Clearcd version of October 8, 1979

ALTO SUBSYSTEMS

Coinpiled on: October 8, 1979

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

© Xcrox Corporation 1979



Cleared version of October 8, 1979
Alto Subsystems October 8, 1979 2

Alto Subsystems

This document is a directory of major Alto BCPL subsystems. Mesa subsystems are collected togetherand
documented clscwhere.

Binary versions of these programs arc available on the <Alto> dircctory. If the documentation for the
subsystem is short, it is included in this file directly. If it is somewhat longer, the documentation isstored
scparately and the entry is marked with a *. l.i“he documentation for thesc objects is available on
<AltoDocs> in .TTY files. Programs that have quite bulky documentation arc denoted by **. These
programs have scparate documentation on <AltoDocs>, usually as <AltoDocs>Name.press.

If you would like a full listing of documentation for all but the ** programs give the command "Press
<AltoDocs>Subsystems.press'.

The person last known to be responsible for each subsystem is also given.

*ASM: an assembler for Alto machine language, producing object files compatible with the Bepl
loader. (Ed McCreight)

**BCPL.: a compiler for the Bepl language. (Dan Swinehart)

**BLDR: aloader for objcct files produced by Bepl and Asm. It is documented in the Beptmanual.
(Dan Swinehart)

**BRAVO: a display editor. (Charles Simonyi)

*BUILDBOOT: a program for constructing Alto boot files. (David Boggs)

*CHAT: cstablishes PUP Telnet connections between a pair of cooperating parties. (Ed Taft)
CLEANDIR: does a garbage collection on a file directory (not on the disk space, though). Call it

with

>CLLEANDIR directory-name n

to clean up the specified directory. The system directory is called SYSDIR. The second
paramcter, n, tells how much extra si)acc to append to the dircctory. The reason for it is that
extending the directory in this way will tend to get the pages allocated to consccutive disk sectors,
so that subsequent lookups will go faster. If this program fails, it will lcave your disk unusable.
To guard against this, you can copy SYSDIR to a dummy file and run CLEANDIR on that first,
then run it again on SYSDIR. DO NOT try to copy the cleaned-up dummy file back to SYSDIR.
(David Boggs)

*COPYDISK: copies whole Diablo and Trident disk {aacks from onc drive to another on the same
Alto or through the net between two Altos. (David Boggs)

*CREATEFILE: creates a file of a given size, trying to allocate it contiguously. (David Boggs)

*DDS: The Descriptive Directory System is a_front end for the Alto file system, providing a
rclational data basc management system and facilitics for displaying information related to Alto
files. (Pcter Deutsch)

*DMT/PEEK/PEEKSUM: Alto memory diagnostic program and related statistics-gathering
programs. (David Boggs)

*PPRINT: Prints disk files on the Diablo Printer. (Ed Taft)

#*DRAW: An illustrator, (Patrick Beaudclaire)
]



Cleared version of October 8, 1979
Alto Subsystems October 8, 1979 3

EMPRESS: Converts ordinary text files to Press files, and performs simple formatting operations,
intended for listing programs. (David Boggs)

*EXECUTIVE: The Alto command processor. (Richard Johnsson)

*FIND: a program to search text files for user—s%pplicd strings. This program originated as a
demonstration of the power of compiling microcode from the given problem. (Peter Deutsch)

*F’II;P: a)Pup-bascd File Transfer Program for moving files to and from an Alto file system. (David
0ggs

*LISTSYMS: converts the .Syms file produced by BLDR into human readable form. (Peter
Dcutsch)

*MAILCHECK: A program that will check for waiting mail on Maxc. (Larry Masinter)

*MARKUP: A document illustrator. (William Newman) '

MICRO: The microcode assembler for Maxc, Dorado, D0, and other machines. Basic
documentation is available only in the CSL archives. It is called "Maxc document 9.2". Recent
changes arc documented in <AltoDocs>Micro.ty. (Peter Deutsch)

MOVETOKEYS: Moves page 1 of the named file to the appropriate fpage.oi’ the disk so that
depressing the key-combination and the boot button will boot-load the file. (Roy Levin)

*MU: The microcode assembler for the Alto. (Ed Taft)
Neptune: A program for listing, copying, and delcting files. It is capable of dealing with both drives

of a two-drive Alto. The program offers help on’its use. Documentation is in the Alto User’s
Handbook. (Kecith Knox -- WRC)

*NETEXEC: This subsystem, which is bootstrapped over the BEthernet, provides a convenicnt
interface to the other systems available from "boot servers” on the network. (David Boggs)

NEWOS.BOOT: is the namc of a ready-to-install Operating System. Retrieve it, say "Install
%chO)S.boot" to the Exec, and then delete it (it writes itself out on the file Sys.boot) (David
Boggs

*OEDIT: allows you to look at and modify arbitrary files in octal. (Dan Swinchart)

*OI1§AM:h§\ scheme for overlaying scveral segments of microcode in the Alto RAM. (Peter
cutsc

*PACKMU/RPRAM: Thesc two subsystems, in conjunction with the subroutine ReadPRAM or
LoadRam, allow programs using thc RAM to check the constant memory and load the RAM asa
part of their initialization. (Peter Deutsch) '

*PEEKPUP: a Pup software debugging aid. (David Boggs)

**PREPRESS: A program for manipulating font files. (Joe Maleson)

*PRESSEDIT: combines Press files, converts Ears files into Press format, or adds extra fonts to a
Press file. (William Newman)

PROOFREADER: Proofreader for English text. (Ed McCreight)

*RAMLOAD: a pmgram for loading the Alto RAM from the files produced by the microcode assembler,
MU. (Dave Boggs)



Cleared version of October 8, 1979
Alto Subsystems October 8, 1979 4

READPRESS: rcads Press files and displays a text-listing of the entity commands, DL strings, etc.
Command linc is of the form: "ReadPress T'est.Press”. (Joc Maleson)

*SCAVENGER: a subsystem for repairing a damaged Alto file system. (Richard Johnsson)

**SIL, Analyze, Route, Build, NetDclags, etc.: A system for automating logic design, including an
illustrator specialized to logic drawings. (Roger Bates, Ed McCreight)

SORT: a very small subsystem which will sort files containing less than 1000 entries, cach terminated bya
carriage return. Call it with

>SORT <sortfilein> <sortfilcout>
If <sortfilcout> is omitted, the sorted data will be written back to <sortfilein,
*SWAT: a debugger for Bepl programs. (David Boggs)
SYS.BOOT: is the name of the boot file for the operating system on the Alto disk. (David Boggs)

*Trident disk softwarc: TFU, TRIEX and the TFS softwarc package. The Bepl software package and
utility programs for driving Trident disks interfaced to the Alto. (Ed Taft)

*VIEWDATA: asubsystem that displays 2D projections of 3D data on the Alto screen. (Dick Iyon)



Cleared version of October 8, 1979
Alto Subsystems October 8, 1979 5

FAMISCELLANEOUS PROCEDURES AND INFORMATION***
**FOR PARC ALTO USERS***

*NEWDISK: a procedure for creating a virgin disk and getting fresh, up-to-date softwarc from MAXC.
(David Boggs)

;E’\/}{IgZALTOS: a document containing miscellancous information for Alto users and maintainers at



Cleared version of October 8, 1979
ASM February 10, 1979 6

ASM

This assembler, written in BCPL, runs on the Alto and produces BCPL-compatible relocatable binary
output files, suitable for input to BLDR, the BCPL loader. The Alto Hardware manual describes the
source language and the virtual machine.

1. Symbols

Symbols may be up to 130 characters in length, and every character of a symbol must be used to identifyit.
By default upper- and lower-case characters are different, and two character strings represent the same
symbol only if the same letters and cases are used in both. However, the /U switch causes all lower-case
letters in symbols to be changed to upper casc (even in external symbols). Thus if you want an assembly-
language program to link to symbols containing lower-case letters, you must either default lower-case
conversion in ASM or map all symbols to upper case in BLDR using its /U switch.

2. Strings

Strings follow BCPL conventions. They may not extend from one line to the next.

3. Assembly Regions

This asscmbler can assemble into three regions: two static regions (one in page 0) and one code region.
The dircctives NREL, .SREL, and .ZREL cause the assembler to begin placing code in the code region,
the non-page-0 static region, and the page 0 static region, respectively. The BCPL loader causes the
restrictions that the code arca may not contain pointers into the code area, that the first word of the code
arca may not point to a static arca, and that no static area may contain pointers to a static arca. The only
external symbols are statics.

Arithmetic is not allowed on symbols denoting statics, and the symbol "." is undefined in .SREL and
ZREL. Any absolute or code- relative cxpression (including such goodics as JIMP@ 62) may be placed in
:SRgIEIIi }(Z)Ili, ZREL. Any absolute expression, static reference, or instruction reference to .ZREL may appear
in. L.

4. Text

There are two text modes, JIXTM B and .TXTM L. Mode B causcs the generation of standard BCPL
strings. Mo?lc L causes the generation of long strings, a full word length followed by the string characters,
two per word.

3. .GET



Cleared version of October 8, 1979
ASM February 10, 1979 7

The directive .GET "FOO" causes the file FOO to be inserted into the source text at that point. .GETcan
be used up to two levels deep. Its primary utility is likely to be for lists of externals and for canned cntry
and cxit sequences.

6. GEINOLIST

Works cxactly like .GET, except that the "gotten” file is not included in the listing, nor are any files which

|

it GETs.

7..BEXT

In addition to .EXTN and .EXTD and .ENT, I have added two dircctives .BEXT and .BEXTZ which work
exactly as BCPL’s External works for non-page-0 and page 0 statics, respectively. This should increase the
utility of the .GET feature above. :

8. Expressions

Parcntheses (but not Krec‘cdcncc) arc supported. Constructs like "K and $*N and 5 and 17. and 3B10are
all primaries. Most BCPL and customary assembler operators are allowed. The construct 1B10 means
40(octal), unlike BCPL’s convention. Tam willing to be convinced on this point.

9. Predefined Symbols

All predefined symbols and directives and opcodes arc defined both in all upper-case and all lower-case
letters. For example, both LDA and Ida arc predefined, but Lda is not. The following Alto-specific
opcodes are preloaded in the symbol table:

JSRII JSRIS CYCLE CONVERTDIR EIR BRI

RCLK SIO BLT BLKS SIT RDRM WTRM

JMPRM MUL DIV

In addition, the following pile of skips which test various conditions has been added, courtesy of Dan
Ingalls. Only the names have been changed to confuse the innocent:
‘Two operands:

SZE S7Z  SN7Z SP  SGZ SN SE

SE  SNE SLT SLE SGT SGE SGTU

SLEU SGEU SLTU SODD  SKEVEN SNIL SNNIL

MKZERO MKONE MKNIL MKMINUSONE

No Operands:
NOP SKIP

It should be explained that U stands for unsigned, and that Dan thinks of NIL as -1.



Cleared version of October 8, 1979
ASM February 10, 1979 8

10. Operation

If the source file is called FOO.ASM, type
ASM FOO.ASM

If you just type ASM FOO it will first try to use FOO and, failing in that, try FOO.ASM. The assembler
will usually want to construct several files, which it will do by substituting various extensions on FOO
unless you specify otherwise. There are a lot of switches which apply to ASM:
/L Construct a listing file
/S Include the symbols defined by the user, for what they’re worth
/A Include all symbols, even the predefined ones
/R Include a printout of the .BR file
/N Don’t make a .BR file
/B Make an .ER file which is a copy of the error messages
sent to the terminal
/D Print debugging messages (as errors, in fact)
/P Pause after printing cach error message (continue with CR)
/U Map all lower-case letters in symbols to upper-case

There arc also a lot of switches which apply to file names, and which tell the assembler to use thisname
instead of the one it was about to invent:

/1. Names the listing file

/E  Names the error file

/S Names the source file (also no switches)

/T Names the tcmporarfr file
/B Names the relocatable binary file



Cleared version of October 8, 1979
Boot Files February 17, 1979 9

Alto Boot Files: Formats and Construction

The process of "booting” the Alto is one of setting some or all of the Alto’s state cither by reading a file
from the disk or by accepting packets from the Ethernet, This document attempts to explain the various
ways that state is restored, and the formats of "boot files" built by various programs.

‘There are four basic steps in "booting™ the Alto: (1) the tasks in the microprocessor are reset; (2) a256-
word "boot loader” is loaded into main memory and started; (3) the boot loader loads a portion of Alto
main memory from a "boot file" and finishes by transfering to a known place; (4) the user’s program
loaded by the third step can restore even more of the Alto’s state.

1. Booting

"Booting" is accomplished cither by pushing the "boot button" located on the rear of the keyboard orby
executing the SIO instruction (sce Alto Hardwarc Manual). Unless overridden by the Reset Mode
Register, the cmulator task is started in a standard boot program. This program reads location 177034b, a
word whosc contents can be altered by pushing various keys on the keyboard. If the <bs> key is depressed
c}llri(qukbootillg, the machine state will be restored from the Ethernet; otherwise, the state is restored from
the disk.

When booting from the disk, the keyboard word is interpreted as a disk address where a "disk bootloader”
is located. If no keys are depressed, disk address 0 is generated, which is the normal restinﬁ place ofthe
"disk boot loader” for the operating system. ‘The cmulator reads a single 256-word disk record into
memory locations 1, 2, ...400b; the 8-word disk label for this pa%c is placed in 402b, 403D, ... 411b. When
the disk transfer is complete, control is transferred to location 1 in the loader. The boot loader uscs the
saved label to point to the remainder of a "boot file" which is read into main memory and started. The
types of "disk boot loaders” and "boot files" arc discussed below.

When booting from the Ethernet, the microcode waits until a "breath of life" packet arrives, containing a
256-word "Ethernet boot loader” which is read into locations 1 - 400b and cxecuted by transferring to
location 3. Itis up to this loader to establish communications with a party willing to deliver the remainder
of the state needed.

2. Boot File Formats and Boot Loaders

There are two basic kinds of boot files, and a variant:
B-File: Built by the BuildBoot program; loader is Disk Boot.
S-File: Built by the Qutl.d subroutine; "'S" loader.
S0-File: Variant of S-File built by the SaveState subroutine.

A B-File can be distinguished from an S-File or S0-File because B-Files have a 0 in their second data word.

Words 4 & 5 of B, S, and S0 boot files do not contain code and are reserved for holding the (Alto format)
date on which the file was built. Boot servers use (his information to propagate the latest versions. Old
forn?at typg 63 files which don’t contain a date have 402b in file word 0. Old format type S files have 355b
in file word 0.



Clecared version of October 8, 1979
Boot Files February 17, 1979 10

2.1. B-Files

B-Files ("BuildBoot" files) arc the simplest sort of boot file. The booting process itself docs not restore the
entire state of the machine; page 1 (addresses 400b to 777b) is not restored; no RAM or R-register stateis
restored cxcept for the program counter. .

A boot loader resides in the first (256-word) data page of a B-File. It is this page that is rcad in by the
booting process. The file is formatted as follows:

Filepagel => DiskBootloader

Filepage2 => Image of memory page 0 (0-377b)
Filepage3 => Image of memory page 2 1000b-1377b;
Filepagc4 => Image of memory page 3 (1400b-1777b

File [')"age n => Im'é'ge of memory page n-1

The file can be of any length, except that n must not exceed 254. After reading the entire file, control is
transferred to the restored state by doing JIMP@ 0.

2.2. S-Files

S-Files ("Swat" files) arc a somewhat complicated construction that permits more of the Alto state to be
restored: the interrupt system, active display, and so forth are all restored. In order to achicve this, the
restored state must contain a copy of the Outl.d subroutine that is responsible for the final stage of the
restore; when the state is fully restored, this subroutine simply returns to its caller. ‘This full state saveand
restore was originally ‘designed for the Swat debugger. (Notc: no RAM or R-register statc except for the
PC and accumulators is restored by this kind of boot.)

A boot loader resides in the first (256-word) data page of an S-File. This is the page read by the booting
process. The file looks like:

Filepagel => "S"loader
Filepage2 => Image of memory page 2 §1000b-1377b;
Filepage3 => Imagc of memory page 3 (1400b-1777b

File page 253 =>  Image of memory page 253 (176400b-176777b)
Filepage 254 => Image of memory page 1 2400b-777b)
File page 255 => Image of memory page 0 (0-377b)

The S-File must contain at least 255 data pages; additional pages arc ignored by the booting process, and
can be used to save additional state. When the restore is finished, control returns to the caller of OutLd
{sec Alto Operating System Manual).

ssec(SO-Files)

S0-Files arc a minor variant of S-Files that can be used to restore the Alto state in 2 different ways. The
variation is simply that location 0 of the restored memory image (i.c., word 0 of file data page 255)contains
an "alternate starting address.” The file can be loaded by (1) using it as an S-File, and exccuting the loader
saved in its first file data page, or (2) by a loadin%_ lproccss that loads all memory but page 1 (file page 254)
and does a IMP@ 0. The operating system boot file, Sys.Boot, is an SO-File.

The SO-File is designed to permit Ethernet booting from states conveniceatly saved by OutlLd.



Cleared version of October 8, 1979
Boot Files February 17, 1979 11

2.3. DiskBoot loader: B-Files

The DiskBoot loader is commonly placed as the first data page in B-Files. Its source is DiskBoot.Asm (in
BuildBoot.Dm); BuildBoot will normally include this loader on the front of the B-Files it constructes.
NOTE: the file "DiskBoot.Run" is not a literal copy of the 256 words that go on the front of the file, but
the result of applying Bldr to the rclocatable file generated b?/ assembling DiskBoot.Asm. B-files werethe
first boot format dcesigned for the Alto. Unlike an S-file which must be at least 255 data pages long, aB-file
need be big enough to contain all of the code to be loaded.

2.4, InQutl.d loader: S-Files and SO-Files

This loader is part of the Operating System and available as a scparate package. For more details rcad the
descriptions of InLLd, OutLd and BootFrom in the Alto Operating System manual.

2.5. EtherBoot loader: "Breath Of Life"

The "breath of life" loader, which is periodically broadcast by gateways, is loaded into locations 1-400b
when the Alto is booted with the <bs> key pressed. The standard form of this loader reads location
177035b (a keyboard word), and transmits "MayDay" packets containing the 16-bit result. Some serveron
the network will interpret the 16-bit argument as a request for a specific program. The server will openan
EFTP conncction with the Alto which sent the MayDay. It transmits data pages in the same order as they
are recorded in B-Files (including the first data page, even though it contains a disk-oriented loader).
When the conncction is closced, the loader starts the restored image by doing a IMP@ 0.

By convention, the 16-bit argument 177777b is never answered by a server. This convention is used by
rograms which have specifically started a "breath of life" loader and arc expecting an EFTP connection
rom some specific party.

The EtherBoot loader is available as a package: sce the Alto Packages manual. Protocol details are in the
Pup documentation.

3. Constructing B-Files: BuildBoot

BuildBoot.Run constructs files for direct booting into the Alto. The program copics its input files into an
output file according to dircctives in the command line and in the input files thmsclvcs. ‘T'wo kinds of
input files are supported at the moment. One is the segment file, which contains a block of words to be
loaded into contiguous addresses. The other is the exccutable ((Run) file, which is what Bldr produces on
the Alto (sec Alto Operating System Reference Manual for details). If several files in the command line
sLFccify the contents of the same memory location, the last one will win. In addition to the data already in
the output file, the program maintains four statc variables between items in the command line. One isthe
location counter which specifics the address where the next segment file (if any) will be placed. Anotheris
the address where the loaded image is to begin cxecution, This defaults to the starting address of thelast
exccutable file in the command line. The third is the address (if any) where the layout vector of the next
cxecutable file is to be loaded. 1f this address is missing, the layout vector will not be loaded. The fourthis
the address (if any) in the boot loader where the current date and time will be placed.

Here arc the switches:

/E This is an exccutablc file (also no switches or /R)

/D This is the address of a two word block in the boot loader
where the current date and time arce placed.

/S This is a scgment file

/N Reset the location counter to this octal number

/0 "This is the output file

/G This octal numbcr specifics where cxecution begins



Cleared version of October 8, 1979
Boot Files February 17, 1979 12

/B This exccutable file contains a boot loader in its code
area. If omitted, defaults to "DiskBoot.Run"
/L Write load map on this file
/v The layout vector of the next
executable file will be loaded in a contiguous
block starting at the address specificd by this
octal number

If we wanted to bootify the .Run file Prom.run, we might say

BuildBoot Prom.boot/O Prom.map/1. 20/N 1000/G*
Prom.run/S

Similarly, if we had the diagnostié DMT.RUN as an cxecutable file (including any runtime support it
might need), we could simply say

BuildBoot DMT.boot/O DMT.DMT.map/L DMT.run/E

The disk boot loader DiskBoot.Run is also included in the file BuildBoot.Dm, and is requircd by
BuildBoot unless another boot loader file is specified by the /B switch.

The BootBase package (<AltoSource>BootBase.dm) makes it possible to construct a B-format boot file out
of most any .Run file without any souce-level changes. [t initializes an execution cnvironment; providesa
runtime environment including T'cleSwat, the Bepl runtime routines, Calendar clock maintenance, parity
error handling; and supplies sclected Operating System routings.

Two standard configurations arc available: BasicBoot is a barc bones Bepl environment suitable for
diagnostics; FullBoot adds most of the facilitics of the Alto Opcrating System except for the BFS, Disk
Streams, and Directorics. Other configurations are straight forward. Each configuration consists of four
files: xBootBase.run (x = Basic or I7ull) contains code, xBootBasc.bj contains Bldr linkage information
similar to Sys.bk. xBootBase.xc contains part of the Bepl runtime. LoadxBoot.cm is a command file
templatc containing incantations to Bldr and BuildBoot and slots which you must fill in.

4. Constructing S-Files: Outl.d

E/iFileslare constructed by the Outl.d subroutine, which is documented in the Alto Operating System
anual.

5. Constructing SO-Files: SaveState

The SavceState subroutine, also included in BuildBoot.Dm, can be called in a fashion similar to Outl.d, but
it will create an SO-File. The Bepl call is:

SaveState(filename, [flags))

It behaves like Outld in that it returns 0 if the file has just been written, 1 if it has been restored by an
InLd, 2 if by a disk boot, and (unlike Outl.d) 3 if by an litherBoot. 1If bit 15 of flags is sct, the disk stateis
flushed after creating the boot file. Ifbit 14 is sct, the disk state is recomputed when the boot file isstarted.
SaveState requires the presence of operating system levels through disk streams.



Cleared version of October 8, 1979
Boot Files February 17, 1979 13

6. The "standard boot file": disk address 0

The 256-word data page saved on real disk address 0 cannot be Fart of any legal Alto file because of the
way the file system is designed. As a result, the standard boot file is established by copying the first data
page of the boot file (c.g., Sys.Boot) into disk address 0 (the label and data portions arc both copied
verbatim). Thus the proper data (disk boot loader) will be read when booting, and the label will point
forward to the (legal) boot file, data page 2. This makes Sys.boot have an illegal format (the forwardlinks
of two pages point at page 2 of Sys.boot), but the Scavenger knows this and ignores it.



Cleared version of October 8, 1979
Chat June 12, 1979 14

CHAT

Chat is a program for establishing Pup Telnet conncctions between a pair of cooperating partics. Its chief
function is to permit Alto users to login to Maxc and IFS servers. Chat includes an exfension to support
text-display control and graphics.

1. Simple operation

Chat is organized so that default operation with Maxcl is simple. Simply saying "Chat" will establish a
connection with Maxc and (provided you are "logged in" on your Alto) will try to cstablish the Alto as
controlling terminal for a Maxc job that is logged in under your namec. Chat will perform a "login” or
"attach” as appropriate. If the simple methods fail you must deal with Maxc yourself (lifc is hard).

To connect to some server besides Maxc, type "Chat name™ where "name" is the name of the desired
server (Maxc2, Ivy, DLS, etc.) Chat will perform the automatic login if the server is a Maxc or an IFS.

If you don’t have the file Chat.Run on your disk, the Alto Exccutive will boot-load it from a boot scrveron
the network. In this case, Chat will not use the "name" you supply on the command line but rather will
require you to type the server name directly to Chat. .

If you are not logged in on your Alto at the time you start Chat, or you booted Chat from the network,
Chat wxl(l1 first request that you type in your user name (if different from the one installed on your disk)and
password.

The preferred method for cxiting Chat is to depress the key immediately to the right of the "return” keyon
the keyboard, and then to press "q" for Quit. The other method, <shift>SWAT, is frowned upon and isnot
guarantecd to work.

If the conncction fails or is broken by the server, Chat will display an apFropriate message and will
ordinarily terminate. However, if you booted Chat from the network, Chat will continue running and will
ask you for the namec of a new server to connect to.

2. Command Interpreter

While Chat is running, you may wish to %ive various commands that alter its operation. Depressing the
key umné:dlatcly to the right of the RETURN key will cause Chat to enter a command mode. The
commands are:

Q Quit--terminate the connection.

F Specify a new font. The screen will be re-initialized, which will causc recent typeout to disappear.
If insufficient core space is available for the font, the system font will be used.

D Specify a "do™ file to insert now. The text of the file will be treated as if it had been typed in atthe
keyboard--it will be transmitted to the connected party. This is a simple way to "can" Maxc
procedures that you usc a lot.

E Change local echo setting. Chat starts out assuming that the connected party will echo all

characters. In some instances, Chat will want to ccho your typein locally (e.g., when connected to
another Chat).



Cleared version of October 8, 1979
Chat June 12,1979 15

C Change control character output setting. Control characters other than CR, LF, and Tab are
normally displayed as "+x". Changing this setting causes control characters to be thrown away.

I T%glo the "input" switch for the typescript file, set by the USER.CM entry
TYPESCRIPTCHARS (see below). :

0] Toggle the "output” switch for the typescript file, set by the USER.CM entry
TYPESCRIPTCHARS (sce below).

N Permits you to establish a New connection (after breaking the current one), without leaving Chat.

3. Command-line options

Several options may be passed to Chat by global switches in the command line (i.e., by typing Chat/s/t
where "s'" and "t" are the switches): ' .

/A "Attach” -- meaningful only when connccting to Maxc. This will force the Maxc attach
sequence to be typed rather than whatever Chat considers appropriate.

/L "Login" -- meaningful only when connecting to Maxc or an IFS. This forces a login
sequence to be typed, regardless of what Chat considers appropriate. For example, ifyou
already have ‘a detached job on Maxc and wish to creatc a new job, you must use this

option.

/N Chat will not attempt any automatic login or attach.

/S Chat will be a "Pup Telnct Server,”" and will respond to requests for connection from
others rather than initiate requests itself.

/E Chat will cause local echoing of input characters.

/C Chat will suppress output of control characters, rather than displaying them as "+x".

/1 Equivalent to the command-line entry Chat.Initial/D (sec below).

/Por/D Chat will cnable a display protocol (see below).

Several options may be specified with "local” switches:

string This gives the "name" of the party with whom Chat should initiate a connection. The
name may be an address constant of the form net# host#socket, or may be a full symbolic
name like Maxc+Telnet (sce "Naming and Addressing Conventions for Pup' for details).
The default socket is 1, the Telnet socket. Thus typing "Chat Regis" will try to connect to
a l'elnet server on the host named Regis.

filename/F Specifies the name of the font to use.

filename/D>  This gives a "do" file name that is fed to the connected party. When the last character of
the file has been sent, Chat will not close the connection.

filenamc/E Similar to /D, but will end the connection when end of file is encountered.



Cleared version of October 8, 1979
Chat June 12, 1979 16

4. USER.CM Options

The USER.CM file may also contain defaults that Chat examincs at initialization. The section of
USER.CM that Chat examines must begin with a linc with the 6 characters [CHAT] on it. Thercafter, lines
begin with "labels,” followed immediately by colons, followed by arguments.

Note tlll(at Chat docs not look at User.cm (or anything else on your disk) if you boot-loaded it from the
network.

In the following descriptions, square brackets enclose parameters that are optional--you shouldn’t actually
type the square brackets.

FONT: AltoFontName.AL [width height]

Gives the name of a font to usc when displaying typeout from the connected fparty (default: system
font). If two numbers follow the name, they are interpreted as the width of a line (in characters)
and the height of a page (in lines). These numbers override the calculations made by Chat, and are
shipped to the server to sct the terminal parameters.

BORDER: BLACK|WHITE
Gives the color of the top border of the screen (default: white).
BELL: [DING] [FLASH] [AUDIO]

Tells what to do when a bell character is received. If DING is specified, a pattern that spells out
DING will be displayed at the top of the screen. If FLASH is specified, the bottom arca of the
screcn will flash black. If AUDIO is specified, and you have a loudspcaker connected to your
Alto’s Diablo Frintcr interface, an audible tone will sound. Any combination of options can be
specified together (default: DING FLASH).

CONNECT: nct# host # socket or host-name

Gives the network address constant or name of the party with whom a conncction should be
initiatcd (sec "Naming and Addressing Conventions for Pup" for details). Default is
Maxc+Telnet, the Maxc Pup Telnet server,

TYPESCRIPT: filename [length]

Gives the name of a filc on which to record a typescript of the session. The file will be treated asa
"ring" buffer of specified length (in bytes; default 5120). The file will be created at the beginning
of the session, so that the user can be certain the disk will not overflow when recording typescript
infqn(rjyatiﬁn. The string <=> will mark the end of the ring buffer, which will be updated
periodically.

TYPESCRIPTCHARS: [ON|OFI] [ON|OFF]
This entry governs the sclection of characters that are included in the typescript file. The first
on/off switch controls characters typed on the Alto keyboard: if the switch is "on," these
characters will be entered in the typescript file. The sccond switch controls characters seat from
the other party to the Alto: if the switch is "on," these characters will be entered in the file.
Decfault is OFF ON.

LINEFEEDS: ON|OFF

Normally, line feeds transmitted by the other ?arty arc included in the typescript file. If you wish
to keep line feeds out of the file, set LINEFEEDS: OFF,

ECHO: ON|OFF



Cleared version of October 8, 1979
Chat June 12, 1979 17

This option turns on local echoing. This is usually necessary only if you are connecting to another
Alto running Chat that has used the /S option.

CONTROLCHARS: ON|OFF

Normally, control characters other than CR, LF, and Tab are displaycd in the form "tx". This
option forces them not to be displayed at all. Default is ON.

DISPLAYPROTOCOL: ON|OFF

This entry enables a disglay rotocol. The same effect can be achieved with the /P or /D
command-line switches. Default is OFF.

5. Display Protocol

Chat allows a remote program to control carcfully the entire Alto d'isyl)lay. The interactive facilitics of the
Alto can thus be used by MAXC }g)ro§rams and others. A set of Interlisp-10 functions has been written to
ease use of the display from LISP. These functions arc documented in "Raster Graphics for Interactive
Programming Environments,” by R.F. Sproull, CSI.-79-6, and arc contained in <SPROULL>ADIS.COM;
the symbolics (should you need them) in <SPROULL>ADIS.

"Display Chat" is almost completely different from "teletype Chat"; they are loaded as one program
largely for convenicnce. To cxit display Chat, usc the <shift><Swat> convention. Bec very careful when
attaching and detaching jobs that have éhat disl)la% conncections ogen. If you re-attach to a LISP job that
greviously had connections open, and CONTINUE your LISP job, the connections are no longer usable

ccause the Pup exccutive has timed them out. ADISCheck should be called to verify the state of the
connection. After this call, it may be necessary to invoke ADISInit again. If this procedure is not followed,
you may get traps with "10 Data Error” or some such message coming out of your LISP program!

Fonts are declared in User.Cm as follows: a line of the form "DISPLAY-FONT: FileNamc" is a font
declaration. Numbers are associated with the fonts by the order in the file: the first is font 0, the second

font 1, ctc. The fonts must be in "strike” format; scveral fonts in this format arc saved on the
<ALTOFONTSY directory with extension .STRIKE,.

The number of "regions” available to Chat can be altered by including a line of the form "DISPLLAY-
REGIONS: 6" in User.Cm.

Two functions for making hard copics are not documented in the CSL report:

ADISPress[file] (Flush). This function writes a one-page Press file of the given name on your Alto disk.
The page contains a bit-map for the current contents of the Chat displz}y arca. WARNING: This function
requires considerable quantities of disk space (about 130 pages per file), and may lead to errors while
writing the file. Best usc it only when your state is safe.

ADISPressMaxc[file;scaleFactor] (Flush). This function is similar to ADISPress, but the file will be
written on the connected MAXC directory. "The scaleFactor defaults to 1.0, but can be set to any fraction.
It will lcausc the Press file to contain directives to reduce the size of the image of the screen when it is
printed.

Efficicncy and space. The ADIS protocol operations cost a certain amount in LISP function call and
Tenex JSYS overhead; they also have a cost determined by the number of bytes of protocol commands
that arc sent to Chat. Thus we can express the communication cost in terms of the number of "characters”
we could display by transmitting the same number of bits. FHere arc approximate numbers:

ADISRegion 4
ADISLimits 16
ADISSetX, ADISSctY,ADISFont 5



Cleared version of October 8, 1979

Chat June 12, 1979 18
ADISBold, ADISTtalic, ADISSetCR,ADISSetLLF 5

ADISLineTo 6

ADISRegionOp . 13 0r21

ADISScroll ‘ 34 in most cases

ADISButtonEnable 16

ADISTypeOnEvent v 4

ADISCursor 43

ADISCursorMove 7

Space in the Alto is at a premium. At present, about 6700 words must be shared among all fonts and
region descriptions. Note that font sizes vary. Sizes are:

Region 34 words (always)
Helvetica8.Strike 570 words
HelveticalO.Strike 630 words



Clearced version of October 8, 1979
CopyDisk March 22, 1978 19

CopyDisk

COPE/DiSk is a program for copying entire disk pac_ks. It will copy from one drive to another on the same
machine, or between drives on separate machines via a network.

1. History

The first Alto CO(QJyDisk was called Quick and was written ?’ Gene McDaniel in 1973, During the
summer of 1975 Gracme Williams wrote a new CopyDisk adding the ability to copy disks over the
network. During the summer of 1976 David Boggs redesigned the network protocol and added the ability
to copy Trident disks. The CopyDisk nctwork protocol is specified in <Pup>CopyDisk.ears.

2. Concepts and Terminology

In a disk copy opcration, the information on a’Source’ disk is copicd to a "Destination’ disk, destroyingany
previous information on the destination. A copy operation usually consists of two steps:

EIC_(i(py] Step one copies bit-for-bit the information from the source disk to the destination
disk. :

[Check] Step two reads the destination disk and checks that it is indentical with the source
disk. This step can be omitted at the user’s peril.

