ALTO OPERATING SYSTEM
REFERENCE MANUAL

Compiled on: December 15, 1980

Xerox Palo Alto Rescarch Center
3333 Coyote Hill Road
Palo Alto, California 94304

Alto Operating System May 5, 1980 2

Alto Operating System Reference Manual
OS version 19/16

1. Introduction

This manual describes the operating system for the Alto. The manual will be revised as the system
changes. Parts of the system which are likely to be changed arc so indicated; users should try to isolate
their l;llsc of these facilitics in routines which can casily be modified, or better yet, avoid them entirely, if
possible.

'The system and its description can be separated into two parts:
a) User-callable procedures, which arc of two kinds: standard Froccdures which are always
provided, and library procedures which must be loaded with the user’s program if they are

desired. This manual describes only standard procedures; the library procedures are documented
in the "Alto Packages Manual."

b) Data structures, such as disk files and directories, which are used by the system but which arealso
accessible to user procedures and subsystems.

The system is written almost entirely in Bepl. Its procedures are invoked with the standard Bepl calling
scquence, and it expects the subsystems it calls to be in the format produced by the Alto Bep! loader.

2. Hardware summary

This section provides an overview of the Alto Hardware. Briefly, every Alto has:
a) A memory of 64k words of 16 bits each. The cycle time is 850ns.
b) An emulator for a standard instruction set.

¢) Sccondary memory, which may consist of one or two Diablo 31 cartridge disk drives, or one
Diablo 44 cartridge disk drive. The properties of these disks are summarized in Table 2.2.

d) An 875 line TV monitor on which a raster of squarc dots can be displayed, 606 dots wide and 808
dots high. The display is refreshed from Alto memory under control of a list of display control
blocks. Fach block describes what to display on a horizontal band of the screen by specifying:

the height of the band, which must be even;
the width, which must be a multiple of 32; the spacc remaining on the right is filled with
background;
The indentation, which must be a multiple of 16; the space thus reserved on the left is filled
with background;
the color of the background, black or white;)
the address of the data (must be even), in which 0 bits specify background. Each bitcontrols
the color of one dot. The ordering is increasing word addresses and then bit numbers in
memory, top to bottom and then left to right on the screen; and a half-resolution flag
which makes each dot twice as wide and twice as high.
There is also a 16 x 16 cursor which can be positioned anywhere on the screen. If the entire
screen is filled at full resolution, the display takes about 60% of the machine cycles and 30704D
words of memory.

Alto Operating System May 5, 1980 3

¢) A 44-key keyboard, 5-finger keyset, and mouse
f) A Diablo printer interface
g) An Ethernet interface

h) Interfaces for analog-to-digital and digital-to-analog conversion, for T'V camera input, and fora
RS-232b (teletype) connection

i) A real-time clock and an interval timer (sce table 2.1 for brief descriptions)

3. User-callable procedures

This section describes the operating system facilities provided by procedures which can be called fromuser
programs using the standard Bepl calling sequence.” All of these procedures arc a permanent part of the
operating system, automatically available to any user program.

Although this manual describes a rather extensive set of facilities, which together occupy close to 12K
words of memory, portions of the system can be deactivated (sec Junta), thus freeing the memory theyuse.
When §he éISCI‘ program finishes execution, the deactivated portions can be retricved from the disk and
reinitialized.

Default arguments: Many of the procedures given below have rather long argument lists, but have
convenient decfaulting schemes. The documentation decorates argument lists with default values. An
argument followed by [exp] will default if omitted or zero to the value exp; an argument followed by
[...ex] will default if omitted to exp. Although Bcpl allows you to omit procedure arguments by using
'nil,"” the called procedure cannot detect its use; it thercfore cannot be the basis for defaulting arguments.

3.1. Facilities

The facilities of the operating system fall into fairly neat categorics; often this is because the operating
system has simply loaded a standard library subroutine as part of its environment. This manual offers
summarized documentation for the functions in the various software "packages;” more documentationcan
be found in the "Alto Software Packages Manual." (Note: Appendices to this manual include
docu_r(rilentation of the packages most relevant to the operating system.) In outline, the operating system
provides:

- A "basic" resident that maintains a time-of-day clock, that processes parity error interrupts, and
that contains the resident required to interface to Swat, the debugger.

- The Bepl runtime support module, which provides several functions (such as a stack frame
allocator) that are necessary to permit Bepl programs to run.

- Disk drivers for transferring complete pages between memory and existing files on the disk. This
is the BfsBase package.

- Disk drivers for creating new files, and for extending or shortening existing files. This is the
BfsWrite package.

- A simple storage allocator for managing "zones" of working storage. This is the Alloc package.

- Disi "streams,” which implement sequential byte or word 170 to the disk. This is the DiskStreams
package.

- Disk directory management, which provides facilities for searching directory files for entrics that
associate a string name and a disk file.

Alto Opcrating Systcm May 5, 1980 4

- A keyboard handler, which decodes keyboard interactions into a sequence of ASCII characters.

- A display driver, which maintains a "system display,” and handles the printing of charactcrs onthe
display. This is the DspStrecam package.

- Misceltancous functions, including (1) the "call subsystem” function, which reads a file produced
by the BcFl loader into memory and executes it; (2) allocation functions that manage the spacenot
used by the operating system or the user code, providing a stack for the user program and fixed-
size blocks that it may rec}uin‘c; (3) the procedure for de-activating various portions of the operating
system; and (4) additional utilittes.

3.2. Loading and Initialization

The facilitics of the operating system are made accessible to user programs via static variables that refer to
system procedures or system scalars, Because these objects are not defined in your Bepl program, you must
declare the names to be external, The Bepl loader, Bldr, automatically rcads the file Sys.Bk, which
describes how to arrange that your program’s external references will match up with the operating system
objccts (for details, sce Bldr documentation in the Bepl manual). This arrangement does not require re-
loading programs when objects in the operating system move.

When a Bepl program is read into the Alto memory, all of the system procedures described below willhave
been initialized. A region is reserved for allocating system objects (e.g., disk streams); currently, about6
disk streams or equivalent can be accomodated. l%the spacc reserved is inadequate for your application,
the system zonc can be replaced with one constructed by your program. In addition, most procedures that
ﬁrg)ate system objects have provision for an optional "zone™ argument used for scizing space (see section

3.3. Errors

Whenever the system detects an error for which the user program has not supplied its own error routine,
the call SysErr(pl, crrCode, p2, FS, ...) is executed. The errCode is a number that identifies the error; the
p’s are parameters that add details.

Normally, SysErr calls Swat (the debugger), which will print out an intelligible error message retrieved
from the file Sys.Errors. The facilities of Swat (sce "Alto Subsystems Manual") can then be used to
interrogate the program state more fully, and ultimately to continuc or abort its execution.

3.4. Streams

The purpose of streams is to s)rovide a standard interface between programs and their sources of sequential
input and sinks for sequential output. A set of standard operations, defined for all streams, is sufficient for
all ordinary input-output requirements. In addition, some strecams may have special operations defined for
them. Programs whicﬁ use any non-standard operations thereby forfeit complete compatibility.

Streams transmit information in atomic units called items. Usually an itcm is a byte or a word, and this is
the case for all the streams supplied by the operating system. Of course, a stream supplied to a program
must have the same ideas about the kind of items it handles as the program does, or confusion will result.
Normally, strcams which transmit text use byte items, and those which transmit binary information use
words. (The 16-bit quantity which Bcpl passes as an argument or receives as a result of a stream operation
could be a pointer to some larger object such as a string, although the operating system implements no
?iu%h st&e}ams. In this case, storage allocation conventions for the objects thus transmitted would have tobe
efined.

You are free to construct your own streams by sctting up a suitable data structure (section 4.2) which
provides links to your own procedures which implement the standard operations.

Alto Operating System

May 5, 1980 5

The standard operations on streams are (S is the stream; "error” means that Errors(S, cc) is exccuted,

where ec is an error code):

Gets(S)

Puts(S, T)

Resets(S)

Putbacks(S, I)

Endofs(S)
Closes(S)
Stateofs(S)

Errors(S, ec)

returns the next item. Some streams give an error if Endofs(S) is
true before the call, and others just wait for the next item.,

writes 1 into the stream as the next item; error if the stream is
read-only, if there is no more spacc or if there is some hardware
problem.

restores the strcam to some initial state, generally as close as
possible to the state it is in just after it is created.

modifies S so that the next Gets(S) will return I and leave S in
the state it was in before the Putbacks. Error if there is already a
putback in force on S. (No strcams provided by the operating
system implement a Putbacks operation.)

truc if there are no more items to be gotten from S. Not defined
for output streams.

destroys S in an orderly way, and frees the space allocated forit.
Note that this has nothing to do with deleting a disk file.

rcturns a word of state information which is dependent on the
type of stream.

reports the occurrence of an error with crror code ec on the
stream. When a system stream is created, Errors is initialized to
SysErr (see section 3.3), but the uscr can replace it with his own
error routine.

Streams are created differently depending on the device being accessed (disk, display, keyboard, or
memory). The procedures for creating streams are described below.

3.4.1. Disk streams

The system distinguishes four kinds of object which have something to do with storing data on the disk:

Disk Pack:

Disk file:

File directory:

Disk stream:

A storailelz medium that is capable of storing data in various
pages. Most operating system functions default the choice of
disk to "sysDisk", a structure which describes drive 0 of a Diablo
model 31 cartridge.

A vector of bytes of data held on some disk, organized into Qaﬁes
for some purposes. A file exists only on the disk (except that
parts of it may be in memory if an output stream is associated
Ef#g; it) and is named by an 80-bit entity called a file pointer

A disk file which contains a list of pairs <string name, FP>.
Documentation on the format of the file can be found with the
BES pilckage documentation contained in an appendix to this
manual.

Used by a program to transfer information to or from a disk file.
A stream exists only in memory and is named by a pointer toa
data structure.

Alto Opcrating System

May 5, 1980 6

The procedures that operate on disk streams are described in documentation for the "DiskStreams™
software package contained in an appendix to this manual. Below is a summary list of the functions (in
addition to the generic functions described above):

CreateDiskStream(filePtr, type [ksTypcReadWrite], itemSize {wordltem

CleanupDiskStream(s)
RecadBlock(s, address, count) =

]‘ Cleanup [Noop], errRtn
SyskErt], zone [sysZonce], nil, disk [sysDisk]) = a disk strcam, or

if an error is encountered while initializing the stream. filePtr
is the sort of object stored in a file directory. l.cgal types are
ks'l‘y{)cReadOnIy, ksTypeRecadWrite, and ksTypeWriteOnly.
Legal item sizes arc wordltem and charltem.

IFlush any buffers to the disk.

actualCount. Read up to count words from the stream into
consccutive memory locations; return the actual number of
words read. (Non-intuitive things happen at the end of a file
with an odd number of bytes -- rcad the documentation
carefully)

WriteBlock(s, address, count) Write count words from consccutive memory locations onto the

L.nPagcSize(s)
PositionPage(s, page)

PositionPtr(s, byteNo)
Filelength(s, filePos [])

FilcPos(s, filePos [])

stream.

= log (base 2) of the page size, in words, of the files manipulated
by the stream.

