ALTO: A PERSCNAL COMPUTER SYSTEM

Charles P. Thacker

Edward M. McCreight

Xerox Fulo Alte Research Center
SI8C Porter Drive
Pulo Alto. California 94301

. December 1974

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight

Contents

Introduction

Microprocessor
Arithmetic section
Constant Memory

Main Memory
Microprocessor control

Emulator

Augmented Instruction Set
Interrupts

lfardware

CLoCOCaCy NN =
WNHO dWWIv—~O . O

Displey Controller
Programming Characteristics
Hardware

Display Controller Microcode
(Cursor

S SO SUN SUNSNE N
i — O

5.0 Miscellaneous Peripherals
5.1 Keyboard

5.2 MNMouse i

5.3 Keyset

5.4 Diablo Printer

6.0 Disk and Controller
0 Ethernet
1 Programming Characteristics
2 Ethernet Interface
3 Ethernet Microcode
4 Software Initiated Boot Feature

ISP PRI

Control RAM

RAM-Related Tasks

Processor Bus and ALU Interface
Miecroinstrucetion Bus Interface
foeset Mode Register

Standard Emulator Access

M and 5 Fegisters

L i—o

LLLLLLT

[

Appendix A Microinstruction Sunimary
Appendix B Reserved Memory Locatious

Appendix C Bit Assignments for Memory Bus Peripherals

Page 2

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 3

1.0 INTRODUCTION

This document is a description of the Alto, a small personal computing
system designed at PARC CSL.

By ‘'personal computer' we mean a non-shared system containing sufficient
processing power, - storage, and input-output capability to satisfy the
computational needs of a single user.

An Alto system includes the following subsections:

a) An 875 line television monitor, oriented with the long tube
dimension vertical. This monitor provides a 606 by 808 point
display which is refreshed from main memory at 60 fields 530
frames per second. It has programmable polarity. a ow
resolution monde which conserves memory space. and a cursor
whose position and content are under program control.

b) An undecoded keyboard

c) A mouse (pointing device) and five-finger keyset.

d) A Diablo Model 31 or Model 44 disk file.

¢) Optionally, a Diablo Hy Type printer.

f) Up to G4K 16 bit words of S50ns semiconductor memory.

g) A microprogrammed processor which controls the disk and
display, and emulates a virtual machine whose characteristics
are approximately those of the Data General Nova.

The processor, disk, and their power supplies are packaged in a

small cabinet. The other 1/0 devices may be a few feet away, and

are pleasingly packaged for desk.top use.

The remairing sections of this document will discuss the hardware
and microcode of the standard configuration Alto.

ALTO: A PERSONAL COMPUTER SYSTEM

Charles P. Thacker and Edward M. McCreight Page.
Moni_tor Transcf;iver
] . s
¥ . Disk :
L 3 a a2
[] | |]
, 3 .
RSEL 0-2 =mreemm———r— Di .
ispla
piay *» | Ethernet
Control .
R . .
RSEL 3-4 —é‘m , ' .
IR(1-2) —> P[] 32 x16 rseL —>] Constant Disk
IR(3-4) — BS ROM Control
Processor bus
, N\ 1 \]’ !
s T
16
\l7
: !
' : Drivers
IR Parit
LCAD T | arity
| v/ » 1
] A 8 Memory
ALUF 0-3 > ALU _ 327 Data
F BUS
| K I , Main
i L —> L MAR Memory
- :
i” Hemarsy 1 Bk x 16
Shifter 1w Adiress Dynamic M3S
T - Bus
Decode
&
Control

Figure 1
Processor Data Paths

ALTO:

A PERSONAL COMPUTER SYSTEM

Charles P. Thacker and Edward M. McCreight - Page 5
—_ ¥
WR —°PE cT
A E —3RN U A
Ko —1¢C RS ROM
tE Yy — 00 8 s
u e —¢u w Pk Address
s /g1t ’ .
T ——f T K]‘ ity 12
s —v :
y
10
q Address
ADDRESS 1/‘ Modification
: Logic
Control
ROM
1K x 32
DATA OUT
10
—\2‘ /
Nevt
MIR ticrginstructicn
~adress
Bis
Instruction

Figure 2
Processor Control

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 6

2.0 Microprocessor

The microprocessor is shown schematically in figures 1 and 2. A principal
design goal in this system was to achieve the simplest structure adequate
for the required tasks. As a result, the central portion of the processor
contains. very little application-specific logic, and no specialized data
paths. The entire system is synchronous, with a clock interval of 170nsec.
Microinstructions require one cycle for their execution.

A second design goal was to minimize the amount of hardware in the I/0
controllers. his is achieved by doing most of the processing associated
with I/0 transfers with microprograms. To allow devices to proceed in
paraliel with each other and with CPU activity, a control structure was
devised which allows the microprocessor to be shared among up to 16 fixed
priority tasks, Switching between tasks requires very little overhead, and
occurs typically every few microseconds.

The arithmetic section of the processor consists of a 32-word.by 16-bit
register file R. and four registers. T.L. MAR. and IR. The registers are
connected to the memory and to an ALU with a 16-bit parallel bus.

The ALU is a SN7118] type, restricted so that it can do only 16 arithmetic
and logical functions. The ALU output feeds the L and MAR registers. T
moy also be loaded from the ALU output under certain conditions., L is
commected to a shirter capable of left and right shifts by one place. and
cyveles of 8. It has a mode in which it does the peculiar 17-bit shifts of
the Nova, and a mode which allows double-length shifts to Le done.

The IR register is used exclusively by the Nova emulator to hold the
current CPU instruction.

Attached to the bus -is a 256-word read only memory (ROM) which holds
arbitrary 16-bit constants.

he microprocessor executes instructions from a 1K word by 32-bit

progromuable read-only memory (PROM). The fields of the microinstruction
are: .

BIT MEANING

0-4 R Begister Select

5-8 ALU Funcrtion

9-11 Bus Data Source

12-135 ‘ Funciion i

16-19 Function 2

20 Load L

2] Load T

22-31 NeRt microinstruction address (subject to

modifiers)

The R select field specifies one of the 32 R cells to be loaded or read
under control of the bus source field. or, in conjuuction with the bus
source field, one of the 256 locations to be read from the constant ROM.

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 7

The low order two bits of the R address (but not the constant ROM address)
may be taken from fields in IR under control of the functions. This allows
the emulator to address its central registers easily.

ALU Functions

The ALU function field controls the SN74181 ALU. This device can do a
total of 48 arithmetic and logical operations, most of which are relatively
?sele§s. The 4-bit field is mapped by a PROM into the 16 most useful
unctions:

ALU FUNCTION FIELD FUNCTION $3,52,S1,50,M,C INPUTS ‘TO
SN74181
0 BUS 1111 1 0 (A
1 T 1010 1 0 (B
2 BUS OR T* 1110 1 0 (A+D)
3 BUS AND T 10111 0 (38)
4 BUS XOR T 0110 1.0 (1 740R B)
5 BUS + 1% 0000 0 0 (1 PLUS 1)
6 BUS - 1% 1111 0 1 (A MINUS
7 BLS + T 1001 0 1 (3 PLES B)
10 BLS - T 0110 0 0 (A MINUS
11 BLS - T - 1 0110 1 0 (A MINGS B MINUS 1)
12 BUS + T + 1% 1001 0 G (A PLUS B PLUS 1)
13 BUS+SKIP* 0000 0 SKIP' (A PLLS 1)
14 BUS.T* (AND) 1011 1 0 (AB)
15-17 UNDEFINED

*If T is loaded during an instruction which specifies this
function, it will be loaded from the ALU output rather than from the
bus.

Bus Sources

The bus data scurce [ield specifies one of 8 data sources for the bus:

VALVE SOURCE

Read R

Load R*)
Nothing (-1
Rstat (dssk control status bils)**

Kdata (16 bits of disk data)

Memory data

Mouse data (4 bits, remuainder of word is 1)
Disp (low order & bits of IR, sign extended)

~ICT UL LIS — O

*This is not logically a source. but since R isg gated to the bus during
both reading and writing, it is included in the source specifiers.
LOAD R forces the BUS 10 B, so that T« F(B.T) may be simultancously
exccuted, .

* K . < . .
By convention, these bus sources are task specific, i.e., their

meaning depends on the currently active tagK. KSTAT and KDATA are the

interpretations used during the disk sector and word tasks.

ALTO:

A PERSONAL COMPUTER SYSTEM

Charles P. Thacker and Edward M. McCreight Page 8
Special Functions

The two function fields specify the address modifiers, register load
signals- conditions

required in the processor.
field are interpreted
the second eight depends on
functions are given below,
the task descriptions.

FUNCTION 1:

VALUE NAME

0 -

1 MARe

2 Task

3 Block

4 «L Ish 1
5 ‘ «L rsh 1
6 «L ley 8
7 «CONSTANT

*modified by DNS (do Nova shifts) function.

FEACTION 2:

VALUE NAME

0 -

1 BUS=0

2 SH<O

3 SH=0

-1 RUS

5 ALUCY

6 STORE

7 «CONSTANT

*The carry used is that

loaded the L register.

(other than those for R, L and T% and other special
The first elg t

identically by all
the
the task-specific functions are

conditions
but the
The

specified by each
interpretation of

task-independent
included with

tasks,
active task.

MEANING
No Activity

Load MAR from ALU
memory reference.

nutput: start main

Switch tasks
pending.

Disable current
reenabled by
condition.

if higher priority wakeup

task wakeup until
hardware generated
Left shift L (one place)*

Right shift L (one place)*

Cycle L (8 places)*

BUS«constant ROM location addressed by
RSELECT.BUS SOURCE..

and MAGIC function

MEANING

No \(t]\lt\
NENT-NEXT

x\.L\l*‘\x \i U]l
SAME AS F1=7

produced by the 3ALU function which last

ALTO: A PERSONAL COMPUTER SYSTEM :
Charles P. Thacker and Edward M. McCreight Page 9

2.2 Constant Memory

The constant memory is a 256 x 16 PROM which holds arbitrary constants.
The constant memory is gated to the bus by F1=7, F2=7, or BS>4. . The
constant memory is addressed by the (8 bit) concatenation of RSELECD and
BS. The intent in enabling constants with BS>4 is to provide a masking
facility, particularly for the MOUSE and DISP bus source. This works
because the processor bus ANDs if more than one source is gated to it. Up
to 32 such mask constants can be provided for each of the 4 bus sources >4.
Note that it is not possible to use a constant other than -1 with the €MD
bus source, since memory parity is calculated on the bus, and a parity
error will result if bits are marked off in a word fetched from memory.

