BCPL MANUAL

James E. Curry

- Xerox Palo Alto Research Center

: 3180 Porter Drive
‘Palo Alto, California 94304
(415) 493-1600

February 15, 1973«

. Copyright (:) by Xerox Corporation 1973

3BC-001

- RCPL MANUAL
James E. Curry

- February 15, 1973
Page 2

Variables

BCPI, is a vagquely ALGOL-1like language (it is block-structured; it
-allocates procedure space dynamically, so recursion is
permissable; and most BCPL statements correspond roughly to ALGOL
statement s, although there are syntactic differences). The major
difference between BCPL and ALGCL is that all ALGOL variables are
~declared with data-types (integer, real, boolean, string, array,
procedure, label, pointer, etc.), whereas all BCPL variables have
the same data-type: a 16-bit value. 1In ALGOL, the meaning of an
~expression is dependent both on its context and on the data-types
-~ of the entities involved, and only expressions with certain data-
types may appear in a given context. In BCPL, any expression may
be 'used in any context; the context alone determines how the 16—,
bit wvalue of the expression is interpreted. BCPL never checks
that a value is "appropriate" for use in a given way. For
example, an expression. which appears in a 'goto! statement is
assumed to have as its value the address of someplace which is
reasonable to jump to; the thing following a 'goto' need not be a
label. The advantaages of this philosophy about data-types are
that it allows the proorammer to do almost anything, and that it
makes the language concertually simple. The disadvantages are
~ that the user can make errors which would have been caught by
data-type checking, and that some thinas must be done explicitly
which AILGOL-type lanaquages would do. automatically (implicit
‘indirection on pdéinter variables, operations on multi-word values
such as real numbers and strings, type conversion, etc.).

Although BCPL has only one data-type, it does distinguish between
two kinds of variables: static and dynamic. They differ as to
- when and where the cells to which they refer are -allocatesd. A
~static variable TrTefers to a cell which 'is allocated at the-
beainning of program execution (i.e., by the ' BCPL loader); it~
refers +to the same memory cell for as long as the program runs.
A dynamic variable refers to a cell which is (conceptually)

. allocated when the block in which it is defined is entered, and

- exists only until execution of .that block terminates. The space
from which the dynamic variable 1is allocated 1is created
dynamically when the procedure containing its deflnlng block is

called. : ’

As- in ALGOL, - variable names (and other names) are defined in
declarations. The lexical scope of a declared name (the portion
of the source text in which the name is defined) is governed by.
- BCPL's block structu*e. : -

Scovne Rules and Rlocks

BCPL MANUAL-
James E. Curry
February 15, 1973
Page 3 '

At the outermost level, a BCPL source file consists of a sequence
of global declarations followed by a ~ multiple procedure
declaration. The possible global declarations are:

external [NAME; ...j NAME]’
static [NAME = CONST; ...; NAME = CONST]
manifest [NAME = CONST; ...; NAME = CONST]

The 'exfernal' and 'static!? declaratlons define static varlableS'A
the *manifest! declaration deflnes llterals.

A multiple procedure declaration has the form

let NAME (ARG, ..., ARG) EODY
and NAME (ARG, .., ARG) BODY

eae e

and NAME (ARG, ..., BARG) BCDY
where BODY is either 'be STAT' or '= EXDP!'.

The NAMEs in 'external?, 'statict', and 'manifestt' declarations at
“the outermost level are defined from the point of declaration to
the end of the source. file; all of +the 'NAMEs in the
"let ... and ..." sequence at the cutermost level are defined in
~all of the BODYs. These are the only names which are- qlobally
defined. All other names are defined either as ARGS in the
procedure declarations, or in local declarations within compound
statements in the BODYs. ‘ » o

A compound statement is a sequence of statements and

- declarations, separated by semicolons, and enclosed within the

brackets f{* and ']'. (If a ‘'carriage return separates two
statements, the semicolon can be omitted.) The brackets have a
function similar to that of the words 'hegin' and 'end! in ALGOL.:
A compound statement may be used wherever a simple statement can
be; in this manual, 'STAT' always means either a simple statement-
or a compound statement. Compound statements are used when two
or more statements are needed in a context in which BCPL expects
.a single statement (e.g., as the body of a procedure, or as one’
of the arms of a conditional statement). Compound statementq
also delimit the scope of 1ocally declared names. :

The brackets delimiting a compound~statement may be labeled with’
a sequence of letters and digits*immediately.followinq.the '[* or
.*7'.. WwWhen a labeled *]}' is seen by the compiler, each unmatched .
'[' (whether it is labkeled or not) is 1m011c1tly matched .until
the '[' with the same label is matched. Thus, in:

if n ar 2 do [1i=1
unfll i gr n do

BCPL MANUAL

James E. Curry
February 15, 1973
Page 4 :

[2 xti=8;4i=4+ 1]

the "J1" closes both compound statements. Note that a space or
tab must be present between an unlabeled '[' and a statement that
starts with a name. Usually some error will be detected quickly
if no space 1is left (as in "if n gr # do[i = 0 «<. "). But
sometimes the resulting statement will be legal (as in "if n gr 2
do [V X = 0 aea M. In such cases, the error may not bhe
detected until the end of. the source text; this is often the
cause of a non-obvious "unmatched section bracket" syntax error.