Copying a disk from one machine (or *host’) to another over a network requires the active cooperation of
rograms on both machines. In a typical scenario, a human user invokes a program called a’CopyDisk
ser’ and directs it to ¢stablish contact with a *CopyDisk Server’ on another machine. Once contact has

been cstablished, the CopyDisk User initiates requests and supplics parameters for the actual copy

operation which the User and Server carry out together. The User and Server roles differ in that the

CopyDisk User interacts with a human user (usually through some keyboard interpreter) and takes the

initiative in User/Server intcractions, whereas the éopyDisk Server plays a comparatively passive role.

The question of which machine is the CopyDisk User and which is the CopyDisk Server is independentof

the direction in which data moves.

The Alto CopyDisk subsystem contains both a CopyDisk User and a CopyDisk Server, running as
independent processes. TKcrcforc to copy a disk from one machine to another you should start up the
Copylisk subsystem on both machines and then type commands to onc of them, which becomes the
CopyDiisk User. Subscquent operations are contro{lcd entirely from the User end, with no human
intervention required at the Server machine. This arrangement is similar to the way the Alto IFTP
subsystem works, and different from the way the older CJ()pyf)isk worked.

3. Calling CopyDisk

CopyDisk can be run in two modes: interactive mode in which commands come from the keyboard, and
non-interactive mode in which commands come from the command line (Com.cm). The general form of
the command line to invoke CopyDisk looks like: :

CopyDisk [ [/<option switches>] [from] <source> [to] <destination>]



Cleared version of October 8, 1979
CopyDisk March 22, 1978 20

The square brackets denote portions of the command line that are optional and may be omitted. Ifyoy
just type "CopyDisk" the program goes into interactive mode, otherwise the remainder of the command
line must be a complete description of the desired operation.

3.1. Option Switches

Each option switch has a default value which is used if the switch is not explicitly set. To set a switch to
“falsc’ proceed it with a ‘minus’ sign (thus CopyDisk/-C means "no chccking@. To set a switch to truc’ just
mention the switch.

Switch Default Function

/4 false [Model44] tells CopyDisk to copy an entire Diablo model 44, without asking for
confirmation.

/C truc [Check] tells CopyDisk whether to check the copy operation. CopyDisk/-C,

which omits the check step, is faster but more risky.

/W true [WriteProtect] prevents the CopyDisk network Scrver from writing on a local
disk. So unless you say CopyDisk/W or issue the WRITEPROTECT command,
someone can make a copy of your disk over the network, but no one can
(maliciously or accidentallyiloverwritc it.

/R true [Ram} tells CopyDisk to attcmgt to load the ram with some microcode which
speeds things up considerably. CopyDisk will still work, though more slowly ifit
can’t load the ram.

/D false [Debug] enables extra printout that should be interesting only to CopyDisk
maintainers.

/B false [Boot] creates "CopyDisk.boot’ for distribution to boot servers.

/A falsc [AllocatorDebug] enables cxtra consistancy checks in the free storage allocator.

3.2. Source and Destination Syntax

The general form of a source or destination disk name is:
[Host namc]Device

for example "[Myrddin]DP0". Ordinarily *host name’ can be a string, e.g., "Myrddin". Most Altos have
names which are registered in Name Lookup Scrvers. So long as a name lookup server is available,
CopyDisk is able to obtain the information necessary to translate a host name to an inter-network address
(which is what the underlying network mechanism uses). You may omit the host name for disks attached
to the local machine.

If the host name of the Server machine is not known, you may specify an inter-network address in its place.
The general form of an inter-network address is:

<network> # <hostd> # <socket>

where each of the three ficlds is an octal number, The <network> number designatcs the network to which
the Server host is connected (which may be different from the one to which the User host is connected);
this (along with the " # " that follows it) may be omitted if the Scrver and User are known to be connected
to the same network. The <host> number designates the Server host’s address on <nctwork>. The<socketd
number designates the actual Server process on that host; ordinarily it should be omitted, since the default
is the regular CopyDisk server socket. Hence to specify a Cop Disk server running in Alto host number
241 on the dircctly conncected network, you should say '"241 #" ()Ehc trailing " # " is required).



Cleared version of October 8, 1979
CopyDisk March 22, 1978 21

The syntax of the ’device’ part of a disk name depends on the disk type. CopyDisk currently knows how to
copy two kinds of disks:

DPn Diablo disk unit 'n’. Mo‘st Altos have one Diablo disk called "DP0Q’.

TPn Trident disk unit 'n’. The unit number must be in the range 0-7.

4. The CopyDisk display

CopyDisk displays a title line about onc inch from the top of the screen, and below that the main display
window, which consumes about half of the screen. The main window is shared by the User and Server
processes, only one of which is active at any time. The Erocess which currently owns the window identifies
itsclf at the right side of the title line. The title also shows the release date of the program and the host
number of the Alto. When a copy operation is in progress, the current disk address is displayed in thearca
above the title line. ' .

When CopyDisk is started, the User is listening for commands from the keyboard and the Server is
listening for connections from the network. If you start typing commands, the User takes over control of
the main window (‘User’ appears near the right cnd of the title line), and your commands and their
responscs are displayed there. The Server refuses network connections while the User is active. Ifanother
CopyDisk program connccts to the Scrver, the Server takes over control of the main window (*Server’
achars ncar the right end of the title linc), and the Server logs its activity there. The User ignores type-in
(flashing the screen if any keys are typed) while the Server is active.

5. Keyboard Command Syntax

CopyDisk’s interactive command interpreter presents a user interface very similar to that of the Alto FTP
sub_s]y?t{:m. The standard editing characters, command recognition features, and help facility (via "?"") are
available,

5.1. Keyboard Commands

Ccory

Starts a dialog to gather the information for copying a disk. CopyDisk first asks for the name ofthe
source disk by displaying "Copy from". If the disk is local, it makes sure it is ready; if the disk ison
another machine, it opens a connection and asks the remote machine if the disk is ready. Ifyou
want to abort the connection attempt, hit the middle unmarked (Chat’) key. If the source disk is
ready, CopyDisk prompts you for the destination disk by displayin% "Copy to", and then checks
that that disk is ready also. Next, it verifies that the disks are compatible, and depending on thedisk
type, may ask some questions about things peculiar to that disk (such as "Copy all of the model
447"). Then CopyDisk asks you to confirm your intention to overwrite the destination disk. 1fyou
change your mind, type ’N’ or <dclete>. If you respond yes, CopyDisk will pause for a few seconds,
ignoring the keyboard, and then ask you to confirm once again, Type-ahead does not work for this
sccond confirmation. This is your last chance to look at the disks and make surc that you arc not
overwriting the wrong one. It happens! This feature was in the original CopyDisk, was left out of
the second version, and is back in this third version by popular demand from the many people who
madc that fatal mistake.

QUIT .
Terminates CopyDisk. One of three things happens:

The Alto Exec is restarted if DPO is ready, and has not been written on, and if
CopyDisk was not booted from the net,



Cleared version of October 8, 1979
CopyDisk March 22, 1978 22

BPO is booted if it is ready but has been written on or if CopyDisk was booted from
¢ net.

DMT is booted from the net if DPO is not ready.

All of this is attempting to leave the Alto running something useful. If the disk in DP0 does not
have an operating system on it when CopyDisk quits, the disk boot (option 2, abovc% will fail. This
will not hurt the disk, it will just lcave the Alto in a bad state. You will have to boot DMT manually.

CHECK ‘
To%g]es the switch which controls whether a disk is checked after copying. CopyDisk displays "on"
if checking is now enabled, and "off” if it is now disabled.

DEBUG
Toggles the switch which controls the display of debugging information. The performance data
presented at the end of this document is part of the debugging information; the network protocol
interactions are displayed when this switch is set also.

WRITEPROTECT )
Toggles the switch which allows the network Server to write on local disks. The default is that
people can’t overwrite your disk.

VERIFY ,

Verifies that two disks arc identical. The dialog is very similar to the COPY command. Neither disk
is ever written. This is uscful to verify the health of your disk drive (but remember that it doesnot
check the write logic).

6. Command Linc Syntax

CopyDisk can also be controlled from the command line, If there is anything in the command linc except
"CopyDisk" and global switches, the command line interpreter is started instcad of the interactive
keyboard interpreter. Its operation is most casily cxplained by examples:
6.1. Command line examples
To copy DPO to DP1: ‘

CopyDisk from DPO to DP1

Note that *from’ and ’to’ are optional (though stongly recommended for clarity), and one or both may be
omitted or abbreviated:

CopyDisk DP0O t DP1
is equivalent, though less obvious.

To copy the Basic non-programmer’s disk from host "Tape-Controller’ (which is running CopyDisk) ontoa
disk in your own machine:

CopyDisk from [Tape-Controller]DPO to DPO
or, equivalently:

CopyDisk from {3 # 6’ # ]P0 to DPO



Cleared version of October 8, 1979
CopyDisk March 22, 1978 23

The single quotes are necessary to keep the #s out of the clutches of the Alto Excc. The quotes arc not
needed when typing to the keyboard interpreter. Note that no spaces are allowed between the hostname
and the device name.

If the command line interpreter runs into trouble, it displays an error message and then starts the
mtcractive interpreter.

7. Disk Errors

Disk errors are termed ’soft’ or hard’ depending on whether retrying the o%}cration corrects the difficulty.
If CopyDisk is still having trouble after many retries, it displays a message of the form "Hard error at DPn:
cyl xxxhd y sec zz" in the main window and moves on.

Soft crrors are not reported unless the debug switch is true, so as not to alarm users. Their frequency
depends on several factors. Copying over the network will cause more soft errors then copying between
two disks on the same machine. Alto ITs get many more errors then Alto Is.

During the Check pass, in addition to soft and hard errors, *data compare’ errors are also possible. A data
compatre error means that the corresponding sections of the source and destination disks are notidentical.
Ifany hard crrors have been reported, then data compare errors are likely, otherwise getting datacompare
errors means that something is very wrong. You should suspect the Alto.

Hard errors and data compare errors are serious, and you should not trust the copied pack if any are
reported. If the errors are on the source disk, try Scavenging it. Bear in mind that there is some variancein
alignment among disk drives, and that a pack which reads finc on one drive may have trouble on another.
Is the source disk in a different drive than where it is normally used? Before allowing the Scavenger to
rewrite sectors, consider that the pack may be OK, but the drive it is in may be out of alignment. In this
case, allowing the scavenger to rewrite the sectors is a bad idea. If the errors are on the destination disk, try
the copy again, and then suspect the pack or the disk drive itself. 1f the destination pack was much colder
than the tempgrature inside the drive, sectors written carly in the copy pass may read incorrectly duringthe
check pass. It's a good idea to wait a few minutes for the pack to reach normal operating temperature
before using it.

8. Creating a new disk

Slqpposc you want to make a new disk by copying one of the "Basic’ disks. There are two major ways todo
this:

I'ind an Alto with two disk drives. These are relatively rare beasts. This method is called the
"double disk copy’ method.

Find two Altos, cach with onc drive, that arc connected by a network. This should be
rclatively casy. This method is called the ‘network copy’ method.

Having decided on one of the above methods, you must now get CopyDisk running on the Alto(s). There
arc two major ways to do this:

Start CopyDisk from a disk which has ’CopyDisk.run’ on it.

Boot CopyDisk over the network from a ’Boot Server’.



Cleared version of October 8, 1979
CopyDisk March 22, 1978 24

8.1. Starting CopyDisk from another Disk

If you do not have access to a Boot Server, you must start CopyDisk from a disk that has it on it. Put adisk
with CopyDisk on it into the Alto and type "CopyDisk<rcturn>". Then switch disks. BE CAREFUL!!
People sometimes forget to switch disks at this point and accidentally copy the wrong onc. This is why
CopyDisk asks you to confirm your intentions so many times. .

8.2. Booting Copydisk from the net

The best way to start CopyDisk is to boot it from the nctwork. That way you are more likely to get the
latest version, and you avoid the pitfall mentioned above. Of course, you must have network access to a
Boot Scrver. Most Gateways have Boot Servers. If this method doesn’t seem to work, you will have to fall
back to starting CopyDisk from another disk.

Hold down the <BS> and <Quote> keys while pressing the boot button on the Alto. You must continueto
hold down <BS> and <Quote> (but let go of the boot button!) until a small square appears in the middlcof
the screen. ‘This can take up to 30 seconds, but usually happens in less than 5 seconds. "You are now taking
to the NetExcc (see the documentation in the Subsystems manual if you are curious), and you should type
"CopyDisk<return>". The screen will go blank, the little square will appear again (you don’t have to hold
down any keys this time), and soon CopyDisk should appear on the screen.

8.3. The Double-Disk Copy Method

Put the basic disk in DP0 and put your disk in DP1. Type "Copy<space>", and when it says "from" tyfpe
DP0<return>. When it says "Copy to", type "DPI<return>”. Then type <rcturn> cach time it asks for
confirmation. Some numbers will appear in the top center of the screen. When they disappear, CopyDisk
is done. Typc "Quitdreturn>". Put the basic disk back where it belongs, and take your disk with you.

8.4. The Network Copy Method

Unlike the old CopyDisk, you need only type commands to one of the two Altos. 1t doesn’t matter which
once. Assume that the basic disk is in the Alto called "Tape-Controller”, your disk is in the Alto called
"Myrddin" and you are going to ty%s commands to Tapc-Controller. Type "Col)(g(spacc)", and whenit
says "from"” type "DPO<return>”.” When it says "Copy to", type "[Myrddin]DPO<return>”. Then type
<return> cach time it asks for confirmation. Some numbers will appear in the top center of the screen,
When they disappear, Cop Disk is done. Type "Quit<return>”, and put the basic disk back in the rack.
(/310 t% Myrddin and type ' (guit(rctum)". It will boot the disk, and you should find yourself talking to the
to Excc.

9. Performance

This scction calculates the times to copy disks under different conditions. CopyDisk times its operations
anc%. displays the results if the debug switch is set, so you can compare the numbers derived here with
reality,

9.1 TSweep

First, we calculate TSweep, the time to read or write a disk assuming that we can consume or produce data
faster than the disk. This best possible case is the sum of two terms. The first term is the time necessary to
sweep an active read/write head over every sector on the disk:

Rot * nCyl * nHds.



Cleared version of October 8, 1979
CopyDisk March 22, 1978 25

The second term is the time lost while sceking to the next cylinder. We assume that these secks take less
than one rotation but that a whole rotation is lost:
Rot * nCyl.

Combining, we get:

TSweep = Rot * nCyl * (nHds+1).
where: Rot is the rotation time of the disk in seconds

nCyl is the number of cylinders, and
nHds is the number of heads.

9.2, Disk-To-Disk Copy

By disk-to-disk copy we mecan copying from one disk to another on the same machine, using a single
controller and not overlapping secks. The fastest way to do this is to read the cntire source disk into
memory, switch to the destination disk, and then write it all. The switch from the source to the destination
disk, will losc on the averaﬁe half a revolution while waiting for the right sector on the new disk to come
under a head. Neglecting the switch time which is small compared to the other two terms, the bestpossible
disk-to-disk copy time is 2 * TSwecep. :

With limited memory, the best we can do is fill all available memory buffers reading the source disk,
switch disks, write them onto the destination disk, and then switch back to the source disk for anotherload.
In this case we can’t ignore the switch time, which is the total number of sectors on the disk divided bythe
number of sector buffers times the rotation time of the disk:

Rot * (nCyl * nHds * nSec)/nBuf

where nSec is the number of scctors per track, and
nBuf'is the number of memory buffers.

So the disk-to-disk copy time, TDDCopy, is:
TDDCopy = 2 * TSweep + Rot * (nCyl * nHds * nSec)/nBuf

9.3. Net Copy

By nct co?y we mean cocFying from a disk on onc machine through a nctwork to a disk on another
machine. In this case the disk controllers can be going in parallel, and the factor of two in the first termof
TDDCopy vanishes. In additon, if the bandwidth of the network connection is higher than the transfer
ratc of the disks so that as soon as a scctor is read from the disk it is sent out of the machine, the memory
limitation goes away and the second term of TDDCopy vanishes.

The CopyDisk network protocol sends a small amount of information along with cach sector which must
be factored into the calculation of the bandwidth needed to run without memory limitation. Note thatthe
bandwidth we are concerned with here is that peiceived by a client of the network services: user data bits
per sccond, not raw bits per sccond through the network hardware.

[f the network is slower than the disks, then the time to copy a disk is the time required to transmit all of
the bits on a disk plus the protocol overhead bits:

TNctCopy = nCyl * nHds * nScc * (sB + sOv)/bwNet
where sB is the bits of disk information per sector,
sOv is the Cogyl)lsk_ protocol overhead per sector, and
bwNet is the bandwidth of the network connection.

The bandwidth of the network connection is hard to state, and depends on a number of factors. Here area
foew: .



Clcared version of October 8, 1979
CopyDisk March 22, 1978 26

Reduction of the cmulator’s instruction exccution rate due to interference from the disk and
network hardware.

Reduction of the amount of the cmulator cycles available to the network and disk code due to
mutual interfercnce.

Reduction of the peak network bandwith due to interference from other hosts on the network.
The minimum network bandwith required to copy a disk at full speed is:

MinBwNet = 16 * nCyl * nHds * nSec * (sB + sOv)/TSweep.

9.4. The Numbers for Altos

Here are the relevant numbers for the disks which this program can copy:

Diablo-31 Diablo-44 Trident-80 Trident-300
Rot (ms) 40 25 16.66 16.66
nCyl 203 406 815 815
nHds 2 2 5 19
nSec 12 12 9 9
sB 266 266 1036 1036
sOv 2 2 2 2
nBuf 80 80 18 18
9.5. Reality

Here arc the results of plugging the numbers into the equations, and comparing them against actual
measurcments. The format is predicted{mcasurcd). NA means not available.

Diablo-31 Diablo-44 Trident-80 Trident-300
TSweep 0:24 0:30 1:21 4:32
1 DDCopy 0:51(0:51) 1:04(1:16) 3:18(4:00) 11:20(19:27)
TNetCopy (1:05) (2:16) (26:31) (NA)
bwNet §323 Kb/s) 5308 Kb/s) (383 Kb/s) gNA
MinBwNet 59 Kb/s 1375 Mb/s 7.520 Mb/s 509 Mb/s

10. Revision History

August 7, 1977

First relese.

August 28, 1977

Soft crrors are only reported if the debug switch is set. Data compare crrors now display the offending
disk address. VERIFY and WRITEPROTECT commands added to keyboard comunand interpreter.
Write protect global switch added.

QOctober 16, 1977



Cleared version of October 8, 1979
CopyDisk March 22, 1978 27

More microcode to speed things up
October 27, 1977

Bug fixes

December 18, 1977

Fixed a bug which prevented it from copying the sccond half of a two disk file system. The network
format for Diablo disks changed.

March 22, 1978

Copr{%cEwill now do the right thing for "[thisHost]device". The default value of WRITEPROTECT is
now .



Cleared version of October 8, 1979
Createfile March 19, 1979 28

Creatcfile

This subsystem creatcs a file of a given size, attempting to allocate it contiguously on the disk. To runthe
program, use

>CreateFile filename npages

where filename is the name of the file and npages is the size of the file in pages (in octal unless you suffixa
"d": 99d). This program is primarily intended for creating files which will be accessed using the Indexed
Sequential File (IS l) |5)ackagc, which influences its notion of what a contiguous file looks like. The
algorithm is: 1) scarch the disk bit table and locate the largest group of contiguous free pages. 2) ifnPages
is less than the size of this group, allocate nPages and finish; otherwise allocate the whole group, decrease
nPages by the size of the group and repcat step 1. This program can be fooled into allocating pages inless
than optimal ways if your bit table is not in sync with the disk, so if in doubt, run the Scavenger first. If
there aren’t enough pages on your disk, it will fail gracefully, perhaps after thrashing around for a while.



Cleared version of October 8, 1979
DDS 1.13 October 12, 1977 29

DDS - Descriptive Directory System - release 1.13

The Descriptive Directory System (DDS) is a front end for the Alto file system that provides
substantially greater flexibility than the "?" facility in the opcrating system’s command processor. In
addition to filc names, the DDS can display file lengths, creation-rcad-write dates, and contents.

If you have used DDS before and merely wish to learn about changes, bug fixes, and new features,
you probably want to skip to section 5 of this document. If not, sections 0 through 4 arc a complete
description of the current release. Sections significantly changed since the last release are marked with **%*,

0. The mouse and cursor

The three buttons on the mouse are called RED (left or top button), YELL.OW (middle button), and
BLUE (right or bottom button). Most mouse-controlled actions in IDDS happen as soon as you depressthe
mouse button: these are described below using phrases like "RED does xxx", mcaning "As soon as you
chrcss RED, xxx happens.” Some actions require d@gessing a button and then releasing it: phraseslike

clicking RED does xxx" mean "If you depress RED and then release it, xxx will happen.” Careful
reading, or a little experimenting, will familiarize you quickly with the distinction.

The cursor changes shape according to its location on the display and according to how DDS is
interpreting the buttons. Generally speaking, when the cursor is circular, RED selects what you are
pointing at in some way, and BLUE desclects it. When the cursor assumes the shape of an hourglass, DDS
1s busy doing something and is not listening to the mouse buttons.

1. The display

Like Bravo, DDS divides the display into a command area at the top, and one or morc windows
below. Currently DDS just supports a single window. A heavy black bar scparates the command arca
from the window. Scction 2 (below) describes the command area.

The window has three parts, separated by lighter horizontal bars:

1) The top part is the view specification arca, or viewspec arca for short. It contains a set ofkeywords
that describe what information is to be displayed for the files being examined in this window, and a setof
keywords that describe how the displayed files are sorted.

2) The sccond part is the selection specification area, or selspec arca for short. It contains a pair of
expressions which together determine what sct of files is being examined in the window. View and
sclection specification are completely independent: cach can be changed without affecting the other.

3) The main part of the window is the data area, which actually displays a sct of files. The names are
always displayed: other information is controlled by the viewspecs.

1.1 The viewspec arca

There are 10 keywords in the viewspec arca that control what is displayed:

"crcated” - the date when the file was created

"written" - the date when the file was last altered

"read” - the date when the file was last read

"referenced” - the date when the file was last referenced (i.e. the most recent of "created”,
"written", and "rcad")

"size" - the size of the file in disk pages

"length" - the length of the file in bytes (characters)

4 "address” - the hardware address, in the form directory-pointer: (SNLSN2YVN @ virtual-leader-

address

"contents” - the contents of the file (in octal, if a binary file)

"pagemap" - the disk addresses of all pages of the file, with a "*" before each address that
represents a change of head position

"leader" - the contents of the file’s lcader page, in octal



Cleared version of October 8, 1979
DDS 1.13 October 12, 1977 30

If the keyword is displayed white-on-black, the corresponding information is displayed in the data area,
otherwise not.

There are 6 keywords that control other aspects of how the data are displayed;
"§marked)' - if turned on, DDS only displays marked files (sce sec. 1.4 below) :
"(small)” - if turned on, DDS uses a smaller font for the data, which allows more data to appearon
the screen (sec sec. 3 below for how to tell DDS the name of the font)
(packed)" - if turned on, DDS displays several files per line if possible (not implemented yet)
"(times)™ - in conjunction with "created"”, "written”, "read”, or "referenced”, shows the time of
day as well as the date )
"(browse)" - if turned on, then when "contents” is turned on, DDS only displays the first 5 linesof
text files and the message "*** binary file ***" for binary filcs, instcad of the completc contents of the file.
"(chart)" - if turned on, changes the data display to be a chart made up of boxes in which the
height of the box is proportional to the file length. (Try it -- you'll like it.)

When the cursor is positioned over a keyword name, RED turns the keyword on; BLUE turns the
ﬁeywmrg ofg.f When the cursor is over the word "Show:" at the upper left of the keywords, BLUE turnsall
eywords off,

There are currently 8 keywords that control sorting of the data:
"name"” - alphabetic order by name (upper and lower case letters are cquivalent)
"extension" - alphabetic order by extension
"created", "written", "read" - the corresponding date and time
"referenced” - the date last referenced
"length” - the file length

"serial” - the file’s serial number (not of gencral interest)

The keywords which are displayed white-on-black are those actually used to sort the data arca. They
are displayed in the order most- to Ieast-significant criterion, e.g. "extensiont” followed by "namet" means
sort by extension first, then sort files with the same extension by name. Following each keyword, whether
active or not, is an arrow which indicates whether the sort is to be in ascending (upward arrow) or
descending (downward arrow).

When the cursor is positioned over a sorting keyword name, clicking RED turns the keyword on and
adds it to the list of white-on-black keywords actually used for sorting; clicking BLLUE turns the keyword
off and removes it from the list; clicking YELLOW inverts the direction of the arrow, regardless of
whether the keyword is in the list. When the cursor is over the words "Sort by:" at the left of the sorting
keywords, BLUE turns off all sorting criteria.

Since sorting may take a long time and it is casy to request sorting by accident, you can abort sortingat
any time by typing any character. Be surc the cursor is not in the data arca when you do this: if it is, DDS
may start the sort over again!

Whenever the cursor moves into the data area, regardless of whether any mouse buttons are down,
DDS repaints the display to be as specified by the viewspeces if the viewspecs have changed since the last
time the display was repainted.

1.2 The sclspec arca

‘Ihe selspec arca containg two expressions which defines what subsct of the directory will actually be
displayed in the data arca. These expressions arc built up from name patterns which are similar to those
recognized by the Alto Exccutive. More precisely, a name pattern is a scquence of characters which may
contain "*"s and " #"s: "*" matches any sequence of characters in a name (including no characters atall),
"#" matches any single character. Upper and lower casc letters are not distinguished. Note that DDS
deletes the final "." from file names. Fere are some cxamples of name patterns and what they match:

*BC  All files with extension BC (or be, bC, or Be).

*B Al files with cxtension B.

*B* All files whose names contain the string .B -- this includes all files with extension Bsomething,
but also includcs files like THIS.BINARY. THAT.

*B# All files whose extensions consist of B and one more character.



Clearcd version of October 8, 1979
DDS 1.13 October 12, 1977 31

*  All the files in the directory.

You can build up more complex expressions using the words "and", "or", and "not", and parentheses.
Here are some cxamples of such expressions and what they select:

LPD* and not *.temp .
All files beginning with LPD, except those with extension temp.

*.memo or *.memo$
All filcs with extension memo or memo$.

(*.BT or *.BS) and not X*
All files with extension BT or BS, except those beginning with X,

The upper expression in the selspec arca is called the selspec; the lower one is called the context. (The
two together are simply called the selsgccs.) Only files which satisfy both cxpressions will be displayed.
The idea is that if you arc going to be working on memos, for example, you can set the context to
"*memo" and usc the selspec to further select within this set. As another example, if there is some setof
files you want not to sec (like "*$"), you can set the context to "not *§".

To change the selspec or the context, point at it, or at the word "Selspec:™ or "Context:", and click
RED or YELILLOW. This will cause it to change to white-on-black. As soon as you start typing, the oldtext
will vanish and what you type will appear whitc-on-black in its place. Eventually you must typc one ofthe
following three things before you can point anywhere clse or select any commands (sec sec. 2 below):

<return> confirms the change, and repaints the display to reflect it.
<esc> is equivalent to *Creturn2, i.e. it adds a * to what you have typed and then confirms the change.
<del> aborts the typein and restores the old selspec or context expression.

See scction 3 below for how to %_gt the selspec and/or context initialized automatically to something
other than "*" when you first enter DIDS.

The third line of the sclspec area is a message of the form "nan files are selected, of which mmm are
marked"” where nnn is the count of files selected by the current selspec and mmm is the count of those
which are marked (sce 1.4 below). If there are marked files not selected by the selspee (again, sce 1.4), the
message "there arc kkk files marked but not selected” also appears. While DDS is sorting data, the
message "Sorting ..." appears in this arca in place of the file counts.

1.3 The data arca

As mentioned above, whenever the cursor moves into the data area, DDS regenerates the display if
necessary to conform to the cucrent viewspecs.

The left edge of the data arca is a scrolling bar which works the same way as in Bravo: clicking RED
scrolls up, clicking BLUE scrolls down, and clicking YELLOW jumps Froporti(matcly to the vertical
location 1n the window. A hollow arrow in the left margin shows where in the list you are positioned: ifthe
arrow is at the top, you are at the beginning of the list; if the arrow is at the bottom, you arc at the end.
The idea is that if you were to move the cursor to this arrow and click YELLOW, the list would stay
positioned just as it 1s. (This featurc may appear in Bravo some day too.)

If you are positioned at the beginning of the list of sclected files, DDS displays the message "'~~~ ~~
BEGIN ~~~~~" at the head of the list; if not, DIDS displays "~~~~~ nnn files not shown ~~~~n"
indicating the position within the list of the first file actual]ly shown on the screen (e.g. "2 files notshown"
mcans the first file on the screen is actually the third in the list). Similarly, if the last file shown on the

screen is actually the last file in the list, DDS displays "~~~ ~~ END ~~~~ " below it.

A vertical strip at the right edge of the data arca will be used in the future to control the formattingof
the screen into windows. Currently the cursor changes shape when it is in this arca, but the buttonshave
no effect. Another vertical strip just to the Ieft of this one is used for mass marking and unmarking offiles:
see the following scction.

1.4 Marking filcs



Clcared version of October 8, 1979
DDS 1.13 October 12, 1977 32

DDS provides a facility for marking any sct of files for later processing by commands such as
<Delete>, <Send to Maxc>, etc. Marked files are displayed with a small dark arrow in the left margin, and
a count of how many marked files arc in the current selected sct is maintained in the selspec window.
When the cursor is in the data arca of a window, other than the right or left edge areas, the mousc buttons
control marking and unmarking of individual files: RED marks the file on whose linc the cursor resides:
BLUE unmarks the file. When the cursor is in the vertical strip about 1" in from the right edge of the
screen, the cursor changes to the word "ALL", and the buttons mark and unmark files en masse: clicking
RED marks all the files selected by the selspecs; clicking BLUE unmarks all the files.

Note that files me‘ty be marked even though thcg are not selected by the current selspecs, i.c. marking
is associated with the file rather than the display. (If this proves confusing it will be changed.) Thecount
of "files marked but not sclected” in the selspec arca lets you know when there arc marked files not
sclected by the current selspecs.

Since marking or unmarking individual files occurs as soon as the button is depressed, you can hold
down RED or BLUE and slide the mouse (slowly) in the vertical direction to mark or unmark a group of
adjacent files.

The marked file counts in the sclspec window are adjusted as soon as a file is marked or unmarked,
but if the "marked” viewspec is on and you unmark a file, you must scroll the data to get the unmarked
file(s) deleted from the display.

2. Commands

The command area at the top of the screen consists of four parts:
1) A header with the DDS version number, time of day, and count of free disk pagcs;
2) A type-in arca, where typed characters appear;
4) An crror message line;
3) A menu of commands, with cach built-in command being enclosed in angle brackets <.

When the mouse is in the command menu arca, RED selects a command for subsequent exccution:
the selected command is displayed white-on-black, and any previously sclected command is desclected.
BLLUL deselects the currently sefected command and selects the default command <Quit>, "Typing <csc>or
<return> finally initiates the command: you can freely select or desclect commands, type and edit your
type-in, change vicwspecs, etc. up to that moment. For commands which do not require type-in, you may
also initiate the command by clicking YELLOW with the mousce in the command menu area. Thecursor
takes the shape of a circle with a cross when this is allowed, and a circle with a dot when it is not,

Some commands require or allow type-in before the final <esc> or <return>. You may type at any
time. All typed characters are accumulated in the type-in area just below the header until the <escd or
<return>. Control-A (or backspace), control-W, control-Q, and <dcI> are available for editing as in Bravo.
DDS displays a vertical bar when it is waiting for your typing, and of course you can "type ahcad" while
DDS is processing a command. However, as for sclspec and context changes (scc. 1.2%, once you have
started to type, you must either confirm the command with <esc> or <return>, or abort with <de>, before
you can select another command or another place to type (selspec or context).

When you have sclected a command with RED, then when you release the button, DS may display
something in the type-in arca which is a default for that command. If you want to exccute the command
with that default type-in, you can just confirm it (with <esc>, <rcturn>, or YELLOW); othcrwisc, the
default disappears as soon as you start typing, just like the old selspec or context.

In the description of commands below, "something"” following the command name means that DIDS
expects you to have typed something before the final <esc> or <returnd that initiates the command;
"optional-somcthing” means you may type something or not. To help you remember, all the commands
that require type-in end with ™...", and those which allow but do not require type-in cnd with "[...]".

Many commands opcrate on a set of files: they use precisely those (iles which, at the time you typethe
final <esc> or <return, are both sclected (i.c. match the selspee) and marked. "Filename-1 ... filename-n"
in the descriptions below refer to these files, which are also called the "designated” filcs. '



Clecared version of October 8, 1979
DDS 1.13 October 12, 1977 33

DDS presently has two classes of commands: those which leave you in DDS after exccution (internal
commands), and those which send you back to the Alto Executive (external commands). IDDS has afixed
collection of internal commands, but you can add new external commands of your own: sce section 3
below for how to do this. For external commands, DDS saves away a command line so that if something
goes wrong, you can execute the command again by typing @DDS.CM@<return> to the Executive.

2.1 Internal commands (those which leave you in DDS)

<Put on file ..> "filenamc" writes on the file named "filename" (in text form) the contents of the
window. DDS also writes a header with your name, the disk name, and the date and time. The defaultfor
"filename" is "Dir.Lst", an arbitrary name which DDS supplies so that you don’t have to make one up.

<List on file ..> "filename" writes on the filc named "filename"” (in text form) the names of the
designated files, separated by blanks. This makes it easy for you to make up an @-file for the Exccutive by
adding a command name to the front of this file. The default for "filename" is "Dir.Cm", an arbitrary
name which DS supplies so you don’t have to make one up.

{Delete> deletes the designated files. There is presently no way to un-dcelete files, so be careful: the
count of marked files in the selspec window is a good cluc as to whether you are deleting more than you
want. You can stop a <Dclete> at any time by typing any character: of course, some files may alrcady have
been deleted. DDS changes the "free pages” count at the top of the screen as it deletes each file.

<Rename as ...> "filename" requires that there be exactly one designated file, and changes its nameto
"filename™. If therce is alrcady a file named "filename", <Rename> gives an error message and docs
nothing else.

LInitialize [sclect ...]> "sclspec” restores your sclspec, context, and viewspecs to what you have
specified in User.Cm. If you typed something, 1DDS takes that in place of the selspec in User.Cm.

2.2 External commands (those which leave you in the Exccutive)

<Quit> lcaves DDS gracefully. Shift-Swat is also safe whenever DDS is awaiting input (i.c. not inthe
midst of sorting, deleting, ctc.).

