To: CSL. Learning Research Group Date: Jdune 6, 1974

From: Ben Wegbreit Location: Palo Alto
Subject: Alto Virtual Mcmory'Proposal Ofganization: PARC/CSL

'Archive category: Aito

1) Summary

I propose implementing a virtual address space of 2t24 words at the
instruction level. A1l lanqguage systems can use this virtual address space.
Mapping virtual addresses into physical addresses is done, in the most frequent
casc, with a small set of non-associative mapping registers.

2) Addressing

Programs run in a 2124 bit virtual address space. I'11 discuss addressing
this space in terms of a Nova-like instruction set not because this 1is optimal
but because its a concrete place to start.. :

2.1 Instruction Format:

An instruction which references memory has:

I - an indircct bit
X = a base register Tield (2 bits)
D - a displacement (8 bits)

2.2 Registers:

A1 registers dea]idg with addresses (e.g. PC and index registers) are at
lecast 24 bits wide (32 if that proves useful for qther reasons).

- 2.3 Indirection:

‘ Indirected instructions are pre-indexed, not post .indexed and the address
obtained at the 1st level is interpreted as the first word of a 2 word block
containing a 24 bit virtual address. Hence, any word in memory can be
addressed. ) . .
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2.4 Basc Register Field Intqrpw

00 - PC 01,10,11 - AC1,AC2,AC3

Kl Xt 3

2.5 Comment:

The proposed scheme works somewhat better if more base registers are uséd,
e¢.g. 8 or 106, A modified instruction format is then nccessary.

3) Mapping Virtual Addresses onto Physical Addresses

3.1 Obscrvation:

The only nddresées that can be accessed are those obtained by indirection
or thru the base registers.. Locality considerations argue that the latter will
be the most prevelant mode.

3.2 The Ideca:

" When a program is making repeated references thru base register X to a
virtual page VP, it will get into some core page CP. Ve 1introduce hardware
which for each base register X gives the current core page CP[X]. 1Instiructions
which use base register X are (gencrally) mapped into core page CP[X].

3.3 Details:

Each of the 4 base registers has associated with it two other registers:
last virtual page number (LVP) and core page (CP). Whenever base register X is
used to form an address, Lhe following occurs:

virtual address = D + contents of X
virtual page # = high-order 15 bits of virtual address
displacement = low-order 9 bits of virtual address

if virtual page # = LVP[X]
then memory address = <CP[X], displacement)
clse base register fault. :

"In the successful case, mapping requires onc comparison and no associative
‘hardware. Indirection 1is treated as an implicit base register; the 24 bit
virtual address is comparcd against LVP[I1], etc.

3.4 Base Register Faults:

A base reqgister fault is caused cither because (D + contents of X) is on a
different page than contents of X or because the contents of X has been changed
since Lhe last memory reference thru X. When a base reqister fault occurs, a
hashing schene like Peter's ("The Lisp Alto Map", 5/30/70) is used to find the
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page if {1t is in core. (If all languages use the hash mechanism, there is
cconomic incentive to shift more of the work into hardware, e.g. put the hash
table into fast memory - around 2t13 bits for a half-full table.) If the page
is not in core, the processor delivers an interrupt; it's up to the language to
decide what page(s) should be shoved out. ~ ?)ésggbé Cfvﬂzéf ~tc> (/('

3.5 Page Size:

Displacement addressing (2t8) and page size neced not be identical but
should be comparable. I suggest 219, .

3.6. Generalization

The pair LVP,CP provides a fast way of mapping a single page. If we are
willing to complicate everything somewhat,. this can be generalized to a set of
pages. Define a page group to be a contiquous set of virtual pages residing in
a contiqguous set of core pages. Associate with each base register CP as above
and lower-upper virtual bounds registers LVP and UVP which span a page group.
CP[X] scrves as a base.for the core address 1f the LVP[X] £ virtual page # £
UVP[ X]. .

This has the advantage of allowing chunks of memory to be mapped directly,
up to all of core. For example, a program which is preplanned to run 1in no
more than 64K of the address space can 'set up a single page group of that size.

