
BCPL

Reference Manual

James E. Curry
and PARC staff

Compiled on: September 14,1979

Computer Sciences Laboratory
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, California 94304

© Xerox Corporation 1979

Revised BCPL Manual

TABLE OF CONTENTS

SECTION PAGE

1 INTRODUCTION

2 A SAMPLE PROGRAM

2-1 The Queens Problem . 2.1

2-2 Source Code -- QUEENS 2.2

2-3 Source Code -- QUEENSl . 2.3

2-4 Notes on the Source Code 2.4

2-5 Compiling and Loading QUEENS. 2.4

3 DECLARATIONS AND PROCEDURES

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

4 EXPRESSIONS

4-1

4-2

4-3

4-4

5 STATEMENTS

BCPL Variables 3.1

Scope Rules '.' 3.1

Manifest Constants 3.3

Structure Declarations . 3.3

Static and External Variables .. 3.3

Procedure Declarations 3.4

Procedure Execution . 3.5

Dynamic Variables 3.6

Memory References .. 4.1

Constants. 4.2

Precedence of Expressions 4.3

BCPL Expressions .. 4.4

5-1 Assignment Statements: 5.1

Revised BCPL Manual· TABLE OF CONTENTS

5-2

5-3

5-4

5-5

5-6

5-7

5-8

6 STRUCTURES

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

Routine Calls: . 5.1

Conditionals and Iterative Statements:. 5.1

Conditional Compilation Statements: . 5.3

Labels and Goto Statements: .. 5.4

Returns: . 5.4

Switches:. 5.4

Single-Word Statements 5.6

Stmcture declarations and references 6.1

Nested fields : . 6.2

Subscripted fields' 6.4

Overlays . 6.7

Left-lump stmcture references. .. 6.8

Heffalump structure references 6.9

Other stlUcture operators . 6.10

Syntax of structure declarations 6.10

7 SOURCE FILE CONVENTIONS

7-1 Declaration files 7.1

7-2 Labeled brackets. .. 7.1

7-3

7-4

Semicolon insertion

Do/Then insertion

· 7.1

· 7.2

7-5 Comments 7.2

7-6 Upper case vs. Lower Case 7.2

8 COMPILATION

8-1 Normal compilation " · 8.1

8-2 Global switches 8.2

8-3 Local switches . 8.3

9 LOADING

ii

Revised BCPL Manual

9-1

9-2

9-3

9-4

9-5

9-6

9-7

9-8

TABLE OF CONTENTS

Normalloading 9.1

Errors 9.1

Global switches 9.2

Local switches -- group 1 9.3

Local switches -- group 2 9.5

Nova Save file image. 9.6

Overlays 9.6

Alto Operating System Linkage 9.8

10 RUNT1ME ENVIRONMENT

10-1 Procedure Frame Format. .. 10.1

10-2 Procedure Calls 10.1

10-3 Frame Allocation on the Nova 10.3

11 NOV A I/O and UTILITY ROUTINES

11-1 Introduction . 11.1

11-2 Global Names 11.1

11-3 Procedures. 11.2

12 APPENDICES

12-1 BCPL Reserved Words 12.1

iii

Revised BCPL Manual

SECTION 1

INTRODUCTION

HCPL is a general purpose recursive programming language which is particularly suitable for systems
programming applications. Versions of BCPL exist on various computer systems, including CTSS at Project
MAC, the OE635 under OE COS, the TX-2 at Lincoln Lab, and the PDP-H, as we11 as for the Nova. The
Nova version of BCPL was bootstrapped from the TX-2 implementation, and incorporates most of the
features introduced into BCPL at Lincoln, including a version ofstmctures.

This manual uses an informal syntactic notation. Ellipsis (" ... ") indicates repetition. Lower-case words are
reserved words. Upper-case words represent syntactic classes, the most common of which are:

NAME:
EXP:
CONST:
REF:
STAT:

an identifier
a nCPL expression
an expression involving only constants
a memory reference expression
a BCPL statement or compound statement

1.1

Revised BCPL Manual·

SECTION 2

A SAMPLE PROGRAM

2-1 The Queens Problem

The following program is a complete, working example of BCPL. It solves the "8-Queens" problem,
generating all 8*8 chessboard contigurations of eight queens such that no queen can capture any of the
others. The central procedure "Queens(Col)" is called with a column number as its argument; it assumes
that there are no conflicts in the columns to the left, and tries to place a queen in the current column.
"Queens" calls itself recursively to iterate over the columns to the right, or prints a picture of the board if a
solution has been found. Three global vectors, "Horiz", "UpDiag", and "DnDiag", are maintained to
indicate whether a queen has already been placed in a particular row, upward-diagonal, or
downward-diagonal; an attempt to place a queen in an occupied line results in rejection. A solution vector
"Row" is maintained for typeout, remembering which row the queen is in.for each column.

The program consists of two source files: "QUEENS" and "QUEENSl". The first file contains the main
program and some 10 procedures; the second contains the "Queens" procedure.

2.1

Revised BePL Manual A SAMPI,E PROGRAM

2-2 Source Code -- QUEENS

II Solution of 8 Queens problem -- Main Program

get "iox" II Include definitions for 10 package

manifest boardsize = 7

external

II Rows & Columns are numbered 0-7

[Solutions
Row

II Total number of solutions
II Row!I = occupied column in row I
II Horiz!I = true if row I is occupied Horiz

UpDiag
DnDiag

external Queens
external

II UpDiag!I= true if up-diagonal I is occupied
II DnDiag!I= true if down-dlagonal I is occupied

II The procedure that does the work
II Some extra 10 procedures

[WriteS
WriteN
WriteL

]

static
[II No solutions initially

II Global vectors -- set up by Main
Solutions = 0
Row = nil
Hori z= nil
UpDiag = nil
DnDiag = nil

stltic TTYstream II The stream used by WriteS, etc.

let MainO be
[main

Jmain

II Initialize the global vectors
let v vec boardSlze; Row = v
let v = vec boardsize; Horiz = v
for i = 0 to boardsize do Horiz!i = false
let v = vec boardsize*2; UpDiag = v
let v = vec boardsize*2; DnDiag = v
for i = 0 to boardsize*2 do UpDiag!i, DnDiag!i = false, false

II Initialize output to TTY
initbcplio()
TTYstream = open("")

II Do the work
Queens(O)

II Print number of solutions
WriteN(Solutions)
WriteS(" solutions found*n")

and WriteS(S) be writestr'(TTYstream, S)

and WriteN(N) be writedec(TTYstream, N)

and WriteL() be writestr(TTYstream, "*n")

2.2

Revised BCPL Manual A SAMPLE PROGRAM

2-3 Source Code -- QUEENSI
II Solution of 8 Queens .problem Queens procedure

manifest boardsize = 7

external

II Rows & Columns are numbered 0-7

[Solutions II Total number of solutions
Row
Horiz
UpOiag
OnOiag

external Queens
external

[Wri teS
WriteN
WriteL

]

II Row!1 = occupied column in row I
II Horiz!1 = true if row I is occupied
II UpOiag!1= true if up-diagonal I is occupied
II OnOiag!1= true if down-dlagonal I is occupied

II The procedure that does the work
II Some extra 10 procedures

let Queens(Col) be
[queens

II There are no conflicts in columns left of Col

let UpOiag2, OnOiag2 = UpDiag+boardsize-Col, OnDiag+Col
II UpDiag2, Dndiag2 are the diagonal vectors for this column

for n = 0 to boardsize do
[rowloop II Try to put a Queen in each row of this column

if Horiz!n % UpOiag2!n % DnDiag2!n loop II Can't - go on

II There are no conflicts to the left, so we can
Row!Col = n II Remember for typeout

test Col eq boardsize II Done?

ifnot [Horiz!n,UpDiag2!n,DnDiag2!n = true,true,true
II Now a Queen is in thlS column

]

Queens(Col+l) II Find all solutions to the right
II Now remove the Queen
Horiz!n,UpOiag2!n,DnOiag2!n = false,false,false

ifso [II Print the solution
WriteL()
for r = 0 to boardsize do

]rowloop
]queens

]

[for c = 0 to boardsize do
WriteS(Row! r eq c ? II Q", II • ")

WriteL()

sJlutions = Solutions + 1

II Do the next row

2.3

Revised BCPL Manual· A SAMPLE PROGRAM

2-4 Notes on the Source Code

The file "lOX" contains external declarations for a basic 10 library; "QUEENS" uses "initbcplio", "open",
"writestr", and "writedec" from this library.

The manifest and external declarations appear in both source files. These declarations would usually beput
into a separate file; each source file would "get" this file in order to include the declarations.

The static declarations appear only in "QUEENS"; static variables must be declared as static only once,
although they may be declared external in many files. "Solutions" is initialized to 0; the statics for the
global vectors will be initialized by the main procedure, so they are initialized to "nil". "TfYstream" is
declared static but not external, so it is local to "QUEENS", as is "Main".

The main program allocates the vector space for the global vectors by declaring four local vectors (all named
"v") and storing the address of the first elements in the external variables for the vectors. This is the
simplest way to get space which is global to several procedures (or to a recursive procedure); the space is
global to "Queens" since it is allocated by the procedure which calls "Queens".

Note that declarations may be intermixed with statements.

2-5 Compiling and Loading QUEENS

To compile the source file QUEENS, just type

BCPLQUEENS

(Only one source file may be compiled at a time.) The compiler will print

BCPL 2.0 -- QUEENS.BR = QUEENS

and begin compiling the program. Ifno errors are detected, the BCPL relocatable binary fileQUEENS.BR
will be created, and the compiler will print

QUEENS.BR -- 217 (143) WORDS

The numbers are the length of the code generated in octal (decimal). QUEENS1 is compiled similarly.

To load the program, type

BLDR/D/L/V QUEENS QUEENS1 101 102

This will create the tile QUEENS.SV, an executable Nova save tile, from the BCPL relocatable binary files
QUEENS.BR, QUEENSl.BR, 101.BR, and [02.BR. (The latter two files are the input-output routines.)
The ID switch causes the Nova debugger to be loaded ·into the save file. The I[-IV switches create asymbol
table file named QUEENS.BS, containing infonnation about where things will be in core when the program
runs; a listing of this file is included in the section on Loading (Section 9). The loader prints

BLDR 2.0 -- QUEENS.SV, QUEENS.BS

at the beginning of the loading process, and when it is done,

QUEENS.SV -- 14162 (6256) WORDS

The numbers give the size of the save file in octal (decimal).

2.4

Revised BePL Manual

To run the program, just type QUEENS. It will print out 92 solutions.

2.5

Revised BCPL Manual

SECTION 3

DECLARATIONS AND PROCEDURES

3-1 BCPL Variables

BCPL is a vaguely ALGOL-like language (it is block-stntctured; it allocates procedure space dynamically,so
recursion is permissible; and most BCPL statements correspond roughly to ALGOL statements, although
there are syntactic differences). The major difference between BCPL and ALGOL is that all ALGOL
variables are declared with data-types (integer, real, boolean, string, array, procedure, label, pointer, etc.),
whereas all BCPL variables have the same data-type: a 16-bit number. In ALGOL, the meaning of an
expression is dependent both on its context and on the data-types of the entities involved, and only
expressions with certain data-types may appear in a given context. In BCPL, any expression may be usedin
any context; the context alone determines how the 16-bit value of the expression is interpreted. BCPLnever
checks that a value is "appropriate" for use in a given way. For example, an expression which appears in a
"goto" statement is assumed to have as its value the address of someplace which is reasonable to jump to;
the thing following a "goto" need not be a label. The advantages of this philosophy about data-types are
that it allows the programmer to do almost anything, and that it makes the language conceptually simple.
The disadvantages are that the user can make errors which would have been caught by data-type checking,
and that some things must be done explicitly which ALGOL-type languages would do automatically
(implicit indirection on pointer variables, operations on multi-word values such as real numbers and strings,
type conversion, etc.).

Although BCPL has only one data-type, it does distinguish between two kinds of variables: static and
dynamic. They differ as to when and where the cells to which they refer are allocated. A static variable
refers to a cell which is allocated at the beginning of program execution (Le., by the BCPI. loader); itrefers
to the same memory cell for as long as the program runs. A dynamic variable refers to a cell which is
(conceptually) allocated when the block in which it is defined is entered, and exists only until execution of
that block terminates. The space from which the dynamic variable is allocated is created dynamically when
the procedure containing its defining block is called.

As in ALGOL, variable names (and other names) are defined in declarations. The lexical scope of a
declared name (the portion of the source text in which the name is defined) is governed by BCPL's block
structure.

3-2 Scope Rules

At the outermost level, a BCPL source file consists of a sequence of global declarations followed by a
multiple procedure declaration. The possible global declarations are:

external [NAME; ... ; NAME]

static [NAME = CaNST; ... ; NAME = CaNST]

manifest [NAME = CaNST; ... ; NAME = CaNST]

structure NAME: [...]

3.1

Revised BCPL Manual· DECLARATIONS AND PROCEDURES

The external and static declarations define static variables; the manifest declaration defines literals; the
structure declaration defines templates for symbolic references to partial-word and multi-word data.

A multiple procedure declaration has the form

let NAME(ARG, ... , ARG) BODY
and NAME(ARG, ... , ARO) BODY

and NAME(ARG, ... , ARG) BODY

where BODY is either "be STAT" or "= EXP".

The NAMEs in external, static, manifest, and structure declarations at the outermost level are defined from
the point of declaration to the end of the source file; all of the N A MRs in the "let ... and ... " sequence atthe
outermost level are defined in all of the BODYs. These are the only names which are globally defined. All
other names are defined either as ARGs in the procedure declarations, or in local declarations within
compound statements in the BODYs.

A compound statement is a sequence of statements and declarations. separated by semicolons, and enclosed
within the brackets "[" and "]". (If a ca'rriage return separates two statements, the semicolon can be
omitted.) The brackets have a function similar to that of the words "begin" and "end" in ALGOL. A
compound statement may be used wherever a simple statement can be; in this manual, "STAT" always
means either a simple statement or a compound statement. Compound-statements are used when two or
more statements are needed in a context in which BCPL expects a single statement (e.g., as the body ofa
procedure, or as one of the arms of a conditional statement). Compound statements delimit the scope of
locally declared names.

Local declarations may be intermixed with statements (unlike ALGOL, in which declarations may appear
only at Lhe beginning of a compound statement). "Declaration" here includes dynamic variable declarations
("let NAMEl, ... , NAMEn = EXP1, ... , RXPn"), as well as the external, static, manifest, structure, and
procedure declarations mentioned above. The following rules govern the scope oflocal declarations:

1)

2)

3)

4)

A local declaration may appear in a compound statement only in the following contexts: at the
beginning of a statement, or after a semicolon (including a semicolop implicitly inserted by the
compiler between statements on different lines), or following a statement label that follows a
semicolon. The effect of this rule is to disallow things like "if x eq 0 then let y = 0 (although
"if x eq 0 then [let y = 0 ...] is perfectly legal). A declaration may be labeled.

A declaration starts a block; the block ends at the end of the compound statement containing
the declaration. A name defined in the declaration is known only within the block introduced
by the declaration, and in sub-blocks contained within that block if the name is not redeclared.

(Exception to rule (2).) A dynamic variable is not known in any procedure body other than the
one in which it was declared. Thus, if the procedure "g" is declared inside of the body of
procedure Iff', the dynamic variables defined in "f' are not known to "g". (This is because the
dynamic variables of "f' reside in space which is dynamically anocated when "f' is called.
When "g" is called, it does not know where this space is; in fact, tl1ere might be more than one
execution of "f' in progress when "g" is called, or there might not be any active execution of
"f'.) .

A statement label ("NAME:) appearing within a block is treated as if it were a static varia hie
declared immediately after the declaration which begins the block. So a label is known
throughout its enclosing block, but not outside that block.

3.2

Revised BCPL Manual DECLARATIONS AND PROCEDURES

3-3 Manifest Constants

The declaration

manifest [NAMEI = CONSTl; ... ; NAMEn = CONSTn]

defines NAMEl through NAMEn as manifest constants. (If there is only one NAME. the brackets are not
necessary.) The expressions CONSTl through CONSTn must be constant expressions; that is. their values
must be computable by the compiler. The meaning of a program would be unchanged if each manifest
name were replaced by a string of digits representing its value. In particular. manifest names do not have
addresses.

3-4 Structure Declarations

(Structures are described in Section 6 of this manual.)

3-5 Static and External Variables

Static variables may be declared in four ways: by a static or external declaration. by a procedure declaration.
or by a statement label assignment.

The declaration

static [NAME! = CONST!; ... ; NAMEn = CONSTn]

defines NAMEI through NAMEn as static variables. and causes them to be initialized with the values
CONSTI through CONSTn at the beginning of program execution (i.e .• in the "save file" created by the
loader). (If there is only one NAME, the brackets are not necessary.) The CONSTs must be expressions
whose values are computable by the compiler. Ifit doesn't matter what the variable is initialized to. the " =
CONST" should be left out, or" = nil" should be used.

