Alto Operating System May 5, 1980 38
Operating System Softwarc Packages

Several of the modules of the operating system are also available as software yackages in case the
programmer wishes to include them “in’ overlays, or modify them, etc. ‘the sources are in
{AltoSource>OSSources.dm, and the binaries are in <Alto>OSBrs.dm. You are urged to get listings and

ponder them since proper use of these procedures in a foreign context may require some modifications,
and will certainly require some understanding. The BootBase package, in the BuildBoot documentationin
the Subsystems manual, offers configurations of thesc packages that permit making most any subsystem

into a boot file without souce level changes.

Utilities. The file OsUtils.Bcpl contains several of the utili&v Cproccdures located in levMain: Wss, Ws, W1,
Wns, Wos, Wo, GetFixed, FrecFixed, FixedLeft, SctEndCode. The procedure GetFixedInit must be
called to initialize the GetFixed/Freelixed procedures.

Password. The file Password.Bcpl contains the Alto password routines, and can be used to do password
checking in subsystems.

Keyboard. The keyboard handler is available in KeyStreamsB.Bcpl, KeyStreamsA.Asm and
LevBufferasm. The procedure CreatcKeyboardStream initializes the package, and returns a value (keys)
that can be used as a keyboard stream.

Display. The display handler is available in the file DspStreamsB.Bcpl and DspStreamsA.Asm.
Documentation is found later in this manual.

Directory. The file Dirs.Bepl contains the directory manipulations described in section 3.5.

Fast Streams. The files FastStreamsB.bcpl and FastStreamsA.asm implement fast streams to memory.
Documentation is part of DiskStreams.

Disk Streams. The files DiskStreams.bepl, DiskStreamsMain.bepl, and DiskStreamsAux.bepl contain
%roccdures for implementing disk streams. The fast file scanning facilities require the additional file
iskStreamsScan.bcpl. Documentation is found later in this manual.

Alloc. The file Alloc.Bepl implements the allocator. See documentation later in this manual.

Basic File System. The files BfsInit.bcpl, BfsBase.Bcpl, BfsWrite.Bepl, BfsCreate, BfsClose.bepl,
BfsDDMgr.bcpl, BfsNewDisk.bepl and BfsFindHole.bepl implement the basic file system (documentation
appcars later in this manual). They are maintained scparately from the OS (sources:
<AltoSource>BFSSources.dm; BRs: <Alto>BFSBRs.dm). They require Calendar.Asm, Dvec.Bepl,
Calls.Asm, BeplTricks.asm and SysErr.bepl in order to operate.

Disk Streams September 9, 1979 39

Disk Streams: A Byte-Oriented Disk Input/Output Package

The disk streams package provides facilities for doing efficient sequential input/output to and from Alto
disk files. 1t also includes operations for doing random positioning with moderate efficiency, and for
performing various housckecping operations. An introduction to streams can be found in the Alto
Opcrating System Manual.

As part of these facilities, a "fast stream™ capability permits very fast sequential byte access to objects
stored in memory. An extension to the disk streams package permits reading of a disk stream to be
ovcalapped with computation, thereby enabling the rcading of files at full disk speed under favorable
conditions.

The source files for the disk streams package are kept with the Alto Operating System in OS.DM:

Streams.D: public declarations;

DiskStreams.decl: private declarations;

FastStreamsB.bepl and FastStreamsA.asm: Memory streams;
DiskStreams.bcpl: create/destroy a stream;
DiskStreamsMain.Bcpl: the *main line’ code;
DiskStreamsAux.bepl: auxiliary disk stream functions;
DiskStreamsScan.bepl: fast file scanning;
DiskStreamsOEP.bcpl: overlay entry point declarations.

The DiskStreams code (not the FastStreams code) may be swapped. To this end, the functions are
distributed among three moderate-sized modules and intermodule references are minimized.

Streams usc the generic procedures of a "disk object” to do disk transfers. The stream routines defaultthe

choice of disk to "sysDisk,” a disk object created by the Alto operating system to provide access to the
standard disk drive. However, you are free to open streams to other disks.

1. Data structurces

The file Streams.D contains the public declarations of the disk streams package. Most users will not be
concerned with these structures (except occasionally with their size, so as to be able to allocate the right
amount of space for one of them), because the streams package provides procedures to perform all the
operations which are normally nceded.

The ST structure is common to all streams in the Alto operating system. It includes the procedures which
implement the generic stream operations for this particular strcam: Closes, Gets, Puts, Resets, Putbacks,
Errors, and Endofs. -In addition, there is a type, which for disk streams is always stTypeDisk, and three

parameter words whose interpretation depends on the stream. The parameter words are not used by disk
streams.

Fast streams are a specialization of streams, designed to quickly get or put bytes or words until a countis
exhausted, and then call on a fixup routinc which supplies a new count. Usually the count specifies the
number of items remaining in a buffer, and the fixup routine empties or refills the buffer, but no such
assumptions are made by fast streams. This facility is described in a later section; it is used by disk streams,
but is of no concern to a program which simply wants to use disk streams.

A file pointer contains all the information required to access an Alto disk file. Its structure is describedin
detail in the Disks documentation. For a normal user of strcams, a file pointer is simply a small structure
which must be supplied to the CreateDiskStream routine to specify the file to which the stream should be
at;aﬁhed. File pointers are normally obtained from directories, but a user is frcc to store them whereverhe
wishes.

Disk Streams September 9, 1979 40

A file address FFA is a pointer to a specific byte in a file. It includes the address of the byte, divided intoa
page number (the page size depends on the disk in use; normally pages contain 512 bytcs) and a byte
number. It also includes a disk address, which is a hint as to the physical location of the specified page.
Stream routines which use file addresses check the hint; if it turns out to be correct, they proceed, and
otherwise they start at the beginning of the file and scarch for the desired page.

A complete file address CFA contains both a file pointer and a file address; it is a pointer to a specificbyte
anywhere in the file system.

A file position (FPOS) is a double-precision number which addresses a byte in a file. The first word isthe
most-significant half,

2. Properties of disk streams

All the stream procedures take as their first parameter a structure called a disk stream. A disk stream
provides access to a file stored on the Alto disk. Each stream is associated with exactly one file, althoughit
is possible to have several streams in existence at once which are associated with the same file. The file isa
permanent object, which will remain on the disk until explicitly deleted. The stream is an ephemeral
object, which goes away when it is closed, or whenever the Alto’s memory is erased.

A file consists of a leader page, a length L, and a sequence of L. bytes of data; each byte contains 8 bits. A
stream is always positioned to some byte of the file, and the normal stream operations proceedsequentially
from the current position to later positions in the file. The first byte is numbered 0. When the stream s
positioned at byte n, this will be the next byte transferred by a Gets or Puts. There are also operations
which reposition the stream. When data is written into the stream, the file is lengthened if necessag' to
make room for it. The file is never shortened except by TruncateDiskStream (which may be called by
Closes; see below).

A stream can transact business a word at a time or a byte at a time, de ending on how it is created. Inthe
former case, if the length of the file is odd, the last word delivered will have garbage in its right byte.

You can r%%lace the generic stream procedures if you wish (Gets, Puts, Closes, Resets, Errors, Endofs,
Stateofs). The one you are most likely to want to replace is the error procedure. Itis initialized to SysErr.

3. Procedures

This section describes the calling sequences and behavior of all the user-callable procedures in thestreams
package. If a parameter is followed by an expression in brackets, this means that the parameter will be
defaulted to that expression if you supply 0. If the last few parameters you are supplying arc defaulted,
you can just omit them. Empty brackets mean that the parameter may be omitted. The parameter sstands
for the disk stream the procedure works on.

Warning: Because the stream procedures occasionally use the RetryCall function, a procedure address
cannot be computed, but must be the value of a static élobal) or local variable. Thus "a>>proc(stream,b)”
is not permitted, but "let pr=a>>proc; pr(strcam, b)" is fine.

3.1. Creating and destroying

CreateDiskStream(filePtr, type [ksTypeReadWrite], itemSize [wordItem], Cleanup [Noop], errRtn
[SysErr], zone [sysZone], nil, disk [sysDisk]) returns diskStream. A new disk stream is created and
returned. It is associated with the file specified by filePtr on the given "disk,” and positioned at item 0. Its
type may be one of (see Streams.D for definitions):

Disk Streams September 9, 1979 41

ksTypeReadOnl
ksTypeWriteOnly
ksTypcReadWrite

Its itemSize may be one of (see Streams.D for definitions):

charltem
wordltem

If you mgipgly a clcanuf routine, it will be called with the strcam as parameter g’_ust before the stream is
destroyed by a Close. If returnOnCheckError is true, the routine will return 0 if the file id of the leader
page at the address specificd in the file pointer is different from the file id in the file pointer. You would
want this if you wanted to use the file pointer as a hint, perhaps to be backed up by a directory lookup ifit
fails. In fact, the standard directory routine OpenFile does exactly that. 1f you supply a zone, it willbe
used to allocate the space necded by the stream. This space comes in two parts: the strcam itself, about60
words long, and the buffer, one page long.