As mentioned above, a compound statement may contain - local
declarations. These declarations may be intermixed with
statements (unlike ALGOL, in which declarations may appear only
at the beginning of a compound statement). "Declaration" here
includes dynamic variable declarations (let NAME1, amor
NAMEn = EXP1, <.., FXPn'), as well as the texternal', 'static?’,
'manifest', and procedure declarations mentioned -above. The
following rules govern the scope of local names:

1) A local declaration may appear in a compound
statement only in the following contexts: at the
beginning of a statement, or after a semicolon
(including a semicolon implicitly inserted by the
compiler between statements on different . lines),’
or following a statement label that follows a
semicolon. The effect of this rule is to disallow
things like "if x eq # then 1let y = 8 (althouah
"if x eq 0 then [let y = 8 ...] is perfectly
legal). A declaration may be labeled. :

2) A declaratlon starts a block; the block ends at
the < end of the compound statement containing the
declaration. A name defined in the declaration is

~known only within +the block introduced by the
declaration, . and in sub-blocks contained within-
that block if the name is not redeclared.

3) = (Exception to rule (2).) A dynamic variable is not
known ‘in any procedure body other than the one in-:
which it was declared. Thus, if the procedure "g"
'is declared inside cf the body of procedure "f",
the dynamic variables defined in n"fu are not known
~to wgn, (This is because the dynamic varlables of
Wf" reside in space which is dynamically allocated
when "f" is called. When "q" is called, ‘it ‘does
not know where this space is; in fact, there might
ke more than one execution of "f" in progress when
Ma" is called, or there miaght not be any active
execution of "f'.)

BCPL MANUAL

James E. Curry
February 15, 1973
Page 5 o

4) A statement label ('"NAME: ...') appearing within a
" block is treated as if it were a static variable
declared immediately after the declaration which
beagins the block. So a label is known throughout

its enclosing block, but not outside that block.

5) A name which is declared external may not be
redeclared @ within the scope of the external
declaration.. (A static declaration of an external
name has a special meaning. See the section on
static and external variables.) Any other name may
be redeclared in a sub-block of a block in which.
it is defined, as in ALGOL.

Manifest Declarations
The declaration
manifest [NAME1 = CONST1; ...; NAMEn = CONSTn]

defines NAME1 through NAMEn as literals. The expressions CONST1
. through. CONSTn must be constant. expressions; that is, their
values must be computable by the compiler. The meaning of a
program would be unchanged if each manifest name were replaced by
a string of digits representing 1its value. In particular,
manifest names do not have addresses. ‘

Static and External Declarations

Static variables may be declared in four ways: by a t*static' or
‘external' declaration, by a procedure declaration, oxr by a
statement label assignment. :

The declaration
static [NAME1 = CONST1; ...; NAMEn = CONSTn]

defines NAME1 through NAMEn as static variables, and causes them
to be initialized with the values CONST1 through CONSTn at the
beginning of proagram execution (i.e., in the "save file" created
by the loader). The CONSTs must be expressions whose values are
computable by the compiler. The expression 'nil' should be used
if it doesn't matter what the variable is initialized to.’

If a carriage return serarates two "NAME = CONSTH phrases, the
semicolon between them may be omitted. '

BCPI. MANUAL
James E. Curry
February 15, 1973
Paqge 6 IR

Any of the NAMEs that are preceded by an '@' will be allocated by
the loader in paqe zero. Such wvariables are called Y“common"
variables. They can be addressed directly by the compiled code,
whereas normal static variables must be addressed by indirection
through a 1literal; so common variables are more efficient.
However, there is room in page zero for at most 150 (d=cimal)
common - variables; +the loader will complain bitterly if too many
common variables are assigned.

The procedure declarations

let NAME(ARG, <.., ARG) be STAT
let NMME (ARG, +.., ARG) = EXP

declare NAME as a static variable which is to be initialized by
the loader to the address of the code compiled for the procedure.
(This 1is not quite accurate for code which is to be dynamically
loaded -- see the loader documentation for details.) If NAME is
preceded by an 'a', it will be defined as a common variable.

The procedure declaration is discussed fully»in the sections on
procedure and dynamic variable declarations. :

A statement label assignment
. NAME: STAT
- declares NAMEIas a static variable which ig to be initialized by

the 1loader to the address of the ccde compiled for STAT (unless -
the <code 3is to be dynamically loaded -- see the loader

documentation). A label assignment does not begin. & block; the

name is treated as if it were declared immediately after the .
declaration which begins the smallest enclosina block. Thus, a
label is defined throughout the block in which it appears. :

" The declaration
external [NAME1; ...; NAMEn]

declares NAME1 through NAMEn as external static variables. - The
purpose of the ftexternal' declaration 1is to allow separately
- compiled pieces of a program to reference the same variables.
‘Within a agiven source file, the scope of an external variable is
the same as that of other types of variables; but if two or wmore
“separately compiled source tiles declare a given name ‘'external!,
the loader will make each refer to the same cell. In (exactly)
one of the source files in which a aiven name 1is = declared
~external, the name should also be declared as a static variable
(by a ‘'static' declaration, a procedure declaration, or a
statement . label assignment) someplace within +he scope of the

BCPL, MANUAL

James E. Curry.
February 15, 1973
Page 7

texternal! declaration. “tizte that the static declaration must
follow the external declaration.) This is not a re-definition of
the name (external names cannot be redefined -- see " below), but
rather +tells the 1loader ..how to initialize the external static
- variable. The loader will complain {although not fatally) about
an external variable which is not declared static someplace, Or
about one which is declared static more than once. (Lf the
initial value of such*a variable doesn't matter, everything is
fine, since the variable 1s allocatead anyway; but undefined
procedures dnd labels should probably be investigated.)

Unllke other names, a namsxuhﬁch is declared external may not be
redeclared anywhere within the scope of the external declaration,
except for a static declaration with the above meanlng. That 1is,
it has the same definition throughout the block in which it is
declared external. It may-be redeclared in a parallel block.

NAMEs that are preceded by an 12" will be defined as common
variables. A NAME that is declared both external and static may
be designated as common in either or both declarations. :

If a carriage return separates two of the NAMESs, the_semicdlon
between'them may be Omitted. . . '

Note that only static varlableq may be' external (not manifest
names or dynamic- varlables).