Any of the NAMEs that are preceded by an "@" will be allocated by the loader in page zero. Such variables
are called "common" variables. They can be addressed directly by the compiled code, whereas normal static
variables must be addressed by indirection through a literal; so common variables are more efficient.
However. there is room in page zero for only about 150 (decimal) common variables; the loader will
complain if too many common variables are assigned.

The procedure declarations

let NAMF~ARG ARG} be STAT

letNAME(ARG ARG} = EXP

declare NAME as a static variable which is to be initialized by the loader to the address of the code compiled
for the procedure.

The procedure declaration is discussed fully in the sections on procedure and dynamic variable declarations.

A statement label assignment

3.3

Revised BCPL Manual DECLARATIONS AND PROCEDURES

NAME: STAT

declares NAME as a static variable which is to be initialized by the loader to the address of the code
compiled for STAT. A label assignment does not begin a block; the name is treated as if it were declared
immediately after the declaration which begins the smallest enclosing block. Thus, a label is defined
throughout the block in which it appears.

The declaration

external [NAMEl; ... ; NAMEn]

declares NAMEI through NAMEn as external static variables. (If there is only one NAME, the brackets are
not necessary.) The purpose of the external declaration is to allow separately compiled pieces of a program
to reference the same variables. Within a given source file, the scope of an external variable is the same as
that of other types of variables; but if two or more separately compiled source files declare a given name
external, the loader will make each refer to the same cell. In (exactly) one of the source files in which a
given name is declared external, the name should also be declared as a static variable (by a static declaration,
a procedure declaration, or a statement label assignment) someplace within the scope of the external
declaration. (Note that the static declaration must follow the external declaration.) This is not arc-definition
of the name, but rather tells the loader how to initialize the external static variable. The loader will
complain about an external variable which is not declared static someplace, or about one which is declared
static more than once.

NAMEs that are preceded by an "@" in an external declaration will be defined as common variables. A
NAME that is declared both external and static may be designated as common in either or both declarations.

Note that only static variables may be externa1.

3-6 Procedure Declarations.

There are two kinds of BCPL procedures: "functions", which return a value upon completion, and
"routines", which do not. A function is defined by a declaration of the form

let NAME (ARGl, ... , ARGn) = EXP

A routine is defined by

let NAME(ARGl, ... , ARGn) be STAT

NAME is the name of the function or routine being defined. (Actually, NAME becomes a static variable
which will be initialized with the address oftlle procedure, as noted in the section on static variables.)ARGl
through ARGn are the formal parameters (dummy arguments) of the procedure. They are either NAMEs,
or the special symbol "nil", indicating an unnamed argument. A RG 1 through ARGn become the first n
dynamic variables declared in the procedure body. If there are no dummy arguments, the declaration isof
the form "let NAME() be STAT" or "let NAME() = EXP".

In the function declaration, EXP is the expression whose value is returned when the function is called. EXP
may be a simple BCPL expression; but for most functions it will be an expression of the fOlm "valofSTAT",
where STAT may be a compound statement. The STAT in a "valof' expression should contain at least one
"resultis" statement. The STAT is executed until a statement of the form "resultis EXP" is encountered;
then EXP becomes the value of the "valof' expression, and therefore the result of the function. The "valof'
expression will also terminate when control would otherwise pass to the statement following STAT. If this
happens, the value of the "valof' expression is garbage.

3.4

Revised nCPL Manual· DECLARATIONS AND PROCEDURES

In the routine declaration, ST AT is the statement which is executed when the routine is called. STAT may
be a compound statement. STAT may contain one or more "return" statements; the routine returns whena
"return" statement is executed, or when control would otherwise pass to the statement following STAT.

A multiple procedure declaration has the form

let NAMEl(ARG, ... , ARO) be STAT (=EXP)
and NAME2(ARG, ... , ARG) be STAT (=EXP)

and NAMEn(ARG, ... , ARG) be STAT (= EXP)

This declares the procedures NAMEI through NAMEn "simultaneously"; that is, all of the NAMEi's are
known in each of the procedure bodies. (So, for example, NAMEl can call NAME2 and NAME2 can call
NAMEl.) The AROs, of course, are defined only in their corresponding procedure bodies.

A procedu"re body may contain procedure declarations; the names of such procedures will be local to the
defining body (unless they are declared external). But remember rule (3) in the section on the scope of
dynamic variables: dynamic variables are defined only in the body of the defIning procedure, and not in
sub-procedure bodies. For this reason, all procedures in a BCPL program are usually defined at the top
level.

3-7 Procedure Execution

A procedure is called by a statement or expression of the form

EXP(EXPl, EXP2, ... , EXPn)

EXP determines the procedure to be executed; EXPI through EXPn are the actual parameters. If there are
no actual parameters, the form is "EXP()". A procedure call is an expression if it appears in a context in
which a value is expected (e.g., in the right-hand side of an assignment statement); otherwise, it is a
statement. The calling mechanism is the same in either case. The only difference is that in the context ofan
expression, the procedure is expected to return a value; if it doesn't (because it is a "routine" rather than a
"function"), a garbage value will be used. A value which is returned by a function called in the context ofa
statement is discarded.

EXP will usually be a NAME which is either declared in a procedure declaration in the current source file,
or declared external in the current file and declared as a procedure in anothet' file. But in general, EXPmay
be an arbitrary BCPL expression; for example: "(n eq 0 ? f, g) (x, y)". The formal rule is that the location
referenced by the expression "rv EXP" is the location to which control is to be transferred (via a "JSR").
The section on Runtime Environment goes into more detail on this.

When a procedure is entered, it first allocates some "frame" space from someplace in memory. This
"frame" is a block of memory which the procedure will use for the actual parameter values, for any dynamic
variables and vectors declared within the procedure, and for any temporary storage needed by the
procedure. The space is dc-allocated when the procedure executes the "return" or "resultis" corresponding
to the call that allocated the frame.

After the frame space is allocated, the values of EXPI through EXPn are stored in the first n words of the
frame. These n words are those referenced by the n formal parameters ARGl, ... , ARGn in the procedure
declaration, assuming that the procedure is called with exactly the number of actual parameters as it was
declared to have. (No check is made to sec if actual and formal parameters match. If there are fewer actual
parameters, the formal parameters with no corresponding actual parameters will have garbage values. If
there are more actual parameters than fonnal parameters, the actual parameters with no corresponding

3.5

Revised BCPL Manual DECLARATIONS AND PROCEDURES

formal parameters will be lost; but this may create havoc by clobbering memory words beyond the end of
the newly created frame.)

Note that each formal parameter takes on the value of its corresponding actual parameter at the beginning
of the procedure call. This implies that procedure calls are implemented by the "call by value" mechanism
(in the ALGOl, sense); assigning a value to a formal parameter within a procedure docs not affect the value
of the corresponding actual parameter in the calling routine, although it does change the value of the formal
parameter for the remainder of the procedure execution. Suppose the function "next" is defined by:

let next(x) = valof[x = x + 1; resultis x]

and called as follows:

a = 0; b = next (a)

After the call of next, "a" will still be 0, but "b" will be 1. We can write "next" in such a way as to allow itto
change the value of "a" by using the address-manipulation primitives of BCPL:

let next (xaddr) = valof
[rv xaddr = rv xaddr + 1; resultis rv xaddr]

Then calling "next" as follows:

a = 0; b = next (Iva)

will cause both "a" and "b" to have the value 1.