Resets(s): flushes any buffers associated with the stream to the disk, and positions the stream to 0.
Closes(s): closes the stream, flushing the buffer and updating various information in the leader page if
necessary. The last things it docs are to call the cleanup routine passed to CreateDiskStream, and thento
free the space for the stream. If the stream is open for writing only and it is not positioned at date byte0,
the file length is truncated to the current position.

CleanupDiskStream(s): flushes any buffers associated with the stream to the disk.

3.2. Transferring Data

Gets(s): returns the next item (byte or word, depending on the item size), or causes an error if there areno
more items in the stream.

Puts(s, item): writes the next item into the stream. It causes an error if there is no more disk space, or ifthe
stream was created read-only.,

ReadBlock(s, address, count) returns actualCount: reads count words from the stream into memory,
starting at the specified memory address. It returns the number of words actuall¥ read, which may beless
than count if there were not enou%h words in the file. It never causes an end-of-file error. It is possibleto
use ReadBlock on a byte stream, but only if the strcam is currently positioned at an even byte; otherwise
there will be an error.

WriteBlock(s, address, count): writes count words from memory into the stream, starting at the specified
memory address. The comment in ReadBlock about byte streams applies here also.

3.3. Reading state

Endofs(s): returns true if and only if there arc no more items in the stream.
LnPageSize(s) returns the log (base 2) of the number of words in a page of the file.

FileLength(s, filePos []) returns lengthl.: positions the file to its last byte and returns the length in bytesin
filePos (IFPOS), and the length mod 2**16 as its value.

FilePos(s, filePos [J) returns posL: returns the current byte position in filePos (FPOS), and the current
position mod 2**16 as its value.

GetCurrentFa(s, fileAddress) stores the current position in the file address (FA), including the disk address
of the current page as a hint which can be used by JumpToFa.

Disk Strcams September 9, 1979 42

GetCompleteFa(s, completeFileAddress) stores both the file pointer and the current position in the
complete file address (CFA). This is cnough information to create a strcam (passing the file pointer to
CreateDiskStream) and then to return to the current position (passing the file address to JumpTol-a).

KsBufferAddress(s) returns address: returns the address in memory of the buffer for the stream. Thisis
useful if you want to move the buffer; you can do so, and then reset the address with KsSctBufferAddress.

KsGetDisk(s) returns a pointer to the DSK object that describes the disk on which this stream is open(see
Disks documentation).

KsHintLastPageFa(s) returns a pointer to a hint for the end of the file opened by stream s.

Readl.caderPa, c(?, 1d) reads the 256 word leader page for the file on which s is open into the vector
pointed to by 1d. The stream is left positioned at data byte 0.

3.4. Setting state
TruncateDiskStream(s) truncates the stream at its current position. Afterwards, Endofs(s) will be true.

PositionPage(s, page, doExtend [true]) returns wantedToExtend: positions the stream to byte 0 of the
specified page. 1f doExtend is true, it will extend the file with zeros if necessary in order to make it long
enough to contain the specified page. If doExtend is false, it will not do this, but will return true if it was
unable to position the stream as requested because the file wasn’t long enough. NOTE: This routine
interprets "page" in the units associated with the disk on which the strcam is open. If you wish adevice-

independent positioning command, see SetFilePos.

PositionPtr(s, byteNo, doExtend [true]) returns wantedtoExtend: positions the stream to the specified byte
of the current page. DoExtend is interpreted exactly as for PositionPage.

JumpToFa(s, fileAddress) positions the file to the specified address (FA). 1t tries to use the disk address
hint in the address, but falls back to PositionPagc if that fails.

(Slg}t)fglsc)f’os(s, filePos): positions the file to the byte specified by the double-precision number in filePos

SetFilePos(s, filePosH, filePosL): positions the file to the byte specified by the filePosH*2**16 + filePosL.
KsSctBufferAddress(s, address): sets the buffer address to the specified memory address. It is thecaller’s
responsibility to be surc that the buffer has the proper contents, and that it was allocated from the proper

1zlone, so that when it is freed using the zone which was used by CreateDiskStream the right thing will
appen.

ReleaseKs(s) will release all the storage used by the strecam s, without referencing the disk at all. This isa
way of aborting a stream, often useful when recovering from an unrecoverable disk error.

WritcLeaderPage(s, 1d) writes the 256-word vector &ointcd to by 1d on the leader page of the file on which
s is open. The stream is left postioned at data byte 0.

3.5. File Scanning

The disk stream ﬁroccdures described above have the property that they perform disk operations
synchronously. When one of these procedures requires a disk transfer to be Eerf'ormed, it initiates the
transfer and waits for it to complete. While certain procedures (c.(;{.,'., ReadBlock, WriteBlock, SetFilePos,
etc.) are capable of transferring many consecutive pages in a single disk operation, most stream routinesare
limltctgl tg) %qckpage per disk revolutton. This performance is an order of magnitude below the raw transfer
rate of the disk.

Disk Streams September 9, 1979 43

The procedures in the DiskStrecamsScan module permit reading (but not writing) of a file to proceed atu
to_full disk spced, if the amount of computation to be performed per page is not too great (about
milliscconds). To make use of this facility, you must provide a certain amount of extra buf%er space tobe
managed by the disk streams package, and you must take care of scquencing through the data in cach page
yoursclf rather than obtaining it one item at a time using Gets.

The flow of control is basically as follows. You create a disk stream in the normal fashion. When you want
to start scanning the file, you gass the stream to InitScanStream, along with one¢ or more additional page-
size buffers, and it returns a Scan Stream Descriptor (SSD). Now, every time you want to examine the
next page of the file, you call GetScanStrcamBuffer, which returns a pointer to a buffer containing the
contents of that page. The contents of the buffer remain valid until the next call to GetScanStreamBuffer.
When you have scanned as much of the file as you care to, you call FinishScanStream, which destroysthe
SSD and lcaves the strecam positioned at the beginning of the page most recently rcturned by
GetScanStreamBuffer. You should not execute any normal stream operations between the calls to
InitScanStream and FinishScanStream.

InitScanStream(s, bufTable, nBufs) returns SSD. Creates a Scan Stream Descriptor in preparation for
scanning the file corresponding to the stream s. bufTable is an array of pointers to page-size buffers, and
nBufs is the number of buffers (there must be at lcast one). That is, the buffers are located atbufTable!0,
bufTable!l, ..., bufTable!(nBufs-1). The SSD is allocated from the zone from which s was allocated.
InitScanStream does not actually initiate any disk activity.

GetScanStreamBuffer(ssd) returns a pointer to a buffer containing the next page of the file beingscanned,
or zero if end-of-filc has been reached., This procedure waits if necessary for the transfer of the next page
to complete, and before returning it initiates as many new disk transfers as it has buffers for. The firstpage
returned by GetScanStreamBuffer is the one at which the stream was positioned at the time
InitScanStream was called. The initial portion of the SSD is a public structure (defined in Streams.d)
containing the disk address, page number, and number of characters in the page most recently returned by
GetScanStreamBuffer; you may use this information for whatever purposes you wish (e.g., in building upa
file map for subscquent efficient random access to the stream).

FinishScanStream(ssd) waits for disk activity to cease, updates the state in the corresponding stream, and
destroys the SSD. The stream is left C'posmoned at the beginning of the last page returned by
GetScanStreamBuffer, or at end-of-file if GetScanStreamBuffer most recently returned zero.

The package uses the stream buffer in addition to the buffers passed explicitly to InitScanStream. Itis
possible to scan a file at full disk speed (assum'mlg the file is consccutively allocated) with two buffers&i{e.,
just one additional buffer), so long as the interval between calls to GetScanStreamBuffer is no greater than
3.3 milliseconds (or about 2 milliseconds of computation on the caller’s part). If morc computation per
page is required, or the amount of computation per page is highly variable, then more buffers are required
to maintain maximum throughput.

4. Fast Streams

A fast stream structure must begin with the structure declared as FS in Streams.D; following this youcan
put anything you like. To initialize this structure, use

InitializeFstream(s, itemSize, PutOverflowRoutine, GetOverflowRoutine, GetControlCharRoutine
[Noop]). The s paramter points to storage for the stream structure, 1FS words lon%. The itemSize is as for
CreateDiskStream. The overflow routines are explained below. GetControlCharRoutine(item, s) will be.
called whenever a Gets for a charltem stream is about to return an item between 0 and # 37, and 1itsvalue:
is returned as the value of the Gets. The initialization provides Gets, Puts, and Endofs routines; the other
stream procedures are left as Errors.

