Trident disk for the Alto
by R. D. Bates

June 15,1979 (revised November 24, 1979)

This document describes the Trident disk controller and microcode interface which is
available for placing high performance disk capabilites on Alto computers.

Key words and phrases: Trident, Alto disk, TFS.

XEROX

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 34304

TRIDENT disk for the ALTO

This memo describes the facility for an 80 megabyte capacity. 9.7 megabit transfer-rate disk for
use on Alto computers. The new disk is implemented in addition to the standard Alto disk. This
simply means that new microcode tasks (one for output and one for input) are used. leaving the
standard disk microcode intact. The requirements for implementing this facility are a Trident T-
80 disk (85500). a disk control board ($800), and an Alto II. Older style Altos can have Trident
disks but there controller is not readily avalable.

1. The basic disk system

The disk controller is designed to drive any member of the Trident family of disk drives
manufactured by Century (now part of Xerox). Currently the T-80 and the T-300 drives have
been connected. A summary of the specifications for the T-80 drive is found in Fig. 1.

The disk system is accessed through a many level addressing scheme. First a particular disk drive
is accessed (there may be from 1 to 16 drives attached to a single disk controller). The surface of
a particular disk pack is sclected by specifving 1 of 5 heads. and 1 of up to 815 tracks. Each track
is further broken down into sectors. The number of sectors is determined by jumpers within the
disk drive which determine the number of words reserved for each sector (3070 words max.).
Each sector can be further broken down into blocks. each of which can be either read, written. or
checked. Reading or writing within a sector must start with the first block and continue. but one
does not have to read or write to the end of a sector. A block may not be read after writing any
block within that sector. The checking scheme is intended for checking the header and label. and
will inhibit writing later blocks within the sector should a compare error oecur.

The size and number of blocks within any sector is determined by parameters from the Alto
program which are given to the microcode for each sector. Thus the sector formatting does not
have to be the same for the whole disk. All the necessary delays for turning on read or write
circuitry are created within the disk controller with a single PROM which is programmed with the
appropriate delays. The choice of the number of blocks. and their size. should be made (unless
vou wish to defeat the "sector overflow™ check) such that all blocks are within a given sector area
on the disk.

Due 10 the high data density used in this system. a disk pack certified for use by these disk drives
does not have to be completely perfect. A disk pack is suitable if it has no more than three bad
areas on any of the five surfaces: where a bad area is defined as one which could potentially cause
read crrors of no more than 11 data bits in length. In order to correct such errors. as well as
other very occasional rcad ecrrors. a scheme of error detection and correction has been
implemented in the disk controller which will detect (with very high probability) errors of any
length. and correct any burst error of 11 bits or less. Warning! If a burst error of more than 11
bits occur there is a significant possibility that the crror correction algorithm will incorrectly
correct the error and thus double the number of bad bits.

TRIDENT disk for the ALTO

T-80 SPECIFICATIONS AND CHARACTERISTICS
CAPACITY
82.1 million 8-bit bytes - unformatted (312 for T-300)

TRANSFER RATE
9.67 megabits per second
16 bit word every 1.65 ps.

ACCESS TIME
Track to Track Positioning - 6 milliseconds maximum
Average Positioning - 30 milliseconds
Full Stroke Positioning - 55 milliseconds maximum
Average [.atency - 8.3 milliseconds

ROTATIONAL SPEED
3600 revolutions per minute (16.66 milliscconds per revolution)

PACK START/STOP TIME
Start Time - 20 seconds
Stop Time (with dynamic braking) - 20 seconds

SECTOR LENGTH SELECTION
12 bit increments through jumpers on sector board

DENSITIES
Track Density - 370 tracks per inch
Recording Density - 6060 bits per inch maximum

DISK PACK CHARACTERISTICS
Disk Pack - IBM 3336-type components
Recording Surfaces - 5 plus 1 servo surface
Tracks per surface - 815

OPERATING METHODS
Recording Method - Modified Frequency Modulation
Positioning Method - Linear Motor: Track Following Servo

MECHANICAL SPECIFICATIONS
Size - 17.8" wide x 10.5" high x 32" deep
Weight - 230 pounds

ERROR RATE
Recoverable: 1 error in 1010 bits
Non-recoverable: 1 error in 1013 bits
Positioning: 1 error in 100 secks

CONTROLS AND INDICATORS
Ready Indicator
Fault Indicator
Start/Stop Switch
Read Only Switch
Degate Switch (takes disk off-line for testing)
FIGURE 1

TRIDENT disk for the ALTO

2. Available software

A file system equivalent to that used on the standard Diablo 31 disk drives is available. This
system is described in the Alto Operating System Reference Manual. In addition, other programs
associated with or for use on the Trident disk system are as follows:

[MAXCKALTO>TFS.dm
This file package is equivalent to the "BFS" file system in use on the Alto which are used
for implementing file oriented access the disk. This also contains the microcode necessary
for driving the disk controller. including a small routine called during error recovery.
Documentation for the TFS package (and the TFU program. mentioned below) is
contained in the Alto Subsystems manual and in <AltoDocs>TFS.uty.

[MAXCKALTO>TRIEX.run (also available as a network boot file)
An exerciser program used for basic debugging and to check general disk reliability.

[MAXCKALTO>TFU.run
A program for creating and manipulating a file system on a Trident disk. for certifving
new disk packs for operation. and for exercising the file system at a high level.

It should be mentioned that writing software to drive the Trident controller directly has proven to
be quite difficult. especially in the areas of initialization error recovery. If vou choose to run the
Trident controller directly (through the interface described in section 4 of this document). vou
should first examine carefully the code in the TFS package.

3. A "standard” configuration

The following is a description of the sector formatting which iS most often used for general file
storage on this disk system. If vou wish to look at other configurations. vou can go to the section

on Format Specifications for full details. SUMPTR.& QM TRIDEMT CHRRDYY

Each track (10.080 words) is divided into 9 sectors of words each. Each sector is then
divided into 3 blocks in much the same wav as the standard Alto disk. The first block is a
Header. and contains 2 words for identifving the disk address of that particular sector. The
Header is normally read and checked by the controller in order to verify that the disk drive is
actually where the controller thinks it is. The second block is the Label. and contains 10 words
for storing useful file dependent information. such as name. type. address of next sector. etc.. The
last block is 1024 words of acwal file data.

Using the above format on a T-80 drive viclds a total formatted capacity of 37.552.200 words

(1024 words x 9 sectors x 815 cylinders X x surfaces). Using this format. the average transfer rate
per disk revolution is 8.85 megabits per sccond.

4. Command blocks

"The disk controller contains a "Run-Enable” flip-flop (initially trned off) which can be controlled
by the emulator task through the execution of the SIO (StartlO) instruction. An SIO with bit 10

(%]

TRIDENT disk for the ALTO

set will cause Run-Enable to be set. An SIO with bit 11 set to one will cause Run-Enable to be
reset. Note that issuing an SIO with bit 10 set will wake up the microcode once and thus may
report status in the absence of sector pulses from a disk. This facility is important since sector
pulses are present only when a drive is running with the heads loaded.

The Alto program communicates with the disk controller via a four-word block of main memory
at location KBLK (currently 640 octal). specified as follows:

KBLK Pointer to first disk command block

KBLK+1 number of currently seclected drive

KBLK+2 cylinder position used for the last command
KBLK+3 Staws of current drive at last sector pulse
KBLK+4 Error which caused last transfer to be aborted

The microcode program is woken up at every sector pulse by the hardware. The program then
updates the status entry. and checks 1o see if the command pointer is non-zero. If a command is
present then processing begins. otherwise the microcode blocks until the next sector pulse. The
command table pointed to by KBLK is a variable length block which completely specifies a
rransfer for a given sector. The block has the following format:

DCB Cylinder select

DCB+1 left byte - Head select (values 0 through 4)
DCB+1 right byvte - Sector count (values O through 15)
DCB+2 Drive select

DCB+3 Pointer to next command block

DCB+4 Disk Command Seal (octal 122645)

DCB+S R/W command

DCB+6 Word count

DCB+7 Memory block pointer
DCB+8 Error Correcting Code 0
DCB+9 Error Correcting Code 1
DCB+10 Status

DCB+11-
DCB+16 Possible repeats of DCB+35 through DCB+10

DCB+? All zero's R/W command word to terminate
DCB+?+1 Interrupt word

The disk command block is made up of a five word introduction followed by a variable number
(0 o n) of six word block descriptors. The introduction contains a description of the sector
location. and the block descriptors describe the transfer required for each block within the sector.
Processing terminates when a R/W command within a block descriptor is found to be zero: at this
time. the following word is ORed into NWW 1o generate an interrupt on the channels
corresponding 1o one bits in that word.

