BCPL

Reference Manual

James E. Curry
and PARC staff

Compiled on: September 14, 1979

Computer Sciences Faboratory

Xerox Palo Alto Rescarch Center

3333 Coyotc Hill Road
Palo Alto, California 94304

© Xcrox Corporation 1979

Revised BCPL. Manual

1

2

3

4

5

INTRODUCTION

TABLE OF CONTENTS

A SAMPLE PROGRAM

2-1
2-2
2-3
2-4
2-5

SECTION PAGE
TheQueensProblem i 2.1
Sourcc Code--QUEENS. 022
Sourcc Code-- QUEENSL, 2.3
NotesontheSourceCode. o oo 2.4
Compiling and LoadingQUEENS 2.4

DECLARATIONS AND PROCEDURES

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

EXPRESSIONS
41
42
4-3
4-4

STATEMENTS
5-1

BCPL Variables i 31
SCOPERUIES . . v v e 3.1
Manifest Constants e 33
Structure Declarations L e 33
Static and External Variables 33
Procedure Declarationso 34
Procedure Execution oL o 35
Dynamic Variables e 3.6
Mecemory References o o L e 4.1
Constants. e e e e e 42
Precedence of xpressions. L Lo e 43
BCPL EXpressions oo it i e e 44
Assignment Statements: ... L L L ... [51

Revised BCPL. Manual

6

7

8

9

5-2
5-3
5-4
5-5
5-6
5-7
5-8

STRUCTURES
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8

TABLE OF CONTENTS

RoutineCalls: i e 5.1
Conditionals and Iterative Statements:. 5.1
Conditional Compilation Statements:o v v v v v i 5.3
Labelsand Goto Statements: vt e 54
Returns: o e e 54
Switches:o e e 54
Single-Word Statements 5.6
Structurc declarationsand references L L oL 6.1
Nestedficlds o o o 6.2
Subscripted ficlds. 6.4
Overlays e e e 6.7
Left-lump structurc references e 6.8
Heffalump structurc referenceso L e 6.9
Other Structurc Operators o . v v v v v v o e e v e e e et e e 6.10
Syntax of structure declarations 6.10

SOURCE FILE CONVENTIONS

7-1
7-2
7-3
7-4
7-5
7-6

COMPILATION
8-1
8-2
8-3

LOADING

Declarationfileso o 7.1
Labeledbrackets 71
Semicoloninsertion L . 7.1
Do/Theninsertion o i i e e 12
Comments e e e e 12
Uppercasevs. LowerCase o v v vt ittt e e e e 7.2
Normalcompilation,, | .. 81
Global switches e 8.2
Local switches i . 8.3

ii

Revised BCPIL. Manual

TABLE OF CONTENTS

9-1 Normalloading i 9.1
9-2 Errors . e e e 9.1
9-3 Globalswitches i 9.2
9-4 Local switches=-groupl i 9.3
9-5 Local switches - group 2 v i it i i e e e e e e 9;5
9-6 NovaSavefileimage 0 i i it e 9.6
9-7 Overlays .« o e e e e e 9.6
9-8 Alto Operating System Linkage 9.8
10 RUNTIME ENVIRONMENT
1041 Procedure FrameFormat. 101
10-2 Procedure Calls oo i i e 10.1
10-3 Frame AllocationontheNova 10.3
11 NOVA 1/0 and UTILITY ROUTINES
11-1 Introduction e 11.1
11-2 GlobalNames e e e 111
11-3 Procedures e e 112
12 APPENDICES
12-1 BCPLReserved Words o oo o oo 12.1

iii

Revised BCPL. Manual

SECTION 1
INTRODUCTION

BCPL. is a gencral purpose recursive programming language which is particularly suitable for systems
programming applications. Versions of BCPL. exist on various computer systems, including CTSS atProject
MAC, the GE635 under GE COS, the TX-2 at Lincoln Lab, and the PDP-11, as well as for the Nova. '{'he
Nova version of BCPL. was bootstrapped from the TX-2 implementation, and incorporates most of the
features introduced into BCPL at Lincoln, including a version of structures.

This manual uses an informal syntactic notation. Ellipsis ("...") indicates repetition. Iower-case words are
reserved words. Upper-case words represent syntactic classes, the most common of which are:

NAME: an identifier

EXP: a BCPL. expression

CONST: an expression involving only constants
REI: a memory reference expression

STAT: a BCPL statement or compound statement

11

Revised BCPIL. Manual

SECTION 2
A SAMPLE PROGRAM

2-1....... The Queens Problem

The following program is a complete, working cxample of BCPL. 1t solves the "8-Queens” problem,
generating all 8*8 chessboard configurations of eight queens such that no queen can capture any of the
others. The central procedure "Queens(Col)" is called with a column number as its argument; it assumecs
that there are no conflicts in the columns to the left, and tries to place a queen in the current column.
"Quecens” calls itself recursively to iterate over the columns to the right, or prints a picturc of the board ifa
solution has been found. Three global vectors, "Horiz"”, "UpDiag”, and "DnDiag"”, are maintained to
indicatc whether a queen has alrcady been placed in a particular row, upward-diagonal, or
downward-diagonal; an attempt to place a queen in an occupied line results in rejection. A solution vector
"Row" is maintained for typcout, remembering which row the queen is in for cach column.

The program consists of two source files: "QUEENS" and "QUEENS1". "T'he first filc contains the main
program and some 10 procedures; the second contains the "Queens” procedure.

21

Revised BCPL. Manual A SAMPLE PROGRAM

2-2....... Source Code -- QUEENS
// Solution of 8 Queens problem -- Main Program
get "iox" // Include definitions for I0 package

manifest boardsize = 7 // Rows & Columns are numbered 0-7

external
Solutions // Total number of solutions
Row // Row!l = occupied column 1in row I
Horiz // Horiz!I = true if row I is occupied)
UpDiag // UpDiag!I= true if up-diagonal I is occupied
DnDiag // DnDiag!I= true if down-diagonal I 1is occupied

exgerna1 Queens // The procedure that does the work

external // Some extra I0 procedures
WriteS
WriteN
WritelL

] .

static
Solutions = 0 // No solutions initially
Row = nil // Global vectors -- set up by Main
Horiz = nil
UpDiag = nil

: DnDiag = nil
static TTYstream // The stream used by WriteS, etc.
Tet Main() be

[main
// Initialize the global vectors

Tlet v = vec boardsize; Row = v

let v = vec boardsize; Horiz = v

for i = 0 to boardsize do Horiz!i = false

let v = vec boardsize*2; UpDiag = v

Tel v = vec boardsize*2; DnDiaS = v

for i = 0 to boardsize*2 do UpDiag!i, DnDiagl!i = false, false

// Initialize output to TTY
initbeplio()
TTYstream = open("")

// Do the work
Queens(0)

// Print number of solutions
WriteN(Solutions)
WriteS(" solutions found*n")
Jmain
and WriteS(S) be writestr(TTYstream, §)
and WriteN{(N) be writedec(TTYstream, N)

and Writel() be writestr(TTYstream, "*n")

2.2

Revised BCPL. Manual A SAMPLE PROGRAM

2-3....... Source Code -- QUEENS1

// Solution of 8 Queens problem -- Queens procedure

manifest boardsize = 7 // Rows & Columns are numbered 0-7

external
Solutions // Total number of solutions
Row // Row!l = occupied column 1in row I
Horiz // Horiz!l = true if row I is occupied
UpDiag // UpDiag!I= true if up-diagonal I is occupied
DnDiag // DnDiag!I= true if down-diagonal I is occupied
exgerna1 Queens // The procedure that does the work
external // Some extra IO procedures
WriteS
WriteN
Writel
]
let Queens(Col) be
[queens

// There are no conflicts in columns left of Col

let UpDiagZ, DnDiag2 = UpDiag+boardsize-Col, DnDiag+Col
// UpDiag2, Dndiag2 are the diagonal vectors for this column

for n = 0 to boardsize do
[rowloop // Try to put a Queen in each row of this column

if Horizln % UpDiag2!n % DnDiag2!n loop // Can't - go on

// There are no conflicts to the left, so we can
Row!Col = n // Remember for typeout

test Col eq boardsize // Done?

ifnot [Horiz!n,UpDiag2!n,DnDiag2!n = true,true,true
// Now a 8ueen is in this column
Queens(Col+1) // Find all solutions to the right
// Now remove the Queen
Horiz!n,UpDiag2!n,DnDiag2!n = false,false,false

ifso [// Print the solution
Writel()
for r = 0 to boardsize do
[for ¢ = 0 to boardsize do

WriteS(Row!r eq c 7 " Q", " .")
Writel()
Solutions = Solutions + 1
]
Jrowloop // Do the next row

Jqueens

23

Revised BCPI. Manual A SAMPLE PROGRAM
2-4....... Notes on the Source Code
The file "IOX" contains external declarations for a basic 10 library; "QUEENS" uses "initbeplio", "open”,

"writestr", and "writedec” from this library.

The manifest and external declarations appear in both source files. Thesce declarations would usually beput
into a scparate file; cach source file would "get™ this file in order to include the declarations,

The static declarations appear only in "QUEENS": static variables must be declared as static only once,
although they may be declared external in many files. "Solutions” is initialized to 0; the statics for the
global vectors will be initialized by the main procedure, so they are initialized to "nil”. "I'I'Ystrcam" is
declared static but not external, so it is local to "QUEENS", as is "Main".

The main program allocates the vector space for the global vectors by declaring four local vectors (allnamed
"v") and storing the address of the first clements in the external variables for the vectors. 'This is the
simplest way to get space which is global to several procedures (or to a recursive procedure); the space is
global to "Queens" since it is allocated by the procedure which calls "Quecns”,

Note that declarations may be intermixed with statements.

2-5....... Compiling and Loading QUEENS

"T'o compile the source file QUEENS, just type
BCPL QUEENS

(Only onc source file may be compiled at a time.) The compiler will print
BCPIL. 2.0 - QUEENS.BR = QUEENS

‘and begin compiling the program. If no errors are detected, the BCPL. relocatable binary file QUEENS.BR
will be created, and the compiler will print

QUEENS.BR -- 217 (143) WORDS
The numbers are the length of the code generated in octal (decimal). QUEENSI is compiled similarly.
To load the program, type

BLDR/1)/1./V QUEENS QUEENS1 101 102
This will create the file QUEENS.SV, an exccutable Nova save file, from the BCPI. rclocatable binary files
QUELNS.BR, QUEENSIL.BR, 101.BR, and 102.BR. (The latter two files are the input-output routines.)
‘The 71 switch causes the Nova debugger to be loaded into the save file. The /1./V switches create asymbol
table file named QUIENS.BS, containing information about where things will be in corc when the program
runs; a listing of this file is included in the section on Loading (Scction 9). The loader prints

BLDR 2.0 -- QUEEENS.SV, QUEENS.BS
at the beginning of the loading process, and when it is done,

QUEENS.SV - 14162 (6256) WORDS
The numbers give the size of the save file in octal (decimal).

24

Revised BCPL. Manual

To run the program, just type QUEENS. It will print out 92 solutions,

25

Revised BCPL Manual

SECTION 3
DECLARATIONS AND PROCEDURES

3-1....... BCPL. Variables

BCPL is a vaguely ALLGOI -like language (it is block-structured; it allocates procedure space dynamically, sc
recussion is permissible; and most BCPL. statements correspond roughly to ALGOL. statements, although
there are syntactic differences). The major difference between BCPL and ALLGOL. is that all ALLGOL
variables arc declared with data-types (integer, real, boolean, string, array, procedure, label, pointer, etc.),
whereas all BCPL. variables have the same data-type: a 16-bit number, In AL.GOI,, the meaning of an
expression is dependent both on its context and on the data-types of the entitics involved, and only
expressions with certain data-types may appear in a given context. In BCPL., any cxpression may be usedin
any context; the context alone determines how the 16-bit value of the expression is interpreted. BCPLnever
checks that a value is "appropriate” for use in a given way. For example, an expression which appears ina
"goto” statement is assumed to have as its value the address of someplace which is rcasonable to jump to;
the thing following a "goto" need not be a label. The advantages of this philosophy about data-types are
that it allows the programmer to do almost anything, and that it makes the language conceptually simple.
The disadvantages arc that the user can make crrors which would have been caught by data-typechecking, -
and that some things must be done explicitly which ALLGOI ~type languages would do automatical?y
(implicit indirection on pointer variables, operations on multi-word valucs such as real numbers and strings,
typc conversion, ctc.). '

Although BCPIL. has only onc data-type, it docs distinguish between two kinds of variables: static and
dynamic. They differ as to when and where the cells to which they refer are allocated. A static variable
refers to a cell which is allocated at the beginning of program execution (i.c., by the BCPL. loader); itrefers
to the same memory cell for as long as the program runs. A dynamic variable refers to a cell which is
(conceptually) allocated when the block in which it is defined is entered, and exists only until exccution of
that block terminates. The space from which the dynamic variable is allocated is created dynamically when
the procedure containing its defining block is called.

As in AL.GOI., variable names (and other names) are defined in declarations. The lexical scope of a

declared name (the portion of the source text in which the name is defined) is governed by BCPL's block
structure.

32....... Scope Rules

At the outermost level, a BCPL source file consists of a scquence of global declarations followed by a
multiple procedure declaration. The possible global declarations are:

external [NAME; ...; NAME]

static [NAME = CONST; ...; NAME = CONST]
manifest [NAME = CONST; ...; NAME = CONST]
structure N/\.MH ..

31

Revised BCPL Manual DECLARATIONS AND PROCEDURES

The external and static_declarations define static variables; the manifest declaration defines literals; the
structurc declaration defines templates for symbolic references to partial-word and multi-word data,

A multiple procedure declaration has the form

let NAME(ARG, ..., ARG) BODY
and NAME(ARG, ..., ARG) BODY

and NAME(ARG, ..., ARG) BODY
where BODY s either "be STAT" or " = EXP".

The NAMEs in external, static, manifest, and structure declarations at the outermost level are defined from
the point of declaration to the end of the source file; all of the NAMEs in the "let ... and ..." sequence atthe
outcrmost level arc defined in all of the BODYs. These are the only names which are globally defined. All
other names arc defined cither as ARGs in the procedure declarations, or in local declarations within
compound statements in the BODYs.

A compound statement is a sequence of statements and declarations, separated by semicolons, and enclosed
within the brackets "[" and "]". (If a carriage rcturn scparatcs two statements, the semicolon can be
omitted.) I'he brackets have a function similar to that of the words "begin” and "end" in ALGOL. A
compound statement may be used wherever a simple statement can be; in this manual, "STA'T" always
means cither a simple statement or a compound statement. Compound statements are used when two or
more statements arc needed in a context in which BCPL expects a single statement (e.g., as the body ofa

rocedure, or as onc of the arms of a conditional statement). Compound statements delimit the scope of
E)cally declared names.

Local declarations may be intermixed with statements (unlike ALGOJ, in which declarations may appear
only at the beginning of a compound statement). "Declaration’ here includes dynamic variabledeclarations
("let NAMUL ..., NAMEn = EXPI1, ..., EXPn™), as well as the cxternal, static, manifest, structure, and
procedure declarations mentioned above. The following rules govern the scope of local declarations:

D A local declaration may appear in a compound statement only in the following contexts: atthe
beginning of a statement, or after a semicolon (including a semicolon implicitly inserted by the
compiler between statements on different lines), or following a statement label that follows a
semicolon. "The effect of this rule is to disallow things like "if x ¢q 0 then lety = 0 (although
"if x cq O then [lety = 0 ...]is perfectly legal). A declaration may be labeled.

2) A declaration starts a block; the block ends at the end of the compound statement containing
the declaration. A name defined in the declaration is known only within the block introduced
by the declaration, and in sub-blocks contained within that block if the name is not redeclared.

3 (Exception to rule (2).) A dynamic variable is not known in any procedure body other than the
onc in which it was declared. ‘Thus, if the procedure "g" is declared inside of the body of
procedure "f, the dynamic variables defined in "f"' are not known to "g". (I'his is becausc the
dynamic variables of "f" reside in space which is dynamically allocated when "' is called.
When "g" is called, it does not know where this space is; in fact, there might be more than one
g)f(‘gc)ution of "f"" in progress when "g™ is called, or there might not be any active execution of

4) A statement label ("NAME: ...") appcaring within a block is treated as if it were a static variable

declared immediately after the declaration which begins the block. So a label is known
throughout its cnclosing block, but not outside that block.