ALTO:

A PERSONAL COMPUTER SYSTEM

Charles P. Thacker and Edward M. McCreight Page 10

2.3 Main Memory

A memory reference is initiated by executing F1=6, MARe. The program
partially controls memory timing, and must observe certain rules to insure
correct operation:

a)

b)

f)

g)

There may be a minimum of one and a maximum of three
microinstructions executed between starting the memory and the
data transfer.

During the fourth cycle after MAR has been loaded, if F2=6, a
store of bus data into the word addressed by MAR will occur.

During the fourth cycle of a reference, if BS=5, the reference is
a fetch to the word addressed by MAR.

During the fifth cycle of a reference, if BS=5. the odd word of
the doubleword addressed by MAR is delivered. The memory cycle is
extended by one cycle if both words of a doubleword are fetched.
If MD is referenced during the fifth cycle, it must have also been
referenced during the fourth,

If MD is referenced before the fourth cycle of a reference. the
processor will be -suspended until a total of 4 cycles have
elapsed.

If RSELECT = 37B during the instruction which starts the memory. a
refresh cycle is assumed and all memory cards are activated. This
is used by the refresh task.

The memory checks parity on all fetches. unless the cycele is a
refreshh cycle, or the address is > 177060@4B. in which case an 1/0
device is being referenced. Parity errors result in activation of
a task whose purpose is to deal with the error.

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 11

2.4 Microprocessor Control

The control section of the microprocessor is straightforward. Instructions
are taken from a 1K word by 32-bit ROM which is addressed by one of the
cells of a 16 by 10 RAM. This RAM 1is addressed by the current task
register. The instruction memoryv produces an instruction and the address
of its successor (NEXT (@)-NEXT (9)). This successor address may be
modified by merging into its bits under control of the function fields of
the current microinstruction. This limited branching capability makes
coding more difficult than with a more general scheme, but not seriously
so, as examples of microcode demonstrate.

While only 10 bits of the PC ram are used in the standard Alto, the
hardware contains 12 bits to allow for future expansion. An available
option is a P.C. card which contains an additional 1K of control memory
implemented with RAM. This memory may be loaded or read by special CPU
instructions, and provisions exist for causing any of the 16 tasks 1to
execute instructions from it.

At the end of each cycle, the microinstruction register (MIR) and the PC
are loaded., and the cycle repeats. There is only one phase of the system
clock. It is true during the last 25 ns. of every instruction.

If the processor exccutes the 'task’ function (Fl=2) during an instruction,
the current task register is loaded (at the end of the instruction) with
the number of the current highest priority task as determined by the
priority encoder. This causes the next instruction 1o be fetched from the
ROM location specified by the saved task's PC. One additional instructinn
is exccuted before the switceh becomes effecrive. A version of the current
task register which is delayed from the PC RAM address by one cycle exists
so that this instruction can execute task-specific functions, but these
functions must do no address modification, since any modification would
affect the new task. The situation for two streams of instructions A-F and
J-M in two different tasks is shown below:
|

Instruction Instruction Address Stored
Being Exccuted Beinyg Fetched PC at End of Cycle

A B C

B C D

C * D E

D J K

J = K L

K bl 11 .‘\{

L E F

E F G

*Instruction € allows task switching. New task's PC o= J.

**Insiruction J does on operation which removes its task's wakeup request.
*F=Instruction K allows task switching, and the original task is now
hhighest priority.

The task request lines which drive the priority encoder are hardware
generated and are not accessible to the microprogram. When a running task
exccutes the TASK function. control will switch to another task only if a

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 12

higher priority task has a wakeup request pending, or if the current task
no longer has a wakeup request pending. In the latter case, control goes
to a lower priority task. The lowest priority task is the CPU emulator,
which is always requesting wakeup.

The TASK function should be executed only at times when the current task

has no state in L or T. and has no main memory operations in progress,
since there is no provision in the hardware for saving this information.

Initialization

The only way in which the microprogram can affect the task structure is to
request a task switch. 1In particular, it cannot affect the PC's of tasks
other than itself. This presents an initialization problem which is solved
by having cach- task start at the location which is its task number. Task
numbers are written into the PC RAM during a reset cycle. which may be
initiated manually or by a (CPU instructiion

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 13

3.0 Emulator

"The lowest priority task is a microprogram which implements an instruction
set which is similar to that of the Data General Nova, with the following
differences:

i 1) Addresses are 16, rather than 15, bits. The principal
implications of this are that multi-level indirection is not
possible, and that all 16 bits of an AC used for indexing are
significant, so that the sign bit cannot be used as a flag.

'2) There are no auto-index locations.

~23) I1/0 class instructions are not implemented. They have been
replaced with a number of additional instructions.

4) An entirely different interrupt system has been inmplemeated.

5.1 Augmented Instruction Set

Opcodes above GO000B. which are I/0 instructions in the Nova. have been
reassigned to instructions which augment the standard instruction set.
Bits 3 through 7 of the instruction determine 32 opcodes. each of which may
use the displacement field. One of these opcodes is used to represent up
ta 256 instructions which do not require a displacement or a parameter as
part ¢! the¢ opcode.

Currently. only a small number of the available extra instructions have
been impiemented. When an unimplemented opcode i=s executed. the microcode
stores the PC (which points one location beyvoxnd the instruction which
caused the trapf in location TRAPPC. and simulates a JMP@ TRAPVEC ! I1R(3-
7). TRAPPC. und the 32 word trap vector are all reserved locations in page
1 (sne Appendix B).

The currently assigned extra instructions and their operations are:

CYCLE (G0000): Left cyvele (rotate) the contents of ACO by the amount
specifiled in ipstruction bits 12-15, unless this value is
zero, in which case cycele ACO leftr by the amount
specified in AC1. Leaves AC1 = cyvele count mod 20B.

JSRII: (64400): JSR double indirect. PC relative:

AC3ePC+1
PO=rv({rv(PC+DISP))

JIRIS (65000} : JSR double indirect, AC2 relative:
AC3=Fre1
PC=rv{rv(AC2+DISE))

CONVERT: (G67000) The convert instruction does scon conversion of
characters, i.e.. it transfers data between an urea of

mein omemory coniaining a tonit apd an area of menory
containing a bit mep to be dispiaved on the TV manitor.

Convert takes a number of arguments:

ACH contains the address of the destination word into
which the upper lefr corner of the character is to be
placed. offset By NWRDS. the number of words to be
displayed on each scan line (ACO=LWA-ANWRDS).

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 14

AC3 points to a character pointer in the font for the
character to be displayed (AC3=FONTBASE+CHARACTER CODE).

AC2+Displacement points to a two word table:
word O: NWRDS (number of words per to scan line)
word 1: DB4, the destination bit address

corresponding to the left hand edge of the
character. Convert interprets this bit

address reversed from the normal
convention, i.e., bit 0 is the LSB, bit 15
the MSB.

Convert requires that a 16 word mask téblé be set up
starting at MASKTAB in page 1. MASKTAB!N=(2**N+1)-1
(0<n<16). .

The format of a standard Alto font is:

FONTBASE-2 lThe height of a character in scan
ines.

FONTBASE-1 The width of a character (and
surrounding spaces) in raster points.
If the font 1is proporiivinally spaced,
this word contains the width of the
widest character, and bit 0 is set.

FONTBASE to FONTBASE+277B: Self-relative pointers
to word XH of the character descriptor
block for the character codes 0-377B.

"FONTBASE+400B to FONTBASE+400B+EXTCNT-1: These
locations contain self-relative pointers
to word XH of the character descriptor
blocks for extensions. i.e.. portious of
characters which ore wider than 16 bits.

FONTBASE+400L+EXTCNT to end: Contains a number of
character descriptor blocks of the form:

word 0O to word XH-1: The bhit map for
the character and surrounding spaces,
The bit map doecs not -include 0's 2t the
top and bottewm of ihe character. as the
character will be vertically npositioned
by converr. The upper lefuv-band bit of
the character is in the MsB of word 0.

word S 1f the character i3 lesg than
16 bits wide, thiz word contaiuns
(2%width)+1. It the charavier requires
ari extension., this word contains 2% a
pseundo-chavacter which is uxed as a
choracter coae ts indexn the font. If
this s the last oxiension block of a
character, thiz wnrd contains (2% the
width of the final extension). rather

ALTO: A PERSONAL COMPUTER SYSTEM

Charles P. Thacker and Edward M. McCreight Page 15
than the total width,. The pointer
indexed by the character code points to
this word.

word XH+1l: In the left byte, HD. 1In
the right byte, XH. HD is the number of
scan lines to skip before displaying the
character, XH is the height of the bit
map.

The convert instruction ORs the bitmap
contained in one descriptor block into
the display area. If the character does
not require an extension, convert skips,
Yéth the following information in the
AC's:

ACO: unchanged

AC1: DBA and 17B

AC2: unchanged

AC3: ghe width of the (hqrdcto' in
118

If the character requires ain extension,
convert returns normally. AC3 contains
the pseudo-churactier code for the
extension, and ACO-2 are as above.

DIR (61000) Disable interrupts: See <3.2>

EIR (G1001) Enable interrupts: See <3.2>

BRI (61002) DBranch return from interrupt: See <3.2>

RCLK (61003) Read Clock:
The microcode maintains a 26 bit real time clock which is incremented
by ihe wmemory relresh task at 38.08 microsce. intervals. The high
arder 16 bits of this eclock are wmaintaived in location RTC in page 1.
the low order 10 bits are kept in the high order bits of R37. H»r is
mncrewented by 100D each 38.0% microsec, he tew order 6 bits of K37
contain state information unrelated 1o the time.

