BCPL

Reference Manual

James E. Curry
and PARC staff

Compiled on: September 14, 1979

Computer Sciences Laboratory

Xerox Palo Alto Rescarch Center

3333 Coyote Hill Road
Palo Alto, California 94304

© Xerox Corporation 1979

Revised BCPL, Manual

TABLE OF CONTENTS

SECTION
1 INTRODUCTION
2 A SAMPLE PROGRAM
2-1 The QueensProblem
2-2 Source Code--QUEENS.
2-3 Source Code--QUEENSL
2-4 Noteson the SourceCode.o oo oot
2-5 Compiling and LoadingQUEENS.
3 DECLARATIONS AND PROCEDURES
3-1 BCPL Variables
3-2 ScopeRules R
3-3 Manifest Constants
3-4 Structure Declarations oo oL
3-5 Static and External Variables
3-6 Procedure Declarations
3-7 Procedurc Execution
3-8 Dynamic Variables
4 EXPRESSIONS
4-1 Memory References
4-2 Constants.ot
4-3 Precedence of Expressions.,
4-4 BCPLExpressions
5 STATEMENTS
5-1 Assignment Statements: 0.

PAGE

Revised BCPL Manual -

6

7

8

9

5-2
5-3
5-4
5-5
5-6
57
5-8

STRUCTURES
61
6-2
63
6-4
65
66
67
6-8

TABLE OF CONTENTS

Routine Calls:o e 5.1
Conditionals and Iterative Statements:. 51
Conditional Compilation Statements: 53
Labelsand Goto Statements: i i vt 54
Returns:o e 54
SWitches: o e 54
Single-Word Statements e 5.6
Structure declarations and referenceso oL 6.1
Nested fields & oo o 6.2
Subscripted fields. e 6.4
Overlays o o e e e e 6.7
Left-lump SEPUCHUTE TEEIENCES. - + + v v v v e e e e e e e e e 6.8
Heffalump structure references 6.9
Other StIuCtUre OPETALOTS & & & v v v v v v e e e e e e e e e e e e 6.10
Syntax of structure declarations 6.10

SOURCE FILE CONVENTIONS

7-1
7-2
7-3
7-4
7-5
7-6

COMPILATION
§-1 '
82
8-3

LOADING

Declarationfiles e 71
Labeledbrackets 71
Semicoloninsertion 7.1
Do/Theninsertion it 7.2
Commentst e e e e e 7.2
Uppercasevs.Lower Case o it i ittt it ee 72
Normal compilation e e e e e 3.1
Globalswitches it 8.2

Local SWItChes . . . v v v vt e e e e e e e e e e e e e e 8.3

ii

Revised BCPL Manual . TABLE OF CONTENTS

9-1 Normalloading ¢ vt ittt i it et et e e 9.1
9-2 Brrors e e e e 9.1
9-3 Globalswitches i 9.2
9-4 Local switches--groupl i i i 9.3
9-5 Local switches == group2 v v v v v it e et e et e e e 9.5
9-6 NovaSavefileimage v i i it i i e e e 9.6
9-7 Overlays v i e e e e e e e e e e e e 9.6
9-8 Alto Operating System Linkage 9.8

10 RUNTIME ENVIRONMENT

10-1 Procedure FrameFormat. i i i i i i e 10.1
10-2 Procedure Calls i i i i i e e e e 10.1
10-3 Frame Allocationonthe Nova. 10.3

11 NOVA 170 and UTILITY ROUTINES

11-1 Introduction v i i i e e e e e e e e e 11.1

11-2 Global Names . . . v v v vt e e e e e e e e e e e e e e e e e e 11.1

11-3 Procedures e 11.2
12 APPENDICES

12-1 BCPL Reserved Words . . . v v v i i it e e s e e e e e e 12.1

i

Revised BCPL Manual

SECTION 1
INTRODUCTION

BCPL is a general purpose rccursive programming language which is particularly suitable for systems
programming applications. Versions of BCPL exist on various computer systems, including CTSS at Project
MAC, the GE635 under GE COS, the TX-2 at Lincoln [ab, and the PDP-11, as wcll as for the Nova. The
Nova version of BCPL was bootstrapped from the TX-2 implementation, and incorporates most of the
features introduced into BCPL at Lincoln, including a version of structures.

This manual uses an informal syntactic notation. Ellipsis ("...") indicates repetition. Lower-case words are
reserved words. Upper-case words represent syntactic classes, the most common of which are:

NAME: an identifier

EXP: a BCPL. expression

CONST: an expression involving only constants
REF: amemory reference expression

STAT: a BCPL statement or compound statement

1.1

Revised BCPL Manual -

SECTION 2
A SAMPLE PROGRAM

2-1....... The Queens Problem

The following program is a complete, working example of BCPL. It solves the "8-Quecns” problem,
gencrating all 8*8 chessboard configurations of cight queens such that no qucen can capture any of the
others. The central procedure "Queens(Col)" is called with a column number as its argument; it assumes
that there arc no conflicts in the columns to the left, and tries to place a queen in the current column.
"Qucens" calls itself recursively to iteratc over the columns to the right, or prints a picturc of the board ifa
solution has been found. Three global vectors, "Horiz", "UpDiag"”, and "DnDiag", arc maintained to
indicate whether a queen has alrcady been placed in a particular row, upward-diagonal, or
downward-diagonal; an attcmpt to place a queen in an occupied line results in rejection. A solution vector
"Row" is maintained for typeout, remembering which row the queen is in.for each column.

The program consists of two source files: "QUEENS" and "QUEENS1". The first file contains the main
program and some IO procedures; the second contains the "Queens” procedure.

2.1

Revised BCPL Manual _ A SAMPLE PROGRAM

2-2....... Source Code -- QUEENS
// Solution of 8 Queens problem -- Main Program
get "iox" // Include definitions for IO package

manifest boardsize = 7 // Rows & Columns are numbered 0-7

external
Solutions // Total number of solutions
Row // Row!I = occupied column in row I
Horiz // Horiz!I = true if row I is occupied
UpDiag // UpDiag!I= true if up-diagonal I is occupied
DnDiag // DnDiag!I= true if down-diagonal I is occupied
eerrna] Queens // The procedure that does the work
external // Some extra IO procedures
WriteS
WriteN
Writel
]
static
Solutions = 0 // No solutions initially
Row = nil // Global vectors -- set up by Main
Horiz = nil
UpDiag = nil
] DnDiag = nil
static TTYstream // The stream used by WriteS, etc.
let Main() be
[main
// Initialize the global vectors
let v = vec boardsize; Row = v
let v = vec boardsize; Horiz = v
for i = 0 to boardsize do Horiz!i = false
let v = vec boardsize*2; UpDiag = v
let v = vec boardsize*2; DnDiag = v
for i = 0 to boardsize*2 do UpDiag!i, DnDiag!i = false, false
// Initialize output to TTY
initbcplio()
TTYstream = open("")
// Do the work
Queens(0)
// Print number of solutions
WriteN(Solutions)
WriteS(" solutions found*n")
Jmain

and WriteS(S) be writestr(TTYstream, S)
and WriteN(N) be writedec(TTYstream, N)
and WritelL() be writestr(TTYstream, "*n")

22

Revised BCPL. Manual

A SAMPLE PROGRAM

2-3.......Source Code -- QUEENS1

// Solution of 8 Queens.problem -- Queens procedure

manifest boardsize = 7 // Rows & Columns are numbered 0-7

external
Solutions // Total number of solutions
Row // Row!I = occupied column in row I
Horiz // Horiz!l = true if row I is occupied .
UpDiag // UpDiag!I= true if up-diagonal I is occupied
DnDiag // DnDiag!I= true if down-diagonal I 1is occupied

ex%erna] Queens
external
WriteS

The procedure that does the work
Some extra IO procedures

WriteN
Writel

Tet Queens(Col) be
[queens
// There are no conflicts in columns Tleft of Col

let UpDiag2, DnDiag2 = UpDiag+boardsize-Col, DnDiag+Col
// UpDiag2, Dndiag2 are the diagonal vectors for this column

for n = 0 to boardsize do :)
[rowloop // Try to put a Queen in each row of this column
if Horiz!n % UpDiag2!n % DnDiag2!n loop // Can't - go on
// There are no conflicts to the left, so we can
Row!Col = n // Remember for typeout
test Col eq boardsize // Done?
ifnot [Horiz!n,UpDiag2!n,DnDiag2!n = true,true,true
// Now a Queen is in this column .
Queens(Col+1) // Find all solutions to the right
// Now remove the Queen
] Horiz!n,UpDiag2!n,DnDiag2!n = false,false,false
ifso [// Print the solution
WritelL()
for r = 0 to boardsize do
[for ¢ = 0 to boardsize do
WriteS(Row!r eq c 2 " Q", " .")
WriteL()
Solutions = Solutions + 1
]
Jrowloop // Do the next row
Jqueens

23

Revised BCPL Manual - A SAMPLE PROGRAM
2-4....... Notes on the Source Code
The file "IOX" contains external declarations for a basic IO library; "QUEENS" uscs "initbcplio”, "open”,

"writestr”, and "writedec” from this library.

The manifest and external declarations appear in both source files. These declarations would usually beput
into a separate file; each source file would "get" this file in order to include the declarations.

The static declarations appear only in "QUEENS"; static variables must be declared as static only once,
although they may be declared external in many files. "Solutions” is initialized to 0; thc statics for the
global vectors will be initialized by the main procedure, so they are initialized to "nil". "TTYstream" is
declared static but not external, so it is local to "QUEENS", as is "Main".

The main program allocates the vector space for the global vectors by declaring four local vectors (allnamed
"v") and storing thc address of the first elements in the external variables for the vectors. This is the
simplest way to get space which is global to sevcral procedures (or to a recursive procedure); the spaceis
global to "Queens” since it is allocated by the procedure which calls "Quecens'.

Note that declarations may be intermixed with statements.

2-5....... Compiling and Loading QUEENS

To compile the source file QUEENS, just type
BCPL QUEENS

(Only one source file may be compiled at a time.) The compiler will print
BCPL 2.0 -- QUEENS.BR = QUEENS

and begin compiling the program. If no errors are detected, the BCPL relocatable binary file QUEENS.BR
will be created, and the compiler will print

QUEENS.BR -- 217 (143) WORDS
The numbers are the length of the code generated in octal (decimal). QUEENSI is compiled similarly.
To load the program, type

BLDR/D/L/V QUEENS QUEENS1 101 102
This will create the file QUEENS.SV, an executable Nova save file, from the BCPL relocatable binary files
QUEENS.BR, QUEENSL.BR, 101.BR, and [I02.BR. (The latter two files are the input-output routines.)
The /1) switch causcs the Nova debugger to be loaded into the save file. The /[./V switches creatc asymbol
table filc named QUEENS.BS, contlaining information about where things will be in core when the program
runs; a listing of this file is included in the section on Loading (Section 9). The loader prints

BLDR 2.0 -- QUEENS.SV, QUEENS.BS
at the beginning of the loading process, and when it is done,

QUEENS.SV -- 14162 (6256) ‘WORDS
The numbers give the size of the save file in octal (decimal).

24

Revised BCPL Manual

To run the program, just type QUEENS. It will print out 92 solutions.

25

Revised BCPL Manual

SECTION 3
DECLARATIONS AND PROCEDURES

3-1....... BCPL Variables

BCPL is a vagucly ALGOIL.-like language (it is block-structured; it allocates procedure space dynamically,so
recursion is permissible; and most BCPL statements correspond roughly to A1.GOL statements, although
there are syntactic differences). The major difference between BCPL and ALGOL is that all ALGOL
variables are declared with data-types (integer, rcal, boolean, string, array, procedure, label, pointer, ctc.),
whereas all BCPL variables have the same data-type: a 16-bit number. In ALGOL, the meaning of an
expression is dependent both on its context and on the data-types of the entitics involved, and only
cxpressions with certain data-types may appear in a given context. In BCPL, any expression may be usedin
any context; the context alone detcrmines how the 16-bit valuc of the expression is interpreted. BCPL never
checks that a value is "appropriate” for usc in a given way. For example, an expression which appears ina
"goto" statement is assumed to have as its valuc the address of someplace which is reasonable to jump to;
the thing following a "goto" need not be a label. The advantages of this philosophy about data-types are
that it allows the programmer to do almost anything, and that it makes the language conceptually simple.
The disadvantages are that the user can make errors which would have been caught by data-typechecking,
and that some things must be donc explicitly which ALGOL-type languages would do automatically
(implicit indirection on pointer variables, operations on multi-word values such as real numbers and strings,
type conversion, etc.).

Although BCPL. has only one data-type, it does distinguish between two kinds of variables: static and
dynamic. They differ as to when and where the cells to which they refer are allocated. A static variable
refers to a cell which is allocated at the beginning of program cxecution (i.c., by the BCPL loader); itrefers
to the same memory cell for as long as the program runs. A dynamic variable refers to a cell which is
(conceptually) allocated when the block in which it is defined is entered, and exists only until execution of
that block terminates. The space from which the dynamic variable is allocated is created dynamically when
the procedure containing its defining block is called.

As in ALGOL., variable names (and other names) are defined in declarations. The lexical scope of a

declared name (the portion of the source text in which the name is defined) is governed by BCPL’s block
structure.

32....... Scope Rules
At the outermost level, a BCPL. source file consists of a scquence of global declarations followed by a
multiple procedure declaration. 'The possible global declarations are:

external [INAME; ...; NAME]

staticNAME = CONST; ...; NAME = CONST]

manifest NAME = CONST; ...; NAME = CONST]

structure NAME : [...]

31

Revised BCPL Manual - DECLARATIONS AND PROCEDURES

The cxternal and static declarations define static variables; the manifest declaration defines literals; the
structure declaration defines templates for symbolic references to partial-word and multi-word data.

A multiple procedure declaration has the form

let NAME(ARG, ..., ARG) BODY
and NAME(ARG, ..., ARG) BODY

and NAME(ARG, ..., ARG) BODY
where BODY is cither "be STAT" or "= EXP",

The NAMEs in external, static, manifest, and structure declarations at the outermost level are defined from
the point of declaration to the end of the source file; all of the NAMESs in the "let ... and ..." sequence atthe
outermost level are defined in all of the BODYs. These are the only names which are globally defined. All
other names arc defined either as ARGs in the procedure declarations, or in local declarations within
compound statements in the BODYs.

A compound statement is a sequence of statements and declarations, separated by semicolons, and enclosed
within the brackets "[" and "]". (If a carriage return scparates two statements, the semicolon can be
omitted.) The brackets have a function similar to that of the words "begin" and "end" in ALGOL. A
compound statement may be used wherever a simple statement can be; in this manual, "STAT" always
means cither a simple statcment or a compound statement. Compoundstatements are used when two or
more statements are needed in a context in which BCPI. expects a singlc statement (c.g., as the body ofa
procedure, or as one of the arms of a conditional statcment). Compound statements delimit the scope of
locally declared names.

Local declarations may be intermixcd with statements (unlike ALGOL, in which declarations may appear
only at the beginning of a compound statement). "Declaration” here includes dynamic variable declarations
("let NAME], ..., NAMEn = EXP1, ..., EXPn"), as well as the external, static, manifest, structure, and
procedure declarations mentioned above. The following rules govern the scope of local declarations:

1) A local declaration may appear in a compound statement only in the following contexts: atthe
beginning of a statement, or after a semicolon (including a semicolon implicitly inserted by the
compiler between statements on different lines), or following a statement label that follows a
semicolon. The effect of this rule is to disallow things like "if x eq 0 then lety = 0 (although
"ifx eqOthen[lety = 0...]is perfectly legal). A declaration may be labeled.

2) A declaration starts a block; the block ends at the end of the compound statement containing
the declaration. A name defined in the declaration is known only within the block introduced
by the declaration, and in sub-blocks contained within that block if the name is not redeclared.

3) (Exception to rule (2).) A dynamic variable is not known in any procedure body other than the
one in which it was declared. Thus, if the procedure "g" is declared inside of the body of
procedure "f", the dynamic variables defined in "f" are not known to "g". (This is because the
dynamic variables of "f" reside in space which is dynamically allocated when "f" is called.
When "g" is called, it does not know where this space is; in fact, therc might be more than one
S)fggc;ution of "f" in progress when "g"” is called, or there might not be any active execution of

4) A statement label ("NAME: ...") appcaring within a block is trcated as if it were a static variable

declared immediately after the declaration which begins the block. So a label is known
throughout its enclosing block, but not outside that block.