32

Revised BCPIL. Manual ' DECLARATIONS AND PROCEDURES
3-3....... Manifest Constants

The declaration

manifest NAMEL = CONST]; ...; NAMEn = CONSTn]
defines NAME. through NAMEn as manifest constants. (If there is only one NAME, the brackets arc not
necessary.) The expressions CONSTI through CONSTn must be constant expressions; that is, their values
must be computable by the compiler. The meaning of a program would be unchanged if cach manifest

name were replaced by a string of digits representing its value. In particular, manifest names do not have
addresscs.

34....... Structure Declarations

(Structures are described in Scction 6 of this manuat)

35....... Static and External Variables
Static variables may be declared in four ways: by a static or external declaration, by a procedure declaration,
or by a statement label assignment.
The declaration

static [INAMEL = CONSTI; ...; NAMEn = CONSTn]
defines NAME! through NAMEn as static variables, and causes them to be initialized with the values
CONSTT through CONSTn at the beginning of program cxccution (i.e., in the "save file” created by the
loader). (If there is only one NAMI, the brackets are not necessary.) The CONS'T's must be expressions
whaose values are computable by the compiler. 1fit doesn’t matter what the variable is initialized to, the " =
CONS'T" should be Ieft out, or ™ = nil” should be used.
Any of the NAMESs that are preceded by an "@" will be allocated by the loader in page zero. Such variables
arc called "common™ variables. They can be addressed directly by the compiled code, whereas normalstatic
variables must be addressed by indirection through a literal; so common variables are more efficient.
Howecver, there is toom in page zcro for only about 150 (decimal) common variables; the loader will
complain if too many common variables are assigned.
The procedure declarations

let NAMI(ARG, ..., ARG) be STAT

let NAMIYARG, ..., ARG) = EXP

declare NAML as a static vatiable which is to be initialized by the loader to the address of the codecompiled
for the procedure.,

The procedure declaration is discussed fully in the sections on procedure and dynamic variable declarations.

A statement label assignment

33

Revised BCPL Manual DECLARATIONS AND PROCLEDURES

NAME: STAT

declarecs NAME as a static variable which is to be initialized by the loader to the address of the code
compiled for STAT. A label assignment does not begin a block; the name is trcated as if it were declared
immediatcly after the declaration which begins the smallest enclosing block. Thus, a label is defined
throughout the block in which it appears. ‘

The declaration
external [INAMET; ...; NAMEn]

declares NAME] through NAMER as external static variables. (If there is only one NAME, the bracketsare
not necessary.) The purpose of the external declaration is to allow scparatcly compiled pieces of a program
to reference the same variables. Within a given source file, the scope of an external variable is the same as
that of other types of variables; but if two or more separately compiled source files declare a given name
external, the loader will make cach refer to the same cell. In (exactly) one of the source files in which a
given name is declared external, the name should also be declared as a static variable (by a static declaration,
a procedure declaration, or a statement label assignment) someplace within the scope of the external
declaration, (Note that the static declaration must follow the external declaration.) This is not are-definition
of the name, but rather tells the loader how to initialize the external static variable. "Vhe loader will
complain about an cxternal variable which is not declared static someplace, or about one which is declared
static morc than once.

NAMEs that arc preceded by an "@" in an external declaration will be defined as common variables. A
NAMI that is declared both external and static may be designated as common in either or both declarations,

Notce that only static variables may be external.

36....... Procedure Declarations

There are two kinds of BCPIL. procedures: "functions”, which return a value upon completion, and
"routines™, which do not. A function is defined by a declaration of the form

let NAME (ARG, ..., ARGn) = EXP
A routine is defined by
let NAMFE(ARG], ..., ARGn) be STAT

NAME is the name of the function or routine being defined. (Actually, NAME becomes a static variable
which will be initialized with the address of the procedure, as noted in the section on static variables.) ARG1
through ARGn arc the formal paramcters (dummy arguments) of the procedure. They are either NAMESs,
or the special symbol "nil”, indicating an unnamed argument. ARG through ARGn become the first n
dynamic variables declared in the procedure body. If there are no dummy arguments, the declaration isof
the form "let NAMIY() be STAT” or "let NAME() = EXP",

In the function declaration, EXP is the expression whose value is returned when the function is called. EXP
may be a simple BCPL expression; but for most functions it will be an expression of the form "valofSTAT",
where STAT may be a compound statement. The STAT in a "valof" cxpression should contain at Icastone
"resultis” statement. [The STA'T is executed until a statement of the form "resultis EXP" is encountered;
then EXP becomes the value of the "valof" expression, and therefore the result of the function. The"valof™
expression will also terminate when control would otherwise pass to the statement following STAT. Ifthis
happens, the value of the "valof™ expression is garbage.

34

Revised BCPL. Manual DECLARATIONS AND PROCEDURES

In the routine declaration, STAT is the statement which is executed when the routine is called. STAT may
be a compound statement. STA'T may contain one or more "return” statements; the routine returns whena
"return” statement is executed, or when control would otherwisc pass to the statement following STAT,

A multiple procedure declaration has the form

let NAMEI(ARG, ..., ARG) be STAT (=EXP)
and NAME2(ARG, .., ARG) be STAT (=EXP)

and NAMER(ARG, .., ARG) be STAT (= EXP)

This declares the procedurcs NAMEL through NAMEn "simultancously”; that is, all of the NAMEi’s are
known in cach of the procedure bodies. (So, for example, NAME] can call NAME2 and NAME2 can call
NAMEL) The ARGs, of course, are defined only in their corresponding procedure bodics.

A procedure body may contain procedure declarations; the names of such procedurces will be local to the
defining body (unless they are declared external). But remember rule (3) in the section on the scope of
dynamic variables: dynamic variables are defined only in the body of the defining procedure, and notin
i;uh-lprocvdm'c bodics. IFor this reason, all procedures in a BCPL. program are usually defined at the top
cvel,

3-7....... Procedure Fxecution

A procedurce is called by a statement or expression of the form
EXP(EXPL, EXP2, ..., EXPn)

EXP dcetermines the procedure to be exccuted; EXPL through EXPn are the actual parameters, If thercare
no actual parameters, the form is "EXP()". A procedure call is an expression if it appears in a contextin
which a value is cxpected (e.g., in the right-hand side of an assignment statement); otherwise, it is a
statement. ‘The calling mechanism is the samc in cither case. The only difference is that in the context ofan
expression, the procedure is expected to return a value; if it doesn’t (because it is a "routine” rather thana
"function"), a garbage valuc will be used. A valuc which is returned by a function called in the context ofa
statement is discarded.

LXP will usually be a NAME which is cither declared in a procedure declaration in the current source file,
or declared external in the current file and declared as a procedure in another file. But in general, EXPmay
be an arbitrary BCPL expression; for example: "(neq 07?1, g) (x, y)". The formal rule is that the location
referenced by the expression "rv EXP" is the location to which control is to be transferred (via a "JSR™).
The section on Runtime Environment gocs into more detail on this.

When a procedure is entered, it first allocates some "frame™ space from someplace in memory. This
"frame™ is a block of memory which the procedure will use for the actual parameter values, for any dynamic
vartables and vectors declared within the procedure, and for any temporary storage nceded by the
procedure. "The space is de-allocated when the procedure exccutes the "return™ or "resullis” corresponding
Lo the call that allocated the frame.

After the frame space is allocated, the values of EXP1 through EXPn arc stored in the first n words of the
frame. These n words arce those referenced by the n formal parameters ARG, ..., ARGn in the procedure
declaration, assuming that the procedure is called with cxactly the number of actual parameters as it was
declared to have. (No cheek is made to sec if actual and formal parameters match. 1f there are feweractual
parameters, the formal parameters with no corresponding actual parameters will have garbage values, If
there are more actual paramcters than formal parameters, the actual paramcters with no corresponding

3.5

Revised BCPL Manual DECLARATIONS AND PROCEDURES

formal paramcters will be lost; but this may create havoc by clobbering memory words beyond the end of
the newly created frame.)

Note that each formal parameter takes on the value of its corresponding actual parameter at the beginning
of the procedure call. “This implics that procedure calls are implemented by the "call by value" mechanism
(in the ALLGOL. scnsce); assigning a value to a formal parameter within a procedure docs not affect the value
of the corresponding actual parameter in the calling routine, although it does change the valuc of the formal
parameter for tiic remainder of the procedure execution. Suppose the function "next" is defined by: '

let next(x) = valof[x = x + 1; resultis x]
and called as follows:

a=0;b = next(a)

After the call of next, "a” will still be 0, but "b" will be 1. We can write "next” in such a way as to allow itto

change the value of "a" by using the address-manipulation primitives of BCPL.:

let next (xaddr) = valof
[rvxaddr = rv xaddr + 1; resultis rv xad-r]

‘Then calling "next” as follows:

a=0;b=ncxt(lva)

"on

will causc both "a™ and "b" to have the value 1.

After the procedure frame has been allocated and the actual parameters have been stored in the frame, the

procedure body is executed. 1f the procedure terminates normally (with "return” or “resultis”, or by falling

through the last statement), the frame space is deallocated and control returns (o the caller. If theprocedure

ﬁxils withl a "goto”, the frame space is not deallocated, and the frame pointer is not changed. 'This is abad
1ing to do.

3-8....... Dynamic Variables

A dynamic variable refers to a ccll at some fixed position in the frame associated with the currentexccution
of the procedure in which it is defined. This cell is only allocated to the variable while the block defining
the variable is active (c.g., while the block is being exccuted, or while a procedure called from within the
block is being exceuted). Outside of the block, the cell is used for something clsc.

Dynamic variables are declared in two ways: in a dynamic variable declaration, and as formal parametersin
a procedure declaration,

The dynamic variable declaration

let NAMIL, .., NAMEn = EXPI, ..., EXPn
allocates n consccutive frame cells to NAMEL through NAMEn, and compiles code to assign the values of
EXPL through EXPn to NAMEL through NAMEn. Unlike other declarations, this declaration is
exccutable; for a given execution of a procedure, NAMIZL through NAMEn always refer to the same frame
cells, but the valucs stored in these cells are recomputed cach time the declaration is exccuted. The
assignment is done Ieft-to-right.

The EXPs may be any BCPL. expression. In addition, there are two special cases: "nil” and "vec CONST".

3.6

Revised BCPL Manual DECLARATIONS AND PROCEDURES

If EXPi is the symbol "nil”, the variable NA"MEi is declared, but no valuc is assigned to NAMEi. Thus, "lct

x ="nil" declares x, but compiles no code; "x" will have some garbage value until something is assigned to
it.
If EXPi is the slpccial expression "vec CONST” (where CONST is an expression that can be cvaluated by
the compiler), the value assigned to NAMEI will be the address of the first word of a block of CONST+1
consccutive frame cells. This "vector" of CONST +1 cells is allocated from the frame space, and NAMLEt is
initialized to point to that vector. Thesc cclls exist as lon,g as NAMEi exists; they are used for somethingclse
outside of the block in which the declaration appears.
In a procedure declaration

let NAME(ARG], ..., ARGn) be STAT

let NAME(ARGL, ..., ARGn) = EXP

or

ARG] through ARGn are declared as dynamic variables; their scope is the entire procedure body. (Recall
that the declaration defines NAME as a static variable.) The declaration is equivalent to :

let NAME() be :
[let ARG, ..., ARGn = nil, .., nil; STAT]

orto

let NAME() = valof
[let ARG]T, ..., ARGn = nil, .., nil; resultis EXP]

That is, ARGIL through ARGn are the first n dynamic variables declared in the procedure body, and
therefore refer to the first n cells in the frame. "The procedure call "NAME(EXP], ..., EXPm)" stores the
values of the m actual arguments in the (irst m cells of the newly created frame. So if m>n, cellsn + 1
through m will be clobbered. If m = n, all is well. 1If m<n, ARGs m + 1 through n will have garbage
values. "this permits procedures to be called with a variable number of actual arguments, as long ascnough
formal arguments arc declared to provide space for the largest actual argument list. For example, if we
define a procedure something like

let f(x0, x1, x2, ..., x20) be
| letarg = Ivx0
..argh ..

then the expression "argli” references the ith argument.
The ARGs arc usually NAMEs, but the special symbol "nil" is also legal as an ARG. ‘The "nil" has the
cffect of Ieaving space for an argument, but not declaring a name for that argument. So the procedure "'f™
above might also have been defined as

let f(x0, nil, nil, ..., nil) ...
Argument i can still be referenced by "argli”.

In procedures which are called with a variable number of arguments, the "numargs” facility may beuscful.
An argument list in a procedure declaration may take the form

Iet NAME(ARG], ..., ARGn ; numargs NAME) ...
The NAMIE ﬂ)l]owing " ; numargs" is declared as a dynamic variable in the procedure body; when the

procedure is entered, NAME is sct to the number of actual arguments in the procedure call. Note the
scmicolon preceding "numargs”.

37

Revised BCPL Manual

SECTION 4
EXPRESSIONS

41....... Memory References

There arc four kinds of BCPI. expressions which refer to memory cells: variable names, rv-expressions,
vector reference expressions, and structure reference expressions, These are the only things that canappear
as the left-hand side of an assignment statement "REF = EXP" or as the argument of an Iv-cxpression "Iv
REI". In an assignment statement, REF specifies the cell to be modified. The valuc of an v-expression is
the address of the cell specificd by REF. (‘These two contexts are the only ones in which the form of the
cxpression is restricted.) In all other contexts, the value of a memory-reference expression is the value
contained in the specified cell.

Memory reference expressions are described below in terms of the Nova instructions compiled. There are
six Nova op-codes that reference memory: LDA ac, STA ac, IMP, ISR, 1S7, DSZ. The symbol "OP" inthe
description below designates one of these op-codes; the address of the op-code is in standard Nova form (@
displacement, index). In general, an assignment statcment gencrates a STA; a procedure call gencrates a
JSR; and other contexts gencrate a LIDA.

dynamic variable names:

Dynamic variables arc allocated cells in the first 200 (octal) words of the frame for the
procedure in which they are declared. While a procedure is being exccuted, AC2 always
points at the procedure’s frame; so dynamic variables arc referenced by "OP n,2", where "n''is
the offset of the dynamic variable in the frame. This imposes a limit on how many dynamic
variables a procedure may declare; the practical limit is about 100 (decimal) dynamic namesin
a given scope. (Because the frame is allocated dynamically when a procedure is called,
dynamic variables cannot be accessed directly from any procedure other than the one in which
they are declared, as noted in scope rule (3) in Section 3.) '

static variable names:

Static variables are allocated space by the loader, cither in "common" (page zero) or inanother
arca of memory which is fixed during loading. Common variables arc accessed by "OP n,0",
where 0<n < 377. Other static variables are not dircctly addressable, since they are in some
arbitrary arca of core, so they arc addressed through indirection by "OP @n,1'" (that is, "OP
@.+n"), where n is the PC-relative offset (200 < n < 177) of a word containing the address of
the static variable.,

vector references: EXPLTEXP2

‘This expression references a memory cell whose address is given by the value of
(EXP1 4 EXP2). 'The rcason for calling an expression like “A" a "vector reference” is the
following. Supposc that the valuc of the variable "A" is the address of the first word of a
zero-origin onc-dimensional array (a "vector™). ‘Then the expression "A!ll" references the Ith
word of the vector A, since the value of the expression "A 41" is the address of this word.
Note that the """ operator is commutative.

In gcncfal, veetor references generate code to compute the sum of EXP1 and EXP2 in AC3
(c.g., "LDA 0,EXP1; LLDA 3,EXP2; ADD 0,3"), and then reference the vector clement with

4.1

Revised BCPL. Manual EXPRESSIONS

BCPL.

"OP 0,3". In the case where EXP2 (or EXP1) is a small constant (-200 < n< 177), EXP1 (or
EXP2) is loaded into AC3, and the vector element is accessed by "OP n,3". In any case, a
vector reference always uses indexing through AC3. Sce the note on rv-cxpressions below.

rv-expressions: rv EXP, @EXP:

This expression references a memory cell via indirect addressing through EXP. Tn genceral, the
vaiue of EXP is computed and stored in a temporary cell in the frame, and the reference is
done by "OP @n,2", where n is the offsct of the temp cell. There are several special cases: If
EXP is a dynamic variable name, "OP @n,2" is uscd, where n is the frame offset of the
variable. If EXP is a common variable name, "OP @n,0" is used, where n is the page zero
address of the variable. On the Nova, if EXP is a static variable name, "OP @n,1" is uscd (that
is, "OP @.4n), where n is the PC-relative offsct of a word containing the address of the static
variable with the indirect bit (bit 0) set. 1f EXP is a vector reference, "OP @n,3" is used, after
loading AC3 appropriatcly.

