
'-/EnJr~\/ 
I~, '-H ~~,'~ f/l 
~ Ih'l.iLJ 't:. 

To CSL and SSL 

From Butler Lampson 

Subject Al to/Bcpl stcrage allocation 
and function calls 

Date June 19, 1973 

Location Palo Alto 

Organization PARC / CSL 

1. Overview 

This document describes the facilities provided by the 
standard Alto microcode for storage allocation and function 
calls. They are intended to support function calls and returns 
for languages \'1hich pass parameters by value and allocate the 
local environment or iram~ for a function vlhen it is called, vJi th 
a corresponding deallocation on the return. Provis~on is also 
made for statically allocated frames, for a global storage region 
which may change during a call or return, and for a coroutine 
linkage. Finally" function descriFtors and return links are 
interpreted as segmented addresses, so tha~ code segments can be 
swapped or'relocated. 

2. Background 

This section discusses the major alternatives which were 
considered in arriving at the present scheme. Hopefully, it will 
make it easier for the'reader to understand why things are done 
the way they are. 

During a transfer of control from one function to another, 
it is necessary to: 

a) obtain the address of the first instruction to be 
executed in the ne\;7 function; 

b) allocat€ storage for the new function or release 
storage fer the old one; 

c) possibly set up pointers to the environment of the new 
function; 

d) pass parameters, possibly including a return link. 

Item (a) is complicated by our desire to be able to move code or 
to keep code out of core, until it is referenced. Both (a) and 
(b) are closely related to the question of hC\-J memory is to be 



ALTO/BCPL STORAGE ALLOCATION AND FUNCTION CALLS / Butler Lampson 
June 19, 1973 Page 2 

,allocated. Item (c) requires decisions about how much 
environment should be set up automatically. 

It is \Olell knC\r1n that two areas \-1hich grow and shrink at one 
end can be conveniently allocated in a single block of memory, by 
putting one at the top and gro\'ling it do\vn, and putting the other 
at the bottom and growing it up. vJith more than tvl0 areas, life 
is much more difficult. 

Bcpl programs need three kinds of storage: program q stack, 
and heap. The observation of the preceding paragraph motivates 
us to combine the stack and the heap, so that there vlill be only 
t'f.r-10 areas.. This arrangement results in a som5'lhat different kind 
of storage fragmentaticn than one gets with a stack, which we now 
proceed to examine. 

A stack has several desirable properties: 

81) Frames are physically adjacent, so that parameters can 
be deposited by a caller at the end of his frame and 
magically appear at the beginning· of the callee's 
frame. 

82) Allocating and freeing frames is quick. 

53) Freed space is automatically coalesced into a single 
block at the -cop of the stack. 

On the other hand: 

54) 'All the space has to be permanently committed, whether 
or not it is used. 

85) Every process must have its ovm stack, because all the 
good features of the stack depend on "the strict last-in 
first-out discipline. 

The heap's advantages are: 

H1) Space is committed only when allocated. 

H2) Allocating and freeing frames is reasonably quick. 



ALTO/BCPL STORAGE ALLOCATION AND FUNC'rION CAI.LS / Butler Lampson 
June 19, 1973 Page 3 

H3) Any number of processes or coroutines can use the same 
storage zone; 

and the disadvantages are: 

H4) Frames cannot be related by adjacency, but only by 
pointers. 

H5) Fragmentation may occur. 

The last point deserves more attention. It has two aspects: 

F1) Let us assume that the heap allocator coalesces 
adjacent free blocks. If storage is allocated strictly 
last-in first-out, there will be no fragmentation. If 
more than one process is involv~d, however g or if 
storage which is allocated explicitly has a longer 
lifetime than the function which allocates it, there 
will be fragmentation. 

F2) In the interest of efficiency, we probably don't want 
to coalesce every time a frame is freed, but" rather to 
keep a" reserve of frames which can be rapidly allocated 
and freed. This is a fairly small effect, however. If 
the depth of subroutine calls is 10, say, and we have 
frame sizes 10, 20, 30, and 40 \'Jords "in common use, 
then the maximum amount of space in the" reserve is 1050 
words, and a more likely amount is 200-400 words. This 
is pretty conservative. 

Adjacency is nice for passing parameters, but we can pass up 
to three values through the registers more cheaply. If we accept 
that £e\,1 functions have ,more than three parameters, \-le pay little 
for giving up adjacency. 

The above analysis leads to the conclusicn that allocating 
frames from a heap is a good deal. Details of the scheme are 
given in section 3. 