<Bravo/[...]> "optional-switches" gives control to Bravo in the following way:
If there are no designated files, DDS effectively executes "Bravo/switches”,
If there is more than one designated file, DDS gives an crror message and does nothing else. _
If there is a single designated file and you did not type anything, DDS effectively executes "Bravo/N
filename", i.c. instructs Bravo to read in the file.
1 If there is a single designated file and you did type in switches, DS cxecutes "Bravo/switches
ilename".

i <Gcars/{...]> "optional-switches" executes "Gears/switches filename-1 ... filename-n", i.e. prints the
designated files.

<{Send to Maxc directory <...>> "directory-name” sends the designated files to the directory named
"directory-name™ on Maxc, using Ftp. The default for directory-name'is the user name on your Alto disk.
If you accept the default, DS assumes you have alrcady done a Login in the Exccutive to supply the
password; if you supply some other directory-name XY7Z, DDS arranges things so the Exccutive will
prompt you with the message "File XYZ-Password does not exist, typc what it would contain™ and you
should typc in the password for XYZ at that time.

<Send to ...> "namc" scnds the designated files to the Alto whosc name is "name”, using Ftp.
"Name" may be anything acceptable to I'tp, i.c. an Alto name, an Alto number, etc. The default for
"name" is Maxc, which is not really very usetul.

<Exccute ...> "command” constructs a command line formed from "command" and the names of the
designated files, and then cxccutes the command line thus formed by cither jumping directly to the
subsystem or returning to the Alto BExccutive. (If there are no dcsifnatcd files, DDS produces an error
message "No files are marked" and docs nothing else.) The command line is formed in the following way:



Clcared version of October 8, 1979
DDS 1.13 October 12, 1977 34

If "command" does not contain any "*" characters, the command line is just "command” followed b
the names of the designated files. For cxample, if files ALPHA and BETA arc designated, <Exccute ...
"BLDR/L" would execute the command line "BILLDR/L ALPHA BETA". "String" may contain blanks,
so for example <Iixccute> "BLDR FOOQ/S" would cxccute "BLDR FOO/S ALPHA BETA™,

If "command™ docs contain a "*", DDS divides "command” into 3 parts "s1 s2*s3", where $2 is the
part of "command"” extending backwards from the "*" to the first preceding blank (or the beginning of
‘command"). Then the command line is "s1 s2f1s3 s2f2s3 ..." where f1, {2, etc. are the names of the files.
For example, if ALPHA and BETA arc designated, <Executc ...> "BLDR @*@" would cxccute the
command lin¢ "BLDR @ALPHA@ @BETA@". (If this scems confusing or uscless, don’t worry aboutit
too much -- some future version of DDS may find a better way to provide this facility.)

2.3 User-defined commands

If you definc your own external commands with a SUBSYSTEMS entry in User.Cm as described in
scction 3 below, these commands will also appear in the command menu along with all the commands
listed just above. They behave exactly like the <Execute> command with respect to what they do about*'s,
typein, and designated files. For example, supposc your SUBSYSTEMS list looks like this:

SUBSYSTEMS: Chat, Ftp/-S Maxc, Foo
Then if you select the second command with files Alpha and Beta designated and type Dump/C Blap.DM,
what will actually get executed is 1‘tp/-S Maxc Dump/C Blap.IDM Alpha Beta. :

2.4 Error messages

Non-fatal error messages appear in bold characters just below the type-in line. Such messagesalways
abort the current command and reset the command to <Quit>, but they do not change the state of DDS1n
any other way. The message disappears as soon as you type any character.

Fatal crrors cause DDS to call Swat. When this happens, the screen changes completely and a
heading like "Swat.21 (August 28, 1976)" appcars at the top; the error message itscif appears at thebottom
of the screen just above a " # ", Fatal errors are never supposed to happen, but if one ever does, summona
DDS expert. If none is available, writc down the message and what you were doing at the time, and then
type control-K. This will throw you out of DDS and back to the Exccutive.

3. Uscr profile

DDS examines the user profile (User.Cm) during initialization to obtain the names of the fonts which
will be used to display various things, and other rarcly-changed information. Just as Bravo’s section of
User.Cm begins with f[vBRAVO] and then follows the format of OPTION:STRING, DS looks for[DDS]
and follows the same format for its entries.

The entries which DDS recognizes in User.Cm fall into two classes. "Initialization-only"” cntrics are
those which DIDS only consults when you ask it to do a full initialization (bf, using the FULLINIT: Yes
entry in User.Cm, or the /I switch in the command line, both described below). "Ordinary" entrics are
thosc which DDS looks at every time.

The names of the "ordinary" cntries are:

FONT: fontname - specifics the name of the normal font (used for the command window, the file
count line, and the data arca). -

BOLDFONT: fontname - spccifies the name of the bold font (used for error messages, the viewspec
and selspec display, and the headings on the data arca). _

SMALLFONT: fontname - specifies the name of the small font (used for displaying data when the
"(small)" viewspec is turned on).

SMALLBOLDFONT: fontname - specifies the name of the small bold font. o

USERTYPE: type - lets DDS know what kind of user you are. If ty&c is NON-PROGRAMMER,
DDS doesn’t provide the "pagemap™ and "address” viewspees. If type is WIZARD, DDS provides some
cxtra features for dcbuggin[% which arc not described in this document, ] :

WINDOWS: Yes - enables you to use some experimental facilities for splitting the screen into multiple
windows in a Bravo-like manner. ‘These facilitics are NOT DOCUMENTED, NOT FULLY
DEBUGGED, AND NOT RECOMMENDED. ) :



Cleared version of October 8, 1979
DDS 1.13 October 12, 1977 35

RAMOK: Yes - tells DDS to use the RAM on your Alto. If your Alto is a standard one, this will make
DDS run about 30% faster; if not, DDS may not run faster, and may not run at all. Try it once (or uscthe
/R switch in the command linc as described below) and sece what happens.

FULLINIT: Yes - tells DDS to scan the whole Alto file directory cach time it starts up, and reinitialize
the selspec, context, etc, from the "initialization-only" entries in User.Cm (possibly overridden by the
command line: see sec. 4). FULLINIT: No - tells DDS to update its knowledge of the world from Sys.Log
(an incremental record of file activity since you last ran DDS), and restore the selspec, context, cte. towhat
they were when you last left DDS. The default is FULLINIT: No which leads to much faster startup.
BECAUSE OF DEFICIENCIES IN THE ALTO OS AND IN BRAVO, THE RELEASED VERSIO
OF DDS FORCES FULLINIT: YES REGARDLESS OF WHAT IS IN USER.CM.

REENTER: Yes - tclls DDS that you want to go back to DDS after comglction of an external
command. (Normally the Executive retains control after an external command finishes.)

The names of the "initialization-only" entries are:

SELSPEC: expression - specifies the initial value of the sclspec when you enter DDS. If therc is
something illegal about the expression, DDS just uses "*" for the initial selspec, as though there were no
SELSPEC entry in User.Cm.

CONTEXT: expression - specifics the initial value of the context when you enter DDS.

SHOW: list of viewspecs - allows you to initialize the viewspecs. Use commas between viewspecs if
therc is more than one,

SORT BY: list of sorting keywords - allows you to initialize the sorting order. Each keyword may be
followed by "1t" for ascending order or " «" for descending order (ncither means ascending order). Use
commas between keywords if there is more than one.

SUBSYSTEMS: list of commands - allows you to add your own favorite subsystems to DDS’command
sct. Each command may be Ii\%St a subsystem name (c.g. Chat) or a subsystem name followed by some
initial arguments (e.g. Ftp/-S Maxc Dump/C). Usc commas between entries if there is more than one.

A word about fonts: if FONT is not specified in User.Cm, DDS uses the standard system font
SysFont.Al. If BOLDFONT is not specified, DDS fabricates a boldface version of the normal font,
whatever it may be. If SMALLFONT is not sgcciﬁcd, the "(small)" viewspec has no effect. If youspecify
a font name and there is no file by that name, DDS just ignores that entry in User.Cm.

4. The command line

Just typing DDS to the Alto Exccutive will activate DDS in its normal way, in which various aspects of
its behavior are controlled by entrics in User.Cm if present. However, you can override User,Cin by
typing switches following the name DDS to the Executive. Here are the swilches currently impleménted:

DDS/E - equivalent to REENTER: Yes in User.Cm.

DDS/-E - overrides (canccls) REENTER: Yes in User.Cm.

DDS/I - cquivalent to FULLINIT: Yes in User.Cm.

DIDS/-1 - overrides (cancels) FULLINIT: Yes in User.Cm.

DDS/R - equivalent to RAMOK: Yes in User.Cm.

DDS/-R - overrides (cancels) RAMOK: Yes in User.Cm.

DDS/W - equivalent to WINDOWS: Ycs in User.Cm.

DIDS/-W - overrides (cancels) WINDOWS: Yes in User.Cm.

DIDS/S - causes DDS to writc some statistics in a file DIDS.STATS. Not currently of general interest.
~ DIS/P - causes DDS to write some data regarding disk activity in DDS.STATS. Not of general
interest.
~ DDS/X - causes DDS to display some mysterious statistics at the top of the screen. Not of general
mnterest.
These switches can be combined, ¢.g. DIDS/I/R causes both full initialization and use of the RAM.
Switches may be cither upper or lower case.

If DDS is doing a full initialization (cither because FULLINIT: Yes appears in User.Cm or because
you said DIDS/I), you may also supﬁ‘ly initial sclspec and context strings in the command line, and these
will take precedence over those in User.Cm, if any. Unfortunately, the Alto Exccutive makes it a little
inconvenient to include *’s in these strings, and you can’t have blanks in them at all. T'o include a *, you
must type ¥, ¢.g. to start up DS and specify alpha* as the sclspee, you must type

- DDS/I alpha’™*



Cleared version of October 8, 1979
DDS 1.13 October 12, 1977 36

to the Exccutive. To specify beta* as the selspee and *.cm as the context, you must type
DDS/I beta’™ *.cm

5. Record of bug fixes, changes, and enhancements

Release 1.13:
Bugs fixed: user-defined commands were usually ignored cven on full init.
Additions: REENTER in User.Cm (sec. 3); /E in command line (sec. 4).
Release 1.12:
Bugs fixed: crash if User.Cm!n cxisted but no User.Cm.
Changes: fast startup permanently disabled.

Additions: "leader" viewspec (sec. 1.1); <List> and <Initialize> commands (sec. 2.1); user-defined
commands (sec. 2.3, 3); /X in command line (scc. 4).

Release 1.11:

l(Bugs fixed: falling into Swat when running on non-standard Alto configurations; fast startup now
works.

Changes: can point at "Sclspee:” and "Context:" (scc. 1.2); feedback after deleting each file (sec.2.1);
user and disk name appear on <Put> file (scc. 2.1); fast startup 1s the default (sec. 3).

Additions: WINDOWS and RAMOK in User.Cm (sec. 3); switches, initial selspec and context in
command ling (scc. 4).

Release 1.10:

Bugs fixed: "Bad VP" and "Bad trec" from <Dcleted.

Changes: runs only under Alto OS version 5 or later; typing in selspec directly (sec. 1.2), "All" strig
for marking/unmarking all files (scc. 1.3, 1.4), new typein scheme for commands (scc. 2); change in<Send
commands (scc. 2.1).

Additions: "(chart)" viewspec for pictorial file lengths (fsec. 1.1); BEGIN, END, arrow for clearer
indication of position within data list (sec. 1.3); default typein for commands (sec. 2); saving command line
in DDS.CM (scc. 2); initializing viewspecs and sorting from User.Cm (sec. 3); fast startup feature (scc. 3).
Relcase 1.9:

**% There was no official release 1.9,

Releasc 1.8:

Bugs fixed: stack overflows (really!), "Vstream error' after <Delcted; file name from <Put> wasn’t
getting added to data base.

Changes: runs under new Alto Operating System; “contents” viewspec shows the whole file (sec. 1.1);
Fark;\‘lg all files is now done in sclspec arca éec. 1.4); error message line moved to just below type-inline
sec. 2).

Enhancements: "referenced”, "(browse)”, and "(small)" viewspecs (scc. 1.1); interrupting sorting by



Cleared version of October 8, 1979
DDS 1.13 October 12, 1977 37

typing (scc. 1.1); context expression (sec. 1.2); initiating commands with YELLOW in command menu
scc. 2); <Context> and <Rename> commands (sec. 2.1}, interrupting <Dclete> by typing (sec. 2.1);
MALLFONT, SMALLBOLDFONT, SELSPEC, CONTEXT, USERTYPE options in User.Cm (scc. 3).
Releasc 1.7:

Bugs fixed: "Break at 0" or "Break at 1" during <Deleted; occasional stack overflows ("Break at
getframe -+ 36").

Changes: error messages now appcar in their own area (scc. 2.2); cursor need not be in the window
when confirming a command (scc. 2).

. Enhancements: documentation scc. 2 has been cxpanded and improved to clarify the notion of
designated files.

Release 1.6:

Dugs fixed: DDS would go into SWAT "Break at getframe+ 36" (stack overflows); also occasional
"Bad vp" or "Vstream error” messages. A couple of typos in the documentation also fixed.

Fnhancements: blinking caret for type-in (scc. 2); complex sclspec expressions (sec. 1.2); céunt of
marked files not sclected (sec. 1.2, 1.4).

Relcase 1.5:

( gil*iz)mgcs: command menu in place of control characters (sec. 2); viewspecs do not require clicking
sec. 1.1).

Enhancements: Delete, Send, Bravo, Gears commands are built in (scc. 2); sorting by serial # (scc.

Relecase 1.4:

i Changes: date-and-time line rearranged; better behavior when displayed properties do not fit onone
ine.

Enhancements: "Sorting ..." message (sec. 1.2); "*" feature in tExccute (sec. 2).
Release 1.3:

. Bugs fixed: system would blow up on any attempt to produce an error message such as "Mousc isnot
in a window"; system would sometimes blow up when starting up; the datc-and-time line no longer blinks.

( ?kﬁmges: tExccute now only processes marked files (scc. 1.4, 2); sorting by extension is implemented
sec. 1.1).

Enhancements: marking individual files (scc. 1.4); displaying the file count (sec. 1.2, 1.4); "pagemap”
viewspec (sec. 1.1); user-selectable fonts (sec. 2.1).



Cleared version of October 8, 1979
DMT, Peck, PeckSum February 12, 1979 38

IDMT, Peck, PeekSum

This documentation describes the operation of three related Alto Subsystems: DMT, the Memory/Control
Ram diagnostic; Peek, the program to which DMT reports its findings; and PeckSum, the program which
summarizes the reports collected by Peek.

1. Creating a Peek Disk

You should devote a separate disk to Peck. Boot files can take up a lot of space and the Peek report file
can get quite large over a long holiday weekend if your network has many hosts. To avoid coming in on
Monday and discovering your Pceker in Swat out of disk space, clean the disk out regularly. Pcek
automatically keeps its nctwork directory and boot files up-to-date, so building a new peek disk amountsto
building an barc disk (OS, Ixec, Ftp, Empress, perhaps Bravo), getting Peck and PeckSum and just
running it: it does the rest. 1 have written a canned procedure for building a Peck disk from scratch:

1) Boot an OS from the nct and respond *Yes” when it asks if you want the long installation dialog,
and "Yes® when it asks if you want to ERASE the disk.

2) V&éhc% the erase procedure finishes, retrieve [Maxc]KAlto>PeckDisk.cm and invoke it by typingto
he Exce:
>@PeckDisk.cm(@

3) When the smoke clears, install your printer’s name in the [HardCopy] section of user.cm and re-
install Bravo. If you aren’t on the west coast, change the ZONE parameter (e.g to 4 5:00 ifyou
arc on the east coast).

2. History

Chuck Thacker made DMT (carly 1973) by combining many small diagnostics which he had developed to
stress main memory using certain cmulator instructions. There were originally two versions: PMT (Printer
Mecemory Test) which lo%gcd statistics on the Diablo printer; and DMT (%)is lay Memory Test) which used
the display. Iater (late 1973), an Ethernet driver was added to DMT, Bob Metcalfe wrote Peck, and Chuck
wrote PeckSum. At this point, development and maintenance of PMT stopped. Still later (mid 1975),
David Bog%s added a Control Ram test to DM, rewrote the FEthernet driver and took over maintenance.
Nate Tobol, who designed the Alto IT memory system, wrote the Alto II memory test (mid 1976) which was
merged into DMT. David rewrote Peek and took over its maintenance. Doug Clark extended PeckSum,
and took over its maintenance (carly 1977).

3. DMT

DMT is written in the Alto BCPL-compatible variant of machine language and is distributed as a type-B
boot file (sce the BuildBoot documentation for more details).

When DMT is running, the Alto screen is black with a white cursor changing position once cach time
through the main loop. For Alto I the cursor flips at random intervals; for Alto FI the interval is about1
sccond. On Alto 1Is with extended memory, the cursor contains a number between 0 and 3 indicating
which bank it is currently testing. DM contains a T'cleSwat server. The key combination <Control><Left-
Shift>{Swat> causes DMT to stop and cnter the debugger. ’



Cleared version of October 8, 1979
DMT, Peck, PeckSum February 12, 1979 39

3.1, Statistics

If the °S* key is depressed, DMT will display (and transmit on the Ethernet) the statistics it has
accumulated. The display looks something like this: )

DMT of 25 Dec 78, Alto 11 XM 241. 456 blocks, testing 17341 to 176777
0 bad main memory chips
0 bad control memory chips’

If there are crrors, a line describing each type of error will be displayed, and then, if the errors can be
resolved to a particular chip, the Card, Row and Column (for Alto 1), or the Card and Chip number (for
Alto 11) will be displayed. This display will stay up as long as the "S" key is depressed. Periodically the
statistics arc automatically broadcast on the Ethernet and appear bricfly on the screen.

3.2. Booting in Response to Packets

If DMT reccives a request-for-connection éRFC) PUE and DPO is ready, then it boots the Operating system
and passes it a message of type eventRFC. If the Exccutive section of user.cm contains an entry of the

form: _
ceventRFC: <arbitrary command line>

then the executive will consume the event and execute the command line. << If DMT receives an EIFTP
data packet with sequence number 0 and 1DPO is ready then it boots the OS and passcs it a message oftype
eventBEFTP. This is included so that printers (which use the EFTP protocol) can dmlf into DMT when
nobody is using them, and automatically wake up when someone wants to print. >> {f DMT receives a
Kiss-of-Death Pup for socket 4 (miscellaneous services), then it EtherBoots the file whose ID is contained
in the low 16 bits of the Pup ID.

4. Peck

Peck opens scveral windows on the display. The top window is for user commands. There is currently
only one: Quit. The next window displays the release date of the program, a digital clock, the Pup
internetwork address of the machine, and the number of free pages on the disk. The next window is
opencd by the Peek Server and displays DMT reports as they arrive.

Peck loads special Ethernet microcode so that it can receive Peck reports directed to host 376b as well as
conduct business as itsclf. If it can’t load the ram, it runs the Ether interface promiscuously and filter
pacllc(cts in software. Morc diagnostic reports will be lost and booting may be slower, but things should still
work.

Peck has a lot of options, and reads Uscr.cm to find out what to do. An cxample of the Peek slice ofa
User.cm file is given below. In addition, it contains a host of network servers:

4.1. Peck Scrver

If there is a line of the form "Peck <filename>" in User.cm, Peck will start up a Peeking process which will
listen for raw Ether packets of type PeckReport and write them on <filenamed. The filename should be
’Pcdel§.i‘ep01‘ts’ since PeckSum, described below, assumnes this (1 was just fecling general the day I wrote that
code).



Cleared version of October 8, 1979
DMT, Peck, PeckSum February 12, 1979 40

4.2. Event Report Server

Peck implements the Pup Event Report protocol. For each line of the form "ERP <number> <filename)>"
in User.cm, Peek will instantiate an event report process which will listen on socket <number> and write
event reports on <filenamed. The default address which the OS uses is Maxc, so I don’t cxpect many
people will use this, however it might be helpful for an Alto sitc that isn’t connected to the Parc Internet.

4.3. Pup Echo Server

Peck contains a Pup Echo server running continuously in the background. PupTest and GateControl
contain Echo users with which you can poke it.

4.4. Raw Ether Echo Server

Peck also contains a raw Ethernet Echo scrver. This is the echo protocol used by EDP and NEDP, the
diagnostic programs for the Alto and Nova Lithernet interfaces.

4.5. Boot Server

Peck implements the Protocols necessary to be an Alto boot file server. For cach line of the form "Boot
<number? <filename>" in User.cm, Peck will send <filename> when it receives a Mayday packetrequesting
bootfile <number>. If the file isn’t on the disk, or if Peck discovers a neighboring Boot server with a later
version, your Peck will aquire it. The more boot files you tell Peck to keep, the less space there is for Peck
reports. '

4.6. Name Server

PeckSum consults the file "Pup-Network.Directory’ to get the owner and location of Altos. Peck containsa.
name lookup server and in addition to answering fookup requests, keeps its copy of the directory current.

4.7. Time Server

Peck also has a time server. Alto time is based on Greenwich Mean Time, and local users must know their
local time zone and the beginning and ending days of Daylight Savings Time to convert to local time.
Time servers are the source of this information, so'it is important that the time parameters in User.cm be
correct. "Zone +4-8:00" means that the peek disk is 8 hours west of Greenwich -- in the USA Pacific Time
zone. The standard User.cm contains this, so you must edit it if you live clsewhere. The DaylightSavings
Time parameters are set by the line "DST 121,305", and only change when Congress messes with time.
Keep an eye on your local CongressPerson.

4.8. User.cm Example

Below is an example of the Peck part of'a User.cm file. In this example DMT statistics go to the file
"Peck.reports’, Bvent reports addressed to socket 30 (swat error reports) go to the file *Swat. ERP’, and some
maintcnance-type boot files are available for diagnosing Altos. Notice that all characters between a
semicolon and a carriage return are considered to be comments and ignored by Peck (this is not true forall
programs that usc User.cm).

[EXECUTIVE]
...exccutive stuff...

[PEEK]
: Syntax: :
; Boot <boot file number> <filename>



Cleared version of October 8, 1979
DMT, Pcek, PeckSum February 12, 1979 41

; ERP <socket number> <filename>

; Peck <filename>

; Correction <seconds per day> (decimal) [positive makes clock go faster]
; DST <beginning day> <ending day> (decimal)

; Probe <hours> (decimal)

; Zone <sign><hours>:<minutes> (decimal, plus is west of Greenwich)

Peek Peck.reports  ; for PeckSum.run

ERP 30 Swat.erp ; Swat Error reports

Zone +8:00 ; USA Pacific Time Zone
PET 121,305 ; DST begins on day 121 and ends on day 305

Boot 0 DMT.boot - —_ . = . .
gggﬁg E/}{;Ilafegtzl%oot - PRODB L. DOO 3 PoUR.S YW N
Boot 10 NetEsec.boot OoT R (VAML

Boot 11 PupTest.boot . -
Boot 12 EtherWatch.Boot _ﬁ b ﬁ &)( S 5_
Boot 13 KeyTest.boot ! (.Q A 1” \}T‘_ !
Boot 15 DiEx.Boot P P,
Boot 17 EDP.Boot
Boot 20 BFSTest.Boot

[BRAVO]
...bravo stuff...

Peck writes the contents of User.cm into the Command window as it reads through the file. If the file has
bad syntax, Peck will call Swat with a description of its complaint (c.g. "[ReadNumbcq - number containg
illegal characters” if it is expecting a number and reads something other than 0-7). Typing <ctl>-U will
restore the user display. The last item in the Command window is what Peck is having trouble with.

"The source code for most of the servers in Peek is borrowed from the gateway program, and so there are
somc more specialized commands which you can ignore and which default to reasonable actions. I
mention there here for completeness. "Correction -+ 2%" means the Alto’s clock looses 20 seconds per day,
and the time server should correct by gaining 1 second at 20 equally spaced times during a day. "ProBe E:')
mcans attempt to locate newer versions of boot files and the network directory once an hour. :
——

B

5. PeckSum

PeckSum reads the file "Peek.Reports” (the output of Peek) and constructs a summary of the crrors
reported by DMT (sce above) for cach Alto. PeckSum writes on the file *PeckSummary. Tx® a tabulation of
the crror reports, together with the owner’s name and the machine’s location, retrievéd (if possible) from
the file "Pup-Network.Directory”, which is maintained by Peek, as described above.

As Peck is started and stopped, it writes short messages to this effect on Peek.Reports; these messages are
reproduced at the beginning of PeckSummary. Tx, The number of the local network is also written. If
Peck.Reports contains multiple reports from a single Alto (which is usually the case), PeckSum will record
the largest number of errors of cach type, over all such reports.

PeckSum will complain and then gracefully stop exccution if the files Peck.Reports or PeckSummary. T'x
are unopenable for some reason. If Pup-Network.Dircctory is unopenable or absent, the ouput file
PeckSummary. Ix will not include names and locations of Altos, but will contain error reports grouped by
Alto host number,

T'o run PeckSum, just type:



Cleared version of October 8, 1979
DMT, Peck, PeckSum February 12, 1979 42

>PeekSum

and the program will go about its business. When it has finished, PeckSummary.Tx should be printed on
your local printer. .



Cleared version of October 8, 1979
DPrint March 23, 1977 43

DPrint - Diablo Printer Program

This program types text files on a Diablo printer connected to the Alto. It is a vanilla program with very
few features. Usc Bravo if DPrint’s facilitics are inadequate.

The syntax of the command line is:
DPrint/switch parameter/switch ... filename filcname ...

The only switch permitted on the word "DPrint" is "/P", which instructs DPrint to pausc before the
beginning of cach page.

One or more parameters may optionally be specified:

n/W  Sets the line width to be n characters. Lines longer than this will wrap around to the next
line. The default is 75 characters.

/L. Sets the page length to be n lines. This determines the point at which printout will pause (if
/P was invoked) and also controls the amount of paper spewed when a form-feed is
gnc1011r)1§%1'pq in the file. The default is 66 lines (11 inches) if /P is not in effect or 57 lines (9.5
inches) if it is. :

n/M  Sets the left margin to be n units of 1710 inch from the hardware left margin of the printer.
The dcfault is zero.

Command line paramcters without switches arc assumed to be names of text files to be printed. If afile
cannot be found or a parameter is otherwise incorrect, you will be prompted for the correct value.

When DPrint pauses, you may cither tyI'pc_ space to resume ];()rintou_t or "Q" to abort it and quit out ofthe
rogram. DPrint will pause immediately if you strike any key whilc it is printing, and also if the printer
ccomes not ready.



Cleared version of October 8, 1979
EmPress December 14, 1977 44

EmPress

EmPress has several functions. Its primary use is to convert ordinary text files into Press format, and to
send the converted files to a Press printing server. Options include the ability to produce a Press file
without transmitting it, and to transmit Press files that have been previously produced. Additional features
provide for merging scveral Press page images into a single Press file, and for personalizing individual
copies of documents.

EmPress can distinguish Press files from text files, so it nced not be told whether to convert. As a text file
converter, EmPress is intended for formatting program listings and supports only simple formatting
operations such as Tab and FormFced. Bravo trailers are ignored.

Joe Maleson wrote the original program. David Boggs made the modifications that allowed transmissionof
files to printers, Rick Tiberi produced the current version, adding the Press file merger and copy
personalization facilitics, and curing many problems.

Standard Case:

;l:{) send one or more Press or text files to your default Press printer, using a default font to convert the text
1les, type:

empress filel file2 file3 ...
and read no further. The more general command line to EmPress is:
EmPress[/<global switches>] [<parameters>/<switches>] inputFiles

"The square brackets denote portions of the command line that are optional and may be omitted. EmPress
will print up to 100 input files.

Each global switch has a default valuc which is used if the switch is not explicitly set. To set a switch to
“false’ proceed it with a 'minus’ sign; to sct it to *true’ just mention the switch.

Switch Default Function .

/T true [Transmit] will send the resulting press file to a printer.

/number 8 (text files only) tab width -- sec below.

/H true (text files only) [Headings] will print a heading and page number on cach page.

/D false (Frcss files Qn]y) [Date wjll add the machinc-rcadable Fir}qc stamp t‘o Press files
that need them and don’t have them. This allows Press files created by old

software to print correctly. If your Press file prints with improper line
justification and character spacing, try this switch before giving up.



EmPress

Cleared version of October 8, 1979
December 14, 1977 45

EmPress recognizes a number of optional parameters which can be set from the command line.
Parameters sct from the command line take precedence over defaults built into the program.

Parameter

string/O
number/C
string/H
string/1

string

number/T

string/F

numbcr/P

Default

Swatee

1

none

none

none

Function

[Output] the name of the output file. EmPress uses Swatee unless told
otherwise, since the output press file is usually scnt to the printer and then

" discarded.

[Copies] the number of copies to print.

gHostNamel the name of the printer. This takes precedence over the name
ollowing PRESS: in the [HardCopy] scction of User.cm.

[Input] the name of an input text file to be formatted and saved or
transmitted, or of an input Press file to be transmitted.

a string without any switches is assumed to be an input file.

The remaining switches apply to text conversion only.

8

Gacha
8

[Tab] the width of a tab character in multiples of the width if a space
character.

[FontFace] the font to use. You must have "Fonts. Widths’ on your disk.

[PointSizc] the point size of the font.



Clecarced version of October 8, 1979
EmPress December 14, 1977 46

User.Cm Entries

The following is a sample User.Cm hardcopy section, configured to use the Menlo Press printing server as
the preferred printer:

;HA_RDCOPY N
PREFERREDFORMAT: Press
EARS: Palo

PRESS: Menlo

PRINTEDBY: "§"

FONT: TIMESROMAN 10 MIR

The FONT entry specifics that TimesRoman10i (italic) should be used as a default font instead ofGacha8
(EmPress’s default choice). 'The second, point size argument, and the third, face specification argumentare
optional. The face argument contains three letters specifying weight (M, B, or L), slope (R or I), and
expansion (C, R, or E), respectively.

The PRINTEDBY ficld, if Frescnt, specifies the name to be used in the Name field on the break page.The
currc_:{r_l‘t disk login name will replace the character $. EmPress chooses "$" as a default in the absence ofa
specification. :



Cleared version of October 8, 1979
EmPress Deccmber 14, 1977 47

Program operation

When EmPress encounters a Press file in the input list, it transmits (or stores) any text file that it is
currently converting, then transmits the Press file. A new break page will be printed for each Press file,
containing that file’s name. EmPress will override the "created by" ficld of a Press file with a name derived
as described above. It will fill in blank file name and date ficlds with the obvious defaults. If copies are
specified in the command line, EmPress will override the number of copies specified in the Press file with
the command line value.

EmPress uses the file Swatec for temporary storage while converting text for transmission. If in so doing
Swatee becomes nearly full, EmPress will suspend formatting, send what has accumulated so far, and then
press on. This has two desirable consequences: 1) a very full disk will not run out of space and 2) some
pipc}ining can take place since the printer can munch on the first chunk while EmPress empressifies
another.

Press File Merging

_EmPress. will merge several one page Press files into a single one page Press file. This allows the outputs of
Bravo, Sil, Draw, Markup, ctc,, to be merged without a se arate pass through Markup. Onc additional text
or Press file may also be submitted, and it will be printed following the one page merge result.

One invokes the merge feature through one additional global switch, and onc additional local switch:
Additional Global Switch:

/m Merge. All subsequent input files that are not qualified by switches must be single-page Press
files. They will be merged to form a single (cover) page in the Press file result, containing all
their Press specifications. This switch also conditions Empress to expect the additional local
switches, described just below and in the Personalization section.

Additional Local Switch:
/d Document. This switch may be used to identify an optional main document, when the merge

option is used. The filc may be a simple text file or a Press file. It will follow the onc page
merge result in cach copy printed.



Cleared version of October 8, 1979
EmPress December 14, 1977 48

Personalization

This relatively specialized feature is provided to allow the personalization of individual copics of a

document. Each cogy of the document might contain, for instance, the name and address of the person for

whom it is intended. Up to six lines of personalized information can be specified. This information will

aeplacc distinctive "key strings” that have been placed in the cover page (merged) files or in the main
ocument,

The key strings must appear in contiguous groups of up to six lines cach. The personalized information for
the current copy, specified in a paragraph of a special Bravo-format addressee file or in the command line,
will replace the key strings in each group, line for line. Thus the personalized information may occur more
than once in cach document (Dear Mr, PARC/SDD: ... yes, you and all the members of the PARC/SDD
hou(sic_:holcci1 an enjoy the benefits of ...). Lines in the addressce paragraph for which no keys are provided
arc discarded.

The default key is "<", f‘orty hyphens ("-"), then ">". If the string "<--title-->" appcars anywherc in the
document, the name of the "main" document (the onc specified using the "/d" switch) will replace it.

The "/m" (me_rfe) global switch must be specified before any of these personalization specification
switches are valid.

Additional Local Switches:

/k Key. The item is a key that replaces the default (sce above).

/a Addressec. The item is cither the name of a Bravo format file containing a list of addressces --
onc per paragraph, one line in cach paragraph for each key line in the cover page or main

document -- or a literal addressce, enclosed in double quotes. In a literal, use hyphens where
you wish blanks to appcar in the name.



Cleared version of October 8, 1979
ERP Fcebruary 17, 1979 49

ERP - Event Report Protocol Server

ERP is an cvent report protocol server. You invoke it by saying to the Exec:
ERP <socket> <filename>

where <socket> is a 16-bit socket number (the high 16 bits are zero), and <filename is the name of a fileon

your disk. It starts a Event report server on <socket> which a{ppends events to <filename>. This jprogram is

rfncrely a thin veneer on the PupERPServ package, whose documentation you should consult for the file
ormat.



Cleared version of October 8, 1979
Executive User’s Guide March 11, 1979 50

Exccutive User’s Guide

Executive, the Alto command processing subsystem, is the intermediary by which Alto users generally
invoke other subsystems and ask simple questions about the state of the Alto file system. It is just thesame
as any other subsystem, except that its name is known by the Alto Operating System, and it is invoked by
the OFerating System whenever the BCPL operator "finish" or equivalent is exccuted. This document
describes version 10 of Executive.

1. What It Does

The operation of Exccutive proceeds thus:

1. It reads any leftover unexccuted commands from a file called Rem.Cm into a main memory command
queue.

2. Tt begins building up a command linc (terminated by a CR). If the command queue cmptics before the
command line is terminated, additional characters arc read from the keyboard until a CR is read. Editingis
donc during this phasc. If the command line has been empty for about twenty minutces, the user isassumed
to be occupied elsewhere, and the diagnostic program Dmt.Boot is invoked either from the disk (if itcan
be found) or from the Ethernet.