RULK loads ACO with the contents of location RTC. and loads AC1 with

the conteats of 37, IT tie progrom then zevos bite 10-15 of ACL. it
will have a clock value in units of .35 microzcconds. ACO alone is
in units of 3%us. The period of the ciock is abour 40 minutes.

S10 (61004) Stoart 1/0:
Start I/0 iz included to facilitate 1/0 couirol. 1t places the
(nnrvnt= of ACO i the processor bus, and exccuies the STARTE function
(ll-loP) If tlie Ethernet hardware is installed. the serial pumber of
the machine (0-377B) iz loaded into ACL. :

DLT (G1005) Block transfer:

BLKS (G100G) Block store:

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 16

Block transfer and block store take the following arguments:

ACO: aﬁfr%fs of the first source word-1 (BLT), or data to be stored

ACl: Address of the last word of the destination area.
AC3: Negative word count.

Since these instructions (1) are potentially time consuming, and (2) keep
their state in the AC's, they are 1nterrupt1ble If an interrupt occurs,
the PC is decremented by one, and the AC's contain the intermediate state.
On return, the instruction continues. On completion, the AC's are:

ACO: Address of last source word+l (BLT), or unchanged (BLKS).
AC1: unchanged.

AC2: unchanged.

AC3: 0.

‘The first word of the destination area (ACl + AC3 + 1) is the first to be
stored into,.

SIT {61007) Start interval iimer:

The microcode implements an interval timer which has a resolution of
38 microsec., and a maximum period of 10 bits, As the principal
application for this timer is to do bit sampling for a serial ElA-
RS232 compatible communications line. the timer is specialized for
this purpose. It uses three dedicated locations in page 1:

ITTIME: Contains the time at which the next timer interrupt should be
caused. This is a 10 bit number, left justified in the 16
bit word. The low order 6 bits are not interpreted.

ITIBITS: This word contains one or more bits specifying the channel or
channels on which the timer interrupt is to occur.

ITQUAN: When the interval timer interrupt is caused. the microcode

‘ siores a quantity in this location which depends on the mode.
The SIT instruction ORs the contents of ACO into R3S The high 13
bits s<hould be 0. 1the low order 2 bits determine the “interval limer
mode:

27(14.15) Mode

00 off

01 Narmal mode. Each 38 microsec.. compare R3I7(0-9)
with I'YTl?JE(()-!)g. If they are equal. cause an
interrupt on the chanuel specified by ITIBITS.

Stere the current state of the EIA imierface in
[TQUAN, and set R37(14.15) to zero. The state of
the EiA interface is bit 15 of Jocation EIALOC in
page 177. This bit is 0 if the line is spacing, 1
if it is marking.

ALTO: A PERSONAL COMPUTER SYSTEM

Charles P. Thacker and Edward M. McCreight Page 17
10 Same as 00
11 Every 38 microsec., check the state of the EIA line,.

If the line is marklng. do nothing. If the line is
spacin cause an interrupt on the channel specified
by IT BITS. Store the current value of R37 in
ITQUAN, and set R37(14,15) to zero.

The intention is that a program which does EIA input can use mode 3 to
monitor the line for the arrival of a character, and can then use mode 2 to
time the center of each bit. By storing the state of the line, the
interrupt latency can be as much as 1 bit time without errors.

61010 RDRM See <8.4>
61011 WTRM See <8.4>
61012 JMPRM See <8.4>
61020 MUL
61021 DIV

3.2 Interrupts

The emulator microcode implements an interrupt structure which allows both

1/0 devices and programs to interrupt the main program. The interrupt
system provides 15 channels of vectored interrupts with adjustable
priority. The interrupt system uses one register in L (KWW, aew wakeups
waiting). and a number of fixed locations in page 1:

ACTIVE: This word contains 1's for the channels which are
currently active. The highest priority channei is
associated with bit 15, the lowest is associated
with bit 1. Bit 0 is not used. and should not be

set by any program.

WWLOC: This word <contains bits for channels on which
interrupts are pending. Bit 0 is not used.

PCLOC: During an interrupt. the PC is saved here.

NTVEC to INTVEC+14 Contains pointers to the service routines for the
15 inrerrnapt channels. The first word correspoends
to the highesxt priority interrup: channel (bit 13),
EFe lu;t corresponds to the lowest pricrity chaanel
bit 1).

feieh of cach emulated

The muin lvop of the emulator checks MWW during ithe

insrruciion, fNB Is greater than zero. the microcode cenputes (NS OR
ACTIVE. If this quentity is monzero. an iaterrupt is casused. 1f

not., WO W ds stored in B, NWW is cleared. and the instruction is

yestarted.

1f the interrupt is causzed. the microcede stores the progran counter in
PCLOC, sets bit 0 of WWW to disable further interrupts. cloars the bit in
NWG corresnonding to the interrupt channel about to cccur. and louds the PC
with rv(INTVECH+CHANNEL).

Interrupts are caused by ORing into NWW or into WY, 1/0 device microcode
usually has a dedicated location in which the program places a bitword for
the interrupt(s) to be caused upon completion of 1/0 activity.

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 18

Only one interrupt channel is permanently assigned: the highest priority
channel (bit 0) is triggered when a main memory parity error is detected.

The interrupt system uses three instructions:

DIR (61000) Disable interrupts: Sets bit 0 of NWW. Since NWW i
negative, the check made at the start of every instruction wil
not process any new wakeup requests.

EIR (61001) Enable interrupts: Clears bit 0 of NWW, and ORs WW into
NWW to detect any interrupts which were requested (by ORing into
WW) while interrupts were off.

s
1

BRI (61002) Branch and return from interrupt: This instruction
clears bit 0 of NWW, ORs WW into NWW, and restores PC from PCLOC.

3.3 Hardware

There is a small amount of special hardware which is used exclusively by
the emulator. This hardware is controlled by the task specific F2's, and
by the «DISP bus source.

The IR register is used to hold the current instruction. It is loaded with
IR~ (F2=114). IR« also merges bus bits 0.5.6 and 7 into NEXT, which does a
first level instruction dispatch. The high order Uits of IR capnot be
directly read. but the dispiacement field of IR (8 low order bits (sign
extended)), mway be rcad with the «DISP bus source.

There are two additional F2's which assist in instruction decoding. The
IDISP function (F2=15? does a 16 way dispatch under control of a 256x4
PROM. The inputs of the PROM are bits 1-7 of IR. <«ASOURCE (F2=133 has two
roles. 1t does an instruction dispatch based on IR, and it replaces the
two low order bits of the R select field with IR(1,2), allowing the
emulator to address its accumulators (which are assigned to RO-R3%. The
dispatch done depends on IR(00); if it is false, IR bits 1-7 drive the PROM
meutioned above. If IR(00) is true. the shift field of IR (bits & and 9)
is gated to NEXT. The Sth bit of the PROM input is F2(02) (to
differentiate between IDISP and «ASOURCE). '

F2=13. ACDEST. causes bits 3 and.4 of IR to be used as the low order two

bits of the RSELECT field. This addresses the accumulators from the
destinotion {field of the instruction. The selected register may be loaded
or read. :

The emulator has two additional bits of state. the SKIP and CARRY flip
fiops. CARBY is iddentical to the Nova carry bit, and is =e¢t or cleared as
appnropriate when the DNSe (do Nova shifts{ function iz executed. DNS also
addresses R from TR(S-14), and sers the SKIP flip flep if appropriate. The

PC is ineremented by | at the beginning of the next cimulated instruction if
SKIP is set, using ALUF 15, IR~ clears SKIP. :

Note that the functions which replace the low bits of RSELECT with iR
affect only the selection of K: they do not affect the address supplied to
1he constant ROM,

The two additional emulator zpecific functions. BUSODD and MAGIC, :are not
peculiar to Nova emulation, but are included for their general usefulness.
BUSODD merges BUS(15) into NENT(09). and MAGIC is applied in conjunction

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P, Thacker and Edward M. McCreight Page 19

with LSH and RSH to allow double length shifts. It shifts the high order
bit of T into the low order bit of on left shifts, and shifts the low
order bit of T into the high order bit of R on right shifts.

The STARTF function (F1=17) is not associated with any special hardware.
It is used by the SIO instruction, and is to be used to define commands for
(as yet unspecified) I/0 hardware.

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 20

4.0 Display Controller

4.1 Programming Characteristics:

The display controller handles transfers between the main memory and the
CRT. The CRT is a standard 875 line raster-scanned TV monitor. refreshed
at GO0 fields per second from a bit map in main memory. The CRT contains
606 points horizontally, and 808 points vertically, or 489.648 points
total. Thirty-eight 16 bit words are required to represent each scan line;
30704 words are required to fill the screen.

"The display is defined by one or more display control blocks in main
memory. Control blocks are linked together starting at location DASTART in
page 1, and have the following format:

DASTART: Pointer to first DCB word @. or @ if display is off. All
DCBs must start on even word boundaries.

DASTART+1: Vertical field interupt bit mask.

DCB word @: Pointer to next DCB. or O if this is the last.

DCB word 1: Bit @: B=high resolution mode
l=low resolution mode
Bit 1: B=black on white background presentation

l=white on black background

Bits 2-7:HTAB: On each scan line of this block, wait
HTAB* 16 bits before displaying’
information from memory.

Bits 8~16:NWRDS: iach scan line in this block
is defined by NWRDS 16 bit
words. (NWRDS must be even).

DCB word 2: SA: Bit map starting oddress (This
< address must be even)
DCB word 3: SLC: This block defines 2*SLC scan lines,

SLC in each field.

