
i l'1tl::i"~ 0 f ~'i cu i\J1 ff rnorn n (iu In

r~ BCPL Users D:1!~! June 18, 1973

Palo Alto
Coyote Hill

::«W',:l BCPL l-!achine Langua.ge Interface Of ~j:: n i ;c(: t iO n ,PARe

The following document purports to describe BCPL calling conventions
for assembly langlw,ge programmers. The fo11oi'.'ing description 'only
applies to pre··structure versions of BCPL. rrhe term procedure '!dil1
refer to both· routines and procedures.

]:-.. 11 BCPTJ procedure calls use static cells which point to procedure
code body and a few machine language routines which are always loaded
by the BCPL londer. A procedure static cell points to the first
executable state!.lent in a ECPL PROCEDURE. The code in a procedure
body references these static cells through local parameters on the
stack or through local pointers in the cede body. At the time of a
procedure call, the stack pointer is in AC2 and the value of the
fir.st t\'lO parameters' (if there are any) are in AC)t5 and AC1.

NOTE: In the following discussion.Procedure A is the
calling procedure and Procedure B is the called
procedure. i. e. I some place "inside. 'A" there
occurs the piece of code, "B(•••)."

A calls B by doing a JSR indirect througb the static cell pointing to
B. At this point, all four accmnula·tors may have valuable data. B's
first action is to store AC3 (return address) in a page zero location
and then to call "GETFRAHE" through a page zero poin'ter (static).
Nhen control returns from GETFRf'\:·1E, sundry bookkeeping information
has been stored in the stack, all para~eters, if any, have been stored
on the stack, AC2 has the new stackpointer and AC0, ACl, and AC3
have been clobbered since the initial entry.

The following details about GETFRl\HE are of principle interest to
the curious or to people \'1ho \\'ish to call BCPL routines from assembly
language programs. If you aren't interested, skip to the section on
"Ho,"; To Use It".

~!"U'l~
./ '/

GEIJ:'FRAl1E stores the return address in B in a page zero cell· (GErrFHRETURN) • ..
Then it stores AC0 and ACI as the first two parameters on the new
stack frame, along with the old (A's) stack pointer. In traditional
NOVA custom, the \·;ord follm·:il1g B I s JSR to GEr.I'FRi,\HE is a parameter -
the size of stack f~ame '\tJhich B wishes allocatE:d. BCPL \\'i11 compute
the nm'l stack pointer and it \\'111 abort if the stack frarne is too big.

BCPL Users -2- June 18, 1973,

GETFRc~.HS also places DiS return address in procc::du:=:-e A, the value of
cell 203, and the nur:'.ber of argurn'.~nts passed by A into the stack. The
value of GETFru·!p.ETUm~ plus one is assume'd to be GE'l'FRt'";.NE r S return link
into B. rrhat value, ·..:hose other alias is the "COD20~'1NERII (i.e., of
the current stack frame) is stored in the stack. The \\ford immediately
following A's original JSR to B is also treated as a parameter - the
nlU7lber of arguments \·Jhich A is passing to B. If that number is two
or fc\.;er, GETFR1\1·1E irr.rr.eaiately returns to 13 via the IICODEm'1NERH entry
on the ne\'!' stack (Hith the new stack poil'iter in AC2) •

Procedure A places any remaining parameters in the stack in the following
way: GETFRN·1E places t:he address minus one of Hhcre the next parameter
should fall in the stack in cell 20B (a page zero auto incrementing cell).
It moves the new stack pointer into ,AC1, and leaves the old stack
pointer in AC2. GE rrFRJ.l·lE now "calls" procedure A via the return address
in the stack. Procedure A then computes the values of the remaining
paramc2ters and stores them onto the n8,'1 stack frame. \'ihen this process
is complete, Procedure A calls the routine, "RECALL" through a page
zero pointer. RECAJ.lL stores AC3 as B t S correct return address into
Procedure A onto the stack. It also aSSlli~es ACI still contains the
value of the nevI stack £r2...'1'.e pointer which it moves into 1~C2. RECJ.I..LL
then "returns" to Procedure 13 through the "CODEOHN'ER" entry on the stack.