The expression "rv EXP" may also be written "@EXP".

An rv-cxpression always gencrates an indirect reference through a memory cell. A vector
reference always generates an instruction which is indexed by AC3. ‘Therefore, on the Nova,
"rv EXP" is not necessarily cquivalent to "EXPI!EXP2" when the values of (IXXP) and
(EXP1 4- EXP2) arc the same: the rv-cxpression will always cause a multiple indirection if
EXP has bit 0 set; a vector reference will never do so, since indexing ignores bit 0. On the Alto
the two arc always the samg, since all 16 bits arc part of the memory address.

structure reference expressions:

These are described in the section on structures.

Constants

recognizes the following constructs as constants:

*

*

A name which is declared "manifest” is treated as if it had been replaced by its value.

A string of digits is interpreted as a decimal integer. It may not exceed 2**15-1 (32767
decimal, 77777 octal).

A string of digits preceded by a " #" is interpreted as an octal integer. It must be less than
2%*%16-1 (177777 octal, 65535 decimal),

A string of digits immediately followed by "B" or "b" is also interpreted as an octal integer, If
the "B" or "b" is immediately followed by a (decimal) number n, the octal value is shifted left
n bits. "Thus, #1230, 12308, and 123B3 all represent the same value. One-bits may not be
shifted out of bit 0.
The reserved words "true™ and "false™ are constants with values # 177777 and 0 respectively.
A "$" followed by any printing character other than "*" represents a constant whose vaiuc is
the 7-bit ASCII code of the character. "*" is an escape character; the following escapes are
recognized:

*s*S space (#40)

**¥T tab(#11)

42

Revised BCPI. Manual EXPRESSIONS

*n *N carriage return (#15)

*¢*C carriage return (#15)

* XL line feed (#12)

*n double quote (#42) [$" is also O.K.]

*nnn The octal number "nnn". [Exactly three digits.]

*ok * (# 52)

Note: "*" followed by anything clse gives an error.
‘The compiler evaluates most expressions that involve only constants, and treats the resulting value as a
single constant. (The cxceptions are "sclecton™ and "valof" expressions. Conditional cxpressions like
"CONST ? CONSTI, CONST2" arc cvaluated; the valuc is CONST2 if CONST is 0, and CONST1
otherwise.) Throughout this manual, the symbol "CONS'I™ (described as "an cxpression which can be

cvaluated by the compiler”) means cither one of the constant constructs above, or an expression involving
only constants.

4-3....... Precedence of Expressions

In order of decreasing precedence, the legal BCPL expressions are:
NAME; constant; string literal; table literal; (EXP)
EXP(FXP1, ..., EXPn)

EXPIEXP2

EXP>>NAMENAME.... ; EXPKNAMILNAME...
Iv EXP; 1v EXP; + EXP; -EXP

EXP1 <mul> EXP2 (<mul>: *, /, rem, Ishift, rshift)
-EXP1 + EXP2; EXPI - EXP2

vee CONST

EXPI <rel> EXP2 (Krel>: eq, ne, Is, Ig, gr, ge)

not BEXP

EXP1&EXP2

EXP1%EXP2

EXPI xor EXP2; EXP1 eqv EXP2

EXP ? EXP1, EXP2

sclecton EXP into ...

4.3

Revised BCPL Manual EXPRESSIONS

valof STAT

Operators with the same precedence are left-associative, except for "<mul>", "&", "%", "xor", and "cqv",
which are right-associative. Precedence and associativity can be changed by parenthesizing. Some cascsto
note:

"a/b*c" is "a/(b*c)"

"rv v1i"is "rv(v)"

"rv p>dab" is "rv (p>a.b)"
"vip>>a.b" is "(vip)>da.b"
"Vl is (vl +j"
"a%b&c" is "a%(b&c)"

"a& begqc"is"a& (beqc)”

Precedence only determines the way in which an cxpression is parsed; nothing is implied about order of
cvaluation. In general, the order in which the sub-cxpressions of an expression are computed isunspecified.
So, although "f(x) + g(y) * h(z)"" mecans "f(x) + (g(yg *h(z))", no assumption should be made about which
function is exccuted first.

4-4 ..., .. BCPL Expressions
string litcrals

A scquence of characlers enclosed in double quotes (™) is a string literal. Its value is the
address of the first word of a block of memory containing the string. A BCPL string is stored
two byles per word, left-hand byte first, with the left-hand byte of the first word containingthe
number of characters in the string. If the string has an cven number of characters, the
right-hand byte of the last word is 0; but if it has an odd number of characters, the last word of
the string contains the last two characters, not two 0 bytes. Note that BCPL. strings are not
compatiblic with Nova IDOS strings.

Strings have a maximum length of 255 characters. The character "*" appcaring in a string
literal is an escape character, as described for character constants.

table [CONST1,; ...; CONSTn]

"The value of a table expression is the address of the first word of a block of memory containing
the CONS'T valucs.

EXP ()
EXP (EXPL, EXP2, .., EXPN)

The value of EXP is assumed to be the address of a BCPL, function. 'This function is called
with the values of EXPI, ..., EXPN as arguments. The value of the function call is the value
returned by the function via a "resultis” statement. See the section on procedure exccution for
details.

The call is implemented by a Nova JSR instruction (a_memory reference op-code) to
"rv EXP". So if EXP has bit 0 sct, a multiple indirection will take place. If bit 0 is zcro, the
value of EXP is the address of the first instruction executed.

44

Revised BCPL Manual EXPRESSIONS

The empty argument list "()" is necessary if there arc no _arguments. "x = f()" calls a
function, but "x = " puts the address of the function in "x". Forgetting the "()" is acommon
crror; be carcful.

Iv REF

REF must be a variable name, a vector reference, an rv-expression, or a structurc reference,
aiything clsc gives an crror message. The value of the 1v-expression is the address of the cell
which REF references (but see the note on "lv(rv EXP)" below).

The valuc of "lv NAME", if NAME is a dynamic variable, is the sum of the current frame
pointer (which is in AC2) and the offset of the variable in the frame (a constant). Thisaddress
1s valid only whiic the block in which the variable was declared is active.

The value of "lv NAME", where NAME is a static variablc, is the address of the static variable.
This is a constant throughout the exccution of the program, since static variables never move.
(But "lv NAME" is not a compile-time CONST.)

The value of "Iv(EXPUEXP2)" is the sum of the values of EXP1 and EXP2.

The value of "Iv (rv EXP)" is the addicss of the cell that "rv EXP" references. On the Nova, if
EXP has bit 0 sct, "rv EXP" would cause a multiple indirection; in this case, the valuc is
computed by following the indirection chain. There is nothing special about bit 0 on the Alto;
it is just anothcr bit of the address.

The value of "lv (EXP>)>NAMENAME...)" is the address of the word which contains the first
bit of the referenced ficld.

v BEXP
EXPL1TEXP2

Scc the section on Memory References (Scction 4-1).
+EXP

The value is the valuc of EXP,
-EXP

The value is the two’s-complement of the valuc of EXP,
EXPL* EXP2

The valuc is the low-order 16 bits of the 32-bit signed product. If one of the FXPs is aconstant
whose valuc is a power of 2, a left shift is donc; otherwise the standard Nova multiply
scquence is done. There is currently no way to get at the high-order part of the product, or to
detect overflow,

EXPL /7 EXP2

EXP2 rem EXP2
The standard Nova signed integer divide scquence is done. (Division by a power of 2 is not
donc by shifting.) The "/" expression gives the 16-bit sighed quotient; the "rem” expression

gives the 16-bit remainder, which has the same sign as EXP1, If EXP2 is zero, the resulisare
undefined. There is currently no way to detect this.

EXPI Ishift EXP2
EXPL rshift EXP2

4.5

Revised BCPL Manual EXPRESSIONS

The valuc is the value of EXP1 shifted left or right EXP2 bits. Vacated positions are filled with
0's. Bits shifted off cither end of the 16-bit word are lost. The shifts arc logical, notarithmetic,
in that the sign bit may be changed. There are currently no arithmetic- or circular-shift
opcrators.

EXP1 + EXP2
EXP1 - EXP2

The valuc is the sum (difference) EXP1 and EXP2. The statement "EXP = EXP + 1"
gencerates an 1SZ or DSZ, followed by a NOP. There is currently no way to detect overflow.

XP1 eq FXP2
[IXP1 ne EXP2
EXP1 Is EXP2
EXPI le EXP2
EXPI gr EXP2
EXP1 ge EXP2

EXP1-EXP2 is computed and compared with 0; the value of the relationat expression isalways
cither "true” (#177777) or "false” (0). Warning: This differs from a genuine signed comparison
of EXP1 and IEXP2 if (15X PI-LEX P2 is greater than 2**15-1,

not EXP

The value is the logical complement (one’s-complement) of the valuc of EXP. But sce thenote
on"&" and "%" below,

EXP1 & EXP2
EXP1 % EXP2

In most contexts, the value is the logical-and or logical-or of EXP1 and EXP2. However, inthe
context of the Boolcan part of an "if", "unless”, "test”, "while", "until", "repeatwhile”, or
"repeatuntil” statement, or of a conditional expression, the evaluation of an expression
involving "not", "&", or "%" is optimized. This optimization can change the meaning of the
expression. For example, the sequence "if a& b then .." is not always the same as the
scquence "x = a&b; if x then ...", cven if the evaluation of "a" and "b" do not involve side
cflects. Sce the scelion on conditional statements.

EXP1 xor KXP2
EXPI eqv EXP2

The valuc of the "xor™ cxpression is the logical exclusive-or of EXP1 and EXP2. The valucof
the "eqv” cxpression is the logical complement of this value.

EXP 7 EXPL, EXP2

The value is the valuc of EXP1 if EXP is non-zero, or the valuc of EXP2 if EXP is zero. EXP
is optimized if it involves "not", "&", or "%"; sce the section on conditional statements,

valof STA'T

This expression causes the statement STA'L to be executed until a "resultis EXP" statement is
encountered or until control would otherwise pass to the statement following STAT. 1f a
"resultis EXP" is executed, EXP becomes the value of the "valof STAT" expression. If
cxecution of STA'I" terminates, the expression has a garbage value. The "valof”' expression is
usually used as a function body; but it may be uscd anyplace an expression can be.

sclecton EXP into
[casc CONSTI: EXP1

4.6

Revised BCPL Manuat EXPRESSIONS

casc CONSTn: EXPn
default: EXPO

This expression is cquivalent to

valof switchon EXP into
casc CONST1: resultis EXP1

casc CONSTn: resultis EXPn
default: resultis EXPO

That is, its valuc is EXPi if the vatue of EXP is CONST1, or EXP0 if EXP is not equal to any of
the CONSTs. If no "default” label appears, the "sclecton" expression will have a garbage
valuc if nonc of the cases is matched. '

newname NAME

This expression cvaluates at compile time to "true” if the NAME is appcearing in the source file
for the first time. It cvaluates to "false" if it has appearcd before (including previous
"newname” constructs). This construct is uscful in conjunction with conditional compilation
or the /M compiler switch (command-line declarations).

4.7

Revised BCPL. Manual

SECTION 5
STATEMENTS

5-1....... Assignment Statements:
REF = EXP

The value of EXP is stored into the memory cell referenced by RIF. See the scction on
Memory References (Scction 4-1),

REF], ..., REFn = EXPL, ..., EXPn

This statement is cquivalent to the sequence "REFL = EXPI; ...; REFn = EXPn". The
assignments arc made Icft-to-right.

52....... Routine Calls:

EXP ()
EXP(EXPL, EXP2, ..., EXPn)

A routine call differs from a function call only in that a routine call occurs in a context wherea
statement is expected, whereas a function call occurs in a context where an expression (a value)
is expected. The calling sequence for routines is identical to that for functions.

5-3....... Conditionals and Iterative Statements:

The cvaluation of EXP in an "if", "unless”, "test”, "while”, "until”, "repeatwhile”, or "repeatuntil”
statement is optimized if EXP involves "not”, "&", or "%". In gencral, EXP "succeeds” if it is non-zero,
"lails™ if itis 0. But "EXPI&EXP2" is tested by first testing one of the EXPs; if it "fails", thc &-cxpression
"fails", and the other expression is not evaluated. Similarly, in "EXP1%EXP2", onc of the EXPs is tested; if
it "succgcds", "EXP1%EXP2" succeeds. A "not EXP" "succeeds” if EXP "fails", and "fails" if KXP
"succeeds”.

This optimization has two significant conscquences:

a) In a statement such as "if f{x) & g(x) do ...", it is not guaranteed that both functions will be
excculed; so any side-cffects of " and "g" cannot be depended on.

b) The statement "if x & y do ..." is not necessarily cquivalent to the sequence "z = x&y; if zdo
... For example, if "x" has the value 1 and "y™ has the value 2, "z = #x&y" would assign the
valuc 0 to "z", because "1&2" is zero; so "if z do ..." will consider "z" to "fail". But both "x"
and "y" are nonzero, so "if x&y do ..." will consider "x&y" to "succced”. In gencral, "&"
should be used in conditional statements only when its operands arc known to take on only the
values "truc” (#177777) or "false” (0). Note that this is the casc for relations; so "if x nc 0 &y
nc 0" does the right thing,

5.1

Revised BCPL. Manual STATEMENTS

if 1:XP do STAT
unless EXP do STAT

The "if" statement exccutes STAT if EXP succeeds. The "unless” statement exccutes STAT if
EXP fails. The word "do"” may be replaced by the word "then”, but (unlike ALLGOL) no
"clse” clause is allowed; usc the "test” statement for two-armed conditionals. The "do" or
"then” may be omitted if STAT appears on the same tine as the "if" or "unless” clause, and if
STAT is onc of the following types of statc:aents:

"if'" "unless” "test” "while" " " "return” "resultis” "switchon™ "break”

"loop™ "endcase” "docase"
test EXP then STATT or STAT?2

test EXP ifso STAT ifnot STAT2
test EXP ifnot STAT2 ifso STAT1

until” "for" "goto

Fach of the above "test” statements exccutes STAT1 if EXP succeeds, or STAT2 if EXP fails.
Both clauses must be present; use the "if” statement or the "unless” statement for one-armed
conditionals. If "then" and "or" arc used, they must appcar in that scquence; the STAT
following "then" is the true branch. If "ifso” and "ifnot" arc uscd, they may appear in cither
order; the STA'T following "ifso"” is the true branch.

while EXP do STAT
until EXP do STA'T

The "while” statement exccutes STAT as long as EXP succeeds. The "until” statement
cxceutes STA'T as long as EXP fails. The test on EXP is done before the first execution of
STA'T. 'The word "do" may be omitted in the same contexts as for the "if* statement.
The "while" statement is equivalent to:

"goto M; L; STA'T; M: if EXP goto L."
The "until” statement is equivalent to

"goto M; 1.: STA'T; M: unless EXP goto L

“repecatwhile EXP
“repeatuntil EXP

%
>>
e

The "repeatwhile” statement executes STAT as long as EXP succeeds. The "repeatuntil”

vvvvv

statement executes STA'T as long as EXP fails. STAT 1s executed once before the test on EXP
is donc. STA'T may be a single statement or a compound statement.

The "repeatwhile” statement is equivalent to:
"o STAT; if EXP goto L"
The "repeatuntil” statement is equivalent to:
"l: STAT; unless BXP goto 1.
STA'T repeat
‘The "repeat” statement exccutes STAT repeatedly (until terminated by a "break”, "return”,

"on

"resultis”, "endcase”, "docase”, or "goto" statement). It is cquivalent to:
"[:STAT; goto L.
for NAME = 1IXP1 to EXP2 by CONST do STAT
5.2

Revised BCPL. Manual STATEMENTS

NAME is a legal variable name; EXP1 and EXP2 may be arbitrary cxpressions; "by CONST™
may be missing (1 is assumed), but if present, it must be a constant expression. The "for"
statement is (logically) equivalent to the following block:

[let NAME, lim, inc == EXP1, EXP2, CONST
goto M
L: STAT
NAME = NAME + inc
M: testincgeO
ifso if NAME ge lim goto L.
ifnot if NAME Ic lim goto L

]

Several things about the "for" statement should be noted:

1) The controlled variable is implicitly declared as a new dynamic variablé; it is defined
only in STA'T, and not accessible after the loop terminates.

2) EXP2 is cvaluated only once, at the beginning of the "for” statement,

3) As noted, CONST (if present) must be a constant cxpression. If it is negative, the
termination test is reversed.