2.2 Program relocation 

It \tJould be nice to be able to relocate or swap out both 
programs and data. On a machine with about the same amount of 
real and virtual memory, a typeless language like Bcpl cannot get 



ALTO/BCPL STORAGE ALLOCATION AND FUNCTION CALLS / Eutler Lampson 
J~ne 19, 1973 Page 4 

much value out of data relocation. Program relocation, on the 
other hand, is quite feasible, since programs are addressed only 
by labels, functions, and return links. In order to avoid 
disrupting Bcpl, it is essential to have functions represented in 
one \Ilord. Furthermore, it seems hiqhly desirable· to minimize the 
amount of stuff which has to be permanently resident in core for 
the mechanism to work. 

These considerations lead to a segmentation scheme, in which 
code is organized into segments, each of 'tihich is either not in 
core, or occupies a contiguous grcup of words in coreA There are 
256 segments, each \-1i th 128 entry points, so a func·tion reference 
will fit in 15 bits. A return link, of course, has to be two 
'<:lords. 

Each segment has an entry in a resident segment table, which 
tells whether the segment is in core, and if so, where. A call 
or return traps if the new segment isn 6 t in core, and otherwise 
adds the code base from the segment table to· the segment-relative 
program counter. To make this work, a call has to relativize the 
return link. 

Labels are lccal to a segment, and hence can be stored 
. relative to the code base. 

A function always has a local environment or frame. In many 
cases, it is also convenient to have a global environment G \oJhich 
might be common to all the functions in a segment or group of 
segments, but which may change during a call or return. This has 
two advantages: 

G1) It allows a group of functions to share a collection of 
static variables. 

G2) If we redefine the Nova's page g addressing to be 
'relative to the global environment, it becomes much 
more useful, since a group of segments with a common G 
can safely allocate 256 globals which can be directly 
addressed, without having to worry about collisions 
with other segments. 

The implementation is to 
together with the code base. 

keep the G base in the segment table 
Because of the Alto's double-word 



AL'l'O/BCPL STORAGE ALLOCATION AND FUNCTION CALLS / Butler Lampson 
Jl~e 19, 1973 Page 5 

fetch, this costs very little. If several segments have the same 
G, the base value is simply duplicated in the segment table. 

It is worth noting that this scheme of keeping both global 
and code base in the segment table allovls either to be varied 
over a group of segments, while the other is kept constant. By 
varying the global base we get a number of instantiations of the 
same code" each t:}ith different static data.. By varying the code 
base we get a group of code segments sharing the same static 
data. 

We \<Jant to minimize the amount of information in a return 
link. The smallest pice of information \vhich can define the 
program state \1hen a call occurs is the address of the caller' s 
frame. t-ie store the segment number and relative PC of the caller 
in his frame, and can thus restore the entire state (PC, frame, 
G) from the address of the frame. . 

The frame allocation problem has some additional aspects: 

choice of frame size; 

static rather than dynamic frames; 

coroutine linkage. 

since each function in a segment may have a different frame 
size, \~e want to st:ecify the frame size in the entry point as 
well as the relative address of the first instruction. Again, 
the double-vJord fetch makes this cheap. 

We would like to de-couple the compiler's specification of 
needed frame size from the storage allocator's decision about how 
many sizes to provide. This requires an interface convention for· 
specifying frame size, i.e., a set of frame sizes from which the 
compiler can choose. A reasonable set of frame sizes miqht be 84 

12, 16, 20, 24, 32, 40, 48, •••• Of course, we don't want to 
build this into the microcode, so we will number the available 
sizes 1, 2, 3, •••• The compiler will then specify the desired 
size by compiling in the proper number, and the storage allocator 



ALTO/BCPL STORAGE ALLOCATION AND FUNCTION CALLS I Butler Lampson 
June 19, 1973 Page 6 

must be able to do something intelligent for each frame size. If 
the allocator wants to provide fewer frame sizes than the ones 
defined in the compiler-allocator interface, it needs a way to: 

A1) Map a specified frame size into a larger one. 

A2) Trap on a specified frame size larger· than what the 
allocator can handle automatically. 