A fter the procedure frame has been allocated and the actual parameters have been stored in the frame, the
procedure body is executed. If the procedure terminates normally (with "return" or "resultis", or by falling
through the last statement), the frame space is deallocated and control returns to the caller. If the procedure
exits with a "goto", the frame space is not deallocated, and the frame pointer is not changed. This is abad
~~~~ . 

3-8 ....... Dynamic Variables 

A dynamic variable refers to a cell at some fixed position in the frame associated with the current execution 
of the procedure in which it is defined. This cell is only allocated to the variable while the block defining 
the variable is active (e.g., while the block is being executed, or while a procedure called from within the 
block is being executed). Outside of the block, the cell is used for something else. 

Dynamic variables are declared in two ways: in a dynamic variable declaration, and as fonnal parameters in 
a procedure declaration. 

The dynamic variable declaration 

let NAMEI, ... , NAMEn = EXP1, ... , EXPn 

allocates n consecutive frame cells to NAMEl through NAMEn, and compiles code to assign the valuesof 
EXPI through EXPn to NAMEl through NAMEn. Unlike other declarations, this declaration is 
executable; for a given execution of a procedure, N AM 81 through N AMEn always refer to the same frame 
cells, but the values stored in these cells are recomputed each time the declaration is executed. The 
assignment is done left-to-right. 

The EXPs may be any BCPL expression. In addition, there are two special cases: "nil" and "vec CaNST". 

3.6 



Revised BCPL Manual DECLARATIONS AND PROCEDURES 

If EXPi is the symbol "nil", the variable NAMEi is declared, but no value is assigned to NAMEi. Thus, "let 
x = nil" declares x, but compiles no code; "x" will have some garbage value until something is assigned to 
it. . 

If EXPi is the special expression "vee CONST" (where CONST is an expression that can be evaluated by 
the compiler), the value assigned to NAMEi will be the address of the first word of a block ofCONST + 1 
consecutive frame cells. This "vector" ofCONST + 1 cells is allocated from the frame space, and NAMEiis 
initialized to point to that vector. These cells exist as long as NAMEi exists; they are used for something else 
outside of the block in which the declaration appears. 

In a procedure declaration 

let NAME(ARGl, ... , ARGn) be STAT 
or 

let NAME(ARGl, ... , ARGn) = EXP 

ARGI through ARGn are declared as dynamic variables; their scope is the entire procedure body. (Recall 
that the declaration defines NAME as a static variable.) The declaration is equivalent to 

let NAME() be 
[let ARGl, ... , ARGn = nil, ... , nil; STAT] 

or to 

let NAMEO = valof 
[let ARGl, ... , ARGn = nil, ... , nil; resu1tis EXP] 

That is, ARGI through ARGn are the first n dynamic variables declared in the procedure body, and 
therefore refer to the first n cells in the frame. The procedure call "NAME(EXPl, ... , EXPm)" stores the 
values of the m actual arguments in the first III cells of the newly created frame. So if 111 > n, cells n + 1 
through m will be clobbered. If m = n, all is well. If m < n, ARGs m + 1 through n will have garbage 
values. This pelmits procedures to be called with a variable number 'of actual arguments, as long as enough 
formal arguments are declared to provide space for the largest actual argument list. For example, if we 
define a procedure something like 

let f(xO, xl, x2, ... , x20) be 
[ let arg = Iv xO 

I' ... arg.l ... 

then the expression "argli" references the ith argument. 

The ARGs are usually NAMEs, but the special symbol "nil" is also legal as an ARG. The "nil" has the 
effect of leaving space for an argument, but not declaring a name for that argument. So the procedure "f' 
above might also have been defined as 

let f(xO, nil, nil, ... , nil) ... 

Argument i can still be referenced by "arg!i". 

Tn procedures which are called with a variable number of arguments, the "numargs" facility may be useful. 
An argument list in a procedure declaration may take the form 

let NAME(ARGl, ... , ARGn ; numargs NAME) ... 

The NAME following " ; numargs" is declared as a dynamic variable in the procedure body; when the 
procedure is entered, NAME is set to the number of actual arguments in the procedure call. Note the 
semicolon preceding "numargs". 

3.7 



Revised BCPL Manual· 

4-1 ....... Memory References 

SECTION 4 

EXPRESSIONS 

There are four kinds of BCPL expressions which refer to memory cells: variable names, rv-expressions, 
vector reference expressions, and structure reference expressions. These are the only things that can appear 
as the left-hand side of an assignment statement "REF = EXP" or as the argument of an lv-expression "Iv 
REF". [n an assignment statement, REF specifies the cell to be modified. The value of an lv-expression is 
the address of the cell specified by REF. (These two contexts are the only ones in which the form of the 
expression is restricted.) In all other contexts, the value of a memory-reference expression is the value 
contained in the specified cell. 

Memory reference expressions are described below in terms of the Nova instructions compiled. There are 
six Novaop-codes that reference memory: LOA ac, STA ac, JMP, JSR, ISZ, DSZ. The symbol "OP" inthe 
description below designates one of these op-codes; the address of the op-code is in standard Nova form(@ 
displacement, index). In general, an assignment statement generates a STA; a procedure call generates a 
JSR; and other contexts generate a LDA. 

dynamic variable names: 

Dynamic variables are allocated cells in the first 200 (octal) words of the frame for the 
procedure in which they are declared. While a procedure is being executed, AC2 always 
points at the procedure's frame; so dynamic variables are referenced by "OP n,2", where "n"is 
the offset of the dynamic variable in the frame. 'This imposes a limit on how many dynamic 
'variables a procedure may declare; the practical limit is about 100 ("decimal) dyn<\mic namesin 
a given scope. (Because the frame is allocated dynamically when a procedure is called, 
dynamic variables cannot be accessed directly from any procedure other than the one in which 
they are declared, as noted in scope rule (3) in Section 3.) 

static variable names: 

Static variables are allocated space by the loader, either in "common" (page zero) or in another 
area of memory which is fixed during loading. Common variables arc accessed by "OP n,O", 
where 0 < n < 377. Other static variables are not directly addressable, since they are in some 
arbitrary area of core, so they are addressed through indirection by "OP @n,l" (that is, "OP 
@.+n"), where n is the PC-relative offset (-200 < n < 177) of a word containing the address of 
the static variable. 

vector references: EXPl! EXP2 . 

This expression references a memory cell whose address is given by the value of 
(EXPI + EXP2). The reason for catting an expression like "AW a "vector reference" is the 
following. Suppose that the value of the variable "A" is the address of the first word of a 
zero-origin one-dimensional array (a "vector"). Then the expression "AlI" references the Ith 
word' of the vector A, since the value of the expression "A + I" is the address of this word. 
Note that the "!" operator is commutative. 

In general, vector references generate code to compute the sum of EXPI and EXP2 in AC3 
(e.g., "LOA O,EXPl; LOA 3,EXP2; ADD 0,3"), and then reference the vector element with 

4.1 



Revised BCPL Manual EXPRESSIONS 

"OP 0,3". In the case where EXP2 (or EXP1) is a small constant (-200 < n < 177), EXP1 (or 
EXP2) is loaded into AC3, and the vector element is accessed by "OP n,3". In any case, a 
vector reference always uses indexing through AC3. See the note on rv-expressions below. 

rv-expressions: rv EXP, @EXP: 

This expression references a memory cell via indirect addressing through EXP. In general, the 
value of EXP is computed and stored in a temporary cell in the frame, and the reference is 
done by "OP @n,2", where n is the offset of the temp cell. There are several special cases: If 
EXP is a dynamic variable name, "OP @n,2" is used, where n is the frame offset of the 
variable. If EXP is a common variable name, "OP @n,O" is used, where n is the page zero 
address of the variable. On the Nova, ifEXP is a static variable name, "OP @n,1" is used (that 
is, "OP @.+n), where n is the PC-relative offset of a word containing the address of the static 
variable with the indirect bit (bit 0) set. If EXP is a vector reference, "OP @n,3" is used, after 
loading AC3 appropriately. 

The expression "rv EXP" may also be written "@EXP". 

An rv-expression always generates an indirect reference through a memory cell. A vector 
reference always generates an instruction which is indexed by AC3. Therefore, on the Nova, 
"rv EXP" is not necessarily equivalent to "EXP1!EXP2" when the values of (EXP) and 
(EXPI + EXP2) are the same: the rv-expression will always cause a multiple indirection if 
EXP has bit 0 set; a vector reference will never do so, since indexing ignores bit O. On the Alto 
the two are always the same, since all 16 bits are part of the memory address. 

structure reference expressions: 

These are described in the section on structures. 

4-2 ....... Constant') 

BCPL recognizes the following constructs as constants: 

* 

* 

* 

* 

* 

* 

A name which is declared "manifest" is treated as if it had been replaced by its value. 

A string of digits is interpreted as a decimal integer. It may not exceed 2**15-1 (32767 
decimal, 77777 octal). 

A string of digits preceded by a "#" is interpreted as an octal integer. It must be less than 
2**16-1 (177777 octal, 65535 decimal). 

A string of digits immediately followed by "B" or "b" is also interpreted as an octal integer. If 
the "B" or "b" is immediately followed by a (decimal) number n, the octal value is shifted left 
n bits. Thus, # 1230, 1230B, and 123B3 all represent the same value. One-bits may not be 
shifted out of bit O. 

The reserved words "true" and "false" are constants with values #177777 and 0 respectively. 

A "$" followed by any printing character other than "*" represents a constant whose value is 
the 7-bit ASCII code of the character. "*" is an escape character; the following escapes are 
recognized: 

*s *S space ( :# 40) 

*t*T tab (#11) 

4.2 



Revised BCPL Manual 

*n *N 

*c *C 

*1 *L 

*" 

*nnn 

** 

Note: 

carriage return ( # 15) 

carriage return ( # 15) 

line feed (# 12) 

double quote (#42) [$" is also O.K.] 

The octal number "nnn". [Exactly three digits.] 

* (#52) 

"*" followed by anything else gives an error. 

EXPRESSIONS 

The compiler evaluates most expressions that involve only constants, and treats the resulting value as a 
single constant. (The exceptions arc "selecton" and "valor' expressions. Conditional expressions like 
"CONST? CONSTl, CONST2" arc evaluated; the value is CONST2 if CONST is 0, and CONSTI 
otherwise.) Throughout this manual, the symbol "CONST" (described as "an expression which can be 
evaluated by the compiler") means either one of the constant constructs above, or an expression involving 
only constants. 

4-3 ....... Precedence of Expressions 

In order of decreasing precedence, the legal BCPL expressions are: 

NAME; constant; string literal; table literal; (EXP) 

EXP(EXPl, ... , EXPn) 

EXP11EXP2 

EXP»NAME.NAME .... ; EXP«NAME.NAME .... 

Iv EXP; rv EXP; + EXP; -EXP 

EXPI <mul> EXP2 «mul>: *, t, rem, lshift, rshift) 

-EXPI + EXP2; EXPl- EXP2 

vecCONST 

EXPI <reI> EXP2 «reI>: eq, ne, Is, Ie, gr, ge) 

notEXP 

EXPl&EXP2 

EXPl%EXP2 

EXPI xor EXP2; EXPI eqv EXP2 

EXP ? EXPl, EXP2 

selecton EXP into ... 

4.3 



Revised BCPL Manual· EXPRESSIONS 

valofSTAT 

Operators with the same precedence are left-associative, except for "<muI>", "&", "%", "xor", and "eqv", 
which are right-associative. Precedence and associativity can be changed by parenthesizing. Some cases to 
note: 

"a/b*c" is "a/(b*c)" 

"rv vii" is "rv(v!i)" 

"rv p»a.b" is "rv (p»a.b)" 

"v!p»a.b" is "(v!p)>>a.b" 

"vii + j" is "(vli)+ j" 

"a%b&c" is "a%(b&c)" 

"a & b eq c" is "a & (b eq c)" 

Precedence only determines the way in which an expression is parsed; nothing is implied about order of 
evaluation. In general, the order in which the sub-expressions of an exprc.'lsion are computed is unspecified. 
So, although "f(x) + g(y) * h(z)" means "f(x) + (g(y) * h(z»", no assumption should be made about which 
function is executed first. 

4-4 ....... BCPL Expressions 

string literals 

A sequence of characters enclosed in double quotes (") is a string literal. Its value is the 
address of the first word of a block of memory containing the strin'g. A BCPL string is stored 
two bytes per word, left-hand byte first, with the left-hand byte of the first word containing the 
number of characters in the string. If the string has an even number of characters, the 
right-hand byte of the last word is 0; but ifit has an odd number of characters, the last word of 
the string contains the last two characters, not two 0 bytes, Note that BCPL strings are not 
compatible with Nova DOS strings. 

Strings have a maximum length of 255 characters. The character "*" appearing in a string 
literal is an escape character, as described for character constants. 

table [ CONSTl; ... ; CONSTn ] 

The value of a table expression is the address of the first word of a block of memory containing 
the CONST values. 

EXP() 
EXP (EXPl, EXP2, , .. , RXPN) 

The value of EXP is assumed to be the address of a BCPL function. This function is called 
with the values of EXPl, ... , EXPN as arguments. The value of the function call is the value 
returned by the function via a "resultis" statement. See the section on procedure execution for 
details. 

The call is implemented by a Nova JSR instruction (a memory reference op-code) to 
"rv EXP". So if EXP has bit 0 set, a multiple indirection will take place. If bit 0 is zero, the 
value ofEXP is the address of the first instruction executed. 

4.4 



Revised BePL Manual EXPRESSIONS 

The empty argument list .. () .. is necessary if there are no arguments. "x = f()" calls a 
function, but"x = f' puts the address of the function in "x". Forgetting the"()" is acommon 
error; be careful. 

Iv REF 

REF must be a variable name, a vector reference, an rv-expression, or a structure reference; 
anything else gives an error message. The value of the lv-expression is the address of the cell 
which REF references (but see the note on "Iv(rv EXP)" below). 

The value of "Iv NAME", if NAME is a dynamic variable, is the sum of the current frame 
pointer (which is in AC2) and the offset of the variable in the frame (a constant). Thisaddress 
is valid only while the block in which the variable was declared is active. 

The value of "Iv NAME", where NAME is a static variable, is the address of the static variable. 
This is a constant throughout the execution of the program, since static variables never move. 
(But "Iv NAME" is not a compile-time CON ST.) 

The value of "lv(EXPl IEXP2)" is the sum of the values of EXPl and EXP2. 

The value of "Iv (rv EXP)" is the address of the cell that "rv EXP" references. On the Nova, if 
EXP has bit 0 set, .. rv EXP" would cause a multiple indirection; in this case, the value is 
computed by following the indirection chain. There is nothing special about bit 0 on theAlto; 
it isjust another bit of the addre~s. 

The value of "Iv (EXP»NAME.NAME .... ) .. is the address of the word which contains the first 
bit of the referenced field. 

rvEXP 
EXPI1EXP2 

See the section on Memory References (Section 4-1). 

+EXP 

The value is the value ofEXP. 

-EXP 

The value is the two's-complcment of the value of EXP. 

EXPI * EXP2 

The value is the low-order 16 bits of the 32-bit signed product. If one of the EXPs is aconstant 
whose value is a power of 2, a left shift is done; otherwise the standard Nova multiply 
sequence is done. There is currently no way Lo get at the high-order part of the product, orto 
detect overflow. 

EXPI/EXP2 
EXP2 rem EXP2 

The standard Nova signed integer divide sequence is done. (Division by a power of 2 is not 
done by shifting.) The "I" expression gives the 16-bit signed quotient; the "rem" expression 
gives the 16-bit remainder, which has the same sign as EXPl. If EXP2 is zero, the results are 
undefined. There is currently no way to detect this. 

EXP Ilshift EXP2 
. EXPI rshift EXP2 

4.5 



Revised BCPL Manual EXPRESSIONS 

The value is the value of EX PI shifted left or right EXP2 bits. Vacated positions are filled with 
O's. Bits shifted off either end of the 16-bit word are lost. The shifts are logical, not arithmetic, 
in that the sign bit may be changed. There are currently no arithmetic- or circular-shift 
operators. 

EXPI + EXP2 
EXPI-EXP2 

The value is the sum (difference) EXPI and EXP2. The statement "EXP = EXP + 1" 
generates an ISZ or DSZ followed by a Nap. There is currently no way to detect overflow. 

EXPI eq EXP2 
RXPI neEXP2 
EXPllsEXP2 
EXP1leEXP2 
EXPI grEXP2 
EXPIgeEXP2 

EXPI-EXP2 is computed and compared with 0; the value of the relational expression is always 
either "true" (# 177777) or "false" (0). Warning: This differsJrom a genuine signedcomparison 
oJEXPl and EXP2 if/h'XPI-EXP2/ is greater than 2**15-1. 

notEXP 

The value is the logical complement (one's-complement) of the value of EXP. But see the note 
on "&" and "%" below. . 

EXPl&EXP2 
EXPI % EXP2 

In most contexts, the value is the logical-and or logical-or of EXPI and EXP2. However, in the 
context of the Boolean part of an "if', "unless", "test", "while", "until", "repeatwhile", or 
"repeatuntil" statement, or of a conditional expression, the evaluation of an expression 
involving "not", U&", or "%U is optimized. This optimization can change the meaning of the 
expression. For example, the sequence "if a & b then ..... is not always the same as the 
sequence "x = a&b; if x then ... ", even if the evaluation of "a" and "b" do not involve side 
effects. See the section on conditional statements. 

RXPI xor EXP2 
EXPI eqv EXP2 

The value of the "xor" expression is the logical exclusive-or ofEXPl and EXP2. The valueof 
the "eqv" expression is the logical complement of this value. 

EXP ? EXPl, EXP2 

The value is the value of EXPI ifEXP is non-zero, or the value of EXP2 ifEXP is zero. EXP 
is optimized ifit involves "not", "&", or "%"; see the section on conditional statements. 

valofSTAT 

This expression causes the statement STAT to be executed until a "resultis EXP" statement is 
encountered or until control would otherwise pass to the statement following STAT. If a 
"resultis EXP" is executed, EXP becomes the value of the "valofSTAT" expression. If 
execution of ST AT terminates, the expression has a garbage value. The" valof' expression is 
usually used as a function body; but it may be used anyplace an expression can be. 

selecton EXP into 
[ case CONSTl: EXPl 

4.6 



Revised BCPL Manual· 

case CONSTn: EXPn 
default: EXPO 

This expression is equivalent to 

valofswitchon EXP into 
[ case CONSTl: resultis EXPl 

case CONSTn: resultis EXPn 
default: resultis EXPO 

EXPRESSIONS 

That is, its value is EXPi if the value ofEXP is CONSTi, or EXPO ifEXP is not equal to any of 
the CONSTs. If no "default" label appears, the "selecton" expression will have a garbage 
value ifnone of the cases is matched. 

newname NAME 

This expression evaluates at compile time to "true" if the NAME is appearing in the source file 
for the first time. It evaluates to "false" if it has appeared before (including previous 
"newname" constructs). This construct is useful in conjunction with conditional compilation 
or the 1M compiler switch (command-line declarations). . 

4.7 



Revised BCPL Manual 

5-1 ....... Assignment Statements: 

REF = EXP 

SECTION 5 

STATEMENTS 

The value of EXP is stored into the memory cell referenced by REF. See the section on 