4) STAT is not exccuted if the initial condition fails fhc termination test (like AI.GOIL,,
unlikc FORTRAN),

5) STA'T is executed when the controlled variable is equal to the limit.

break
loop

These arc single-word BCPL statements which are legal only in the context of an itcrative
statement. ‘The cffect of "break” is to jump to the statement immediately following the
smallest textually enclosing iterative statement. The effect of "loop™ is to jump to the pointat
which the next iteration starts; to the test in a "while”, "until”, "repeatwhile”, or ""repeatuntil”
statement; to the increment of NAME in a "for" statement; or to the beginning of a "repeat”
statement, '

... .. Conditional Compilation Statements:

compilcif EXP then [<sequence> |
compiletest EXP then [<scquence) |

These constructs allow alternative code sequences to be chosen at compile time; they are
analogous Lo "if"* and "test.” Therce arc several restrictions on the use of these statements:

The EXP must be comprised of operations on manifest and numeric constants, so
that it may be evaluated at compile time.

A conditional compilation construct can appear wherever a "let" would be legal

(Not, for example, within a statement or declaration, or directly following "then,"
"ifso,” "ifnot,” or "casc").

3.3

Revised BCPL. Manual STATEMENTS

Although the syntax of conditional compilation parallels that of conditional
statements, the brackets ([]) are mandatory. A <scquence> is a lcgally scparated
scquence of commands and dceclarations. The <scquence> may contain
declarations which will apply to commands which follow the conditional construct,
as long as the uses of the variable are also conditionally compiled.

Conditional sclections are done at a time after "get" filcs have been read. Asa
result, "get" commands are unaffected by conditionals -- the files are always read.

The auxillary constructs "ifso,” "ifnot,” "then," "do,” and "or" may all bc used with the
conditional compilation tests:

compiletest EXP then [<scquencel>] or [<sequence2>]

. ... Labels and Goto Statements:

NAME: STAT

Any BCPI. statcment may be labeled. A label is cffectively a declaration of a static variable
which is initialized with the address of the labeled statement. Tt differs from other declarations
in that it does not implicitly start a new block. Instead, it is treated as if it appeared at the
bcghining of the smallcst textually enclosing block. Sce the section on static declarations for
dctails.

goto EXP

A Nova JMP is donc to "rv EXP". The EXP is usually a label, but nced not be. Control is
transferred to the memory location which is referenced by "rv EXP".

Returns:

resultis EXP

These statements causc a return from the procedure in which they appear. “return” is only
legal in a routine body; "resultis EXP" is only legal in a function body.

Switches:

switchon EXP into CASEBLOCK

CASEBI.OCK is a BCPL block which contains labels of the form "case CONSTi:", where the
CONSTi arc constant expressions. CASEBLOCK may also contain a label of the form
"default:”. "The effect of a "switchon" statement is as follows: 1f the CASEBILLOCK containsa
"casc” label whose constant CONSTI is equal to the value of EXP, a jump is done to thatlabel.
If no CONSTi matches the value of EXP, a jump is donc to the "default” label if there is one,
or to the statement immediately following the CASEBLOCK if there is no default label.

5.4

Revised BCPL Manual STATEMENTS

The appcarance of a "case” label does not terminate the preceding case. That is, in

switchon Char into

[casc$Ax =1
case $B:x = 2
default:x = 0

]

"x" will be 0 no matter what "Char" contains. The statements "x = 1" and "x = 2" shouldbe
followed by a jump to the end of the CASEBLOCK. The single-word BCPL statement
"cndcase” would accomplish this.

Casc labels arc Iegal only in CASEBILOCKSs, and not in any sub-blocks of a CASEBILOCK. In
connection with this, recall that a declaration implicitly begins a new block. Thercfore the
sequence

switchon x into
[case 0: lettemp = 0

case 1:

will cause the compiler to complain that "case 1:" does not appear in a CASEBILOCK. The
%ot;ki which uscs "temp” must be enclosed in a block of its own which does not span othercase
abels.

Switches are implemented by grouping the case valucs into one or more valuc ranges in which
listed values are fairly dense, and doing an indexed branch on cach of these ranges. Case
valucs which do not fall into these clusters are checked individually if all of the indexed
branches fail.

cndcase

This single-word statement is legal only within the scope of a "switchon" statement. It causcsa
transfer to the end of the smallest enclosing "switchon' statement.

docase EXP

This statement is fegal only within the scope of a "switchon" statement or "sclecton"
cxpression. It causes a transfer to the case label denoted by IEXP within the smallest enclosing
CASEBLOCK, by pecforming the switching activities again using 1XP as an index. This
construct allows onc to merge scveral cases with a terminating case, or to generate flexible
looping constructs. The unlikely sequence

i=15;s="STRO"

switchon i into
casc 0: write(s); endcase
casc 1: s = "STR1"; docase 0
case S: s = "STRS": docase 0

]

would cause the string "STRS" to be written.

3.5

Revised BCPL Manual STATEMENTS

58....... Single-Word Statements

finish
abort

These single-word statements terminate execution of the program (on the Nova by a DOS
".R'TN" system call). The "abort” statcment causes a message to be typed on the terminal.

return
break
loop

These statements are described above,

5.6

Revised BCPI. Manual

SECTION 6
STRUCTURES

6-1....... Structure declarations and references

"The structure facility allows the user to define templates for symbolically referencing partial-word ficlds of
variables, and individual words and partial-words of vectors. (A "vector” in BCPI. mcans any block of
consecutive memory words). For example, a program which manipulates rectangular arcas on a display
might be using four-word blocks in memory to represent the center coordinates, width, and height of the
?igliliﬁczmt arcas on the screen. This program could declare a structure for referencing these blocks as
ollows:

structure rectangle : [x word
y word
width word
height word

The structure is used in conjunction with the ">>" operator. For example, if the program has a variable
cursor which points at (i.c., contains the address of the first word of) a four-word block, the expression
cursor>>rectangle.width references the width ficld of that block, and is equivalent to the expressioncursort2,
So the program can contain statcments like

cursor>>rectangle.width = 1
and
let cursortop = cursorddrectanglex + cursor>>rectangle.height

The declaration defines rectangle as a four-word structure, with fields named x, y, width, and height, cachof
which is onc word wide. The ficlds of a structure arc positioned scquentially, so the x field refers to thefirst
word of a relerenced block, the y field to the second word, ctc.

The operator ">>" (pronounced "right-lump") expects an expression on the left, and a description of the
ficld to be referenced on the right. The valuc of the left-hand expression is taken as the address of the block
of memory to be referenced. The right-hand side, in the simplest cases, consists of the name of thestructure
describing the block, followed by ".", followed by the name of the field to be referenced. The left
precedence of ">>" is higher than that of all expression operators except procedure calls and vector

subscripts; so

a(b)>>s.f mcans (a(b)>>s.f
alb>>s.f means (alb)>>s.f

but all other left-hand opcrands of ">>" must be parenthesized.

It is often convenient to define a structure consisting of a field list at the outermost level, without a single
top-name. For cxample:

6.1

Revised BCPL Manual STRUCTURES

structurc [x word
Sy word
width word

height word

This structure describes a configuration of ficlds identical to that of rectangle. However, references to the
ficlds of the structure require only the ficld name, as in carsor>>width,

Structures may also contain partial-word ficlds, as in the following cxample:

structurc arca : [visible bit 1
blinking bit1
color bit 5

X bit 9
blank bit 2
border bit 5
y bit 9
width byte
height byte

This structure describes three-word blocks which hold various picces of information about rectangularareas
of the display. The ficld-size specifier bit N, where N is a constant expression, defines a ficld which is Nbits
wide; the specifier byte defines a ficld which is 8 bits wide. A bit ficld may not overlap a word boundary;
the special name blank (a reserved word) is used in the above declaration to leave an unnamed two-bit field
in the sccond word in order to prevent such an overlap. A byte field must begin on a byte boundary. A
word ficld must begin on a word boundary. No automatic filling-out to boundarics is done; blank ficlds
must be supplied explicitly when needed.

With the above definition of arca, assuming that cursor points at an arca block, we reference the width field
with cursor>>arca.width, just as for rectangle. But the definition of arca makes this a reference to the
leftimost 8 bits of the third word of the vector cursor. The statement

cursor>>arca.width = w
is cquivalent to

cursor!2 = ((w Ishift 8) & #177400) + (cursor!2 & #377)

(The structure reference gencrates much better code than this). The rightmost 8 bits of cursor!2 are
unchanged. Similarly, the statcment

w = cursor>>arca.width
stores the left-hand byte of cursor!2 into w, right-adjusted, with 8 lecading zcro bits; it is equivalent to

w = (cursor!2 rshift 8) & #377

62....... Nested fields

A structure may contain substructurcs nested to any reasonable depth. For example, we might dcﬁnca
structure for vectors representing displayed lines of text as follows:

6.2

Revised BCPL Manual STRUCTURES

structure textline : [string word
color byte
linenum byte
margin: [left byte
right byte
font : templates word
charsize : [width byte
]hcight byte
]
]

Now if the variable title is a pointer to a five-word block of memory containing textline data, its ficlds are
referenced by:

title>>tex line.string

title>>textline.color

title>>textlinelinenum

title>>textline.margin.left

title>>textline.margin.right

title>>textline.font.charsize.width

titlke>>textline.font.charsize.height

title>>textline.font.templates
'f[‘llla(it is, a ficld is specificd to ">>" by a sequence of substructure names separated by ".", ending with the
icld name.

A substructure name may be used as a ficld name; that is, it may be the last name on the x'ighf-hand sidc of
">>". So

title>>textline.margin

is a legal structure reference expression, referring to the full word title!2. However, a ">>" expression may
not refer to a field that is longer than 16 bits, or to one that overlaps a word boundary; so

title>>textline.font.
is illegal, since the total Iength of font’s subficlds is 32 bits.

It is often the case that a group of ficlds in a structure arc identical to those in another structure or
substructure. For example, we might want to define a structure for vectors which represent rectangular
display arcas containing a word of text as follows:

structure sign : [text word
textsize byte
textcolor byte
visible bit 1
blinking bitl
color bit 5

I

That is, a sign contains all of the information for a arca (visivle, blinking, ctc.), plus three additional ficlds.
We can define sign as above without having to copy the ficld definitions of area as follows:

6.3

Revised BCPL. Manual

STRUCTURES

structure sign : [text word
textcolor byte
textsize byte

@arca

Within a structnre declaration, an "@" followed by a previously defined structure name is replaced by the
body of that structure’s definition. So the above definition of sign is equivalent to: ‘

structure sign ; [text word

textcolor byte

textsize byte

{ visible bit1
blinking bit1
color bit 1

]

]

The brackets surrounding the inner field list hav~ no effect, like unnecessary parentheses surrounding
expressions. So references like stop>>sign.color are 1egal with cither definition.

We could alternatively have made the area fields part of a substructure in sign as follows:

structure sign : [text word
textcolor byte
textsize byte
textarca: (@arca
or even
structure sign : [text word
textcolor byte
textsize byte
_arca: @area

In the latter case, references to the area fields look like stop>>sign.arca.color.

6-3....... Subscripted fields

It is possible to have structure ficlds which are replicated, with individual replications referred to instructure
reference cxpressions by integer subscripts. A simple example is a structure which describes BCPI -format
strings:

[length
chart],255 byte

structure string : byte

A "t following a ficld name in a structure declaration indicates that the field is to be replicated; the "1 is
followed two constants, scparated by "," , which specify the subscripts of the first and last replications. Soin
the above example, the ficld char is replicated 255 times, with the replications numbered from 1 thru 255.
Now if s is a pointer to a BCPIL. string, the expression

6.4

)
[l

Revised BCPL Manual STRUCTURES

s>>string.chart4
references the fourth character of thc. string, which is in the left half of s!2. A subscript in a structure
reference expression may be an arbitrary BCPL expression; the precedence of the "+ operator is higher
than any other operator, so any subscript other than a name or number must be parenthesized, e.g.,
s>>string.chart(i+j) = 0 |
In references to a subscripted ficld, the user must be sure to remember what low-subscript value was
%[;cciﬁcd in the declaration. For example, in the above definition of string, the first character is referenced
s>>string.chartl
and the fast meaningful character by
s>>string.chart(s>>string.length)
But if the char field had been defined as chart0,254* byte, these references should be
s>>string.chart0
and

s>>string.chart(s>>string.length-1)

The low-subscript and high-subscript given in a structure declaration determine the number of bits
occupicd by the replicated field:

(high-low + 1)**(number of bits in one replication)

Since a structure is only a template, and allocates no memory on its own, the only significance of this
number is that it determines the position of subsequent fields, if any, in the structure. (It also determines
the vatue of the size expression, which will be described later). In the string cxample, char is the tast ficld, so
it makes no difference how many replications are specified. But suppose that we had chosen to includea
tfxt slgring in sign blocks, rather than a pointer to the string in the first word. The definition of sign would
then de:

structure sign : [@string
textcolor byte
textsize byte
area @area

(Note the uses of the "@" construct). We would then reference the ith character of a sign with
stop>>sign.charti

With this definition, space for the maximum-length string would have to be left in cvery sign block, since

the expression stop>>sign.textcolor would be complied as a reference to the left half of stop1128. It would

be betler to specify @string as the last thing in sign, so that variable-length blocks could be used.

Any structure name, substructure name, or ficld name may be declared as subscripted, subject to the

SUBSCRIPTED »TRUCTURE RULE given below. For example, we might define a structure that

describes tables of arca descriptors as follows:

structure arcatable : [numareas word
: arcat1,100 : @area

6.5

Revised BCPL Manuat STRUCTURES

A arcatablc is a block of storage which contains some number of three-word subblocks, cach of which is
formatted as a arca block. The first of the arca blocks starts in the sccond word; the first word of aarcatable
holds the number of area blocks in the table. If the variable screen points at a arcatable block, the
expression

screcn>>arcatable.arcat5.width
would reference the width ficld of the fifth three-word entry; that is, the left-half of screen!14. Not. thatthe
subscript is applicd to the name which is replicated in the declaration (arca), not at the end of the ">>"
cxpression,
The above cxpression is somewhat unwieldy. There are two ways in which the structure could be modified
so as to shorten the references to its subficlds. One way is to climinate the numareas ficld, and attach the
subscript to the name arcatable:

structure arcatablet1,100 : @arca
With this definition, the width ficld of the fifth entry would be referenced with

screen>>arcatabletS.width
Note that if the numareas ficld had been included, it would have been replicated along with the arca ficlds.
(An cextra word could be allocated above arcatable blocks to hold the number of entries, and accessed as
screen!-1; but there is no way to reference this word as part of the structure).
"The sccond way in which arcatable could be redefined is to post-subscript the arca field list:

structure arcatablc ; [numarcas word

| @arcat1,100

‘This form of subscript declaration (subscript applied to a bracketed ficld list, which is what @area is
equivalent to) replicates the substructure defined by the ficld list (100 three-word blocks in this cxample),
but subscripts in references to the structure appear after the individual ficld names. So a reference to the
width field of the fifth entry would be

screen>>arcatable.widthts

Only the arca ficlds arc replicated; so it was possible to include the numarcas ficld in this version of the
structure.

Subscripted substructures may contain subscripted fields or sub-substructures to any depth. For example,
we might describe a table of file names with:

structure filetablet1,50 ¢ [length byte
]chaml,IS byte
The length of the ith name is referenced by
t>>filetabletilength
and the jth character of the ith name by
t>>filctableti.chartj

Multiple subscripts are also allowable. For cxample, a 4x3 matrix of double-precision numbers might be
described by:

6.6

Revised BCPL Manual STRUCTURES

structurc matrixt1,311,4 : [high word
low word

]

This structurc describes a storage arca which consists of a four-fold replication of a three-fold replication of
a two-word block. In rcferences to a matrix block, the first subscript specifies which of the four outer
replications is to be referenced, and the second indicates which of its three two-word blocks is wanted. So
clements of a matrix appcar in memory in the following order:

m>>matrixt {11 high
m>>matrixt1tl.low
n>>matrixt 142, high
m>>matrixt112.low
m>>matrixt113.high
m>>matrixt113.low
m>>matrix+2t[high
m>>matrix12t1.low

'iﬁ»matrixMﬂ.high
m>>matrixt4+3.low

Note that the order of subscripts in the matrix structure reference is the reverse of the subscripts in the
declaration.