SetupFstream(s, wordBase, currentPos, endPos) is used to set up a fast stream to transfer data to or froma
buffer in memory. WordBase is the address of the buffer in memory, and currentPos and endPos are byte

Disk Streams September 9, 1979 44

addresses in the buffer. CurrentPos is the address of the first byte to be transferred, and endPos is the
address of the first byte which should not be transferred. CurrentPos is rounded up to a word if theitem
size is wordltery, and endPos is rounded up to a word.

When a Gets or Puts attempts to transfer the byte addressed by endPos, the corresponding overflow
routine is called, with the same parameters that were passed to the Gets or Puts. The overflow routinecan
do one of two things:

do the work and return
fix things up so that the Gets or Puts can succeed, and then exit with RetryCall(stream, item).

SetEof(s, newValue) sets the end-of-file flag in the strcam. When this flag is set, the Gets routine is
replaccg by a routine which gives an end-of-file error, and when it is cleared, the old Gets routine is
restored.

CurrentPos(s) returns the current position in the buffer, always measured in bytes.
ItemSize(s) returns the item size of the stream.
Dirty(s) returns true if the dirty flag is true. This flag is set to true whenever a Puts is done.

SetDirty(s, valuc) scts the dirty flag to the specified value (true or false).

5. Errors

Whenever an operation on a stream causes an error, the error procedure in the stream is called with two
parameters: the stream, and an error code. The error procedure is initialized to SysErr, but you canchange
it to whatever you like. The error codes for errors generated by the disk stream package are:

1301 illegal item size to CreateDiskStream or
InitializeFstream

1302 end of file

1303 attempt to exccute an undefined stream opceration

1200 attempt to write a read-only stream

1201 attempt to do ReadBlock or WriteBlock on a stream not
positioned at a word.

1202 attempt to PositionPointer outside the
range [0 .. #1000 .)

1203 attempt to do a disk operation on something
not a disk stream

1204 bug in disk streams package

1205 CreateDiskStrcam cannot allocate space for the stream
from the zone supplied

Display strcam package February 20, 1979 45
Display stream package

A library package is now available which gr()vidps display strcams of great flexibility. Special features
include multiple fonts, repositioning to any bit position in the current line (or, under propercircumstances,
any line), selective crasing and polarity inversion, and better utilization of the available bitmap space.

The package consists of two files, DspStreamB.Bepl and DspStrcamA.Asm. In addition, files Streams.d
and AltoDefs.d provide useful parameter and structure declarations, in particular the paramcters IDCB
and 1DS mentioned below. The package does not require any routines other than those in the operating
system.

1. Creating a display strcam

CreateDisplayStream(nLines, pBlock, 1Block Font [sysFont], ~wWidth [38], Options
[DScompactieft+ DScompactright], zone [sysZonc]): creates a display stream. nl.ines is the maximum
number of lines that will be displayed at once: it is completely independent of the amount of space
supplied for bitmap and DCBs. pBlock is the beginning address of storage that can be used for the display
bitmap and control blocks; its length is 1Block. This block may be shortened slightly in order to align
things on ¢ven word boundaries. Font is a pointer to the third word of a font in AL format to use for the
stream. wWidth gives the width of the screen in Alto screen units, divided by 16; it must bc an even
number. Zonc is a free-space pool from which anf/ additional space necded by the stream can be seized.
(For a description of zones, see the Alto OS manual.)

The minimum space for a display stream is IDCB*nLines+ fh*wWidth+1, where th is the height of the
standard system font, rounded up to an even number; the +1 allows the display stream package to align
the space on an even word boundary. This, howcver, only provides enough bitmap for a sinﬁle line. A
space allocation of IDCB*nLines+ fh*wWidth*nl.ines+1 guarantees enough bitmap for all nLines lines.
The display stream package uses all the available space and then, if necessary, blanks lines starting fromthe
top to make room for new data.

Options, if supplied, controls the action of the stream under various exceptional conditions. The various
options have mnemonic names (defined in Strcams.d) and may be added together. Here is the list of
options:

DScompactleft allows the bitmap space reciuired for a line to be reduced when
scrolling by eliminating multiples of 16 initial blank bit positions
and replacing them with the display controller’s "tab" feature.
However, a line in which this has occurred may not be
overwritten later (with SetLinePos, see below).

DScompactright allows the bitmap space for a line to be reduced when scrolling
by eliminating multiples of 16 blank bit positions on the right.
Overwriting is allowed up to the beginning of the blank space,
i.e. you cannot make a line longer by overwriting if you select
this option.

DSstopright causes characters to be discarded when a line becomes full,
rather than scrolling onto a new line.

DSstopbottom causes characters to be discarded in preference to losing data
from the screcn. This applies when either all nLines lines are
occupied, or when the allocated bitmap space becomes full.

DSnone none of the above (this option is necessary so that 0 defaults to
DScompactleft+ DScompactright).

2. Displaying the stream contents

Display stream package February 20, 1979 46

ShowDisplayStrcam(s, how !DSbclow], otherStream !dsp]): This procedure controls the presentation of a
chain of dlsglay control blocks on the screen. If how id DSbelow, the stream will be displayed
immediately bclow otherStream; if DSabove, immediately above; if DSalone, it will be the only stréam
displayed; if DSdclete, the stream s will be removed from the screen. The third argument is not needed for
DSalone or DSdclete.

If you wish to construct your own "stream” for purposes of passing it to ShowDisplayStream, it issufficient
that $>>DS.fdcb point to the first DCB of a list and that $>>DS.1dcb point to the last DCB. These are the
only entr)lcs referenced by ShowDisplayStream (note that fdcb and Idcb are the first two words of astrcam
structure).

3. Current-lin¢ operations
ResetLine(ds): erases the current line and resets the current position to the left margin.
GetFont(ds): returns the current font of ds.

SctFont(ds, pfont): changes the font of the display stream ds. Pfont is a pointer to word 2 of a font, which

is compatible with GetFont. Characters which have been written into the stream already are notaffected;

future characters will be written in the new font. If the font is higher than the font initially specified,

writing characters may cause uncxpected alteration of lines other than the line being written into. if

pFont!-2 is negative, then pFont!-1 is a pointer to a font (word 3, remember) and subscquent characters

B_ut to the stream will be shown in synthetic bold face by scan converting the character, moving over one
it and scan converting it again.

GetBitPos(ds): returns the bit position in the current line. The bit position is normally initialized to 8.

SetBitPos(ds, pos): sets the bit position in the current line to pos and returns true, if pos is not too large;
otherwise, returns false. Pos must be less than 606 (the display width) minus the width of the widest
character in the current font. Resetting the bit position does not affect the bitmap; characters displayedat
overlapping positions will be "or"ed in the obvious manner.

EraseBits(ds, nbits, flag): changes bits in ds starting from the current position. Flag=0, or flag omitted,
means set bits to 0 (same as background); flag=1 means set bits to 1 f(opposite from background); flag=-1
means invert bits from their current state. If nbits is positive, the affected bits are those in positions pos
through pos+nbits-1, where pos is GetBitPos(ds); if ngits is negative, the affected positions are pos+ nbits
through pos-1. In either case, the final position of the stream is pos-- nbits.

Here are two examples of the use of EraseBits. If the last character written on ds was ch, EraseBits(ds,
-CharWidth(ds, ch)g)will erase it and back up the current position (see below for CharWidth). If a wordof
width ww has just been written on ds, EraseBits(ds, -ww, -1) will change it to white-on-black.

4. Inter-line operations

GetLinePos(ds): returns the line number of the current line; the top line is numbered 0. Unlike the
present operating system disilay streams, which always write into the bottom line and scroll up, thedisplay
strcams provided by this package start with the top line and only scroll when they reach the bottom.

SetLinePos(ds, pos): sets the current line position in ds to pos. If the line has not yet been written into, or
if it has zero width, or if it is indented as the result of compacting on the left, SetlinePos has no effectand
returns false; otherwisce, SetLinePos returns true. Note that if you want to get back to where you were
before, you must remember where that was (using GetLinePos and GetBitPos).

InvertLine(ds, pos): Inverts the black/white sense of the line given by pos. Returns the old sense (0 is
black-on-white).

ds>>DS.cdcb: points to the DCB for the current line. You may (at your own risk) fiddle with this to
achieve various effects.

5. Scrolling

Display stream package February 20, 1979 47

The display stream package writes characters using a very fast assembly language routine until cither the
current line is full or it encounters a control character. In cither of these situations it calls a scrolling
procedure whose address is a component of the stream. The scrolling procedure is called with the same
ar]%umcnts as PUTS, i.c. (ds, char), and is cxpected to do whatever is necessary. The standard procedure
takes the following action: ,

2) New line (code 15b) causes scrolling.