Positions the file to byte 0 of the specified page (page 1 is the
first data page).

Positions the file to the specified byte of the current page.

= Length. Returns number of bytes in file; positions stream to
the last byte.

= Pos. Returns the current byte position in the file.

SetFilePos(s, filePos) or SetFilePos(s, HighOrder, LowOrder) Sets the position of the file to the

GetCurrentFa(s, filcAddress)
JumpToFa(s, fileAddress)

specified byte.
Returns the current file address.

Positions the file to the specified address (usually obtained from
GetCurrentFa).

GetCompleteFa(s, completeFileAddress) Returns a complete file address, including a

TruncateDiskStream(s)

Readl.eaderPage(s, address)

WriteLeaderPage(s, address)

filePtr.
Truncates the file to the current position.

Reads the 256-word leader page of the file into consecutive
locations starting at address.

Writes 256 words onto the leader page of the file.

The operating system also contains a package for dealing with files at a lower level, the "Bfs" (Basic file

system) package.

Disk Errors: The system will repeat five times any disk operation which causes an error. On the last three
repetitions, it will do a restore operation on the disk first, If five repetitions do not result in an error-free
operation, a (hard) disk error occurs; it is reported by a call on Errors for the stream involved.

Alto Operating System

3.4.2. Display strcams

May §, 1980 7

Display streams arc implemented with the "DspStream” package, described in separate documentation
contained in an appendix to this manual. Below is a list of the functions included (in addition to the

generic stream functions):

CreateDisplayStrecam(nLincs,

pBlock, 1Block, Font [sysl*‘ont]], wWidth [38], options

[DScompactleft+DScompactright], zone [S{SZ()nC]) = adisplay
stream. Plkl()ck is the address of a region [Block words long for
the display bitmap. nlines is the number of text lines in the
strecam. 'Lhis procedure does not commence displaying the
stream text -- sce ShowDisplayStream.

ShowDisplayStream(s, how [DSbelow], otherStream [dsp]) This procedure controls the presentation
i

GetFont(s)
SctFont(s, font)
ResctLine(s)

GetBitPos(s)
SctBitPos(s, pos)

GetL.incPos(s)
Setl.inePos(s, pos)

InvertLine(s, pos)

EraseBits(s, nBits, flag [0])

GetLmarg(s); SetLmarg(s)
GetRmarg(s); SetRmarg(s)

of the strcam on the screen. If how is DSbelow, the stream will
be displayed immediatcly below otherStream; if DSabove,
immediatcly above; if DSalone, the strcam will become the onlfl
display strcam displayed. If how is DSdclete, the stream s will
be removed from the display. For DSalone and DSdelete, the
third argument is ncedless.

Returns current font.
Sets current font (use carefully -- see documentation).

Frases all information on the current line and resets the position
to the left margin.

Returns the horizontal position of the stream.

Sets the horizontal position on the current line (use carefully --
see documentation).

Returns the index of the line into which characters are presently
being put.

Sets the line number into which subsequent characters will be
put.

Inverts the black/white sense of the line given by pos.

Erase bits moving forward (nBits>0) or backward (aBits<0) from
the current position. Set to background if flag=0; to the
complement of the background if flag=1; invert present values
if flag=~-1.

Get and set left margin for the current line.

Get and set right margin for the current line.

CharWidth(StreamOrFont, char) Get the width of the character, using the specified font or the

current font in the specified stream.

The "system display stream" is always open, and can be accessed by the system scalar "dsp.”

Alto Operating System May 5, 1980 8

3.4.3. Keyboard Strecams

There is a singlc keyboard stream in which characters are buffered. The stream is always open, and maybe
accessed through the system scalar "keys." The only non-null operations arc Gets; Endofs, which is trueif
no characters arc waiting; and Rescts, which clears the input buffer.

The keyboard handler periodically copies the mousc coordinates into the cursor coordinates, truncatingat
the screen boundary. 'This function is governed by the value of a cell referenced by @ IvCursorLink; if itis
zero, the function is disabled.

Low-level keyboard functions. Although the standard keyboard handler contains no facilitics for detecting
transitions of keyset or mousc keys, a user function may be provided that will be called 60 times a sccond
and can extract rclevant information from a table passed to it. The call SetKeyboardProc(uKbProc, stack,
stackLength) will install uKbProc as the user procedure; stack is a vector that will be used for stack space
when uKbProc is run (you must provide enough!). SctKeyboardProc() will reset the keyboard handler,
and ccase calling uKbProc. (Note: If the program has used the Junta procedure, the user keyboard
procedure must be deactivated during a CounterJunta or finish unless all its statc lies below
OsFinishSafeAdr.) If active, every 16 milliscconds, the keyboard handler will execute uKbProc(tab), where
tab points to a data structure defined by the KBTRANS structure (sce the file SysDefs.d). The Transition
word is non-zero if a key transition %as been detected; GoingUp or GoingDown tell which sort of
transition has occurred; and KeyIndex gives the key number. KeyState is a S-word table giving the stateof
the keys after the transition has occurred: if a key with KeyIndex=i is presently down, bit (i rem 16) of
word (i div 16) will be 1. The centries CursorX and CursorY give the current location of the cursor.

The value returned by uKbProc determines subsequent processing. If truc is returned, the operating
system treats the key transition (if any) according to normal conventions. If false is returned, the operating
system assumes that uKbProc has performed whatever processing is intended, and the interrupt issimply
dismissed.

KeyIndex valucs are tabulated below. Keys are normally given by their lower-case marking on the key
top; thosc with more than onc character on their tops are specified by <name>. <X> are unused bits;
<blank-top> is the key to the right of the <bs> key; <blank-middle> to the right of <rcturn>; and <blank-
bottom> to the right of <shift-righ.

Values Keys

0-15 546¢7duv0k-p/\<If><bs>

16-31 32wqgsa9ixol,’ }<blank-middle> <blank-top>

32-45 1 <escd <tab> f<ctrl> ¢ j b z<shift-left> . ; <returnd> « <X>

48-63 rtgyh 8 nm<lock> <space> [= <shift-right> <blank-bottom> <X> <X>
64-71 unused

72-76 Keyset keys in order, left=72; right=76

77 RED (or left or top) mouse button

78 BLUE (or right or bottom) mouse button

79 YELLOW (or middle) mouse button

As an aid to interpreting Keylndex valucs, the system scalar kbTransitionTable points to a table, indexed

by KeylIndex, that gives a KBKEY structure for the key; if it is zero, the operating system has no standard
interpretation of the key.

3.4.4. Fast Streams to Memory

The operating system also containg procedures that allow very efficient stream 170 to memory blocks.
These functions, described in the Streams package documentation, allow one for example to use much
more memory buffering for disk transfers than normally allocated by the disk stream mechanism.

Alto Operating System May 5, 1980 9

3.5. Directory Access

Most user programs do not concern themselves with file pointers, but use system routines which godirectly
from string names to strcams. By a "file name" we mean a string which can be converted into a file
identificr by looking it up in a directory. File names are arbitrary Ec | strings which contain only upper
and lower case letters, digits, and characters in the string " +-.1$". File names are stored in dircctoriesas
they are typed, but no distinction is made between upper and lower case letters when they are looked up.
Dots (".") arc used to separate file names into parts. If there is more than one part, the last part is called
the extension, and is conventionally used much ilK extensions in ‘Tenex.

There is an optional version number facility. It is not available in the standard rclease of the operating
system (NewOs.boot), but is available in an unsupported alternate version (NewOsV.boot). If the version
number facility is enabled, the interpretation of exclamation mark ("1") is special; if a file name ends with
a ! followed only by digits, the digits specify the file version number.

A lookup name, presented to one of the directory functions given below, is usually a file name. However,
it may optionally specify the name of a directory in which to look for the file (or record the new file). The
lookup name is processed from left to right. If the character "<" appears at the head of the lookup name,
the system dircctory ﬁ;’S&stir.") becomes the "current” dircctory; whenever the character ">" follows a
name, the name is looked up in the current dircctory and that file becomes the new current directory. Ifno
directory is specified in the lookup name, the "working directory” is assumed. Example; "<dir> 11" will
look up dir in the system directory SysDir, and will then look up fil in dir. Any illegal characters ina
lookup name are replaced with "-" characters.

File Versions: The file system also supports multiple versions of the same file; this featurc may be enabled
or disabled when the operating system is installed. The version number is recorded by appending an
exclamation mark and the decimal version number to the file name; file names without version numbers
appended act as if they are "version 0." The OpenFile function uscs lookup names and version control
information to locate a desired file. If the lookup name contains a version number (c.g., "Sys.Errors!3."),
then no version defaulting is done--the lookup operates on precisely the file specified. (This processingis
identical with versions enabled and disabled.)

If the lookup name does not specify a version number and file versions are enabled, then the
versionControl parameter specifics how defaulting is to be done (in the definitions, "oldest” refers to the
file with the "lowest" version number; "latest” refers to the file with the "highest” version number):

verlatest The latest version is used.

verLatestCreate The latest version is used. If the file does not exist, it is created
with version number 0 (i.e, no number will be appended
explicitly to the file name): this is to prevent needless
accumulation of version numbers in system-related files (.e.g,

Run files).
verOldest The oldest version is used.
verNew A new file will always be crcated. A system parameter,

established when the system is installed, determines how many
old versions will be preserved. If that default should be:
overriden, just add the desired number of versions to verNew,
e.g. a versionControl value of verNew +4 will create a new file
and rctain at most three older versions.

This version option may reuse disk pages allocated for the oldest .
version of the file, but the serial number and file name will of
course be changed. If (newest-oldest)+1 is greater than or equal
to the number of versions to keep, oldest is reused in this fashion
to become version newest+1. For example, if verNew is
specified, 2 versions are to be kept, and foo!2 and foo!3 exist,

Alto Operating System

verNewAlways

May 5, 1980 10

verNew will create the file foo!4 by remaking the old file foo!2.
Note that this calculation does not verify that all versions
between oldest and newest actually exist.

If only one file matches the lookup name, and its version
number is 0, the file is simply overwritten (like verLatestCreate);
a new version is not created.

If no files of the given name exist, version number 0 of the file is
created (i.c., no version number is explicitly attached to the file
name). The verNewAlways option (below) can be used if
version 1 should be created.

Similar to verNew, but if no earlicr version of the file exists,
version 1 is created.

If versions are not enabled, then exact matches arc performed on the entire file name. Thus, if the file
"Sys.Errors!2" is present on a disk with versions disabled, the fookup name "Sys.Errors” will not match
this file; the lookup name "Sys.Errors!2" will. The versionControl parameter is still relevant: if no file
matching the looku[) name is found, verLatest and verOldest will not create a new file, whereas the other

versionControls wil

The following function crcates a disk stream (see above) in conjunction with the Alto directory structure:

OpenFile(lookupname, ksType [ksTypcReadWrite], itemSize [wordltem], versionControl [if

OpenFileFromFp(hintFp)

DeletcFile(lookupname, versionC

ksType=ksTypeReadOnl en verLatest else if
ksType=ksT ypeWriteOnly then verNew else verLatestCreate],
hintlp [0], errRin [SysErr], zone [sysZone], nil, disk [sysDisk},
CreateStream [CreateDiskStream]) = a disk stream, open on the
specified file, or 0 if the open is unsuccessful for some reason.
'This routine parses the lookup name, searching directories as
needed. After applying version control (e.g., making a new
version), it calls CrcatcStream(filePointer, ksType, itemSize,
Noop, errRtn, zong, nil, disk), and returns the value of that call.