3. The cdited command is placed at the front of the command qucue and the command queue is analyzed
for *-, #-, and @-substitutions. If something of the form @filename@ is discovered in the first line inthe
command queue, it is replaced by the contents of the named file and analysis continues with the first
character of the replacement. Executive makes no attempt to detect or recover from infinitely recursive
replacements. If the characters * or # are encountered in a filename in the first line, the file directory is
used to glc olicate that filename with appropriate substitutions. This step results in a completely edited
command line,

4. The first atom (contiguous sequence of legal file name characters) in the command linc is analyzed tosce
whether it is the name of a subsystem in the file directory or the name of a command internal to Exccutive
or ncither. If neither, then Exccutive attempts to extend the atom into the name of a subsystem or
Exccutive command. (The subsystem lookup algortithm is described below.) Failing in this, it complains
and resets itself. Otherwise the line is written on the file Com.Cm. Then if the first atom was or could be
cxtended into a subsystem name, the rest of the command queuc is written on Rem.Cm, and thesubsystem
is invoked with a CallSubSys Operating System call. If it is an_internal Exccutive command, the
appropriate subroutine is called. The Execcutive passes the switches found on the subsystem name in the
user parameters vector of CallSubSys. Sec the documentation of CallSubSys for more details.

In parallel with these steps, Executive does a few houseckeeping chores:

a, [t rcads the entire file directory into memory, merges in the names of user-callable routines internal to
Exccutive, and sorts the resulting list alphabetically.

b. Having nothing clse to do, it puts a line containing a continuously-updating digital clock and the
number of free disk pages on the user’s screen, and flashes a cursor where the next typed character will go.

A number of characters have special meaning during the cditing step (2):
Null:
Linefeed:

Ignored

Carriage Return:



Clearced version of October 8, 1979
Executive User’s Guide March 11, 1979 51

Terminates the line, beginning step 3.

Control-A:
Backspace: o
Removes the last character from the line queue.

Control-W:
Removes the last item which looks like a file name from the line queue.

UpArrow:

Single quote:
Causes itself and the next character both to be appended to the line queue, regardless of what
the next character is.

Control-U:
Signals that at the conclusion of step 2 the linc queug is to be written on the file Line.Cm and its
contents replaced by the text "Bravo/n Line.Cm", If one has the proper Bravo and User.Cm,
this will invoke Bravo on the command line. (This is also an easy way to build small command
E!cs. CJus§ type the desired command followed by Control-U and CR. Then copy or rename
inc.Cm.

Control-X:
I;crforms step 3 on the line queuc as it is, returns to step 2. In other words, it eXpands @, *, and

Control-C:

Delete: i ) i
Empties out the line queue, starts over again,

Escape: ) . )
Interprets the last atom in the line queuc as the prefix of a file name; continues that file name
until it is complete or ambiguous. Flashes the screen if it is ambiguous.

™
Interprets the last atom of the line queue as the prefix of a file name; types out all file names
which begin that way.

Tab:

Same as "?" cxcept it deletes the atom from the line queuc after typing the file names. This
would be what onc would normally use to interrogate the directory. * and # work as expected.

In step 3, several characters have special meaning:

Semicolon:
Carriage Return: )
Terminate the line; control goes to step 4.

Up Arrow:
If followed by a carriage return, do nothing. If followed by an up arrow, put one up arrow in
the line queue. If followed by any other character, put both characters in the linc queuc (Ugh!).

If followed by another /", this begins a comment, so scan ahcad until finding a carriage return
or semicolon. If not, put the "/" in the line queue.

Scan ahead until finding another @ (the second @ may be omitted if it comes at the end ofthe
command). The atom in between is a file name, Replace the @atom@ by the contents of the
named file. If the file docsn’t exist cxactly as specified, try extending the specification and
forcing a .Cm suffix.



Cleared version of October 8, 1979
Exccutive User’s Guide March 11, 1979 52

*

Expand the atom using these characters by making a search through the file directory. * matches
any sequence of file name characters. # matches any single character cxcept a period. File
names arc defined to end with an infinite number of periods. The atom is replaced by all file
names matching its pattern. Switches on the atom, if any, are replicated.

There is one special character recognized during step 4.

Control-C:
Aborts the command and starts over again. Control-C is effective UF until the time that
Executive gives up control to the subsystem being invoked. If you realize a mistake in your
command after typing CR, quickly typing Control-C will abort it. (When Executive’s header
line disappears, it 1s too late.)

In step 4, one switch is taken to have special meaning on the subsystem name only. The switch /! willset
the pause parameter in the call to CallSubSys to true allowing you to enter Swat after your program is
loaded, but before its first instruction is executed. This switch, if detected, is removed from the command
line before Com.Cm is created. This feature is extremely useful if your program is hitting a bug beforeits
first user interaction. :

2. BExccutive Commands

The Executive contains a number of subroutines which can be invoked from the command line. The
commands corresponding to these subroutines can be identified by the extension character "~", which is
illegal in a file name. Exccutive commands include the following:

Type.~ FileNamc ...
Display the contents of the named file(s) on the screen. After cach page, it asks whether you
want to sce more of the current file. A Ctrl-C at this point terminates the entire Type command.
You can type any files, cven binary oncs, but typing some files will give you more useful
information than typing others.

Delete.~ FileName ... _ o ; . '
Removes the named files from the directory and frees their disk space. Use this command very
i:iaﬁcf_ully. Its effect cannot be undone. Typing Ctrl-C will abort the command cleanly between

eletions.

Copy.~ DestFileName « SourceFileName ...
Copices a file. If there are several SourceFileNames then the copy will contain the concatenation
of the information in the source files, in the order listed. In accordance with the Alto File Date
Standard, copying a file preserves the creation date of the file; concatenating files gencrates a
new creation date,

Rename.~ OldFileName NewFileName (or NewFFileName « OldFileNamce) )
Changes the name of OldFileName. NewlileName must not already exist unless OldFileName
and NewkileName arc the same (use this feature to change the capitalization of a file name).

BootFrom.~ FileName [...Sys.Boot]

Initiates a softwarc-simulated bootstrap sequence on the file named by FileName. Most
robably the FileName should have the .Boot extension. Like the OS system call Boot[From
which it uscs) this command does not actually do a hardwarc bootstrap opcration, so it doesnot

re-initialize any Alto hardware or microcode tasks. If you don’t know what this implies, don’t

worry about it. .

Quit.~

Diagnosec.~



Cleared version of October 8, 1979
Executive User’s Guide March 11, 1979 53

Has the effect of BootFrom Dmt.Boot. This commences the running of the diagnostic program,
which doesn’t use the Operating System at all. This is done automatically after a machinc has
been idle in Exccutive for about 20 minutes. If Dmt.Boot is not on your disk or you turn the
disk off Dmt will be loaded from the Ethernet.

Login.~
Places your user name and password in the system area of main memory for use by pro%rams
which interact with access-controlled resources (like timesharing or file systems, for example).

SetTime.~

Sets the Alto’s internal time-of-day clock. The time is obtained from the Etheract if possible.
Failing that you will be asked to supgly the time (and possibly time zone) manually in the form
12-jan-78 14:45. Use Setlime/m to bypass the Ethernet and set time manually. Use /z to force
sctting of time zone in manual mode. (When Exccutive is started it examincs the time-of-day
clock. If the value is not rcasonable Exccutive attempts to obtain the time from the Ethernct
before proceeding. If the time cannot be obtained, the time-of-day displayed at the top ofthe
screen will be "Date and Time Unknown" indicating that you should invoke the SetTime.~
command manually.)

Dump.~ DumpFileName SourceFileName ...
Writes Dumpl-ile as a structured file (in Dump format) containing the names and data of all the
SourceFiles, This is a convenient way of packaging up a collection of related files into a sin§1e
composite file that can later be decomposed into its constituent parts. Sce Appendix A for
detatls of DumF format. The primary virtue of this particular format is that it is intended to be
compatible with the Dump format of the Data General Nova DOS operating system, and it is
compatible with the Tenex subsystem DUMP-LOAD.SAV.

Load.~ DumpFileName
This reads through a Dump format file and creates individual files corresponding to its
constituent parts. The /V switch causes Load to ask you about cach constitucnt part, whetherto
copy it from the DumpkFile to an individual file or not. Acceptable responses are Y, N, and C.
The latter indicates that you would like it to be copied, but into a file with a different name than
that indicated. You are then asked to supply the name you prefer.

Release.~
Tells you the release number and date of Exccutive. The release number is also shown in the
first Exccutive herald line, just after the slash following "Xerox Alto Exccutive.”

StandardRam.~
For any Trap cxcept the Swat Trap (#77400) the Alto microcode sends control of the emulator
task to the microcode Ram for interpretation. StandardRam initializes the microcode Ram to
send control of the emulator task back to the Rom Trap-handling microcode. If ¥ou don’t
initialize the microcode Ram before exccuting a program which 1) uses Traps, and 2) doesn’t
initialize the Ram itself, then when the first Trap happens your machine will probably do
something bizarre, but it usually will not destroy disk data.

Install.~ FileName [...Sys.Boot]
Causcs a customized version of the operating system on the file named by FileName to be
written on the file Sys.Boot. I'or further details, please sce the section on "Installing the
operating system” in the Alto Operating System manual.

BootKeys.~ FileName [...Sys.Boot]

Did you know that by holding down various combinations of keys on the Alto keyboard while
pressing the boot button it is possible to get the Alto to bootstraF load itself from any filc onthe
disk? (This bootstrap will probably crash fairly quickly on any file except one in . Boot format.)
Bootstrapping the ;[)cmting system is simply a special case of this: all keyboard keys up refers
to disk address 0, which by convention is where a copy of the first data page of Sys.Boot is
stored. To find out what keys to push in order to bootstrap load other files, you use the
BootKcys command.



Cleared version of October 8, 1979
Executive User’s Guide March 11, 1979 54

Resume.~ FileName [...Swatee]
The file named by FileName is patched so that its Swatec file pointer is the same as the current
Swatee file pointer, and then it is loaded in and run. For best resuits, this file should be Swatee,
or a copy of a Swatce. If you want to return to Swat with an old Swatce (for example, originally
you didn’t have the right .SYMS file) you can say ' :
Copy.~ Swatec « OldSwatee (no need to do this if Swatece is already correct)
Resume.~ Swat

Chat,~

Ftp.~

Scavenger.~

NetExec.~
These commands load the corresponding programs from the Ethernct. If you have the .Run file
for onc of these, it will be found instead by the normal Exccutive lookup strategy.

EtherBoot.~ octal number
Thisbcommand will boot any available Ethernet bootable file provided that you know its
number.

FileStat.~ FileName ... ’
This command will tell you several things about a file: its length in bytes, size in pages, serial
number and disk address, creation and write dates. If any FileName is of the form octal/s (or
octall,octal2/s) the file will be looked up by serial number rather than by name. This is useful if
Scavenger or some other program gives you a serial number without tclling you the name. The
f%lgns octal/v and octal/r tcll you about the file that owns the spccified virtual or real disk
address.

3. Subsystem Lookup

Executive recognizes and knows how to invoke several kinds of subsystems. In order to select asubsystem
matching the name given in the command line Executive uses the following algorithm:
1. For cach of the strings <nulD, ".run", ".image", ".bcd", ".~", "*.run", "*image", "*.~" and
"*bed"” ask how many directory entrics are matched by appending the string to the typed name.
As soon ag the answer is onc the subsystem is found. Note that the question is asked separately
for each extending string and that the questions are asked in the order specified. The order of
the scarch means that the order of subsystem types is: Bepl program, Mesa image file, Mesa bed
file, internal command (the order of Mesa bcé) files and internal commands 1s reversed if the
name is not completcly specified).

2. If the subsystem name ends in ".image" it is assumed to be a Mesa image file and is invoked
using the program RunMcsa.run.

3. If the subsystem name ends in ".bcd" it is assumed to be a runnable Mcsa configuration.
"Mesa.image" is added to the front of the command and the lookup starts over.,

4. Otherwisc the subsystem is invoked directly (if internal) or via CallSubsys.

4, User.Cm Entries

The Exccutive section of User.Cm may contain several commands to the Exccutive. Most of these are
command lines to be cxecuted if some event is noted (see the Operating System documentation for a
description of cvents). In addition to standard cvents, any other event may be specified using the notation
cventN where N is the event number (in decimal).



Cleared version of October 8, 1979
Exccutive User’s Guide March 11, 1979 55

The number of text lines in the user command window can be set from User.Cm using the sclector
Displayl.ines: followed by a number. You are advised not to set this number higher than its default value
(currently 16), but you might want to reduce the number in order to leave more memory space for your
directory if you have a large number of files (say, more than 400).

The line "Screen: Black" in User.Cm directs Exccutive to use the display in white-on-black rather thanthe
normal black-on-white mode.

5. Dump Format

A dump file is a sequence of blocks of eight-bit bytes. The first byte of cach block is the block type. A
typical dumg file might look like:
<name block><data block 1>...<data block n>

* <name block><data block 1>..<data block m>
<cnd block>

Name Block - Type= #377

A name block contains two bytes of file attributes and then the file name. The file attributes are used by
the Nova operating system; Alto Dump.~ scts these bytes to 0, and Alto Load.~ ignores them. The file
name is a sequence of ASCII characters terminated by a 0 byte.

Data Block - Type= #376

A data block contains two bytes of byte count (high-order byte first), two bytes of checksum (high-order
byte first), and a scquence of data bytes. The byte count must be Iess than or equal to 256 forcompatibili?
with Novas, and the count docs not include the checksum or byte count; only the data bytes arecounted.
Novas do not handle data blocks with bytc counts of 0 or 1 correctly. Alto Dump.~ will not produce such
blocks unless forced to dump a file whose length is less than 2 bytes. The checksum is a 16-bit addignoring
carry, over the data and byte count. If the block has an odd number of bytes, the last byte is NOT included
in the checksum computation.

Error Block - Type= #1375

Novas generate error blocks. Alto Dump.~ does not. Alto T.oad.~ terminates if it encounters one.
End Block - Type= # 374

An end block has no contents and terminates a Load.~.

Date Block - Type= #373

Date blocks with six bytes of date are generated by Nova RDOS. Alto Dump.~ docs not gencrate them;
Alto Load.~ ignorcs them, .

N.B. This appendix is included thanks to David Boggs.



Cleared version of October 8, 1979
Find January 16, 1978 56

Find - a file scarching subsystem

The Find subsystem allows you to scarch text files at very high spced on an Alto. Examples of such files
might be an address/telephone list, a source program, or a library catalog.
IFind basically looks for all the occurrences of a pattern in a file, Iiust like doing repeated Jump commands
in Bravo. A pattern is just a character sequence, except for the following:

417; in a pattern means "any character at all”, e.g. CAP and CUP count as occurrences of the pattern

~ in a pattern means "allow one character in the occurrence to disagree with the corrcsponding
character in the pattern”. For example, LAP, CUP, and CAT all count as occurrences of the pattern ~CA
(or CAP~ or C~AP). Two ~s mcan "allow two disagreements”, and so on. Note that " isagrecment”
only means substituting one character for another: it does not include insertions (e.g. CLAP for CAP),
deletions (CP for CAP), or transpositions (CPA for CAP).

If you really want to have a pattern containing # or ~, you have to typc a* before it, ¢.g. to scarch for
the character sequence ATOM #, you have to type ATOM *#.

Unless you usc the /c switch described below, upper and lower case letters are considered identical, e.g.
Cap, cap, and CAP all count as occurrences of CAP or of cap.

Unless you use the /s switch described below, blanks (spaces) in the file are completely ignored, e.g. C
A P counts as an occurrence of CAP; blanks in the pattern are also ignored.

‘There are two ways to invoke Find. The first way just scarches a file for onc pattern:

>Find filcname pattern .
(Since the Executive does somcthing special about @, #, %, *, *, and ; in command lines, you must
precede any of these characters in your pattern by a °. This is in addition to any ’s you may need as
described in the preceding paragraph.) The sccond way only spccifics the file:

>Find filcname
and Find then prompts you repeatedly for patterns. To leave Find when using it this way, use shift-Swator
type an_empty pattern (just type <return> when Find says Pattern:). You can also use Find to scarch
several files together, by invoking it with

>Find/m filenamel ... filecnamen
which also prompts you for patterns.

In any of the above command lines, you can also use the /s switch, i.e. any of the forms
>Find/s filename pattern
>Find/s filename
>IFind/ms filenamel ... filenamen

This causes Find to treat spaces (blanks) just the same as any other character in the file and in the pattern.

»

In any of the above command lines, you can also use the /¢ switch, which causes Find to treat upperand
lower case letters as different from each other.

After completing the search, FFind displays at the top of the screcn a summary of the form:
79 occurrences, 1200 ms, 150 pages
iving the total number of occurrences, the time in milliscconds, and the number of disk pages in the file.
n the remainder of the screen, Find displays the line containing cach occurrence of a pattern, with the
occurrence indicated in boldface. To the left of the line, Find displays the character position in the file
where the occurrence was found. After each screenful, Find waits for you to type <spaced if you want
more, or <deb> if you don’t.

In addition to displaying matches on the screen, Find always writes the lines containing matches on a file
called Find.Matches, However, it only writes those matches which it displayed, so if you stopped the
display of matches with <del>, only those matches you actually saw will appear on the file.

What Find finds for you is all the "items™ containing occurrences of the pattern. Normally an "item" is
just a single line of text, delimited by <cr> on both ends. However, Find also knows about two otherkinds
of items: Bravo paragraphs, and groups of lines separated from cach other by a blank line. If you usc the



Cleared version of October 8, 1979
Find January 16, 1978 57

/p (for Paragraph) switch, Find will show (display and write on Find.Matchcs%:ghc entire Bravoparagraph
containing thc occurrence. If you usc the /b (for Blank line) switch, Find will show everything
surrounding the occurrence up to the next preceding and following blank line. ’

Find produces a large number of crror messages. The mcssages

Pattern too long

Can’t preallocate

RAM full ‘
all mean the same thing, namely that your pattern is too long or too complicated (unfortunately, it is too
complicated to explain exactly what "too complicated" means). The message

an’t load RA%{I

means that your Alto has old or non-standard ROMs and Find can’t do what it needs to do: you should
contact a hardware maintainer. (This should never happen on Alto II's.)

Find has many obvious limitations. They can all be removed if people complain about them, The
following featurces could also be added qun request:

Requiring that a match be delimited by non-alphanumerics.

Boolean combinations of matches, maybe.

Ability to work with Trident disks.

Possibly other features requested by users. ~
Programmers should note that the file scarching capability is also available as a library package (called
FindPkg), so programs can usc it as well as people.

History of changes:
Release of 1/16/78

Added /c (distinguish upper and lower case), /p (item = paragraph), and /b (item = between blank
lines) switches.



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 58

Alto Pup File Transfer Program

FTP is a Pup-based File Transfer Program for moving files to and from an Alto file system. The program
comes in 3 parts:

1) An FTP Server, which listens for file transfer requests from other hosts,

2) An FTP User, which initiates file transfers under control of cither the keyboard or the
command ling, and

3) A User Telnet for logging into a remote host using the Pup Telnet protocol.

1. Concepts and Terminology

Tranferring a file from one machine (or "host") to another over a network requircs the active cooperation
of proigrams on both machines. In a typical scenario for file transfer, a human user (or a program acting on
his behalf) invokes a program called an "FTP User" and dirccts it to establish contact with an "FTP
Server™ program on another machine. Once contact has been established, the TP User initiates requests
and supplics parameters for the actual transfer of files, which the User and Server proceed to carry out
cooperatively. The FTP User and FFP Server roles differ in that the FTP User interacts with the human
user (usually through some sort of keyboard interpreter) and takes the initiative in user/serverinteractions,
whereas the F'TP Scrver plays a comparatively passive role.

The question of which machine is the FTP Uscr and which is the FTP Server is completely independentof

the direction of file transfer. The two basic file transfer operations are called "Retrieve™ and "Store™; the

][?}ctnevcs operation causes a file to move from Scrver to User, whereas Store causes a file to move from
scer to Server.

The Alto I°TP subsystem contains both an FTP Uscr and an FTP Scrver, running as independent
rocesses. Therefore, to transfer files between a pair of Altos, one should start up the FTP subsystem on
oth machines, then issuc commands to the I?I‘B User process on one machine directing it to cstablish

contact with the I'T'P Server process in the other machine. Subscquent file transfers are controlled entirely

from the FTP User end, with no human intervention required at the Server machine.

Transferring files to or from a Maxc system or an IFS involves establishing contact with FTP Server
processes that run all the time on those machines. Hence, one may simply invoke the Alto I'TP subsystem
and direct its TP User process to connect to the machine.

In the descriptions that follow, the terms "local" and "remote” are relative to the machine on which the
I'TP User program is active. That is, we speak of typing commands to our "local” FTP User program and
dirccting it to cstablish contact with an F'I‘F’ Server on some "remote” machine. A Retricve command then
copics a file from the "remote” file system to the "local” file system, whereas a Store command copics afile
from the "local" file system to the "remote’ file system. :

Ifurthermore, we refer to "local” and "remote” filenames. These must conform to the conventions used by
the "local™ and "remote™ host computers, which may be dissimilar (for example, Alto versus Maxc). The
Alto FTP knows nothing about Maxc filename conventions or vice versa.

The Alto IFTP subsystem also includes a third process, called a "User Telnet"”, which simulates a terminal
in a manner cxactly analogous to the Chat subsystem (though lacking some of its finer features). By this
means, you may log in to a file sytem machine to perform operations not dircetly available via the basic file
transfer mechanisms. If you log into Maxc, it is cven possible to run "Pupl¥I'P", the Maxc FTP User
program, and dircct it to cs[ablisﬁ contact with the IFI'P Server in your own Alto. You should probably not



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 59

try this unless you really understand what you arc doing, however, since the terms "local” and "remote™
are relative to Maxc rather than to your Alto (since the FTP User program is running on Maxc in thiscasc),
which can be confusing,.

2. Calling the FTP Subsystem

A number of options arc available when running FTP. The program decides which parts of itself tocnable
and where user commands will come from by inspecting the command line. The general form of the
command line to invoke FTP looks like:

FTP[/<Global-switches>] [<ITost-name> [{Command-1ist>] ]

The square brackets denote portions of the command line that are optional and may be omitted.

Global switches, explained below, sclect some global program options such as using the Trident disk
instead of the Diablo. The first token after the <global-switchesD, if present, is assumed to be a <host-
name> (a discussion of which apgears later in the description of the "Open" command). The User FTP
will attempt to connect to the FTP Server on that host. After connecting to the server, if a<command-list>
is present, an interpreter is started which feeds these commands to the User FTP. When the command list
is exhausted, FTP returns to the Alto Executive. If no command list is present, an interactive keyboard
command interpreter is started. .

Fach global switch has a default valyc which is uscd if the switch is not explicitly sct. To set a switch to
’falsc’ prgceed it with a ‘minus’ sign (thus FTP/-S means 'no Server’), to set a switch to *tru¢’ justmention
the switch.

Switch Default Function

/S true [Server] starts the FTP Server. The Server is not started if the User is enabled
and is being controlled from the command line.

/U true [User] starts the FIP User. As explained above, the interactive command
interpreter or the command line interpreter will be started depending on the
contents of the command line.

/C true Chat] starts the Telnet. The Telnet is not started if the User is cnabled and is
cing controlled from the command line, or if the system disk is a Trident.

/T false [Trident] sets the system disk to be a Trident drive. The default is 0, but can be
changed by following the /T with a unit number. 'The unit number is octal; the
high byte 1s the logical filesystem number and the low byte is the physical drive
number. User and Scrver commands apply to files on this disk but command
line input is still taken from Com.cm on the Diablo drive.

/L * [Log] causcs all output to the User FTP window to also go to the file "F'I'P.log"
on DPO, ovcrwntmg the previous contents. Log is true if the User is enabled and
is being controlled from the command line.

/A false [AppendLog] cnables the log but appends to FTP.log rather than overwriting it.
/E truc [Error] causes FTP to ask you if you want to continuc when a non-fatal error
happens during exccution of a command line. FI'P/-E will cause FTP to recover

automatically from non fatal errors without consulting you.

/R true [Ram] allows F'I'P to use some microcode which speeds things up slightly. If
your Alto has no ram, this switch is ignored.



Clearcd version of October 8, 1979
Alto Pup FTP October 6, 1979 60

/D false [Debug] starts FTP in debug mode.

The rest of the global switches are explained below under *Server Options’.

2.1. FTP User Log

FTP can keep a log (typescript) file for the FTP User window. The file name is *FTP.log’, It is always
enabled when IFTP is being controlled from the command line; otherwise it is controlled by the /L and /A
global switches. Some keyboard commands do not treat the user window as a simple teletype, so the
typescript for these commands will not be exactly what you saw, sigh.

2.2. Using a Trident Disk

Starting FI'P with the /T global switch causes FTP to store and retreive files from a Trident disk.
Accessing a file on a Trident requires more code and more free storage than accessing a file on the Diablo.
Since I'I'P is very short on space, only a Uscr or a Server FTP is started when the 7T switch is set. The
default is to start a User F'I'P, but specifying no user (FTP/T-U) or specifying a server (F1P/TS) willstart
a Server IFI'P instcad. ' :

2.3. Server Options

Server options are controlled by switches on the subsystcrn name and subcommands of the SERVER
keyboard command. Therc are currently four options:

switch Default FFunction

none If no server option is specified, retrieve requests (disk to net) are allowed. Store
requests (net to disk) arc allowed unless the store would overwrite an alrcady
existing file. Delcte and Rename arc not permitted.

/P false {Protccted] Retricve requests arc allowed. No stores are allowed. Delete and
Rename are not permitted.

/0 false {Ovcrwritc Retrieve requests are allowed. Store requests can overwrite files.
Jclete and rename arc permitted.

/K false [Kill] FTP will return to the Alto Exec when the server connection is closed. A

simple form of remote job entry can be performed if the user F1P stores into
Rem.cm (Com.cm on Novas).

3. The F'I'P Display

The top inch or so of the display contains a title line and an error window. The title line displays the
release date of that version of FIP, the current date and time, the machine’s internctwork address, and the
number of free pages on the disk. The crror window displays certain error messages if they arrive from the
network (crrors are discussed in more detail below). A window is created below the title Tine for cach part
of FTP which is enabled during a session (server, user, and telnet).

If the FTP Server is enabled, it opens a window and identifics itsclf, If a User FTP subsequently connects
to this Scrver, the User’s network address will be displayed. The Server will log the commands it carrics
out on behalf of the remote User in this window. The Server is not cnabled when FTP is being controlled
from the command line.

The FI'P User opens the next window down and identifies itself. The command herald is an asterisk.



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 61

The User Telnet opens the bottommost window, identifics itself, and waits for a host name to be entered.
The Telnet is not cnabled when FTP is being controlled from the command line.

4. Keyboard Command Syntax

I'TP’s interactive command interpreter presents a user interface very similar to that of the Alto Executive.
Its command structure is also very similar to that of the Maxc Pup IFIP program (PupFIP), and the Maxc
ArpaNet FTP program (IFTP). The standard cditing characters, command recognition features, and help
facility (via "?") are available. When FTP is waiting for keyboard input, a blinking cursor appcars at the
next character position.

4.1. Dirccting Keyboard input to the User and Telnct Windows

The bottom two unmarked keys control which window gets characters from the keyboard. Hitting the
unmarked key to the right of ‘right-shift’ (also known as the *Swat key’) dirccts keyboard input to the
Telnet window. Hitting the unmarked key to the right of the ’return’ key (also known as the *Chatkey’)
dircects keyboard input to the FIP User window. The window which currently owns the keyboard will
blink a cursor at the next character position if it is waiting for type-in.

4.2. Keyboard Commands

OPEN <host name> ‘
Opens a connection to the FTP Server in the specificd host. FTP permits only one user connection
at a time. In most cases the word OPEN may be omitted: i.c., a well formed <host name is alegal
command and implies a request to OPEN a conncction. FTP will try for onc minute to conncctto
the specificd host. If you made a mistake typing the host name and wish to abort the connection
attempt, hit the middle unmarked key (to the right of <returnd).

Ordinarily, host name should be the name of the machine you wish to connect to (e.g., "Maxc").
Most Altos and Novas have names which are registered in” Name Lookup Scrvers. go long as a
namc lookup server is available, F1P is able to obtain the information necessary to translate a
known host name to an inter-network address.

If the host name of the server machine is not known or if no name lookup servers are available, you

may specify an inter-network address in place of the host name. The general form of an inter-
network address is:

<network> # <host> # <{socket>

where cach of the three ficlds is an octal number. The <network> number designates the network to
which the Server host is conncected (which maf/ be different from the onc to which the User hostis
connected); this (along with the "#" that follows it) may be omitted if the Server and Uscr are
known to be connected to the same network. The <host> number designates the Server host’s
address on that network. The <socket> number designates the actual Server process on that host;
ordinarily it should be omitted, since the default is the regular FTP server socket. Hence, toconnect
to the FTP server running in Alto host number 123 on the directly-connected Ethernet, you should
say "OPEN 123 #" (the trailing " #" is rcquired).

CLOSE : ' ]

Closcs the currently open User FTP connection. CLOSE cancels any defaults sct by CONNECT,

DIRECTORY, DEVICE, BY'TE, TYPE, or EOLC commands. :

LOGIN <uscr name> <password>



Cleared version of October 8, 1979
Alto Pup FIP October 6, 1979 62

Sl_llpplies any login parameters required by the remote scrver before it will permit file transfers. FTP
will use the user name and password in the Operating System, if they are there. Logging into FIP
will set ttéc)z user name and password in the OS (in the same manner as the Alto Exccutive’s "Login”
command).

When you issuc the "Login" command, FTP will first display the existing user name known to the
OS. If you now type a space, FTP will prompt you for a password, whereas if you want to providea
diffcrent user name, you should first type that name (which will replace the previous one) followed
by a space. The command may be terminated by carriage return after entering the user name to
omit entering the password.

The parameters are not immediately checked for legality, but rather are sent to the server for
checking when the next file transfer command is issued.” If a command is refused by the server
because the name or password is incorrect, FTP will prompt you as if you had issued the LOGIN
command and then retry the transfer request. Hitting delete in this context will abort the command.
A uscr name and password must be supplied when transferring files to and from a Maxc system or
an [FS. The Alto E)*VI‘P Server requires a user-password to be supplied if the server machine’s disk is
password-protected and if the password in the server machine’s OS does not match the password on
the disk. "Thus if the OS was booted and FTP invoked because a Request-for-Connection was
received (which bypasscs password checking), FTP will refusce access to files unless a password is
supplied. However if the OS was booted normally, FTP assumes that the disk owner (who knew the
password) will control access by using the server option switches. The user-name is ignored.

CONNECT <directory name> <password> .

Requests the F1P server to "connect” you to the specified directory on the remote system, i.e., to
give you owner-like access to it. ‘I'he password may be omitted by typing carriage return after the
dircctory name. As with LOGIN, these parameters are not verified until the next transfercommand
is issucd. CONNECT cancels the effect of any previous DIRECTORY command. At present, the
"Connect” command is meaningful only when transferring files to or from a Maxc system or an
IFS; the Alto FTP server currently ignores connect requests. If the "multiple directory” feature of
the Alto Operating System ever comes into widespread use, this may be changed.

DIRECTORY <directory name>

Causcs <dircctory name> to be used as the default remote directory in data transfer commands

(essentially it causes <directory-name> to be attached to all remote filenames that do not explicitly

mention a directory). Specifying a dcfault dircctory in no way modifies your access privileges,
whercas CONNECTIng gives you “owner access’ (and usually requires a password). Explicitly
mentioning a directory in a file name overrides the default directory, which overrides the connected
dircctory, which overrides the login directory. Punctuation separating <dircctory name> from other
parts of a remote filename should not be included. For example you might type "Directory Alto"
not "Directory <Alto>",

RETRIEVYE <remotc filename>
Initiates transfer of the specificd remote file to the local host. The syntax of <remote filename> must
conform to the remote host’s file system name conventions. Before transferring a file, FTP will
suggest a local-filename (generally the same as the remote-filename without directory or version),
and will tell you whether or not the file alrcady cxists on your local disk. At this point you may
make one of three choices:

1. Type Carriage Return to cause the data to be transferred to the local filename.

2. Type Delete to indicate that the file is not to be transferred.

3. Type any desired local filename followed by Return. The previous local filename will
disappear, the new filename will replace it, and TP will tell you whether a file cxists with that

name. This filename must conform to local conventions.” You now have the same three
choices.



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 63

If the remote-filename designates multiple files (the remote host permits "*" or some equivalentin
file names), cach file will be transferred separately and FTP will ask you to make one of the above
three choies for each file. At present, only Maxc and IFS support this capability. That is, you may
supply "*"s in the remote-filename when retrieving files from a Maxc or an IFS, but not when
retrieving files from another Alto. :

STORE <local filecname>

Initiates transfer of the specified local file to the remote host. Alto file name conventions apply to
the <local filename>; "*' cxpansion is not supd[iorted. FTP will suggest a remote-filename to which
you should respond in a manner similar to that described under RETRIEVE except that if you
supply a different filename, it must conform to the remote file system’s conventions. The default
remote filcname is one with the same name and extension as the local file; the remote server
defaults other fields as necessary. If the remote host is a Maxc system or an 1FS, then the directory
is that most recently supplied in LOGIN or CONNECT or DIRECTORY commands and the
version is the next higher.

DUMP <remotc filcname>
Bundles together a group of files from the local file system into a ’dump-format’ file (sce the Alto
Executive documentation for the dump-file format and more on dump-files in general) and stores
the result as <remote filename>, FTP will ask you for the names of local files to include in the
dump-file. Terminate the dump by typing just <return> when FTP asks for another filcname. By
convention, files in dump-format have extension *.dm’,

LLOAD <remote filcname>
Performs the inverse operation of DUMP, unbundling a dump-format file from the remote file
system and storing the constituent files in the local file system. For each file in the dump-file, FTP
will suggest a local file name and tell you whether a file by that name exists on your disk. You
should respond in the manner described under RETRIEVE.

LIST <rcmote filc designator> .

A Lists all files in the remote file system which correspond to <remote file designator>. The remote
file designator must conform to file naming conventions on the remote host, and may designate
multiple files if "*" expansion or some cquivalent is supported there. If the <remote file designator>
is terminated by a comma rather than a carriage-return, FI'P prints a prompt of "**" at thc left
margin and prepares to accept one or morc subcommands. These subcommands request printoutof
additional information about cach file. To terminate subcommand input, type a <rcturnd in
response to the subcommand prompt. The subcommands arc:

Type Print file type and byte sizc.

Length Print length of file in bytes.

Creation Print date of creation.

Write Print date of last write.

Read Print date of last read.

Times Print times as well as dates.

Author Print author (creator) of file.

Verbose Samec as Type+ Write-+Read -+ Author.
Everything Print all information about the file.