32

Revised BCPL Manual . DECLARATIONS AND PROCEDURES
3-3....... Manifest Constants

The declaration

manifest NAME]L = CONST]; ...; NAMEn = CONSTn]
defines NAME] through NAMEn as manifest constants. (If there is only onc NAME, the brackets are not
necessary.) The expressions CONST1 through CONSTn must be constant expressions; that is, their values
must be computable by the compiler. The meaning of a program would be unchanged if each manifest

name were replaced by a string of digits representing its value. In particular, manifest names do not have
addresses.

34....... Structure Declarations

(Structures are described in Section 6 of this manual.)

3-5....... Static and External Variables

Static variables may be declared in four ways: by a static or external declaration, by a procedure declaration,
or by a statement label assignment.

The declaration

static NAME] = CONST1; ...; NAMEn = CONSTn]
defines NAMEL through NAMEn as static variablcs, and causes them to be initialized with the values
CONST1 through CONSTn at the beginning of program execution (i.e., in the "save file” crcated by the
loader). (If there is only one NAME, the brackets are not necessary.) The CONSTS must be expressions
whose values are computable by the compiler. If it doesn’t matter what the variable is initialized to, the " =
CONST" should be left out, or " = nil" should be used.
Any of the NAMES that are preceded by an "@" will be allocated by the loader in page zero. Suchvariables
are called "common" variables. They can be addressed directly by the compiled code, whereas normalstatic
variables must be addressed by indirection through a literal; so common variables are more efficient.
However, therc is room in page zero for only about 150 (decimal) common variables; the loader will
complain if too many common variables are assigned.
The procedure declarations

let NAME(ARG, ..., ARG) be STAT

let NAME(ARG, ..., ARG) = EXP

declare NAME as a static variable which is to be initialized by the loader to the address of the codecompiled
for the procedure.

The procedure declaration is discussed fully in the sections on procedure and dynamic variable declarations.

A statement label assignment

33

Revised BCPL Manual DECLARATIONS AND PROCEDURES

NAME: STAT

declares NAME as a static variable which is to be initialized by the loader to the address of the code
compiled for STAT. A label assignment does not begin a block; the name is treated as if it were declared
immediately after the declaration which begins the smallest enclosing block. Thus, a label is defined
throughout the block in which it appears.

The declaration
external [NAMEL],; ...; NAMEn]

declares NAME] through NAMEDn as cxternal static variables. (If there is only one NAME, the bracketsare
not neccessary.) The purpose of the external declaration is to allow separately compiled picces of a program
to reference the same variables. Within a given source file, the scope of an external variable is the same as
that of other types of variables; but if two or more separately compiled source files declare a given name
external, the loader will make cach refer to the same cell. In (exactly) one of the source files in which a
given name is declared external, the name should also be declared as a static variable (by a static declaration,
a procedurc declaration, or a statement label assignment) someplace within the scope of the external
declaration. (Note that the static declaration must follow the external declaration.) T'his is not are-definition
of the name, but rather tells the loader how to initialize the cxternal static variable. The loader will
complain about an extcrnal variable which is not declared static someplace, or about one which is declared
static more than once.

NAME:s that are preceded by an "@" in an external declaration will be defined as common variables. A
NAME that is declared both external and static may be designated as common in either or both declarations.

Note that only static variables may bc external.

36....... Procedure Declarations

There are two kinds of BCPL procedures: "functions”, which return a value upon completion, and
"routines”, which do not. A function is defined by a declaration of the form

let NAME (ARG, ..., ARGn) = EXP
A routine is defined by
let NAME(ARG], ..., ARGn) be STAT

NAME is the name of the function or routine being defined. (Actually, NAME beccomes a static variable
which will be initialized with the address of the procedure, as noted in the section on static variables.) ARG1
through ARGn arc the formal parametcrs (dummy arguments) of the procedure. They are either NAMEsS,
or the special symbol "nil", indicating an unnamed argument. ARG1 through ARGn become the firstn
dynamic variables declared in the procedure body. If there are no dummy arguments, the declaration is of
the form "lct NAME() be STAT" or "let NAME() = EXP".

In the function declaration, EXP is the expression whose value is returned when the function is called. EXP
may be a simple BCPL. expression; but for most functions it will be an expression of the form "valof STAT",
wherc STAT may be a compound statement. The STAT in a "valof™ expression should contain at least one
"resultis” statement. The STAT is exccuted until a statement of the form "resultis EXP" is encountered;
then EXP becomes the value of the "valof™ expression, and therefore the result of the function. The "valof™
expression will also terminate when control would otherwise pass to the statement following STAT. Ifthis
happens, the value of the "valof" expression is garbage.

34

Revised BCPL Manual - DECLARATIONS AND PROCEDURES

In the routine declaration, STAT is the statement which is executed when the routine is called. STAT may
be a compound statement. STAT may contain one or more "return” statements; the routine returns whena
"return” statement is executed, or when control would otherwise pass to the statement following STAT.

A multiple procedure declaration has the form

let NAMEL(ARG, ..., ARG) be STAT (=EXP)
and NAME2(ARG, .., ARG) be STAT (=EXP)

and NAMEn(ARG, ..., ARG) be STAT (= EXP)

This declares the procedures NAMEI] through NAMEn "simultaneously™; that is, all of the NAMEi’s arc
known in each of the procedure bodies. (So, for example, NAMEI] can call NAME2 and NAME2 cancall
NAMEL) The ARGs, of course, are defined only in their corresponding procedure bodies.

A procedure body may contain procedurc declarations; the names of such procedures will be local to the
defining body (unless they arc declared external). But remember rule (3) in the section on the scope of
dynamic variables: dynamic variables arc defined only in the body of the dcfining procedure, and notin
?ub-lprocedurc bodics. For this reason, all procedures in a BCPL program arc usually defined at the top
cvel.

3-7....... Procedure Execution

A procedure is called by a statement or expression of the form
EXP(EXP1, EXP2, ..., EXPn)

EXP determincs the procedure to be executed; EXP1 through EXPn are the actual parameters. If thereare
no actual parameters, the form is "EXP()". A procedure call is an expression if it appears in a contextin
which a value is expected (c.g., in the right-hand side of an assignment statement); otherwise, it is a
statement. The calling mechanism is the same in either case. The only difference is that in the context ofan
expression, the procedure is cxpected to return a value; if it doesn’t (because it is a "routine” rather thana
"function™), a garbage value will be used. A value which is returned by a function called in the context ofa
statement is discarded.

EXP will usually be a NAME which is either declared in a procedure declaration in the current source file,
or declared external in the current file and declared as a procedure in another file. But in gencral, EXPmay
be an arbitrary BCPL expression; for example: "(neq 0?f, g) (x, y)". The formal rule is that the location
referenced by the expression "rv EXP" is the location to which control is to be transferred (via a "JSR").
The section on Runtime Environment goes into more detail on this.

When a procedure is entered, it first allocates some "frame" space from someplace in memory. This
"frame" is a block of memory which the procedure will use for the actual parameter values, for any dynamic
variables and vectors declared within the procedure, and for any temporary storage nceded by the
procedure. The space is de-allocated when the procedure exccutes the "return™ or "resultis” corresponding
to the call that allocated the frame. .

After the frame space is allocated, the values of EXP1 through EXPn are stored in the first n words of the
frame. These n words are those referenced by the n formal paramcters ARGI, ..., ARGn in the procedure
declaration, assuming that the procedure is called with cxactly the number of actual parameters as it was
declared to have. (No check is made to sec if actual and formal parameters match. If therc are feweractual
parameters, the formal parameters with no corresponding actual parameters will have garbage values. If
there are more actual parameters than formal parameters, the actual parameters with no corresponding

35

Revised BCPL Manual . DECLARATIONS AND PROCEDURES

formal parameters will be lost; but this may create havoc by clobbering memory words beyond the end of
the newly created frame.)

Note that each formal parameter takes on the value of its corresponding actual parameter at the beginning
of the procedure call. This implics that procedure calls are implemented by the "call by value" mechanism
(in the ALGOIL. sense); assigning a valuc to a formal parameter within a procedure does not affect the value
of the corresponding actual parameter in the calling routine, although it does changc the value of the formal
parameter for the remainder of the procedure execution. Suppose the function "next" is defined by:

let next(x) = valof[x = x + 1; resultis x]
and called as follows:
a = 0;b = next(a)

After the call of next, "a" will still be 0, but "b" will be 1. We can writc "next" in such a way as to allow itto
changc the value of "a i by using the address-manipulation primitives of BCPL:

Iet next (xaddr) = valof
[rv xaddr = rv xaddr + 1; resultis rv xaddr]

Then calling "next" as follows:

a=0;b = next(lva)

" n

will cause bot and "b" to have the value 1.

After the procedure framc has been allocated and the actual parameters have been storcd in the frame, the
procedure body is cxecuted. If the procedure terminates normally (with "return” or "resultis”, or by fdllmg
through the last statemcnt) the frame space is deallocated and control returns to the caller. If the procedure
exits with a "goto", the frame space is not deallocated, and the frame pointer is not changed. This is abad
thing to do. ’

38....... Dynamic Variables

A dynamic variable refers to a ccll at some fixed position in the frame associated with the current execution
of the procedure in which it is defined. This cell is only allocated to the variable while the block defining
the variable is active (e.g., while the block is being executed, or while a procedure called from within the
block is being executed). Outside of the block, the cell is used for something else.

Dynamic variables are declared in two ways: in a dynamic variable declaration, and as formal parametersin
a procedure declaration.

The dynamic variable declaration

let NAME], ..., NAMEn = EXP1, ..., EXPn
allocates n consecutive frame cells to NAMELI through NAMEn, and compiles code to assign the valuesof
EXP1 through EXPn to NAMEL through NAMEn. Unlike other declarations, this declaration is
exccutable; for a given cxecution of a procedure, NAME] through NAMEn always rcfer to the same frame
cells, but the values stored in these cells arc recomputed each time the declaration is exccuted. The
aSﬂgnmcnt is done left-to-right.

The I:XPs may be any BCPL expression. In addition, there are two special cases: "nil" and "vec CONST".

3.6

Revised BCPL Manual DECLARATIONS AND PROCEDURES

If EXPi is the symbol "nil", the variable NAMEi is declared, but no value is assigned to NAMEi. Thus, "lct
x = nil" declares x, but compiles no code; "x" will have some garbage value until something is assigned to
it. :

If EXPi is the special expression "vec CONST" (where CONST is an expression that can be cvaluated by
the compiler), the value assigned to NAME:i will be the address of the first word of a block of CONST + 1
consccutive frame cells. This "vector" of CONST+1 cells is allocated from the frame space, and NAMEiis
initialized to point to that vector. These cells exist as long as NAMEi exists; they are used for somethingelse
outside of the block in which the declaration appears.

In a procedure declaration
let NAME(ARG], ..., ARGn) be STAT
let NAME(ARG]I, ..., ARGn) = EXP

ARG]1 through ARGn are declared as dynamic variables; their scope is the entire procedure body. (Recall
that the declaration defincs NAME as a static variable.) The dcclaration is equivalent to

let NAME() be
[let ARG, ..., ARGn = nil, ..., nil; STAT]

or to

let NAME() = valof
[let ARG], ..., ARGn = nil, ..., nil; resultis EXP]

That is, ARGI through ARGn are the first n dynamic variables declared in the procedurc body, and
therefore refer to the first n cells in the frame. The procedure call "NAME(EXP]L, ..., EXPm)" stores the
values of the m actual arguments in the first m cells of the newly created frame. So if m> n, cellsn + 1
through m will be clobbered. If m = n, all is well. If m<n, ARGs m + 1 through n will have garbage
values. This permits procedures to be called with a variable number ‘of actual arguments, as long asenough
formal arguments are declared to provide space for the largest actual argument list. For example, if we
define a procedure something like

let f(x0, x1, x2, ..., x20) be
letarg = lvx0
..argli...

then the expression "argli” references the ith argument.
The ARGs are usually NAME:S, but the special symbol "nil" is also legal as an ARG. The "nil" has the
effect of leaving space for an argument, but not declaring a name for that argument. So the procedure "f"”
above might also have been defined as

let f{x0, nil, nil, ..., nil) ...
Argument i can still be referenced by "arg!i".

In procedures which are called with a variable number of arguments, the "numargs” facility may be useful.
An argument list in a procedurc declaration may take the form

let NAME(ARG], ..., ARGn ; numargs NAME) ...
The NAME following " ; numargs" is declared as a dynamic variable in the procedure body; when the

procedure is entered, NAME is set to the number of actual arguments in the procedure call. Note the
semicolon preccding "numargs”.

3.7

Revised BCPL Manual-

SECTION 4
EXPRESSIONS

4-1....... Memory References

There are four kinds of BCPL expressions which refer to memory cells: variable names, rv-expressions,
vector reference cxpressions, and structure reference cxpressions. These are the only things that canappear
as the left-hand side of an assignment statement "REF = EXP" or as the argument of an lv-expression "lv
REF". In an assignment statement, REF specifics the cell to be modified. The value of an lv-cxpression is
the address of the cell specified by REF. (These two contexts are the only ones in which the form of the
cxpression is restricted.) In all other contexts, the value of a memory-reference expression is the value
contained in the specified cell.

Memory refercnce expressions are described below in terms of the Nova instructions compiled. There are
six Nova op-codes that reference memory: LDA ac, STA ac, JIMP, ISR, ISZ, DSZ. The symbol "OP" inthe
description below designates one of these op-codes; the address of the op-code is in standard Nova form (@
displacement, index). In general, an assignment statement generates a STA; a procedure call generates a
JSR; and other contexts generate a LDA.

dynamic variable names:

Dynamic variables are allocated cells in the first 200 (octal) words of the frame for the
procedure in which they are declared. While a procedure is being executed, AC2 always
points at the procedurc’s frame; so dynamic variables are referenced by "OP n,2", where "n"is
the offset of the dynamic variable in the frame. This imposes a limit on how many dynamic
‘variables a procedurc may declare; the practical limit is about 100 (decimal) dynamic namesin
a given scope. (Because the frame is allocated dynamically when a procedure is called,
dynamic variables cannot be accessed directly from any procedure other than the one inwhich
they are declared, as noted in scope rule (3) in Section 3.)

static variable names:

Static variables are allocated space by the loader, either in "common" (page zero) or in another
area of memory which is fixed during loading. Common variables arc accessed by "OP n,0",
where 0 < n<377. Other static variables are not directly addressable, sincc they are in some
arbitrary area of core, so they are addressed through indirection by "OP @n,1" (that is, "OP
@.+n"), where n is the PC-relative offset (-200 < n< 177) of a word containing the address of
the static variable.

vector references: EXPL ! EXP2

This expression references a memory cell whose address is given by the value of
(EXP1 + EXP2). The rcason for calling an cxpression like "A!" a "vector reference” is the
following. Suppose that the valuc of the variable "A" is the address of the first word of a
zero-origin one-dimensional array (a "vector"). Then the expression "A!l" references the Ith
word' of the vector A, since the value of the expression "A+1" is the address of this word.
Note that the """ operator is commutative.

In general, vector references generate code to compute the sum of EXP1 and EXP2 in AC3
(c.g., "LDA 0,EXP1; LDA 3,EXP2; ADD 0,3"), and then rcference the vector element with

4.1

Revised BCPL Manual) EXPRESSIONS

"OP 0,3". In the case where EXP2 (or EXP1) is a small constant (-200 < n< 177), EXP1 (or
EXP2) is loaded into AC3, and the vector element is accessed by "OP n,3". In any case, a
vector reference always uscs indexing through AC3. Sec the note on rv-expressions below.

rv-expressions: rv EXP, @EXP:

This expression references a memory cell via indirect addressing through EXP. In general, the
value of EXP is computed and stored in a temporary cell in the frame, and the reference is
done by "OP @n,2", where n is the offset of the temp cell. There are several special cases: If
EXP is a dynamic variable name, "OP @n,2" is used, where n is the frame offset of the
variable. If EXP is a common variable name, "OP @n,0" is uscd, where n is the page zcro
address of the variable. On the Nova, if EXP is a static variable name, "OP @n,1" is used (that
is, "OP @.+n), where n is the PC-relative offset of a word containing the address of the static
variable with the indirect bit (bit 0) set. If EXP is a vector reference, "OP @n,3" is used, after
loading AC3 appropriately.