If hintFp is provided, it is assumed to be a file pointer (FP) that
"hints" at the correct identification of the file. Before searchin%a
directory, OpenFile will try using the hint to open the file,
quickly returning a stream if the hint is valid (though no name or
version checking is done). If the hint fails and lookupname is
non-zero, the name will be parsed and looked up in the normal
fashion. hintFp will be filled in with the correct file pointer.
Note: If you wish to use standard file-lookup procedures, but to
have the FP for the resulting file returned to you, zero the
hintFp vector before calling OpenFile. In this case, the value of
hintFp is not used in the lookup, but is filled in with the results.

= OpenFile(0, 0, 0, 0, hintFp)
ontrol [verOldest], errRtn [SysErrfl, zone [sysZone], nil, disk

[sysDisk]) = success. Deletes the file on the disk and removes
the corresponding entry from the directory specified in
lookupname. Returns "true" if a file was correctly found and

deleted, otherwise "false."

SetWorkingDir(name, fp, disk [sysDisk]) Sets the "current” dircctory for further lookups on the

given disk. When the system is booted, the current directory is
set to "<SysDir."

Alto Operating System

3.5.1. Lower-level directory functions

May 5, 1980 11

Scveral functions are provided for those who wish to deal with directorics and file names at a lower level.
I'he format of an Alto file directory is documented in the Disks documentation; dcfinitions appear in

AltoFileSys.d.

ParscFileName(destName, srcName, list, versionControl) = stream or 0. Strips leading dircctory

information from stcName, puts the result in destName,
appending a "." if necessary, and returns a stream open on the
directory in which the file should be looked up. hst!0 = an
crrorRoutine, list!l = a zone, list!3 = a disk which will be
passcd to Openlile along with versionControl when opening the
dircctory stream.

FindFdEntry(s, name, comparckn [0], dv [], hd [], versionControl [verLatest], extraSpace [OP': a

word pointer into the stream s of a dircctory entry, or -1 if no
entry 1s located. If comparcln is 0, normal comparison of file
names and version control is performed; the result is a directory
entry in dv, and a hole descriptor (hdg for a hole large enough to
include the name, a new version number, and extraSpace words.

Otherwise, comparckn is a user procedure that is invoked as
cach file name is read from the directory: comparelFn{(name,
nameRead, dvRcad). nameRead is the Bepl name extracted from
the directory; dvRead is the dv extracted from the dircctory; and
name is simply the sccond argiument passed to FindFdEntry
(which need not be a string). If compareFn returns false, the
directory scan halts; the value of FindFdEntry is the byte
position in the stream. If compareFn returns true, the search
proceeds.

Strategic note: If compareFn is TruePredicate, the directory is
simplgl scanned in order to locate a hole larﬁc enough for
extraSpace words. The result is saved in the hd hole descriptor,
which may be passed to MakeNewEdEntry.

In the standard release of the operating system (version
numbering absent), the directory stream is left positioned at the
matching dircctory entry if one was found and at the position
described by hd otherwise.

MakeNewFdEntry(s, name, dv, hd, extraStuff) makes a directory entry: dv is a pointer to a DV

DeleteFdEntry(s, pos)

Strip Version(string)

AppendVersion(string, version)

structure for the first part of the entry; name is a Bepl string that
is recorded after the entry (this string must be a legal internal file
name, with the dot "." appended), and extraStuff is a pointer toa
vector of additional stuff that will be entered following the
name. The hd paramecter is a pointer to a "hole descriptor” as
returncd from FindFdEntry.

Delctes the directory entry at byte location pos of the directory
open on stream s,

= version number, This function strips a version number, if
any, from the end of the string argument, and returns the
number (0 if no version specified). If, after stripping, there isno
final "." on the string, onc is appended.

Appends a version number and final "."” to the string.

Alto Operating System May 5, 1980 12

WriteDiskDescriptor() If changes have occurred, the copy of the disk descriptor for
sysDisk that resides in memory is written onto the disk file
"DiskDescriptor.”

ReadDiskDescriptor() This function restores the copy of the disk descriptor for sysDisk

that resides in memory from the disk file "DiskDescriptor.”

3.6. Memory management

Table 3.1 shows the layout of memory. Table 3.2 tells how to obtain the current values of the symbolic
locations in Table 3.1. The free space (EndCode to StackEnd) can be manipulated as follows:

GetFixed(nwords) returns a pointer to a block of nwords words, or 0 if there isn’t
enough room. It won't leave less than 100 words for the stack to
expand.

FreeFixed(pointer) frees a block provided by GetFixed.

FixedLeft() returns the size of the biggest block which GetFixed would be

willing to return.

SetEndCode(newValue) resets endCode explicitly. It is better to do this only when
endCode is being decreased.

The allocator is not very bright. FreeFixed decrements endCode if the block being returned is
immediately below the current endCode (it knows because GetFixed puts the length of the block in the
word precedin% the first word of the block it returns; please do not rely on this, however, since there isno
guarantee that later allocators will use the same scheme). Otherwise it puts the block on a free list. When
another FreeFixed is done, any blocks on the free list which are now just below endCode will also befreed.
However, the allocator makes no attempt to allocate blocks from the frec list.

3.7. The Alloc allocator

'chk_lc opcrat{ng system includes a copy of the Alloc package; documentation is contained in an appendix to
is manual.

InitializeZone(start, length, OutOfSpaceRoutine [...SysErr], MalFormedRoutine [..SysErr]) = a
"zone." These zones are compatible with the "zone™" arguments
to Qperatin]% system functions (e.g., sysZone). Allowin
MalFormedRoutine to default to SysErr causes a through chec
of the zone data structures to be performed each time a block is
allocated or freced. To avoid this (considerable) overhead, passa
zero for the MalFormedRoutine. The default sysZone has a
MalformedRoutine of SysErr.

AddToZone(zone, block, length) Adds block to the zone,

Allocate(zone, length, returnOnNoSpace [false], even [false]) = pointer to a block of length words
allocated from zone. If e¢ven is true, the pointer is guaranteed to
be a even number.

Free(zone, ptr) Returns the block pointed to by ptr to the zone.

CheckZone(zone) Performs a consistency check on the zone data structure.

Alto Operating System May 35, 1980 13

3.8. The Basic File System

A set of procedures for driving the disk hardware for Diabio Model 31 and 44 disk cartridges is includedin
the op?ratmg system. These functions are documented in the "Disks" documentation, appended to this
manual.

3.9. Objects

It is often convenient to define an abstract ob}ect and its operations by a single entity in the Bepllanguage.
As the largest entity Bepl can deal with is a 16-bit number, we must usc a pointer to a structure of some
kind that dcfines both the procedures and data associated with the object. Streams, Zones and Disks are
examples of such abstract objects. Such objects are typically defined by a structure such as:

struc[turc ZN:
Allocate word //Op
Free word //0p

Base word //Val
}Jength word //Val

where the Op’s point to procedures and the Val’s are data for the structure. A typical call on one of the
abstract procedures is thus (zone>>ZN.Allocate)(zone, arﬁl, arg2, arg3). The virtue of such an
arrangement is that any structure that simulates the effccts of the procedures can pose as a Zone.

In order to encourage the use of such objects, the operating system has very efficient implementations for
this calling mechanism:

Call0(s, a, b, ...) Does (s10)(s, a, b, ...)
Calll(s, a, b, ...) Does (s!1)(s, a, b, ...)
Call2, Call3, ..., Calll5 analogously.
Thus, the operating system defines Allocate=Call0, and Free=Calll, consistent with the Alloc package

described above. Note for assembly-language programmers: the CallX functions actually enter the proper
function at the second instruction, having already executed a STA 3 1,2 to save the return address.

3.10. Miscellaneous

This section describes a collection of miscellaneous useful routines:

Wss(S, string) writes the string on stream S.

Ws(string) writes the string on the system display stream, dsp.

Wi(string) Ws(string), followed by a carriage return.

Wns(S, n, nc [0], r[-10]) writes a number n to stream S, converting using radix abs(r). At

least n¢ characters are delivered to the stream, using leadin
spaces if necessary. The number is printed in signed notation i
1<0, in unsigned notation if r>0.

Wos(S, n) writes an unsigned octal representation of n on stream S.

Wo(n) writes an unsigned octal representation of n on the display
stream,

Alto Operating System

TruePredicate()
FalsePredicate()

Noop()

Dvec(caller, nV1, nV2, ..)

May 5, 1980 14

always returns -1.

always returns 0.

null opcration; returns its first argument if any.

this routine allocates "dynamic" vectors in the current frame.
caller is the name of the procedure calling Dvec. The use of the

routine is best given with an example: the routine ShowOff
wants two vectors, V1 and V2:

let ShowOff{V1length, V2length) be

et V1 = Vllength
let V2 = V2length

Dvec(ShowOff, Iv V1, Iv V2)
// now V1 points to a block Vllength+1 words long
]// and V2 points to a block V2length+ 1 words long

DefaultArgs(lvNa, base, dvl, dv2,

Warning: any addresses that point into the stack frame of
ShowOff before it is moved by the Dvec call will not be correct
after the call. Thus, for example, a "let a = vec 10" before the
call will cause the address in a to be useless after the call.

.....) Utility procedure to fill in default arguments. IvNa points to
the "numargs" variable in the procedure; abs(base) is the
number of initial arguments that are not to be defaulted; the dv;
are the default values (i<11). If base<0, then an actual parameter
of zero will cause the default to be installed; otherwise only
(trailing) omitted parameters are defaulted. Thus:

let Mine(how, siz, zone, errRtn; numargs n) be

efaultArgs(lv n, -1, 100, sysZone, SysErr)

]

MoveBlock(dest, src, count)
SetBlock(dest, val, count)
Zero(dest, count)
BitBlt(bbt)

Usc(a, b)

Min(a, b), Max(a, b)

Umin(a, b), Umax(a, b)

will default arguments siz, zone, errRtn if missing or zero to 100,
sysZone and SysErr respectively. Note that Bepl will allow you
to omit parameters in the middle of a parameter list by using
"nil," but DefaultArgs has no way of knowing that you did this.
Uses BLT: fori = 0 to count-1 do dest!i = srcli.

Uses BLKS: fori = 0 to count-1 do dest!i = val.

Same as SetBlock(dest, 0, count)..

Executes the BITBLT instruction with bbt in AC2.

Usc Berforms an unsigned compare of a and b and returns -1 if
acb, 0ifa=b, 1 if a>b.

Returns the minimum or maximum of two signed integers,
which must differ by less than 2115.

Returns the minimum or maximum of two unsigned integers.

Alto Operating System

DoublcAdd(a, b)

Enablelnterrupts()
Disablcinterrupts()
Start!O(ac0)

1dle()

Timer(tv)

ReadCalendar(dv)

SctCalendar(dv)

EnumerateFp(proc)

CallSwat(s], s2)

May 5, 1980 15

The parameters a and b cach point to 2-word double-precision
numbers. DoubleAdd does a<a+b. Note that subtraction can
be achicved by adding the two’s complement; the two’s
complement is the one’s complement (logical negation) plus 1.