!

A detailed description of the entries in these wwo tables follows.

TRIDENT disk for the ALTO

KBLK -Command Block Address-

This word is tested by the microcode every sector time or upon the completion of a disk
command block. If the value is zero. then the current disk status will be placed in KBLK +3
and the microcode will block until the next sector pulse. If the value is non-zero, then
command block proccessing will start at the address pointed to by KBLK. The microcode will
update KBLK with the address of the command block it is currently working on. However.
the microcode may advance to the next command block before all data transfer activity for the
previous one has completed: consequently. checking for KBLK to be zero is nor a safe way to
determine whether the disk is idle.

KBLK+1 -Drive number
This word is updated by the microcode to reflect the drive that is currently selected. The
software can force a new drive select by storing 100000B + drive number into this cell.

KBLK+2 -Cylinder Position-
This word is updated by the microcode to indicate the cylinder address last issucd to the disk
drive. The cylinder address of any successive disk transfer is compared to this value to
determine whether a seek command should be issued to the drive. Unnecessary seek
commands will cause no problems but will take a full sector time to be completed. The
software can force a seek t0 take place by storing -1 into this cell.

KBLK +3 -Sector Status-
This word is updated by the microcode to indicate the disk status at the last sector pulse.

Note that this word in NOT updated when the microcode is busy processing a disk command
block.

Bit 0 -Seek Incomplete-
Indicates that the disk drive has not correctly positioned the heads within the last
700ms. A RE-ZERO command must be issued tQ the drive in order to clear this
error.

Bit 1 -Head Overflow-
Indicates that the head address given to the disk drive is invalid (i.c. greater than 4).

Bit 2 -Device Check-

One of the following errors occurred.
a) Head select or Cylinder select or Write commands and disk not ready
b) An illegal cylinder address.
¢) Offset active and cylinder select command.
d) Rcad-Only and Write.
e) Certain errors during writing. such as more than one head selected. no
transitions of ¢ncoded data or heads more than 80 micro-inches off cylinder.

A RE-ZERO command may be required to clear this error.

Bit 3 -Not Selected-
The selected drive is in "off-line” test mode or the selected drive is not powered up.

Bit 4 -Not On-l.ine-
The drive is in test mode or the heads are not loaded.

TRIDENT disk for the ALTO

Bit 5 -Not Ready-
There is a cylinder seek in progress or the heads are not loaded.

Bit 6 -Sector Overflow-
The controller detected that a write command was active when the next sector pulse
occurred. The controller will inhibit writing as soon as this error is detected. This
error implies either a hardware malfunction or a discrepancy between the format of
the drive and the format the program thinks the drive has.

Bit 7 -Output Late-
The 16 word output buffer within the disk controller became empty while either a
read or a write command was in progress. The controller will inhibit any writing
until a Device Check Reset command is issued.

Bit 8 -Input Late-
The 16 word input buffer within the disk controller became full. This error will
cause words read into memory to be left shifted by the number of words lost, and the
error correcting code to be non-zero.

Bit 9 -Compare Error-
The data read during a "Read and Compare™ operation did not match the data read
off the disk. The controller will inhibit any writing for the remainder of the sector if
this error is detected.

bit 10 -Read Only-
The "Read-Only” switch on the disk drive in on.

Bit 11 -Offset-
The cvlinder position is currently offset. This is a mode used for recovery of bad
data.

Bit 12 -

Bit 13 -Sector Count-

A value from 0 to count-1. where count is the number of sectors implemented in the
disk drive. This value. vou might have noticed. restricts the number of sectors to 16
or less. The value returned here is the sector count for the next sector on the disk.

KBLK +4 -Command Abort Errors-
This word is set by the microcode if. while processing a command. it finds some extraordinary
orror. In this circumstance. the status word in the DCB will not be written (though it may
have been written in a previous DCB). but the reason for aborting will be reported here.

Bit 0 -

Bit 3 -not used-

Bit 5 -Seek [ncomplete-
The last DCB was aborted because the seek was not completed (within 64 sector
times).

Bit 6 -

TRIDENT disk for the ALTO

Bit 9 -not used-

Bit 10 -Output Late-
The command chain was aborted because an Output Late error occurred in some
previous command. Because commands as well as data are sent to the controller
through the output data path. an Output Late command may cause the controller
hardware and microcode to get out of svnc, so further processing is aborted to
prevent issuing illegal commands to the controller. This condition must be reset by
issuing a Device Check Reset command.

Bit 11 -Invalid Seal-
The last DCB was aborted because word DCB+4 was not equal to 122645 octal.
Bit 12 -
Bit 13 -not used-
Bit 14 -Aborted-

The last DCB was aborted because of one of the errors mentioned here.

Bit 15 -Invalid Sector-
The last DCB was aborted because the hardware sector counter never equaled the
specified sector number (within 64 sector times).

DCB -Cyvlinder Select-
This word will cause the disk drive to position its heads over the indicated cylinder if the
cvlinder address is different than the previously selected cylinder. Cylinder positioning causes
the disk drive to go non-ready for 6 ms. cylinder-to-cylinder and 55 ms. full seeks. (Typical
seck times appear to be around 3 ms. cylinder-to-cyvlinder and 50 ms. full seek)

Bit 0 -

Bit 3 -all zeros-

Bit 4 -

Bit 15 -Cyvlinder Select-

This field may take on any value. but be sure that it represents a valid address for the
disk drive being used. The microcode will update KBLK+2 with this value.

DCB+1 -Head and Sector Select-

This will select the particular head (or surface) for the next command as well as the sector t0
be used in the transfer.

Bit 0 -Off Track-
This bit may be activated during a rcad in order to atempt to recover bad data.
When activated. this bit will cause the cylinder positioning mechanism to move 80
micro-inches off track.

Bit 1 -Direction-
This bit determines the direction of off track positioning if bit 0 is set

Bit 2 -

TRIDENT disk for the ALTO

Bit 4 -not used-
Bit § -
Bit 7 -Head Select-
The actual head specification.
Bit 8 -
Bit 11 -not used-
Bit 12 -
Bit 15 -Sector Number-

The actual sector specification. Be sure that you specify a valid sector number.
There is no test in the microcode for invalid sector numbers, and the microcode will
loop forever looking for an invalid sector! ('Life is hard!).

DCB+2 -Drive Select-
This will specifv the disk drive to be involved in the upcoming command.
Bit 0 -
Bit 11 -must be all zeros-
Bit 12 -
Bit 15 -Drive number-

This value is used by the disk controller for selecting the appropriate unit. The
microcode will update KBLK+1 with this value.

DCB+3 -Next Command Pointer-
This word is read at the end of a disk command. and its contents are- placed in KBLK.

DCB~+4 -Disk Command Seal-
This word is tested 1o see that it equals 122645 octal. If this test fails. then KBLK is set to
zero and processing is terminated. This word is overwritten with status information during
disk processing so that a DCB table cannot be used twice by the controller without program
intervention,.

DCB+5 -R/W Command- ‘
This word is first checked for zero. If so. then the sector transfer processing is complete. and
the microcode will either go on to the next command or terminate. If the word is non zero.
the microcode will then check to see that the cylinder positioning is not active. and wait if it
is.

Next the sector count is fetched from DCB+1. and the microcode enters a loop waiting for
the sector count in KBLK +3 to equal the desired sector. Once this is found. a "wait for next
sector” command is issued and then the block transfer commands are sent to the output FIFO
for processing.