At the start of each field, the display controller inspects DASTART and
BASTARTH+1. An interrupt is initiated on the chammel specified by the

Dit(x) in DASTART+1. The controller then cxceutes cach LDUB scequentially
until the display list or the field ends. At normal resolution, the {irst
scan line of the first (eveﬂ{ field of a4 block 1+ takeu from Tocation SA to
SA+WRLR-1, the first scan line of the odd field is taken {rom locations
SA+NVEDS to SA+2ENRERDS-]. During each field., the bit wmap oddress s
incremented by AWRDS between each scon Tine. Thus., although vhe disploy is

interieced., 1ts representation in memory is not., 1o fow resolution mode,
the video is generated at half speed. ond each scan line ix displayed twice
fonce in cach field). During crch field. the bit msp addregs is ot
inerentented between the display of adjacent scan lines. Tihis mares 1tilie
format of the bhit map in memory identical {for hoth modes--oniy the size of
the presentation is afiected by the mode.

ALTO: A PERSONAL COMPUTER SYSTEM ’
Charles P. Thacker and Edward M. McCreight Page 21

4.2 Hardware

The display controller consists of a sync generator, a data buffer and
serializing shift register, and three microcode tasks which control data
handling and communicate with the Alto program. The hardware is shown in
block form in Figure 3. The 16 word buffer is loaded from the Alto bus
with the DDR« function (F2=10, specific to the display word task DWT?. The
purpose of the intermediate buffer is to synchronize data transfers between
“the main buffer, which is synchronous with the 170ns. master clock, and the
shift register, -which is clocked with an asynchronous bit clock. The sync
generator provides this clock and the vertical horizontal synchronization
signals required by the monitor.

The bit clock is disabled by vertical and horizontal blanking, and its rate
can be set by the microcode to either 50 or 100 ns. by the function SETMODE
(F2=11, specific to the display horizontal task DHIT). This function
examines the two high order bits of the processor bus. If bit 0=1, the bit
clock rate ig set to 100ns period (at the start of the next scan line). and
a 1 is merged into NEXT(9). SETMODE also latches bit 1 of the processor
bus and uses the value to control the polarity of the video output. A
third function, EVENFIELD (F2=10, specific to DHT and to the display
vertical task DVT), merges a 1 into NEXT (9) if the display is in the even
field.

The display control hardware also generates wakeup requests tc the
microprocessor tasking hardware. The vertical task DVT is awakened once
per f{ield. at the beginning of vertical retvrace. The display horizontal
task is awakened once at the beginning of cach field., and thereafter
whenever the display word task blocks. DHT can block itself. in which case
neitber it nor the word task can be awakened until the start of the next
field. The wakeup request for the display word task (DWT) is controlled by
the state of the 16 word buffer. 1f DWT has not executed a BLOCK, if DHT
is not blocked, and if the buffer is not full, DWT wakeups are generarted.
The hardware sets the buffer empty and clears the DWT ‘block flip-flop at
the beginning of horizontal retrace for every scan line.

ALTO: A PERSONAL COMPUTER SYSTEM

Charles P. Thacker and Edward M. McCreight Page 22
Alto processor bus
-
16
16-word
Buffer
1-word Buffer i Cursor
1 Shift register
> Display : L
r Shift Register 3 Digital Video
7 mixer
’ Bit clock
. Buffer Sync —
’ Control Generator Sync
Figure 3

Display Control

ALTO: A PERSONAL COMPUTER SYSTEM _
Charles P. Thacker and Edward M. McCreight Page 23

4.3 Display Controller Microcode

The display controller microcode is divided into three tasks. The highest
priority task is DVT, the display vertical task, the next is DHT, the
horizontal task, and the third is DWT. The display controller uses 6
registers in R:

CBA holds the address of the currently active DCB+1

AECL holds the address of the end of the currently active scan
line's bit map in main memory

SLC holds the number of scan lines remaining in the currently
active DCB

HTAB ?qlds the number of tab words remaining on the current scan

ine :

DWA holds the address of the bit map doubleword currently being
fetched for transmission to the hardware buffer.

MTEMP is a temporary cell.

The vertical task initializes the controller by <etting SLC to @ and €CBA to
DASTART+1. 1t also merges the contents of DASTART+] into NWW, which will
cause an interrupt if the specified channel is active. DVT also sets up
information required for the cursor (seve below), TASKs and becomes inactive
until the next field.

DHT starts by initiating a fetch to the word addressed by CBA. It checks
SLC., and if it is zero. the controller is finished with the current DCB.
and the link word of the DCB is fetchued. If this word is non-zero, it
replaces CBA and processing of a new block is begun. 1If the link word is
zero. DHT blocks until the start of the next field.

If the check of SLC indicates that more scan lines remain in the current
DCB., SLC is decremented by one and the fetch of (CBA) is used to obtain the
second word of the DCB, rather than the link word. The contents of this
word are used to set the displav mode and polarity, and the tab count is
extracted and put into HTAB. NWRDS is extracted, and used to increment DWA
and AECL by the appropriate amount, depending on the mode and field. All
the registers required by DWT have now been set up. and DHT TASKs and
beconies inactive until DWT bLlocks.

If a new DCB is required. DHT fetches all four words of the new DCB, and
initinlizes all the registers. During all scan lines of a DCB except the
first, DHT only accesses the first doubleword of the block.

DET has the sole task of transferring words from memory t¢ the hardware.
When it first awakens during Lhovizontal retrace. it checks HTAB. If it is

non-zern, it oenters a loop which carpnts HIPAR O's 10 1he display. When
HTAB is zero, a sceond loop is entoered whieh ferehes o doublewerd from the
locatian specified by DEA. DWA i« cowpared with AECL, and if they. are
caual, DVT biocks until the next scan line. DWA is incromented by 2, in
preparation for the feteh of the wvext doubleword. It DWAFAECL, DWT

corrtinues to supply words to the buffer whenever it becomes non-full.
1.4 Carsor

Because of the difficulty of inserting a cursor at the appropriate place in

the displaxr bit map at reasonabie specd. a hardware cursor i= included in
the AMlio., The cursor consists of an arbitrary lex16 bit patch, which is
merged with the video at the appropriate time. The bit geap for ihe cursor

is contained in 16.words starting at location CURMAP in page 1. and the x,y
coordinates of the cursor are specified by location CURLOUC and CURLOC+1 in

ALTO: A PERSCNAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 24

page 1. The coordinate origin for the cursor is the upper left hand corner
of the screen. The cursor presentation is unaffected by changes in displa

resolution. - Its polarity is that of the current DCB, or the last DC%
processed if it is located on an area of the screen not defined by a DCB,
The cursor may be removed from view in a number of ways. The most
efficient in terms of processing time is to set the x coordinate to -1.

The cursor hardware consists of a 16 bit shift register which holds the
information to be displayed on the current scan line, and a-counter which
is incremented by the bit clock, and determines the x coordinate at which
the shift register begins shifting.

The hardware is loaded during horizontal retrace by the cursor task
microcode, which simply copies the x coordinate and bit map segment from
the R memory into the hardware.

The values of x and the bit map are set up in R by a section of the memory
refresh tosk, whose wakeup and priority are arranged so that it runs during
every =can line after DWT has done all necessary output and DHT has set up
the information required by DWT for the next scan line. MRT checks the
current y position of the display. and if it is in the range in which the
cursor should be displaved. fetches the appropriate bit map segment from
CURMAP. .~ When the cursor v position is exceeded by the display., a flag is
set 1n MRT to disable further processinf. The x and y coordinates of the
cursor are fetched from CURLOC and CURLOC+]1 at the beginning of each
display field by a section of the display vertical task microcode.

Cursor processing is distributed as it is to minimize the amount of
processing which must be done during the monitor's horizontal retrace time.
This time is approximately 6 microsec. and it must include the worst case
latency imposed by tasks at lower priority than the display. plus the worst
case disk word processing time (the disk word task is at higher priority
than the display), plus the time necessary for DWT to partially fill the
display buffer, plus cursor processing time.

ALTO: A PERSONAL COMPUTER SYSTEM : o> %4 4
Charles P. Thacker and Edward M. McCreight /?pf’g‘é 25 / s f—
}O.SL// /7O 3% |
AT @t 2705 [Fro3E
v
Bit ford KBDAD Word KBDA ‘ord KBDADF1) Word KBDAD+3
0 5 3 1 R
1 4 2 ESC T
2 6 W TAB G
3 E Q F Y
4 7 S CTRL H
5 D A C 8
6 U 9 J N
7 v I B M
8 O0(zero) X VA 1 LOCK
9 K 0 SHIFT(left) = -SPACE
10 }" L .
11 , H + : - -—
12 / - RETURN ¢ SHJ i AL
13 \ - L ChInEs
id LF DEL urene ‘
15 BS XXX

MOuse_ .

LD, #1030

KevdSCt |

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight - Page 26

5.0 Miscellaneous Peripherals

The Alto can have a number of slow peripherals which appear to programs as
memory locations in the range 177000-177777B. The standard peripherals are
described here and in Appendix C, which describes each word in detail.

5.1 Kevboard

The Alto keyboard contains 61 keys. It appears to the program as four 16
bit words in 4 adjacent locations starting at KBDAD. Depressed keys
correspond to @'s in memory, idle keys correspond to l's. Figure 4 is a
layout of the keyboard, showing the keytops and the word number, bit number
corresponding to each key. :

5.2 Mouse

The mouse is a hand-held pointing device which contains two encoders which
digitize its position as 1t is rolled over a table-top. It also has three
buttons which may be read as three bits of a memory location. in the manner
of the keyboard.

The mouse coordinates are maintained by the MRT microcode in locations
MOUSELOC (x) and MOUSELOC+1 (y) in page 1. These coordinates are relative,
i.e., the hardware only increments and decrements them. The resolution of
the mouse is approximately 100 points per inch.

5.3 Keyset

The standard Alto includes a five-finger keyset which is presented to the
program as 5 bits of a memory location, similar to the keybourd.

5.4 Diablo Printer

The Alto includes an interface to a Diabio HyType printer. The printer
uses a portion of one memory location to report status. and another
location into which the Alto program can store to send signals to the
printer. None of the timing signaTs required by the printer are generated
auntomatically--all must be program generated. For detuailed information on
the printer, refer 1o the Diablo manual.

