. ' ' 1W7H
To: Ed McCreight : : . Date: February 23, £237%
From: Peter Deutsch B S Location:‘Palo Alto
- Subject: The Alto software disaster ' " Organization: PARC/CSL

Archive category: Alto (?)

Let us for the moment consider the Alto in its "state of nature®", 1i.e.
absolutely no software. We can see certain needs arising from the desires of -
various people to do things with this potentially interesting but momentarily
unusuable machine:

- . A need for a reliable, permanent file system;

A need fer an easy-to-use inter-Alto and extra-Alto communication
mechanism; -

A need for a multiprogramming operating system;
need for a compiler, loader, and debugger for BCPL programs;

need to combine (at least) BCPL and assembly languages;.

need for display storage allocation;

A
A
A need for programmable overlays;
A
A need for some kind of editor;
A

need for an external file backup system;
And perhaps other needs which I am not aware of.

One way to fulfill these needs is to make them generally known and expect,
encourage, .or employ -people to write each necessary plece of software -
individually. The -predictable result would be a hodgepodge of conflicting
conventions, duplication of effort, inability to put programs together into a
cooperating or harmonious-appearing whole, and a lot of .bad feeling. The
alternative requires some leadership -- which can be democratic almost as
easily as autocratic -- and some careful planning and coordination of the
various pieces of essential utility software.

It is my belief that we are embarked on the first course; that there is
already considerable . bad feeling because of the delays and confusions
surrounding the operating system and related software; and that there are
problems just appearing on the horizon now which will lead to far more bad.
feeling in a year or so when we discover that none of our programs can talk to
each other and that we have all had to invent adhoc mechanisms for things which
could have been done well once. Here are some examples:-

" The file system. which 1s long overdue, has never been designed or'

1974 .
The Alto software disaster February 23, {2273 Page 2
Peter Deutsch ' :

documented on paper, so a number of people who wanted to use the Alto just
went off and wrote their own (e.g. at least two different ones in
Smalltalk) which are even less well documented or designed. o

No thought has been given (as far as I can'tell) to providing a
facility which 1is present in Nova DOS but missing from TENEX and most
other operating systems: the easy ability for a program to call on any
function which is accessible from the executive language, and vice versa.

No thought has been given to multiprogramming (CPU scheduling,
coordinated asynchronous processes) which is used heavily in Noxios and is
often the most natural way to handle multiple I/0 devices.

While the BCPL loader supports overlays, this facility is (as far as

1 know) not integrated with the operating system, so that (for example)
the debugger must do its own overlaying, despite the fact the the o.s.
must already have a facility for overlaying the exec with a subsystem.
Nor do I believe that the BCPL debugger (such as it is) is capable of
dealing with multiple-overlay programs, since it has no way of knowing
what is in core. Nor has thought apparently been given to being able to
load or debug assembly language code.

Aside from some routines which I wrote to allocate vertical space on
the screen, there are no planned routines to help reduce the amount of
core (and stolen cycles) used by the display. Numerous programs have.
already had to kludge their way around this, or else sacrifice the entire
second 32K.

In view of the poor reliability of Diablo drives on the Nova, and.the
likelihood of bugs in the Alto file system, the Alto disk packs must be
backed up by a reliable, permanent file storage medium. Likewise, an
archiving medium is necessary since the Alto packs have limited capacity.
Thacker's solution to this problem -- to provide one dual-drive Alto whose
sole function is to provide a pack-copying service for users to utilize
depending on their degree of paranoia -- 1is 1ludicrous. ‘Just imagine
trying to run that way on Maxc.

Despite some hardware progress on the Ethernet, no one appears to be
thinking seriously about protocols (stream- vs. message-oriented, for
example), operating system interface, whether some or all Altos will have
"servers" and if so how they will be protected etc.

None of these problems are extremely hard. Hany of us at PARC, in CSL in
fact, have seen them solved well or have learned from our experiences how to
solve them reasonably well. It may even be the case that people are thinking
about them and merely falling into the trap of believing that planning,
discussion, and documentation can be left until after some "solution™ is found.
However, 1 believe strongly that globally good solutions will simply not be
found in the absence of some direction and coordination. Of course, I am not
volunteering either myself or you for this potentially rather time-consuming
task. I do wish to point out that the last time I prophesied this particular
kind of doom, resulting from bad planning and . unwillingness to . consider
alternative courses of action, for the MPS project, I was pretty much right.