SUBSCRIPTED STRUCTURE RULE: The replicated ficld or substructure must begin on a word
boundary and be a multiple of 16 bits wide, or begin on a byte boundary and be 8 bits wide. Subficlds
within a replicated substructure nced not satisfy this restriction; it applies only to the size and position ofthe
full replicated clement. For example,

ft1,10[abit3;bbit13]
and

[abit3;bbit5]t1,10

arc both legal; but

at],10 bit 3
and

bt1,10 bit 13
arc not.
6-4....... Overlays

It is often the case that a portion of a structure must be referenced with different sets of ficlds at different
times; therefore the compiler allows parallel field lists to be declared. For cxample, the following structure
is a description of the Nova instruction format:

6.7

Revised BCPI. Manual STRUCTURES

structure instr : [logical bit 1

{acs bit2 ; acd bit2
func bit 3
shft bit 2 ; cry bit 2
nlod bit 1 ; skp bit 3

=[opbit4
ibitl .
x bit2
d bit8

]
]
"The bracketed ficld lists joined by " =" refer to the same portion of the structure (bits 1 to 15). 1fp pointsto
an instruction, the expression p>>instr.logical references bit 0 of the instruction. On the Nova, this bit
distinguishes between arithmetic/logical instructions and memory-reference instructions; a program would
usc this bit to determine whether it is appropriate to reference p>>instr.acs, ctc. or p>>instr.op, ctc.

Parallel substructurcs need not be of equal Iength; the position of subscquent ficlds is determined by the
longest of the overlaid substruactures.

6-5....... Left-lump structure references

The operator ">>" uses the value of its left-hand operand as the address of the data to be referenced. There
is another structure reference operator, "<<" (pronounced "left-lump™), which takes a variable as its left-
hand operand, and loads data from or stores data into the variable itself, rather than treating the variable asa
pointer. To illustrate, supposc we have defined
structure | Ih byte ; th byte]
and that the valuc of the variable p is # 001003. The statcment
q = p>>rh
stores into ¢ the right-hand 8 bits of the number contained in memory location # 1003; it is cquivalent to
q = pl0& #377
The statcment
q = pKrh
stores into q the value # 000003, which is the right half of the value of p; it is cquivalent to
q=p& #3717
Similarly, the statement
p>>rh = q
is equivalent to

pl0 = (pl0 & #177400) + (q & #377)

6.8

Revised BCPL Manual STRUCTURES

which stores a valuc into the right half of location #1003, The statement
p&rh = q

is cquivalent to
p = (p& #177400) + (q & #377)

which stores into the right half of the variable p.

The "<<" operator should normally be used only with structures that are one word wide. The compiler will
interpret a statement like

p&Karca.width = w
(a reference to the third word of a structure) to mean

(v pY>rarca.width = w
This will “tore into the location which is two words below the place in memory where p happens to be
allocated. It is dangerous to assume anything about the allocation of BCPI., variables, except in specialcases

such as consecutively declared dynamic variables, so usc this feature with care.

The left-hand operand of a "<<" expression may be a vector-subscript expression or an rv-cxpression,
instcad of a variable name. The statement

vliKarca.width = w

means

(v vli)>>arca.width = w ,or,cquivalently, (v+iparca.width
and

(@p)<Larca.width = w
mcans

p>arca.width = w

(Note where parentheses are needed in the above expressions).

66....... Heffalump structure references

The operator "=>" (pronounced "helfalump™) is convenient for referencing structures that are accessed
indirectly. The expression

a=>s.x
is cquivalent to the expression

(@a)))s'.x.

6.9

Revised BCPL Manual STRUCTURES

Here the variable a contains the address of a memory word (say, p) whose contents in turn address a block of
data that the structure s describes. The information in this block may be freely relocated, provided oncalso
changes p to indicate the new location. Any variable, a, containing the address of p will still be able toaccess
the data using the heffalump construct.

67....... Other structure operators

The "Iv" operator may take a structure reference expression (">>" or "< expression) as its operand. Its
valuc is the address of the memory word which would be referenced by the structure expression. 'The field
referenced need not be a full-word field.

It is sometimes necessary to determine the location or width of a field in a structure. Two special operators
arc provided for this: "siz¢™" and "offset”. Both arc unary opcrators which take a ficld specification as an
opcerand (that is, a construct that can appear to the right of ">>" or"<<". The valuc of a "siz¢" cxpressionis
the size, in BI'TS, of the specified ficld. For example-

size arca.width (valuc is 8)
size arca valuc is 48)
sizc string.charti value is 8)
size string.char _ value is 2040)

A "size™ expression is always a compile-time constant, even if a variablce subscript expression is involved.
Note that if'a subscript is missing in the ficld specification, the size of the entire replication is returned.

The value of an "offset” expression is the BT number, counting from bit 0 at the beginning of the
structure, of the first bit of the specificd field. For cxample:

offset arca.width (valuc is 32)
offset arca (valucis 0)

offset string.chart$ gvaluc is 40)
offsct string.charti valuc is 8*)

offset string.char (valuc is 8)
An "offsct” expression is a constant unless a variable subscript expression is involved.

Keep in mind that "size™ and "offsct” return values in BITS, not in words. To get a vector for an arcablock,
for example, you must say

let cursor = vee (size area) / 16

6-8....... Syntax of structure declarations
- STRUCTDECL structure STRUCTGROUP
STRUCI'GROUP STRUCTITEM
STRUCTITEM = STRUCTITEM = ... = STRUCTITEM
STRUCTTIEM NAME : FIELDDESCR

NAME 1 SUBSCR : FIELDDESCR
blank : FIELDDESCR

6.10

Revised BCPL Manual STRUCTURES

STRUCTLIST
STRUCTLIST + SUBSCR

STRUCTLIST [STRUCTITEM ; STRUCTITEM ; ... ; STRUCTITEM]

FIELDDESCR bit
bit CONST
byte
byte CONST
word
word CONST
STRUCTLIST
STRUCTIIST ¢+ SUBSCR

SUBSCR CONST, CONST
SUBSCR + CONST, CONST

The colons in STRUCTITEM arce really only necessary if a carriage return precedes a STRUCTLIST: in
other places they may be omitted. The semicolons separating STRUCTITEMs in a STRUCTLIST may be

rrrrr

omitted if a carriage return separates the STRUCTITEMs.

6.11

Revised BCPL Manual

SECTION 7
SOURCE FILE CONVENTIONS

7-1....... Declaration files

The word "get” followed by a file name enclosed in quotes ("...") causes the file to be included in the
compilation, as if the contents of the file appeared in the source text. 'The most common use of "get” filesis
to include a common sct of manifest, external, and structure declarations in a number of source files that
will be loaded together. "The compiler will ignore a sccond "get" on a "get” file that it has alrcady read (this
facilitates certain uses of the precompilation feature; see description of the /G compiler switch).

T-2....... Labeled brackets

Brackets may be labeled with a sequence of letters and digits immediately following the "[" or "]". Whena
labeled "] is scen by the compiler, cach unmatched "[" (whether it is labeled or not) is implicitly matched
until the "[" with the same label is matched. Thus, in: :

itngr0dofli=1
untiligrn do
fo!i: 0;i=i+1]1

the "J1" closes both compound statements. Note that a carriage return, space, or tab must be present
between an unlabeled [and a statement that starts with a name. Usually some error will be detected
quickly if no spacc is Jeft (as in "if n gr O do [x = 0..."). But somctimes the resulting statement will belegal
(as in "ifn gr0do [rvx = 0.."). In such cases, the error may not be detected until the end of the source
tex(; this is often the cause of a non-obvious "unmatched scction bracket" syntax error.

T-3....... Semicolon insertion

If two statements are separated by a carriage return, a scmicolon is not required between them. This is
accomplished by having the lexical analyzer replace a carriage return by a semicolon if it is preceded bya
symbol which might end a statement and followed by a symbol which might begin a statement. Carriage
returns are ignored (treated as spaces) in other places. This implics that a BCPL. statement may extend over
two or more lines, with the carriage returns occurring anywhere in the statement except before a " +" or"-",
or before the "(" which begins a function argument list. So
X=a-
(b*c)

will be interpreted properly (no semicolon inscrted), but

XxX=a
- (b*c)

71

Revised BCPL Manual SOURCE FILE CONVENTIONS

and
x = a-f
(bc)

will give a parsing crror, because semicolons will be inserted at the carriage returns (" +", =", and "(" might
begin a statement),

Semicolons wili also be inserted at carriage returns in external, manifest, static and structure declarations,
and in the constant list of table expressions.

Carriage returns may no appear in string constants. To include a carriage rcturn, use *N or *C,

T-4....... Do/ Then insertion

The words "do" and "then™ arc cquivalent; so onc may write

if x 1s 0 then x =-x
or
ifxIs0dox=-x

"o "o

The "do” (or "then™) in an "if," "unless,” "while,

until,” or "for" statement may be omitted if thesymbol
which would follow the "do" is onc of the following

if for break
unless switchon loop
while goto finish
until return abort
test resultis cndcase

Thus onc may write:
if x eq 0 resultis -1
while x Is 0 goto L.
unless x gr 0 break
fori=1to 10 switchon vliinto[...]

T-5....... Comments

Comments may appear anywherc in the source text, and begin with a pair of slashes (/7). The slashesand
the remainder of the line on which they lic are ignored.

76 ..., Upper case vs. Lower Case

Source files may be upper-case only, or upper- and lower- case. If lower-case is used, reserved words must
be lower-case. The basic rules for case arc as follows:

12

Revised BCPL Manual SOURCE FILE CONVENTIONS

If the first word of the source program (i.c., of the file named in the command line) consists of all lower-case
characters, the compiler will distinguish words on the basis of case; and rescrved words must be typed in
lower-case.

If the first word is not entirely lower-case, the compiler will, in cffect, convert cverything to upper-case on
input. The global switch /U will also causc input to be converted, cven if the first word is in lower-case.

‘This rule has implications for both compiling and loading. For compilation:

1. If your program is cntircly upper-case, any "get" files specified in the program will be treated as
upper-case files, even if they were prepared in lower-case. So an upper-case program can usc a filcof
declarations (c.g., 10X for the 10 package), as long as that declaration file does not depend on case to
distinguish between names.

2. If your program wants to distinguish names on the basis of case, reserved words must be typed in
lower case, both in your program and in any "get" files which the program neceds. So in order to use
a declaration file which was prepared in upper case, you must cither use the /U switch (if you don't
carc about casc) or change the declaration file’s reserved words to tower-case (if you do carc about
casc in your programy),

‘The BCPIL. loader (BLLDR) normally distinguishes external names on the basis of case. St if you want to
load upper-casc and lower-case .BR files together, you must use the /U global switch on BLDR (or,
alternatively, recompile the lower-case programs with /U). In particular, you must use BLDR /U if youload
%h(c:Pl]O IEJackagc (I01.BR, 102.BR) with upper-case programs, or recompile the source files (101, 102) with
WCPIL/U.

13

Revised BCPL Manual

SECTION 8
COMPILATION

8-1....... Normal compilation

The BCPL. compiler consists of six files, normally called BCPL.SV, BCPL.YL, BCPI.YC, BCPL.YS,
BCPL.Y'T, and BCPL.YG. The .SV file is the main program; the .Y* filcs contain the code for the five
passcs of the compiler. 'The .Y* files must have the same name as the save file and the given extensions; so
to rename the compiler, you must rename the . Y* files as well as the .SV file.

Normally, to compile a source file (c.g., QUEENS.3), just type
BCPI. QUEENS.3

(Only onc source file may be compiled at a time.) (No cxtension is automatically assumed for the source file
name.) The compiler will print

BCPL. 2.0 -- QUEENS.BR = QUEENS.3

and begin compiling the program. (2.0 is the current version of the compiler.) If no crrors are detected, the
BCPL rclocatable binary file QUEENS.BR will be created, and the compiler will print something like

QUEENS.BR --1426 (790) WORDS
The numbers are the length of the code gencrated in octal (decimal).

If an crror is detected in the source text, the compiler will generally print cach offending line and indicate
the error(s) found in that line. The compiler will continue to look for further errors as long as it can doso
without getting confused, and finally print the message :

n ERRORS IN QUIFENS.3

Some crrors are grounds for immediate termination of compilation. ‘The most common oncs arc trying to
compile a source file that does not exist, or typing a command linc that BCPI. does not understand. Suitable
messages are printed to indicate such crrors. It is also possible to have a program which is "too big"”, inone
respect or another, for BCPL to handle. This usually results in a mcssage like "FRAMIE SPACE
OVERFLOW" or "OUT OF FRAME SPACE". You must split the program into separately compilable
files when this happens.

‘The compiler normally assumes that the Nova console is a CRT terminal. Therefore, after producing 20
lines of terminal output, it rings the bell (if any), prints a colon, and waits for the user to type acarriage-
return or line-feed before proceeding. Carriage-return produces 20 more lines; line-feed produces onemore
line; 0 followed by carriage-return or line-feed causes the compiler to proceed without further pauscs.

8.1

Revised BCPL Manual COMPILATION

82....... Global switches

These switches can be attached to the name BCPL (or a whatever you call your compiler); c.g.,
"BCPL/U/A QUEENS.3".

/U

/P
/F

/A

/T

Summary:

/D

/H

Treat the source file as if it had been typed entirely in upper case. (Sce the scction on
uppet/lower case considerations.) '

Turn off the "pause” featurce described above.

Write error messages onto the file QUEENS.BT (if the source file name was
QUEENS.3) instead of printing them on the terminal. If /F is given, the compiler
prints the message

BCPIL. 2.0 -- QUEENS.BR,QUEENS.BT = QUEINS.3
at the beginning of compilation.

Produce an assembly-language Yisting of the code generated. (T'his is useful if you want
to scc what kind of code BCPL. generates, or if you arc having a hard time debugginga
particular picce of code. But the listing file is big -- it takes a long time to generate and
print -- so you probably don"t want to make a habit of requesting it.) ‘The listing is
written on the file QUEENS.B'T, unless the /71" switch is given; error messages still
appear on the terminal, unless /K is given,

Causes all output (crror messages and the /A listing, if requested) to appear on the
terminal. The file QUEENS.BT is not created.

/7 alone scnds crror messages to QUEENS.BT. /A/F sends both errors and the
assembly listing to QUELENS.BT; /A/1 sends both to the terminal. /A alone sends
crrors to the terminal, and the assembly listing to QUEENS.BT. /E/T is illegal; /T
alonc has no cffect,

Causcs the compiler to indicate when it starts a new compilation phase (LEX, CAE,
SAL,TRN, and NCG), and prints debugging information with crror messages.

Causcs the compiler to pause (by entering the Nova debugger) between compilation
phases and after crror messages. 1o resume, type (ESC)R, not (ESC)P.

(/1> and /H arc generally uscful only to compiler gurus.)

/G

/S

This switch is used to generate "precompiled” declarations files. Any source file(which
may contain "get" statements) may be precompiled, using the /G global switch. For
cxample,

BCPIL./G DECILDRIVER

will precompile DECLDRIVER and create the files DECLDRIVER.BD and
DECLDRIVER.BC. DECLDRIVER is typically just a list of "get" statements,
consolidating declaration files. Subsequently, the precompiled declarations may be
used with the local /G switch (see below); precompiling increases the speed of the
compiler slightly if the same declarations arc to be included in many files.

Sce the local /S switch, below. The global version simply provides a site-dependent
default valuc for the switch argument.

8.2

Revised BCPL Manual COMPILATION

83....... Local switches

These switches are attached to namcs following the compiler name in the command line; e.g.,
"BCPL. QUEENS.3 QUEENS.LS/A":

name (no switches) The name is taken as the souvrce file name. No cxtension is assumed; you must

namc/A

name/F
name/R

namc/G

number/V

name¢/M

name/l.

name/'l'

type "name.cxt” if the source file nas an extension. The source file name is used to
generate the names for the relocatable binary ((BR) file and the text output (BT file
(unless these are specified by the local switches /A, /1, /R). On the Nova, if a deviceis
specified with the name (c.g., DPI:QUEENS.3), that device will be used for files
specified in "get” dircctives in the source text; and for the output files (unless thescare
specificd by the local switches /A, /F, /R). If no device is specified, the default device
is used (the device given in the last DIR command to DOS), even if the compiler is
running on a dilfcrent device (c.g., if you have typed "DIR DPO; DPL:BCPL
QUEENS..", QUEENS and its "get” files will come from DP0). There are no
"devices” on the Alto.

I.ike the global /A switch, but the assembly listing is written onto "name” rather than
QUEENS.BT. If "name” is a [ile name, the extension BT will be apprnded to it if it
has no extension; to create a file with no extension, use "namc./A". If "namc"” is a
device (c.g., MCO0:XGP)), it should be terminated with a "."; the output will be sent to
the device named.