The expression "rv EXP" may also be written "@EXP".

An tv-expression always gencrates an indirect reference through a memory cell. A vector
reference always generates an instruction which is indexed by AC3. Therefore, on the Nova,
"rv EXP" is not necessarily cquivalent to "EXPLIEXP2" when the values of (EXP) and
(EXP1 + EXP2) are the same: the rv-cxpression will always cause a multiple indirection if
EXP has bit 0 set; a vector reference will never do so, since indexing ignores bit 0. On the Alto
the two are always the same, since all 16 bits are part of the memory address.

structure reference expressions:

..

These are described in the section on structures.

Constants

BCPL recognizes the following constructs as constants:

*

*

A name which is declared "manifest” is treated as if it had been replaced by its value.

A string of digits is interprcted as a decimal integer. It may not exceed 2**15-1 (32767
decimal, 77777 octal).

A string of digits preceded by a " #" is interpreted as an octal integer. It must be less than
2*¥*¥16-1 (177777 octal, 65535 decimal).

A string of digits immediately followed by "B" or "b" is also interpreted as an octal integer. If
the "B" or "b" is immediately followed by a (decimal) number n, the octal value is shifted left
n bits. Thus, #1230, 1230B, and 123B3 all represent the same value. Onc-bits may not be
shifted out of bit 0.
The rescived words "true” and "false” arc constants with values # 177777 and 0 respectively.
A "$" followed by any printing character other than "*" represents a constant whose value is
the 7-bit ASCII code of the character. "*" is an escape character; the following escapes are
recognized:

*s*S space (#40)

**T tab (#11)

42

Revised BCPL. Manual EXPRESSIONS

*n *N carriage return (#15)
*c*C carriage return (#15)

**L line feed (#12)

e double quote (#42) [$" is also O.K]

*nnn The octal number "nnn". [Exactly three digits.]
ok *(#52)

Note: "*" followed by anything else gives an error.

The compiler cvaluates most expressions that involve only constants, and treats the resulting value as a
single constant. (The exceptions arc "sclecton” and "valof”’ cxpressions. Conditional expressions like
"CONST ? CONSTIL, CONST2" arc evaluated; the valuc is CONST2 if CONST is 0, and CONSTI1
otherwise.) Throughout this manual, the symbol "CONST" (described as "an cxpression which can be
cvaluated by the compiler™) means cither one of the constant constructs above, or an expression involving
only constants.

43....... Precedence of Expressions

In order of decreasing precedence, the legal BCPL expressions are:
NAME; constant; string literal; table literal; (EXP)
EXP(EXP], ..., EXPn)

EXPLIEXP2

EXP>>NAME.NAME.... ; EXPKKNAME.NAME....
Iv EXP; rv EXP; + EXP; -EXP

EXP1 <mul> EXP2 (Kmul>: *, /, rem, Ishift, rshift)
-EXP1 + EXP2; EXP1 - EXP2

vec CONST

EXP1 <rel> EXP2 (Krel: eq, ne, Is, le, gr, ge)

not EXP

EXP1&EXP2

EXP1%EXP2

EXP1 xor EXP2; EXP1 cqv EXP2

EXP 7 EXP1, EXP2

selecton EXP into ...

43

Revised BCPL Manual - EXPRESSIONS

valof STAT

Operators with the same precederice are left-associative, except for "<mul>", "&", "%", "xor", and "eqv",
which are right-associative. Precedence and associativity can be changed by parenthesizing. Some casesto
note:

"a/b*c" is "a/(b*c)"

"rv vi" is "rv(vii)"

"rv p>>a.b" is "rv (p>da.b)"”
"vIp>>a.b" is "(vlp)>>a.b"
Ui s (Vi) 4"
"a%b&ec" is "a%(b&c)"
"a&beqc"is"a& (beqc)”

Precedence only determines the way in which an expression is parsed; nothing is implied about order of
evaluation. In general, the order in which the sub-cxpressions of an expression are computed isunspecified.
So, although "f(x) + g(y) * h(z)" means "f{x) + (g(y) * h(z))", no assumption should be made about which
function is executed first.

44 BCPL Expressions
string literals

A sequence of characters enclosed in double quotes (") is a string literal. Its value is the
address of the first word of a block of memory containing the string. A BCPL string is stored
two bytes per word, left-hand byte first, with the left-hand byte of the first word containingthe
number of characters in the string. If the string has an even number of characters, the
right-hand byte of the last word is 0; but if it has an odd number of characters, the last word of
the string containg the last two characters, not two 0 bytes. Note that BCPL strings are not
compatible with Nova DOS strings.

Strings have a maximum length of 255 characters. The character "*" appcaring in a string
literal is an escape character, as described for character constants.

table [CONSTL; ...; CONSTh]

The value of a table expression is the address of the first word of a block of memory containing
the CONST values.

EXP ()
EXP (EXPL, EXP2, ..., EXPN)

The value of EXP is assumed to be the address of a BCPL function. This function is called
with the values of EXPL, ..., EXPN as arguments. The valuc of the function call is the value
returned by the function via a "resultis” statement. Sec the section on procedure execution for
details.

The call is implemenfcd by a Nova JSR instruction (a memory reference op-code) to
"rv EXP". So if EXP has bit 0 set, a multiple indirection will take place. If bit 0 is zero, the
value of EXP is the address of the first instruction exccuted.

44

Revised BCPL Manual . EXPRESSIONS

The empty argument list "()" is necessary if there are no arguments. "x = f()" calls a
function, but "x = f" puts the address of the function in "x". Forgetting the "()" is acommon
error; be careful.

Iv REF

REF must be a variable name, a vector reference, an rv-expression, or a structure reference;
anything else gives an error message. The value of the lv-expression is the address of the cell
which REF references (but see the note on "Iv(rv EXP)" below).

The value of "lv NAME", if NAME is a dynamic variable, is the sum of the current frame
pointer (which is in AC2) and the offset of the variable in the frame (a constant). Thisaddress
1s valid only while the block in which the variablc was declared is active.

The value of "lv NAME", where NAME is a static variable, is the address of the static variablc.
This is a constant throughout the execution of the program, since static variables never move.
(But "lv NAME" is not a compile-time CONST.)

The value of "Iv(EXP1IEXP2)" is the sum of the valucs of EXP1 and EXP2.

The value of "lv (rv EXP)" is the address of the cell that "rv EXP" refcrences. On the Nova, if
EXP has bit 0 set, "rv EXP" would cause a multiple indirection; in this case, the value is
computed by following the indirection chain. There is nothing special about bit 0 on the Alto;
it is just another bit of the address.

The value of "Iv (EXP>>NAME.NAME....)" is the address of the word which contains the first
bit of the referenced field.

rv EXP
EXP1 ! EXP2

See the section on Mcmory References (Section 4-1).
+EXP

The value is the value of EXP.
-EXP

The value is the two’s-complement of the value of EXP.
EXP1 * EXP2

The value is the low-order 16 bits of the 32-bit signed product. If one of the EXPs is aconstant
whose value is a power of 2, a left shift is done; otherwise the standard Nova multiply
sequence is done. There is currently no way to get at the high-order part of the product, orto
detect overflow.

EXP1 /7 EXP2
EXP2 rem EXP2

The standard Nova signed integer divide sequence is done. (Division by a power of 2 is not
done by shifting.) The "/" cxpression gives the 16-bit signed quotient; the "rem” expression
gives the 16-bit remainder, which has the same sign as EXPL. If EXP2 is zero, the results are
undefined. There is currently no way to detect this.

EXP1 Ishift EXP2
-EXP1 rshift EXP2

45

Revised BCPL Manual EXPRESSIONS

The value is the value of EXP1 shifted left or right EXP2 bits. Vacated positions are filled with
0’s. Bits shifted off cither end of the 16-bit word are lost. The shifts are logical, notarithmetic,
in that the sign bit may be changed. There are currently no arithmetic- or circular-shift
operators.

EXP1 + EXP2
EXP1 - EXP2

The value is the sum (difference) EXP1 and EXP2. The statement "EXP = EXP + 1"
generates an [SZ or DSZ followed by a NOP. There is currently no way to detect overflow.

EXP1 eq EXP2
EXP1 ne EXP2
EXP1 Is EXP2
EXP1 le EXP2
EXP1 gr EXP2
EXP1 ge EXP2

EXP1-EXP2 is computed and compared with 0; the value of the relational cxpression isalways
either "truc” (# 177777) or "false” ;O). Warning: This differs from a genuine signed comparison
of EXPI and EXP2 if [EXPI-IEXP2] is greater than 2**15-1.

not EXP

The value is the logical complement (one’s-complement) of the value of EXP. But see thenote
on"&" and "%" below. :

EXP1 & EXP2
EXP1 % EXP2

In most contexts, the value is the logical-and or logical-or of EXP1 and EXP2. However, inthe
context of the Boolean part of an "if", "unless”, "test", "while", "until”, "repeatwhile”, or
"repeatuntil” statement, or of a conditional expression, the cvaluation of an cxpression
involving "not", "&", or "%" is optimized. This optimization can change the meaning of the
expression. For example, the sequence "if a& b then ..." is not always the same as the
sequence "x = a&b; if x then ...", even if the evaluation of "a" and "b" do not involve side
effects. See the scction on conditional statements.

EXP1 xor EXP2
EXP1 eqv EXP2

The value of the "xor" cxpression is the logical exclusive-or of EXP1 and EXP2. The valueof
the "eqv" expression is the logical complement of this value.

EXP 7 EXP1, EXP2

The value is the value of EXP1 if EXP is non-zero, or the value of EXP2 if EXP is zero. EXP
is optimized if it involves "not”, "&", or "%"; sec the section on conditional statements.

valof STAT

This expression causes the statement STA'T to be exccuted until a "resultis EXP" statement is
encountered or until control would otherwise pass to the statement following STAT. Ifa
"resultis EXP" is executed, EXP becomes the value of the "valof STAT" expression. If
execution of STAT terminates, the expression has a garbage value. The "valof” expression is
usually used as a function body; but it may be used anyplacc an expression can be.

selecton EXP into
[case CONST1: EXP1

4.6

Revised BCPL Manual- EXPRESSIONS

case CONSTn: EXPn
default: EXPO

This expression is equivalent to

valof switchon EXP into
[case CONSTI: resultis EXP1

case CONSTn: resultis EXPn
default; resultis EXP0O

That is, its value is EXPi if the value of EXP is CONSTi, or EXP0 if EXP is not cqual to any of
the CONSTs. If no "default" label appears, the "selecton” cxpression will have a garbage
valuc if none of the cases is matched.

newname NAME

This expression cvaluates at compile time to "true" if the NAME is appearing in the source file
for the first time. It evaluates to "false™ if it has appearcd before (including previous
"newname" constructs). This construct is useful in conjunction with conditional compilation
or the /M compiler switch (command-line declarations). -~

4.7

Revised BCPL Manual

SECTION 5
STATEMENTS

. .. Assignment Statements:

REF = EXP

The value of EXP is stored into the memory cell referenced by REF. See the scction on
Memory References (Section 4-1).

REF], .., REI'n = EXPL, ..., EXPn

This statement is cquivalent to the sequence "REF1 = EXPI; ...; REFn = EXPn". The
assignments are madc left-to-right.

... Routine Calls:
EXP

Q)
EXP(EXP1, EXP2, ..., EXPn)

A routine call differs from a function call only in that a routine call occurs in a context wherea
statement is expected, whereas a function call occurs in a context where an expression (a value)
is expected. The calling sequence for routines is identical to that for functions.

... Conditionals and [terative Statements:

The evaluation of EXP in an "if", "unless", "test”, "while", "until”, "repcatwhile”, or "repcatuntil”
statement is optimized if EXP involves "not", "&", or "%". In general, EXP "succeeds" if it is non-zero,
"fails" if it is 0. But "EXP1&EXP2" is tested by first testing one of the EXPs; if it "fails”, the &-expression
"fails", and the other expression is not evaluated. Similarly, in "EXP1%EXP2", one of the EXPs is tested; if
it "succeeds", "EXP1%EXP2" succeeds. A "not EXP" "succeeds” if EXP "fails", and "fails" if EXP

"succeeds".

This optimization has two significant consequences:

a)

b)

In a statcment such as "if f(x) & g(x) do ..", it is not guarantecd that both functions will be
executed; so any side-cffects of "f" and "g" cannot be depended on.

The statcment "if x & y do ..." is not necessarily cquivalent to the sequence "z = x&y; if zdo
..". For example, if "x" has the value 1 and "y" has the value 2, "z = #x&y" would assign the
value 0 to "z", because "1&2" is zero; so "if z do ..." will consider "z" to "fail". But both "x"
and "y" are nonzero, so "if x&y do ..." will consider "x&y" to "succeed". in gencral, "&"
should be used in conditional statements only when its opcrands are known to take on only the
values "truc" (#177777) or "false” (0). Note that this is the case for relations; so "if x ne 0 &y

nc 0" docs the right thing.
51

Revised BCPL. Manual STATEMENTS

if EXP do STAT
unless EXP do STAT

The "if" statement executcs STAT if EXP succeeds. The "unless" statement cxecutes STAT if
EXP fails. The word "do" may be replaced by the word "then"”, but (unlike ALLGOL) no
"else" clause is allowed; usc the "test" statement for two-armed conditionals. The "do" or
"then" may bc omitted if STAT appcars on the same line as the "if" or "unless” clause, and if
STAT is onc of the following types of statements:

"o "o ”"on "o "won "o

test" "while resultis”" "switchon" "break"

endcase” "docase"

"if"" "unless
'lloOpll "

test EXP then STAT1 or STAT2
test EXP ifso STATI ifnot STAT2
test EEXP ifnot STAT?2 ifso STAT1

Each of the above "test" statements executes STATI if EXP succeeds, or STAT? if EXP fails.
Both clauses must be present; use the "if" statement or the "unless” statement for one-armed
conditionals. If "then" and "or" are used, they must appear in that sequence; the STAT
following "then" is the truc branch. If "ifso" and "ifnot" are used, they may appcar in cither
order; the STAT following "ifso" is the true branch.

while EXP do STAT
until EXP do STAT

until” "for” "goto" "return

The "while" statement executes STAT as long as EXP succeeds. The "until” statement
executes STAT as long as EXP fails. The test on EXP is done before the first execution of
STAT. The word "do" may be omitted in the same contexts as for the "if"" statement.
The "while" statement is equivalent to:

"goto M; L: STAT; M: if EXP goto L"
The "until” statement is equivalent to

"goto M; L: STAT; M: unless EXP goto L"

STAT repecatwhile EXP
STAT repeatuntil EXP

The "repcatwhile” statement executes STAT as long as EXP succeeds. The "repeatuntil”
statement executes STAT as long as EXP fails. STAT is executed once before the test on EXP
is done. STAT may be a single statement or a compound statement.
The "repeatwhile” statement is equivalent to:
"L: STAT; if EXP goto L"
The "repeatuntil” statement is equivalent to:
"L: STAT; unless EXP goto L."
STAT repecat

The "repeat” statement executes STAT repeatedly (until terminated by a "break”, "return”,

"resultis”, "endcase", "docase”, or "goto" statcment). It is equivalent to:
"L:STAT; goto L"
for NAME = EXP1 to EXP2 by CONST do STAT
5.2

Revised BCPI. Manual - STATEMENTS

break

loop

......

NAME is a legal variable name; EXP1 and EXP2 may be arbitrary expressions; "by CONST"
may be missing (1 is assumed), but if present, it must be a constant cxpression. The "for"
statement is (logically) equivalent to the following block:

[let NAME, lim, inc = EXP1, EXP2, CONST
goto M
L: STAT
NAME = NAME + inc
M: testincgeO
ifso if NAME ge lim goto L
ifnot if NAME le lim goto L

]

Several things about the "for" statement should be noted:

1) The controlled variable is implicitly declared as a new dynamic variable; it is defined
only in STAT, and not accessible after the loop terminates.