!nter-Oﬁice Memorandum

To Alto Group Date March 5, 1974
From Ed McCreight Location Palo Alto
Subject ~ Minutes of Alto Software ~ Organization © PARC/CSL

Meeting on February 28

XEROX
As many of you know, the first meeting of the Alto Software and.
Chowder Society was held 1last Thiursday (February 28, 1974). A number of
topics related to the current state and future of Alto software were
discussed. .
The paucity of documentation in well structured and available
form seemed to be the greatest irritant. To remedy this, Lampson agreed to
provide a first version of the Alto Operating System Manual by the middle of
Harch. This manual will consist of the Alto Operating System Design Notes
augmented by lists of functions and descriptions of calling sequences, and by
tables describing the formats of data structures maintained by the operating
system.
What constitutes a releasable Alto Operating System? For the
. First release Deutsch listed a number of necessary features:
. 1. BCPL compiler
2. Assembler
3. BCPL loader
4. BCPL debugger
5. Source Language Editor
6. External file transfer mechanism (to/from Maxc)
7. Capabilities equivalent to those in Nova DOS
command language interpreter .
8. File access primitives equivalent to those in
Nova DOS
9. Teletype simulation on Alto display
10. Keyboard handler with user access to interrupt routines
11. Direct disk access routines .

: There was general agreement that such a system was more or less minimal,
that it would be useful, and that it would be by no means adequate for the
Jong term. Metcalfe's list peers into the future.

: 1. DIAGNOSTICS!!!
2. Multiprogramming
3. Automatic (semi-automatic ?) backup facilities
4. Easy hard copy

Aside from lack of documentation, the major hang-up at the
moment is in communications For the very short term, backup can be handled
by copying one's disk, and hard copy is more or less unavailable. HMetcalfe
assures us that if we can get parts, Ethernet interfaces will be available -
for production Altos almost as soon as they arrive, that at least one Nova
interface will exist to connect the Ethernet to Maxc (perhaps indirectly via
the MCA), and that interface software is being written. If this is not overly

"optimistic, then to construct elaborate kludges in the interim would be a
misdirection of effort.

. Thg general policy 1is that with the exception of things -
mentioned above, people will write their own subsystems. Lampson will
endeavor to enhance the operating system itself to handle display management
better, to allow dynamic loading and code motion, and eventually to include
features to allow multiprogramming.

. E. n. H.
Disgribution
Gene McDaniel David Liddle Dan Swinehart
Butler Lampson Jerry Elkind Bob Metcalfe
Howard Sturgis Bob Sproull John Shoch
Chuck Thacker Chuck Geschke Larry Tesler
Jim Morris 8111 Duvall Diana Merry

Potsr Deutsch Dan inaalls - - | Alan Kay

TO: CSL, SSL

Inter-Office Memorandum

Date: May 24, 1974

From: J. Mitchell Location: Xerox PARC

Subject: Summary of Programming Research

XEROX

Background:

meatings, Hay 14-17, 1974,

During a consulting visit to Xerox PARC 1in January 1974, Alan Perlis

suggested that there ought to be a long-term plan for Programming Research in
CSL. He further suggested that the end goals of programming research should
probably be driven by a view of Xerox Office Informatfon Systems (OIS) of the
future. Although & start was made at creating such a plan, day-to-day
pressures and lack of the Perlis catalyst soon’ slackened any progress.

Dr. Perlis again visited CSL from Monday, May 13 to Friday, May 17 and J.
Elkind suggested that programming researchors and Perlis ought to have a
series of meetings to revive the notion of a pilan, This report is a
condensation of those meotings, which took place May 14-17 each morning.