Like the global /1 switch, but writes error messages onto "namc" as for /A above.
("name/A/F" docs the obvious thing, but you cannot send crrors and the assembly -
listing to two different files.)

Causcs the relocatable binary file to be named "name” instead of QUEENS.BR. The
BR extension is appended to "name" if it has no extension; to create a file with no
cxtension, use "name./R".

The named file is a file of precompiled definitions, created with the global /G switch
(sec above). For example, the command

BCPL DECILDRIVER/G TEST
will compile test, including the declarations precompiled in DECLDRIVER,

The decimal number is used to set the "manifest constant” for use with the /M switch,
below.

This switch declares the name to be a manifest constant, with the valuc taken from the
last sctting of the /V switch (default is true, -1). The value will apply throughout
compilation, excluding any part of the compilation introduced through the
precompilation (/G) option.

If used in conjuction with "newname,” this can be used to override standard settings for
paramelers.

Caution: Nova DOS will convert all keyboard input to upper case; names given to the
/M switch in this manner will thercfore be upper case. However, the /M switch docs
not trigger the "upper case” detector (scection 7-6).

These switches cause the compiler to print the source text (/I.) and intermediate
compilation results (/1) as it proceeds through its various phases. The phases are
specificd by the individual characters of "name":

8.3

Revised BCPL Manual COMPILATION

number/S

1. for the lexical analyzer

C for the parser

S for the symbol table generator
T for the Ocode generator

1 for the code gencrator, pass |
2 for the code generator, pass 2.

E.g., "C1/1." would cause the compiler to print cach line of source text as it parses it,
and again as it makes a first pass at generating code for the line. T'he output would goto
the file QUEENS.BT unless the global /T switch were given. These switches are
primarily for debugging the compiler. But they might be helpful occasionally in
tracking down an obscure crror, or one for which the crror message does not provide
cnough context to locate the offending statement in the source text.

The number is interpreted in octal. Its value is used instcad of the first instruction of
code normally issued for cach procedure (sce the runtime environment section). The
same number, incremented by # 400, is used instcad of the standard procedure return
instruction, This facility allows an installation to customize its procedure storage
allocation facilitics.

3.4

Revised BCPL Manual

SECTION 9
LOADING

9-1....... Normal loading

The BCPIL. 1oader on the Alto is found on the fite BLDR.RUN. A symbol file BLDR.SYMS also exists for
usc in loader maintenance. '

The BCPI. loader on the Nova consists of four files, normally called BI.DR.SV, BLDR.YU, BLDR, YT, and
BLDR.YD. The .Y* files are copics of files that the loader needs for initialization of the save file which it
creates. The . Y* files must have the same name as the loader; so if you rename BLIDR.SV, you mustrename
the .Y* files as well.
A typical command to BLLDR on the Alto looks like:

BEDR/L/V QUEENS QUEENSL
and on the Nova looks like:

BLDR/D/1L/V QUEENS QUEENST 101 102
This would create the file QUEENS.RUN (.SV on the Nova), an cxccutable save file, from the BCPL
relocatable binary files QUEENS.BR, etc. The /1./V switches creatc a symbol table file named
QUEENS.BS, containing information about where things will be in core when the program runs. A typical
38 file listing is attached. "The /1D switch on the Nova loads the debugger.
BLLDR will accept concatenated .BR files as well as .BR files created directly by the compiler. That is, if
FLBR, F2.BR, ..., Fn.BR arc all BCPL. rclocatable binary files, and F.BR is their concatenation, then
inctuding 17 in a BL.DR command has the same effect as including Il 2 ... Fn. The purpose of thisfeature

is to allow multi-file subroutine packages of BCPL routines to be distributed as onc file rather than asa
collection of files.

9-2....... Errors
Errors in the command line to BILDR are fatal; the loader immediately aborts. Most such crrors will result
in a message like
Bad switch I. in QUELINS/I./S
Undeflined file names, and other operating system-detected errors will result in something like
Cannot open QUEENS.BR
Fatal crror messages arc always printed on the terminal.

The loader detects two types of cxternal name conflicts. If an external name is defined (by "static

9.1

Reviscd BCPL. Manual LLOADING
[name = ..]" or by "let name (...) be ...") in more than one rclocatable binary file, the loader gencrates a
message like ‘
QUIEENS2.BR
The EXTERNAL NAME name was also defined in QUEENS1.BR
for cach such conflict detected in QUEENS2. On the Aito, the static for "name" will contain the first valuc
iven it. 1f an external name is declared to be a common (page zero) variable in some files (by "external
@name; ...]") but not in the first filc in which the name appears, the loader genrates a message like
QUIEENS2.BR
The COMMON NAME name was not declared COMMON in QUEENS1.BR
These messages appear in the .BS file if onc is being created; the message
n errors during loading

is printed on the terminal if any name conflicts are detected. You must recompile the offending files and
reload before attempting to run the program.

Fxternal names which have been used but not defined result in the message
n undefined externals

being printed on the terminal. The names arc listed in the \BS file if onc is being created; or on theterminal
otherwisc.

‘The loader also gencrates "warnings” if it detects space allocation conflicts in the save file being created.
The most commion of these are

Not enough COMMON space
if too many common (page zcro) variables have been declared, and

Not cnough STATIC space was reserved
if too many non-page-zero statics have been used. The available page zero space cannot be increased; you
must redefine some common variables to be ordinary statics. "The space reserved for statics can be specified
with the local /W switch; sce below for this and for other space allocation controls.
The error, warning, and undecfined/multiple-definition error counts are separate; if you are told that was

one undefined external and one crror, there are two things wrong. The crror being reported is not the
undcfined cxternal but a different one,

9-3....... Global switches

/D (Nova only) Load the Nova debugger into the save file. This switch is legal only if no
asscmbly language file is specified with the /1 switch; if you load assembly language
programs, you should inciude the debugger when you load them with 120S’s RLDR.
This switch is not nceded on the Alto, since debugging is donc with Swat.

/U Convert the names of all external symbols to upper case. This is nceded, for example;if

9.2

Revised BCPL Manual LOADING

/W

/1L/V/N

/T

/¥

/M
/K

/R

/B

/1

you are loading the DOS 10 package (101, 102) with programs written in upper casc;
the 1O procedure names in your files are upper case, but in 101 and 102 they are
defined in lower case. Without /U, the upper case externals in your programs would be
ux(l:dcﬁncd). (Alternatively, you could recompile the 10 package source files with
BCPL/U,

Do not print warning messages. Normally the loader will tell you if you do somcthing
suspicious, like loading a program on top of something clse. 1f you know whai you are
doing, and if the warning messages bother you, you can turn them off with /W.

Generate lists of static variable names. /L prints procedure and label names, sorted by
the location of the procedure or label in the code; the /L. listing is, in cffect, a core map.
/V prints non-procedurc names (variables). /N prints all static names, sorted by
address. 'The most useful combination is /1./V; it lists all statics, separating procedure
names from variable names. The listings go to the file "savefilename.BS" unless the /T
switch is used.

All printed loader output (crrors, warnings, and listings) is sent to the terminal.
Normally, if listings are requested, they are sent to a file. Error and warning messages,
and other load map data if there are no listings, normally go to the terminal,

All printed output is sent to the file "savefilename.BS", except for fatal error messages,
which always go 10 the terminal, :

(Alto only) Don’t produce a .SYMS file.

(Alto only) Don’t read SYS.BK. (The facilitics of the Alto operating system arc made
accessible to user programs via static variables that refer to system procedures or system
scalars. Because these objects are not defined in a user’s Bepl program, he mustdeclare
the names to be external. The loader automatically reads the file Sys.bk to determine
how to match up the user’s references with the opcrating system objects. T'his
arrangement does not require re-loading programs when objects in the operating system
move. The K switch should only be used if you do not want the loader to perform this
scrvice for you, ¢.g., if you arc loading the operating system itsclf.) '

(Alto only) Don’t complain if the same BR file name appears more than once in the file
list (presumably in different overlays). Load the code cach time it appears, but only-
allocate the statics once. Each such static, like any multiply defined static, will contain
the first valuc assigned to it. This is relevant only if at least one of the occurrences ofthe
BR file is in resident (non-overlay) code.

(Alto only) Append overlay files to the RUN file instcad of creating scparate BB files.
liach overlay will start on a new disk page.

(Alto only) Initialize all code-pointing statics defincd in Type B overlays to point to the
procedure SwappedOut, which had better be defined in the resident code.

94....... Local switches -- group 1

‘These switches provide global information to the loader. All occurrences of these switches must appear
before any of the group 2 switches, and before the first relocatable binary file name.

name/S

The name of the save file to be created. (If not specified, the name of the first
rclocatable binary file is used.) If "name" has no cxtension, .RUN is used (.SV on the

93

Revised BCPL. Manual) - LOADING

name/F

namc/1

namc/U

number/N

number/C

number/7,

number/V

number/W

number/J

number/K

name/M

number/O

Nova). The "name" will also be used for the name of the .BS file unless the local /F
switch is used, and on the Alto for the .SYMS file, unless the /M switch is used.

All output is sent to the file "name". If "name" has no extension, .BS is used.

(Nova only) Assembly language file. The file "name" (cxtension .SV if "name" has
none) is assumed to be a Nova save file. The save file created by BLDR is initialized to
the contents of this file (except for locations 300-377) at the beginning of loading. I1fthe
Nova debugger is to be loaded, it must have been loaded with the /1 file. 1fno /1 fileis
specified, a blank save file (BLDR.YI) is used, or if the global switch /1D is specificd,

(Nova only) BCPL. runtime routines. This switch allows the user to replace the standard
runtime routines (get new frame, multiply, etc.) with his own. (These normally come
from BLDR.YU.) The specified file is a Nova save file, but it is special in several
respects. :

Maximum number of names allowed (octat). The default is 1000 (512 decimal). BLDR
must allocate a certain amount of fixed space for cach name, and must also have room
for the name strings themselves. 1f you have a large number of long names, BLIDR may
run out of room, and print a storage exhausted message; or you may have more than
512 names. In either case, you may be able to load by adjusting the number of names
allowed with /N. You may also be able to get more room with /C, if none of your .BR
files have as much as 5000 words of code. (The /N switch does not affect the default
/W valuc - sce below).

Maximum (octal) size of code in a single .BR file. The default is S000. The /C switch is
uscful either if you have an especially big .BR file, or if you need more name space (see
/N). (The compiler message "QUEENS.BR -- 1426 (790) WORDS" indicates the size
of the code compiled, in octal and decimat).

The (octal) starting address for allocating common (page zero static variables). If not
specified, common starts at octal 50 on the Alto, and on the Nova at ZMAX of the /I
file, which is 60 if global /1) is specified, 50 otherwise.

The (octal) starting address for allocating static variables. If not specified, statics start
on the Alto at octal 1000, and on the Nova just after the BCPI. runtime routines (which
arc loaded just after the /I file).

The maximum number (octal) of non-page-zero static variables. The default is 400 (256
decimal). If no /V is speceified, this amount of space is reserved in the save file at the
default starting address for statics; code will be loaded after this space unless /O isgiven
on the Alto, or /P is given on the Nova. If the starting address for statics is specified
with 7V, it is the user’s responsibility to sec that enough space is left for static variables
at th]at address; /W is then just used in checking that static and code space do not
overlap,

gNova only) The maximum number (octal) of overlay files permitted. The default is 10
8 decimal).

(Nova only) The maximum number (octal) of .BR files which may be loaded.

?l;o only) The first name of the SYMS file (defaults to the same name as the RUN
ile).

(Alto ;mly) The location to start loading code (instead of its usual place right after the
statics).

9.4

Revised BCPL Manual LOADING

These switches control the loading of BCPI. code into the save file. The loader also has facilitics forcreating
"overlay” files to allow code to be swapped in dynamically; sec the scction on overlays below.

name (no switches) A BCPL relocatable binary file, If "name™ has no extension, .BR is assumed (this

name/I

number/P

$number/P

letter/Q
letter/X
lcttcf/ Y

letter/P

is the extension normally used by tuc compiler). The code in the file is loaded into the
save file at the current PC., ,
The file "name.BR" is considered to be the beginning of a serics of "initialization code"
files which cxtends to the cnd of the resident or of the A-overlay code in which the
name appcears. A rclocation table (sec Overlays, below) will be appended after thecode
of the scrics. 'The table will contain a pair [static address, relative PC] for cach code-
pointing static defined since the last /1. The idea is that your program after
initialization can set all the those statics to point to SwappedOut (sce Global Switch /1).

Set the current PC to "number” (octal),

Add "number" to the current PC. No spaces may appear between the "$" and the
"number”.

The "letter” is a single character A-Z. These switches associate the current PC with the
letter so that the PC can later be restored with the form of /P described below, /Qusces
the valuc of the current PC; /X uses the larger of the current PC and the valuc (if any)
currently associated with the "letter”; /Y uscs the smaller of the current PC and the
current value of the "letter”.

Sct the current PC to the valuc last assigned to the "letter” by /Q, /X, or /Y. If no
valuc has been assigned, an crror is reported.

The final PC valuc, after all files have been loaded (not counting the overlays on the Alto), is taken asthe
address of the start of frame space when the program exccutes. (This valuc can be changed on the Nova
with a final /P spccification.) Exccution will begin with the first procedure defined in the first relocatable

binary file loaded.

contents are:
word 0:

word 25:
word 26:
word 27:
word 28:
word 29:
word 30:
word 31:

This procedure will be called with onc argument, a 32 (decimal) word vector whose

The last value assigned to "A" by /Q, /X, or /Y.

The tast value assigned to "Z" by /Q, /X, or /Y.

The address at which statics were loaded.

The address of the last static variable.

The address of the first procedure loaded.

'The address (4 1) of the last word of BCPL. code loaded.
The final value of PC (frame space start on the Nova).

The highest memory address available on the Nova,

the location of the relocation table if /1 was used on the Alto.

9.5

Revised BCPL Manual LOADING
96....... Nova Save file image

The save file produced by BLDR on the Nova looks just like an ordinary Nova save file. The core imageit
produccs is organized as follows (all numbers arc octal):

0..15
(Not part of a save file. Nova save files start with location 16; DOS considers tocations
0-15 sacred. The addressess listed below are core addresses; subtract 16 (octal) if you
arc looking at the save file itself (¢.g., with OEDIT).

16...277
An image of thesc words from the /1 file. Common variables will normally be allocated
starting at ZMAX, the first page zero ((ZREL) location not used by the /1 file; this can
be changed by the /7 switch to BLLDR.

300...377
Rescrved part of page zero (used by the BCPL runtime routines). You should refrain
from clobbering these locations, unless you know what you are doing. locations
340-377 arc relocated by BLDR to point at various runtime routines.

400..7717
An image of these words from the /1 file. DOS depends heavily on this page being
correct, so users should not clobber it. BLLDR fixes a fcw words in this page to make the
save file look as if it was created by the Nova loader.

1000-NMAX-1
An image of the rest of the /I file. NMAX /Is the first unused word of the /1 file. If
there is no /1 file, NMAX will be approximately 4300 if /1D was used (the debugger is
about 3300 words long), 1000 otherwisc.

NMAX..UMAX-1
The BCPI. runtime routines. These currently are about 700 words long.

UMAX..VMAX-1 (if /V was not used)
Space for static variables, unless the slarting address for statics was explicitly specified
by /V. "Thesize of the space reserved (VMAX-UMAX) is 400, unless changed with /W,

VMAX... (if /V was not uscd)

UMAX... (if /V was uscd)
The default starting address for loading BCPL code. If the group 1 switch specifications
arc followed by just a list of file names, the BCPL. code will be loaded scquentialty
starting here, unless the PC is changed with /P,

The format of an Alto save file is described in the Alto Operating System Reference Manual, section 4.9.

ATl occurrences of these switches must appear after all .BR file names which are to be loaded into the
"resident” save file have been specified.

namc/A Create the file "name” (cxtension BB if "name"” has no cxtension) and load the

following rclocatable binary files sequentially into that file. The code is intended to be
rcad into core and run at the current value of PC; procedures and labels defined in the

9.6

Revised BCPL. Manual [LOADING

name/B

files loaded into "name" will point at this arca of core. The PC should not be changed
(with /P) between the .BR files. The file "name" (or the subfile of thc RUN file if
Global /B was uscd) has the format: :

word 0: value of PC at the first .BR file loaded

word 1: length of the code in words

word 2: 0 (this word is 1 for a /B file - sec below)

word 3: L., the word at which the relocation table starts, if any
word 4: length of the file or subfile in words :

word 5: Bagc number of this disk page on the Alto, 0 on the Nova
word 6:

word 15:- 0
word 16: (this is the first word of code)

(if" there is a relocation table, sce below)

N.B.: The first word of the code for cach .BR file is the length of the code for that file;
the second word is executable,

Similar to /A, but in additicu, the file "name” contains information about which
procedure and label pointers must be fixed when the code is read into core. /B is used
when the place at which the code will be exccuted is not known at load-time.