. Procedure Declarations

 There are two kinds of BCPL procedures: = "functions", which .
return a value upon completicn, and "routines", which do not. A
function is defined by a declaration of the form -

let NAME (ARG1, <.., ARGn) = EXP
A routine 1is defined‘by
let NAME(ARG1, -.., ARGn) ke STAT

NAME 1is the name of the function or routine being defined.
(Actually, NAME bhecomes a . static variable which -~ will be
initialized with the address of the procedure, as noted in the
section on static variables.) ARG1 through ARGn are the formal
parameters (dummy arquments) of the procedure. They are either
"NAMFs, or the special symbol ‘'nil', indicating an unnamed
‘arqument. ARG1 through ARGn kecome the first n dynamic variables
declared in the procedure body. If there are no dummy argumencs,
the declaration is of the form 'let NAME() be STAT!' or 'let
NAME() = EXP!'. : ' :

BCPL MANUAL
James E. Curry
February 15, 1973
Page 8 '

In the function declaration, EXP is the expression whose value is
returned when the function is called. EXP may be a simple BCPL
expression; but for most functions it will be an expression of
the form ‘*valof STAT', where STAT may be a compound statement.
The STAT in a ‘'valcf!'! expression should contain at least one
'‘resultis' statement. The STAT is exacuted until a statement of
the form f'resultis FEXP' 1is encountered; then EXP becomes the
value of the 'valof!'! expression, and therefore the result of the
function. The ‘fvalof'! expression will also terminate wh=an
control would otherwise pass to the statement follow1ng STAT. If
this happens, the value of the 'valof' expression is garbage.

In the routine declaration, STAT 1is the ' statement which 1is
. executed when the zroutine is called. STAT may be a compound
statement. STAT may contain one or more 'return' statements; the
"routine returns when a 'return' statement is executed, oOr when
control would otherwise pass to the statement following STAT.

A multiple procedure declaration has the form

~ let NAME1 (ARG, ..., ARG) be STAT (=EXP)
and NAME2 (ARG, .., ARG) be STAT (=EXP)

and NAMEn (ARG, ..., ARG) be STAT (= EXP)

“This declares the procedures “NAME1 ~through " NAMEn
“simultaneously'; that is, all of the NAMEi's are known in each
of the procedure bodies. (So, for example, NAME?1 can call NAME2
and NAME2 can call NAME1.) The ARGs, of course, are defined - only
in their correspondlnq procedure bOleS.v :

A procedure body may contaln procedura declaratlonq- the names of
such procedures will be local to the defining body {unless they
are declared external). ' But remember rule (3) in the section on.
the scope of dynamic variables

Procedure Execution

" A procedure is called by a statement or expression of thevform_
EXP (EXP1, EXP2, ..., EXPn)

(EXP determines the procedure to be executed; EXP1 through EXPn
are the actual parameters. If there are no actual parameters,
“the form is 'EXP/)'. A procedure call is an expression if it

appears in a context in which a value is expected (e2.g., 1in the

right-hand side of an assignment statement); otherwise, it is a
.statement. The callinag mechanism is the same 1in either case.
The only difference is that in the context of an exgpression, the

BCPL MANUAL

James .E. Curry
February 15, 1973
Page 9 o

procedure is expected to return a value; if it doesn't (because
it is a "routine" rather than a "function"), a garbage value will
be used. A value which is returned by a function called in the
context of a statement is discarded.

EXP will normally ke a name declared as a procedure in some BCPL
- source file. (Recall that the value of this name will normally
be the address at which the code compiled for the procedure
resides.) But EXP may ke any BCPL expresssion. A "JSR" is done
-to 'rv EXP' (see the section on rv—-expressions). All bets are
off if EXP does not point at a procedure body.

When the procedure is enterad, it first allocates some “"frame"
space from someplace in memory. This "frame" 1is a block of
memory which the current execution of the procedure will use for
the actual parameter values, for any. dynamic variables and
vectors declared within the procedure, and for any temporary
storage needed by the procedure. The size of the frame is
determined by how much space the procedure needs. The space is
de-allocated when the ©procedure executes the f'return' or
“resultis'! corresponding to the call that allocated the frame.

After the frame space is allocated, the values of EXP1 throuah
EXPn are stored in the first n words of the frame. These n words
are those referenced by the n formal prarameters ARG1, ..., BARGn
in the procedure declaration, assuming that the procedure is’
called with exactly the number of actual parameters as it was
declared +to have. {(No check is made to see. if actual and formal
parameters match. If there are fewer actual parameters, the
formal parameters with no corresponding actual parameters will
have garbage values. If there are more actual parameters than
formal parameters, the actual parameters with no corresponding
formal parameters will be lost; but this may create havoc by
clobbering memory words which are not part of the newly created
frame.) ' ' ‘ ' : C

Note that each formal parameter takes on +the value of its
corresponding actual parameter at the beginning of the procedure
call. This implies that procedure calls are implemented by - the
"call by value" mechanism (in the ALGOL sense); assigning a value:
to a formal parameter within a procedure does not affect the
value of the corresponding actual .parameter in the calling
routine, - although it does change +the wvalue of the formal
parameter for the remainder of the nrocedure execution. = Supposn
the function "next" is defined by: :

1et_next(x) = valof [x = x + 1; resultis x]

and cal]ed‘as followss

BCPL MANUAL

James E. Curry
February 15, 1973
Page 10

4 a = Q;lb = next (a)
Mfter the call of next, "a" will still be 8, but "b" will be 1.
(We can write "next" in such a way as to allow it to change the
value - of "a" by wusing the address-manipulation primitives of
BRCPL: ‘

let next (xaddr) = valof
[xrv xaddr = rv xaddr + 13 resultls rv xaddr]

