MEMO
To: ALTO GROUP Date: August'8, 1974
From: Chuck Thacker Location: Palo Alto
Subject: Alto Microassembler Organization: PARC/CSL

File: CTALTOMICROASSEMBLER
Archive category: Alto

This document describes the source language and operation of MNU, the Alto
microassembler. MU 1is downward compatible with DEBAL, the original Alto
assenbler/debugger, but has a qumber of additional features. MU is implemented
in BCPL, and runs on tho Alto. .

The source language

An Alto microprogram consists of a number of statements and comments.

Statenents are terminated by scmicolons, and everything between the semicolon
and the next CR is treated as a comaent. Statements can thus span several text

dines (the current limit 1is 256 characters maximum). All other control

characters and blanks are ignored.

Statements are of three basic types: declarations, address predefinitions, and
executable code. The syntax and semantics of these constructs is as rollow:;
Declarations) .
Declarations are of three types: symbhol dofinitions, cohstant dofinitions, apd
R memory names.

Synbol Definitions

Symbol definitions have the form:

&néme&Lnl,nz.nsz

The symbol "name" is defined, with values n and ns. Thero is a standard’

package of symbols for the Alto which shoulb nppcar at the beginning of every
source proqrum For those who must add symbol definitions, the lntcrpretation
of the n's is given in the appendix.

Constant declarations

Normal constants are declared thusly:

Snamesn;

---------.------.---.-.---u----.-----.-.-..-----.-.......---..-------_-------—-

Because the symbol table is allocated nbovu the operating system, MU will

currently run only on 64K Altos.

Alto Microassembler August 8, 1974 Page 2
Chuck Thacker

This declares a 16 bit unsigned constant with value n. The assenbler assigns
the constant to the first free location in the constant menory, unless the
value has apprared beforo under .another nane in which case the value of the
name is the address of the proviously declared constant. An alterpative
constant -definition 1is used for nask constants which have a specified bus
sourco field (recall that the constant memory address is the concatination of
the rselect and bus source fields of the microinstruction). The syntax is:

SnameShin:v; 44n<7, 0<v<2**16

"N specifies tho desired bus source value, v is the constant value.

R Memory declarations

R memory names are defined with:

$name$Rn; 0<n<408
(100B if you have an Alto augmented with 32 extra R registers)

An R location may have several names.

Address predefinitions

Address predefinitions allow groups of instructions to he placed in spccified
locations in tho control memory, as is required by the OR brandlnq scheme used
in the Alto. Their syntax is:

tn,k, nnnco nanel,nanec2, * **,nanck-1;

.Thls declaration causes a block of k cansocutive locations to be allocated in

the instruction memory, and the names assigned to them. n defines the location
of tha block, in that if L is the address of the last location of the block, L
and n = n, Usually, n will be 2**p-1 for sone snnll p. For oxanple, if the
predefinition

13,4, 000, fool , fa0Z, f003;

. 1s encounterecd in the source text before any executable statenents, the labels

foo0-foo3 will be assigned to control memory locations 0-3. If there are too
few names, they are assigned to the low addresses in the block. [If there are
too many, they are discarded, and an error is jndicated. If there are missing
labels, e.g. "foo0,,fo02,;;", the locations remain available for the normal
instruction allocation process. A predefinition nmust be the first mention of
the name in the source text (forward references or labels encountered before a
predefinition of a given name cause an error when the predefinition fis
encountored.) .

Executable statements

Executable cade statements consist of an optional label followed by a number of
clauses scparated by comnas, and terminated with a semi-colon

label: clause,clause,clause’"*;
If‘n label has been predefined, the instruction is placed at the control memory
locaion reserved for it, Otherwise, it is assigned to the lowest unused
location. !

Clauses are of three types: gotos, nondata functions, and assignnments.

