
ECPL MANUAL

James E.· curry

Xerox Palo Alto Research Center
3180 Porter Drive

Palo Alto, California 94304
(415) 493-1600

February 15, 1973'

Copyright @ by Xerox corporation 1973

3BC-001

. T3CPL MANUAL
James E. Curry

. February 15, 1973
Page 2

Variables

BCPL is a vaquely ALGOL-like languaqe (it is block-structured; it
allocates procedure space dynamically, so recursion is
permissable; and most BCPL statements correspond roughly to ALGOL
statements, althouqh there are syntactic differences). The major
differ~nce between RCPL and ALGOL is that all ALGOL variables are
declared with data-types (integer, real, boolean, string, drray,
procedure, label, pointer, etc.), whereas all BCPL variables have
the same data-type: a 16-bit value. r·n ALGOL, t.he meaning of an
expression is dependent both on its context and on the data-types
of the entities involvpd, and' only expressions with certdin data­
types may appear in a qiven'context. In BCPL, any. expression may
be 'used in any context; the context alone determines how the 16-
bit· value of the exptession is inte~preted~ RCPL never checks
that a value is "appropriate" for USE: in a· qiven way. For
example, an expression. which app~ars in a 'qoto' statement is
assumed to have as its value,the address of someplace' which is
reasonable to jump to; the thing following a 'goto' nee~ not be a
label. The advantaaes of this philosophy ,about data~types are
that it allows the proqrammer to do almost anything, and that it
makes the language conce~tually sim~le.. The disadvantages are
that the user can make errors which would have been caught by
data-tY!1e 'checking, and t.hat·somethinas must be done explicitly
which AI,GOL-type lanquaqes woula do aut".omatically (implicit
indirection on p6inter variables, operations on multi-~brd values
such as real numbers and strings, type conversion, etc.).

Althouqh BCPL has only one data-type, it does ~istinguish between
two kinds of variables: static and gynam1£_ They differ as to
when and where the cells to which they refer are allocated. A
static variable ~efers to a cell which is ~llocdted at the
beg~nning of proqram execution (i.e., by the BCPL loader); it
refers to the same memory cell for aslonq as the program runs.
A dynamic variable refers toa cell which is (conceptually)
allocated when the block in which it is defined is entered, and·
exists only until execution of that hlock terminates. The space
from which the dynamic variable is allocated is created
dynamically when t.he E!.~dur~ cont.aining its defining block is
called.

As in ALGOL, variable names (and other names). are defined in
declarations. The lexical scope ofa declared name (the portion
of the source text in which the name is defined) is governed by
BCPL's block structure.

BCPL MANUAL·
"Tames E. Curry
February 15, 1973
Page 3

At the outermost level, a ECPL source file consists of a sequence
of glohal declarations followed by a multiple procedure
declaration. The possible qlobal declarations are:

external [N!\~lE; ;. NAME]
static [NAME = CONST; ••• ; NAME = CONST]
manifest [NAME ~ CONST; ••• ; NAME = CONST]

The 'external' and 'static' declarations define static variables;
the 'manifest'declaration defines literals.

A multiple procedure declaration has the form

let NANE (ARG, , ARG) EDDY
and NAHE (ARG, . _ .. , ARG) BODY ...
and NANE(ARG, ... , ARG) EODY

where BODY is either 'be STAT' or 1= EXP' •

The NAMEs in 'external', 'static', and 'manifest' declarations at
the outermost level are defined from the point ofdecldration to
the end of t.he source· file; all of the NAMEs in the
"let ••• and .•• _11 sequence at the outermost level are defined in
all of the BODYs. These are the only names whi9h are· globally
defined. All at.her names are defined either as ARGs in the
procedure declarat.ions, or in local declarations within £QillPourlQ
statements in the RODYs.

A compound statement is a sequence of statements and
declarations, separated by semicolons, and enclosed within the·
brackets '[I and .']1_ (If a carriage return separates two
statements, the semicolon can be omitted.) The brackets have a
function similar to that of the words 'heqin' and 'end' in ALGOL.
A compound statement may be used wherever a simple statement can
be; in this manual, 'STAT' always means either a simple statement·
or a compound statement. Compound statements are used when two
or more statements are needed in a context in which BCPL expects

. a single statement (e. g., as the body of a procedure,. or as one
of the arms of a conditional statemen~). Compound statements
also delimit the scope oflocally~eclared names.

The brackets delim~tinq a corn~oundstatement may be labeled wit}:
a sequence of let.ters and digits immediately .following .the '[' or
.f]'_ When a labeled']' is seen by the compiler, each unmatched
'[' (whether it. is labeled or not) is im~licitly matched until
the '[' with thp same lahel is matched. Thus, in:

if n Qr ~ 00 [1 i = 1
until i gr n do

BCPL MANUAL
"lames E. Curry
February 15, 1973
Paqe 4

[2 x! i = .0; i =. i + 1]1

the "·]1 It closes both compound sta tements. Note that a space or
tab must be present betw~p.n an unlaheled '[' and a statement that
starts with a name. Usually some error will be detected quickly
if no space is left (as in "if n gr .0 do [i = 0 ••• II). But.
sometimes the resultinq statement will be legal (as in nif n gr .0
do [rv x = 0 ••• II). In such cases, the error may not he
detected until the ena of·. the source text; this is often the
cause of a non-obvious "unmatched section bracketn syntax error.

As mentioned above, a compbundstatement may 60ntain local
declarations. These declarations may be intermixed wifh
statements (unlike ALGOL, in which declarations may appear only
at ·the beginning of a compound statement). ·"Declaration" here
includes dynamic variable declarati6ns ('let NAME1, .~ •. ,
NAMEn= EXP1, ••• , EXPn'), as well as the 'external', 'static',
1manifest', and procedure declarations mentioned above. Th~

.following rules govern the scope of local names:

1) A local declaration may appear in a compound
statem~nt only in the following contexts: dt the
beginning of a statement, or after a semicolon
(including a semicolon implicitly inserted by the
compil~r between .statements on different .lines),
at following a stat-ament. label that follows a
semicolon. The effect of this rule is to disallow
things like "if x eq 0 then let y = J!J (althou~h
"if x eq 0 then· { let y = 0 •••] is perfectly
legal).· A declaration may be labeled.