Then calling'"next"eas follows:
a=4@; b =next (lva) _ .
_will cause both "a" and "b" to have the value 1.)
After the procedure frame has been allocated and'lthe actual
- parameters have been stored in the frame, the procedure. body is

executed. When the procedure terminates, the frame space 1s de-
allocated and control returno to the caller. v

Dynamic Declarations

A dynamic variable refers to a cell at some fixed position in the
frame associated with the current execution of the procedure in

“which ‘it is definéd. This cell is only allocated to the variable
while the block defining the variable is active (e.g., while the
block 1is being executed, or while a procedure called from within
the block is being executed). Outside of the block, the cell may
ke used for somethinq else. o ' ' o

Dynamic variables are declared in two ways: by a'declaration of
- the form :

let NAME1, ..., NAMEn = EXP"I.,}' ..., EXPn
and as formal paraﬁetérs in a procedure declaration.
‘The declaration | | |
| lef NAMEl, eesy NAMED = EXPl,'..;, EXPn

allocates n consecutive frame cells to NAME1 through' NAMEn, and
compiles code to assian the values of FXP1 throuah EXPn to. NAMEI1
through NAMEn. Unlike other declarations, this declaration is.
executable; NAME1 throucah NANEn'always refer to the same frame
cells, but the values stored in these cells are rccomputea edch
time the declaratlon is eaxecuted. The assianment is done left-
to-riaght. : '

BCPL MANUAL
"James E. Curry
February 15, 1973
Page 11 :

The FEXPs may be any BCPL =upression. In addition, there are two
special cases: 'nil' and *weCc CONST!,

If EXPi is the symbol *'nil},... the variable NAMEi is declared, but
no value is assigned to NAMEi. Thus, "let x = nil" declares x,
tut compiles no code; "x" will have some garbage value until
something is assigned to it. ' ‘

If EXPi is the special expression 'vec CONST' (where CONST is an
expression that can be evaluated by the compiler), the value
assigned to NAMELI will - be the address of the first word orf a
block of CONST+1 consecutiwvzirgframe cells. This “vector" of
CONST+1 cells 1is allocarais from the frame space, and NAMEL is
initialized to point to that vector. These cells exist as long
as NAMEi exists; they may be used for something else outside of
“the block in which the declaration appears.

In a procedure declaration
let NAME(ARG1, ..., ARGn) be STAT (=EXP)

ARG1 through ARGn are declared as dynamic variables; their scope
is the entire procedure body. This declaration is equivalent to.

let NAME() be . :
[iet ARG1, .., ARGn = nil, ..., nil; STAT]
or to

let NAME(») = valof

- [let ARG1, ..., ARGn = nil, .;.,'nil; reshltis,EXP]

)]

That is, ARG1 through ARGn are the first n dynamic variables
declared in the procedure body, and therefore refer to the first
n cells in the frame. The procedure call 'NAME(EXP1, ..., EXPm)'
stores the values of the m actual arguments in the first m cells:
of the newly created frame. So if m > n, cells m + 1 through n
will = be clobbered; this is undesirable if the frame is less than
n cells long. If m = n, all is well. If m< n, ARGS m + 1
through n will have carbage values. This permits procedures to
be called with a variable number of actual argquments, as long = as
enouagh formal argquments are declared to provide space for the
largest actual argument list. For example, if we define a
procedure somethina like : : :

let £ (x8, x1, X2y <<., x20) be
[let arg = 1lv x4
. cae AYg!l e
]

‘BCPI, MANUAL

James E. Curry
February 15, 1973
Page. 12 '

then the expression 'arali'! references the ith arqument.
The ARGS are usually NAMEs, but the special symbol *nil' is also
legal as an ARG. The 'nil' has the effect of leaving space for
an argument, but not declaring a name for that arqument. S50 the
procedure "f" above might also have bteen defined as

let £(x8, nil, nil, ..., nil) <..
Argument i can still be referenced by tarqlif.

Memory References

There are three kinds of BCPL expressions which refer to memory
cells: variable names, rv-exrressions, and vector retferences.
These are the only things that can appear as the left-hand side
of an assignment statement 'REF = EXP' or as the argument of an
lv-expression '1lv. REF'. In an assionment ' statement, RFF
specifies the cell to be modified. The value of an lv-expression
is the address of the cell specified by REF. (These two contexts
are the only ones in which the form of the expression is
restricted.) In all other contexts, the value of a memory-
reference expression is the value .contained in . the specified
cell. ‘ ‘ ’ o

‘Memory reference expressions are described below in terms of the
Nova instructions compiled. There are six MNova op-codes - that
reference memory: Lba ac, STA ac, JMP, JSR, 1SZ, DSZ. The
symbol "OP" in the description kelow designates one of these op-
codes; the address of the op-code is in standard Nova form (@

displacement, index). In general, an assignment statement
generates a STA; a 'goto' generates a JMP; a procedure call
generates a JSR; and other ccntexts generate a = LDA. Statements

-of the form 'REF = EXP + 1' generate ISZ or DSZ (followed by a
NOP) . o C ‘ . S - , .

dynamic variable names:

Dynamic variables are allocated cells in the first
400 (octal) words of the frame for the procedure
in < which they are declared. Wwhile a procedure 1is
being executed, AC2 always points at tnhe 200%th
(octal) word of its frame; so dynamic variables
are referenced by "OP n,2", where =200 = n < 177.
(Recause the frame is allocated dynamically when a
procedure 1is called, dynamic variables cannot be
accessed directly from any procedure other than
the one in which they are declarea, as noted in
scope rule (3).) ' '

BCPL MANUAL

James E. Curry

February 15,
Page 13 -

1973

static variable names:

- Static variables are allocated space by the

loader, either in '"common" (page zero) or in
another area of memory which 1is fixed during
loading. Common variables are accessed by "OP
n,#", where 0 £ n £ 377. Other static variables
are not directly addressable, since they are in
some arbitrary area of core, so they are addressed
throuoh indirection by "OP an, 1", where n - is the
PC-relative offset (-200 € n € 177) of a word
containing the address of the static variable.

vector references: EXP1 ! EXD2

This expressionJreferendes a memofy cell whose
address 1is given by the value of (EXP1 + EXP2).