Enables Alto interrupt system.
Disables interrupt system. Returns true if interrupts were on.

Exccutes the SIO emulator instruction with its argument in ac0.
iI‘husfStarth(# 100000) will boot the Alto if it has an Ethernet
interface.

This procedure is called whenever the operating system is

waiting for something to happen (e.g., a keyboard character to be

struck, or a disk transfer to complete). The static lvldle points to

the operating-system copy of the procedure variable so that

pro%rammers may install their own idle procedures by executing
@Ivldle = Myldle".

Rcads the 32-bit millisecond timer into tv!0 and tv!l. Returns
tv!l as its value. :

Reads the current date-and-time (32 bits, with a grain of 1
second) into dv!0 and dv!l. cturns dv as its value.
%Subroutines for converting datc-and-time into more uscful
ormats for human consumption are available. See subroutine
package documentation, under Time.)

Sets the current date-and-time from dv!0 and dv!1. (Normally it
should not be necessary to do this, as the time is sct when the
operating system is booted and has an invalid time. Thereafter,
the ti)mcr facilitics in the operating system maintain the current
time.

For every file pointer saved by the system (e.g., fpComCm,
fpRemCm, etc.), call proc(fp).

This function invokes an explicit "call” on Swat. Either of the
grgumcnts that appears to be a Bepl string will be printed outby
wat.

3.10.1. Routines for Manipulating Bcpl Frames

The fol]owin% routines case massaging Bep! frames for various clever purposes such as coroutine linkages.

See section 4
FrameSize(proc)
MyFrame()
CallersFrame(f)

FramesCaller(f)

for a description of the data structures involved.

Returns the size of the frame required by proc.
Returns the address of the current frame.

Returns the address of the frame that "called” the frame f (if fis
omitted, the current frame is used).

Returns the address to which the caller of frame f sent control,
provided that he made the call with a normal instruction (jsrii,
jsris). If error, returns 0.

Alto Operating System May 5, 1980 16

CallFrame(f, a, b) Sends control to frame f and links it back to this one (i.e., when f
returns, the CallFrame call returns). a and b are optional
arguments,

GotolFrame(f, a, b) Like CallFFrame, but does not plant a return link.

CoCall(a, b) CallFFrame(CallersFrame(), a, b)

CoReturn(a, b) Like CoCall, but does not plant return link.

ReturnTo(label) Returns to a given label in the frame of the caller.

Gotol.abel(f, label, v) Sends control to the specified label in the specified frame, and
passes v in ACO.

RetryCall(a, b) Repeats the call which appears to have given control to the caller

with a and b as the first 2 arguments, and the other arguments
unchanged. There are certain ways of calling functions which
cannot be retried properly. In particular, the address of the
procedure must be the valuc of a static or local variable; it
cannot be computed. Thus "a>>proc(s, b)" cannot be retried,
but "let pr=a>>proc; pr(s, b)" can be retried.

ReturnFrom(fnOrFrame, v) Looks for a frame f which is either equal to fnOrFrame, or has
FramesCaller(f) equal to fnOrFrame. It then cuts back the stack
to f and031mu1atcs a return from f with v as the value. If error, it
returns 0.

3.11. Subsystems and user programs

All subsystems and user programs are stored as "Run files”, which normally have extension ".Run". Such
a file is generated by Bldr and is given the name of the first binary file, unless some other name isspecified
for it. The format of an Alto run file is discussed in section 4.8 and in the Bepl manual.

CallSubsys(S, pausc [false], doReturn [false], userParams [0]) will read in a run file and send control toits
starting address, where S is an open disk stream for the file, positioned at the beginning of the file. Ifpause
is true, then CallSwat("Pause to Swat"); Ctrl-P starts the program. (doReturn will never beimplemented,
but would have allowed a return to the caller after the called subsystem "finished.") userParams is a
;fointer to a vector (length up to lUserParams) of parameters which will be passed to the called subystem.

‘he parameters are formatted according to conventions given in SysDefs.D (structurc UPE): each
parameter is preceded by a word that specifies its type and the length of the block of parameters; a zero
word terminates this list. When the Alto Executive invokes a program with CallSubsys, it passes in
uscrParams an entry with type globalSwitches which contains a list of ASCII values of global switches
supplied after the program name.

The open stream is used to load the program into Alto memory according to placement information
included in the file. The strcam is then closed; no other open streams are affected.

The Program is started by a call to its starting address, which will normally be the first procedure of the
first file given to Bldr. This procedure is passed three arguments. The first is the 32 word layout vector for
the program, described in the Bepl manual. The second is a pointer to a vector of parameters provided by
the caller (the userParams argument to CallSubsys). The third is the "complete file address” (CFA) fora
particular point in the file that was used to load the program. If no overlays are recorded in the Run file,
this ﬂ)oint is the end of file. If overlays are contained in the file, the CFA points to the first word of the first
over afyl s)cction (this can be used as a hint in a call to OpenFile when loading overlays contained in the
same file

Subsystems conventionally take their arguments from a file called Com.Cm, which contains a string which

Alto Operating System May 5, 1980 17

normally is simply the contents of the command line which invoked the subsystem (see section 5). The
subroutine package GP contains a procedure to facilitate reading this string according to the conventions
by which it is normally formatted. This is not a standard routinc but must be loaded with your program.
(FFor morc information on GP, sce the " Alto Software Packages Manual.")

3.12. Finish -- Terminating Execution

When a pro/%ram terminates operation, it "finishes,” returns to the operating system and ultimately to the
Exccutive. A program may finish in scveral ways:

Bepl return If the main procedure in the user program (the one invoked by
CallSubsys) ever returns, the program finishes. Equivalent to
OsFinish(fcOK).

Bcepl finish If the "finish" construct is executed in a Bcpl program, it

terminates. Equivalent to OsFinish(fcOK).

Bepl abort If the “abort” construct is cxccuted in a Bcpl program, it
terminates. Equivalent to OsFinish(fcAbort).

Swat abort If, during program execution, the "left shift” key and the "Swat
key" (lowcr-rightmost key on Atlto I keyboards, upper-rightmost
key on "ADL" Alto II keyboards) are depressed concurrently,
the program is aborted. Similarly, if the <control>K ("kill")
command is gped to Swat, the program is aborted. Both are
cquivalent to OsFinish(fcAbort).

OsFinish(fCode) An explicit call to this function will also terminate execution.
The value of fCode is saved in the static OsFinishCode, which
may be examined by the Exccutive and the next program that it
ifn/v\%kes. Yalues of fCode presently defined are; fcOK=0;
ctAbort=1.

When a program finishes, the value of the finish code is first recorded. Then, if the value of the static
UserFinishProc is non-zero, the call UserFinishProc(OsFinishCode) is performed before restoring the
operating system state. This facility is useful for Eerfonning various clean-ups. (Note: To set

serFinishProc, it is necessary to execute @lvUserFinishProc = value.) In order to permit independent
software packages to provide for cleanups, the convention is that each initialization procedurc saves the
present value of UserFinishProc and then replaces it with his procedure. This procedure will do the
cleanups, restore UserFinishProc, and return:

// Initialization procedure
static savedUFP

savedUFP = @lvUserFinishProc
@IlvUserFinishProc = MyCleanUp

// The cleanup procedure
let MyCleanUp(code) be

... cleanups here
]@lster ‘inishProc = savedUFP

Finally, control is returned to the operating system, which resets the interrupt system, updates the disk
allocation table, and invokes the executive anew.

Alto Operating System May §, 1980 18

3.13. Junta

This section describes some procedures and conventions that can be used to permit exceptionally large
programs to run on the Alto, and yet to return clcanly to the operating system. The basic idea is to leta
program dcactivate various operating system facilitics, and thereby recover the memory devoted to the
ci)dc Iand data used to implement the facilities. To this end, the system has been organized in a series of
"levels:”

levBasic Basic resident, including parity interrupt processing, time-of-day
maintenance, the resident interface to the Swat debugger, and
the initial processing for OsFinish. Iml\f:)ortant system state is
saved here: EventVector, UserName, UserPassword,
OsKinishCode. (Approximate size: 1000 words. This portion of
the operating system is guaranteed not to extend below address
1750008.)

levBuffer The system keyboard buffer (see section 4.6). (Approximate size:
100 words)

levFilePointers File hints. This region contains "file pointers” for frequently
referenced files. (Approximate size: 70 words)

levBepl Bepl runtime routines. (Approximate size: 300 words)

levStatics Storage for most of the system statics. (Approximate size: 300
wordsg}

levBFSbase Basic file system "base™ functions, miscellancous routines.
(Approximate size: 1500 words)

levBEFSwrite Basic file system "write" functions, the disk descriptor (used to
mark those pages on the disk which are already allocated),
interface to the time-of-day clock. (Approximate size: 1850
words)

IevAlloc The Alloc storage allocation package. (Approximate size: 660
words)

levStreams Disk stream procedures. (Approximate size: 2400 words)

levScan Disk stream extension for overlapping disk transfers with
computation. (Approximate size: 400 words)

levDirectory Directory management procedures. (Approximate size: 1400
words)

levKeyboard Standard keyboard handler. (Approximate size: 500 words)

levDisplay Display driver (although the storage for the display bitmap and
for the system font lie below). (Approximate size: 1600 words)

levMain The "Main" operating system code, including utilities,

CallSubsys, and the Junta procedure. (Approximate size: 1000
words)

Below levMain, where the stack starts, the system free-storage
FOOI is located. Here are kept stream data structures, the system
ont(,1 z)md the system display bitmap. (Approximate size: 6000
words

Alto Operating System May 5, 1980 19

This table of levels corresponds to the order in which the objects are located in the Alto memory: levBasic
is at the very top; the bottom of levMain is the highest location for the Bepl stack.

The "Junta” function is responsible for de-activating these levels, thercby permitting the space to be
reclaimed. When a program that has called Junta is ready to finish, it calls OsFinish in the normal way.
OsFinish performs the "counter-junta,” reading in portions of the operating system from the boot fileand
rebuilding the internal state of those levels that were previously de-activated, and then proceeds with the
finish, calling the Executive, etc.

During the counter-junta process (which takes about 1/2 second), the display and interrupt system can
continue to be active, provided that the code and storage they use lies below the address that is the valucof
OsFinishSafcAdr. This permits a token display to remain; also a keyboard handler can continue to scnse
key strokes and record characters in the systemn keyboard buffer.

Junta(levName, Proc) This function, which may be called only once before a "finish"
or CounterJunta is done, de-activates all levels below levName.
Thus levName spccifies the name of the last level you wish to
retain. (Manifest constants for the level names arc in SysDefs.d.)
It then sets the stack to a point just below the retained level, and
calls Proc(), which should not return.

The stack present at the time Junta is called is destroyed. The
recommended procedure for saving data across a call to Junta is
to locate the data below EndCode.

A Junta always dcstrofys the system free-storage pool and does
not re-create it. Therefore, open streams, the system display and
system font are all destroyed.