This information is only as reliable as the Scrver that provided it, and not all Scrvers provide all of
these file propertics. Altos derive much of this information from hints, so do not be alarmed if itis
sometimes wrong.

DELETE <remotc filename>
Deletes <recmote filename> from the remote filesystem. The syntax of the remote filename must
conform to the remote host’s file system name conventions. After determining that the remote file
exists, FI'P asks.you to confirm your intention to delete it. If the remote filename designates
multiple files (the remotce host permits "*" or some cquivalent in file names), FI'P asks you to
confirm the delction of cach file.

RENAME <old filename> <new filcname>



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 64

Renames <old filename> in the remote filesystem to be <new filename>. The syntax of the two
tilecnames must conform to the remote host’s file system name conventions, and each filename must
specify exactly one file.

QUIT A
Returns control to the Alto Executive, closing all open connections.

TYPE <data type>
Forces the data to be interpreted according to the specified <data type>, which may be TEXT,
BINARY. Initially the type is UNSPECIFIED, mecaning that the source process should, ifpossible,
decidc on the appropriate type based on local information.

BYTLE-SIZE <decimal number> ]
Applicable only to files of type Binary, BYTE-SIZE specifics the logical byte size of the data to be
transferred. The default is 8.

EOL. <convention> ‘
Applicable only to files of type Text, EOL specifies the End-of-Line Convention to be used for
g'alpsflcr_rin Rtext files. The values for <convention> arc CR, CRLF, and TRANSPARENT. The
efault is CR. -

DEVICE <device>
Causes <device> to be used as the default device in data transfer commands (cssentially it causes
{device> to be attached to all remote filenames that do not cxplicitly mention ong). The
punctuation separating <device> from the other components of a remote filename should not be
mncluded. For example you might specify "Device DSK" to Tenex, not "Device DSK:"

USER '
Allows you to toggle switches which control operation of the FIP User. There is currently only
once: DEBUG, which controls display of protocol interactions, Warning: this printout (and the
corresponding one in the SER VER command below) sometimes includes passwords.

SERVER
Allows you to toggle switches which control operation of the IFTP Server. The switches are
I/’IléO'l‘Eci(%gED, OVERWRITE, KILL, and DEBUG, corresponding to the global switches /P, /0,
K, an .

TELNET
Allows you to toggle switches which control operation of the Telnet. There is currently only one:
CLOSE, which closes the Telnet connection if one is open, and clears the Telnet window.

5. Command Line Syntax

The User FTP can also be controlled from the command line. As explained above, the first token afterthe
subsystem name and server switches must be a legal host name; if the User FTP can’t conncct to the FI'P
Scrver on that host it will abort and return control to the Alto Executive. If a command list follows the
host name, the command line interpreter is invoked instcad of the interactive keyboard interpreter. This
permits the full capabilitics of the Alto Fxecutive (filename recognition, "*" expansion, command files,
etc.) to be used in constructing commands for FIP.

Each command is of the form:
<Keyword>/<SwitchList> <arg) ... <arg>

To get a special character (any onc of "*#7;") past the Alto Exccutive, it must be Iprcccdcd by asingle
quote. To geta "/" into an FIP argument, the /" must be proceeded by two single quotes (the sccond



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 65

one tells FTP to treat the "/ as an ordinary character in the argument, and the first one gets the second
one past the Alto Executive).

Unambiguous abbreviations of command keywords (which in most cases amount to the first letter) are
legal. However, when constructing command files, ou should always spell commands in full, since the
uniquencss of abbreviations in the present version of FTP is not guarantecd in future versions.

A command is distinguished from arguments to the previous command by having a switch on it, so every

command must have at least onc switch. The switch "/C" has no special meaning and should be used on
commands where no other switches are nceded or desired.

5.1. Command ILinc Errors

Command line crrors fall into three groups: syntax errors, file errors, and connection crrors. FTP can
recover from some of these, though it Icaves the decision about whether to try up to you.

Syntax crrors such as unrecognized commands or the wrong number of arguments to a command cause
FTP’s command interpreter to get out of sync with the command file. FTP can recover from syntax errors
by simply ignoring text until it encounters another command (i.c. another token with a switch).

File errors such as trying to retricve a file which does not exist are relatively harmless. FTP recovers from
file errors by skipping the offending file.

Conncction crrors such as executing a store command when there is no open connection could cause FTP
to crash, FTP can’t recover from connection crrors.

When FTP detects an error, it displays an error message in the User window. If the error is fatal, FTP
waits for you to type any character and then aborts, causing the Alto Exccutive to flush the rest of the
command line, including any commands to invoke other subsytems after FIP. If FIP can recover from
the crror, it asks gou to confirm whether you wish to continue. If you confirm, it plunges on, otherwise it
aborts, The confirmation request can be bypassed by invoking FTP with the global error switch false
(FTP/-E ...) in which casc it will plunge on after all non fatal crrors. If you aren’t around when an error
happens and you have told IFTP (o get confirmation before continuing after an crror, the remote Server
will probably time out and close the connection. If you then return and tell F'TP to continue, it will geta
fatal conncction error and abort.

5.2. Command I.inc Commands

OPEN/C <host name>
Sce description in "Keyboard commands"”. The first token after the subsystem name and global
switches is assumed to be a host name and no OPEN verb is required (in fact if you supply it, FIP
will try to make a connection the host named OPEN which is almost certainly not what you want).

CLOSE/C
Closes the currently open User FTP connection.

LLOGIN/C <user name> {password>
See description in "Keyboard commands”. The <password> may be omitted.

LOGIN/Q <uscr name>
Causcs 'TP to prompt you for the password. This form of LOGIN should be used in command
files since including passwords in command files is a bad practice.

CONNECT/C <dircctory name> <password>
Sce description in "Keyboard commands”. The <password> may be omitted.

CONNECT/Q <directory name>




Clearcd version of October 8, 1979
Alto Pup FIP October 6, 1979 66

Causes FTP to romEt you for the password nceded to conncct to the specificd <directory name>.
This form of CONNECT should be used in command files since including passwords in command
files is a bad practice. : ’

DIRECTORY/C <default directory>
See discription in "Keyboard commands".

RETRIEVE/C <remote filenaine ... <remote filename>
Retrieves each <remote filename), constructing a local file name from the actual remote file nameas
received from the Server. FTP will overwrite an existing file unless the /N (No overwrite) switch is
appended to the RETRIEVE command keyword.

If the remote host allows "*" (or some equivalent) in a filename, a single remote filename may result in the
retrieval of several files. (Note that you must quote the "*" to get it past the Alto Exccutive’s
command scanner.) As mentioned previously, this capability is implemented only by Maxc and IFS
FTP Servers at present.

RETRIEVE/S <remote filenamed <local filename> ’
Retricves <remote filename> and names it <local filename> in the local file system. This version of
RETRIEVE must have exactly two arguments. FTP will overwrite an existing file unless the /N
No overwrite) switch is also appended to the RETRIEVE command keyword. The remote
ilename should not cause the server to send multiple files.

RETRIEVE/U <remote filcname> .., <remote filename>
Retrieves <remotce filename> if its creation date is later than the creation date of the local file. A file
will not be retrieved unless a local file with name and extension cqual to the name and extension of
the remote filename exists, or if the FTP server does not send a CREATION-DATE property. This
option can be combined with RETRIEVE/S to rename the file as it is transferred.

RETRIEVE/V . ) ) o )
Requests confirmation from the keyboard before writing a local file. This option is useful in
ccl)mbmatlon with the Update option since creation date is not a fool-proof criterion for updatinga
file.

STORE/C <local filename) ... <local filename>
Stores cach <local filename> on the remote host, constructing a remote filename from the name
body of the local filename. A local filename may contain "*", since it will be expanded by the Alto
Exccutive into the actual list of filenames before the FTP subsystem is invoked.

STORE/S <local filename> <remote filename>
Stores <local filename> on the remote host as <remote filename>. The remote filename must
conform to the file name conventions of the remote host. This version of store must have exactly
two arguments.

DUMP/C <remotc filename> <local filename>...<local filecname>
Sce the description in "keyboard Commands”.

[LLOAD/C <remote filename>
Sce the description in "keyboard Commands”. If the /V switch is appended to the LOAD
command keyword, FTP will rcciuest confimation before writing cach file. T'ype <return> to write
the file, <del> to skip it. FTP will overwrite an existing file unlcss the /N (No overwrite) switch is
appended to the 1.LOAD command keyword.

DELETE/C <remote filename> _
Sec the description in "Keyboard Commands”. If the /V switch is appended to the DELETE
command keyword, FIP will request confirmation before deleting cach file. Type <return> to
delete the file, and <dcl> (oops!) if'you don’t want to delete it.

COMPARE/C <remote filename)...<remote filcnamed



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 67

ComFares the contents of <remote filcname> with the file by the same name in the local file system.
It tells you how long the files are if they arc identical or the byte position of the first mismatch if
they are not. (No corresponding command is available in the Keyboard command interpreter for
implementation rcasons; there is not enough room for it in Alto memory.)

COMPARE/S <remote filename> <local filename> 5
Compares <remotc filename> with <local filename>. The remote filename must conform to the file
name conventions of the remote host. This version of COMPARE must have cxactly two
arguments.

RENAME/C <old filename> <new filename>
Sce the description in "Keyboard Commands”.

TYPE/C <data type>
Sce the description in "Keyboard Commands”.

BYTE-SIZE/C <decimal number>
See the description in "Keyboard Commands".

EOL/C <convention>
See the description in "Keyboard Commands”,

DEVICE/C
Sce the description in "Kceyboard Commands”.

DEBUG/C

Sce the description of the DEBUG subcommand under the USER command in "Keyboard
Commands". -

5.3. CLI Examples

To transfer files FTP.run and FTP.syms from the Alto called "Michelson" to the Alto called "Morley", one
might start up F'TP on Michelson (to act as an FTP Server), then walk over to Morley and type:

TP Michelson Retrieve/c FTP.run IF'I'P.syms

Alternatively, one could start an FTP scrver on Morley (invoking it by "FTP/O" to permit files to be
overwritten on Morley’s disk), then issuc the following command to Michelson:

TP Morley Store/c FTP.run F'1'P.syms

The latter ap])roach is recommended for transferring large groups of files such as "*.run" (since expansion
of the "*" will be performed by the Alto Exccutive).

To retricve User.cm from the FTP server running on Alto serial number 123 (name unknown, but it ison
the local Ethernct):

FI'P 123’ # Retrieve User.cm
Note that the " #" must be preceded by a single quote when included in a command line, since otherwise
the Alto Exccutive does funny things with it. (Quotes arc not necessary when typing to FTP’sinteractive
keyboard interpreter).
To start F'TP, have the FTP User connect to Maxc, and then accept further commands from the keyboard:
IFI'P Maxc

To retricve <System>Pup-Network.txt from Maxc and store it on the Alto as PupDirectory.bravo, andstore
PupR'TP.bepl, Puplb.bepl, and PupBSPStreams.bepl on <DRBY> with their names unchanged:



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 68

TP Maxc Connect/c drb mypassword Retrieve/s <Systeln>Pu§-Network.txt
PupDirectory.bravo Store/c PupRTP.bepl Puplb.bepl PupBSPStreams.bepl

To retricve the latest copy of all RUN files from the <alto> directory, oyerwriting copics on the Alto disk
(The single quote is nccessary to prevent the Alto Executive from expanding the "*"):;

FTP Mazxc Ret/c <alto>™*.run

To update the Alto disk with new copies of all <alto> files whose names are contained in file
UpdatcFiles.cm, requesting confirmation before each retrieval;

FTP Maxc Dir/c Alto Ret/u/v @UpdateFiles.cm@

To store all files with extension .BCPI., from the local Alto disk to your login directory on Maxc (the Alto
Executive will expand "*.bepl” before invoking FTP):

FTP Maxc St/c *.bepl

To retricve <System>IHost-name/descriptor-file.txt;43 (two single quotes are necessary to get the "/" past

%1c Alto }?;XCCU tive and the FTP command scanner, and one quote is necessary to get the ™" past the Alto
ixecutive):

FTP Maxc Ret/c <System>Host-name”/descriptor-file.txt’;43

To send Prog.f4, Data.f4, and Command.f4 to Fortran-Machine and then cause.the F1P server onFortran-
Machine to quit (presumably to exccute Prog.f4 on Data.f4 according to the commands in Command. f4):

TP Fortran-Machine Store/c Prog.f4 Data.f4 Store/s Command.f4 Rem.cm

FIP on Fortan-Machine must be started with the /K server option switch, and Command.f4 should re-
invoke I'TP as its last act so that the results can be retrieved.

To release a new version of FTP, T incant;
@R ecleaseAltoI' TP.cm@
which the Alto Exccutive expands into:

FTP Maxc Connect/q Alto Store/c FIP.run IIP.syms Connect/q AltoSource Dump/c
FTP.dm @ftp.cm@

and then into:

FTP Maxc Connect/q Alto Store/c FTP.run FTP.syms Connect/q AltoSource Dump/c
FTP.dm @FtpSubsys.cm@ @FtpPackage.cm@ FTP.cm

and finally into:

F'TP.run Maxc Connect/q Alto Store/c FTP.run FTP.syms Connect/q AltoSource Dumlp/c
Ftp.dm Ftp.bcrl FtpNv.bepl I"‘tF[‘nit.bcpl Ftpnitl.bepl FtpNvlnit.bepl FtpUserlnit.bep
FtpSubsys.decl tp (bd[nit.bc? Ftprd.bc{pl IFtpKbdL.bepl FipKb 2,bcle} FepClilnit.bcpl
FtpCli.bepl I"tE)Chl.bc L FtpCli2.bepl FtFC iUtiLbep! FipMiscb.bepl FtpMisca.asm
FtpServerlnit.bepl FipServer.bepl FtpTelnetInit.bepl FtpTelnet.bepl FtpKeys.bepl
FtpCmdScanDsp.bepl FtpMce.mu FtpRamTrap.mu CompileFtpme.cm FipSubsys.cm
CompileFtpSubsys.cm CompileAltottp.cm LoadAltoFtp.cm MakeHiddenFtp.cm
LoadHiddenFtp.cm ReleascAltoFtp.cm CompileNovaF(p.cm LoadDosFtp.cm

LLoadR Dosl*tp.cm FtpProt.decl FtpUserProt.bepl FipUserProtFile.bepl
FtpUserProtMail.bepl FipServProtlile.bepl FipServProtMail.bepl l’*‘tBPListInit.bcpl
FipPListProt.bepl FepPListl.bept FepUtilTnit.bepl FepUtilB.bepl Ftp UtilA.asm



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 69

FepUtilX fer.bepl FtpUtilDmpld.bepl FtpUtilCompB.bepl FtpUtilCompA.asm BlockEq.mu
FtpOLPInit.bepl CompileFtpPackage.cm DumpFtpPackage.cm FipPackage.cm Ftp.cm

To load Ftp.dm from <AltoSource>, expanding it out into its constituent files;
FTP Maxc Load/c <AltoSource>Ftp.dm

To cause Memo.cars to be spooled for printing on Ears by the Maxc printing system:
TP Maxc Store/s Memo.cars LPT:

This also works for Press files and unformatted text files if you know what you are doing. It does notdo
the right thing for Bravo-format files.

To use FTP as a stop-gap IFS:
FTP/T-UO

This starts only a scrver with overwriting of existing files permitted. When using the trident, therc isn’t
enough space to start both a User and a Server.

6. File Property Defaulting

Without explicit information from the file system, it is often difficult to determine whether a file is Binary
or Text, if Binary, what its byte-size is, and if T'ext, what End-Of-Line convention is used. The Userand
Server F'1'Ps usc some simple heuristics to determine the correct manner in which to transfer a file. The
heuristics gencrally do the right thing in. the face of incomplete information, and can be overridden by
explicit commands from a human user who knows better.

The FTP protocol specifics a standard representation for a file while in transit over a network. If the filcis
of type Binary, cach logical byte is packed right-justified in an integral number of 8-bit bytes. The byte-
size is sent as a property along with the file. If the file is of type Text, cach character is sent right-justificd
in (ein ?--bli._t byte. An EOL convention may be sent as a file property. The default is that <rcturn> marksthe
end of aline.

6.1. File Types

FTP determines the type of a local file by reading it and looking for bytes with the high-order bit on. If
any bytc in the file has a high-order bit on, the file is assumed to be Ty{)c Binary, otherwisc it is assumed to
be Type Text. FTP will gencrate a warning, but allow you to send what it thinks to be a text file astype
Binary, since no information is lost. It will refusc to send a binary file as type text.

Don’t specify a Type unless you know what you arc doing. The heuristic will not lose
information.

6.2. Byte-Size

If a file is type Binary, the byte-size is assumed to be 8 unless otherwise specified. The FTP User and
Server will both accept binary files of any byte-size and write them as § bit bytes on the disk. No
transformation is done on the data as it is written to the disk: it is stored in network default format. Since
there is no place in the Alto file system to save the byte-size property, it is lost. '

Similarly, requests for Binary files will be honored with any byte size, and whatever is on the disk will be
sent to the net without transformation. Since Alto files have no byte size information, the byte-size



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 70

property will be defaulted to 8 unless otherwise specified (by the BYTE command), in which case whatever
was otherwise specificd will be sent as the byte size.

Don’t specify a Byte-size unless you know what you are doinﬁ. Alto-Alto transfers can’t go
wrong. Alto-Maxc transfers with weird byte-sizes will not work unless the byte-size specified
in the Alto to Maxc direction is the samc as the byte-size in which the file was stored on the
Alto. Ifitisn’t, the Alto will not give any crror indication, but the result will be garbage.

6.3. End-of-Line Conventions

FTPs arc expected to be able to convert text files between the local file system End-Of-Line (EOL)
convention and thce network convention. Conveniently cnough, the Alto file system’s intgrnal
representation of a text file is the same as the network standard (a bare <return> marks the end of alinc).
The Alto FTP docs not do any transformations on text files. It will refuse to store a text file coming in
from the net whose EOLL convention is CRLF.

As an escape to bypass conversion and checking, EOL convention ’transparent’ tells both ends NOT to
convert to network standard, but rather send a file "as is’. This is included for Lisp files which contain
internal character pointers that arc messed up by removing line feed characters. :

Don’t specify an EOL convention unless you know what you are doing. If your text file isa
Lisp source file, specify EOL convention "I'ransparent’. :

0.4. File Dates

The Alto file system keeps three dates with cach file: Creation, Read, and Write, FTP treats the read and
write dates as proFcrtics describing the local copy of a file: when the file was last rcad and written in the
local file system. II'P treats the creation date as a property of the filc contents: when the file contentswere
originally created, not when the local copy was created. Thus when FTP makes a file on the local disk, the
creation date is sct to the creation date supplied by the remote FTP, the write date is set to ‘now’ and the
rcad date is set to 'never read’.

7. Abort and Error messages

Error and Abort packets arc displayed in a window above the title line. Abort packets arc fatal; Error
packets are not necessarily so.

The most common Abort message is "Timeout. Good bye", generatcd when a server process has not
received any commands for a long time (typically 5 nunutesgl.

The most common Lirror message is "Port IQ overflow" indicating a momentary shortage of input buffers
at the remote host. Receiving an Error Pup docs not imply that the file in transit has been damaged. 1.oss
of or damage to a file will be indicated by an explicit message in the User FTP window. The nextiteration
of Pup will probably rename "Error Pups’ to be Information Pups’. :

8. Telncet

TP provides a simple User Telnet as a convenience for logging into a remote host (¢.g., Maxc) to poke
around without having to leave the FTP subsystem and start Chat. It lacks most of the creaturccomforts
Chat provides, such as automatic attaching to dctached jobs, automatic logging in, ctc. The Telnet is not
enabled when the User F'IP is being controlled from the command line, When the Tclnet does nothave



Cleared version of October 8, 1979
Alto Pup TP October 6, 1979 71

an open conncction, it waits for you to type a host name with the syntax explained above for the OPEN
command, and then attem{()ts to connect to the specified host. If you wish to abort the connectionattempt,
hit the bottom unmarked key (opposite right-shift). You can get a larger Telnet window by not startinga
server {type FTP/-S to the Exccutive).

9. Nova FTP

FTP is also available running under Dos Rev 4 and RDos Rev 3. Since the Nova versions are nearly
i}dentical to the Alto version (%he same source files except for initialization), only the differences are listed
ere.

1) Ignore all references to display windows. All printout goes to device # 11, whatever that is.

2) Ignore all rcferences to "unmarked keys’ such as for aborting connection attempts and
directing keyboard input to various windows,

13\)[ I.ack of memory and lack of a windowing display made including a Telnet impractical on the
ova.

4) The syntax of the command line is limited to that acceptable to the Nova operating system.
Warning: the command line examples given above may not all work on a Nova.

5) The Nova OS does not maintain a username or password, so all interactions with a Maxc
system or an IFS will require the user to supply them.

6) Filc creation dates arc not supported, so there is no Update option to RETRIEVE, and the
LIST command does not show dates.

9.1. FTP rcleases

The Nova I'TP subsystem consists of a save-file, FTP.SV, and an overlay-file, FTP.BB. You must get
BOTII files when a new version of FTP is released. If you rename FTP.SV you must rename FTP.BBto
have the same name (for instance if you rename FTP.SV to be OLDFTP.SV you must also rename FIP.BB
to be OLDI'TP.BB). New releases of TP will be distributed as dump files with a consistant pair 6fsave-
and overlay-files.

9.2. Device codes

FTP assumes that Nova Ethernct interfaces have device codes 73 and 74, 63 and 64, or 53 and 54, Ttwill
usc all interfaces with these codes that seem (from rcading some status registers) to be Ethernets. TheDos
version of FI'P assumes that Nova MCA interfaces are device code 6 and 7, or 46 and 47. It will usc all
interfaces with these codes that scem to be MCAs.

9.3. RDos notes

FTIP is big, and will not run under some RDos systems. If you have trouble, generate a smaller systemand
boot from it when running FIP. FTP disables parts of RDos with patches which may not work for
versions other than Rev 3. It will NOT work under an RDos that uses the memory map hardware. The
RDos version does not include MCA drivers.



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 72

10. Revision History

April 1976

First release.

May 1976

/Q switch added to CONNECT. Connection requests to the User FTP and Telnet can be aborted. ng%n

prompt changed. 1 minute Timcout added when waitinﬁ to finish after a command line error. User FTP

automatically recovers from more "No" responses from the remote server.

June 1976

Dos version relecased. DIRECTORY and LIST, commands added. Update (/U) option added. File

creation dates added. 5 minute no—activig timeout added to TP Server. FTIP version, time-of-day, and

g;ao%linc address added in top window. "Ding" now flashes only the affected window instcad of thecwhole
isplay.

August 1976

RDos version rclcased. Same as June release for Dos and Alto.

October 1976

DUMP and LOAD commands added to user FTP. KILL command added. Free disk page count addedto
the title line. Verify (/V) switch added to the RIZTRIEVE command.

November 1976

Bug fixes to the October release.
May 1977

This version was only released to friends. KILL command removed and turncd into a server option.
DEBUG command moved into new USER and SERVER commands. Trident disk option ﬁ/T) addcd.
User LIST command improved and Server LIST response implemented. Password checking by the FTP
server implemented. Telnet window enlarged at the CXR/?HSC of possibly losing information from the top of
the window if the lines are very full. DELETE, RENAME, and DEVICE commands implemented. Much
internal reorganization so that the protocol modules could be used in [FS and relcased as a package.

July 1977

Global switches changed. <Shift-Swat> should work more reliably now. User LIST command further
improved. Keyboard command interpreter is much more robust and consistant. Command line STORE
and DUMP go much faster since they look up files using MDI. FTP/Tx opens Trident unit *x’. LOGIN
command added to command linc interpreter.

November 1977
Special microcode added to speed up execution.
March 1978

User log option added (sce /1. and /A switches and "FTP User Tog’ scction). AllocatorDebug switch
removed. New command line commands COMPARE, OPEN, and CLOSFE added. Command lincerrors
arc handled differently (see /E global switch and "Command Line Errors’ section). When using a'Trident,
cither a User or a Server TP is started but not both (sce the section on Trident disks).



Cleared version of October 8, 1979
Alto Pup FTP October 6, 1979 73

September 1979

This is a maintenance release coordinated with OS17, ﬂxin% a fcw bugs and reloading with current
F)ackagcs. CONNECT cancels anIy revious DIRECTORY. CLOSE cancels any previous CONNECT,

IRECTORY, DEVICE, TYPE, BYTE, or EOLC. Multiplec logical file systems on a T-300 can now be
addressed: Ftp/T400 opens logical filesystem 1 on physical unit 0.



Cleared version of October 8, 1979
Listing Syms files March 28, 1978 74

ListSyms - a subsystem for listing Syms files

The ListSyms subsystem takes a Syms file (produced by BLDR) and converts it to a useful human-
readable form. ListSyms produces a file with several parts:

A listing of the space occupied by each binary output file (Run or .BB?.

A listing similar to the listing optionally produced by BILLDR, i.c. a [ist, sorted by BR file and
location within the file, of all static symbols defined, with an indication as to whether the symbol is
external and whether it is a procedure, label, or static variable.

A list of all statics in ali)habetic order, accompanicd by the namc of the BR file in which cach
onc is defined and (optionally) a list of all the BR files in which each is used. _

A list similar to the preceding, but listing the statics for each file separately, and only listing
statics declared cxternal (i.c. accessible from other files).

A concordance of undefined externals: for cach BR file which references undefined externals, it
lists those externals in alphabetic order under the file name.

One invokes ListSyms as follows:
>ListSyms inputfile outputfile
Inputfile will normally be something.Syms: if it has no extension, ListSyms will supply .Syms. Outputfile
may be omitted, in which case ListSyms will take inputfile (shorn of extension if any) and append .BZ to
form the output file name.

- ListSyms accepts 7 switches, all global:

/A produccs the alphabetic listing

/F produccs a file-by-file alphabetic listing with cross-reference

/N produces the numeric (file-by-file) listin

/0 produccs only the listing of the binary file sizes

/S includes static variables, which arc normally omitted

/U produccs the listing of undefined externals

/X produces the alphabetic listing with cross-reference
The switches may be cither upper or lower case, and /S is independent of the other switches. If none of
/A, /F, /N, 70, /U, or /X appears, you will get the /A, /N, and /U listings but no cross-reference.

ListSyms starts by printing a message of the form
ListSyms of {date] -- [inputfile] -> [outputﬁlc]
If ListSyms completes normally, it will print a message of the form
12345b characters written on outputfile
ListSfyms produces a varicty of crror messages. Currently these are:
[filename] docs not exist
indicates ListSyms was unable to open the Syms file.
Syms file too big
indicates insufficient room for reading the Syms file. ListSyms aborts.
Can’t open [filename] ,
ListSyms was unable to open the outputfile or one of the BR files required for /U or /X. In the former
case, ListSyms aborts; in the latter, it continues.
[fi‘lcnamcl is not a proper BR file
Onc of the BR files mentioned in the Syms filc docs not have the proper format. ListSyms ignores the file
and continucs.
[ﬁlenamc} is too big to process
Onc of the BR files was too big to read in. ListSyms ignores it and continucs.
Too many BR files
There were too many BR files to process in the available memory. ListSyms aborts.
No room for bit table
There was not enough room to hold the bit table used for /U or /X (or /A if any undefined symbols were
present). ListSyms aborts.

ListSyms is quite fast: it processcs BRAVO.Syms in about 20 seconds, and a typical modest program
takes less than 10 scconds.



Cleared version of October 8, 1979
MailCheck March 6, 1978 75

MailCheck

"This simple subsystem attempts to check for mail for a user at some other host (c.g. Maxc) via the Ethernet.
It displays onc of the following messages:

? This Alto has no Ethernct interface!

7 Can’t find a host named <host>’: <error message>
? No response from <host>

? <user> not valid user at <host>: <crror message>

? Error; <pup crror message>

New mail for <user> on <host>: <date> {sender>
No new mail for <user> on <host>

Various options can be controlled by switches and/or by an entry in your User.Cm.

Valid switches are:
/1 Check mail on Maxcl (default).

/2 Check mail on Maxc2,

<host>/H Check mail on <host>.

{user>/U Check mail for <user> (default is the user name obtained from the Alto operating system).
/R If there is new mail, exccute a comunand line when MailCheck exits. The command line

defaults to "@READMAILCM@", ie. to cxecute the contents of the file
1{)U%ADMAIL.CI\/I as a command, but this can be changed in the User.Cm as outlined
clow.

In addition, if there may be a section in your User.Cm labeled [MAILCHECK] with the following possible

entries: .

HOST: <host> Sets the default host to check.

USER: <user> Sets the default username to check.

NEWMALIL: <string>  Sets the command line to be exccuted if there is new mail. Within the command
line, the host name is substituted for "@H™ and the user name for "@U"; to put
an "@" in the command line it is neceessary to put two in the string.

For example, you miﬁht add the section:
MAILCHECK]

[OST: Maxc2
NEWMAIL: CHAT @H MSG.DO/D

Where MSG.DO is a file on your alto disk which contains "MSG<return>".

One useful option is to put Mailcheck.Run inside the eventBooted section of your USER.CM, so that
Maileheck will be run whenever you boot, ¢.g.

[EXECUTIVE]

eventBooted: Mailcheck.Run // ¢cventBooted
ceventREC: I'I'P/OK //eventRIFC
e"\;cntCIOCkWrong: SetTime // eventClockWrong

Updates: As of March 1978, Mailcheck no longer does a SetTime



Cleared version of October 8, 1979
MoveToKeys January 2, 1979 76

MoveToKeys

The Alto can boot-load a file beginning at any legal disk address. The disk address is sup[iéicd by holding
down a collection of keys simultancously while pressing the boot button. The MoveToKcys subsystem
simplifics the task of getting a .boot file to begin at a specified physical disk location. To invoke
MoveToKeys, type:

MoveToKeys filename keylist

to the Alto Exccutive. "filename" is the name of the file whose first page (technically, gagive 1, noté)age {)}
is to be moved to the disk address corresponding to "keylist”. The legal keys are 5, 4, 6,7, D, E, K, P, U,
V,0,/,and . (Remember, to typc a /" to the Alto Executive, you must quote it.) A typical use of
MoveToKeys is:

MoveToKeys Dumper DU

The file Dumper.boot could thén be boot-loaded by holding down the DD and U keys while pressing the
boot button. _

MoveToKeys will prompt for }Jaramctcrs omitted from the command line and will complain if any ofthe
parameters supplied are illegal. (For example, not all subsets of the sct of legal keys corrcs&)ond to legal
disk addresses.) In addition, the global switch /V ("verbose mode™) will give you detailed information
about the pages MoveToKeys manipulates.

MoveToKeys actually works by determining what page resides at the si)cciﬁcd disk address and swapping
it with page 1 of the specified file. Depending upon the pages involved, MoveToKeys must patch UX
various pointers within the Alto file system to ensure a consistent representation of files and directorics. (
previous version of Move ToKeys did not do this correctly in all cases.)



Cleared version of October 8, 1979
Mu: Alto Microassembler March 25, 1978 71

Mu: Alto Microassembler

This document describes the source language and operation of Mu, the Alto microcode assembler. Muis
downward compatible with Debal, the original Alto assembler/debugger, but has a number of additional
features. Mu is implemented in BCPL, and runs on the Alto.

1. The source language

An Alto microprogram consists of a number of statements and comments. Statements are terminated by
semicolons, and cverything betwecn the semicolon and the next Return is trcated as a comment.
Statements can thus span several text lines (the current limit is 500 characters). All other controlcharacters
and blanks are ignored. Bravo formatting is also ignored.

Statements are of four basic types: include statements, declarations, address predefinitions, and executable
code. The syntax and scmantics of these constructs is as follows:

1.1. In¢lude Statcments

Include statements have the form:
# filcname;
They cause the contents of the specificd file to replace the include statement. Nesting to three levels is
atlowed.
1.2. Declarations

Declarations arc of three types: symbol definitions, constant definitions, and R memory names.

1.2.1. Symbol Definitions

Symbol definitions have the form:

$name$l.ny,ny,n3;

The symbol "name" is defined, with valucs ny, ny and n3. There is a standard package of symbols forthe
Alto (AltoConstsxx.Mu, where xx is the current microcode version) which should be ’included’ at the
beginning of every source program. For those who must add symbol definitions, the interpretation ofthe
n’s is given in the appendix.

1.2.2. Constant declarations

Normal constants are declared thus:
$name$n;
This declares a 16 bit unsigned constant with value n. The assembler assigns the constant to the first free

location in the constant memory, unless the value has appeared before under another name in whichcase
the valuc of the name is the address of the previously declared constant.



Cleared version of October 8, 1979
Mu: Alto Microassembler March 25, 1978 78

An alternative constant definition is used for mask constants which have a specified bus source ficld (recall
that the constant memory address is the concatination of the rselect and bus source fields of the
microinstruction). The syntax is: : '

$name$Mn:v; 4<n<7, 0Kv<2**16

N specifics the desired bus source value, v is the constant value.

1.2.3. R Memory declarations

R memory namcs are defined with:

$name$Rn; 0<n<40B
(100B if your Alto has a RAM board, as most do)

An R location may have scveral names.

1.3. Address predefinitions

Address predefinitions allow (%mups of instructions to be [)Iaccd in spccified locations in the control
memory, as is required by the OR branching scheme used in the Alto. Their syntax is:

In, k, name(, namep, namey, ..., namek-1;

This declaration causes a block of k consecutive locations to be allocated in the instruction memory, and
the names assigned to them, n defincs the location of the block, in that if L. is the address of the last
location of the block, I and n = n. Usually, n will be 2*¥*p-1 for some small p. For cxample, if the
predefinition

13, 4, foo0, fool, foo2, foo3;

is encountered in the source text before any executable statcments, the labels foo0-foo3 will be assigned to
control memory locations 0-3. If there arc too few names, they arc assigned to the low addresses in the
block. If there are too many, they are discarded, and an crror is indicated. If there are missing labels, ¢.g.
"f000,,f002,;", the locations remain available for the normal instruction allocation process. A predefinition
must be the first mention of the name in the source text (forward references or labels encountered beforca
predefinition of a given name cause an error when the predefinition is encountered.)

A more general variant of the predefinition facility is available. The syntax is:
%mask?2, maskl, init, L., Ly, ... Lyy;

The cffect of this is to find a block of instructions starting at location P, where P and maskl = init, and
assign the I.’s to "successive’ locations under mask2. FFor example:

%1, 1,0, x0, x1;
would force x0 to an even instruction, x1 to odd (the normal predefinition for most branches).
%360, 377,17,1.0, L1, ... L15;
Would place L0 at xx17, 1.1 at xx37, L2 at xx57, etc.

As before, if there arc unused slots (c.g?