This has the following disadvantages:

(a) additional hardware, since testing virtual page #

-against LVP,UVP requires 2 subiractions (in parallel) instead of one

comparison and requires forming the core page # by addition instead
of concatination.

(b) a more complicated core manager, since 1t 1s necessary
to allocate variable size core chunks.

(c) somcwhét more complex communication between the program
and the swapper, since the program must be able to specify segments.”

4) Some Usage Modes

4.1 Within a Module:

Code and data can be accessed as S)+ contents of PC and will generally be

“mapped directly. _?AM1Z, ”éﬁ/gi%// [}H&Lib___,—f/

4.2 Cross-Module Code Linkage:

Indirect - requiring 48 bits in all.
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4.3 Local Variables:

Using one of the base registers as a frame pointer, local variables can be
.accessed as D + contents of frame register and will generally be mapped
directly.

4.4 Lisp CAR and CDR:

Use Danny's hash-linking scheme. Local pointers (non-1inked) are converted
-into wvirtual addresses when put into a base register by adding to them the
contents of the base register which' bases their page . Linked pointers arc
full virtual addresses as in Danny's scheme.

4.5 Array processing:

Sequential accesses Lo anyth\ng, arrays in particular, are gencrally mapped
dircctly.

5) Drawhacks

5.1. Indirection takes 2 words rather than 1 on the present address
structure. : . ¢

5.2. Unless the page group mechanism is implemented and employed, addresses
generdated in a random pattern within a core working.set (e.g. trece-sorting a
32K word array) must go through the hash Tlookups: since the base register
mapping hardware will do little good. : ,

5.3. Since the display hardware runs in the physical address space and the
program runs 1in a virtual address space, it is necessary to be able to
establish a correspondence between them. This is an understood problem (Tenex)
with a reasonable solution (locked pages). Page groups (c.f. 3.6) help here.
However, implementing locked pages is still a complication. :

5.4, BCPL is complicated since full addresses become 24 bits, while
integers praobably should remain 16 bits. Making the distinction would, at
the least, introduce some complication with BCPL.

6) Operating System

6.1. Since the v1rtua1 mcnory is ]arge. the operating system can live 1in
the same address space. '

-0.2. Protection of tha operating system from the program or of the program
from regions of itself is a secparate -issue. A write-protect bit for each of
the core page registers (c.f., 3. 3) can be 1ncludcd if memory protection scems
necdoed.:
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1) Summary

I propose that a virtual address space of 2124 words be implemented at the
instruction and micro-instruction level. All language systems can use this
virtual address space. Happing virtual addresses into physical addresses 1is
done, 1in the most frequent case, «ith a small set of non-associative mapping
registers.- ’

2) Addressing

Programs run 1in a 2t24 bit virtual address space. 1'11 discuss addressing
this space 1in terms of a Hova~like instruction set because 1its a concrets
place to start. .

2.1 Instruction Format:

An instruction which references memory has:

I - an indirect bit
X - a base register field (2 bits)
D - a displacement (8 bits)

2.2 Registers:

A1l registers dealing with addresses (e.g. PC and index registers) are at
least 24 bits wide.

2.3 Indirection:

Indirected instructions are pre-indexed, not post indexed and the address
obtained at the 1ist level 1is 1interpreted as the first word of a 2 word block
containing a 24 bit virtual address. Hence, any word 1in memory can bae
addressed.
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2.4 Base Register Field Interpretation:

00 - a special 24-bit register GR which can bo Yoaded by special
instructions.

01 - PC

10,11 - AC2,AC3

2.5. Data width:

Since addresses are 24 bits wide, this 1is the standard width of full
pointers. Integers should probably remain 16 bits wide. Short pointers (e.g.
relative to the first word of their page) should also be supported. Registers
dealing with addressing are 24 bits wide. Hence it is necessary to be able to
load and store both 16 and 24 bit quantities into and from these registers.