2) A declaration starts a block; the block ends at
the end of the compound statement containing the
declaration. A name defined in the declaration is
known only within the block introduced by the
declaration, and in sub-:-hlocks contained within·
that block if the name is not redeclared.

3) (Exception to rule (2).) A Q.y~i£ variable is not.
known in any procedure body other than the one in·
which it ~las declared. Thus, if the procedure "gil
is declared inside of the body o~. procedure "f",
t.he dynamic varialJles dcfineo in "fit are Il.Q£ kno\,'n

. t.o "gil. (This is because the dynamic variables of
tlfll reside in space which is dynamically allocated
when "f" is called. When "qn·is called, it does
not know where this spa~e is; in fact, theremiqht
h~ more t.han one execution of "f" in pro<]ress when

.l1q" is called, or t.here miqht· not be any dctivp.
execution of "f".)

BCPL MANUl\L
James E. Curry
February 15, 1973
Page 5

4) A statement label ('NAME: ••• ') appearing within a
block is treated as if it were a static variable
declared immediately after the declaration which
beqins the block. So a label, is known throughout
its enclosi~g block, hut not outside that hlock.

5) A name which
i

, is decla red external may !lQ~ be
redeclare~ : within the scope of the external
declaration.: (A static declaration of an external
name h~s a special meaning. See the section on
static and external variables.) Any other name may
be redeclared in a sub-block of a block in which
it is defined, as in ALGOL.

The declaration

manifest [NArv1E1 = CONST 1 ; , NAMEn = CONSTn]

clef ines NAME1 throuqh NAMEn as Ii t~rals. The expres'sions CONST 1
through CONSTn must be coristant. expressions; that is, their
values must,-be computahle by the compiler. The meaning of a
program would be unchanged if each manifest name' were replaced by
a string of digits representing its value. In 'particular,
manifest names do not have addresses.

Static ~ndE~ternal Declrtrations

static variables may be' declared in four ways: by a· 'static' or
'external' oeclaration, by a procedure declaration, or by a
statement label assignment.

The declaration

static [NAME1 = CONST1; ••• ; NAMEn = CONSTn]

defines NAME1 through NAMEn as static variables, and ca~ses them
to be initialized with the values CONST1 throuqh CONSTn at ~he
beginninq of proqram 0xecution (i.e., in the, "saveiile" creat0.c1
hy the "loader) • The CONSTs must he expressions whose values ar0.
computable by the compiler. The expression 'nil l should be used
if it doesn't matter .what the variable is initialized ~O.·

If a carriaqe return s~parates two UNI'\ME = CONf>TI1 phrases, the
semicolon betw~en ~hcm may be omitterl.

BCPI. 'MANUAL
James .E. Curry
Fehruary 15, 1973
Paqe 6

Any of the NAMEs that are preceded by an 'm' will be allocated by
the loader in page zero. Such variables are called "common"
variables. They can be addressed directly by the compilea code,
whereas normal static variables must be addressed by indirection
throuqh a literal; so common variables are more efficient.
However, there is'room in page zero for at most 150 (decimal)
common· variables; the loader will complain bitterly if too many
common variables are assiqned. .

The procedure declarations

let NAME(ARG,
let NN1E (ARG,

-.. , .. -,
ARG) be STAT
ARG} = EXP

declare NAME as a static variable ~hich is to he initialized, by
the loaner to the address of the code compiled for the procedure.
(This is not quite accurate for code which is to be dynamically
loaded -- see the loader documentation for details.) If NAME is
preceded by an emf, it will be defined as a common variable.

The procedure declaration is discussed fully in the sections on
procedure and dynamic variable declarations.

A statement label assignment

NAME: STAT

declares NAME as astatic variable which ~~tb be initialized by
the loader t.othe address of the cede compiled for STAT (unless
the code is to be vdynamically 'loaded see the loader
documentation). A label assiqnment doe~not beqin ~block; the
name is treated as if it were declared immediately after the
declaration which beains the smallest enclosina block. Thus, a
label is def ined throughoutt.he block in wh ich it appears.

The declaration

external [NAME1; ••• ; NAMEn]

declares NA~lE1 throuqh N]\MF.n as external static variables •. The
purpose of the 'external' declaration is to allow separately
compiled pieces of a program to, ref~rence the same variables.
Within a qiv~n source file, the scope of an external variable is
the same as that of other types of variables; but if two or mor0
separately compiled source tiles declare a given name 'external',

, the loader will make each refer to the same cell. In (exactly)
one of the source files in which a qiven name is d8clared
external, the name should also be declared as a static variable
(by a 'static' dpclaration, ~ procedure declaration, or a
~tatement label assiqnm0nt) someplace within ~he scope of th~

BCPL NANUAL
James E. Curry
February 1~, 1973
Paqe 7

'external' declaration. 'rt:~'~e that the static declaration must
follow the external declaration.) This is not a re-definition of
the name (external names cannot be redefined -- see below), but
rather tells the loader ... hov1to initialize the external static
variable. The loader will complain (although not fatdlly) about
an ext.ernal variable which .. is not declared static someplace, or
about one which is declared static more than once. (If the
initial value of such '..::-avariable doesn' t matter, everything is
fine, since the variable is allocat.l?d anyway; but undefined
procedures and labels should probably be investigated.)

:.,

Un! ike other names, a nam~~\·~, .. ~h:i'ch is declared ext~rnalmCiy not he
redeclared anywhere withintht?, scope of the external declaration,

P-....... " ... ,..

except for a static decla~a€ion with the above meaning. That is,
it has t.he same definit:ion"thr~oughout the block in which it is
declared external. It may ··be redeclared in a parallel block.