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 27

6.0 Disk and Controller

The disk controller is designed to accommodate one of a variety of DIABLO
disk drives, including models 3i and 44. Each drive accommodates one or
two disks. Each disk has two heads, one per side. Information is recorded
on each disk in a 12-sector format on each of up to 408 (depending on the
disk model) radial track positions. Thus, each disk contains up to 9792
recording positions (2 heads x 12 sectors x 408 track positions). Figure 6
éabulates various wuseful information about the performance of the disk
rives.

The disk controller records three independent data blocks in each recording
position. The first is two words long, and is intended to include the
address of the recording position. This block is called the Header block.
The second block is eight words long, and is called the Label block. The
third block is 256 words long. and is the Data block. Each blTock may be
independently read. written. or checked. excepi t1hat writing, once begun,
must continue until the end of the data block.

When a block is checked. information on the disk is compared word for word
with a specified block of main memory. During checking., a main memnry word
containing 0 has special significance. When this word is encountered. the
matching word read from the disk is stored in its place and does not take
part in the check. This feature permits a combination of reading and
checking to occur in the same block. (It also has the drawback of making
it igposs%ble to use the disk controller to check for words couitaining 0 on
the disk.

The Alto program communicates with the disk controller via a four-word

block of main memory beginning at location KDLK. The first word in
‘interpreted as a pointer to a chain of disk command blocks. If it contains
0. the disck controller will remain idle. Otherwisce. the disk controller
will commence execution of the command contained in the first disk command
block. When a command is completed successfully, the disk controller
stores in KBLK a pointer to the next command in the chain and the cycle
repeats. If a commund terminates in error, a 0 is immediately stored in

KBLK and the disk controller idles. At the beginning of each sector.
status information, including the number of the current sector., is stored

in KELK+1. This can be uvsed by the Alto program to sense the readiness of
the disxk and ‘to schedule disk. transfers, for exnmple. When the disk
controller besins executing a command, it stores the disk address of that
command in KDLK+2., This information is later used by the disk controller
to decide whether seek operations or disk switches are necessary. It can
be used by the Alto program for schedunling disk oarm morion. If the Alto

program stores an illecal disk address (like -1 in this word. the disk
controller will perform a scek ot the begiuning of the next disk operation.
(This is useTul, for example. when the operating systcem wants 1o force a
restore operation,) The dish coniroller also conmunicates with the Alto
program by ivterrupts (see Section 5.2). At the beginning of each sector |
interrupts are initiated on the channels specified by the bits in KBLK+3.

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight

KBLK:

KBLK+1:

KBLK+2:

KBLK+3:

Pointer to first disk command block

Status ‘at beginning of
current sector

Disk address of most-
recently started disk command

Sector interrupt bit mask

Page 28

ALTO:

A PERSONAL COMPUTER SYSTEM

Charles P. Thacker and Edward M. McCreight

Device

Number of drives/Alto

Number of packs

Number of cylinders

Tracks/cylinder/Rack

Sectors per trac
Words per sector

Data words/track
Sectors/pack

Rotation time

Seek time (approx.)
min-avg-max

Average uccess to 1
megabyte

Transfer rate:
peak/avg
peak/avg
per secctor

for full dispiay

for big memory
whole drive

Diablo 31
1 or 2
1 removable

203
2
12
2 header
8 label
256 data
3072
4872

40
15+8.6*sqri(dt)
15-70~-135
80
1.6/1.22
10.2/13
3.3
.460
1.03
19.3

Figure 6

Page 29

?iablo 44

1 removable
1 fixed

406

saine
same
same

3072

9744

25 ms
8+3*sqrt(dt) ms
§-30-68 ms

32 (using both packs) ms

2.5/1.9 Mz
6.7/8. ns/word
2.1 ms
.266 sec
.6 sec
44 (both packs) sec

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight . Page 30

A disk command block is a ten-word block of memory which describes a disk
transfer operation to the disk controller, and which is also used by the

controller to record the status of that operation. The first word is a
pointer to the next disk command block in this chain. A O means that this

is the last disk command block in the chain. When the command is complete,

the disk controller stores its status in the second word. The third word
contains the command itself, telling the disk controller what to do. The.
fourth word contains a pointer to the block of memory from/to which the

header block will be transferred. The fifth word contains a similar

pointer for the label block. The sixth word contains a similar pointer for

the data block.

The seventh and eighth words of the disk command block control the
initiation of interrupts when the command block is finished. If the
command terminates without error, interrupts are initiated on the channels
specified by the bits in DCB+G. However, if the command terminates with an
error, the bits in DCB+7 are used instead.

The ninth word is unused by the disk controller, and may be used by the
ALTO program to facilitate chained disk operations. The tenth word
contains the disk address at which the current operation is to take place.

DCB: Pointer to next
. comnand block
DCB+1: Status
DCB+2: Command
DOB+3: Header block ptr
DCB+4: Label block ptr
DCB+5: Data ptr
DCB+6: Comnand complete no-error interrupt bit mask
DCB+7: Command complete error interrupt bit mask
DCB+10: Currently unused
DCB+11: Disk address

A disk address word A contains the following fields:

Field Range Significance
AT0-3] 0-11D . Sector number
A[4-127 0-405D for Model 44 Track number
0-202D for Model 31
A[13] 0-1 Head number
Af14] 0-1 for Model 41 Disk number (see also C[lﬁl)
: 0 for Model 31 (0 is removable pack on Madel 44)
A 18] 0-1 0 normally. 1 if track 0 is to be
addressed via a hardware “restore” @ -

vperation.

A disk command woerd C contains the following fields:

ALTO: A PERSONAL COMPUTER SYSTEM

Charles P. Thacker and Edward M. McCreight Page 31
Field Range Significance
C[0-7] 110 Checked to verify that this is a valid

disk command

if Header block read
if Header block to be checked
or 3 if Header block to be written

if Label block to be read
if Label block to be checked
or 3 if Label block to be written

c[s-9] 0-3

c[10-11] 0-3

if Data block to be read
if Data block to be checked
or 3 if Data block to be written

c[12-13] 0-3

N—O0 N—~O N-—-O

C[14] 0-1

—_0

normally

if the command 1is to termiunate
immediately after the correct track
position is reached (before any data
is transferred)

Cc{15] 0-1 XOR'ed with A[14] to yield hardware
disk number

A disk status word S has the following fields:

Field Values Significance
S[0-3] 0-11D Current sector number
S{4-7] 17 (One can tell whether status has been

stored by setting this field initially
to 0 and then checking for non-zero).

S[8] 0-1 I means seek failed. possibly due to
illegal track address.

S[9] 0-1 ,] means seek in progress

S[10] 0-1] means disk unit not ready

S[11] 0-1 1 means data or sector processing was
laute during the last sector. Data and

current sector number unreliuable.

S[12] 0-1 1 means disk interface was not
. tronsferring data last sector

S[13] 0-1 I means checksum error,
Comeand -allowed to proceed.

S[11-157 0-3 0 means command cowpleted correctly
» I means hardwuare vurror (see S[{8-117)
or sector overflow.
2 e s check error. Command
terminated instantly.
3 means disk command specified illegal
sector. ’

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 32

Several clever programming tricks have been suigested to drive the disk
controller. For an initial program load, KBLK should be set to point to a
disk command block representing a read into location STRT. Before settin
KBLK, the Alto program should put a JMP STRT instruction in STRT; afterwar
it should jump to STRT. The disk controller transfers data downward, from
high to low addresses, so that when location STRT is changed tThe reading of
the block is complete.

Anothef trick is to chain disk reads through their label blocks. That is,

the label block for sector n contains part of the disk command block for
reading sector n+l, and so on.

Disk Controller Implementation

The disk controller consists of a modest amount of hardware and two
microcode tasks (the sector task and the word task). Communication with
the (PU program is via four special main memory words (KBLK to KBLK+3) and
disk communé blocks, as described carlier.

The sector task 1is awakened by a sector signal from the disk. When
awzkened. it stores the status of the disk and controller in the special
disk status word (KBLK+1). In addition, if this sector signal terminates a

disk cummand (for example, a data transfer during the previous sector), the
status of the disk and controller are stored in the status word of the disk
command block coiataining the terminaied command, and thie command block

pointer (KBLK) is advanced. If a command was terminated with an error,
KBLK (DCB pointer) is set to 0 and KBLK+2 (current disk address) is set to
-1. he effect of this is to cause the disk controller. to abandon the

current disk command chain and to forget where the disk arm is positioned.

Next. the scctor task considers the first command on the disk command block
chain (by using KBLK). 1If there is none, or if the disk unit is not ready
to accept a command. the sector task goes to sleep until the next sector
ulse. Otherwise, the sector specified in the new comnand is verified to
e less than 13 decimal. Then, the disk and cylinder specified in the new
comnrand are compared with those stored in KBLK+2 (current disk address).
and then the new disk address is stored in KBLK+2 and in the disk
controller hardware. Part of the mnew command is alsa stored in the
hardware. If the comparison is unequal, a seek is initiated and the sector
task gones to sleep until the next sector pulse.

If the comparicon was equal. the SEEKOK hardware flag is tested. 1f that
i OK. then tiie no-transfer bit of the disk command (bit 1.4 of the command
word of the current disk comasnd block) is tested to see whether a datla
transfer is required. 1f not. the secror tash goes to slcep such that the

command will terminate at 1he next sector pulse. If a duta transfer is
required. the specified sector number and the current disk sector number
are compared. I uncqual, the sector task goes 1o slvep unti! the next
fector pualse. I secior nuwbers are equal. awokening of the word task is

anabled and the sector task goes to sleep such that the command will
terminaie at the next scctor purse.

The word tesk awakens when a word has been processed by the disk controller
hardware aod the word task has Leen enabled by the sector task. First, a
starting delay is compured. based on whether the current record is to be
resd or written., Sccond. contiol is dispatched based on the current record
nueber. A vecord length and main memory starting address are computed
based on the record number. In addition, special starting delavs are

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight ' Page 33

computed for record number 0. The disk unit is set into the delay mode
aEpropriate.for the operation (read/write) and the word task goes to sleep
the appropriate number of times.

