XEROX

Intcr-Ofﬂce Memorandum

To PARC/SDD Date November 1, 1977
From Ed Taft Location Palo Alto
Subject Interim File System Overview Organization PARC/CSL

(cdition 3)

Filed on: <IFS>Overview.bravo

This memo is an overview of the Intcrim File System. It includes information on present
status and immediate plans, and contains pointers to other documents covering various
aspects of design, implementation, and operation.

Background

In the fall of 1975, it was proposed that we construct an interim Alto/Trident file server to

relieve the Maxc storage crunch until such time as the Distributed File System (now known
as Juniper) is completed and put into service. This proposal was shelved after consideration
of manpower requircments.

A year later, the situation was somewhat changed. The Maxc storage situation was, if
anything, worse, and the DFS had procceded more slowly than anticipated due to other
commitments by the participants. In the meantime, however, practically all the software
required to build an interim scrver had alrcady been written.

David Boggs and 1 therefore began implementing an Interim File System (IFS). It initially
provides essentially the same facilities as are now available on Maxc for file storage via FTP,

with a few additional opcrations (c.g., delete, archive) not previously implemented in FTP.
The hardware on which this system runs, consisting of an Alto with six Trident disk drives,

has been installed in the Maxc machine room. An initial version of the software has been
completed and the system is now available for use.

A number of other organizations have installed or made plans to install Interin: File Systems
of their own, thereby reducing depcendence on Parc’s central facilitics. Thes include SDD
(Palo Alto and El Segundo), EOS, ADL, and ORG (for the Santa Clara branch office).

Overview of the Dcsign

The IFS is easily the largest conglomeration of cxisting software packages cver to be
asscmbled at Parc. Indeced, this project would be quite impractical were it not for the
cxistence of a large number of Alto BCPL packages made available by certain conscientious
and public-spirited individuals. Thesc include:

Peter Deutsch:

Overlays (code swapping)
VMEM (virtual memory)
ISF (random access to files)

Bates, Melvin, and Sproull:
TFS (Trident file system) software and microcode
Ed McCreight:

B-Tree package
Sort package

Boggs and Taft:

Pup package
FTP package

Most of these packages have required some degree of modification to adapt them to IFS
(chicfly to make them work in a multi-process environment). The authors of the packages
have cxpended considerable cffort in making these modifications. Their contributions are
greatly appreciated.

The cxisting Alto FTP server has been modified to provide the following additional
capabilitics:

Directories, passwords, protections, etc.
Multiple instances of the server running simultancously.
New commands such as delete, rename, list directory, etc.
Aside from this, thc only major new pieces of software we have nceded to write are:

A replacement for the "Dirs” module in the Alto Operating System. The IFS is not
using the standard Alto directory structure; rather, all files arc entered into one
dircctory organized as a B-Tree. This permits efficient access to a very large number
of files (say, 25,000) and provides a straightforward way of implementing user
directories and subdircctories.

A server Telnet (Executive) implementing operations for which the File Transfer
Protocol has no provisions. These include user account management (creating and
destroying directorics), operational support such as controlling the backup system,
and various miscellaneous commands.

A Scavenger program capable of dealing with a file system consisting of several
hundred thousand pages.

A backup system that copics files from the primary file system to a backup disk
pack, much as is donc on Maxc. Each backup pack is organized as a scparate, sclf-
containcd Interim File System.

An archive system that archives files onto tape (again, much the same as on Maxc).
This part of the project will be deferred until we have had an opportunity to write
software for the Alto Magtapc system cnabling onc to access tapes over the Ethernet.

In the process of assembling and interfacing these various picces of software, we have built
up a very flexible and convenient programming environment. This environment has been
cxported for use in another application (a system for indexing the Amecrican Heritage
dictionary). We believe it would not take much cffort to organize the "IFS environment"

into a self-contained software package for genecral use.

The major feature of the IFS environment is a relatively complete integration of code

overlays, virtual memory, and storage management. The Overlay and VMem packages
alrcady mesh in a fairly clean way (the VMem package is used to manage storage for
overlays). We have added a virtual memory allocator that permits separate regions of virtual

memory to be used in distinctly different ways.

The IFS storage allocator is based on the standard Alto OS allocator and on the VMem
package. Two regions of memory are dedicated to standard allocator zones for obtaining
small and medium-size blocks (segregating the block sizes reduces fragmentation). Larger
blocks (500 words or greater) are obtained by removing whole pages from VMem’s buffer
pool. When a zone overflows, the allocator recovers by temporarily taking storage from the
next larger zone or from the VMem pool. This results in some temporary degradation of
performance as opposed to catastrophic failure.

All of memory not devoted to resident code or storage zones is assigned to the VMem buffer
pool. In the present system, this is approximately half the Alto memory. This single buffer

pool (managed by VMem) is used to satisfy requests for all large blocks of storage, including
code overlays, B-Tree pages, and large allocated objects such as strcam buffers.

Other Documents

The following IFS-related documents are presently available (all in the <IFS> directory on
Maxcl):

HowToUse.bravo

How to access IFS, and administrative information on the Parc [FS.
Opcration.bravo _

Instructions for operating the IFS software.
IFSScavOp.bravo

Instructions for operating the I[FS Scavenger program.
IFSFileStructure.bravo

IFS file system spccification (how files arc organized on the disk).
IFSDirOps.bravo

Description of the BCPL interface to the IFS directory modules implementing
the file system.

IFSScavDesign.bravo
Decsign notes for the IFS Scavenger program.

Most of these documents arc also available in Press and FEars format,

Future Plans

The interim nature of the TFS should be emphasized. The IFS is not itsclf an object of
rescarch, though it may be used to support other rescarch cfforts such as the Distributed
Mcssage System. We hope that Juniper will cventually reach the point at which it can

replace IFS as our principal shared file system.
That disclaimer having been made, here are the additions we are considering:

Archiving to magnetic tape via the Alto Magtape system. (However, there is some
possibility that archiving to disk packs will prove to be economically feasible.)

Page-level, transaction-oriented operations in the style of WFS (Woodstock File
Server).

A mail server for the Distributed Message System.

Low-level access to many of the IFS primitives, permitting improved user interfaces
to be constructed (e.g., a DDS-like program for managing files on IFS).

A scparate memo describing our immediate plans is available as <IFS>StatusAndPlans.bravo.

XEROX

Inter-Office Memorandum

To IFS Users Date July 17, 1979
From Ed Taft and David Boggs Location Palo Alto
Subject How to Use IFS (version 1.21) Organization PARC/CSL

Filed on: [MaxclKIFS>HowToUse.bravo, .press

Interimn File Systems arc now in operation at a number of sites. This memo documents the IFS
facilitics availablec to most users.

The names of some of the i1FSs presently operating are as follows:

Name Organization

Ivy Parc (Palo Alto)

Iris sDD (Palo Alto)

Isis, Sun spD (El Scgundo)

Ibis ASD (Palo Alto)

Oly ASD (El Segundo)

XEOS FOS (Pasadena)

ADL ADL (El Segundo)

Erie WRC (Webster)

Eagle Corporate headquarters (Stamford)

These names are the ones used to identify specific 1FSs to the FTP and Chat subsystems.
Information in this mecmo applies to all 11°'Ss except where otherwise noted.

This cdition describes IFS version 1.21. Important changes since the previous version include:
addition of a mail server and a mail forwarding capability;
direct transmission of Press files to printing servers;
addition of a Directory command in the Chat server Executive;

ability for individual users to ‘own’ protection groups and change their membership without
intervention by an II'S administrator;

‘Print Dircctory-Parameters’ command renamed to ‘Show Dircctory-Parameters’.

Administration

This scction applics specifically to Ivy, the Parc 1FS. IFS systems at other sites are administered
indcpendently.

We we will provide Ivy accounts on request to any member of the Palo Alto community (Parc, SDD,
or ASD) who presently has a Maxc account. You must have an Ivy account in order to store files of

Copyright Xecrox Corporation 1979

How to Use IFS 2

your own or to access files stored on Ivy By other users.

To obtain an Ivy account, simply send a message to Ed Fiala. You should include in this message
the password you would like installed (the password can but need not be the same as your Maxc
password, and you arc frec to change it yourself at any time).

Personal accounts for Parc users will be assigned a disk limit of 1000 pages, and this limit will be
enforced strictly at all times. (One IES page is approximately equivalent to one Maxc page or four
Alto pages.) Our intention is not to oversubscribe the actual storage capacity of the file system at
any time, thercby avoiding the extreme storage crunches that have been encountered on Maxc.

Allocations for project (file-only) accounts should be negotiated with Ed Fiala. Please limit requests
for storage to immediate rather than long-term needs. If a files-only directory is to be maintained
by scveral users, you may request that a uscr group be assigned; you should designate who is to be
permitted to change the membership of the group.

In gencral, non-Parc users of Ivy will be assigned a disk limit of zero, and no non-Parc files-only
dircctories will be created. Such users are expected to use their own organizations’ IS systems for
file storage.

Communication of files among usecrs of different 1FSs is a problem, since most pcople will have
accounts on only onc server. Our interim solution to this problem is as follows:

1. Commonly-accessed files (c.g., the contents of the <Alto> directory) will be maintained on
cach 1FS. It will be the responsibility of the administrator of cach system to keep such files
up-to-date, and to move large volumecs of data only during off-peak hours.

2. Uscrs outside Palo Alto will be able to obtain accounts on Ivy (with no storage rights) only
under special circumstances. We prefer to limit non-Palo Alto usage because access to an
IFS via the slow (9600 baud or less) lines can seriously degrade its availability to local users.

Better long-term solutions are presently under development.

How to access IFS

At present, the file services provided by IFS arc limited to a fairly basic set. The normal mode of
access from Altos is through FrP. The basic operations (Store, Retricve, List, Delete, and Rename)
are invoked through I'TP in preciscly the same manner as when accessing Maxc, The only difference
is that you request FTP to open a connection to some IFS (by specifying its name) rather than Maxc.

You should consult the Frp documentation in the Alto User's Handbook, the Alto Subsystems
manual, or [Maxcl[<AltoDocs>FTP.tty, for general information on the use of FTP. IFS can also be
reached from Maxc by means of the PUPEFTP subsystem.

File naming conventions on IFS arc a ruixturc of Maxc and Alto conventions. The general form of
an I8 file name is:

<dircctory>name!version

All printing characters cxcept ¥ are legal in the name. The complete file name may be up to 99
characters long (longer than cither Maxc or Alto permit).

All 1Fs files have version numbers (in the range 1 to 65535) which are defaulted in the usual way, as
follows:

Retrieve highest existing version
Store next higher version
Delete lowest cxisting version

List ' all versions

How to Use IFS 3

Versions other than the default one may be referred to explicitly (by specifying the version number)
or by the notations !’ (lowest existing version), ‘'H’ (highest existing version), or ‘IN’ (next higher
version).

There is presently no facility for automatic deletion of non-current versions, but such a feature may
be implemented eventually.

“** expansion is supported during Retrieve, List, and Delete commands. The expansion is similar to
that provided by the Alto Executive; that is, each “* matches zcro or more real characters in a file
name,

You may find it convenient to organize your files into sub-directories by giving them namcs such as
KTafoMemos>HowToUse.Bravo’. Then all files belonging to a particular sub-directory may be
accessed by a specification such as <Taft>Memos>*’, and you may direct your attention to a
particular sub-directory by cstablishing a default such as ‘Directory Taft>Mcmos’. The system docs
not presently attach any important semantic significance to the sub-dircctory notation, but this may
change eventually.

Access via Chat

The current definition of the File Transfer Protocol (the means by which FIP communicates with a
file scrver) limits itsclf to the basic sct of opcrations mentioned previously. It lacks the means for
cxpressing a number of other essential operations. Improved file access protocols are a topic of
current rescarch.

In the meantime, rather than attempting to extend FTP, we have provided an Executive in IFS which
you can access by means of Chat (or the bottom Telnet window in FTP). This Exccutive is patterned
after the onc in Maxc, but has a very limited command repertoire.

Typein and editing conventions are the ones familiar to most users. BS and CTRL-A erase the
preceding character, CTRL-W deletes a word, and DEL deletes an entire command or sub-command.
Deleted characters are not actually erased from the Alto screen because Chat does not provide such a capability. Most
commands must be terminated by RETURN. CTRL-C may be used to abort any command. If you
are using any sort of display terminal, typcout will stop at the end of cvery page (as on Maxc) and
IFs will wait for you to type any character before continuing. If you type ahead, this feature is disabled.

The current commands of interest to most users are the following:
@ login (user) user-name (password) password

Logs you into Ir’S. This is necessary before issuing most other commands. Chat may
or may not do this for you, depending on the version of Chat you are using.

@ Logout
@ Quit

Logs you out and closes the connection.

@ Connect (to directory) directory-name (password) password
Sets your default directory to be directory-name, and gives you owner-like access to
it. 'The password may be omitted if directory-name is your own directory or one to
which you have connect privileges.

@ Dircctory (dcfault) directory-name
Sets your default dircctory to be directory-name, but without changing your access

rights (and therefore without requiring a password). All subsequent commands
dealing with files will behave as if <directory-name> appeared at the beginning of

How to Use IFS 4

each file name argument that doesn’t name a directory explicitly (i.c., that doesn’t
begin with <), Directory-name may include sub-dircctories (e.g., ‘<Jones>dMecmos>’).

When you issue the ‘Directory’ command, IFS first displays your current default
directory. You may cither edit this field (by first backspacing at lcast one character)
or replace it simply by typing the replacement. If you crasc the entire field (with
CIRL-W), the default dircctory reverts to your current connected directory.

If the first character of directory-name is *>', IFS prefixes the name of your current connected
directory. That is, if you are currently connected to dircctory Jones, the command ‘Dircctory
>Memos>’ is cquivalent to the command ‘Directory <Jones>Memos>’. Also, the outermost ‘<’ and
are optional. Note that the foregoing descriptions also apply to the Directory command in the FTP
server.

@ DskStat

Prints the number of used pages and the maximum allowed in the connected
dircctory, followed by the number of free pages in the system. Onc IFS page is
1024 words or 2048 characters, which is equivalent to four Alto pages or
approximatcly one Maxc page.

@ List (files) file-designators

Lists the names of all files matching file-designators, which is a list of up to 10 file
names (separated by spaces), any of which may contain “*’s to denote multiple files.
The files matching cach file-designator arc listed in alphabetical order on the basis
of the entire file name (including directorics and sub-directories, if any). To save
space, dircctory and sub-directory names are printed only when they change, above
the list of files to which they apply.

If you terminate the last file-designator with a comma followed by RETURN (rather
than just RETURN), IFS enters a sub-command mode in which you may spccify
additional information to bc printed about each file:

@@ Type file type and byte size
@@ Size size in pages

@@ Length length in bytes

@@ Creation date of file creation
@@ Write datec of last write
@@ Read date of last read

@@ Backup date of last backup
@@ Times times as well as dates
@@ Author creator of file

@@ Protection file protection

@@ Verbose samec as Type Size Write Read Author

@@ Everything

Sub-command mode is terminated when you type just RETURN in responsc to the
‘@@ prompt. The columns of printout will be aligned properly only if you are running Chat
with a fixed-pitch font such as Gachal2 or Gachal0.

@ Dclete file-designator

Deletes all files matching file-designators, which is a list of up to 10 file namcs
(scparated by spaces), any of which may contain ‘“*’s to denote multiple files. The
version number defaults to the lowest cxisting version; to delete all versions, you
must end each file-designator with *!*'. IF'S prints out cach file name, followed by
[Confirm]'. You should respond with Y’ or RETURN to delete the file, or with ‘N’
or DEL to leave it alone.

If you terminate the last file-designator with a comma followed by RETURN, IFS

How to Use IFS 5

enters a sub-command mode in which you may request the following additional
actions:

@@ Confirm (all deletes automatically)

IFS will not ask you to confirm deleting cach file but will just go
ahcad and do it.

@@ Keep (# of versions) number

IFS will retain the number most recent versions of each file and
delete all remaining versions. - That is, to delete all but the most
recent version of cach file, specify ‘Keep 1°.

On 1FS (unlike Maxc), files arc deleted immediately; there is no Undelete command.
To delete a file, you must have write access to it

@ Rename existing-filename (to be) new-filename

Changes the name of existing-filename to be new-filename. It is permissible to
change any part of the file name, so it is possible to move a file from one directory
or subdirectory to another by renaming it. The Rename operation requires that you have
write access to the file and create access to the directory into which the file is being renamed.

It is permissible to rename a file to itself in order to change its capitalization. Note that a new
version of a file always inherits the capitalization of the previous version; renaming a file to itself (i.e.,
with’ the same version number) is the only way to defeat this.

@ Print (files) file-designator
@ Press (files) file-designator

Requests that all Press files matching file-designator be sent to your default printing
server (‘Print’ and ‘Press’ are synonyms). File-designator is a list of up to 10 file
names (scparated by spaces), any of which may contain “*’s to denote multiple files.
IS prints out the name of cach file followed by ‘[Confirm]’; you should respond
with ‘Y’ or RETURN to print the file, or with ‘N’ or DEL to skip over it

If you terminate the last file-designator with a comma followed by RETURN, IFS
enters a sub-command mode in which you may specify the following parameters:

@@ Copies number
Specifies the number of copies of each Press document to print.
@@ Host host-name

Specifies the name of the printing server to which the Press files are
to be iransmitted. This may be either a registered name or an
internctwork address of the form ‘net# host#’ (don’t leave off the
trailing “#°).

You terminate sub-command mode by typing RETURN in response to the ‘@@’
prompt. In the absence of any sub-commands, IFS will cause one copy of each
Press file to be printed on your default printing server. You may establish or
change your dcfault printing server by mcans of a sub-command of the ‘Change
Dircctory-Parameters’ command, as follows:

@ Change Directory-Parameters (of dircctory) directory
@@ Printing-Server host-name

where directory is the name of your directory, i.c., your user name. If you have not

How to Use IFS ' 6

established your default printing server, 1FS will require you to issuc a ‘Host® sub-
command ecvery time you request printing.

Actual transmission of the Press files to the printing server is performed by a
background process, so you need not remain connected to IFS while the printing is
taking placc. If the printing server is down at the time, IFS will queue the files for
later delivery. If the Press files cannot be delivered within eight hours, however, the
printing request is discarded.

There are presently no facilities for retracting printing requests or interrogating their
status. Also note that only Press-format files can be printed; IFS checks that every
file is a Press file and will refuse to print any file that is not.

@ Change Password (of directory) directory-name (old password) password (new password)
password

Changes the password of the specified directory, which must be either your own or
the one to which you arc presently connccted. (Contrary to normal practice, the
new password docs print out as you type it; this is so that if you make a typing
mistake you will be able to sec it.)

Change Protection

Change Dircctory-Parameters
Show Dircctory-Paramecters

Change Group-Membership
Show Group-Membership

RRRRA

Sec the section describing protections (below).

®

Systat

Shows who is presently using IFS, what service they are accessing (TP, Telnet, or
Mail), and the name or inter-network address of the machine they are coming from.

@ DayTime
Displays the current datc and time.
@ Statistics

Prints out various operating statistics that arc generally of interest only to IFS
administrators.

Protections

IFS has a reasonably flexible file protection mechanism, but with a somewhat primitive user interface
at present. Fortunately, the default protections are the oncs appropriate for inost users, so you will
probably not nced to deal cxplicitly with protections very often.

Your access to files and directories is permitted or denied on the basis of your membership in user
groups. Every user is a member of a user group called ‘“World’. You arc a member of another user
group called ‘Owner’ with respect to files in your own directory, and temporarily to files in any
other dircctory to which you conncct (using the Connect command in FIP or Chat). Additionally,
you may be a member of one or more other user groups with numbers in the range 0 to 61. Such
numbered user groups generally correspond to specific projects, and are assigned independently
within cach 1S by that 11’S’s administration.

A file protection spccifics, for cach individual file, what types of access are permitted to which
groups. There are three types of file access: read, write, and append. 1f you have read access to a

How to Use IFS 7

file, you are permitted to read (i.e., retricve) its contents. Similarly, write access permits you to
overwrite, delete, or rename the file, and append access permits you to append to an existing file,
even if you don’t have write access. IFS docs not yet provide facilities for appending to files, but such a
capability may be implemented in the future.

The standard default file protection permits read, write, and append access to the Owner and read
access to the World. Hence if the file is in your own'directory or the dircctory to which you are
connccted, you may do anything to it; otherwise you may only read it. But, for example, if the file
protection also permits write access by group 3, and you are a member of group 3, then you may
overwrite (or delete or rename) the file, even if it is not in your directory or the directory to which
you arc connccted. Note that the read, write, and append access types are independent. It is therefore possible,
though perhaps not particularly useful, for a file protection to permit writing but prohibit reading by some user group.

In addition to the protection associated with cach file, there arc some protections associated with a
directory as a whole. The first is the default file protection for files in that dircctory. When a file is
created, its protection is assigned in one of two ways. If therc is an existing version of the same file,
then the new file inherits its protection. More preciscly, when version 7 of a file is created, it inherits the
protection of the highest-numbered cxisting version less than n, if there is one. Otherwise, the protection assigned
is the default file protection of the directory in which the file is being created.

There are two additional types of access to the directory: create and connect. If you have create
access to a dircctory, then you are permitted to create new files in that directory. If you have
connect access to a directory, you are permitted to connect to that directory without giving its
password. As with file protections, these types of access are granted or denied individually to
Owner, World, and cach numbered user group. The standard directory protection permits create
and conncct access only to the owner.

The Chat Executive contains several commands by means of which you may manipulate protections
of files and directories.

@ Change Protection (of files) file-designators
@@ sub-commands

Changes the protection of all files matching file-designators, which is a list of up to
10 file names (scparated by spaces), any of which may contain “*’s to denote
multiple files. You specify the changes to be made by means of one or more of the
following sub-commands:

@@ Read (access permitted to) groups
@@ Write (access permitted to) groups
@@ Append (access permitted to) groups

where groups is a list of up to 10 instances of ‘Owner’, ‘World’, or group numbers
(separated by spaces) to which the specific access type is to be granted. ‘None’ may
be used in place of groups to specify that access is to be denied to all groups. You
may precede a sub-command by the word ‘No’ to specify individual groups to
which access is to be denied. The changes take effect when you type RETURN
immediately after the ‘@@’ prompt.

Normally, thce changes that you specify by means of these sub-commands are
incremental. 'That is, the only access/group combinations that are changed are the

ones you mention explicitly, while all the remaining ones arc unchanged. However,
there is an additional sub-command,

@@ Reset (all existing access)

that denies all types of access to all groups. In this case, the entire file protection is
changed to permit only those access/group combinations that you cnable explicitly.

You may change the protection of any file to which you presently have write access, and of any file

How to Use IFS 8

in your own directory or one to which you are connected regardless of its protection. That is, you
can change the protection of any file of your own even if its present protection does not permit read,
write, or append access by you.

@ List ...

The ‘Protection’ sub-command to the ‘List’ command (described previously) displays
a file’s protection thus:

R: groups; W: groups, A: groups
For example:
R: Owner World; W: Owner 3 19; A: None

@ Change Dircctory-Parameters (of directory) directory-name
@@ sub-commands

Changes the information associated with the directory as a whole in the manner
specified by the sub-commands. The directory must be either your own or one to
which you are connccted.

You may change the default file protection by means of the ‘Read’, “Write’, and
‘Append’ sub-commands in the samc manner as in the ‘Change Protection’
command. Additionally, you may change the crcate and connect access using the
sub-commands:

@@ Create (access permitted to) groups
@@ Connect (access permitted to) groups

The ‘No’ prefix may be applied to these as well as to the others.

The ‘Reset’ sub-command requires an additional keyword to specify what it is that
you wish to reset:

@@ Reset Default-File-Protection
@@ Reset Create-Protection
@@ Reset Conncct-Protection

You may change your default printing server by means of the sub-command:
@@ Printing-Server host-name

The changes arc not actually madc until you type the confirming RETURN in
response to the ‘@@ prompt.

@ Show Dircctory-Parameters (of dircctory) directory-name

Displays all information about directory-name, and additionally prints some other
paramcters, such as the disk limit, that may be changed only by an IFS
administrator. If directory-nas:e is your own directory, your user group membership
is also shown.

An IFS administrator can change any dircctory parameters for any user. Additionally, an
administrator can assign you to be the owner of one or more user groups. If you are the owner of a
group, you arc permitted to change and examine the membership of that group, using the following
commands:

@ Change Group-Membership (of group) group
@@ sub-commands

How to Use IFS 9

The sub-commands are one or more of the following:

@@ Add user-name
@@ Remove user-name

These cause the specified users to be added to or removed from the group. The
sub-commands take effect immediately. You exit sub-command mode by typing
RETURN immediately after the ‘@@’ sub-command prompt.

@ Show Group-Membership (of group) group

Displays the list of users who are members of the specificd group. This command
takes a long time to complete, because it has to rcad the directory paramcters of
every user in the system.

Mail server

Note: at the time this memo was written, the facilities described in this section had not yet been put
into operation at all sites. You should await an announcement from your local support organization
before attempting to use these facilities.

IFS optionally makes available a mail server compatible with the Laurel message system. FEach
geographical arca has a registry of mailboxes for all Alto users in that area; at present, the registries
are called PA (Palo Alto), is (El Segundo), £EOS (Pasadena), WBST (Webster), and HIENR (Henrictta).
In the current implementation, each registry corresponds to a single mail server machine that
contains all the mailboxes within that registry; that is, the registry names are simply aliases for
machines. The PA registry is on Maxcl and the other registrics are on local IFSs.

If you are in Palo Alto, you will be assigned a mailbox in the PA registry (i.e., you will be given an
account on Maxcl); if you are outside Palo Alto, you will be assigned a mailbo: in your own local
registry. In any event, your registry must be identified in your Laurel.profile, which should look
something like this:

Registry: registry-name
Hardcopy: printer-host-name
Printed-by: §

To send a message to a user whose mailbox is within your own registry, you neced only specify that
user’s name when you are composing the recipient list in Laurel. However, to send to a user in
some registry other than your own, you must specify a recipient name in the complete form

user . regisiry

For example, if your own registry is ES (El Segundo) and you wish to send a message to Jones, who
is also in El Segundo, you need only specify ‘Jones’ (though it is also correct io say ‘Jones.ES’). But
if you wish to send a message to Smith in Palo Alto, you must spccify ‘Smith.PA’,

File backup

Reliability of file storage is accomplished by two facilitics, both of which are now operational. First,
we have a Scavenger capable of reconstructing the 1FS directory from redundant information kept in
the file system. We cxpect to be able to recover from most file system crashes in this manner, with
no loss of user files.

Second, we have an automatic backup system that periodically copics files to a backup disk pack.
The backup system runs between 2:00 and 5:00 a.m. cvery day (users accessing 11°'S during that time
may notice some significant degradation in performance). During cach backup run, all files not
previously backed up or last backed up more than 30 days ago are copicd.

How to Use IFS 10

This backup system serves two purposes. First, if the file system fails catastrophically in a way that
the Scavenger can’t recover from, we will be able to reconstruct the file system from backup, with at
most one day’s files lost. Sccond, files accidentally deleted or overwritten by users will usually be
recoverable if the loss is noticed within 30 days. (The recovery procedure is not particularly
convenient, so pleasc don’t depend on it as a regular service.)

Present limitations and future plans

IFS now provides facilities sufficient to make it a useful service. We are presently considering how
much additional effort to invest in IFS development. This topic is covered in some detail in a
scparate memo, available as [MaxclKIFS>StatusAndPlans.bravo and .press.

A major concern is that of performance of the file system. There is insufficient capacity
(particularly main memory) in the IFS Alto to support more than a small number of simultaneous
uscrs. While we expect eventually to effect some improvements by better implementation and fine-
tuning, there is little prospect for really major performance gains.

We are presently imposing a limit of five concurrent connections (FTP and Chat users combined), at
which point the system will refuse to accept additional service requests. To prevent idle users from
tying up these precious slots, the IFS will brecak conncctions after a relatively brief period of
inactivity. (The limited number of concurrcent servers is onc of the reason we wish to discourage
large-scale file transfer activity on the Parc IFS by users outside Palo Alto, since the low speed of the
communication links causes such transfers to take a long time to complcte, thereby tying up servers.)

We would be pleased to reccive reasonable suggestions for changes or improvements in the set of
facilities provided by IFS. However, pleasc be conscious of the limited manpower available for
implementing such improvements.

Acknowledgments

Implementation of IFS would have been impossible without the assistance and cooperation of several
individuals who have contributed considerable effort in support of this project. Peter Deutsch
provided the Overlay, VMEM, and ISF packages and implemented a number of improvements nceded
by IFs. Ed McCreight made available his B-Tree package, which is used for maintaining user
dircctories, and likewise contributed Irrs-related improvements. Bob Sproull and Roger Bates sank
considerable cnergy into theTrident disk hardware, microcode, and softwarc to make it work
reliably. And Steve Butterficld implemented all the Mail facilitics and made several other
improvements.

XEROX

Inter-Office Memorandum

To IFS Project Date July 17, 1979
From Ed Taft Location Palo Alto
Subject IFS Operation (version 1.21) Organization PARC/CSL

Filed on: <IFS>Operation.bravo, .press

This memo describes operating procedures for the Interim File System software. It is assumed that
the reader is familiar with standard Alto software in general and with 1S from the user’s point of
view (KIFS>HowToUse.bravo).

A short summary of revisions to this document may be found at the end.

The current releasc of IFS should be run under 0S version 16. When 08 17 is released, 1S will run
correctly under it also.

1. Hardware requirements and organization

IFS requires a standard Alto with a Trident disk controller and onc to eight Trident T-80 or T-300
disk drives in any combination. A T-80 disk pack holds 36,675 pages of 1024 words cach, while a
T-300 holds 139,365 pages. Due to a software limitation, only 130,986 pages of a T-300 are accessible.

The softwarc deals with a primary file system consisting of onc or more disk packs. A multiple-pack
IFS behaves logically as a single file system, and all packs must be present and on-line in order to
access any files. Files created by IFS are not accessible to other Trident-based programs (c.g., TFU,
ITP) or vice versa.

Additionally, the software can deal with one or more secondary file systems that may be mounted
and dismounted while IS is running. An example of a secondary file system is a disk pack used for
on-line, incremental backup. We envision possible other uses for sccondary file systems in the
future (c.g., large dictionarics for spelling-correction services). This capability is not yet completely
implemented.

The number of disk drives needed to support a given size file system depends both on how backup
is to be accomplished and what degree of redundancy is desired in casec of disk drive failure.
Backup procedures are discussed in a later scction.

2. Obtaining IFS software

The software is presently distributed from the <IFS> directory on Maxcl. It consists of the
following files: :

IFS.Run, the program itself,
IFS.Syms, for dcbugging by mecans of Swat.

Copyright Xcrox Corporation 1979

IFS Opcration 2

IFS.Errors, mapping crror numbers to strings.
IFSScavenger.Run, the IFS Scavenger.
IFSScavenger.Syms, symbols for the IFS Scavenger.

The file IFS.Ov, included with IFS releases before version 1.18, is no longer required. You should delete any copies that
you have.

These should be installed on a fairly clean Alto disk, along with standard Alto subsystems such as
FIP. Additionally, the following programs may be useful (obtained from the <Alto> directory):

TFU.Run, for formatting and testing Trident disk packs.
Tricx.Run, for checking out the Trident disk hardware.
CopyDisk.Run, for copying disks.

All announcements of new IFS releases arc made to the distribution list
<Sceretary>IFSAdministrators.dl. Such announcements include the version number of the system
(c.g., 1.03); this is the first number printed out in the IS herald when you connect using FTP or
Chat. Be surc to obtain all threc of the IFS.* files listed above.

It is important that you use the version of [FSScavenger appropriate to the version of IS you are
running. The IFSScavenger has intimate knowledge of the file system format, which sometimes
changes in minor ways from one rclease to the next.

3. Testing disk hardware and disk packs

A file system should be built on a set of disk packs that have been thoroughly tested using the
‘Certify’ command in the latest (November 9, 1977 or later) release of TFU. This procedure is
essential for reliable opcration. The procedurc for each pack is as follows.

Mount the pack on some drive, d. Then issue the command:
TFU Drive d | Certify

TFU will display the message ‘Confirm wiping the pack on drive &, to which you should respond
‘OK’.

TFU will now initialize the hecaders on the pack, then exccute 10 passes of writing and reading
random data on the entirc surface of the pack. Any bad spots that it finds are recorded
permancntly on the pack in a place that IT'S and other Trident software can find. IFS will simply avoid
using pages known to contain bad spots. The running time for this test is 27 minutes for a T-80 pack and
91 minutes for a T-300 pack. If possible, it is recommended that the test be run for more than 10 passes. This is

accomplished by the command ‘TFU Drive d | Certify »’, where n is the desired number of passes. The running time is
approximately 3 minutes per pass on a T-80 and 9 minutes per pass on a T-300.

Before I1'S is run in a new installation, it is a good idca to exercise the hardwarc thoroughly. The
TrU program has an ‘Excrcise’ command that exercises the hardware thoroughly in a manner similar
to IFs. ‘The basic procedurc is as follows.

1. Mount scratch packs on all Trident disk drives (including backup and spare drives).

2, If the packs haven’t already been certified, use “IFU Certify’ to initializec the headers on all
packs, as described above.

3. For cach drive, issue the command ‘TFU Drive d | Frase’. TFU will display the mcssage
‘Confirm wiping the pack on drive &, to which you should respond ‘OK’.

IFS Operation 3

3. Issue the command ‘TFU Exercise »’.

This begins a lengthy exercise procedurc that creates, reads, writes, and copies files on all packs. =
is the number of passes to execute. Each pass takes about 20 minutes per T-80 and 60 minutes per
T-300 being cexercised. TFU writes a log file Tfu.ExercisclLog on the Diablo disk (which should be
quite empty), at the end of which should appear the mcssage “There were 0 errors’ when TFU is
done.