- 'Alto Microasscmbler August 8, 1974 ’ Page 3
Chuck Thacker

GOT0

Goto clauses are of the form :label, and cause the value of the label to
be assembled fnto the NEXT field of the instruction. If the 1label is
undefined, a chain of forvard references is constructed which will be
fixed up when the symbol {s encountered as a label.

Nondata Functions
Nondata functions must he defined (by a literal symhol definition) before
being cncountered in a code clause. This type of clause assembles into

the F1,2, or 3 fields, and represents either a branch condition or a
control function (e.g. BUS=0, TASK). .

Reqgister transfers (assignnents)

All register transfers are specifind by assignments of the form:

rdestasrdesthe"*"«source

This, type of clause is asscmbled by looking up the rdests, checking theirA

leqgality, and making the field assignnents inplied by the symbol types.
Each destination inposes definitional requirements on the source (e.g.
ALUOUTPUT nmust be defined, BUS must be defined).. These requirements must
be satisfied by the source for he statement to be legal.: Vhen the source
is encountered, it is looked up in the symbol table. If it is legal and
. satisfins thae definitional requirements inposed by the destinations, the
necessary field assignments are made, and, processing continues. If the
entire source defines the BUS, and the only renaining requirement is that
the ALU output nust he defined (c.g. L*HD). the ALUF fiecld is set to O
(ALU OUTPUT = BUS), and processing continges. If neither of the above
conditions holds, the source can legally be'only of the form: “thing which
defines the bus * alu function." The source taken is broken inteo two
substrings, and each s looked up in the symbol table. If two substrings
can be found which satisfy the requirements, the field assignments implied
by both are made. If the boundary between the two substrings is advanced
to the end of the token without definition, an error is generated. This
nethod of evaluation is simple, but it has pitfalls. For instance, Le T+2
is illegal, but Le2+T is not, providing that the constant "2" has been
defined. - .
The constant "0" is special, in that when one or more clauses in a
statenent reuire that the bus be 0, the constant is not output, but a flag
i1s set, VWhen processing of the statement is completed, if any clause has
caused the R menory to be loaded, the constant is nnt used, since the
hardware forces the bus to 0 in this case.

The destination "SINK" allows a clause to specify a bus source without
specification of a destination. It is useful, for example in constructs

of the form: SINK-MASK CONSTANT, LeDISP XOR T,, which will cause "the
value of DISP to be anded on the bus with the mask constant

Operation

The assembler is invoked with:
MU/global switches sourefile.optional extension listfile/L binfile/B

Legal global switches are:

- Alto Microassembler . August 8, 1974 Pago i

Chuck Thacker

/L produce a listing file
/D “debug mode
/N do not produce a binary file (overridien by binfile/n)

If listfile/L is absent but the /L global switch is sot, listing entput will be
sent to sourcefile.lS. '

If binfile/B is absent, binary output is sent to sourcefile.NH.

Error messages will be sent to the listing file if one has been specitied,
unless debug mode has been set. In debug mode, errors are sent to the systenm
display arca, and a pause occurs at at every error (and at cortain other
times). Typing any character proceeds.

If no listing file has been requested, debug mode is set independent of the

global switch.

OQutput file

The assembler produceds MICRO format binary output, The string neres of the
two memories specified in the file are CONSTAY and INSTENCIION. Onlv defined
locations in these memories are output. MICFO forpat is coipatahile with the
PROM blowing program, and with RANLOAD, a description of vhich i attached.
Note that the instruction memory specified in the binary file does net inciude
the 3 b;t F3 ficld, which exists only in the debwgging RAY.

Listing file
Fhe listing file contains:

1.) All error messages (unless debug made is set)

2.) A listing of all unused but predefined locations and unresoived
forward references. : T

3.) A listing of tho contents of the constant nemory

4.) A listing of the names assigned to the R nepory

5.) A listing of the object and source code (with cos-ents and
declarations removed. The 35 bit instruction is printed sut in - the
following order: .