‘The reason for calling an expression like "“ALI" a

"yvector - reference'" = is illustrated by the

following: Suprose that the value of the variable

wpr js the address of the first word of a zero-
origin one-dimensional array (a "vector"). Then
the expression YA!I" references the Ith word of

the vector A, since the value of the expression

WA+TY is the address of this word.

In general, vector references generate code to
compute the sum of EXP1 and EXP2 in AC3 (e.g.,
nwppan 0,EXP1; LDA 3,EXP2; ADD 0,3"), and then
reference the vector element with "oP 9,3". In

.the case where EXP2 (or EXP1) is a small constant .

(-200. € n £ 177), EXP1 (or EXP2) is 1loaded into
AC3, and the vector element is accessed by "OP
n,3". In any case, a vector reference always uses.
indexinag through AC3. @ See the mnote on rv-

~expressions Lelow.

rv-expressions: rv EXP

This expressicn - references a memory cell via-
indirect addressing throuah EXP. In general, .the
value of EXP is computed and stored in a temporary
cell in the frame, and the reference is done by
“"OP @n,2", where n is the offset of the temp cell.

‘There are several special cases: If EXP is a

dynamic variable name, "OP @n,2" is used, where n
is the frame offset of the variable. If EXP is a
common variarle name, "OP on,#" is used, where n
is the paag2 zero address of the variable. Lf EXP
is a static- - varialble = name, “OP on, 1" is used,

BCPL MANUAL

James E.

Curry

-Fekruary 15, 1973

Page 14

Constént§

where n 1is +the PC-relative offset of a word
containing the address of the static variable with
the 1indirect bit (bit 8) set. If EXP is a vector
reference, "CP @n,3" is used, after loading AC3
appropriately. '

The expr9551on 'rv EXP' may also be written
'2EXP'. :

An rv-expression always generates an indirect
reference through a memory cell. A vector
- reference always generates an instruction which is
‘indexed by AC3. Therefore, "rv EXP" |is not
necessarily equivalent to MEXP1!EXP2" when the
values of (EXP) and (EXP1 + EXP2) .are the same:
the rv-expression will always cause a multiple
indirection if EXP has bit 2 sst; a vector
reference will never do so, ‘since indexing ignores
“bit f.

' BCPL recognizes the following constructs as constants:

A name which is declared 'manifest! is treated as if it
had been replaced by its value.

A string of d1q1ts is intergreted as a decimal integer.
It may not excoed 2%%15-1 (32767 decimal, 77777 octal) .

A string of digits preceded by a '#' is interpreted as
an octal integer. It must be less than 2**16 1 (177777

‘octal, 65535 decimal) .

A strina of.diqitS'immediately followed by *B* or 'bt
is also interpreted as an octal integer. If the 'B' or
'b' is immediately followed by a (decimal) number n,
the octal value is shifted left n Lits. Thus, #1230,
1230B, and 123B3 all represent the same valuc. One-
‘bits may not be shifted cut of hit #. 3

The reserved words 'true' and 'false' are - constants
w1th values #177777 and 0 res p€ct1vcly.

A '$' followed by any printina character other thdn Tl
represents a constant whose value is the ASCII code of
the charac*toer. '%* is an escape character; the
following escapes are recognized:

RCPL MANUATL
James E. Curry ‘
February 15, 1973
Page 15

S space (#40)
T tab (#11) ,
N carriage return (#15)
L line feed (#12) :
" : double quote (#42) (3" is - also
0.K.)
. nnn . the octal number 'nnn'. (There must bhe

exactly three octal digits.)
t%? followed by anything else gives an error.

The compiler evaluates most expressions that involva only
constants, and treats the resultina value as a single. constant.
(The exceptions are ‘'selecton' and 'valcef!' expressions; memory
references; and function calls. Conditional expressions like
. 'CONST ? CONST1, CONST2' are evaluated; the value is CONST2 1if
CONST is #, and CONST1 otherwise.) Throuchout this manual, the
symbol 'CONST!' (described as "an expression which can be
evaluated by the compiler") means either one of the constant
constructs above, or an expression involving only constants.

Expressions

In order of decreasing precedence, the legal BCPL expressions
are: : ' '

,NAME;‘constaht; (EXP)
EXP (EXP1, ..., EXPn)
 EXP1!EXb2
1& EXP; rv EXP; + EXP
EXP1 <mul> EXP2 (<mul>: *, /, rem, 1shift,‘rshift)
EXP1 + EXP2; EXP1 ~ EXP2 | -
vec CONST
EXP1 <rel> EXP21(<rel>: ' eq, ne, l1ls, le, gr, ge)
not:ﬁXP
EXP16EXP2
Ekp1%ﬁxp2

EXP1 xor EXP2; EXP1 eqv EXP2

BCPL MANUAL _
James E. Curry
February 15, 1973
Page 16

~ EXP ? FXP1, EXP2
selecton EXP into e«
valof STAT

Operators with the same precedence are left-associative, except
for *<mul>?*, f§r', %', 'xort*, and ‘teqv', which are right-
associative. Precedence and associativity «can be changed by
parenthesizing. Some cases to note: : '