For further information on the operation of TFU, consult the Trident software documentation in the
Alto Subsystems Manual or in <AltoDocs>Tfs.tty.

4. Initializing a file system
IFS is invoked by the command
IFS/switches

where the switches control the opceration of the system in various ways. Switches defined at present
arc;

/C Create a new file system (scc below)

/D Dcbug mode (various non-fatal crrors call Swat rather than just continuing on).

/A Allocator debug (every call to the storage allocator causes a very thorough
consistency check to be invoked. This slows down operation of the system
considerably.)

/B Enable calls to Block within the disk driver, thereby permitting more overlapping of
computation with disk trarcfers. The default statc of this switch is truc (it may be
turned off by /B’).

/N Verify the structure of the directory B-Tree when the system is started (see section
5). The dcfault state of this switch is true.

/X Use extended memory, if present, for caching code overlays. This considcrably
reducecs disk thrashing under hcavy load. The default state of this switch is true.

/S Create a buffer (spyBuffer) for use by the Swat Spy facility, for performance
measurements.

/M Enables the ‘miscellaneous’ servers (name, time, and boot). They arc ordinarily
cnabled and disabled by means of the privileged Change Systcm-paramcters
command (described later), but /M or /M will override the cffects of that
command for one invocation of IFS. (See scction 9.)

When 1S is started with the /C switcls, it enters a dialoguc in which you must supply various file
systcm paramcters. The dialogue takes the following form.

Do you really want to creatc a file system?
Answer ‘y’.

tt v
Number of disk units: (2’/ 67-7\’%1?% P&QM Q’

Type in the number of disk units to be included in the file system, terminated by
Return.

Logical unit 0 = Disk drive:

IFS Operation 4

Type the physical unit number of the drive that is to be logical unit 0 in the file
system. This question is repcated for each logical unit in the file system.

File system name:

Enter the name of the file system, followed by Return. This name is displayed as
the first part of the herald generated by the file server and Executive, and should be
something like ‘Parc 1FS’.

Directory size (pages):

This determines the number of disk pages to preallocate for the directory. IFS will
suggest a number (based on the number of disk units) which you may confirm by
typing Return; or you may typc some other number followed by Return. To be
conservative, you should specify 1000 times the number of disk packs you ever
expect to include in the primary file system. (See section 10.)

Ok? [Confirm]

Answer ‘y’ if you want to go ahead, or ‘n’ if you made a mistake and wish to repeat
the dialogue.

IS now initializes the file system, an operation that takes about 2 minutes per T-80 and 7 minutes
per 1-300 in the system. When the screen turns black and the cursor changes from an hourglass to
‘IFS’, initialization is complete.

The file system initially has only threc directories defined: System, Default-User, and Mail. The
password for System is IFS. You should connect to the IF'S using Chat, login as System (password
IFS), create some other users (by means of the Create command, described below), and change
System’s password for the sake of sccurity.

Before putting the system into service, there are various system parameters you must set; these are
described in later scctions. They include:

clock correction and server limit (section 7);

switches to cnable or disable the mail system, Press printing, and the boot, name, and time
servers (scctions 7 and 9);

backup systcm parameters (section 11).

5. Normal operation

The system is normally started simply by invoking IFS with no switches. All file system packs must
be mounted and on-line. It is unimportant which packs are mounted on which drives, since the
softwarc reads cach pack to discover what the system configuration is. (However, there must be no
other primary IFS packs on-line. After copying an 11°S pack with CopyDisk, yoa should be careful to
remove the copy from the system.)

If 18 fails to start up properly, it will call Swat with an appropriate crror message. This will occur,
for example, if all nccessary disk drives are not on-line. While 1T is starting up, the cursor contains
an hourglass; this changes to ‘'IFS’ when startup is completc and the system is in operation.

When IFS is started, it verifies the consistency of the directory B-Tree (unless inhibited by /V?).
Inconsistencies can result from crashes at inopportunc moments when the B-Tree is in the process of
being modified, so the startup-time check is valuable in determining whether it is appropriatc to run
the IS Scavenger. The time required for the check is proportional to the number of files in the
system; it has bcen observed to take 2 minutes for 20,000 files.

IFS Opecration 5

If an inconsistency is detected, IFS will call Swat with an appropriatc message. The message ‘Record
count disagrees’ is relatively benign and it is reasonably safe to proceed from this (with control-P).
If you do so, it is likely that one or more files in the file system will become inaccessible and will remain so until the
next time the IFS Scavenger is run. Other possible errors include ‘Records out of order’ and ‘Malformed
B-Tree record’; these are more scrious and proceeding is nof recommended.

Immediately after 1FS starts, it will perform some other initialization operations requiring a lot of
disk activity, including obtaining and installing the nctwork directory (name server data base) and
boot files. IFS can service user requests during this time (5 minutes or more), but performance will
be noticeably poorer than normal.

While IFS is running, the entire screen is black except for the cursor. The position of the cursor is
an indication of disk activity. The horizontal position indicates the disk unit most recently accessed
(unit zero at the extreme left, unit seven at the right), and the vertical position is the cylinder at
which the heads are currently positioned (zero at the top, 814 at the bottom). The cursor blinks
cach time a page is transferred to or from a user file by the file server.

You can tell whether IFS is running normally by pressing the space bar. If the Alto screen flashes,
cverything is in order; if not, the system has failed in some way.

There are two ways to stop the system. The normal (and cleaner) way is to connect to ITS using
Chat, log in, Enable, and issue the Halt command. The system will then refuse to admit further
users, will wait for all present users (including you) to log out or disconnect, and will return control
to the Alto Executive.

The system may also be stopped by typing Shift-Swat on the IFS Alto keyboard (the Swat key must
be pressed firmly). This aborts all active connecctions and returns control to the Exccutive
immediately; however, it may leave partially-written files lying around so it is not recommended for
normal usec.

6. User account management

The 1rs Exccutive (accessed via Chat) has several privileged commands that are available only to
users with the ‘wheel” capability, and only after enabling this capability with the Enable command.
When you are so enabled, the Executive’s prompt is ‘I’ rather than ‘@’. While you are cnabled, IFS will
not log you out automatically after three minutes of inactivity as it does normally.

The following privileged commands are defined.

!' Create (dircctory) directory-name [new] (password) password
W sub-commands

Creates a directory with the supplicd name and password. Capitalization of the name
should be precisely as the user wants to sec it. Capitalization of the password is
unimportant.

The sub-commands arc used to change various paramecters from their default values. These
include:

11 Filcs-only (owncer) user-name

Declares the directory to be a files-only (i.c., non-login) directory. The
user-name is the person responsible for this dircctory (used for
administrative purposes only).

1 Disk-limit naumber

Specifies the maximum number of disk pages that may be used in this
directory.

IFS Operation 6

11 Wheel

Declares the user to have the ‘wheel’ capability, which permits issuing
privileged commands and bypasses all access checking and disk limits.

11 Mail

Creates a mailbox, thereby enabling IFS to receive Laurel mail for this user.
(More information about mail is presented in scction 8.)

If directory-name already exists, you are not asked for a password but rather are sent directly
into subcommand mode. This permits modifying parameters for an existing directory. In
this context, the following additional subcommands may be of intercst:

' Password password
I Not Files-only

! Not Wheel

! Not Mail

The Create command is tcrminated by typing two Rcturns in response to the ‘I
subcommand prompt. You may cancel the entire command by typing control-C.

The default values of all paramcters for new directories are copied from a ficticious
dircctory called Default-User. When a file system is created, the default valucs arc Not
Files-only, Not Wheel, Not Mail, and Disk-limit 1000. To change the dcfaults, use the
Create command to modify the parameters for the directory Default-User. ‘Not Mail’ is the
default for files-only dircctorics, even if Default-User specifies ‘Mail’.

The Create command docs not provide facilitics for sctting default file protections or
dircctory protections; . these are accessible only via the Change Directory-Parameters
command. Sorry about that.

! Destroy (dircctory) directory-name [Confirm]

Destroys the specified dircctory. This operation includes deleting all the files contained
within it, and destroying thc associated mailbox if there is one.

! Change Directory-Parameters (of dircctory) directory-name
! Show Directory-Parameters (of directory) directory-name

These commands work as described in the ‘How to Use’ document with the addition that
while you arc cnabled, you may access any directory, not just your own. Also, whilec you
are cnabled, Change Directory-Parameters has the following additional sub-commands:

" Group Membershin (in groups) groups

" Group Ownership (of groups) groups

" No Group Membership (in groups) groups
" No Group Ownership (or groups) groups

These permit you to cstablish a user’s membership in or ownership of uscr groups. (The
Group Membership sub-command duplicates the function of the top-level Change Group-
Membership command.)

IFS Operation

7. Other privileged commands

! Disable

Leaves enabled mode (the Exccutive’s prompt reverts to ‘@).

! Halt

Stops IFs and returns control to the Alto Exccutive as soon as all present users (including
you) log out or disconnect.

! Change System-Parameters

1 sub-commands

Permits you to issue sub-commands to change one or more system operating parameters.
Each sub-command takes effect immediately. Sub-command mode is terminated when you
type CR in responsc to the ‘1" prompt.

The following sub-commands have permanent effects that survive restarts of IFS.

Clock-Correction correction

Sets the software clock correction, which is specified as a sign (+ or)
followed by a decimal number. This causes the Alto clock to run faster
(+) or slower () than its nominal ratc by that number of scconds per day.
Alto clocks are quite stable but not particularly accurate, and software
correction is desirable in a server that runs continuously for long periods of
time.

The amount by which the clock should be corrected may be determined by
comparison with an accurate reference over a period of several days (using
the 1IrS Exccutive’s ‘DayTime’ command), or by usc of an accurate
frequency counter to measurc the Alto system clock (slot 5 pin 63 on an
Alto-1, slot 13 pin 63 on an Alto-I[) and computing the corrcction by the
formula

¢ = 86400 * (1 ~f / 5880000)

where f is the frequency in Hz.

Server-Limit n

Limits the number of simultaneous server processes (TP, Chat, and Mail
combined) to n. At present, n may be between 1 and 6, and the default is
5. Depending on use patterns, for some IFSs 5 simultaneous servers result
in unacceptably poor performance or occasional deadlocks (sce section 13),
and it may be desirable to reduce the limit to 4.

' Enable Press-printin, 1 Disable Press-printin
; ! p

! Enable Boot-server 11 Disable Boot-server

! Enable Name-server 1 Disable Name-server

' Enable Time-server 1" Disable Time-server

Enable and disable the Press printing facility and the various miscellancous
servers (see section 9). When a file system is created, all the servers are
disabled. '

! Enable Mail System ' Disable Mail Systcm
1! Enable Mail Forwarding 1! Disable Mail Forwarding

IFS Opcration 8

Enable and disable the mail system (see scction 8). The first command
turns on and off the mail system as a whole; the second command cnables
or disables forwarding of mail to other mail servers.

1 Dead-letter (recipient name) name

Specifies the name of the mailbox to which notification of mail system
problems (e.g., undeliverable messages with no return address) should be
dirccted. Name may be the name of a mailbox on this IFS or (if forwarding
is enabled) the fully-qualified name (‘user . registry’) of a recipient on some
other server.

The following sub-commands have one-time-only effects.
! Disable Logins

Disallows further uscr access to the system. This is useful during debugging
and while rcloading the file system from backup.

Il Enable Logins
Cancels the cffect of Disable Logins.
11 Reset-Time

Causes IFS to reset its clock from a time server on the directly-connected
Ethernet. This operation is performed once automatically, immecdiately
after IFS restarts.

8. Mail server

IFS contains a mail server that is compatible with the Laurcl message system. IFS can keep
mailboxcs for users of that system and can also forward mail to mail servers in other 1FSs and in
Maxc.

To cnable a user to receive mail, issue the Mail subcommand of the Create command, as described
previously. (Of course, if you turn on the Mail capability for Default-User, then all new user
accounts you create subsequently will have Mail capability automatically.)

When mail is received from a Laurel user, it is queued briefly in files named ‘<Mail>New>Maill*".
A process called Mailer then wakes up and distributes the messages to individual in-boxes, which are
files named ‘<Mail>Box>user-name!l’. When a user gets the mail from his in-box, the in-box file is
reset to empty (but is not dcleted).

The Mailer process also forwards mail to other mail server hosts. Specifically, messages addressed to
user.host, where host is the name of some other mail server host, will get forwarded to that host by
the Mailer process. While being forwarded, such messages arc queued in files named
K Mail>Fwd>host .

Important: Existing file systems created by II'Ss carlier than version 1.18 do not have a <Mai>
directory. To enable the mail server to operate, it is necessary to set up such a directory with the
proper attributes:

! Create (dircctory) Mail [new] (password) random-password

! Files-only (owner) System

" Disk-limit aumber [If this is ever excecded, the mail server will stop working]
11 [Confirm] yes

! Change Directory-paramcters (of dircctory) Mail

1 No Rcad (access permitted to) World

IFS Operation : 9

"

The 1Fs version 1.21 mail system is incompatible with that of earlier IS releases. The names of
working files in the <Mail> directory have intentionally been made different from the old oncs in
order to avoid difficultics. Conscquently, if you ran a mail system under an earlicr release of IFS,
you should request that users clean out their mailboxes before you convert to 1FS 1.21. Files named
‘Mail>user-name’ arc those used by the old 1rs and will never be referenced by Irs 1.21. You
should delete them as soon as you arc certain they arc empty.

Also, you will have to re-establish the mailboxes for each of your existing mail users, using the
‘Mail’ subcommand of the ‘Create’ command.

When a file system is first created or rcloaded from backup, the mail system is disabled. You
should sct the enable switches and establish the dcad-letter recipient name using the ‘Change
System-Parameters’ command (section 7).

9. Miscellancous servers

IFS contains name, time, and boot servers that provide cssential services to other hosts (principally
Altos at present) on the directly-connected Ethernct.

These functions duplicate those provided by gateway systems, so in a nctwork with at least onc
gateway, it is not nccessary for IFS to provide these services. But in a network that includes an IFS
and no gateways, it is necessary for the IFS to provide the services. Even in nctworks that do have
one or more gateways, running the IFS miscellancous scervers may be advantageous in that the
availability of the services is improved. (Also, it should bc noted that the IFS boot server is
noticcably faster than the boot scrvers of cxisting gateway systems.)

Since running the miscellancous scervers may slightly degrade the performance of an IFS in ifs
principal functions, mcans are provided to wrn them off (the Change System-Parameters command,
described in section 7). When a file system is first created, all the miscellancous servers are
disabled. '

IFS participates in the protocols for automatic distribution and maintenance of the datc and time, the
network directory, and the common boot files. When IFS is started up for the first time, and
thercafter whenever any changes are distributed, 1°S obtains all necessary files from necighboring
servers (gateways or other IrSs). The name server data basc is maintained cven if the IFS name
server is disabled, because 168 requires it for its own internal purposcs (principally mail forwarding).

The name server data basc is kept as iile ‘<System>Pup-nctwork.directory’; a new version is created
and older versions delcted whenever a new file is distributed. The boot files are kept in files
KSystem>Boot>number-nameboot’, where name is the name of the boot file and aumber is its boot
file number in octal (for example, *<System>Boot>4-CopyDisk.boot’). Standard boot files have
centrally-assigned boot file numbers less than 100000 octal, and are distributed automatically. IFS
will obtain its own copy of all standarc boot files maintained by any other boot server on the same
Ethernet. Non-standard boot files have boot filc numbers greater than or cqual to 100000 octal and
arc not distributed automatically.

The best way to install a new version of onc of these files is to usce the facilities provided by the
GateControl and MakeDirectory programs. These programs usce the same update protocols that the
boot servers use for communication among themselves, If you store files by other means (e.g., I'TP),
you must then restart IS to cause those files to be installed and recognized by the scrvers.

You should not enable the time server unless you have first calibrated and corrected the Alto clock,
using the procedurc described in section 7.

IFS Operation 10

10. Adding packs to the file system

The capacity of an existing file system may be increased by adding more packs to it. This may be
accomplished by the following procedure.

Initialize and test a pack using ‘TFU Certify’ in the normal fashion (scction 3). Then, with IFS
running, mount that pack on any free drive and issue the command:

! Extend (file system) Primary (by adding drive) 4 [Confirm]

‘Primary’ is the name of the file system you are extending, and d is the drive on which the new pack
is mounted. IFS now initializes this pack, an operation that takes about 2 minutes for a T-80 and 7
minutes for a T-300. When it completes, the new pack has become part of the file system.

Note that there is no corresponding procedure for removing a pack from a file system. To decrease
the number of packs in a file system, it is nccessary to dump it by means of the backup system,
initializc a ncw file system, and rcload all the files from backup. This procedure is also required to
move the contents of a file system from T-80 to T-300 packs.

Note also that adding packs to a file system does not incrcase the amount of dircctory space
available. The size of the dircctory is determined when you first create the file system; there is no
straightforward way (short of dumping and rcloading) to cxtend it. (More preciscly, while the
softwarc will attempt to cxtend the directory automatically if it overflows, this will significantly
degrade subscquent performance, and too many such e¢xtensions will cventually causc the system to
fail entirely.) Therefore, it is important that you allocate a directory large enough for all expected
future needs. Experience has shown that 1000 dircctory pages arc required for every 25,000 files in
the file system, but this is highly dependent on a number of paramcters including average file name
length.

11. Backup

There are threc facilities available for assuring reliability of file storage and for recovering from
various sorts of disasters.

The first facility is the IFSScavenger program. It is analogous to the standard Alto Scavenger
subsystem. It rcads cvery page in the file system, makes sure that cvery file is well-formed, and
checks for consistency between files and directorics. For safest operation, it should be run after
cvery crash of the IFS program. However, since it takes a long time to run, in practice it should
only be run when major file system troubles arc suspected (in particular, when IFS falls into Swat
complaining about disk or directory errors). The IFSScavenger is describcd in a separatc memo,
available as <IFS>IFSScavOp.Bravo (or .Press) on Maxcl.

The sccond facility is an on-line incremental backup system that is part of the IS program itsclf, It
operates by copying files incrementally to a backup file system mounted on an extra drive. The file
system is available to users while the backup opcration is taking place (though backup should be
scheduled during periods of light activity to avoid serious performance degradations). Usc of the
incremental backup system rcquires that there be an additional disk drive connccted to the Alto,
over and above the drives needed for the primary file system itself. The backup system is described
in the next section.

The third facility is the CopyDisk program. To back up the file system, one must take IS down
and copy cach of the file system packs onto backup packs. On a machine with multiple disk drives,
one may copy from one drive to another, an operation that takes about 4 minutes per T-80 and 15
minutes per 1-300 if the check pass is turned off. One may also copy disks over the Ethernet to
another Alto-Trident system, but this takes about five times as long.

At Parc we usc the Scavenger and the Backup system; we no longer use CopyDisk for hacking up
II's. Regular operation of cither the Backup system or CopyDisk is essential for reliable file storage.

IFS Operation 11

We have observed several instances of Trident disk drive failures that result in widespread
destruction of data. It is not possible to recover from such failures using only the IFS Scavenger: the
Scavenger repairs only the structure of a file system, not its contents.

11.1. Backup system operation

The backup system works in the following way. Periodically (e.g., every 24 hours), a process in IFS
starts up, checks to make sure a backup file system is mounted, and sweeps through the primary file
system. Whenever it encounters a file that cither has never been backed up before or was last
backed up more than n days ago (a rcasonable n is 30), it copics the file to the backup file system
and marks the file as having been backed up now. Human intervention is required only to change
backup packs when they become full.

The result of this is that all files are backed up once within 24 hours of their creation, and thercafter
every n days. Hence cvery file that presently exists in the primary file system is also present in a
backup file system written within the past n days. This makes it possible to re-use backup file
system packs on an #n-day cycle.

Operation of the backup system has been made relatively automatic so as to permit it to run

unattended during the carly morning hours when the number of users is likely to be small. This is
important because system performance is degraded scriously while the backup system is running.

11.2. Initializing backup packs

To operate the backup system, you nced a disk drive and some number of packs dedicated to this
purpose. The number of packs required depends on the size of your primary file system, the file
turnover rate, and the backup cycle period n. The packs should have their headers and labels
initialized using “Ivu Certify’ in the normal fashion. Then they must each be initialized for the
backup system as follows.

With IS running, mount a backup pack on the extra drive. Connect to II'S from some other Alto
using Chat, log in, cnable, issuc the Initialize command, and go through this dialogue:

! Initialize (filc system type)
Answer ‘Backup’.
Do you really want to create a file system?
Answer ‘y’.
Number of disk units:
Answer ‘1.
Logical unit 0 = Disk drive:
Type the physical unit number of the drive on which the backup pack is mounted.
File systcm ID:
Type somc short name that may bc used to uniquely identify the pack, e.g.,
‘Backupl’, ‘Backup?’, ctc. No spaces arc permitted in this identifier. It should be

relatively short, since you will have to type it every time you mount the pack. (You
should mark this name on thc pack itself, also.)

File system name:

IFS Operation 12

Type some longer identifying information, e.g., ‘Parc IFS Backup 1, or ‘Serial
number xxxx’, or something.

Directory size (pages):
Type Return. (The default of 1000 pages is plenty.)
0k? [Confirm]

(1]

Answer ‘y" if you want to go ahead, or ‘n’ if you made a mistake and wish to
repeat the dialogue.

IF'S now initializes the backup file system, an operation that takes about 2 minutes for a T-80 and 7
minutes for a T-300. The message ‘Done’ is displayed when it is finished.

11.3. Setting backup parameters

The next step is to sct the backup parameters, an opcration that gencrally need be done only once.
Issuc the Backup command to enter the backup system command processor (whose prompt is “*),
then the Change command. It will lead you through the following dialogue:

* Change (backup parameters)
Start next backup at:

Enter the date and time at which the next backup run is to be started, in the form
“7-Oct-77 02:00'.

Stop next backup at:

Enter the date and time at which the next backup run is to stop if it has not yet
completed, e.g., ‘7-Oct-77 05:00°.

Interval between backﬁp runs (hours):
Type 24
Full file system dump period (days):

Enter the¢ number of days between successive backups of existing files (the
paramcter n above). A good value is 30.

The backup system command processor is exited by means of the Quit command in response to the
(T3
prompt.

11.4. Normal operation

The following commands are used during normal opcration. All of them require that you first
Enable and cnter the backup system command processor by mecans of the Backup command.

* Status

Prints a message describing the state of the backup system. Tt will appear
something like:

Backup system is cnabled and waiting.

Backup scheduled between 7-Oct-77 02:00 and 7-Oct-77 05:00
File system Backupl is available to backup system,

73589 free pages.

IFS Operation

13

~ ‘Enabled’ means that at the appropriate time the backup system will start up

automatically; the opposite is ‘disabled’. The backup system becomes enabled
when you mount a backup pack (sec Mount command, below), and disabled when
the backup system can no longer run due to come condition such as the backup file
system being full.

‘Waiting’ means that the backup system is not presently running; the opposite is
‘running’. When it is running (or has been interrupted in the middle of a backup
run for whatever reason), it will display an additional message of the form:

Presently working on file filename
as an indication of progress (files are backed up in alphabetical order).

The last lines display the status of the current backup file system (assuming one has
been mounted. If several backup file systems have been mounted, they will all be
listed.) The possible states arc ‘available’, ‘presently in use’, and ‘no longer usable’.
In the last case, the reason for the non-usability is also stated, c.g., ‘Backup file
system is full’,

* Enable (backup system)
* Disable (backup system)

Enables or disables running of the backup system. If Disable is issued while the
backup system is actually running, it will stop immediately (within a few seconds).
Thesec commands are not ordinarily needed, because an Enable is automatically
exccuted by Mount (see below) and a Disable is cxecuted when the backup system
finds that there arc no longer any usable backup file systems. The backup system also
stops automatically if II'S is halted by the Halt command, but it is not disabled and will resume
running when IFS is restarted.

* Mount (backup file system) name

Makes a backup pack known to the system. name is the file system ID of the
backup file system (c.g., ‘Backupl’). The pack must be on-linec.

If the file system is successfully mounted, a message appears in the form:

Backupl (Parc 1rS Backup 1),
initialized on 6-Oct-77 19:32, 273 frec pages.
Is this the correct file system? [Confirm]

If this is the file system you intend to use, you should answer ‘y’. Then:
Do you want to overwrite (re-initializc) this file system? [Confirm]

Normally you will be mounting a backup file system that has either never been
uscd before or was last used more than n (c.g., 30) days z2o. In this case you
should answer ‘y’. This will cause the backup file system to be crased (destroying
all files stored in it) at the beginning of the next backup run.

If, however, you are rc-mounting a partially-filled backup file system that was
removed for some recason, you should answer ‘n’. The backup system will then not
erase the backup pack but rather will simply copy additional files to it.

* Dismount (backup file system) name

Makes a previously mounted backup file system unavailable to IFS. This command
may be issued only while the backup system is disabled (use the Disable command
if nccessary).

IFS Operation 14

The normal operating procedure is very simple. Every day, issuc the Enable and Backup commands
to enter the backup system command processor, then issue the Status command. The status will
indicate onec of the following conditions:

1. ‘Enabled and waiting’, with one or more file systems ‘available to backup system’. In this
casc you need not do anything.

2. ‘Disabled and waiting’, with onc file system ‘no longer available to backup system’ because
‘Backup file system is full’. In this case, you should remove the backup pack, install another
one (making sure it was last used more than n days ago), and declare it to IFS by means of
the Mount command (above).

3. ‘Disabled and waiting’, with some other condition (e.g., ‘Can’t find logical unit 0°). You
should correct the condition (most likely the required pack wasn’t mounted at the time the
backup system last started to run), then issue the Mount command as above.

When done, issue the Quit command to exit the backup system command processor. It is a good
idea to keep a record of the dates on which cach backup pack was mounted and dismounted so that
you know when a pack is available for re-use.

11.5. Restoring individual files from backup

Individual files may be restored from backup in the following manner. It is not a good idea to do
this while the backup system is running.

Install the desired backup pack on any free drive. Issue the Enable and Backup commands to enter
the backup command processor. Then go through the following dialogue:

* Restore (from file system) name
name (long-name) mounted
Restore: file-designator

The name is the File system ID of the backup pack (c.g., ‘Backupl’). In response to ‘Restore:’, type
the name of a file to be restored. “*¥’s are permitted, and the default version is ‘I*. The name of
each file is typed out as it is restored.

When all files matching file-designator have been restored, 1FS will again prompt you with ‘Restore:’.
You may cither restore more files (from the same backup file system) or type Return to indicate that
you arc finished.

Files are restored from the backup system with precisely the attributes (version number, reference
dates, ctc.) they had when backed up. If a file already cxists in the primary file system, IFS will
refuse to overwrite it unless the version in the backup file system is newer.

11.6. Reloading the entire file system from backup

If the primary file system is clobbered in a way that the Scavenger can’t repair, the following
procedure may be used to recreate it from backup. If performed corrcctly, this procedure will
restore the primary file system to its exact state at the time of the most recent backup run.

First, re-initialize the primary file system as described carlier (section 4). Then connect to IFS from
another Alto using Chat, login as System (password 11°S), and issuc the Enable command. 1t is

advisable at this point to disable logins with the Disable Logins subcommand of the Change System-paramcters command
so as to prevent users from accessing the file system while you are reloading it

Mount (on any free drive) the most recent backup pack, i.c., the one most recently written on by the
backup gsystem (this is very important). ‘Then:

IFS Operation 15

* Recload (file system)
Note: mount the LAST backup file system first.
Mount file system: name

The name is the ID of the backup file system you have mounted. IFS will now proceed to restore
files from the backup file system to the primary file system. When it is done, it will again ask you
to ‘Mount file system:’, at which point you should mount the next most recent backup pack. Repeat
this procedurc until you have mounted all packs written within the past n days.

IFs will list out the files as they arc restored. (To disable the pause at the end of each page, type
ahcad one space.) You will notice that not all files are restored. In particular:

Files that were backed up at some time but no longer cxisted at the time of the last backup
are not restored. (The listing will say such a file is ‘deleted’.)

Files already restored from a more recent backup are not restored from an earlier one. (The
listing will say ‘alrcady exists’.)

Reloading the file system causcs all backup and system paramcters to be reset. You must sct them
up again manually. See the summary at the end of section 4.

It is essential that the last backup pack be rcloaded first. Failure to heed this instruction will cause
some files not to be rcloaded that should have been, and vice versa. If the reload is interrupted for
any reason and must be restarted, you must again start by rcloading the last backup pack (even
though all files from that pack may have been reloaded alrcady). This is becausc the dccision
whether or not to reload each file is made on the basis of the last state of the file system as recorded
on the most recent backup pack.

12. Accounting

Accountant.run is a program which collects accounting and administrative information from a

running IFS. It retrieves copies of all of the Directory Information Files (DIFs) from an IFS and

produces a text file containing per-dircctory and system-wide information. To run it type:
>Accountant IFS-host-name output-filename

You must be a wheel, since the DIFs which Accountant reads are protected. Note that you run this
program on somc other Alto, not on the IFS Alto.

This program is fairly primitive at the moment. There are no present plans to upgrade it.

13. Miscellancous

13.1. Disk pack identification

If you forget the 1D of some Trident pack (e.g.. a backup pack), there is no way to ‘Mount’ it for the
backup system. 'This is why it is a good idea to mark the 1D on the pack itself (not on its plastic
cover, which is interchangeable with other packs). A good place to mark it is on the plastic ring on
the top of the pack. Do not affix a paper label: it will fly off and gum up the works (the pack
spins at 3600 RPM).

There is, however, a command for finding out vital information about a pack. It is:
! What (is the pack on drive) d

where d'is a drive number. If the pack is an IF'S pack (primary or backup), this command will print
out the vital parameters, including the 1. If the pack is not an IFS pack, it will say so.

IFS Opecration 16

13.2. Software performance

The IFS software strains the Alto’s capacity significantly, particularly with respect to main memory.
In combination with certain deficiencies of the BCPL runtime environment, this leads to rather poor
performance (in particular, excessive disk thrashing) when there are more than a few simultaneous
users of the system.

Also, there arc times when certain data structures and code segments cannot be swapped out. It is
possible for the system to deadlock if all of memory is occupied by such immovable objects. The
symptom of this is that IF'S ccases to respond to requests for service, the Alto screen looks normal
(black with ‘IS’ in the cursor), and the screen does not flash when you press the space bar. The
possibility of dcadlocks is the principal reason for imposing a limit of five simultancous server
processes. Most IFSs scldom or never encounter deadlocks with this limit. In those 11'ss that do, it
is possible to reduce the limit by means of the Server-Limit subcommand of the Change System-
Paramcters command.

If the 1S Alto has extended memory, the software will use it as a cache for code segments. This
improves performance significantly, since it reduces disk thrashing. 128K of memory is sufficient to
climinate practically all code swapping from disk, and no improvement will be gained by having
more memory than that. However, use of extended memory in this way does not alleviate the
conditions that cause deadlocks, becausc BCPL can ncither exccute code nor reference data in more
than 64K of mcmory.

13.3. Interpreting system statistics

The 1°'S Executive’s Statistics command pours out various internal operating statistics, some having to
do with hardwarc and some with softwarc. Most arc of interest only to IFS implementors, but all
are cxplained here for completencss.

SmallZone overflows, bigZone overflows, overflow pages

IFS has a three-level memory storage allocator. SmallZone and bigZonc are heap-type
allocators for objects of less than 25 words and of 25 to 500 words, respectively. Objects
larger than 500 words are allocated by removing one or more 1024-word pages from the
VMem (virtual memory manager) pool. [f onc of the first two zones becomes cxhausted, it
rccovers by borrowing space from the ncxt larger zone.

It is normal to encounter up to 100 or so zonc overflows per day, and for there to be a
maximum of 2 or 3 VMem pages used to recover from bigZone overflows. More overflows
are indicative of the need to change some compile-time parameters. 1f the ‘current’” number
of overflow pages remains nonzero for any significant length of time, it is indicative of a
bug (loss of allocated storage).

Net blocks allocated minus blocks freed

This is simply the number of memory storage blocks presently allocated. If there is no
system activity besides your Chat connection, this should be more-or-less constant. If it
incrcascs slowly over time, storage is being lost.

VMem buffers, bufier shortages

Approximately half of Alto memory is turned over to the VMem package, which manages it
as a buffer pool of 1024-word pages and implements a softwarc virtual memory for
accessing various objects on the disk, including code overlays, directories, and bit tablcs.
The number of VMem buffers is constant for a given release of IFS.

If the VMem package receives a request that it can’t satisfy because all buffers are in use by
locked objects (or have been removed to scrvice a zone overflow), it increments the ‘buffer
shortages’ count (vMemBujfferShortages, accessible from Swat) and then waits, in the hope

IFS Operation 17

that some other process will run to completion and relcase some buffers. Sometimes this
works. On other occasions, all processes in the system get into this state and the system is
deadlocked.

VMem recads and writes
This table contains the number of swap rcads and writes for cach of threc main types of
objects managed by the VMem package: code overlays, VFile pages (virtually accessed files,
principally the IFS directory B-Tree), and DiskDescriptor (disk bit map) pages.
Overlays read from XM and from disk

If the Alto has extended memory, this indicates how many overlay reads have been satisfied
by reading from the extended memory cache rather than from the disk.

Disk unit statistics
This table contains operating statistics for each Trident disk unit, and, in the case of T-300

disks, each of the two logical filc systems on the unit. All disk statistics are cumulative from
the time the file system was created.

File system File system name and logical unit number within that file system. Logical
unit 0 contains the IF'S dircctory and the code swapping region.

Transfers Number of pages transferred to and from the unit.

Err ‘The number of errors of all kinds that are not corrected by performing a

single retry. Errors not corresponding to the following breakdown are
probably data-late errors and can safely be ignored if they are infrequent
(no more than 2 or 3 per day).

ECC The number of data crrors detected by the Error Correction Code. These
should be extremely infrequent, especially on T-300 drives which are very
reliable if properly maintained. (Ivy, the Parc 1F'S, has not recorded an ECC
error in the 9 months since its file system was last reinitialized.) A sudden
jump in the ratc of ECC crrors is grounds for suspicion of a hardware

problem.