All code compiled by BCPI. is self-relocating; that is, the code contains no absolute
addresses which point at the code. The only words which must point into the code are
the static variables which are defined as procedures and labels, Thercefore, in order to
dynamically rclocate the code from one or more .BR files, all that is necessary is to
initializc the procedure and label variables defined in the .BR files. This is the purpose
of the relocation pair list at the end of a /B file.

word 0: valuc of PC at the first .BR file

word 1; length of code in words

word 2: 1 (to distinguish between /A and /B files)

word 3: L., the word at which the relocation table starts

word 4: Iength of the file or subfile in words

word 5: gagc number of this disk page on the Alto, 0 on the Nova
word 6:

word 15; 0

word 16; (this is the first word of code)

word L: number of relocation pairs N
word [.+1: static address
word L.42: rclative PC

word L+N*2-1; static address
word 1.+ N*2: relative PC

When the code is read in at location P, cach "static address” must be set to P+ "relative
PC", so that the procedures and labels which reference the code will point to thecorrect
places. The following procedure will do this on the Nova; it assumes the standard 10
package and a routine to get a block of storage from someplace in core.

let swapin{filename) be
let channel=open{filename)
let header=vec 15

readseq(channel header 1shift 1,32) //read 16 word header
let length=header!1 //1ength of code
let codestart=getblock({length) //get core for code

9.7

Revised BCPL Manual LOADING

readseq{channel,codestart 1shift 1,length*2) //read code

setpos{channel,header!3 Ishift 1) //get to relocation info
let n=readbin(channel) //number of pairs
for i=1 to n do
[let p=readbin(channel) //static address to fix
let codeaddr=readbin(channel) //offset in code:
@p=codeaddr+codestart //fix static variable
close(channel)
]
It should be noted that string constants and labcl constants arc part of the code BCPL.
compiles; the pointer to the constant block is recomputed cach time the string or table
expression is evaluated. So non-resident code must be careful about its use of strings
and tables.
Although the relocation pair table is the actual authority for producing correct addresses
in statics that reference overlay code, a better BS file listing will result if each name/B
entry is followed by 0/P, to resct the PC value assigned during the load.
9-8....... Alto Operating System Linkage

To facilitate operating system linkage, two kinds of text files are accepted by BLLDR: files specifying static
locations (.BJ files) and files specifying static values (.BK files). The former arc specificd by filename/J or
filcname/IH and the latter by filecname/K. All the BJ files must precede the first BR and all the BK files
must follow the last BR1! Remember that the loader automatically reads SYS.BK at the very end, unless
Global /K has been specified.

The format of a typical linc in a BJ or a BK file is:
staticName octalNumber(s) codes

A Bl line is ignored unless the staticName is declared external in some BR, A BK line is ignored unlessthe
staticName is declared external in some BR and is never defined in any BR or BJ. Thus, a BJ file specifics
only the locations of operating system statics defined and/or referenced in the program, while the BK serves
to initialize only operating system statics referenced but not defined in the program,

In a BJ file, the last octalNumbcer on cach line specifies the location at which the loader should allocate the
static staticName. In a BK file, the first octalNumber specifics the initial value of the staticName. The first-
last rule is framed to allow simple construction of these text files by editing a BS file.

The recognized "codes™ on cach line of a BJ file are as follows (note: if a BJ file is cited as filename/H, all
codes arc ignored, and the default is invoked):
U=UND=UNDEF
b V(dcﬁmll)'l‘hc staticName must be defined in this load.
Another load (the operating system) defines the staticName to be a
procedure (P), label (1), or variable (V); it must not be defined here
R (with P orl)
The static points to rclocatable code

The codes on cach linc of a BK file arce as follows:
P(default), 1.,V
Another load (the operating system) defines the staticName to be a
procedure (P), label (1), or variable (V)

9.8

Revised BCPL. Manual 1L.LOADING
R(withPorl)
The static points to rclocatable code
Unrecognized codes are ignored.

To simplify the composition of the text files, there are "bases” which are added to cach octalNumber. The
bascs arc specified by individual lines of the form:

octalNumbcr
Comments may be included in a text file between / and carriage return.

The loader cannot initialize a static unless it is in the static area of memory. Thus, UND entrics in a BJ file
which place a code-pointing or initialized static outside the legal arca result in a warning message.

The loader keeps track of the minimum and maximum locations in the static arca that arc mentioned in BJ
files (including those statics unuscd in any BR), and avoids allocating statics in that region thereafler,

The way the loader informs the operating system of the linkages is by listing the addresses of ail statics
initialized by BK entrics in a table appended to the resident code (after the relocation table, if /1 is used)and
recording the number of these statics in the file header. The operating system assumes that the values of
those statics arc really "indices™ into a static arca in the OS (in which order will not change) from which the
contents of the designated OS statics arc copied into the corresponding uscr program statics.

9.9

Revised BCPL Manual

SECTION 10
RUNTIME ENVIRONMENT

10-1....... Procedure Frame Format

Whenever code compiled by BCPL. is being executed, AC2 points to the first word of the frame for the

procedure which owns the code. (AC2 is not changed by "goto,” so one should not jump across procedure

boundarics; no check is made for this cither at compile time or run time.) While the procedure Q isrunning

g.c. alter a call has been exccuted from the procedure P and Q’s frame is initialized), the frame belongingto
contains:

(AC2)+0: address of P’s frame

(AC2)+1: (temp -- sce below
AC2)+2: (temp -- sce below
AC2)+3: (temp -- sce below
AC2)+4,5,.. arguments passed to Q by P
. dynamic variables for Q

dynamic temps nceded by Q
vectors declared in Q

The frame belonging to P, the procedure that called Q, contains:

word 0: address of the frame of P’s caller

word 1: address (-1) within P to which Q should return
word 2: Eaddrcss (+2) of the start of P)

word 3: temp uscd by P to pass arguments to Q)

word 4,5,... arguments, dynamic variables, temps, vectors for P

The frames belonging to P’s caller and carlier ancestors of P have the same format as P's frame. The only
uscful information contained in the frame of the procedure currently exccuting (Q) is word 0; the return
address for Q is in P’s frame, not in the current frame. Words 2 and 3 of ’s frame need not be preserved by
Q once Q's frame has been allocated. Words 1, 2 and 3 of Q’s frame arc available as temps for the BCPL
runtime routines (and for users’ machinc-language procedures -- see below) while Q is running.

10-2....... Procedure Calls

Assume that Q is the currently exccuting procedure, and that Q is about to call the function R with two
arguments: z=R(x,y). (Calls with more than two arguments will be described below.) The code in Q for
this statement will look somecthing like this (assuming x, y and z arc dircctly addressable):

1.DA 0,x //putargl in ACO

1.DA Ly //put arg2 in ACI

JSR @R //call R (R points to first instruction)
2 //number of arguments passed

STA 0,z //store result passed back in ACO

The JSR will transfer to the following code in R:
STA 3,1,2 //save return address (in Qs frame)
10.1

Revised BCPL Manual RUNTIME ENVIRONMENT

JSR @370 //set up R’s frame
n //size of framc needed by R
JSR @367 //(not exccuted unless >3 arguments)

(first instruction in R’s body)

The "getframe™ routine, pointed to by location 370, docs most of the work for entering a procedure. Its
responsibilitics arce to set AC2 to point to a block of storage at least n words long for R’s frame, to save the
original contents of AC2 (QQ’s frame pointer) in word 0 of R’s frame, and to store the two arguments passed
to R in words 4 and 5 of R’s new frame. (If there are more than three arguments, "getframe” exccutes the
JSR @367 to store the additional arguments into R’s frame; otherwise the JSR @367 is skipped.) The
"getframe” routine returns, in ACO, the actual number of arguments passed to R. If R has declared a
"numargs” variable, the first instruction in R stores ACO into this variable.

After "getframe™ is finished, the body of R is exccuted. R returns by exccuting JSR @366, with its resultin
ACOQif it is a function. ‘This "return™ routine must deallocate R’s frame, restore Q’s frame pointer to AC2,
and return to Q at the focation (4 1) pointed to by word 1 of Q’s frame.

For procedure calls which pass zero or onc arguments, the above discussion applics as well; ACO and/or
ACt are simply not loaded by Q, and arc ignored by "getframe."”

FFor procedure calls with exactly three arguments, ACO and ACI arc loaded with the first tv. o argumentsas
above, and the third argument is passed to R by Q in word 3 of Q's frame. In this case, in addition to the
chores mentioned above, "getframe” copies this word to word 6 of R’s new frame (word 6 is the location for
putting the third argument). The code in Q for a call a=R(x,y,z) might look like:

1.DA 0x //putargl in ACO
LDAly //put arg2 in AC1
[.LDA 3,2 //put argld in word 3 of
STA 33,2 //Q’s frame

JSR @R //call R

3 //3 arguments to R
STAO,a //store result

(The code might be more complex that this if onc or more of the arguments is not a simplc variable.)

FFor procedure calls with N arguments (N>3), the calling sequence is more complicated. N-+1 consccutive
cells are reserved (as dynamic temps) in Q’s frame, starting at word L of the frame. (L. is not nccessarily the
same for every call.) Arguments 3 through N are stored by Q in cells L+3 through L4 N of Q’s frame;
arguments 1 and 2 arc loaded into ACO and ACI; and the number 1. is stored in word 3 of Qs frame.
(Words L., 1.+1 and 1.--2 in Q’s frame arc available as temps for “getframe.”) So the code for
a=R(z1,72,23,74,25) might look something likc:

JA 0,23 //storc args 3,4,5 in Q’s frame

i,KI, //K1. contains thec number L
3.2 //pass offset of args to R
; //putargs 1 and 2 in AC’s

STA 0,a
So for calls with more than three arguments, "getframe” must move arguments 3 through N from Q’s frame

into words 0 through 6+ N-2 of the new frame for R. This is done by the "moveargs” routine (pointed toby
location 367) after "getframe™ has created the new frame. (The "moveargs” routine is used, rather than

10.2

Revised BCPL Manual RUNTIME ENVIRONMENT

having "getframe” itself move the arguments, for historical reasons. The "moveargs" routine, like
"getframe,” must return in ACO the number of arguments passed to R.)

Nothing in the above description of procedure frames and procedure calls depends on where or how frame
space is allocated by "getframe” and deallocated by "return.” In addition, the code compiled by BCPL
makes no assumptions about frame allocation; a BCPI. procedure simply assumes that the standard four-
instruction preface will set up its frame and that the standard return instruction will deatlocate it and restore
the statc of the caller. By replacing the standard "getframe,” "moveargs™ and "return” routines (c.g., by
changing locations 366, 367 and 370), the user can tailor frame allocation strategy to special needs.

10-3....... Frame Allocation on the Nova

The standard Nova BCPIL. "getframe" allocates frames on a stack which starts from the final PC valuc seen
by BILDR and grows toward address #77777. When "getframe™ allocates a new frame, it checks to sec that
the last word of the frame is not beyond the address contained in location 335; if it is, "getframe" printsa
message indicating that the program has run out of frame space, and aborts cxccution, Location 335 is
initialized to point at the highest memory address available (not used by 1D0S). Normally, all available
memory is assumed to be devoted to frame space. However, by adjusting the contents of location 335, a
program can reserve storage for itself (e.g., the statement @#335=@# 335-# 10000 reserves # 10000
additional cclls, starting at location @ # 335 (after the statement is executed)).

The page zero location 336 points to the location which will be the first word of the frame for the next

procedure called. So when location 335 is adjusted, the program should check the contents of location 336
to sec if the desired space is available: @# 336 must be less than @ # 335.

103

Revised BCPL Manual

SECTION 11
NOVA 170 and UTILITY ROUTINES

11-1....... Introduction

This section describes a number of routines which have been written to provide limited but useful runtime
support for Nova BCPL programs. In many cases, the routines are very similar to the actual assembly-
language 1DOS system call, or arc obvious cxtensions of the DOS function. Routines have been written to
do many 1/0 functions and a few string functions. Limited formatted 170 functions have been
implemented using gencral string and integer conversion routines.

Before calling any of the 170 runtime routines, the routine initbeplio must be called to sct up several global
variables. The 170 crrors arc handled by the routine whose address is in syserror. This routine isnormally
iocrror, a routine which corrects some inadequacics of the DOS error-handling facility, and optionally prints
procedure information. Input routines do not consider end of file to be an error and return thisinformation
through a byte count indicating how many bytes were actually read, or a special ASCII character. Frrors
may be captured by changing the routine in syserror to one of the user’s routines or by sctting syscrrorlrap
to "falsc.,” If this is dong, aflter an 1/0 routine is called, the location syscrrorflag will be false if no errorhas
occured, but otherwisc will be true; syscrrorvalue will have the error value from AC2 after the DOS system
call. End of file will be shown as an error when this facility is used. For doing routine tasks, the default
error routine will be adequate.

DOS strings are not compatible with BCPL. strings. All the 1/0 routines accept BCPL strings and convert
them to 1JOS strings when necessary, with the exception of readline and writeline (see description of those
procedurcs).

The procedure descriptions will, in many cascs carry a cross-reference note to the 1DOS manual of the form
DOS:ch-pp. In general, all procedure arguments must be given; in a few specific cases, optionalarguments
arc permitted -- these are indicated by brackets ([]). 'The DOS channel for an open file is an argument to
many of the routines; it is always called "chno."” When using routines in which the "chno™ description is
marked with an asterisk (*), if the value of "chno” given is -1, the system teletype will be used (viaPCHAR
and GCHAR DOS functions). Thus, for simple teletype [70 it is unnecessary to open a channcl.

The routines are contained in the files 101 and 102. 10X is a file containing external definitions that canbe
included in a BCPL. program with the "get” statcment,

11-2....... Global Names
sysac

The accumulators used for system calls to DOS. Not gencrally useful except inside the runtime
routines.

syscrrorflag o
If sct after a system call, an error has occurred. This will be truc independent of the state of
syscrrortrap. ‘The value of the error will be in syserrorvalue until another error occurs.

syscrrorvalue
If syscrror flag is sct after a system call, this static contains the value of the error, This valuc isconstant
until another error occurs.

11.1

Revised BCPL Manual NOVA 170 and UTILITY ROUTINES

syserrortrap
If this static is sct to true, the routine iocrror will print an appropriate error message and return to1DOS
CLIL If sct to false, iocrror will simply return. If ioerror is called by the uscr program with a single
parameter, iocrror is called by the user program with a single paramcter, iocrror behaves as if
syscrrortrap were sct to truc. [For more information scc ioerror(syserrorvalue).

sysprintpc
If set to true, ioerror will print the addresses of thie system procedure from the runtime 1/0 and the
uscr procedure which caused the error, This is the variable which is set to true by initbcplio(2).

filcnamelength
The maximum length of DOS filenames--manifest constant which may be used for allocating vectors
to reccive DOS file names.