The following people attended at least ona of the meetings:

‘P. Deutsch, J. Elkind, E. Fiala, C. Geschke, D. Liddle, E. McCreight, J.
Mitchell, J. Morris, J. Rulifson, E. Satterthwaite, J. Shoch, R. Sproull,
" H. Sturgis, R. Sweet, R. Taylor, L. Tesler, C. Thacker, B. Wegbreit, and
. A. Perlis. ’ .
A]

Briefly, thd first meceting, on Tuesday, tendod to be concerned with
programming research, the problems of producing software in CSL, and possible
future forms of an OIS. On the second day, Perlis suggested that a small
"number of languages of expression should be used and be able to be depended
upon for most of CSL software. This rapidly focussed on what collection of
such "gold coins® of exchange should be provided for Altos. On Thursday this
problem was the exclusive topic: HMPS on Alto, byte-LISP and the Alto
operating system (in some form) were generally proposed as the initial set of
‘gold coins. How to make them materialize as such was much discussed but only
partly resolved, It was proposed by Elkind that a summary of tha meetings be
made generally avallable and then that a small group dacide the design and
inplementation issues of & set of gold coins by June 25, 1974. The final

moeting on Friday reverted to & discussion of programming research goals.

Juesday, Hay 14:

PARC/CSL 24-MAY-74

Mitchell stated that the purpose of the meeting was to understand the long
range aims of programming research. He suggested that this be discussed in
the context of future OIS possibiiities. Broad goals included producing and
mafintaining softwara systems, 1language and system facilities to aid
programmers, Software organfzations for network environments, etc. In
particular, the manner by which CSL produces software for public use should
be a subject of scrutiny.

_This led to a general discussion of problems with CSL's current schems for

software production: namely, somcone, after generating & high-level
specification for a task to be programmed , gives the problem to a single
person who is then expected to go away and do it. Thosae who accept such
assignments are gencrally viowed as "second-class citizens®, and the only
questions generally asked of them {s when it will be done. This feedback
loop does not secem to be tight enough or to carry enough fnformstfon about
difficulties and progress for monftoring purposes. Perlis said that those

:who contribute to the public good in this way should really be viewed &8s very
high class citizens and supported appropriately.

The discussion was diverted back to the original, stated purpose of the
meeting. Tho outcome of this was 8 long 1ist of possible OIS features and
uncertainties, which did not seem to lead anywhere.

Wednesday, May 15:

Perlis begqn by saying that CSL (we) should, {in part, view ourselves as
professionals for software design, production and mafintenance. Second, any
system produced in CSL for public use should have a responsible set of
parents who will care for and nuture {t. Third, since the CSL environnent
should reflect our concern for software, we ourselves must act responsibly,
and the act of providing service must bo a subject of research.

More specifically, we need a few agreed upon languapes for the expression of
probliem solutions which are timplemented and maintained on Altos. Together
with the Alto operating system, these language systems must be viewed as
"gold coins™ which may be depended upon as a solid basis for other software
and research ideas. A gold coin was defined to be a software facility that is
fully supported in the sense that bugs will be fixed, that {mprovements will
be made so that it s ecfficient for CSL research, &nd that user-level
documentation will be provided and updated poriodically., Perlis further
stated that it was important to establish firmly a set of gold coins, even {f
they were not the ultimate, best systems, (The phrase, attributed by Perlis
to Wittgenstein: “The best s the enemy of the good;® was heavily
referenced).

As a starting point, he stated that Lisp and MPS on Alto should be the main
golg coins, It was pointed out by Elkind that this certainly also made the

2

= PARC/CSL 24-HAY-74

Alto operating system a gold coin. Perlis agreed and said that therefore the
neceds of Lisp and KPS should in large part determine the design of the Alto
operating system. -Doutsch stated that he though that this was an important
point and that he (as a responsible Lisp parent) would like to seo & smaller
"kernel® set of facilities which would make an Alto into a nice virtual
machine for Lisp. There was much discussion on the differences between such
a kernel and a more general operating system, with Tittle resolution.

Sproull suggested that programs written in gold coinage should be able to
cormunicate (and to some extent coexist) in an Alto so that programs and
subsystems could be generally used without having to write versions 1in each
of Lisp and MPS. This was generally accepted, although there was no
agreement on the degree of communfcation which would or should be possible.
Mitchell suggested that laguage-to-laonguage comnunication might well require
some minimal virtual memory or swapping capability acceptable to all the gold
coins. Sproull suggested that a communicatfon protocol need not necessarily
invoive operating system code unless the communication required Ether or Sig
Network transmissfons. A sequence of straw votes revealed no dissent from the
proposals made by Perlis.