Fix The number of ECC crrors that have been corrected. The ECC permits
correcting crror bursts up to 11 bits long.

Rest The number of times a head-restorc operation has been performed. This is
done as a last-resort measure when an uncorrectable crror persists through
8 retries.

Unrec The number of errors unrecoverable after 16 retrics. This usually causes

: IFs to fall into Swat and report an unrccoverable disk error. This may be
indicative of a hardware problem or of an inconsistency in the structure of
the file system. Running the 1FSScavenger can tell you which.

Bterr The number of times the bit table has been found to be incorrect, i.e., to
claim that a page is free when it isn’t. "This in itself is a non-fatal error,
but it may be indicative of scrious hardwarc or software problems. On the
other hand, it can also be caused by restarting IFS after a crash without
first running the IFSScavenger.

Free The number of frec pages on the logical unit. 1rS always allocates new
files on the emptiest unit, and every file is contained completely within one
unit. The software docs not recover from running out of disk space (i.c., it
falls into Swat), so be careful not to let the amount of free space get too

IFS Operation 18

low.
Directory statistics

These include the number of directory pages assigned and actually in use by the B-Tree
package. (The size of the dircctory file itself, <System>IFS.dir, may be obtained using the
List command.) The number of ‘runs’ (groups of consccutively-allocated pages) should
always be 1 unless the directory file has overflowed; a larger number is indicative of
fragmentation problems. ‘Levels’ is the depth of the B-Tree.

Mail statistics

This is a summary of mail server operating statistics, covering the interval since the file
system was created or last reloaded.

14. Recvision history
Version 1.03; August 4, 1977

Procedurcs added for running Triex, for blessing your Trident controller, and for halting IFS
in a cleaner manner than before.

Version 1.07; September 3, 1977

/V switch added for startup-time directory B-Tree verification.
Version 1.08; October 5, 1977

Backup system released.
Version 1.10; November 1, 1977

Full T-300 support; “Bxtend’ command for adding packs to an existing file system; Triex
and TFU operating procedures changed; IFS Scavenger released.

Version 1.12; November 10, 1977

Performance improvements in both 1FS and IFSScavenger; procedures for initializing and
testing a disk pack again changed (Triex eliminated from procedure).

Version 1.14; February 21, 1978
File protections implemented; command added to disable logins; backup system bugs fixed.
Version 1.15; March 4, 1978

Converted to new time standard; ‘What’ command added; automatic SctTime at startup;
obscurc directory ordering bug fixed.

Version 1.18; November 15, 1978

Mail server added; limited support for extended memory; Change System-Paramecters
command added, with subcommands to change clock correction, limit the number of
simultancous servers, resct the time, and enable and disable service; Logins command
removed; screen flashes if you hit space bar and system is operating normally; Accountant
program relcased; documentation on system performance and interpreting Statistics output;
file IFS.Ov is no longer part of the release.

Version 1.21; July 16, 1979

IFS Operation : 19

Mail forwarding and Press file printing implemented; miscellancous servers (name, time, and
boot) added; Change System-Parameters subcommands modified; protection groups may
now be ‘owned’ by individual (non-wheel) users; Change Group-Membership and Show
Group-Membership commands added to permit users to manipulate group membership;
more statistics.

Inter-Office Memorandum

To IFS Project Date July 17,1979
From Ed Taft Location Palo Alto
Subject IFS Software Maintenance Organization PARC/CSL

XEROX

Filed on: [MaxclKIFS>IFSSoftwareMaint.bravo

This is a brief description of how the IFS software is organized and maintained.

Organization
The pieces from which IFS is constructed fall into threc major categories:

1. Components specific to IFS; all of these have file names that begin with ‘Ifs’, and arc kept
on the master IFS directory (presently [MaxclKIFSD).

2. Standard Alto softwarc packages (including picces of the Alto Operating System), obtained
from the <Alto> and <AltoSource> directories. In general, IFS always uses the latest version
of these.

3. Modified Alto software packages. In general, these are intended to be released as the
standard packages at some later time. Packages that have been so extensively modified for
IFS that they arc no longer suitable for general release are renamed and moved into
category 1.

An ‘official’ release of IFS consists of the following files, all kept on [MaxclKIFSY:
1. IFS.run, IFS.ssyms, and IFS.crrors, the files nceded to opecrate an IFS server.

2. A command file IfsDisk.cm that initializes a blank Alto disk with the minimum set of
programs and other files required for IFS development.

3. A dump-format file IfsCm.dm that contains all the command files uscful for IFS
development.,

4. Dump-format files containing all the 1ES-specific sources, divided into functional groups. At
present, these consist of the following:

IfsDecl.dm All the Bepl declaration (.decl) files. These are also contained in
the appropriate dump files listed below; they are collected
together here because may of them arc required throughout the
system, not just in one group.

IfsKernel.dm Basic underlying mechanisms (virtual memory, overlays, storage
allocation), plus system initialization.

Copyright Xcrox Corporation 1979

IFS Software Maintenance 2

IfsFileSys.dm Dircctory and file access machinery.

IfsRsMgr.dm Rendezvous socket and server management.

IfsFtp.dm FTP server.

IfsMail.dm Mail server and forwarder.

IfsMisc.dm Miscellaneous servers (name, time, boot, and Press printing).

IfsTelnet.dm Telnet server and command interpreters.

IfsMc.dm Microcode.

IfsLeftovers.dm Everything that doesn’t seem to fit into one of the above
categories.

5. A dump-format file IfsBrs.dm that contains all the Br files (both IFS code and standard
packages) for this release.

The IFS maintenance procedures have been rather carefully organized so that you can do IFS
development on a single Diablo disk, with considerable support from one or more file servers. The
disk contains all necessary subsystems and all the Br files for loading an 1FS, and has enough room
(about 500 pages) for a fair number of source files being actively worked on. The idea is that you
fetch source files from a file server, modify them, get the modified IFS working again, store the
source files back on the file server, and delete them from your Alto disk.

Recreating IFS from sources

This procedure assumes you have access to a file server and directory containing a released version
of IFS on a directory called <IFS>.

First, boot an OS from the network and use it to ‘erasc’ a disk. In response to the question ‘Do you
want a big SysDir’ you should answer ‘y.

Next, fetch <IFS>IfsDisk.cm from the file server and exccute it. (The command file on Maxcl,
naturally, assumes that all standard Alto softwarc should be obtained from Maxcl. If you want to
change this you should cdit the file first.) The IFS 1.21 releasc requires a pre-release Alto OS and
Bepl compiler.

Toward the end of this command file, you arc asked for the contents of an unknown command file
‘FileServerForlfsSoftware’, at which point you should type the name of the file server that has all
the IFS dump files. IfsDisk.cm now loads 1fsCm.dm and IfsDecl.cm.

Before proceeding further, you may wish to modify User.cm, e.g., to charge the hardcopy host
name.

Now it is time to fetch all the standard and modified software packages (categories 2 and 3). The
command file IfsPackages.cm does this. Again, the one on Maxcl assumes you will obtain the
standard software from Maxcl. This command file fetches a whole lot of stuff, deletes some of i,
and rccompiles scveral packages in non-standard ways. This takes about 30 minutes.

Next, compile all the IFS-specific software by exccuting the command file Compilelfs.cm. This first
asks you what file scrver the IFS dump files live on. (Your choice must be one of Maxc, Ivy, or
Tbis; if you are using some other file server, say ‘xxx’, you must have previously created a file called
xxx” whose contents are xxx’, with no CR at the end.) The command file then loads each dump file
in turn, compiles all the source files, and deletes them. This procedure takes about 90 minutes. At
the end, you should “Type *bt *.er’ to check for errors, then ‘Delcte *.bt *.er.

IFS Software Maintenance 3

Finally, load IFS.run by exccuting the file LoadlIfs.cm. This takes 3 to 4 minutes. There are
normally 10 errors (all multiply-defined symbols) which you should ignore. At the cnd, ListSyms is
run to produce IFS.bz, which is a listing of the sizes of the overlays (all except AltoDirs should be
1024 or less words long).

Other command files

Each of the dump files has associated with it a command file that enumerates its contents. That is,
IfsKernel.cm contains a list of all the files in IfsKernel.dm. It should not have any CRs in it, even at
the end (but of course “t CR’ is 0k). These command files are expanded in many contexts and
control loading, dumping, printing, etc., of cach group of files.

PrintIfs.cm is a command file that obtains all the source files, group by group, and prints them using
Empress. :

During active software development, it is inconvenient to have to keep loading and dumping dump-
format files; it is more convenient to store all the source files separately, and retrieve, edit, and store
them individually.

The command file ExpandIfs.cm loads all the dump files and puts the sources back out as individual
files in <IFS>Sources>. You get to specify both source and destination file servers for this operation.
(Note that then destination file server must be an IFS because Maxc doesn’t have subdirectories.
Again, you must previously have crcated a file whose name and contents arc the server name, as
described above.)

The command file Dumplfs.cm performs the inverse operation, retrieving all the source files from

<IFS>Sources> and dumping them into dump-format files in <IFS>. It also stores Ifs.run, Ifs.syms,
Ifs.errors, and IfsBrs.dm from your Alto disk, in preparation for an IFS release.

Command file maintenance

To enable all these mechanisms to work smoothly, it is important to keep the command files up-to-
date. Specifically:

When you add, delete, or rename a source file, you must change LoadIfs.cm, xxx.cm, and
Compilexxx.cm, where xxx is the name of the group to which the file belongs.

When you add or remove a package, you must change LoadIfs.cm and IfsPackages.cm.

XEROX

Inter-Office Memorandum

To IFS Project . Date July 29, 1977

From Ed Taft Location PARC/CSL

Subject IFS File Structure File [Maxc1KIFS>IFSFileStructure.bravo
(Edition 2)

This document specifies how files are organized in the Interim File System. Included are
descriptions of the structure of files and directorics, as well as sclected algorithms for managing these
structures.

Definitions for all file system structures (i.e., thosc actually stored on the disk) may be found in
{FSFiles.Dccl, which is an extension to AltoFileSys.D.

Legal IFS Files

A constraint on the design is that the IFS make use of all existing basic file access operations (page-
level data transfers, creating and deleting files, disk strcams) provided by the Alto OS and TFS
package. However, the IFS contains its own special implementations of higher-level functions such
as directory management (the cxisting implementations cannot adequately deal with large numbers
of files in a multi-user cnvironment).

Aii files contained in the IFS, inctuding dircctories, bit tables, and other "system" files, are Legal
IFS Files. A Legal IFS File is a Legal Alto File (sce Alto OS manual, BFS description) with
additional information recorded in the lcader page. This information includes:

Name of file (this is not a hint)
Datec and time of last backup
File Protection

Author

etc...

The file leader page is the ultimate authority for the filename and for attributes peculiar to the IFS,
such as file protection. This makes it possible to reconstruct the file system if directories are
smashed. However, the directory FP and last page FA are still hints, as in the normal Alto file
system,

Though the IFS contains several disk units comprising a single logical file system, an IFS file is
contained entircly on one disk. This is because much of the code in the TFS and streams packages
assumes that a virtual DA will fit in 16 bits; cross-disk addressing would require more than this.
However, the virtual DA in a File Pointer (which references the lcader page of a file) has been
extended to 24 bits, the top 8 of which designate the logical disk unit number. Hence files may
refer to other files on different disk units. When the 1IFS follows an FP, it maps the logical unit
number into the "disk object” to be accessed by the TFS package whenever a page of that file is
referenced. The low-order 16 bits are then used as a virtual DA on the sclected disk unit in the
normal fashion.

The Secrial Number (SN) structure is also extended to contain the following attributes:

archived (DA replaced by tape numbers of two archive tapes)
others?

New files are created on the emptiest disk unit. Disks may be added to (but not subtracted from)

Copyright Xerox Corporation 1979

IFS File Structure 2

\
the configuration without reinitializing the file system.

Directory Structure

The IFS directory consists of a single large file called <System>IFS.Dir, organized as a B-tree. This
is a Legal IFS File containing a collection of Directory Records (DRs) mapping name strings into
File Pointers (FPs). An FP in turn contains the Serial Number (SN) and Disk Address (DA) of the
leader page of the file.

Pathnames in the IFS are in the form "<directory>directory> ... Milename!version". Each filename
entry in the directory includes its complete pathname, including punctuation, with upper- and lower-
case alphabetics considered to be cquivalent. All printing characters except ** are permitted, and
the length of the entire pathname is limited to 99 characters.

The appearance of multiple user directories (and subdirectories within those directorics) is entirely
an artifact of naming conventions. That is, the sct of files belonging to user Taft are simply those
whose names begin with "<Taft>", and files belonging to Taft’s subdirectory "Memos" are those
whose names begin with "<Taft>Mcmos>".

Of course, the IFS attaches a certain amount of semantic significance to pathname syntax. In
particular, all pathnames must begin with "<di>", where dir is a dircctory name already defined in
the IFS (this restriction docs not extend to subdircctories, however). The properties of B-trees
permit efficient enumeration of all files belonging to a particular dircctory or sharing any initial
substring. The version number must be in the range 1 to 65535. The ordering rclationship among
pathnames is by Ascii code up through the "!" preceding the version, with lower-case collating with
the corresponding upper-case alphabetics. Versions are sorted in increasing numeric order.

The IFS maintains essentially the same notions of users and directories as does Tenex. A user is
identified by a string, is authenticated by a password, and has a sct of attributes defining access
capabilitics and other propertics. A directory is a set of files all of whose names begin with a
particular "<dir>" and which are treated together with respect to certain directory-wide properties
(overall directory protection, default file protection, disk page limit, etc.) Each user has a directory
called "<user>" to which he has owner access. Additionally, there are a number of "files-only”
directories whose names do not correspond to any uscr, but to which users may gain access cither by
mentioning the directory in a complete pathname (protections permitting) or by "connecting” to the
directory so as to gain temporary owner access to it

Properties of both users and directorics are maintained in directory information files (DIFs) whose
names consist entircly of the string "<dir>!1". A DIF may be created only by a user with
administrative capabilitics, and has a protection such that the owner is permitted to read but not to
modify it. The DIF includes the following information:

User properties:

Password for "login"™ or “connect" (encrypted)
User group membership

Special capabilities (administrator, wheel)
Other administrative information

Directory properties:

Dircctory protection

Default file protection

Disk page limit

Other attributes (files-only, ...)

‘The name of the user responsible for the directory (if files-only)

The directory entry record for a DIF contains some additional information (beyond the usual name
string and FP). This information is kept here for efficiency reasons, and includes:

1. Copics of information in the DIF that must be referenced on every access to any file in
the directory (directory protection, default file protection, disk page limit).

2. Information recomputable by cnumerating all files in the directory (disk page usage).

IFS File Structure 3

File Protections

The IFS implements a straightforward extension of the Tenex protection facilities. This extension is
intended only to overcome a serious shortcoming of the Tenex facilitics, namely the inability to
specify protections on a per-group basis. A fundamentally different protection mechanism may
eventually be implemented in the Distributed File System.

Each user belongs to one or more user groups, as in Tenex. The IFS permits the definition of up to
62 user groups, and a user’s group membership is represented by a 62-bit vector.

Each file has a file protection consisting of three 64-bit vectors defining read, write, and append
permission to the file. The first 62 bits of cach vector define the sct of user groups that are
permitted the specified type of access (read, write, or append). The last two bits indicate access
permission by, respectively, the owner and all other users.

To determine whether a user has read access to a given file, the IFS first appends two bits to the
user's 62-bit group membership vector. The "owner" bit is sct to onc if the user’s "login" or
"connect” name is the same as the file’s dircctory name, otherwise to zero. The "all other users” bit
is sct to one. This vector is then bitwise anded with the file’s read permission vector. If the result is
nonzero, the user has read access to the file. Write and append permission are determined in a
similar fashion.

A directory as a whole also has two types of protection: create permission and connect permission.
A user granted create access to a directory is permitted to create new files in that directory. A user
granted connect access is permitted to “"connect” to the directory without specifying a password.
Create and conncct permission are represented by two 64-bit vectors in the same fashion as file
protections. They are contained in the DIF, and copics of them are maintained in the directory
entry record for the DIF as described previously. (Note that these dircectory protections are distinct
from the protections of the Directory Information File itself))

Also maintained in the DIF is the default file protection to be used when new files arc created in
the directory. The owner of a file is permitted to change the file’s protection regardless of whether
or not he has write access to it.

File protections arc inhcrited from onc version to the next.

Special Files and Initialization

The TES requires that each disk have its own SysDir and DiskDescriptor files. The SysDir and
DiskDescriptor files for logical units 0, 1, ... are stored as Legal IFS Files named in the <System>
directory as DiskDescriptor.0, SysDir.0, DiskDescriptor.l, etc. They are looked up during
initialization and their I'Ps stored in the respective disk objects so as to be accessible to the TFS.
The file <System>IFS.Dir is also entered in SysDir so that the IFS initialization can discover it.

Swapping space for virtual memory and overlays is reserved in a contiguous region on logical unit 0,
and is entered as file "IFS.Swap" in both SysDir and the IFS <System> directory.

Each disk contains a "home block" recording vital configuration information, such as:

Number of disks in the file system

Logical unit number of this disk

Datc and time of file system creation (for consistency check)
Name of file system

The home block contains sufficient information to permit the software to discover the configuration
when it is started up. It is entered as file IFS.Home in SysDir and as <System>IFS.Home.u in
IFS.Dir (where u is the logical unit number).

A few other special files are entered in both SysDir and IFS.Dir. These are IFS.Errors, a file that
maps crror numbers to strings; 1FS.Syms, the symbols for the currently-running system; and
IFS.0v, a description of the code overlays (useful to the VMemSpy program).

The file system is initialized in the following fashion:
1. A virgin Alto file system is crcatcd on cach unit by mcans of the standard TFS

IFS File Structure 4

initialization procedures. This causes all pages to be marked dcleted and the files SysDir
and DiskDescriptor to be created.

2. A home block file is computed and written on each unit.

3. Files IFS.Dir and IFS.Swap are crcated in contiguous storage on logical unit 0 and
entered into unit 0’s SysDir. The overlays are copied from the IFS.Run file on the Diablo
disk to IFFS.Swap on the Trident. From this point on, it is possible to do swapping on the
Trident. (1000 pages for IFS.Dir and 100 for IFS.Swap should be sufficient in a file system
containing up to 8 Trident disks.)

4. The <System> directory information file is created and entered into IFS.Dir. All the
special system files are then entered into the IFS <System> directory (note that their leader
pages must bc modified to turn them into Legal IFS Files).

A new unit is added to the file system as follows:
1. A virgin Alto file system is created on the new unit, as above.

2. A home block is written on the new unit, and the home blocks on all other units
updated.

3. The new unit’s SysDir, DiskDescriptor, and IFS.Home files are entered into <System).

Inter-Office Memorandum

To IFS Project Date June 29, 1979
From Ed Taft Location PARC/CSL
Subject IFS Directory Operations File [Maxc1KIFS>IFSDirOps.bravo

(version 1.21)

XEROX

This document describes the BCPL interface to the IFS directory modules. Familiarity with the IFS
file structure is assumed; see the memo “IFS File Structure”. This memo supercedes the previous
“IFS File Operations” memo.

Organization

The directory package consists of the following modules:

IFSDirs.decl Parameter and structure declarations used within the directory
package and needed when calling many of its procedures.
IFSDirOpen.bepl Procedures to open and close IFS files and create streams to
which normal Alto disk stream operations may be applied
IFSDirDelRen.bcpl Procedures to delete and rename IFS files.
[FSDirParse.bcpl Procedures to parse IFS filenames and build File Descriptors
L (FDs).
IFSDirLookup.bcpl Procedures to look up files in the IFS directory.
IFSDirUtil.bepl Miscellaneous utility procedures needed by the other modules.
IFSDirKeyb.bcpl The ‘compare key routine’ passed to the B-Tree package.
[FSDirKeya.asm The ‘length routine’ passed to the B-Tree package.
IFSDirAdmin.bcpl Procedures to create and 'destroy user Directory Information

Files (DIFs).

IFSDirCheck.bepl A procedure to check the consistency of the directory B-Tree.
These modules call the B-Tree package and make use of other facilities provided in the IFS
environment. There is a total of about 9000 words of code (including the B-Tree package), divided
into 12 overlays of less than 1024 words each.
The directory package provides facilities at several levels. At the highest level are procedures
implementing functions analogous to those in the standard Alto directory package. For example, the
[FSOpenFile procedure translates directly from a file name to a stream in a manner similar to the
Alto OpenFile.

At lower levels, specific file operations are passed a handle called a File Descriptor (FD).

Copyright Xerox Corporation 1979

[FS Directory Operations ‘ 2

Procedures exist to translate a file name into an FD, to look up the FD in the directory, to open or
close a file given its FD, and so on. An FD may designate multiple files (due to wildcard ‘*
characters appearing in the name), and a procedure exists to step the FD from one such file to the
next.

Directory and File Locks

Since the IFS is providing a multiple-access service, mutual exclusion mechanisms are required to
maintain consistency of shared data structures. These mechanisms are relatively automatic when the
directory package is accessed at its highest level. At the lower levels, however, callers must be aware
of the resources that are locked at any given time.

Two kinds of locks are implemented, file locks and directory locks. An open file is either read- or
write-locked. A file may have multiple readers but only one writer at a time, and no readers if any
writer or vice versa. (A file opened for both reading and writing by a single process is write-locked.)
A file lock is set at the time the file is opened, deleted, or renamed, and the operation will fail if the
lock cannot be set. The lock controls access both to the file itself and to its directory entry.

In addition to the locks on individual files, there is a lock controlling access to the directory itself
(recall that the entire directory is a single B-Tree). Directory access conforms to the same ‘readers
and writers’ discipline as does file access, but inability to set the directory lock immediately causes
the process to wait rather than resulting in failure of the file operation. Note that the directory lock
controls access only to the directory itself; operations on files that are individually locked may
proceed without regard to the directory lock.

Since the directory is shared among all users, it is essential that a process lock it for as little time as
possible. In particular, operations that can take arbitrarily long (such as deleting a file) should not
be performed while keeping the directory locked. Most directory operations (lookup and update)
are completed quickly. A process performing a potentially lengthy directory operation (such as
enumerating it) is expected to check periodically for occurrences of lock conflicts (other processes
waiting to use the directory) and to release and reacquire the lock when conflicts occur.

A Lock is a two-word structure defined in IFS.decl. Lock.count contains a positive read lock count
or -1 to denote a write lock, and Lock.ctx contains a pointer to the context that last set the lock. All
locks are manipulated by means of the Lock and Unlock procedures in IFSResUtilb.bcpl. They are
called as follows:

Lock(lock, write [false], returnOnFail [false]) = true or false

Attempts to set the specified lock (a write lock if write is true or a read lock if false
or omitted), and returns true if successful. If rerurnOnFuail is false or omitted,
blocks until the lock can be set; if true, returns false if the lock cannot be set
immediately.

A process should not attempt to set the same lock multiple times without an
intervening Unlock. An attempt is made to detect occurrences of this error, but the
check is not foolproof.

Unlock(lock)

Unlocks the specified lock, which must have been either read- or write-locked by
the same process.

File and directory locks are ordinarily manipulated by higher-level procedures such as LockFile and
LockDirFD, described later.

[FS Directory Operations 3

Data Structures

Most IFS data structures are not operated upon directly by programs calling the directory package,
but rather are simply passed as parameters. However, an understanding of the contents and
function of the major data structures is helpful.

IFS data structures are divided into two classes, file system and runtime. The data structures actually
stored on the disk are defined in IFSFiles.decl and are documented in “IFS File Structure”. These
will not be further discussed here.

The runtime structure IFS (defined in IFS.decl) designates an active file system. The software is
capable of dealing with multiple, independent file systems simultaneously. All file operations are
performed relative to a particular file system denoted by an argument fs. The default is the primary
file system primaryIFS, which must be on-line when IFS is started and is the one used for swapping.
Other file systems may be mounted and dismounted while IFS is running.

The IFS structure contains configuration information (in particular, a table mapping logical unit
numbers to physical disk drives) and directory information, including pointers to the B-Tree
structure and Open File Table (OFT), the directory lock, and two other interesting items relating to
directory access.

The IFS.dirVersion word is a count of modifications to the directory: it is incremented every time
the directory is modified in any way. This is useful to programs that wish to re-validate the results
of an earlier lookup when the directory has been unlocked since that lookup. If, after locking the
directory, the program finds that dirVersion has not changed since the last lookup, then the lookup
information is still valid; otherwise, the lookup must be repeated (a relatively expensive operation).
This feature is used by the LookupFD procedure, described later.

The IFS.dirLockConflict word is set to true whenever a directory lock conflict occurs, i.e., when a
process attempts to set the lock and cannot because it is already locked in a conflicting way. A
program intending to keep the directory locked for a long time should, after -locking it, set
dirLockConflict to false, then periodically poll it and, when a conflict occurs, briefly relinquish the
lock so as to give the conflicting process a chance to proceed.

The Open File Table (OFT) contains the locks for all open files. It is a hash table, keyed on the
virtual disk addresses of the open files.

The UserInfo block (defined in IFSFiles.decl) contains the identity of and information about the
user for whom file operations are being performed. The directory package uses this information in
order to check access to files and to record the creator of new files. It is the responsibility of other
parts of IFS to create the UserInfo block, check passwords, and so on.

Most procedures in the directory package assume they are running within the confines of a
Rendezvous Socket Context (RSCtx, defined in IFSRS.decl), which contains a pointer to the
appropriate UserInfo block. A special UserInfo block. pointed to by the static system, exists to
permit privileged, internal file operations that bypass access checking.

All lower-level directory operations are passed a structure called a File Descriptor (FD), defined in
IFSDirs.decl. An FD is originally created by CreateFD, which parses a file name and sets up some
auxiliary lookup information, such as the actual version number as an integer (if one was specified)
and the indices of the end of the directory name and the end of the name body. The FD carries
with it information that remains fixed for the life of the FD, such as the file system and the lookup
control parameter. As operations are performed on the FD, various parts of it are updated.

[FS Directory Operations ‘ 4

High-Level Operations
The following operations are similar to ones available in the Alto Operating System.

IFSOpenFile(name, IvErrorCode [], mode [modeRead], itemSize [charltem)], Ic [see below], fs
[primaryIFS], dirName [connected]) = stream or 0

Opens an IFS file, translating directly from a name to a stream. If successful,
returns an open stream upon which the standard Alto disk stream operations may
be performed. If unsuccessful, stores an error code in @IvErrorCode and returns
zero.

The name must be a BCPL string whose complete form is ‘<dir>namel!ver, but in
which the directory and version may be omitted (in which case they will be
defaulted). The default directory is the BCPL string dirName, if supplied, or the
connected directory obtained from the running context’s Userinfo block otherwise.
The default version is given as part of Ic (see below). The version may also be one
of ‘1H’, ‘I, or ‘IN’ designating highest existing version, lowest existing version, or
next higher version. If the lookup control permits it, wildcard ‘“*’s may appear
anywhere in the name to designate multiple files (discussed in more detail later).

The mode should be one of modeRead, modeWrite, modeReadWrite, or
modeAppend. The first three modes are equivalent to the corresponding ksTypes in
the Alto operating system, while modeAppend is equivalent to modeWrite except
that the stream is initially positioned to end of file. (IFSOpenFile correctly checks
the write or append protection of a file when it is opened; however, it is the caller’s
responsibility to prohibit overwriting existing parts of a file opened in append
mode.)

The itemSize is one of charltem or wordltem, as in the Alto operating system.

The lookup control (/c) parameter contains several bits and fields controlling certain
aspects of the directory lookup process. If the IcCreate bit is set, then IFSOpenFile
may create a new file (protections permitting); otherwise, if the designated file does
not exist an error will result. If the IcMultiple bit is set, the name is permitted to
designate multiple files by means of “*’; otherwise, occurrence of “*’ in the name
will cause an error. The remainder of the lookup control word is a default version
control specification, to be used in the absence of an explicit version number in the
name. This may be one of:

IcVHighest highest existing version
IcVNext next higher version (highest+1)
IcVLowest lowest existing version

IcVAI all versions (same as ‘!I*’)

The default lookup control specification depends on the mode in which the file is
being opened, as follows:

modeRead lcVHighest
modeWrite IcCreate + IcVNext
modeReadWrite IcCreate + IcVHighest
modeAppend lcCreate + IcVHighest

If the name contains ‘*’s (which are accepted only if the lookup control includes
IcMultiple), then the first file whose name matches the pattern is opened. It is
expected that the caller will retain the FD and step it through all the other files
matching the pattern, using the NextFD and OpenlFSStream primitives described
later.

[FS Directory Operations 5

Closes(stream)

Performs the normal actions of cleaning up and destroying the stream, and also
closes (i.e., unlocks) the file and destroys the FD.

IFSDeleteFile(name, IvErrorCode [], Ic [icVLowest], fs [primaryIFS], dirName [connected])
= true or false

Deletes the specified file, returning true if successful and false if unsuccessful. The
parameters are interpreted as for IFSOpenFile. The name may not designate
multiple files. The user must have write access to the file,

IFSDeleteOld Versions(name, lvErrorCode [], fs [primaryIFS], dirName |connected]) = true
or false

Deletes all but the highest-numbered version of all files designated by name, which
may include “®s but must not have an explicit version number. Returns true
normally and false if no file by that name exists or any of the delete operations
fails; an error code for the last such failure is stored in @IlvErrorCode.

IFSRenameFile(oldName, newName, IvErrorCode [J, lc [IcVHighest], fs [primaryIF§],
oldDirName [connected], newDirName [connected]) = true or false

Renames the file oldName t0 be newName, returning true if successful and false if
unsuccessful. The old file must exist and the new file must not exist. The l¢
parameter applies to oldName, the lookup control used for newName is
IcCreate+1cVNext. The user must have write access to the old file and create
access to the user directory in which the renamed file will reside.

Lower-Level Directory Operations
CreateFD(name, lc, IvErrorCode [}, fs [primaryIFS], dirName [connected]) = fd or 0

Parses the name and constructs an FD, returning the FD if successful and zero if
unsuccessful. The only possible errors are syntax errors in the name; this
procedure makes no references to the directory.

CreateFD sets the fs, Ic, lenDirString, lenSubDirString, lenBodyString, and version
fields in the FD structure. A skeleton Directory Record (DR, defined in
IFSFiles.decl) is constructed and saved in the dr pointer; this record is of
drTypeNormal and contains a copy of the name string, with an appropriate version
number appended if appropriate (0 for IcVLowest and 65535 for IcVHighest or
IEVNext).

If the lookup control includes IcMultiple and the name contains ‘*’s (or the version
control is IcVAIl and no version is specified in the name), a template is constructed
and stored in the template field in the FD for later pattern matches, the index of
the first “* is stored in the iFirstStar field, and the name in the DR is truncated at
that point for use as a starting key by NextFD.

All remaining fields in the FD are zeroed. In particular, the lookupStatus field is
set to IsNoLookup, indicating that this FD has not yet been looked up in the
directory.

IFS Directory Operations . 6

DestroyFD(fd) = 0

Destroys the FD (and the DR and template pointed to by it, if any). Zero is
returned so as to permit use in contexts such as:

fd = DestroyFD(fd)
LookupFD(fd, write [false]) = 0 or error code

Looks up the file described by fd, applying the lookup control parameters (already

stored in the FD) as appropriate. If the file already exists, replaces the DR pointed

to by the FD with a copy of the actual entry that was found (including its type,

length, and FP). If the file does not exist but lcCreate is set in the lookup control,

igienerates a complete DR (except for the FP) which may be used when creating the
le.

Returns zero if successful and an error code if unsuccessful. Failure to find the file
in the directory is considered an error only if lcCreate is not set or directory <dir>’
does not exist.

In the successful case, the lookupStatus field in the FD is set to one of the
following:

IsNonexistent The file does not exist, and no other version of that
file exists either. In order to create the file, one
must use directory-default file properties.

IsOtherVersion The file doesn’t exist, but another version of the file
does exist. The FP of that file is stored in the DR
to permit one to read its leader page and obtain is
properties. (This facilitates the inheriting of
properties from one version to the next.)

IsExists The file exists, and a copy of its actual directory
entry record is stored in the DR.

If the FD designates multiple files and this is the first time LookupFD has been
called, LookupFD calls NextFD to find the first directory entry matching the
pattern in the FD’s template. If no such file is found, an error is returned.

LookupFD normally assumes that the directory is not locked at the time of the call
It sets a write lock if write is true and a read lock if false or omitted, and returns
with the lock set whether or not the lookup is successful. One may call LookupFD
with the directory already locked by passing a write argument of dontLock.

At the time of the return from LookupFD, and for as long as the directory remains
locked, the FD (in particular, the lookupStatus) is valid, i.e., it accurately reflects the
state of the directory. Hence one may immediately perform operations such as
opening the file or modifying the directory entry.

However, once the directory has become unlocked, the FD is no longer valid, since
some other process could change the directory at any time. In this case, before
making use of the information in the FD one must revalidate it by calling
LookupFD again, and one must be prepared for the possibility that the
lookupStatus may change or even that the new call will fail despite the previous call
having succeeded. (The revalidation operation is very cheap if the directory has not
actually changed since the last LookupFD on the same FD.)

IFS Directory Operations 7

LookupIFSFile(name, lc, IvErrorCode [, fs [primaryIFS], dirName [connected]) = fd or 0

Combines the actions of CreateFD and LookupFD, returning an FD if successful
and zero if unsuccessful. Unlike LookupFD, LookuplFSFile returns with the
directory locked only if it is successful. The directory is write-locked if I includes
IcCreate and read-locked otherwise.

NextFD(fd, write [false]) = true or false

If fd designates multiple files, finds the next file matching the pattern and replaces
the FD’s DR with its directory record. If such a file is found, sets the lookupStatus
to IsExists and returns true. If no such file is found, or fZ does not designate
multiple files, returns false.