3) Tab (code 11b) advances the bit position to the next multiple of 8 times the width of "blank"
code 40b) in the current font: if this would exceed the right margin, just puts out a blank.

4) hthfgr control characters (codes 1-10b, 12b-14b, 16b-37b) print with whatever symbol appearsin
the font.

5) If a character will not fit on the current line, scrofling occurs and the character is printed at the
beginning of the new linc (unless the DSstopright option was chosen, in which case the
character is simply discarded).

1§ Null (code 0) is ignored.

The scrolling procedure is also called with arguments (ds, -1) whenever a contemplated scrolling operation
would cause information to disappear from the screen, either because nl.ines lines are already present or
becausc the bitmap space is full §m1css the DSstopbottom option was choscn, in which case the procedure
is not called and the action is the same as if it Flad returned false). If the procedurc returns true, the
scrolling operation proceeds normally. If the procedure returns false, the scrolling does not take place,and
the character which triggered the operation is discarded.

The user may supply a different scrolling procedure simply by filling it into the field ds>>DS.scroll.
6. Miscellaneous

GetLmarg(ds): returns the left margin position of ds. The left margin is initialized to 8 (about 1/10" from
the left edge of the screen).

Setl.marg(ds, pos): sets the left margin of ds to pos.

GetRmarg(ds): returns the rifght margin position of ds. The right margin is initialized to the right edge of
the screen: this is the value of the displaywidth parameter in DISP.D.

SetRmarg(ds, pos): scts the right margin of ds to pos.

CharWidth(StreamOrFont, char): returns the width of the character char in the stream StreamOrFont; if
StreamOrFont is not a stream, it is assumed to be a font pointer.

Alloc February 19, 1979 7:23 PM 48
Alloc -- A Basic Storage Allocator

The Alloc package contains a sinall and efficient non-relocating storage allocator. It doesn’t do much, but
what it does it docs very well. Initially the user gives the allocator one (or several) blocks of storage by calls
on InitializeZone. The user can later add storage to a zone by calling AddToZone. The function Allocate
returns a pointer to a block allocated from a given zone. Calling Free returns a previously-allocated block
to a given zone.,

Argument lists given below are decorated with default settings. An argument followed by [exp] will default
if omitted or zero to the value exp; an argument followed by [...exp] will default if omitted to exp.

InitializeZone, AddToZone

The function zone = InitializeZone(Zone, Length, OutOfSpaceRoutine [...SysErr], MalFormedRoutine
%..SysErr]) initializes the block of storage beginning at address Zone and containing Length words to bea
ree storage zone. OQutOfSpaccRoutine is taken to be an error handling routine that will be called whenever
a requested allocation cannot be satisfied. MalFormedRoutine is an error printing routine that is called
whenever the Alloc package detects an error in the consistency of the zone data structure. InitializeZone
builds the zone data structure, and returns a pointer to a "zone,” which is used for all subsequent callsto
Allocate and Free for the zone.

The function AddToZone(Zone, Block, Length) adds the block of storage beginning at Block and
containing Length words to the zone pointed to by Zone.

Alloc_restricts the maximum size of the blocks it will allocate and of the "Length” arguments for
InitializeZone and AddToZone to 32K-1.

Allocate, Free

The function Allocate(Zone, Length, returnOnNoSpace [...0], Even [...0]) allocates a block of Length words
from Zone and returns a pointer to that block. If the allocation cannot be done, one of two cases pertains:
(1) returnOnNoSpace is non-zero or the OutOfSpaceRoutinc provided for the zone is 0: Allocate returns
the value 0; if returnOnNoSpace is not -1, the size of the largest available block is stored in
@returnOnNoSpace; (2) otherwise, the value rcturned to the «caller is the result of
OutOfSpaceRoutine(Zone, ecOutOfSpace, Length).

If the optional parameter Even is true, the block allocated will be guaranteed to begin on an even word
boundary. This is useful when allocating display buffers.

The procedure Free(Zone, Block) gives a previously-allocated block of storage back to the zone pointedto
by Zone. Block must have been the value of a call on Allocate.

CheckZone

The Alloc package contains considerable facilities for debugging. Conditional compilation will enable
various levels of consistency checking; the remainder of this paragraph assumes that the checking is
enablgeld.. Users should consult the source file (Alloc.Bepl) for details concerning the conditional
compilation.

The procedure CheckZone(zone), which may be called conveniently from Swat, will perform a fairly
exhaustive consistency check of the zone (provided that conditional compilation has caused the code tobe

present!).

In addition, certain checking will be performed on the various calls to the package, provided that the
MalFormedRoutine parameter supplied for the zone is non-zero.

Alloc February 19, 1979 7:23 PM 49

If an crror is detected, the call MalFormedRoutine(zone, errCode) is executed. Values of the error code
are:

ccOutOfSpace 1801 Not enough space to satisfy a request.
ccZoncAdditionError 1802 Too large or too small addition to zone.
ecBlockNotAllocated 1803 Free has been called with a bad block.
cclltFormed 1804 The consistency-checker has found some

error in the zone. Consult Alloc.Bepl.
Free-Standing Zones

It is often desirable to use a single 16-bit quantity to describe an entire free-space pool, together withits
allocating and freeing procedures. For example, one can pass to the operating system such a quantity; the
system can thereafter acquire and release sgace without knowing the details of how the operations are
done. The zones constructed by Alloc have this property:

zone>>ZN.Allocate(zone, Length) will allocate a block
zone>>ZN Free(zone, Block) — will free a block

By convention, these entries are at the beginning of a zone. Thus, all you need to know about the ZN data
structure is:

structure ZN][
Allocate word //Allocation procedure
Free word //Free procedure
...rest of zone...

Example
The following terrible implementation of the factorial function illustrates the use of Alloc:

static | Spare
SparelsAvail
FactZone

let Factorial(n) = valof
let FactZoneV = vec 256
ct MySpare = vec 37
Spare = MySpare
SparelsAvail = true

FactZone = InitializeZone(FactZoneV, 256, StkOvfl)
let FactVal = InnerFact(n)
resultis FactVal
and InnerFact(n) = valof
[structure STKENT:

[link word
value word

manifest [empty = -1;
wordsize = 16

Alloc February 19, 1979 7:23 PM

let stack = empty

whilen gr 1 do
[let'stkent = Allocate(FactZone, size STKENT/wordsize)
stkent>>STKENT link = stack
stkent>>STKENT value = n
stack = stkent
n =n-1

let value = 1

while stack ne empty d
&value = value*(stack))STKENT value)
ct stkent = stack A
stack = stkent>>STKENT.link
Free(FactZone, stkent)

resultis value

and StkOvfl(Zone, nil, Length) = valof
[unless SparelsAvail do
F’Aargh! Stack stuck!")
1msh

Add’l ‘oZone(FactZone, Spare, 37)
SparelsAvail = false
fesultls Allocate(FactZone, Length)

50

Disks & Bfs August 10, 1980 51
Disks: The Alto File System

This document describes the disk formats used in the Alto File System. It also describes a "disk ob{'cct,"a
Bepl software construct that is used to interface low-level disk drivers with packages that implement
higher-level objects, such as streams.

The primary focus of the description will be for the "standard” Alto disks: cither 1) %p to 2 Diablo Model
31 disk drives or (2) one Diablo Model 44 disk drive. The low-level drivers for these isks are called "Bfs"
(Basic File System). With minor modifications, the description below aplplics to the Trident Model T80
and T300 disk drives, when formatted for Alto file system conventions. The differences are flagged with
the string ['rident]. Low-level drivers for the Trident disks are called "Tfs."

1. Distribution

Relocatable binary files for the BFS are kept in <Alto>BFSBrs.dm. The sources, command files, and test
lfgmgram (described later in this document) are kept in <AltoSource>BFSSources.dm Relocatable binary
iles for the TFS are kept in <Alto>TFS.dm; sources are kept on <AltoSource>THSSources.dm.

2. File and Disk Structure

This section describes the conventions of the Alto file system. The files AltoFileSys.D and Bfs.D contain
Bepl structure declarations that correspond to this description ([Trident]: See also “Tfs.D").

The unit of transfer between disk and memory, and hence that of the file system, is the disk sector. Each
sector has three fields: a 2-word header, an 8-word label, and a 256-word data page. ([Trident]: The fields
are a 2-word header, a 10-word labcl, and a 1024-word data page.)