Jhursday, Hay 16:

Perlis asked whother there should be other gold coins basidas Lisp and MPS.
Discussion with J. Shoch effectively ruled out SmaliTalk as a candidate.
Perlis suggested that an APL system for Alto also be considered for gold
coinage; the general consensus was that it not be considered as one of tho
fnitis) sot, but possibly be added later,

At Elkinds suggestion, a list of necessary Alto support software was made,
This was quickly pruned to the following set:

- Lisp and MPS
- a prinitive assembly language facility in Lisp and HPS
« loaders and deboggers within Lisp and MPS

- microcode assembler, loader, and debugger facilities

= kernel operating system to support Lisp and MPS

-~ varjous utility roytines (FTP, printing, etc.)

X3

It was pointed out that this 1ist represented some f{inal state of aold

coinage to which CSL should aim, and other facilities such as BCPL have to be
-supported on an interim basis until not needed. This 115t coincides in large
part with that in HcCrelnht‘s memo “Minutes of Alto -Software Heeting on
February 28*%:

- BCPL compiler, loader and debugger
« ninimal Assembler
= source language editor

PARC/CSL 24-HAY-74

"~ external file transfer mechanism

- command language interpretor (1ike Nova DOS)
- file access primitives

- teletype simulation on Alto display

- keyboard handler

- direct disk access routines

Perlis suggested that comparing two such 1laundry 1ists was a technical

‘problem which should handled by a small group of people responsible for gold

coins. Elkind responded with two proposals:

(1) Mitcholl should write a summary of this series of meatings for general
distribution;

(2) a group including McCreight, Geschke, Lampson, Elkind, Deutsch,
Mitchell and representatives from SSL should review the Alto gold coin
proposal and produce an f{teration on it as well as a proposal for
dmplemention by June 25, 1974.

Taylor pofinted out that one of the reasons for the current "level® of the
Alto 0/S was the amount of support which could be given for {1t and that
changing that level of support would present problems. Perlis pointed out
that a major problem with public systems {s the proverbial "last {inch®": the
part after the {interesting portion of the system {s done, but which 1{s
necessary to make {1t usable. He and Simonyi maintained that, as research
types, wo arec generally {ll-suited to making the last inch and that we should
recognize this {in deciding what level of support {s needed for producing
usable software. There is some chance that Hr. Stimony! was attempting to
whet pooples’ appetites for his seminer on "the Software Factory® later that
same day.

Friday, May 17:

Elkind alleged that the programming researchers in CSL want to learn to make
software ecasier to build and more reliable. He asked Perlis what he thought
CSL should be doing in programming research besides. Perlfs replied with a
Perlisism:"computers arc always capable of moro than we know how to make thenm
do.® Therefore, finding notations for reducing the complexity of what
programmors do should also be a goal of CSL, as should different ways of
modelling and thinking about programming. He claimed further that {t f{s
gencrally more fruitful to work from probliems to understanding that vice
versa. . ’

Hitchell stated that a part of the research goals of CSL should be to make
any knowledge gained by attacking such problems transferrable. In general,
we do not disseminate very well the design reasons and {nternal structure of
systems wo build (with the notable exception of hardware).

4

PARC/CSL 24-HAY-74

At this point, Perlis described a set of criteria due to Cobham of IBM for

deciding what IBM should do in the area of Artificial Intelligence. He’
suggested that theose criteria might also be applicable to what CSL and SSL-
do. Cobham's overall suggestion was that IBM should not attack 1large,

.open-ended, Al problems such as robotics, but concentrate i{nstead on

heuristic solutions to specific problems. -Those problems and solutions

should satisfy the following criteria: o

(1) there should not already exist a good way of solving the problem;
(2) there should be a large body of experts in the field of interest;

(3) solutions to the problem should be testable to doternina how wall they
solve {t; . .

{4) the experts in the area should perceive that the solution to the
problem has real value to them..

Elkind added another criterion to this 1ist in the case of products for ﬁoro
-general use: they should not force thefr users into modes of operating shich
differ from their normal ways of thinking about the problem.