2.6: HNon-Nova Instructions:

Mesa and Altolisp will be programmed mainly by micro-interpreters for their
specialized 1instruction set. Hence, the virtual address space must be
available at the microinstruction level. In that mode, it may be possible to
use more base registers, e.g. 8 or 16, which would make the scheme work
somewhat better. The number of registers is limited by bits to address them in
micro-instructions and card capacity.

3) Mapping Virtual Addresses onto Physical Addresses
3.1, Observation

. Addresses typically are not generated at random but rather are obtained by
relatively small changes to a prior address. Examples:

»(a) sma1j change to current PC for next instruction and local Jumps,
(b) accessing local variables as a small offset from a frame pointer,

(c) 1ncremen£1ng an index register 1in fetching'consecutive words of an
array,

(d) in Lisp, car and cdr pointers local to a segment
These prior addresses are often obtained from the registers: PC, and AC's.
3.2. The Idea

Supply with every memory request an indication (access code) of which
register was used in generating the address. If the new address 1is close
enough to the prior address, then it will probably be in core already. Ve
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introduce hardware which for cach basec register X gives the current core page
CL[X]. Addresses generated from base register X are gencrally mapped by CL[X].

Generalize this as follows. Define a page group to be a continuous set of
virtual pages residing 1in a contiguous set of core pagos. The program
specifies a page group to the page manager by a JSYS-like command. Whenever
any page in the agroup 1s subsequently referenced, the entire group is obtained.
CL maps an entire page group.

3.3. Details:

Each of the base registers has associated with 1t three dther registers

LVP - low virtual page
HVP - high virtual page
CL - low core page

LVP[ X] and HVP[X] h61d the page number of the low and high pages in the last
page group accessed thru base register X. Whenever base register X is used to
form an address, the following occurs:

virtual address = D 4 contents of X
virtual page # = high order 15 bits of virtual address

if LVPLX] < v1rtua1 page # < HVP[X]

then memory address = CL[X] + virtual address
else base register fault .

Actually, (CL[X] + wvirtual address) is formed first, then memory fetch 1is
initialized, then the comparison is carried out to see if the word which will
be fetched 1s the right one. Hence, in the successful.case, mapping delays the
memory access by one add time.

Indirection 1s treated as an implicit base register; the 24 bit virtual
address is compared against LVP[I], etc.

3.4 Base Register Faults:

A base register fault is caused either because (D + contents of X) is in a
different page group than contents of X or because the contents of X has been
changed since the last memory reference thru X. VWhen a base register fault
occurs, a hashing scheme like Peter's (“"The Lisp Alto Map", 5/30/70) is used to
find the page if it is in core. (If all languages use the hash mechanism, there
is economic incentive to shift more of the work into hardware, e.9. put the
hash table 1into fast memory. If the page 1{is not 1in core, the processor
delivers an interrupt; 1t's up to the language to decide what page(s) should be
shoved out.

3.5 Page Size:

Displacement addressing (218) and page size need not be identical but
should be comparable. I suggest 219.
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3.6. Hon-Nova Instructions:

In non-tlova mode, the correspondence between base register and 24-bit
virtual address must be done at the micro-instruction level, e.g. via some bits
of the micro-instiruction, or via the contents of some machine registor.

3.7 Disk management:

It is desirable to have page groups be identical with partitions. That 1is,
given the address of the first page in a group on the disk, the addresses of
the other pages be determined by a simple computation and pages should be
placed so as to minimize time to read them all in. :

4) Some Usage Modes

4.1 Mithin a Module:

Code and data can be accessed as 0 + contents of PC and will generally be
mapped directiy.

4.2 Cross-Module Code Linkage:
Indirect - requiring 48 bits in all.
4.3 Local Var1ab1es}

Using one of the base registers as a frame pointer, local variables can be
accessed as D + contents of frame register and will generally be mapped
directly. o

4.4 Lisp CAR and CDR:

Use Danny's hash-1inking scheme. Local pointers (non-linked) are converted
into virtual addresses when put into a base register by adding to them the
contents of the base register which bases their page . ULinked pointers are
full virtual addresses as in Danny's scheme.

4.9 Array processing:

Sequential accesses to anything, arrays in particular, are generally mapped
directly.