Memory References (Section 4-1). 

REF1, ... , REFn = EXP1, ... , EXPn 

This statement is equivalent to the sequence "REF1 = EXPl; ... , REFn = EXPn". lbe 
assignments are made left-to-right. 

5-2 ....... Routine Calls: 

EXPO 
EXP(EXP1, EXP2, ... , EXPn) 

A routine call differs from a function call only in that a routine call occurs in a context where a 
statement is expected, whereas a function call occurs in a context where an expression (a value) 
is expected. The calling sequence for routines is identical to that for functions. 

5-3 ....... Conditionals and Iterative Statements: 

The evaluation of EXP in an "if', "unless", "test", "while", "until", "repeatwhile", or "repeatuntil" 
statement is optimized if EXP involves "not", "&", or "%". In general, EXP "succeeds" if it is non-zero, 
"fails" if it is O. But "EXPl&EXP2" is tested by first testing one of the EXPs; if it "fails", the &-expression 
"fails", and the other expression is not evaluated. Similarly, in "EXP1%EXP2", one of the EXPs is tested; if 
it "succeeds", "EXP1%EXP2" succeeds. A "not EXP" "succeeds" if EXP "fails", and "fails" if EXP 
"succeeds" . 

This optimization has two significant consequences: 

a) In a statement such as "if f\x) & g(x) do ..... , it is not guaranteed that both functions will be 
executed; so any side-effects of" f' and "g" cannot be depended on. 

b) The statement "if x & y do ... " is not necessarily equivalent to the sequence"z = x&y; ifzdo 
...... For example, if "x" has the value 1 and "y" has the value 2, "z = #x&y" would assign the 
value 0 to "z", because "1&2" is zero; so "if z do ..... will consider "z" to "fail". But both "x" 
and "y" are nonzero, so "if x&y do ... " will consider "x&y" to "succeed". in general, "&" 
should be used in conditional statements only when its operands are known to take on only the 
values "true" (# 177777) or "false" (0). Note that this is the case for relations; so "ifx ne 0 & y 
ne 0" docs the right thing. 

5.1 



Revised BCPL Manual 

ifEXPdo STAT 
unless EXP do STAT 

STATEMENTS 

The "if' statement executes STAT ifEXP succeeds. The "unless" statement executes STAT if 
EXP fails. The word "do" may be replaced by the word "then", but (unlike ALGOL) no 
"else" clause is allowed; use the "test" statement for two-anned conditionals. The "do" or 
"then" may be omitted if STAT appears on the same line as the "if' or "unless" clause, andif 
STAT is one of the following types of statements: 

"if' "unless" "test" "while" "until" "for" "goto" "return" "resultis" "switchon" "break" 
"loop" "endcase" "docase" 

test EXP then ST ATl or STA T2 
test EXP ifso ST AT1 ifnot ST A T2 
test EXP ifnot STAT2 ifso STA T1 

Each of the above "test" statements executes STATl ifEXP succeeds, or STAT2 ifEXP fails. 
Both clauses must be present; use the "if' statement or the "unless" statement for one-armed 
conditionals. If "then" and "or" arc used, they must appear in that sequence; the STAT 
following "then" is the tnte branch. If "ifso" and "ifnot" are used, they may appear in either 
order; the STAT following "ifso" is the tnte branch. 

while EXP do STAT 
until EXP do ST AT 

The "while" statement executes STAT as long as EXP succeeds. The "until" statement 
executes STAT as long as EXP fails. The test on EXP is done before the first execution of 
ST AT. The word" do" may be omitted in the same contexts as for the" if' statement. 

The "while" statement is equivalent to: 

"goto M; L: STAT; M: ifEXP goto L" 

The "until" statement is equivalent to 

"goto M; L: STAT; M: unless EXP goto L" 

STAT repeatwhile EXP 
STAT repeatuntil EXP 

The "repeatwhile" statement executes STAT as long as EXP succeeds. The "repeatuntil" 
statement executes STAT as long as EXP fails. STAT is executed once before the test on EXP 
is done. STAT may be a single statement or a compound statement. 

The "repeatwhile" statement is equivalent to: 

"L: STAT; ifEXP goto L" 

The "repeatuntil" statement is equivalent to: 

"L: STAT; unless EXP goto L" 

STAT repeat 

The "repeat" statement executes STAT repeatedly (until terminated by a "break", "return", 
"resultis", "endcase", "docase", or "goto" statement). It is equivalent to: 

"L:STAT; goto L" 

for NAME = EXP1 to EXP2 by CaNST do ST AT 

5.2 



Revised nCPL Manual· STATEMENTS 

break 
loop 

NAME is a legal variable name; EXP1 and EXP2 may be arbitrary expressions; "by CONST" 
may be missing (1 is assumed), but if present, it must be a constant expression. The "for" 
statement is (logically) equivalent to the following block: 

let NAME, lim, inc = EXPl, EXP2, CONST 
gotoM 

L: STAT 
NAME = NAME + inc 

M: test inc ge 0 
ifso if NAME ge lim goto L 
ifnot if NAME Ie lim goto L 

Several things about the "for" statement should be noted: 

1) The controlled variable is implicitly declared as a new dynamic variable; it is defined 
only in STAT, and not accessible after the loop terminates. 

2) EXP2 is evaluated only .once, at the beginning of the" for" statement. 

3) As noted, CaNST (if present) must be a constant expression. If it is negative, the 
termination test is reversed. 

4) STAT is not executed if the initial condition fails the termination test (like ALGOL, 
unlike FORTRAN). 

5) STAT is executed when the controlled variable is equal to the limit. 

These are single-word BCPL statements which are legal only in the context of an iterative 
statement. The effect of "break" is to jump to the statement immediately following the 
smallest textually enclosing iterative statement. The effect of "loop" is to jump t9 the pointat 
which the next iteration starts: to the test in a "while", "until", "repeatwhile", or "repeatuntil" 
statement; to the increment of NAME in a "for" statement; or to the beginning of a "repeat" 
statement. 

5-4 ....... Conditional Compilation Statements: 

compileif EXP then [<sequence>] 

compiletest EXP then [ <sequence~ ] 

These construct~ allow alternative code· sequences to be chosen at compile time; they are 
analogous to '~if' and "test." There arc several restrictions on the use of these statements: 

The EXP must be comp rised of operations on manifest and numeric constants, so 
that it may be evaluated at compile time. 

A conditional compilation construct can appear wherever a "let" would be legal 
(Not, for example, within a statement or declaration, or directly following "then," 
"ifso," "ifnot," or "case"). 

5.3 



Revised DCPL Manual STATEMENTS 

Although the syntax of conditional compilation parallels that of conditional 
statements, the brackets ([ ]) are mandatory. A <sequence> is a legally separated 
sequence of commands and declarations. The <sequence> may contain 
declarations which will apply to commands which follow the conditional construct, 
as long as the uses of the variable are also conditionally compiled. 

Conditional selections are done at a time after "get" files have been read. As a 
result, "get" commands are unaffected by conditionals -- the filcs are always read. 

The auxi11ary constructs "ifso" "ifuot" "then" "do" and "or" may all be used with the 
conditional compilation tests: ' , , , 

compiletest EXP then [ <sequenceD] or [ <sequence2> ] 

5-5 ....... Labels and Ooto Statements: 

NAME: STAT 

Any BCPL statement may be labeled. A label is effectively a declaration of a static variable 
which is initialized with the address of the labeled statement. It differs from other declarations 
in that it does not implicitly start a new block. Instead, it is treated as if it appeared at the 
beginning of the smallest textually enclosing block. See the section on static declarations for 
details. 

goto EXP 

A Nova JMP is done to "rv EXP". The EXP is usually a label, but need not be. Control is 
transferred to the memory location which is referenccd by "rv EXP". . 

5-6 ....... Returns: 

rcturn 
resultis EXP 

These statements cause a return from the procedure in which they appear. "return" is only 
legal in a routine body; "resultis EXP" is only legal in a function body. 

5-7 ....... Switches: 

switchon EXP into CASEBLOCK 

CASEBLOCK is a DCPL block which contains labcls of the form "case CONSTi:", where the 
CONSTi are constant expressions. CASEBLOCK may also contain a label of the form 
"default:". The effect of a "switchon" statement is as follows: If the CASEBLOCK contains a 
"casc"label whose constant CONSTi is equal to the value of EXP, a jump is done to that label. 
Ifno CONSTi matches the value of EXP, a jump is done to the "default" label if there isone, 
or to the statement immediately following the CASEBLOCK if there is no default label. 

5.4 



Revised llCPL Manual STATEMENTS 

The appearance of a "case" label does not terminate the preceding case. That is, in 

switchon Char 'into 
[ case $A:x = 1 

case $ll:x = 2 
default:x = 0 

"x" will be 0 no matter what "Char" contains. The statements "x = 1" and "x = 2" should be 
followed by a jump to the end of the CASEllLOCK. The single-word BCPL statement 
"endcase" would accomplish this. 

Case labels are legal only in CASEBLOCKs, and not in any sub-blocks of a CASEllI DCK. In 
connection with this, recall that a declaration implicitly begins a new block. Therefore the 
sequence 

switchon x into 
[ case 0: let temp = 0 

case 1: 

will cause the compiler to complain that "case 1:" does not appear in a CASEBLOCK. The 
code which uses "temp" must be enclosed in a block of its own which does not span other case 
labels. 

Switches are implemented by grouping the case values into one or more value ranges in which 
listed values are fairly dense, and doing an indexed branch on each of these ranges. Case 
values which do not fall into these clusters are checked individually if all of the indexed 
branches fail. 

endcase 

This single-word statement is legal only within the scope of a "switchon" statement. It causesa 
transfer to the end of the smallest enclosing "switchon" statement. 

docase EXP 

This statement is legal only within the scope of a "switchon" statement or "selecton" 
expression. It causes a transfer to the case label denoted by EXP within the smallest enclosing 
CASEBLOCK, by performing the switching activities again using EXP as an index. This 
construct allows one to merge several cases with a terminating case, or to generate flexible 
looping constructs. The unlikely sequence 

i = 5' s = "STRO" 
switchon i into 
[ case 0: write(s); endcase 

case 1: s = "STR1"; docase 0 

case 5: s = "STR5"; docase 0 

would cause the string "STR5" to be written. 

5.5 



Revised BePL Manual· STATEMENTS 

5-8 ....... Single-Word Statements 

finish 
abort 

return 
break 
loop 

These single-word statements terminate execution of the program (on the Nova by a DOS 
".RTN" system call). The "abort" statement causes a message to be typed on the terminal. 

These statements are described above. 

5.6 



Revised BCPL Manual 

SECTION 6 

STRUCTURES 

6-1 ....... Structure declarations and references 

The structure facility allows the user to define templates for symbolically referencing partial-word fields of 
variables, and individual words and partial-words of vectors. (A "vector" in BCPL means any block of 
consecutive memory words). For example, a program which manipulates rectangular areas on a display 
might be using four-word blocks in memory to represent the center coordinates, width, and height of the 
significant areas on the screen. This program could declare a structure for referencing these blocks as 
follows: 

structure rectangle : [x 

] 

Y 
width 
height 

word 
word 
word 
word 

The structure is used in conjunction with the "»" operator. For example, if the program has a variable 
cursor which points at (Le., contains the address of the first word of) a four-word block, the expression 
cursor»rectangle.width references the width field of that block, and is equivalent to the expression cursor! 2. 
So the program can contain statements like 

cursor»rectangle.width = 1 

and 

let cursortop = cursor) )rectangle.x + cursor) )rectangle.height 

The declaration defines rectangle as a four-word structure, with fields named x, y, width, and height, eachof 
which is one word wide. The fields of a structure are positioned sequentially, so the x field refers to thefirst 
word of a referenced block, the y field to the second word, etc. 

The operator "»" (pronounced "right-lump") expects an expression on the left, and a description of the 
field to be referenced on the right. The value of the left-hand expression is taken as the address of the block 
of memory to be referenced. The right-hand side, in the simplest cases, consists of the name of the structure 
describing the block, followed by".", followed by the name of the field to be referenced. The left 
precedence of "»" is higher than that of all expression operators except procedure cans and vector 
subscripts; so 

a(b»)s.f 

a!b»sJ 

means 

means 

but all other left-hand operands of"»" must be parenthesized. 

(a(b »»s.f 

(a!b»)sJ 

It is often convenient to define a stmcture consisting of a field list at the outermost level, without a single 
top-name. For example: 

6.1 



Revised BCPL Manual 

structure [x 

] 

y 
width 
height 

word 
word 
word 
word 

STRUCTURES 

This structure describes a configuration of fields identical to that of rectangle. However, references to the 
fields of the structure require only the field name, as in cursor»width. 

Structures may also contain partial-word fields, as in the following example: 

structure area: [ visible 
blinking 
color 

] 

x 
blank 
border 
y 
width 
height 

bit 1 
bit 1 
bit 5 
bit 9 
bit 2 
bit 5 
bit 9 
byte 
byte 

This structure describes three-word blocks which hold various pieces of information about rectangular areas 
of the display. The field-size specifier bit N, where N is a constant expression, defines a field which is Nbits 
wide; the specifier byte defines a field which is 8 bits wide. A bit field may not overlap a word boundary; 
the special name blank (a reserved word) is used in the above declaration to leave an unnamed two-bit field 
in the second word in order to prevent such an overlap. A byte field must begin on a byte boundary. A 
word field must begin on a word boundary. No automatic filling-out to boundaries is done; blank fLClds 
must be supplied explicitly when needed. 

With the above definition of area, assuming that cursor points at an area block, we reference the width field 
with cursor»area.width, just as for rectangle. But the definition of area makes this a reference to the 
leftmost 8 bits of the third word of the vector cursor. The statement 

cursor> >area. width = w 

is equivalent to 

cursor!2 = ((w Ishift 8) & #177400) + (cursor!2 & #377) 

(The structure reference generates much better code than this). The rightmost 8 bits of cursor!2 are 
unchanged. Similarly, the statement 

w = cursor»area.width 

stores the left-hand byte ofcursor!2 into w, right-adjusted, with 8 leading zero bits; it is equivalent to 

w = (cursor!2 rshift 8) & #377 

6-2 ....... Nested fields 

A structure may contain substructures nested to any reasonable depth. For example, we might define a 
structure for vectors representing displayed lines of text as follows: 

6.2 



Revised BePL Manual· STRUCTURES 

structure textline : [ string word 
color byte 
linenum b~te 
margin: [ eft byte 

right byte 

font: l templates word 
charsize: [ width byte 

height byte 
] 

Now if the variable title is a pointer to a five-word block of memory containing textline data, its fields are 
referenced by: 

title> >textline.string 
title> >textline.color 
title> >tex tline.linenum 
title> >tex tline.margin.1eft 
title> >textline.margin.right 
title> >tex tli ne.font.charsize. width 
title> >tex tline.font.charsize.height 
title> >textline.font.templates 

That is, a field is specified to "»" by a sequence of substructure names separated by ".", ending with the 
field name. 

A substructure name may be used as a field name; that is, it may be the last name on the right-hand side of 
"»". So 

title> >tex tline.margin 

is a legal structure reference expression, referring to the full word titlel2. Howeyer, a "»" expression may 
not refer to a field that is longer than 16 bits, or to one that overlaps a word boundary; so . 

title> >textline.font 

is illegal, since the total length of font's sub fields is 32 bits. 

It is often the case that a group of fields in a structure arc identical to those in another structure or 
substructure. For example, we might want to define a structure for vectors which represent rectangular 
display areas containing a word of text as follows: 

structure sign : [ text 
textsize 
textcolor 
visible 
blinking 
color 

word 
byte 
byte 
bit 1 
bit 1 
bit 5 

That is, a sign contains all of the information for a area (visible, blinking, etc.), plus three additional fields. 
We can define sign as above without having to copy the field definitions of area as follows: 

6.3 



Revised BCPL Manual 

structure sign: [ text 
textcolor 
textsize 
@area 

] 

word 
byte 
byte 

STRUCTURES 

Within a structure declaration, an "@" followed by a previously defined structure name is replaced by the 
body of that structure's definition. So the above definition of sign is equivalent to: 

structure sign : [ text 
textcolor 
textsize 
[ visible 

blinking 
color 

word 
byte 
byte 

bit 1 
bit 1 

bit 1 

The brackets surrounding the inner field list have no effect, like unnecessary parentheses surrounding 
expressions. So references like stop»sign.color are legal with either definition. 

We could alternatively have made the area fields part of a substructure in sign as follows: 

structure sign: [ text word 
textcolor byte 
textsize bJte 
textarea: @area 

] 

or even 

structure sign : [ text word 
textcolor byte 
textsize ~te 
area: G area 

] 

In the latter case, references to the area fields look like stop»sign.area.color. 

6-3 ....... Subscripted fields 

It is possible to have structure fields which are replicated, with individual replications referred to in structure 
reference expressions by integer subscripts. A simple example is a structure which describes BCPL-format 
strings: 

structure string: [ length 
chart 1,255 byte 

] 

byte 

A "t" following a field name in a structure declaration indicates that the field is to be replicated; the "t" is 
followed two constants, separated by''','' , which specify the subscripts of the first and last replications. So in 
the above example, the field char is replicated 255 times, with the replications numbered from 1 thru 255. 
Now ifs is a pointer to a HCPL string, the expression 

6.4 



Revised BCPL Manual STRUCTURES 

s> >string.chart4 

references the fourth character of the string, which is in the left half of s!2. A subscript in a structure 
reference expression may be an arbitrary BCPL expression; the precedence of the "t" operator is higher 
than any other operator, so any subscript other than a name or number must be parenthesized, e.g., 

s»string.chart(i + j) = 0 

In references to a subscripted field, the user must be sure to remember what low-subscript value was 
specified in the declaration. For example, in the above definition of string, the first character is referenced 
by 

s> >string.chart 1 

and the last meaningful character by 

s> >string.chart(s> >string.1ength) 

But if the char field had been defined as chartO,254* byte, these references should be 

s> >string.chartO 

and 

s> >string.chart( s> >string.1ength -1) 

The low-subscript and high-subscript given in a structure declaration determine the number of bits 
occupied by the replicated field: 

(high-low + l)**(number of bits in one replication) 

Since a structure is only a template, and allocates no memory on' its own, the only significance of this 
number is that it determines the position of subsequent fields, if any, in the structure. (It also determines 
the value of the size expression, which will be described later). In the string example, char is the last field, so 
it makes no difference how many replications are specified. But suppose that we had chosen to include a 