11-3....... Procedures
nbytes = readcomem(chno, string [, switches])
Purposec: To read argumcnts and switches from the 1DOS command file, COM.CM
chno 1DOS channel number, previously opened to file COM.CM
string A BCPL. vector for the name read from COM.CM (may be allocated with vee
filenamclength).
switches A 26 clement boolean vector in which cach clement corresponds to the
: alphabetic character for the switch,
nbytes The number of bytes actually read is returned.
initbeplio(mode)
Purpose: To initialize various constants necded by the runtime 170 routines. TFailure to
invoke this routine will 1cad to system crashes at undefined times!
modec 1 - normal mode; error messages will be given normally. 2 - diagnostic mode;

stack information will be printed if this mode is sct. Mode¢ 2 may also be invoked
by sctting sysprintpc to true.

char = rcadch(chno)

Purpose: To read onc 8 bit character from channcl chno previously openced to a DOS file.
chno * A 1DOS channcl number 0-7.
char The 8 bit character read from the channel.
writcch(chno,char)
Purpose: 'T'o write onc 8 bit character from channcl chno prcv1()usly opened to a DOS file.
chno * A DOS channel number 0-7.
char The 8 bit character to be written,
rbytes = rcadseq(chno, bytepointer, nbytes) 1DOS:4-14
Purposc: Read a number of bytes using the DOS .RDS command.
chno A DOS channcl number 0-7.
bytepointer 1DOS byte pointer to the first byte involved in the transfer.,
nbytes Number of bytes to be read.
rbytes Number of bytes actually read--must be used to detect end of file,
writeseq(chno, bytepointer, nbytes) 1D0S:4-18
Purposc: : Writc a number of bytes using the DOS \WRS command.
chno A DOS channel number 0-7. '
bytepointer DOS byte pointer to the first byte involved in the transfer.
nbytcs : Number of bytes to be written.

nbytes = readline(chno, string|, true/falsc]) 1D0S:4-13
11.2

Revised BCPL Manual NOVA 170 and UTILITY ROUTINES

Purposc: To rcad a string terminated by a carriage return from a DOS file,

chno A DOS channel number 0-7.

string A BCPL vector with cnough space to receive the input string,

truc/falsc If truc, the TRUE DOS rcadline function is exccuted. The .RDI. function

terminates on NUILL as well as form feed, carriage return and end of file. One
usually does not want to deal with this function. If falsc or absent, the NULL
termination is removed.

nbytes If 1, a terminator has been received. The last character in the string riceived is
cither carr iage return or form feed (or NULI if the true .RID1) or carriage return
followed by # 377 if end of file.

writcline(chno, string) DOS:4-17
Purposc: Write a string which MUST be terminated by a carriage return, null or form feed
to the DOS channel previously opened. DOS interprets tabs form feeds for
certain devices.

chno A DOS channel number 0-7.
string A BCPL string or vector which must be terminated as specificd for readline.
writestr{chno, string)
Purpose: Write any BCPL string. A linc feed is unconditionally issucd following every
carriage rcturn character.,
chno * A DOS channcel number 0-7.
string A BCPI, string or vector which must be terminated as specificd above.
writczoct(chno, number)
Purpose: Write a six digit unsigned octal number with Icading zerocs.
chno * A DOS channel number 0-7.
number 16 bit quantity.
writcdec(chno, number], space])
Purposc: Write a signed decimal number with fixed or variablc spacing.
chno * A DOS channcl number 0-7.
string 16 bit quantnty
spacc Nug]bcx of spaces to be used. If missing or zero, a variable number of spaces are
usc
writcoct(chno, numbet|, spacc))- ‘
Purposc: Write a signed octal number with fixed or variable spacing.
chno * A DOS channel number 0-7.
number 16 btit quantity.
space Nut{lbcr of spaces to be used. If missing or zcro, a variable number of spaces arc
uscc
writeform(chno, formatcode, data[, formatcode, data...])
Purpose: Write a group of string or 16 bit data to thc channcl as specified by the
formatcodes.
chno * A DOS channcl number 0-7.
formatcode 0 - data following is string data. 2-10 - data following is a 16 bit quantity to be

displayed in that radix.

writevatue(chno, number, rdx], space])

Purpose: Write a 16 bit signed number in arbitrary radix (2-10) using fixed or vauablc
spacing,.

chno * A DOS channel number 0-7.

number A 16 bit signed quantity.

rdx An arbitrary radix 2-10.,

space : ‘The number of spaces to be used. If the argument is missing or 0, a variable

number of spaccs will be used.
word = rcadbin(chno)

11.3

Revised BCPL Manual NOVA 170 and UTILITY ROUTINES

Purpose: Recad a 16 bit quantity from the DOS channel. No cnd of file detection is
provided except by capturing the error with syserrortrap.
chno A DOS channel number 0-7.
word A 16 bit quantity rcad from the file.
writcbin(chno, word)
Purpose: Write a 16 bit quantity to the specificd channel,
chno A DOS channel number 0-7,
word A 16 bit quantity to be written.
chno = open(namc) 1DOS:4-10
Purpose; Open a DOS file to a channet selected by the runtime routines.
name Any BCPI. string which is a legal DOS file name. Device specifier must be
upper case, ¢.g., DP0--all other characters are translated to upper case.
chno A DOS channel number 0-7 returned specifying the channel number to be used.
chno = append(name) 1DOS:4-11
Purposc: Re-open a DOS file to a channel selected by the runtime routines. Writing will
. begin following the last character in the existing file.
name Any BCPL string which is a legal DOS file name. Device specifier must be
upper casc, ¢.g., 1P0--al. other characters are translated to upper case.
chno A DOS channel number 0-7 returned specifying the channel number to be used.
nbyles = curpos(chno)
Purposc: Return the current byte position of a DOS file.
chno A DOS channcl 0-7.
nbytes Current byte pointer for the file.
sctpos(chno, nbytes)
Purposc: Sct the current byte position of a DOS file.
chno DOS channel 0-7.
nbytes Current byte pointer for the file.
curposdw(chno, doublewordvector)
Purposc: Return the current block and byte number of a DOS file in a BCPL. vector to
' overcome the lack of double precision integers in BCPI..
chno A DOS channel 0-7.
doublewordvector A 2 word BCPL vector giving the block number in word 0 and the byte number
in word 1.
sctposdw(chno, doublewordvector)
Purpose: Sct the current block and byte number of a 1DOS file in a BCPL vector to
overcome the lack of double precision integers in BCPL.
chno A DOS channel 0-7. .
doublewordvector A 2 word BCPL vector giving the block number in word 0 and the byte number
in word 1.
createfile(name) DOS:4-6
Purposc: Creatc a DOS file,
name A legal DOS file name.
deletefile(name) DOS:4-7
Purpose: Creatc a DOS file.
name A legal DOS file name,
initdev(namc) DOS:4-4
Purposc: Initialize a DOS device.
name A legal DOS device name.
directorydev(name) DOS:4-4

114

Revised BCPL Manual

NOVA 170 and UTILITY ROUTINES

Purpose: Change the default directory to the indicated device.
name A legal DOS device name,
releascdev(name) DOS:4-5
Purposc: Relcase a device.
name A legal DOS device name,
renamefile(name,newnamc) DOS:4-7
Purposc: Change the name of an existing DOS file.
name A legal DOS file name.
close(chno) DOS:4-12
Purposc: Close an 170 channel to further use until re-opened.
chno A legal DOS channel number (0-7).
resctfiles() DOS:4-13
Purpose: Closc all 170 channels to further use until re-opened.
crrvalue = systemcall(ac0, acl, ac2, syscallname, crr) DO0S:4-1
Purposc: Generate a DOS system call directly.
ac0 NOVA ac 0 to be passed as part of the system call.
acl NOVA ac 1.
ac2 NOVA ac 2.
syscallname A name from the list of system calls contained in jox, generally, the DOS
mnemonic preceded by "sys"--e.g., sysrdl for RIDI.. These arc manifest
constants defined in 10X,
crr The BCPL. procedure to be called in the event of an error return from the system
call.
crrvaluc The crror value if an error occurs, otherwise -1. The crror code is returned in

global vector SYSAC!2 and in the global variables syscrrorflag and syscrrorvaluc.
If syserrorflag is set, sysercorvalue contains the value of the crror. syserrorvalue
will not be changed, but SYSAC!2 will be changed with every system call.

ioerror(syscallname, sysac) or (syserrorvalue)

Purposc:

syscallname
SySac
syserrorvalue

install{chno)
Purpose:
chno

chatr(chno, ac0)
Purposc:
chno
ac0

ac0 = petfilcatr(chno)
Purposc:

Writes an crror message to the teletype output device. Most messages are
generated by DOS, but in a few cascs, iocrror gencrates the correct message. If
called with 2 parameters, the error value is taken from the vector specified by
sysac and in some cases the name specified by sysac. If called with 1 paramcter,
the crror valuc is taken to be the value of that paramcter and if needed
syserrornaine will be used. [If syserrortrap is sct to false, this routine will simply
return when called with TWO paraincters, The routine is exccuted
unconditionally if called with only on¢ parameter.

The DOS system call used to generate the crror.

The system call accumulator vector. ~

The error valuc which may be given directly in licu of the two above.

DOS:4-5
Instalt a DOS on the default directory device.
‘The DOS channel previously opened to the DOS to be installed.

D0S:4-8 _
Change the attributes of a DOS file. :
A DOS channel previously opened to the file to be changed.
The value for ac0 as specified in the DOS manual for file attributes;
R=#100000, S=#020000, P=#000002, W=#000001. WARNING: if
040000 (bit 1) is set and the file'is permanent, it cannot be removed except by a
full initialization of the directory!111111!

DOS:4-9
Returns the attributes of a DOS file.

11.5

Revised BCPL Manual

chno
ac0

incr = memavail()
Purpose:
ncr

memincr(incr)
Purpose:
incr

dosexce(name, acl)
Purpose:
name
acl

dosrcturn()
Purpose:

doscreturn(ac?)
Purpose:

ac2

dosbreak()
Purpose:

word == strtovaluc(string],

Purposc:
string

NOVA 170 and UTILITY ROUTINES

A DOS channel previously opened to the file in question,
The word returned with meanings defined by the DOS manual.

DOS:4-21
Returns the amount of available memory for the user program,
The increment of available memory.

DOS:4-21
Change the amount of user available memory.,
The increment of memory to be claimed.

DOS:4-23
Fxecute a DOS save file.
The name of a 1DOS save file to be exccuted.
The value for acl as specified by the DOS manual. If missing, 0 will be used so
that the current exccution level is pushed to the disk and the next save file will be
started at its normal slarting address.

DOS:4-24
Return control to DOS CLI.

DOS:4-24
Return control to DOS giving an crror code. The common crror messages will
be misprinted due to DOS assumptions about file names.
The error value to be returned.

DOS:4-25
with a resetfiles command if the file is to be re-cxecuted.
radix])

Convert a signed string to a 16 bit integer in the specified radix.
The BCPL. string to be converted.

radixl'he radix of the conversion. If unspecified, 8 is assuned.

word

A 16 bit word having the converted value.

valuctostr{word, string, radix[, spacc])

Purpose:

word
string

radix
space

packstr{ustring, pstring)
Purpose:
ustring

pstring

unpackstr(pstring, ustring)

Purposc:

pstring

Convert a 16 bit signed valuc to a signed string with no leading zcros having
cither fixed or variable spacing.

The 16 bit value to be converted.

A vector with enough space to hold the converted value, If fixed spacing is
specified, overflow will cause more spaces to be used in this vector. The
maximum number of spaces used depends on the radix and is 16 for radix 2, 6
for radiccs 8 and 10.

The conversion radix.,

The nu(ljnber of string spaces to be used. If zero or missing, variable spacc is
assumed.

Change a BCPIL. string from unpacked format (one byte per word) to packed
format (two bytes per word). :

A vector containing a BCPL unpacked string, once character per word, the first
word specifying the length.

A vector with enough room to receive the packed string.

Change a BCPI. string from packed format (two bytes per word) to unpacked
format (onc byte per word).
A BCPL string.

11.6

Revised BCPL Manual NOVA 170 and UTILITY ROUTINES

ustring A vector with cnough room for the BCPI. unpacked string, onc character per
word, the first word specifying the length.

movestr(stringsre, stringdest)

Purpose: Move a BCPL string which may be in either packed or unpacked format.
stringsrc A BCPL string to be moved.
stringdest A vector with sufficient room to receive the source string,.
byteptr = dostr{beplstrig, dosstring)
Purpose: Convert a BCPL. string to a 1DOS string.
beplstring A BCPL. string to be converted. :
dosstring A vector with sufficient space to rcceive the converted string. The only

difference in the two formats is that 1DOS requires a null character at the end of
many strings.

byteptr A DOS byte pointer to the first character of the DOS string.
word = lengthsti(string) Purpose: Return the length of a BCPL string.
strin A BCPIL. string.
word . The length of the string.
char = cxtractchar(string, index)
Purpose: Extract a singlc character from a string at a specified index.
string A BCPL string.
index The index for the character. If out of range, garbage is returned.
char A 16 bit word containing the value of the character.,
ans = cxtractsti{stringl, string2, index, lengthstringl)
Purpose: Fxtract stringl from string?2 beginning at the specified index.
stringl A vector of sufficient size to receive the extracted string.
string? The string from which the extraction is to be made.
index The beginning index for extraction; if the index gocs out of the range of string?2
at any time, the length of the extracted string will %c adjusted accordingly.
lengthstrl The length of the string to be extracted.
ans The actual length of the extracted string.

lasibytcindex = imbedchar(char, string[, index]) :
Purposc: Imbed a character into a vector containing a BCPL string. The existing character
at that indcex is destroyed. If the index for the imbedded character is greater than
the length of the string, the sccond string is filled with blanks up to theimbedded
character. If no index is specified, the character will be appended.

char ‘The character to be imbedded.

string?2 A vector or BCPL string in which the character is to be imbedded. If index
extends the length of string?2, string2 must be a vector large enough to hold the
results,

index The index in string2 at which the character is to be imbedded.

lastbyteindex The last position of string2 which was modified.

lastbytcindex = imbedstr(string], string?[, index])

Purpose: Imbed stringl in string2. The existing sub-string at that index is destroyed. If
the index for the imbedded stringl is greater than the length of the string?,
string?2 is filled with blanks up to the imbedded character. If no index is
specified, stringl will be appended to string?.

string1 The string to be imbedded.

string2 A vector or BCPL string in which the first string is to be imbedded. If stringl
cxtcilds the length of string2, string2 must be a vector large cnough to hold the
ICSults.

index The index in string2 at which stringl is to be imbedded.

lastbyteindex The index of the last byte imbedded in string2.

index = searchstr(stringl, string?], startindex])

11.7

Revised BCPL. Manual NOVA 170 and UTILITY ROUTINES

Purpose: Scarch string] for string? at the specified starting index or at the start of string 1.
stringl The string to be scarched.

string?2 The string to be found.

startindex The index in stringl at which to begin the scarch.

index The index of the string if it is found; if not, then -1,

11.8

Reviscd BCPL Manual

and

be
casc
default
cq

for

gc

if

let

manifest
ne

or
ry

switchon
to

unless
vee
while

SECTION 12
APPENDICES
... BCPL Reserved Words
abort
by break bit byte
compileif compiletest
do docasc
cqv ext endcase external
falsc finish
sr get goto
ifso ifnot into
le Is v loop
logand logor Ishift
neg nil not neqv
newname
offsct
rcturn resultis repeat repeatwhile
rem rshift repeatuntil
static size sclecton structure
test then true table
until
valof
word Xor

121

blank

numargs

Revised BCPIL. Manual

INDEX
abort e e e e e e 56,72
argUMEnt e 34,37
bit e e e e 6.7,6.8,6.10
blank P 6.10
break e e e e e e 5.2,5.3,7.2
byte e 6.2,6.7,6.8,6.11
CASC e e e e e e e 54,55
common variables .o oo e 33,34
compileif e 53
compiletest e e 53,54
conditionals L e e e 52
CONStANLS e e e e e e e e e e e 4.2
default ' e e e e e e e e 475455
do e e e 5.1,5.2,5.4,7.1,7.2
docase - e e e 52,55
dynamic variable ... 3.1,3.2,3.6,3.74.1
ondCase e e e e e e e e s 52,5572
Cq e 43,44,4.6
CAV e e 43,4.6
CXPICSSIONS e e e .43
external e e e e e e e 24,3.13.2,33,3.43.5/7.1
false e e e e e 4.2
finish e e e e e e e e e 5.6,7.2
for e e e e 52,72
fUNCHON e e e e e e e e 34,3.5
BC e 43,4.6
gt e 54,7.1
global declarations ..o 3.1
gOl0 e 52,5472
B e 434.6
heffalump e 6.9
identificr o e e e e e 1.1
if e e e e 51,52,7.2
ITNOL e e e e e e e e e e e e 5254
IS0 e e e e e e 52,54
Y SRR 43,54

Revised BCPL. Manual

Jabel

¢
left-lump
let
loop
Is
Ishift
lv

manifest
mul

ne
newname
nil

not
numargs

offsct
Opcrators
or

paramcter
procedure

rem

repeat
repeatuntil
repeatwhile
resultis
return
right-tump
routine
rshift

v

sclecton

size

static variable
string
structure

switchon

table
test
then
truc

..................
...................
..................
..................
..................
..................
..................

..................

..................
..................
...................

..................

..................

..................

..................
..................
..................
..................
..................
..................
..................
..................

..................

..................
..................
..................

12.3

INDEX

BALAWwWLLLL
DO P i B P e i DO 0
a0 LN PN
Lhin bigoo 0

Revised BCPL Manual

unl_css
until

valof
vee
veetor

while
word

xor

..................
..................

..................

..................

124

51,5272
51,5.2,7.2
34,3.64.4
3.6,4.3,6.1
374161
51,5272
6.1,6.2,6.3
4.3,4.6

INDEX