\'lhen procedure B \~'ishes to return to Procedure A, it places its "RESULTIS"
value into AC¢ and calls the BCPL !:'outine 'IIHETURN" through a page zero
pointer.

RETURN performs the follo\'ling operations:

1. It returns the old value of cell 20 which \..,as stored in
the stack.

2. It stores B's stackpointer into IISNEXT II
•

3. It restores the old stack pointer and, finally, it
returns control to the original calldr~

BCPL Users -3- June 18, 1973

'l'he BCPI.J Stack

NOirE: The stack pointer is offset by 200B to take better
advnntage of NOVA indexing hardware.

Old AC2

AC2-2'c.0B+l 'Return address to caller

Address of code O~ler

, Ac2-20.0B+3 stack size = 6+ num args expected +num locals

AC2-2~~B+4 Old value, cell 2~B

l\.C2-2.0,0B+S nlli~ args passed by caller

AC2-2.0.0B+6 parameter 1

1I.C2-2¢.0B+7 parameter 2

HO'd to Use It, or, Folklore Hade Simple

I. In :lrour assembly language rO\.t,tines

1. Leave a pointer to the first executable statement of each
assembly language routine in some knm·m laea tion. This
,,,ill be your analogue of the BcPL procedurG stat"ic call.

2. Use the code sho\m in the example to call setframe.

3. \'7hen done I place the result, if any I in AC~ and return to
the BCPL calling routine as illustrated in the example.

4. ASH your program (5) as you normally would.

5. RLDR your programs as you normally would. l~ote: Do not
put a starting address 011 your assembly language routines;
this would confuse BCPL's loader.

II. Using BCPL

1. Compile your progrm'i1S as always.

2. See the example for ho\v to call the assembly lang~age procedure.

3. Use the BCPL loader, BLDR to make the final BCPL program:
BLDR/'r/R "your ,assembly language save file" "/I your BCPL routines tl

If you use the DOS debugger \.;1 th your assembly language
routines, don I t use the "/D" s\1itch on I3LDR as the loader
(RLDR) has -~I;Cady placed the debugger in the assembly language
save file.

ECPL Users -4- June 18,1973

If you usc the DOS debugger with your assembly language routines, donlt
use the "/0 11 s'ditch on BLDR as ·the lOuder (I~LDR) has already placed the
debugger in the assembly language save file.

E:-:amples: in DCPL

Let Prog = #101¢¥1¢ U this creates a pointer to the IIAssembly Language
/ / Static Cell" \·;hich is presumably located location lf6f6~B.

FDa = PROG (A,B,C, •.•)//call the routine

(asm. lang. examples to be provided.)

GHcD:tn

NOl'E: Lines typed by user are underlined

ASM/L ORIGINAL.WS~

Programs relocatable

.. TrrL DISK

RLDR ORIGINAL ~

Disk

No starting address for load module

R

NHAX
ZHAX
CSZE

EST
SST

~.01~36

f6f5~05~

BLDR/r.r:/R O_RIGINhL/I BCPLPROG .l~
R

Suppose ~{our BCPI. program is on the file I "BCPLPROG1". In that p~ogram,
the follo'ding sequences of code \·:i11 call the assembly language program
described above.

LET '~S!·1PP'OG = #l~lP15;O / /Loc.:;rrrON IP0¢B BETTER F ... hVE A POINTER TO THE SUBROUTINE

ASNPROG (BUFFER, DISKADDR, DISKCli.~NNEL, READ) / /CALL THE ASSEHBLY LANGUAGE
//PROGRAH

(Wasn't that easy!)