NAMEs that are preceded by an 'w' will be defined as common
variahles. A NAME that is declared both external and static may
be designated as common in either or both declarations.

If. a carriage return separates two of the NAMEs, the semicolon
between them may be omitted.

Note that only st.atic variables may be external (not manifest
names or dynamicfvariables).

Procedure De~laration§

There are two kinds of BCPL procedures: "functions", which
return a value upon completion, and Uroutinesn , which do not. A
function 'is defined by a declaration of the form

let NAME (ARG1, ___ , ARGn) = EXP

A routine is defined by

let NAt-1E (ARG 1, .. -, ARGn) J::e STAT

N.z\~1E is the name of the function or routine being define<i.
(Actually, NAME becomes a static variable which will be
initialized ~.t'ii th the address of the procpdure, "as noted in the
section on static v~riables.) AFG1 throuah AFGn are the t6rmal
parameters {t1ummy arguments} of the proc~d\lre. They are either
Nn~Fs, or the special symbol 'nil', indicating an unnamect
arqllment. AHG1 tbrouqh l\RGn become the first n dynamic variables
declared in "t.he procE:0.ure body. If "t.here arc no dummy a.rguments,
the declaration is of the form tlet NA~E() be STAT' or 'l~t
!\l\ME(} = EXP'.

BCPL fv1l\NUAL
James E. Curry
February 15, 1973
Page 8

In the function declaration, EXP is the expression whose value is
returned when the function is called. EXP may he a simple BCPL
expression; but for most functions it will be an expression of
the form 'valof STAT', where STAT may be a comprnlnd statement.
The STAT in a 'valef' expression should contain at least one
'resultis' statement. The STAT is ex~cut.ed until a statement of
the form • resultis F.XP'· is encount.ered; t.hen EXP becomes the
value of t.he 'valof t expre ssion, and therefore the result of the
fUnction. The 'valof' expression will also termin~te when
control would otherwise pass to thp statement following sTAt. If
this happens, the. Valllp. of the 'valof' expression is garbage.

In the routine declaration, STAT is t.he stat.ement wbich is
executed when the routine is, called. STAT may be a compound
statement. SThT may contain one 'or more 'return' statements; the

'routine returns when a I return t st.a tement is executed, or when
control would otherwise pass to' the statement following S'!'A'r.

A multiple procedure declaration has the 'form

, ,let NA..~E 1 {ARG,
and NAf'.1E2 (ARG,

and NAMEn(ARG,

.... ,

._.,

... ,

ARG) be STAT (=EXP)
ARG) be STAT (=EXP)

ARG) be STAT (= EXP)

This declares the procedures '"NAME1 "through
"simultaneously'; t.hat is, all of the NAMEi' sare known in
of the procedure bodies. (So, for example, NAME1 can call
and Nk~E2 can call NAME1.) TheARGs, of course, are defined
in their corresponding procedure bodies.

NAMEn
each

NAME2
. only

A procedure body may contain procedure declarations; the names of
such procedures will be local to th~ defining body (unless they
are declared external). 'But remember rule (3) in the section on
the scope of dynamic variables.

PrQ£€du£~ ~~g£~tion

A procedure is called by a statemen~or expression of the form

EXP(EXP1, EXP2, •• _, EXPn)

(EXP determines the procedure to be executed;, EXP1 through EXPn
aret.he actual paramet.ers. If there are no actual parameters,

't.he form is tEXP!)'. A procedure call is an expression if it
appears in a contpxt. in which a value is expc::cted (e.g., in th~
right-hand si~e of an assignment statement); oth~rwisa, ,it is a

,st.atcment. The callinq mechanism is t.he sam(~ in either caSE.
The only difference is that in the context'of an ext:ression, the

BCPL MANUAL
James .E. curry
February 15, 1973
Page q

procedure is exrected to return a value; if it. doesn't (because
it is a "routine" rat.her than a "function tl), a garbage value will
be used. A value which is returried by a function called in the
context of a statement is discarded.

EXP will normally ce a name declared as a procedure in some BCPL
source file. (Recall that the value of this name will normally
be the address at which the cone compiled for the procedure
resides.) But EXP may be any BCPL expresssion. A tfJSRU is don~

·to 'rv EXP' (see the section on rv-expressions). All bets are
off if EXP does not point at a procedure body.

When t.he procedure is enter~d, it first allocates some "fram~lI
space from someplace in memory. This "frame" is a block of
memory which the current execution of the procedure will use for
the actual parameter values, for any dynamic variables dnd
vectors declared within the procedure, and for any temporclry
st.orage needed by t.he procedure. The size of the frame is
determined by how much space the procedure needs. The space is
de-allocated when the procedure executes the 'return' or
'resultis' corresponding to the call that allocated the frame.

After the frame space is allocated, the values of EXP1 through
EXPn are stored in the first n words of the frame. These n words
are those refer~nced by the n formal paraMeters ARG1, ••• , ARGn
in the procedure declaration, assumin~ that the procedur~ is'
called with exactly the number of actual parameters as it was
declared to have. (No check is made to see. if actual and form~l
parameters mat.ch. If there are fewer actual parameters, the
formal parameters with no corresponding actual parameters will
have garbage valu.es. If there are more actual param:-eters than
formal parameters, the actual parameters with no correspondinq
formal parameters will be lost; but this may' create havoc by
clobbering memory words which are not part of the newly created
frame.)