[the first command in a DCB is nonzero but has neither the Read nor the Write bit set. the
microcode will reset the controller. clearing the Sector Overflow. Output Late. and Compare
Error conditions (which inhibit writing on the disk). This is typically done using a Device

TRIDENT disk for the ALTO

Check Reset or Re-Zero command. and should be done only after waiting for the disk to be
idle. ‘

~

The control bits of the read/write command are as follows:

Bit 0 -
Bit 3 -not used-
Bit 4 -Check Data-

This bit is examined during a read command to0 see whether incoming data should be
compared against that data which already exists in the Alto memory. In this mode.
the first n non-zero words from the Alto memory are passed to the disk controller for
comparison during reading, where n is at least 2. and not greater that the word count
for that block. The disk controller will perform a normal read (placing all but the
first 2 data words read into Alto memory). and in addition it will set an error bit if
the check words are different. This check bit will inhibit any further write operations
within the sector.

Bit § -not used-

Bit 6 -Strobe late-
This is used in conjunction with read in an attempt to recover bad data.

Bit 7 -Strobe Early-
Same as bit 6. I dont know what happens if both bits are set.

Bit § -Write-
Indicates that the transfer is t be a write.

Bit 9 -Read-

[ndicates that the transfer is w be a read.
Bit 10 -not used-
Bit 11 -Head Address Reset-

Please don't use this bit. since it will force head 0 10 be sclected.

Bit 12 -Device Check Reset-
This bit is used to clear any error stored by the device check circuitry. This bit is
activated by the microcode and should not be set here except to recover from a
Device Check. Compare Error. Output Late. or Sector Overflow. The read. write.
and check bits should not be activated when this bit is set.

Bit 13 -Head Select-
This bit causes the head select electronics to activate the selected head. This bit
should always be set for a read or a write command.

Bit 14 -Re-Zero-
This is a special control function which is used to cause the disk drive to completely
retract its ¢vlinder positioning arms and then reposition them on cylinder 0. This bit
should only be activated when a head positioning error has been detected. The read.

TRIDENT disk for the ALTO 10

write, and check bits should not be activated when this bit is set.

Bit 15 -Advance Head Address-
Please don't use this bit either, since it will increment the head address selected by 1.

DCB+6 -Word Count-

This word specifies the number of words in the block to be read or written. This number
does not include the two words of check sum at the end of each block.

DCB+7 -Memory block Pointer-

This is a pointer to the appropriate memory block in Alto memory.
DCB+8 -
DCB+9 -Error Correcting Code-

These two words are updated at the end of a read with the contents of the error code shift
registers. If no read error has occurred then both these words will be identicaly zero. If they
are non-zero. then an error has occurred. and error correction may be applied. The error
recovery process runs as a BCPL procedure. and a small microcode routine. which are capable
of determining the error bits in less than 5 ms.

DCB+10 -Status-
This word contains the disk status at the end of processing the current block.
Bit 0 -
Bit 10 -Disk & Controller errors-

The status bits in this field are the same as those described for KBLK+3.

Bit 11 -ECC error-

Indicates that one of the two ECC words was found to be non-zero.
Bit 12 -
Bit 15 -constant-

This ficld is set to 1 by the microcode. Note that this means a 1 is returned in the
entire status word for a transfer with no errors.

3. Format Specifications

Various delays must be provided at the beginning of each sector block in order to allow for
clectrical and mechanical tolerances within the disk drive. For the purpose of defining a new disk
format. onc simply needs a summary of "words lost” for each block.

1) total words per disk revolution = 10.080
2) words lost for the 1st block = 32
3) words lost for successive blocks = 14
4) required gap at end of sector = 14

The number given for "words lost" for each block includes: 2 words of error detection and
correction (32 bits of ECC code) which are always added at the end of the data written. 1 word of

TRIDENT disk for the ALTO ' 11

trailing zeros (to assure that all data is sent before the write electronics is turned off), 1 word for
the disk controller to execute the read/write command, and the number of delay words allotted by
the disk controller as required by the disk drive for mechanical and electronic delays.

Using these numbers on the standard Alto disk format yields the following numbers. The number
of words available per sector is 10.080/9 = 1120. The total words lost for disk formatting is 32
for the first block, 28 for the second and third block. and 14 words at the end of the sector, for a
total of 74. Subtracting 74 from 1120 gives us 1046 words remaining for the three fields. This
will give us 2 words for Header, 10 words for Label, and 1024 words for Data. with 10 words
unused.

6. Error Detection and Correction

The following section describes (as best I can) the provisions implemented for error correction for
the Trident disk drives. This capability is done as a mixture of disk controller hardware (for ECC
generation and checking) and system-software/microcode (for error recovery).

The error detection and correction scheme implemented in the disk controller is a compromise of
capability. speed. and cost. The number of check bits generated is 32 (2 words are easy to keep
track of). and the total controller chip count has been held down to fit along with the Ethernet
controller. on a single Dorado printed circuit board. The basic capabilities and restrictions are
summarized below.

1) Correction of single error burst of length not to exceed eleven data bits. (Example: for
the data "0001100101". the data "0000101101" contains a single burst error of length
1)

2) Capable of correcting record lengths of up to 2684 words. The error detection and
correction code implemented will detect errors in arbitrary length records. but not
enough information is generated for error correction if the sector length exceeds 2684
words.

3) Simple error detection. 2 words are returned by the hardware. which if both words
are zero. indicates a successful read.

4) Error correction in less than one revolution of the disk drive. The error correction
procedure is well suited for implementation in a mixtre of BCPL and microcode.
The bulk of the processing. which is in microcode. will take a maximum of 4.5 ms.
worth of microinstructions. This is sufficiently fast to allow for reading a sector.
finding that an crror occurred. attempting to correct it. and if not correctable.
initiating a new read of the same sector on the next revolution.

5) Not all uncorrectable errors will be detected as such. The probability of an
uncorrectable error being generated is exceedingly small. [t requires two bad spots on
the disk surface within one sector (the pack is bad - throw it out!). an electronic error
in a sector with a bad spot. or o clectronic errors within one sector. Given that
such an error has occured. it can. with a probability of sav 20 percent. result in an
error pattern and displacement which is seemingly valid. This will result in leaving

TRIDENT disk for the ALTO 12

the error bits un-corrected and. in addition. changing some bits which were in fact
correct. This means that for high data security. a check code should be generated and
imbedded as part of the data file before writing on the disk.

The following is a more detailed description of the error correcting code used. and the procedure
used for data recovery.

The error correcting code (ECC) generated is referred to as a Fire Code (see Error-Correcting
Codes by Peterson). and is capable of correcting any single burst error of up to 11 bits in length
(that is a scattering of error bits within the bit stream. all of which fit within an 11 bit span). The
code calls for dividing the outgoing data stream by a polynomial of the form:

P(X) = P(X)(X™ + 1)

Where PI(X) is an irreducible polynomial of degree n (n = burst length) and m is > 2*n - 1. For
this particular application the polynomials chosen are:

Px) = (XM + x2 + nx?l+ 1)

During a write operation. the two polynomials are multiplied together and implemented by
hardware in the form:

PX) = X324 xB 42l L xllx2 41

The data stream is premultiplied by %32 10 make room for the 2 word ECC and then reduced
modulo P(X). This is accomplished by the normal feedback shift register technique with the
difference that to perform premultiplication. the output of the register is exclusive-or'd with the
incoming data and then fed back. After all data bits have been shifted out. the contents of the
ECC shift registers are appended to the disk block.

During the read operation. the feedback shift register is reconfigured such that the two original
polynomials are implemented separately. The incoming data stream. including the 2 appended
words of ECC. is independently reduced modulo PO(X) and Pl(X). where

PeX) = X2 + 1
Py = X1+ X2 +1

After reading in all words off the disk. the contents of the two polynomial shift registers are rcad
into the Alto. If the data is recovered without error. then reducing it modulo Py(X) and Py(X)
results in the registers containing all zeros.

[f the data contains an error. then the two registers will be non-zero. If one but not both registers
is non-zero. then the error is non-recoverable.

