NENO

To: Alto and PARC Lisp groups Date: November 18, 1974

From: P. Deutsch Location: Palo Alto
Subject: Display primitives in Lisp Organization: PARC/CSL

File: <LPD>LSDISP.PUB;18
Archive category: Lisp

xxxxkx DRAFT!S! COMMENTS PLEASE!!! YOUR JDEAS ARE NEEDED!!! xxxxxx

Several conflicting goals must be resolved in deciding on a set of display
facilities for Lisp: case of use, ecfficient access to hardware facilities, and
device~- and system-independence. - This memo suqggests a set of facilities
constructed in two layers: a lower layer that gives direct access to the Alto
hitmap capability, while retaining Lisp's tradition of freeing the programmer
from storage allocation worries, and an upper layer that uses the lower (on the
Alto) or a character-stream protocol (for VTS, on MAXC) to provide for writing
strings, scrolling, editing, etc. on the screen. .

1. Bitmap level

At this level we .introduce two ncw types of object: the bitblock and the
slice. Bitblocks (or simply blocks) are just rectangular chunks of display
memory. Bitblock primitives allocate bitbhlocks, and provide for writing
strings and individual bits. Slices describe how pieces of bitblocks are
mapped onto the screen, i.e. giving. vertical position, background color,
indentation, magnification, etc. Slice. primitives .crecate and set the
parameters of slices, and couple and decouple them to (parts of) bitblocks.

1.1. Bitblock primitives

bitblock[width;height]

Crcates and returns a new bitblock of specified width and height. Width
and height are given in bits. The block is-initialized to zeros.

bitblockwidth[block]

Returns the width of block.

bitblockheight[block;height]}

Returns ihe height of block.

Blocks are garbage-collected like any other data type, when there are no
references to them from either Lisp data structures or slices. - Thus there is
no nced for a "release block" operation.

Display primitives in November 18, 1974 Page 2
Lisp . :
P. Deutsch

clenrblock[hlockjvalue;xpos:MPOs:width;hcigﬁgj

Clears the given subrectangle of block to 0 (value=NIL or 0) or 1
(value=T or 1). Error if any parameter is invalid, i.e. \pow<0 or ypos<0 or
width<o or height<0 or _pos+y1dlh)blockw1dth[block] or

lpos+hclqht>blockh01qht[hlock]. Xpos and ypos default to 0; width defaults to

blockw1dth[block] Xpos; height defaults to bldhhh01ght[hlock] xpos

copyblock[srcblock;xsrc;ysrc;width;height;destblock;xdest;ydest;mer

Copies the given subrectangle of srcblock inte a subrectangle of’
destblock. Merges bits if morgedNIL, - otherwiso «roplaces. bits.

modifyblock[block;xpos;ypos;data;mode]

£

Modifies a string of bits in block extending leftwards f{rom position
(xpos,ypos) according to data and mode. If mode=NIL, sets bits selected by 1's

in ddtd‘ if mode=T, clears bits sclected by 1's in data; otherwise, mode. must

be a number, and replaces that many bits with the right-hand bits of data

blockprih[block,xpos,ypos,datum,mllmlt,flag,font]

Writes datum into block at position (xpos,ypos). If flaq=NIL, does
PRIN1, otherwise takes flag as a readtable and does PRINZ. If font=NlL, uses
the standard: font; otherwise, font must be an array organized as a standard
Alta font (sce the Alto manual for details). Il fn=NIL, skips any characters
which do not appear in the font; otherwisc, performs fn[datum chno] where chno

is the pesition of the character in datum (a 1la M?HCHAR), and continues
printing after fn returns. If xlimit (or the width of block, if x1imit=NIL)
would be exceeded by a given character, performs fn[datunm; cnnol and rcturns the
value of this call; otherwise recturns the X position just beyond the last

character written.

The primitives which modify the contents of bitblocks ‘can~also operate on
arrays. Such arrays must be initialized with the "width" in element 1 and the
"height" in element 2, both given in bits; the data is stored 32 bits per
element, row-wise, left to right, top to botton, with the width rounded up to
the next multiple of 32 (as might Dbe expected). The implementation presently
being considered also requires that the entire array fit in core, which
corresponds to a size restriction of about 5K 32-hit words or 1/6 of a
screenful. :

There 1is a permanently defined block called the cursor block, and an
associated slice called the cursor slice. There is nothing special about the
cursor block =-- its width and height are 16 bits, and all the bitblock
opecrations work normally on it. The cursor slice, on the other hand, does have

some special plopertles discussed under slices below.