4.6, Small programs:

A program which 1is preplanned to run in no more than 64K of the qddréss



Alto Virtual Memory June 18, 1974 Page 5
Proposal - Version 2
Ben Wegbreit

space can set up a single page group of that size and have all memory accesses
mapped directly. ) :
4.7. Bit map for the display:

A page group.
5) Drawbacks

5.1. Indirection takes 2 words rather than 1 on the prosent address
structure.

5.2. BCPL 1s complicated since full addresses become 24 bits, while
integers probably should remain 16 bits. Making the distinction would
introduce substantial complication with BCPL, (c.f. 2.4)

5.3. Additional hardware 1s required to make the mapping fast enough to be
acceptable.

5.4. MWhen a base register fault occurs, the mapping registers must bo
loaded after hash-table lookup. Hence, in the worst case, 1f every reference
faulted, the proposed scheme would run slower than using hashing alone.

6) Qperéting System

6.1. Since the virtual memory is large, the operating system can 1live in
the same address space.

6.2. Protection of the operating system from the program or of the program
from regions of 1itself 1s desirable, but a ‘separable 1issue. Using this
proposal, it suffices to add Tenex-style bits for read, write, and execute
access to the mapping registers (c.f. 3.3) and maintain them in the hash table
(c.f. 3.4) to be loaded on base register fault.

7) Separation

There are roughly six i{deas combined here, pulling them apart may bo
helpful:

1) large address space (greater than 2116)

2) access code to specify which mapping register will probably map the
address.

3) Peter's hash table when (2) gets a fault
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4) page groups to get: each mapping rogister to map several pages,
preloading and cscape back to the bare addressing structure.

5) correspondence between physical disk allocation and page groups to
‘speed up access to all of group

6) access protection
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1) Surnary

It 13 proposed that a virtual address space of 2124 words bo inplenented at
the nicro-instruction level. A1l lanquage systens can use this virtual addross
space. WHapping virtua) addresses into physical addresses 1s done, in tho most
frequent case, with a snall set of non-associstive napping rogistors.

2) bndressing ' .

Projrans run in a 2124 word virtual address s '
7 pace. I°'11 discuss eddre
this space at the nicro-instruction level. é 3 od ssing

2.1. Base Registers

Sore nunber (8 or 16) of 24-bit base registers are added to the Alto (on
the nenory interface board).

2.2. hddress Formation
Addresses are of two sorts:

(a) nornmal ‘mode: 16-bit displacenent from the contents of one of the baso
registcr;. .

{(b) full address: a 24-bit full address

In norcal node, a nicro-instructlion referencing nenory supplies a 16-bit
d1splicencnt a3 the output of the ALY and a 3 or 4 bit field (specifying base
register nunber) in the picro-tnstruction, The micro-instruction fiold ts ORed
vitn the contents of & spectal loadable S register to get the base register
nurber.,  The displacenent 1s added to tho contents of the baso registor to got
the virtual address,

31‘;{"3

[
2l
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2.3. Manipulating Base Registers

Micro-instructions are provkded for loading base rcaisters - and theor
associated mapping registers {c.f. Section 3.0). Additienally, the followiny
nay be useful: increnenting, adding 16-bit displacencnts, and storing.

3) Happing Virtual Addresses onto Fhysical Addresses

3.1 The Idea When an address is formed as the displacencat fron a base
register, if the new address 1s clase enounh to the prior contents of the base
reaister then {1t will probably be tn core alrcady. ¥e introduce hardware which
for cach base register X are generally napped by cix).
2he ciivrent cerc poy e 4 L[{]. Addvesss .7""""{'(

Generalize this as follows, Define a page aroup te be a continucus set of
virtual paaes residing in a contiguous sct of core pagcs. The proaran
specifies a page group to the page napaaer by.a JSY¥S-like conmany.,  wWhenewer
any pance n the group s subisequently referenced, the entire grouvp s obtaincd.
CL maps an entire page group.

Srow Kese iyt N

3.2. Detatls:

Each of the bLase reqisters has associated with 1t a block of three other
registers, napping reaisters.