Given that one finds an error. then a procedure is undertaken which determines the pattern of bits
which are in error. and the displacement of this pattern from the end of the record. [am simply
going to present the magic equation t be solved. and some magic constants to be used for solving
this equation. Much of the polynomial implementation and the equations. which use the "Chinese

TRIDENT disk for the ALTO ' 13

Remainder Theorem” are discussed in technical reports from CALCOMP (Calcomp Technical
Report TR-1035-04, by Weslev Gee and David George) and XEROX (Xerox XDS preliminary
report "Error Correction Code for the R.M. Subsystem, by Greg Tsilikas, March 28, 1972.).

The basic equation is:

D = Q*LCM - (AO*MO*SO + Al*Ml*Sl)

Where:
D = displacement from the end of the record.
Q = smallest integer to make D positive
A{ = a constant such that A;*M; = 1 modulus E;
E; = modulus of the polynomial
LCM = least common multiple of Ey and E;

S; = number of shift operations to the appropriate polynomial remainders as
~ described below.

The values of Ey and E; were found by programing the procedure outlined in the CALCOMP
report. and yielded the following result:

Eg=21 Ej =2047

The least common multiple (LCM) of Eg and E, is simply the product of Eq and E; since the

two numbers have no factors in common. Thus the LCM. which is also the record length which
can be corrected. is 42,987 bits. or 2684 words.

Knowing LCM and Egy and Ej. the values of My and My are easily found to be
Mg = 2047 M; =21

The values of Ag and Ay are next determined using a trial and error approach that | put in a
small program. The results can easily be confirmed. and are given below:

Ag=19 Ap =195

All of the above values derived so far are constants determined for the particular polynomials
chosen. The values of Sg and Sy are determined in the software from the error patterns returned
at the end of a disk transfer.

Sg is first determined through a BCPL procedure by the following steps.
1) The remainder from dividing the input data by X?1 + 1is found in the first ECC
word. bits 11 through 135. and the second ECC word. such that first word bit 11 is the
most significant bit and sccond word bit 15 is the least significant bit

2) First test the remainder for zero. and if so quit since the error is non-recoverable.

3) Test the low order 10 bits for all zeros. and if not then perform a left circular shift on
the 21 bits. When the low order 10 bits are all zeros. the error pattern is in the upper 11

TRIDENT disk for the ALTO 14

bits of the word, and Sj is the number of times the circular shift was performed.

4) If the low order 10 bits don't become all zeros within 21 shifts (1 full cycle) an un-
correctable error has occurred.

Sl is then determined through a microcode procedure by the following steps.

1) The remainder from dividing the input data by X! + X2 + 1is found in the second
ECC word, bits 0 through 10.

2) First test the remainder for zero. and if so quit since the error is non-recoverable.

3) Test this number to see if it is equal to the error pattern determined in step 3 of SO.

and if not reduce this number modulo x4 x2 41 (left shift and XOR feedback).
When the contents of this word equals the error pattern (it is guaranteed to happen with 0
t0 2047 shifts). the value of S; is determined as the number of shifts performed (In the
hardware implementation of switching from the write polynomial to the read polynomials.
it was easier to implement a polynomial that premultiplied by X!l This means that the
remainder returned by the hardware already has had 11 shifts performed. To compensate.
when Sy has been determined by the above procedure. you must add 11 to the value. and
subtract 2047 if the result is greater than 2047).

The basic equation for the displacement now looks like
D = Q*42,987 - 19*2047*S - 195*21*S,

Where:
0
0

21
2047

So
S1

IN AN
ININ

Notice that the straight-forward solution to this equation can not be done with single precision
arithmetic on the Dorado. In order to avoid double precision arithmetic. I have used the
following manipulation of the equation.

D = Q*2047%21 - 19%2047*S) - 4095*S,
D = Q*2047*21 - 19*2047*S - 2*2047*S - S,
D'= Q*21- 197y - 2*S,

where:
0< D <2
D = 2047*D - Sl (add 42987 if D" = 0)

7. Hardware implementation

Due to the high data transfer rates of the Trident disk (1.65 us per word). the disk controller
implementation includes two independent 16 word "First In - First Out" (FIFO) registers. One
FIFO is used to buffer all output information. both control and data. and the other FIFO buffers
all input data. A stawus input instruction has been implemented which is not buffered through the

TRIDENT disk for the ALTO ' 15

FIFO's.

The two FIFO’s are completely independent of one another, and are, in fact, serviced by two
separate microcode tasks. With the standard allocation of task assignments in the Alto, the most
suitable tasks available for the new disk are task 17, the highest priority task, for the input FIFO
and task 3 for the output FIFO. With this implementation, a disk read can be performed without
concern over the microcode activity of other tasks. The output task, while being of low priority,
will have enough room in the FIFO to store all commands for reading the sector. The input task,
which will have all the activity, will have the highest priority. During this disk activity, the
standard Alto disk must be idle for its own good, while the display will still function. but with
possible break-up of the display during the transfer. During a disk write, all task activity above
the disk (i.e. everything but the emulator) must be minimized in order to guarantee adequate
service to the disk. If the output FIFO is allowed to become empty, the "write late” flag will be
set and the write command to the disk will be inhibited for the remainder of the transfer.

The fullness or emptiness of the appropriate FIFO generates a task wake-up request if there is
enough room for at least 4 words to be transferred. This is sufficient to allow a double word

memory access 10 take place in a minimum micro-instruction loop of 6 instructions per double
word read/write.

All disk formatting delay constants are implemented with a 32 X § PROM. An Alto program is
available which takes the required delay values from the user and computes the appropriate values
to be put in the PROM. These constants do not involve the number of blocks per sector or the
number of data words per block - these being determined from values passed to the microcode in
the disk command table,

For applications requiring a single disk drive on an Alto. the hardware implementation involves a
single Alto PC card which is plugged into a "processor” slot in the Alto. In the situation
requiring more than one drive (with a maximum of 8) an addijtional Trident Multiplexor card is
required. This card contains data and clock repeaters, disk select decoding and latch. and a sector
count register. (It should be mentioned that the controller will not work unless drive 0 is
connected and has AC power turned on: however. it is not necessary that drive 0 be on-line.)

Software and Utilities for Trident Disks: Tfs and Tfu

Copyright Xerox Corporation 1979

1. Introduction

This document describes the software for operating any of the family of Trident disk drives attached
10 an Alto using a "Trident controller card" (TRICON) (the software presently deals with the 1-80
and T-300 models). Additional information can be found in the document "Trident disk for the
Alto" by Roger Bates which is section 9 of this manual.

A "Shugart controller card” also exists. for connecting to Shugart model SA-4004 and SA-4008 disk
drives. The Shugart controller is microprogram compatible with the Trident controller. and the
Trident software can operate it as well. In this document. all references to Trident disks apply to
Shugart disks as well. except where noted otherwise.

The Tfs package and utilities all assume that the disk is t0 be formatted with 1024 data words per
sector. The maximum capacity of each disk is given in the following table.

Disk Tracks Heads Sectors Total pages Total words
T-80 815 5 9 36.675 37.555.200
T-300 815 19 9 139.675 142.709.760
SA-4004 202 4 8 6.464 6.619.136
SA-4008 202 8 8 12.928 13.238.272

For all disks except the T-300. it is possible to construct a single Alto-format file system utilizing
the full disk capacity. Due to the restriction of virtual disk addresses to 16 bits, a single file system
may utilize only about 47 percent of a T-300 disk. and it is necessary to construct multiple file
svstems in order to make use of the entire disk.

Because of bandwidth limitations. it is unwise 10 operate the Trident disk while the Alto display is
on. Although the Tfs package will save the display state. turn it off. run the disk. and restore the
display for every transfer. the user may prefer to turn the display off himself. The Tfs management
of the display causes the screen to flash objectionably whenever frequent calls to Tfs are underway.

The present version runs only under Operating System version 16 or newer.

2. Trident File Utility. Tfu

The Tfu utility (Tfu.Run) is used to certify a new Trident pack for operation. to initialize a pack
with a virgin file system. and to perform various file copying. deleting. and directory listing
operations.

Commands are given to Tfu on the command line: immediately following the word "Tfu" is a sub-
command name (only enough characters of a subcommand are needed in order to distinguish it
from other subcommands). followed by optional arguments. Several subcommands may appear on
one command line. separated by vertical bars. Thus "TFU Drive 1 | Erase™ will erase drive 1. There
must be a space on cach side of the vertical bar.