LOCATION: RSEL ALUF BUS SOURCE Fi F2 LOADI. LOADT F3

Alto Microassembler

August 8, 1974 . Page §
Chuck Thacker

Appendix I: Literal symbol definitions

The value of a symbol is a 3 word quantjty. The first word contains a type (6
bits) and a value (10 bits) which detenines the interpreotation of the symbol in
all cases except when it s encountered as the source in a register transfer
clause (assigunent). The second word contains the type and value used in this
case. The third word contains bits specifying the dofinjtional requirements
and source attributes applicd when the symbol is cencountered in an assignment:

BITO: L OUTPUT MUST BE DEFINED® (USED BY LHS PROCESSING)

BITI: BUS NUST BE DEFINED? (LIS)
BIT2: ALM NMUST BE DEFINED' (LHS)
BITS 3-7: 0

BIT8: L IS DEFINED (USED BY RHS PROCESSING

TO CIECK LEGALITY OF CLAUSE
BIT9: BUS IS DEFINED © o (RIS)
BIT10: ALU IS DEFINED (RHS)
BIT14: ALU OUTPUT IS DEFINED
" 1F BUS IS DLFINLD (USED BY RIS
PROCESSING WHEN SOURCE
1S OF TIE FORM
"BUS DEFINER.ALU FUNCTION")

Assignment processing proceeds by successively ORing the attribute words for
the destinations with -1, Vhen the RHS 1is cncountered, the attribute word

contains 0'S in bits 0-2 for things which must be defined. Legality of the

source (if it is a defined symbol) is tested by computing
DESTINATION ATTRIBUTES (0-2)' AND SOURCE ATTRIBUTES (8-10)

The 0 bits in bits 0-2 of the result represent usatisfied conditions. If the
only requirenent is ALU definition, and if the BUS is defined, the ALU function
is set to gate the bus through (delfining the ALU}, and the clause is complete.
If this doesn't work, the source string is gdisnembered, looking for two
substrings, the first of which defines the bus (hit9), and the second of which
defines the ALU output if the bus is defined (bit14)., 1If two substrings are
found, the inmplied assignments are made, and the clause is complete.
Otherwise, an error is indicated.

The symbol type(s) determine the fields to be set in the microinstructiog: Some
types are legal only as an isolated clause, some are legal only as the source
or destination in an assignment. The currently defined types are:

TYPE: LEGAL AS: INSTRUCTION FIELD SIDE EFFECTS
RECEIVING VALUE

0 ILLEGAL NLVIR

1 UNDEFINED ADDRESS ADDRESS

2 DEFINED ADDRESS ADDRLSS NEXT

3 R LOCATION LHS [AIN RSEL

4 R LOCATION RNS RUS RSEL

5 «CONSTANT RNS RSEL,BS

6 BUS SOURCE ' RUS BS

7 NONDATA F1 CLAUSE Fi

10 DATAF1- LUS F1

11 <L DEFINING Fi RHS F1

12 NONDATA F2 CLAUSE F2

13 DATA Fo~ Lus F2

14 «DATA F2 RHS F2 BS~1, BVWBZ-TRUE ,RSEL*0
: (~DNS,~ACDEST)

15 DATAF2+ - Liis F2 BS+~0,RSEL+-0

Alto Nicroﬁ;somblnr
Chuck Thacker

END

L

Le

NONDATA F3
DF3~ C

«DF3

«ALU FUNCTIONS
Te .
«T

NO LONGER USED
PREDEFINED ADDRESS
LMRSH, LMLSIH
«MASK CONSTANT
«F2

«F1

CLAUSE

RHS
LIS
CILLAUSE
LIS
RIS
RHUS
(A1
RILS

RIS
RUS
RIS
RHS

August 8, 1974

F2
Fi

The current symbol definitions are attached.

Page 6

(ACIE Lee S
KLUPad, b

S{STOREELAL AT SE

SE1S ALUE 1o VALUE

BGe-2
BG-2.

