Inter-Office Memorandum

Tos Ethernet Distribution Daten . June 22, 1874

From: Metcalfe and Boggs Locatlons Coyote Hill

Subject: Alto Ethernaet Interface -Organizations Parc CSL and SSL
VDNV

NLINUN

This reference memo defines the Alto Ethernet Interface as seen from within the Alto's
emulator. While we expect that we ourselves will write most of the software which
deals with this Interface, you may find the specifications useful for some special BCPL
programming of your own. This memo will be revised and extended with experience; we
welcome suggestions and comments.

You have received this memo because your name Is on the newiy established Ethernet
distribution list maintained by Adrienne Payne. Please remove your name from the list If

memos like this one are of no interest to you. .

Like other Alto device interfaces, the Ethernet uses several reserved locations In Alto
memory to receive its commands and to report its status in cooperation with an emulator
program. .

These locations ara (from "CETHERNET DETHERSYMS.BC"):

manifost [EPLoc=#6007] //Post location

manifost | EBLoc=#601] //Interrupt bit location
manifest [EELoc=#602] //EOT count location, Posted
manifost [ELLoc=#603] //Load location (mask)
manifest [EICLoc=#6047] //input count location
manifost [EIPLoc=#605] //Input pointer location
manifost [EOCLoc=#606] //Output count location
manifest [EOPLoc=#607] //Output pointer location
manifest [ESLoc=#610] //Serlal Number location
manifest [ESpare=#612] //Spare

@EPLoc receives status information (see below) when an Ethernet command (see
below) completes. @GEBLoc may hold a bit to be set into NWW (new wake~-ups wailing)
when an Ethernet command completes so as to interrupt the Alto's emulator (see memos
on the Alto interrupt system). @EELoc gets the number of remaining buffer words at
command complotion; it Is used for computing the length of an input packet ==
Packetlength=(QEICLoc)-(REELoc). @ELLoc should be zaroed before each output

-1

Alto Ethernet Interface ' June 22, 1874

command; it is used by the microcode to hold a mask of ones, shifted in from the right,
for generating successively larger random numbers in the case of transmission collisions;
a transmission without collislons leaves QELLoc with a value of 1. @EICLoc and
REIPLoc are used to define a buffer for the Input of a packet from the Ethernet;
@EICLoc holds the number of words and QEIPLoc holds the address of the first word.
Similarly, @EOCLoc¢ and @EOPLoc define an output packet. @ESLoc holds the serial
number of the Alto (see below) and is used by the microcode for filtering out (lLe.,
Ignoring) packets addressed to other Altos. @ESpare Is a spare location with no use at
present.

An emulator program Issues commands to the Ethernet Interface using two bits in the
emulator's SIO instruction (see our May 10th memo on SIO). These bits are used as
follows:

manifest [EtherOutputCommand=1] //SI0 1 is start output
manifest [EtherlnputCommand=2] //SI0 2 is start input
manifest [EtherResetCommand=3] //SIO 3 is reset hard/firmware

)

From within BCPL it Is convenlent to access SIiO through the procedure StartlO as
follows (from "<ETHERNET>AELIB.BC"):

tot Starth(Command)=(tablet #61004;#1401;])(Command)

Recall that SI0 takes Its command in ACO and returns the Alto's serial number in ACO;
Startl0 takes one arguument, i.e., Command, and returns a value, I.e.,
(#177400)%(SerlalNumber).

Then, the Ethernet's commands are:
StartlO(EtherlnputCommand) //Start Ethernot Input

StartlO(EthorOutputCommand) //Start Ethernet Output
StartiO(EtherResetCommand) //Resot Ethernet

‘Before issuing an Ethernet command, GEPLoc should be zeroed so the result of that

command can be noted when @EPLoc goes non-zero. Alternatively, you may choose to
note GEPLoc with interrupts by setting a bit in GEBLoc.

The Alto's wired-In 8-bit serlal number (see our memo on Alto serlal numbers) should be
retrieved from the backplane and stashed in @ESLoc as follows:

QESLoc=(#377)&StartiO(0) //Read and store serlal number

If @ESLoc is zero, we say that your Alto Is promiscuous; the Ethernet microcode will
accept packets regardiess of their destination address. A packet addressed to zero,
please note, is a broadcast packet and will be accepted regardiess of GESLoc.

-2-

Rlto Ethernat Interfaca ' June 22, 1974

When the Ethernet finishes processing one of its SI0 commands, it posts the results In
@EPLoc. The left-hand byte (bits 00 to 07) of the post code carrles the microcode's
explanation of what happened as a result of the command. The right-hand byte (bits 08
to 15) carrles the hardware status at the time of the post. Both bytes of @GEPLoc must
be interpreted to tell exactly what happened. Here are the codes to be found in the
left-hand byte and thelr mnemonics:

manifost [PostinDone=0] //Input flow terminated, maybe AOK

manifest [PostOutDone=1] //Ouput flow terminated, maybe AOK

manifost [PostiBOverflow=2] //Incoming packet overflowed buffer
manifost [PostOutLoadOverflow=3] //16 collisions, load overflow
manifost [PostwordCountZero=4] //User (you) provided zero-length buffer
manifost [PostAbortod=57 //Flow aborted for some reason (reset?)
manifest [PostNoverHappon=6] //Serious hardware/firmware bug

The hardware status bits found In the right-hand byte of @EPLoc (after a post) are low=
true; they are normally one. If zero, they signal the following conditions:

Bit 156 Incomplete transmission, discard input

Bit 14 Output command issued causing post
Bit13 Input command Issued causing post.
Bits 13&14 Resot command issued
Bit 12 CRC register not zero, discard input
Bit 11 Coliision (not used by software)
Bit 10 Input data lato, discard input
Bits 8&9 Should always be 1; if zero, failure of hardware

Routine checking of post codes can be speeded with the use of patterns. These
patterns are formed from the appropriate left-hand microcode byte and normal hardware
status.

manifost [EthorOutputOK=#777] //Output was successful
manifost [EtherinputOK=#377] //Input was successtul

Here is how to reset the Ethernet Interface:

and EthorReset()=valof
@EPLoc=0 //Clear posting location

StartlO(EtherResetCommand) //Requost hardware/firmware reset
resultis (REPLoc ne 0) //Return booloan

-3-

Alto Ethernet Interfaco V June 22, 1874

‘The EtherResect routine should always return the boolean (true; If not, the Ethernet

firmware/hardware package is malfunctioning or not instalied.