All information shown on the display by Tfu is also written into file Tfu.log (on the Diablo disk).
Certain commands pause and tipe "Continue?" after ecach screenful: type "space” to proceed.

In what follows. an "Xfile" argument is a filename. perhaps preceded by a string that specifics
which disk is to be used:

DP0Q:name.extension -- use standard Alto (Diablo) disk
TPn:name.extension -- use Trident drive n (n=0 to 7)
name.extension -- use default disk (Trident)

The "default disk" is always a Trident drive: the identity of the drive is set with the Drive
command. |

TFU DRIVE driveNumber

This command sets the default Trident drive number to use for the remainder of the
command line. The default drive is effectively an ‘argument’ to the CERTIFY. ERASE,
DIRECTORY. CONVERT. and BADSPOTS commands. (On a T-300. file systems 0. 1.
and 2 are specified as TPx’, "TP40x". and "TP100x". where 'x" is the actual unit number.)

TFU CERTIFY [passes]

This command initializes the headers on a virgin Trident disk pack. then runs the specified
number of passes (default 10) over the entire pack. testing it using random data. Any sector
exhibiting an uncorrectable ECC error. or correctable ECC errors on two or more separate
occasions. is permanently marked unusable in the pack’s bad page list. This information will
survive across all subsequent normal file system operations (including TFU ERASE). but
may be clobbered by the Triex program.

This command should be executed on every new Trident pack before performing any other
operations (such as TFU ERASE). 10 passes of TFU CERTIFY are adequate for reasonably
thorough testing. though more are recommended for packs to be used in applications
requiring high reliability. The running time per pass for TFU CERTIFY is approximately 3
minutes on a Trident T-80. 9 minutes on a T-300. and 1.5 minutes on a Shugart SA-4008.

TFU CERTIFY may be terminated prematurely by striking the space bar to get its
attention, then typing 'Q’. Subsequent runs of TFU CERTIFY will not clobber the existing
bad page information but rather will append to it. It is recommended (though not
necessary) that TFU CERTIFY be executed before each TFU ERASE so as to pick up any
new bad spots that may have developed.

TFU CERTIFY ordinarily asks vou to confirm wiping out the disk before going ahead and
doing so: however, the /N global switch may be used to indicate that no confirmation is
necessary. '

TFU BADSPOTS

Displays the addresses of all known bad spots on the disk pack mounted on the default
drive.

TFU RESETBADSPOTS

Resets the bad spot table of the disk pack mounted on the default drive. (Note that TFU
CERTIFY appends to the existing bad spot table.) There should normally be no need to
execute this command. but it may be useful. for example. after a disk pack is cleaned. if the
known bad spots were caused by dirt.

TFU ERASE [tracks]

‘This command initalizes (or reinitializes) a file svstem on the pack mounted on the default
Trident drive. after asking vou to confirm vour destructive intentions (overridden by the /N
¢global switch). The tracks argument specifies how many "tracks” of the drive are to be
included in the file system: it. defaults to the maximum possible. If smaller numbers are
used. the initialization is correspondingly faster. In any case. tracks bevond the one specified
are available for use outside the confines of the file svstem. (Note that one "track” is 43
pages: this corresponds to one cylinder on a T-80 and to nothing in particular on other

disks.)

The disk pack should previously have been initialized and tested by means of the TFL
CERTIFY command.

TFU

TFU

TFU

TFU

TFU

TFU

TFU

TFU

The DiskDescriptor file is normally located in the middle of the file system so as to
minimize average head movement between DiskDescriptor and file pages. However, this
does limit the maximum size contiguous file that can be created to a little less than half the
file system. If you wish to create a contiguous file larger than that, use the /B local switch
(i.e.. TFU ERASE/B) to force the DiskDescriptor to be located at the beginning of the file
system instead.

COPY Xfile « Xfile
This command copies a file in the direction of the arrow. The destination file may be
optionally followed by the switch /C. in which case (provided it is a Trident disk file), the
file will be allocated on the disk at consecutive disk addresses. (Note: More precisely, an
attempt will be made to perform such an allocation. If the attempt fails. vou will sometimes
get an error message. The best way to verifv that a file is contiguous is to use the "address”
command. below.)

CREATEFILE Xfile pages
This command creates a contiguous file named Xfile with length “pages.”

DELETE Xfile Xfile ..
This command deletes the given file(s).

RENAME Xfile « Xfile
This command renames a file.

DIRECTORY [Xfile]
This command lists the directory of the default Trident drive on the file Xfile: if Xfile is
omitted, each entry will be shown on the display. A somewhat more verbose listing can be
obtained with TFU DIR/V.

ADDRESS Xfile
This command reads the entire file and displays a list (in octal) of virtual disk addresses of
the file pages.

CONVERT
An incompatible change in the format of DiskDescriptor was made in the Tfs release of
July 24. 1977, The current Tfs software will refuse to access Trident disks written in the old
format. The TFU CONVERT command reformats the DiskDescriptor to conform to current
conventions (it is a no-op if applied to a disk that has already been converted). Once vou
have converted all vour Trident disks. vou should take care to get rid of all programs
loaded with the old Tfs. since the old Tfs did NOT check for version compatibility.

~.

EXERCISE passes drive drive drive ..
This command embarks on a lengthy "exercise" procedure; it is repeated ‘passes times
(default=10). and uses the disk drives listed after ‘passes’ (if none are specified. all drives
that are on-line are used). [t operates by making a series of files (test.001. test.002 etc.) on
the disk packs. and performing various copyving. deleting. writing and positioning operations.
The files are deleted when the exercise finishes. [t is not essential that the packs be fully
erased initially: the procedure for building test files will try to fill up the disk. just short of
overflowing. Each pass of the test takes approximately 20 minutes per T-80. 60 minutes per
T-300. and 10 minutes per SA-4008.

One or more of the following global switches may be specified (i.e.. a command of the form
TFU/switch EXER...):

/W Use a systematic data pattern when writing files. rather than arbitrary garbage.

/C Carefully check the data read from the disk (implies /W). Use of this switch makes
the test run considerably slower than normal.

/D Leave the display on during Trident disk transfers. This causes data late errors to0
occur and thereby exercises the error recovery logic. (It also slows down the test by
at least a factor of 10.)

/E Turn the Ethernet on during Trident disk transfers, with results similar to /D.

3. File structure on the Trident disk

The file structure built on the Trident disk by Tfs (Trident File System) is as exact a copy of the
Alto file structure built by Bfs (Basic File System) as is possible. Certain exceptions are present due
o hardware and microcode differences.

3.1. Disk Format

The Trident or Shugart disk drives are set up to run with the. following parameters:

Disk Cylinders Heads Sectors
T-80 815 5 9
T-300 815 19 9
SA-4004 202 4 3
SA-4008 202 8 S

TFU CERTIFY will format each sector of the disk in the standard Tfs format;

header words per sector: 2
label words per sector: 10
data words per sector: 1024

Thus. for example, a T-80 disk will have 9*5*815 = 36.675 sectors = 37.555.200 words. Sector 0
will not be used by Tfs. All but sector 0 will be available to the file system.

Ordinarily. Tfs utilizes only the first 383 cylinders (= 65.493 sectors = 67.064.032 words) of a T-
300 disk. This is the largest integral number of cvlinders that can be addressed using a 16-bit virtual
disk address. The 16-bit virwual address limitation is deeply embedded in all existing higher-level
Alto file system software. so changing the Tfs interface to permit a larger virtual address space
would be impractical.

Instead. Tfs permits one to obuin another. entirely independent disk object for referencing the
second 383 cylinders of the same T-300. thereby permitting a separate. self-contained file system to
be constructed. A third file system may also be constructed. but it contains only 49 cylinders (=
8379 pages. only 6 percent of the disk’s total capacity). so doing so is probably not worthwhile.