It is the user’s responsibility to take care not to call operating
system lprocedurcs that lic in the region de-activated by the
Junta. If in doubt, consult the file Sys.Bk, which documents the
association between procedures and levels.

...finish... Any of the methods for terminating exccution (section 3.12)
automatically restores the full operating system.

CounterJunta(Proc) This function restores all de-activated sections of the operating
system, and then calls Proc. The program stack present when
ounterJunta was called is destroyed. This function is provided
for those programs that do not wish to return to the operating
system with a "finish," but may wish to do other processing (e.g.,
allSubsys).

After calling Junta, many programmers will wish to restore some of the facilities that the Junta destroys,
such as a free storage zone, a display stream, etc. Below is an example of how to go about this. Note that
some thought is required bcecause the operating system keeps a separate copy of statics from those
referenced 1n your program. ‘Thus when the OS defaults the third argument of CreateDisplayStream to
sysFont, it uses the SS copy of sysFont, not the copy available to your program,.

Junta(levXXXXX, Proc)

let Proc() be

//Make a new sysZone:

letv = vec 7035 // You can make it any size

v_= InitializeZone(v, 7035)

@1vSysZone = v // Patch the os’s version of the static

Alto Opcrating System May 5, 1980 20

sysZong = v // Patch my program’s version of the static

//Read in the system font again:

let s = OpenFileFromFp(fpSyskont)

let 1 = Filcl.ength(s)/2

let f = Allocate(s rstonc, IR

Resets(s); ReadBlock(s, f, [); Closes(s)

sysFont = f+2 // Patch my program’s version of the static
// Note that because os’s version is not patched,
// 1cannot call Ws or otherwise default dsp.

//Makc a display stream:
dsp = CreateDisplayStream(6, Allocate(sysZone, 4000), 4000, sysFont)
ShowDisplayStream(dsp, DSalone)

3.14. Events

The operating system reserves a small communication region in which programs may record various things.
The intended usc for this region is the recording of events bly one program that deserve attention by
another. The Executive cooperates in invoking programs to deal with events posted in the communication
region.

Events are recorded sequentially in a table pointed to by the static EventVector. The total length of the
table, available as EventVector!-1, must not be exceeded by any program generating events. Each event
entry (structure EVM; see SysDefs.d) contains a header that spccifies the type and length of the entry
(length is in words and includes header sizc); following the header comes type-specific data (eventData).
A zero word terminates the cvent table.

At present, events are defined for:

eventBooted The operating system has just been booted.

eventAboutToDie The operating system is about to be flushed, probably to run a
diagnostic.

eventlnstall The opcrating system is to be re-installed. (This event need only

be used by the Executive "Install” command.)

eventRFC A Request For Connection packet arrived. The event data is:
Connection ID (2 words), RFC Destination Port (3 words), RFC
Source Port (3 words) and Connection Port (3 words).

eventCallSubsys When the next "finish" occurs, the system will try to execute the
file whose name is given as a Bepl string in the eventData block.
If the eventData block has length 0, the system will invoke the
C(%py of Ftp that is squirrcled away inside Sys.Boot. Because a
"finish" is performed right after the system is bootstrapped, it is
possible to InL.d Sys.Boot with a message that contains an
eventCallSubsys, and thereby to invoke an arbitrary program.
See the next section for a description of InLd.

eventinlLd Whenever the next "finish" occurs, the system will call
Inl.d(eventData, ecventData). This suggests that the first words
of cvent data should be an FPRD for a file you wish to InLd.

Alto Operating System May 5, 1980 21

If a program that generates an event has destroyed the event communication region, it is still possible to
pass the event to the operating system. For example, if the memory diagnostic is running and an Ethernet
conncction request arrives, the mechanism can be used to load the operating system and pass the
eventRFC message to it. The mechanism is described in the next section.

3.15. Outl.d, Inl.d, BootFrom

Three functions are provided for dealing with "Outl.d" files that record the entire state of the Alto
machine. When the operating system is loaded with the "boot” button, such a file restores the machine
state exactly as it was at the time of the Installation of the operating system. The Swat debugger also uses
these facilities, saving the entire machine state on the file "Swatee'” when a break is encountered, and
restoring the Swat dcbugger state from the file "Swat."

In the discussion that follows, an FPRD structure is like a file pointer (FP), but the disk address is the Real
disk address of the first page of Data in the file.

OutLd(FPRD, Outl.dMessage) Saves the state of the machine on the file described by FPRD,
which must exist and be at lcast 255 data afcs long. Note that
the state saved includes a PC inside Outl.d. Outl.d returns 0
after writing the file. Unless you know what you are doing,
interrupts should be off when calling Outl.d (otherwise, OutLd
may save some parts of the machine state, such as the
Activelnterrupts word, that was pertinent to an interrupt in
progress!).

Programmers should be warned to think carcfully about the state
that is being saved in an Outl.d. For example, the operating
system normally saves in memory some state associated with the
default disk, sysDisk. If Outld saves this state on a file, and the
;%rogram is later resumed with InLd, the state will be incorrect.

o be safe, state should be written out before calling OutLd ?.e.,
Writel)iskDcscriptorS)), and restored when OutLd returns
ReadDiskDescriptor()).

InLd(FPRD, InL.dMessage) Copies thc Inl.dMessage (length 1Inl.dMessage) to a
momentarily safe place and restores the machine state from the
file described by FPRD, which must have been crcated by
OutLd. Because the PC was in Outl.d, Outld again "returns,”
but this time with the value 1, and the Inl.dMessage has been
copied into the Outl.dMessage. Note: OutLd returns with
interrupts disabled in this case.

ie.,

If the operating system boot file is Inl.d’ed, the message is
assumed to be a legal data structure for the EventVector, and is.
copied there.

BootFrom(FPRD) This function "boots" the Alto from the specified file. If itis
applied to a file written by OutlLd, the state of the machine is
restored and OutLd "returns” 2 with interrupts disabled. (Note:
The effect of this function differs from the effect of depressing
the "boot™" button. Unlike the boot button, the function in no
way initializes the internal state of the Alto processor.)

Some programs (e.g., DMT) will need to know how to simulate InL.d or BootFrom:

1. Turn off the display and disable interrupts.

2. Read the first data page of the boot file into memory locations 1, 2, ...#400. If you areloading
the installed operating system, the first data page of the boot file is at real disk address 0.

3. Store the label block for the page just read into locations # 402, #403, ...# 411.

Alto Opcrating System May 5, 1980 22

4. (This step applics only if simulating Inl.d.) Now let msa=rv 2. This points to a location where
a brief message can be stored. Set msal0=1. Then for i=0 to inl.dMcssage-1 do msal(i+1)
= PrototypcEventVector!i.

5. Jump to location 3, never to return,

4. Data structures

This scction describes the data structurcs used by the operating system that may be required by users.

4.1. Reserved Memory Locations

The Alto Hardware Manual describes addresses rescrved for various purposes. The file AltoDefs.d
distributed with the OS declares most of these as manifest constants.

4,2. Streams

The standard data structures for streams arc given in the DiskStreams package file "Strecams.d”.
Documentation for the streams package includes a description.

4.3. Disk files

The structure of the Alto file system is described in documentation for the Alto file system (Disks). This
includes a description of files, disk formats, directory formats, and the format of the disk descriptor. Bepl
declarations for these objects may be found in the file AltoFileSys.d.

4.4. Display

The data structures used to drive the Alto display are described in the Alto Hardware Manual. The font
format for the Alto (AL format) is also described there. Note that a font pointer such as the one passedto
CreateDisplayStream points to the third word of an AL font.

4.5. Zoncs

A program that wishes to create an operating-system object and retain control over the allocation ofstorage
to the object may pass a "zone" to the operating system function that needs space (e.g., CreateDiskStrearr%).
A zonc is simply a pointer "zone" to a structure ZN (scc SysDcfs.d?, with zone>>ZN.Allocate containin;
the address of the allocation procedure (called by (zone>>ZN.Allocate)(zone, len%:thRequestcd)) an
zone>>ZN.Free containing the address of the free procedure (called by (zone>>ZN.Free)(zone, block)).

The zones created by the Alloc allocator package obey these conventions.

The zonc provided bjy the operating system is saved in the static sysZone. The user may replace thesystem
zone by exccuting @IvSysZone = value. Subsequent free-storage requircments for the operating system
will be addressed to this zone. The system zone is restored when the user program terminates. Warning:
The operating system keeps various (and undocumented) information in the system zone, and isunwillin
to have the zone changed out from under it. The normal use of lvSysZone is to change the value o
sysZone immediately after a call to Junta (which clears away sysZone). If you wish to create disk streams
and preserve them across a call to Junta, pass your own zone as an argument to OpenFile.

Alto Operating System

4.6. Operating System Status Information

May §, 1980 23

A good deal cf information is retained in memory that describes the state of the Alto. Much of this
information is of relevance to programmers, and is contained in some static scalars:

OsVersion

OsVersionCompatible

UserName

UserPassword

ScrialNumber

AltoVersion

sysDisk

IvSysErr

lvParitySweepCount

IvParityPhantomEnable

The version number of the operating system. This number is
incremented with each new release o the operating system,
incorporating changes however minor.

The lowest operating system version number believed to be
compatible with the present system.

This static points to a Bepl-format string that is the user’s last
name. It is initialized when the operating system is installed on
the disk. The maximum length (in words) that the UserName
may occupy is recorded in UserName!-1.

This static points to a Bcpl-format string that is the user’s
password, typed to the Executive Login command. The
maximum length (in words). that the UserPassword may occupy
is recorded in UserPassword!-1.

The serial number of the Alto you are on. This static has proved
troublesome, because it is easy to forget that this too will be
saved by OutLd, and can confuse Ethernet code when it
suddenly springs to life months later on a different host half way
around the world. Its use is discouraged.

This static contains the result of executing the VERS instruction.
This static has proven troublesome for the same reasons as
SerialNumber. Its use is discouraged.

A pointer to the DSK structure, described in Disks.d, which
describes the "disk" to be used for standard operating system
use. This structure is actually of the format BFSDSK, and
contains a copy of the DiskDescriptor data structure. The static
diskKd points to this structure alone (structure KD; see
AltoFileSys.d). The storage for sysDisk is in levBFSwrite; if you
Junta to levBFSbase, you will need to manufacture a new
sysDisk structure, by loading and calling BFSInit in your own
program.

This static points to the operating-system copy of the static that
contains the address of the error procedure. If you wish to
replace SysErr, it suffices to say @IlvSysErr=Replacement.
Note that some procedures may have already copied the value of
SysErr (e.g., when a stream is created, the value of SysErr is
copied into the ST.error field in most cases).

This static contains the address of the highest memory location
examined when sweeping memory looking for parity errors. If
no parity checking is desired, set @lvParitySweepCount =:0.

This static points to a flag that determines whether phantom
If)arity errors will invoke Swat (a phantom parity error results
rom a parity 1nterrugt that can find no bad locations: in
memory). @lvParityPhantomEnable=0 will disable phantom
reporting.