LVP - low virtual page
HVP - hioh virtual page
CL - low coro pane

LVP{ %] and HVP[X] hold the page nunber of the low and high pages in the last
pane aroup accessed thru base rcayster X. Whenever base register X s uscd o
forn an address, the following occurs:

virtual address = [0 ¢ contents of X .
virtual page » = high order 1% bits of virtual address

1f LVUP[X] < virtua) paae ¢ < HVP{X]
Then nenary address = CL{X] ¢ virtual address
clse base register fault

Actually, (CL{X] + virtual address) s forned first, then nerery fetch s
initiated. tlence, in the successful case, napping delays the nenory access by
one asdhd tine. The comparison is done last and 1is actually perforeed nore
sinply - Chuck Thacker worked out a nethod that reguires only one cerpariscn
for bounds.

3.3. Base Register Faults

A basc register fault 1s caused either because (D contents of X) s oA
different page group than contents of X or because the contents of X has been



Alpha June 25, 1974 Page 3
Een Weadreit

charaed since the last nenory rceference thru X. When a base reqister fault
occurs, a hashing schene like Peter's ("Tho Lisp Alto Map®, 5/30/70) is used to
fing the page 31 4t §s in core, Call this a hashed nap. (If o)) landudges use
the hash nechanisnm, there ts econonic incentive to shift nore of the work into
harcare, e.y. hardware hash. If the page 3s not in core, tho processor
delyurrs an interrupt; 1t's up to the language to docido what pago(s) should bLe
shoved out.

' 3.4 Page Size

Uisplacenent addressing (218) and page size need not be identical but
should be conparable. [ suggest 219,

3.5. Uisk nanagenent

It 15 destirable to have page groups be identical with partitions. That s,
Q21ven the address of the first page in a group on tho dish, tho addreossos of
trc other pages be deternined by a sinmple conputation and pagaes should beo
placed 30 as to nininize tine to read then all-in,

3.6 Full Addresses

A full 24-bit address can be delivered with a base recoister nunbor X, to b
interpreted as:  nap the address with the bounds registers of X. This s
intendcd to provide 8 way of using a previously set up base register as a hint
fer rapping a full address without affecting its contents. Its utility 1is
soreshal pargingl,

4) Diseussiong of Happing

The napping harduaare proposed here works well only f nost nenory
references are 1ssuerd as displacenents fron previnusly loadad base reqaistors
end nust of these are mapped directly. The hash table lookup takes around 2.8
ns o the Lest case (with current hardeare), A ratto of around 10:1 richory
references to hashed nap references 1s required 1f this is to bn practical.
Heward Sturgis, FPeter Ueutsch, and Jin Mitchell are collecting statistics for
the c¢ynarmac behavior of BCPL, Bytelisp, and Hesa.

These statistics provide nenory references noro or less unanbiauously, but
the nurber of hashed nap references depends on how tho 1anguayo processors uso
the base registers. In this regard, there aro throo classos of nemory
rofercnces:

(1) Eastly reprsented as base register o displacenent, since tho base reqister
contuins 8 fized, 1dentifialkle conponent of the pscudo-nachine supporting the
lanquage, e.g. PC, stack pointer(s), global pointor(s).

(2) possibly represented as base register ¢ displacenent, depending on the
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conpilation of the lanquaqe, €.9. array access, accesses to sceveral f1elds of a
pointer-based structure, cars and cdrs on the sane page.

(3) not represented as base reaister displacencnt, e.g. address of a
procedure in another segnent, a newly constructed pointer,

Class (3) nust be hash napped, class (1) wil) .bhe dircctly mapped in nast
fnplﬁnnnlations: class () presents an uncertainty. Use of base reaisters heee
is swnilar to the technical problens of usina ndex reaisters well in norpal
conpilation; the tncentive for doing so s substantally greater. It abavcars
that this will be casier to do for array processing (e.q. 'n Mesa) than for
Vist processing (e.g. in Bytelisp) since nore 1s Jone in-line (proccaure calls
are usually treated as destroying state information),

5) Sone Usane Hodes :

5.1 Within a Module:

Code and data can be accessed as D ¢ contents of PC and will be mapped
directiy.