text string in sign blocks, rather than a pointer to the string in the first word. The definition of sign would 
then be: 

structure sign: [ @string 
textcolor 
textsize 
area: 

] 

byte 
byte 
@area 

(Note the uses of the "@" construct). We would then reference the ith character of a sign with 

stop> )sign.charti 

With this definition, space for the maximum-length string would have to be left in every sign block, since 
the expression stop»sign.textcolor would be complied as a reference to the left half of stop!128. It would 
be better to specify @stting as the last thing in sign, so that variahle-length blocks could be used. 

Any structure name, substructure name, or field name may be declared as subscripted, subject to the 
SUBSCRIPTED STRUCTURE RULE given below. For example, we might define a structure that 
describes tables of area descriptors as follows: 

structure areatable : [ numareas 
areat 1, 100 : @area 

word 

] 

6.5 



Revised nCPL Manual- STRUCTURES 

A areatab1e is a block of storage which contains some number of three-word subb10cks, each of which is 
formatted as a area block. The first of the area blocks starts in the second word; the first word of a areatable 
holds the number of area blocks in the table. If the variable screen points at a areatable block, the 
expression 

screen) )areatable.areat5. width 

would reference the width field of the fifth three-word entry; that is, the left-half ofscreen!l4. Note thatthe 
subscript is applied to the name which is replicated in the declaration (area), not at the end of the "»" 
expression. 

The above expression is somewhat unwieldy. There are two ways in which the stmcture could be modified 
so as to shorten the references to its sub fields. One way is to eliminate the numareas field, and attach the 
subscript to the name areatable: 

structure areatablct 1,100 : @area 

With this definition, the width field of the fifth entry would be referenced with 

screen) )areatablet 5. width 

Note that if the numareas field had been included, it would have been replicated along with the area fields. 
(An extra word could be allocated above areatable blocks to hold the number of entries, and accessed as 
screen!-l; but there is no way to reference this word as part of the structure). 

The second way in which area table could be redefined is to post-subscript the area field list: 

structure areatable : [ numareas word 
@areat1,100 

] 

This form of subscript declaration (subscript applied to a bracketed field list, which is what @area is 
equivalent to) replicates the substructure defined by the field list (100 three-word blocks in this example), 
but subscripts in references to the stmcture appear after the individual field na.mes. So a reference to the 
width field of the fifth entry would be 

screen> >areatable. widtht5 

Only the area fields are replicated; so it was possible to include the numareas field in this version of the 
structure. 

Subscripted substmctures may contain subscripted fields or sub-substructures to any depth. For example, 
we might describe a table of file names with: 

structure filetablet 1,50: [ length 

The length of the ith name is referenced by 

t> > filetab let i.Iength 

and the jth character of the ith name by 

t> >fi1ctabletLchartj 

byte 
chart 1,15 byte 

] 

Multiple subscripts are also allowable. For example, a 4x3 matrix of double-precision numbers might be 
described by: 

6.6 



Revised BCPL Manual 

structure matrixt 1,3t 1,4: [high word 
low 

] 

STRUcrURES 

word 

This structure describes a storage area which consist'! of a four-fold replication of a three-fold replication of 
a two-word block. In references to a matrix block, the first subscript specifies which of the four outer 
replications is to be referenced, and the second indicates which of its three two-word blocks is wanted. So 
elements of a matrix appear in memory in the following order: 

m»matrixt 1 t l.high 
m> >matrix tIt I.low 
m> >matrix t 1 t2.high 
m> >matrixt 1 t2.low 
m»matrixtl t3.high 
m»matrixt 1 t3.1ow 
m»matrixt2t l.high 
m»matrixt2tl.low 

m»matrixt4t3.high 
m»matrixt4t3.low 

Note that the order of subscripts in the matrix structure reference is the reverse of the subscripts in the 
declaration. 

SUBSCRIPTED STRUCTURE RULE: The replicated field or substructure must begin on a word 
boundary and be a multiple of 16 bits wide, or begin on a byte boundary and be 8 bits wide. Sub fields 
within a replicated substructure need not satisfy this restriction; it applies only to the size and position of the 
full replicated element. For example, 

ft 1,10 [ a bit 3 ; b bit 13 ] 

and 

[ a bit 3 ; b bit 5 ]t 1,10 

are both legal; but 

at1,l0 bit 3 

and 

bt1,l0 bit 13 

are not. 

6-4 ....... Overlays 

It is often the case that a portion of a structure must be referenced with different sets of fields at different 
times; therefore the compiler allows parallel field lists to be declared. For example, the following structure 
is a description of the Nova instruction format: 

6.7 



Revised BCPL Manual 

structure instr : [ logical bit 1 
[acs bit 2 ; acd bit 2 

func bit 3 
shft bit 2 ; cry bit 2 
nlod bit 1 ; skp bit 3 

] . 
=[ op bIt 4 

i bit 1 
x bit2 
d bit 8 

] ] 

STRUCTURES 

The bracketed field lists joined by " = " refer to the same portion of the stntcture (bits 1 to 15). If P points to 
an instruction, the expression p»instr.1ogical references bit 0 of the instntction. On the Nova, this bit 
distinguishes between arithmetic/logical instructions and memory-reference instntctions; a program would 
use this bit to determine whether it is appropriate to reference p»instr.acs, etc. or p»instr.op, etc. 

Parallel substructures need not be of equal length; the position of subsequent fields is determined by the 
longest of the overlaid substntctures. 

6-5 ....... Left-lump structure references 

The operator "»" uses the value of its left-hand operand as the address of the data to be referenced. There 
is another structure reference operator, "«" (pronounced "left-lump"), which takes a variable as its left­
hand operand, and loads data from or stores data into the variable itself, rather than treating the variable asa 
pointer. To illustrate, suppose we have defined 

stntcture [lh byte; rh byte] 

and that the value of the variable pis #001003. The statement 

q = p»rh 

stores into q the right-hand 8 bits of the number contained in memory location # 1003; it is equivalent to 

q = p!O& #377 

The statement 

q = p«rh 

stores into q the value #000003, which is the right half of the value ofp; it is equivalent to 

q = p& #377 

Similarly, the statement 

p»rh = q 

is equivalent to 

p!O = (p!O & #177400) + (q & #377) 

6.8 



Revised BCPL Manual· 

which stores a value into the right half oflocation # 1003. The statement 

p«rh = q 

is equivalent to 

p = (p & #177400) + (q & #377) 

which stores into the right half of the variable p. 

STRUCTURES 

The "«" operator should normally be used only with structures that are one word wide. The compiler will 
interpret a statement like 

p«area.width = w 

(a reference to the third word of a structure) to mean 

(tv p)>>area.width = w 

This will store into the location which is two words below the place in memory where p happens to be 
allocated. It is dangerous to assume anything about the allocation of BCPL variables, except in special cases 
such as consecutively declared dynamic variables, so use this feature with care. 

The left-hand operand of a "«" expression may be a vector-subscript expression or an rv-expression, 
instead of a variable name. The statement 

v!i«area.width = w 

means 

(tv v!i)>>area.width = w ,or,equivalentIy, (v + 0> >area. width 

and 

(@p)«area.width = w 

means 

p»area.width = w 

(Note where parentheses are needed in the above expressions). 

6-6 ....... Heffalump structure references 

The operator" = >" (pronounced "heffalump") is convenient for referencing structures that are accessed 
indirectly. The expression 

a=>s.x 

is equivalent to the expression 

(@a)>>s.x. 

6.9 



Revised BCPL Manual STRUCTURES 

Here the variable a contains the address of a memory word (say, p) whose contents in turn address a block of 
data that the structure s describes. The information in this block may be freely relocated, provided one also 
changes p to indicate the new location. Any variable, a, containing the address ofp will still be able toaccess 
thc data using the heffalump construct. 

6-7 ....... Other structure operators 

The "Iv" operator may take a structure rcference expression ("»" or "«" expression) as its operand. Its 
value is the address of the memory word which would be referenced by the structure expression. The field 
referenced nced not bc a full-word field. 

It is sometimes necessary to determine the location or width of a field in a structurc. Two special operators 
are provided for this: "sizc" and "offset". Both are unary operators which take a field specification as an 
opcrand (that is, a construct that can appear to the right of "»" or"«". The value of a "size" expression is 
the size, in BITS, of the specified field. For example: 

size area. width 
size area , 
size strlng.charti 
size string.char 

!ValUe is 8) 
value is 48) 
value is 8) 
value is 2040) 

A "size" expression is always a compile-time constant, even if a variable subscript expression is involved. 
Note that if a subscript is missing in the field specification, the size of the entire replication is returned. 

The value of an "offset" expression is the BIT number, counting from bit 0 at the beginning of the 
structure, ofthc first bit of the specified field. For example: 

offset area. width 
offset area IValue is 32) 

value is 0) 
value is 40) 
value is 8*i) 
value is 8) 

offset string.chartS 
offset string.charti 
offset string.char 

An "offset" expression is a constant unless a variable subscript expression is involved. 

Keep in mind that "size" and "offset" return values in BITS, not in words. To get a vector for an area block, 
for example, you must say 

let cursor = vec (size area) / 16 

6-8 ....... Syntax of structure declarations 

STRUCTDECL 

STRUCTGROUP 

STRUCTITEM 

structure STRUCTGROUP 

STRUCTITEM 
STRUCflTEM = STRUCTITEM = ... = STRUCTlTEM 

NAME: FIELDDESCR 
NAME t SUBSCR : FIELDDESCR 
blank: FIELDDESCR 

6.10 



Revised BCPL Manual 

STRUCTLIST 

FIELDDESCR 

SUBSCR 

STRUCTLIST 
STRUCTLIST t SUBSCR 

[STRUCTITEM ; STRUCTITEM ; ... ; STRUCTITEM] 

bit 
bitCONST 
byte 
byteCONST 
word 
wordCONST 
STRUCTLIST 
STRUCTLIST t SUBSCR 

CONST, CONST 
SUBSCR t CONST , CONST 

STRUCTURES 

The colons in STRUCTITEM are really only necessary if a carriage return precedes a STRUCTLTST; in 
other places they may be omitted. The semicolons separating STRUCTlTEMs in a STRUCTLIST may be 
omitted if a carriage return separates the STR UCTITEMs. 

6.11 



Revised BCPL Manual· 

SECTION 7 

SOURCE FILE CONVENTIONS 

7 -1 ....... Declaration files 

The word "get" followed by a file name enclosed in quotes ( ....... ) causes the file to be included in the 
compilation, as if the contents of the file appeared in the source text. The most common use of "get" filesis 
to include a common set of manifest, external, and structure declarations in a number of source files that 
will be loaded together. The compiler will ignore a second "get" on a "get" file that it has already read(this 
facilitates certain uses of the precompilation feature; see description of the /G compiler switch). 

7-2 ....... Labeled brackets 

Brackets may be labeled with a sequence of letters and digit') immediately following the "[" or "]". When a 
labeled .. ]" is seen by the compiler, each unmatched "[" (whether it is labeled or not) is implicitly matched 
until the .. [ .. with the same label is matched. Thus, in: 

if n gr 0 do [li = 1 
until i gr n do 

[2 xli = 0; i = i + 1]1 

the "]1" closes both compound statements. Note that a carriage return, space, or tab must be present 
between an unlabeled "[" and a statement that starts with a name. Usually some error will be detected 
quickly if no space is left (as in "if n gr 0 do [x = 0 ... "). But sometimes the resulting statement will be legal 
(as in "if n gr 0 do [rv x = 0 ... "). In such cases, the error may not be detected until the end of the source 
text; this is often the cause of a non-obvious "unmatched section bracket" syntax error. 

7-3 ....... Semicolon insertion 

If two statements are separated by a carriage return, a semicolon is not required between them. This is 
accomplished by having the lexical analyzer replace a carriage return by a semicolon if it is preceded by a 
symbol which might end a statement and followed by a symbol which might begin a statement. Carriage 
returns are ignored (treated as spaces) in other places. ·This implies that a I1CPL statement may extend over 
two or more lines, with the carriage returns occurring anywhere in the statement except before a .. +" 01'''-'', 
or before the "(" which begins a function argument list. So 

x = a-
(b*c) 

will be interpreted properly (no semicolon inserted), but 

x = a 
- (b*c) 

7.1 



Revised BCPL Manual SOURCE FILE CONVENTiONS 

and 
x = a-f 

(b,c) 

will give a parsing error, because semicolons will be inserted at the carriage returns (" +", "_", and "(" might 
begin a statement). 

Semicolons will also be inserted at carriage returns in external, manifest, static and structure declarations, 
and in the constant list of table expressions. 

Carriage returns may no appear in string constants. To include a carriage return, use *N or *C. 

7 -4 ....... Do/Then insertion 

The words "do" and "then" are equivalent; so one may write 

if x Is 0 then x = -x 
or 

ifx Is 0 do x = -x 

The "do" (or "then") in an "if," "unless," "while," "until," or "for" statement may be omitted if the symbol 
which would fol1ow the "do" is one of the following 

if 
unless 
while 
until 
test 

Thus one may write: 

1fx eq 0 resultis-1 
while x Is 0 goto L 
unless x gr 0 break 

for 
switchon 
goto 
return 
resultis 

for 1= 1 to 10 switchon v!i1nto [ ... ] 

7-5 ....... Comments 

break 
loop 
finish 
abort 
endcase 

Comments may appear anywhere in the source text, and begin with a pair of slashes (! /). The slashes and 
the remainder of the line on which they lie are ignored. 

7-6 ....... Upper case VS. Lower Case 

Source files may be upper-case only, or upper- and lower- case. Iflower-case is used, reserved words must 
be lower-case. The basic rules for case are as follows: 

7.2 



Revised BCPL Manual SOURCE FILE CONVENTIONS 

If the first word of the source pro~ram (Le., of the file named in the command line) consists of a11l0wer-case 
characters, the compiler will distinguish words on the basis of case; and reserved words must be typed in 
lower-case. . 

If the first word is not entirely lower-case, the compiler will, in effect, convert everything to upper-case on 
input. The global switch IU will also cause input to be converted, even if the first word is in lower-case. 

This rule has implications for both compiling and loading. For compilation: 

l. If your program is entirely upper-case, any "get" files specified in the program will be treated as 
upper-case files, even if they were prepared in lower-case. So an upper-case program can use a fileof 
declarations (e.g., lOX for the 10 package), as long as that declaration file does not depend on case to 
distinguish between names. 

2. If your program wants to distinguish names on the basis of case, reserved words must be typed in 
lower case, both in your program and in any "get" files which the program needs. So in order to use 
a declaration file which was prepared in upper case, you must either use the IU switch (if you don"t 
care about case) or change the declaration file's reserved words to lower-case (if you do care about 
case in your program). . 

The BCPL loader (BLDR) normally distinguishes external names on the basis of case. So if you want to 
load upper-case and lower-case .BR files together, you must use the IU global switch on BLDR (or, 
alternatively, recompile the lower-case programs with IU). In particular, you must use BLDR/U if you load 
the 10 package (IOl.BR, I02.BR) with upper-case programs, or recompile the source files (I01, 102)with 
BCPL/U. 

7.3 



Revised BCPL Manual· 

8-1 ....... Normal compilation 

SECTION 8 

COMPILATION 

The BCPL compiler consists of six files, normally catted BCPL.SV, BCPL.YL, BCPL.YC, BCPL.YS, 
BCPL.YT, and BCPL.YG. The .SV file is the main program; the .y* files contain the code for the five 
passes of the compiler. The .y* files must have the same name as the save file and the given extensions; so 
to rename the compiler, you must rename the .y* files as well as the .SV file. 

Normally, to compile a source file (e.g., QUEENS.3), just type 

BCPL QUEENS.3 
. 

(Only one source file may be compiled at a time.) (No extension is automatically assumed for the source file 
name.) The compiler will print 

BCPL 2.0 -- QUEENS.BR = QUEENSJ 

and begin compiling the program. (2.0 is the current version of the compiler.) If no errors are detected, the 
BCPL relocatable binary file QUEENS.DR will be created, and the compiler will print something like 

QUEENS.BR --1426 (790) WORDS 

The numbers are the length of the code generated in octal (decimal). 

If an error is detected in the source text, the compiler will generally print each offending line and indicate 
the error(s) found in that line. The compiler will continue to look for further errors as long as it can do so 
without getting confused, and finally print the message 

n ERRORS IN QUEENS.3 

Some errors are grounds for immediate termination of compilation. The most common ones are trying to 
compile a source file that does not exist, or typing a command line that BCPL does not understand. Suitable 
messages are printed to indicate such errors. It is also possible to have a program which is "too big", in one 
respect or another, for BCPL to handle. This usually results in a message like "FRAME SPACE 
OVERFLOW" or "OUT OF FRAME SPACE". You must split the program into separately compilab1e 
files when this happens. 

The compiler normally assumes that the Nova console is a CRT terminal. Therefore, after producing 20 
lines of terminal output, it rings the ben (if any), prints a colon, and waits for the user to type acarriage­
return or line-feed before proceeding. Carriage-return produces 20 more lines; line-feed produces one more 
line; 0 followed by carriage-return or line-feed causes the compiler to proceed without further pauses. 

8.1 



Revised BCPL Manual COMPILATION 

8-2 ....... Global switches 

These switches can be attached to the name BCPL (or a whatever you call your compiler); e.g., 
"BCPL/UI A QUEENSJ". 

IU Treat the source file as if it had been typed entirely in upper case. (See the section on 
upper/lower case considerations.) 

IP Turn off the "pause" feature described above. 

IF Write error messages onto the file QUEENS.I3'f (if the source file name was 
QUEENSJ) instead of printing them on the terminal. If IF is given, the compiler 
prints the message 

BCPL 2.0 -- QUEENS.BR,QUEENS.BT = QUEENS.3 

at the beginning of compilation. 

I A Produce an assembly-language listing of the code generated. (This is useful if you want 
to see what kind of code BCPL generates, or if you are having a hard time debugging a 
particular piece of code. But the listing file is big -- it takes a long time to generate and 
print -- so you probably don"t want to make a habit of requesting it.) The listing is 
written on the file QUEENS.BT, unless the IT switch is given; error messages still 
appear on the terminal, unless IF is given. 

IT Causes all output (error messages and the I A listing, if requested) to appear on the 
terminal. The file QUEENS. BT is not created. 

Summary: IF alone sends error messages to QUEENS.BT. I A/Fsends both errors and the 
assembly listing to QUEENS.BT; / AIT sends both to the terminal. I A alone sends 