1.2. Slice primitives

Slices are slight abstractions of the Alto display control blocks. They
have the following components:
A body, which is a subrectangle of a bltblock beginning at the left
edge;
A position (X,Y) on the screen, subject to the restriction that two
active slices must not overlap in Y; |
A background color, white or black;
A resolution, normal or halved; .
An activity flag, which determines ‘whether the slice is actually
displayed on the screen.

Dispiay primitives in November 18, 1974 . Page 3
Lisp
P. Deutsch

Other hardware-imposed restrictions are discussed below.

slicef[oldsl;parami;valueli;...;paramn;valuen]

IT oldsl=NIL, creates a new slice with parameters initialized as given;
otherwise, alters parameters of the slice oldsl. Value is oldsl.or the new
slice. Possible values of param are:

XPOS: the X position (must be a multiple of 16);

YPOS: the Y position of the lower cdge (must be even);

BLOCK: the bitblock;

YD: the Y displacement within the hitblock corresponding to YPOS;

HEIGHT: the vertical extent of the data to Dbe displayed from the
bitblock (must be cven); _

COLOR: the background color, 0O=white, 1i=black;

RESOLUTION: the resolution, O=normal, 1i=halved;

ACTIVE: the activity flag, NIL or T.

The default values for the parameters are XP0S=YP0S=0, BLOCK=NIL, YD=0,
HEIGHT=0, COLOR=0, RESOLUTION=0, ACTIVE=NIL.

sliceparam[sl;param]

Returns the param paramcter value of slice sl.

The cursor slice-has all its parameters fixed except XPOS and YPOS, which
may be set to any values whatever (not limited to multiples of 16 or 2,
respectively). It is always active: the cursor data is XOR'ed with any other .
displayed data-it happens to overlap. See the Alto manual for further details.

2. Stream primitives

~ Display streams (or simply streams) behave like output files with respect
to the system printing functions, but write into ‘selected portions of blocks
and trap out when an attempt is made to write beyond their limits.

stream{ st;parami;valuel;...;paramn;valuen]

Interpretation is similar to slice; returns st or a new strean. The
. parameters are: :
. BLOCK: the bitblock, must be specified at creation time;

XD: the X displacement of the string origin within the bitblock;

YD: the Y displacement of the string origing . '

WIDTH: the maximum width of the string (in bits);

FN: the function to be called on overflow, i.c. an attempt to write
beyond the maximum width or to write a character not specified by the
font; '

" XPOS: the X position for the next character, relative to XD;
FONT: the font. :
Legality checklnq is perforned. after all arguments have been absorbed, so (for
example) XD, XPOS, and WIDTH may be specified in any order :

streamparam[st;param]

Analogous to sliceparam.

When d stream overfleows, its FN is called with the arguments
[datum chno;stream] where datum is the datum that was being printed and chno is -
i+ the numher of characters actually added to the display bcfore overflowing,

Display primitives in November 18, 1974 . Page 4
Lisp
P. Deutsch

i.e. the number of the next character to print. FN will normally reset stream
in some manner. . It then has the options of printing the rest of datum itself
and returning T, doing no printing and returning NIL, or erasing some or all of
the part of datum already printed and returning a character position within
datum (analogous Lo chno) at which to restart printing. Overflowing a stream

with no FN generates an error.

The operations of closef, position, openp, and output on strecams are
straightforward. (Closing a strean does not erase the characters.) I would be
inclinced to resolve two other potential issues as follows: writing merges the
characters into the block, as opposed to replacing the bits (you can always use
clearblock); sfptr is only legal with values of 0 and NIL. The latter

restriction may be relaxed if it is deemed adv1sab10 to retain a record of the
characters written,

3. String editing

At the higher 1level, facilities are nceded for constructing windows
(arrays of strings which scroll properly) and for performing editing operations
on strings. Editing (backspace, insert, delete, c¢tc.) requires that cvery
character written on a window also be saved in a Lisp string somecwhere. It 1is
‘probably best to provide this facility at the lower level, per open streamn.