.As a closing comment, Perlis reiterated that .programming research should be
fairly self-reflective about what it does when produclno software and tools ~
for itself and others.

inter-Ofiice Memorandum

To: CSLy OFfice, Communicndion Group ~ Date: May 30, 1074

AFrom: P. Deutsch (as scribe) : ~Location: Palo Alto
-Subject:.ﬁqld Coin meeting : organization: PARC/CSL
File: NAV20

Archlve category. Programming Research

?)\

' ?hé~fo1io#in§»afé‘ihelbihuteslbf:thg:méeting held May 29, 1974 at Butler's
house. ~Attendees were:' Butler-Lampson, Chuck Geschke, Jerry .Elkind, Chariles
Simonyi,. Ed -McCreight, . Jim 'Mitchell,. and - Peter Deutsch.” In return Jfor

accepting -the: regponglbtltty for--producing - the minutes,. I’ haue tuken the
5przvzlege of 1nsertzng my own ajter-the-jact comments - (lR ztalzcs)

1. Preliminaries -

“Some.brief'clarifiéations were voiced on the subject of Jerry's "Gold
Coiners" memno, which served as the agenda for the meeting. Under "Assignment

~to Lisp and Mesa groups to produce implementation plans for Alto" we agreed to

include the operating system as well. We agreed that the "Standards for Gold
Coins® subheading essentially meant teo define the phrase "Gold Coin".
"Hardware" signified our willingness to contemplahe 51gn1ficanb add-ons to the
Alto, but not rebuilding from. scratch.

2. Hardwara

Thef.fifsgf.ﬂopié;fwas;what' kind 6f<hardware‘ support Gold Coins should

" require;” beyond'’the standard .Alto -{1K - PROM,". 64K: core,. small ‘disk). The-
v.dlscu551on dealt. entxrely with the issue of RAWS vs. PROMs. . If G.C. microcode

is relatively static, ‘it-is-all right to use PROMs, since they only cost 1/7 as
nuch- as RANs (at the moment; this may be_overtaken by technology changes), so
it is just-.a question of controlling the release rate for new versions of the’
microcode. =~ However, Lisp and Mesa microcode will probably not fit into a 1K
PROM- together. - For .experimentation, CSL.will probably want RAMs in all its
Altos eventually; an Alto ¢can alse accommodate an additional 2K of PROM in its
current packaging, for-a-total of 3K, in lieu of 1K of RAM. ' Conclusions: the
operating system -should not require any nicrocode support beyond. the standard
1K {of which about 300 words is still free); each of Lisp and Mesa should fit
in an .additional" 1K; - neither . system should require dynamic swapping of
microcode for its own purposes. This makes the following configurations
possible: an. additional 1K PROM, committed to one of the two systems (good for
SSL, which will probably only want Mesa); a 1K RAM, loadable for either of the
two. systems (probably standard for CSL); an additional 2K PROM, with both
systons We agreed that there was a cost tradeoff to consider between the more

expensive RAM and the number of PROMs required to cope with releases of Lisp or
Mesa. v

Gold Coin meeting | ~May 30, 1974 Pags 2
" P. Deutsch (as scribe)

3. Documentation of G.C.s

p

2

Next we considered documentation standards for Gold Coins., Ve agreed that
reference manuals, though onerous to write, were absolutely essential: we do
-not believe in "documentation by word of meuth"., (The Interlisp manual, ahdl
“the Tenex J3YS manual, respectively represent upper and lower bounds on the
expected scale of documentation.) We also agreed that true introductory manuals
‘are far more difficult . to write, and that PARC people, being relatively
sophisticated, could be expected to 1learn all they wanted fron a reference
manual and asking questions. . ‘ o

There was less agreement on the subject of how to document the workings of
the programs themselves: Ve agreed that traditional “internals manuals" were
uninstructive and not. worthwhile. BWL and LPD favored self-documenting code,
and nothing else. - BWL and CS suggested that meta-programs could form part of
this self-documentation, once we understood what they were. JGN noted that it
was important to set down the reasoning and experience ‘that led to each
“important design decision, as well as a description of the result. . {(This was
related to Perlis' corment about being reflective as we write our programs.)
JIE ended the discussion by stating that Jim Morris was concerned specifically
with program clarity and readability as it -affected maintenance, and that we
should therefore push the research problem off on him and muddle along as usual
in the meantime. I have some qualns about this. I think we should noke w
deliberate effort to get people to put conments into their code, especially the
duta structures.- It's a lot easier to reud code with comments only on the dutu
than uztﬁ cormments onlJ on the procedures.