3.2. Disk Hecader and Label

On the Trident. a real disk address requires two words to express. rather than the single word on
the Diablo 31. Also. microcode considerations gave rise to a reordering of the entries in the Label.
The result is that both the header and label formats are different for the Trident. The Trident
format follows.

disk header contains:
track word
head byte
sector byte

disk label contains:
fileid word
packID word
numChars word
pageNumber word
previous @DH
next @DH

3.3. Disk Descriptor

Every valid Tfs disk has on it two files which must contain the state information necessary to
maintain the integrity of the file system. The Tfs system directory, "SysDir.", is identical in format
and purpose with its Bfs counterpart. However the Tfs disk descriptor file. "Disk Descriptor.”. while
identical in purpose. is formatted differently to allow easy manipulation of the bit table (which. for
the Trident. has to be paged in and out of memory). This difference in format should not be
evident to cven low-level Trident users but is mentioned here for completeness.

3.4. Bad Page Table

Tfs and Tfu observe the standard Alto file system convention of recording -2's in the labels of all
known bad pages. However. if this were the only location of such information. “erasing” a disk (to
create a virgin file system) would require two passes over the entire disk: one to collect the
addresses of all known bad pages and one to mark all remaining pages deleted. This would require
an excessive amount of time. particularlv on a T-300.

A duplicate table of known bad pages is therefore recorded on physical page zero (= cylinder 0.
head 0. sector 0) of the disk. This page is not available to the file system for other reasons having to
do with end-of-file detection. Note that the entries are REAL disk addresses and can therefore refer
to any page on the disk regardless of whether or not such a page is accessible through the file
svstem. (A T-300 has only one bad page table, even if it conuins several file systems.)

The TFU CERTIFY command is responsible for testing the pack and building the bad page table.
The TFU ERASE procedure is careful not to clobber this information but rather to propagate it to
the other places where it is needed (namely. the disk bit table and the labels of the bad pages
themselves). As a result. the bad page information. once initialized. will survive across all normal
operations on the disk. including “erase” operations.

There does not presently exist any facility for manually appending to this list when new bad pages
are discovered. Experience to date with the Trident disks (which provide correction for error bursts
of up to 11 bits in length) has shown that such a facility is probably not needed. Thorough testing
of disks (using TFU CERTIFY) is recommended before putting them into regular use. however.

(EROX

Inter-Office Memorandum

To IFS Users Date September 6. 1980

From Ed Taft and David Boggs Location Palo Alto

Subject -How to Use IFS (version 1.27) Organization PARC/CSL

Filed on: [MaxclKIFS>HowToUse.bravo. .press)

This memo describes how to use the IFS (Interim File System) servers. This is the complete user-
level documentation. The Alto User's Handbook has some introductory material and summarizes
commonly-used procedures. so new users are advised to look there first.

The names of some of the IFSs presently operating. and the electronic mail addresses of persons t0
contact concerning accounts, are as follows:

IFS name Organization Administrator
Ivy, Phvlum PARC (Palo Alto) RWeaver.PA
Iris. Igor. Idun SDD (Palo Alto) SDSupport.PA
[sis. Sun, Wind SDD (EI Segundo) SDSupport.PA
Ibis. Ibid OPD (Palo Alto) SDSupport.PA
Oly OPD (EI Segundo) Nikora.ES
XEOS EOS (Pasadena) DonWinter.EOS
ADL ADL (El Segundo) RHunt.PA
Erie WRC (Webster) Axelrod. WBST
Cactus Dallas Yost.DLOS
Calypso Leesburg

Eagle Corporate hecadquarters (Stamford)

Aklak XRCC (Toronto)

These names are the ones used to identifv specific [FSs to the FTP. Chat and CopyDisk subsystems.
[nformation in this memo applies to all IFSs except where otherwise noted.

This edition describes IFS version 1.27. The only user-visible change since the previous version is
addition of a ‘Printed-by’ subcommand to the "Print’ command.

How to access IFS

At present. the file services provided by [FS are limited to a fairly basic set. The normal mode of
access from Altos is through FTP. The basic operatons (Store. Retrieve. List. Delete. and Rename)
arc invoked through FTP in precisely the same manner as when accessing Maxc. The only
difference is that vou request FTP to open a connection t some [FS (by specifying its name) rather
than Maxc.

You should consult the FTP documentation in the Alto User's Handbook. the Alto Subsystems

manual. or [MaxclKAltoDocs>FTP.uy. for general information on the use of FTP. IFS can aiso be
reached irom Maxc by means of the PUPFTP subsistem.

Copy right Xerox Corporation 1980

How to Use IFS 2

File naming conventions on IFS are a mixture of Maxc and Alto conventions. The general form of
an [FS file name is: ‘

<directory>name!version

All printing characters except ™*' are legal in the name. The complete file name may be up to 99
characters long (longer than either Maxc or Alto permit).

All TFS files have version numbers (in the range 1 to 65535) which are defaulted in the usual way.
as follows: ’

Retrieve highest existing version
Store next higher version
Delete lowest existing version
List all versions

Versions other than the default one may be referred to explicitly (by specifyving the version number)
or by the notations "!IL" (lowest existing version). "'H" (highest existing version). or "!N" (next higher
version). '

There is presently no facility for automatic deletion of non-current versions. but such a feature may
be implemented eventually.

"*" expansion is supported during Retrieve. List. and Delete commands. The expansion is similar to
that provided by the Alto Executive: that is. each "*' matches zero or more real characters in a file
name.

You may find it convenient to organize your files into sub-directories by giving them names such as
KTafoMemos>HowToUse.Bravo'. Then all files belonging to a particular sub-directory may be
accessed by a specification such as <TafdMemos>*'. and vou may direct yvour attention w0 a
particular sub-directory by establishing a default such as ‘Directory Taft>Memos’. The system does
not presently attach any important semantic significance to the sub-directory notation. but this may
change eventually.

Access via Chat

The current definition of the File Transfer Protocol (the means by which FTP communicates with a
file server) limits itself to the basic set of operations mentioned previously. It lacks the means for
expressing a number of other essential operations. Improved file access protocols are a topic of
current research.

In the meantime. rather than attempting to extend FTP. we have provided an Executive in IFS
which you can access by means of Chat (or the bottom Telner window in FTP). This Executive is
patterned after the one in Maxc. but has a very limited command repertoire.

Typein and editing conventions arc the ones familiar to most users. BS and CTRI-A erase the
preceding character. CTRL-W deletes a word. and DEL deletes an entire command or sub-command.
Deleted characters are not actually crased from the Alto screen because Chat does not provide such a capability. Most
commands must be terminated by RETURN. CTRL-C may be used to abort any command. [f vou
arc using any sort of display terminal. typeout will stop at the end of every page (as on Maxc) and
[FS will wait for you to type any character before continuing. If you tipe ahead. this feature is disabled.

The current commands of interest to most users are the following:
@ Tlogin (user) user-name (password) password

Logs vou into IFS. This is necessary before issuing most other commands.
Ordinarly. Chat will do this for you automatically.

(V%]

How to Use IFS

@ Logout
@ Quit

Logs you out and closes the connection.
@ Connect (to directory) directory-name (password) password

Sets vour default directory to be directory-name, and gives you owner-like access to
it. The password may be omited if directory-name is your own directory or one to
which you have connect privileges.

@ Directory (default) directorny-name

Sets your default directory to be directory-name. but without changing vour access
rights (and therefore without requiring a password). All subsequent commands
dealing with files will behave as if Kdirectory-name>' appeared at the beginning of
cach file name argument that doesn't name a directory explicitly (i.e.. that doesn't
begin with <°). Directory-name may include sub-directories (e.g.. ‘<Jones>Memos>’).

When you issue the "Directonn’ command. IFS first displays vour current default
directory. You may either edit this field (by first backspacing at least one character)
or replace it simply by typing the replacement. If you erase the entire field (with
CTRL-W). the default directory reverts to vour current connected directory.

If the first character of directorv-name is >'. IFS prefixes the name of your current connected
directory. That is. if vou are currently connected to directory Jones. the command Directory
>Memos>' is equivalent 10 the command "Directory <Jones>Memos>'. Also. the outermost < and >
are optional. Note that the foregoing descriptions also apply to the Directory command in the FTP
server.

@ DskStat

Prints the number of used pages and the maximum allowed in the connecred
directory. followed by the number of free pages in the system. One IFS page is
1024 words or 2048 characters. which is equivalent to four Alto pages or
approximately one Maxc page.