Note that. each formal parameter takes on ·the ~1~.§ of its
corresponding a.ctual parameter at the beginning of the procec.1ure
call. This implies that procedure calls are implemented by the
"call by value" mechanism (in the ALGOL sense); assigning a value
to a formal parameter vlithin a ~rocedure noes not affect thA
value of t:he corresponding actual .paramet.er. in the ·callinq
routine, although it ooes chanqe thp value of the formal
parameter for the remainder of the procedure execution. suppos~

the function "next" is defined by:

let npxt(x) = valof [x-= x + 1; resultis x]

and callpd as follows:

Be pr.. MANUAL
James E. Curry
February 15, 1973
Page 10

a = 0; b = next (a)

After the call of nAxt, "aU will still he 0, but lib" will be 1.
(He can write "next" in· such a way as to allow it. to change thp.
value of "a" by usinq the address-manipulation primitives of
BCPL:

let next (xadd~ = valof
[rv xaddr = rv xaddr + 1; resultis rv xaddr]

Then calling "n~xtf1 as follows:

a = 0; h = next (Iva) •

will cause both "a" and lib" to have t.he value 1.)

After the procedure frame has been allocated and the actual
param~ters have been stored in the frame, the procedure body is
executed. When the procedure terminates, the frame space is de­
allocated and control returns to the caller.

A dynamic variable refers to a cell at some fixed position in the
frame associated with the current execution of the procedure in
·~hichit i~ d~f~n~d. This cell is only allocated to the variable
while the block defininq the variable is active (e.g., while the
block is being executed, or while a procedure called from within
the block is being executed). outside of the block, the cell may
be used for somethinq else.

Dynamic variables are declared in two ways: by a declaration of·
the form

let NAME1, _ •• , NAMEn = EXP1, ••• , EXPn

and as formal parameters in a procedure declaration.

'The declaration

1 e t NAN El, , NAMEn = EXP1, ••• , EXPn

allocates n consecutive framec~lls to NnME1 through .NAMEn, and
compiles code to assiGn t.he values of FXP1 throuah EXPn to NA~1E1
throuqh NA~En. Unlike other declarations, this declaration is
pxe6utable; NAME1 throuah NAMEn always ref~r to the Sdrne framo
c~lls, hut the values stored in thesr cells ~re recom~uted 'cdch
tim~ the ~eclaration is nxecuted. The assianment is done left­
to-riqht .•

BCPL MANUAL
·James E .. Curry
February 15, 1973
Page 11

The EXPs may be any BCPL ~~pression. In addition~ there are two
special cases: 'nil' and ·;fV0C CONST'.

If EXPi is the symbol 'nil":t!lJ ·t-·he variable NAt-1Ei is declared, but
no value is assigned to NAr1Ei.. 'rhus, "let x = nil" declares x,
but compiles no code; "XU will have some qarbage value until
something is assigned to it.

If EXPi is the special expression 'vec CONST' (where CONST is an
expression that can be evaluated by the compiler), the value
assigned to NAMEi will ·be the a~dress of the first wordo£ a
block of CONST+ 1 consecut.i·;.:~;),t~~frame cells. 'fhis "vector" of
CONS'l'+1 cells is alloc6.f·<211" •• · from the frame space, and NAl'-lEi is
initialized to point to t~~t~ector. Th~se celis exist as lonq
as NAMEi exists; they rna~-b~ used for somethinq else outside of
the block in which the declaration app~ars.

In a procedure declaration

let NAME (ARG1, ••• , !\RGn)be STAT (=EXP)

ARG1 'throuqh ARGn are declared as dynamic variables; their scope
is the entire procedure body_ This declaration is equivalent to

let NAME () be
[let ARG1, .. -, ARGn = nil, ... , nil; STAT]

or to

let NAME() = valof
[let ARG1 1 - .. , ARGn = nil, . . . , nil: resultis EXP]

That is, ARG1 through ARGn are the first n dynamic variables
declared in the procedure body, and therefore refer to the first
n cells in the frame. The procedure call 'NAME(EXP1, ••• , EXPm) ,
stores the values of the m actual arquments in the first m cells;
of the newly created frame. So if m > n, cells m + 1 through n
will be clobbered; this is undesirable if the frame is less than
n c~lls lonQ. If m = n, all is well. If m < n, ARGs m + 1
through n 'will have aarbaqe values. This permits procedures to
be called with a variahle number of actual arquments, dS long as
enouqh formal arquments are declared to provide space tor the
laraest actual araument list. For example, if we define ~
procedure somethinq lik~

ECPI. r-1ANUAL
~lames E. Curry
February 15, 1973
Page 12

then the expression 'ara.!i' references the ith arqument.

The ARGs are usually NAMEs, but the special symbol 'nil' is also
legal as an ARG. The 'nil' has the effect of leaving space for
an argument, but not declarinq a name for that arqument. SO the
procedure 1IfH above might a,lso have been def ined as

let f (x.0, nil, ni:l, ••• , nil) •••

Argument i can still be referenced by 'arq!i'.

~illQrY Feferences

There are three kinds of BCPL expressions which refer to memory
cells: variable names, rv-ex~ressions, and vector references.
These are the only thinqs that can appear as the left-hand side
of an assignment statement 'REF = EXP' or as the argument of an
lv-expression 'Iv. REF'. In an assignment· statement, RFF
specifies the cell to be modified. The value of an lv-expression
is the address of the cell specified by REF. (These two contexts
are the only ones . in vJhich the form of the expression is
restricted.) In all other contexts, the valu~ of a memory­
reference expression is the value ~contained in the specifie~
cell.

Memory reference expressions are described helow 'in'· terms of the
Nova instructions compiled. There are six Nova op-codes that
reference memory: LDA ac, STA ac, JMP, JSR, ISZ, DSZ. The
symbol "OP" in the description below desiqnates one ot these op­
codes; the address of theop-code is in standard NOVd form (~
displacement, index). In general, an assignment statement
generat,es a . STA; a'qoto' generat.f?s a Jr.1P; a procedure call
generates a JSR; and oth~r ccntexts generate a LDA. . Statements

. of the form -REF = EXP + 11 qenerate ISZ or DSZ{followed by a
NOP) •

dynamic variable names:

Dynamic variahles are allocated cells in the first
400 (oct.al) words of the frame for the prucedure
in which they are ,d~clared. While a procedure is
being execut,cd, AC2 al\vays points at the 200111
(octal) word of its framc; so dynamic vdriables
are referenced by "OP n, 2", wtcr8 -200:; n ~. 177.
(Because ·t.he frame is allocat.eddynamically when .~
procedure is called, dynamic variables cannot he
accessed ~irectly from any procedure other than
the one in which .they are declarea, dS noted in
scope rnlp. (3)·.)