NextFD assumes that the directory is not locked at the time of the call It sets a
write lock if write is true and a read lock if false or omitted, and returns with the
lock set whether or not the lookup is successful.

LockDirFD(fd, write [false])

Locks the directory referenced by fd. Sets a write lock if write is true and a read
lock otherwise. If a lock conflict occurs, sets the IFS.dirLockConflict flag and waits
until the directory becomes unlocked.

UnlockDirFD(fd)
Unlocks the directory referenced by fd.
ModifyDirFD(fd)

Declares the directory referenced by fd to have been modified, by incrementing its
version number. This should be done whenever the directory is modified (i.e., an
entry is created, deleted, or updated). The directory must be write-locked at the
time of the call.

Lower-Level File Operations
OpenlFSFile(fd, mode) = 0 or error code

Opens the file designated by fd, which must previously have been validated by a
successful call of LookupFD or NextFD. Returns zero if successful and an error
code if unsuccessful.

The directory must be Jocked by the caller (presumably as a result of calling
LookupFD or NextFD). A write lock is required if OpenIFSFile is to create a new
file (lookupStatus ne IsExists). OpenIFSFile returns with the directory unlocked
regardless of whether or not it is successful.

OpenlFSFile checks protections and allocations as appropriate, creates the file if
necessary, and attempts to read- or write-lock the file depending on the mode. If
any of these operations fails, an appropriate error code is returned and the file is
not locked.

IFS Directory Operations ‘ : 8

CreateIFSStream(fd, itemSize) = stream or 0

Creates and returns a stream for an open file designated by fd. Returns zero if
unsuccessful (the only likely cause of failure is a disk error in the leader page). fdis
saved in ST.parl, which must not be clobbered by anyone (par2 and par3 are ok to
use, however). Positions the stream to end of file if the file was opened with
modeAppend.

OpenlFSStream(fd, 1vErrorCode [], mode [modeRead], itemSize [charltem]) = stream or 0

Combines the actions of OpenIFSFile and CreateIFSStream, returning the stream if
successful and zero if unsuccessful. All comments related to directory locking in
OpenlFSFile apply here. If any operation fails, an error code is stored in
@IvErrorCode and the file is not locked.

StreamsFD(stream) = fd
Returns the FD designating the file associated with the open stream.
CloseIFSFile(fd, dPages [0])

Closes (i.e., unlocks) the open file designated by fd, but does not destroy the FD. If
dPages is supplied and nonzero, then the disk page utilization in the user’s
Directory Information File (DIF) is updated by the amount dPages, which may be
positive or negative. dPages should be the amount by which the file’s size changed
while it was open.

The directory should not be locked at the time of the call and is not locked when
CloselFSFile returns. .

CloselFSStream(stream) = fd

Closes an open file given its associated stream handle, and destroys the stream, but
does not destroy the FD. This procedure calls CloselFSFile internally and takes
care of the dPages computation. The FD is returned for convenience in
enumerating multiple files. The Closes stream operation is -identical to
CloselFSStream except that it also destroys the FD.

DeleteFileFromFD(fd) = 0 or error code

Deletes the file designated by fd, returning zero if successful and an error code if
unsuccessful. This procedure deletes both the directory entry and the file itself. It
differs from IFSDeleteFile in that it accepts an FD rather than a name and does not
destroy the FD, so it is useful when deleting multiple files.

The directory 'must be either read- or write-locked at the time of the call
(presumably by the validating LookupFD or NextFD) and is unlocked before the
return whether or not the operation is successful.

ChangeFileProtection(fd, mask, value) = 0 or error code

Changes the protection of the file designated by fd according to mask and value,
which are FileProt structures (see IfsFiles.decl). Bits corresponding to ones in mask
are set to the new values in value. Bits corresponding to zeroes in mask are
unchanged.

The caller must either be the owner of the file or have write access to it. The
directory must be locked at the time of the call and remains locked upon return.

IF'S Directory Operations 9

TransferLeaderPage(fd, buffer, write [false])

Transfers the leader page of the file designated by fd to or from the supplied page-
size buffer. The page is written if write is true and read otherwise. The file need
not be open, but if it isn’t the directory must be locked and the FD must have been
validated by LookupFD or NextFD.

Directory Administration Operations
ReadDIF(name, fs [primaryIFS], IvErrorCode [[) = dif or 0

Reads the Directory Information File (DIF) for the supplied directory name, and
returns a DIF structure (see IFSFiles.decl) which the caller must free when done
with it. The initial DIFRec portion of the DIF is copied from the cached
information in the DIF’s directory entry rather than from the file itself so as to
obtain the up-to-date value for the disk page usage. The caller must have read
access to the DIF (which is ordinarily protected against all users except the owner).

WriteDIF(name, dif, fs [primaryIFS]) = 0 or error code

Creates or updates the DIF for the supplied directory name. dif must point to a
completely filled-in DIF structure. This operation includes updating the
information cached in the DIF’s directory entry from the initial DIFRec portion of
the DIF. The caller must have ‘wheel’ capability.

WheelWriteDIF(name, dif, fs [primarylFS]) = 0 or error code

Performs the same operations as WriteDIF except that it pretends that the caller is a
wheel and thereby bypasses access checks. It is the caller’s responsibility to ensure
that the operation is reasonable. :

CreateUser(name, password, diskLimit [1000], owner [0], capabilities [0], worldRead [false], fs
[primaryIFS]) = 0 or error code

Creates a new user directory (i.e.,, a DIF) with the parameters supplied and the
remaining parameters set to default values, Returns zero if successful and an error
code if unsuccessful. If owner is nonzero, a files-only directory is created and owner
is taken to be a BCPL string specifying the directory’s owner. The default file
protection is set to give read access to the world if worldRead is true. The caller
must have ‘wheel’ capability,

“This procedure is useful primarily during file system creation for establishing the
éssential built-in directories (e.g., <System>). It provides means for setting only a
subset of all possible directory parameters.

DestroyUser(name, fs [primarylFS]) = 0 or error code

Destroys the named user directory, returning zero if successful and an error code if
unsuccessful. All files whose names begin with ‘Kname>’ are destroyed, including
the DIF. Since the files are deleted using normal access methods, the caller should
be prepared to retry the call after errors such as ecFileBusy. The caller must have
‘wheel’ capability.

XEROX

Inter-Office Memorandum

To IFS Project Date August 6, 1978
From David Boggs Location Coyote Hill
Subject IFS dcbugging and tuning aids Organization Parc

Filed on: <Ifs>IFSDebAids.bravo

This memo describes several programs which are used to debug and tune an Interim File System.
ListOV

ListOV reads the .Syms file produced by BLDR and outputs a text file listing the size of each
overlay. Its primary function is to help partition code into swaping unit sized overlays. It is
invoked by typing::

>ListOV <Subsytem-name>

The extension on <subsystem-name> is stripped if present and *.syms’ is appended. The output text
file is called ’Subsytem.ov’. The overlay size reported is the number of words which will be
swapped in by the overlay package on an overlay fault -- the number of code words plus the
number of relocation pair words plus one. The format of the size information is octal (decimat).

VMemSpy

VMemSpy spies on an IFS from another Alto and displays the virtual memory page currently
resident in each rcal memory page. Its purpose is to show the dynamic utiization of real memory by
the virtual memory. It is invoked by typing:

>VMemSpy <Host name> <Symbol filename>

{Host-name> is a Pup internetwork name and <symbol filenamed> is the .Syms file for the spyee
(usually IFS.Syms).

VMemSpy obtains its information through a level 1 PUP connection to a spy process in the IFS.
Periodically VMemSpy requests the spy process to send a snapshot of the virtual memory tables
which it then uses to paint a picture of main memory on the Alto display. Pages which are locked
in memory are displayed with a black background; pages which can be swapped out or overwritten
arc displayed with a white background. Dirty pages (i.c. pages which must be written back on the
disk before reuse) are displayed with a gray patch to the right of the real address. Each time a reply
is received, the cursor pattern is flipped.

VMemSpy displays the following strings in a page:

String Page Contents

<Overlay name> an overlay

DiskDescriptor a disk descriptor file page (disk bit table)

VFile , a file page accessed through VMem (usually a BTrce)
Snarfed unknown (somecone borrowed it from VMem)

Copyright Xerox Corporation 1979

IFS debugging and tuning aids 2

Free ‘ nothing

The VMemSpy causes only a slight perturbance to the IFS under scrutiny so it may be used to
observe a service system. Since VMemspy and the spy process inside the IFS communicate using a
connectionless protocol, several VMemSpys may spy on the same IFS.

AllocSpy

AllocSpy spies on an IFS from another Alto and records information about each call on the free
storage manager. Its purpose is to detect bugs which lose free storage and to show the static and
dynamic utilization of frce storage. Results are written to the file "AllocSpy.log”. It is invoked by

typing:
>AllocSpy <Host name> <Symbol filename>

<{Host-name> is a Pup internetwork name and <symbol-filename> is the .Syms file for the spyce
(usually IFS.Syms).

AllocSpy works by making a BSP conncction to a spy process in the IFS. The spy replaces SysZone
with a dummy which allows it to trap all calls on Allocate and Free. When a call on Allocate happens,
the spy gets control and sends the following information to AllocSpy which saves it in a hash table:

size of the requested block
location of the resulting block
overlay relative PC and overlay number of the last three frames.

When a call on Free happens, the spy gets control and sends the location of the block being freed.
AllocSpy deletes the block from its table. Each time a block is allocated AllocSpy displays an "A"
and cach time a block is freed it displays an "F”. When an allocate cvent is reccived and the block
is alrcady in the table or when a frec event is received and the block is not in the table an "«" is
displayed after the "A" or "F".

There are two keyboard commands:

M [Map] causes a snapshot of the current state of all frce storage to be appended to the
log. This is a rather lengthy process so when it is complete AllocSpy displays a ".".
AllocSpy automatically requests a map when it opens the connection.

Q [Quit] clcans up and returns to the Exec. All allocate events currently in the hash table
are interpreted and output to the log file as ’orphaned blocks’.

AllocSpy should be run on a test system after any significant changes have becn made. It
significantly degrades the performance of an 1FS so it should not be run on a scrvice system unless
absolutely necessary. AllocSpy and the IFS should be connected via a high bandwith path since calls
on Allocate and Fee can only proceced s fast as the spy can push the information through the byte
stream.

XEROX

Inter-Office Memorandum

To IFS Project Date October 24, 1977
From David Boggs Location PARC/CSL
Subject IFS Scavenger File [Maxc1KIFS>IfsScavDesign.bravo

This memo outlines the design of the scavenger for the Interim File System (IFS). The IFS file
structure is described in a separatc memo. A scavenger is particularly important for the IFS since
the directory mcchanism does not always maintain a consistant structure on the disk.

The scavenging process is divided into two passes. Passl verifies the file structures, and pass2
verifies the directory structures. Passl is run on all packs in the IFS, and then pass2 is run on
logical unit 0 (which contains the IFS dircctory). Scavenger data structures are maintained on a
scratch disk since they can grow quite large.

Passl - File structure verification

Passl builds two data structures, the Page Link Map (PLM) and the Leader Page Table (LPT). The
PLM is used during passl and then discarded, and the LPT is used during pass2. The objective of
passl is to insure that the disk is a well formed Alto file system and that some IFS-specific files are
present. The output of passl is the LPT, which is a list of all legal files in the system. Since files in
an IFS can’t cross disks, passl can treat cach disk separately, reusing the PLM file. For each pack
in the system, the following steps are taken:

1) For cach page of the pack, an entry is made in the PLM containing the page’s forward
and back links, fileID, page number, and numChars. Whenever the scan encounters a
leader page, its FP, hintLastPageFa, and filenames (both ifs and tfs version) are checked and
appended to the LPT.

A PLM entry is 8 words long. The table below gives the size of the PLM (in scratch disk pages) for all
combinations of scratch disks and disks being scavenged.

T-300 T-80
Trident 512 287
Diablo 2048 1147

The average length of an LPT entry is 25 words. The table below gives the size of the LPT (in scratch disk
pages) for representative numbers of files.

5000 10000 25000
Trident 123 244 611
Diablo 492 977 2442

Things start getting tight around 10000 files on a T-300 using a Diablo as the scratch disk.

2) Starting from the list of leader pages, the PLLM is scanncd to verify the consistancy of
pointers and scrial numbers within cach file. Bad files are deleted, last page hints are
verified, acccssible pages are so marked.

3) The PLLM is enumerated, and all inaccessible pages are made free. A bit table is built on

a scratch file. Any labels that step 2 didn’t like are changed. The bad page list for the pack
is updated. Any leader pages that steps 1 or 2 didn’t like are changed.

Copyright Xerox Corporation 1979

IFS Scavenger 2

4) SysDir and DiskDescriptor are rebuilt from scratch. Multiple directories are not
supported.

5) This step is only performed if the pack is part of an IFS. It verifies IFS.home, sets the
unit number in the IFPs of all LPT entries for this pack, and verifies the cxistance (although
not the contents) of all critical IFS files.

Pass2 - Directory Structure Verification

The objective of pass two is to insure that the IFS.dir is a well formed B-Tree and that all files are
accessible from it. Pass two consists of the following steps:

1) The LPT is sorted by filename, using the same comparison algorithm that the IFS uses to
lookup files in IFS.dir.

2) The B-Tree structure of IFS.dir is verified. If the trec is damaged beyond the ability of
this step to fix, it is initialized to cmpty.

3) IFS.dir and the LPT are cnumecrated in parallel. The LPT is the truth about what
should be in the directory, so any disagrecements are rcsolved by changing the tree.

The algorithm is

LPT entry > Tree entry: delete tree entry, read next tree entry
LPT entry = Tree entry: read next LPT entry, read next tree entry
LPT entry < Tree entry: insert LPT entry, recad next LPT entry

When a Directory Information File (DIF) entry is encountered or inscrted into IFS.dir, the
information cached there from the DIF is verified, and the recomputable information for
the last DIF entry is verificd.

Recomputable information currently consists of the number of pages in use. The directory group membership,
default file protection, and page allocation arc cached in a DIF entry, but the truth is kept in the DIF file.

XEROX

Inter-Office Memorandum

To IFS Project Date November 2, 1977
From David Boggs Location PARC/CSL
Subject IFS Scavenger Operation File MaxclKIFS>IfsScavOp.bravo

This memo describes the operation of the Interim File System Scavenger. The design is outlined in
a scparate memo. The scavenger reads cvery page in the file system, makes surc that every file is
well-formed, and checks for consistency between files and directories. Since an Interim file system
is (ncarly) a supersct of an Alto file system, this scavenger can also repair non-IFS Trident file
systems.

When to Run the Scavenger

File system problems can be divided into two classes: 1) directory or bit table inconsistencies or a
few malformed files, and 2) massive losses of data. The scavenger is intended to avoid the time-
consuming process of rcloading the file system from backup when the problems arc minor. If a
drive cuts loose and obliterates a large part of a pack, then you will probably lose fewer files by
reloading from backup.

The most common causes of damage to an IFS are software bugs and hardware glitches which cause
the system to stop in an unclean way. There is only one safe way to stop IFS: log in and issuc the
privledged HALT command. Any other method (including <Cul-K> from Swat and <Shift-Swat>) can
potentially damage the file system. There are consistancy checks scattered throughout the system
which should detect problems and call Swat before extensive damage is done. If this happens, or
you are suspicious, then run the scavenger.

Calling the Scavenger
The scavenger is invoked by the command
IfsScavenger/switches

where the switches control the operation of the system in various ways. Switches defined at present
are:

/D Debug mode (various non-fatal errors call Swat rather than just continuing on).

/A Allocator dcbug (every call to the storage allocator causes a very thorough
consistency check to be invoked. This slows down operation of the system
considerably.)

/B Enable calls to Block within the disk driver, thereby permitting more overlapping of
computation with disk transfers.

/U Enable the microcode version of the Bepl runtime.

As you can sce, these switches arc only uscful for debugging; in normal operation none of them
should be used.

Copyright Xerox Corporation 1979

IFS Scavenger Operation 2

After considerable churning on the Diablo, the scavenger will announce itself along with its release
date and then wait for commands. The herald is an asterisk. The standard editing characters,
command recognition features and help facility (via "?") arc available.

Normal Operation

The scavenger scans each pack in the file system and then gocs back and works some more on the
pack containing logical unit 0. Although the order of scanning is unimportant, if logical unit 0 is
still online when all of the packs have been scanned, you will not have to remount it, so I
recommend that you scan it last. In the example below, what you type is underlined.

*Scavenge

Which drive shall T use for scratch? DPO or TPm (sce below)

Scan pack on drive TPn (0<n<7)
When it is done with that pack, if there are more packs in the file system it asks you to mount the
next pack:

Scan pack on drive TPn

When it has scanned all of the packs, if it is not sure which drive has logical unit 0 it asks:
Which drive has logical unit 0? TPn

Finally, it says:

Scavenge complete
*Quit

Print IfsScavenger.log (sce below), restart IES, restore damaged files from backup, and notify owners
of lost files not protected by backup.

Scratch Disks

The scavenger builds some large data structures which it must keep on some disk. It can use a
Diablo or a Trident. The scavenger runs about twice as fast using a Trident.

If you have only one Trident drive, then you must usc the Diablo for the scratch disk. This disk
should be very empty. The number of frec pages required is a function of the size of the largest
disk and thc number of files in the IFS. The table below estimates the minimum number of free
pages nceded to scavenge representative configurations.

largest disk 1000 files 5000 files 10000 files 25000 files
T-80 1250 1650 2150 3600
T-300 2150 2550 3050 4500

I recommend that you keep a disk with just the following files:

Sys.boot Sys.errors Sys.syms SysFont.al
Swat Swatce Exccutive.run Ftp.run
Ifs.run Ifs.syms Ifs.errors Ifs.ov
Empress.run Fonts.widths Tfu.run Tricx.run
IfsScavenger.run IfsScavenger.syms Ftp.run

If you have more than one Trident drive, T recommend that you use onc of them for the scratch
disk. The scavenger only nceds one IFS pack online at a time, so you can do this cven if you use
all of the drives when running the file system. Depending on the size of the TFS, the scavenger will
nced between a few hundred and a few thousand pages on the scratch disk (divide the numbers in
the table for the Diablo by 4). Any ‘I'rident disk with enough pages will do, though things will go
faster if the pages can be allocated contiguously. I recommend that you use a freshly crased scratch

IFS Scavenger Operation 3

disk.

Scavenger Log

The scavenger appends display output to a typescript file (IfsScavenger.log) on the Diablo disk.
You can usc this information to notify the owners of files to which the scavenger does something
drastic. During normal opecration, the scavenger will display some messages telling what it is doing
and summarizing statistics about the file system. A scction at the end of this memo explains the

messages.

Other Commands

There are a number of commands in addition to Scavenge; most have to do with debugging the

scavenger.

Quit

Passl

Pass2

Dcbug

Returns control to the Alto Exccutive.

Scans a pack and makes it into a well-formed Alto filesystem. The dialog goes as
follows:

*Passl

Which drive shall 1 use for scratch? TPm
Scan pack on drive TPn

Is this an IFS pack? [Confirm] Yes
Which file system (0-2)? 0

i\/[éy. I alter your disk? [Confirm] Yes

Alert readers will have noticed the similarity between this dialog and that for the
Scavenge command. The Scavenge command is implemented by repeatedly calling
Passl until all of the packs in the IFS have been scanned and then calling Pass2.
The Scavenge command tells Passl that it is working on an IFS, that it’s OK to
make changes, and that if it is a '[-300 then there are two Alto filesystems (0 and 1)
on the pack.

Verifies the health of the directory B-Tree, and then verifies that all of the files
discovered during the previous scans are listed in it, and no others. If Pass2 is
invoked without previously running Passl, it, assumes that you ran Passl during a
previous invocation of the scavenger. In this case it asks you which disk to usc for
scratch, and assumes that the proper scratch files arc out there.

This command turns on debug mode. More decbugging information is output to the
display, including somec non-fatal crror mecssages such as soft disk errors. The
scavenger will pausc after cach phasc has been swapped in so that breakpoints can
be set. Typing any character proceeds it.

DiskEditor

Invokes a simple disk editor with a DDT-style command syntax. The cditor is
described in more detail below.

DumpLPT

Dumps (converting to text format) the contents of the leader page table (onc of the
scratch files) into a file on the Diablo. The dialog goes as follows:

*DumpL.PT

IFS Scavenger Operation 4

Which disk is it on? TPn (sce below)
What shall I call the output file on the Diablo? foo
Do you want just page usage info? [Confirm] No

If you have previously specified a scratch disk, then Dumpl.PT assumes that the
LPT is to be found there, otherwise it asks. The text file produced by this
command lists cach file, its fp and selected information from the DIFRec if present.
If you answer ’yes’ to the last question, then only the number of pages used and the
page usage limit for cach directory is output. The LPT is deleted by pass2 unless
the debug flag is set.

DumpTree
Dumps (converting to text format) the contents of the IFS dircctory B-Tree into a
filc on the Diablo. The dialog is very similar to DumpL.PT, and the dcscription for
that command applies here too except that you arc always asked for the disk.

EditHome
Sets a flag which allows you to edit the information in Ifs.Home when it comes
under scrutiny during Passl.

InitTree
Sets a flag which causes the scavenger to ignore the contents of the directory B-Tree
and instcad recreatc it from scratch. This takes much longer.

Scavenging Non-IFS Trident Packs

To scavenge a non-IFS Trident pack, just run Passl on it and reply *No’ when it asks if it is an IFS
pack.

Disk Editor

The scavenger contains a simple disk cditor with a DDT-style command syntax. I wrote it so that I
could damage a file system in controlled ways and test the scavenger’s ability to fix the damage. It
has turned out to be a uscful tool in its own right. To start the disk editor type:

*DiskEditor
What disk would you like to edit? TPn

When the cditor is running, the normal small display is replaced with a large one. The top level
commands are (all numbers are octal):

<{number>/
close the current page and open the page whose virtual disk address (vda) is equal
to <number>. If no <numberd> is typed, thc number last printed is used. The
display looks like:

1/ fid 200000144;1 pn 0 nc 4000 177777 <-> 2

1/ mecans vda 1 is open.

fid 200000144;1 is the scriai number;version number,

pn 0 mcans pagc number 0 of the file.

nc 4000 mecans this page contains 4000 bytes (it’s full).

177777 <-> 2 means the back link is EOF and thc next page is 2.

Typing just °/° follows the forward link in the currently open page.

close the currently open page and open the page pointed to by its back pointer. A
number before the °\’ is illegal, as is typing '\’ when no page is open.

IFS Scavenger Opceration 5

lineFeed

return

Q

L

D

close the currently open page and open the one with the next higher vda. This
sweeps the disk in ascending virtual disk address order (until your finger gets tired).

close the currently open page and open the onc with the next lower vda. This
sweeps the disk in descending virtual disk address order.

close the currently open page.

quit the disk cditor (after confirming) and return to the scavenger’s top level
command scanncr.

enter an editor for the Label record of the currently open page.

enter an cditor for the Data rccord of the currently open page.

When editing a Label or Data record, the following commands are available:

<number>/

close the currently open cell and open cell <number> in the record. If no number
was typed, the last number displayed is used. The display looks like:

1 = SN1/ 40502 (if it is a label) or
17 40502 101 102 AB (if it is a data rccord).

1740502 means cell 1 of the record is open and contains <0502,
101 102 is 40502 displayed as bytes.
AB is 101 102 displayed as ascii characters.

Typing just °/° now would try to open cell 40502 which is out of range, so the
screen would flash,

<number>return

If <number> was typed, store it in the currently open cell. Close the currently open
cell.

<numberdlineFeed

If <number> was typed, store it in the currently open cell. Close the currently open
cell and open the next cell

<number>t

If <number> was typed, storc it in the currently open cell. Close the currently open
cell and open the ccll before it

return control to the page cditor. If you changed the record, you will be asked to
confirm rewriting the changed record back onto the disk. If the record is rewritten,
the page is closed.

Reporting Scavenger Bugs

Assuming that the hardware is in good health, the scavenger should be bullet-proof: no matter how
badly mangled the file system is, the scavenger should not go into Swat. If it docs, or vou bcelieve
that the scavenger did the wrong thing, plcase take the following steps:

IFS Scavenger Operation 6

1) If you landed in Swat, make,a sysout file (type <Ctril-L> and supply a descriptive filename
with extension .Swat), and then boot the machine.

2) Save IfsScavenger.log.
3) Get in touch with me.

As you can tell from the amount of debugging machinery in the scavenger, I have no illusions about
it being correct.

An Annotated TypeScript

What follows is the typescript from scavenging an IFS that was in good health. Commentary is in a
small font to distinguish it from the typescript; what I typed is underlined. The numbers in square
brackets tcll what module is gencrating the message. The format is [Pass-Phase]. Places where the
scavenger would have paused if the debug flag was set are marked with an asterisk.

Ifs Scavenger of October 19 1977

*Scavenge

Which drive shall I usc for SCI'atCh? tp0 Use the freshly erased pack on drive 0 for scratch.
Scan plack on drive tpl A single-pack IF'S, mounted on drive 1 (a T-80).

1-1 Rcads cach page on the disk and builds the page link map (PLM) and
1-1} time = 3:13 the leader page table (LPT). Tile name syntax is checked.
1-1] files = 1038 'The disk has this many pages which look like leader pages.
1-2 * The forward link in each leader page is followed checking the file structure.
1-2] time = 0:26. Every page which is part of a file is marked accessible.
1-2 116;/8 pages used out-of 36674 Last page I'A hints are checked.
1-3
1-3] PLM The PLM is enumerated and all inaccessible pages are made frec.
1-3] time = 0:30. A bit map is built. Damaged files are repaired or deleted.
[1-3] BPL The list of incorrigible pages is updated.
[1-3] LPT Leader pages which need work are rewritten.
1-3 time = 0:2.
1-4] *
1-4] SysDir SysDir is rebuilt from scratch.
1-4] time = 0:2.
[1-4] DiskDescriptor Disk Descriptor is rebuilt from scratch, using the bit table from [1-3].
[1-5 *
File system type: Primary Ifs.home is verified.
File system name: Test If the EditlTome flag is set,
Number of units: 1 you would be able to edit these 4 items.
Logical unit number: 0
1-5] LPT The LPT is scanned looking for special system files
1-5] time = 0:10. which are listed in the Special File Table, SFT.
[1-5] SFT If any files in the SFT were not found, they are created.
Passl «,omplete
2-1
2-1} Time = 0:35. The LPT is sorted in directory order.
2-1] Number of files = 1038.
2-1] SortZone size = 19456. words.
2-2] *
[2-2] PostOrder The directory B-Tree is traversed checking its structure.
2-2] Time = 0:4.
2-2] 2 levels, 41 pages al]ocatcd 22 used.
2-2] Free List The list of allocated but unused tree pages is rebuilt from scratch.
2-2] Time = 0:2.
2-3 * The LPT and the Tree arc enumerated in parallel.
2-3] Time = 2:51 The Tree is made to agree with the LPT.,

Pass2 complete

IFS Scavenger Operation

*quit
Revision History

October 24, 1977
First release.

November 1, 1977
Added the abiltiy to scavenger multiple Alto file systems on a single T-300.

XEROX

Inter-Office Memorandum

To Laurel Group Date November 30, 1978
From Ed Taft Location Palo Alto
Subject Interim IFS Mail Forwarding Organization PARC/CSL

(edition 2)

Filed on: [MaxclKTaft>IFSForwarding.bravo

It has been proposed that we implement mail forwarding among IFSs, using the current mail
transport software and protocols and a single name space. While the new Laurel transport
mechanism, presently under development, will provide automatic forwarding within a distributed
name space, we think it is desirable to provide an interim facility, for at lcast the following rcasons:

1. Operationally and administratively, the current situation is becoming intolerable. We cannot
cope with the present influx of new Alto users who need Maxc accounts just so they can
have mailboxes. On the other hand, the new users nced some way to send and receive
messages between now and the time we complete the new Laurel transport mechanism.

Indeed, one organization (WRC) has alrcady found us to be sufficiently vnresponsive to the
necds of their new users that they have set up their own local mail system, using the IFS
mail server. Since 1FS-based mail systems can’t communicate with each other or with Maxc,
this is likely to lcad to serious difficultics and confusion.

2. The new Laurel transport mechanism will be totally incompatible with the present one, and,
in particular, will not make usc of the cxisting Maxc and [FS mail servers. Furthermore,
the new mail server will be written in Mesa and will therefore not be able to live in the
same machine as an IFS. It is likely that many organizations will not immediately be in a
position to devote another Alto to be a mail secrver.

3. Finally, the anticipated growth of the Alto user community will lead quickly to a situation in
which we (CSL) come under pressure to make the new transport mechanism available as a
service. This is a situation we are cxplicitly trying to avoid.

It is desirable that any interim arrangement involve as little work as possible, since such work will
not contribute to the new Laurel transport mechanism. Implementation should be completed within
onc month, and its lifetime should be on the order of six months tc a year.

Current situation

At present, Maxc and IFS have compatible Laurel mail servers. FEach Maxc and IFS is capable of
receiving messages directed to users whose mailboxes are located on that machine, and of rctrieving
the contents of those mailboxes.

Additionally, Maxc, but not IFS, has a mail forwarding capability. If a message arrives for a
recipient whose mailbox doesn’t exist on the local machine, the recipient name is looked up in a
mail forwarding data base, which yiclds the name of the server believed to contain the recipient’s

Interim IFS Mail Forwarding 2

mailbox. The message is then quecued for delivery by a mail-forwarding process that implements the
user half of the Mail Transport Protocol.

The mail forwarding data base is maintained centrally on Maxc. Updating it involves having a
privileged user edit a text file and recompile the data base. This is an inconvenience, but it is much
less inconvenient than establishing and administering large numbers of individual user accounts.

Plan

Three different schemes for improving the current situation were proposed in the previous edition of
this memo. They were considercd on November 28 at a mecting of the combined ASD/CSL Laurel
group. To help evaluate these proposals, I offered the following goals against which they should be
measured.

a. Reduce the burden on the Maxc administrators by eliminating the need for non-Palo Alto
users to- have Maxc accounts.

b. Reduce the computing and file storage burden on Maxc by locating many mailboxes on
IFSs.

¢. Minimize the central control or coordination required to introduce or remove users.
d. Not require any substantial changes to user interfaces.
¢. Require as few modifications as possible to existing software.

This plan is based on my recollection of the consensus of that mececting.

Overview of the design

Under this scheme, cach mail recipient is associated with a home mail scrver, whose name is used as
if it were a naming authority within the ultimate Laurel transport mechanism. When composing a
message, a user must specify the names of non-local recipients in the form wuser.host. (This is similar
to what users must do to send messages within the Arpanet. We use "." rather than "@" as a
separator becausc of problems with encapsulating recipient names in mcssages forwarded to the
Arpanct; scc below.)

ANl Laurel users set their Laurel.Profile to send, retrieve, and authenticate on their home mail
servers. Bach mail scrver must accept recipient names of the form wuser.host, and must forward
copies of such messages to the correct Aost. Note that this scheme does not require a mail
forwarding data base. However, it docs require that centrally-maintained distribution lists specify all
members in the complete form user.host.

This proposal measures up to the goals as follows:
a. No central administration is required.

b. Maxc nced forward only messages sent by users whose home mail server is Maxc, and need
not maintain a mail forwarding data base (except for incoming Arpanct messages; sce
below).

¢. No central namc assignment is rcquired. Howcever, the user.host naming convention has
some conscquences affecting distribution lists and incoming Arpanct mail.

d. Users must know which recipients are non-local, and must know the location of cach non-
local recipient’s mailbox. We can case this by assigning organizational aliascs to the mail
scrver machines. (This has the consequence that all members of a given organization must
have mailboxes on the same machine. This will probably require that we assign ficticious

Interim IFS Mail Forwarding 3

organization names such as ASD-N, ASD-S, etc.)
e. Laurel, IFS, and Maxc must be changed.

1. Laurcl must be changed to identify the scnder of outgoing messages in the form
user.host if there are any non-local recipients of the message. Only if all recipients
arc local can the .host be omitted. This is similar to the manner in which Laurel
handles messages to the Arpanet now. Furthermore, the existing logic for handling
Arpanet recipients must be changed to send such messages to
user@ ArpaHost.Maxcl if the user’s home mail server is not Maxcl or Maxc2,

2. A mail forwarder must be added to IFS. This includes an MTP user (only partially
implemented at present), code to manage outgoing queues of messages to other
servers that might be down, and some means for returning undeliverable messages
to their sender.

3. The Maxc mail server already knows how to forward mcssages according to this
scheme. However, therc arc some technical problems with the current
implementation of mail forwarding on Maxc. These are:

a. A secparate filc is created for each copy of each message to be forwarded to
non-Maxc rccipients. This is expensive in both space and time and could
casily causc the Maxc <System> dircctory to overflow.

b. The mail forwarder is a singlc process that kceps no memory of which other
mail servers are up and which are down. It could get badly clogged up as a
result of an IFS going down, since it would have to time out cach attempt
to deliver cach copy of each message destined for that IFS.

4. The ListMaker program (used to construct all the distribution lists from a common
data base) must be modified to name all recipients in the form wuser.host.

5. The Maxc mail forwarding data base must include thc names of those non-Maxc
recipients who regularly reccive messages from the Arpanet.

Laurel modifications

In the following, let sender be the name of a user running Laurel and composing or answering a
message, and home be sender's homc mail server.

1. Laurel must recognize recipient names of the form wuser.host. When one or more of these
appears in the header of a composed message, the "from" field must be sct to sender. home.
(Laurel may, but nced not, strip off .host if host cquals home. This may be dcsirable to
eliminatc unnccessary qualification, particularly when recipient names are taken from a
distribution list, where names are always qualified.)

2. When answering an incoming mcssage, Laurel must detect cases in which that message’s
"from" ficld is in the form user.host, where host is not equal to home, and interpret all
unqualificd names clsewhere in thce header relative to host.