@ List (files) file-designators

Lists the names of all files matching file-designators. which is a list of up to 10 file
names (separated by spaces). any of which may contain "*'s 10 denote multiple files.
The files matching each file-designaror are listed in alphabetical order on the basis
of the entire file name (including directories and sub-directories. if any). To save
space. directory and sub-directory names are printed only when they change. above
the list of files to which theyv apply.

If you terminate the last file-designator with a comma followed by RETURN (rather
than just RETURN). IFS enters a sub-command mode in which you may specify
additional information to be printed about cach file:

@@ Type
@@ Size
@@ length
@@ Creation
@@ Write
@@ Read
@@ Backup
@@ Times
@@ Author
@@ Protection
@@ Verbose

file type and byte size
size in pages

length in bytes

date of file creation
date of last write

date of last read

date of last backup
times as well as dates
creator of file

file protection

same as Type Size Write Read

Author

How to Use IFS 4

@@ Everything

Sub-command mode is terminated when you type just RETURN in response to the
‘@@’ prompt. The columns of printout will be aligned properly only if vou are running Chat
with a fixed-pitch font such as Gachal2 or Gachal0.

@ Delete file-designator

Deletes all files matching file-designators. which is a list of up to 10 file names
(separated by spaces). any of which may contain "*'s to denote multiple files. The
version number defaults to the lowest existing version: to delete all versions. vou
must end each file-designator with *!*". IFS prints out each file name, followed by
‘[Confirm]. You should respond with "Y' or RETURN to delete the file. or with "N’
or DEL to leave it alone.

If vou terminate the last file-designator with a comma followed by RETURN, IFS
enters a sub-command mode in which you may request the following additional
actions:

@@ Confirm (all deletes automatically)

[FS will not ask vou to confirm deleting each file but will just go
ahead and do it

@@ Keep (# of versions) number

IFS will retain the number most recent versions of each file and
delete all remaining versions. That is. to delete all but the most
recent version of each file. specify "Keep 1.

On IFS (unlike Maxc). files are deleted immediately: there is no Undelete
command. To delete a file. vou must have write access to it

@ Rename existing-filename (10 be) new-filename

Changes the name of existing-filename to be new-filename. It is permissible to
change any part of the file name. so it is possible to move a file from one directory
or subdirectory 10 another by renaming it. The Rename operation requires that vou have
write access to the file and create access 10 the directory into which the file is being renamed.

It is permissible to rename a file to iwelf in order to change its capitalization. Note that a new
version of a file always inherits the capitalization of the previous version: renaming a file to itself (i.c.
with the same version number) is the only way to defeat this.

@ Print (files) file-designator
@ Press (files) file-designator

Requests that all Press files matching file-designator be sent to your default printing
server (CPrint’ and ‘Press’ are synonyms). File-designator is a list of up to 10 file
names (scparated by spaces). any of which may contain *'s to denote multiple files.
IFS prints out the name of each file followed by “[Confirm]: you should respond
with "Y" or RETURN to print the file. or with "N' or DEL to skip over it

If vou terminate the last fiie-designaror with a comma followed by RETURN. [FS
enters a sub-command mode in which vou may specify the following parameters:

@@ Copies number
Specifies the number of copies of cach Press document to print.

@@ Server server-name

How to Use IFS _ 5

@

RIS

)

Specifies the name of the printing server to which the Press files are
10 be transmitted. This may be either a registered name or an
internetwork address of the form ‘ner# host#’ (don't leave off the
trailing “#").

@@ Printed-by name)
i

Causes name to appear in the ‘Printed-by" field on the cover page

of the printed output. (Ordinarily. your user name is printed.)

You terminate sub-command mode by typing RETURN in response to the ‘@@’
prompt. In the absence of any sub-commands. IFS will cause one copy of each
Press file to be printed on your default printing server. You may establish or
change vour default printing server by means of a sub-command of the "Change
Directory-Parameters’ command. as follows;

@ Change Directory-Parameters (of directory) directory
@@ Printing-Server host-name

where directory is the name of your directory. i.e.. vour user name. If vou have not
established vour default printing server. [FS will require you to issue a "Server’ sub-
command every time you request printing.

Actual transmission of the Press files to the printing server is performed by a

background process. so yvou need not remain connected to IFS while the printing is

taking place. If the printing server is down at the time. IFS will queue the files for

later delivery. If the Press files cannot be delivered within eight hours, however. the

printing request is discarded without a trace.

Printing request may be examined and canceled with the following commands:
@ Show Printing-requests

displays all printing requests vou have issued that have not been completed.
@ Cancel (printing requests)

displays all outstanding printing requests vou have issued. and for cach one asks
vou whether or not you wish to cancel it (answer 'Y or 'N).

Note that only Press-format files can be printed: IFS checks that every file is a Press
file and will refuse to print any file that is not

Change Password (of directory) directory-name (old password) password (new password)

password

Changes the password of the specified directory. which must be either your own or
the one to which vou are presently connected. (Contrary to normal practice. the
new password does print out as you type it: this is so that if vou make a typing
mistake vou will be able to see it)

Change Protection

Change Directory-Parameters
Show Directory-Parameters

Change Group-Membership
Show Group-Membership

Sec the section describing protections (below).

Systat

How to Use IFS 6

Shows who is presently using IFS. what service they are accessing (FTP, Telnet,
CopyDisk. or Mail). and the name or inter-network address of the machine they are
coming from.

@ DayTime
Displays the current date and time.
@ Statistics

Prints out various operating statistics that are generally of interest only to IFS
administrators.

Protections

IFS has a rcasonably flexible file protection mechanism. but with a somewhat primitive user
interface at present. Fortunately, the default protections are the ones appropriate for most users. so
vou will probably not need to deal explicitly with protections very often.

Your access o files and directories is permitted or denied on the basis of your membership in user
groups. Every user is a member of a user group called *World. You are a member of another user
group called ‘Owner’ with respect to files in yvour own directory. and temporarily to files in any
other directory to which you connect (using the Connect command in FTP or Chat). Additionally.
you may be a member of one or more other user groups with numbers in the range 0 to 61. Such
numbered user groups generally correspond to specific projects. and are assigned independently
within each IFS by that IFS’s administrator.

A file protection specifies. for each individual file. what types of access are permitted to which
groups. There are three types of file access: read. write. and append. If vou have read access t0 a
file. you are permitted to read (i.e.. retrieve) its contents. Similarly. write access permits yvou to
overwrite. delete. or rename the file. and append access permits you 10 append to an existing file.
even if you don’t have write access. IFS does not vet provide facilities for appending to files. but such 2
capability may be implemented in the future.

The standard default file protection permits read. write. and append access to the Owner and read
access to the World. Hence if the file is in vour own directory or the directory to which vou are
connected. you may do anything to it: otherwise you may only read it. But. for example. if the file
protection also permits write access by group 3. and vou are a member of group 3. then you may
overwrite (or delete or rename) the file. even if it is not in your directory or the directory to which
vou are connected. Note that the read. write. and append access types are independent. It is therefore possible.
though perhaps not particularly useful. for a file protection 1o permit writing but prohibit reading by some user group.

In addition to the protection associated with each file. there are some protections associated with a
directory as a whole. The first is the default file protection for files in that directory. When a file is
.created. its protection is assigned in one of two wayvs. [f there is an existing version of the same file.
then the new file inherits its protection. More preciscly. when version n of a file is created. it inherits the
protection of the highest-numbered evisting version less than n. if there is one. Otherwise. the protection assigned
is the default file protection of the directory in which the file is being created.

There are two additional types of access to the directory: create and connect. If vou have create
access to a directory. then you are permitted to create new files in that directory. If you have
connect access to a directory. you are permitted to connect to that directory without giving its
password. As with file protections. these types of access are granted or denied individually 10
Owner. World. and cach numbered user group. The standard directory protection permits create
and connect access only 0 the owner.

Each files-only directory has an owner. The owner of a files-only directory is permitted to connect
to that directory without giving a password. regardless of the connect protection of the directory.
Tris feature avoids the need to define one-membder user groups in order 10 grant owner access to fiies-only directories

How to Use IFS ‘ 7

managed by a single person.