2) EXP2 is evaluated only once, at the beginning of the "for" statement.

3) As noted, CONST (if present) must be a constant expression. If it is negative, the
termination test is reversed. .

4) STAT is not executed if the initial condition fails the termination test (like ALGOL,
unlike FORTRAN).

5) STAT is executed when the controlled variable is equal to the limit.

These are single-word BCPL statements which are legal only in the context of an iterative
statement. The effect of "break™ is to jump to the statement immediately following the
smallest textually enclosing iterative statement. The effect of "loop" is to jump to the pointat
which the next iteration starts: to the test in a "while”, "until”, "repcatwhile", or "repeatuntil”
statement; to the increment of NAME in a "for" statement; or to the beginning of a "repeat”
statcment.

. Conditional Compilation Statements:

compileif EXP then [<sequence>]

compiletest EXP then [<sequence> |

These constructs allow alternative code- sequences to be chosen at compile time; they are
analogous to "if" and "test." There are several restrictions on the usc of these statements:

The EXP must be comprised of operations on manifest and numeric constants, so
that it may be evaluated at compile time.

A conditional compilation construct can appcar wherever a "let” would be legal
(Not, for example, within a statement or declaration, or directly following "then,"”

"o

"ifso," "ifnot," or "case").

53

Revised BCPL Manual . STATEMENTS

Although the syntax of conditional compilation parallels that of conditional
statements, the brackets ([]) are mandatory. A <sequence> is a legally scparated
sequence of commands and declarations. The <sequence> may contain
declarations which will apply to commands which follow the conditional construct,
as long as the uses of the variable are also conditionally compiled.

Conditional selections are donc at a time after "get" files have been read. Asa
result, "get" commands are unaffected by conditionals -- the files are always read.

The auxillary constructs "ifso,” "ifnot," "then,” "do,” and "or" may all bc used with the
conditional compilation tests:

compiletest EXP then [<sequencel>] or [<sequence2>]

...... Labels and Goto Statements:

NAME: STAT

Any BCPL statement may be labeled. A label is effectively a declaration of a static variable

which is initialized with the address of the labeled statement. It differs from other declarations

in that it does not implicitly start a new block. Instead, it is treated as if it appeared at the

gegirining of the smallest textually enclosing block. See the section on static declarations for
etails.

goto EXP

A Nova JMP is done to "rv EXP". The EXP is usually a label, but need not be. Control is
transferred to the memory location which is referenced by "rv EXP". -

return
resultis EXP

These statements cause a return from the procedure in which they appear. "return” is only
legal in a routine body; "resultis EXP" is only legal in a function body.

...... Switches:

switchon EXP into CASEBLOCK

CASEBLOCK is a BCPL block which contains labels of the form "case CONSTi:", where the
CONSTi arc constant expressions. CASEBLOCK may also contain a label of the form
"default:". The effect of a "switchon™ statement is as follows: If the CASEBLOCK containsa
"case™ label whosc constant CONST1 is equal to the valuc of EXP, a jump is done to thatlabcl.
1f no CONSTi matches the value of EXP, a jump is done to the "default” label if there isone,
or to the statement immediately following the CASEBLOCK if there is no default label.

54

Revised BCPL Manual STATEMENTS

The appearance of a "case” label does not terminate the preceding case. That is, in

switchon Charinto

[casc $Ax =1
case $B:x = 2
default:x = 0

"x" will be 0 no matter what "Char" contains. The statements "x = 1" and "x = 2" shouldbe
followed by a jump to the end of the CASEBLOCK. The single-word BCPL statement
"endcase" would accomplish this.

Case labels are legal only in CASEBLOCKS, and not in any sub-blocks of a CASEBI.OCK. In
conncction with this, recall that a declaration implicitly begins a new block. Therefore the

sequence
switchon x into
[case 0: lettemp = 0
case 1:

will cause the compiler to complain that "case 1:" docs not appear in a CASEBLOCK. The
;:olgicl which uses "temp" must be enclosed in a block of its own which does not span othercase
abels.

Switches arc implemented by grouping the case values into one or more value ranges in which

listed values are fairly dense, and doing an indexed branch on each of thcse ranges. Case

%aluesh wt}iqlll do not fall into these clusters are checked individually if all of thc indexed
ranches fail.

endcase

This single-word statement is legal only within the scope of a "switchon" statement. It causesa
transfer to the end of the smallest enclosing "switchon™ statement.

docasc EXP

This statement is legal only within the scope of a "switchon” statement or "selecton”
expression. It causes a transfer to the case label denoted by EXP within the smallest enclosing
CASEBLOCK, by performing the switching activitics again using EXP as an index. This
construct allows one to merge several cases with a terminating case, or to gencrate flexible
looping constructs. The unlikely sequence

i=15;s="STRO"
switchon i into ,
case 0: write(s); endcase
case 1: s = "STR1"; docase 0
case 5: s = "STRS5"; docase 0
]

would cause the string "STRS" to be written.

5.5

Revised BCPL Manual- STATEMENTS

5-8....... Single-Word Statements

These single-word statements terminate cxecution of the program (on the Nova by a DOS
" RTN" system call). The "abort" statement causes a message to be typed on the terminal.

return
break
loop

These statements are described above.

5.6

Revised BCPIL. Manual

SECTION 6
STRUCTURES

6-1....... Structure declarations and references

The structure facility allows the user to define templates for symbolically referencing partial-word fieldsof
variables, and individual words and partial-words of vectors. (A "vector" in BCPL means any block of
consccutive memory words). For example, a program which manipulates rectangular areas on a display
might be using four-word blocks in memory to represent the center coordinates, width, and hcight ofthe
§i%?iﬁcant areas on the screcn. This program could declare a structure for referencing these blocks as
ollows:

structure rectangle : [x word
y word
width word

| height word

The structure is used in conjunction with the ">>" operator. For example, if the program has a variable
cursor which points at (i.e., contains the address of the first word of) a four-word block, the expression
cursor>>rectangle.width reforences the width field of that block, and is equwalent to the expressioncursor!2.
So the program can contain statements like

cursor>>rectangle.width = 1
and

let cursortop = cursor>>rectangle.x + cursor>>rectangle.height
The declaration defines rectangle as a four-word structure, with fields named x, y, width, and height, eachof
which is one word wide. The ficlds of a structure are positioned sequentially, so the x ficld refers to the first
word of a referenced block, the y field to the second word, etc.
The operator ">>" (pronounced "right-lump™) expects an expression on the left, and a description of the
field to be referenced on the right. The value of the left-hand expression is taken as the address of the block
of memory to be referenced. The right-hand side, in the simplest cases, consists of the name of the structure
describing the block, followed by ".", followed by the name of the ficld to be referenced. The left
precedence of ">>" is higher than that of all expression operators except procedure calls and vector
subscripts; so

a(b)>s.f means (ab)>>s.f

alb>>s.f means (alb)>>s.f
but all other left-hand operands of ">>" must be parenthesized.

It is often convenient to define a structure consisting of a field list at the outermost level, without a single
top-name. For example:

6.1

Revised BCPL Manual STRUCTURES

structure [x word
y word

width word

: height word

This structure describes a configuration of ficlds identical to that of rectangle. However, references to the
fields of the structure require only the ficld name, as in cursor>>width.

Structures may also contain partial-word ficlds, as in the following example:

structure area : [visible bit1
blinking bit1
color bit 5

X bit 9
blank bit 2
border bit 5
y bit 9
width byte
height byte

This structure describes three-word blocks which hold various pieccs of information about rectangularareas
of the display. The field-size specifier bit N, where N is a constant expression, defines a field which is Nbits
wide; the specifier byte defines a ficld which is 8 bits wide. A bit field may not overlap a word boundary;
the special name blank (a reserved word) is used in the above declaration to leave an unnamed two-bit field
in the second word in order to prevent such an overlap. A byte field must begin on a byte boundary. A
word field must begin on a word boundary. No automatic filling-out to boundaries is done; blank ficlds
must be supplied explicitly when needed.
With the above definition of area, assuming that cursor points at an area block, we reference the width field
with cursor>>arca.width, just as for rectangle. But the definition of area makes this a reference to the
leftmost 8 bits of the third word of the vector cursor. The statement

cursor>>area.width = w
is equivalent to

cursor!2 = ((w Ishift 8) & # 177400) + (cursor!2 & # 377)

(The structure reference generates much better code than this). The rightmost 8 bits of cursor!2 are
unchanged. Similarly, the statement

w = cursor>>area.width
stores the left-hand byte of cursor!2 inio w, right-adjusted, with 8 leading zero bits; it is equivalent to

w = (cursor!2 rshift 8) & #377

62....... Nested fields

A structure may contain substructures nested to any reasonable depth. For example, we might define a
structure for vectors representing displayed lines of text as follows:

6.2

Revised BCPL Manual- STRUCTURES

structure textline : [string word
color byte
lincnum byte
margin: [left byte
right byte
font : ltemplates word
charsize : [width byte
]height byte
]
]

Now if the variable title is a pointer to a five-word block of memory containing textline data, its fields are
referenced by:

title>>textline.string

title>>textline.color

title>>textline.linenum

title>>textline.margin.lcft

title>>textline.margin.right

title>>textline.font.charsize.width

title>>textline.font.charsize.height

title>>textline.font.templates
That is, a field is specified to ">>" by a sequence of substructurc names scparated by ".", ending with the
field name.

A subséructure name may be used as a field name; that is, it may be the last name on the right-hand side of
'1>>'|. 0

title>>textline.margin

is a legal structure reference expression, referring to the full word title!2. However, a ">>" expression may
not refer to a field that is longer than 16 bits, or to one that overlaps a word boundary; so

title>>textline.font
is illegal, since the total length of font’s subfields is 32 bits.

It is often the case that a group of ficlds in a structure arc identical to those in another structurc or
substructure. For example, we might want to define a structure for vectors which represent rectangular
display areas containing a word of text as follows:

structure sign : [text word
textsize byte

textcolor byte

. visible bit 1

blinking bitl

color bit 5

=

That is, a sign contains all of the information for a area (visible, blinking, etc.), plus three additional fields.
We can define sign as above without having to copy the field dcfinitions of area as follows:

6.3

Revised BCPIL. Manual STRUCTURES
structure sign : [text word
textcolor byte
textsize byte
@area

Within a structure declaration, an "@" followed by a previously defined structure name is replaced by the
body of that structure’s definition. So the above definition of sign is equivalent to:

structure sign : [text word
textcolor byte
textsize byte
[visible bit1
blinking bit1
color bit 1
] .

]

The brackets surrounding the inner field list have no effect, like unneccssary parentheses surrounding
expressions. So rcferences like stop>>sign.color arc legal with either definition.

We could alternatively have made the area fields part of a substructure in sign as follows:

structure sign : [text word
textcolor byte
textsize byte
textarea: (@area

or even

structure sign : [text word
textcolor byte
textsize byte
area : @area

In the latter case, references to the arca fields look like stop>>sign.area.color.

6-3....... Subscripted fields

It is possible to have structure fields which are replicated, with individual replications referred to instructure
reference expressions by integer subscripts. A simple example is a structure which describes BCPL-format
strings:

[length
: chartl,255 byte

structure string : byte

A """ following a ficld name in a structure declaration indicates that the ficld is to be replicated; the "t"is
followed two constants, separated by"," , which specify the subscripts of the first and last replications. Soin
the above example, the field char is replicated 255 times, with the replications numbered from 1 thru255.

Now if's is a pointer to a BCPL string, the expression

64

Revised BCPL Manual STRUCTURES

s>>string.chart4
references the fourth character of the string, which is in the left half of s!2. A subscript in a structure
reference expression may be an arbitrary BCPL expression; the precedence of the """ operator is higher
than any other operator, so any subscript other than a name or number must be parenthesized, €.g.,
s»string.chart(i+j) = 0

In references to a subscripted field, the user must be sure to remember what low-subscript value was
%pemﬁed in the declaration. For example, in the above definition of string, the first character is referenced
y

s>>string.chartl
and the last meaningful character by
s>>string.chart(s>>string.length)
But if the char field had been defined as chart0,254* byte, these references should be
s>>string.chart(
and
s>>string.chart(s>>string.length-1)

The low-subscript and high-subscript given in a structure declaration determine the number of bits
occupied by the replicated field:

(high-low + 1)**(number of bits in one replication)

Since a structure is only a template, and allocates no memory on’its own, the only significance of this

number is that it determines the position of subsequent ficlds, if any, in the structure. (It also determines

the value of the size expression, which will be described later). In the string example, char is the last field,so

it makes no difference how many replications are specified. But suppose that we had chosen to includec a

:ﬁxt stt)ring in sign blocks, rather than a pointer to the string in the first word. The definition of sign would
en be:

structure sign : [@string
textcolor byte
textsize bagte
area @area

(Note the uses of the "@" construct). We would then reference the ith character of a sign with
stop>>sign.charti

With this definition, space for the maximum-length string would have to be left in every sign block, since

the expression stop>sign.textcolor would be complied as a reference to the left half of stop!128. It would

be better to specify @string as the last thing in sign, so that variable-length blocks could be used.

Any structurec name, substructure name, or ficld name may be declared as subscripted, subject to the

SUBSCRIPTED STRUCTURE RULE given below. For cxample, we might definc a structure that

describes tables of arca descriptors as follows:

structure areatable : [numareas word
areat1,100 : @arca
]

6.5

Revised BCPL Manual- STRUCTURES

A areatable is a block of storage which contains some number of three-word subblocks, each of which is
formatted as a area block. The first of the area blocks starts in the second word; the first word of aarcatable
holds the number of area blocks in the table. If the variable screen points at a areatable block, the
expression

screen>>areatable.arcat5.width
would reference the width field of the fifth three-word entry; that is, the left-half of screen!14. Note thatthe
subscript is applied to the name which is replicated in the declaration (area), not at the end of the ">>"
expression.
The above expression is somewhat unwieldy. There arc two ways in which the structure could be modified
so as to shorten the references to its subfields. One way is to eliminate the numareas ficld, and attach the
subscript to the name areatable:

structure arcatablet1,100 : @area
With this dcfinition, the width field of the fifth entry would be referenced with

screen>>arcatabletS.width
Note that if the numareas field had been included, it would have been replicated along with the area fields.
(An extra word could be allocated above areatable blocks to hold the number of entries, and accessed as
screen!-1; but there is no way to reference this word as part of the structure).
The second way in which areatable could be redefined is to post-subscript the arca field list:

structure areatable : [numarcas word

| @arcat1,100

This form of subscript declaration (subscript applied to a bracketed field list, which is what @area is

equivalent to) replicates the substructure defined by the field list (100 three-word blocks in this example),

but subscripts in references to the structure appear after the individual field names. So a reference to the

width ficld of the fifth entry would be -
screen>>areatable.widtht5

Only the area fields are replicated; so it was possible to include the numareas ficld in this version of the
structure.

Subscripted substructures may contain subscripted fields or sub-substructures to any depth. Forexample,
we might describe a table of filc names with:

structure filetablet1,50 : [length byte
chartl, 15 Dbyte
The length of the ith name is referenced by
t>>filetabletilength
and the jth character of the ith name by
>filetableti.chartj

Multiple subscripts are also allowable. For example, a 4x3 matrix of double-precision numbers might be
described by:

6.6

Revised BCPL. Manual . STRUCTURES

structure matrixt1,311,4 : [high word
low word

This structure describes a storage area which consists of a four-fold replication of a three-fold replication of
a two-word block. In references to a matrix block, the first subscript specifies which of the four outer
replications is to be referenced, and the second indicates which of its three two-word blocks is wanted. So
elements of a matrix appear in memory in the following order:

m>>matrixt111Lhigh
m>>matrixt111.low
m>>matrixt112.high
m>>matrixt112.low
m>>matrixt113.high
m>>matrixt113.low
m>>matrixt21L.high
m>>matrixt211.low

m>>matrixt413.high
m>>matrixt413.low

Note that the order of subscripts in the matrix structure reference is the reverse of the subscripts in the
declaration.