( '[L12,,1.14%) they are available for rcassignment, and MU
complains if there are too many labels for t

1¢ block.



Cleared version of October 8, 1979
Mu: Alto Microassembler March 25, 1978 79

1.4. Executable statements

Executable code statements consist of an optional label followed by a number of clauses separated by
commas, and terminated with a semi-colon

label: clause, clause, clause, ...;
If a label has been predefined, the instruction is placed at the control memory locaion reserved for it.
Otherwise, it is assigned to the lowest unused location.
Clauses arc of three types: gotos, nondata functions, and assignments,
Goto
Goto clauscs arc of the form ’:label’, and cause the value of the label to be assembled into the Next
ficld of the instruction. If the label is undefined, a chain of forward references is constructed which
will be fixed up when the symbol is encountered as a label.

Nondata Functions

Nondata functions must be defined (by a literal symbol definition) before being encountered ina
code clause. This type of clause assembles into the F1, 2, or 3 ficlds, and represents cither a branch
condition or a control function (c.g. BUS =0, TASK).

Data transfers (assignments)

All data transfers are specified by assignments of the form:
desty « destp « ... «source

This type of clause is assembled by looking up the destinations, checking their legality, and makin
the ficld assignments implicd by thce symbol types. liach destination imposes definitiona
requirements on the source (¢.g., ALU output must be defined, Bus must be defined). These
requirements must be satisfied by the source in order for the statement to be lcgal.

When the source is encountered, it is looked up in the symbol table. If it is legal and satisfics the
definitional requirements imposed by the destinations, the necessary ficld assignments arc made,
and proccssinchontimlcs. If the entire source defines the Bus, and the only remaining requirement
is that the ALU output must be defined (e.g., L«MD), the ALUF ficld is sct to 0 (ALU output =
Bus), and processing continues.

If necither of the above conditions holds, the source can legally be only a bus source concatenated
with an ALLU function. The source token is repeatedly broken into two substrings, and cach is
looked up in the symbol table. If two substrings can be found which satisfy the requirements, the
ficld assignments im]glicd by both are madc; otherwise, an error is gencrated. This method of
cvaluation is simple, but it has pitfalls. LFor instance, 1.«2+T is legal (providing that the constant
"2" has been defined) but 1.«'I'-+2 is not (the Bus operand must always be on the left). Note that

i}

"Lefoo+T+ 1" specifies a bus source of *foo” and an ALU function of *+'T'+ L',

CAVEAT: The T register may be loaded from cither the Bus or the output of the ALU, depending
on the ALU function. The assembler does not check to see whether an assignment of the form
"T«ALU’ specifies an AL U function that actually loads T from the ALLU. For example, the clause
‘LeT«MD-1” is accepted, but its effect is to load T directly from MDD, If this is what you intend, it
makes matters clearer if you write 'L«MD-T, T«MLD>; if it is not what you intend, you are in
trouble. Beware!

The constant "0" is special, in that when onc or more clauses in a statement require that the busbe
0, generation of the constant is deferred until the end of the statement. At that point, if any clause



Cleared version of October 8, 1979
Mu: Alto Microassembler March 25, 1978 80

82}5 CahL_ISCd the R memory to be loaded, the constant is not used, since the hardware forces the busto
In this casc.

The destination "SINK" allows a clause to specify a bus source without specification of a
destination. Tt is useful, for example, in constructs of the form *SINK «ACO, BUS=0’, which puts
ACO on the bus to be tested by the nondata function "BUS=0". You can also write things like

"SINK «mask constant, L«DISP XOR T°, which will cause the value of DISP to be anded on the
bus with the mask constant,

2. Operation

The assembler is invoked with:
| MU/global-switches sourcefile listfile/L binfile/B statfile/S
Legal global switches are:
/L. produce a listing file
/1D debug mode
/N do not produce a binary file (overridden by binfile/B)
Iflistfile/L. is absent but the /L global switch is set, listing output will be sent to sourcefile.LS.
If binfilc/B is absent, binary output is sent to sourcefile.MB.

If statfile/S is absent, statistics for the assembled program arc appended to the listing file if there is one;
otherwise, no statistics arc generated. The default extension for a /S file is *.Stats’.

The default extension for sourcefile is *.Mu’.
Error messages will be sent to the listing file if one has been specified, unless debug mode has been set. In
debug mode, crrors are sent to the system display area, and a pausc occurs at at every error (and atcertain
other times). Typing any character proceeds.

If no listing filc has been requested, debug mode is set independent of the global switch.

3. Output file

The assembler produceds Micro format binary output. The string names of the two memorics specified in
the file arc CONSTANT and INSTRUCTION. Only defined locations in these memorics arce output.
Micro format is compatible with the PRom blowing program, thc Ramload program, and the
PackMu/loadRam software. Notc that the instruction mcm(f\x/*ly specified in the binary file does not
include the 3 bit F3 field, which cxists only in the debugging RAM.

4. Listing file

The listing file contains:

1.) All error messages (unless debug mode is set)



Cleared version of October 8, 1979
Mu: Alto Microassembler March 25, 1978 81

2.) A listing of all unused but predcefined locations and unresolved forward references.

t3).) T\ivo listings of the contents of the constant memory, the first sorted by address and the second
y value. )

4)) A listing of the names assigned to the R memory

5.) A listing of the object and source code (with comments and declarations removed. The 35 bit
instruction 1s printed out in the following order:

Location: RSel, ALUF, BS, F1, F2, Loadl, L.oadT, F3

6.) The microprogram statistics (unlcss sent to a separate file).



Cleared version of October 8, 1979
Mu: Alto Microasscmbler March 25, 1978 32

Appendix I: Literal symbol definitions

The value of a symbol is a 3 word quantity. The first word contains a type (6 bits) and a value (10 bits)
which dctemines the interpretation of the symbol in all cascs except when it is encountered as the sourcein
a data transfer clause (assignment). The sccond word contains the type and value uscd in this case.

The third word contains bits specifying the definitional requirements and source attributes applied when
the symbol is encountered in an assignment. The definitional requirements are represented by single bits,
where zero means ‘must be defined’ and one means *don’t care’.

Bit 0: 0if L output must be defined (dcstination-imposed requirements)
Bit 1: 0if BUS must be defined !

Bit 2: 0 if ALU output must be defined "

Bits 3-7: Unused (.S)

Bit 8: L is defined (Source attributes)
Bit 9: Bus is defined '
Bit 10: ALU output is defined "

Bit 14: ALU output is defined
if BUS is defined

Assignment processing g‘_rocceds by ANDing together the attribute words for all the destinations. The
result contains zeroes in bits 0-2 for things that must be defined and ones clsewhere.

When the source token is encountered, if it is a defined symbol it is tested by checkin% the definitional
requirements of the destinations against the corresponding attributes in the source. If all destination
requirements are satisficd, the clause is complete. If the only unsatisfied requirement is ALU definition,
and if the Bus is defined, the ALU function is sct to gate the gus through (thereby defining the ALU), and
the clause is complete. If this doesn’t work, or the source token is not a defined symbol, the source stringis
dismembered in a search for two substrings, the first of which defines the Bus (bit 9), and the second of
which defines the ALU output if the Bus is defined (bit 14). If two substrings arc found, the implied
assignments arc made, and the clausc is complete. Otherwise, an error is indicated.

The symbol type(s) determine the ficlds to be set in the microinstruction: Some types arc legal only asan
isolated clause, some are legal only as the source or destination in an assignment. The currently defined
types arc:

Type: Legal as: Instruction Field Side Effects:
Receiving Value:
0 Tlegal : never
1 Undefincd address address
2 Defined address address Next
3 R location« destination RSel Defines Busto be 0
4 «R location soufrce RSel
5 «Constant source RSel, BS
6 Bussource source BS
7 Non-data F1 clause " F1
10 Fl« destination Fl ,
11 «L defining F1 soutce Fl (¢«LLLSH 1, ctc.)
12 Non-data F2 clause 2
13 F2« destination F2
14 «Data F2 soutce 2 BS«1, RSEL«0
. «DNS, «ACDEST)
15 Data 2« destination F2 BS«0, RSEL«0
(ACDEST«, ACSOURCE+)
16 END clause - Not used by Mu.
17 «L source

20 L« destination Loadl.



Cleared version of October 8, 1979

Mu: Alto Microassembler March 25, 1978 83
21 Non-data F3 clause F3

22 F3« destination F3

23 «F3 source F3

24 «ALU functions source ALUF

25 Te destination LoadT

26 «T source ALUF ALUF«1
27 Nolonger used

30 Predefined address

31 «LMRSH, «LMLSH source

32 «Mask constant source

33 «F2 source F2 BS«2

34 «F1 source F1 BS«2

35 XMAR« destination Fl1,F2 Fl«1, F2«6

The current symbol definitions arc contained in file AltoConsts23.Mu.

5. Revision History

October 24, 1974

"%’ predefinition facility added.

March 4, 1975

This version has changed from previous releases in that the .BM file contains micro format type 5 blocks
which contain address symbols for the constant, instruction, and R memories. Programs which rcad these
files will be expected to deal with this type of block.

October 11, 1977

Bugs fixed: garbage in listing if statement too long; occasionally scrambled R-register listings; premature
termination at the end of ’insert’ files.

Features: longer statement buffer (500 characters); symbol type 35 for XMAR«; *.Stats’ file geerated
conditionally; checks for loading S-register from shifter; reports length in octal and decimal; strips Bravo
formatting.

March 25, 1978

Bug fixed: leaving the semicolon off the end of a predefinition yielded erroncous results with no error
message.

Features: listing file contains constants sorted by value as well as by address; source filcname extension
defaults to *.Mu’.



Cleared version of October 8, 1979
Network Executive June 22, 1978 84

Network Exccutive

NetBxec is an Alto command processor for invoking certain subsystems via the Ethernet without using the
local disk. It is uscful for rebuilding a smashed disk and for loading diagnostic programs when the disk is
sick. Its uscr interface is intentionally similar to the standard Alto Exccutive.

The program is invoked by holding down the <backspace> and <quote> keys while pressing the boot
button. You must continuc to hold the keys down until a small square appears in the middle of thescreen,
then you can let go. NetExec and all of the programs invoked by it arc boot-format files kept by *boot-
servers’ -- programs which implement the Alto boot protocol. Most gateways and some other programs
(such as Peck) contain boot-servers.

When the NetExec arrives, it displays a ">" and blinks its cursor to indicate that it is ready for commands
from the user. In parallel with this it displays a pair of lines near the top of the screen with its name and
version number, a digital clock, and the machine’s internctwork address. ' ,

Typing "7" causcs the NetExec to display a list of the boot-files it knows how to invoke. NetExec builds
this list by probing the network for boot servers and asking them what boot files they are willing to give
out. There are also some built-in functions which are listed by "7" as if they were boot files:

Probe Causes NetExcc to probe the network looking for boot servers. If it discovers
any new ones, it will add the new boot files to its list. This is done once
automatically when Netlixec starts.

SetTime Causes NetExec to probe the network looking for a time server. If it discovers
one, it scts the Alto’s clock from it. This is done once automatically when
NetExec starts. .

FileStat Prompts you for a boot filc name and tells you all about it: its boot file number,
the host from which the NetExce will obtain it, and the key combination which
will boot it dircctly.

Quit Boots DMT

In the future, common subsytems should be stored in a few places throughout the network, not onevery
local disk; perhaps the local disk can be climinated entirely. Doing so requires a much better integration
of network and OS facilites than currently exists. The NetExcc described here is not intended to do this.
There are several limitations in the current implementation:

) Most boot-files are core images and so arc quite large. Typical boot-servers have
space for about 15 core-image files.

2)  Boot-files arc not properly hooked into the local disk. Programs which use
overlays or keep internal file pointers (such as Bravo and DIDS) will not work.

3)  Boot-scrvers typically run in machincs with some other primary purpose, such as
gateways, and must not consume too many resources. As a result, booting is slow
and only one machine can be served at a time.



Cleared version of October 8, 1979
OEDIT August 29, 1979 85

OEDIT

The OEDIT pro%ram is for looking at and modifying Alto files and Alto Trident files, in octal and other
output formats. Call it with OEDIT f1 2 ... where the s are the names of the files you want to look at. It
will display the contents of the corresponding words of all the files on the same line. There is a limit of
four files which can be looked at simultancously. If you want to be able to modify the first file, use the/W
switch on the OEDIT command. If you don’t use this switch, OEDIT will request confirmation before
letting you write into any of the files.

When it starts, the program computes the length (in bytes) of all the files. For large files this can take
upwards of 15 seconds, so don’t be alarmed by the delay.

After typing the lengths, OEDIT waits for commands:

n/ show location n of cach file

If show the next location of each file

t "~ show the previous location of cach file

cr show the current location again

n! show locations n to n+-37 of each file

> show the next 40 locations of each file

< show the previous 40 locations of ech file

nF beginning at current location in the first file,
find a word containing n, show it and its address

Q quit

The If, 1, <, >, and cr commands can be preceded by a number which is written into the current location of
the first file.

All numbers arc octal, except in certain output formats described below, All addresses are word addresses
(even though the lengths arc shown in bytes.) Unless directed otherwise, Ocdit shows each value as anoctal
number, two octal bytes, and two Ascii characters. Onc can suppress these output formats, and can select
additional formats, using global switches. The following table specifies the output formats and
corresponding global switches:

0 displays a full-word octal valuc
H two octal bytes

A two ASCII bytes

X two hexadecimal bytes

E two EBCDIC bytes

D a full-word signed decimal value
N two decimal bytes

the output format specified by the next letter will not be used

‘Thus, the standard default display is obtained using "OEDIT/OHA filename”. If onc wanted to display
the file in hexadecimal, ASCII, and EBCDIC only, on¢ would type "OEDIT/-O-HXE filename".

To examince and modify Trident files, use the global T switch: e.g., "OEDIT/T ... ".



Cleared version of October 8, 1979
Alto microcode overlays October 20, 1976 86

Alto microcode overlays

Large systems which use the Alto control RAM, such as ByteLisp and Mesa, incvitably want to put
more instructions in the RAM than will fit. When this happens, the system implementors can choose
either to implement the additional functions in software, or to change the contents of the RAM
dynamically. The package described here provides for relatively cheap dynamic overlaying of the RAM.
The overlay regime can be very simple (just one overlay in RAM at a time) or complex (a nested allocation
scheme) with no changes in the swapper or the overlays themselves.

Users of this package must, of course, still decide when loading microcode is preferable to falling back
into Nova code. In terms of space, one microinstruction does about 2/3 as much work as a Nova
instruction, and takes 32 bits rather than 16, so (overlaid) microcode takes about 3 times as much core
space for cquivalent tasks. The package presented here imposes an additional space overhead which may
amount to as much as 2 * the squarc of the number of overlays. In terms of speed, loading a
microinstruction takes about as long as ¢xecuting a Nova instruction, and the package described here adds
an additional time roughly equal to 1 Nova instruction for each overlay cach time a new overlay must be
loaded, so for totally straight-line code the net exccution time favors Nova implementation by about a
factor of 2 (i.e. to break even, a given overlay must be exccuted at least twice). However, microcode has
casy access to the state information stored in the processor’s R registers, while Nova code does not(unless
it can all be passed through the AC’s), so this may make microcode execution preferable even in the cascof
straight-linc code cxccuted only once.

1. How to use it

Using microcode overlays requires three steps that differ from normal use of the RAM. The Mu
asscmbly proccess is different; the Oram program must be run to construct the data structures necessary for
the swapper; and a small amount of extra initialization is required at runtime.

‘The first step in constructing overlayable microcode is to decide how to break up one’s microcodeinto
overlays and to identify the entry points to cach overlay. (Onc overlay may have more than onc entry
point.) The microcode sources must be broken up into files: a main file that includes all the residentcode,
plus predefinitions (but no code) for all entry points of all overlays; an initialization file (to be described in
a moment) that supplics dummy code for all entry points; and files for the individual overlays.

"The main file must include the following code at the beginning:

10,1,zcro;  Required by the swapper
$ramvec2$Rnn; An S register for the base of the overlay table

[other predefinitions, symbol defs, constants, registers, etc.]
# swapper.mu; The swapper

This code must occur at the beginning of the main file because the swapper’s entry point (label "swapper™)
must be predefined as location 1000 in the RAM.

The initialization file must have the following form:
#main.mu;  (or whatever the main file is called)
ent0: T « 0, :swapper;
entl: T « 1, :swapper;
ent2: T « 2, :swapper;
entd: T « 3, :swapper;

and so)on for all the entry points. (Ent0, ctc. should be replaced by the names of the entry points, of
course.



Clcared version of October 8, 1979
Alto microcode overlays October 20, 1976 87

Since microcode is not relocatable in the RAM, all decisions about what overlays can be co-resident
must be made at assembly time,

After asscmbling the dummy file and each leaf overlay file with Mu in the usual way, run the Oram

subsystem as follows: ‘

>Oram xx.BR init MB ovl.MB ... ovm.MB :
where xx.BR is the BR file on which Oram will write the overlay tables, init. MB is the result of assemblin,
the initialization file, and ov1.MB through ovin.MB are the results of assembling the Icaf overlay files. If
all gocs well, Oram will produce a varicty of messages ending with

nnn words written on xx.BR
and return to the Executive. Oram also writcs all its messages on a file called Oram.Lst.

When you load your program with Bldr, you must include the file xx.BR produced by Oram. The
data in this file, unlike the Initial RAM im%se Broduced by PackMu, is required throughout the running of
Kour program. You must also load the RWREG library package to obtain the WriteReg procedurc used

elow, but this is only nceded during initialization.
When loading the RAM during initialization, your program must include the following code:

external [ MCbase; MCtop] 7/ defined in xx.BR
if MCbase&l) nc 0 then ‘
[let len = @MCtop
MoveBlock(MCtop-len-1, MCtop-len, len)
MCbase = MCbase-1

riteReg(nn, MCbasc-2)
where nn is the register number in the definition of ramvec2 in the main file,
2. Design dctails

In the RAM, the catry instructions of cach overlay are all in the permanently resident code. Ifthe
overlay is present, the entry instruction is just the first instruction of its code; in this case we say the entry
instruction is "valid". If the overlay is absent, the entry instruction loads 'I' with the entry number and
branches to the swapper (the entry instruction is "invalid™). Thus when an overlay is loaded, the entry
instructions of all overlays it overlaps must be invalidated. The chicf advantage of this approach is that
there is absolutely no time overhead if the overlay is alrcady in the RAM, so it is feasible to overlay very
short sequences (15 instructions, say).

There is just one global data structure éin core) that describes the overlay structure: a table indexed by
2 * entry number which points to overlay descriptions, described in the next paragraph, and also specifics
where to start execution after the overlay is loaded. (This arrangement permits a single overlay to have
multiple entry points.) The origin of this table is the only thing known to the swapper.

The description of an overlay (in core) must begin at an even location, and has two parts:

1) An invalidation table which spccifies how to overwrite entry instructions. Fach entry in this table isa
2-word object: the first word is a RAM address, the seccond word is the upper half of the microinstruction
to write there (the lower half always being "BUS «constant, [.oad T, branch to swapper'). The last entry is
ﬂaggcd by having bit 0 of the RAM addrcss sct.

) A scquence of instruction blocks. iach block begins with a 2-word header (100000b + R AM address,
0). The following data arc a scquence of instructions where cach instruction’s NEXT ficld specifies where
to load the following one: this scquencing scheme eventually requires the block to end. This sequenceis
terminated by a final block consisting of two zero words.

The swapper is a routine in the resident microcode which expects an entry number in T, loads the
appropriate overlay, and branches to the entry, It must fetch the overlay’s description from core and then
do the following things:

1) Invalidate the entry instructions of all overlays with which the onc being loaded conflicts.
2) Load the code, which must include the entry instructions specificd as being newly valid;
3) Branch to the code. The initial RAM load must have all entry instructions invalid.



Cleared version of October 8, 1979
Alto microcode overlays October 20, 1976 38

3. Mu/Bldr interface

The third design issue is how best to get the necessary data structures incorporated into Bepl/Nova
programs. It turns out that it is possible to support ncsted overlays with no changes to Mu. Forexample,
supposc that the main body of the microcode is M. and that we have three overlays: X (entry point X1),
which takes all the overlay space, and Y (entry points Y1 and Y2) and Z (cntry point Z1), which will both
fit at the same time. Asscmble the following configurations with Mu: M-+X, M+Y, and M+ Y +Z. Then
an overlay preparation program, Oram, can computic all the necessary tables and produce a .BR file that
can be loaded with the user’s program.

It is necessary to be a little careful to arrange that the entry instructions fall in the same locations inall
assemblies. Furthcrmore, if it is desired that onc routine occupy a subset of the RAM locations ofanother,
they must have the same configuration of predefinitions (and, of course, appear at the same place in the
assembly sequence). Here is a sketch for the example:

M contains (somewhere):
' .

X contains:
X1: [code for X]

Y contains:
Y1l: [code forY]
Y2: [more codg: for Y]

Z. contains:
Z1: [codc for Z]

In general, some of the predefinitions could be omitted if the entry addresses were to be predefined carlier,
for example if they were entrics in some kind of opcode dispatch. In addition, there must be another file
W which is assembled with M to produce the initial RAM load:

W contains:
X1: T «0, :swapper;
Y1: T « 1, :swapper;
Y2: T «2,:swapper;
Z1: T « 3, :swapper;

The pointer table would have the appearance
Xdesc; X1;
Ydesc; Y1;
Ydesc; Y2;
Zdesc; 7.1;
and the individual descriptions would be as follows:
Xdesc: Y1; invalidate Y and Z
]%%JS «1 (hi part);

BUS «2 (hi part);
#100000+ Z1;
BUS«3 (hi part);
{)code for X]p

.
[}

0;

Ydesc: #100000+X1; invalidate X
BUS«0 (hi part);
Bcodc forY

k3



Cleared version of October 8, 1979
Alto microcode overlays October 20, 1976 89

0.

Zdesc: #100000+X1; invalidate X
BUS «0 (hi part);

{)codc for 7]

’

0;
Fortunatcly, given the .MB files, the Oram subs Kstem can construct all the tables itself. Oram assumesthat
any instruction in the basc file (W) which branches to the swapper is an entry instruction.,



Cleared version of October 8, 1979
Packed RAM images March 17, 1979 90

PackMu, Rpram, ReadPram

These two subsystems and one 1ibrarl{ Kackagc make it casy for Alto programs which use the RAMto
check the constant memory and load the RAM as part of their initialization. The first subsystem, PackMu,
takes the output of Mu (a .MB file) and converts it to a "packed RAM image" which is easy to load. The
second subsystem, Rpram, rcads a packed RAM image, checks the constant memory, and loads the RAM
(i.c., it is a microcode loadcrz. I'his function is also available through a pair of library routines
ReadPackedRAM and LoadPackedRAM (available on a file called ReadPram.bepl).

A Backed RAM image is a .BR file containing 4401b words of data. The first word is ignored. The
next 400b words are the desired contents of the constant memory: a zero word (which Mu cannot generate)
means "don’t carc”. Constant 0 is reserved for a version number, to help programs check that they are
getting the correct RAM contents. The remaining 4000b words are the contents of the RAM. Each
instruction occupics two words, first high-order part, then low-order part, ¢.g. words 0 and 1 go intoRAM
location 0, words 2 and 3 into RAM location 1, and so on.

The invocation format for PackMu is

>PackMu foo.MB foo.BR version staticname
IFoo.MB is the output from MU, Foo.BR is the file for the packed RAM image. Version (optional) is a
RAM version number which will be written as constant 0 in the output file; if omitted, it defaults to zero.
Staticname (optional) is the name for the static in foo.BR which will point to the RAM data; if omitted, it
defaults to RamImage. PackMu prints out

XXX constants, yyy instructions }
to indicate the number of constants and instructions read from foo.MB. If foo.MB is somchow illegal,
PackMu prints

ITor:

and an error message instead.

The invocation format for Rpram is

>Rpram foo.BR version rambank
where f00.BR is the output from PackMu and rambank is the bank number (1, 2, or 3) if Alto has the 3K
RAM option. If there are any disagreements between the constants in foo.BR and the actual constant
memory, Rpram prints

Constant nnn is xxx, should be yyy
for each constant that disagrees, and a summary message

nnn constants differ
at the end of loading (but it still loads the RAM). If version is supplied and disagrees with constant
location 0 in foo.BR, Rpram prints :

RamVersion in file is xxx; version expected is mmm
If Rpram believes that foo.BR is not a file written by PackMu, it prints

Bad RAM image
If everything is OK, Rpram prints nothing,

To read in a packed RAM image file from a program, use the subroutine RcadPackedRAM(stream,
IvRamV [], rambank [1]). 'The strcam argument should be a word-item input stream positioned at the
beginning of a foo.BR file; IvRamV, if supplicd, is taken as the address of a variable in which to store the
value given by the file for constant 0 (i.c. the RAM version). ReadPackedRAM docs exactly the same
thing as the Rpram subsystem, including printing disagreement messages on the display, but instcad of
printing the summary message it just returns the number of disagreements, or -1 in the case of a badRAM
image file. Rpram essentially just opens foo.BR and calls ReadPackedRAM.

Alternatively, you may wish to load the RAM image foo.BR with your program. In this case, use the
subroutine LoadPackedRAM(staticname, IvRamV [], rambank [1]) where staticname is the name you gave
to PackMu. LoadPackedRAM docs the same thing as ReadPackedRAM, except it takes the data out of
mcmory instcad of from a file.

On Altos with the 3K RAM, note that since LoadPackedRAM and ReadPackedRAM use two words



Cleared version of October 8, 1979
Packed RAM images March 17, 1979 91

in RAM bank 1 for checking the constant memory, you should load bank 1 last if you have a multi-bank
microprogram.
Maintainer’s notes: .

PackMu uses the library packages GP and ReadMu.

Rpram uses the library package GP.



Cleared version of October 8, 1979
PeckPup May 17, 1976 92

PeckPup

PeekPup is a small subsystem ¢nabling one to peck at Pups going to and from a particular Ethernet host. It
1s intended as an aid in debugging new Pup software.

PeckPup is invoked by the command
PeekPup hostnumber filename

where "hostnumber" is the Ethernet address (octal) of the host whose packets you want to spy on and
"filename" is the namc of a file to write the output on. The program then looks for packets whose
Ethernet source or destination address is cqual to "hostnumber”, and buffers them in memory. Forecach
Pup so processed, "!" is displayed on the screen. PeekPup terminates when any key is pressed, at which
point it interprets the last 200 Pups received and writes the result on the specified file.

The output is mostly sclf-explanatory. The numbers in the left margin represent a millisecond clock (with
no particular starting value and wrapping around at 32768). For cach Pup, a few lines of output are
generated; the information about Pups sent to the host being spied upon is indented further than
information about Pups gencrated by that host. Pup headers are fully interpreted, and Pup contents are
displayed as either text or a series of octal numbers representing bytes; large Pups get only the initial
portion of their contents displayed, followed by "...".



Cleared version of October 8, 1979
Pressedit April 26, 1976 93

Pressedit

fPrcssccli\t\is useful f‘or combining Prgss ﬁlvc.s togethf:r, conv‘crtin% the [f,ars. files gelleratgfi by Pub and B(a?o
into Press format, sclecting certain pages from a Press or Ears file, or adding extra fonts to a Press file. The
general command format is illustrated in the following example:
pressedit foo.press « a.press b.ears 2 5 c.press 3 to 7 9 meteor9/f
This mcans "make a Press file foo.press from all pages of a.press, pages 2 and 5 of the Ears file b.cars, and
pages 3, 4, 5, 6, 7 and 9 of c.press; add font meteor9 to the fonts defined in foo.press”. The resulting file
will be arranged in the same order as the component input files.
Examples:
To convert an Ears file foo.ears to a file foo.press in Press format:
pressedit foo.press « foo.cars .
To extract pages 3 and 17 from a Press file long.press, and put them in short.press:
pressedit short.press « long.press 3 17
To extract pages 5 through 12 from foo.cars, and put them in short.press:
pressedit short.press « foo.ears 5 to 12
To add fonts logo24 and helveticald o a.press:
pressedit a.press « a.press logo24/f helvetical4/f
Here the arguments on the right hand side of the arrow may be given in any order.
To make a blank, one-page Press file containing all three faces of Timesroman10:
pressedit blanktimes.press « timesromanl0/f timesroman10i/f timesroman10b/f
To append to the end of chap3.press all the Press files with names fig3-1.press, fig3-2.press, fig3-3.press etc:
pressedit chap3.press « chap3.press fig3-*.press
Caution: when you combine files with Pressedit, try not to usc different sets of fonts, or the same fontsin

differcnt orders. This will result in proliferation of font sets, making the file more bulky and creating other
minor sources of incfficiency.



Cleared version of October 8, 1979
RAMLOAD April 1, 1975 94

RAMLOAD

RAMLOAD is a program that acts as a microcode loader, using the output of the microcode assembler
Mu. Since there are now two types of microcode memory for the ALTO, some distinction must be made.
Hereafer, ROM mcans some combination of roms on the ALTO control board, and add-on goodics which
hang on the end of the control board like debuggers with 512 words of ram. RAM means the cxtraboard
with 1K of ram which plugs into a slot in the processor.

RAMLOAD gets its parameters from the command line and default values. If you do not specify a
paramcter, the default is used. In addition there are some global switches which do other useful things as
cxplained below: v

GLOBAL SWITCHES (of the form RAMLOAD/switchlist)

/R compare the micro binary filc against the contents of the RAM and display differences.
/N compare the micro binary file against the contents of the ROM and display differences.
/C g[()glpare the micro binary file against the contents of the constant memory and display
ifferences, :
/T Test the RAM and cxtra R registers by writing random numbers and then reading them back
displaying differences and addresses.
/0 Same as /T but do not test the R registers.
/N Do not request Confirming <CR> for any operation.
LOCAL SWITCHES (of the form foo/switch)
/F use foo as the name of the micro binary file. Defaultis "BINFILE."
/M usc foo as the name of the instruction memory in the micro binary file. Default is
"INSTRUCTION",
/C usc foo as the name of the constant memory in the micro binary file. Default is
"CONSTANT".
/v foo is an octal number. Use it as the boot locus vector. Bit 15 corresponds to task 0
cmulator). 0 means run task in the RAM. Default is # 177777 - keep all tasks in ROM.
/A 00 i$ an octal number, representing the base address of a 5 word arca in the RAM which

RAMLOAD can use for utility purposes. Default is the top 5 words (#1772). Sce warnings
below about restrictions for specific operations.

/8 foo is an octal number interpreted as the beginning address of the cmulator main loop
(START for microcode hackers). Default is the current START address, # 20.

Note that global switches /V, /C, and /T do the samc things that ;V, :C, and ;T do in DEBAL.
RAMLOAD in cffect docs a ;L, and also scts the boot locus vector. The /R global switch was added
because it was casy and pcople might want to sce if the microcode got smashed after a fiasco.

When RAMLOAD is called, it will first display what it thinks it is supposced to do as governed by the
switches and defaults, and wait for a confirming carriage return. When this is received, 1t will attempt to
open the micro binary file. If this is unsuccessful, it will put out a mcssage to that effect. Next, operations
specified by global switches will be performed (1f the micro binary file could not be opened, the only tests
possible are /T and /0). If no global switches were set, the program will assume you wanted to load, and
do so without waiting for confirmation. Loading is a three stcp operation in which the first step, setting the
boot locus vector, does not requirc an open micro binary file. This allows a user to change the bootlocus
vector without reloading the RAM, by specifying a nonexsistant file name for the micro binary file. The

rogram will report the value the vector is set to. Steps two and three, unsnarling the micro binary filcand
oading its contents, obviously require an open file and will cause RAMLOAD to bomb if there is none.
When the loading operation is complete, the number of instructions loaded, and the highest address willbe
reported ala DEBAL. Next the program will ask if you want to boot, thus moving the tasks specitied in the
boot locus vector into the newly loaded microcode in the RAM. If you conflirm, and if you have an
Ethernet board, the machine will do a software initiated boot. If you do not have an Fthernet, the bootwill
be a NOP, and a FINISH is exccuted. Hitting the boot button after the program is finished will work for
thosc hermits who do not have Iithernets. .



Cleared version of October 8, 1979
RAMLOAD April 1, 1975 95

The routine which reads the micro binary file expects the limited subsct of block-types that DEBAL puts
out. If it encounters an unusual block-type (3, 5, or 6) , it will endeavor to do the right thing, and continue
on. When it is finished reading, if any unusual types were encountered, it will list how many of cach it
read. Ifthe microcode was assembled using DEBAL, this is cause for grave doubts about the correctnessof
the file, since DEBAL will not currently generate these types.

Where the 5 word utility arca is specified can have profound (ie. potentially disasterous) effects on the
machine’s operation if you are currently running from the RAM. While it is possible to load the RAM
while exccuting in it, this is living very dangerously. However, if you must, observe the following cavcats:

*if aongtant memory is being checked, and you are executing out of the low 256 locations, you are
cad.

* the 5 word utility area must be specified in a place you will not be executing from during the
RAMLOAD program. RAMLOAD always saves any word in RAM it modifies for utility
purposes, and restores it when it is done, but while in use, it can have an arbitrary value.

A number of things can cause fatal errors during exccution. If onc happens, an error message is written in
the system display arca, and the program is aborted.



Cleared version of October 8, 1979
SCAVENGER May 24, 1976 96

SCAVENGER

A subsystem for checking and correcting disk packs is available as SCAVENGER. Invoke it with no
parameters and it will give you an opportunity to (1) change disks and (2) prevent it from altering yourdisk
seriously (sce below). '

The scavenger does the following:

1. Corrects header blocks, prompting for confirmation.

2. Corrects check sum errors, by re-writing whatever came in, prompting for confirmation.

3. Discovers all well-formed files and all free pages. Any disk page (except page 0) that is neither free
nor part of a well-formed file is considered bad.

4. Makes the serial numbers of all well-formed files are distinct.

5. Corrects the system’s notion of what pages are free.

6. Corrects the system’s latest serial number.

7. Corrects the directory to contain precisely the well-formed files. If a directory entry points into a
chain of bad pages it attempts to salvage the file. If need be a directory is created from scratch.

3. Links all bad, unsalvaged pages together as part of the file Garbage.$.

9. Dcscriipcs alcll changes to the disk in the file ScavengerlLog, even those which were not actually

crformed.

10. Corrects leader page information. Changes to lcader pages should not cause alarm. The

information there 18 used as a hint by various systems.

The data in bad pages is not changed so you can attempt to reconstruct a lost file by suitable operationson
Garbage.$, consulting ScavengerLog to interpret its contents.