Alto Operating System

ErrorLogAddress

ClockSecond

File Hints

Keyboard Buffer

OsBuffer>>OsBUF.First
OsBuffer>>OsBUF . Last
OsBuffer>>0sBUF.In
OsBuffer>>OsBUF.Out

May §, 1980 24

This static points to a network address of a spot where error
reports (for such things as parity crrors) should be sent. The
structure is a "port,” as defined in Pup documentation.

This static points to a double-precision intcger that gives the
count of number of RCLK ticks (when RCLK is viewed as
returning a 32-bit number) in a second. This number is used for
keeping time, and is nominally 1680000. If timekeeping is
extremely critical, you may wish to calibrate your Alto and
change this number.

The operating system maintains file pointers for scveral
commonly-used files. Using these hints in conjunction with
OpenFile will substantially speed the process of opening
streams. The files and file pointers are:

SysDir tfpSysDir
SysBoot [pSysBoot
DiskDescriptor pDisk Descriptor
User.Cm fpUserCm
Com.Cm ComCm
Rem.Cm f(%RcmCm
Executive.Run Executive
SysFont.Al FBSysFont

Although the system keyboard buffer is normally managed by
the keyboard handler provided in the system, some programs
may want to opcrate on it themselves. The most important
instance of this is when a program that has don¢ a Junta is
finishing: if the program keeps its keyboard handler enabled,
any characters typed during the counter-junta can still be
recorded in the system buffer, and thus detected by the first
program to run (usually the Executive).

The static OsBuffer points to a structure OsBUF (see SysDefs.d)
that controls access to the buffer:

First address of the ring buffer

Last address of the ring buffer--1

"Input” pointer (place to put next item)
"Output” pointer (place to take next item)

The following code can be executed with interrupts on or off to
deal with the buffer:

Getltem() = valof

//Returns 0 if none there!

1f OsBuffer>>0sBUF.In eq OsBuffer>>OsBUF.Out then resultis 0
let newQut = OsBuffer>>OsBUF.Out+1

if newOut eq OsBuffer>>OsBUF.Last then newOut = OsBuffer>>OsBUF.First

let result = @(OsBuffer>>0sBUF.Out)
OsBuffer>>OsBUF.Out = newOut

resultis result

Putltem(i) = valof //Returns 0 if buffer full already

ct newln = OsBuffer>>OsBUF.In+1

if newIn eq OsBuffer>>OsBUF.Last then newln = OsBu ffer>>OsBUF. First

if newlIn eq OsBuffer>>OsBUF.Out then resultis 0

Alto Operating System

May §, 1980 25

@SOSBUffcr>>OsBUF.ln) =1

OsBuffer>>OsBUF.In = newln

resultis -1

GetltemCount() = valof //Rcturns count of items in buffer

etc = OsBuffer>>OsBUF.In-OsBuffer>>OsBUF.Out
ifc1s 0 then ¢ = ¢+ OsBuffer>>OsBUF . Last-OsBuffer>>OsBUI. First

resultis ¢

ResetltemBuffer() be //Sct buffer to empty

OsBuffer>>OsBUF.In = OsBuffer>>OsBUF.First
]OsBuffcr»OsBUF.Out = OsBufter>>OsBUF . First

#1767717

4.7. Swat

This location, the last in memory, points to the beginning of the
area used to save statics for lev}I}asic through levBepl. The file
Sys.Bk documents offsets from this number where the various
statics will be found.

The operating system contains an interface to the Swat debugger (described in the "Alto Subsystems”

manual). This interface uses OutLd to save the state of the machine on the file "Swatce,” and Inld to
restore the state of the machine from the file "Swat," which contains the saved state of the debuggeritself.
The inverse process is used to proceed from an interrupt or breakpoint. Two aspects of the Swatinterface

are of interest to programmers:

lvAbortFlag

IlvSwatContextProc

If @lvAbortFlag is zero, holding down the <left-shift> and <B3>
keys will simulate the call OsFinish(fcAbort), thus terminating
exccution of the running program. In critical sections, setting
@IlvAbortFlag to a non-zero value will disable aborts. The
standard convention is to increment @lvAbortFlag when
entering such a section and to decrement it when exiting. This
permits separate software modules to use the feature
concurrently.

Although Swat saves and restores the state of the standard Alto
170 devices, it has no way to know about special devices
attached to the machine, The programmer may arrange that a
cice of code will be called whenever Swat is trying to turn off
/Q preparatory to calling Outld, or trying to restart [/0 after
anlnld. [ftheprogrammer does
@1vSwatContextProc = DLSProc, Swat will execute DLSProc(0)
when turning off 170, and DLSProc(-1) when turning it on.
Since Swat can be invoked at any time, the Swat context
procedurc must be written in machine language and must not
assume anything about the state of the machine or any data
sm:c)turcs in particular the Bepl stack may be in an inconsistant
state).

Alto Operating System May 5, 1980 26

4.8. The Bepl stack

The Bepl compiler determines the format of a frame and the calling convention. The strategy forallccating
stack frames, however, is determined by the operating system. We begin by describing the compiler
conventions, which are useful to know for writing machine-language routines.

A procedure call: p(al, a2, ...), is implemented in the fo]lowin% way. The first two actual arguments are
put into AC0O and AC1 (AC2 always contains the address of the current frame, except durin% a callor
return). If there arc exactly threc actual arguments, the third is put into F.extraArguments. If there are
more than three, the frame-relative address of a vector of their values is put there (except for the firsttwo),
so that the value of the i-th argument (counting from 1) is frame>>F.extraArguments!(frame+i). Oncethe
arguments arc set up, code to transfer control is Fcncratcd which puts the old PC into AC3 and sets the PC
to p. At this point, AC3!0 will be the number of actual arguments, and the PC should be set to AC3+1to
return control to the point following the call.

A procedure declaration: let p(fl, f2, ...) be ..., declares p as a static whose value after loading will be the
address of the instruction to which control goes when p is called. The first four instructions of aprocedure
have a standard form:

STA312 s AC2>>F savedPC « AC3

JSR @GETFRAME

<number of words needed for this procedure’s frame>
JSR @STOREARGS

The Bepl runtime routine GETFRAME allocates storage for the new frame, NF, saves AC2 in
NI>YF callersFrame field, sets AC2 to NF, and stores the values of ACO and AC1 (the first two
arguments) at NF>>F.formals 10 and 1. If there are exactly three actual arguments, it stores the third one
also, at NF>>F.formals 12. Then, if there are threc or fewer actual arguments, it returns to L+ 3, otherwise
it returns to L+2 with the address of the vector of extra arguments in ACL; at this point a JSR
@STOREARGS will copy the rest of the arguments. In both cascs, the number of actual arguments isin
Qgg gmzi this is still true after a call of STOREARGS. A Bepl procedure returns, with the result, if any, in
, by doing:

JMP @RETURN
to a runtime routine which simply does:

LDA 20,2 ; AC2« AC2>)F callersFrame
}‘l\[/%fé 13 31,2 : PC«AC2>)>F savedPC+1

The information above is a (hopefully) complete description of the interface between a Bepl routine and
the outside world (except for some additional runtime stuff which is supplied by the operating system).
Note that it is OK to use the caller’s F.Temp and F.extraArguments in a machine-lanéuage routine which
doesn’t get its own frame, and of course it is OK to save the PC in the caller’s F.savedPC.

The operatinfg system currently allocates stack space contiguously and grows the stack down. To allocatea
new frame of size S, it simply computes NF=AC2-S-2 and checks to sec whether NF > EndCode. Ifnot,
there is a fatal error (Swat breakpoint at finish+ 1); if so, NF becomes the new frame. (Note: the "-2" in
the computation is an unfortunate historical artifact.

4.9. Run files
The format of a file produced by Bldr to be exccuted by CallSubsys is described by the structure definition

SV in BCPLFiles.d. Consult the Bepl manual (section on Loading) for interpretations of the various fields
and the handling of overlays.

For Xerox Internal Use Only -- December 15, 1980
Alto Operating System May 5, 1980 27

5. The Executive

The Alto Exccutive is itself a subsystem and lives on the file Executive.Run; if you don’t like it, you can
write your own. It is currently invoked from scratch after the operating system 1s booted, and whenevera
subsystem returns. The Executive is fully documented in the "Alto Subsystems™ manual.

6. Operating Procedures

6.1. Installing the operating system

The "Install” command causes the operating system to execute special code which completely initializes
the system. The options of the install procedure are controlled by prompts. Installation is needed:

- When a new version of the opcrating system is distributed. New versions are called
"NewOS.boot" (or "NewOsV.boot", the variant that supports the file version numbering facilityg.
You should transfer NewOS.boot to your disk and install it by saying "Install NewOs.Boot". It
will ask you several questions which determine it's configuration on your disk ("SysGen", ifyou
will parden the expression) and finally the Executive will be invoked. The newly configured OS
writes itself on the file Sys.boot, so you can delete NewOS.boot after installing.

- When you wish to ERASE a disk completely and re-initialize it. This option pauses to let you
insert ‘the disk pack you want initialized. This "new disk™ function is invoked by answering
affirmatively the question "Do you want to ERASE a disk before installing?" after answerin
affirmatively that you want the "Long installation dialogue”. See also the NEWDISK sectiono
the Alto Subsystems Manual.

- When you wish to change the "user name" or "disk name" parameters of thc operating system.
The install procedure will prompt for these strings. It is also possible to specify a disk password
that will be checked whenever the operating system is booted.

- When you wish to enable the "multiple version” feature of the file system. (Because few programs
presently cope with all the subtleties of this feature, it is wise to leave it disabled.)

- When you wish to extend a file system. Basic disks are often kept on Interim File Systems from
which users can copy them with CopyDisk. They are usually configured for a single Diablo
model 31 disk. If your machine has more disk ﬂ)ace, you can extend the file system by answering
"Yes" to the question "Do you want to extend this file system?" (this is also part of the "long
installation dialog").

6.2. How to get out of trouble

It _()ccasionall%/ happens that a disk will not boot, or something runs awry during the booting process. In
this case, the following steps should be considered:

1. Run the Scavenger. This can be done in two ways:

Place a good disk in the Alto, and invoke the Scavenger. When it asks if you wish to change
disks, respond affirmatively, put the damaged disk in the machine and proceed when the
drive becomes ready.

If you have network access to a "boot server”, hold down the <BS> and "> keys and push the
boot button. Continue to hold down <’> until a tiny square appcars in the middle of the
screen. You should now be talking to the Network Exccutive; type Scavenger<cr>.

Alto Operating System May S, 1980 28

When the Scavenger finishes, the attempt to invoke the Exccutive may fail because Scavenger was
invoked from another disk. Ty booting. If unsuccessful, go on to step 2.

2. Use Ftp to get fresh copies of SysFont.al and Exccutive.Run. Again, this can be done in two ways:

Place a good disk in the machine and invoke Ftp. After it is initialized, change disks, wait for
the damaged one to become ready, and type the necessary Ftp commands to retrieve the files.

Invoke Ftp via the Network Executive as in step 1.
Now try booting. If unsuccessful, go to step 3.
3. Install the OS. You guessed it; this can be done in two ways:

Place a cFOOd disk in the Alto and type "Install.” When asked for your name, place the
damaged disk in the machine, wait for the drive to become ready, and proceed.