errors to the telminal, and the assembly listing to QUEENS,nr[', IF/T is illegal; IT 
alone has no effect. 

ID Causes the compiler to indicate when it starts a new compilation phase (LEX, CAE, 
SAE, TRN, and NCG), and prints debugging information with error messages. 

IH Causes the compiler to pause (by entering the Nova debugger) between compilation 
phases and after error messages. To resume, type (ESC)R, not (ESC)P. 

(lD and IH are generally useful only to compiler gurus.) 

IG This switch is used to generate "precompiled" declarations files. Any source file (which 
may contain "get" statements) may be precompiled, using the IG global switch. For 
example, 

BCPL/G DECLDRIVER 

will precompile DECLDRIVER and create the files DECLDRIVER.BD and 
DECLDRIVER.BC. DECLDRIVER is typically just a list of "get" statements, 
consolidating declaration files. Subsequently, the precompiled declarations may be 
used with the local IG switch (see below); precompiling increases the speed of the 
compiler slightly if the same declarations are to be included in many files. 

IS See the local IS switch, below. The global version simply provides a site-dependent 
default value for the switch argument. 

8.2 



Revised BCPL Manual COMPILATION 

8-3 ....... Local switches 

These switches are attached to names following the compiler name in the command line; e.g., 
"BCPL QUEENS.3 QUEENS.LS/A": 

name (no switches) The name is taken as the source file name. No extension is assumed; you must 
type "name.ext" if the source file has an extension. The source file name is used to 
generate the names for the relocatable binary (.BR) file and the text output (.BT) file 
(unless these are specified by the local switches I A, IF, IR.). On the Nova, if a device is 
specified with the name (e.g., OP1:QUEENSJ), that device will be used for files 
specified in "get" directives in the source text; and for the output files (unless these are 
specified by the local switches I A, IF, IR). If no device is specified, the default device 
is used (the device given in the last DlR command to DOS), even if the compiler is 
running on a different device (e.g., if you have typed "DIR OPO; DPI:nCPL 
QUEENS ... ", QUEENS and its "get" files will come from OPO). There are no 
"devices" on the Alto. 

name/A 

name IF 

name/R 

name/G 

Like the global I A switch, but the assembly listing is written onto "name" rather than 
QUEENS.rrr. If "name" is a file name, the extension .BT will be appended to it ifit 
has no extension: to create a file with no extension, use "name.lA". If "name" is a 
device (e.g., MCO:XGP.), it should be terminated with a "."; the output will be sent to 
the device named. 

Like the global IF switch, but writes error messages onto '~name" as for I A above. 
("namel A/F" does the obvious thing, but you cannot send errors and the assembly 
listing to two different files.) 

Causes the relocatable binary file to be named "name" instead of QUEENS.BR. The 
.BR extension is appended to "name" if it has no extension; to create a file with no 
extension, use "name.lR". 

The named file is a file of precompiled definitions, created with the global IG switch 
(see above). For example, the command 

nCPL DECLDRIVER/G TEST 

will compile test, including the declarations precompiled in DECLDRIVER. 

number/V The decimal number is used to set the "manifest constant" for use with the 1M switch, 
below. 

name/M This switch declares the name to be a manifest constant, with the value taken from the 
last setting of the IV switch (default is true, -1). The value will apply throughout 
compilation, excluding any part of the compilation introduced through the 
precompilation (fG) option. 

name/L 

name/T 

If used in conjuction with "newname," this can be used to override standard settings for 
parameters. 

Caution: Nova DOS will convert all keyboard input to upper case; names given to the 
1M switch in this manner will therefore be upper case. However, the 1M switch does 
not trigger the "upper case" detector (section 7-6). 

These switches cause the compiler to print the source text (lL) and intermediate 
compilation results (IT) as it proceeds through its various phases. The phases are 
specified by the individual characters of "name": 

8.3 



Revised BCPL Manual· 

L for the lexical analyzer 
C for the parser 
S for the symbol table generator 
T for the Ocode generator 
1 for the code generator, pass 1 
2 for the code generator, pass 2. 

COMPILATION 

E.g., "CI/L" would cause the compiler to print each line of source text as it parses it, 
and again as it makes a first pass at generating code for the line. The output would go to 
the file QUEENS.BT unless the global IT switch were given. These switches are 
primarily for debugging the compiler. But they might be helpful occasionally in 
tracking down an obscure error, or one for which the error message does not provide 
enough context to locate the offending statement in the source text. 

numberlS The number is interpreted in octal. Its value is used instead of the first instruction of 
code normally issued for each procedure (see the runtime environment section). The 
same number, incremented by #400, is used instead of the standard procedure return 
instruction. This facility allows an installation to customize its procedure storage 
allocation facilities. 

8.4 



Revised BCPL Manual 

9-1 ....... Normal loading 

SECTION 9 

LOADING 

The BCPL loader on the Alto is found on the file BLDR.RUN. A symbol file BLDR.SYMS also exists for 
use in loader maintenance. 

The BCPL loader on the Nova consists of four files, normally called BLDR.SV, BLDR.YU, BLDR.YI, and 
BLOR.YD. The .y* files are copies of files that the loader needs for initialization of the save file which it 
creates. The .y* tiles must have the same name as the loader; so if you rename BLDR.SV, you must rename 
the .y* files as well. 

A typical command to BLDR on the Alto looks like: 

BLDR/LIV QUEENS QUEENS1 

and on the Nova looks like: 

BLDR/D/L/V QUEENS QUEENS1 101 102 

This would create the file QUEENS.RUN (.SV on the Nova), an executable save file, from the BCPL 
relocatable binary files QUEENS.BR, etc. The IL/V switches create a symbol table file named 
QUEENS.BS, containing information about where things will be in core when the program runs. A typical 
.BS file listing is attached. The 10 switch on the Nova loads the debugger. 

BLDR will accept concatenated .BR files as well as .BR files created directly by the compiler. That is, if 
F1.BR, F2.BR, ... , Fn.BR are all BCPL relocatable binary files, and F.RR is their concatenation, then 
including F in a RLDR command has the same effect as including Fl F2 ... Fn. The purpose of this feature 
is to allow multi-file subroutine packages of BCPL routines to be distributed as one file rather than as a 
collection of files. 

9-2 ....... Errors 

Errors in the command line to BLOR are fatal; the loader immediately aborts. Most such errors will result 
in a message like 

Bad switch Lin QUEENS/LIS 

Undefined file names, and other operating system-detected errors will result in something like 

Cannot open QUEENS.BR 

Fatal error messages are always printed on the terminal. 

The loader detects two types of external name conflicts. If an external name is defined (by "static 

9.1 



Revised BCPL Manual LOADING 

[name = ... ]" or by "let name ( ... ) be ... ") in more than one relocatable binary file, the loader generates a 
message like 

QUEENS2.BR 

The EXTERNAL NAME name was also defined in QUEENS1.BR 

for each such conflict detected in QUEENS2. On the Alto, the static for "name" will contain the first value 
given it. If an external name is declared to be a common (page zero) variable in some files (by "external 
L@name; ... ]") but not in the first file in which the name appears, the loader genrates a message like 

QUEENS2.BR 

The COMMON NAME name was not declared COMMON in QUEENSl.BR 

These messages appear in the .BS file if one is being created; the message 

n errors during loading 

is printed on the terminal if any name conflicts are detected. You must recompile the offending files and 
reload before attempting to run the program. 

External names which have been used but not defined result in the message 

n undefined externals 

being printed on the terminal. The names are listed in the .BS file if one is being created; or on the terminal 
otherwise. 

The loader also generates "warnings" if it detects space allocation conflicts in the save file being created. 
The most common of these are 

Not enough COMMON space 

if too many common (page zero) variables have been declared, and 

Not enough STATIC space was reserved 

if too many non-page-zero statics have been used. The available page zero space cannot be increased; you 
must redefine some common variables to be ordinary statics. The space reserved for statics can be specified 
with the local /W switch; see below for this and for other space allocation controls. 

The error, warning, and undefined/multiple-definition error counts are separate; if you are told that was 
one undefined external and one error, there are two things wrong. The error being reported is not the 
undefined external but a different one. 

9-3 ....... Global switches 

/D (Nova only) Load the Nova debugger into the save file. This switch is legal only ifno 
assembly language file is specified with the /1 switch; if you load assembly language 
programs, you should include the debugger when you load them with DOS's RLDR. 
This switch is not needed on the Alto, since debugging is done with Swat. 

/U Convert the names of all external symbols to upper case. This is needed, for example, if 

9.2 



Revised BCPL Manual· LOADING 

IW 

IL/V/N 

IT 

IF 

1M 

IK 

IR 

IB 

II 

you are loading the DOS 10 package (l01, 102) with programs written in upper case; 
the 10 procedure names in your files are upper case, but in 101 and 102 they are 
defined in lower case. Without IU, the upper case externals in your programs would be 
undefined. (Alternatively, you could recompile the 10 package source files with 
BCPL/U.) 

Do not print warning messages. Normally the loader will tell you if you do something 
suspicious, like loading a program on top of something else. If you know what you are 
doing, and if the warning messages bother you, you can turn them off with IW. 

Generate lists of static variable names. IL prints procedure and labcl names, sortcd by 
the location of the procedure or label in the code; the IL listing is. in effect, a core map. 
IV ptints non-procedure names (variables). IN prints all static names, sortcd by 
address. The most useful combination is IL/V; it lists all statics, separating procedure 
names from variablc names. The listings go to the file "savefilename.BS" unless the IT 
switch is used. 

All printed loader output (errors, warnings, and listings) is sent to the terminal. 
Normally, if listings arc requested, they arc sent to a file. Error and warning messages, 
and other load map data if there are no listings, normally go to the terminal. 

All printed output is sent to the file "savefilename.BS", except for fatal error messages, 
which always go to the terminal. 

(Alto only) Don't produce a .SYMS file. 

(Alto only) Don't read SYS.BK. (The facilities of the Alto operating system are made 
accessible to user programs via static variables that refer to system procedures orsystcm 
scalars. Because these objects are not defined in a user's Bepl program, he must dcclare 
the names to be external. The loader automatically reads the file Sys.bk to determine 
how to match up the user's references with the operating system objects. This 
arrangement does not require re-Ioading programs when objects in the operating system 
move. The K switch should only be used if you do not want the loader to perform this 
service for you, e.g., if you are loading the operating system itself.) 

(Alto only) Don't complain if the same BR file name appears more than once in the file 
list (presumably in different overlays). Load the code each time it appears, but only 
allocate the statics once. Each such static, like any multiply defined static, will contain 
the first value assigned to it. This is relevant only if at least one of the occurrences of the 
BR file is in resident (non-overlay) code. 

(Alto only) Append overlay files to the RUN file instead of creating separate BB files. 
Each overlay will start on a new disk page. 

(Alto only) Initialize all code-pointing statics defined in Type B overlays to point to the 
procedure SwappedOut, which had bctter be dcfined in the resident code. 

9-4 ....... Local switches -- group 1 

These switches provide global information to the loader. All occurrenccs of these switchcs must appcar 
before any of the group 2 switches, and before the first relocatable binary file name. 

name/S The name of the save file to be creatcd. (If not specified, the name of the first 
relocatablc binary file is used.) If "namc" has no extcnsion, .RUN is used (.SV on the 

9.3 



Revised BCPL Manual LOADING 

Nova). The "name" will also be used for the name of the .BS file unless the local IF 
switch is used, and on the Alto for the .SYMS file, unless the 1M switch is used. 

namelF All output is sent to the file "name". If"name" has no extension, .RS is used. 

namell (Nova only) Assembly language file. The file "name" (extension .SV if "name" has 
none) is assumed to be a Nova save file. The save file created by BLDR is initialized to 
the contents of this file (except for locations 300-377) at the beginning ofloading. If the 
Nova debugger is to be loaded, it must have been loaded with the II file. Ifno II file is 
specified, a blank save file (BLDR.YI) is used, or if the global switch ID is specified, 

name/U (Nova only) BCPL nmtime routines. This switch allows the user to replace the standard 
nmtime routines (get new frame, multiply, etc.) with his own. (These normally come 
from BLDR.YU.) The specified file is a Nova save file, but it is special in several 
respects. 

numberlN Maximum number of names allowed (octal). The default is 1000 (512 decimal). BLDR 
must allocate a certain amount of fixed space for each name, and must also have room 
for the name strings themselves. If you have a large number of1ong names, BLDR may 
run out of room, and print a storage exhausted message; or you may have more than 
512 names. In either case, you may be able to load by adjusting the number of names 
allowed with IN. You may also be able to get more room with IC, ifnone of your .RR 
files have as much as 5000 words of code. (The IN switch does not affect the default 
IW value - see below). 

number/C Maximum (octal) size of code in a single .BR file. The default is 5000. The IC switch is 
useful either if you have an especially big .BR file, or if you need more name space (see 
IN). (The compiler message "QUEENS.BR -- 1426 (790) WORDS" indicates the size 
of the code compiled, in octal and decimal). 

number/Z The (octal) starting address for allocating common (page zero static variables). Ifnot 
specified, common starts at octal 50 on the Alto, and on the Nova at ZMAX of the II 
file, which is 60 if global ID is specified, 50 otherwise. 

number/V The (octal) starting address for allocating static variables. If not specified, statics start 
on the Alto at octal 1000, and on the Nova just after the BCPL runtime routines (which 
are loaded just after the II file). 

number/W 

numberlJ 

The maximum number (octal) of non-page-zero static variables. The default is 400 (256 
decimal). If no IV is specified, this amount of space is reserved in the save file at the 
default starting address for statics; code will be loaded after this space unless 10 isgiven 
on the Alto, or IP is given on the Nova. If the starting address for statics is specified 
with IV, it is the user's responsibility to see that enough space is left for static variables 
at that address; IW is then just used in checking that static and code space do not 
overlap. 

(Nova only) The maximum number (octal) of overlay files permitted. The default is 10 
(8 decimal). 

number/K (Nova only) The maximum number (octal) of .BR files which may be loaded. 

name 1M (Alto only) The first name of the SYMS file (defaults to the same name as the RUN 
file). 

numberlO (Alto only) The location to start loading code (instead of its usual place right after the 
. statics). 

9.4 



Revised BCPL Manual LOADING 

9-5 ....... Local switches -- group 2 

These switches control the loading of BCPL code into the save file. The loader also has facilities for creating 
"overlay" files to allow code to be swapped in dynamically; see the section on overlays below. 

name (no switches) A BCPL relocatable binary file. If "name" has no extension, .BR is assumed (this 
is the extension normally used by the compiler}. The code in the file is loaded into the 
save file at the current PC. 

name/I The file "name.BR" is considered to be the beginning of a series of "initialization code" 
files which extends to the end of the resident or of the A-overlay code in which the 
name appears. A relocation table (see Overlays, below) will be appended after the code 
of the series. The table will contain a pair [static address, relative PC] for each code­
pointing static defined since the last II. The idea is that your program after 
initialization can set all the those statics to point to SwappedOut (see Global Switch /1). 

number/P Set the current PC to "number" (octal). 

$numberlP Add "number" to the current PC. No spaces may appear between the "$" and the 
"number". 

letter/Q 

letter/X 

letter/Y 

letter/P 

The "letter" is a single character A -Z. These switches associate the current PC with the 
letter so that the PC can later be restored with the fonn of IP described below. IQ uses 
the value of the current PC; IX uses the larger of the current PC and the value (if any) 
currently associated with the "letter"; IY uses the smaller of the current PC and the 
current value of the "letter". 

Set the current PC to the value last assigned to the "letter" by IQ, IX, or IY. Ifno 
value has been assigned, an error is reported. 

The final PC value, after all files have been loaded (not counting the overlays on the Alto), is taken as the 
address of the start of frame space when the program executes. (This value can be changed on the Nova 
with a final IP specification.) Execution will begin with the first procedure defined in the first relocatable 
binary file loaded. This procedure will be called with one argument, a 32 (decimal) word vector whose 
contents are: 

word 0: 

word 25: 
word 26: 
word 27: 
word 28: 
word 29: 
word 30: 
word 31: 

The last value assigned to "A" by IQ, IX, or IY. 

The last value assigned to "Z" by IQ, IX, or IY. 
The address at which statics were loaded. 
The address of the last static variable. 
The address of the first procedure loaded. 
The address (+ I) of the last word of BCPL code loaded. 
The final value of PC (frame space start on the Nova). 
The highest memory address available on the Nova, 
the location of the relocation table if I[ was used on the Alto. 

9.5 



Revised BCPL Manual· LOADING 

9-6 ....... Nova Save file image 

The save file produced by BLDR on the Nova looks just like an ordinary Nova save file. The core image it 
produces is organized as follows (an numbers are octal): 

0 ... 15 

16 ... 277 

300 ... 377 

400 ... 777 

(Not part of a save file. Nova save files start with location 16; DOS considers locations 
0-15 sacred. The addressess listed below are core addresses; subtract 16 (octal) if you 
are looking at the save file itself (e.g., with OEDIT). 

An image of these words from the II file. Common variables will normally be allocated 
starting at ZMAX, the first page zero (.ZREL) location not used by the II file; this can 
be changed by the IZ switch to BLDR. 

Reserved part of page zero (used by the BCPL runtime routines). You should refrain 
from clobbering these. locations, unless you know what you are doing. Locations 