A hopelessly smashed disk may be put back in shape by the following:

1. Invoke scavenger on a good disk and answer yes to "Do you want to change disks?"”

2. Replace the good disk with the bad one.

3. Answer yes to "Is the new disk ready?” when the yellow ready light comes on.

4. Answer yes to "May I alter your disk to corret crrors?”

5. If TP lives on your disk, the scavenger will offer to invoke it rather than retuning to the executive.
Once you arcin V1P Fou can receive criteal files (like Executive.Run or SysFFont.Al) orcvacuate
your disk by sending files clsewhere. If the scavenger docs not offer F TP, it is not there and you
will have to do some morc disk suffling to retreive files; i.e. invoke FIP from a good disk and
change disks after you are in.

You should take precautions to avoid losing vital files (such as QUICKing your disk to another disk pack
prior to running SCAVENGER).



Cleared version of October 8, 1979
SCAVENGER May 24, 1976 97

PARC information

The following, more or less independent, procedure can be used to recover vital files that might havebeen
lost during scavenging.
1. Invoke FIP on a good disk. .
2. At an carly point in the dialoguc replace the good disk with the bad one and wait for the yellow
rcady light to come on. _
3. RctlriC\]/(e)tlc needed files from MAXC (Executive.Run and FTP are the minimum required, I
think.
4. Quit out of FTP. '
5. Run the scavenger. It will correct the DiskDescriptor file which became inaccurate during this
process.



Cleared version of October 8, 1979
SWAT March 1, 1979 98

Swat, a BCPL-oriented dcbugger

Swat is a debugger meant to be used with the Alto operating system. While many of its features are BCPL
oriented, it can be uscd on any Alto program. This document describes version 27 of Swat, which is
compatible with Operating System versions 16 and greater.

1. History

Swat was designed and built by Jim Morris and Alan Brown during the summer of 1973. Bob Sproull
added the error file mechanism and ;fgarity error logging during 1976. Peter Deutsch rewrote thecommand
]lal‘occss;ot and added the command file facility in carly 1977. David Boggs renovated the program in late

978 adding mulitple proceed break points and TeleSwat, and Ed Taft added the help facility. Everyone
agrees that the human interface is awful. Fach person who has worked on Swat has added several more
obscure commands while they were at it.

2. How it works

Swat is an external dcbug%&r: with the exception of a small piece of "resident’ code in your address space, it
lives in a scparate space. When Swat is invoked, the resident saves your state on the file Swatee, and swaps
in Swat. References to your memory from within Swat go to the Swatee file. When you tell Swat to
grocccd, it saves itself on the file Swat, swaps you (the Swatee) in and resumes you. Your state at thetime

wat got control is displayed in a window at the bottom of the screen. "ACQ", "PC", etc are built-in
symbols with which you can manipulate it.

3. Invocation

w

Swat may be applicd to any program running under the operating system after it has been installed (sce
Installation below). There are six ways of getting its attention:

(1) Hold down the <control> and <lcft-shift> keys and then
press the <Swat> key.

(2) Have your program exccute the op-code 77400B,
(3) Invoke the Resume/S command (sce¢ below).

(4) Boot the file Dumper.Boot, normally by booting with the "DU"
keys depressed.

(5) Type <programName>/! to the Alto command processor.

(6) Call the function CallSwat, Up to 2 arguments will be printed
as BCPL strings. Thus CallSwat(""N¢ more memory")



Cleared version of October 8, 1979
SWAT March 1, 1979 99

4. Commands

wo.n

The command scanner has suffix action symbols, all of which are control characters (e.g. +C). "n" isany
BCPL expression (sce Expressions below), "$" is escape except where noted, "cr' means carriage return,
"If" means line-feed. You can abort whatever Swat is doing at any time and get back to the top level
command scanner by pressing the <Swat> key.

4.1, Help facility

Most debuggers have a terse and obscure command syntax, and Swat is no different. In fact it’s worse
since it doesn’t follow DD'T conventions. T yping "?" prompts you for a command character which Swat
looks up in the file "Swat.help”. Responding "?™ to its prompt gives you a small table of contents forthe
rest of the help file.

4.2. Displaying cells

addresstD prints the contents of n in decimal

addresstl prints the contents of n as two 8-bit bytes
addresstN prints the contents of n as an instruction
addresstO prints the contents of n in octal

addresstS prints the contents of n as a pair of characters
addresstV prints address in octal and decimal

The last cell printed is called the open cell. 1O, 1D, tI, tN, or 1S alone re-prints the open cell in the
appropriate format. If you wish to print out a number of cells, beginning with the open cell, say n$tD),
n$r, etc. The last cell printed becomes the open cell.

If (1)) opens and prints the contents of the next cell (after the open onc) in the same mode.

W opens and prints the cell before the open cell.

A opens and prints the cell pointed at by the open cell.

1E opens and prints the cell at the effective address of the open cell.

nt= scarches from the open cell+1 for a cell whose contents is n or whose effective address isn.

Prints and opens that cell. A scarch can take quite a while: abort by hitting <swat>.

The last cell that was opened by any command except LE or +W is called the last open cell. Often you are
stepping through code, follow a pointer with TE or A, look around, decide if’s not interesting and wish to
resume where you were before following the pointer. You can get back to last open cell plus or minusone

by:

$IE($2D) open and print last open cell+ 1,
$cr ($tM) open and print last open cell.
$rW open and print last open cell-1

4.3. Changing cells

The contents of the open cell (if there is onc) may be changed by tyfping an cxpression for the new value
followed by acr, 1for *W. AS$B followed by cr, If or +W stores A Ishift 8 + B into the open cell.



Cleared version of October 8, 1979
SWAT March 1, 1979 100

4.4. Running the program

1P resumes the program, i.c. proceeds.
addresstGresumes the program at address, i.e. goes there.

<procName>$<e1>$...8<en>1C calls the BCPL procedure "procName” with parameters <e1>,...,<en>
(n€6). If you wish onc of the arguments to be a BCPL-format string, merely enclose it in
quotes. Thus OpenkFile$"Com.Cm."+C will return a strcam on the file. AC2'is assumed to
contain a legal stack frame pointer and "procName’ will allocate a new frame on top of it.
Often AC2 is not valid (c.g., Swat interrupted the program in the middle of allocating a
frame), and calling a procedure at this point may not work. Most of the time Swat can

detect this and warn you.
U restores the user’s screen. Iitting the <swat> key brings back Swat.
K forces the user program to abort, just as if you had typed <left-shift><swat> while it was
running.
4.5, Break Points

A Break point can be referred to by its address or by the index assigned by Swat when the break point was
set. When printing or delcting a breakpoint, Swat reaches out into the user’s address space to check that
the break is still there.

addresstB scts a break at address
B set a break at the open cell
0$addresstB deletes the break at address

procecdCnt$addresstB sets a multi Elc-propccd breakcpoiqt at address. The breakpoint will take effect
when it has been hit proceedCnt times, and then it will be deleted. Passing
through a multiple procecd break point without stopping takes about 200 us.

index$tB deletes the break with index index

0858 - dcletes all breaks

$$1B prints all broken locations.

$rp | removes the current break and proceeds.

address§$tP scts a one-shot break point at address and then proceeds. A ong-shot break point

is one that is removed after it is hit.

stackIndex$+P scts a break at a BCPL return point in the stack somewhere and proceeds from
the present break. The parameter n specifics the frame number, where the most
recent (top) frame is 0. Thus if T typed out 0:GOO+56 1:HAM+5, 1$1P
would set a break at HAM 4 6 and proceed.

4.6, Stack Study
Sec Chapter 10 of the BCPL manual and section 4.8 of the Operating System manual for the details ofa

BCPL. stack.

T prints the current PC and all return addresses in the call stack (symbolically), until an



SWAT

ntT

indextF

Cleared version of October 8, 1979
March 1, 1979 101

inconsistency in the stack (usually signaling its end) is encountered. After cach return
address is listed the paramcters passed to the procedure that will be returned to. Thus, if
you see an entry like "3: FindIt+45--(14 177777)", the procedure FindIt was called with
arguments 14b and -1 (fine point: 14 and 177777 are the first two local variables in FindIt’s
frame, which Findlt could have modified before Swat was called, in which casc they won’t
be the values passed at call time.)

prints n (or less) frames starting with the top frame on the stack.

prints the parameters of the nth latest stack frame and sets the pseudo symbol "$" (not
cscape) cqual to the base of that frame. If tT displayed something like 0:FOO+3,
1:BLETCH + 10,... Type 11F to sce the parameters that were 1?asscd to BLETCEHL. § is setto
;he$ba2e of BLETCH’s frame (i.c., $§ points at the frame’s back link: the first local variableis
n $-+4.

4.7. Symbol table

1Y

rompts you for the name of a symbol file. Tylée the name of the subsystem that’s running,
fit can’t find a file with the name you typed, Swat ap{)cnds ".syms" to it and looks up the
resulting file name before reporting failure. If BLDR created the file FOO.RUN it also
created FOO.SYMS, which gives the locations of all the static names. Only statics can be
used in Swat. There are permanent built-in symbols for the interesting page-1 and high
memory locations, BCPL runtime routines, and the user’s statc variables (ACO0-3, PC, etc.).

4.8. Save/Restore

See 'Resumable files’ below for more details:

1L
. TQ

prompts you for a file name on which it saves the current Swatee.

prompts you for a filc name which it installs as the current Swatee.

4.9. The Spy Facility

The spy can be used to estimate where the time is going on a percentage basis. It samples the PC every
30-milliscconds.

N Type X and Swat will display how much user memory it needs for the metering code and tables.

2) Probe around to find a block of storage of the required size, and tell Swat by typing

ntX

where n is the first word of the block.

3) Proceced to run the program.

4 Once Swat gets control again you can type

$1tX

to display the results and terminate the spying activity, or

$$rX

to display the results so far and continuc the spying.



Cleared version of October 8, 1979

SWAT March 1, 1979 102
4.10. Misccllaneous
$1Y Prompts for the namc of a (text) file from which Swat commands should be taken. Reading

will continue across "proceeds” from breakpoints, but will be aborted if Swat is invoked by
the keyboard (Kcontrol><left-shift><swat>) or by the standard break-point trap (77400B). -

$$1Y Puts Swat into TeleSwat scrver mode. The keyboard is ignored: to I'Cgai'n local control hit
the <Swat> key. For more on TeleSwat scc the sections on Address Spaces and TeleSwat.

ntR Prints the value of R or S register n. You must have a RAM for this to work.

R Prints all of the R and S rcgisters.

$$1Z Repeats the message that was displayed when Swat was invoked. This is sometimes usefulif

an error message has scrolled away as a result of poking around.

4.11. Address Spaces

tZ - prompts for the target address space. Swat can treat any file created by OutLd, any bank of memory,
and any host in the internet (with the host’s cooperation) as the Swatce: the address space into which you
peer with Swat. The syntax for address spaces is:

filename

Bank0
Bankl1...3

[host]

4.12. Examples
Xt0tD

func+ 3N If If
1107

labeltB
756218
SQRTS$161C
label+31G
0T

0tF

2K

this is "Swatee’ for normal debugging, but can be any file created by Outl.d
(sysOut files (tL) are in this catcgory), or Dumper.

Swat itsclf,

the extended memory banks. These are only legal on Altoll XMs. No check is
made that a bank actually exists. If it doesn’t, or if it hasn’t been written into
since the Alto was powered up, you are likely to get parity crrors.

a host that implements the scrver half of the TeleSwat protocol (usually another
Swat). [host] can be cither a name: [Boggs{, or an internct address: [3# 241 #].

The squarc brackets are required: this is how Swat decides that you mecan a
[host] rather than a file.

prints the value of X in octal, then decimal.

prints instructions 3, 4, and 5 of func.

sets location 1 to 7.

scts a break at label

sets a break at location 75628

calls the (uscr) function SQRT (the returned value is printed)
transfers to the third instruction after label.

prints the PC

p'rints the parameters of the most recent call

prints the paramcters of the third most recently called procedure; then



Cleared version of October 8, 1979

SWAT March 1, 1979 103
$r0 prints the saved stack pointer (frame!0)

$+ 110 prints the return address (frame!1)

$+610 prints the first local (if the procedurc has 2 parameters).

5. Expressions

Expressions arc as in BCPL with the following cxceptions

’ means cxclusive OR

\ means REMAINDER

| means LSHIFT for positive arguments, RSHIFT for negative
~ means NOT

1" o"n

A string of digits is interpreted as octal unless suffixed by a ™.
$ (not escapc) is the basc of the last opened stack frame (sce 1F above). Initially it is the last frame.

t<static name>, "1" followed immediately by a static name, means use the address of the static, not its
value, even if it is a procedure- or label-type static.

. is the last opened cell

PC is the address of the cell containing the user PC. This is the address at which Swat will resume Swatec
when you say tP.

ACL,...,,AC3 are the addresses of the user’s accumulators.

CRY is the address of the user’s carry bit.

INT = on = non zero if interrupts where on when the Swat trap happened.
No function calls in expressions.

No relational operators-(c.g. EQ)

No conditional expressions

No lv opcerator (well...scc +<static name> above)

%gm)_lc_s prints the cell before the currently open cell.
A4 110 is like line-feed.

AC1106 sets ACl to 6

PC+O72

P is like 72¢+G

PCrOIfIfIFIE prints the PCand the AC’s

The conventions for expression evaluation arc not truly BCPIL-like. "F10" will print the first instructionof



Cleared version of October 8, 1979
SWAT March 1, 1979 104

I< if BLDR thou%ht it was a procedure or label, but print the contents of static cell F if BLDR -thoughtit
was a variable. If I started life as a variable, but had a procedure assigned to it you must call it by
"@FrC" instead of "FrC".

6. Resumable Files

The file Swatee is a snapshot of a running program and can be saved for subseqent resumption or
examination. You can create a copy of Swatee by using COPY or, if you are in Swat, typing +L and giving
a file name. This copies Swatce to the named file and appends some information internal to Swat -- the
current symbol table and break point data.

There are several ways to restart resumable files:
1)  Press the boot button while holding down the keys for the file.
?2)  Type the command (it is interpreted by the Exec)
RESUME file
If"file" is omitted Swatee is assumed.
RESUMEY/S file
writes file onto Swatee and invokes Swat.
3)  While in Swat, type 1Q and give a file name. The file is copied onto Swatce and Swat’s
internal information is restored to whatever was saved by the 1L command that created

the file. If the filec was created in some way other than +L, the internal information is
resct to an empty state.

7. TcleSwat

Swat implements a simple Pup protocol, TeleSwat, by which it can treat a machine anywhere in the
internet as the Swatce (with the consent and cooperation of the other machine). The Swatec is made
receptive to control from the nctwork by typing $$1Y. The controlling Swat’s attention is directed at itby
specifying the Swatee’s network address as the target virtual memory (see the 47, command). When you
tell the Swatee to proceed (1P, 1G, tU), you loose control: your Swat starts probing the Swatee once per
sccond, but if the Swatee never returns, you must get help from someone at the other end. Fach timca
9ackct is sent, the cursor is inverted to let you know somcthing% is happening. Exccuting the opcode
7412b is cquivalent to CallSwat(stringl [], string2 []) followed by $$1Y.

8. Desperation Debugging

If the resident is broken so you can’t use <Left-Shift><Control><Swat> to get to Swat to scc what went
wrong, then you are desperate. Press the boot button while holding down the keys for the file
Dumper.Boot (the OS and InstallSwat conspire to make this be "DU™ normally). This writes the existing
memory onto Swatee with the exception of page 0 which is lost (Dumper lands in page 0 when you bootit).
Also the display word (420b) is clcared. Finally, Swat is invoked.



Cleared version of October 8, 1979
SWAT March 1, 1979 105

9. Error Mcssage Printing

Swat contains some facilities to aid in printing error messages. Becausc the Swat resident is almostalways
present when a program is running, an error message can be printed by simulating a Swat "break," and
etting the Swat program decipher the error specification and print a reasonable message..

If Swat is invoked by the 77403b trap instruction, the contents of ACO are taken to be a pointer to aBCPL
string for a filc name; AC1 is a pointer to table [ errCode%ClearBit; p1; p2; p3; p4.... ], where errCode (0le
errCode le 32000.) is an error code, the p’s are "parameters,” and ClearBit is cither 100000b (clear the Swat
screen before printing the message) or 0 (do not clear).

The intended use is with a BCPL procedure like:
let BravoError(code, pl, p2, nil, nil, nil) be

code = code%UserClearScreenBit
(table [ 77403B; 14018 N("bravo.errors”, lv code)
// do a "finish" here if fatal error

The error messages file is a sequence of error messages, searched in a dumb fashion. An error message is:

a. An unsigned decimal error number (digits only)
b. Followed optionally bf’:
Always clear the screen before printing the message

M (sce below)

L. Logthe error via the Ethernet,
c. Followed by a <space>.
d. Followed by text for the message, including carriage returns, ete.

If you wish to refer to a parameter, give:

followed by a digit to specify the parameter number (1,2,....)

followed by a character to say how to print the parameter:
O = octal
D = decimal
S = string (paramcter is pointer to BCPL string)

(example: $1D will print parameter 1 in decimal)

The quotc character is <escaped.
¢. Followed by $$.

After the message is typed, if M was specified, the message "Type <control>K to kill, or <control>P to
proceed.” is typed out.

10. Parity Error Information

When the Alto detects a parity error, Swat is usually invoked to print a message about the details of the
error. It then attempts to "log" the crror with an Ethernet server responsible for keeping maintenance
information. If the scrver is not operating, or if your Alto is not connected to an Ethernet with such a
server, simply strike the <Swat> key, and the familiar " #" will appear.

[n many cascs, you will want to continue exccution of your program after a parity error is detected. Simply
typc <control>P to Swat.



Cleared version of October 8, 1979
SWAT March 1, 1979 106

11. Installation

Get the file InstallSwat.Run. Then invoke it to create Swat (the debugger), Swatee (the swaf) file for the
uscr’s memory image), and Dumper.Boot Sﬁhe desperation debugger invoker). InstallSwat.Run may be
delcted after it has been run once. Use the Exec’s BootKeys command to discover the keys to depress for
Dumper.Boot; normally they are "DU".

InstallSwat.run is the Swat program. When invoked it, it hooks up to the current operating system,
iélitife}%iz.es:s itself, and then Outl.ds all of core including the OS (suitably Junted and slightly patched) onto
he file Swat.

12. Caveats

1. Swat has about 1k of resident code in high memory. This code is not changed when new subsystems
come in. Therefore re-boot if it scems to be in a bad state. Swat can get itself into a bad state too.
SYSINing (tQ) Swatee is a very effective general purgative; ignore the warnin§ message - its doing exactly
what you want it to. If all clse fails, make sure you have a clean copy of the OS, and then reinstall Swatby
running InstallSwat.run.

2. Instructions 77400B - 777778 are used by Swat. The actions of somé of these (c.g. 77401B) are
pubéished; you get what you descrve if you use the unpublished ones. Location 5678 (in the trap vector)is
used.

3. Interrupt channel 8 (00400B) is used by the resident for keyboard interrupts (getting to swat via a
{control><left-shift><swat> key combmatlong.

4. A program fetching data from a broken location will get 774xxB.

5. While most interrupt routines are reasonably polite and always resume the interrupted code where itleft
off, the politeness of Swat’s keyboard interrupt is entively in the hands of the person at the controls. Ifhe
re-starts by saying TP, all gocs well; but he may say +G or +C. Therefore

a) You should disable the keyboard interrupt by anding 773778 into 453B during critical sections of
code (once they arc debugged). :

b) Expect occasional anomalies after 1C or tG is used.
6. The mappings between symbols and addresses are naive about BCPL’s block structure.
a) If a symbol is defined twice or more you get the lowest address.
b) An address is mapped into a procedure name plus a displacement for ?rmbolic type out (c.g. for
). If procedure A is defined inside procedure B, most of B's addresses will be typed as if
they were A’s.

7. 1f a disk error prevents swapping, the offending disk control block and label are displayed in the "boot-
lights" manner.

8. Locations 700b through 707b arc used to save the machine state before cach swap.
9. If a file created on a different disk is resumed by booting, invoking Swat may not work because Swatand

Swatee may not reside at the same disk addresses on the different disks. This difficulty does not occur if
the Exec’s RESUME command is used, since it will fix up the addresses before invoking it. -



Cleared version of October 8, 1979
Trident disk software July 17, 1979 107

Softwarc and Utilities for Trident Disks:
Tfs and Tfu

1. Introduction

This document describes Bepl-based software for operating any of the family of Trident disk drives
attached to an Alto using a ""1'rident controller card"” (the software presently deals with the T-80 and T-300
models). Hardware and diagnostic information can be found in the document "Trident disk for the Alto”
(on KALTODOCS>TRIDENT.EARS), by Roger Bates.

The software documentation is divided into three parts: (1) a brief "how-to" scction describing the
software package available for operating the Trident; ?2 a section describing the utility program Tfu; and
3) a scetipn describing the software package in more detail. There is a short revision history at the end.

ocumentation for the Triex program, formerly included here, has been climinated. Triex is nowneeded
only for hardware checkout and is not required during normal operation.)

The 'T'fs package and utilities all assume that the disk is to be formatted with 9 sectors per track, 1024 data
words per sector. Thus a 1-80 disk has a capacity (815 tracks, 5 surfaces, 9 sectors, 1024 words per sector)
0f 36,675 pages or 37,555,200 words. A T-300 (19 surfaces rather than 5) has a capacity of 139,365 pagesor
142,709,760 words; however, duc to the restriction of virtual disk addresses to 16 bits, a sin%}c file system
may utilize only about 47 percent of this capacity, and it is necessary to construct multiple file systems in
order to make use of the cntire disk.

Because of bandwidth limitations, it is unwise to operate the Trident disk while the Alto display is on.
Although the Tfs package will save the display state, turn it off, run the disk, and restore the display for
every transfer, the user may prefer to turn the display off himself. The Tfs management of the display
causes the screen to flash objectionably whenever frequent calls to Tfs arc underway.

The present version of the software conforms to the new Alto time standard and runs only under
Operating System version 14 or newer.

2. Trident File System (T1s) software package

The software for operating the Trident disk is contained in <Alto>Tfs.Dm, and consists of the following
relocatable files: TisInit.Br, TfsBase.Br, TA.Br, TfsWrite.Br TfsCreate.Br, TfsClosc.Br, TDDMgr.Br,
TtsNewDisk.Br, TfsSwat.Br, and TriConMec.Br. 'The definitions file T'fs.D is also included.

Included also are the Trident microcode source files, TriConMc.Mu and TriConBody.Mu. These arc
needed if you want to load other microcode into the Ram along with the Trident microcode.

The ToadRam.Br file, formerly included as part of the Tfs, is now available as a separate package.

2.1. Initializing the microcode

Operating the Trident requires special microcode that must be loaded into the RAM before disk activity
can start. 'The procedure LoadRam will load the RAM from a table loaded into your program (it is
actually part of "P‘riConMc. Br). It will then "boot” the Alto in order to start the appropriate micro-tasksin
the RAM. (This booting process is "silent” -- it does not re-load Alto memory from the file Sys.Boot, but
instcad lets your program continue.) The standard way to call LoadRam to load the Trident disk microcode
is: .



Cleared version of October 8, 1979
Trident disk software July 17, 1979 108

external DiskRamImage
external LoadRam

let result=LoadRam(DiskRamImage, true) / /Load and boot
if result 1s 0 then

s§"Thc Alto has no RAM or Ethernet board.")
?Vs. 'l'lCannot operate Trident")
inis

After LoadRam has returned successfully, the code of LoadRam and TriConMc may be overlaid with data
-- they are no longer needed.

When exiting a program that has micro-tasks active in the RAM, it is helpful to "silently” boot the Altoso
that all micro-tasks are rcturned to the ROM., If this is not done, subsequent usc of the RAM may cause
some running micro-task to run awry. To achicve the "silent boot,” simply call the procedure
TFSSilentBoot() at *finish’ time or as part of a "user finish procedure’. ’

For further information, consult the LoadRam package documentation.

2.2. Initializing the Trident drive

Once the RAM has been loaded, the Trident disk can be initialized. The procedure TFSInit will do this,
provided that a legal file structure has previously been established on the drive gsce Tfu Erasc, below). The
procedure returns a "disk object,” a handle which can be used to invoke all the disk routines. "This disk
object (or "disk™ for short) can be passed to various Alto Opcrating System procedures in order to open
streams on Trident disk files, delete Trident disk files, etc.

tridentDisk = TFSInit(zone, allocate [false], driveNumber [0], ddMgr [0], freshDisk [false])

zone You must provide a free-storage pool from which memory for the disk object and possibly
for a buffer window on the disk bit table can be scized. The zone must obey the normal
conventions (sce Alto Operating System Manual); zones created by InitializeZone are fine.

allocate This flag is truc if you wish the machinery for allocating or de-allocating disk space
cnabled. If it is enabled, a small DDMgr object and a 1024-word buffer will be extracted
from the zone in order to buffer the bit table (unless you supply a ddMgr argument,
described below).

driveNumber This argument, which defaults to 0, specifies the number of the Trident disk drive being
initialized. If the drive is a T-300, the left-hand byte specifics the number of the file
system to be accessed on that drive, in the range 0 to 2. (For further information, consult
he section entitled *Disk Format’.)

ddMgr This argument, which defaults to 0, supplies a handle on a *DiskDescriptor Manager’
(DDMgr) object, whose responsibility it is to manage pages of the DiskDescriptor (bit
tablc), which, on the Trident, must be paged into and out of memory duc to its
considerable size. If this argument is defaulted, a separate DDMgr will be created upon
cach call to TFSInit, at a cost of a little over 1024 words. If you intend to have multiple
Trident drives open simultancously, you may conserve memory by first issuing the call
"ddMgr = TI*SCreateDIDMegr(zonce) and then passin%1 the returncd pointer as the ddMgr
argument in cach call to TFSInit, thereby permitting the single ddMgr to be sharcd among
all drives. (This argument is ignored unless the allocate argument is true.)

freshDisk Normally, TFSInit attempts to open and read in the DiskDescriptor file in order to obtain
information about the file system. However, if freshDisk is true, this operation is inhibited
and the corresponding portions of the disk object are set up with default valucs. This
opcration is essential for creating a virgin file system.



Cleared version of October 8, 1979
Trident disk software July 17, 1979 109

tridentDisk The procedure returns a disk object, or 0 if the Trident cannot be operated for some
reason, The most likely reasons are:

1. No Trident disk controller plugged into the Alto.
2. No such disk unit, or disk unit not on-line.

3. Can’t find SysDir, can’t Q'Fen DiskDescriptor, or DiskDescriptor format is incompatible.
(These crrors can’t happen if freshDisk is true.)

Important: If the AC power to drive 0 is turned off or no drive 0 is connected, it is not
1[:osmble to operate any drive. (Drive 0 need not be on-line, however.) This is due to a
ardware bug that has been deemed too difficult to fix.

After TFSInit has been exccuted, the code can be overlaid, as it is not used for normal disk operation.

2.3. Closing the Trident disk

When all operations on the disk arc completed, the TFSClose procedure will insure that ang im?ortant
statc saved in Alto memory is correctly written on the disk. This step can be omitted if the *allocate’
argument to TFSInit was false (assuming you don’t mind the loss of the storage that was extracted from

zone’ by TFSInit).
TFSClose(tridentDisk, dontFree [falsc])

The sccond argument is optional (default=false), and if true will not permit the DiskDescriptor Manager
(DDMgr) to be destroyed. This option is useful in conjunction with the *ddMgr” argument to TFSInit.

2.4, Example

Following is an example that uses the Trident disk system and demonstrates the procedures described
above. Note that the calls on operating system disk stream routines all pass a private zone to use forstream
structurcs, rather than the dc&ult sysZone. The rcason is that strcams on Trident disks require large
buffers (1024 words) which quickly exhaust the available space in sysZone. In addition, the strcam
routines will consume more stack space when operating the Trident disk than they do when operating the
standard Alto disk. .

Since the Alto OS does not know about Trident disks, a call to Swat will not properly wait for all Trident
transfers to complete, with consequent undefined results. This problem is casily remedicd through use of
an assembly-language Swat context-switching procedure TFSSwat, which is included as part of the TFS
package. The example shows how it is set up.

//Example.bepl -- TS Example
//Bldr Fxample TfsBase TfsA TfsWrite TfsCreate TfsClose TfDDMgr
/7 TtsSwat TfsInit LoadRam TriConMc

get "strecams.d”

external
TFSInit
TESClose
TESSilentBoot
LoadRam
DiskRamImage

O{)cnl dle
Closes
Puts



Cleared version of October 8, 1979

Trident disk software July 17, 1979

DeleteFile

InitializeZone
SetEndCode
TESSwatContextProc
IvUserFinishProc
IvSwatContextProc

static [ savedUFP; savedSCP; TFSdisk = 0]
let Trylt() be

let driveNumber=0
let zoncvee = vec 3000
let TFSzone = InitializeZone(zonevec, 3000)

//Initialize the RAM:
let res = LoadRam(DiskRamImage, true )
if res Is 0 then [ Ws("Cannot load the RAM."); finish ]

//Set up to cleanly finish or call swat
savedUFP = @lvUserFFinishProc
@lvUscrFinishProc = MyFinish
savedSCP = @lvSwatContextProc
@lvSwatContextProc = TFSSwatContextProc

//1Initialize the disk: ]
TFSdisk = TESInit(TFSzone, true, driveNumber)
if TFSdisk cq 0 then
[ Ws("Cannot opcrate Trident disk™); finish |

//Reclaim space used by initialization code:

SetEndCode(TFSInit)  //Overlay TESinit, LoadRam, TriConMc

//Now we arc ready to operate the disk:
DeletclFile("OlId.Bad", 0, 0, TFSzone, 0, TFSdisk)

let s=OpenFile("New.Good", ksTgp cReadWrite, 0,0,0,0,

TFSzone, 0, TI'Sdisk

fori=1to 1000 do
for j=1 to 1000 do Puts(s, $a) //Write a million bytes!

Closcs(s)
finish

]

and MyFinish() be

if TFSdisk ne 0 then TF SClose%I‘FSdisk)
@1vUscrFinishProc = savedUFP
@lvSwatContex(Proc = savedSCP
TFSSilentBoot()

110



Cleared version of October 8, 1979
Trident disk software July 17, 1979 111

3. Trident File Utility, Tfu

The Tfu utility (saved on <Alto>Tfu.Run) is used to certify a new Trident pack for operation, to initializea
pack with a virgin file system, and to perform various file copying, deleting, and directory listing
opcrations. Commands arc given to Tfu on the command line: immediately following the word "Tfu" isa
sub-command namc (only enough characters of a sub-command ar¢ necded in order to distinguish it from
other sub-commands), followed by optional arguments. Several subcommands may aPpear on one
command line, separated by vertical bars. Thus "TFU Drive 1 | Erase” will erase drive 1. There must bca
spacc on each side of the vertical bar.

In wléa.t fo%ows, an "Xfile" argument is a filename, perhaps preceded by a string that specifies which disk
is to be used:

s:name.cxtension - use standard Alto system disk
tn:name.extension - use Trident drive n (n=0to 7)
name.cxtension -- use dcfault disk (Trident)

The "dcfault disk" is always a Trident drive; the identity of the drive is set with the Drive command.
TFU DRIVE driveNumber

This command sets the default Trident drive number to use for the remainder of the command
line, The default drive is effectively an argument’ to the CERTIFY, ERASE, DIRECTORY,
CONVERT, and BADSPO'T'S commands. (On a T-300, file systems 0, 1, and 2 arc specified as’x’,
’40x’°, and *100x°, where *x’ is the actual unit number.)

TFU CERTIFY [passes]

This command initializes the headers on a virgin Trident disk pack, then runs the specified number
of passes (default 10) over the entire pack, testing it using random data. Any scctor exhibiting an
uncorrectable ECC error, or correctable ECC errors on two or more separatc occasions, is
permanently marked unusable in the pack’s bad page list. This information will survive across all
subsequent normal file system operations (including TFU ERASE), but may be clobbered by the
Tricx program,

This command should be exccuted on cvery new Trident pack before performing any other
operations (such as TFU LRASE). 10 passcs of TFU CERTIFY arc adcquate for rcasonably
thorough testing, though more are recommended for packs to be used in applications requirin
high reliability. The running time for TIFU CERTIFY is approximately 3 minutes per pass on aT-
80 and 9 minutes per pass on a 1-300.

TEFU CERTII'Y may be terminated prematurely by striking any character to get its attention, then
typing 'Q". Subsequent runs of TFU CERTIFY will not clobber the cxisting bad page information
but rather will append to it. It is recommended (though not necessary) that THU CERTIFY be
exccuted before each TFU ERASE so as to pick up any new bad spots that may have developed.

TFU CERTIFY ordinarily asks [y()u to confirm wiping out the disk before going ahead and doing
s0; however, the /N global switch may be used to indicate that no confirmation is neccssary.

TEFU BADSPOTS
Displays the addresses of all known bad spots on the disk pack mounted on the default drive.

TFU RESETBADSPOTS ‘
%I(iql({th[lth\? c\l?aadmggso ttotztlltl)éccgﬁfmg gﬁikeggf l((clgllc()§lI}tﬁgrcogh(t)lllﬁd%f(&lrlrlllgllcyB/cc 'no( ll\ljgct?l {(])l g(cl(,ll:g

this command, but it may be uscful, for exaiple, after a disk pack is cleancd, if the known bad
spots were caused by dirt.



Clearcd version of October 8, 1979
Trident disk software July 17, 1979 112

TFU ERASE [tracks]

This command initializes (or reinitializes) a file system on the pack mounted on the default Trident
drive, after asking you to confirm your destructive intentions (overridden by the /N global switch).
The tracks argument specifics how many tracks of the drive are to be included in the file system; it
defaults to the maximum possible. If smaller numbers are used, the initialization is
correspondingly faster. In any case, tracks beyond the one specified are available for use outside
the confines of the file system. (Note that one "track” is 45 pages; this corresponds to onecylinder
on a T-80 and to nothing in particular on a T-300.)

The disk cf)ack should previously have been initialized and tested by means of the TFU CERTIFY
command.

The DiskDescriptor file is normally located in the middle of the file system so as to minimize
average head movement between DiskDescriptor and file pages. However, this does limit the
maximum size contiguous file that can be created to a little less than half the file system, Ifyou
wish to create a contiguous file larger than that, use the /B local switch (i.e., TFU ERASE/B) to
force the DiskDescriptor to be located at the beginning of the file system instead.

TFU COPY Xfile « Xfile

This command copics a file in the direction of the arcow. The destination file may be optionally
followed by the switch /C, in which case (provided it is a Trident disk file), the file will be
allocated on the disk at consccutive disk addresses. (Note: More precisely, an attempt will bemade
to perform such an allocation. If the attempt fails, you will sometimes get an error message. The
best way to verify that a file is contiguous is to use the "address" command, below.)