3. Laurcl must detect rccipient names of the form wuser@ArpaHost in the header of a
composed message. If any of these appear, then the following opcrations must be
performed:

a. In the message header, the "from" ficld must be sct to sender.home@Parc-Maxc.
(sender@Parc-Maxc is adequate if home is Maxcl. Note that this casc is the rcason
for choosing a scparator character different from "@": it is likely that many
message systems on the Arpanci would incorrectly interpret names of the form
sender@home@Parc-Maxc.)

Interim IFS Mail Forwarding 4

b. Non-Arpanet recipicnts must be fully qualified as user.host. This is so that answers
gencrated by the Arpanct recipicnts will be forwarded correctly when they come
into Maxc from the Arpanet. (This opcration can but need not be omitted if Aost is
Maxcl.)

c. In the property list (but not in the header), Arpanct recipients must be specified as
user@ArpaHost.Maxcl.

4. When answering an incoming message, Laurel must detect cases in which that message’s
"from" ficld is in the form wuser@ArpaHost, where ArpaHost is not Parc-Maxc, and interpret
all unqualified (by "@") names elsewherc in the header relative to ArpaHost. (1 believe this
is what Laurel already does.) It should also strip off any occurrences of @Parc-Maxc in the
recipient list. This is to prevent the intra-Xerox copies of the message from having to be
forwarded via Maxcl (by step 3c above).

IES modifications

1. The mail server must accept recipient names of the form name.host, where host is a legal
Pup host name. (The server should verify this before accepting the recipient name.) If host
is the name of that mail scrver, it should strip off the .Aost and attempt to treat name as a
local recipicnt name.

2. Either the mail server or the background mailer process must segregate the namcs of local
recipients from those of non-local recipicnts, and must queuc a copy of the message (along
with the appropriate subsct of the recipient list) for delivery to each different mail server
host.

3. Qucues of messages to cach host must be maintained independently so that if one host is
down, messages to other hosts aren’t blocked.

4, If a message fails to be forwarded successfully, the mailer must deliver & return message to
the sender (whose mailbox is local), enclosing a copy of the original message. Unsuccessful
delivery is defined to be one of:

a. Rejection of one or more recipient names by the remote mail server, indicated by
reccipt of a [Mailbox-Exception] response.

b. Failure to cstablish contact with the remote mail server for some timeout interval (a
few days), or repeated failure to deliver mail after apparent successful contact.

Maxc modifications

The functional changes required to Maxc are quite minor. However, some changes to the existing
implementation are also required to prevent overflowing the directory on which mail is queued for
forwarding,.

1. The mail server must be modified to accept recipient names of the form name.host and
name@ ArpaHost.Maxcl. (At present, it accepts only name@host and name@Arpatost.)

2. It must queuc messages for cach fost in a manner similar to that described above in steps 2
and 3 for 11'S. The present implementation of message queucing must be modified to
climinate the explosion of files created for cach copy of each message to cach non-local
recipient.

3. The Mailbox program (called ‘as a subroutine by a number of programs, including the Pup
and Arpa mail scrvers and Sndmsg) must be modified to accept recipient names of the form
user.host, where host is a legal Pup host name, and to return wuser and host separately. (It
now accepts user@host.)

Interim IFS Mail Forwarding 5

4. The ListMaker program must be changed to permit home mail server names to be
associated with each user, and to generate distribution lists consisting of names of the form
user.host.

Schedule and Manpower

Changes are required to Laurel, IFS, and Maxc. We have agreed informally that the changes to
Laurel and to Maxc should be CSL’s responsibility. The changes to IFS probably require about as
much work as the Laurel and Maxc changes combined. Since Steve Butterfield has been responsible
for development of the IFS mail server to date, it seems sensible to assign the IFS modifications to
ASD.

ASD does not have any immediate need for an IFS mail forwarding capability for installation in
probe sites, at Icast for the next year or so. Therefore, it may be difficult to justify Steve’s devoting
the next few weeks of his time on this project. On the other hand, if CSI. makes the IFS
modifications, Steve will ultimately have to spend some time getting the ASD and CSL versions of
IFS to converge again.

This matter will require further negotiation.
[t is important that the interim forwarding mechanism be implemented at once, since we expect it to

be used for one year at most and hence its valuc decreases rapidly the longer we wait to start using
it.

Inter-Office Memorandum

To IFS Users Date April 24, 1982
From Ed Taft and David Boggs Location Palo Alto
Subject How to Use IFS (version 1.36) Organization PARC/CSL

XEROX

Filed on: [Maxc2KIFS>HowToUse.bravo, .press

This memo describes how to use the IFS (Interim File System) servers. This is the complete user-
level documentation. The Alto User’s Handbook has some introductory material and summarizes
commonly-used procedures, so new users are advised to look there first.

Information in this memo applies to all IFSs except where otherwise noted. To obtain a directory
on your local IFS, or to find out about local operating practices, consult your IFS administrator.

This edition describes IFS version 1.36. User-visible changes since version 1.34 are as follows:

IFS can be configured to use Grapevine for authentication and access control. This
substantially changes the facilities for dealing with file protections; see section 3 for details.

The Show System-Parameters command has been added.

1. How to access IFS

At present, the file services provided by IFS are limited to a fairly basic set. The normal mode of
access from Altos is through FTP. The basic operations (Store, Retrieve, List, Delete, and Rename)
are invoked through the Alto FTP program, or through other programs that use the FTP protocol
such as the Mesa FileTool.

You should consult the FTP documentation in the Alto User’s Handbook, the Alto Subsystems
manual, or [Maxc2KAltoDocs>FTP.tty, for general information on the use of FTP. IFS can also be
reached from Maxc by means of the PUPFIP subsystem.

File naming conventions on IFS are a mixture of Maxc and Alto conventions. The general form of
an IFS file name is:

<directory>namelversion

All printing characters except “* are legal in the name. The complete file name may be up to 99
characters long (longer than either Maxc or Alto permit).

All IFS files have version numbers (in the range 1 to 65535) which are defaulted in the usual way,

as follows:
Retrieve highest existing version
Store next higher version
Delete lowest. existing version
List all versions

Copyright Xerox Corporation 1982

How to Use IFS 2

Versions other than the default one may be referred to explicitly (by specifying the version number)
or by the notations ‘!L’ (lowest existing version), ‘'H’ (highest existing version), or ‘!N’ (next higher
version).

There is presently no facility for automatic deletion of non-current versions; you must delete them
manually. The Delete command, described below, has an option that facilitates this.

“** expansion is supported during Retrieve, List, and Delete commands. The expansion is similar to
that provided by the Alto Executive; that is, each “* matches zero or more real characters in a file
name.

You may find it convenient to organize your files into sub-directories by giving them names such as
CTaftoMemos>HowToUse.Bravo’. Then all files belonging to a particular sub-directory may be
accessed by a specification such as ‘<Taft>Memos>*, and you may direct your attention to a
particular sub-directory by establishing a default such as ‘Directory Taft>Memos’.

The appearance of sub-directories is entirely an artifact of naming conventions; the file system
actually keeps track of the complete file name for each file. ‘<’ and >’ are ordinary characters, and
“** matches them the same as any other character. For this reason, if you use sub-directories at all,
you will find them most useful if you employ them in a consistent fashion.

2. Access via Chat

The current definition of the File Transfer Protocol (the means by which FTP communicates with a
file server) limits itself to the basic set of operations mentioned previously. It lacks the means for
expressing a number of other essential operations. Improved file access protocols are a topic of
current research.

In the meantime, rather than attempting to extend FTP, we have provided an Executive in IFS
which you can access by means of Chat (or the bottom Telnet window in FTP). This Executive is
patterned after the one in Maxc, but has a very limited command repertoire.

Typein and editing conventions are the ones familiar to most users. BS or CTRL-A erases the
preceding character, CTRL-W deletes a word, and DEL deletes an entire command or sub-command.
Deleted characters are not actually erased from the Alto screen because Chat does not provide such a capability. Most
commands must be terminated by RETURN. CTRL-C may be used to abort any command. If you
are using any sort of display terminal, typeout will stop at the end of every page (as on Maxc) and
IFS will wait for you to type any character before continuing. If you type ahead, this feature is disabled.

The commands of interest to most users are the following:
@ Login (user) user-name (password) password

Logs you into IFS. This is necessary before issuing most other commands.
Ordinarly, Chat will do this for you automatically.

@ Logout
@ Quit

Logs you out and closes the connection.

@ Connect (to directory) directory-name (password) password
Sets your default directory to be directory-name, and gives you owner-like access to
it. The password may be omitted if directory-name is your own directory or one to
which you have connect privileges.

@ Directory (default) directory-name

How to Use IFS 3

Sets your default directory to be directory-name, but without changing your access
rights (and therefore without requiring a password). All subsequent commands
dealing with files will behave as if ‘Adirectory-name> appeared at the beginning of
each file name argument that doesn’t name a directory explicitly {i.e., that doesn’t
begin with <°). Directory-name may include suo-directories (e.g., ‘<Jones>Memos>’).

When you issue the Directory command, IFS first displays your current default
directory. You may either edit this field (by first backspacing at least one character)
or replace it simply by typing the replacement. If you erase the entire field (with
CTRL-W), the default director: reverts to your current connected directory.

If the first character of directory-name is >, IFS prefixes the name of your current connected
directorv. That is, if iou are currently connected to directory Jones, the command ‘Directory
>Memos>’ is equivalent to the command ‘Directory <Jones>Memos)>’. Also, the outermost ‘< and >
are optional. Note that the foregoing descriptions also apply to the Directory command in the FTP
Server.

@ DskStat

Prints the number of used pages and the maximum allowed in the connected
directory, followed by the number of free pages in the system. One IFS page is
1024 words or 2048 characters, which is equivalent to four Alto pages or
approximately one Maxc page.

@ List (files) file-designators

Lists the names of all files matching file-designators, which is a list of up to 10 file
names (separated by spaces), any of which may contain “*’s to denote multiple files.
The files matching each file-designator are listed in alphabetical order on the basis
of the entire file name (including directories and sub-directories, if any). To save
space, directory and sub-directory names are printed only when they change, above
the list of files to which they apply.

If you terminate the last file-designator with a comma followed by RETURN (rather
than just RETURN), IFS enters a sub-command mode in which you may specify
additional information to be printed about each file:

@@ Type file type and byte size
@@ Size size in pages

@@ Length length in bytes

@@ Creation date of file creation
@@ Write date of last write
@@ Read date of last read

@@ Backup date of last backup
@@ Times times as well as dates
@@ Author creator of file

@@ Protection file protection

@@ Verbose same as Type Size Write Read Author

@@ Everything

Sub-command mode is terminated when you type just RETURN in response to the
‘@@ prompt. The columns of :rintout will be aligned properly only if you are running Chat
with a fixed-pitch font such as « achal2 or Gachal0.

@ Delete file-designator

Deletes all files matching file-designators, which is a list of up to 10 file names
(separated by spaces), any of which may contain “*’s to denote multiple files. The
version number defaults to the lowest existing version; to delete all versions, you
must end each file-designator with ‘1*. IFS prints out each file name, followed by
‘[Confirm]'. You should respond with Y’ or RETURN to delete the file, or with ‘N’

How to Use IFS 4

or DEL to leave it alone.

If you terminate the last file-designator with a comma followed by RETURN, IFS

enters a sub-command mode in which you may request the following additional
actions:

@@ Confirm (all deletes automatically)

IFS will not ask you to confirm deleting each file but will just go
ahead and do it.

@@ Keep (# of versions) number

IFS will retain the number most recent versions of each file and
delete all remaining versions. That is, to delete all but the most
recent version of each file, specify ‘Keep 1.

On IFS (unlike Maxc), files are deleted immediately; there is no Undelete
command. To delete a file, you must have write access to it.

@ Rename existing-filename (to be) new-filename

Changes the name of existing-filename to be new-filename. It is permissible to
change any part of the file name, so it is possible to move a file from one directory
or subdirectory to another by renaming it. If you terminate new-filename with ESC
rather than RETURN, the body of old-filename (with directory and version stripped
off) will be appended to new~filename.

The Rename operation requires that you have write access to the file and create access to the
directory into which the file is being renamed.

It is permissible to rename a file to itself in order to change its capitalization. Note that a new
version of a file always inherits the capitalization of the previous version; renaming a file to itself (ie.,
with the same version number) is the only way to defeat this.

@ Change Attributes (of files) file-designator
@@ sub-commands

Changes certain attributes of all files matching file-designators, which is a list of up
to 10 file names (separated by spaces), any of which may contain “*’s to denote
multiple files. You specify the changes to be made by means of one or more of the
following sub-commands:

@@ Read (access permitted to) groups
@@ Write (access permitted to) groups
@@ Append (access permitted to) groups
@@ Reset (all existing access)

Changes file protections, as described in section 3.

@@ Type type
@@ Byte-size number

Changes the type and byte size used for subsequent FTP retrievals
of the files. Type may be ‘Text’, ‘Binary’, or ‘Unspecified’. You
should change these attributes only if you thoroughly understand
their purpose and interpretation (see the FTP documentation in
Alto User’s Handbook).

@@ Backup
@@ No Backup

’

How to Use IFS 5

Enables or disables the automatic maintenance of backup copies of
the files. Ordinarily, all files are backed up. Specifying ‘No
Backup’ is appropriate only for very large files that are themselves
duplicates of files stored elsewhere; you should use ‘No Backup’
only after consulting with your IFS’s administrator.

All requested changes take effect when you type RETURN immediately after the
‘@@’ prompt.

@ Print (files) file-designator
@ Press (files) file-designator

Requests that all Press files matching file-designator be sent to your default printing
server (‘Print’ and ‘Press’ are synonyms). File-designator is a list of up to 10 file
names (separated by spaces), any of which may contain ‘“*’s to denote multiple files.
IFS prints out the name of each file followed by ‘[Confirm]’; you should respond
with ‘Y’ or RETURN to print the file, or with ‘N’ or DEL to skip over it.

If you terminate the last file-designator with a comma followed by RETURN, IFS
enters a sub-command mode in which you may specify the following parameters:

@@ Copies number

Specifies the number of copies of each Press document to print.
@@ Duplex

Specifies that the document is to be printed on both sides of the
paper (if the printing server is capable of doing so).

@@ Password password

Causes the document not to be printed immediately but rather to
be held by the printing server until you type password on the
printing server’s terminal. Only certain servers are capable of
password-protected printing. Contact your local support staff for
instructions on using this feature.

@@ Printed-by name

Causes name to appear in the ‘Printed-by’ field on the cover page
of the printed output. (Ordinarily, your user name is printed.)

@@ Server server-name

Specifies the name of the printing server to which the Press files are
to be transmitted. This may be either a registered name or an
internetwork address of the form ‘net# host#’ (don’t leave off the
trailing ‘#°).

You terminate sub-command mode by typing RETURN in response to the ‘@@’
prompt. In the absence of any sub-commands, IFS will cause one copy of each
Press file to be printed on your default printing server. You may establish or
change your default printing server by means of a sub-command of the Change
Directory-Parameters command, as follows:

@ Change Directory-Parameters (of directory) directory
@@ Printing-Server host-name

where directory is the name of your directory, i.e., your user name. If you have not

How to Use IFS 6

established your default printing server, IFS will require you to issue a Server sub-
command every time you request printing.

Actual transmission of the Press files to the printing server is performed by a
background process, so you need not remain connected to IFS while the printing is
taking place. If the printing server is down at the time, IFS will queue the files for
later delivery. If the Press files cannot be delivered within eight hours, however, the
printing request is discarded without a trace.

Printing request may be examined and canceled with the following commands:
@ Show Printing-requests

displays all printing requests you have issued that have not been completed.
@ Cancel (printing requests)

displays all outstanding printing requests you have issued, and for each one asks
you whether or not you wish to cancel it (answer Y’ or ‘N’).

Note that only Press-format files can be printed; IFS checks that every file is a Press
file and will refuse to print any file that is not.

Change Password

Change Protection

Change Directory-Parameters
Show Directory-Parameters

Change Group-Membership
Show Group-Membership

SISISISISIS

See section 3.

®

Systat
Shows who is presently using IFS, what service they are accessing (FTP, Telnet,
CopyDisk, or Mail), and the name or inter-network address of the machine they are
coming from.

@ DayTime

Displays the current date and time.

Statistics
Show System-Parameters

e®

Prints out various operating statistics and parameters that are generally of interest
only to IFS administrators. The Show System-Parameters command may be used to
find out what services are enabled on the IFS, whether or not Grapevine is used for
authentication and access control, etc.

3. Passwords, protections, and Grapevine

IFS has facilities for controlling access to a file server as a whole and to individual directories and
files within the file server. A file server that is in communication with a Grapevine registration
server can use Grapevine for authentication and access control. A file server that does not have
access to Grapevine (or whose administrator has chosen not to enable the Grapevine facilities)
maintains its own local data base for these purposes.

Since the IFS’s behavior as seen by users is quite different in the two cases, we first describe the

How to Use IFS 7

case in which the IFS is using Grapevine for authentication and access control; then we present the
additional facilities required to manipulate the IFS’s local data base if Grapevine is not being used.

This description assumes that you understand the organization of Grapevine names and groups and
are familiar with the use of the Maintain program for managing them. For an introduction, read
section 3.7 and appendix B.2 of the Laurel Manual, filed as <Laurel>Laurel.press on most file
servers. Complete instructions for using the Maintain program are included in the Maintain
Reference Guide, file <LaureDMaintain.press.

3.1, User names and passwords

Ordinarily, you log into an IFS with the user name and password by which you are known to
Grapevine. If you are a Laurel user, this is the same as the name and password vou use with
Laurel. If you change your Grapevine password using the Maintain program, IFS will recognize
your new password automatically.

It is always correct to use your full registered name (R-Name), which is in the form
simpleName.registry—for example, ‘Jones.PA’ or ‘Smith.ES’. Additionally, each IFS has a default
registry which is the Grapevine registry of most of its local users; for example, the default registry
for the Ivy and Indigo file servers is ‘PA’. Users whose R-Names are in the default registry need
not specify the registry name.

You probably have your own directory on at least one local IFS, for storage of personal files. This
directory’s name is generally the same as the simpleName portion of your R-Name. Once you have
logged in, you are given control of the directory whose name either matches your full R-Name or
can be extended to match your full name by appending a period and the IFS’s default registry
name. For example, on an IFS whose default registry is PA, user Jones.PA gets control of the
directory whose name is ‘Jones’, but user Jones.ES does not; however, on the same file server there
can also be a directory named ‘Jones.ES’ which user Jones.ES controls and Jones.PA does not.

You probably don’t have your own directory on any IFSs besides the ones belonging to your local
organization. However, you may still log in to any IFS that is using Grapevine for authentication;
in such a situation, you won’t have the right to store personal files on that IFS, but you may access
files in other directories if their file protections permit.

You will probably find it convenient to install your full R-Name on your Alto disk (or in your Pilot
User.cm, or whatever) instead of just your simpleName. This enables you to log into remote IFSs
with the same user name you use locally.

3.2, User groups

Your access to files and directories is permitted or denied on the basis of your membership in user
groups. Most authentic users are members of a special user group called “World’ (discussed in more
detail below). You are a member of another user group called ‘Owner’ with respect to files in your
own directory, and temporarily to files in any other directory to which you connect (using the
Connect command in FTP or Chat).

Additionally, you may be a member of one or more other user groups whose names and members
are registered with Grapevine. Such user groups generally correspond either to organizations or to
specific projects. A group’s name is assigned by an admiistrator responsible for the registry; the
name is an R-Name whose simpleName portion typically ends in *¢°, as in CSLt.PA or
IFSAdministz.-orst.PA. A group’s membership is controlled by the group’s owners; ownership of a
group can be as restrictive or as open as the administrator deems appropriate.

You are probably already familiar with Grapevine groups: many of them are used as distribution
lists for Laurel messages. For example, the group CSL+.PA is a list of members of the PARC
Computer Science Laboratory. If CSLt.PA is specified as a recipient of a message, then all
members of the group receive a copy. Similarly, if an IFS file’s protection specifies that the file is

’

How to Use IFS 8

readable by CSLt.PA, then all members of the group are permitted to read that file, The same
group may be used for both purposes.

There is a fixed set of groups that may be used in specifying IFS file protections; this set is
determined on a system-wide basis by the IFS’s administrator, and there are at most 62 such groups.
All the acceptable group names are displayed by the Show System-Parameters command, and are
also displayed as alternatives if you type ‘? when IFS is expecting you to type a group name.

You may examine groups used for IFS access control just the same as groups used as distribution
lists, namely by running the Maintain program in Laurel. Similarly, you may request to be added to
a group by contacting the group’s owner; one way to do this is to send a message to ‘Owners-x’,
where x is the full name of the group (e.g., ‘Owners-CSLt.PA’).

There is not actually a Grapevine group called “‘World’. Rather, “‘World’ is a shorthand name for a
special group; for most IFSs in the United States, this group is USRegistriest.internet, which
includes all registered Xerox employees in the U.S. and Canada. Foreign individuals are excluded from
‘World’ in order to satisfy U.S. technology export regulations; foreign access to U.S. information is expected to be
conducted through more formal and controlled channels. The definition of World” is controlled on a system-wide basis
by the IFS’s administrator; it is displayed by the Show System-Parameters command.

3.3. File protections

A file protection specifies, for each individual file, what types of access are permitted to which
groups. There are three types of file access: read, write, and append. If you have read access to a
file, you are permitted to read (i.e., retrieve) its contents. Similarly, write access permits you to
overwrite, delete, or rename the file, and append access permits you to append to an existing file,
even if you don’t have write access. Append access is not presently implemented.

The standard default file protection permits read, write, and append access to the Owner and read
access to the World (i.e., to members of the IFS’s ‘World’ group, described above). Hence if the file
is in your own directory or the directory to which you are connected, you may do anything to it;
otherwise you may only read it (assuming you are a member of the ‘World’ group). But, for example, if the
file protection also permits write access by group CSLt.PA, and you are a member of group
CSL+.PA, then you may overwrite (or delete or rename) the file, even if it is not in your directory
or the directory to which you are connected. Note that the read, write, and append access types are

independent. It is therefore possible, though perhaps not particularly useful, for a file protection to permit writing but
prohibit' reading by some user group.

In addition to the protection associated with each file, there are some protections associated with a
directory as a whole. The first is the default file protection for files in that directory. When a file is
created, its protection is assigned in one of two ways. If there is an existing version of the same file,
then the new file inherits its protection. More precisely, when version n of a file is created, it inherits the
protection of the highest-numbered existing version less than n, if there is one. Qtherwise, the protection assigned
is the default file protection of the directory in which the file is being created.

There are two additional types of access to the directory: create and connect. If you have create
access to a directory, then you are permitted to create new files in that directory. If you have
connect access to a directory, you are permitted to connect to that directory without giving its
password. (Once connected to a directory, you have the same privileges as that directory’s owner.)
As with file protections, these types of access are granted or denied individually to Owner, World,

and each user group. The standard directory protection permits create and connect access only to
the owner.

Each files-only directory has an owner. The owner of a files-only directory is permitted to connect
to that directory without giving a password, regardless of the connect protection of the directory.

This feature avoids the need to define one-member user groups in order to grant owner access to files-only directories
managed by a single person.

How to Use IFS 9

3.4. Commands dealing with protections

The Chat Executive contains several commands by means of which you may manipulate protections
of files and directories.

@ Change Protection (of files) file-designators
@@ sub-commands

Changes the protection of all files matching file-designators, which is a list of up to
10 file names (separated by spaces), any of which may contain “*’s to denote
multiple files. You specify the changes to be made by means of one or more of the
following sub-commands (which are a subset of the sub-commands of the Change
Attributes command):

@@ Read (access permitted to) groups
@@ Write (access permitted to) groups
@@ Append (access permitted to) groups

where groups is a list of up to 10 instances of ‘Owner’, ‘World’, or group names
separated by spaces) to which the specific access type is to be granted. ‘None’ may
be used in place of groups to specify that access is to be denied to all groups. You
may precede a sub-command by the word ‘No’ to specify individual groups to
which access is to be denied. The changes take effect when you type RETURN
immediately after the ‘@@’ prompt.

Normally, the changes that you specify by means of these sub-commands are
incremental. That is, the unly access/group combinations that are changed are the
ones you mention explicitly, while all the remaining ones are unchanged. However,
there is an additional sub-command,

@@ Reset (all existing access)

that denies all types of access to all groups. In this case, the entire file protection is
changed to permit only those access/group combinations that you enable explicitly.

You may change the protection of any file to which you presently have write access, and of any file
in your own directory or one to which you are connected regardless of its protection. That is, you
can change the protection of any file of your own even if its present protection does not permit read,
write, or append access by you.

@ List ..

The Protection sub-command to the List command (described previously) displays a
file’s protection thus:

R: groups; W: groups; A: groups
For example:
R: Owner World; W: CSLt+PA Owner; A: None

@ Change Directory-Parameters (of directory) directory-name
@@ sub-commands

Changes the information associated with the directory as a whole in the manner
specified by the sub-commands. The directory must be either your own or one to
which you are connected.

You may change the default file protection by means of the Read, Write, and
Append sub-commands in the same manner as in the Change Protection command.
Additionally, you may change the create and connect access using the sub-

How to Use IFS 10

commands:

@@ Create (access permitted to) groups
@@ Connect (access permitted to) groups

The ‘No’ prefix may be applied to these as well as to the others.

The Reset sub-command requires an additional keyword to specify what it is that
you wish to reset:

@@ Reset Default-File-Protection
@@ Reset Create-Protection
@@ Reset Connect-Protection

You may change your default printing server by means of the sub-command:
@@ Printing-Server host-name

The changes are not actually made until you type the confirming RETURN in
response to the ‘@@ prompt.

@ Show Directory-Parameters (of directory) directory-name

Displays all information about directory-name, and additionally prints some other
parameters, such as the disk limit and the owner of a files-only directory, that may
be changed only by an IFS administrator. This command also displays some information

about user group membership; this reflects information that IFS has determined by querying
Grapevine, and is not necessarily accurate or up-to-date.

3.5. Non-Grapevine users and groups

In an IFS that does not use Grapevine for authentication and access control, the IFS must maintain
local information about user names, passwords, and group memberships. Additionally, even in an
IFS that does use Grapevine, there may be some non-Grapevine user names and groups. (In
particular, the names and passwords of files-only directories are typically not registered with
Grapevine but are maintained solely by the IFS.) The commands described in this section are used
to manipulate the local authentication and access control data base.

Note that IFS uses the same data structures to keep temporary copies of Grapevine information as it
uses t0 keep permanent local information. That is, the commands described below can be used to
manipulate Grapevine as well as non-Grapevine user names and group memberships. However,
using these commands to examine Grapevine R-Names will in general yield information that is
incomplete or out-of-date; and attempts to make changes to the local data base will not have
permanent effects. You must use Maintain to get correct information or make permanent changes
involving Grapevine R-Names.

The password of a non-Grapevine directory may be changed by the following command:

@ Change Password (of directory) directory-name (old password) password (new password)
password

Changes the password of the specified directory, which must be either your own or
the one to which you are presently connected. (Contrary to normal practice, the
new password is displayed as you type it; this is so that if you make a typing
mistake you will be able to see it.)

An IFS administrator can assign you to be the owner of one or more non-Grapevine user groups. If
you are the owner of a group, you are permitted to change and examine the membership of that
group, using the following commands:

How to Use IFS 11

@ Change Group-Membership (of group) group
@@ sub-commands

The sub-commands are one or more of the following:

@@ Add user-name
@@ Remove user-name

These cause the specified users to be added to or removed from the group. The
sub-commands take effect immediately. You exit sub-command mode by typing
RETURN immediately after the ‘@@’ sub-command prompt.

@ Show Group-Membership (of group) group

Displays the list of users who are members of the specified group. This command
takes a long time to execute, because it has to read the directory parameters of
every user in the system.

In addition to having names, groups have numbers in the range 0 to 61. The association between
group numbers and names is displayed by the Show System-Parameters command. A group can be
used for protection purposes even if it doesn’t have a name; all commands that accept group names
also accept group numbers.

4. Other servers

4.1. Mail server

IFS optionally makes available a mail server compatible with the Laurel message system interface
and the Grapevine transport mechanism. Most registries are now served by Grapevine servers.
However, there are a few registries that still use an IFS as its sole mail server; also, an IFS can serve
as an adjunct to a Grapevine registry by keeping some of its mailboxes.

It is largely invisible to a Laurel user whether one’s mailbox is kept by Grapevine or by an IFS.

4.2 CbpyDisk server

IFS contains a CopyDisk server compatible with the CopyDisk program available from the NetExec.
When CopyDisk prompts you for a disk name, you can specify a ‘disk’ on IFS by typing, for
example: ‘[Ivy[KBasicDisks>NonProg.bfs’.

We expect that this server will be primarily used to distribute copies of the basic Alto disks,
eliminating the need for physical disk packs which often get mislaid. No doubt other applications
will evolve with time. By convention, files in CopyDisk format have extension ‘.bfs’, which stands
for Basic File System.

CopyDisk files can be quite large. A single Diablo 31 disk takes 1275 IFS pages—more than a
typical user’s entire disk allocation. CopyDisk does not copy free pages, so that number is the worst
case for a completely full disk; none the less, it is easy to generate gigantic files that use up your
disk allocation.

4.3. Leaf server

IFS optionally makes available a server for the ‘Leaf page-level access protocol, which permits
random access to parts of IFS files as opposed to the transfer of entire files. There are several user
programs that take advantage of this capability, though these programs are still experimental and not
widely available.

How to Use IFS 12

Not all IFSs run Leaf servers. An IFS that is running Leaf identifies itself by an ‘L’ suffix on the
IFS version number in the herald displayed at connection time—for example, ‘1.36L.

5. File backup

Reliability of file storage is accomplished by two facilities. First, we have a Scavenger capable of
reconstructing the IFS directory from redundant information kept in the file system. We expect to
be able to recover from most file system crashes in this manner, with no loss of user files.

Second, we have an automatic backup system that periodically copies files to a backup disk pack.
The backup system runs between 2:00 and 5:00 a.m. every day (users accessing IFS during that time
may notice some significant degradation in performance). During each backup run, all files not
previously backed up or last backed up more than 30 days ago are copied.

This backup system serves two purposes. First, if the file system fails catastrophically in a way that
the Scavenger can’t recover from, we will be able to reconstruct the file system from backup, with at
most one day’s files lost. Second, files accidentally deleted or overwritten by users will usually be
recoverable if the loss is noticed within 30 days. (The recovery procedure is not particularly
convenient, so please don’t depend on it as a regular service.)

6. Present limitations and future plans

IFS now provides facilities sufficient to make it a useful service. It is unlikely that any further
major development will be undertaken (recent history notwithstanding). IFS has already far
exceeded its intended ‘interim’ specifications, and will ultimately be replaced by better facilities.

A major problem is that of performance of the file system. An IFS is nothing more than an Alto
with some large disks connected to it. There is insufficient capacity (particularly main memory) in
the IFS Alto to support more than a small number of simultaneous users.

We are presently imposing a relatively small limit (somewhere between 4 and 10) on the number of
concurrent connections—FTP, Mail, CopyDisk, and Chat users combined. When this limit is
reached, the system will refuse to accept additional service requests. To prevent idle users from
tying up these precious slots, the IFS will break connections after a relatively brief period of
inactivity.

We would be pleased to receive reasonable suggestions for changes or improvements in the set of
facilities provided by IFS. However, please be conscious of the limited manpower available for
implementing such improvements.

Acknowledgments

Implementation of IFS would have been impossible without the assistance and cooperation of
several individuals who have contributed considerable effort in support of this project. Peter
Deutsch provided the Overlay, VMem, and ISF packages and implemented a number of
improvements needed by IFS. Ed McCreight made available his B-Tree package, which is used for
maintaining user directories, and likewise contributed IFS-related improvements. Bob Sproull and
Roger Bates sank considerable energy into the Trident disk hardware, microcode, and software to
make it work reliably. Steve Butterfield initially implemented the Mail and Leaf facilities and made
some important internal improvements. Ted Wobber contributed improvements to the Press
printing facility and presently maintains the Leaf server.

XEROX

Inter-Office Memorandum

To IFS Administrators Date October 3, 1982
From EdTaft Location Palo Alto
Subject IFS Operation (version 1.37) Organization PARC/CSL

Filed on: CFS)Operationl & 2.bravo, <IFS>Operation.press

This memo describes operating procedures for the Interim File System software. It assumes that
you are familiar with standard Alto software in general and with IFS from the user’s point of view
(KIFS>HowToUse.bravo).

A short summary of revisions to this document may be found at the end. Also, section 14 contains
a summary of known bugs in the current release of the software and how to avoid them.

~ The current release of IFS should be run under OS version 20 or later. For correct error reporting,

you must have current versions of Swat and Sys.errors.

1. Hardware requirements and organization

IFS requires a standard Alto with a Trident disk controller and one to eight Trident T-80 or T-300
disk drives in any combination. A T-80 disk pack holds 36,675 pages of 1024 words each, while a
T-300 holds 139,365 pages. Due to a software limitation, only 130,986 pages of a T-300 are accessible.

The software deals with a primary file system consisting of one or more disk packs. A multiple-pack
IFS behaves logically as a single file system, and all packs must be present and on-line in order to
access any files. Files created by IFS are not accessible to other Trident-based programs (e.g., TFU,
FTP) or vice versa. :

Additionally, the software can deal with one or more secondary file systems that may be mounted
and dismounted while IFS is running. An example of a secondary file system is a disk pack used
for on-line, incremental backup.

The number of disk drives needed to support a given size file system depends both on how backup
is to be accomplished and what degree of redundancy is desired in case of disk drive failure.
Backup procedures are discussed in a later section.

Any Alto (Alto-I or Alto-II) with a Trident disk controller will run the IFS software; however, for
performance reasons, it is strongly recommended that an Alto-II with at least 128K words of memory
be used. See section 13.2 for details. Beginning with of IFS 1.36, we have abandoned the practice of packaging

the code to minimize working set in a 64K configuration. Certain common operations such as FTP Store now have a
working set greater than 64K, so a server with only 64K of memory is likely to thrash very badly even under light load.