A sector is identificd by a disk address; there are two kinds of disk addresses, real and virtual. The
hardware deals in real addresses, which have a somewhat arbitrary format. An unfortunate consequenceis
that the real addresses for all the pages on a disk unit arc sparse in the set of 16 bit integers. To correct this
defect, virtual addresses have been introduced. They have the property that the pages of a disk unit which
holds n pages have virtual addresses 0 ... (n-1). Furthermore, the ordering of pages by virtual addressis
such that successive pages in the virtual space are usually sequential on the disk. As a result, assigninga
sequence of pages to consecutive virtual addresses will ensure that they can be read in as fast as possible.

2.1. Legal Alto Files
An Alto file is a data structure that contains two sorts of information: some is mandatory, and is required

for all legal files; the remainder is "hints". Programs that operate on files should endeavor to keep the
hints accurate, but should never depend on the accuracy of a hint.

A legal Alto file consists of a sequence of pages held together by a doubly-linked list recorded in the label
ficlds. Each label contains the mandatory information:

The forward and backward links, recorded as real disk addresses.
A page number which gives the position of the page in the file; pages are numbered from 0.

A count of the number of characters of data in the page (numchars). This may range from 0 (fora

Disks & Bfs August 10, 1980 52

completely empty page) to 512 (for a completely full page). ([Trident]: A full page contains 2048
characters.)

A real file id, which is a three-word unique identifier for the file. The user normally deals with virtual
file ids (see the discussion of file pointers, below), which are automatically converted into real file ids
when a label is necded.

Three bits in the file id deserve special mention:

Directory: This bit is on if the file is itsclf a directory file. This information is used by the disk
Scavenger when trying to re-build a damaged disk data structure.

Random: This bit is currently unused.
NoLog: This bit is no longer used, but many cxisting files are likely to have it sct.
Leader Page: Page 0 of a file is called the leader page; it contains no file data, but only a collection of file
propertics, all of which are hints. The structure LD in AltoFileSys.DD declares the format of a leader page,
which contains the following standard items:
The file name, a hint so that the Scavenger can enter this file in a directory if it is not already in one.
The times for creation, last read and last write, interpreted as follows:
A file’s creation date is a stamp gencrated when the information in the file is created. Whena
file is copied (without modification), the creation date should be copied with it. When afile
is modified in any way (either in-place or as a result of being overwritten by newly-created
information), a new creation date should be generated.
A file’s write date is updated whenever that file is physically written on a given file system.

A file’s read date is updated whenever that file is physically read from within a given file
system.

A pointer to the directory in which the file is thought to be entered (zeroes imply the system
directory SysDir).

A "hint" describing the last page of the file.
A "consecutive™ bit which is a hint that the pages of the file lie at consecutive virtual disk addresses.
The changeSerial field related to version numbering; whenever a new version of a file "foo" is
made, the changeSerial ficld of all other files "foo” (i.e., older versions) is incremented. Thus, a
program that wishes to be sure that it is using the most recent version of a file can verify that
changeSerial =0. If a program keeps an FP as a hint for a file, and is concerned about the relative
position of that file in the list of version numbers, it can also keep and verify the changeSerial entry
of the file. Version numbers have been deimplemented.
These standard items use up about 40 words of the leader page. The remaining space is available for
storing other information in blocks which start with a one word header containing type and lenglﬂ_l)]ﬁelds.
A zero terminates the list. The structure FPROP in AltoFileSys.d defines the header format. "The only
standard use of this facility is to record the logical shape of the disk in the leader page of SysDir.
Data: The first data byte of a file is the first byte of page 1. '
In a legal file with n pages, the label field of page i must contain:
A next link with the real disk address of page (i+1), or 0 ifi=n-1.

A previous link with the real disk address of page (i-1), or 0 if i=0.

Disks & Bfs August 10, 1980 53

A page number between 0 and (n-1), inclusive.

A numchars word = 512 if i<n-1, and <512 if i=n 1. The last page must not be completely full.
([Trident]: = 2048 if iKn-1, and <2048 if i = n-1.)

A real file id which is the same for every page in the file, and different from the real file id of any other
file on the disk.

A file is addressed bi, an object called a file pointer (FP), which is declared in AltoFileSys.D. A filepointer
contains a virtual file id, and also the virtual address of the leader page of the file. The low-level disk
routines construct a real file id from the virtual one when they must deal with a disk label. Since it is
possible for the user to read a label from the disk and examine its contents, the drivers also provides a
routli)ncf_xﬁh(iich ;»vill convert the real file id in the label into a file pointer (of course, the leader address will
not be filled in).

Note: Real disk address 0 (equal virtual disk address 0) cannot be part of any legal Alto file because the
value 0 is reserved to terminate the forward and backward chains in sector labels. However, disk address0
is used for "booting" the Alto: when the boot key is pressed when no keyboard keys are down, sector Ois
read in as a bootstrap loader. The normal way to make a file the "boot file" is to first create a legal Alto file
with the bootstrap loader as the first data page (page 1), and then to copy this page (label and data)into
disk sector 0. Thus the label in sector 0 points forward to the remainder of the boot file.

2.2. Legal Alto Disks

A legal disk is onc on which every page is either part of a legal file, or free, or "permancntly bad.” A free
page has a file id of all ones, and the rest of its label is indeterminate. A permanently bad page has a fileid
with each of the three words set to -2, and the remainder of the label indcterminate.

2.3. Alto Directory Files

A dircctory is a file for associating string names and FP’s. It has the directory bit set in its file id, and has
the following format (structure DV declared in AltoFileSys.D).

It is a sequence of entries. An entry contains a header and a body. The length field of the header tellshow
many words there are in the entry, including the header. The interpretation of the body depends on the
type, recorded in the header.

dvTlypeFree=0: free entry. The body is uninterpreted.

dvTypeFile=1.: filc entry. The body consists of a file pointcr, followed by a Bepl string containing the
name of the file. The file name must contain only upper and lower case’letters, digits, and characters
in the string " +--.1$". They must terminate with a period (".") and not be longer than maxLengthFa
characters. If there are an odd number of bytes in the name, the "garbage byte" must be 0. The
interpretation of exclamation mark (!) is special; if a filc name ends with ! followed only by digits (and

the mandatory "."), the digits spccify a file version number.

The main directory is a file with its leader page stored in the disk page with virtual address 1. There isan
entry for the main directory in the main directory, with the name SysDir. All other directories can be
reached by starting at the main directory.

2.4. Disk Descriptor

There is a file called DiskDescriptor entered in the main directory which contains a disk descriptor
structure which describes the disk and tells which pages are free. The disk descriptor has two parts: a 16
word header which describes the shape of the disk, and a bit table indexed by virtual disk address. The
declaration of the header structure is in AltoFileSys.D.

Disks & Bfs August 10, 1980 54

The "defaultVersionsKept” entry in the DiskDescriptor records the number of old versions of files that
should be retained by the system. If this entry is 0, no version accounting is donc: new files simply replace
old oncs. Version numbers have been deimplemented.

The entry in the disk descriptor named "frcePages” is used to maintain a count of free pages on the disk.
This is a hint about a hint: it is computed when a disk is ogcned bf’ counting the bits in the bit table, and
then mcrcmcntmg and decrementing as pages are released and allocated. However the bit table is itself
just a collection of hints, as explained below.

The bit table contains a "1" corresponding to each virtual disk address that is believed to be occupied bya
file, and "0" for free addresses. These values are, however, only hints. Programs that assign new pages
should check to be surc that a page thought to be free is indeed so by reading the label and checking tosee
that it describes a free page. (The WriteDiskPages and CreateDiskFile procedures in the disk object
perform this checking for you.)

2.5. Oversights
If the Alto file system were to be designed again, scveral deficiencies could be corrected:

Dircctory entrics and label entries should have the same concept of file identifier. Presently, we have
filePointers and filelds.

There is no reason why the last page of a file cannot contain 512 bytes.

It is unfortunate that the disk controller will not check an entry of 0 in a label, because these values
often arise (numChars of the last page, page number of the lcader page). Another don’t care value
should be chosen: not a legal disk address; with enough high order bits so that it will check numChars
and page number fields.

The value used to terminate the chain of disk addresses stored in the labels should not be a legal disk
address. (It should also not be zero, so that it may be checked.) If it is a legal address, and if you tryto
run the disk at full speed using the trick of pointing page 1's label at page i+ 1’s disk address in the
command block, the disk will try to read the page at the legal disk address represented by the chain
terminator. Only when this results in an error is end of file detected. A terminator of zero has the
undesirable property that a seek to track 0 occurs whenever a chain runs into end-of-file.

3. The Disk Object

In order to facilitate the interface between various low-level disk drivers and higher-level software, we

define a "disk object." A small data structure defines a number of generic operations on a disk -- the

structure DSK is defined in "Disks.D." Each procedure takes the disk structure as its first argument:
ActOnDiskPages: Uscd to read and write the data fields of pages of an existing file.