Invoke the "NewOS" via the Network Executive. You will be asked: "Do you want to
INSTALL this operating system?"

6.3. File Name Conventions

Various conventions have been cstablished for Alto file names. The conventions are intended to be
helpful, not authorative.

1. All files rclating to a subsystem "Whiz" should have file names of the form "Whiz.xxx", i.e. typing
"Whiz.*" to the Executive should list them all, delete them all, etc. Example: Bepl.Run, Bepl.Syms, etc.

2. File extensions are of preference chosen to be language extensions, i.e. they specify the language in
which they are written. The present set is:

Bepl Bepl source code

Mu Micro-code source

Asm Assembler source code

Mesa Mesa source code

Help A help file for the system given in the name
Cm A command file for the Alto Executive

3. File extensions are otherwise chosen to reflect the format of the file. The present set is:

Bravo Text file with Bravo format codes

Run Exccutable file produced by Bldr

Image Executable file produced by Mesa

Al Alto format font file

Boot A file that can be booted

Br Bcepl relocatable binary file

Syms Bldr symbol table output

BCD Mesa object code

Dm File produced by the Dump command,
read by the Load command

Ts Text file containing a transcript

Disk disk image CopyDisk format

Alto Operating System May §, 1980 29

6.4. Miscellancous information

The key in the lower right corner of the keyboard on a Microswitch keyboard (<blank-bottom>) or inthe
uI)pcr right on an ADL keyboard (IFR1) is called the Swat key. If you press it, as well as the <ctrl> and
Cleft-shift> keys, the Swat debugger will be invoked. If you do this by mistake, <ctrl>P will resume your
program without interfering with its execution, and <ctrI>K will abort your program.

You can force an abort at any time by depressing the Swat key together with the <left-shift> key.

In order for the operating system to run properly, the following files should be on your disk (those marked
* are optional):

SysDir System directory.

DiskDescriptor Disk allocation table.

SysFont.Al System display font,

Executive.Run Executive (command processor).

Sys.Boot Boot-file containin% the operating system.

Sys.Errors * Error messages file.

Swat * Debugger Frogram, created by running InstallSwat.
Swatee Debugging file essential to Swat.

Note: If you wish to change the font used by the operating system, it suffices to copy a new font to
ysFont.Al and boot the system.)

If you intend to write programs that use the operating system facilities, you will want some additional files:

Sys.Bk Required by Bldr to load programs that reference operating
system functions. This file also shows which functions are
implemented in which levels and the names of source files for
the code.

SysDefs.d Definitions of standard system objects. You will probably want
to "get” this file in Bcpl compilations that use operating system
functions extensively.

Streams.d Data structure definitions relating to streams.
AltoFileSys.d Data structure definitions relating to files.

Disks.d * Data structure definitions relating to the "disk™ object.
AltoDefs.d Definitions of places and things peculiar to an Alto.

BeplFiles.d * Definitions of the formats of Bepl-related files.

Alto Operating System May $§, 1980 30

Name Opcode Address Function

CYCLE 60000 C ACO«ACO Icy (if C ne 0 then C else ACI); smashes ACL

JSRH 64400 D AC3«PC+1; PCerv (rv EPC+D2)

JSRIS 65000 D AC3€PC+1; PCerv (rv (AC2+ D))

CONVERT 67000 D character scan conversion

DIR 61000 - disable interrupts

EIR 61001 - enable interrupts

BRI 61002 - PC «interruptedPC; EIR

RCLK 61003 - ACO0«16 msb of clock (from realTimeClock); ACl« 10 Isb of clock *
#100 + 6 bits of garbage; resolution is 38.08 us,

N (0) 61004 - start [70

BLT 61005 - Block transfer of -AC3 words; AC0=address of first source word-1;
ACl=address of last destination word; ACO and AC3 are updated
during the instruction

BLKS 61006 - Block store of -AC3 words; ACO=data to be stored; ACl =address
of last destination word; AC3 is updated during the instruction

SIT 61007 - start interval timer. For an interrupt when the time is
timerIng:rruptTimc, ACO should be 1 when this instruction is
execute

JMPRAM 61010 - Emulator microcode PC«AC1 in control RAM

RDRAM 61011 - ACO«(if AC1[4] then RAM clse ROM)!IACI (left half if ACI1[S],
right half otherwise)

WRTRAM 61012 - RAM!IAC] «(AC0,AC3

DIRS 61013 - * Disable interrupts and skip if interrui)ts wereon

VERS 61014 - * ACO+«((EngineeringNumber-1)*16 + BuildNumber)*256
+ MicrocodeVersion

DREAD 61015 - ** ACO«1v(AC3); AClerv(AC3 xor 1)

DWRITE 61016 - ¥ 1v(AC3)«ACO; rv(AC34-1)«ACl

DEXCH 61017 - o t*-rv(AC3C); rv(AC3)«ACO; ACO«t; terv(AC3+1);
'v(AC3+1)<ACL; ACl«t

MUL 61020 - Same as NOVA MUL: AC0,1<AC2*AC1+ACO

DIV 61021 - Similar to NOVA DIV: AC1<AC0,1/AC2; ACO has remainder.
DIV (unlike NOVA version) skips the next instruction if no overflow
oCcurs.

BITBLT 61024 - * character scan conversion of bit-map manipulation

Notes: Address: C=bits 12-15; D =bits 8-15; - =no address

variables in function descriptions are machine registers or page 1 locations
* indicates available only in "new™ microcode (SIO leaves ACO[0]=0)
** indicates available only on Alto II

Table 2.1: New instructions in Alto emulator
(see Alto Hardware Manual for more details)

Alto Operating System

Device
Number of drives/Alto
Number of packs

Number of cylinders
Tracks/cylinder/pack
Sectors/track
Words/sector

Data words/track
Sectors/pack

Rotation time

Seck time (approx.)
min-avg-max

Average access

to 1 megabyte

Transfer rates:
pecak-avg
pecak-avg

er sector

or full display
for big memory
whole drive

May 5, 1980

Diablo 31
lor2
1 removable

203

2

12

2 header
8 label
256 data
3072
4872

40
15+ 8.6*sqri(dt
E1;(5)-70-135q (s

]1)iablo 44

1 removable
1 fixed

406
2

12
same

3072
9744

%5 J*sqrt(de)
+ 3*sqrt(dt
8-30-6i§1

32 (both packs)
2.5-1.9
6.7
2.1
27
.6

44 (both packs)

Table 2.2: Properties of Alto disks

ms
ms

ms

MHz
us-word
ms

sec

sec

sec

31

Alto Operating System

LastMeml.oc
§tartSystem
StackBasc
StackEnd
EndCode

StartCodeArea
400-777
300-377
20-277

0-17

LastMemlLoc
StackEnd

EndCode
StartCodeArea

May 5, 1980 32

Last memory location

Base of system

Root of stack; stack extends downward from here

Top of stack, which grows down

End of user program+1

This space contains user code and statics, loaded as specified by the
arguments to Bldr., Default is to start at StartCodeArea and load
R S 0 iy 00 o s
Start of user program area

Page 1: machine-dependent stuff (see Alto Hardware Manual)
Bepl runtime page 0

User page 0

Unused

Table 3.1: Memory layout (all numbers octal); sce section 3.6

The operating system described in this document runs on 64K
Altos; this location is 176777.
The address of the frame in which the current procedure is
exccuting is computed by the MyFrame procedure; alternatively,
%or?&ust)c Iv (first argument of current procedure) -4

v
User code may start at any address > 777.

Table 3.2: Values of symbolic locations in Table 3.1

(all numbers octal)

Alto Operating System May 5§, 1980 33
Operating System Change History

This file contains an inverse chronological listing of changes to the Alto operating system.

The "normal way" to install a new operating system is to retrieve a copé of the files NewOS.Boot,
Sys.Syms, Sys.Errors and Sys.Bk that are being distributed. Say "Install NewOS.boot" to the Exec,answer
the configuration questions and then delete NewOs.Boot.

Version 19/16 -- December 15, 1980

Additions: The major addition is that you can now crasc a disk and format it to use 14 sectors pcrcylinder
on D0s and Dorados. It is not possible to extend a 12 sector file system to 14 sectors "in place”; you must
save your files, erase the disk and restore them.

Changes: [BFSInit] The OS refuses to boot when only one disk of a double disk filc system is spinning. It
can also detect certain other blunders like DP1 containing a single disk file system rather than the second
half of the filesystem starting on DP0. It is not possible to detect all bad cases. [KeyStreams] the static
kbTransitionTable is not exported to users who wish to modify the OS’s treatment of the keyboard.
[DspStreams] it used to be that character codes below 40b unconditionally called the stream scroll
procedure. Now, if the character has a non-zero width or height it is displayed. Only characters with zero
width and height (CR and LF in particular) call scroll.

Version 18/16 -- May 5, 1980

Additions: The major addition is that you can now extend a file system by reinstalling the OS, A single
model 31 file system can be extended to a double model 31, a single model 44 or a double model 44, anda
single model 44 can be extended to a double model 44. This is accomplished by a subdialog of the’long
installation dialog’.

Changes: [Calendar] DO0s and Dorados now use Alto I clock format. [Dirs] A bug in the *CompareFn’
feature has been fixed. [BFS] 'return on check error’ is handled better. [InOutL(%] Disk error recovery
during Inl.d and Outl.d has been improved. [DiskStreams] A bug in FilcPos, introduced in OS17 and
responsible for problems with long files in FTP, has been fixed. CleanupDiskStream now does the proper
thing if a file is extended to a multiple of the page size and then trimmed back by less than a paﬁe.
[DisplayStreams] EraseBits is much faster now because it uses BitBlt. [BfsM1] BitBlt calls Swat if the BBT
starts at an odd address.

Version 17/16 -- September 9, 1979

The most significant improvements arc that the DSK object has been extended to permitdisk-independent
operation at the DoDiskCommand/GetCb level; procedures have been added to scan a disk stream at full
disk speed; and the directory lookup procedures have been modified to take advantage of these facilities
and thereby improve performance substantially. To make way for these improvements, all support for file
version numbers (a little-used feature) has been removed.

Incompatibilities arc confined to those programs that create DSK objects, since several of the OS routines
now expect to be passed the extended versions. Programs that include the TFS must be rcloaded withthe
latest release of TFS; they will then run under OS 17 or OS 16. Programs that inctude BFSInit must be
reloaded with the OS 17 version of BFSInit; they will then not work under previous OS releases. Ofthe
standard Alto subsystems, FTP falls into the first category and Neptune in the second.

In the DSK object, the fields prischscriftor, driveNumber, retryCount, and totalErrors have moved,
and fpSysLog has been deleted; it is belicved that no cxisting programs are affected by this.

Additions: [BFS] the DSK object is extended to include genecric procedurcs InitializeDiskCBZ,
DoDiskCommand, GetDiskCb, and CloseDisk, and constants lengthCB and lengthCBZ. The CBZ

Alto Operating System May 5, 1980 34

structure is now })ublic, and is defined in Disks.d and documented in the "Disks and BFS" description.
TnitializeDiskCBZ defaults its errorRtn argument. DoDiskCommand has an optional nextCb argument.
DefaultBfsErro-Rtn and BfsNonEx are exported in Sys.bk, so user programs can load BFSInit. The BFS
can now operate in any of the file system partitions available on the large disks of Dorados and DO0s. An
optional hintLastPage” argument to ActOnDiskPages, WriteDiskPages, and DeleteDiskPages has been
added. New procedures include Min, Max, Umin, Umax, and Call10 through Calll5.

