552 RAM trap
71400-71777 553 RAM trap
72000-72377 554 RAM trap
72400-72777 555 . RAM trap
73000-73377 556 RAM trap
73400-73777 557 RAM trap
74000-74377 560 RAM trap
74400-74777 561 RAM trap
75000-75377 562 RAM trap
75400-75777 563 RAM trap
76000-76377 564 RAM trap
76400-76777 565 RAM trap
77000-77377 566 RAM trap
77400-777717 567 ROM trap, reserved for Swat

APPENDIX F - ALTO I 7 ALTO 11 DIFFERENCES

The minor differences between Alto I and Alto I1 are explained in this manual. This appendix serves as
an index of those differences:

Memory reference timing (section 2.3)

Certain cmulator instructions (RCLK, S10, SIT, VERS, DREAD,
DEXCH, DIAGNOSEL, DIAGNOSIE?; section 3.3)

Keyboard layout (section 5.1)

External device connector (scction 5.4)

Memory configuration switch (section 5.5)

Mcmory parity crror detection (section 5.5)

2K ROM and 3K RAM options (scction 8.4)

Extended memory option (section 2.3)

Alto Hardware Manual

APPENDIX G - SUMMARY OF KNOWN FFEATURES/BUGS

Alto T version 23:
VERS instruction:

BITBLT instruction:

Alto II version 2:
VERS instruction:
BITBLT instruction:

RDRAM instruction:

DEXCH instruction:

SIT instruction:

ACSOURCE function:

Alto 1 version 24:

No known bugs.
Alto 1I version 3:

SIT instruction:

IN RELEASED MICROCODE VERSIONS

returns engincering number 0, microcode version 1.

doesn’t work reliably if some ram-related task is running
(e.g., the Trident disk).

returns engincering number 2, microcode version 0,

docsn’t work reliably if some ram-related task is running
(e.g., the Trident disk). Expeccts L to be zeroed by the
caller.

does not work reliably when the Ethernct interface is
active.

does not work at all.

TIMEMASK is 7700B but should be 77748, Fails to store
into ITQUAN,

does not work precisely as documented. Consult
McCreight if you really nced to know.

Fails to store into ITQUAN.

Alto Hardware Manual

APPENDIX H - PARC/SDD RESERVED MEMORY LOCATIONS

All numbers arc in octal.

I.ocation Name Contents

Page 0:

451 - Color map pointer

456 - Mesa disaster flag

526 - SamllTalk lrag exit instruction
622 - Tape control block list
630-640 - Second Ethernet control block
631-661 - Hexadecimal floating-point microcode
640-644 - Trident disk control block
640-651 - Third Ethernet control block
720-777 - SLOT devices

776-717 - Music

Page 376B:

177100 - Summagraphics tablet X
177101 - Summagraphics tablet Y
177140-177157 - Organ keyboard
177200-177204 - PROM programmer
177234-177237 - Experimental cursor control
177240-177257 - Alto 11 debugger
177244-177247 - Graphics keyboard

Page 377B:

177400-177405 - Maxc2 maintenance interface
177400 - Alto DLS input

177420 - "

177440 - N

177460 - " '

177600-1776717 - Alto DLS output

177700 - EIA interface output bit
177701 EIALOC EIA interface input bit

177720-1777317
177764-177773
177776
177776
177777

Bit 1 0400008
Bit 2 0200008
Bit 3 0100008
Bit 4 0040008
Bit 5 0020008
Bit 6 0010008
Bit 8 0002008
Bit 9 0001008

Bit 10 0000408
Bit 11 0000208
Bit 12 000010B
Bit 13 000004B

TV Camera Interface

Redactron tape drive
Digital-Analog Converter
Digital-Analog Converter, Joystick
Digital-Analog Converter, Joystick

APPENDIX I - PARC/SDD RESERVED s10 (STARTF) BITS

Maxc2 Memory Interface
Maxc2 Memory Interface
Maxc2 Memory Interface
Aurora

Arpanct Interface
Arpanet Intcrface

Tape controller

available

Trident disk interface
Trident disk interface
available

Printer interfaces (Orbit, Slot)

Bits 10-31 Sccond Fthernet interface
Bits 12-13 Third Ethernet interface

Devices

‘Tape Controller
Audio
Aurora

APPENDIX J - PARC/SDD TASKS
Tasks
3and 17B
1

1
5and 6
?
?