Wri(tlclgiskpages: Used to read and write data ficlds of the pages of a file, and to extend the file if
needed.)

DeleteDiskPages: Used to delete pages from the end of a file.

CreateDiskFile: Used to create a new disk file, and to build the leader page correctly.
AssignDiskPage: Used to find a free disk page and return its virtual disk address.
ReleaseDiskPage: Used to release a virtual disk address no longer needed.

VirtualDiskDA: Converts a real disk address into a virtual disk address.

Disks & Bfs August 10, 1980 55

RealDiskDA: Converts a virtual disk address into a real disk address.
InitializeDiskCBZ.: Initializes a Command Buffer Zone (CBZ) for managing disk transfers.
DoDiskCommand: Queucs a Command Buffer (CB) to initiate a one-page transfer,
GetDiskCb: Obtains another CB, possibly waiting for an earlier transfer to complete.
CloseDisk: Destroys the disk object.

In addition, there arc several standard data entries in the DSK object:

{FSysDjr: Pointer to the FP for the directory on the disk. (This always has a constant format -- see
iscussion above.)

fpDiskDescriptor: Pointer to the FP for the file "DiskDescriptor” on the disk.

fpWorkingDir: Pointer to the FP to use as the "working directory” on this disk. This is usually the
same as fpSysDir.

nameWorkingDir: Pointer to a Bepl string that contains the name of the working directory.
InPageSize: This is the log (basc 2) of the number of words in a data page on this disk.
driveNumber: This entry identifies the drive number that this DSK structure describes.

retryCount: This value gives the number of times the disk routines should retry an operation before
declaring it an error.

totalErrors: This value gives a cumulative count of the number of disk errors encountered.

diskKd: This entry points to a copy of the DiskDescriptor in memory. Because the bit table can get

Eﬁnte large, only the header needs to be in memory. This header can be used, for cxample, tocompute
e capacity of the disk.

léggthCBZ, lengthCB: The fixed overhead for a CBZ and the number of additional words required per

In addition to this standard information, a particular implementation of a disk class may include other
information in the structure.

4. Data Structures

The following data structures are part of the interface between the user and the disk class routines:
pageNumber: as defined in the previous section. The page number is represented by an integer.

DAs; a vector indexed by page number in which the ith entry contains the virtual disk address of page iof
the file, or one of two special values (which are declared as manifest constants in Disks.D):

eofDA: this page is beyond the current end of the file;
filllnDA: the address of this page is not known.

Note that a particular call on the file system will only reference certain elements of this vector, and the
others do not have to exist. Thus, reading page i will cause references only to DAsli and DAs!(i+1), sothe
user can have a two-word vector v to hold these quantities, and pass v-i to the file system as DAs.

Disks & Bfs August 10, 1980 56

CAs: a vector indexed by dpa%c number in which the ith entry contains the core address to or from which
page i should be transfered. The note for DAs applics here also.,

fp (or filePtr): file pointer, described above. In most cases, the leader page address is not uscd.

action: a magic number which specifies what the disk should do. Possible values are declared asmanifest
constants in [isks.D:

DCreadD): check the header and label, read the data;
DCreadl.D: check the header, read the label and data;
DCreadHLD: read the header, label, and data;
DCwriteD: check the header and label, write the data;
DCwritel.D: check the header, write the label and data;
DCwriteHLD: write the header, label, and data;
DCscekOnly: just seek to the specified track
DCdoNothing:

A particular implementation of the disk class may also make other operations available by defining
additional magic numbers.

5. Higher-lcvel Subroutines

There arc two high-level calls on the basic file system:

pageNumber = ActOnDiskPages(disk, CAs, DAs, filePtr, firstPage, lastPage, action, lvNumChars,
lastAction, fixedCA, clcanupRoutine, IvErrorRoutine, returnOnCheckError, hintLastPage).

Parameters beyond "action' are optional and may be defaulted by omitting them or making them 0.

Here firstPage and lastPage arc the page numbers of the first and last pages to be acted on (i.c. read or
written, in normal use). This routine does the specified action on each pagc and returns the page number
of the last page successfully acted on. This may be less than lastPage if the file turns out to have fewer
Ba es. DAslfirstPage must contain a disk address, but any of DAs!(firstPage+1) through

s!(lastPage+1) may be filllnDA, in which case it will be replaced with the actual disk address, as
determined from the chain when the labels are read. Note that the routine will fill in DAs!(lastPage+1),

so this word must exist.

The value of the numChars field in the label of the last page acted on will be left in rv lvNumChars. If
lastAction is supplied, it will be used as the action for lastPage instead of action, If CAs eq 0, fixedCA is
used as the core address for all the data transfers, If cleanupRoutine is supplied, it is called after the
successful completion of each disk command, as described below under "Lower-level disk access”. (Note:
providing a cleanup routine defeats the automatic filling in of disk addresses in DAs).

Disk transfers that generate errors are retried several times and then the error routine is called with
rv lvErrorRoutine(lvErrorRoutine, cb, crrorCode)

In other words, 1IvErrorRoutine is the address of a word which contains the (address of the) routine to be
called when there is an error. The errorCode tells what kind of error it was; the standard error codes are
tabulated in a later section. The cb is the control block which caused the error; its format depends on the
particular implementation of the drivers (Bfs: the structure CB in Bfs.D).

The intended use of lvErrorRoutine is this. A disk stream contains a cell A, in a known place in the stream
structure, which contains the address of a routine which ficlds disk errors. The address of A is passed as
IvErrorRoutine. When the error routine is called, it gets the address of A as a parameter, and by
subtracting the known position of A in the disk stream structure, it can obtain the address of the stream
structure, and thus determine which stream caused the error.

Disks & Bfs August 10, 1980 57

The default value of returnOnCheckError is false. If returnOnCheckError is true and an error is
encountered, ActOnDiskPages will not retry a check error and then report an error. Instead, it willreturn
-(#100+1), where i is the page number of the last page successfully transferred. This feature allows
ActOnDiskPages to be used when the user it not sure whether the disk address he has is correct. It isused
by the disk stream and directory routines which take hints; they try to read from the page addressed bythe
hint with returnOnCheckError true, and if they get a normal return they know that the hint was good. On
the other hand, if it was not good, they will get the abnormal return just described, and can proceed totry
again in a more conservative way.

The hintLastPa%c argument, if supplied, indicates the Fage number of what the caller believes to be thelast
page of the file (presumably obtained from the hint in the leader page). If the hint is correct,
ActOnDiskPages will ensure that the disk controller docs not chain past the end of the file and seck to
cylinder zero (as described earlier under "Oversights"f). If the hint is incorrect, the operation will still be
erformed correctly, but perhaps with a loss in performance. Note that the label is not rewritten by
YCwriteD), so that the number of characters per page will not change. If you need to change the label, you
should use WriteDiskPages unless you know what you are doing.

ActOnDiskPages can be used to both read and write a file as long as the length of the file docs not haveto
change. Ifit does, you must use WritcDiskPages.

pageNumber = WriteDiskPages(disk, CAs, DAs, filePtr, firstPage, lastPage, lastAction, lvNumChars,
lastNumChars, fixedCA, nil, IvErrorRoutine, nil, hintLastPage).

Arguments beyond lastPage are optional and may be defaulted by omitting them or making them 0 (but
lastNumChars is not defaulted if it is 0).

This routine writes the specified pages from CAs (or from fixedCA if CAs is 0, as for ActOnDiskPages). It
fills in DAs entries in the same way as ActOnDiskPages, and also allocates enough new pages to complete
the specified write. The numChars field in the label of the last page will be sct to lastNumChars (which
defaults to 512 [Trident]: 2048). It is generally necessary that DAs!firstPage contain a disk address. The
only situation in which it is permissible for DAs!firstPage to contain filllnDA is when firstPage is zeroand
no pages of the file yct exist on the disk (i.e., when creating page zero of a new file).

In most cases, DAs!(ﬁrstPaﬁe-l) should have the value which you want written into the backward chain
pointer for firstPage, since this valuc is needed whenever the label for firstPage needs to be rewritten. The
only case in which it doesn’t need to be rewritten is when the page is already allocated, the next page isnot
being allocated, and the numChars field is not changing.

If lastPage alrcady exists:
1) the old value of the numChars field of its label is left in rv IvNumChars.
2) if lastAction is supplied, it is applied to lastPage instead of DCwriteD. It defaults to DCwriteD.