BCPL i1ANUAL
James E. Curry
February 15, 1973
Page 13

static variable names:

static variables are allocaten sPdce by the
loader, either in "common" (paqp. zero) or in
another area of memory which is fixed durinq
loading. Common variables are accessed by "0P
n,0", where OS n S 377. Other static variables
are not directly addressable, since they are in
some arbi trary area of core, so t.hey are addressed
throuah indirect.ion by nop mr!, 1", where n is the
PC-relative offset (-200S n S 177) of a wor~
containing the· address of the static variable.

vector references: EXP1! EXP2

This expression referendes a memory cell whose
address is given by the value of (EXP1 + EXP2).
The reason for calling an expression like UA!IfI a
"vector reference" is illustrated by the
following: Sup~ose that the value of the variable
"A" is the address of the first word of a zero-

I origin one-dimensional array (a "vector")., Then
the expression "A!I" references the I.:!:h word of
the vector A, since the value of the expression
I1A+I" is the address of this vlord.

In general, vector references qenerate code to
compute the sum of EXP1 and EXP2 in AC3 (e.g.,
"LDA 0,EXP1: LDA 3,EXP2; ADD 0,3 11), and then
reference the vector element with flOP iJ,3 n • In
the case where EXP2 (or EXP1) is a small constant
(- 2 00. ~ n ~ 177), EXP1 (or EXP2) is loaded into

AC3, and the vector element is'accessed by nop
n,3". In any case, a vect.orreference always uses
indexing through AC3. See th~ note on rv­
expressions below.

rv~expressions: rv EXP

This expressicn references a memory cell via
indirect addressinq throuoh EXP. In general, ,the
value of EXP is comruted and stored in a t~"porary
cell in the frame, and the reference is done hy
"OP (2)n,2", where n is the offset of the ,temp cell.
There are several special cases: If EXP is a
oynamic variable name, "op @n,2"is used, where n
is th~ framp.offspt of the variable. If EXP is a
common variarle name, flOP a)n,0" is used, where n
is the paq~ zero address of the varidble. If EXP
is a static varial:::le namp, flOP .wn, 1" is us eo ,

BCPL Ml\NUAL
James E. Curry
February 15, 1973
Page 14

Constants

where n is the PC-relative offset of a worn
containing the address of the static variable with
the indirect bit (bit 0) set. If EXP is a vector
reference, flOP wn,3" is used, after loading AC)
appropriately.

The expression frv EXP' may also be writtpn
. • CilEXP' •

An rv-expression al\vays qenera·tes an indirect
reference throu9h a memory cell. A vector
reference always generates an instruction which is
indexed by AC3. Therefore, tlrv EXP" is ll2t
necessarily equivalent t.O "EXP1 !EXP2" when the
values of {EXP} and (EXP1 + EXP2) are th8 same:
the rv-expression will always cause a multiple
indirection if EXP has bit m set; a vector
reference will never do so, ·since indexing ignores

. hit. 0.

BCPL recognizes the following constructs as constants:

o A name which is declared 'manifest' is treated as if it
had been replaced by its value.

o A string of digits isinterI;reted as a decimal integer.
It may not exceed 2** 15~ 1 (32767 decimal, 77777 octal).

• A· strin? of digits preceded by a 'n' is interpreted as
. an octal integer. It must be less than 2**16-1 (177777

octal, 65535 decimal) •

• A string of diqits immediately followed by 'B' or 'b'
is also interpreted as an octal inteqer. If ~he 'B' or
'h' is immediately followed by a (decimal) number rli
the octal value is shifted left n bits •. Thus, #1230,
1230B, and 12303 all represent the same value. One-
hits may not be shifted cut of b~t 0.

o 'The resGrven words 'true' and 'false' are· constant-.s
with values #177777 and 0 respectively.

• A '$' followen by any printina character other than· '*'
repres~nt.s a constant ""hose value is 't.he ASCII code of
the chdrac~(lr. ,*. is an escape chdrdcter; th~'\

follovling escapes are recoqnized:

RCPL MANUAL
James .E.. curry
February 15, 1973
Paqe 15

R
T
N
L

"
nnn

space (#40)
tab (# 11)
carriaqe return (#15)
line feed (# 12)

dOllbl~ quote (#42)
o. R ..)

the octal numher 'nnn'.
exactly three octal

($" is also

(There must h~
digits.)

'*' fOllowed by anything else qives an err6r.

The compiler evaluates most ex~ressions that involve only
constants, and treats the resultina value as a single constant.
(The exceptions are 'seletton 1 and'valcf' expressions; memory
references; and function calls. Conditional expressions likp.
'CONST ? CONST1, CONST2' ~[.§; evaluatf?c1; the value is CONS1'2 if
CONST is 0, and CONST1 otherwise.) Throughout this manual, the
symhol 'CONST' (described as "an expression which can be
evaluated by the compiler") means ei ther one of the constant.
constructs above, or an expression inVOlving only constants.