Timing, and time-outs in particular, are Important in Ethernetting. Here are two useful
(and triviat) timing routines which support the following Ethernet examples.

static [Timer] //Holds number of "tics" to time-out
and SotTimer (Microseconds) be

C .
Timer=(Microseconds/70)+1 //Convert from Microseconds to tics

and TimedOut()=valof

Timer=Timer-1 //Count down Timer to walit for time-out
rosultis (Timer le 0)

Here is a simple {and not always adequate) way to get an Ethernet packet:

.

and GetEther (Buffer,Time)=valof

C

@EICLoc=Buffer!0 //Length

QEIPLoc=Buffer+1 //Pointor to packet's first word
SetTimor(Timo) //Establish how long walit
GetPost: //Coma hore to look for new post code
@EPLoc=0 //To look for non-zero
StartlO(EtherinputCommand) //Input?

while ((@EPLoc eq 0)&(not TimedOut())) loop
if TimedOut() then resultis faise

if (@EPLoc oq EtherlnputOK) then resultis true
goto GotPost //keop waltin,

] 5

. -3Alto Ethernet Interface ’ V June 22, 1974

Here Is a simpte (and not always adequate) way to send an Ethernet packet:

and PutEther(Buffer,Time)=valof

L

REOCLoc=Buffor!0 //Only send what | tell you
REOPLoc=Buffor+1

REICLoc=0 //No input ploase

@EIPLoc=0)

SetTimer(Time) //time-out

GetPost: //Come here to look for new post
@ELLoc=0 //Start with zero load each time
@EPLoc=0 //To look for non-zero
StartlO(EtherOutputCommand) //Go!

while ((@EPLoc eq 0)&(not TimedOut())) loop
If TimedOut() then rosultis false

if (REPLoc¢ oq EtherOutputOK) then resultis true
goto GotPost //Keop trying

] -

Alto Ethernet Interface June 22, 1874

Here Is a good way to send a packet and quickly turn the focal Ethernet interface
around to recelve a quickly returned packet, say an acknowledgement.

and EtherAround(Count)=(table[
NEGG+SA0+DA1; //NEG 0,1 Make count negative
LOAD+ACO+PREL+20; //LOAD 0,C1 Output Command
STARTIO; //SI0 Start Etharnot Output)
LOAD+ACO+IND+PREL+16; //LOAD O,GEPLoc Get Post location
MOV+SAO+DAO+SZR; //MOV 0,0,SZR Chk for post
JUMP+PREL+4; //JVIP .+4 Postod!
INC+SA1+DA1+SZR; //INC 1,1,SZR Count depleted?
JUMP+PREL+(-4Ź); //JMP .-4 Keep waiting
DORTN; //JMP 1,3 Timed-out
LOAD+AC1+4+PREL+13; //EtherinputOK
SUB+SAO0+DA1+SNR; //Input under output?
DORTN; //Input under output
MOV+SA0+DA1; //MOV 0,1 Move post code to safe place

. SUB+SA0+DAO; //SUB 0,0 Make a zero

STORE+ACO+IND+PREL+5; //STORE 0,GEPLoc Zero post loc
LOAD+ACO+PREL+5; //LOAD 0,C2 Input Command

If an input buffer is specified during an outpul command, the Ethernet Interface will look

for incoming packets during its retransmission waits (If any); an input post code will .

result If a packet comes in under an output; the output wlil not be done.

Here is a way to walt for an Ethernet post should one of the above (or any) operation
falled to post In time:

and WaltEther(Time)=valot

STARTIO; //S10 Start Ethor Input

MOV+SA1+DAO; //MOV 1,0 Return post code

DORTN; //JMP 1,3 Roceivor started

EPLoc; //Address of Ethernot Post loaction
EtherinputCommand; //EtherinputCommand
EtherOutputCommand; //EtherOutputCommand
EtherinputOK; //posted when input comes in under output

J1)(Count)

SotTimor(Time)
whilo ((@EPLoc eq 0)&(not TimedOut())) loop
resultis @EPLoc

1

The EtherAround routine accepts a time-out count for a prespecified output (and pre-

input.

~ zaroed post location) and returns the output status obtained after quickly starting an

DISTRIBUTION / ETHERNET

BACHRACH, Bob
BATES, Roger
BELEW, Peter
BOGGS, David
CLARK, Larry
DEUTSCH, Peter
DUVALL, Bill
ELKIND, Jerry
ENGLISH, Bill
FATRBAIRN, Daug
FIALA, Ed
FLEGAL, Bob
GESCHKE, Chuck
JEROME, Suzan
LAMPSON, Butler
LIDDLE, David
McCREIGHT, Ed
McDANIEL, Gene

MELVIN, John
METCALFE, Bob
PARISH, Vickix
RIDER, Ron
SHOCH, John
SINONYI, Charles
SPROULL, Bob
STURGIS, Howard
SWINEHART, Dan
TAFT, Ed

TAYLOR, Bob
THACKER, Chuck
TREICHEL, Jeanie
WILMER, Mike

. ZELINSKY. Mara

-6~