There is an Alto-II hardware modification that is recommended for machines that are to be IFSs (or
other servers requiring high reliability). This modification corrects a design bug in the memory
single-error correction. The memory chips are so reliable that the single-error correction is hardly
ever invoked; but servers that run for months at a time eventually exercise even low-probability
bugs. The modification is described in [Maxc2KIFS>MemECMod.press.

Copyright Xerox Corporation 1982

IFS Operation 5

the dialogue.

IFS now initializes the file system, an operation that takes about 2 minutes per T-80 and 7 minutes
per T-300 in the system. When the screen turns black and the cursor changes from an hourglass to
‘IFS’, initialization is complete.

The file system initially has only three directories defined: System, Default-User, and Mail. The
password for System is IFS. You should connect to the IFS using Chat, login as System (password
IFS), create some other users (by means of the Create command, described below), and change
System’s password for the sake of security.

Before putting the system into service, there are various system parameters you must set; these are
described in later sections. They include:

clock correction and server limit (section 7);

switches to enable or disable Press printing and the Boot, Name, Time, Leaf, CopyDisk, and
LookupFile servers (sections 7 and 9);

switches, default registry, and group names for Grapevine authentication and access control
(section 6);

mail system parameters (section 8);

backup system parameters (section 11).

5. Normal operation

The system is normally started simply by invoking IFS with no switches. All file system packs must
be mounted and on-line, and all Read-only switches must be turned off (including those on backup
and spare drives). It is unimportant which packs are mounted on which drives, since the software
reads each pack to discover what the system configuration is. (However, there must be no other
primary IFS packs on-line. After copying an IFS pack with CopyDisk, you should be careful to
remove the copy from the system.)

If IF'S fails to start up properly, it will call Swat with an appropriate error message. This will occur,
for example, if all necessary disk drives are not on-line. While IFS is starting up, the cursor
contains an hourglass; this changes to ‘IFS’ when startup is complete and the system is in operation.

During startup, IFS also runs a brief test of the Control RAM and S-registers, failure of which will
cause IFS not to function even though a great deal of other Alto software works correctly. IFS will
call Swat with an appropriate message if this test fails.

When IFS is started, it verifies the consistency of the directory B-Tree (unless inhibited by ‘/—V’).
Inconsistencies can result from crashes at inopportune moments when the B-Tree is in the process of
being modified, so the startup-time check is valuable in determining whether it is appropriate to run
the IFS Scavenger. The time required for the check is proportional to the number of files in the
system; it has been observed to take 2 minutes for 20,000 files.

If an inconsistency is detected, IFS will call Swat with an appropriate message. The message
‘Record count disagrees’ is relatively benign and it is reasonably safe to proceed from this (with
control-P). If you do so, it is likely that one or more files in the file system will become inaccessible and will remain
so until the next time the IFS Scavenger is run. Other possible errors include ‘Records out of order’ and
‘Malformed B-Tree record’; these are more serious and proceeding is not recommended.

Immediately after IFS starts, it will perform some other initialization operations requiring a lot of
disk activity, including obtaining and installing the network directory (name server data base) and
boot files. IFS can service user requests during this time (5 minutes or more), but performance will
be noticeably poorer than normal. :

IFS Operation 6

While IFS is running, the entire screen is black except for the cursor. The position of the cursor is
an indication of disk activity. The horizontal position indicates the disk unit most recently accessed
(unit zero at the extreme left, unit seven at the right), and the vertical position is the cylinder at
which the heads are currently positioned (zero at the top, 814 at the bottom). The cursor blinks
each time a page is transferred to or from a user file by the file server.

You can tell whether IFS is running normally by pressing the space bar. If the Alto screen flashes,
everything is in order; if not, the system has failed in some way.

There are two ways to stop the system. The normal (and cleaner) way is to connect to IFS using
Chat, log in, Enable, and issue the Halt command. The system will then refuse to admit further
users, will wait for all present users (including you) to log out or disconnect, and will return control
to the Alto Executive.

The system may also be stopped by typing Shift-Swat on the IFS Alto keyboard (the Swat key must
be pressed firmly). This aborts all active connections and returns control to the Executive
immediately; however, it may leave partially-written files lying around so it is not recommended for
normal use.

6. Directory and user group management

This section assumes that you thoroughly understand IFS’s use of Grapevine for authentication and
access control, described in the ‘How to use IFS’ document. Additionally, before beginning to
create IFS directories and groups, you should read ‘Access Controls’, file
[MaxcKIFS>AccessControls.press, for a description of the policies and procedures required to ensure
proper information security.

6.1. Setting up user directories

The IFS Executive (accessed via Chat) has several privileged commands that are available only to
users with the ‘wheel’ capability, and only after enabling this capability with the Enable command.
When you are so enabled, the Executive’s prompt is ‘1’ rather than ‘@’. While you are enabled, IFS will
not log you out automatically after three minutes of inactivity as it does normally.

The following privileged commands are defined.

! Create (directory) directory-name [new] (password) password
' sub-commands

Creates a directory with the supplied name and password. Capitalization of the name
should be precisely as the user wants to see it. Capitalization of the password is
unimportant.

If Grapevine authentication is enabled, directory-name may or may not be a fully-qualified
R-Name of the form simpleName.registry. For a local user whose registry is the same as the
IFS’s default registry, it is best to omit the .registry when creating the directory, and just use
the simpleName. However, for a user whose registry is different from the IFS’s default
registry, the directory name must consist of the full R-Name, else Grapevine authentication
won't work properly.

In general, names for files-only directories should rnot be qualified by registry (and shouldn’t
be registered in Grapevine either).

For a directory that corresponds to a Grapevine R-Name, the password you supply is
irrelevant, since IFS consults Grapevine for authentication. For a non-Grapevine name, if
you specify an empty password, then the password cannot be used to gain access to the
directory. This is useless for a login directory; but it is useful for a files-only directory to
which access is granted solely on the basis of group membership rather than on users

IFS Operation

knowing the directory’s password.

The sub-commands are used to change various parameters from their default values. These
include all the sub-commands of the Change Directory-Parameters command, described in
‘How to use IFS’, and additionally include:

1! Files-only (owner) user-name

Declares the directory to be a files-only (i.e., non-login) directory. The
user-name is the person responsible for this directory; that user is permitted
to connect to the directory without giving a password. User-name must
include a .registry part if the user’s registry is different from the IFS’s
default registry, but may be omitted if it is the same as the IFS’s default
registry.

1! Disk-limit number

Specifies the maximum number of disk pages that may be used in this
directory.

1! Wheel

Declares the user to have the ‘wheel’ capability, which permits issuing
privileged commands and bypasses all access checking and disk limits.

!! Mail

Creates a mailbox, thereby enabling IFS to receive Laurel mail for this user.
(More information about mail is presented in section 8.)

11 Group Membership (in groups) groups

1! Group Ownership (of groups) groups

1! No Group Membership (in groups) groups
1! No Group Ownership (of groups) groups

Establishes the user’s membership in or ownership of user groups. (The
Group Membership sub-command duplicates the function of the top-level
Change Group-Membership command.) Use of these commands is
meaningful only for non-Grapevine members of non-Grapevine groups.

Note that in an IFS that does not use Grapevine for access control, any
user able to log into the IFS is automatically a member of World, regardless
of the setting of the directory’s group membership. In an IFS that does use
Grapevine for access control, a user whose names is registered in Grapevine
is a member of World or not according to whether he is a member of the
IFS’s ‘World’ group, usually USRegistriest.Internet. A user whose name is
not registered in Grapevine but who is able to log into the IFS (because an
IFS directory by that name exists) is a member of World only if so
specified by use of the Group Membership command.

If directory-name already exists, you are not asked for a password but rather are sent directly
into subcommand mode. This permits modifying parameters for an existing directory. In
this context, the following additional subcommands are of interest:

1t Password password
11 Not Files-only
11 Not Wheel

IFS Operation 8

1! Not Mail

Note that to make a non-Grapevine directory unusable for login purposes, you should issue
the Password sub-command with an empty password. The top-level Change Password
command cannot be used for this purpose.

The Create command is terminated by typing two Returns in response to the ‘IV
subcommand prompt. You may cancel the entire command by typing control-C.

The default values of all parameters for new directories are copied from a dummy directory
called Default-User. When a file system is created, the default values are Not Files-only,
Not Wheel, Not Mail, and Disk-limit 1000. To change the defaults, use the Create
command to modify the parameters for the directory Default-User. ‘Not Mail’ is the default for
files-only directories, even if Default-User specifies ‘Mail’.

! Destroy (directory) directory-name [Confirm]

Destroys the specified directory. This operation includes deleting all the files contained
within it, and destroying the associated mailbox if there is one.

! Change Directory-Parameters (of directory) directory~name
! Show Directory-Parameters (of directory) directory-name

These commands work as described in the ‘How to Use’ document with the addition that
while you are enabled, you may access any directory, not just your own. Also, while you
are enabled, Change Directory-Parameters has all the sub-commands described above under
Create.

6.2. Setting up Grapevine authentication and groups

The commands in this section are used to control IFS’s use of Grapevine for authentication and
access control.

! Change System-Parameters
1Y sub-commands

Permits you to issue sub-commands to change one or more system operating parameters.
Each sub-command takes effect immediately. Sub-command mode is terminated when you
type CR in response to the ‘!’ prompt.

! Default-Registry registry

Sets the default Grapevine registry to be registry—e.g., PA, ES; etc. This
should be the registry to which the majority of the local users of the IFS
belong. Names of directories belonging to these users need not be (and
generally should not be) qualified by the registry name; but names of
directories belonging to users in other registries must be qualified by
registry name.

You should set a default registry even if you are not using Grapevine for
authentication and access control. This is to permit local users to present
their user names either with or without registry qualification.

Note: if the mail server is enabled (section 8), registry must be the same as
the mail server registry specified by the Registry sub-command of the Mail
command.

1! Enable Grapevine Authentication 1! Disable Grapevine Authentication

IFS Operation

Enables and disables IFS’s use of Grapevine for authentication. When this
is enabled, any user whose name is registered in Grapevine and who is able
to supply the correct (Grapevine) password can log into IFS. When this is
disabled, only users who have personal directories on the IFS can log in,
and they must present the password maintained by that IFS.

Before enabling Grapevine authentication, you must specify a default
registry as described above.

11 Enable Grapevine Groups !! Disable Grapevine Groups

Enables and disables IFS’s use of Grapevine for access control (group
membership checking). When this is enabled, users’ access to files is
controlled by membership in Grapevine groups, as discussed in ‘How to use
IFS’. When this is disabled, user group membership is maintained entirely
within the IFS, and is controlled by the Change Group-Membership or
Change Directory-Parameters commands.

Before enabling Grapevine group checking, you must specify a default
registry as described above, and you must associate Grapevine group names
with IFS group numbers as described below. It is probably not sensible to
enable Grapevine group checking without also enabling Grapevine
authentication.

It Group (name of group) group-number (is) group-name

Associates the Grapevine group-name with the IFS group-number, which is a
number in the range 0 to 61. The group-name must be a fully-qualified
name acceptable to Grapevine as either a real group (e.g., CSL+.PA) or a
pseudo-group (e.g., *.PA). ~

Caution: if you use this command to associate a name with a group number
that already has a name, the meanings of all existing protections that refer
to that group will be changed. For example, suppose group 3 is originally
associated with the name CSLt.PA, and some files’ protections are set to
permit reading by members of group CSLt.PA. If you then change group
3 to associate it with the name PARCt.PA, those files will become readable
by all members of PARC*.PA.

It is permissible for a group to have a name that is not registered in
Grapevine; however, such a group can only contain members whose names
are also not registered in Grapevine, and their membership must be
managed by use of the IFS Change Group-Membership and Change
Directory-Parameters commands. Consequently, this mode of use is really
suitable only for IFSs in which Grapevine group checking is disabled.

To eliminate a group’s name (i.e., make the group number no longer have a
name), use the Group command as described above, but specify an empty
group-name. That is, when IFS prompts you for the group-name and
suggests the existing one as a default, erase the existing name using CTRL-W
and then strike CR.

11 World (group is) group-name

Defines the membership of the ‘World’ group for this IFS. An appropriate
value of group-name for most IFSs at Xerox sites in the U.S. is
‘USRegistriest.Internet’. If this is unspecified or empty, any user able to
log into the IFS is considered a member of ‘World'.

Note: this restricted definition of ‘World’ is enforced only if Grapevine

IFS Operation 10

group membership checking is enabled.

6.3. Converting an existing IFS to use Grapevine

This section outlines the procedure for converting an existing IFS to use Grapevine for
authentication and access control. The general idea is to extract the existing authentication
information and group structure from the IFS and then capture this state in the Grapevine data
base. Some of the information here is also relevant when starting up a new IFS.

6.3.1. Use the Accountant program to obtain an accounts listing and a group membership summary,
as described in section 12.

6.3.2. Decide what the default registry is to be. This will usually be obvious: the Grapevine registry
of the majority of the local users of the IFS. Set this by means of the Default-Registry sub-
command of Change System-Parameters.

6.3.3. For each login (non-files-only) directory in the IFS, make sure that
‘directoryName.defaultRegistry is registered as an individual in Grapevine, and that the Grapevine
entry indeed represents the same user as the IFS directory’s owner. For most local users this will
already be the case, assuming that Grapevine is in regular use locally for mail service. (Note: you
need not take any action on the built-in directory names Default-User, Mail, and System.)

In the case of a login directory belonging to a user in another registry, you may take one of three
actions:

1. Most commonly, such a directory exists solely to give that user access to files in other
directories on the same IFS, and the user does not store any files at all on his own directory.
In this case, simply destroy the directory and instruct the user to use his own full R-Name
when logging in. If the user is a member of any IFS user groups, you should make sure
that the user’s full R-Name appears in the corresponding Grapevine groups (below).

2. If the remote user actually uses his own directory for storage of files on the IFS, you should
change the directory name to include the registry qualification. For example, if the IFS’s
default registry is PA, and user Jones.ES has a directory whose name is simply ‘Jones’ (or
‘JohnJones’ or something), then the directory’s name should be changed to ‘Jones.ES’.
Unfortunately, the only way to do this is to create a new directory, move the files from the
old directory to the new (using FTP or Brownie), and destroy the old directory.

3. This alternative is not recommended, but is sometimes workable in desperate situations. If
the result of appending the IFS’s default registry to the directory name yields an R-Name
that is not registered in Grapevine, then you can leave the directory as-is. The
disadvantages of this alternative are that the user cannot gain access to files by virtue of his
R-Name being in Grapevine groups, and the directory name may conflict with a name
registered in Grapevine in the future. Note: you may need to explicitly specifiy the directory’s
rr;_engem:np in the World group, as discussed above in the description of the Group Membership sub-command
[0) reate.

Since all registered users are able to log in under their full R-Names, ‘Guest’ accounts are no longer
needed and should be abolished. This will result in a substantial improvement in information
security. Accounts that permit automatic access by programs using compiled-in credentials should
likewise be abolished; procedures for dealing with such situations are described in the ‘Access
Controls’ memo.

6.3.4. In general, the names of files-only directories should nor be registered in Grapevine.
Ordinarily, users gain access to a files-only directory by virtue of membership in user groups
referenced by that directory’s connect protection, not by presenting the directory’s password.
However, so long as the result of appending the IFS’s default registry to the directory name yields
an R-Name that is not registered as an individual in Grapevine, the directory may be left as it is;
IFS will use local information to authenticate users’ attempts to connect to it. (If you are so

IFS Operation 11

unfortunate as to encounter a files-only directory whose name is registered in Grapevine, then either
users must use the Grapevine password to connect or you must change the name of the directory.)

6.3.5. Issue the Enable Grapevine Authentication sub-command of Change System-Parameters. IFS
will now use Grapevine for user authentication, while continuing to use local user group information
for access control.

6.3.6. You will need the cooperation of the Grapevine registry’s maintainer to perform this step.
Compare the IFS group membership information obtained in step 6.3.2 with the existing Grapevine
groups, using the Maintain program. In most cases you will find that some existing Grapevine
group is substantially the same as the IFS group, and that any discrepancies are most likely mistakes
or oversights. (This is particularly true of organization and project groups.) In such cases, adjust
the Grapevine group membership as necessary and use it for the IFS group. For the remaining IFS
groups, create new Grapevine groups with the same memberships as the IFS groups. Remember
that each name in a Grapevine group must include a registry name, even when the registry name is
the same as the IFS’s default registry.

The groups used for IFS access control should be chosen with some care. The simplest groups that
will do the job should be used. Grapevine takes a long time to check for membership in extremely
large or complex groups (e.g., SDD+.ES, which is both large and complex); this has the potential for
causing severe performance bottlenecks. In this connection, it should be mentioned that pseudo-
groups of the form “*.registry’ (e.g., *.PA, *.ES) can be checked extremely rapidly, in contrast with
groups such as AlIPAt.PA which require lengthy enumerations.

It is OK for a group to refer to other groups, but the simpleNames of those other groups must end
in ‘¢’, else they won’t be expanded by Grapevine when checking for group membership. (However,
it is not required that the top-level group name contain ‘4’)

Now use the Group sub-command of Change System-Parameters to associate the chosen Grapevine
group names with the in-use IFS group numbers. Again, each group name must be a full R-Name,
including registry.

You should do this step carefully to ensure that you have captured in Grapevine the existing IFS
group structure, because step 6.3.8 will invalidate and destroy the IFS group structure.

6.3.7. Decide on a definition of the ‘World’ group. This controls access to all files (both existing
and new) whose protections specify ‘World’—which is to say, all files accessible to Guest in IFSs
that have had Guest accounts until now.

‘World’ is intended to be an all-encompassing group that permits limited access to public files by all
authentic users. The main reason for restricting ‘World’ membership is to satisfy U.S. technology
export regulations. Several non-U.S. Grapevine registries are now being established, and foreign
access to U.S. information is expected to be conducted through more formal and controlled
channels. (This topic is discussed in detail in the ‘Access Controls’ memo.)

Therefore, the definition of ‘World’ appropriate for most IFSs in the U.S. is a special group called
USRegistriest.Internet, which includes all members of all U.S. registries. Certain IFSs may choose
to adopt a more restricted group for ‘World’. Note that a user who is not a member of an IFS’s ‘World’ group
can still be a member of other of that IFS’s groups and can access files whose protections mention those groups.

Use the World sub-command of Change System-Parameters to set the name of the IFS’s ‘World’
group.

6.3.8. Issue the Enable Grapevine Groups sub-command of Change System-Parameters. The
conversion to Grapevine is complete.

6.3.9. You may now delete all user directories that have disk limits of zero. Such directories
presumably exist solely to give the users access to other directories on the IFS; since authentication
and access control are now done using Grapevine, these directories are no longer needed.
Exception: directories that have special capabilities (‘Mail’ or “‘Wheel’) should nor be deleted, as

’

IFS Operation 12

these capabilities are remembered only by the IFS and not by Grapevine.

It is worth mentioning the measures IFS takes to prevent Grapevine from becoming a bottleneck
and to enable continued service if all Grapevine servers become unavailable. When a user first logs
in or first attempts to access a file in a way that requires membership in some group, IFS interacts
with Grapevine in whatever ways are necessary and remembers the result. This means that
subsequent logins or file accesses involving the same group membership do not require any
interaction with Grapevine.

The Grapevine information that IFS remembers locally is invalidated after 12 hours; this prevents
IFS from getting more than 12 hours out of date with respect to Grapévine. Furthermore, IFS
remembers only successful user accesses, not unsuccessful ones. This means that when a new
Grapevine R-Name is created for a user, or a user is added to a Grapevine group used for access
control by IFS, the changes have an immediate effect on the user’s access to IFS. However, when
an R-Name or group member is removed, IFS may continue to allow access on the basis of the
obsolete information for up to 12 hours.

Finally, if Grapevine becomes inaccessible for an extended period, IFS will continue to use its
remembered Grapevine information indefinitely.

7. Other privileged commands
! Disable

Leaves enabled mode (the Executive’s prompt reverts to ‘@’).
! Halt

Stops IFS and returns control to the Alto Executive as soon as all present users (including
you) log out or disconnect. If any Leaf connections are active, there may be a delay of
several minutes before the connections are broken and IFS halts.

! Show Printing-requests (for user) user
! Cancel (printing requests) (for user) user

If you type just RETURN in place of user, these commands will run through all printing
requests for all users.

! Change System-Parameters
W sub-commands

Permits you to issue sub-commands to change one or more system operating parameters.
Each sub-command takes effect immediately. Sub-command mode is terminated when you
type CR in response to the ‘I prompt.

The following sub-commands have permanent effects that survive restarts of IFS. (The
permanent information is kept in file <System>Info!l in the IFS’s primary file system.)

1 Clock-Correction correction

Sets the software clock correction, which is specified as a sign (+ or —)
followed by a decimal number. This causes the Alto clock to run faster
(+) or slower (=) than its nominal rate by that number of seconds per day.
Alto clocks are quite stable but not particularly accurate, and software
correction is desirable in a server that runs continuously for long periods of
time.

The amount by which the clock should be corrected may be determined by
comparison with an accurate reference over a period of several days (using

IFS Operation

13

the IFS Executive’s ‘DayTime’ command), or by use of an accurate
frequency counter to measure the Alto system clock (slot 5 pin 63 on an
?lto-l, slot 13 pin 63 on an Alto-II) and computing the correction by the
ormula

¢ = 86400 * (1 — f / 5880000)
where f is the frequency in Hz.
1t Server-Limit n

Limits the number of simultaneous server processes (FTP, Chat, and Mail
combined) to n. At present, n may be as high as 6 on an Alto with 64K of
memory, 8 with 128K, and 10 with 192K or more; the default Server-Limit
is one less than the absolute maximum. See section 13.2 for information on
setting this parameter properly.

1! Enable Press-printing 1! Disable Press-printing

11 Enable CopyDisk-server 1! Disable CopyDisk-server
11 Enable Boot-server 11 Disable Boot-server

1! Enable Name-server 11 Disable Name-server

1! Enable Time-server 1! Disable Time-server

11 Enable LookupFile-server 11 Disable LookupFile-server

Enables and disables the Press printing facility and various servers (the FTP
server is always enabled, and the mail system is controlled by subcommands
to the Mail command). When a file system is created, all the servers are
disabled.

1! Enable New-boot-files 11 Disable New-boot-files

This controls the operation of the automatic boot file maintenance
mechanisms, and is relevant only if the boot server is enabled. If New-
boot-files is enabled, IFS will obtain and maintain copies of all boot files
available from any other boot servers on the same Ethernet. If New-boot-
files is disabled, IFS will maintain only those boot files that it already has.
When a file system is created, New-boot-files is enabled.

11 Enable Leaf-server 1! Disable Leaf-server

Enables and disables the Leaf page-level access server (see section 9.4). The
Enable command does not take effect until IFS is next restarted, unless IFS
was last restarted with the /L switch. Similarly, the Disable command does
not free resources consumed by the Leaf server until IFS is next restarted.
When a file system is created, the Leaf server is disabled.

The following sub-commands have one-time-only effects.

1! Disable Logins

Disallows further user access to the system. This is useful during debugging
and while reloading the file system from backup.

1! Enable Logins
Cancels the effect of Disable Logins.
!! Reset-Time

Causes IFS to reset its clock from a time server on the directly-connected

IFS Operation 14

Ethernet. This operation is performed once automatically, immediately
after IFS restarts,

8. Mail system

IFS contains a mail server that is compatible with Laurel and the Grapevine message system. IFS
can keep in-boxes for users of that system and can also forward mail to mail servers in other
Grapevine servers, IFSs, and Maxc.

If your IFS is in the Xerox Research Internet and you wish to operate a mail server, you should first
consult the network support organization <NetSupport. WBST> to obtain useful advice. A mail server
must be assigned a registry name that is distinct from the name of the IFS Alto itself. An IFS can
be either a self-contained registry or an adjunct to a Grapevine registry.

To enable a user to receive mail, issue the Mail subcommand of the Create command, as described
previously. Of course, if you turn on the Mail capability for Default-User, then all new user
accounts you create subsequently will have Mail capability automatically.

When mail is received from a user mail program such as Laurel, it is queued briefly in files named
‘{MaiDNew>Mail!*, A process called MailJob then wakes up and distributes the messages to
individual in-boxes, which are files named ‘\Mail>Box>user-name!l’. When a user retrieves the mail
from his in-box, the in-box file is reset to empty. If you disable the mail capability for a user who has mail
pending in his in-box, the in-box file will be deleted next time it is read.

The MailJob process also forwards mail to other mail server hosts. Specifically, messages addressed
to user.registry, where registry is the name of some other mail server, will get forwarded to that
server by the Mailer process. While being forwarded, such messages are queued in files named

‘Mail>FwdDregistry’. If registry maps to multiple addresses, as does ‘GV’ and other Grapevine registries, then the
Mailer will try each of those addresses, closest first, until it succeeds in delivering the messages.

When a file system is first created, the mail system is disabled. You should set the enable switches
and configure the mail system using the commands below.

8.1. Mail system commands

The mail system is controlled by a command processor which is entered via the privileged Mail
command to the IFS Executive. The commands that change parameters take effect immediately and
survive restarts of IFS.

* Enable (mail) System * Disable (mail) System
* Enable (mail) Forwarding * Disable (mail) Forwarding

Enables and disables the mail system. The first command turns on and off the mail
system as a whole; the second command enables or disables forwarding of mail to
other mail servers.

* Dead-letter (recipient name) name

Specifies the name of the in-box to which notification of mail system problems (e.g.,
undeliverable messages with no return address) should be directed. Name may be
the name of an in-box on this IFS or (if forwarding is enabled) the fully-qualified
name (‘user.registry’) of a recipient on some other server. If the IFS has access to a
Grapevine server, ‘DeadLetter MS’ is a good value for name.

* Distribution-lists (directory name) name

Specifies the name of the directory that holds distribution lists (extension ‘.dl’) that
are to be remotely accessible via the mail server. Name must not be enclosed by <’

IFS Operation

15
and *’; that is, if you keep distribution lists as ‘{System>DLs>*.dlI’, you should
specify ‘Distribution-lists System>DLs’.

This mechanism is used to keep distribution lists only for non-Grapevine registries.
For Grapevine registries, distribution lists (groups) are maintained exclusively by
Grapevine, even if IFS keeps some of the mailboxes for that registry.

If name is empty, the distribution list retrieval mechanism is disabled.

* Grapevine (server name) name

Specifies the name of a Grapevine server (ordinarily ‘GV’). Mail to a user at a
remote registry is forwarded to name. Mail to a user whose registry maps to this
IFS or matches the registry system parameter, but for which no local mailbox exists,
is forwarded to name. If name is empty, mail for a remote user is forwarded to its
registry, and in the second case is returned as undeliverable.

* Registry (we are part of) name

* Status

Specifies the name of a Grapevine registry to which this IFS belongs. Mail to a
user whose registry matches name is treated as if the recipient’s mailbox is local. If
no local mailbox exists and a Grapevine name has been specified, then the mail is
forwarded there. If name is empty then this IFS’s registry name is determined by
looking up its machine address (mail server socket 7). Note: if Grapevine
authentication is enabled, name must be the same as the default registry established
by the Default-Registry sub-command of Change System-Parameters.

Gives the current status of the mail system, and a summary of mail server operating
statistics covering the interval since the file system was created or last reloaded.
Statistics are kept on five items; for each item three things are recorded: ‘Samples’,
the total number of times a statistic for that item was recorded; ‘Avg’, the average
v?‘lutelz'1 of the statistic; and ‘Histogram’, an eight slot, logarithmically scaled histogram
of the values.

Length (characters)

This is the length of a message received by the mail server, including
header text. A message with multiple recipients is counted once in this
statistic.

Recipients

This is the number of recipients (“To:’ plus ‘cc:’) of a message received by
the mail server.

Sort delay (sec)

This is the time between receiving a message and appending copies to local
in-boxes or queueing copies for forwarding. It is recorded once for each
local recipient and once for each remote mail site.

Fwd delay (sec)

This is the time between queueing a message for a remote mail server and
successfully delivering it to that server. The statistic is recorded once for
each message forwarded, even if the message is addressed to multiple
recipients at the given remote server.

IFS Operation 16

Retrieve delay (min)

This is the time between the mail system’s appending a copy of a message
to a local in-box and the owner’s retrieving it

If any messages have been discarded by the mail system, the number of occurrences
will be displayed. A message is discarded when it can’t be delivered to a recipient
and it can’t be returned to its sender and it can’t be delivered to the dead letter
destination. This is an indication of serious trouble.

* Reset (mail statistics)

Resets the mail statistics, which are kept continuously and ordinarily survive restarts
of IFS.

IFS Operation 17

9. Other servers

IFS contains various servers that provide essential services to other hosts on the directly-connected
Ethernet. These include the ‘miscellaneous’ servers (principally boot, name, and time), the Leaf
page-level access server, the CopyDisk server, and the LookupFile server.

The boot, name, and time server functions duplicate those provided by gateway systems, so in a
network with at least one gateway, it is not necessary for IFS to provide these services. But in a
network that includes an IFS and no gateways, it is necessary for the IFS to provide the services.
Even in networks that do have one or more gateways, running the IFS miscellaneous servers may be
advantageous in that the availability of the services is improved. (Also, it should be noted that the
IFS boot server is noticeably faster than the boot servers of existing gateway systems.)

Since running the miscellaneous servers may slightly degrade the performance of an IFS in its
principal functions, means are provided to turn them off (the Change System-Parameters command,
described in section 7). When a file system is first created, all the miscellaneous servers are
disabled. '

IFS participates in the protocols for automatic distribution and maintenance of the date and time,
the network directory, and the common boot files. When IFS is started up for the first time, and
thereafter whenever any changes are distributed, IFS obtains all necessary files from neighboring
servers (gateways or other IFSs). The name server data base is maintained even if the IFS name
server is disabled, because IFS requires it for its own internal purposes (principally mail forwarding).

9.1, Name server

The name server data base is kept as file ‘<System>Pup-network.directory’; a new version is created
and older versions deleted whenever a new file is distributed. If there are no other name servers on
the directly-connected Ethernet, you must use the BuildNetworkDirectory procedure to install new
versions of the network directory.

9.2. Boot server

The boot files are kept in files ‘<System>Boot>number-name.boot’, where name is the name of the
boot file and number is its boot file number in octal (for example, System>Boot>4-CopyDisk.boot’).
Standard boot files have centrally-assigned boot file numbers less than 100000 octal, and are
distributed automatically. Non-standard boot files have boot file numbers greater than or equal to
100000 octal and are not distributed automatically.

Ordinarily, IFS will obtain and maintain its own copy of all standard boot files maintained by any
other boot server on the same Ethernet. This is the appropriate mode of operation for most boot
servers. However, in some situations it is desirable for an IFS boot server to maintain only a subset
of all available boot files. The Disable New-boot-files sub-command of Change System-parameters
may be used to enter this mode; subsequently, IFS will not obtain any new boot files, but will
continue to maintain and update any boot files that it already has. Additionally, boot files with numbers in
the range 40000 to 77777 octal will always be managed in this fashion, regardless of the setting of the New-boot-files
switch. Also, a boot file will not participate in the update protocol if it has a different number than the correspondingly-
named boot file in other boot servers. By this means, special versions of standard boot files may be maintained on
particular servers without interfering with the update of the standard versions on all other servers.

You may install or delete boot files by manual means (e.g., FTP), keeping in mind the file name
and boot file number conventions described above.

Additionally, the boot server supports the MicrocodeBoot protocol, used to boot-load microcode on
Dolphins and Dorados. The microcode files use a different numbering scheme from normal boot
files. For purposes of boot file update, microcode file number n is assigned boot file number
3000B+ n.

IFS Operation 18

The boot server is also capable of boot-loading Sun workstations. The Sun boot protocol identifies
boot files by name rather than by number. However, Sun boot files must still be assigned numbers
to control the boot file update process, as described previously. Users need not mention these
numbers when invoking boot files.

The various boot protocols are documented in [Maxc]<Pup>EtherBoot.press.

9.3. Time server

You should not enable the time server unless you have first calibrated and corrected the Alto clock,
using the procedure described in section 7.

9.4. Leaf server

IFS contains a server for the ‘Leaf page-level access protocol, which permits random access to parts
of IFS files as opposed to the transfer of entire files. There are several user programs that take
advantage of this capability, though these programs are still experimental and not widely available.

At present, the Leaf software is being made available on a ‘use at your own risk’ basis. While it is
included in the standard IFS release, it is enabled only on some file servers. Leaf was developed by
Steve Butterfield, and is presently maintained by Ted Wobber <Wobber.PA> rather than by Taft and
Boggs, who are responsible for the remainder of the system. Inquiries and trouble reports
concerning the use of the Leaf server should be directed to Ted.

For performance reasons, the Leaf server should not be enabled in an IFS that also supports heavy
FTP, Mail, CopyDisk and Telnet traffic, and the IFS Alto should have at least 192K of memory.

The Leaf server is enabled and disabled by sub-commands to the Change System-parameters
command (section 7). However, for the Leaf server, the IFS software has to do a substantial amount
of memory management at startup time which is impractical to perform during normal operation.
Therefore, the Enable/Disable Leaf-server commands do not take effect immediately but rather are
deferred until the next restart of IFS. More precisely, the Enable Leaf-server command is deferred
until the next restart unless Leaf was already enabled at the last restart or IFS was last restarted with
the /L switch. The Disable Leaf-server command takes effect after a delay of at most 3 minutes,
but memory resources consumed by the Leaf server are not reclaimed until the next restart of IFS.

9.5. CopyDisk server

IFS contains a server for the CopyDisk protocol, which permits one to copy disks to and from an
IFS. A CopyDisk server is equivalent to an FTP, Mail or Telnet server when deciding whether to
create an IFS job in response to a request-for-connection. The load placed on the system by a
CopyDisk job is about the same as an FTP job, except that transfers between disk and net will
typically last much longer (minutes rather than seconds).