Expressions

In order of d~creasing precedence, the legal BCPL expressions
are:

NAME; constant; (EXP)

EXP(EXP1, •• ~,EXPn)

EXP1!EXP2

Iv EXP; rv EXP; ~ EXP

EXP1 <mul> EXP2 «mul>: *, /, rem, Ishift, rshift)

EXP1 + EXP2; EXP1 - EXP2

vee CONST

EXP1 <reI> EXP21.«rel>: eq, ne, Is, Ie, gr, ge)

notEXP

EXP1&EXP2

EXP1%EXP2

EXP1 xor EXP2; EXP1 e~v F.XP2

BCPL r-1ANUAL
James .E.. Curry
Febr'u ary 15, 197.3
Page 16

EXP ? EXP1, EXP2

selecton EXP into

valof STAT

Operators with the same precedence are left-associative, except
for '<mul)', 1&', t%t, 'xor', and leqv', which are right­
associative. Precedence and associativity can be changed by
parenthesizing. Some cases to note:

"a/b*c tt is lIa/(b*c)tf
"rv v!i" J.s flrv{v!i)"
"v! i+ j" is "(v!i) +]"
"a%b&c" is "a%(b&c)"
fla & b eq c n is l1a & (b eg c)"

Precedence only determines the way in which an expression is
parsed; nothing is implied about order of evaluation. In
general, the order in which the sub-expressions of an expression
are computed is unspecified. So, although flf{x) + g(y) * h{z)"
means flf{x) + (q(y) + h(z)", no assumption should be made about
which function is executed first.

string 1i t.erals

A sequence of characters enclosed in double quotes
(11) is a string literal. ,It.s va1ueis the address
of the first word of a block of memory containina
the string. A BCPL string is stored two bytes per
word, left-hand byte first, with th2 left~hand
byte of the first word containing the number of
ch~racters in the strinq. If the string has an
even number of characters, the riqht-hand byte of
the last word is 0; but if it has an odd number of
characters, the last wor~ of the string contains
the last two characters, not two 0 bytes. No~e

that' BCPL st.rings are qui te rlifferent from Nova
strings.

Strinqs r.ave a maximum lpngt.h of
The character '*' appearinq in
escape character, as ~escrib~d
constant.s.

EXP ()
EXP (EXP1, F.XP2, ••• , EXPN)

255 ,charact.ers.
a strin9 is an

for charact~r

The value of EXP is assumecl to be thE: address of a
pePL function. This function is cd.lled with the,

BCPL MANUAL
.. Tames E. Curry
February 15, 1973
Page 17

values of '-:E)~P 1, ••• , EXPN as arquments. The value
of the function call is the.valuereturned by th0
function via a 'result is' statement. See the
section on :.procedure execution for details.

The call is
(a memory

EXP has hiT.
ta ke place.
the address

implemented by a Nova JSR instruction
reference op-code) to 'rv EXP'. So if
a set, a multiple indirection will
If bit 0 is zero, the value of EXP is

of the first instruction executed.

The empty <i:1 .. rgument list .. () 11 is necessary if
·t.here arf.: ... ,:no arquments. "x = f () II calls a
function, but. "x == fll puts the address of the
function in "x". Forqetting .the ." {) ... is a. common
error; be careful. '. -

Iv REF

REF must be a variable name, a vector reference,
or an rv-expression; anything else gives an error
messaqe. The value of the lv-expression is the
address of the cell which REF references (but see
the not.~cn l"lv (rv EXPlll below ..

TYle value of "Iv NAtw1E-', if NAME is a dynamic
. variable, is the sum of the current frame pointer

(which is in AC2) and the off~et of" . the variable
in the frame ~ constant). This address is valid
only while the block in which.· the~ariable was
declared is active.

The value of "Iv NAHE" i where NAr-lEis a static
·variable, is the address of the static variable.
This is a constant throuqhout the execution of·thp.
program, since static variables never move.

The value of "lV(EXP1!EXP2)" is the sum of the
values of EXPl and EXP2.

The value .of "Iv (rv F,XP)" is the value of EXP.
Note that this is net the address of the cell that
"rv EXP" references if EXP has bit-.0 set. 'In this
case, "rv EXP" would cause a mult.iple indirection.

rv EXP
EXP 1 EXP2

See the sectiori on m0mory references.

BCPL MANUAL
James·Eo Curry
February 15, 1973
Page 18

+EXP

-EXP
The value is the value of EXP.

The value is the two's-complement of the value of
EXP.

EXPl * EXP2

The value is the lcw-crder 16 bits of the 32-bit
siqneo· product. If one of the EXPs is a constant
whose value is a power of 2, a left shift is done;
otherwise the standard Nova multiply sequence is
done. There is currently no way to get at the

. high-order part of the product, or to detect ..
overflow ..

EXP1 / EXP2
RXP2 rem EXP2

The standard Novasiqned integer divide sequence
is done. (Division by a power of two is not done
by shifting.) The "/It expression,qives the 16-uit

. signed quotient; the "rem" . expression gives the
16-bit remainder, which has the same sign as EXP1.
If EXP2 is zero, the results are undefined. There
is currently no way to detect this.

EXPl Ishift EXP2
EXP1 rshift EXP2

The value is the value of EXP1shifted left or
riqht EXP2 bits. Vacated positions are filled
with 0's. Bits shifted off either end of the .16-
bit word-are lost. The shifts are logical, not
arithmetic, in that the sian bit my ve changed.
There are currently no arithmetic- or circular­
shift operators.

BCPL ~1ANUAr.,

James E.. Curry
Fe bru ary 1 5, 1 973
Page 19

EXP1 + EXP2
EXP 1 EXP2

EXP1
EXP1
EXP1
EXPl
EXP1
EXPl

The value is the sum (difference) EXP1 and EXP2.
The statement 'EXP = EXP + l' aenerates an ISZ or
DSZ followed by a NOP. ~here is currently no way
to detect overflew.

eq EXP2
ne EXP2
Is EXP2
Ie EXP2
qr EXP2
ge EXP2

The (siqnen) values of EXP1 and EXP2 are compared,
and the value of the expression is always either
'true' (#177777) or. 'false 1 (.0) ..

not EXP

The value is the logical complement (one's­
complement) of the value of EXP. ·But see the note
on 11&" ano "%" below.

EXP1 & EXP2
EXP1 % EXP2

In most contexts, the value is the logical-and or
logical-or of EXP1 and EXP2. However, in the
context of the boolean part of an 'if', 'unless',
'test', 'while', 1until', 'repeatwhile', or
'repeatuntil' statement, or of a conditional
expres~ion, the evaluation. of an expression
involvinq 'not', 1IS", or "X" is opt.imized. . This
optimization can chance the meaning of the
expression.· For examrle, the sequence "if a & h
then ." is not always the same as the sequence
"x = aSb; if x t:hen ••• n, even if the eVdluation
of flail and "btl do not involve side effects. Se~
the section on ccnditional statements.