WriteDiskPages handles one special case to help in "renaming” files, i.e. in changing the FP (usually the
serial number) of all the pages of a file. To do this, use ActOnDiskPages to read a number of pages ofthe
file into memory and to build a DAs array of valid disk addresses. Then a call to WritcDiskPages with
lastAction=-1 will write labels and data for pages firstPage through lastPage (DAs!(firstPage-1) and
DAs!(lastPage+ 1) are of course used in this writing process). The numChars ficld of the label on thelast
lezﬁe 11)5 Xet to lastNumChars. To use this facility, the entire DAs array must be valid, i.e. no entries may be
illlnDA.

In addition to these two routines, there are two others which provide more specialized services:

Disks & Bfs August 10, 1980 58

CreateDiskFile(disk, name, filePtr, dirFilePtr, word1 [0], uscOldFp [falsc], pageBuf[0])

Creates a new disk file and writes its leader page. It returns the serial number and leader disk addressin
the FP structure filePtr. A newly created file has one data page (page 1) with numChars eq 0.

The arguments beyond filePtr are optional, and have the following significance:

If dirFilePtr is supplied, it should be a file pointer to the directory which owns the file. This file
pointer is written Into the leader pai;c, and is used by the disk Scavenger to put the file back into the
directory if it becomes lost. 1t defaults to the root directory, SysDir.

The value of wordl is "or"ed into the filePtr>>FP.scrialNumber.wordl portion of the file pointer.
This allows the directory and random bits to be set in the file id.

If useOIdFp is true, then filePtr alrcady ‘_points to a Icgal file; the purpose of calling CreateDiskFile is
to re-write all the labels of the existing file with the new serial number, and to re-initialize the leader
page. 'The data contents of the original file arc lost. Note that this process effectively "delctes” the file
described by filePur when CreateDiskFile is called, and makes a new file; the FP for the new fileis
returncd in filePtr.

If pageBuf is supplicd, it is written on the lcader page of the new file after setting the creation dateand
directory FP hint (if supplied). If pageBuf is omitted, a minimal leader page is created.

DeleteDisk Pages(disk, CA, firstDA, filePtr, firstPage, newFp, hintLastPage)

Arguments beyond firstPage are optional. Deletes the pages of a file, starting with the page whose number
is firstPage and whose disk address is firstDA, CA is a page-sized buffer which is clobbered by theroutine.
hintLastPage is as described under ActOnDiskPages.

If newFp is supplicd and nonzero, it (rather than frecPageFp) is installed as the FP of the file, and the
pages are not deallocated.

6. Allocating Disk Space

The disk class also contains routines for allocating space and for converting between virtual and real disk
addresses. In most cases, users need not call these routines dircctly, as the four routines given above
(ActOnDiskPages, WriteDiskPages, DeleteDiskPages, CreateDiskFile) manage disk addresses and disk
space internally.

AssignDiskPage(disk, virtualDA, nif) returns the virtual disk address of the first frce page following
virtualDA, according to the bit table, and sets the corresponding bit. It does not do any checking that the
page is actually free (but WriteDiskPages docs). If there are no free pages it returns -1. If it is called with
three arguments, it returns true if (virtual DA +1) is available without assigning it.

If virtualDA is cofDA, AssignDiskPage makes a free-choice assignment. The disk object remembers the
virtual DA of the last page assigned and uses it as the first page to attempt to assign next time
AssignDiskPage is called with a virtualDA of eofDA. This means that you can force a file to be created
starting at a particular virtual address by means of the following strategy:

ReleaseDiskPage(disk, AssignDiskPage(disk, desiredVDA-1))
CreateDiskFile(disk, ...) // or whatever (c.g., OpenFile)

ReleaseDiskPage(disk, virtualDA) marks the page as free in the bit table. It does not write anything onthe
disk (but DeleteDiskPages does).

VirtualDiskDA(disk, IvRealDA) returns the virtual disk address, given a real disk address in rvlvRealDA.

Disks & Bfs August 10, 1980 59

(The address, IvRealDA, is passed because a rcal disk address may occury more than 1 word.) This
procedure returns cof DA if the real disk address is zero %end-of-ﬁlc), and fillinDA if the real disk address
does not correspond to a legal virtual disk address in this file system.

RealDiskDA(disk, virtualDA, lvRealDA) computcs the real disk address and stores it in rv IvRealDA. The

function returns true if the virtual disk address is legal, i.e. within the bounds of disk addresses for the
given "disk." Otherwise, it returns false.

7. Lower-level Disk Access

The transfer routines described previously have the property that all disk activity occurs during calls tothe
routines; the routines wait for the requested disk transfers to complete before returning. Consequently,
disk transfers cannot conveniently be overlapped with computation, and the number of pages transferred
_consqc11tlivclsilat full disk speed is generally imited by the number of buffers that a caller is able tosupply
in a single call.

It is also possible to use the disk routines at a lower level in order to overlap transfers with computation
and to transfer pages at the full speed of the disk (assuming the filc is consecutively allocated on the disk
and the amount of computation per page is kept relatively small). The necessary generic disk operations
and other information are available to permit callers to operate the low-level disk routines in a device-
independent fashion for most applications.

This level makes used of a Command Block Zone (CBZ), part of whose structure is public and defined in
Disks.d, and the rest of which is private to the imﬁlementation. The general idea is that a CBZ is setup
with empty disk command blocks in it. A free block is obtained from the CBZ with GetDiskCb and sentto
the disk with DoDiskCommand. When it is sent to the disk, it is also put on the queue which GetDiskCb
uses, but GetDiskCb waits until the disk is done with the command before returning it, and also checks for
€rTorS.

If you plan to use these routines, read the code for ActOnDiskPages to find out how they are intended to

be called. An example of use of these routines in a disk-independent fashion (i.e., using only the public

definitions in Disks.d) may be found in the DiskStreamsScan module of the Operating System. Only in

%rfméual %Itgpgcatxons should it be necessary to make use of the implementation-dependent information in
s.d or Tfs.d.

InitializeDiskCBZ(disk, cbz, firstPage, len%th, retry, IvErrorRoutine). CBZ is the address of a block of
length words which can be used to store CBs. It takes at least three CBs to run the disk at full speed; the
disk object contains the values IDSK.lengthCBZ (fixed overhead) and DSK.lengthCB Ssme of each
command block) which may be used to compute the required length (that is, length should be at least
lengthCBZ + 3*lengthCB). FirstPage is used to initialize the currentPage field of the cbz. Retry is alabel
used for an error rcturn, as described below. lvErrorRoutine is an error routine for unrecoverable errors,
described below; it defaults to a routine that simply invokes SysErr. The arguments after firstPage canbe
pmi_ttle;d if an existing CBZ is being reinitialized, and they will remain unchanged from the previous
initialization.

cb = GetDiskCb(disk, cbz, dontClear{false], retumIf‘I\IoCBLfalse]) returns the next CB for the CBZ. Ifthe
next CB is empty (i.e., it has never been passed to DoDiskCommand), GetDiskCb simply zeroes it and
returns it. However, if the ncxt CB is still on the disk command quecue, GetDiskCb waits until the disk has
finished with it. Before returning a CB, GetDiskCb checks for crrors, and handles them as described
below. If there is no error, GetDiskCb updates the nextDA and currentNumChars cells in the CBZ, then
calls cbz>>CBZ.cleanupRoutine(disk, cb, cbz). Next, unless dontClear is true, the CB is zeroed. Finally,
the CB is returned as the value of GetDiskCb. If returnIfNoCB is true, GetDiskCb returns zero if there
are no CBs in the CBZ or the next CB is still on the disk command queue.

If the next CB has suffered an error, then GetDiskCb instead takes the following actions. First it
increments cbz>>CBZ.errorCount. If this number is ge the value disk>>DSK.retryCount, GetDiskCbcalls

Disks & Bfs August 10, 1980 60

the error routine which was passed to InitializeDiskCBZ; the way this is done is explained in the
description of ActOnDiskPages above. (If the error routine returns, GetDiskCb will proceed as if anerror
hadn’t occurred.) Otherwise, after doing a restore on the disk if errorCount ge disk>>DSK.retryCount/2, it
reinitializes the CBZ with firstPage cqual to the page with the error, and returns to cbz>>CBZ.retry (which
was initialized by InitializeDiskCBZ) nstead of returning normally. The idca is that the code following the
retry label will retry all the incomplete commands, starting with the one whose page number is
cbz>>CBZ.currentPage and whose disk address is cbz>>CBZ.errorDA.

DoDiskCommand(disk, cb, CA, DA, filePtr, pageNumber, action, nextCb) Constructs a disk command in
cb with data address CA, virtual disk address DA, scrial and version number taken from the virtual fileid
in filePtr, page number taken from pageNumber, and disk command specified by action. The nextCb
argument 15 optional; if supplied and nonzero, DoDiskCommand will "chain" the current CB’s label
address to nextCb, in such a way that the DL.next word will fall into nextCb>>CB.diskAddress.