The CopyDisk server is enabled and disabled by sub-commands to the Change System-parameters
command (section 7).

9.6. LookupFile server

The LookupFile server provides a means of verifying the existence of a file and determining its
creation date and length, using a protocol that is substantially less expensive than either FTP or
Leaf. Unlike FTP or Leaf, this server provides information to unauthenticated clients. If available,
this server is used heavily by the file cache validation machinery in Cedar, with performance
considerably better (and imposing less load on the server) than the corresponding operation
performed via FTP.

IFS Operation 19

The LookupFile server is enabled and disabled by sub-commands to the Change System-parameters
command (section 7). The LookupFile protocol is documented in [MaxcKPup>LookupFile.press.

10. Adding packs to the file system

The capacity of an existing file system may be increased by adding more packs to it. This may be
accomplished by the following procedure.

Initialize and test a pack using ‘TFU Certify’ in the normal fashion (section 3). Then, with IFS
running, mount that pack on any free drive and issue the command:

! Extend (file system) Primary (by adding drive) d[Confirm]

‘Primary’ is the name of the file system you are extending, and d is the drive on which the new pack
is mounted. IFS now initializes this pack, an operation that takes about 2 minutes for a T-80 and 7
minutes for a T-300. When it completes, the new pack has become part of the file system.

Note that there is no corresponding procedure for removing a pack from a file system. To decrease
the number of packs in a file system, it is necessary to dump it by means of the backup system,
initialize a new file system, and reload all the files from backup. This procedure is also required to
move the contents of a file system from T-80 to T-300 packs.

Note also that adding packs to a file system does not increase the amount of directory space
available. The size of the directory is determined when you first create the file system; there is no
straightforward way (short of dumping and reloading) to extend it. (More precisely, while the
software will attempt to extend the directory automatically if it overflows, this will significantly
degrade subsequent performance, and too many such extensions will eventually cause the system to
fail entirely.) Therefore, it is important that you allocate a directory large enough for all expected
future needs. Experience has shown that 1000 directory pages are required for every 25,000 files in
the file system, but this is highly dependent on a number of parameters including average file name
length.

11. Backup

There are three facilities available for assuring reliability of file storage and for recovering from
various sorts of disasters.

The first facility is the IFSScavenger program. It is analogous to the standard Alto Scavenger
subsystem. It reads every page in the file system, makes sure that every file is well-formed, and
checks for consistency between files and directories. For safest operation, it should be run after
every crash of the IFS program. However, since it takes a long time to run, in practice it should
only be run when major file system troubles are suspected (in particular, when IFS falls into Swat
complaining about disk or directory errors). The IFSScavenger is described in a separate memo,
available as <IFS>IFSScavOp.Bravo (or .Press) on Maxcl.

The second facility is an on-line incremental backup system that is part of the IFS program itself. It
operates by copying files incrementally to a backup file system (ordinarily a single disk pack)
mounted on an extra drive. The file system is available to users while the backup operation is
taking place (though backup should be scheduled during periods of light activity to avoid serious
performance degradations). Use of the incremental backup system requires that there be an
additional disk drive connected to the Alto, over and above the drives needed for the primary file
system itself. The backup system is described in the next section.

The third facility is the CopyDisk program. To back up the file system, one must take IFS down
and copy each of the file system packs onto backup packs. On a machine with multiple disk drives,
one may copy from one drive to another, an operation that takes about 4 minutes per T-80 and 15
minutes per T-300 if the check pass is turned off. One may also copy disks over the Ethernet to

IFS Operation 20

another Alto-Trident system, but this takes about five times as long.

At PARC we use the Scavenger and the Backup system; we no longer use CopyDisk for backing up
IFS. Regular operation of either the Backup system or CopyDisk is essential for reliable file storage.
We have observed several instances of Trident disk drive failures that result in widespread
destruction of data. It is not possible to recover from such failures using only the IFSScavenger: the
IFSScavenger repairs only the structure of a file system, not its contents.

11.1. Backup system operation

The backup system works in the following way. Periodically (e.g., every 24 hours), a process in IFS
starts up, checks to make sure a backup pack is mounted, and sweeps through the primary file
system. Whenever it encounters a file that either has never been backed up before or was last
backed up more than n days ago (a reasonable n is 30), it copies the file to the backup pack and
marks the file as having been backed up now. Human intervention is required only to change
backup packs when they become full.

The result of this is that all files are backed up once within 24 hours of their creation, and thereafter
every n days. Hence every file that presently exists in the primary file system is also present on a
backup pack written within the past n days. This makes it possible to re-use backup packs on an n-
day cycle.

Operation of the backup system has been made relatively automatic so as to permit it to run
unattended during the early morning hours when the number of users is likely to be small. This is
important because system performance is degraded seriously while the backup system is running.

11.2. Initializing backup packs

To operate the backup system, you need a disk drive and some number of packs dedicated to this
purpose. The number of packs required depends on the size of your primary file system, the file
turnover rate, and the backup cycle period n. The packs should have their headers and labels
initialized using ‘TFU Certify’ in the normal fashion (section 3). Then they must each be initialized
for the backup system as follows.

With IFS running, mount a backup pack on the extra drive. Connect to IFS from some other Alto
using Chat, log in, enable, issue the Initialize command, and go through this dialogue:

! Initialize (file system type)
Answer ‘Backup’.
Do you really want to create a file system?
Answer ‘y’.
Number of disk units:
Answer ‘1’
Logical unit 0 = Disk drive:
Type the physical unit number of the drive on which the backup pack is mounted.
File system ID: only
Type some short name that may be used to uniquely identify the pack, e.g.,

‘Backupl’, ‘Backup2’, etc. No spaces are permitted in this identifier. It should be
relatively short, since you will have to type it every time you mount the pack. (You

IFS Operation 2]

should mark this name on the pack itself, also.)
File system name: ‘

Type some longer identifying information, e.g., ‘Parc IFS Backup 1’, or ‘Serial
number xxxx’, or something.

Directory size (pages):
Type RETURN. (The default of 1000 pages is plenty.)
Ok? [Confirm]

Answer ‘y’ if you want to go ahead, or ‘n’ if you made a mistake and wish to repeat
the dialogue.

IFS now initializes the backup file system, an operation that takes about 2 minutes for a T-80 and 7
minutes for a T-300. The message ‘Done’ is displayed when it is finished.

11.3. Setting backup parameters

The next step is to set the backup parameters, an operation that generally need be done only once.
Issue the Backup command to enter the backup system command processor (whose prompt is “*),
then the Change command. It will lead you through the following dialogue:

* Change (backup parameters)
Start next backup at:

Enter the date and time at which the next backup run is to be started, in the form
‘7-Oct-77 02:00°.

Stop next backup at:

Enter the date and time at which the next backup run is to stop if it has not yet
completed, e.g., 7-Oct-77 05:00°.

Interval between backup runs (hours):
Type 24’
Full file system dump period (days):

Enter the number of days between successive backups of existing files (the
parameter n above). A good value is 30.

The backup system command processor is exited by means of the Quit command in response to the
“** prompt.
11.4. Normal operation

The following commands are used during normal operation. All of them require that you first
Enable and enter the backup system command processor by means of the Backup command.

* Status

Prints a message describing the state of the backup system. It will appear
something like:

IFS Operation

22

Backup system is enabled and waiting.

Backup scheduled between 7-Oct-77 02:00 and 7-Oct-77 05:00
File system Backupl is available to backup system.

73589 free pages.

‘Enabled’ means that at the appropriate time the backup system will start up
automatically; the opposite is ‘disabled’. The backup system becomes enabled when
you mount a backup pack (see Mount command, below), and disabled when the
backup ﬁiﬂstem can no longer run due to come condition such as the backup pack
being .

‘Waiting’ means that the backup system is not presently running; the opposite is
‘running’. When it is running (or has been interrupted in the middle of a backup
run for whatever reason), it will display an additional message of the form:

Presently working on file filename
as an indication of progress (files are backed up in alphabetical order).
The last lines display the status of the current backup pack (assuming one has been
mounted. If several backup packs have been mounted, they will all be listed.) The

possible states are ‘available’, ‘presently in use’, and ‘no longer usable’. In the last
case, the reason for the non-usability is also stated, e.g., ‘Backup file system is full’.

* Enable (backup system)
* Disable (backup system)

Enables or disables running of the backup system. If Disable is issued while the
backup system is actually running, it will stop immediately (within a few seconds).
These commands are not ordinarily needed, because an Enable is automatically
executed by Mount (see below) and a Disable is executed when the backup system
finds that there are no longer any usable backup packs. The backup system also stops

automatically if IFS is halted by the Halt command, but it is not disabled and will resume running
when IFS is restarted.

* Mount (backup file system) name

Makes a backup pack known to the system. name is the file system ID of the
backup pack (e.g., ‘Backupl’). The pack must be on-line.

If the file system is successfully mounted, a message appears in the form:

Backup1 (Parc IFS Backup 1),
initialized on 6-Oct-77 19:32, 273 free pages.
Is this the correct pack? [Confirm]

If this is the pack you intend to use, you should answer ‘y’. Then:
Do you want to overwrite (re-initialize) this pack? [Confirm]

Normally you will be mounting a backup pack that has either never been used
before or was last used more than n (e.g., 30) days ago. In this case you should
answer ‘y’. This will cause the backup pack to be erased (destroying all files stored
in it) at the beginning of the next backup run.

If, however, you are re-mounting a partially-filled backup pack that was removed
for some reason, you should answer ‘n’. The backup system will then not erase the
backup pack but rather will simply copy additional files to it.

* Dismount (backup file system) name

IFS Operation 23

Makes a previously mounted backup pack unavailable to IFS. This command may
be issued) only while the backup system is disabled (use the Disable command if
necessary).

The normal operating procedure is very simple. Every day, issue the Enable and Backup commands
to enter the backup system command processor, then issue the Status command. The status will
indicate one of the following conditions:

1. ‘Enabled and waiting’, with one or more packs ‘available to backup system’. In this case you
need not do anything.

2. ‘Disabled and waiting’, with one pack ‘no longer available to backup system’ because ‘Backup
file system is full’. In this case, you should remove the backup pack, install another one
(making sure it was last used more than n days ago), and declare it to IFS by means of the
Mount command (above).

3. ‘Disabled and waiting’, with some other condition (e.g., ‘Can’t find logical unit 0°). You
should correct the condition (most likely the required pack wasn’t mounted at the time the
backup system last started to run), then issue the Mount command as above.

When done, issue the Quit command to exit the backup system command processor. It is a good
idea to keep a record of the dates on which each backup pack was mounted and dismounted so that
you know when a pack is available for re-use.

11.5. Restoring individual files from backup; listing backup files

Individual files may be restored from backup in the following manner. It is not a good idea to do
this while the backup system is running.

Install the desired backup pack on any free drive. Issue the Enable and Backup commands to enter
the backup command processor. Then go through the following dialogue:

* Restore (from backup pack) name
name (long-name) mounted
Restore: file-designator

The name is the File system ID of the backup pack (e.g., ‘Backupl’). In response to ‘Restore:’, type
. the name of a file to be restored. “*’s are permitted, and the default version is ‘1*. The name of
each file is typed out as it is restored.

When all files matching file-designator have been restored, IFS will again prompt you with ‘Restore:’.
You may either restore more files (from the same backup file system) or type RETURN to indicate
that you are finished. '

Files are restored from the backup system with precisely the attributes (version number, reference
dates, etc.) they had when backed up. If a file already exists in the primary file system, IFS will
refuse to overwrite it unless the version in the backup file system is newer.

It is also possible to examine the directory of a backup pack (or, indeed, any IFS file system you
can mount in its entirety) by means of the following commands:

* OnLine (file system) name
name (long-name) mounted

Makes the secondary file system name available for use by the commands described
below. If some other file system was already put on-line by a previous OnLine
command, it is first put off-line.

* List (files) file-designator

IFS Operation 24

This command is identical to the standard top-level List command (with all its sub-
commands), but applies to the secondary file system most recently specified in an
OnLine command rather than to the primary file system.

* OffLine

Makes unavailable the file system most recently specified in an OnLine command.
This operation is performed automatically if you exit the Backup command by Quit
or control-C.

After doing an OnLine, you may issue as may List commands as you want; control remains in the
Backup command (unless you abort by control-C), and the secondary file system remains on-line. A
Restore command will use the current secondary file system if there is one, and will automatically
put it off-line when it is finished.

You must issue OffLine or an equivalent command before turning off the drive on which the
secondary file system is mounted. Failure to do so will cause IFS to fall into Swat.

11.6. Reloading the entire file system from backup

If the primary file system is clobbered in a way that the Scavenger can’t repair, the following
procedure may be used to recreate it from backup. If performed correctly, this procedure will
restore the primary file system to its exact state at the time of the most recent backup run.

11.6.1. Complete reload

First, re-initialize the primary file system as described earlier (section 4). Then connect to IFS from
another Alto using Chat, login as System (password IFS), and issue the Enable command. It is

advisable at this point to disable logins with the Disable Logins sub-command of the Change System-parameters command
so as to prevent users from accessing the file system while you are reloading it

Mount (on any free drive) the most recent backup pack, i.e., the one most recently written on by the
backup system (this is very important). Then:

* Reload (file system)

Reload the entire file system? [confirm] yes
Note: mount the LAST backup pack first.
Mount backup pack: name

The name is the ID of the backup pack you have mounted. IFS will now proceed to restore files
from the backup pack to the primary file system. When it is done, it will again ask you to ‘Mount
backup pack:’, at which point you should mount the next most recent backup pack. Repeat this
procedure until you have mounted all packs written within the past n days. When you are done,
type control-C to terminate the reload process.

IFS will list out the files as they are restored. (To disable the pause at the end of each page, type
ahead one space.) You will notice that not all files are restored. In particular:

Files that were backed up at some time but no longer existed at the time of the last backup
are not restored. (The listing will say such a file is ‘deleted’.)

Files already restored from a more recent backup are not restored from an earlier one. (The
listing will say ‘already exists’.)

It is important to understand the difference between Restore and Reload. Restore simply copies the
specified files from the backup pack to the primary file system. Reload, on the other hand, attempts
to recreate the state of the primary file system as of the most recent backup. To this end, Reload
will restore only those files that actually existed at the time of the most recent backup run, and will

IFS Operation 25

skip files that once existed (and were backed up) but were subsequently deleted.

It is essential that the last backup pack be reloaded first. Failure to heed this instruction will cause
some files not to be reloaded that should have been, and vice versa. If the reload is interrupted for
any reason and must be restarted, you must again start by reloading the last backup pack (even
though all files from that pack may have been reloaded already), and then skip to the pack whose
reload was interrupted. This is because the decision whether or not to reload each file is made on
the basis of the last state of the file system as recorded on the most recent backup pack.

Reloading the file system restores all system and backup parameters to their former state, so long as
the System directory is one of those restored. If you are using the backup system to move files en
masse from one file server to another, you should check to make sure that the system parameters
that are restored are suitable for the new system. Also, after completing a reload, it is necessary to
halt and restart IFS to ensure that all system parameters take effect.

11.6.2. Partial reload

Ordinarily you should answer ‘yes’ to the question ‘reload the entire file system?. However, there
are situations when you might wish to reload only some of the directories, such as when moving a
group of users’ files from one IFS to another. The easiest way (though not the only way) to
accomplish this is to reload those directories from the original IFS’s backup packs onto the new IFS.

If you answer ‘no’ to ‘reload the entire file system?’, IFS will ask you to type in the names of the
directories to be reloaded, separated by spaces and terminated by RETURN. You should type these
names carefully, as they are not being error-checked by IFS and there is no way to go back and
make a correction. (Do not type angle brackets around the directory names.) After you type
RETURN, the remainder of the reload process will take place as described above, but only the
directories you specified will be restored and the rest will be skipped. .

11.6.3. Reloading damaged files

When the IFSScavenger is run to repair a broken file system, it may find one or more files whose
contents are damaged. The IFSScavenger is capable of repairing only the file system’s structure, not
its contents. When it detects a damaged file, it marks the file as being damaged, sets the file’s
protection to empty so as to discourage access by users, and puts an error report in the
IFSScavenger.og file. (Certain kinds of damage cause the file to be deleted altogether; this is also
noted in the log file.)

When only a few files are damaged or deleted, the easiest recovery procedure is to restore them
individually using the Restore command described in section 11.5. But when many files are
involved, it is better to use the following procedure, which is relatively automatic but quite time-
consuming.

The procedure is simply to use the Reload command described in section 11.6.1, but without first
initializing the file system. Reload will consider all the files on all the backup packs you mount
(starting with the most recent one), but will copy only those files that are either damaged or missing
in the primary file system. This procedure may be carried out while the file server is available to
users.

Note that this operation will also reload copies of any files that were deliberately deleted by users
- since the most recent run of the backup system. This is because the Reload process has no way of
determining whether a missing file was deleted by a user or by the IFSScavenger. After completing
this procedure, you should warn users that recently-deleted files may have been resurrected.

IFS Operation 26

11.7. Repeating backup runs

It may happen that you want to repeat one or more of the most recent backups—say, because the
current pack suffered hard errors or irreparable damage, and you wish to repeat the backup of the
affected files onto a fresh backup pack. This is controlled by the following commands:

* Repeat (backups later than) date

During the next run of the backup system, IFS will back up all files that were last backed up more
recently than date, in addition to the files it normally backs up.

* Don’t Repeat (backups)

Cancels the Repeat command. The Repeat command is also cancelled automatically upon successful
completion of a backup run.

12. Accounting

Accountant.run is a program which collects accounting and administrative information from a
running IFS. It retrieves copies of all of the Directory Information Files (DIFs) from a running
IFS and produces a text file containing per-directory and system-wide information.

In order to run Accountant, you must be a wheel, since the DIFs which Accountant reads are
protected. Note that you run this program on some other Alto, not on the IFS Alto.

When first started up, Accountant asks you for the name of the IFS that it is to connect to. It then
asks three questions: ‘Generate accounts listing?’, ‘Generate group membership summary?”, and
‘Generate disk usage listing?; for each one, if you answer ‘yes’ then it requests an output file name
(on your local Alto disk). It then connects to the IFS and produces the requested output.

An accounts listing consists of the names and attributes of all directories in the system, including
disk page limit and current usage. At the end of the listing are the totals of page limits and current
usages.

A group membership summary shows the memberships of each of the IFS user groups. This
information is valid only for non-Grapevine members of non-Grapevine groups. The group
membership summary is useful in managing an IFS that does not use Grapevine for access control,
and is also useful when converting an existing IFS from non-Grapevine to Grapevine access control.
Additionally, the summary includes, for each group, a list of directories whose connect, create, or
default file protections refer to the group; this is useful in determining what a group is used for and
whether it is still in active use.

A disk usage listing includes, for each directory, the number of files and pages accounted for by
‘old’ versions (all but the most current version of files for which multiple versions exist) and a
histogram of time since most recent access. This information is useful for discovering obsolete files
and directories.

The accounts listing and group membership summary are generated fairly quickly—15 minutes or so
for a large IFS (4 T-300 disks). The disk usage listing takes a long time—2 to 3 hours for a large
IFS. All three listings can be generated simultaneously; however, due to peculiarities of the FIP
protocol, generating a disk usage listing at the same time as either or both of the others is likely to
take longer than generating them separately.

IFS Operation 27

13. Miscellaneous

13.1. Disk pack identification

If you forget the ID of some Trident pack (e.g., a backup pack), there is no way to ‘Mount’ it for
the backup system. This is why it is a good idea to mark the ID on the pack itself (not on its
plastic cover, which is interchangeable with other packs). A good place to mark it is on the plastic
ring on the t&p of the pack. Do not affix a paper label: it will fly off and destroy the heads, the
pack, or both.

There is, however, a command for finding out vital information about a pack. It is:
! What (is the pack on drive) d

where d is a drive number. If the pack is an IFS pack (primary or backup), this command will print
out the vital parameters, including the ID. If the pack is not an IFS pack, it will say so.

13.2. Sofiware performance

The IFS software strains the Alto’s capacity severly, particularly with respect to main memory. In
combination with certain deficiencies of the BCPL runtime environment, this can lead to rather poor
performance (in particular, excessive disk thrashing) when there are more than a few simultaneous
users of the system.

Also, there are times when certain data structures and code segments cannot be swapped out. It is
possible for the system to deadlock if all of memory is occupied by such immovable objects. The
symptom of this is that IFS ceases to respond to requests for service, the Alto screen looks normal
(black with ‘IFS’ in the cursor), and the screen does not flash when you press the space bar. The
possibility of deadlocks is the principal reason for imposing a limit on the number of simultaneous
server processes. To make things worse, deadlocks frequently occur during major changes to the directory, thereby
leaving it in an inconsistent state requiring the IFSScavenger to correct.

If the IFS Alto has only 64K of memory, IFS must both keep data and swap code using that
memory. Considering that there is over 100K of swappable code and only 32K of memory available
for swapping both code and data, this leads to serious disk thrashing. In the 64K configuration, the
maximum possible Server-limit is 6 and the default is 5. Even with a limit of 5, memory deadlocks
are likely (depending on usage patterns), and it may be necessary to reduce the Server-limit to 4 or
even 3 in order to entirely prevent deadlocks. For all practical purposes, a 64K Alto should be
considered an unsupported configuration.

If the IFS Alto has extended memory, the situation is much better. IFS has an ‘extended emulator’
that is able (with some restrictions) to execute BCPL code residing in extended memory, though it
can still reference data only in the first 64K of memory. Consequently, performance is significantly
improved, since most or all of the first 64K is available for data and code swapping is reduced or
eliminated. .

The IFS software running on an Alto with 128K of memory can support up to 8 simultaneous users,
and with 192K or more up to 10 simultaneous users. It is believed that memory deadlocks are
impossible with these configurations. Therefore, it is strongly recommended that IFS Altos have at
least 128K of memory, and systems that serve large or highly demanding user communities should
have)1921(of memory. (The software does not presently take any advantage of memory beyond
192k.

IFS Operation 28

13.3. Interpreting system statistics

The IFS Executive’s Statistics command pours out various internal operating statistics, some having
to do with hardware and some with software. Many are of interest only to IFS implementors, but
all are explained here for completeness. An IFS administrator should examine these statistics
periodically (say, once per day) to notice problems that may lead to progressive failures; this is
particularly important in the case of memory and disk errors. Except where noted, all statistics
cover the interval since IFS was last restarted.

If you terminate the Statistics command with SPACE rather than CR, you will be asked for an
additional keyword (one of Directory, Disk, Mail, Memory, or Server); and only the specified subset
of the system statistics will be displayed.

SmallZone overflows, bigZone overflows, overflow pages

IFS has a three-level memory storage allocator. SmallZone and bigZone are heap-type
allocators for objects of less than 25 words and of 25 to 500 words, respectively. Objects
larger than 500 words are allocated by removing one or more 1024-word pages from the
VMem (virtual memory manager) pool. If one of the first two zones becomes exhausted, it
recovers by borrowing space from the next larger zone.

It is normal to encounter up to 100 or so zone overflows per day, and for there to be a
maximum of 2 or 3 VMem pages used to recover from bigZone overflows. More overflows
are indicative of the need to change some compile-time parameters. If the ‘current’ number
of overflow pages remains nonzero for any significant length of time, it is indicative of a
bug (loss of allocated storage).

Net blocks allocated minus blocks freed

This is simply the number of memory storage blocks presently allocated. If there is no
system activity besides your Chat connection, this should be more-or-less constant. If it
increases slowly over time, storage is being lost.

PBISs, PBI overflows

The Pup software maintains a pool of packet buffers (PBIs) that are shared among all active
servers. The first number displayed is the normal number of PBIs, which is constant for a
given IFS release and Alto memory configuration. Under certain circumstances (particularly
when connections are made through slow links), the system runs out of PBIs; when this
happens, additional PBIs are temporarily allocated (from bigZone) to cover the shortage.
(Frequently this will cause bigZone to overflow as well)

VMem buffers, buffer shortages

Approximately half of Alto memory is turned over to the VMem package, which manages it
as a buffer pool of 1024-word pages and implements a software virtual memory for
accessing various objects on the disk, including code overlays (if not resident in extended
memory), directories, and bit tables. The number of VMem buffers is constant for a given
IFS release and Alto memory configuration.

If the VMem package receives a request that it can’t satisfy because all buffers are in use by
locked objects (or have been removed to service a zone overflow), it increments the ‘buffer
shortages’ count (vMemBufferShortages, accessible from Swat) and then waits, in the hope
that some other process will run to completion and release some buffers. Sometimes this
works. On other occasions, all processes in the system get into this state and the system is
deadlocked.

VMem reads and writes

This table contains the number of swap reads and writes for each of four main types of

IFS Operation _ 29

objects managed by the VMem package: code overlays, VFile pages (virtually accessed files,
principally the IFS directory B-Tree), DiskDescriptor (disk bit map) pages, and Leaf pages
(file pages accessed via the Leaf server).

Overlays read from XM and from disk

If the Alto has extended memory, this indicates how many overlay reads have been satisfied
by reading from extended memory rather than from the disk. Most overlays are executed
directly by the extended emulator, but under certain conditions overlays must be swapped
into the first 64K before execution. There should be virtually no overlay swapping (from
either XM or disk) on a machine with 192K of memory or more.

Main memory errors

For an Alto-II, if any main memory errors have occurred since IFS was last restarted, the
offending memory card and chip numbers are reported. These are single-bit errors that
have been corrected by the hardware, so they are not cause for immediate alarm. However,
when such errors occur, you should schedule hardware maintenance for replacement of bad
chips at the next convenient time. This will reduce the likelihood that a single-bit error
develops into an uncorrectable error, causing the server to crash.

Disk statistics (cumulative)
This table contains operating statistics for each Trident disk unit, and, in the case of T-300
disks, each of the two logical file systems on the unit. All disk statistics are cumulative from
the time the file system was created.

File system File system name and logical unit number within that file system. Logical
unit 0 contains the IFS directory and the code swapping region.

Transfers Number of pages transferred to and from the unit.

Err The number of errors of all kinds except data-late errors and label check
errors knowingly caused by the software. (See below for more
information.)

ECC The number of data errors detected by the Error Correction Code. (See
below for more information.)

Fix The number of ECC errors that have been corrected. The ECC permits
correcting error bursts up to 11 bits long.

Rest The number of times a head-restore operation has been performed. This is
done as a last-resort measure when an uncorrectable error persists through
8 retries.

Unrec The number of errors unrecoverable after 16 retries. This usually causes

IFS to fall into Swat and report an unrecoverable disk error. This may be
indicative of a hardware problem or of an inconsistency in the structure of
the file system. Running the IFSScavenger can tell you which.

BTerr The number of times the bit table has been found to be incorrect, ie., to
claim that a page is free when it isn’t. This in itself is a non-fatal error,
but it may be indicative of serious hardware or software problems. On the
other hand, it can also be caused by restarting IFS after a crash without
first running the IFSScavenger.

Free The number of free pages on the logical unit. IFS always allocates new
files on the emptiest unit, and every file is contained completely within one
unit. The software does not always recover from running out of disk space

IFS Operation 30

(i.e., it may fall into Swat), so be careful not to let the amount of free
space get too low. .

Disk drive statistics (since last restart)

This table corresponds to a portion of the previous table, but it is reset every time IFS is
restarted, and the software-related information is omitted. Progressive hardware problems
are more evident in this table than the previous one.

Transfers Number of pages transferred to and from the unit.

Err The number of errors of all kinds except data-late errors and label check
errors knowingly caused by the software. It is normal for these to occur at
a low rate; they are caused by known hardware problems in the controller
and disk drives, and by random electronic glitches. A sudden jump in this
error count not accompanied by a corresponding jump in the ECC count is
grounds for suspicion of a non-data-related problem (e.g., positioning
errors or momentary not-ready conditions.)

ECC The number of data errors detected by the Error Correction Code. These
should be extremely infrequent, especially on T-300 drives which are very
reliable if properly maintained. A sudden jump in the rate of ECC errors
is grounds for suspicion of a hardware problem.

/10110 bits The ECC error rate per 1010 bits transferred. The Century Data
specification for T-300 drives is one recoverable ECC error per 10 bits;
but this assumes perfect testing of disk packs, no interchanging of packs
between drives, etc. Nevertheless, this statistic is useful for comparison
between drives in one system, or between different systems.

Directory statistics

These include the total number of files in the system; the number of pages actually in use
by the directory B-Tree; and (most important) the number of runs (fragments) comprising
the directory file {System>IFS.dir. Ordinarily there should be only one run; however, if the
directory has grown larger than its preallocated size (as discussed in section 10), the
additional required pages will cause more runs to be created. (This can also occur if IFS.dir
suffers hard disk errors and is destroyed and recreated by the IFSScavenger.) If the number
of runs exceeds 40, IFS must be started with one or more /F switches, as described in
section 4; otherwise it will crash occasionally due to running out of space in its file map.

Server statistics
These show, for each type of server, the number of connection requests that have been
accepted and the number that have been refused due to the system reaching the Server-
limit.

Mail statistics
These are described in section 8.1. They are cumulative since the file system was created or
the mail statistics were last reset explicitly.

14. Known bugs and what to do about them

No bugs are presently known to exist in IFS version 1.37.

IFS Operation , 31

15. Revision history

IFS was designed during November and December of 1976. It was storing and retrieving files in
January 1977, and was ‘released to friends’ in June of 1977 (releases through 1.02). The first
‘official’ release to the Alto user community was:

Version 1.03; August 4, 1977

Procedures added for running Triex, for blessing your Trident controller, and for halting 1FS
in a cleaner manner than before.

Version 1.07; September 3, 1977

/V switch added for startup-time directory B-Tree verification.
Version 1.08; October 5, 1977

Backup system released.
Version 1.10; November 1, 1977

Full T-300 support; ‘Extend’ command for adding packs to an existing file system; Triex
and TFU operating procedures changed; IFSScavenger released.

Version 1.12; November 10, 1977

Performance improvements in both IFS and IFSScavenger; procedures for initializing and
testing a disk pack again changed (Triex eliminated from procedure).

Version 1.14; February 21, 1978
File protections implemented; command added to disable logins; backup system bugs fixed.
Version 1.15; March 4, 1978

Converted to new time standard; ‘What' command added; automatic SetTime at startup;
obscure directory ordering bug fixed. '

Version 1.18; November 15, 1978

Mail server added; limited support for extended memory; Change System-Parameters
command added, with sub-commands to change clock correction, limit the number of
simultaneous servers, reset the time, and enable and disable service; Logins command
removed; screen flashes if you hit space bar and system is operating normally; Accountant
program released; documentation on system performance and interpreting Statistics output;
file IFS.Ov is no longer part of the release.

Version 1.21; July 16, 1979

Mail forwarding and Press file printing implemented; miscellaneous servers (name, time, and
boot) added; Change System-Parameters sub-commands modified; protection groups may
now be ‘owned’ by individual (non-wheel) users; Change Group-Membership and Show
Group-Membership commands added to permit users to manipulate group membership;
more statistics.

Version 1.23; January 13, 1980

Conforms to new file creation date standard; files-only directory’s owner is permitted
connect access; mail server supports remote distribution list retrieval; privileged Telnet Mail
command added, which brings together the mail related commands previously scattered

IFS Operation 32

among other Telnet commands.
Version 1.24; March 8, 1980

Extended emulator included, enabling substantially improved performance and more
simultaneous users if the IFS Alto has extended memory (see section 13.2); new command
file available to construct an IFS Operation disk from scratch (section 2); a few additional
statistics are kept and displayed by the Statistics command (section 13.3); sub-command
added to privileged Mail command to reset the mail statistics (section 8.1); optional Leaf
page-level access server included on a ‘use at your own risk’ basis (section 13.4). Note: due
to a format change, the mail statistics will be reset automatically the first time IFS 124 is
started.

Version 1.25; May 19, 1980

CopyDisk server added (see section 13.5); new commands to display and cancel press
printing requests (section 7); new commands to repeat the backup of files (section 11.7).

Version 1.27; September 6, 1980

Mail server changes, required for compatibility with the Grapevine servers; Printed-by sub-
command added to Print command; a few bugs fixed.

Version 1.28; January 3, 1981

Rename command defaults new file name; Print command has new sub-commands Duplex
and Password; backup system can reload selected directories rather than the entire file
system (section 11.6); boot server can now boot-load microcode for Dolphins and Dorados;
the boot server's automatic acquisition of new boot files can be disabled (section 9);
Accountant program augmented to produce disk usage listing (section 12); mail server
changes, required for compatibility with the Grapevine servers (section 8.1). Note: the Leaf
protocol has undergone minor changes that may require Leaf clients to be changed
correspondingly; implementors of software that uses Leaf should contact Ted <Wobber.PA>
for information.

Version 1.30; January 28, 1981

The Change Protection command has been generalized to Change Attributes, with new sub-
commands Backup, Byte-size, and Type. The Backup command has new sub-commands
OnLine, OffLine, and List (section 11.5). Some hardware error checks have been added:
the Control RAM and S-registers are tested during startup (section 5), and corrected single-
bit ma.fi‘n memory errors are recorded (section 13.3). Additionally, a number of bugs have
been fixed.

Version 1.31; May 10, 1981

The action of the /A switch has changed. The directory statistics (section 13.3) and the
meaning of the /F switch are now documented. Mail system changes have been made to
facilitate conversion of an IFS-based registry to Grapevine; in particular, disabling a user’s
mail capability causes his in-box to be destroyed next time it is read rather than
immediately; and the forwarder now understands about registry names that map to multiple
addresses (section 8). The Leaf server now supports a ‘multipleWriters’ mode of access;
consult Ted <Wobber.PA> for details. The FTP server now deals in date properties that
include time zones: in conjunction with a new release of FTP.run, this enables file date
properties to be transferred correctly between different time zones.

