{nter-Cliice Momorandum

o BOPTI, Users Date June 18, 1973
"o Gene MeDaniel Lesation Palo Alto

Coyote Hill

Sumret BCPL Machine Language Interface Orgrnization PARC

The following document purports to describe BCPL calling conventions
for assembly language programmers, The following description only
applies to pre-structure versions of BCPL. The term procedure will
refer to both routines and procedures.

all BCPL procedure calls use static cells which point to procedure
code body and a few machine language routines which are always loaded
by the BCPL loader. A procedure static cell points to the first
executable statement in a BCPL PRCCEDURE. The code in a procedure
body references these static cells through local parameters con the
stack or through local pointers in the ccde body. 2t the time of a
procedure call, the stack pointer is in AC2 and the value of the
first two parameters (if there are any) are in ACZ and ACl.

NOTE: 1In the following discussion Procedure A is the
calling procedure and Procedure B is the called
procedure. i.e., some place "inside. A" there
occurs the piece of code, "B(...)."

A calls B by doing a JSR indirect through the static cell pointing to
B. At this point, all four accumulators may have valuable data. B's

first action is to store AC3 (return address) in a page zero location
and then to call "GETFRAME" through a page zero pointer (static).
When control returns from GETFRAME, sundry bookkeeping information
has heen stored in the stack, all parameters, if any, have been stored
on the stack, RC2 has the new stackpointer and ACYZ, ACL, and AC3
have been clobbered since the initial entry. _ , :

. ‘ N r ’ e
The following details about GETFRAME are of principle interest to o
the curious cor to people who wish to ¢call BCPL routines from assembly
language programs. If you aren't interested, skip to the section on
" n

How To Use It". /’“‘”Lﬁch;
GETFRAME stores the return address in B in a page zero cell (GETFMRETURN).)
Then it stores ACP and ACl as the first two parameters on the new

stack frame, along with the old (A's) stack pointer. In traditicnal
NCOVA custom, the word following B's JSR to GETFRAME is a parameter -
the size of stack frame which B wishes allocated. BCPL will compute
the new stack pointer and it will abort if the stack frame is too big.

BCPL Users . -2~ : June 18, 1973

GETFRAME also places B's return address in procedure A, the value of
cell 203, and the number of arguments pacsed by A into the stack. The
value of GETFRMRETURN plus onc is assumed to be GETFRAME's return link
into B. That value, whose other alias is the "CODEOWNER" (i.e., of

the current stack frame) is stored in the stack. The word immediately
following A's original JSR to B is also treated as a parameter - the
number of arguments which A ic passing to B. If that number is tw

or fewer, GETFRAME immediately returns to B via the "CODEOWNER" entry
on the new stack (with the new stack pointer in aC2).

Procedure A places any remaining parameters in the stack in the following

way: GETFRAME places the address minus. one of where the next parameter '

should £fall in the stack in cell 20B (a page zero auto incrementing cell).

It moves the new stack pointer into ACl, and leaves the old stack

pointer in AC2. GETFRAME now "calls" procedure A-via the return address

. in the stack. Procedure A then computes the values of the remainin
parameters and stores them onto the new stack frame. When this process

' is complete, Procedure A calls the routine, "RECALL" through a page

zero pointer. RECALL stores AC3 as B's correct return address into

Procedure A& onte the stack. It alsc assumes ACL still contains the

value of the new stack f£rame pointer which it moves into AC2. RECALL

then "returns" to Procedure B through the "CODEOWKE " entry on the stack.

When procedure B wishes to return to Procedure A, it places its "RESULTIS"
value into ACP and calls the BCPL routine "RETURN" through a page zero
pointer. -

RETURN performs the following operations:

1. It returns the 0ld value of cell 20 which was stored in
the stack.

2. It stores B's stackpointer into "SNEXT".

3. " It restores the old stack pointer and,_finally, it
returns control to the original caller.

BCPL Usexs

NOTE:

AC2-20#B+8
AC2~204B+1
| AC2-20¢B+2
'AC?-2¢QE+3
AC2-202¢B+4
AC2-280B+5
Acz-zﬁﬁé+6

AC2-20@@B+7

-3- June 18, 1973

The BCPL Stack

The stack pointer is offset by 200B to take ketter
advantage of NOVA indexing haxdware

0ld AC2

‘Return address to caller

Address of code ovner

Stack size = 6+ num args expected + num locals
0ld vélue, cell 24B

nun args passed by‘caller

parameter 1

parameter 2

How to Use It, or, Folklore Made Simple

I. In your assembly language routines

l.

IX. Using

save file.

Leave a pointer to the first exescutable statement of each
assembly language routine in some known location. This

- will be your analogue of the BCPL procedure static call.

Use the code shown in the example to call setframe.

When done, place the result, if any, in ACf and return to
the BCPL calling routine as illustrated in the example.

ASM youxr program(s) as you'nqrmally would.
RLDR your programs as you normally would. - Note: Do not

put a starting address on your assembly language routlneq,
this would confuse BCPL's loader.