340-377 are relocated by BLDR to point at various ntntime routines. 

. 
An image of these words from the II file. DOS depends heavily on this page being 
correct, so users should not clobber it. BLDR fixes a few words in this page to make the 
save file look as ifit was created by the Nova loader. 

1000-NMAX-l 
An image of the rest of the II file. NMAX lIs the first unused word of the II file. If 
there is no II file, NMAX will be approximately 4300 if II) was used (the debugger is 
about 3300 words long), 1000 otherwise. 

NMAX ... UMAX-l 
The BCPL runtime routines. These currently are about 700 words long. 

UMAX ... VMAX-l (if IV was not used) 
Space for static variables, unless the starting address for statics was explicitly specified 
by IV. The size of the space reserved (VMAX-UMAX) is 400, unless changed with IW. 

VMAX... (if IV was not used) 
UMAX... (if IV was used) 

The default starting address for loading BCPL code. If the group 1 switch specifications 
are followed by just a list of file names, the BCPL code will be loaded sequentially 
starting here, unless the PC is changed with IP. 

The format of an Alto save file is described in the Alto Operating System Reference Manual, section 4.9. 

9-7 ....... Overlays . 

All occurrences of these switches must appear after all .BR file names which are to be loaded into the 
"resident" save file have been specified. 

name/A Create the file ~'name" (extension .BB if "name" has no extension) and load the 
following relocatable binary files sequentially into that file. The code is intended to be 
read into core and run at the current value of PC; procedures and labels defined in the 

9.6 



Revised BCPL Manual LOADING 

name/B 

files loaded into "name" will point at this area of core. The PC should not be changed 
(with IP) between the .BR files. The file "name" (or the subfile of the RUN file if 
Global IB was used) has the format: 

word 0: 
word 1: 
word 2: 
word 3: 
word 4: 
word 5: 
word 6: 

word 15: 
word 16: 

value of PC at the first .RR file loaded 
length of the code in words 
o (this word is 1 for a IB file - see below) 
L, the word at which the relocation table starts, if any 
length of the file or subfile in words 
gage number of this disk page on the Alto, 0 on the Nova 

o 
(this is the first word of code) 

(if there is a relocation table, see below) 

N. B.: The flrst word of the code for each .BR file is the length of the code for that file; 
the second word is executable. 

Similar to I A, but in addition, the file "name" contains information about which 
procedure and label pointers must be fixed when the code is read into core. IB is used 
when the place at which the code will be executed is not known at load-time. 

All code compiled by BCPL is self-relocating; that is, the code contains no absolute· 
addresses which point at the code. The only words which must point into the code are 
the static variables which are defined as procedures and labels. Therefore, in order to 
dynamically relocate the code from one or more .BR files, all that is necessary is to 
initialize the procedure and label variables defined in the .BR files. This is the purpose 
of the relocation pair list at the end of a IB file. 

word 0: 
word 1: 
word 2: 
word 3: 
word 4: 
word 5: 
word 6: 

word 15: 
word 16: 

value of PC at the first .BR file 
length of code in words 
1 (to distinguish between I A and III files) 
L, the word at which the relocation table starts 
length of the file or subfile in words 
page number of this disk page on the Alto, 0 on the Nova 
o 
o 
(this is the first word of code) 

word L: number of relocation pairs N 
word L+ 1: static address 
word L+ 2: relative PC 

word L+ N*2-1; static address 
word L+ N*2: relative PC 

When the code is read in at location P, each "static address" must be set to P+ "relative 
PC', so that the procedures and labels which reference the code will point to the correct 
places. The following procedure will do this on the Nova; it assumes the standard 10 
package and a routine to get a block of storage from someplace in core. 

let swapin(filename) be 
[ let channel=open(filename) 

let header=vec 15 
readseq(channel,header lshift 1,32) 
let length=header!l 
let codestart=getblock(length) 

9.7 

Ilread 16 word header 
Illength of code 
Ilget core for code 



Revised BCPL Manual LOADING 

] 

readseq(channel,codestart lshift 1,length*2) //read code 
setpos(channel,headerI3 lshift 1) //get to relocation info 
let n=readbin(channel) //number of pairs 
for i=l to n do 
[ let p=readbin(channel) //static address to fix 

//offset in code 

] 

let codeaddr=readbin(channel) 
@p=codeaddr+codestart //fix static variable 

close(channel) 

It should be noted that string constants and label constants are part of the code BCPL 
compiles; the pointer to the constant block is recomputed each time the string or table 
expression is evaluated. So non-resident code must be careful about its use of strings 
and tables. 

Although the relocation pair table is the actual authority for producing correct addresses 
in statics that reference overlay code, a better BS file listing will result if each name/B 
entry is followed by O/P, to reset the PC value assigned during the load. 

9-8 ....... Alto Operating System Linkage 

To facilitate operating system linkage, two kinds of text files are accepted by BLDR: files specifying static 
locations (.BJ files) and files specifying static values (.BK files). The former are specified by filename/J or 
filename/H and the latter by filename/K. All the BJ files must precede the first BR and all the BK files 
must follow the last BR!!I Remember that the loader automatically reads SYS.BK at the very end, unless 
Global /K has been specified.. . 

The format of a typical line in a BJ or a BK file is: 

staticName octalNumber(s) codes 

A BJ line is ignored unless the staticName is declared external in some BR. A BK line is ignored unless the 
staticName is dcclared external in some BR and is never defined in any BR or BJ. Thus, a BJ file specifies 
only the locations of operating system statics defined and/or referenced in the program, while the BK serves 
to initialize only operating system statics refercnced but not defined in the program. 

In a BJ file, the last octalNumber on each line specifies the location at which the loader should allocate the 
static staticNamc. In a BK file, the first octalNumber specifies the initial value of the staticName. Thefirst­
last rule is framed to allow simple construction of these text files by editing a BS file. 

The recognized "codes" on each line of a BJ filc are as follows (note: if a BJ file is cited as filename/H, all 
codes are ignored, and the default is invoked): 

U=UND=UNDEF 
(default) The staticName must be defined in this load. 

P,L,V 
Another load (the operating system) defines the staticNamc to be a 
procedure (P), label (L), or vaIiable (V); it must not be defined here 

R (with P or L) 
The static points to relocatable code 

The codes on each line of a BK file are as follows: 
P(default), L, V 

Another load (the operating system) defines the staticName to be a 
procedure (P), label (L), or variable (V) 

9.8 



Revised BCPL Manual· LOADING 

R (with P or L) 
The static points to relocatablc code 

Unrecognized codes are ignored. 

To simplify the composition of the text files, there are "bases" which are added to each octalNumber. The 
bases are specified by individual lines of the form: 

octalNumber 

Comments may be included in a text file between / and carriage return. 

The loader cannot initialize a static unless it is in the static area of memory. Thus, UND entries in a BJ file 
which place a code-pointing or initialized static outside the legal area result in a warning message. 

The loader keeps track of the minimum and maximum locations in the static area that are mentioned in BJ 
files (including those statics unused in any BR), and avoids allocating statics in that region thereafter. 

The way the loader informs the operating system of the linkages is by listing the addresses of all statics 
initialized by BK entries in a table appended to the resident code (after the relocation table, if /I is used) and 
recording the number of these statics in the file header. The operating system assumes that the values of 
those statics are really "indices" into a static area in the as (in which order will not change) from which the 
contents of the designated OS statics are copied into the corresponding user program statics. 

9.9 



Revised BCPL Manual 

SECTION 10 

RUNTIME ENVIRONMENT 

10-1 ....... Procedure Frame Format 

Whenever code compiled by BCPL is being executed, AC2 points to the first word of the frame for the 
procedure which owns the code. (AC2 is not changed by "goto," so one should not jump across procedure 
boundaries; no check is made for this either at compile time or run time.) While the procedure Q is mnning 
(Le. after a call has been executed from the procedure P and Q's frame is initialized), the frame belonging to 
Q contains: 

(AC2) + 0: 
(AC2) + 1: 
(AC2) + 2: 
(AC2) + 3: 
(AC2) + 4,5, ... 

address ofP's frame 
(temp -- see below) 
(temp -- see below) 
(temp -- see below) 
arguments passed to Q by P 
dynamic variables for Q 
dynamic temps needed by Q 
vectors declared in Q 

The frame belonging to P, the procedure that called Q, contains: 

word 0: 
word 1: 
word 2: 
word 3: 
word 4,5, ... 

address of the frame ofP's caller 
address (-1) within P to which Q should return 
(address ( + 2) of the start ofP) 
(temp used by P to pass arguments to Q) 
arguments, dynamic variables, temps, vectors for P 

The frames belonging to P's caller and earlier ancestors of P have the same format as P's frame. The only 
useful information contained in the frame of the procedure currently executing (Q) is word 0; the return 
address for Q is in P's frame, not in the current frame. Words 2 and 3 ofP's frame need not be preserved by 
Q once Q's frame has been allocated. Words 1, 2 and 3 of Q's frame are available as temps for the BCPL 
runtime routines (and for users' machine-language procedures -- see below) while Q is running. 

10-2 ....... Procedure Calls 

Assume that Q is the currently executing procedure, and that Q is about to can the function R with two 
arguments: z=R(x,y). (Calls with more than two arguments will be described below.) The code in Q for 
this statement wi1llook something like this (assuming x, y and z are directly addressable): 

LDAO,x 
LDA l,y 
lSR@R 
2 
STAO,z 

Ilput arg 1 in ACO 
Ilput arg2 in AC1 
IlcaH R (R points to first instmction) 
Iinumber of arguments passed 
Iistore result passed back in ACO 

The lSR will transfer to the following code in R: 

STA 3,1,2 Iisave return address (in Q's frame) 

10.1 



Revised BCPL Manual RUNTIME ENVIRONMENT 

JSR @370 Iiset up R's frame 
n Iisize of frame needed by R 
JSR @367 II(not executed unless >3 arguments) 
(first instruction in R's body) 

The "getframe" routine, pointed to by location 370, does most of the work for entering a procedure. Its 
responsibilities are to set AC2 to point to a block of storage at least n words long for R's frame, to save the 
original contents of AC2 (Q's frame pointer) in word ° of R's frame, and to store the two arguments passed 
to R in words 4 and S of R's new frame. (If there are more than three arguments, "getframe" executes the 
JSR @367 to store the additional arguments into R's frame; otherwise the JSR @367 is skipped.) The 
"getframe" routine returns, in ACO, the actual number of arguments passed to R. If R has declared a 
"numargs" variable, the first instruction in R stores ACO into this variable. 

After "getframe" is finished, the body ofR is executed. R returns by executing JSR @366, with its result in 
ACO if it is a function. This "return" routine must deallocate R's frame, restore Q's frame pointer to AC2, 
and return to Q at the location ( + 1) pointed to by word 1 of Q's frame. 

For procedure calls which pass zero or one arguments, the above discussion applies as well; ACO and/or 
ACl are simply not loaded by Q, and are ignored by "getframe." 

For procedure calls with exactly three arguments, ACO and ACI are loaded with the first two arguments as 
above, and the third argument is passed to R by Q in word 3 of Q's frame. In tllis case, in addition to the 
chores mentioned above, "getframe" copies this word to word 6 of R's new frame (word 6 is the location for 
putting the tllird argument). The code in Q for a call a= R(x,y,z) might look like: 

LDAO,x 
LDA l,y 
LDA 3,z 
STA 3,3,2 
JSR@R 
3 
STA O,a 

Ilput argl in ACO 
Ilput arg2 in ACI 
Ilput arg3 in word 3 of 
IIQ's frame 
IlcaH R 
113 arguments to R 
Iistore result 

(The code might be more complex that this if one or more of the arguments is not a simple variable.) 

For procedure calls with N arguments (N)3), the calling sequence is more complicated. N + 1 consecutive 
cells are reserved (as dynamic temps) in Q's frame, starting at word L of the frame. (L is not necessarily the 
same for every call.) Arguments 3 through N are stored by Q in cells L+ 3 through L+ N of Q's frame; 
arguments 1 and 2 are loaded into ACO and ACl; and the number L is stored in word 3 of Q's frame. 
(Words L, L+l and L+2 in Q's frame are available as temps for "getframe.") So the code for 
a = R(zl,z2,z3,z4,zS) might look something like: 

LDAO,z3 
STAO,L+3,2 
LDA 0,z4 
STAO,L+4,2 
LDAO,zS 
STAO,L+S,2 
LDAO,KL 
STA 0,3,2 
IJ)A O,zl 
LDA 1,z2 
JSR@R 
S 
STAO,a 

Iistore args 3,4,5 in Q's frame 

IIKL contains the number L 
Ilpass offset of args to R 
Ilput args 1 and 2 in AC's 

So for calls with more than three arguments, "getframe" must move arguments 3 through N from Q's frame 
into words 6 through 6+ N-2 of the new frame for R. This is done by the "moveargs" routine (pointed toby 
location 367) after "getframe" has created the new frame. (The "moveargs" routine is used, rather than 

10.2 



Revised BCPL Manual· RUNTIME ENVIRONMENT 

having "getframe" itself move the arguments, for historical reasons. The "moveargs" routine, like 
"getframe," must return in ACO th.e number of arguments passed to R.) 

Nothing in the above description of procedure frames and procedure calls depends on where or how frame 
space is allocated by "getframe" and deallocated by "return." In addition, the code compiled by BCPL 
makes no assumptions about frame allocation; a BCPL procedure simply assumes that the standard four­
instruction preface will set up its frame and that the standard return instruction will deallocate it andrestore 
the state of the caller. By replacing the standard "getfrarne," "moveargs" and "return" routines (e.g., by 
changing locations 366, 367 and 370), the user can tailor frame allocation strategy to special needs. 

10-3 ....... Frame Allocation on the Nova 

The standard Nova BCPL "getframe" allocates frames on a stack which starts from the final PC value seen 
by BLDR and grows toward address #77777. When "getframe" allocates a new frame, it checks to see that 
the last word of the frame is not beyond the address contained in location 335; if it is, "getframe" prints a 
message indicating that the program has r.un out of frame space, and aborts execution. Location 335 is 
initialized to point at the highest memory address available (not used by DOS). Normally, all available 
memory is assumed to be devoted to frame space. However, by adjusting the contents of location 335, a 
program can reserve storage for itself (e.g., the statement @#335=@#335-#10000 reserves #10000 
additional cells, starting at location @#335 (after the statement is executed». 

The page zero location 336 points to the location which will be the first word of the frame for the next 
procedure called. So when location 335 is adjusted, the program should check the contents of location 336 
to see if the desired space is available: @# 336 must be less than @#335. 

10.3 



Revised BCPL Manual 

SECTION 11 

NOV A 110 and UTILITY ROUTINES 

11-1 ....... Introduction 

This section describes a number of routines which have been written to provide limited but useful runtime 
support for Nova BCPL programs. In many cases, the routines are very similar to the actual assembly­
language DOS system call, or are obvious extensions of the DOS function. Routines have been written to 
do many I/O functions and a few string functions. Limited formatted 110 functions have been 
implemented using general string and integer conversion routines. 

Before calling any of the I/O runtime routines, the routine initbcplio must be cal1ed to set up several global 
variables. The 110 errors are handled by the routine whose address is in syserror. This routine is normally 
ioerror, a routine which corrects some inadequacies of the DOS error-handling facility, and optional1yprints 
proceQ.ure information. Input routines do not consider end of file to be an error and return this information 
through a byte count indicating how many bytes were actually read, or a special ASCII character. Errors 
may be captured by changing the routine in syserror to one of the user's routines or by setting syserrortrap 
to "false." If this is done, after an 110 routine is called, the location syserrorflag will be false if no error has 
occured, but otherwise will be true; syserrorvalue will have the error value from AC2 after the DOS system 
call. End of file will be shown as an error when this facility is used. For doing routine tasks, the default 
error routine will be adequate. 

DOS strings are not compatible with BCPL strings. All the I/O routines accept BCPL strings and convert 
them to DOS strings when necessary, with the exception of readline and writeline (see description of those 
procedures). " 

TIll' procedure descriptions will, in many cases carry a cross-reference note to the DOS manual of the form 
" 1':( i ') :ch-pp. In general, al1 procedure arguments must be given; in a few specific cases, optional arguments 

it i",; permitted -- these are indicated by brackets ([ D. The DOS channel for an open file is an argument to 
In,lIIy of the routines; it is always called "chno." When using routines in which the "chno" description is 
marked with an asterisk (*), if the value of "chno" given is -1, the system teletype will be used (viaPCHAR 
and GCHAR DOS functions). Thus, for simple teletype I/O it is unnecessary to open a channel. 

The routines are contained in the files 101 and 102. lOX is a file containing external definitions that can be 
included in a BCPL program with the "get" statement. 

11-2 ....... Global Names 

sysac 
The accumulators used for system calls to DOS. Not generally useful except inside the runtime 
routines. 

syserrorflag 
If set after a system call, an error has occurred. This will be true independent of the state of 
syserrortrap. "The value of the error will be in syserrorvalue until another error occurs. 

syserrorvalue 
If syserror flag is set after a system call, this static contains the value of the error. This value is constant 
until another error occurs. 

11.1 



Revised BCPL Manual NOV A I/O and UTILITY ROUTINES 

syserrortrap 
If this static is set to tme, the routine ioerror will print an appropriate error message and return to DOS 
CLI. If set to false, ioerror will simply return. If ioerror is called by the user program with a single 
parameter, ioerror is called by the user program with a single parameter, ioerror behaves as if 
syserrortrap were set to tme. For more information see ioerror(syserrorvalue). 

sysprintpc 
If set to tme, ioerror will print the addresses of the system procedure from the mntime I/O and the 
user procedure which caused the error. This is the variable which is set to tme by initbcplio(2). 

filenamelcngth 
The maximum length of DOS filenames--manifest constant which may be used for allocating vectors 
to receive DOS file names. 

11-3 ....... Procedures 

nbytes = readcomcm(chno, string [, switches]) 
Purpose: To read arguments and switches from the DOS command file, COM.CM 
chno DOS channel number, previously opened to file COM.CM 