EXP1 xor EXP2
E~,P .~ ~.~v EXP 2

.' +he·,<.value of the Uxor" exrression is the logical
exciusiv0-or of EXP1 and EXP2. The vdlue of tho
"cqv".exprcssion is the lcqical complement of this
value.

Bep!, r.~ANUAL
. James E. Curry
February 15, 1973
Page 20

EXP ? EXP1, EXP2

The value is the value of EXP1 if Expis non-zero,
or the value of EXP2 if EXP is zero. EXP is
optimized if it involves 'not', "E;", or 1t~1I; SPA
the section on conditional statem8nts.

valof STAT

This expression causes the statement STAT to be
executed ~.~ until a 'resultis EXP' statement is
encountered or until control would otherwise pass
to the statement followinq STAT. If a
'resultis EXP' is executed, EXP becomes the value
of the 'valof STAT' expr~ssion. If execution of
STAT terminates, the expression has a garbage
value. The 'valof' ex~ression is usually used as
a function body; but it may be used anyplace an
expression can be.

selecton EXP into

[case CONST1: EXPl

]

case CONSTn: EXPn
default: EX.P.0

This expression is equivalent to

[case CONST1: resultis EXPl

]

case CONSTn: resultis EXPn
default: resultis EXP0

That is, its value is Expi if the value of EXP is
CONSTi, or EXP0 if EXP is not equal to any of the
CONSTs. If no. 'dnfaul~' label appears, th~
'selecton' expression will have a garbage value in
none of the cases i~ matched. .

Assiqnment statements:

REF = EXP

BCPL MANUAL
James E. Curry
February 15, 1973
Pag~ 21

The value of EXP is stored into the memory cell
referenced by REF. See th~ section on memory
references.

Multiple assiqnments:

REF1, ••• , REFn = EXP1, ••• , EXPn

Routine calls:

This stat~ment is ~quivalent
".REF1 = EXP1; ••• ; REFn -= EXPn".
are made left-to-right.

to the sequence
The assignments

EXP ()
EXP(EXP1, EXP2, ••• , EXPn)

A routine call differs from a function call only
in that a routine call occurs in a context where a
statement is expected, whereas a function call
occurs in a context where an expression (a value)
is expected. The calling sequence for routines is
identical to that for functions.

Conditionals and iterative statements:

The evaluation of EXP in an 'if', 'unless', 'test',
'while', 'until', 'repeatwhile ' , or 'repeatuntil'
statement is optimized if EXP involvei 'not', IS', or
U%". In genera.l, EXP t1succeedsfl. if J.1: is non-zero,
"fails" if it is~. But 'EXP1&EXP2 J is.testedby first
tasting one of the EXP~; if it 1'fails", the
&~expression "fails", and the other expression is not
evaluated. Simialrly,in 'EXP1%EXP2', one of the EXPs
is tested; if it "succeeds", 'EXP1%EXP2' succeeds. A
'not. EXP' n, succeeds" if EXP "fails", and "fails" if·
EXP "succeeds".

This optimization has two significant· consequences:

a) In a stat.E'me:nt .such as "if f (x) & g (x) do
is not Quaranteed that both functions
executed; so any side-effect.s of Iff"
cannot be depended on.

••• It, it
will be

and IIg"

b) The statp.ment· "if x g. y do ••• n is not necessarily
equivalent to the 5p.qU4?nC0 liZ = xf.y; if z do ••• ".
For examnle, if "x"r.as t.re valu€ 1 dnd "l''' has

: t. h e v n 1 u f'~ 2 , " z = #- x ~~ Y II \.: ou1 d ass i 9 n t he val u 8 0
t.O "z", hE'·cause tt1·~2" is zero; so "it· z do "

BCPL Ml\NUAL
James E. Curry
Fehruary 15, 1973
Paqe 22

will consider "z" to "fail". nut both "XU dnd' fly"
are nonzero, so "if. xBy do will consider
lIxf,y" to "succeed". In general, , &' should be
used in conditional statements only, when its
operands are known to take on only the values
'true' (#177777) or 'false' (.3). Note thdt this
is the case for relaticns; so tlifx ne 0 (; Y ne 0"
does the right thing.

if EXP do STAT
unless F.XP do STAT

The 'if I statement executes STAT if EXP succeeds.
The 'unless'statem~nt executes STAT if EXP fails.
The word 'do' may be r~placed by the word 'then',
but (unlike ALGOL) no 'else' clause is allowe~;
use the 'test' statement for two-arm~d
conditionals. The" 'do' or 'then' may be omitte~
if STAT ap~ears on the same line as the 'if' or
'unless' clause, and if STAT is one of the
following types of statements:

'if' 'unless' 'test' 'while' 'until' 'for'
'aoto' 'return" 'resul~is' 'switchon' 'break'
'loop' 'endcase'

test EXP then STAT1 or STAT2
test EXP ifso STAT 1 first STAT2
text EXP ifnot STAT2 ifso STAT1

Each of the above 'test' statements executes STAT1
if EXP succeeds, or STAT2 if EXPfails. Both
clauses must be present; nse the 'if' statement or
the 'unless' statement for one-armed conditionals.
If 'tpen' and 'or' are used, they must appear in
that sequence; the STAT followinq 'then' is the
true branch. If 'ifso' and 'ifnot' clreuseo, th7Y
may appear in either order; the STAT following
'ifso' is the true branch.

while EXP do STAT
until EXP do STAT

The h..,t il~ t st.atement. execlltt? s ST~,T as long as EXP
succeed~. The 'until' statement executcls STAT as
lonq as EXP fails. The test on EXP is done before
~he'first eXAcution of STAT. The word 'do' may h~
omitted in the same con~exts as for the lif'
stat.em('nt..