DoDiskCommand expects the cb to be zeroed, except that the following fields may be preset; if they are
zero the indicated default is supplied:

labelAddress Iv cb>>CB.label
numChars 0

If DA eq filllnDA, the real disk address in the command is not set (the caller should have either set it
f,xplli_culy or passed the CB as the nextCb argument for a previous command). Actions are checked for
cgality.

The public cells in the CBZ most likely to be of interest are the following:

client: information of the caller’s choosing (e.g., a pointer to a rclated higher-level data structure such
as a stream.)

cleanupRoutine: the cleanup routine called by GetDiskCb (defaulted to Noop by InitializeDiskCBZ).

currentPage: set to the firstPage argument of InitializeDiskCBZ and not touched by the otherroutines.
(Note, however, that GetDiskCb calls I[nitializeDiskCBZ when a retry is about to occur, so when
control arrives at the retry label, currentPage will be set to the page number of the command that
suffered the error.)

errorDA: set by GetDiskCb to the virtual disk address of the command that suffered an error.
nextDA: set by GetDiskCb to the virtual disk address of the page following the one whose CB isbeing
returned. (This information is obtained from the next pointer in the current page’s label. Note that
errorDA and nextDA are actually the same cell, but they are used in non-conflicting circumstances.)
currentNumChars: set by GetDiskCb to the numChars of the page whose CB is being returned.

head: points to the first CB on GetDiskCb’s queue; contains zero if the queue is empty.

8. Error Codes

Ttl)].c following errors are generated by the BFS. Similar errors are generated by other instances of a disk
object.

1101 unrecoverable disk error

1102 disk full

1103 bad disk action

1104 control block queues fouled up

1105 attempt to create a file without creation ability

Disks & Bfs August 10, 1980 61

1106 can’t create an cssential file during NewDisk
1107 bit table problem during NewDis
1108 attempt to access nonexistant bit table page

9. Implecmentation -- Bfs

The implementation expects a structure BESDSK to be passed as the "disk" argument to the routines. The
initial portion of this structure is the standard DSK structure followed by a copy of the DiskDescriptor
header and finally some Erivate instance data for the disk in usc. (Note: The Alto operating system
maintains a static sysDisk that points to such a structure for disk drive 0.

Bfs ("Basic File System") is the name for a package of routines that implement the disk class for the
standard Alto disks (cither Diablo Model 31 drives or a single Diablo Model 44 drive). The deﬁmtions(in
addition to those in AltoFileSys.D and Disks.D) are contained in Bfs.D. The code comes in two "levels:"a
"basc” for reading and writing existing files (implements ActOnDiskPages, RealDiskDA and
VirtualDiskDA only); and a "write" level for creatiné, deleting, lengthening and shortening files
(implements WriteDiskPages, CreateDiskFile, DeleteDiskPages, AssignDiskPage, ReleaseDiskPage). The
source files BfsBasc.Bepl, Dvec.Bepl and BfsMLAsm comprise the base level; files BfsWrite.Bepl
BfsCreate.bepl, BfsClose.bepl, and BfsDDMgr.bepl implement the write level,

{Bfgl\{llakerFromLabel(fp, 1a) constructs a virtual file id in the file pointer fp from the real file id in the
abel la.

disk = BFSkit(diskZone, allocate[false], driveNumber{0], ~ ddMgr(0], freshDisk[false],
tempZone[diskZone]) returns a disk object for driveNumber or zero. The permancnt data structures for
the disk are allocated from diskZone; temporary free storage needed during the initialization process is
allocated from tempZone. If allocate is true, the machinery for allocating and deallocating disk space is
enabled. Ifit is enabled, a small DDMgr object and a 256 word buffer will be extracted from diskZonein
order to buffer the bit table. A single DDMagr, created by cailing ’ddMgr = CreateDIDMgr(zone)’, can
manage both disks. If freshDisk is true, BFSInit does not attempt to open and rcad the DiskDescriptor
file. This operation is essential for creating a virgin file system.

success = BFSNewDisk(zone, driveNum[0], nDisks[number spinning], nTracks[physical size],
dirLen[3000], nSectors[physical sizc]) creates a virgin Alto file system on the specified drive and returns
true if successful. The zone must be capable of supplying about 1000 words of storage. The logical size of
the file system may be different from the physical size of driveNum: it may span both disks (a’double-disk
filc system’), or it may occupy fewer tracks (a model 44 used as a model 31). The length in words of
SysDir, the master directory, is specified by dirLen. Some machines that emulate Altos implement 14
sectors per track.

BFSExtendDisk(zone, disk, nDisks, nTracks) cxtends (i.e. adds pages to) the filesystem on ’disk’.
Presumabgf/ ’nDisks’ or 'nTracks’ or both is bigger than the corresponding parameters current(ljy in disk. A
single model 31 may be extended to a double model 31 or a single model 44 or a double mo el 44, anda
single model 44 may be extended to a double model 44. The zone must be capable of supplying about750
words of storage. ' ' '

0 = BFSClose(disk, dontFree[false]) destroys the disk object in an orderly way. If dontFree is true, the
ddMgr for the disk is not destroycd; presumably it is still in_usc by the other disk. (Note that this
procedure is the onc invoked by the CloseDisk generic operation.)

g_FEWriteDischscriptor(disk) insures that any important state saved in memory is correctly written onthe
isk.

virtualDA = BFSFindHole(disk, nPages) attempts to find a contiguous hole nPages long in disk. It
returns the virtual disk address of the first page of a hole if successful, clse -1.

Disks & Bfs August 10, 1980 62

BESTryDisk(drive, track, scctor{O]) returns true if a seek command to the specificd track on the specified
drive is successful. Note that the drive argument can contain an imbedded partition number. Secks to
traccllt lzgrlo will fail if the drive is not on line. Seeks to track BFS31NTracks+ 1 will fail if the drive isa
model 31.

10. Implementation -- Tfs

Operation and implementation of the Trident T80 disks is described in separate documentation under the
heading ""TFS/TFU" in Alto Subsystems documentation.

11. BFSTest

BFESTest is used to test the Basic File Sd\;stcm (BES) and Disk Streams software packages. It creates,
deletes, reads, writes and positions files the same way that normal programs do, and checks the results
which normal programs do not do. These high-level operations cause patterns of disk commands which
are quite different from those generated by lower-level tests such as DiEx.

When started, BFSTest asks you which disks to test, whether to crasc them first, and how many passes to
run. You can use a disk with other files on it, and BFSTest will not disturb them if you prohibit erasing.
The duration and throughness of a pass depends on the amount of frec space on the disks.

BFSTest creates as many test files (named Test.001, Test.002, ...) as will fit on the disk, filling each file with
a carefully chosen test pattern. When it is done, it deletes all of the files. One (’ipass’ consists of steppin
through the test files, performing a randomly chosen operation on the file, and checking the results. It
looks for commands from the keyboard after each file. The current commands are:
Quit clete all test files and stop.
S StopOnError Wait until a character is typed.

All test files are 100 pages long. Each page of a file has the page number in its first and last words and a
data pattern in the middle 254 words. The data pattern is constant throughout a file, consisting of asingle
one-bit in a word of zeros or a single zero-bit in a word of ones. Files are read and written with ReadBlock
and WriteBlock using buffers whosc lengths are not multiples of the page size. The operations are:

Write Write the entire file with the data pattern.

Read Read the entire file checking the data pattern.

Delete Delete the file, create it again and then write it.

Copy Copy the file to some other randomly chosen file, If both disks are being tested,

onc third of the time pick a destination file on the other disk.

Position Position to twenty randomly chosen pages in the file. Check that the first word
of the page is indeed the page number. One third of the time dirty the stream by
writing the page number in the last word of the page.

	Operating System Software Packages
	Disk Streams
	1. Data Structures
	2. Properties of Disk Streams
	3. Procedures
	3.1 Creating and Destroying
	3.2 Transferring Data
	3.3 Reading State
	3.4 Setting State
	3.5 File Scanning

	4. Fast Streams
	5. Errors

	Display Stream Package
	1. Creating a Display System
	2. Displaying the Stream Contents
	3. Current-Line Operations
	4. Inter-Line Operations
	5. Scrolling
	6. Miscellaneous

	Alloc
	Disks: The Alto File System
	1. Distribution
	2. File and Disk structure
	2.1 Legal Alto Files
	2.2 Legal Alto Files
	2.3 Alto Directory Files
	2.4 Disk Descriptor
	2.5 Oversights

	3. The Disk Object
	4. Data Structures
	5. Higher-Level Subroutine
	6. Allocating Disk Space
	7. Lower-Level Disk Access
	8. Error Codes
	9. Implementation -- Bfs
	10. Implementation -- Tfs
	11. BFSTest