"a/bxct is M"a/ (b¥c)n
"ry vii® is "rv(vii)"
nv!i.‘.jn is "('V!i) +iju
"a%b&ch is "a% (b&c) "
"a & begc" is "a & (b eg c)"

Precedence only determines the way in which an expression is
- parsed; nothing is implied about order of evaluation. In
general, the order in which the sub-expressions of an expression
are computed is unspecified. So, although "f(x) + g(y) * h{z)"
means "f(x) + {(g(y) + h(z)", no assumption should be made about
- which function is executed first. :

string literals

A sequence of characters enclosed in double quotes
(") is a string literal. Its value is the address

of the first word of a block of memory containina.
the string. A BCPL string is stored two bytes per
word, left-hand byte first, with th= left-hand
byte of the first word containing the number of
characters in the string. 1If the string has an
even number of characters, the right-hand byte of
the last word is @; but if it has an odd number of
~characters, the last word of the string contains

the last two characters, not two @ Dbytes. No*@
that” BCPL strings are quite different from Nova
strings. ’

' Strinas have a maximum length of 255 . characters.
The character '*!' appearing in a string is an

- escape character, as described for character
constant.s. : : '

EXP () ,
EXP (EXP1, FXP2, ..., EXPN)

" The value of FXP is assumed to be the address of a
RCPL function. This function is called with the

BCPL MANUAL

James E. Curry
February 15,

- Page 17

1973

values of %¥P1, ..., EXPN as arquments. The value

"of the function call is the value returned by the

function via a ‘'result is' statement. See the
section on .procedure execution for details.

- The call is implemented by a Nova JSR instruction

{a memory reference op-code) to 'rv EXP'. So if
EXP has Uit # set, a multiple ' indirection will
take place. If bit # is zero, the value of LEXP is

~the address of the first instruction executed.

The empty -<wargument list "()" 1is necessary if
there ares.mo ‘arquments, "x = £f()" calls a

~function, but "x = f" puts +the address of the

function in "x". Forgetting the "({)" is a common
error; be careful. -

1lv REF

"REF must be a variable name, a -vector reference,

~or an rv-expression; anything else gives an error

message. The value of the 1lv-expression is the
address of the cell which REF references (but se2

: +he note cn 1"1v (rv EXP) " below.

- rv EXP

EXP1

The value of "lv NAME", if NAME is a dynamic

1var1ab1e, is the sum of the current frame pointer

(whlch is in AC2) and the offset of the variable
in the frame (a constant).. ThlS address is wvalid

.only whlle the block in Wthh the variable was.
.declared is active. MR ,

The value' of "1v NAME";'where NAME is a static

-variable, is the address of the static variable.

This is a constant throughout the execution of the
program, since static variables never move. .

The wvalue of "1v(FXP1'EKP2)" is the sum of the_

values of VXP1 and FXP2.

The value of “lv (rv EXP)" is the value of EXP.

Note that this is nct the address of the cell that
"rv EXPM" references if EXP has bit ﬂ set. In this
case, "rv EXP" would cause a multiple indirection.
! EXP2 ’

See the section on memory references.

BCPL MANUAL _
James E. Curry
- February 15, 1973

Page 18

EXP1

The value is the value of EXP.

The value is the two's-complement of the value of

* EXP2

The value is the lcw-crder 16 bits of . the 32-bit
siagned- product. If one of the EXPs is a constant
whose value is a power of 2, a left shift is done;
otherwise the standard Nova multiply 'seguence is
done. There is currently no way to get at the,

"high-order rart of the product, or to detect

EXP1
EXP2

overflow.

/ EXP2
rem EXP2

The standard NovawSiqned'inteqer divide sequence
is done. (Division by a power of two is not done
by shifting.) The "/" expression gives the 16-bit

"sianed quotient; the "rem" . expression gives the

16-bit remainder, which has the same sign as EXP1.

“If EXP2 is zero, the results are undefined. There

EXP1
EXP1

is currently no way to detect this.

1shift EXP2
rshift EXP2

The value is the value of EXP1 shifted left or

" right EXP2 bits. Vacated positions are £filled
~with @'s. Bits shitfted off either end of the 16-

bit word are lost. The shifts are logical, not

‘arithmetic, in that the sion bit my pe changed..

There are currently no arithmetic- or circular-.

shift operators.

BCPL. MANUAL
James E. Curry

February 15, 1973

Page ‘19

EXP1 + EXP2
"EXP1 - EXP2
The value is the sum (difference) EXP1 and EXP2.
‘The statement 'EXP = EXP + 1' aenerates an ISZ oOr
DSZ followed by a NOP. There is currently no way
to detect overflcw. - .
EXP1 eq EXP2
EXP1 ne EXP2
EXP1 1ls FEXP2
EXP1 le EXP2
EXP1 gr EXP2
EXP1 ge EXP2
The (sianed) values of EXP1 and EXP2 are compared,
and the value of the expression is always either
'true' (#177777) or 'false! (8). ’
not EXP
The value 1is the 1logical complement (one's-
~.complement) of the value of EXP. 'But see the note
on "&" and "Z" bhelow. :
EXP1 & EXP2.
EXP1 % EXP2
In most contexts, the value is the logical-and or
logical-or of EXP1 and EXP2. However, in the
context of the boolean part of an 'if', ‘unless?',
ttest?!, 'while', 'until', 'repeatwhile?!, or
'repeatuntil! " statement, or oOf a conditional
‘expression, the evaluation . of an ‘expression
involvinag tnot?!, Wg", or "%" is optimized. - This
optimization can chanae the meaning of the
expression. For examrle, the sequence ' "if a & b
then ..." 1is not always the same as the seguence
"y = atb; if x then ...", even if the evaluation
of "a" and "b" do not involve side effects. Sen
- the section on ccnditional statements.
EXP1 xor EXP2