5.2 Cross-Hadule Code Linkage:
Pequires a full 24-bit pointer and a hashed nap.
$.3 Local Variables:

Using one of the base registers as a frane pointer, local varirables cah be
accesscd as O + contents of framo register and will be napped directly.

5.4 Lisp CAR and CDR:

Use Danny's hash-1inking schene, Llocal potnters (nonslinked) are converted
into,  virtual addresses when put into a base register by adding to them the
contents of the base register which bases their page . Linked pointers are

T full virtual addresses as in Danny's schene.

5.5 Array processing:

. Sequential accessos to anything, arrays in particular, can be nappey
directly, but this depends on the language processor (c.f. Section d).

5.6. Small prograns:
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4K of theo address
A pronran which 1s preplanned to run in no more than 6

space :an set up & $ingle page group of that size and have all menory accossos
napped directly.

5.7. EB1t nap for the display:

A page group.
6) . lova Enulation Hode

hino languago prograns run
It 13 desirable to let existing Hova mac

unchanned and also to allow use of the 2124 word address 1f wantod. The
foliowing 1S a8 conpronise. .

6.1. Instruction Fornat

An fnstruction which references nenory has:

1 - an fndirect bit
Y - a base register fleld (2 bits)
0 - a displacenent (8 bits)

6.2 Pegisters:

A1} reqgisters dealing with addresses (e.9. PC and index rogisters) are 24
bits wide,

5.3 Case Register Field Interpretation:

60 - a specia) 24-bit register GR which can bo loaded by special
instructions.

o1 - PC

10,11 - AC2,AC3

G.4. Data width:

Since ‘nddrntses ore 24 bits wide, this is the standard vndt? :r(;u;]
pointers. Inteqers should probably renmatn 16 bits wide, Short poin a ?lsLQF;
rFelative to the [irst viord of thelr pane) should also be supportaed. b an‘u s
dealing with addressing are 24 bits wide., Hence 1t 1s necessary to' io:S'
load anid store both 16 znd 24 bit quantities fnto and fron thoso rogis .

6.5. Indirection

Indirected instructions are interproted as currently on tho Alto. Henco,
only 2116 words can be accessed this way.

5.6. Renister Overflow
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Reatsters used 1n Nova enulatton node which overflow 10 bits will behave
differcntly. Sorry.

0.7, BCPL BCPL 1s complicated since full aduresses become Jd4 bats,
while inteaers probably should renatn JU bats. Haking the distinctiron woulo
require chanqges to the BCPL conpiler and would nake the language into a non-
standard dialect, ’

7) Qperating Systen

7.1. Since the virtual nmcnory is large, the opcrating systen can live 1n
the sane address space.

7.2. [IProtection of the operating systen fron the proaran or of the proaran
from reaions of ftseldf s desirable, for the usual reasons, 'sina thais’
propnsal, 1t suffices to add Tenex-style bits for read, write, and cxcdute
access to the nmapping registers (c.f. 3.J) and naintain then in the hash tablc
(c.f. 3.3) to be loaded on base register favit.

C) Separation .

There are roughly six ideas conbined here, pulling then apart nay e

helipful;

1) large address space (greater than 2116)

2) access code to specify which napping register will probably map the
address.

3) Peter's hash table when (2) gets a fault

q) page Qroups to get: cach rapping reqister to nap several pages,
preloading and escapo back to the bare addressing structure.

5) corrcspondence between physical dish allecation and page groups to
speed up access to all of group

6) access protection

2) Unresolved Questions

9.1.» Usage
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(a) Hou effectively can the lanpuage processors use the baso registers for
class () references?

(b) Wnut percent of nenory roferences will be nappod directly?
9.2. Onsign Parancters
(a) Is the full 24-bit address worth providing?
(b) Hox esitensive shoulq the arithrnetic operations oﬁ base registers bo?
(c) Houw~ pany base registers should there be?