SUBSCRIPTED STRUCTURE RULE: Tﬁe replicated field or substructure must begin on a word
boundary and be a multiple of 16 bits wide, or begin on a byte boundary and be 8 bits wide. Subfields
within a replicated substructure need not satisfy this restriction; it applies only to the size and position ofthe
full replicated element. For example,

ft1,10[abit3; bbit 13]
and

[abit3;bbit5]11,10

are both legal; but

atl,10 bit 3
and

b11,10 bit 13
are not.
6-4....... Overlays

It is often the case that a portion of a structure must be referenced with different sets of ficlds at different
times; therefore the compiler allows parallel field lists to be declared. For example, the following structure
is a description of the Nova instruction format:

67

Revised BCPL Manual STRUCTURES

structure instr : [logical bit 1
[acs bit2 ; acd bit2
func bit 3
shft bit 2 ; cry bit 2
nlod bit 1 ; skp bit 3

=[op bit4
ibitl
x bit2
d bit8

1
]
The bracketed ficld lists joined by " =" refer to thc same portion of the structure (bits 1 to 15). If p pointsto
an instruction, the expression p>>instr.logical references bit 0 of the instruction. On the Nova, this bit
distinguishes between arithmetic/logical instructions and memory-reference instructions; a program would
usc this bit to determine whether it is appropriate to reference p>>instr.acs, etc. or p>>instr.op, etc.

Parallel substructures nced not be of equal length; the position of subscquent fields is determined by the
longest of the overlaid substructures.

6-5....... Left-lump structure references

The operator ">>" uses the value of its left-hand operand as the address of the data to be referenced. There
is another structure reference opcrator, "<<" (pronounced "left-lump"), which takes a variable as its left-
hand operand, and loads data from or stores data into the variable itself, rather than treating the variable asa
pointer. To illustrate, suppose we have defined

structure [1h byte ; th byte]
and that the value of the variable p is # 001003. The statement

q = p>>rth

stores into q the right-hand 8 bits of the number contained in memory location # 1003; it is equivalent to

q = pl0 & #377
The statement
q = pKrh

stores into q the value # 000003, which is the right half of the value of p; it is equivalent to
q=p& #377

Similarly, the statcment
p>>rh = q

is equivalent to

pl0 = (p!0 & #177400) + (q & #377)

6.8

Revised BCPL. Manual - STRUCTURES

which stores a value into the right half of location # 1003. The statement
p<&rh = q

is equivalent to
p = (p & #177400) + (q & #377)

which stores into the right half of the variable p.

The "< operator should normally be used only with structures that are one word wide. The compiler will
interpret a statement like

p<Karea.width = w
(a reference to the third word of a structure) to mean

(v p)>>area.width = w
This will store into the location which is two words below the place in memory where p happens to be
allocated. It is dangerous to assume anything about the allocation of BCPL variables, except in special cases

such as consecutively declared dynamic variables, so usc this feature with care.

The left-hand operand of a "<<" expression may be a vector-subscript expression or an rv-expression,
instead of a variable name. The statement

vli<Karea.width = w

means

(Iv vli)>>area.width = w ,or,equivalently, (v-+ip>>area.width
and

(@p)<<arca.width = w
means

p>>area.width = w

(Note where parcntheses are needed in the above expressions).

66....... Heffalump structure references

The opcrator "=>" (pronounced "heffalump™) is convenient for referencing structures that are accessed
indircctly. The expression .

a=>sXx
is equivalent to the expression

(@a)>>s.x.

6.9

Revised BCPL Manual . STRUCTURES

Here the variable a contains the address of a memory word (say, p) whose contents in turn address a block of
data that the structure s describes. The information in this block may be freely relocated, provided onealso
changes p to indicate the new location. Any variable, a, containing the address of p will still be able toaccess
the data using the heffalump construct.

67....... Other structure operators

The "1v" operator may take a structure reference expression (">>" or "<<" expression) as its operand. Its
value is the address of the memory word which would be referenced by the structure expression. The field
referenced need not be a full-word field.

It is sometimes necessary to determine the location or width of a field in a structure. Two special operators
are provided for this: "size" and "offset”. Both are unary operators which take a field specification as an
operand (that is, a construct that can appcar to the right of ">>" or"<<". The value of a "size" expressionis
the size, in BITS, of the specified field. For example:

size area.width gvalue is8)
size arca value is 48)
size string.charti %value is 8)
size string.char value is 2040)

A "size" expression is always a compile-time constant, even if a variable subscript expression is involved.
Note that if a subscript is missing in the ficld specification, the size of the entire replication is returned.

The value of an "offset" expression is the BIT number, counting from bit 0 at the beginning of the
structure, of the first bit of the specified field. For example:

offset area.width &value is 32)
offset area value is 0)
offset string.chart5 (value is 40)
offset string.charti (value is 8*1)
offset string.char (value is 8)

An "offset" expression is a constant unless a variable subscript cxpression is involved.

Keep in mind that "size" and "offset" return values in BITS, not in words. To get a vector for an areablock,
for example, you must say

let cursor = vec (size area) / 16

6-8....... Syntax of structure declarations
STRUCTDECL structure STRUCTGROUP
STRUCTGROUP STRUCTITEM
: STRUCTITEM = STRUCTITEM = ... = STRUCTITEM
STRUCTITEM NAME : FIELDDESCR

NAME t SUBSCR : FIELDDESCR
blank : FIELDDESCR

6.10

Revised BCPL Manual STRUCTURES

STRUCTLIST
STRUCTLIST + SUBSCR

STRUCTLIST [STRUCTITEM ; STRUCTITEM ; ... ; STRUCTITEM]

FIELDDESCR bit
bit CONST
byte
byte CONST
word
word CONST
STRUCTLIST
STRUCTLIST + SUBSCR

SUBSCR CONST , CONST
SUBSCR t+ CONST, CONST

The colons in STRUCTITEM are really only necessary if a carriage return precedes a STRUCTLIST; in
other places they may be omitted. The semicolons separating STRUCTITEMs in a STRUCTLIST may be
omitted if a carriage return separates the STRUCTITEMS.

6.11

Revised BCPL. Manual-

SECTION 7
SOURCE FILE CONVENTIONS

7-1....... Declaration files

The word "get" followed by a file name enclosed in quotes ("...") causes the file to be included in the
compilation, as if the contents of the file appeared in the source text. The most common use of ' 'get” filesis
to include a common set of manifest, external, and structure declaratlom in a number of source files that
will be loaded together. The compﬂer will ignore a second "get” on a "get” filc that it has alrcady read (this
facilitates ccrtain uses of the precompilation feature; see description of the /G compiler switch).

T-2..0..... Labeled brackets

Brackets may be labeled with a sequence of letters and digits immediately following the "[" or "]". Whena
labeled "]" is seen by the compiler, each unmatched "[" (whether it is labeled or not) is implicitly matched
until the "["" with the same label is matched. Thus, in:

ifngrOdo[li=1
untili grn do
Rxli=0i=i+1]1

the "]1" closes both compound statements. Note that a carriage return, space, or tab must be present
between an unlabeled "[" and a statement that starts with a name. Usually some error will be detected
quickly if no space is left (as in "if ngr 0 do [x = 0..."). But somctimes the resulting statcment will belegal
(as in "ifngr0do [rvx = 0.."). In such cases, the error may not be detected until the end of the source
text; this is often the cause of a non-obvious "unmatched section bracket” syntax error.

T-3....... Semicolon insertion

If two statements are separated by a carriage return, a semicolon is not required between them. This is
accomplished by having the lexical analyzer replace a carriage return by a semicolon if it is preceded by a
symbol which might end a statement and followed by a symbol which might begin a statement. Carriage
returns are ignored (treated as spaces) in other places. - This implies that a BCPL. statement may cxtcndovcr
two or more lines, with the carriage returns occurring anywhere in the statement cxcept beforca"+" or"-"
or before the "(" which begins a function argument list. So

X=a-
(b*c)

will be interpreted properly (no semicolon inserted), but

X=a
- (b*c)

7.1

Revised BCPL Manual . SOURCE FILE CONVENTIONS

and
x = a-f

(b)

will give a parsing error, because semicolons will be inserted at the carriage returns ("+", "-", and "(" might
begin a statement).

Semicolons will also be inserted at carriage returns in external, manifest, static and structure declarations,
and in the constant list of table expressions.

Carriagc returns may no appear in string constants. To include a carriage return, use *N or *C.

T-4....... Do/Then insertion

The words "do" and "then" are cquivalent; so one may write

ifx1s0thenx=-x
or
ifx1s0dox=-=x

" o "o

The "do" (or "then™) in an "if," "unless," "while,

until,” or "for" statement may be omitted if the symbol
which would follow the "do" is one of the following

if for break
unless switchon loop
while goto finish
until return abort
test resultis endcase

Thus one may write:

if x ¢q O resultis -1

while x 1s 0 goto L

unless x gr 0 break

for i=1 to 10 switchon v!iinto[...]
T-5....... Comments
Comments may appcar anywhere in the source text, and begin with a pair of slashes (//). The slashesand
the remainder of the line on which they lie are ignored.

T-6....... Upper case vs. Lower Case

Source files may be upper-case only, or upper- and lower- case. If lower-case is used, reserved words must
be lower-case. The basic rules for case are as follows:

1.2

Revised BCPL Manual SOURCE FILE CONVENTIONS

If the first word of the source program (i.c., of the file named in the command line) consists of alllower-case
1cha:racters, the compiler will distinguish words on the basis of case; and reserved words must be typed in
ower-case. :

If the first word is not cntirely lower-case, the compiler will, in effect, convert everything to upper-case on
input. The global switch /U will also cause input to be converted, even if the first word is in lower-case.

This rule has implications for both compiling and loading. For compilation:

1. If your program is entirely upper-case, any "get" files specified in the program will be treated as
upper-case files, even if they were prepared in lower-case. So an upper-case program can use a fileof
declarations (e.g., IOX for the 10 package), as long as that declaration file does not depend on case to
distinguish betwcen names.

2. If your program wants to distinguish names on the basis of case, reserved words must be typed in
lower case, both in your program and in any "get"” files which the program nceds. So in order to use
a declaration file which was prepared in upper case, you must ¢ither use the /U switch (if you don"t
care about casc) or change the declaration file’s reserved words to lower-case (if you do care about
case in your program).

The BCPL loader (BLLDR) normally distinguishes external names on the basis of case. So if you want to

load upper-case and lower-case .BR files together, you must use the /U global switch on BLDR (or,

alternatively, recompile the lower-case programs with /U). In particular, you must use BLDR/U if youload

%1&;8 %ackage (IO1.BR, 102.BR) with upper-case programs, or recompilc the source files (I01, 102) with
/U.

13

Revised BCPL Manual-

SECTION 8
COMPILATION

8-1....... Normal compilation

The BCPL compiler consists of six files, normally called BCPIL..SV, BCPL.YL, BCPL.YC, BCPL..YS,
BCPL.YT, and BCPL.YG. The .SV file is the main program; the .Y* files contain the code for the five
passes of the compiler. The .Y* files must have the same name as the save file and the given extensions; so
to rename the compiler, you must rename the .Y* files as well as the .SV file.

Normally, to compile a source file (e.g., QUEENS.3), just type
BCPL QUEENS.3

(Only one source file may be compiled at a time.) (No extension is autométically assumed for the source file
name.) The compiler will print

BCPL 2.0 -- QUEENS.BR = QUEENS.3

and begin compiling the program. (2.0 is the current version of the compiler.) If no errors are dctected, the
BCPL relocatable binary file QUEENS.BR will be created, and the compiler will print something like

QUEENS.BR --1426 (790) WORDS
The numbers are the length of the code generated in octal (decimal).

If an error is detected in the source text, the compiler will gencrally print each offending line and indicate
the error(s) found in that line. The compiler will continue to look for further errors as long as it can doso
without getting confused, and finally print the message

n ERRORS IN QUEENS.3

Some errors are grounds for immediate termination of compilation. The most common ones are trying to
compile a source file that does not exist, or typing a command line that BCPL does not understand. Suitable
messages are printed to indicate such errors. It is also possible to have a program which is "too big", inone
respect or another, for BCPL to handle. This usually results in a message like "FRAME SPACE
OVERFLOW" or "OUT OF FRAME SPACE". You must split the program into separately compilable
files when this happens.

The compiler normally assumes that the Nova console is a CRT terminal. Therefore, after producing 20
lines of terminal output, it rings the bell (if any), prints a colon, and waits for the uscr to type acarriage-
return or line-feed before proceeding. Carriage-return produces 20 more lines; line-feed produces oncmore
linc; 0 followed by carriage-return or line-feed causes the compiler to proceed without further pauses.

8.1

Revised BCPL Manual . COMPILATION

&2....... Global switches

These switches can be attached to the name BCPL (or a whatever you call your compiler); e.g.,
"BCPL/U/A QUEENS.3".

/U

/P
/F

/A

/T

Summary:

/D

/H

Treat the source file as if it had becn typed entirely in upper case. (See the section on
upper/lower case considerations.)

Turn off the "pause” feature described above.

Write error messages onto the file QUEENS.BT (if the source file name was
QUEENS.3) instead of printing them on the terminal. If /F is given, the compiler
prints the message

BCPL 2.0 -- QUEENS.BR,QUEENS.BT = QUEENS.3
at the beginning of compilation.

Produce an assembly-language listing of the code gencrated. (This is useful if you want
to sec what kind of code BCPL generatcs, or if you are having a hard time debugginga
particular piece of code. But the listing file is big -- it takes a long time to generate and
print -- so you probably don"t want to make a habit of requesting it.) The listing is
written on the filc QUEENS.BT, unless the /T switch is given; error messages still
appear on the terminal, unless /F is given.

Causes all output (error messages and the /A listing, if requestcd) to appear on the
terminal. The file QUEENS.BT is not created.

/F alone sends error messages to QUEENS.BT. /A/F -sends both errors and the
assembly listing to QUEENS.BT; /A/T sends both to the terminal. /A alone sends
errors to the terminal, and the assembly listing to QUEENS.BT. /F/T is illegal; /T
alone has no effect.

Causes the compiler to indicate when it starts a new compilation phase (LEX, CAE,
SAE, TRN, and NCG), and prints dcbugging information with error messages.

Causes the compiler to pause (by entering the Nova debugger) between compilation
phases and after error messages. To resume, type (ESC)R, not (ESC)P.

(/D and /H are generally useful only to compiler gurus.)

/G

/S

This switch is used to generate "precompiled” declarations files. Any source file (which
may ccl)main "get" statements) may be precompiled, using the /G global switch. For
example,

BCPL/G DECLDRIVER

will precompile DECILDRIVER and crcate the files DECI.DRIVER.BD and
DECLDRIVER.BC. DECLDRIVER is typically just a list of "get" statcments,
consolidating declaration files. Subscquently, the precompiled declarations may be
used with the local /G switch (see below); precompiling increases the speed of the
compiler slightly if the same declarations are to be included in many files.

- See the local /S switch, below. The global version simply provides a site-dependent

default value for the switch argument.

82

Revised BCPL. Manual COMPILATION

&3....... Local switches

These switches are attached to names following the compiler name in the command line; e.g.,
"BCPL QUEENS.3 QUEENS.LS/A":

name (no switches) The name is taken as the source file name. No extension is assumed; you must

name/A

name/F

name/R

name/G

number/V

name/M

name/L

name/T

type "name.ext” if the source file has an extension. The source file name is used to
generate the names for the relocatable binary (.BR) file and the text output (.BT) file
(unless these are specified by the local switches /A, /F, /R). On the Nova, if a deviceis
specified with the name (e.g., DPI:QUEENS.3), that device will be used for files
specified in "get" directives in the source text; and for the output files (unless these are
specified by the local switches /A, /F, /R). If no device is specified, the default device
is used (the device given in the last DIR command to DOS), even if the compiler is
running on a different device (e.g., if you have typed "DIR DPO; DPL:BCPL
QUEENS...", QUEENS and its "get" files will come from DP0). There are no
"devices" on the Alto.

Like the global /A switch, but the assembly listing is written onto "name” rather than
QUEENS.BT. If "name" is a file name, the cxtension .BT will be appended to it ifit
has no cxtension; to create a file with no extension, use "name./A". If "name" is a
device (e.g., MC0:XGP.), it should be terminated with a "."; the output will be sent to
the device named.