string A BCPL vector for the name read from COM.CM (may be allocated with vec 

filenamelcngth). 
switches A 26 element boolean vector in which each element corresponds to the 

alphabetic character for the switch. 
nbytes The number of bytes actually read is returned. 

initbcplio(mode) 
Purpose: 

mode 

char = readch( chno) 
Purpose: 
chno 
char 

writech( chno,char) 
Purpose: 
elmo 
char 

To initialize various constants needed by the runtime I/O routines. Failure to 
invoke this routine will lead to system crashes at undefined times! 
1 - normal mode; error messages will be given normally. 2 - diagnostic mode; 
stack information will be printed if this mode is set. Mode 2 may also be invoked 
by setting sysprintpc to true. 

To read one 8 bit character from channel chno previously opened to a DOS file. 
* A DOS channel number 0-7. 
The 8 bit character read from the channel. 

To write one 8 bit character from channel chno previously opened to a DOS file. 
* A DOS channel number 0-7. 
The 8 bit character to be written. 

rbytes = readseq(chno, bytepointer, nbytes) DOS:4-14 
Purpose: Read a number of bytes using the DOS .RDS command. 
chno A DOS channel number 0-7. 
bytepointer DOS byte pointer to the first byte involved in the lransfer. 
nbytes Number of bytes to be read. 
rbytes Number of bytes actually read--must be used to detect end of file. 

writeseq(chno, bytepointer, nbytes) DOS:4-18 
Purpose: Write a number of bytes using the DOS .WRS command. 
chno A DOS channel number 0-7. 
bytepointer DOS byte pointer to the first byte involved in the transfer. 
nbytes Number of bytes to be written. 

nbytes = readline(chno, string[, true/false]) DOS:4-13 

11.2 



Revised BCPL Manual· 

Purpose: 
chno 
string 
true/false 

nbytes 

writeline(chno, string) 
Purpose: 

chno 
string 

writestr( chno, string) 
Purpose: 

chno 
string 

writezoct(chno, number) 
Purpose: 
chno 
number 

NOV A lIO and UTILITY ROUTINES 

To read a string terminated by a carriage return from a DOS file. 
A DOS channel number 0-7. 
A BCPL vector with enough space to receive the input string. 
If tme, the TRUE DOS readline function is executed. The .RDL function 
terminates on NULL as well as fonn feed, carriage return and end of file. One 
usually does not want to deal with this function. If false or absent, the NULL 
termination is removed. 
If 1, a terminator has been received. The last character in the string received is 
either carriage return or form feed (or NULL if the tme .RDL) or carriage return 
followed by # 377 if end of file. 

DOS:4-17 
Write a string which MUST be terminated by a carriage return, nun or form feed 
to the DOS channel previously opened. DOS interprets tabs, form feeds for 
certain devices. 
A DOS channel number 0-7. 
A BCPL string or vector which must be terminated as specified for readline. 

Write any BCPL string. A line feed is unconditionally issued following every 
carriage return character. 
* A DOS channel number 0-7. 
A BCPL string or vector which must be terminated as specified above. 

Write a six digit unsigned octal number with leading zeroes. 
* A DOS channel number 0-7. 
16 bit quantity. 

writedec(chno, number[, space]) 
Purpose: Write a signed decimal number with fixed or variable spacing. 
chno * A DOS channel number 0-7. 
string 16 bit quantity. 
space N umber of spaces to be used. If missing or zero, a variable number of spaces are 

used. 

writeoct(chno, number[, space]) 
Purpose: Write a signed octal number with fixed or variable spacing. 
chno * A DOS channel number 0-7. 
number 16 btit quantity. 
space Number of spaces to be used. If missing or zero, a variable number of spaces are 

used. 

writeform(chno, formatcode, dataL fonnatcode, data ... ]) 
Purpose: W rite a group of string or 16 bit data to the channel as specified by the 

formatcodes. 
chno * A DOS channel number 0-7. 
formatcode 0 - data following is string data. 2-10 - data following is a 16 bit quantity to be 

displayed in that radix. 

writevalue(chno, number, rdx[, space]) 
Purpose: Write a 16 bit signed number in arbitrary radix (2-10) using fixed or variable 

chno 
number 
rdx 
space 

word = readbin(chno) 

spacing. 
* A DOS channel number 0-7. 
A 16 bit signed quantity. 
An arbitrary radix 2-10. 
The number of spaces to be used. If the argument is missing or 0, a variable 
number of spaces will be used. 

11.3 



Revised BCPL Manual 

Purpose: 

chno 
word 

writebin(chno, word) 
Purpose: 
chno 
word 

chno = open(name) 
Purpose: 
name 

chno 

chno = append(name) 
Purpose: 

name 

chno 

nbytes = curpos( chno) 
Purpose: 
chno 
nbytes 

setpos(chno, nbytes) 
Purpose: 
chno 
nbytes 

NOV A I/O and UTILITY ROUTINES 

Read a 16 bit quantity from the DOS channel. No end of file detection is 
provided except by capturing the error with syserrortrap. 
A DOS channel number 0-7. 
A 16 bit quantity read from the file. 

Write a 16 bit quantity to the specified channel. 
A DOS channel number 0-7. 
A 16 bit quantity to be written. 

DOS:4-10 
Open a DOS file to a channel selected by the nmtime routines. 
Any BCPL string which is a legal DOS file name. Device specifier must be 
upper case, e.g., DPO--all other characters are translated to upper case. 
A DOS channel number 0-7 returned specifying the channel number to be used. 

DOS:4-11 
Re-open a DOS file to a channel selected by the runtime routines. Writing will 
begin following the last character in the existing file. 
Any BCPL string which is a legal DOS file name. Device specifier must be 
upper case, e.g., DPO--all other characters are translated to upper case. 
A DOS channel number 0-7 returned specifying the channel number to be used. 

Return the current byte position of a DOS file. 
A DOS channel 0-7. 
Current byte pointer for the file. 

Set the current byte position of a DOS file. 
DOS channel 0-7. 
Current byte pointer for the file. 

curposdw(chno, doublewordvector) 
Purpose: Return the current block and byte number of a DOS file in a BCPL vector to 

overcome the lack of double precision integers in BCPL. 
chno A DOS channel 0-7. 
doublewordvector A 2 word DCPL vector giving the block number in word 0 and the byte number 

in word 1. 

setposdw( chno, doublewordvector) 
Purpose: Set the current block and byte number of a DOS file in a BCPL vector to 

overcome the lack of double precision integers in BCPL. 
chno A DOS channel 0-7. 
doublewordvector A 2 word DCPL vector giving the block number in word 0 and the byte number 

in word 1. 

createfile( name) 
Purpose: 
name 

deletefile( name) 
Purpose: 
name 

initdev(name) 
Purpose: 
name 

dircctorydev(name) 

DOS:4-6 
Create a DOS file. 
A legal DOS file name. 

DOS:4-7 
Create a DOS file. 
A legal DOS file name. 

DOS:4-4 
Initialize a DOS device. 
A legal DOS device name. 

DOS:4-4 

11.4 



Revised BCPL Manual 

Purpose: 
name 

releasedev(name) 
Purpose: 
name 

NOV A 110 and UTILITY ROUTINES 

Change the default directory to the indicated device. 
A legal DOS device name. 

DOS:4-5 
Release a device. 
A legal DOS device name. 

renamefile(name,newname) DOS:4-7 
Purpose: Change the name of an existing DOS file. 
name A legal DOS file name. 

c1ose(chno) 
Purpose: 
chno 

resetfilesO 
Purpose: 

OOS:4-12 
Close an I/O channel to further use until re-opened. 
A legal DOS channel number (0-7). 

DOS:4-13 
Close all I/O channels to further use until re-opened. 

errvalue = systemcall(acO, ac1, ac2, syscallname, err) DOS:4-1 
Purpose: Generate a DOS system call directly. 
acO NOVA ac 0 to be passed as part of the system call. 
ac1 NOV A ac 1. 
ac2 NOV A ac 2. 
syscallname A name from the list of system calls contained in iox, generally, the DOS 

mnemonic preceded by "sys"--e.g., sysrdl for .RDL. These are manifest 
constants defined in lOX. . 

err The BCPL procedure to be called in the event of an error return from the system 
call. 

errvalue The error value if an error occurs, otherwise -1. The error code is returned in 
global vector SYSAC!2 and in the global variables syserrorflag and syserrorvalue. 
If syserrorflag is set, syserrorvalue contains the value of the error. syserrorvalue 
will not be changed, but SYSAC!2 will be changed with every system call. 

ioerror(syscallname, sysac) or (syserrorvalue) 
Purpose: Writes an error message to the teletype output device. Most messages are 

generated by DOS, but in a few cases, ioerror generates the correct message. If 
called with 2 parameters, the error value is taken from the vector specified by 
sysac and in some cases the name specified by sysac. If called with 1 parameter, 
the error value is taken to be the value of that parameter and if needed 
syserrorname will be used. If syserrortrap is set to false, this routine will simply 
return when called with TWO parameters. The routine is executed 
unconditionally if called with only one parameter. 
111e DOS system call used to generate the error. 
The system call accumulator vector. 

syscallname 
sysac 
syserrorvalue 

install( chno ) 
Purpose: 
chno 

chatr(chno, acO) 
Purpose: 
chno 
acO 

acO = getfileatr( chno) 
Purpose: 

The error value which may be given directly in lieu of the two above. 

DOS:4-5 
Install a DOS on the default directory device. 
111e DOS channel previously opened to the DOS to be installed. 

DOS:4-8 
Change the attributes of a DOS file. 
A DOS channel previously opened to the file to be changed. 
The value for acO as specified in the DOS manual for file attributes: 
R = # 100000, S = #020000, P = #000002, W = #000001. WARNING: if 
#040000 (bit 1) is set and the file is permanent, it cannot be removed except by a 
full initialization of the directory!!!!!! II 

DOS:4-9 
Returns the attributes of a DOS file. 

11.5 



Revised BCPL Manual· 

chno 
acO 

incr = memavai10 
Purpose: 
incr 

memincr(incr) 
Purpose: 
incr 

dosexec(name, ac1) 
Purpose: 
name 
ac1 

dosreturnO 
Purpose: 

dosereturn( ac2) 
Purpose: 

ac2 

dosbreakO 
Purpose: 

NOV A I/O and UTILITY ROUTINES 

A DOS channel previously opened to the file in question. 
The word returned with meanings defined by the DOS manual. 

DOS:4-21 
Returns the amount of available memory for the user program. 
The increment of available memory. 

DOS:4-21 
Change the amount of user available memory. 
The increment of memory to be claimed. 

DOS:4-23 
Execute a DOS save file. 
The name of a DOS save file to be executed. 
The value for acl as specified by the DOS manual. If missing, 0 will be used so 
that the current execution level is pushed to the disk and the next save file will be 
started at its normal starting address. 

DOS:4-24 
Return control t6 DOS CLI. 

DOS:4-24 
Return control to DOS giving an error code. "The common error messages will 
be misprinted due to DOS assumptions about file names. 
The error value to be returned. 

DOS:4-25 
Create the file BREAK.SV. WARNING!!!!! All I/O channels must be closed 
with a resetfiles command if the file is to be re-executed. 

word = strtovalue(string[, radix]) 
Purpose: Convert a signed string to a 16 bit integer in the specified radix. 
string The BCPL string to be converted. 

radiifhe radix of the conversion. Ifunspecified, 8 is assumed. 
word A 16 bit word having the converted value. 

valuetostr(word, string, radix[, space]) 
Purpose: Convert a 16 bit signed value to a signed string with no leading zeros having 

word 
string 

radix 
space 

packstr( ustring, pstring) 
Purpose: 

ustring 

pstring 

either fixed or variable spacing. 
The 16 bit value to be converted. 
A vector with enough space to hold the converted value. If fixed spacing is 
specified, overflow will cause more spaces to be used in this vector. The 
maximum number of spaces used depends on the radix and is 16 for radix 2, 6 
for radices 8 and 10. 
The conversion radix. 
The number of string spaces to be used. If zero or missing, variable space is 
assumed. 

Change a BCPt string from unpacked format (one byte per word) to packed 
format (two bytes per word). 
A vector containing a BCPL unpacked string, one character per word, the first 
word specifying the length. 
A vector with enough room to receive the packed string. 

unpackstr(pstring, ustring) 
Purpose: Change a .BCPL string from packed format (two bytes per word) to unpacked 

format (one byte per word). 
pstring A BCPL string. 

11.6 



Revised BCPL Manual NOV A I/O and UTILITY ROUTINES 

ustring A vector with enough room for the BCPL unpacked string, one character per 
word, the first word specifying the length. 

movestr( stringsrc, stringdest) 
Purpose: Move a BCPL string which may be in either packed or unpacked format. 
stringsrc A BCPL string to be moved. 
stringdest A vector with sufficient room to receive the source string. 

byteptr = dostr(bcplstrig, dosstring) 
Purpose: Convert a BCPL string to a DOS string. 
bcplstring A BCPL string to be converted. 
dosstring A vector with sufficient space to receive the converted string. The only 

difference in the two formats is that DOS requires a null character at the end of 
many strings. 

byteptr A DOS byte pointer to the first character of the DOS string. 

word = lengthstr(string) Purpose: Return the length of a BCPL string. 
string A BCPL string. 
word The length of the string. 

char = extractchar(string, index) 
Purpose: Extract a single character from a string at a specified index. 
string A BCPL string. 
index The index for the character. If out of range, garbage is returned. 
char A 16 bit word containing the value of the character. 

ans = extractstr(stringl, string2, index, lengthstring1) 
Purpose: Extract string1 from string2 beginning at the specified index. 
string1 A vector of sufficient size to receive the extracted string. 
string2 The string from which the extraction is to be made. . 
index The beginning index for extraction; if the index goes out of the range of string2 

at any time, the length of the extracted string will be adjusted accordingly. 
lengthstrl The length of the string to be extracted. 
ans The actual length of the extracted string. 

lastbyteindex = imbedchar(char, string[, index]) 
Purpose: Imbed a character into a vector containing a BCPL string. The existing character 

at that index is destroyed. If the index for the imbedded character is greater than 
the length of the string, the second string is filled with blanks up to the imbedded 

char 
string2 

index 
lastbyteindex 

character. If no index is specified, the character will be appended. 
The character to be imbedded. 
A vector or BCPL string in which the character is to be imbedded. If index 
extends the length of string2, string2 must be a vector large enough to hold the 
results. 
The index in string2 at which the character is to be imbedded. 
The last position of string2 which was modified. 

lastbyteindex = imbedstr(string1, string2[, index]) 
Purpose: Imbed stringl in string2. The existing sub-string at that index is destroyed. If 

the index for the imbedded stringl is greater than the length of the string2, 
string2 is filled with blanks up to the imbedded character. [f no index is 

string 1 
string2 

index 
lastbyteindex 

specified, string1 will be appended to string2. 
The string to be imbedded. 
A vector or BCPL string in which the first string is to be imbedded. If string1 
extends the length of string2, string2 must be a vector large enough to hold the 
results. 
The index in string2 at which string1 is to be imbedded. 
The index: of the last byte imbedded in string2. 

index = searchstr(stringl, string2[, startindex]) 

11.7 



Revised BCPL Manual 

Purpose: 
stringl 
string2 
startindex 
index 

NOV A I/O and UTILITY ROUTINES 

Search string! for string2 at the specified starting index or at the start of string 1. 
The string to be searched. 
The string to be found. 
The index in string 1 at which to begin the search. 
The index of the string if it is found; if not, then -1. 

11.8 



Revised BePL Manual· 

SECTION 12 

APPENDICES 

12-1 ....... BCPL Reserved Words 

and abort 
be by break bit byte 
case compileif compiletest 
default do docase 
eq e3v ext endcase external 
for fa se finish 
ge gr get gom 
if ifso ifnot into 
let Ie Is Iv loop 

logand logor lshift 
manifest 
ne neg nil not neqv 

newname 
or offset 
rv return resultis repeat rcpeatwhile 

rem rshift repeatuntil 
switchon static size selecton structure 
to test then true table 
unless until 
vec valof 
while word xor 

12.1 

blank 

numargs 



Revised BCPL Manual 

abort 
argument 

bit 
blank 
break 
byte 

case 
common variables 
compileif 
compiletest 
conditionals 
constants 

default 
do 
docase 
dynamic variable 

endcase 
eq 
eqv 
expressions 
external 

false 
finish 
for 
function 

ge 
get 
global declarations 
goto 
gr 

heffalump 

identifier 
if 
ifnot 
ifso 
into 

INDEX 

· ................. 5.6,7.2 
· ................. 3.4,3.7 

· ................. 6.7,6.8,6.10 
· ................. 6.10 
· • . . . . . . . . . . . . . . . . 5.2,5.3,7.2 
· ................. 6.2,6.7,6.8,6.11 

· ................. 5.4,5.5 
· ................. 3.3,3.4 
· ................. 5.3 
· ................. 5.3,5.4 
· ................. 5.2 
· ................. 4.2 

· ................. 4.7,5.4,5.5 
· . . . . . . . . . . . . . . . . . 5.1,5.2,5.4,7.1,7.2 
· ................. 5.2,5.5 
· . . . . . . . . . . . . . . . . . 3.1,3.2,3.6,3.7,4.1 

· ................. 5.2,5.5,7.2 
· . . . . . . . . . . . . . . . . . 4.3,4.4,4.6 
· ................. 4.3,4.6 
· ................. 4.3 
· ................. 2.4,3.1,3.2,3.3,3.4,3.5,7.1 

· ................. 4.2 
· ................. 5.6,7.2 
· ................. 5.2,7.2 
· ................. 3.4,3.5 

· ................. 4.3,4.6 
· ................. 5.4,7.1 
· ................. 3.1 
· ................. 5.2,5.4,7.2 
· ................. 4.3,4.6 

· ................. 6.9 

· ................. 1.1 
· . . . . . . . . . . . . . . . . . 5.1,5.2,7.2 
· ................. 5.2,5.4 
· ................. 5.2,5.4 
· ................. 4.3,5.4 

12.2 



Revised BCPL Manual 

label 
Ie 
left-lump 
let 
loop 
Is 
Ishift 
Iv 

manifest 
mul 

ne 
newname 
nil 
not 
numargs 

offset 
Operators 
or 

parameter 
procedure 

rem 
repeat 
repeatuntil 
repeatwhile 
resultis 
return 
right-lump 
routine 
rshift 
rv 

selecton 
size 
static variable 

string 
structure 

switchon 

table 
test 
then 
true 

· . . . . . . . . . . . . . . . . . 3.3,3.4,5.4,5.5,7.1,9.3 
· ................. 4.3,4.6 
· .. : .............. 6.8 
· ................. 3.5,3.7 
· ................. 5.2,5.3,7.2 
· ................. 4.3,4.6 
· . . . . . . . . . . . . . . . . . 4.3,4.5,6.2 
· ................. 4.3,4.5 

· . . . . . . . . . . . . . . . . . 2.4,3.1,3.2,3.3,5.3,7.1,8.3 
· ................. 4.3 

· ................. 4.3,4.6 
· ................. 4.7,8.3 
· . . . . . . . . . . . . . . . . . 3.3,3.4,3.6,3.7 
· ................. 4.3,5.1 
· ................. 3.7 

6.10 
4.4,6.1,6.10 
5.2,5.4 

3.4,3.5 
3.3,3.4,3.5,9.3 

· ................. 4.3,4.5 
· ................. 5.2 
· ................. 5.1,5.2 
· ................. 5.1,5.2 
· . . . . . . . . . . . . . . . . . 3.4,3.6,3.7,4.6,4.7,5.2,5.4,7.2 
· . . . . . . . . . . . . . . . . . 3.4,3.5,5.2,5.4,7.2 
· ................. 6.1 
· . . . . . . . . . . . . . . . . . 3.4,3.5,5.1 
· . . . . . . . . . . . . . . . . . 4.3,4.5,6.2 
· . . . . . . . . . . . . . . . . . 4.2,4.3,4.5 

· ................. 4.3,4.6,5.5 
· ................. 6.5,6.10 
· ................. 2.4,3.1,3.2,3.3,3.4,3.7,4.1,4.2,4.5, 

5.4,9.3 
· ................. 4.4,6.4 
· . . . . . . . . . . . . . . . . . 3.1,3.2,6.1,6.2,6.3,6.4,6.5,6.7,6.8, 

6.10,7.1 
· . . . . . . . . . . . . . . . . . 5.2,5.4,5.5,7.2 

· ................. 4.4 
· ................. 5.1,5.2,7.2 
· ................. 5.2,5.3,5.4,7.2 
· ................. 4.2 

12.3 

INDEX 



Revised BCPL Manual· INDEX 

unless .................. 5.1,5.2,7.2 
until .................. 5.1,5.2,7.2 

valof . . . . . . . . . . . . . . . . . . 3.4,3.6,4.4,4.6 
vee . . . . . . . . . . . . . . . . . . 3.6,4.3,6.10 
vector .................. 3.7,4.1,6.1 

while .................. 5.1,5.2,7.2 
word .................. 6.1,6.2,6.3,6.6,6.7,6.9 

xor . . . . . . . . . . . . . . . . . . 4.3,4.6 

12.4 