4. Improvenents and maintenance

On the subject of maintenance of G.C.s, we agreed that release of a G.C.
obligated the releaser (or appropriate responsible party) to maintain said:
G.C., nmeaning to fix bugs in a timely manner. (There was a digression on a
bounty system for users who report bugs.) It was pointed out that the
requirements for maintenance are conditioned by the fluidity of the system:

~Interlisp, which is continuously evolving, always has a few minor ‘bugs, whereas
BCPL no longer requires any attention at all. Since Alto Lisp and Mesa 'will be

- closer to the Interlisp model (my impression: I think this wus ¢ consensus),
can expect ongoing maintenance requirements.: : :

~ Improvements were more controversial. ~ We' agreed that we needed a
mecnanism for deciding whether a new feature or changa should be made: it must
- be p0551b1e both: to restrain ‘overzealous -implementors’ and to satisfy genuinely
i}neody,users. This-1is tied .up with the question of what level of support (in
~terms of ‘responding to user-requested improvements [thtnk) a Gold Coin
. ‘commitment implies.: - JIE pointed. out that. it is essentially. question . of -
"people resources. by ‘adding more. people to a group, we can have as high a level .
‘feature development and. of “system reliability as we want. " (As a counter-
_ .anple, there is WT, who is not replaceable nor easxlv auqnenttable vis-a-vis
'Interllsp) BWL attemptﬁd to sum up the problems by asserting that there are -
“three way$ ‘to get in trouble: constructing a ba51ca11y unreliable system, like
‘PUB (a "gold coin. with a brass heart"); letting implementors have too free a
hand to add. features; and making it toeo hard for users to get really vital
.changes made. We agreed that we didn't know what scale of ongoing change would
actually be forced on-us by our research needs. In particular, we did not have
-a clear idea of what would be required to -satisfy POLOS needs.. [t was o
nisteke not’ to invite someone from the Office Comunications group to .the
meeting. . : ’ - -

Gold Coin meeting Hay 30, 1974 C Pags 3
P. Deutsch (as scribe)

'Wégbrei§ has etpressed severe doubts that viewingy the operuting systcm in’thia
cway. will do aaything to alleviute the 1nterconnnutton prodlems thut seecnt to
. na&e all oporattnj systens so hard to chanjc.“ o

the

:***4At thls point LPD. had to. loave' the rcnalnder of thesa nznutes are a

- reconsnructlon fron JGI S notes. RRX

ﬂosc of the renalnxng dlscussion was taken up ulth nenory nanaqvmnnt anel
multlprogramnxng issues. CS proposed that base-bounds pairs be inplemented:
these are good for protection, and have somne value for memory shuffling: the
‘0.s8. could ask the program in a given partition for'additionalispace. which thwo
progran could give back from either end of the pnttition. BUL ‘didn't like this
proposal, nor JGiM's subsequent propoesal for 940-style (Tenex- style) paging. It
was concluded that the only real value of such ochemes. given that the Alto was
committed to a 64K virtual space (the. same .size as real core), was for
protection between co-resident subsystens, -valuable only for debugging or in
cases of nmutual suspicion. On the general issue of protection, BVWL pointed . out
that the Alto, environment for a single. program is no more dangerous than that’
of a user progran on Maxc. . .

" This . discussion led - znto a nore general dzscussion of nultlprOJramninq.
BWL was against' it,. JGM for it. There dure two 1issues. involved. One 1is
multiple processes, scheduling. wukeups. etc. Sore provision for this 1s
ubsolutely essential, for real-time experinentution, huckground services. ond
the neceds of Fogos. ~The other is the question of nrwtual protection of
Suspicious subsuystems. It is the latter that appears to be the rat's nest, uvnd
I ugree with BWL that we should not - get too fur into it. Since the line
between "user” aund "system” s fairly fuzzu on Alto, we can afford to rely on «
certain ameunt of cooperution or at leest -tolerution bdetween co-resident
programs. Jim Morris also pointed out subsequent to the meeting that the Alto
already suffers from lack of protection in one rnasty respect: if o progrurl
crushes, i1t 1s very likely to tuke the display with it. so there is no record
_uhatcuer of uhat wes happenlnn other Lhan the contents of core.