Like the global /F switch, but writes error messages onto "name" as for /A above.
("name/A/F" does the obvious thing, but you cannot send errors and the assembly
listing to two different files.)

Causes the relocatable binary file to be named "name" instcad of QUEENS.BR. The
.BR extension is appended to "name" if it has no extension; to create a file with no
extension, use "name./R". .

The named file is a file of precompiled definitions, created with the global /G switch
(sce above). For example, the command

BCPL DECLDRIVER/G TEST
will compile test, including the declarations precompiled in DECLDRIVER.

The decimal number is used to set the "manifest constant” for use with the /M switch,
below.

This switch declares the name to be a manifest constant, with the value taken from the
last setting of the /V switch (default is true, -1). The value will apply throughout
compilation, excluding any part of the compilation introduced through the
precompilation (/G) option.

If used in conjuction with "newname," this can be used to override standard settings for
parameters.

Caution: Nova IDOS will convert all keyboard input to upper casc; names given to the
/M switch in this manner will therefore be upper case. However, the /M switch does
not trigger the "upper case” detector (section 7-6).

These switches cause the compiler to print the source text (/L) and intermediate
compilation results (/T) as it proceeds through its various phases. The phases are
specified by the individual characters of "name":

8.3

Revised BCPL Manual- COMPILATION

number/S

for the lexical analyzer

for the parser

for the symbol table generator
for the Ocode gencrator

for the code gencrator, pass |
for the code generator, pass 2.

Sdeilele

E.g., "C1/L" would cause the compiler to print cach line of source text as it parses it,
and again as it makes a first pass at generating codc for the line. The output would goto
the file QUEENS.BT unless the global /T switch were given. These switches are
primarily for decbugging the compiler. But thcy might be helpful occasionally in
tracking down an obscure error, or one for which the error message does not provide
enough context to locate the offending statement in the source text.

The number is interpreted in octal. Its value is used instead of the first instruction of
code normally issued for each procedure (see the runtime environment section). The
same number, incremented by #400, is used instead of the standard procedure return
instruction. This facility allows an installation to customize its procedurc storage
allocation facilities.

8.4

Revised BCPL Manual

SECTION 9
LOADING

9-1....... Normal loading

The BCPL loader on the Alto is found on the file BLDR.RUN. A symbol file BLDR.SYMS also exists for
use in loader maintenance.

The BCPL loader on the Nova consists of four files, normally called BLDR.SV, BLDR.YU, BLDR.YI, and
BLDR.YD. The .Y* files are copies of files that the loader needs for initialization of the save file which it
creates. The .Y* files must have the same name as the loader; so if you rename BLDR.SV, you mustrename
the .Y* files as well.
A typical command to BLDR on the Alto looks like:

BLDR/L/V QUEENS QUEENS1
and on the Nova looks like:

BLDR/D/1L./V QUEENS QUEENS1 101 102
This would create the file QUEENS.RUN (.SV on the Nova), an executable save file, from the BCPL
relocatable binary files QUEENS.BR, etc. The /L/V switches create a symbol table file named
QUEENS.BS, containing information about where things will be in core when the program runs. A typical
.BS file listing is attached. The /D switch on the Nova loads the debugger.
BLDR will accept concatenated .BR files as well as .BR files created directly by the compiler. That is, if
F1.BR, F2.BR, ..., Fn.BR are all BCPL relocatable binary files, and F.BR is their concatenation, then
including F in a BLDR command has the same effect as including F1 F2 ... Fn. The purpose of this feature

is to allow multi-file subroutine packages of BCPL routines to be distributed as one file rather than asa
collection of files.

92....... Errors
Errors in the command line to BLDR are fatal; the loader immediately aborts. Most such crrors will result
in a message like
Bad switch [, in QUEENS/L./S
Undefined file names, and other operating system-detected errors will result in something like
Cannot open QUEENS.BR
Fatal error messages are always printed on the terminal.

The loader detects two types of cxternal name conflicts. If an external name is defincd (by "static

91

Revised BCPL. Manual LOADING
[name = ...]" or by "let name (...) be ...") in more than one relocatable binary file, the loader genecrates a
message like
QUEENS2.BR
The EXTERNAL NAME name was also defined in QUEENS1.BR
for each such conflict detected in QUEENS2. On the Alto, the static for "name" will contain the first value
iven it. If an external name is declared to be a common (page zero) variable in some files (by "external
F@namc; ...]") but not in the first file in which the name appears, the loader genrates a message like
QUEENS2.BR
The COMMON NAME name was not declared COMMON in QUEENS1.BR
These messages appear in the .BS file if one is being created; the message

n errors during loading

is printed on the terminal if any name conflicts are detected. You must recompile the offending files and
reload before attempting to run the program.

External names which have been used but not defined result in the message
n undefined externals

being printed on the terminal. The names are listed in the .BS file if one is being created; or on the terminal
otherwise.

The loader also generates "warnings” if it detects space allocation conflicts in the save file being created.
The most common of these are -

Not enough COMMON space
if too many common (page zero) variables have been declared, and

Not enough STATIC space was reserved
if too many non-page-zero statics have been used. The available page zero space cannot be increased; you
must redefine some common variables to be ordinary statics. The space reserved for statics can bespecified
with the local /W switch; see below for this and for other space allocation controls.
The error, warning, and undefined/multiple-definition error counts are separate; if you are told that was

one undcfined external and one error, there are two things wrong. The error being reported is not the
undefined external but a different one.

9-3....... Global switches

/D (Nova only) Load the Nova debugger into the save file. This switch is legal only if no
assembly language file is specified with the /I switch; if you load assembly language
programs, you should include the debugger when you load them with DOS’s RLDR.
This switch is not needed on the Alto, since debugging is done with Swat.

/U Convert the names of all external symbols to upper case. This is needed, for example, if

92

Revised BCPL Manual- LOADING

/W

/L/V/N

/F

™M
/K

/R

/B

/1

you are loading the DOS IO package (101, 102) with programs written in upper case;

the IO procedure namecs in your files are upper case, but in I01 and 102 they are

defined in lower case. Without /U, the upper case externals in your programs would be

%técgzlilnlejci) (Alternatively, you could recompile the 10 package source files with
/U.

Do not print warning messages. Normally the loader will tell you if you do something
suspicious, like loading a program on top of something else. If you know what you are
doing, and if the warning messages bother you, you can turn them off with /W,

Generate lists of static variable names. /L prints procedure and label names, sorted by
the location of the procedure or label in the code; the /L listing is, in effect, a core map.
/V prints non-procedurc names (variables). /N prints all static names, sorted by
address. The most useful combination is /L/V; it lists all statics, separating procedure
names from variable names. The listings go to the file "savefilename.BS" unless the /T
switch is used.

All printed loader output (errors, warnings, and listings) is sent to the terminal.
Normally, if listings arc requested, they arc sent to a file. Error and warning messages,
and other load map data if there are no listings, normally go to the terminal.

All printed output is sent to the file "savefilename.BS", cxcept for fatal error messages,
which always go to the terminal.

(Alto only) Don’t produce a .SYMS file.

(Alto only) Don’t read SYS.BK. (The facilities of the Alto operating system are made
accessible to user programs via static variables that refer to system procedures or system
scalars. Because thesc objects are not defined in a user’s Bepl program, he must declare
the names to be external. The loader automatically reads the file Sys.bk to determine
how to match up the user’s references with the operating system objects. This
arrangement does not require re-loading programs when objects in the opcerating system
move. The K switch should only be uscd if you do not want the loader to perform this
service for you, e.g., if you are loading the operating system itself.)

(Alto only) Don’t complain if the same BR file name appears more than once in the file
list (presumably in different overlays). Load the code cach time it appears, but only
allocate the statics once. Each such static, like any multiply defined static, will contain
the first value assigned to it. This is relevant only if at Icast one of the occurrences ofthe
BR file is in resident (non-overlay) code.

(Alto only) Append overlay files to the RUN file instead of creating separate BB files.

- Each overlay will start on a new disk page.

(Alto only) Initialize all code-pointing statics defined in Type B overlays to point to the
procedure SwappedOut, which had better be defined in the resident code.

94....... Local switches -- group 1

These switches provide global information to the loader. All occurrences of these switches must appear
before any of the group 2 switches, and before the first relocatable binary file name.

name/S

The name of the save file to be created. (If not specified, the name of the first
relocatable binary file is used.) If "namc" has no extension, .RUN is used (.SV on the

9.3

Revised BCPL Manual) LOADING

name/F

name/]

name/U

number/N

number/C

number/Z
number/V

number/W

number/]J

number/K

name/M

number/O

Nova). The "name" will also be used for the name of the .BS file unless the local /F
switch is used, and on the Alto for the .SYMS file, unless the /M switch is used.

All output is sent to the file "name"”. If "name" has no extension, .BS is used.

(Nova only) Assembly language file. The file "name" (cxtension .SV if "name" has
none) is assumed to be a Nova save file. Thc save file created by BLLDR is initialized to
the contents of this file (except for locations 300-377) at the beginning of loading. Ifthe
Nova debugger is to be loaded, it must have been loaded with the /I file. If no /I fileis
specified, a blank save file (BLDR.YT) is used, or if the global switch /D is specified,

(Nova only) BCPL runtime routines. This switch allows the user to replace the standard
runtime routines (get new frame, multiply, etc.) with his own. (These normally come
from BLDR.YU.) The specified file is a Nova save file, but it is special in scveral
respects.

Maximum number of names allowed (octal). The default is 1000 (512 decimal). BLDR
must allocate a certain amount of fixed space for cach name, and must also have room
for the name strings themselves. If you have a large number of long names, BLLIDR may
run out of room, and print a storage exhausted message; or you may have more than
512 names. In cither case, you may be able to load by adjusting the number of names
allowed with /N. You may also be¢ able to get more room with /C, if none of your .BR
files have as much as 5000 words of code. (The /N switch does not affect the default
/W value - see below).

Maximum (octal) size of code in a single .BR file. The default is 5000. The /C switchis
useful either if you have an especially big .BR file, or if you necd more name space (see
/N). (The compiler message "QUEENS.BR -- 1426 (790) WORDS" indicates the size
of the code compiled, in octal and decimal).

The (octal) starting address for allocating common (page zero static variables). If not
specified, common starts at octal 50 on the Alto, and on the Nova at ZMAX of the /1
file, which is 60 if global /D is specified, 50 otherwise.

The (octal) starting address for allocating static variables. If not specified, statics start
on the Alto at octal 1000, and on the Nova just after the BCPL runtime routines (which
are loaded just after the /1 file).

The maximum number (octal) of non-page-zero static variables. The default is 400 (256
decimal). If no /V is specificd, this amount of space is reserved in the save file at the
default starting address for statics; code will be loaded after this space unless /O isgiven
on the Alto, or /P is given on the Nova. If the starting address for statics is specified
with /V, it is the user’s responsibility to see that enough space is left for static variables
at thlat address; /W is then just used in checking that static and code space do not
overlap.

éNova only) The maximum number (octal) of overlay files permitted. The default is 10
8 decimalg.

(Nova only) The maximum number (octal) of .BR filcs which may be loaded.

%_/1\%0 only) The first name of the SYMS filc (defaults to the same name as the RUN
ile).

(Alto §)nly) The location to start loading code (instead of its usual place right after the
statics).

94

Revised BCPL Manual LOADING

9-5....... Local switches -- group 2

These switches control the loading of BCPL. code into the save file. The loader also has facilities forcreating
"overlay" files to allow codc to be swapped in dynamically; sce the section on overlays below.

name (no switches) A BCPL relocatable binary file. If "name" has no extension, .BR is assumed (this

name/]

number/P

$number/P

letter/Q
letter/X
letter/Y

letter/P

is the extension normally used by the compiler). The code in the file is loaded into the
save file at the current PC.

The file "name.BR" is considered to be the beginning of a series of "initialization code”
files which extends to the end of the resident or of the A-overlay code in which the
name appears. A relocation table (sec Overlays, below) will be appended after the code
of the series. The table will contain a pair [static address, rclative PC] for each code-
pointing static defined since the last /I. The idea is that your program after
initialization can set all the those statics to point to SwappedOut (sce Global Switch /1).

Set the current PC to "number" (octal).

Add "number” to the current PC. No spaces may appear between the "$" and the
"number”.

The "letter” is a single character A-Z. These switches associate the current PC with the
letter so that the PC can later be restored with the form of /P described below. /Q uses
the value of the current PC; /X uses the larger of the current PC and the value (if any)
currently associated with the "letter"; /Y uses the smaller of the current PC and the
current value of the "letter". .

Set the current PC to the value last assigned to the "letter”" by /Q, /X, or /Y. Ifno
value has been assigned, an error is reported.

The final PC value, after all files have been loaded (not counting the overlays on the Alto), is taken as the
address of the start of frame space when the program executes. (This value can be changed on the Nova
with a final /P specification.) Execution will begin with the first procedure defined in the first relocatable

binary file loaded.

contents are:
word 0:
word 25:
word 26:
word 27:
word 28:
word 29:
word 30:
word 31:

This procedure will be called with one argument, a 32 (decimal) word vector whose

The last value assigned to "A" by /Q, /X, or /Y.

The last value assigned to "Z" by /Q, /X, or /Y.

The address at which statics were loaded.

The address of the last static variable.

The address of the first procedure loaded.

The address (+1) of the last word of BCPL code loaded.
The final value of PC (frame space start on the Nova).

The highest memory address available on the Nova,

the location of the rclocation table if /1 was used on the Alto.

9.5

Revised BCPL Manual- LOADING
96....... Nova Save file image

The save file produced by BLDR on the Nova looks just like an ordinary Nova save file. The core imageit
produces is organized as follows (all numbers arc octal):

0..15
(Not part of a save file. Nova save files start with location 16; DOS considers locations
0-15 sacred. The addressess listed below are core addresses; subtract 16 (octal) if you
are looking at the save file itself (e.g., with OEDIT).

16...277
An image of these words from the /1 file. Common variables will normally be allocated
starting at ZMAX, the first page zero ((ZREL) location not used by the /I file; thiscan
be changed by the /Z switch to BLDR.

300...377 ’

Reserved part of page zero (used by the BCPL runtime routines). You should refrain
from clobbering these. locations, unless you know what you are doing. Locations
340-377 are relocated by BLDR to point at various runtime routines.

400...777 .
An image of these words from the /1 file. DOS depends heavily on this page being
correct, so users should not clobber it. BLDR fixes a few words in this page to make the
save file look as if it was created by the Nova loader.

1000-NMAX-1
An image of the rest of the /1 file. NMAX /Is the first unused word of the /1 file. If
there is no /I file, NMAX will be approximately 4300 if /D was used (the debugger is
about 3300 words long), 1000 otherwise.

NMAX..UMAX-1
The BCPL runtime routines. These currently are about 700 words long.

UMAX..VMAX-1 (if /V was not used)
Space for static variables, unless the starting address for statics was explicitly specified
by /V. The size of the space reserved (VMAX-UMAX) is 400, unless changed with /W.

VMAX... (if /V was not used)
UMAX... (if /V was used)
The default starting address for loading BCPL code. If the group 1 switch specifications
are followed by just a list of filc names, the BCPL code will be loaded sequentially
- starting here, unless the PC is changed with /P.

The format of an Alto save file is described in the Alto Operating System Reference Manual, section 4.9.

9T Overlays
All occurrences of these switches must appear after all .BR file names which are to be loaded into the
"resident” save file have been specified.

name/A Create the file "name" (exicnsion .BB if "name" has no extension) and load the

following relocatable binary files sequentially into that file. The code is intended to be
read into core and run at the current value of PC; procedures and labels defined in the

9.6

Revised BCPL Manual) LOADING

name/B

files loaded into "name" will point at this area of core. The PC should not be changed
(with /P) between the .BR files. The file "name" (or the subfile of the RUN file if
Global /B was used) has the format:

word 0: value of PC at the first .BR file loaded

word 1: length of the code in words

word 2: 0 (this word is 1 for a /B file - see below)

word 3: L, the word at which the relocation table starts, if any
word 4: length of the file or subfile in words

word 5: gage number of this disk page on the Alto, 0 on the Nova
word 6:

word 15: 0

word 16: (this is the first word of code)

(if therce is a relocation table, see below)

N.B.: The first word of the code for cach .BR file is the length of the code for that file;
the second word is exccutable.