() Should the 16-bit displacenent be treated as a signod-integor (sian bit
estended) to give relative addressing to eithor sido of the baso registor?
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~ This is an inm%ovemont‘to the design in "Alto Virtual Memory Update”,
Sept. 13, 1974.- A subscquent memo will consolidate the two previous memos with
“this one to produce a Tinal design.

‘2. SUNMARY

A proposed reorqganization of the base registers, along with a small amount
of additional hardware, can be used to reduce the address translation fault
rate by approximately a factor of two.

3. THE IDEAS

In the previous design, a single base register was associated with each
logical function. The new proposed design allows multiple (N=2) base registers
to be associated with a logical function. Of the pair of registers, one is
current at any given time while the other serves as an alternate to be tried,
under appropriate circumstances, when the current one 1s incorrect. State
information in the memory interface determines which one of a pair is decemed to
be current and is kept upidated so that successive references to the same page
group through a pair try the current one first.

_As an cxamplc; consider the planned design for Mesa ("The Implemcntation
of Mesa on Alto", 8/21/74). Taults can be caused by

(1) user-computed nddrussos
(2) non-local procedure calls

The faults for each of these may be decreased as follows:
(3.1) User-camputed Addressos

The previous design uses one. base register for cach of read and write.

The new proposced design uses a pair of base registers for each of rcad and
write: a current register and an altornntn. Consider reads; writes are
analogous. When a read request occurs in 24-bit addressing mode, then the
current read register is tried first; if it maps successfully, we're done. 1If
t . does not map successfully, then the -alternate is tried. If it succeeds,
“then it becomes the new current read register; this realizes. MRU trial of the
registers in the read pair. If the alternate fails, then a fault occurs and,
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in processing the fault, the (old) alternate is reloaded; this implements LRU
replacement.. To distinguish this made of addressing from the 24-bit mode
described in the previous memo, call this a G-mode memory reference.

Trying the alternate base reqister takes 2 minor cycles. Loading .a base
roegister takes about 25. Hence trying the alternate is cost effective in time
if the chance of success on the alternate (given that the current has failed)
is better than 2/25 = .08, Measurcments for Mesa give probabilities of .47,
88, and .44 (three different programﬁ), BCPL gives .63. That is, trying the
alternate is a clear winner in time. ) ‘

(3.2) Transfers of Control

Consider transferring contsol from'proccdure;{’ to procedure Q. Three
cases arisec: » '

‘(l) Q is known to he in the same page group; example: Mesa intra-module
call ’ o
(2) Q is known to be in a different page group; example: Mesa inter-
module call. ‘
o (3). uncertainty; -exanplet Mesa procedure-valued parameters; also:
Bytelisp without hlock compilation. : '

Consider imitating (3.1) and always trying a current base register for
contrel and, failing that, trying an altcernate. The results would be:

(1) succeeds on current
{(2) fails on current; may succeed on alternate
(3) may succecd on either current or alternate

Some measurements of Mesa programs show that with this policy, for three
different programs, the porcent of control transfers mapped by current are:
40.9, 28.4, ‘and 40.7 while the percent mapped by the alternate are: 40.0,
69.1, and 39.6 respectively. Note that the sums of current plus alternate are

somewhat more consistent: 80.9, 97.5, and 80.3 respectively. (It 1is
conjectured that the somewhal anomalous hehavior of the second program - a text
formatter - is causcd by very (rcquan calls out of "current" module to the

string-manipulation module).