EXP1..

eqv EXP2

" Thevalue of the "xor" expression is the logical

 exclusive-or of TFXP1 and EXP2. The value of the

"eqv" expression is the lcgical complement of this
value. ' : ' '

'BCPI, MANUAL ,
-James E. Curry
February 15, 1973
Page 20 L

EXP ? EXP1, EXP2

The value is the value of EXP1 if EXP is non-zero,
or the value of EXpP2 if ©EXP is =zero. EXP 1is
optimized if it involves 'not', "&", or "a"; see
the section on conditional statements.

valof STAT

This expression causes the statement STAT to be
executed ... until a ‘'resultis FXP'! statement is
encountered or until control would otherwise pass
to the © statement - followina STAT. If a
tresultis EXP! is executed, EXP becomes -the value
of the ‘'valof STAT' expression., If execution of
STAT terminates, the-.expre3510n has a garbage
‘'value. The 'valof' expression is usually used as
a function body; but it may be wused anyplace an
expreGS10n can be. :

selecton EXP 1nto

[case CONST1: EXP1
‘case CONSTn: EXPn
default: EXP# .

]
This expression is equivalent to

[case CONST1: resultis EXP1
case CONSTn. resultis EXPn
default: resultis EXP2

]
That is,'its value is EXPi if the value of EXP is
CONSTi,: or EXPZ if EXP is not equal to any of the
CONSTS. If no. 'default' label appears, - the

selecton!? expresqlon will have a garbage value in
none of the cases is matchpd.

Statements
Assignment statements: -

REF = EXP

BCPL MANTUAL

James E. Curry _
February 15, 1973
Page 21 '

The value of EXP is stored into the memory cell
referenced by REF. See the section on memory
- references. '

Multiple assignments:
REF1, ..., REFn = EXP1, ..., EXPn

This statement is equivalent +to the sequence
WREF1 = EXP1; ...; REFn = EXPn". The assignments
are made left-to-right. . o :

Routine calls:

EXP (). R
EXP (EXP1, EXP2, ..., EXPn)

A routine call differs from a function call only
in that a routine call occurs in a context where a
statement is expected, whereas a function call
occurs 1in a context where an expression (a value)
~is expected. The calling sequence for routines is
identical to that for functions. S

Couditiohals and iterative statements:

The evaluation of EXP in. an 'if', ‘tfunless', f'test?,
twhile?, 'until?!, = 'repeatwhile!, or ‘repeatuntil?
statement is optimized if EXP involves f'not', %', or
nge, In general, EXP "succeeds" if it is non-zero,
"fails® if it is @. But 'EXP16EXP2' is tested by first
tasting one of +the EXPs;- if it wfails®", the
~&—expression "fails", and the other expression is not
evaluated. Simialrly, in 'EXP1%EXP2', one of the EXPs
is tested; if it "succeeds", 'EXP1XEXP2!' succeeds. A
‘not EXP' ",succeeds" if EXP "“fails", and "“fails®" if.
.EXP: "succesads'". ‘ B

This optimization has two significant consequences:

a). In a statement.éuch_as njf F(x) & g(x) do .,;", it
-+~ .is not guaranteed that both functions will be
executed; so any side-effects of "f" and "g"

cannot be depended on.

b) = The statement "if x & y do ..." is not necessarily
equivalent to the sequence "z = xfy; if z do <...".
For examnle, if "x" has the value 1 and "y" has
.the wvalue 2, "z = #xfy" would assign the value 3
to "z, because "152%" is zero; so "it z dO e.."

BCPL MANUAL

James E.

February 15,
Page 22

Curry

1973

~will consider "z" to "fail". But both "x" and “y"

are nonzero, .so. "if x6y do ..." will consider
wx&y" to "succeed". In general, '&' should be
used 1in conditional statements only when its

operands are known to take ‘on only the values

ttrue!? (#177777) or *'false' (#). MNote that this
is the case for relaticns; so "1f x ne g & y ne 2"
does the rlqht thing.

if EXP do STAT
unless EXP do STAT

‘test

test

text

The *if!' statement executes STAT if EXP succeeds.
The t*unless'! statement executes STAT if EXP fails.
The word 'do! may ke replaced by the word ?!then!,
but {unlike ALGOL) no 'elset!' clause 1is allowed;
use the - 'test! statement for two-armead
conditionals. The 'do' or 'then' may be omitted
if STAT aprears on the same line as the 'if' or
'unless! clause, and if STAT is one 0f the.
following types of statements:

'if* ‘tunless! 'test' ‘'while? ‘until' 'for?
‘aoto! 'return' 'resultis' ‘switchon' *break!
'loop!' 'endcase! -

EXP then STAT1 or STAT2
EXP ifso STAT1 first STAT2
EXP ifnot STAT2 ifso STAT1

_Fach of the above 'test! statements executes STATI

if EXP succeeds, or STAT2 if EXPfails. Both

clauses must be present; use the 'if' statement or
the 'unless!' statement for one-armed conditionals.
If t'then' and *or!' are used, they must appear in
that sequence; the STAT following ' 'then! 1is the
true branch. If 'ifso!' and *ifnot' are used, they
may appear 1in either order° the STAT following
'ifso' is the true branch.

- while EXP do STAT

until EXP do STAT

The 'wrile! gstatement executes STAT as long as EXP
succeeds. The tuntil' statement executes STAT as

long as EXP fails. The test on EXP is done before

the first execution of STAT. The word *'do' may he
omitted in the same contexts as for the 'if!

. statement.

vanes Ve

. February 15,

Page 23

curry

- STAT
© STAT

STAT

%resultis?, or tgoto! statement) .