ORIGiN!'\!... J.S

0001 DISK

17'l(,OG
THE STACK

1 7 i' (,07
E FOR BerL'~;

177(llO
1~~7(dl

1 7 7 (11 ;!
1:' 7f.J13
o ~.\ ·l ~; :.\ '7

.TITL DISK

FIEST ::: -172

SECND ::: -171

THIRD
FORTH
FIFTH
SIXTH
• DUSR

-
:::

:::

:::

-170
-167
-166
-165
SAVER =

PAGE 2

; DEFU1E INDEX OF THE PARA~.n~TERS ON

j RD1H1BER THAT

; ISTERNAL USE.

"EARLIER" ENTRIES AR

;DEFINE SOME MACROS
TO C;\LL THE (;UTS OF

(.I C1 (,3 S:!
BCPL

STA 3,337

JSR @352
ETURN, II r:: J XU!>" C)\LLS

00 (l:~ 51
RNIf DOES ncr L RETUI{;'JS

,

• DUSR

• DUSR

· NREL

F I xur ..
RTURN ::: JSR @351

; "SJ\VER" SAVES THE R

; ItGETFR/~MEfI AND "RTU

PAGING (CORE, DISK,CHANNEL,R/W FLAG)
,

00000 '000001' DPTR: . +1 ; BECi\USE THIS IS THE ONLY ASSEr,1BLY LANGUAGE
PROGR!\~1, . \·n·: r>lm\' .

00001' O~~ 1337 DSKIO: SAVER ; KNOW THAT "DPTR" \'HLL BE LOCATED AT LaC 100
OB (ABSOLUTE)

THE EXAMPLE BCPL PROGRAM USES THIS FACT

o 0 0 0 2 t 0 (J (\ 3 5 :2
Nut-tB ER a F I' :\l~A~·l ET ERS

00003' (lOOO!:!
o 0 a 0,1 ' (I S (J ,I 26
00005' O:~O·~24
a 0 0 0 () I I) ,1 (1·1 2 S
00007'021206
o 0 0 1 a ' (I.~ S 2 0 7
00011'035211
OOOl;!' 0:';1210
00013' 1 ;'snO·1
000 14 ' 00 I) :11 (I
o 0 a 1 5 ' (1 3 ·l ,1 1 2
o a 0 1 b ' 0 S ·1 ·l a 2
00017'00G002 DISK:
00020'070077 FNC:
00021' 0(1(1·113
o 0 0 2 2 ' 0::; o·t 1 0
o 0 a 2 3 t (J()():; 5 1

OESN'T EXPECT

,
00024' 03·1·10·t [JS}':\';R:
o 0 a 2 5 ' (I S .\ 7 7 3
00026'000771 . ,
00027'07&077 ~READ:
00030' (I i' ! ·l 77 I'd': I T E:
00031 J 000010 C8:
00032' (lonooo STACK:
00033' ooonoo TDIP:

,
00034'030776 DERRO:

on I GIN i\ 1.. L S

00035' 00(,351

FIXUP

12
STA
LOA
S'1'.4
LOA
1.0 .. \
LOA
LDA
~·IOV
J~·1P
LOA
STA
· SYSTM
• RDR
J~·1P
1.0.;\
RTURN

; CALL flGETFRAME". ADD 6 TO EXPECTED

; 4 P ARA~1ET ER 5
2, STACK
0) C8
OJ TE~1P
0, FIRST,2
1, SECNO, 2
3, FORTH, 2
2,THIRO,2
3, :), SZR
OSK\·m
3,WREAD
3;FNC

CPU
DERRO
2,STJ\CK

; SAVE STACK POINTER
; LOOP COUNTER

;CORE ADDRESS
; DI SK ADDRESS
; R/N FL;\G
; CHANNEL NU~1BER
jREAD IS 0
;l'lRITE IS 1

; ERROR RETURN
;RESTORE STACK POINTER

;00 A BePL RETURN. CALLING PROGRAM 0

A RETURN VALUE, SO DON'T LOAD ACO.

LOA
ST"
J~1P

• RDR
• \';RR
10
o
o
LDA

RTUR;~
• END

3,NRITE
3, FNC
DISK

CPU
CPU

2, STACK

PAGE 2. 1

; RETURN AFTER DEBUGGING