This diffoers somewhat from G-mode in that to try the current base register
and then the alternate requires. address translation, but not actually going to
the memory. If a fault does not occur, then the contents of HMAR after
translation is the new value of P for the (possibly new) current base register
for control. This should be loaded into P(control-current) to produce the new
PC base. . :

(3.3) Other Applications of.Usjng Basce Registers in Pairs

The above two examples hoth invelve translation of full 24-bit virtual
addresses. Some  advantages of using registers in pairs with a current and
alternate apply -in D and K mode, din lanquage implementations other than Mesa.
In Mesa address translation faults are assumed to occur only for the two -
reasons given above because all franes for activations are assumed to fit into
a page group. In Spalltalk this- will not be the case for instances, since
these effectively form the free storage pool. Consider transferring control
back and forth between two instances P and Q. The code bases for P and Q will
be handled properly and efficiently, as discussed in (3.2). The instance
pointers for " and Q can be handled analogously. Let I he a pair of base
registers used for instances. A micro-instruction simply specifies D-mode e¥
E=mecte references relative tu . Such references are mapped by I-current.
Trying I-alternate is mcaningless in this case. However, when changing to a
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new instance, it is necessary to change the interpretation of I. Proceeding as
in (3.2), consider testing l-alternate to see if it does, in fact, map the new
instance basc and changing the state of the I-pair if it does, so that the
former ‘I-alternate becomes  the new I-current. In this way, the micro-
instruction still specifies only 1, while state information associated with I-
pair distinguishes which of the two I-reqgisters is intended.

(3.4) Fallback to Nen-Paired Organization

For maximum flexibility in base register usaqge, it secems desirable to
‘allow optional usage of the 16 base registers individually.

4. INMPLEMENTATION
A memory request is specified by an 8-bit specificr, - broken down as
follows: ‘ .

4-bit C field - giving partial specification of the base register
2-hit mode fiecld - D-mode, E-mode, etc.
2-bit usage class - Read,Write,ctc.

(4.1) Addressing Modes
" The memory interface can be ‘used in 4-modes:

D - displacement from P(B)

E - displacement fram CL(B)

F - 24-bit virtual address to bhe found in the page group doscrlhed by B

.G = 24-bit virtual address to hv found in the page group described by B or B's
“alternate. :

(4.2) Specification of Base Register Number

“In cach case, B is specified in the following way. The micro-instruction’
_supplies a 4-bit C field. ([0:2] specifies one of 8 base rostter pairs. Let
S(C[O 2]) be the state bit of that pair. Then

B[0:2] = €[0:2]
BL3] = C€[3] xor S(CL0:2])

This allows 01th0r paired or non-paired usage of the base registers, as
follows: .

(1) to obtain paired-addressing -~ set the low order bit of C to zero when
assemhbling the micro-instruction

(2) to obtain non-paired addressing - set the status bit of a pair to zero
when Joading cither bhase register of the:pair, '

In mades D, E, and F, only B is used in translation. In mode G, B is
tried and if it fails then B's alternate is Torned by complementing S(B[0:2])
cand  trying the (new) resultant B.  Hence, in G-mode, the memory interface
reports a fault only if B and B's alternate both fail. Further, in G-mode, if
a fault does not occur then the new state of the memory interface is such that
the current element of the pair is the one which succecded. The state bits to
keep track of the current clement of each pair are stored in a special 1x8
memory.

(1.3) Usage Classes:

Orthogonal to the four modes are four usage classes:
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R - read memory & read-protect. selected
W write memory & write-protect sclected
E - read memory & exccute-protect selected
T - form MAR bhut do not run the memnory

The first three are obvious., The fourth is used for two purposes:

(1) dmplementing (3.2) and (3.3) above without initiating and hence waiting
for the unnecded memory cycle

(2) changing the value of a base pointer P within a page group, e.g. in moving
the frame pointer down on the stack for a simple hierarchical procedure call.

5. PERFORMANCE

Simulations of Mesa have been run under the previous and the (new) proposed use
of paired-base registers. .In the paired.simulations, pairs were used for read,
write, and code. The resulting fault rates are as follows for three programs
(several million instruction in each case):

- previous . hew
compiler: ' 1.6% . Z.i%
text formatter: 2.3% . 0.1%
analyzer/compilor: 5.1% ’ 2.3%

From statistics previeusly issued on BCPL, it is possible to compute the affect
in onc experiment of using paired base registers for user-computed addresses
only, with a single base register for control.
. previaus new
experiment #1 4.0% - 3.1%

“(The effect of ﬁairod base registers for control and the effect on the other
two experiments can't be computed from the previously issued data.)