Similar to /A, but in addition, the file "name" contains information about which
procedure and label pointers must be fixed when the code is read into core. /B isused
when the place at which the code will be cxecuted is not known at load-time.

All code compiled by BCPL is self-relocating; that is, the code contains no absolute

addresses which point at the code. The only words which must point into the code are
the static variables which are defined as procedures and labels. Therefore, in order to
dynamically relocate the code from one or more .BR files, all that is necessary is to
initialize the procedure and label variables defined in the .BR files. This is the purpose
of the relocation pair list at the end of a /B file.

word 0: value of PC at the first .BR file

word 1: length of code in words

word 2: 1 (to distinguish between /A and /B filcs)

word 3: L, the word at which the relocation table starts

word 4: length of the file or subfile in words

word 5: page number of this disk page on the Alto, 0 on the Nova
word 6: 0

word 15; 0

word 16: (this is the first word of code)

word L: number of relocation pairs N
word L+1: static address
word L+2: relative PC

word L+ N*2-1; static address
word L+N*2: relative PC

When the code is read in at location P, cach "static address” must be sct to P+ "relative
PC™, so that the procedures and labels which reference the code will point to the correct
places. The following procedure will do this on the Nova; it assumes the standard 10
package and a routine to get a block of storage from someplace in core.

let swapin(filename) be
let channel=open(filename)
let header=vec 15

readseq(channel,header 1shift 1,32) //read 16 word header
Tet Tength=header!1 //1ength of code
let codestart=getblock(length) //get core for code

9.7

Revised BCPIL. Manual LLOADING

readseq(channel,codestart 1shift 1,length*2) //read code

setpos(channel,header!3 1shift 1) //get to relocation info
let n=readbin(channel) //number of pairs
for i=1 to n do
[let p=readbin(channel) //static address to fix
let codeaddr=readbin(channel) //0ffset in code
] @p=codeaddr+codestart //fix static variable
close(channel)
]
It should be noted that string constants and label constants are part of the code BCPL
compiles; the pointer to the constant block is recomputed cach time the string or table
expression is evaluated. So non-resident code must be careful about its use of strings
and tables.
Although the relocation pair table is the actual authority for producing correct addresses
in statics that reference overlay code, a better BS file listing will result if each name/B
entry is followed by 0/P, to reset the PC value assigned during the load.
9-8....... Alto Operating System Linkage

To facilitate operating system linkage, two kinds of text files are accepted by BLDR: files specifying static
locations (.BJ files) and files specifying static values (.BK files). The former are spcecified by filename/J or
filename/H and the latter by filename/K. All the BJ files must precede the first BR and all the BK files
must follow the last BR!!! Remember that the loader automatically reads SYS.BK at the very end, unless
Global /K has been specified. ’

The format of a typical line in a BJ or a BK file is:
staticName octalNumber(s) codes

A BJ linc is ignored unless the staticName is declared external in some BR. A BK line is ignored unless the
staticName is declared external in some BR and is ncver defined in any BR or BJ. Thus, a BJ file specifies
only the locations of opcrating system statics defined and/or refercnced in the program, while the BK serves
to initialize only operating system statics refcrenced but not defined in the program.

In a BJ file, the last octalNumber on each line specifies the location at which the loader should allocate the
static staticName. In a BK file, the first octalNumber specifies the initial value of the staticName. The first-
last rule is framed to allow simple construction of these text files by editing a BS file.

The recognized "codes” on each line of a BJ file are as follows (note: if a BJ file is cited as filename/H, all
codes are ignored, and the default is invoked):
U=UND=UNDEF
(dcfault) The staticName must be defined in this load.
Another load (the operating system) defines the staticName to be a
procedure (P), label (L), or variable (V); it must not be defined here
R(withPorlL)
The static points to relocatable code

The codes on each line of a BK file are as follows:
P(dcfault), L, V
Another load (the operating system) defines the staticName to be a
procedure (P), label (1), or variable (V)

9.8

Revised BCPL Manual- LOADING
R (withPorl)
The static points to relocatable code
Unrecognized codes are ignored.

To simplify the composition of the text files, there are "bases" which are added to each octalNumber. The
bases are specified by individual lines of the form:

octalNumber
Comments may be included in a text file between / and carriage return.

The loader cannot initialize a static unless it is in the static area of memory. Thus, UND entries in a BJ file
which place a code-pointing or initialized static outside the legal area result in a warning message.

The loader keeps track of the minimum and maximum locations in the static arca that are mentioned in BJ
files (including those statics unused in any BR), and avoids allocating statics in that region thereafter.

The way the loader informs the operating system of the linkages is by listing the addresses of all statics
initialized by BK entrics in a table appended to the resident code (after the relocation table, if /1 is used)and
recording the number of these statics in the file header. The operating system assumes that the values of
those statics are really "indices” into a static area in the OS (in which order will not change) from which the
contents of the designated OS statics are copied into the corresponding us¢r program statics.

9.9

Revised BCPL Manual

SECTION 10
RUNTIME ENVIRONMENT

10-1....... Procedure Frame Format

Whenever code compiled by BCPL is being executed, AC2 points to the first word of the frame for the

procedure which owns the code. (AC2 is not changed by "goto," so one should not jump across procedure

boundaries; no check is made for this either at compile time or run time.) While the procedure Q isrunning

g.e. after a call has been executed from the procedure P and Q’s frame is initialized), the frame belongingto
contains:

AC2)+0: address of P’s frame
AC2)+1: (temp -- sec belowg
éAC2)+ 2: (temp -- see below
AC2)+3: (temp -- see below)

(AC2)+4,5,... arguments passed to Q by P

. dynamic variables for Q
dynamic temps needed by Q
vectors declared in Q

The frame belonging to P, the procedure that called Q, contains:

word 0: address of the frame of P’s caller

word 1: address (-1) within P to which Q should return
word 2: Eaddress (+2) of the start of P)

word 3: temp used by P to pass arguments to Q)

word 4,5,... arguments, dynamic variables, temps, vectors for P

The frames belonging to P’s caller and carlier ancestors of P have the same format as P’s frame. The only
useful information contained in the frame of the procedure currently exccuting (Q) is word 0; the return
address for Q is in P’s frame, not in the current frame. Words 2 and 3 of P’s frame necd not be preserved by
Q oncc Q’s frame has been allocated. Words 1, 2 and 3 of Q’s frame are available as temps for the BCPL
runtime routines (and for users’ machine-language procedures -- sec below) while Q is running.

10-2....... Procedure Calls

Assume that Q is the currently executing procedure, and that Q is about to call the function R with two
arguments: z=R(x,y). (Calls with more than two arguments will be described below.) The code in Q for
this statement will look something like this (assuming x, y and z arc directly addressable):

LDA 0x //putargl in ACO

LDA Ly //putarg? in AC1

JSR @R //call R (R points to first instruction)
2 //number of arguments passed

STA O,z - //store result passed back in ACO

The JSR will transfer to the following code in R:
STA 3,1,2 //save return address (in Q’s frame)
10.1

Reviscd BCPL Manual RUNTIME ENVIRONMENT

JSR @370 //setup R’s frame
n //size of frame needed by R
JSR @367 //(not executed unless >3 arguments)

(first instruction in R’s body)

The "getframe" routine, pointed to by location 370, does most of the work for entering a procedure. Its
responsibilities are to set AC2 to point to a block of storage at least n words long for R’s frame, to save the
original contents of AC2 (Q’s frame pointer) in word 0 of R’s frame, and to store the two arguments passed
to R in words 4 and 5 of R’s new frame. (If there are more than thrce arguments, "getframe" executes the
JSR @367 to store the additional arguments into R’s frame; otherwise the JSR @367 is skipped.) The
"getframe” routine returns, in ACO, the actual number of arguments passed to R. If R has declared a
"numargs" variable, the first instruction in R stores ACO into this variable.

After "getframe" is finished, the body of R is executed. R returns by executing JSR @366, with its resultin
ACO if it is a function. This "return” routine must deallocate R’s frame, restorc Q’s frame pointer to AC2,
and return to Q at the location (+1) pointed to by word 1 of Q’s frame.

For procedure calls which pass zero or one arguments, the above discussion applies as well; AC0 and/or
AC1 are simply not loaded by Q, and are ignored by "getframe."”

For procedure calls with exactly three arguments, ACO and ACI are loaded with the first two argumentsas
above, and the third argument is passed to R by Q in word 3 of Q’s frame. In this case, in addition tothe
chores mentioned above, "getframe™ copies this word to word 6 of R’s new frame (word 6 is the location for
putting the third argument). The code in Q for a call a=R(x,y,z) might look like:

LDA 0x //put argl in ACO
LDA Ly //putarg? in AC1
LDA 3,z //put arg3 in word 3 of
STA 3,32 //Q’s frame

JSR @R //call R

3 //3 arguments to R
STA 0,a //store result

(The code might be more complex that this if one or more of the arguments is not a simple variable.)

For procedure calls with N arguments (N>3), the calling sequence is more complicated. N+ 1 consecutive
cells are reserved (as dynamic temps) in Q’s frame, starting at word L of the frame. (1. is not necessarily the
same for every call.) Arguments 3 through N are stored by Q in cells L+3 through L+N of Q’s frame;
arguments 1 and 2 arc loaded into AC0 and ACI1; and the number L is stored in word 3 of Q’s frame.
(Words L, L+1 and L+2 in Q’s frame arc available as temps for "getframe.") So the code for
a=R(z1,22,23,74,25) might look something like:

1L.DA 0,23 //store args 3,4,5 in Q’s frame
STAO0,L+3,2

LDA 0,24

STA0,L+4,2

LDA 0,25

STA 0,1.4+5,2

LDA 0,KL //KL contains the number L
STA0,3,2 //pass offset of args to R
L.DA 0,21 //putargs 1 and 2 in AC’s
LDA 1,22

% SR @R

STA 0,a

So for calls with more than three arguments, "getframe" must move arguments 3 through N from Q’s frame

into words 6 through 6+ N-2 of the new frame for R. This is done by the "moveargs"” routine (pointed toby
location 367) after "getframe" has created the new frame. (The "moveargs” routine is used, rather than

10.2

Revised BCPL. Manual- RUNTIME ENVIRONMENT

having "getframe" itself move the arguments, for historical reasons. The "moveargs" routine, like
"getframe," must return in ACO the number of arguments passed to R.)

Nothing in the above description of procedure frames and procedure calls depends on where or how frame
space is allocated by "getframe" and deallocated by "rcturn.” In addition, the code compiled by BCPL
makes no assumptions about frame allocation; a BCPL procedure simply assumes that the standard four-
instruction preface will set up its frame and that the standard return instruction will deallocate it and restore
the state of the caller. By replacing the standard "getframe,"” "moveargs" and "return” routines (e.g., by
changing locations 366, 367 and 370), the user can tailor frame allocation strategy to special needs.

10-3....... Frame Allocation on the Nova

The standard Nova BCPL "getframe" allocates frames on a stack which starts from the final PC value seen
by BLDR and grows toward address #77777. When "getframe" allocates a new frame, it checks to see that
the last word of the frame is not beyond the address contained in location 3395; if it is, "getframe™ printsa
message indicating that the program has run out of framc space, and aborts cxecution. I.ocation 335 is
initialized to point at the highest memory address available (not used by DOS). Normally, all available
memory is assumed to be devoted to frame space. However, by adjusting the contents of location 335, a
program can reserve storage for itself (e.g., the statement @#335=@ #335-# 10000 reserves # 10000
additional cells, starting at location @ # 335 (after the statement is executed)).

The page zcro location 336 points to the location which will be the first word of the frame for the next

procedure called. So when location 335 is adjusted, the program should check the contents of location 336
to see if the desired space is available: @# 336 must be less than @ # 335.

103

Revised BCPL Manual

SECTION 11
NOVA 170 and UTILITY ROUTINES

11-1....... Introduction

This section describes a number of routines which have been written to provide limited but useful runtime
support for Nova BCPL programs. In many cases, the routines are very similar to the actual assembly-
language DOS system call, or are obvious extensions of the DOS function. Routines have been written to
do many I/0 functions and a few string functions. Limited formatted I/O functions have been
implemented using general string and integer conversion routines.

Before calling any of the I/0 runtime routines, the routine initbcplio must be called to set up several global
variables. The 1/0 crrors are handled by the routine whose address is in syserror. This routine is normally
ioerror, a routine which corrects some inadequacies of the DOS crror-handling facility, and optionally prints
procedure information. Input routines do not consider end of file to be an error and return thisinformation
through a byte count indicating how many bytes were actually read, or a special ASCII character. Errors
may be captured by changing the routine in syserror to one of the user’s routines or by setting syserrortrap
to "false.” If this is done, after an I/0 routine is called, the location syserrorflag will be false if no errorhas
occured, but otherwise will be true; syserrorvalue will have the error value from AC2 after the DOS system
call. End of file will be shown as an error when this facility is used. For doing routine tasks, the default
error routine will be adequate.

DOS strings are not compatible with BCPL strings. All the I70 routines accept BCPL strings and convert
them to D())S strings when necessary, with the exception of readline and writeline (see description of those
procedures

The procedure descriptions will, in many cases carry a cross-reference note to the DOS manual of the form

1MN:ch-pp. In gencral, all proccdure arguments must be given; in a few specific cascs, optional arguments
ar permitted -- thesc arc indicated by brackets ([1. The DOS channel for an open file is an argument to
many of the routines; it is always called "chno.” When using routines in which the "chno™ description is
marked with an asterisk (*), if the value of "chno" given is -1, the system teletype will be used (viaPCHAR
and GCHAR DOS functions). Thus, for simple teletype 170 it is unnccessary to open a channel.

The routines are contained in the files IO1 and 102. 10X is a file containing external definitions that canbe
included in a BCPL program with the "get" statement.

11-2....... Global Names

sysac
The accumulators used for system calls to DOS. Not gencerally useful except inside the runtime
routines.

syserrorflag
If set after a system call, an error has occurred. This will be true independent of the state of
syserrortrap. ‘'The value of the error will be in syserrorvalue until another error occurs.

syserrorvalue
1f syserror flag is sct after a system call, this static contains the value of the error. This value isconstant
until another crror occurs.

1.1

Revised BCPL Manual NOVA 170 and UTILITY ROUTINES

syserrortra
If thié) static is set to true, the routine ioerror will print an appropriate error message and return to DOS
CLI. If set to false, ioerror 'will simply return. If ioerror is called by the user program with a single
parameter, ioerror is called by the user program with a single parameter, ioerror behaves as if
syserrortrap were sct to true. For morc information sce ioerror(syserrorvalue).

sysprintpc
If set to true, ioerror will print the addresses of the system procedure from the runtime I/0 and the
user procedure which caused the error. This is the variable which is set to true by initbcplio(2).

filenamelength
The maximum length of DOS filenames--manifest constant which may be used for allocating vectors
to receive DOS file names.

11-3....... Procedures
nbytes = readcomcm(chno, string [, switches])
Purpose: "T'o read arguments and switches from the DOS command file, COM.CM
chno DOS channel number, previously opened to file COM.CM
string A BCPL vector for the name read from COM.CM (may be allocated with vec
filenamelcngth).
switches A 26 element boolean vector in which each element corresponds to the
alphabetic character for the switch.
nbytes The number of bytes actually read is returned.
initbcplio(mode)
Purpose: To initialize various constants nceded by the runtime 170 routines. Failure to
invoke this routine will lead to system crashes at undefined times!
mode 1 - normal mode; error messages will be given normally. 2 - diagnostic mode;

stack information will be printed if this mode is set. Mode 2 may also be invoked
by setting sysprintpc to true.

char = readch(chno)

Purpose: To read one 8 bit character from channel chno previously opened to a DOS file.
chno * A DOS channel number 0-7.
char The 8 bit character read from the channel.
writech(chno,char)
Purpose: To write one 8 bit character from channel chno previously opened to a DOS file.
chno * A DOS channel number 0-7.
char The 8 bit character to be written.
rbytes = readseq(chno, bytepointer, nbytes) DOS:4-14
Purpose: Recad a number of bytes using the DOS .RDS command.
chno A DOS channel number 0-7.
bytepointer DOS byte pointer to the first byte involved in the transfer.
nbytcs Number of bytes to be read.
rbytes Number of bytes actually rcad--must be used to detect end of file.
writeseq(chno, bytcpointer, nbytes) DOS:4-18
Purpose: Write a number of bytes using the DOS .WRS command.
chno A DOS channel number 0-7.
bytepointer DOS byte pointer to the first byte involved in the transfer.
nbytes Number of bytes to be written.

nbytes = readline(chno, string[, true/false]) DOS:4-13
11.2

Revised BCPL Manual-

Purpose:
chno
string
true/false

nbytes

writcline(chno, string)
Purpose:

chno
string

writestr(chno, string)
Purpose:

chno
string

writezoct(chno, number)
Purpose:
chno
number

NOVA 170 and UTILITY ROUTINES

To read a string terminatcd by a carriage return from a DOS file.