Version 1.33; June 29, 1981

The purpose of this release is principally to fix two long-standing and notorious bugs: the
‘B-Tree delete bug’ and the ‘infinite return-to-sender bug’. Additionally, the Trident disk

IFS Operation 3

software’s handling of recoverable disk errors has changed somewhat; in particular, the rate
of non-ECC errors is substantially reduced. Some additional disk error information is
displayed by the Statistics command (section 13.3).

Version 1.35; December 11, 1981

IFS can be configured to use Grapevine for authentication and access control; this replaces
the user name and group structure maintained by IFS, and eliminates the need for Guest
accounts (section 6). You should read the new ‘How to use IFS’ document, as it includes
an explanation of how IFS uses Grapevine that is not repeated here. A Show System-
Parameters command has been added. The Create and Change Directory-Parameters
commands now have the same set of sub-commands (section 6). Reloading the file system
from backup now properly restores all system parameters instead of resetting them to
default values (section 11.6). Accountant generates a group membership summary (section
12). A new version of the IFSScavenger accompanies this release. Note: for proper error
reporting, you should obtain the latest [Maxc2]KAlto>Sys.errors.

March 14, 1982 (documentation update only)

A summary of known bugs has been added (section 14). There is now a separate document
describing access control policies and procedures in considerably more detail; please obtain
and read [MaxcKIFS>AccessControls.press.

Version 1.36; May 13, 1982

This is principally a maintenance release to fix a number of bugs found in previous releases.
Functional changes are as follows. In an IFS that uses Grapevine group checking, a user
who is not registered in Grapevine but does have a login directory on the IFS is no longer
automatically a member of World; his membership in World is now controlled just the same
as membership in other groups (using the Change Group-Membership command). The
Backup Reload command may now be used to repair damage detected by the IFSScavenger
(section 11.6.3). The FTP server supports some recent extensions to the FTP protocol that
permit substantially improved performance in certain operations (particularly enumerations,
which in certain cases are now over 10 times as fast as before); some changes to client
software are required to take full advantage of this improvement.

Version 1.37; October 3, 1982

This release introduces some minor new features. The boot server can now boot-load Sun
workstations; also, new boot files installed by manual means (e.g., FTP) are now noticed
immediately instead of after a delay of up to 8 hours (section 9.2). A new server,
LookupFile, is included and may optionally be enabled (section 9.6). The backup system
now automatically fixes any incorrect directory page usage totals which it encounters.
Additionally, internal changes in the VMem software have resulted in a modest performance
improvement and elimination of the long-standing ‘Can’t flush locked page’ bug.

;Date: 29 July 1982 5:34 pm PDT (Thursday)
From: . Boggs.pa

Subject: IFS Scavenger

To: IFSAdministratorst

Reply-To: Boggs.pa

A new version of the IFS Scavenger is now available. Retrieve:
[IndigoKIFS>IFSScavenger.run :
[IndigoKIFS>IFSScavenger.syms.

This is a maintenance release; there are no documentation changes When it

starts it should say "IFS Scavenger of July 27, 1982". Three things were

changed: g

1) When the Scavenger has to create or extend a critical system file (e.g. IFS.Dir),
it now does it using the minimum number of page runs each'as large as
possible. This should eliminate the following problem: suppose a hard disk error
causes the Scavenger to truncate or delete IFS.dir. Further assume that the file
system is old (i.e. the free pages are scattered all over the ,pack) and that the file
‘system is nearly full (disk usage expands to fill the available space). Before this
change, the recreated directory file would consist of zillions of 1 or 2 page runs.
This would run IFS’s file map out of space (causing wierd crashes) unless 'you
always started IFS (and the Scavenger) with several /Fs. :

2) When the Scavenger finds a damaged file, it sets a bit in the file’s leader

page. LISTing this file from Chat will then display ** Damaged ** after the
filename. A file system RELOAD (a backup system option) will automatically
restore damaged files from backup. This feature was added to IFS 1.36, but I was
busy doing other things at the time and didn’t get around to puttmg the damage
marking logic into the Scayenger unul now. .

3) the Scavenger no longer pnnts "[1-3] Inaccessible page nnn" messages. unless

the debug flag is set.” If a' big file (like IFS Dir) -got clobbered, these meésSages
(one per page, along with some other."info) often ran the modef"31 disk (wherz -
the log 1s kept) out of space, causing other more Jimportant error messages to be o
lost. A ', FRTURY e
While I have your attention: Ed Taﬁ is on vacation untll at least 17 Aug, so if
you need IFS help call ME at 8*923-4421"

/David

Date: 28 Nov. 1982 1:25 pm PST (Sunday)
From: TaftPA

Subject: IFS 1.37

To: IFSAdministratorst

Reply-To: Taft

Version 137 of the IFS softiware is released. It has been running for over 6
weeks on Ivy and Indigo and for shorter intervals at several alpha-test sites with
no unsolved problems.

Changes since IFS 1.36 are as follows. The boot server can now boot-load Sun
workstations; also, new boot files installed by manual means (e.g., FTP) are now
poticed immediately instead of after a delay of up to 8 hours. A new server,
LookupFile, is included and may optionally be enabled. The backup system now
checks the disk usage total of each directory, and fixes it if it is incorrect.
Additionally, internal changes in the VMem software have resulted in a modest
performance improvement and elimination of the long-standing "Can’t flush

locked page" bug.

Several bugs turned up during alpha testing and have been fixed. It was

possible to hang the system by changing backup parameters at just the wrong

time (this was a very long-standing bug). The mail server had stopped working
altogether (I suspect it didn’t work in IFS 1.36 either; more on this below). There
was a very low-probability bug in Rename which caused occasional flakey

behavior during heavy use (e.g., Brownie moving files en masse from one

directory to another); this bug dates from IFS 1.35, and has had two symptoms:
file system inconsistencies such as having two directory entries for the same file,
and occasional crashes after Rename.

Complete information may be obtained from the: revised: "IFS Operation”

document, which is [MaxcKIFS>Operation.press or [IndigoKIFS>Operation.press.
The "How to use IFS" document is unchanged.

Software may be obtained from either [MaxcKIFS> or [IndigoKIFS>1.37>, and
consists of files IFS.run, IFS.syms, and IFS.errors. For correct error reporting,
please be sure you have the latest Sys.errors, which may be obtained from
[MaxcKAlto> or [IndigoKAlto>. (Alpha-testers: if you are running IFS 1.36.10,
you should convert to IFS 137 at this time.)

While I am on the subject, I should mention that we would like to discontinue
support for the IFS mail server altogether in the near future. There are only a
very few sites which have not yet converted to Grapevine and are relying on
IFS mail servers, Maintaining this software, and maintaining the Grapevine
software that provides compatibility with the old MTP protocol used by IFS, is a
burden which is no longer justified by the amount of use this software receives.

Therefore, sites which are presently using IFS for mail service should begin
planning to install a Grapevine server or to make arrangements to keep local

IFS 137

mailboxes on some existing Grapevine server.

Inter-Office Memorandum

To IFS and Grapevine administrators Date March 13, 1982

Fom BRdTaft Location PARC/CSL

Subject Introducing new File [Indigo](IFS)AccessIntro.bravov
access control policies

XEROX

Introduction and motivation

The attached memo describes some new access control policies and procedures that are designed to
improve information security in the Xerox Research Internet.

Generally speaking, the need for such policies is a consequence of the growth of the Internet to
encompass a large number of diverse organizations. The specific reason for introducing these
policies at this time is that foreign affiliates (Rank Xerox and Fuji Xerox) are becoming connected to
the Internet; as a consequence, information transfer within the Internet is now subject not only to
Xerox security guidelines but also to U.S. Government regulations.

These policies and procedures have been developed by a committee consisting of Andrew Birrell,
Jerry Elkind, Mike Schroeder, and Ed Taft. We welcome any constructive criticisms or suggested
improvements.

Implementation

The new policies call for some substantial changes to existing practices, particularly with regard to
assignment of individual R-Names and proper use of groups for access control. Naturally, we don’t
expect that it will be possible to put them all in place immediately. The most urgently-required
measures are the following:

1. Elimination of “Guest” and other individual R-Names with widely-known or easily-
guessed passwords, in both IFSs and Grapevine.

2. Conversion of all remaining IFSs to use Grapevine for authentication and access
control. (This is in progress, but is by no means complete.)

3. Registration of all individuals (particularly foreign affiliates) in their proper registries.

4, Elimination of “interest” groups and groups including non-affiliates and foreign
affiliates from the set used for IFS access control

5. Education of all users of the Internet in proper use of access controls so as to fulfill the
information security requirements.

In particular, item (1) is of such crucial importance that we must request all administrators to begin
action "on it immediately.

In some cases, compliance with the new policies will require changes to be made to existing
software; this is particularly true of software that uses compiled-in credentials (a problem discussed
in considerable detail in the attached memo). Since management approval may be required for the
implementation of such software changes, administrators should see that this memo is brought to the
attention of appropriate levels of management.

pate: 5 June 1982 3:lv pm PDT (Saturday)
From: TaftPA

Subject: IFS 1.36

To: IFSAdministratorst

Reply-To: Taft

Version 1.36 of the IFS software is released. It has been running for over a
month on Ivy and Indigo and for two weeks on three other servers with no
unsolved problems. This is likely to be the last IFS release for a very long time.

This is principally a maintenance release to fix a number of bugs found in
previous releases. All known bugs have been fixed with the exception of the
very rare "Can’t flush locked page" bug, which we have decided not to try to
fix. Functional changes are as follows:

1) In an IFS that uses Grapevine group checking, a user who is NOT registered
in Grapevine but DOES have a login directory on the IFS is no longer
automatically a member of World; his membership in World is now controlled
just the same as membership in other groups (using the Change
Group-Membership command).

2) The Backup Reload command may now be used to repair damage detected by
the IFSScavenger. (Note: the version of IFSScavenger that supports this is not
yet released. In the absence of IFSScavenger support, the IFS Backup Reload
command will restore missing files but will not replace damaged ones; you must
first delete damaged files. manually, using the IFSScavenger.log as a guide.)

3) The FTP server supports some recent extensions to the FTP protocol that
permit substantially improved performance in certain operations (particularly
enumerations, which in certain cases are now over 10 times as fast as before);
some changes to client software are required to take full advantage of thls
improvement. (The protocol extensions are described in the revised
specification, filed as [MaxcKPup>FTPSpec.press.)

The software is available from the usual place:

[MaxcKIFS>IFS.run
[MaxcKIFS>IFS.syms o
[MaxcKIFS>IFS.errors - v
The "How to use IFS" and "IFS Operation” documents have been rev1sed please
obtain: .
[MaxcKIFS>HowToUse.press
[MaxcKIFS>Operation.press

Date: 12 May 1982 3:49 pm PDT (Wednesday)
From: Taft.PA

Subject: "Can’t flush locked page"”

To: IFSAdministratorst

R'éply-To: Taft

There is a long-standing software problem that has been around since the first
release of IFS over 5 years ago. The symptom is that the server falls into Swat
with the error:

CallSwat from XXXXxXx
Can’t flush locked page

This bug is reasonably well understood but extremely difficult to fix. It's my
impression that the bug strikes so rarely as not to be worth the effort required to
fix it. (For example, I don’t believe this has happened more than about once a
year on Ivy and Indigo.)

Ilf this bug strikes your IFS more frequently than once a year, I'd like to hear
about it.
Ed

Inter~Office Memorandum

To IFS and Grapevine administrators Date March 13, 1982
From Ed Taft Locaion PARC/CSL
Subject Access controls File [Indigo]KIFS>AccessControls.bravo

XEROX

In recent years, the Xerox Research Internet has grown to encompass a large number of
organizations, including some outside the United States. Because of this, it is no longer possible to
ignore the necessity of controlling access to electronic information resources within the Internet.

In this memo, we outline the information security requirements that must be met, and then describe
the procedures for achieving them by means of the IFS and Grapevine access control mechanisms,

This discussion assumes a world in which all users are registered in Grapevine and all IFSs use
Grapevine for authentication and access control. This is not yet the case. Organizations that have
not yet converted are strongly encouraged to do so, since fulfilling the information security
requirements is difficult or impossible without the mechanisms provided by Grapevine.

While this memo focusses on information stored in files on IFSs, much of the material is of more
general relevance and applies to electronic and non-electronic information of all kinds.

1. Xerox information security requirements
Within Xerox, information is classified into five categories:

1. Public-domain information—that which has been formally cleared for public release
outside Xerox.

2. Proprietary information—all information not cleared for public release but not included
in one of the following more restricted categories.

3, Private data—information whose unauthorized disclosure could have a substantial
detrimental effect on the operations of the company.

4. Registered data—information whose unauthorized disclosure could cause serious damage
to the operations of the company.

5. Personal data—information of a sensitive, personal nature.

Information in the last two categories is subject to very stringent regulations on how it may be
disseminated and stored. Since relatively few people have occasion to deal with registered and
personal data, we shall concentrate on the other three categories.

For each category, there are guidelines for how the flow of that information should be controlled.
Some of these guidelines are intended to protect Xerox proprietary concerns, while others are
imposed by U.S. Government regulations.

Access controls 2

For the purpose of describing appropriate degrees of access to Xerox information, we divide the
universe of people into four groups:

1. U.S. employees and affiliates—U.S. citizens and permanent residents who are employees
of Xerox organizations and subsidiaries in the U.S. and other U. S. citizens or
permanent residents who have signed non-disclosure agreements with Xerox. This also
inciudes employees of Xerox organizations in Canada.

2. U.S. non-affiliates—U.S. citizens and permanent residents not in category 1.

3. Foreign affiliates—employees of Xerox subsidiaries outside the U.S. Strictly speaking, this
category also includes foreign nationals working in the US. under a temporary visa

4, Foreign non-affiliates—foreign nationals not in category 3.

Persons in each of these groups are permitted access to categories of information on the following
basis:

1. U.S. employees and affiliates:
a. may have unrestricted access to public-domain and proprietary information;
b. may be given access to private data on a need-to-know basis.
2. U.S. non-affiliates:
a. may be given access only to public-domain information.
- 3. Foreign affiliates:

a. may have access to public-domain information;

b. may have access to proprietary information on a per-project basis only; project-wide
approval by the International Deputy is required (see section 5.1), and information
transfers require Export Control Coordinator approval and any other approvals that
the organization "owning" the information decides are appropriate;

c. may be given access to private data on a need-to-know basis; project-wide approval
by the International Deputy is required, and information transfers require Export
Control Coordinator approval (see section 5.1) and the other approval associated
with private data information;

d. A record must be kept by the Export Control Coordinator of all transfers of non-
public-domain information to foreign affiliates.

4, Foreign non-affiliates:
a. may be given access only to public-domain information;

b. must not individually be on the U.S. Government denial list or members of
organizations or countries on this list.

c. A record must be kept of all transfers of information to foreign non-affiliates
except Canadians; this includes al technical information, even though in the public
domain.

Access controls 3

2. Organization of access controls

Now we review the mechanisms that exist for controlling access to electronic information in the
Xerox Research Internet.

To begin with, it should be understood that the Internet is designed to permit any connected
machine to0 communicate with any other, without any controls or restrictions. Since the Internet
extends outside the U.S. this enables unrestricted international communication. Any required
restrictions on information transfer are the responsibility of the end parties of the communication,
not of the Internet.

2.1. Basics of access control

The principal means of ensuring that a certain piece of information can be accessed only by certain
individuals is by attaching an access control list to the information and by requiring that individuals
be authenticated. Let us consider what this means.

An access control list is simply a list of names of individuals who are to be granted access to the
associated information. For example, a file stored on a file server has a protection which, simply
put, is an access control list that determines who may access the file. Upon each attempted access,
the file server checks the name of the individual requesting access against the file’s access control
list, and permits the operation to proceed only if a match is found. This is entirely the .server’s
responsibility, though the server can delegate some of the work to other servers as will be discussed
shortly.

In order for this style of access control to be effective, it is necessary for the server to be able to
determine that an individual’'s name actually represents that individual. This is the purpose of the
password. The name and password together serve to authenticate the individual—that is, to identify
the user and to verify his authenticity by requiring him to provide some piece of information that
only he knows.

It should be clear why it is vital that users choose passwords with care and keep them secret. In an
access control list based protection system, access is granted solely on the basis of who the requestor
is, and not on criteria such as the requestor’s physical location, ability to supply a password for the
information being accessed, or other credentials that the user might possess. An individual’s name
and password is intended to represent that individual and nobody else.

2.2. Individual names and authentication

In the Xerox Research Internet, an individual is identified by a Grapevine registered name or “R-
Name” composed of two parts, a simple name and a registry, separated by a period. A registry is a
logical grouping of names, usually on a geographical or organizational basis; and a simple name
identifies a specific individual within the registry. Examples of R-Names are “Smith.PA” and
“Jones.EOS”. A complete R-Name uniquely identifies one individual. In the Xerox 8000-series products,
R-Names are composed of three parts instead of two, but otherwise are organized essentially the same.

The Grapevine servers maintain, for each individual, a password and various other attributes. One
of the services provided by Grapevine is to authenticate an R-Name and password.

When a user requests service from, for example, a file server, that server first demands that the user
(or client program acting on his behalf) provide a valid R-Name and password, which it asks
Grapevine to authenticate. This process of “logging in” serves solely to identify the user; by itself it
confers no access rights. That is why any authenticated user is permitted to “log in” to any IFS.
Control over the user’s access to information is accomplished by an entirely separate mechanism.

Access controls 4

2.3. Groups and access conitrol

Grapevine also maintains groups. A group, to first order, is simply a list of R-Names. A group
itself is identified by an R-Name (which customarily, though not necessarily, contains a “t”
character).

Groups are used as access control lists, as well as for other purposes such as directing the
distribution of messages. If a group is attached to some piece of information as its access control
list, then an individual can access that information only if his R-Name is included in the group.
This is the fundamental basis for access control in IFS, as well as in Grapevine itself.

Groups can contain other groups; this capability can be used to model organizational hierarchies,
project membership, and various other structurés. By using an appropriate group name for access
control, information may be made available to every member of an organization, project, etc., even
though the actual membership of that organization or project changes over time.

Groups can also contain patterns such as “*PA”; any individual whose R-Name matches the pattern
is considered a member of the group. This facility is provided as an administrative convenience in
defining all-encompassing groups (and avoiding the need for exhaustive enumeration); but it does
have certain consequences that will be discussed later.

Permission to change the membership of a group is itself controlled by access control lists. Some
groups may be changed only by duly authorized managers of the organjzations or projects which
they represent. Other groups (the so-called “interest lists”) permit any individual to add or remove
his own R-Name.

The way this works is as follows. Each group has two access control lists called the Owners and
Friends lists. An individual whose R-Name is in the Owners list is permitted to change the
membership of the group arbitrarily (as well as to perform certain other operations). An individual
whose R-Name is in the Friends list is permitted only to add or remove his own R-Name in the
group’s membership list. Centrally controlled groups have an empty Friends list, whereas completely
uncontrolled groups have a Friends list of “*’, a pattern that matches any R-Name.

2.4, IFS file protections

The preceding section described the general use of Grapevine groups as access control lists. The
actual use made by IFSs is somewhat more complex.

Each file stored on an IFS has a protection consisting of two access control lists; roughly speaking,
one controls reading and the other writing. Actually, there is a third list controlling appending, but that is of no
relevance to the present discussion. Additionally, each directory on an IFS has a default file protection,
which is applied to newly-created files in that directory. Finally, each directory also has two access
control lists that control permission to create new files in the directory and to connect to the
directory for the purpose of performing owner-like operations such as changing the access control
lists themselves.

The group R-Names that may be mentioned in these access control lists are limited to a relatively
small set that is chosen by the IFS’s administrator. Thus it is the administrator’s responsibility to
ensure that only suitable groups are used as access control lists,

Each IFS also has a special access control list called “World” which represents some all-
encompassing user group. For IFSs in the U.S, “World” is wusually defined to be
USRegistriest.internet, which consists of all registered Xerox employees and affiliates in the U.S.

The intent .of this arrangement is that “World” be included in the access control lists of all files that
are proprietary but are not in a more restricted classification (such as private or registered) and have
no other reason for more limited access. This facilitates communication among Xerox employees.
Foreign nationals (whether or not they are Xerox affiliates) are denied access to such files in
conformance with the information security requirements presented in section 1.

’
’

Access controls 5

3. IFS and Grapevine administrative policies

In this section we describe specific IFS and Grapevine administrative policies that are intended to
ensure that the information security requirements are fulfulled. Note that these policies must be
applied consciously by the administrators; they are not enforced automatically by the software.

3.1. Registry membership

Each Grapevine registry is typically maintained by a single person or a small group of specially-
designated people. The registry maintainer has the responsibility for ensuring that only valid
individuals are registered.

First of all, it is important to understand that there are two classes of registries: those that contain
human individuals (and groups of individuals) and those that contain other names used for special
purposes. All of the familiar registries belong to the first class, such as PA, ES, Wbst, etc.
Registries in the second class contain individuals that do not represent human users but rather
machines, programs, or processes; for example, the GV and MS registries, used for internal control
over the Grapevine data base, belong to this class. These two classes of registries must not be
confused, for reasons that will become apparent shortly.

With this detail behind us, we now state the first principle of Grapevine registry administration:

» 1. Every individual R-Name registered in a normal organizational or geographical registry
must correspond to a human user; and the R-Name is for the exclusive use of that user.

This rules out assigning individual R-Names for “guest” or communal use or for “automatic” access
by programs that have such R-Names compiled into them. (This constitutes a major break with past
policy. Situations for which such ficticious R-Names have been a551gned in the past may be dealt
with by the procedures described in section 4.)

» 2. Every individual registered in a Xerox U.S. registry must be a U.S. employee or U.S.
affiliate (ie, a member of group 1 in the classification presented -earlier).

That is, every individual in registries such as PA, ES, and Wbst must be a U.S. Xerox employee or
affiliate. Non-affiliates and foreign affiliates must be segregated into separate registries. For
example, there exist registries RX and FX containing members of the Rank Xerox and Fuji Xerox
organizations. It is straightforward to create new registries for other categories of individuals.

The reason for this is that the registries themselves constitute groups whose names are the patterns
“*PA”, “*ES”, etc; all individuals in these registries are members of their respective groups. The
group USRegistriest.internet is defined in terms of these registry groups; its present composition is:
*DLOS, *EOS, *ES, *Henr, *LLB, *PA, *STHQ, *Wbst, *XRCC. Since this is intended to
describe all U.S. Xerox employees and affiliates, it is clear that individuals who are not U.S. Xerox
employees or affiliates must not be assigned to these registries.

3.2. Group classification
There are three basic classes of Grapevine groups, characterized by their style of use:

1. Organization groups, which reflect the corporation’s organizational hierarchy. Each
individual who is a Xerox employee is ordinarily a member of exactly one organization
group corresponding to that individual’s immediate organization. That group is in turn
a member of some larger group; and this structure continues up to the root of the
hierarchy. An organization group may be modified only by administrators associated
with the organization, to reflect new hires, terminations, and transfers.

2. Project groups, composed of members of individual projects. These frequently cut
across organizational boundaries, and may have a hierarchical structure of their own.
The membership of a project group is ordinarily controlled by the manager of that

Access controls 6

project.

3. Interest groups, which are ad-hoc collections of individuals who are interested in sharing
information about some subject. The access controls on interest groups are generally
arranged so that any individual can add or delete his own R-Name.

The distinction between project and interest groups is not always clear-cut. A good guideline is to
assume that any group whose membership is centrally controlled by one or a small number of
responsible individuals is a project group; all other groups aré interest groups. Equivalently, any
group whose “Friends” list is non-empty or whose “Owners” list is itself a group is probably an
interest group.

With this classification in mind, we now continue with the registry administration policies.
» 3. Do not permit interest groups to be used for IFS access control.

That is, an IFS administrator should not specify an interest group as one of the groups usable for
access control on the IFS. This should be obvious: a group to which any individual can add his
own R-Name is a totally ineffective basis for access control.

» 4. On U.S, IFSs, do not permit groups containing non-affiliates or foreign affiliates to be
used for IFS access control, except by prior authorization, Exceptions to this rule must
be approved by the International Deputy (see section S.1).

This is required to ensure that such individuals cannot gain access to information in violation of the
security guidelines. Exceptions to this policy for specific projects and individuals may be authorized
by the International Deputy on a case-by-case basis.

3.3, International information transfer

Under U.S. Government regulations, most transfers of information to foreign nationals (whether
Xerox affiliates or non-affiliates) are required to be logged. Since no automatic logging mechanisms
presently exist in the Xerox Research Internet, such transfers cannot be permitted via the Grapevine
and IFS access controls. Instead, some more centralized and restricted procedures are required.

Note that this requirement applies to technical and business documents, but not to casual
interpersonal correspondence conducted via electronic mail. The latter corresponds to first-class
letters in the postal system, which are also not subject to any regulations. Of course, the distinction
between a “document” and a “letter” is not clear-cut; the sender must exercise some judgement in
determining whether it is appropriate to send a particular piece of information by electronic mail.

To ensure the necessary control, it is required that information transfers from U.S. organizations to
foreign affiliates be coordinated by the Export Control Coordinator for the originator’s organization.
This will also ensure that the required records are maintained.

The mechanism for transfer is that dedicated IFS directories be established that are accessible for
writing by the Export Control Coordinator and for retrieving by persons in the registries established
for foreign affiliates (or preferably by the Technical Information Center of the foreign affiliate,
which will then distribute the documents further as appropriate). The Export Control Coordinator
will determine whether the file is cleared for transmission to the foreign affiliates, move the file to
the dedicated directories, and log the transfer.

4. Commonly-occurring problems

In this section we consider various situations that have arisen in the past and that have sometimes
been handled in ways that violate the above policies. Historically such practices developed because
the authentication and access control mechanisms were inadequate. Now that the Grapevine
facilities are available, these practices are no longer necessary and should be abolished.

Access controls 7

4.1. Communal R-Names

Sometimes R-Names are assigned for communal use by multiple people. Strictly speaking, this does
not result in violation of any information gecurity requirements so long as all users of the communal
R-Name have exactly the same status (i.e., are members of the same organization and projects).

But there are many disadvantages to this. When no single user is personally accountable for use of
the R-Name, it’s hard to detect and control unauthorized use. When one of the users transfers out
of the project or leaves Xerox, maintaining the R-Name’s integrity requires changing its password,
which inconveniences all the other users (with the consequence that the password usually doesn’t get
changed). It’s hard enough for administrators to keep track of organization and project membership
without having to worrty about informal “groups” of users who share a single R-Name.

For these reasons, the policy of assighing an individual R-Name to each user should be rigidly
adhered to. If a person has legitimate reason to use the Xerox Research Internet, then that person
should be registered—without exception.

4.2, Institutional R-Names

A related case is the one in which an R-Name represents not a particular person but some function,
organization, or service; the R-Name is assigned for the convenience of people attempting to access
the entity it represents, so they need not remember the R-Names of the individuals who actually
embody that entity. Examples of such R-Names are LaurelSupport.PA and NetSupport.Wbst.

In this situation it is usually most appropriate for the R-Name to identify a group instead of an
individual, 'The members of the group are simply the R-Names of the people representing the
named entity.

Sometimes institutional R-Names have been registered simply so that messages can be sent on behalf
of those institutions, However, this is not necessary, since Laurel permits the originator to specify
the “From” and “Reply-to” fields of a message explicitly; for example, a member of the
LaurelSupport group can compose a message that says it is “From: LaurelSupport.PA”. In this case,
Laurel adds a “Sender” field to identify the actual originator of the message.

4.3. Delegated access

Sometimes a user will desire to delegate access or authority to another person. For example, a user
may want his secretary to read his mail while he is on vacation, or may want to make some private
file available to a second person. Users sometimes give out their passwords to others under such
circumstances.

This is never appropriate, and always violates the information security requirements. It should be
impressed upon users that they are to keep passwords secret and never divulge them for any reason
whatever.

An individual’s incoming mail may be temporarily diverted simply by establishing a “forwarding”
entry for that individual in Grapevine.

In general, users should be encouraged to work within the system when transferring information to
others. If some individual does not have access to certain information, it is usually because the
individual is not a member of some group that he should be in, or because the information’s access
control list has been set incorrectly. Smooth information transfer requires that people understand
how the protection system works and how to use it.

Access confrols 8

4.4, Automatic access

A number of programs have been developed that access IFSs using a compiled-in R-Name and
password instead of the credentials of the human user running the program; examples of such R-
Names are Guest, ARUser, Librarian, and Smalltalk-User. The existence of such R-Names
constitutes a security loophole, for reasons already presented, and they must be abolished.

Most uses of compiled-in credentials exist for no better reason than that the implementors of the
software consider it too inconvenient to obtain the human user’s credentials. Users are justifiably
annoyed when they must log in repeatedly because the software they are running forgets their
credentials in mid-session (e.g., because a new Pilot volume is booted); alleviating this annoyance is
a likely reason for the widespread use of compiled-in credentials. But the resulting adverse impact
on information security makes this practice no longer tolerable.

In a relatively small number of cases, such “automatic” access really is required because human
interaction is impossible for some reason. For such applications, it is possible to establish individual
R-Names representing non-human entities; but these R-Names must be in special registries that do
not also include human individuals. That is, it is unacceptable for such R-Names to be in registries
such as PA, ES, and Wbst. (For example, the existing RS and MS registries contain R-Names
representing the individual Grapevine registration and mail servers.)

Access by such non-human individuals to information must then be precisely controlled by proper
definition of groups and use of access control lists. Such individuals are not in any IFS’s “World”
group since their registry is not among the ones included in USRegistriest.internet; thus their
credentials cannot be used to subvert the protections of proprietary information.

System implementors who elect to adopt this strategy should be aware that all information
obtainable by such “automatic” means may also be accessed by anyone able to obtain a copy of the
software (or discover the R-Name and password by other means), regardless of who or where he is.

To summarize: a program accessing information on behalf of some human user must obtain and
present that user’s credentials—without exception. Only when human interaction is impossible (e.g.,
in servers that run unattended) should credentials be compiled into programs or otherwise stored for

later automatic use; but such R-Names must be in special registries that are not included in
USRegistriest.internet.

5. Additional information

5.1. People
Horace Becker (8*222*2163) is the International Deputy for Reprographics and Jerry Elkind

(8*923*4610) is the International Deputy for Non-Reprographics. Each organization has its own
Export Control Coordinator.

5.2. Documentation

More detailed information about electronic information security and proper use of the authentication
and access control facilities is available from several sources:

1. “Electronic information security guidelines”, in the October 1981 issue of the Xerox
Research Internet Newsletter.

2. “IFS meets Grapevine”, in the March 1982 issue of the Xerox Research Internet
Newsletter.

3. “How to use IFS”, filed as <IFS>HowToUse.press on many file servers.

Access controls
4. “Maintain reference manual”, filed as {Laur¢DMaintain,press on many file servers.
ic: H. Becker

J. Schweitzer
Export Control Coordinators

[PHOTO: Recording initiated Mon 10-Jun-85 11:31AM]

End of COMAND.CMD.2
@teINET.EXE.939
TELNET»ifs

Trying... Open

Stanford-CSD IFS 1.38l, Executive of October 13, 1983: 1 user out of 9.
Bstatistics (for) memory

0 smallZone overflows, 0 bigZone overflows

Overflow pages: present = 0, maximum = 0

Net blocks allocated minus blocks freed: 247

33 total PBIs; overfiow PBIs: present = 0, maximum = 0
33 total VMem buffers, 0 buffer shortages

VMem Overlay VFile DD Leaf
Reads 116 2196 139 7
Writes 0 687 2827 15

189 XM pages; 98 overlay reads from XM, 18 from disk
Leaf VPBI reads: 0 actual / 7 total

Leaf VPBI writes: 5 actual / 14 total

VPBI reaper scans: 1 ancient / 11 normal / 25 total
Main memory errors: b
Card Chip Errors

2 30 2
4 49 12
2 26 1

@quit [Confirm] yes.

Connection closed by foreign host
TELNET>qUIT (OUT OF TELNET)
@pop

"@V"C—'(V\j < o ac—l' as & Hwme sevvev:

get into swat” (c\«—H-s\f\i{:‘psma-{*) shile = s \ruvsvn'-%_v_
->+-€5,7Ll- (ie: dn'slola\‘jiwj (RS >
PRI £)

M TFS (gets IFs SHMS)

@ s+ NO Cck(splq s “addvess : | ")

QO cer> (torn on ~C(Qj>

AP (proceed)

	01_01_overviewNov77
	01_02
	01_03
	01_04
	02_01_howToUseJul79
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	02_09
	02_10
	03_01_operationJul79
	03_02
	03_03
	03_04
	03_05
	03_06
	03_07
	03_08
	03_09
	03_10
	03_11
	03_12
	03_13
	03_14
	03_15
	03_16
	03_17
	03_18
	03_19
	04_01_softwareMaintJul79
	04_02
	04_03
	05_01_fileStructureJul77
	05_02
	05_03
	05_04
	06_01_dirOperationsJun79
	06_02
	06_03
	06_04
	06_05
	06_06
	06_07
	06_08
	06_09
	07_01_IFSdebuggingAug78
	07_02
	08_01_IFSscavengerOct77
	08_02
	09_01_IFSoperationNov77
	09_02
	09_03
	09_04
	09_05
	09_06
	09_07
	10_01_IFSmailFwdNov78
	10_02
	10_03
	10_04
	10_05
	11_01_howToUseIFSApr82
	11_02
	11_03
	11_04
	11_05
	11_06
	11_07
	11_08
	11_09
	11_10
	11_11
	11_12
	12_01_IFSoperationsOct82
	12_05
	12_06
	12_07
	12_08
	12_09
	12_10
	12_11
	12_12
	12_13
	12_14
	12_15
	12_16
	12_17
	12_18
	12_19
	12_20
	12_21
	12_22
	12_23
	12_24
	12_25
	12_26
	12_27
	12_28
	12_29
	12_30
	12_31
	12_32
	12_33
	13_01
	13_02
	13_03
	13_04
	13_05
	13_06
	14_01accessControlsMar82
	14_02
	14_03
	14_04
	14_05
	14_06
	14_07
	14_08
	14_09
	_1
	_2