It is also desirable to be able to easily switch the storage 
allocator~s data baseu 

When a function call occurs, we usually want to allocate a 
frame. sometimes g hO\oJever, \-je \o'lant a function to have a 
permanently allocated frame, either to speed up the call or to 
make the local variables static.. This can be conveniently done 
\'lith a flag in the frame size ,<lord which causes it to be 
reinterpreted as a frame address. 

coroutine linkage requires a different approach, since a 
coroutine must be specified by the address of its frame rather 
than by an entry point. Since the frame con~ains the saved PC 
and the segment number, from which the global base and the code 
base can be obtained, it provides all the information needed to 

. resume e}{ecution of the coroutine. To implement this idea \'le 

need a flag in the function reference; if the flag is set, the 
function reference is interpreted as a frame address and a 
coroutine call (cocall) occurs. This arrangement makes it 
unnecessary for the compiler to know whether a function call is a 
cocall or not. 

3. The storage allocator 

The microcode which implements storage allocation knows how 
to do two things: 

1) Allocate: 
contiguous 
or traps. 

accepts a bead size BS and either returns a 
group of words of this size, called a Qea£, 

2) Free: accepts a bead and either returns it to free 
storage or traps if this is too difficult. 

The storage allocator works with a collection of free 
storage, called a ~one, which is defined by the address AT of an 
allocation table and a maximum bead size MAXBS which specifies 



ALTO/BCPL STORAGE ALLOD~TION AND FUNCTION CALLS / Butler Lampson 
June 19, 1973 Page 7 

the length of the allocation table. The contents of AT!BS tells 
hO\'l to allocate a bead of size BS, unless BS > MAXBS, in which 
case the allocator traps by calling AT!~. The contents of AT!BS 
is either 0 or the address of a free bead of the proper size to 
satisfy a request fer size ES. A free bead tas the form: 

word 
-2 
-1 
o 

contents 
address of AT!BS 
@ 

address of next bead of size 
BS, or 0 if there are no more 

The -2 and -1 \vords are not used by the allocator, but are used 
by the frame deallocator. The allocator traps by calling AT!2 if 
AT! BS=9. Both traps begin with the AC1s untouched. 

BS must be odd.. In other \vords, only odd entries of AT are 
usedo A bead, on the other hand, starts on an even location. 
Hence, if AT!BS is odd, it cannot be a bead address and instead 
is interpreted as the address of another AT entry which is used 
instead of AT!BSo This mechanism allows a number of bead sizes 
to be allocated from the same list of free teads. By making the 
last bead on the free list of size BS point to another AT entry, 
rather than to 0, it is possible to automatically allocate a 
larger size bead if no beads of the proper size are available. 

The deallocator has t\.;o entry points. Eoth take an (even) 
address F. 

D1) Free frame: "return F to the list at "F! (-2) " (i. e., 
F! 0 ... F! {-2) ! 0; F! (- 2) ! B ... F. If F! (- 1) # 0, set 
F! (-1) ... £, and free the frame F! (-1) • This permits 
additional dynamic storage to be freed automatically 
when a frame is freed. 

D2) Free bead: return F to the list at F!~ (intended for 
static frames). 

In either case, the deallocator does nothing if F!0 (or 
F!- 2) = g, and it traps by callin"g AT! 4 if F! 0' (or F! -2) is even. 
This allo\tJs soft\vare to free beads which have BS < HAXBS, or 
which require special treatment for some other reason. The trap 
leaves F in AC3. 

It would be prudent to provide the trap routines with static 
frames, since an infinite loop of traps may ctherwise result. 



ALTO/ECPL STORAGE ALLOCA'rrON AND FUNCTION CAI.LS / Butler Lampson 
June 19 6 1973 Page 8 

An allocation table has the form: 

\o.Jord fJ: trap routine for FS > l-1AXFS 

\vord 1 : free list for FS = 9 

\-lord 2: trap' routine for empty free list 

\vord 3: free list for FS = 1 

word 4: trap routine for deallocating if F!0 (or 
FS! (- 2) ) is even 

word 5: free list for FS = 2 

'"'lord 6: unused 

\'lord 7: free. list for FS = 3 

word 8: unused 

... 

There are three instructions which invoke the storage 
allocator. All are parameterless: 

ALLOCA'rE: takes BS in AC3, . returns address of bead 
('vord H) in AC3 

FREEF: takes F in AC3, leaves ACs unchanged. Frees 
a frame. 

FREEB: takes F in AC3, leaves ACs unchanged. Frees 
a l:ead. 