A DOS channel number 0-7.

A BCPL vector with enough space to receive the input string.

If true, the TRUE DOS readline function is executed. The .RDL function
terminates on NULL as well as form feed, carriage return and end of file. One
usually does not want to deal with this function. If false or absent, the NULL
termination is removed.

If 1, a terminator has been received. The last character in the string received is
either carriage return or form feed (or NULL if the true .RDL) or carriage return
followed by # 377 if end of file.

DOS:4-17

Write a string which MUST be terminated by a carriage return, null or form feed
to the DOS channel previously opened. DOS interprets tabs, form feeds for
certain devices.

A DOS channel number 0-7.

A BCPL string or vector which must be terminated as specified for readline.

Write any BCPL string. A line feed is unconditionally issued following every
carriage return character.

* A DOS channel number 0-7.

A BCPL string or vector which must be terminated as spccified above.

Write a six digit unsigned octal number with leading zeroes.
* A DOS channel number 0-7.
16 bit quantity.

writedec(chno, number{, space])

Purpose:
chno
string
space

Write a signed decimal number with fixed or variable spacing.

* A DOS channel numbcr 0-7.

16 bit quantity.

Nuénber of spaces to be used. If missing or zero, a variable number of spaces are
used. i

writeoct(chno, number], space])

Purpose:
chno
number
space

rite a signed octal number with fixed or variable spacing.
* A DOS channel number 0-7.
16 btit quantity.
Nugxber of spaces to be used. If missing or zero, a variable number of spaces are
used.

writeform(chno, formatcode, data[, formatcode, data...])

Purpose:

chno
formatcode

Write a group of string or 16 bit data to the channel as specified by the
formatcodes.

* A DOS channel number 0-7.

0 - data following is string data. 2-10 - data following is a 16 bit quantity to be
displayed in that radix.

writevalue(chno, number, rdx], space])

Purpose:

chno
number
rdx
space

word = rcadbin(chno)

Write a 16 bit signed number in arbitrary radix (2-10) using fixed or variable
spacing.

* A DOS channel number 0-7.

A 16 bit signed quantity.

An arbitrary radix 2-10.

The number of spaces to be used. If the argumcent is missing or 0, a variable
number of spaces will be used.

11.3

Revised BCPL Manual . NOVA 170 and UTILITY ROUTINES

Purpose: Read a 16 bit quantity from the DOS channel. No end of file detection is
provided except by capturing the error with syserrortrap.
chno A DOS channcl number 0-7.
word A 16 bit quantity read from the file.
writebin(chno, word)
Purpose: Write a 16 bit quantity to the specificd channel.
chno A DOS channel number 0-7.
word A 16 bit quantity to be written.
chno = open(name) DOS:4-10
Purpose: Open a DOS file to a channel selected by the runtime routines.
name Any BCPL string which is a legal DOS file name. Device specifier must be
upper case, ¢.g., DP0--all other characters are translated to upper case.
chno A DOS channcl number 0-7 returned specifying the channel number to be used.
chno = append(name) DOS:4-11
Purpose: Re-open a DOS file to a channel selected by the runtime routines. Writing will
begin following the last character in the existing file.
name Any BCPL string which is a legal DOS filc name. Device specifier must be
upper case, ¢.g., DP0--all other characters are translated to upper case.
chno A DOS channel number 0-7 returned specifying the channel number to be used.
nbytes = curpos(chno) _
Purpose: Return the current byte position of a DOS file.
chno A DOS channel 0-7.
nbytes Current byte pointer for the file.
setpos(chno, nbytes)
Purpose: Set the current byte position of a DOS file.
chno DOS channel 0-7.
nbytes Current byte pointer for the file.
curposdw(chno, doublewordvector)
Purpose: Return the current block and byte number of a DOS file in a BCPL vector to
overcome the lack of double precision integers in BCPL.
chno A DOS channel 0-7.
doublewordvector A 2 wcc)lrcll BCPL vector giving the block number in word 0 and the byte number
in word 1.
setposdw(chno, doublecwordvector)
Purpose: Set the current block and bytc number of a DOS file in a BCPL vector to
overcome the lack of double precision integers in BCPL.
chno A DOS channel 0-7. :
doublewordvector A 2 w%rcll BCPL vector giving the block number in word 0 and the byte number
in word 1.
createfile(name) DOS:4-6
Purpose: Create a DOS file.
name A legal DOS file name.
deletefile(name) DOS:4-7
Purpose: Create a DOS file.
name A legal DOS file name.
initdev(name) - DOS:4-4
Purpose: Initialize a DOS device.
name A legal DOS device name.
dircctorydev(name) DOS:4-4

114

Revised BCPL Manual

NOVA 170 and UTILITY ROUTINES

Purpose: Change the default dircctory to the indicated device.
name A legal DOS device name.
releasedev(name) DOS:4-5
Purpose: Release a device.
name A legal DOS device name.
renamefile(name,newname) DOS:4-7
Purpose: Change the name of an existing DOS file.
name A legal DOS file name.
close(chno) DOS:4-12
Purpose: Close an 170 channel to further use until re-opened.
chno A legal DOS channel number (0-7).
resetfiles() DOS:4-13
Purpose: Close all 170 channcls to further use until re-opened.

errvalue = systemcall(acO,
Purpose:
acO
acl
ac2
syscallname

e1r

errvalue

ioerror(syscallname, sysac)
Purpose:

syscallname
sysac
syserrorvalue

install(chno)
Purpose:
chno

chatr(chno, ac0)
Purpose:
chno
ac0

ac0 = getfileatr(chno)
Purpose:

acl, ac?, syscallname, err) DOS:4-1

Generate a DOS system call directly.

NOVA ac 0 to be passed as part of the system call.

NOVA ac 1.

NOVA ac 2.

A name from the list of system calls contained in iox, generally, the DOS
mnemonic preceded by "sys"--e.g., sysrdl for .RDL. These are manifest
constants defined in JOX. '

Tl}ie BCPL procedure to be called in the event of an error return from the system
call.

The error value if an error occurs, otherwise -1. The error code is returned in
global vector SYSAC!2 and in the global variables syserrorflag and syserrorvalue.
If syserrorflag is set, syserrorvaluc contains the valuc of the error. syserrorvalue
will not be changed, but SYSAC!2 will be changed with every system call.

or (syserrorvalue)

Writes an error message to the teletype output device. Most messages are
generated by DOS, but in a few cases, ioerror generates the correct message. If
called with 2 paramectcrs, the error value is taken from the vector specified by
sysac and in some cascs the name spccified by sysac. If called with 1 parameter,
the error value is taken to be the value of that parameter and if needed
syserrorname will be used. If syscrrortrap is set to false, this routine will simply
return when called with TWO parameters. The routine is executed
unconditionally if called with only one parameter.

The DOS system call used to generate the error.

The system call accumulator vector.

The error value which may be given directly in lieu of the two above.

DOS:4-5
Install a DOS on the default directory device.
The DOS channel previously opencd to the DOS to be installed.

DOS:4-8
Change the attributes of a DOS file.
A DOS channel previously opened to the file to be changed.
The value for ac0 as specified in the DOS manual for file attributes:
R=#100000, S=#020000, P=#000002, W=#000001. WARNING: if
#040000 (bit 1) is set and the file is permanent, it cannot be removed except bya

DO0S:4-9
Returns the attributes of a DOS file.

1L.5

Revised BCPL Manual-

chno
ac0

incr = memavail()
Purpose:
incr

memincr(incr)
Purpose:
incr

doscxec(name, acl)
Purpose:
name
acl

dosreturn()
Purpose:

dosereturn(ac?)
Purpose:

ac2

dosbreak()
Purpose:

NOVA 170 and UTILITY ROUTINES

A DOS channel previously opened to the file in question.
The word returned with meanings defined by the DOS manual.

DOS:4-21
Returns the amount of available memory for the user program.
The increment of available memory.

DOS:4-21
Change the amount of user available memory.
The increment of memory to be claimed.

DOS:4-23
Execute a DOS save file.
The namc of a DOS save file to be executed.
The value for acl as spccified by the DOS manual. If missing, 0 will be used so
that the current cxecution level is pushed to the disk and the next save file will be
started at-its normal starting address.

DOS:4-24
Return control to DOS CLI.

DOS:4-24
Return control to DOS giving an error code. "The common error messages will

be misprinted due to DOS assumptions about file names.
The error value to be returned.

DOS:4-25

with a resetfiles command if the file is to be re-executed.

word = strtovalue(string|, radix])

Purpose:
string

Convert a signed string to a 16 bit integer in the specified radix.
The BCPL string to be converted.

radixThe radix of the conversion. If unspecified, 8 is assumed.

word

A 16 bit word having the converted value.

valuctostr(word, string, radix|, space])

Purpose:

word
string

radix
space

packstr(ustring, pstring)
Purpose:
ustring

pstring

unpackstr(pstring, ustring)

Purpose:

pstring

Convert a 16 bit signed value to a signed string with no leading zeros having
cither fixed or variable spacing.

The 16 bit value to be converted.

A vector with enough space to hold the converted value. If fixed spacing is
specified, overflow will cause more spaces to be used in this vector. The
maximum number of spaces used depends on the radix and is 16 for radix 2, 6
for radices 8 and 10.

The conversion radix.

The nu(rlnber of string spaces to be used. If zero or missing, variable space is
assumed.

Change a BCPL. string from unpacked format (one byte per word) to packed
format (two bytcs per word).

A vector containing a BCPL unpacked string, one character per word, the first
word specifying the length.

A vector with enough room to receive the packed string.

Change a BCPL string from packed format (two bytes per word) to unpacked
format (one byte per word).
A BCPL string.

11.6

Revised BCPL Manual . NOVA 1/0 and UTILITY ROUTINES

ustring A vector with enough room for the BCPL unpacked string, one character per
word, the first word specifying the length.

movestr(stringsrc, stringdest)

Purpose: Move a BCPL string which may be in either packed or unpacked format.
stringsrc A BCPL string to be moved.
stringdest A vector with sufficient room to receive the source string.
byteptr = dostr(bcplstrig, dosstring)
Pux?ose: Convert a BCPL string to a DOS string.
beplstring A BCPL string to be converted.
dosstring A vector with sufficient space to receive the converted string. The only
difference in the two formats is that DOS requires a null character at the end of
many strings.
byteptr A DOS byte pointer to the first character of the DOS string.
word = lengthstr(string) Purpose: Return the length of a BCPL string.
strin A BCPL string.
Wwor The length of the string.
char = extractchar(string, index)
Purpose: Extract a single character from a string at a specified index.
string A BCPL string.
index : The index for the character. If out of range, garbage is returned.
char A 16 bit word containing the value of the character.
ans = extractstr(stringl, string2, index, lengthstringl)
Purpose: Extract stringl from string2 beginning at the specified index.
stringl A vector of sufficient size to receive the cxtracted string.
string?2 The string from which the extraction is to be made.
index The beginning index for extraction; if the index goes out of the range of string2
at any time, the length of the extracted string will be adjusted accordingly.
lengthstrl The length of the string to be extracted.
ans The actual length of the extracted string.

lastbyteindex = imbedchar(char, string[, index])

Purpose: Imbed a character into a vector containing a BCPL string. The existing character
at that index is destroyed. If the index for the imbedded character is greater than
the length of the string, the second string is filled with blanks up to theimbedded
character. If no index is specificd, the character will be appended.

char The character to be imbedded.

string?2 A vector or BCPL string in which the character is to be imbedded. If index
exte{lds the length of string2, string2 must be a vector large enough to hold the
results. :

index The index in string2 at which the character is to be imbedded.

lastbyteindex The last position of string2 which was modified.

lastbyteindex = imbedstr(stringl, string?[, index])

Purpose: Imbed stringl in string2. The existing sub-string at that index is destroyed. If
the index for the imbedded stringl is greater than the length of the string2,
string? is filled with blanks up to the imbedded character. [f no index is
specified, stringl will be appended to string?2.

stringl The string to be imbedded.
string2 A vector or BCPL string in which the first string is to be imbedded. If stringl
extelllds the length of string2, string2 must be a vector large enough to hold the
: results.
index The index in string?2 at which string] is to be imbedded.
lastbyteindex The index of the last byte imbedded in string2.

index = searchstr(stringl, string?[, startindex])
1.7

Revised BCPL Manual NOVA 170 and UTILITY ROUTINES

Purpose: Search string] for string? at the specified starting index or at the start of string 1.
stringl The string to be searched.

string?2 The string to be found.

startindex The index in string1 at which to begin the search.

index The index of the string if it is found; if not, then -1.

11.8

Revised BCPL Manual-

SECTION 12
APPENDICES

12-1....... BCPL Reserved Words

and abort

be by break bit byte blank

case compileif compiletest

default do docase

eq eqv ext " endcase external

for false finish

ge er get goto

if ifso ifnot into

let le Is I\ loop
logand logor Ishift

manifest

ne neg nil not neqv numargs
newname

or offset

v return resultis repeat repeatwhile
rem rshift repeatuntil

switchon static size selecton structure

to test then true table

unless until

vec valof

while word Xor

12.1

Revised BCPL Manual

INDEX
abort e e 5.6,7.2
argument L e e e e e e e 34,37
bit e 6.7,6.8,6.10
blank o e 6.10
break .. 5.2,53,7.2
byte e 6.2,6.7,6.8,6.11
CaASE e e e e e 54,5.5
common variables 33,34
compileif L. 5.3
compiletest L L. 53,54
conditionals 5.2
constantS L e e e e e e 4.2
defavlt 47,545.5
do e 51,52,54,7.1,7.2
docase L e 5.2,5.5
dynamic variable 0 ..., 3.1,32,3.6,3.74.1
endcase L e e 52,5.572
< 4.3,444.6
eqv e e e e 4.3,4.6
eXPressions L e e 4.3
external L 243.13.27333435,7.1
false e 4.2
finish e 5.6,7.2
for e 52,72
function L e 3435
= 43,4.6
get e e e 54,71
global declarations 3.1
00 o 2 52,5472
= 4.3,4.6
heffalump L. 6.9
identifier L 1.1
if e e e e 51,5.2,7.2
ifnot e 52,54
ifso - S 52,54
into e 43,54

Revised BCPL Manual

label

le
left-lump
let

loop

Is

Ishift

v

manifest
mul

ne
newname
nil

not
numargs

offset
Operators
or

parameter
procedure

rem
repeat
repeatuntil
repeatwhile
resultis
return
right-lump
routine
rshift

rv

selecton
size)
static variable

string
structure

switchon

table
test
then
true

..................
..................

..................
..................
..................

..................

..................
..................
..................
..................

..................
..................

..................

..................

..................
..................
..................
..................
..................
..................
..................
..................

..................

..................

..................
..................
..................
..................

..................

..................

12.3

INDEX

-

1525472

-

s

NS

EN=
~h
o

-

-

Lnih Lol »n

-

P RLARLUNLL L
B L0 I bt B S e D 0
BARW WLWWLn

R L
DN =t N

-

WSt
N (9,3

2,33,34,3.74.1,424.5,

’

NO W

61,626364656768
5,72

S

WS

N RN
Rz rinni
)..4

AN RW——Oy

W»

Revised BCPL Manual-

unless
until

valof
vec
vector

while
word

Xor

..................

..................

..................

124

INDEX