Disk strcams] A DiskStrecamsScan level has been added, containing the procedures InitScanStream,
etScanStreamBuffer, and FinishScanStrecam; these support overlapped reads at full disk speed.

[Keyboard] Shift-1.F generates Ascii 140B -- accent grave.

Deletions: The remaining vestiges of the Sys.Log code are gonc. BEFSSetStartingVDA removed -- use
ReleaseDiskPage(disk, AssignDiskPage(disk, desiredVIDA-1)).” All support for version numbers has been
removed from the standard relcase; an alternate release (NewQsV.boot) is available in which the version
number facility has been retained, but it does not benefit from the improved directory lookup
performance, it is somewhat larger, and it may not be supported in the future.

Changes: levBasic is now guaranteed to be at 175000B or higher, for the benefit of Mesa and Smalltalk.
ReleaseDiskPage docsn’t increment the page count if the page released is already free. The BFS now
retries data-late errors indefinitely. The BES cleanup routinc is now called with three arguments. The
Disk Descriptor file is now allocated next to SysDir rather than in the middle of the disk as it was in OS 16,
The old write date is not restored to a directory file (dircctory bit on in serial number) if the file isopened
for writing but never dirtied. A number of bugs in the disk streams code have been fixed that prevented
manif)ulation of files greater than 32767 pages long. Directory operations (OpenFile, DeleteFile, etc.) now
search the directory at essentially full disk speed. Booting has been speeded up somewhat. The OS uses
and maintains disk shape information as a DSHAPE filc property in the leader page of SysDir.

Version 16/16 -- February 19, 1979

This version contains many internal changes but few external ones. Even though it is technicalR'
incompatible with previous releases (OS 16716 rather than OS 16/5), most programs are¢ not affected.
There are threec major changes: 1) backward compatibility for the "o0ld" OS has been removed, 2) the disk
bit table is now paged rather than occupying a fixed arca in memory, and 3) the interfacce between Swat
and the OS changed - Swat.25 is required.

Additions: the BitBIt instruction is accessible from Bcpl and a structure definition for a BitBlt table was
added to AltoDefs.d. More of the page 1 and 170 area location names were added to AltoDefs.d. A new
declaration file, BeplFiles.d, was created and the Bepl file format definitions were moved there from
SysDefs.d. The OS corrects ;Bn‘ity in extended memory banks during booting. The "new" file date
standard is implemented. The DDMgr object operations were added to Calls.asm.

Delctions: the compatiblity package has been removed. All of the commonly used subsystems which
depended on it have been updated. They are: Asm, RamLoad, CleanDir, EDP, and Scavenger, Ifyou
keep any of these on your disk, you should %et new copies from the <Alto> directory. fpSysLog, fpSysTs,
fpWorkingDir, faSyslog, and nameWorkingDir went away.

Reorganiztions: the BFS was extensively reorganized to bring it into sync with the TFS. The code for
creating a virgin file system and creating a DSK object has been disentangled from OS initialization. The
Bepl frame-munging code was split out of BFSML.asm and put into a new file: BeplTricks.asm.
Initialization for the keyboard was moved from the OS initializtion modules into KeyStreamsB.bcpl,
making it self-contained. Parity Error handling, Calendar clock update, Swat interface, and InOutl.d were
split into separate modules.

_Chan/%cs: DisablelInterrupts returns true if interruFts were on. The VERS and DCB structure were moved

into AltoDefs.d. The names of many OS modules changed. The long installation dialog permits more

Bremsc contro! over the handling of memory errors. The erase disk dialog permits you to create an extra
ig directory. The interface to Swat has changed - Swat.25 is the new version.

Version 15/5 -- March 15, 1978

Alto Operating System May 5, 1980 35

Fixed a bug in the file date codc; introduced another bug in the same code.
Version 14/5 -- March 1, 1978

Additions: ReadCalendar and SetCalendar - analogus to DayTime and SctDaytime only they conform to
the new time standard. DayTime and SctDaytime will continue work corrcctlé until April 30, 1978. Anew
declaration file, AltoDefs.d was created; some things were moved there from SysDefs.d. Definitions ofthe
format of .BB (overlay), and .Syms files were added to SysDefs.d. This OS has room for a "big’ bittable -a
special OS version is not required.

Delctions: The system log was de-implemented. LogOpen, LogClose, and Makel.ogEntry are now Noops.
They will be removed when an incompatible OS is next released.

Reorganizations: Noop, TrucPredicatc and FalsePredicate were moved from StrecamsML.asm to
BFSML.asm (up a few Junta levels). Fast strcams were split out of disk streams; FastStreamsB.bepland
FastStcamsA.asm. Streams.bcpl was split into 3 files: iskStrcams.bepl, DiskStreamsMain.bepl, and
DiskStreamsAux.bepl; StreamsMI..asm disappeared.

Changes: A bug in ReturnFrom was fixed (this only matters if you use the microcode version of the frame
allocator). TruePredicate now returns -1 Sit used to return 1). If the unrecoverable disk error routine inthe
BFS rcturns, the cleanup procedure is called and things plunge on. OpenFile with a filename containinga
non-existant dircctory now returns 0 instead of calling Swat. The Diablo printer bits (0-7) are nowignored
by the keyboard interrupt routine.

Version 13/5 -- May 16, 1977

Additions: ParseFileName (a lower level directory function) was made available to users.

Changes: Minor, yea insignificant bugs fixed.

Version 12/5 -- March 20, 1977

Additions: ClockSecond. Location 613b is now reserved to indicate to RAM microcode what sort of Alto
we are on: 0 implies Alto [; -1 implies Alto IL

Changes: Time-keeping accuracy improved slightly. BFS is now reentrant;-gou may have several
independent disk activities going concurrently (this will make CopyDisk more reliable).

Version 11/5 -- January 9, 1977

Additions: eventInld and eventCallSubsys processing added. Also now possible to install the operating
system with logging disabled.

Changes: Booting process somewhat more robust. Several changes to improve diagnostic information
about parity errors provided by Swat. Improved password protection. Alto II fixes in parity and timer
routines.

Version 10/5 -- November 2, 1976

Changes: A nasty bug in the disk routines was uncovered and fixed. It was responsible for occasionally
garbaged files.

Version 9/5 -- September 25, 1976
Additions: verNewAlways option to OpenFile; changeSerial entry on file leader pages.
Changes: Various bugs relating to keeping file version numbers were fixed.

Version 8/5 -~ August 28, 1976

Alto Operating System May 5, 1980 36

Changes: Several bugs in parity error detection and reporting were removed.
Version 7/5 -- August 10, 1976

Additions: The Idle procedure and corresponding static lvidle; IvParityPhantomEnable global static; more
installation options.

Minor changes: Two bugs in PositionPage are fixed -- one permitted read-only files to be accidently
lengthened.

Version 6/5 -- July 8, 1976

Additions: (1) Scveral global statics have been added: AltoVersion (code for machine, build and
trglcrclx:{)dle versions), ErrorL.ogAddress (Ethernet address to report hardware errors), # 176777 points to
e global statics.

(2) The format of Sys.Boot has been altered slightly so that Altos may be booted over the Ethernet.
Version 5/5 -- April 28, 1976

How to get it: Because version 5 introduces some incompatibilities, it is ¢ssential that several subsystemsbe
updated: (1) get a new Exccutive and Bravo 5.5 or later (these will run under version 4 or version 5 ofthe
operating system); (2) get Sys.Bk, Sys.Syms, Sys.Boot (under another name, ¢.g. NewOs.Boot); (3) install
your new system; (4) %et a new version of DDS, which depends on version 5 of the operating system; (5)
get a new InstallSwat.Run and invoke it; (6) if you are a programmer, be surc to get new copies of all
definitions files (e.g. AltoFileSys.d).

Incompatibilities: (1) Most calling sequences and subroutine names for the "Bfs" routines have changed.
These changes were made in order to introduce the concept of a "disk™ object, so that standard OS stream
and directory functions could be applied to non-standard disks (e.g., the Trident T80). The static
IvDiskKd has been removed.

%2) The "disk address” returned as part of a CFA or FA is now a virtual disk address. The routine
ealDiskDA can be used to convert it to a physical disk address if desired.

Minor changes: (1) The handling of the UserFinishProc has changed. The recommended procedure for
such procedures is to simply return from a finish procedure, not to catl OsFinish again.

(2) Several bugs in the streams package are fixed, e.g. ReadBlock applied to a file with 511 bytes in thelast
data page did not work correctly.

(3) The "new disk" refreshing procedure has been chan]%ed to use the new FIP; it is now mandatory that
this file be present on your disk when you attempt to make a brand new disk.

(4) It is now Eossible to change disk packs during the Install sequence; simply change packs when some
qu)estion is asked of you (exception: if you are creating a "ncw disk,” do not change packs until told todo
S0).

(5) The log functions have bcen made much more robust. It is now possible to delete Sys.Log and
continue operations.

(6) Numerous bugs in ReturnFrom and FramesCaller are fixed.
(7) The default number of file versions to keep is now stored in the DiskDescriptor.
(8) Wns has been changed to allow both signed and unsigned number conversion.

(9) The arguments to DeleteFile have changed slightly (only if you pass more than 2 arguments to it).

Alto Operating System May 5, 1980 37

%10) The introduction of the "disk" object has added some statics: sysDisk, some functions: KsGetDisk,
.nPageSize, and optional "disk" arguments to disk stream opening functions,

	1. Introduction
	2. Hardware Summary
	3. User Callable Procedures
	3.1 Facilities
	3.2 Loading and Initialization
	3.3 Errors
	3.4 Streams
	3.4.1 Disk Streams
	3.4.2 Display Streams
	3.4.3 Keyboard Streams
	3.4.4 Fast Streams to Memory

	3.5 Directory Access
	3.5.1 Lower-Level Directory Functions

	3.6 Memory Management
	3.7 The Alloc Allocator
	3.8 The Basic File System
	3.9 Objects
	3.10 Miscellaneous
	3.10.1 Routines for Manipulating Bepl Frames

	3.11 Subsystems and User Programs
	3.12 Finish -- Terminating Execution
	3.13 Junta
	3.14 Events
	3.15 OutI.d, InI.d, BootFrom

	4. Data Structures
	4.1 Reserved Memory Locations
	4.2 Streams
	4.3 Disk Files
	4.4 Display
	4.5 Zones
	4.6 Operating System Status Information
	4.7 Swat
	4.8 The Bepl Stack
	4.9 Run Files

	5. The Executive
	6. Operating Procedures
	6.1 Installing the Operating System
	6.2 How to Get Out of Trouble
	6.3 File Name Conventions
	6.4 Miscellaneous Information

	Table 2.1 -- New Instructions in Alto Emulator
	Table 2.2 -- Properties of Alto Disks
	Table 3.1 Memory Layout
	Table 3.2 Values of Symbolic Locations
	Operating System Change History