LlQ"'~~ ,J.'.,;.. Curry
February 15, 1973
Page 23

The 'while' statement is equivalent to:

"gato M; L: STAT; M: if EXP gate Lit

The 'until' statement is equivalent to

"qot.o tv1; L: STAT; M: unless EXP gata Lit

STAT repeatwhile EXP
STAT repeatuntil EXP

The I repeatwhile' st.at.ement execut.es STAT as lonq
as EXP succeeds. The 'repeatuntil' ·statement
executes STAT'as 10no as EXP fails. STAT is
executed once before the text on EXP is done ..
STAT may be a sinqle statement or a block.

The trepeatwhile'statement is equivalent to:

"L: STAT; if EXP goto L"

The Jrepeatuntil' statement is equivalent to:

ttL: STAT; unless EXP qoto L"

STAT repeat

The 'repeat' statement executes STAT
(until terminated by a 'break',
'resultis', or 'goto' statement).
equivalent to:

"L:STAT; guto L1t

for NAME = EXP1 to EXP2 by CONST no STAT

repeatedly
• return t ,

It is

NAME is a legal variable name; EXP1 and EXP2 may
he arbitrary expressions; "by CONST" may .be
missing (1 is assumed), but if prespnt, it must' he
a constant expression. The 'for' statement· is
(loqically) equivalf:.nt. to -t.he follO\..:;ing block:

[let NAME, lim, inc = EXP1, EXP2, CONST
qoto M

]

L: STAT
NAME = NnME + inc

M: test inc qe 0
ifso if NAME ge lim qotoL
i fnot if Nl\i'-1E Ie 1 im gOtO L

BCPI.I MANUAL
James E. Curry
February 15, 1973
Page 24

Labels:

break
loop

several things about the 'for statement should be
noted:

1) The controlled variable is implicitly
declared as a n€·w dynamic variable; it is
defined only in STAT, and not accessible
after the loop terminates.

2) EXP2 is evaluated only once, at the beginninq
of the 'fori statement.

3) As noted, CONST (if present) must be a
constant expr~ssion. If it is negative, the
terminat10n test is reversed.

4) STAT is nott executed if the initial
condi tion fails the termination test· (like
ALGOL, unlike FORTRAN).

5) STAT # is executed when the
variable-is equal to the limit.

controllcn

These are single-word ECPL statements which are
legal only in the context· of an iterative
statement. The effect of 'break' is to jump to
the statement immediately followinq the smallest
textually enclosing iterative statement. The
effect of' loop' is t.O jump t.o the poin~t at which
the next ~teration starts: to the test in a
'while 1 , 'until', 'repeatwhile', oi 'repeatuntil'
statement; to the' increment of NAME in a tfor'
statement; or to the beginning of a 'repeat 1

statement.

NAME: STAT

A~y nCPL statement may be labeled. A label is
eff~ctively a declaration of a stdtic variab10
which is initialized with the address otthe
labeled statement. It differs from other
declarations in that it does not implicitly stdr~
a new block. Instead, it is treated as if it
appeared at the beginning of the smallest
textually enclo~inq block. See the section On
static declarations for details.

BCPL r·1ANUAL
James F.. Curry
February 15, 1973
Page 25

Gato:

Returns:

Switches:

qoto EXP

A Nova JMP is done to 'rv EXPx'. (On6 way to
think of this is that it. is equiva10nt to "pc = rv
EXP", where :"pc" is the Nova's pros:rram counter.)
So if "lab1" is a variable whose value is f1000,
IIgoto lab1" will jump to absolute location #1000.
If "lab2" has the valne "101000, and absolute
location #1000 contains #2000, "goto lab2" will
jump to absolute location #2000.

return
resultis EXP

These statements cause a return from the procedure
in which they appear. 'return' is only legal in a
routin~ body; '~esultis EXP' is only legal in a
function body.

switchon EXP into CASEBLOCK

CASEBLOCK is ·a BCPLblock vlhich contains labels of.
the form "case CONSTi: f1, where the COi~STi are
constant expressions. CASEELOCK may also contain
a label of the form fldefault:". The effect of a
'switchon' statement is· as follows: If the
CASEBLOCKcontains a 'case' label whose constant
CONSTi is equal to the value of EXP, a jump is
done to that label. If no CONSTi matches thl?
value of EXP, a jumr- is done to the 'default'
label if there is ·one, or to the statement
immediat.ely follcwing the C]\.SEELOCK if there. is no
aefaul t;label·. :'

The appearance of a 'case' label
terminate the precedinq case. That is,

switchon Char int:o
[case $A: x = 1

case $F.: x -= 2
default: x = 0

]

does
in

not

BCPL ~1l\NUAL

James ·E. Curry
,Fe hru ary 1 5, 1 9 73
Page 26

"x II will be 0 no rna t t er w ha r 11 Ch a r 11 co nt a ins. 'r he
statements "X = 1" and "x = 2" should be followen
by a jump to ·the end of. the CASEBLOCK. The
single~word BCPL statement tendcase' wouln
accomplish this.

Case labels are leqal only in CASEBLOCKs, and not
in any sub-blocks of a Cl\SEBLOCK. In connection
with this, recall that a declaratiori implicitly
beqins a new block. Ther~fore the sequence

switchon x into
(case 0: let temp = a ...

·case 1:
]

will cause the compiler to complain that "case 1:"
does not appear in a CASEBLOCK~ The cod8 which
uses "temp" must be enclosed in a block of its own
which does not span other case labels.

SWitches are implemented by grouping the case
values into cne or more value ranges in which
lIsted values are fairly dense, and doing an
indexed branch on each of these ranges. Case
values which do not fall into these clusters are
checked individually if all of the indexed
branches fail.

endcase

This sinale-word statement is legal only within
the scope of a 'switchon' statement. It causes a
transfer to the end of the smallest enclosing
'switchon l statement. .