Maxc2 Memory Interface 178

Alto Hardware Manual 73

APPENDIX K - OPTIONAL ALTO PERIPHERALS

This appendix lists hardwarc items that have been interfaced to the Alto in quantities greater than one.
EOD/SPG is the source for information about many of these interfaces and devices, and may be willing to
contract to provide necessary hardware. Sources in PARC are not committed to producing any hardware.
No software guarantees arc made about any of these decvices, except as noted.

HyType Printer. A spinning daisy printer can be ordered from Diablo Systems, Inc.
Arrangements can be made with SPG to build a cable that will connect the printer to
the "printer connector” on the rear of the Alto. No additonal hardware is required,
although printers attached to Alto I1 are required to be self-powered. Software;
Bravo prints on the Diablo printer, and a Bcpl subroutine package (DiabloPrinter.Br)
is availablc to drive the interface.

Versatee Printer/Plotter. The Versatec plotters and printer/plotters can be connected
to the Alto II without additional hardware. Contact SPG to get a cable (P/N 216540).

Tape Controller. A two-card processor-bus interface to MDS and Kennedy tape
drives. 1t will handle 1600 bpi phase-encoded tapes only. Contact ASD-South.

Trident Disk Interface. An interface to the Trident family of disk drives,
manufactured by Calcomp. Alto II owners should contact SPG, Alto I owners contact
PARC/CSI. Software: The Trident disks may be accessed in conjunction with
Opcrating-System routines, using the TFS software package (see Alto Subsystems
documentation).

Orbit. A piece of hardwarc which can be used to drive a varicty of SLOT printers
that obey the "9-wirc standard ROS interface." Contact ASD-South.

Extra Ethernets. Up to two extra Ethencts can be installed in an Alto of any vintage.
Contact PARC/CSL,

Fthernet Repeaters. Many miles of Ethernet can be hooked together with these.
Contact PARC/CSL.

ArpaNct (BBN 1822) Interface. An interface to ArpaNct Imps and Packet Radio Units.
Contact PARC/SSL.

EIA Interface. An intcrface to an AMI S1883 UART and an AMI $2350 USRT. Contact
ASD-South.

Communications Processor. Terminates up to 16 lincs at many spceds, codes and line
control disciplincs. Contact ASD-South.

	5.0 Miscellaneous Peripherals
	5.1 Keyboard
	5.2 Mouse
	5.3 Keyset
	5.4 External Device Interface
	5.4.1 Diablo Printer
	5.4.2 Versatec Plotters and Printer/Plotters
	5.5 Parity Error Detection

	6.0 Disk and Controller
	Figure 8 -- Disk Data Structures
	6.1 Disk Controller Implementation

	7.0 Ethernet
	7.1 Programming Characteristics
	7.2 Ethernet Hardware
	7.3 Ethernet Microcode
	Fig. 9 -- Ethernet Control

	8.0 Control RAM, ROM, and S Registers
	8.1 RAM-Related Tasks
	8.2 Processor Bus and ALU Interface
	8.3 Microinstruction Bus Interface
	8.4 Microinstruction Memory Banks
	8.5 Standard Accumulator Access
	8.6 Interpretation of Emulator Traps
	8.7 M and S Registers
	8.8 Restrictions and Caveats

	9.0 Nuts and Bolts for the Microcoder
	9.1 Standard Microcode Conventions
	9.2 Microcode Techniques which Need not be Rediscovered
	9.2.1 Microcode Subroutines
	9.2.2 The Silent Boot
	9.2.3 Debugging the Emulator
	9.2.4 How to tell if Extended ROM or RAM Exsists
	9.2.5 RAM Utility Area
	9.2.6 Other Information

	Appendices
	Appendix A -- Microinstruction Summary
	Apendix B -- Standard Reserved Memory Locations
	Appendix C -- Reserved SIO Bits
	Appendix D -- Standard Tasks
	Appendix E -- S-Group Instruction Summary
	Appendix F -- Alto I / Alto II Differences
	Appendix G -- Summary of Known Features/Bugs
	Appendix H -- PARC/SDD Reserved Memory Locations
	Appendix I -- PARC/SDD Reserved SIO Bits
	Appendix J __ PARC/SDD Tasks
	Appendix K -- Optional Alto Peripherals