Then a sync word is written (if writing) or awaited (if reading). Finally
the main transfer loop is entered. Here the word count is decremented, a
memory operation is started, and control is dispatched on the transfer
type. If read, the disk word is stored in memory. If write, the memory
word is sent to the disk. If check, the memory word is compared with 0.
If non-zero, the disk and memory words are compared. An unequal compare
here terminates this sector's operation with an error immediately. If the
memory word is 0, it is replaced by the disk word. In any case, the
checksum is updated and control returns to the main transfer loop. Due to
the ALU functions available, the main transfer loop moves in sequence from
high to low main memory addresses.

After the wordcount reaches 0. the checksum is written or checked. A
checksum error will be noted in the status word. but will not terminate
this sector’'s operation. A finishing delay is computed, basced on the
current operation, the disk unit is set into a delay mode appropriate to
the operation, and the delay happens. Finally. all disk transfers are shut
off, the record number is incremented, and control returns to the beginning
of the word task.

To accomplish all this, the disk controller hardware communicates with the
microprocessor in four ways: first, by task wakeup signals for the sector
and word tasks: second. by five task-specific function 2's which modify the
next microinstruction address: third, by seven task-specific functions ['s.
four of which activitate bus destinuation registers. and the remaining three
of which provide useful pulses: and fourth, by 1two bus sources. The
following tables describe the effects of these.

Fl Value Name Effect
17 KDATA« The KDATA« register is loaded from BUS(0-
' 15). This register is the data output

register to the disk. and is also used to
hold the disk address during KkADHe and
seek commands. When used as a disk
address it has the format of word A on
page 29.

16 ' KADR« This causes the KADRe register to be
. loaded from BUS(S-14).: This register has
the format of word € on poge 350, In

addition., it causes the head address bit
to be loaded from KDATA-(13).

15 - KCOMe This causes the KCOM= regisier to be
ltoaded from BUS(1-5}. The KUOM= register
has the following interpreration:

(1) XFEROFF =1 inhibits data
transmission to/fronm the
’ disk.
{2) WDINHIB =1 prevents the disk word
task from awakening.
(3) BCLKSRC =1 means take bit clock from
disk input or crystal clock,

ALTO:

14

13

12

F2

Value

10

12

13

14

15

16

A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 34

CLRSTAT

INCRECNO

KSTAT«

STROBE

XFRDAT

SWRNRDY

NFER

STROBON

as appropriate. =0 forces
use of crystal clock.

(4) WFFO =0 holds the disk Dbit
counter at -1 until a 1-bit
is read. =1 allows the bit

counter to proceed normally.

(5) SENDADR =1 causes KDATA<(4-12) and
KDATA«(15) to be transmitted
1o disk unit as seek
address. =0 inhibits such
transmission.

Causes all error latches in disk
controller hardware to reset.

Advances the shift registers holding the
KADR« register so that they present the
number and read/write/check status of the
next record to the hardware.

KSTAT(12-15) are loaded from BUS(12-15).
(Actually, BUS(13) is "OR"ed into
KSTAT(13).) This enables the microcode to
enter conditions it detects into the
status register.

Initiates a disk seck operation. The
KDATA« register must have been loaded
previously, and the SENDADR bit of the
KCOMMe register previously set to 1.

Effect

NEXTeNEXT OR (IF WDTASKACT AND WDINIT)
THEN 37 ELSE 0)

NEXTENEXT OR (IF current record to be
written THEN 3 ELSE Il current recgrd to .
be checked THEN 2 ELSE 0) ‘ v

NEXT<NEXT OR MAP (current record number)
where

MAP(O) « O
MAP(1l) « 2
MAP(2) « 3
MAP(3) « 1

NEXT-NEXT OR (IF current command wants
data transfer TIHEN 1 ELSE 0)

NEXT<NEXT OR (IF disk not ready to accept
consnand THEN 1 ELSE 0)

NEXT<NEXT OR (IF fatal error in latches
thew 0 ELSE 1),

NEXT<NEXT OR (IF seek strobe still on then
I else)).

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight ‘ Page 35

7.0 Ethernet

The Ethernet is the principal means of communications between an Alto and
the outside world. It is a broadcast, multi-drop. packet-switching, bit
serial communications network. The goals of the design were to connect up
to 256 nodes (Altos, Novas, etc), separated by as much as 1 mile, with a
moderate bandwidth (2.94 megabits/sec) channel.

Alto Ethernets come in three pieces: The transceiver, the interface, and
the microcode. The transceiver is a small device which taps into the
passing ether inserting and extracting bits under the control of the
interface while disturbing the ether as little as possible. The same
device is used to connect all types of ethernet interfaces to the ether, so
the transceiver design is not specific to the Alto, and will not be
described here.

7.1 Programming Characteristics:

Programs communicate with the microcode and the interface via 10 reserved
locations in page 1 and the emulator instruction SIO. Word counts, buffer
addresses, etc. are put in the appropriate locations and then SI0 is
exccuted with an Ethernet command 1in- ACO. The main memory locations and
their functions are:

EPLOC: Post location. Receives status information when a
command completes.

EBLOC: Interrupt bit location. (ontents are ORed into NWW when
a command completes causing an interrupt if non zero.

EELOC: EOT count location. leceives the number of words
remaining in the buffer at command completion.

ELLOC: Load location. Used by the microcode to hold a mask of
1's shifted in from the right for generating random

- countdowns during retransmissions.

EICLOC: Input count location. Size of the input buffer.

EIPLOC: Input pointer location. Pointer to the beginning of the

. “input buffer.

EOCLOC: Output count locatien. Size of the output buffer.

-EOPLOC: Output pointer location. Pointer to the beginning of the
output buffer.

ESLOG: Serial number lecation. *olds the serial number that the
microcode should use for deciding which messages to
receive.

ESPARE: Spare location. Reserved for future use.

$10 does two things involving the Ethernet: (1) 1tv passes commands encoded
in bits 14 and 16 of ACO to the interiace and {2) rerurns the serial number
of the Alto in the right byie of ACO and all enes in the left byte. The

serial number is set by wirewraps on the backplane. The commands
corresponding to the 4 combinations of bits 11 and 15 are:
ACU[14-15]) @@ Do nothing

Bl Start trausmitter
10 Start recelver)
11 Resetr interface and microcode

Upon completion of a command. EPLOC contains the status of the microcode in
tne left byte and the status of the hardware in the right byte. The
possible values of the microcode status byte (left) and their meunings are:

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 36

=

EPLOC[0-7] Hardware condition terminated input main loog.
Whether this is good or bad depends on the
hardware status.

Hardware condition terminated output main loop.
See hardware status byte.

Buffer space exhausted during input operation.
Load overflow. 16 collisions while trying to
transmit.

Command specified a zero length buffer

Hardware condition aborted current activity.
Generally indicates a reset command.

Microcode branch conditions that should never
happen cause this code to be posted if they do
happen. Call a repairman.

Yy Ok N =

Bits in. the hardware status byte (right) are low true. If zero, their
neanings are:

EPLOCT§-9] Unused. These should always be one.

EPLOC[10] Input data late. Interface did not get enough
processor cycles.

EPLOCI 11 Collision.

EPLOC[12 Input CRC bad

EPLOCI13 Input command issued.

EPLOC[14 Output command issued.

EPLOC[15 Incomplete transmission - the received packet did

not end on a word boundry.

Command completion can be detected in two wavs: (1) zero EPLOC and wait
for it to go non-zero. and (2) set bits in EBLOC corresponding to the
channels on which interrupts are desired at command completion. A program
can determine the size of an input message (and though not too useful. the
size of an output nmssagee by subtracting the contents of EELOC from the
original buffer count in ExCLOC. The microcode never modifies the buffer
count or pointer locations. To keep the receiver listening as often as
possible. if EICLOC 1is non-zero when an output command is issued. the
microcode will start the receiver ‘under' the transmitter: while the
transmitter 1s counting down a random retransmission interval after a
collision, the receiver is listening. If a message arrives addressed to
the receiver. the transmission attempt is aborted and the incoming message
~is received., The transmit command is not executed in this case. and must
be reissued. The microcode status byite in EPLOC tells what happened.

The first word of all Ethernet packets must contain the address to which
the pucket is destined in the left byte. and the address of the scuder (or
"source') in the right byte. Heceivers examine at lcast the destination
byte., and in some cases the =ource byte te determine whether to copy the
message into memory as il pusses by, Address zero has special meaning to
the Etheruet. Puackets with desiination zero are broodceast packets., and all
active receivers will copy thom into memory. If a program wishes 1o
receive all packets on the net regardless of address, it should put zero
1

instead ol the machine serial number into ESLOC.

7.2 The Ethernet Interface

The Ethernct interface consists of a data buffer, an output shift register
and phase encedeyr. o clock recovery civeuit and tnput shift register. a CRC
register, und one microcode task. The hardware is shown in block diagram
form in figure 7. Packets on the ether are phase encoded and transmitter

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 37

synchronous: it is the responsibility of the receiver to decide where a
packet begins (and thus establish the phase of the data clock), separate
the clock from the data, and deserialize the incoming bit stream. The
purpose of the write register is to synchronize data transfers between the
input shift register whose clock is derived from the incoming data. and the
main buffer which is synchronous to the processor system clock. The large
main buffer 1is necessary because the Ethernet task 1is relatively low
priority, and the worse case latency from request to task wakeup is on the
order of 20 microseconds. The phase encoder uses the system clock where
one bit time is two clock periods, so the output shift register is
synchronous with the main buffer, however latency is still a problem and
the large buffer is needed for the transmitter also.