BCPL

Cempile your programs as always.
See the example for how to call the assembly language procedure.

Use the BCPL loader, BLDR to make the final BCPL program:

BLDR/T/R "your assembly language save file" "/I your BCPL routines"
If you use the DOS debugger with your assembly language

routines, don't use the "/D" switch on BLDR as the loaderx

(RLDR) has already placed the dcbugger in the assenbly language

BCPL Users -4- June 18, 1973

If you use the DOS debugger with your assembly language routines, don't
use the "/D" switch on BLDR as the loader (RLDR) has already placed the
debugger in the assembly language save file.

Examples: in BCPL
Let Prog = #14180%// this creates a pointer to the "Assembly Language
// Static Cell" which is presumably leocated location 1¢@gB.

FOO = PROG (A,B,C,...)//call the routine

(asm. lang. examples to be provided.)

GMeD:tn

NOTE: Lines typed by user are underlined

ASM/T, ORIGINAL.WSY

Programs relocatabl

LTITL DISK

RLDR ORIGINALY
Disk
No starting address for load module

NMAX @p1g836
ZMAX gpEpsy
CSZE

EST

SST

R
BLDR/T/R ORIGINAL/I BCPLPROG.1Y
R

Suppose your BCPL program is on the file, "BCPLPROGl". In that program,
the following sequences of code will call the assembly language program
described above.

L3

LET ASMPROG = #181@¢¢ //LOCATICN 1@PEB BETTER HAVE A POINTER TO THE SURROUTINE

ASMPROG (BUFFER, DISKADDR, DISKCHANNEL, READ) //CALL THE ASSEMBLY LANGUAGE
//PROGRAM

(Wasn't that easy!)

ORIGINAL. L5 ~ PAGE 2

0001 DIS
.TITL DISK
177606 . ~ FIRST = =172 y DEFINE INDEX OF THE PARAMETERS ON
THE STACK

177607 . SECND = =171 ;REMEMBER THAT "EARLIER" ENTRIES AR
E FOR BCPL'S |

177610 THIRD = -170 ; INTERNAL USE.

177611 FORTH = -167

177012 FIFTH = -166

177613 SIXTH = -165 |

- 051337 .DUSR SAVER = STA 3,337 ; DEFINE SOME MACROS

TO CALL THE GUTS OF BCPL -

006352 .DUSR FIXUP = JSR 2352 s "SAVER" SAVES THE R
ETURN, "FIXUP" CALLS - |

006351 ' .DUSR RTURN = JSR 8351 s "GETFRAME" AND “RTU

RNY DOES EBCPL RETURNS
-

. NREL
PAGING (CORE, DISK, CHANNEL, R/W FLAG)
00000’000001'HP1R c+l ; BECAUSE THIS IS THE ONLY ASSEMBLY LANGUAGE
PROGRAM, ~WE KNOW '
00001' 051337 D5SKIO: SAVER ; KNOW THAT “DPTR" WILL RE LOCATED AT LOC 100
0B (ABSOLUTE)
; THE EXAMPLE BCPL PROGRAM USES THIS FACT

- ee s e

. » .
 00002' 006352 FIXUP s CALL "GETFRAME". ADD 6 TO EXPECTED
NUMBER OF I'ARAMETERS
00003 000012 12 ;4 PARAMETERS = |
00004050426 STA 2, STACK s SAVE STACK POINTER
00005020424 LDA 0, C3 : LOOP COUNTER
00006' 040425 STA 0, TEMP -
00007' 021206 LDA 0, FIRST, 2 ; CORE ADDRESS
00010'025207 LDA . 1, SECND, 2 s DISK ADDRESS
000111035211 LDA 3, FORTH, 2 s R/W FLAG
00012' 031210 LDA 2, THIRD, 2 s CHANNEL NUMBER
00013175004 MOV 3,3, SIR sREAD 1S 0
000141000410 JMP DSKWR sWRITE 1S 1
00015' 034412 LDA 3, WREAD
000161054402 STA 3, FNC

00017'006002 DISK: . SYSTM
00020'076077 FNC: « RDR CPU

00021' 000413 JHP DERRO s ERROR RETURN

000221030410 L.DA 2, STACK +RESTORE STACK POINTER

00023106351 RTURN : DO A BCPL RETURN. CALLING PROGRAM D
OESN'T EXPECT . |

; A RETURN VALUE, SO DON'T LOAD ACO.

000241034404 DSKWR: LDA 3, WRITE -

00025054773 STA 3, FNC

00026' 000771 IMP DISK

00027'076077 WREAD: .RDR CPU

00030'077477 WRITE: .WRR CPU

00031000010 C8: 10

000321000000 STACK: 0

00033'000000 TEMP: 0

00034030776 DERRO: LDA 2, STACK
ORIGINAL. L5 - o . | PAGE 2.1

00035'006351 RTURN | s RETURN AFTER DEBUGGING

« END