. It was agreed that the thlngs on which we must agree in the de51an of
viable operating system for language systen support include: a file syvstem; a
scheme - Tor partitioning and allocating core; a communication protocol (does
this mean Ethernet. 1inter-language, or both?); a set of nultiprogramming
conventions including memory protection ¢nd u process suystem. It was suggested
that a base-bounds scheme could accomplish the second and fourth of thesae
functions. The idea of supporting a virtual memory system was deliberately
‘left off the list. There is sorme chunce that the Lisp virtual nemory (2124 32-
bit words) will be acceptuble for ilesa. in which case sore of zts nechuntics
could be delegated to the operating system. :

BUL' asserted that he- would undertake the completion, maintenance, and. -
docunentation of Gene's embryo operating system. In particular, he said he
would: Keep the file, directory, and stream systems essentially as they were;
add facilities for - swapping code. and allocating memory:; add some display
‘allocation routines; and provide a stream interface for the Ethernet. [lupbe
the Digblo printer too? The memory allocator would include both a standard
allocator in which a block's location was fixed, and a "floating" allocator
which would allow blocks to have associated fl\up procedures. to be called wh n
the block was noved : :

This ended the meeting. = JGM added the fOllowing in his ‘notes (private
thoughts): he wants to write down some of his own thoughts .on operating
systens, so that BWL is not solely responsible for the resulting design -- the
issue is not BWL's competence, but rather the historical observation that
systems almost invariably turn out better if a small number of people (plural)
contribute to the design, and the praamatic observation that BWL mnay not be
able to represent to himself. the nultifarious interests and needs of tha
potential users of the o.s., namely the Lisp system, the Mesa system,. and
Pogos.‘ : :

Gold Coin meeting o ‘May 30. 1974 Page 4
P Deutsch (as scribe) a : .

W'e then addressed the question of what commitment we were making to’
satisfying the needs of O0CG. it was observed that with the Alto hardware,
which we agreed was itself a G.C., they came in after the planning and design
had been done, and were willing to accept our posture that we wouldn't support
anything beyond a standard system. With tMesa, they are likely to have needs
for a process system (for Pogos) beyond what we see ourselves needing at the
moment. We agreed that having two versions of Plesa would be very bad. On the
other hand, we speculated that their (perceived) need to squeeze the last 10~
15% of performance out of the machine might lead them to be dissatisfied with
mechanisms that we found adequate. Ve agreed that resolving such things would
always be a matter of negotiation between the groups, in which we would have a
basically stronger position: since we were the primary originators - and
naintainers of the programs. I am very uncorfortable with this approuch. .1
think if we are serious vbout iflesa as ¢ reul taol for duilding reul systems. we
will have to get 0CG people into the desigyn process das soon as. possidle, and-
make some kind of commitment about listening to them in the future. [I.don't
have a good feeling for what that level of commitment should be -=- ye should
have dealt u1th it more speczfzcally. o :

5. Intercommunication.

There was some concern about the ability of Lisp and Mesa programs to talk
to each other. In the long run (>! year), we will put Lisp on top of Mesa: JGM
assured us that the Mesa space overhead was small enough to make this feasible.
The problem of differing calling conventions for Lisp, Mesa, and possibly the
operating systen was deemed solvable by ¢ kludge. JGM suggested that whatever
communication mechanism was adopted should allow interposing an Ethernet link
between the two parties. We agreed that this required restricting passed data

.to scalars, since we didn't understand how to pass pointers between machines,

Fur»h@rnnrn there was sone question as to whether Lisp and Mesa would even usae
“compatible vartual menory schemes, 1t was decided to push this (technical)
question o?? onto a separate meeting of LPD and JGH,

cs rproposed4 a- different approach. In his view, the 'operdt;ng system
provides lots of abstractions through standard services: these are precisély
the useful. language-independent abstractions, and therefore a natural medium

i for inter-language communication. This wens, for example, that it would be
. possible to provide a communication mechanism (possibly even encompassing JGW'*
: Ethernet suggestion) that looked 11xe an o. s. call to both parties.