Included in the clock recovery section is a one-shot which is retriggered
by each level transition of a passing packet. This detects the envelope of

a packet and is called its 'carrier'. Ethernet phase encoders mark the
beginning of a packet by appending a single 1. called the sync bit, to the
beginning of all transmissions. The leading edge of the synec bit of a
packet will trigger the carrier one-shot of a listening receiver and
unambiguously establish the receiver clock phase. The sync bit is clocked
into the input shift register and recirculated every 16 bit times
thereafter to mark the presence of u complete word in the register. If

carrier drops without the sync bit at the end of the register. the
transmission was incomplete, and is flagged in the status bits. When the
shift register is full, the word is transferred to the main buffer write
register where it sits until the buffer coitrol has synchronized its
presence and and there is room to write it into the buffer. If the shift
register fills up again before the ward has been trunsferred from the write
register to the main buffer, then the miain buffer has overflowed and the
input data late flip flop is set. Ethernet transmitters accumulate a 16
bit cyclic redundancy checksum on the data as it is serialized. and append
it after the last data word. As a receiver deserializes an incoming packet
it recomputes the checksum over the data plus the appended CRC word. If
the resulting receiver checksum is non-zero, the received packet 1is in
error, and the condition is flagged in the hardware status byte. Since the
CRC is of no interest to the emulator program, a wakeup request to empty
data from the buffer is only made when it contains two or more words. This
reduces the effective size of the buffer by one word, but insures that the
CRC will be left behind at the end of a packet.

The phase encoder srarts up when the microcode has decremented the
countdown to zero., there is no carrier present. uand either the main buffer
is full. or if the message 1s lesz than 16 words long, all of it has been

transferred to the buffer. The phuase encoder will not start up while there
is carrier prescnt. This means that collisinns can only happen because of
delay in scusing carrier between widely spaced transmitters. (Collisions

are detected ¢t the transceiver by compariung the data the interface is
supplying to the data being rcceived off the ether. 1f the 1twe are not
identical. a signal is returned to the interface. which immediately stops
the phase enceder and sets the collision flip flop causivy a wakeup request
teo the wmicrocode. Countdowns are gecomplished by setting a [lip 1lop from
the microcode which will cause o wakeup r2guest on the next occurrance of
SWAKMRT' . This makes the grain size of countdowns about 37 microseconds.

By changing the timing components on the one-shots in the clock recovery
section and dividing tlie system clock to the phase encoder by two, the
interface can he run at half speed (1.47 MBits/sec.). reducing the number
of processor cycles required.

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 38

The interface and the transceiver are connected together by three twisted
pairs for signals plus two supply voltages and ground supplied from the
interface. he signals are (1) transmitted data to the transceiver, (2)
received data from the transceiver, and (3) the signal from the transceiver
indicating interference.

7.3 Ethernet Microcode

The Ethernet microcode uses a single task and 2 registers in R:

ECNTR: holds the number of buffer words to be processed
EPNTR: points at the word prior to that next to be processed

The task and R registers are shared by input and output so that at any time
they are (1) unused. (2) transmitting a packet, or (3) receiving a packet.
When an Ethernet SIO is issued while the Ethernet microcode is reset, the
code dispatches on whether it's to do input or output.

Each Ethernet SI0 has a result which is posted. The state of the microcode
and hardare at the time of the post are deposited in EPLOC. The contents
nf ECNTR are deposited in EELOC. And the contents of EBLOC are ORed into
NWW. The hardwure responds ‘to an EPFCT (Fl=14) by placing its status on
the bus: EPFCT clears the hardware.

An input command causes the microcode to load the input buffer size and
pointer into ECNTR and EPNTR, respectively. and to start up the input
nardware with EISFOT (F2=16). Then the task blocks waiting for the first
word of a passing packet. The input hardware waits for quiet on the cther,
turns on looking for a packet's first word. and then wakes up the input
rask. Upon waking. the 1Input task asks whether the hardware is deliverin

the first word of a packet using EBFUT (F2=14): EBFCT puts a 1 on NEXT(7

if something other than a data word is causing the wakeup. If a data
wakeup, the task checks the packet's first word addresses against the
filtering specification in ESLOC. If ESLOC is zero, the packet is accepted
and the input main loop is used to transfer the packet into the waiting
input’ buffer. If the packet's first byte is zero, 1t is a broadcast packet
and is accepted. Otherwise. the first byte of the packet must match that
stored in ESLOC if the packet is to be accepted. If the packet is not
accepted, the hardwore is reset and started up again looking for input. If
a non-data wakeup. the task posts.

The input main loop repeuatedly counts down the buffer size in ECNTR and
advances the buffer pointer in EPRNTR depositing packet words until either
the hardware terminates the {low or the buffer overflows: in cither case.
the input terminates and posts., Packet words arriving at the input buffer
wike up the input main loop once every H.441 microseconds on the average.
With ench wokevp. the iaput main leop ehecks {or data with EBFCT. Datra is
talken from the hardware with EIDFCT (a task-dependent bus source, KDATA).
Each word requires 6 cycles.

An output command couses the microcede to see if & 1 has been «hifted into
it 0 of ELLUC cud if so posts a lcead overflow. If not, its contents are
used to mask off the cloek in R37 to generate a random nunber: ELLOC s
then shiited left onee bringing o 1 in from the right making the mask

(i.e.. the load) larger. The rundem number is then counted down in
wicrocode using the memory refresh task clock., SWARMRT', to wake it up
every 37 diicroseconds. The EUFCT (F1=13) excceuted i the task instruction

oi the countdown lcop causes the harcwave 10 request a wakeup at the next
tic of SWAKMRT'. During countdown, if EICLOC is non-zero. the hardware is

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 39

enabled for input; if an input word arrives during countdown, ECBFCT
(F2=15) branches the microcode to input to process it as if an input
command had been issued. When the countdown reaches zero, the output
buffer size and address are loaded into ECNTR and EPNTR, respectively. he
output hardware is started with EOSFCT (F2=11) and the main output loop is
entered to transmit the packet. Actual transmission of the packet does not
begin unti] the hardware's buffer has been filled by the output main loop
or an EEFCT (below) has signalled the end of the packet. With a full
buffer, the hardware then waits for silence on the cable Ether before
beginning to transmit; we call this Deference.

The output main loop repeatedly counts down the packet length in ECNTR and
advances the address in EPNTR taking words from the output buffer and

iving them to the output hardware until either the buffer 1s emptied or a
ardware condition aborts it. Once again, EBFCT is used to branch on a
non-data wakeup: EODFCT (F2=10) is used to transfer data from the bus to
the output hardware. The output main loop is awakened for a packet word
once every d.44 microseconds on the average. When the output buffer is
emptied, the microcode issues an EOT with EEFCT (F2=13) and waits for the
hardware to terminate; it then causes an output post. .

On output, EBFCT generates a 4-way branch by ORing bits onto NEXT(6) and

NEXT(7). If neither are ORed with a 1. the wakeup is a data request. If
NEXT(6) is turned on, output should be aborted with a post. 1f only
NEXT(7) is ORed on, a collision is indicated; the hardware has detected

initcrference in transmission of the curreut packet. If & colligion is
indicated during output., the microcode immediately aborts transmission
(Deference again) with EPFCT and branches back as if a new output command
had been issucd: but now the load is larger than the last time around. Our
current algorithm requires that ELLOC be zeroed prior to issuing an output
command so that it takes 16 increasingly infrequent collisions to cause a
load overflow.

7.4 Software Initiated Boot Feature

Since the Ethernet interface already decodes the emulator instruction SIO,
it was easy to attach meaning to another bit in ACO. If Bit 0 of ACO is
one when an S10 is executed, the result is identical to pressing the boot
button on the Alto keyboard.

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 40

8.0 Control RAM

The control RAM is an optional logic card containing a fast (90 nsec.)
1024-word by 32-bit read/write memory, an even faster F&O nsec.) 32-word by
16-bit read/write memory, and logic to interface those memories to the
Alto's microinstruction bus, processor bus, and ALU output. Unlike other
memories in the Alto, the larger memory of the control RAM can hold
microinstructions and/or data, and may be used exactly as the memory of a
von Neumann computer.

8.1 RAM-Related Tasks

The control RAM performs data manipulation (as distinct from microcode
fetchingz functions in response to certain values of the Function 1 and Bus
Source ields of the microinstruction. Not all tasks will 1likely be
interested in these functions. More important, not all tasks will have the
appropriate values of the Function 1 and Bus Source fields uncommitted. A
RAM-rclated task i1s defined as one during whose execution the control RAM
card will respond to the Function 1 and Bus Source fields of
microinstructions. The standard Alto is wired so that the emulator task is
the only RAM-related task. At most two other tasks can be made RAM-related
by a simple Lackpanel wiring change.

8.2 Processor Bus and ALU Interface

Unfortunately, since the Alto's ALU output and processor bus are each 16-
bits wide and its microinstruction bus is 32-bits wide, loading the conirol
RAM from the ALU output and reading the control RAM onto the processor bus
is slightly clumsy. Jt is done by using the RAM-related Fl's WRTRAM and
KEDRAM (see Appendix A).

For both reading and writing, the control RAM address is specified by the
control RAM address register, which is loaded from the ALU output whenever

is loaded from its source. This load may take place as late as the
microinstruction in which WRTRAM or RDRAM is asserted. The bits of the ALU
output have the following significance as a control RAM address:

BIT USE
0-3 " Tenored
4 HAM/ROM g\ﬁeuns read/write the control
A
1 means read the control ROM
5 HALFSEL - Ignored on writing
0 means reuad out the low-order
16-bits of the addressed word
1 means read outr the higli-order
: 16-bits of the addressed word
6-15 Word address (0-1023)

Sinece it was expected that reading the control B3 would be a relatively
infreanent operation, a single assertion of RDRAM reads ouwr only one half
of w 32-Lit control RAM word onto the proccessor bus. To read out both
halves, the control LAY address register must be loaded twice and RDRAM
invoked twice. Data resulting from RDRAM is AND'ed onto the processor bus
‘during the microinstruction following that in which the RDRAM was asserted.

In contrast. it was expected that writing inte the control RAM would occur
frequently. Therefore a single application of WRTRAM writes both halves of

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 41

a control RAM word at once. The M register contents (see section 8.6) after
the microinstruction containing the WRTRAM will be written into the high-
order half of the addressed control RAM word. The ALU output during the
microinstruction following the WRTRAM will be written into the low-order
half. This protocol mates well with doubleword main memory reads.

Both RDRAM and WRTRAM cause the microprocessor's system clock to stop for
one cycle. This may yield unspecified results if the system clock is also
stopped for some other reason (e. g. waiting for memory data). As a general
rule, the system clock should run without hesitation during the
microinstruction following a RDRAM or WRTRAM, except for the effect of the
RDRAM or WRTRAM itself.