TFU CREATEFILE Xfile pages

This command creates a contiguous file named Xfile with length "pages."
TFU DELETE Xfile

This command deletes the given file.
TFU DIRECTORY [Xfile]

'This command lists the directory of the default Trident drive on the file Xfile; if Xfile is omitted,
cach entry will be typed on the display. When the display fills up or the listing is finished, Tfu
waits for you to type any character before proceeding. A somewhat more verbose listing can be
achieved with TFU DIR/V.

TFU ADDRESS Xfile

This command rcads the entire file and prints a list (in octal) of virtual disk addresses of the file
pages. Typing any character will proceed to the next output line.

TFU CONVERT

An incompatible change in the format of DiskDescriptor was made in the Tfs release of July 24,
1977. The current TfS software will refuse to access ‘Trident disks written in the old format
(spccifically, THFSInit will return zero). The TFU CONVERT command reformats the
DiskDescriptor to conform to current conventions (it is a no-op if applied to a disk that hasalready
been converted). Once you have converted all your Trident disks, you should take care to getrid
of all programs loaded with the old Tfs, since the old T'fs did NOT check for version compatibility.

TFUEXERCISE passes drive drive drive ...

This command cmbarks on a lengthy "cxercise" procedure; it is repeated ‘passes times



Cleared version of October 8, 1979
Trident disk software July 17, 1979 113

(default=10), and uses the disk drives listed after *passes’ (if none are specified, all drives thatare
on-line are used). It operates by making a scries of files (test.001, test.002 ctc.) on the disk packs,
and performing various copying, deleting, writing and positioning operations. The files arc deleted
when the excrcise finishes. It is not essential that the packs be fully erased initially; the procedure
for building test files will try to fill up the disk, just short of overflowing. The test takes 20 to 30
minutes per full pack per pass.

One or more of the following global switches may be specified (i.c., a command of the form
TFU/switch EXER...):

/W Use a systematic data pattern when writing files, rather than arbitrary garbage.

/C Carefully check the data read from the disk (implies /W). Use of this switch makes the test
run considerably slower than normal.

/D Leave the display on during Trident disk transfers. This causcs data late errors to occur and
thercby exercises the error recovery logic.

/E  Turn the Ethernet on during Trident disk transfers, with results similar to /DD.

4. The Tfs software package in more detail

If programmers wish to interface the the Trident disk at levels lower than Operapin% System streams, the
Tfs package provides an additional interface. The "disk" object created by TFSInit has a number of
abstract operations defined on it, which the Tfs package implements. Documentation for these operations
can be found in the Alto Operating System Manual in the section labeled "Disks and Bfs." The catalog of
available procedures is:

In TfsBase.Br and TfsA.Br:

- ActOnDiskPages(disk, CAs, DAs, ....)
RealDiskDA(disk, vda, ....)
VirtualDiskDA(disk, ....)
InitializeDiskCBZ(disk, cbz, ...)
DoDiskCommand(disk, cb, ...)
GetDiskCb(disk, cbz, ...)

In TfsWrite.Br:
WriteDiskPagcs?disk, CAs, DAs, ....)
AssignDiskPage(disk, vda)*

In TfsCreate.Br
CreateDiskFile(disk, name, ....)*
Dclete[.)iskPagcs((disk, CA,..D)*
ReleascDiskPage(disk, vda)*

In TfsClose.Br
CloseDisk(disk, dontFree)

The items with *’s following may be invoked only if the disk object was created with the ’allocate’
argument sct to true. WrithtskPaC;{gcs may be invoked.cven if "allocate’ is false, provided it neverallocates
new disk space. It should be noted that the standard Alto Streams package invokes WriteDiskPages even
for files opened for reading only, and that TIFSInit uses Streams to read in the DiskDescriptor. Hence itis
neceessary that all of the Tfs modules (T'fsBase, TfsA, TfsWrite, TfsCreate, and TsDIDMgr) be loaded in
order to avoid undefined ‘external’ references. However, after initialization is complete, the space
occupicd by TfsCreate and TDIDMgr may be reclaimed if you do not intend to atlocate or delete pages,



Cleared version of October 8, 1979
Trident disk software July 17, 1979 114

gpd 1l‘fsWrito may be discarded if you arc not using streams but rather are calling ActOnDiskPages
irectly.,

The TfsWrite and TfsCreate modules require that TfsSDDMgr.Br (or some cquivalent) be loaded. This
module provides the standard primitives necessary for managing the Disk Descriptor. The DDMgr is an
‘object’, so it may be replaced by one of your own devising so fong as it provides cquivalent operations. An
example of this would be to manage pages of the DiskDescriptor as part of a more general virtual memory
mcchanism (perhaps throu%h usc of the Alto VMem package). A complete description of the required
DDMgr opcrations may be found as comments at the beginning of TfSDDMgr. Bepl.

In addition to the standard "actions" defined in Disks.d, Tfs permits the following. These actions are
defined in Tfs.d and are available only on Trident disks.

DCreadl.nD  Read header, read label, no data.

DCreadnD Check header, cheek label, no data.

DCwritel.nD  Check header, write label, no data.
These actions neither read nor write the data record and therefore do not require a buffer to be provided.
this argument (pageBuf) is present, it is assumed to point to a 1024-word buffer that will be used tocreate
the leader page for the file. This feature may be used to save stack spacc in CreateDisk file and/or to write

interesting data into the portion of the leader page not used by the file system (only the first 256 wordsare
used by the file system; the remainder has no standard interpretation).

CreateDiskFile has a sii)ecial feature for operating the Trident disks -- an optional seventh argument. If

VirtualDisk DA returns filllnDA as the virtual address for a real disk address that is cither illegal oroutside
the confines of the file system.

The procedures for creating and destroying the disk object, TFSInit and TFSClose, were explained above.
The procedure TFSWrithischscriptor? isk) will write out onto the disk all vital information about the
disk that is presently saved in memory. If you write programs that run the disk for extremely long periods
of time, it is wise to writc the disk descriptor occasionally. The only automatic call on
TFSWriteDiskDescriptor is performed by THFSClose.

TfsInit.Br contains a procedure TESDiskModel(disk) that returns the model number (80 or 300) of the
drive 1'cfcrcr}c%c(l)0by the disk handle. This is useful in deciding whether to open a sccond or third file
system on a '1-300.

A lower lcvel of access is permitted with the routines InitializeDiskCBZ, GetDiskCb, and
DoDiskCommand, analogous to the Bfs routines described in the Operating System Manual. Users of
these routines may wish (o retrieve source files for the Tfs package and cxamine the definitions in Tfs.D
and the actual disk opcration in some detail. Sources are on <AltoSource>TfsSources.Dm.

4.1. T'SNewDisk

The TESNewDisk procedure, defined in TfsNewDisk.Br, "crases” a disk (formatting it and making allits
pages appear free) and creates a virgin Alto file system (SysDir and DiskDescriptor). Tt is called by:

success = TFSNewDisk(zone, driveNumber [0], diskSize [default], ddVDA [diskSize/2])

The zone passed to TFSNewDisk must be capable of supplying about 3500 words of storage. If the driveis
a 1-300, the driveNumber may include a file system number (0 to 2) in its left byte, as is the casc for
1TSInit. The diskSize argument is the number of disk pages to be included in the file system; it defaultsto
the maximum possible, which is all of a'T-80 or a little less than half of a'T-300. ddVDA is the virtual disk
address at which to locate the DiskDescriptor file; sce the 'T'HFU ERASE command for elaboration on this.

TFSNewDisk rcturns true if successful.



Cleared version of October 8, 1979
Trident disk software July 17, 1979 115

4.2. DiskFindHole

The groccdure DiskFindHole, in DiskFindHole.Br, can be used to locate a "hole™ of available space inthe
disk bit table. The call:

virtualDA = DiskFindHole(disk, nPages)

will atltcr_n][()t to locate a contiguous hole nPages long. If it fails, the procedure returns -1, otherwise the
virtual disk address of the first page of the hole.

In order to create a contiguous file, it is first necessary to create the minimal file with a leader pa%c atthe
given disk address and then to use Operating System or Tfs routines to extend the file properly. The first
step is achieved by calling

ReleaseDiskPage(disk, AssignDiskPage(disk, vda-1))

where vda’ is the desired disk address (i.c., the result returned by DiskFindHole). This value will control
the sclection of an initial disk address for the leader page. Once the file is created, it is wise to extend itto
its final length immediately, as other disk allocations might encroach on the "hole™ that was located.

For example, if we arc using the Operating System, we might proceed as follows:

let nPages =433 //Numbcr of data pages needed.
let vda= DiskFindHole(disk, nPages+-2)
//(+2= 1 forlcader, 1 for last page)
test vda c\%’-l
ifso Ws(""Cannot find a hole big enough') ]
ifnot RelcaseDiskPage(disk, AssignDiskPage(disk, vda-1))

let s= OpenFile("New.Contiguous” ksTypeWriteOnly,0,verNew,0,0,0,
TESzone, 0, disk)

PositionPage(s, nPages) //Make the file the right length

Closes(s)

5. File structure on the Trident disk

The file structurc built on the Trident disk by T'fs (Trident File System) is as cxact a copy of the Alto file
structure built Bfs (Basic File System) as is possible. Certain cxceptions are present due to hardware and
microcode differences. The Alto Operating System Reference Manual should be consulted for all file
formats and internal information not presented here.

5.1. Disk Format

The Trident disk unit and pack, as it comes from Calcomp, is set up to run with the following parameters:

number of cylinders: 815
numbecr of surfaccs: 5 (T-80), 19 (T-300)

THFU CERTIFY will format each surface in the standard T'fs format:

number of scctors per track: 9
header words per scctor:

label words per sector: 10
data words per scctor: 1024



Cleared version of October 8, 1979
Trident disk software July 17, 1979 116

Thus, a T-80 disk will have 9*5*815 = 36,675 sectors = 37,555,200 words. Sector 0 will not be uscd by
Tfs. All but sector 0 will be available to the file system.

Ordinarily, Tfs utilizes only the first 383 cylinders (= 65,493 scctors = 67,064,032 words) of a T-300 disk.
This is the largest integral number of cylinders that can be addressed using a 16-bit virtual disk address.
The 16-bit virtual address limitation is deeply embedded in all existing higher-level Alto file system
software, so changing the Tfs interface to permit a larger virtual address space would be impractical.

Instead, Tfs permits one to obtain another, cntirely independent disk object for referencing the second 383
cylinders of the same T-300, thereb Permitting a separate, self-contained file system to be constructed.

his is done by passing a '1” in the Ieft byte of the *driveNumber’ argument to TFSInit or TFSNewDisk
(that is, drive "#400 refers to the second file system on a T-300 pack mounted on drive 0). A third file
system (number °2’, drive *#1000°) may also be constructed, but it contains only 49 cylinders (= 8379
pages, only 6 percent of the disk’s total capacity), so doing so is probably not worthwhile.

5.2. Disk Header and Label

On the Trident, a real disk address requires two words to cxpress, rather than the single word on the
Diablo 31. Also, microcode considerations gave rise to a rcordering of the entries in the Label. Theresult
is that both the header and label formats arce different for the Trident. The Trident format follows. [fyou
are interested in this level of detail, the file Tfs.d (contained within <Alto>Tfs.dm) should be consulted.

// disk header
structure DH:

track word
head byte
scctor byte

// disk label
- structurc DL:

%lcid word IFID
packID word
numChars word
pageNumber word
previous @DH
next @DH

1
manifest IDL = size DI./16

5.3. Disk Descriptor

Every valid Tfs disk has on it two files which must contain the statc information necessaty to maintain the
integrity of the file system. The T'fs system directory, "SysDir.", is identical in formal and purpose withits
Bfs counterpart. However the Tfs disk descriptor file, "DiskDescriptor.”, while identical in purpose, is
formatied differently to allow casy manipulation of the bit table (which, for the Trident, has to be pagedin
and out of memory). 'This difference in format should not be evident to even low-level Trident users
(unless you write your own DIDMgr), but is mentioned here for completeness.

5.4. Bad Page Table

Tfs and Tfu observe the standard Alto file system convention of recording -2’s in the labels of all known
bad pages. THowever, if this were the only location of such information, "erasing” a disk (to create avirgin
file system) would require two passes over the entire disk: one to collect the addresses of all known bad



Cleared version of October 8, 1979
Trident disk software July 17, 1979 117

pages and one to mark all remaining pages deleted. This would require an excessive amount of time,
particularly on a T-300.

A duplicate table of known bad pages is therefore recorded on physical page zero (= cylinder 0, head 0,
scctor 0) of the disk. This page is not available to the file system for other reasons having to do with end-
of-file detection. The format of the table is given by the BPL structure, which is defined in 'Tfs.d. Note
that the entrics are REAL disk addresses and can therefore refer to angr gagc on the disk rcgardless of
whether or not such a page is accessible through the file system. (A T-300 has only one bad page table,
cven if it contains scveral file systems.)

The TFU CERTIFY command is responsible for testing the pack and building the bad page table, The
TFSNewDisk procedure (called by TFU ERASE) is careful not to clobber this information but rather to
propagate it to the other places where it is nceded (namely, the disk bit table and the labels of the bad
pages themsclves). As a result, the bad page information, once initialized, will survive across all normal
operations on the disk, including "erase” operations.

There docs not presently exist any facility for manually appending to this list when new bad pages are
discovered. Expericnce to date with the Trident disks (which provide correction for efror bursts of up to
11 bits in length) has shown that such a facility is probably not necded. Thorough testing of disks (using
TEFU CERTIEY) is recommended before putting them into regular use, however.

6. Revision History

July 24,1977
Incompatibilities:

The format of DiskDescriptor has changed. The new Tfs cannot access old disks or vice versa. Sce
description under "TFU CONVERT".

There is now another file, TfSA.Br, that is logically part of TTfsBasc.Br and must be loaded along with it. It
contains asscmbly-language code formerly included as "tables” in TfsBase.Br.

New Features:

Partial support for T-300 disks.

Conforms to ncw conventions for maintaining addresses of known bad pages.
TFSInit checks for valid SysDir lcader page and DiskDescriptor version.

Count of bit table discrepancics added to DiskDescriptor. (These are pages falscly claimed to be freein
the bit table.) '

VirtualDiskDA returns filllnDA for illegal real disk addresses.
Additional Trident-specific disk actions.

Tfs is now entirely reentrant, so it is safe for the Idle() procedure to give control to another process thatin
turn calls Tfs procedures.

October 21, 1977
Incompatibilities:

The former TfsWrite module has been broken into four picces: TfsWrite, TfsCreate, TfsClose, and
THDDMgr. In most applications, all four must be loaded.



Cleared version of October 8, 1979
Trident disk software July 17, 1979 118

The ’sharedBT” argument to TEFSInit has been rcglaccd by a ’ddMgr’ argument. The mechanism for
sharing a bit table buffer among multiple drives has been entirely changed. (Programs that omit this
argument arc unaffected by the change.)

The TFSCreateVDA static has been removed. In its place is a new procedure TFSSetStartingVDA(disk,
vda) that serves the same purpose.

The syntax of the TFU EXERCISE command has becn changed. It is now "TFU EXERCISE <passes>
<list of drives>’, and <list of drives> defaults to all drives that are on-line.

New features:

Cé)(lingletc support for T-300 disks. In conjunction with this, the TFSDiskModel procedure has been
added.

It is now possible for DiskDescriptor pages to be managed externally (perhaps through some sort of virtual
memory mechanism) by use of a user-defined "DiskDescriptor Manager’ object.

TFSSilentBoot procedure added.

November 9, 1977

Incompatibilities: None.

New features:

TFU CERTIFY and TFU BADSPOTS commands added. TFU CERTIFY initializes the headers on a
virgin disk pack and then runs repeated tests over the entire pack, permanently recording any bad sgpts
that it finds. This command replaces all the normal uses of the Triex program, documentation for which
has been removed.

Microcode modified for more efficient reading on Alto-IIs (by about 25%).

February 26, 1978

Incompatibilities: Software updated to new time standard; will not run under OS versions earlier than 14.
New features: Microcode source now in two parts, to facilitate combining it with other microprograms.
December 15, 1978

Incompatibilities: some of the TFS DDMgr procedures renamed (used internally).

New features: returnlfNoCb argument to TFSGetCb; ddVDA argument to TFSNewDisk; TFU
ERASE/B option to maximize contiguous frec storage; THFU RESETBADSPOTS command added; TFS
and TFU should run on Dorado.

June 25,1979

Incompatibilitics: none.

Changes: Optional "hintlastPage” argument added to ActOnDiskPages, WriteDiskPages, and
DeleteDiskPages; several minor bugs fixed.

July 17, 1979
Incompatibilities: The structure of a DSK (and therefore a TFSDSK) changed, so programs that get

"I'fs.d” must be reconipiled; TESSctStartingVDA(disk, vda) procedure removed--instead usc
ReleaseDiskPage(disk, AssignDiskPage(disk, Vda-f)).



Cleared version of October 8, 1979
Trident disk software July 17, 1979 119

Changes: New operations InitializeDiskCBZ, DoDiskCommand, and GetDiskCb added to the DSK object
in preparation for OS 17. Note that the new TFS will work under earlier versions of the OS, but the old
TES will not work under OS 17.

Note: Pending release of OS 17, the OS 17 version of Disks.d is released as part of the TFS package. This
is required to compile programs that get "Tfs.d" or that usc the new DSK generic operations.



Cleared version of October 8, 1979
VIEWDATA September 9, 1977 120

ViewData -- 2D projections of 3D data on Display Screen

ViewData is a BCPL subsystem that will draw a picture of a file of data on your dispaly.screen, and allow
you to interactively control your point of view on the data. It handles only a two-dimensional array of
single-word values (i.c. a three-dimensional surface, a function of two variables cvaluated over aregular
finite grid). Here is a list of features:

1) ViewData accepts input in the simplest possible file format: an optional header of any number of

words (with any contents, which are ignored), followed by a block of (signed) data words of any size,
with any dimensions.

2) ViewData takes all parameters from a dialog with the user via keyboard and mouse. By specifying
different header sizes and dimension sizes, the user can exercise limited control over the selection of
data from his file.

3) ViewData takes all graphical parameters from screen points clicked with the mouse. A point of view
is specified by clicking the screen positions of three corners of the data array. Zooming is
accomplished by clicking opposite corners of the rectangle to be expanded. Prompts appear below the
plot region to indicate what points and/or switches to click.

4) VicwData contains a call to IDCBPress to allow gencration of a one-page output file with a picturc of
your data, This can be annotated by Markup and printed by an appropriate server. With PressEdit, it
can be editted into a report.

5) ViewData uses the new PlotStrcam package Sto be released soon) to provide a display interface
which is transparent to the average programmer; thus the program is casity modificd to better suityour
data viewing requirements, .

6) ViewData is rcasonably small, espccially if onc dcletes unnceded routines from the various files
which are loaded with it (MathUtil, SDialog, UtilStr, PlotStrcam, FractionProduct, DCBPress).

Getting and Running Viewdata:

Use FTP to retreive viewdata.run. If you need some sample data, usc the FTP Load command to get
Test.Data from ViewData.Dm (stored with sources). Execute ViewData and default all the paramcters
with CR to get a sample display. Using the mouse, follow the instructions of the prompts to zoom, redraw
in a new orientation, or overview (zoom back out to the highest level), After you finish by pressing all
threc mouse buttons at once, you have the options of producing a press file, restarting (possibly with ancw
data file), or quitting.



Cleared version of October 8, 1979
New Disks April 29, 1978 121

Making a new Alto disk

This document describes procedures for creating a new disk, cither by copying the disk or by using theFile
Transfer Program. It may be helpful to refer to documentation for Copydisk and IFTP.

L

The normal way to obtain a new, clean disk is to copy onc of the Basic Alto Disks gNon-Programrncr’s,
BCPL Programmer’s, Mesa Programmer’s, or Proofreader’s) using Copydisk. You will nced an Alto witha
dual disk drive. Place the Basic Alto Disk into disk drive 0. Place the new disk into disk drive 1. Type

>NetExec
>CopyDisk
*Copy from: dp0
Copy to: dpl

Copydisk will copy disk 0 to disk 1, overwriting everything on the disk.

You can also copy the Basic disk from one Alto to another over the Ethernet. The CopyDisk
documentation explains how to do this. : :

There should be a date on the label of the Basic Alto Disk which tells when it was last updated.

An alternative way of building a new disk from scratch is to erase it by means of the Install procedure, then
use FIP to retricve the subsystems and other files that you nced.

E‘érst,bbootstrap the NetExec by booting the Alto with the BS and single-quote keys depressed. Then type:
ys.boot

This will load a c?)y of the OS from the network. When it starts up, it will ask you if you want to install
the OS; respond "Y’. '

Install will ask if you want the long dialog; respond *Y’. Then it will ask if you want to crase a disk. Reply
Y". It will ask you for the name of the local file server and the name of the dircctory on that server from
which to obtain files (the correct response to the latter question is usually *Alto’). Tinally, it will ask the
usual questions about your name, the disk name, and the password.

When Install has finished initializing the disk it will run FTP to obtain the Executive. Now, to obtain
current versions of the *basic’ software type :

>ftp file-server ret/c <alto>newdisk.cm
>@newdisk.cm@

where *file-server’ is the name of your local file server.

After this has completed, to obtain additional software for a *basic non-programmer’s disk’ type
>@npdisk.cm@

To obtain additional software for a "basic BCPL programmer’s disk’ typc
>@pdisk.cm@

To obtain additional software for a *basic Mcsa programmer’s disk’ type
>@mesadisk.cm@

1L

You can copy files from your old disk to the new onc in two ways. Onc is to put them onto a file server



Cleared version of October 8, 1979
New Disks April 29, 1978 122

and retrieve them with FTP. If there are many, it is a good idea to package them into a dump file. The
olghl?r way is to copy them from the old disk on onc Alto to the new disk on another Alto. On your new
disk, type

>ftp

On the Alto with the old disk, type
>ftp <Host name> store/c <filenamel> <filename2> ...

<Host name> is the name of the Alto which has the new disk.

The casicst way to specify and transfer lots of files is to use DDS (if you have it on your old disk) tosclect
g}ckdcsired files, then issue the <Send to ...> command and type in"the name of the Alto with your new
isk.

Without DDS, a way to specify lots of files is to obtain a file with all your filc names by typing
>*¥control-X><control-Ud<returnd><return>

This will automatically invoke Bravo and read in ’linc.cm’. You may then edit linc.cm to exclude the files
which you do not want to transfer and insert the nccessary FTP commands, thereby creating acommand
file which may be invoked in the usual way. For example, at the beginning of the file insert

ftp <Host name> store/c

then delete everything except the files which you want to transfer. "P’ut the command string onto a file.
’(2’/uit out of BRAVO and type :
@foo@

where foo’ is the name of the file which you just created with BRAVO. The selected files will be sent to
the waiting Alto with the new disk.

Exccuting cither variant of procedure I to erase and initialize your disk, followed by procedure II to
transfer all of your files using FTP, is a good way to compact a fractured disk.



Cleared version of October 8, 1979
For PARC Alto Users April 29, 1978 123

1. PARC Information

1.1. Getting Started

gaih administrative group in Parc handles disk pack allocation differently. Ask your sccfetary how to geta
18k. ’

A set of BASTC ALTO DISKS is kept in a rack near the Altos in the Maxc room. Thesc disks arcrecreated

once a week. The date when a disk was last created is on its label. Procedures for copying a Basic Alto
Disk to your new disk are described in the "new disk” section of this document.

1.2. MAXC Directorics for Alto Software

The <ALTODOCS?> directory contains documentation for the subsystems and subroutine packages.

The <ALTO) directory contains current versions of all the Alto lpro rams. Programs arc normally keptin
exccutable form; thus the CopyDisk program appears as <ALTO>CopyDisk.Run. In addition to the
exccutable file, some programs also have a symbol filc on <ALTO>. The symbol file for CopyDisk is
<ALTO>CopyDisk.Syms. This file is useful to the author when something goes wrong with a subsystem,
but it is not normally nceded by uscrs. Subsystems which need more than one file, cither because they
have overlays or because they need data files, should have the individual files stored, together with a
command file which may be run to retrieve cach file via FTP. The command file should have the
extension .CM. Definition files have the extension .D. These files are uscful only to programmers.

Subroutine packages are kept on <ALTO> with an extension of .BR or as "dump" files (cxtension .DM)if
several files belong together as a package.

The <ALTOSOURCED directory contains the source files for the subsystems and subroutine packages. It
also contains the PUB files for the documentation which is on CALTODOCSD.,

1.3. Alto Software Maintcnance Procedure

The maintainer of a subsystem or subroutine package handles a new or revised relcasc in the following
manner:

A. Copy a dump file with a name of the form SubsystemName.DM and the following contents to
<ALTOSOURCE>:

1) The source files from which the subsystem may be created.

2) The command files which arc nceded to create the subsystem from the enclosed source, unless
the creation procedure is "obvious." The following are the usual ingredients:

a) A command file containing_statements to compile the enclosed source. Compiler
messages should be written to a file, For example:

BCPL/F FOO.BCPL.

The filename should be in the format, COMPILEsubsysName.CM.

b) A command file to load the files which were produced in step a. For example:
BLDR FOO

The filename should be in the format, LOADsubsysName.CM.



Cleared version of October 8, 1979
For PARC Alto Users April 29, 1978 124

If the subsystem is small, the two command files may be combined into one. The
name should be in the format, CREATEsubsysName.CM. The following cxample
will create the package for subsystem FOO.

BCPL/F FOO.BCPL; BLDR FOO

([?. A command file containing statements to save all relevant files in subsysName.DM, e.g.
¢ file DUMPFOO.CM would contain;

DUMP FOO.DM FOO.BCPL CREATEFOO.CM DUMPFOO.CM

B. When you have a change to make to documentation, or wish to introduce new documentation into the
system, the following three steps are required:

1. Retrieve the relevant .PUB file from <ALTOSOURCED. The filc name is in the format,
sys.PUB, where ’sys’ is the name of the subsystem or subroutine packa c. If you are creating brand new
documentation, start with the file CALTOSOURCE>ALTODOCTEMPLATE.PUB, which contains the
necessary Pub incantations and some instructions to authors.

2. Edit the pub file. Pass it to PUB-- a.TTY version of the documentation will be produced.

3. When you are finished, copy the pub file back to CALTOSOURCED, and copy the .TTY
version to CALTODOCS). :

Pleasc be sure to copy the pub files from CALTOSOURCED afresh each time you edit them, because they
may have been edited to produce expurgated versions (for distribution outside PARC), to produceindexes,
remedy formatting problems, etc. ‘

Please try to avoid ncedless references to PARC or Maxc facilities. For example, it is frowned upon to
mention the CALTO) directory as a place to find something. That is assumed for PARC uscrs. Similarly,
avoid necdless references to GEARS or EARS.

C. Copy files needed for the new release to <ALTOD.

D. Send a message to Alto users describing the changes which will be cffective with this release. Thelist
of Alto users is on the file, <Secretary>AltoUsers. DL, The subject of the message should be the name of
the subsystem or subroutine package. Tty to keep the message short.

Passwords: The password to all Alto-related directorics on MAXC is ISFWGI. Software maintainers are

cautioned to alter only files for which they will take responsibility. Feel frec to archive old versions, but
please leave the current version of all files.

1.4. Alto Documentation

Formal documentation is provided in two forms: a "perusal” form, which can be convenicntly typed ata
TT or VTS terminal on Maxc or perused with Bravo on an Alto, and a "notebook™ form, which can only be
printed on Ears or a Press printer, and may have fancy illustrations or fonts in it. Informal "message"”
documentation can be extracted from the CALTO>MESSAGE!TXT file. :

A. The "perusal” documentation is always storcd on KALTODOCS> under a file name like sys. TTY, where
"sys" is the name of the subystem or _packz?e you are interested in. For example, the documentation fora
subroutine package, FOO, would be found on CALTODOCS>FOO.TTY. There is one cxception to this
rule: for very simplc subsystems the documentation is in CALTODOCS>SMALLSUBSYSTEMS.TTY.

B. The "notebook™ documentation is packaged in larger packages to reduce storage overhecad and to
provide more manageable scts of documentation for printing. Currently, the following files are maintained
n notcbook-stylc: ‘



Cleared version of October 8, 1979
For PARC Alto Users April 29, 1978 125

Alto User’s Handbook. This document is available only as a printed, bound manual. It contains
' thePNon~Pr0grammer’s Guide to the Alto, and manuals for Bravo, Markup, Draw, and

BRAVO.EARS, MARKUP.EARS, DRAW.EARS, NSIL.EARS, GYPSY.EARS. Currently, these
- subsystems have their own separate Ears documentation.

OS.EARS. Operating System manual.

BCPL.EARS. BCPL manual.

SUBSYSTEMS.EARS, PRESS. Documentation for most Alto subsystems. These are arranged
alphabetically, with headings to indicate which system is being described. A directory at
the front of the file contains documentation about very simple subsystems. The last
section of this manual contains special information relating to Altos at PARC--where to
find the software, how to maintain it, etc.

PACKAGES.EARS, .PRESS. This contains documentation for the software packages available
for the Alto. A directory at the front of the file contains documentation about very simple
packages.

ALTOHARDWARE.EARS, PRESS. This is the "hardware” manual for the Alto.

TRIDENT.EARS. Documentation for the Trident disk controller.

These files are formatted, and should therefore be printed with
@EARS FOO.EARS -- or -- PRESS FOO.PRESS
C. The file CALTO>MESSAGE.TXT contains all of the information which has been sent to Alto userswith
SNDMSG. Information about recent changes to a specific subsystem may be selected by using the’subject
string’ option of the MSG subsystem. For example, you may type
' MSG KALTO>MESSAGE. TXT T SFOO
Or you can read the entire file by saying
File: CALTO>MESSAGE.TXT

to READMAIL. Every six months this file will be purged and its old contents left on the next version of
OLDMESSAGE.TXT.

1.5. Command Files

In addition to the subsystems, packages, and definition files, the following command files may be foundon
the KALTOY dircctory:

NEWDISK.CM: creates a minimal system on a new disk. See the NewDisk procedure, in the Alto
Subsystems manual.

DIS}EDISK.CM: crcates the disk for distribution to other Xerox sites. NEWDISK.CM must be
run first.

MESADISK.CM: creates a Basic Mesa Disk. NEWDISK.CM must be run first,
- NPDISK.CM: creates a Non Programmer’s Disk. NEWDISK.CM must be run first.
PDISK.CM: creates a Programmer’s Disk. NEWDISK.CM must be run first.



Cleared version of October 8, 1979
For PARC Alto Users April 29, 1978 126

PROOFDISK.CM: creates a ProofReader’s Disk. NEWDISK.CM must be run first.



INDEX

<ALTOD>
<ALTODOCS>
<ALTOSOURCE>
{controDP

Analyze
AS

BCPL.

BLLDR

Boot Files
BootBase
BootFrom
Booting
BootKeys
BRAV

Build
BUILDBOOT

CallSubSys

CHAT

CLEANDIR
Com.Cm

command processing

C()]%g/ ‘
COPYDISK
CREATEFILE

DDS

Delete
Diagnose

disk
DiskBoot.Run
display protocol
DMT

Documentation
DPRINT
DRAW

Dump

Dump Format
Dumper.Boot

Ears

EMPRESS

ERP

EtherBoot
FtherBoot loader
FXECUTIVE

Executive Commands

FileStat
FIND
font files
FTP

IFS

illustrator
Install
InstallSwat.Run

Cleared version of October 8, 1979
October 8, 1979 127

------------------

..................

..................

------------------

..................



Cleared version of October 8, 1979

INDEX October 8, 1979 128
LISTSYMS e e 3

load e .. 53
Login 53,61
MAILCHECK . . . e .. 3,75
MARKUP e 3

Maxc e e e 14
memory diagnostic ™ .. ... L. 0 ... 2
Mesabed file ... 54
Mesa image file . ... ... 0 .. 54
MICRO e 3
microcode assembler ... ... ... 3,77
microcode loader ... ... ..., 90, 94
MOVETOKEYS .. . . o i 3

MU 3,77,90,94
Neptune e 3
NetDelays .o e 4
NETEXEC .. ..... T, 3, 54
newdisk L. 121
NEWDISK .. 5
NEWOS.BOOT ... . . . i 3
OEDIT 3,85
ORAM e e, 3
PACKMU .. 3,90
PARC Information ... ....... ... ..... 123
PARCALTOS . o e e i 5

{Jarity CITOT e e e e e e 105
PEEK 2,38
PEEKPUP 3,92
PEEKSUM e, 2,38
PREPRESS . . . . 3
Pressfile L .. 3,4,93
Pressfiles .. 3
PRESSEDIT . . . e 3,93
PROOFREADER ... ... . ... .. .. ..., 3 "
Pup e 92

PLJ)P Telnet . 2,14
Quit e, 52
RAM e 3,90, 94
RAMLOAD 3,94
ReadPram .. 20
READPRESS .. o e 4
Release L e 53
RemCm . 50
Rename . 52
Resume .. 54,98, 104
Route .. 4
RPRAM L, 3,90
RunMesa.run L. e e e e 54
SaveState L e 12
SCAVENGER oo oo 4, 54,96
SetTime e 53

SIL e 4

Software Maintenance Procedure 123



INDEX

SORT
StandardRam
Subsystem Lookup
SWAT

Swatee
SYS.BOOT

TeleSwat

TES

TFU

Trident disk software
TRIEX

Type
User.Cm
VIEWDATA

Cleared version of October 8, 1979
October 8, 1979

..................
..................
...................
..................
..................

..................

..................
..................
..................
..................
..................

..................

..................

..................

129



	001
	002
	003
	004
	005
	006_asm
	007
	008
	009_bootFiles
	010
	011
	012
	013
	014_chat
	015
	016
	017
	018
	019_copyDisk
	020
	021
	022
	023
	024
	025
	026
	027
	028_createfile
	029_dds
	030
	031
	032
	033
	034
	035
	036
	037
	038_dmt
	039
	040
	041
	042
	043_dprint
	044_empress
	045
	046
	047
	048
	049_erp
	050_executive
	051
	052
	053
	054
	055
	056_find
	057
	058_pupFtp
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074_listSyms
	075_mailCheck
	076_moveToKeys
	077_mu
	078
	079
	080
	081
	082
	083
	084_netExec
	085_oedit
	086_microcodeOverlays
	087
	088
	089
	090_packMu
	091
	092_peekPup
	093_pressEdit
	094_ramload
	095
	096_scavenger
	097
	098_swat
	099
	100
	101
	102
	103
	104
	105
	106
	107_tridentDiskSw
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120_viewdata
	121_newDisks
	122
	123_parcInfo
	124
	125
	126
	127_index
	128
	129