The Chat Executive contains several commands by means of which you may manipulate protections
of files and directories.

@ Change Protection (of files) file-designators
@@ sub-commands

Changes the protection of all files matching file-designators, which is a list of up to
10 file names (separated by spaces). any of which mayv contain "*'s to denote
multiple files. You specify the changes to be made by means of one or more of the
following sub-commands:

@@ Read (access permitted t0) groups
@@ Write (access permitted t0) groups
@@ Append (access permitted t0) groups

where groups is a list of up to 10 instances of ‘Owner’, "World". or group numbers
(separated by spaces) to which the specific access type is to be granted. ‘None' may
be used in place of groups to specify that access is to be denied to all groups. You
may precede a sub-command by the word "No' to specify individual groups to
which access is to be denied. The changes take effect when vou type RETURN
immediately after the ‘@@ prompt.

Normally. the changes that vou specify by means of these sub-commands are
incremental. That is. the only access/group combinations that are changed are the
ones vou mention explicitly, while all the remaining ones are unchanged. However.
there is an additional sub-command,

@@ Reset (all existing access)

that denies all types of access to0 all groups. In this case, the entire file protection is
changed to permit only those access/group combinations that yvou enable explicitly.

You may change the protection of any file to which vou presently have write access. and of any file
in vour own directory or one to which you are connected regardless of its protection. That is. vou
can change the protection of any file of vour own even if its present protection does not permit read.
write. or append access by yvou

@ List

The "Protection’ sub-command to the "List' command (described previously) displays
a file's protection thus:

R: groups:. W: groups: A: groups
For example:
R: Owner World: W: Owner 3 19: A: None

@ Change Dircctory-Parameters (of directory) directory-name
@@ sub-commands

Changes the information associated with the directory as a whole in the manner
specified by the sub-commands. The directory must be either vour own or one o
which you are connected.

You may change the default file protection by means of the Read’. "Write'. and
"Append” sub-commands in the same manner as in the ‘Change Protection’
command. Additionally. vou may change the create and connect access using the
sub-commands:

How to Use IFS _ 8

@@ Create (access permitted t0) ‘groups
@@ Connect (access permitted 10) groups

The ‘No' prefix may be applied to these as well as to the others.

The ‘Reset’ sub-command requires an additional keyword to specify what it is that
you wish to reset:

@@ Reset Default-File-Protection
@@ Reset Create-Protection
@@ Reset Connect-Protection

You may change vour default printing server by means of the sub-command:
@@ Printing-Server host-name

The changes are not actually made until you type the confirming RETURN in
response to the ‘@@ prompt.

@ Show Directory-Parameters (of directory) directory-name

Displays all information about directory-name. and additionally prints some other
parameters. such as the disk limit and the owner of a files-only directory. that may
be changed only by an IFS administrator. If directory-name is vour own directory.
your user group membership is also shown.

An IFS administrator can change any directory parameters for any user. Additionally. an
administrator can assign vou to be the owrer of one or more user groups. If vou are the owner of a
group. you are permitted t0 change and examine the membership of that group. using the following
commands:

@ Change Group-Membership (of group) group
@@ sub-commands

The sub-commands are one or more of the following:

@@ Add user-name
@@ Remove user-name

These cause the specified users to be added to or removed from the group. The
sub-commands take effect immediately. You exit sub-command mode by typing
RETURN immediately after the ‘@@ sub-command prompt.

@ Show Group-Membership (of group) group

Displays the list of users who are members of the specified group. This command
takes a long time to complete. because it has to read the directory parameters of
cvery user in the system.

Mail server

[FS optionally makes available a mail server compatible with the Laurel message system. Each
geographical arca has a registry of mailboxes for all Alto users in that area: at present. the registries
are called PA (Palo Alo). ES (El Segundo). EOS (Pasadena). WBST (Webster). HENR (Henrieta).
DLOS (Dallas). and XRCC (Toronto). [n the current implementation. each registry corresponds to
a single mail server machine that contains all the mailboxes within that registry: that is. the registry
names are simply aliases for machines. The PA registry is on Maxcl and the other registries are on
local [FSs.

How to Use IFS 9

If you are in Palo Alto, you will be assigned a mailbox in the PA registry (i.e., you will be given an
account on Maxcl); if you are outside Palo Alto, you will be assigned a mailbox in your own local
registry. In any event. your registry must be identified in your Laurel.profile. which should look
something like this:

Registry: registry-name
Hardcopy: printer-host-name
Printed-by: §

To send a message to a user whose mailbox is within your own registry, you need only specify that
user's name when you are composing the recipient list in Laurel. However. to send to a user in
some registry other than your own. you must specify a recipient name in the complete form

user.registry

For example. if your own registry is ES (El Segundo) and you wish to send a message to Jones. who
is also in El Segundo. you need only specify Jones’ (though it is also correct to say ‘Jones.ES’). But
if vou wish to send a message to Smith in Palo Alto. you must specify "Smith.PA".

CopyDisk server

IFS contains a CopyDisk server compatible with the CopyDisk program available from the NetExec.
When CopyDisk prompts you for a disk name. you can specify a ‘disk’ on IFS by typing. for
example: ‘[IvyKBasicDisks>NonProg.disk’.

We expect that this server will be primarily used to distribute copies of the basic Alto disks,
eliminating the need for physical disk packs which often get mislaid. No doubt other applications
will evolve with time. By convention. files in CopyDisk format have extension °.disk".

CopyDisk files can be quite large. A single Diablo 31 disk takes 1275 IFS pages—more than a
typical user's entire disk allocation. CopyDisk does not copy free pages. so that number is the worst
case for a completely full disk: none the less. it is easy to generate gigantic files that use up vour
disk allocation.

File backup

Reliability of file storage is accomplished by two facilities. both of which are now operational. First.
we have a Scavenger capable of reconstructing the IFS directory from redundant information kept in
the file system. We cxpect to be able to recover from most file system crashes in this manner. with
no loss of user files.

Second. we have an automatic backup system that periodically copies files to a backup disk pack.
The backup system runs between 2:00 and 5:00 a.m. every day (users accessing IFS during that time
may notice some significant degradation in performance). During each backup run. all files not
previously backed up or last backed up more than 30 days ago are copicd.

This backup system serves two purposes. First. if the file system fails catastrophically in a way that
the Scavenger can't recover from. we will be able to reconstruct the file system from backup. with at
most one day’s files lost. Second. files accidentally deleted or overwritten by users will usually be
recoverable if the loss is noticed within 30 days. (The recovery procedure is not particularly
convenient. so please don't depend on it as a regular service.)

How to Use IFS » 10

Present limitations and future plans

IFS now provides facilities sufficient to make it a useful service. It is unlikely that any further
major development will be undertaken. IFS has already far exceeded its intended “interim”
specifications, and will ultimately be replaced by better facilities.

A major problem is that of performance of the file system. An IFS is nothing more than an Alto
with some large disks connected to it. There is insufficient capacity (particularly main memory) in
the IFS Alto to support more than a small number of simultaneous users.

We are presently imposing a relatively small limit (somewhere between 4 and 10) on the number of
concurrent connections—FTP, Mail. CopyDisk. and Chat users combined. When this limit is
reached. the system will refuse to accept additional service requests. To prevent idle users from
tying up these precious slots. the IFS will break connections after a relatively brief period of
inactivity.

We would be pleased to receive reasonable suggestions for changes or improvements in the set of
facilities provided by IFS. However, please be conscious of the limited manpower available for
implementing such improvements. ‘

Acknowledgments

Implementation of IFS would have been impossible without the assistance and cooperation of
several individuals who have contributed considerable effort in support of this project. Peter
Deutsch provided the Overlay. VMem, and ISF packages and implemented a number of
improvements needed by IFS. Ed McCreight made available his B-Tree package. which is used for
maintaining user directories. and likewise contributed IFS-related improvements. Bob Sproull and
Roger Bates sank considerable energy into the Trident disk hardware. microcode, and software to
make it work reliably. And Steve Butterfield initially implemented the Mail facilities and made
some important internal improvements.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