8.3 Microinstruction Bus Interface

The PCO bit of the program counter of each Alto task specifies whether that
task is currently executing microinstructions from the control ROM or the
control RAM. The next microinstruction address field of a microinstruction
is not wide enough to specify a transfer from ROM to RAM or vice-versa. A
special transfer mechanism exists only for RaM-related tasks, in the form
of SWMODE. a RAM-related F1. SWMODE inverts the PCO bit of the emulator
task., taking effect after the microinstruction following thut in which the
SWMODE appears. In other words, in RAM-related tasks SWMODE behaves much
like an address modifier. Other tasks cannot switch between ROM and RAM.

The correspondence of ALU output bits with microinstruction fields appears
in the following table:

High/Low Order Bit of ALU Meaning Value in

ialfword Output . Example
H 0-4 R Register Select 0
H 5-8 ALU Function Select 0
H 9-11 Bus Data Source 5
H 12-15 * Function 1 2
L 0-3 * Function 2 0
L 4 Load T 0
L) * Load L 1
L 6-15 Next micro address 325

Fields denoted by * are reépresented with their high-order bit inverted;
this is an artifact of hardwiare microinstruction decoding. As an example.
consider the reprezentation of the microinstruction

LMD, TASK. :LOCA:

where LOCA is 325, The valuves for the various microinsiruction fields are
listed in the table above. Afrer complementing the appropriate high-order
bits and concatenating., we see that the microinsiruciion above would be
ro?reson\ed gy 152 in its high-order haliword and 12325 in its low-order
halfword.

8.4 Reset Mode Register
The RaM-related Fl1 RUR« causes the reset mode register to be loaded from
the processor bus. This register is used to supply the initial value of the
PCO bit ol each task's program counter during ihe next resei ("boot")
operation. The 16 bitvs of the processor bus corvespond to the 10 Alto tasks
in the following way: the low order bit of the processor bus specifies the

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight , Page 42

initial mode of the lowest priority task (emulator), and the high-order bit
of the bus specifies the initial mode of the highest priority task. A task
will commence in the control ROM if its associated bit in the reset mode
register contains the value 1; otherwise it will start in the control RAM.
Upon initial power-up of the Alto, and after each reset operation, the
reset mode register is automatically set to all 1's, corresponding to
starting all tasks in the control ROM. -

‘8.5 Standard Emulator Access

In addition to the instructions listed in section 3.1, the standard
emulator includes three extra instructions allowing basic access to the
control RAM. More sophisticated access may be implemented by using the
basic access primitives to write microcode into the control RAM and then
transferring control to that microcode.

RDRAM (61011) Read from Control RAM:

Reads the control RAM halfword addressed by ACl into ACO. The
microcode is: .

RDRM: T<AC1. RDRAM:
L<ALLONES ; (AND'ed with control RAM data)
ACO<L, :START;

WRTRAM (61012) Write into Control RAM:

Writes A(CO into the high-order half and AC3 into the low-order half
of the control RAM word addressed by ACl. The microcode is:

WTRM: T<AC1;
LeACO, WRTRAM; (This loads the M register)
LeAC3; .
:START;

JMPRAM (61010) Jump to Control RAM:

Sends control of the emulator task to the RAM location in AC1 (mod
1024). This operation is fraught with peril. If done in error it is
the only emulator instruction which can cause the machine 1o plunge
off the deep end. If the RAM is not installed. control will go 1o
the ROM location in ACL. C(Clever coders caiiv use this feature to
determine from within whether or not a control RAM is installed.
However they are better advised to make this determination using
WRTRAM and RDRAM. The microcode for JMFRAM is:

JMPR: T<AC1, BUS. SWMODE:
:NOVEM: (NOVEM = 0)

§.6 M and 5 Regisrer

o

e control RAM card also includes an M register and 31 S registers. The)
register is the analng of the bosic Alto's L register. It provides data for
the S registers., which are analogous to the basic Alto's K registers. These
additional registers were provided to ease the tight constraint on R
r?ﬁister availability which might have limited the utility of the control
RAM.

The similarities between the M and L registers, and berween the R and S

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 43

registers are striking. Both M and L are loaded from the output of the ALU,
and only when the Load L bit of the microinstruction is active. R registers
are loaded from L, and S registers are loaded from M. Both R and S
registers output data onto the processor bus. Both R and S registers are
addressed by the RSELECT field of the microinstruction. (Thus the same
caveats which apply to the use of R37 apply to S37 (see section 2.3 f).)
Loading and reading of both R and S registers are controlled by the Bus
Source field of the microinstruction.

Nevertheless there are considerable differences. To begin with, the M and S
registers are active only when a RAM-related task is executing. This means,
for example, that in the highest-priority RAM-related task it is not
necessary to save the value of M across a TASK, since no higher-priority’
task can change the value of M. Unlike the data path from the E register to
the R registers, the data path from the M register to the § re§isters
contains no shifter. When an S register is being loaded from M, the
processor bus is not set to zero. The emulator-specific functions ACSOURCE
and ACDEST have no effect on § register addressing. And {inally, when
reading data from the § registers onto the processor bus, the RSELECT value
0 causes the current value of the M register to appear on the bus. (This
explains why there are only 31 useful S registers.)

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight. Page 44

APPENDIX A - MICROINSTRUCTION SUMMARY

FIELDS:

R SELECT
ALUF

BUS SOURCE
Fl

F2

LOAD L
LOAD T

-31 NEXT

NNN@M@C{'O
bt et ot OO b
QU —

i = B A |

2

0 BUS 4: BUS XOR T 1
1: T 5: BUS+1* 1
2: BUS OR T* G6: BUS-1* 1
3: BUS AND T 7: BUS+T]

*LOADS T FROM ALU OUTPUT

ALUF: 0 BUS-T 14: BUS.T*

l1: BUS-T-1 15: UNDEFINED
2: BUS+T+1* 16: UNDEFINED
3: BUS+SKIP [7: UNDEFINED

BUS SOURCE: @: <RLOCATION 4: (task-specific)
1: RLOCATION« 5: €MD
2: Undefined 6: <«MOUSE
3: (task-specific) 7: «DISP
FI1(STANDARD): @: -- 4: «L LSH 1
1: MARe 5: «L RSH 1
2: TASK 6: <L LCYS8
3: DBLOCK 7: «CONSTANT
F2(STANDARD): 0: -- 4: BUS
1: BUS=0 5: ALUCY
2: SH <O G: MDe
3: SH =0 T: «CONSTANT

ALTO: A PERSONAL- COMPUTER SYSTEM

Charles P. Thacker and Edward M. McCreight

APPENDIX A (Continued)

BUS SOURCE(TASK SPECIFIC):

0
CPU

3: «SLOCATION
4: SLOCATION«

0 4,16
CPU KSEC,KWD
SWMODE -

WRTRAM STROBE
RDRAM KSTAT«
RMR« INCRECNO
- CLRSTAT
- KRCOMM«
- RADRe
START KDATA«

b bl st b fud pd ek
SISO WON—-O

F2(TASK SPECIFIC):

0 1.16
CPU KSEC.KWD

BUSODD NIT

MAGTC RWC

DNS« RECNQ

ACDEST XFRDAT
IR« SWIRNEDY

: IDISP NFER

5: ACSOURCE STRUBON

bl bt b b b et o ot
LS Fm i VLR (VR e
.. e so os se ae as

1
ETHER

ELFCT
EPFCT
EWFCT

7
ETHER

7
ETHER

EIDFCT

4,16
KSEC,KWD

«KSTAT
«KDATA

FI1(TASK SPECIFIC):

1
MR

MRT

0
T

11

DWT

.

11

12
CUR

12

DWT CURT
DDR« XPREG+

SR+

EVENFTELD EVEXN
SETMUDE

Page 45
RAM
Related
«SLOCATION
SLOCATION«
13 14 15 RAM
T DHT DVT PART Related
- - - SWMODE
- - - WRTRAM
- - - RDRAM
- - - RMR«
13 14 15
DHT DVT PART

FIELD

[IO N I N B A A |

ALTO: A PERSONAL COMPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 46

APPENDIX B - RESERVED MEMORY LOCATIONS

Location Name Contents

420 DASTART Display list header

421 - Display vertical field interrupt bitword
422 ITQUAN Interval timer stored quantity

423 ITIBITS Interval timer bitword

424 MOUSELOC Mouse X coordinate

425 - Mouse Y coordinate

426 CURLOC Cursor X coordinate

427 - Cursor Y coordinate

430 RTC Real Time Clock

431-450 CURMAP Cursor bitmap

452 W Interrupt wakeups waiting

4353 ACTIVE Active Interrupt bitword

460-477 MASKTAB Mask table for convert

500 PCLOC Saved interrupt PC

501-5617 INTVEC Interrupt Transfer Vector

521 KELK Disk command block address

522 - Disk status at start of current sector

523 - Disk address of most recently started disk
command

524 - Sector interrupt bit mask

525 ITTIME Interval tifier time

527 TRAPPC Trap saved PC

530-567 TRAPVEC Trap vector

600 EFLOC Ethernet post location

601 EELOC Ethernet interrupt bit mask

602 EELOC Ethernet EOT count

603 ELLOC Ethernet load location

604 EICLOC Ethernet input buffer count

605 EIPLOC Ethernet input buffer pointer

606 EGCLOC Ethernet output bulfer count

607 EOPLOC Ethernet output buffer pointer

610 ESLOC Ethernet serial number

G611 - Reserved for Ethernet expansion

612 ESPARE teserved for Ethernet expansion

613 - Rescrved for Ethernet expausion

'614 DCBR posted by parity task when a main memory
parity error is detected.

615 KNMAR " " " " " " N

6146 DVA . " " " " " " "

(5] "" (\]-:A "n ”" " " " " "

(520 P(L1} " " " " " "

62 1 SAD . " " " " " " "

ALTO: A PERSONAL CO.\lPUTER SYSTEM
Charles P. Thacker and Edward M. McCreight Page 47

/*
/&