1973

The 'while' statement is e@uivalent to:
| "qoto'M; Lz STAT; M: if Expygoto Ly
The"ﬁntil' statément is equivalent to
“qoto Mé_L: STAT; M: - unless EXP goto L"

repeatwhile EXP
repeatuntil EXP

The 'repeatwhile! statement executes STAT as long
as EXP succeeds. The ‘repeatuntil! statement
executes STAT as . lona as EXP fails. = STAT 1is
executed once before +the text on EXP is done.
STAT may be a single statement or a block.

The ‘repeatwhile' statement is equivalent to:

“L: STAT; if EXP goto LV
The 'repeatuntil! statement is equivalent to:
L: STAT; unless FXP goto L" |
répeat- |
The 'fepeat"statément exécutes STAT repeatedly
{funtil terminated by a ‘hreak?t, "rizurn;é_

equivalent to:

"L:STAT; goeto L"

~ for NAME = EXP1 to EXP2 by»CONST'dO STAT

NAME 1is a lega1 variable name; EXP1 and EXPvaay

- be arbitrary expressions; "by CONST" may be

missing (1 is assumed), but if present, it must be
a constant expression. The 'for! statement is.
{logically) equivalent to the following block:

[let NAME, 1lim, inc = EXP1, EXP2, CONST
: goto M ' : . '
- L3 STAT
NAME = NAME + inc

M: test inc ae 8
o ifso if NAME ge 1lim goto L
ifnot if NAME le lim goto L

-BCPIL. MANUAL
James E. Curry

February 15, 1973

Page 24

Several things about the 'for statement should be
noted: : '

1)

2)

3)

I

5)

break
loop

- These
legal

The controlled variable is implicitly
declared as a new dynamic variable; it is

defined only in STAT, and not acce551blp

after the loop termlnatos.

EXP2 is evaluated only once, at the beglnnlnq
of the 'for' statement. \

As noted, CONST (if present) must be a
constant expression. If it is negative, the
termination test is reversed. ‘

STAT is nott executed if the initial
condition fails the termination test (like
ALGOL, unlike FORTRAN). '

STAT# is executed when the = controlled
variable is equal to the limit. '

are single-word RCPL statements which are
only in the context - of an iterative

statement. The effect of ‘'break' is to jump to
the statement immediately following the smallest
textually enclosing iterative statement. The
effect of 'loop' is to jump to the point at which

the

next iteration starts: to the test in a

'while?', 'untilt, ‘'repeatwhile', or ‘repeatuntil!
statement;” to the increment of NAME in a f'for!
statement; or to the beginning of a ‘'repeat!
statement. R

Labels:

NAME:

'STAT

~ Any BCPL - statement may be labeled. A label is
effectively a declaration of 'a static ' variable.
“which is initialized with <the address ot the
labeled statement. It differs from - other
declarations in that it does not 1mpllc1 ly start
a new block. Instead, it 1is treated as 1if it
rappeared at the -heqinninq of the smalles
textually enclosina block. Sze ths section on
static declarations for details.

BCPT, MANUAL
James L. Curry

- February 15, 1973

Page 25

Goto:

goto:

Returns:

EXP

A Nova JMP is done +to 'rv EXPx'. (One way to
think of this is that it is equivalent to "pc = rv
EXP", where "pc" is the Nova's prooram counter.)
So if "lab1" is a variable whose value is #1000,
“"goto lab1" will jump to absolute location #1000.
If %lab2" has the wvalue "101000, and absolutes
location #1000 contains #2000, M"goto 1lab2% will
jump to absolute location #2000. :

return
- resultis EXP

' These statements cause a return from the procedure
" in which they appear. ‘'return' is only lesgal in a

Switches:

routine body; ‘'resultis EXP' is only legal in a

function body.

switchon EXP into CASEBLOCK

CASEBLOCK is ‘a BCPL block which contains labels of.

~the form "case CONSTi:", where the CONSTL are

constant expressions. CASEBLOCK may also contain

a label of the form “default:". The effect of a

tswitchon! statement 1is - as follows: If the

CASEBLOCK contains a 'case' label whos= constant

CONSTi is equal to the value of EXP, a jump is

done to that label. If no CONSTi. matches the

value of EXP, a Jjump is done to the !'default!’

label if there is .one, or to the statement

immediately follcwing the CASEBRLOCK if ther= is no-
default label. . .

The appearance of a 'case' label do=2s not
terminate the preceding case. That is, in

switchon Char into
(case $A: X
‘ case $B: x
default: x

Wl
O N =

BCPL MANUAL
James -E. Curry

February 15, 1973

Page 26

"yt will be # no matter what "Char" contains. The
statements "x = 1" and “"x = 2" should be followed

by a jump to the end of the CASEBLOCK. The

sinagle-word BCPL statement Yendcase! would
accomplish this. ‘ '

~Case labels are legal only in CASEBLOCKs, and not
‘in any sub-blocks of a CASERLOCK. In connection

with +this, . recall that a declaration implicitly
begins a new block. Therefore the sequence

switchon x into

[case #: . let temp = £

‘ ‘case 1: .ee
will cause the compiler to complain that "case 1:"
does not appear in a CASEBLCCK. The code which

uses "“temp" must be enclosed in a block of its own

which does not span cther case labels.

Switches are implemented by grouping the case

- values into cne or more - value ranges. in which

listed wvalues are fairly dense, and doing an

- indexed branch on each of +these ranges. Case

values which do not fall into these clusters are
checked 1nd1v1dually if all of . the indexed

.hrancheq fail.

endcase

“This sinale-word statement is legal only within

the scope of a tswitchon'! statement. It causes a

transfer to the end of the smallest enclosing
'switchon' statement. : : '