4. Code~ggmentation 

Any reference to a code segment which is not local to the 
segment must be a §egmented address. Such an address may take 
tvlO forms: 

81) Entry refer.§ncg: one \'Jord, with the format: 

bits 0-6: entry number EN 
entries/segment) 

(allo\oJs 128 



ALTO/BCPL STORAGE ALLOCATION AND FUNCTION CALLS I Butler Lampson 
June 19, 1973 Page 9 .. 

bits 7-1Ll: segment number SN (allows 256 seg­
ments) 

bit 15: o 

word 0: program counter PC, relative to code 
base of segment 

\oJord 1: segment number SN 

The segment number SN is an index into a segment table ~'lhich 
starts at a fixed location SEGTAB. An entry in this table' is 
called a §§gm,gD~ g~i2to;£ SD. It occupies t,vo ''lords and has 
the format: 

'\'-lord ~: global base for the segment 

code base for this segment (must be even). 
If the word is odd, the segment is said to be 
not .2f.gsent, and any attempt to transfer into 
this segment will cause a trap to a fixed 
location NOTPRESENT. 

Note that it is possible ·to have several segments with the same 
code base (differen-t incarnations of the code), or "7ith the same 
global base (sharing the globals), or both (which doesn't seem 
too useful). 

At the beginning of each code segment is an entry table, 
whose double-word elements are §ntry £Qin~§, with the format: 

word 0: 

even = 
odd = 

word 1: 

frame size FS 

static frame. FS is the frame address. 

dynamic frame. FS is.the index into the 
allocation table. 

address of first instruction, 
. relative to the code base. 

AFI, 

Note that a static frame should have F! (-2) = 0 so it won't be 
freed during a return. 

There are no instructions which directly invoke any of this 
machinery. 



ALTO/BCPL STORAGE ALLOCATION AND FUNCTION CALLS / Butler Lampson 
June 19, 1973 Page 10 

The operand of a call instruction is a word called a 
function reference FCN. There is also a second operand, the 
number of arguments NA, which is obtained in a clever manner 
described belo\oJ. Once the instruction has its op(~rands, it 
proceeds as follows: 

C1) Relativize the PC and store it into SAVEDPC~ which is 
F!0. Add 1 if NA = many. 

C2) If FCN is even, this is a coroutine call (cocal1) and 
FCN is t.he address of a frame. Obtain NEVlPC by 
fetching the instruc-tion reference (SAVEDPCc- SN) from 
(FCN~0, FCN!1) and evaluating it. This also sets up GB 
and CE. Then go to step CS. 

C3) If FCN is odd, it is a segmented address. Obtain the 
S1'1, GB, and CB for it. Fetch the entry point (FS, API) 
and compute NEWPC ~ CB + AFI. 

C4) If FS is even, the function has a static frame: 
NEWF ~FS. Other~"ise, allocate a frame of the size 
specified by FS , put its address in NEWF, and put SN in 
NEWF! 1. 

CS) Store F in NE\-lF! Z. Set F ~ NEWF. 

C6) store the number of arguments specified by NA (3 
NA = many): F!3 ~ ACB, F!4 ~ AC1, F!S ~ AC3. 
ACB ., NA. 

if 
set 

C7) send control to 
othert-lise. 

NE'V1PC if NA = many, NE\o1PC + 1 

A return has no arguments. It proceeds as follows: 

R 1 ) NEW F ~ F! 2 • 

R2) Free frame F. 

R3) F ~ NEWF. Fetch the instruction reference from F 
as in step C2, and set up GE and CB. 

R4) Transfer control to NEWPC. 

Observe that return does no automatic storing of arguments. 



14ILXO/..,BCPL STORAGE ALLOCATION AND FUNCTION CAI·LS / Butler Lampson 
June 19, 1973 Page 11 

I 

There are t\!.Jo groups of 5 call instructions: 

CALLP0, CALLP1, CALLP2 q CALLP3 r CALLPn 

CALLF0, CALLF1, CALLF2 8 CALLF3, CALLFn 

They are ten of the address-only new instructions. The CALLPs 
use PC!a!0 as the FeN operand, and the CALLFs use F!a, where a is 
the address field. The NA operand is obtained from the opcode. 
Note that the first instruction of the function is skipped unless 
NA = many (CALLxn). This instruction should be a ·call to a 
routine which copies the extra arquments. The saved PC is 
incremented by 1 \<lhen NA = many to skip over a '\-tord vlhich \<1i11 
tell this routine how many arguments there are and where to find 
them. 

There is a single parameterless return instruction. 

The format of a frame is: 

~ ,~ord contents 

-2 pointer to list header to . return 
frame to, or 0 

-1 pointer to list of dependent beads, 
or 0 

SAVEDPC PC, relatfve to code base, when 
this frame has done a call 

SN 1 owner's segment number 

OLDF 2 callerlls frame 

3 first argument 

. . . 