. 6. Operating system

CS proposed that one put as much as possible into the operating systerm

. which will support - Lisp and MNesa. I originally opposed this idee on two

grounds: one., that there is a severe risk of creating a nmonster: the other,
that the core cost wus too high. JGI assured me thuat the core cost for aan
unused feature could be reduced to a few words by use of ‘a code swapper, which
itself could be very small. After some discussion of virtual memory facilities,
we agreed on the principle that- an o.s. should provide things thought of as
"services" but not "decisions®, e.g. it might provide the mechanics of paging
but not the page replacement algorithm (about which the language systems should
have a better idea). Ve noted that this resenbled the idea LFD had -pushed at
the time of Perlis' visit, namely the inage of an operating system as a small
kernel and a large cloud (husk?) of subroutines surrounding it, although the
contents of the kernel would in this case Jjust be the code swapper. ' Ben

: HEMO
To: ~ CSL and SSL A) © Date: June 11, 1974

From: Howard Sturgis Location: Palo Alto.
'Subject: Gold Coin HMeeting, June Organization: PARC/CSL
7, 1974

I) Preliminaries

Transcription of notes taken at a GOLD COIN meceting of friday, June 7,
1974, :

These notes will be written as a series of paragraphs, with no further
attempt at organization, My after the fact remarks will be 1in square
brackets.

The meeting was at Butler Lampsons house and was attended by:

Butler Lampson
Jerty Elkind
Peter Deutsch
Jim Mitchell

. Chuck Geschke
Charles Simonyi
Ed McCreight
Howard Sturgis
B111 Duvall

Howard Sturgis was choosen as secetrary on the grounds that he was one
of the two new membersof the discussion, and was the only self invited
new member. : T :

II) PURPOSE

~Jerry Elkind stated that the purpose of these meetings was essentailly
that of a subcommittee.. We were to form a plan of attack on the gold
coin problem and then put the results of the plan on the floor for
.discussion. (By Full CS1 etc.) There will be at most one more meeting
of this subcommittee before reporting to all of CSL.

III) VIRTUAL MEMORY

.Next we launched into a iong discussion of virtual memory. [Two 1ssues
scemed paramount: 1s it possible to have a common scheme for all ALTO
Tanguages, and can we decide the issue now.]

Do we have to go through the map every time? Not in LISP proposal. HNot
in HES-BCPL un written proposal. Under Charles proposal, all memory
referances go through the map, but an associatiove memory is included so
that repeated referancecs to the same page do not have to be mapped each
time. :

JIE: the problem: Charles, Howard, Peter, Jim etc have to get together
and see if there is an underlying virtual memory structure and mechanism
that}a]] can use, '

_BWL:why we want compatibility:

-a) So that when one gold coin passes an address to another it
can be interpreted.

'b) So that implimentation is done only once.

c) BWL re-interprets Charles 'WHY' to: EAch seperate process
' runs inside of protection. 1{.e. Seperate programs
run without conflict.

LPD: A1l the language systems need a large virtual address space.
Where should it be provided? (i.e. who provides it?)

a) In the language system
b) in the machine
c) in the operating system,

‘BWL: 1)MESA needs virtual memory. 2) We need some statistics on the
pattern of memory referances in MESA. 3) design the virtual memory on
the basis of the statistics. Makes no differance what form the virtual
“memory takes, it will provide protection.

. JIE: " Those who are involved should design a "good-common virtual
memory" . ' :

'BWL: ‘advantages of common, as opposed to individual, virtual memory
schemes: 1) common implimentation (need only be done once, most
advantageous if hardware needed) 2) can pass addresses between the gold-
coins.

It is poSSible to concieve of schemes that use different schemes for the

different languages but the same hardware and same addressing, but
implimented differently. .

IV) MultiProgramming

Discussion of Charles "2nd Alto MultiProgamming Trial Balloon® [I asked
for , but did not recieve, a copy.] [Hy memory and notes for this
"discussion . are very confused.] [first some general questions were asked
by assorted individuals.] Should there be software interrupts? Hardware
interrupts are converted into event channels. Should then event
channels be converted back into interrupts? Is a process expensive or
cheap? (This will determine their use).

" HES: MESA modules look 1ike processes, Ports look 1ike event channels."
. Jim remarked that that was a misconception. [I will have to learn more
about MESA]. ‘ ' . '

“ Charles: Processes and event channels should be expensive:; Bi11
Duvall: Processes and event channels should be cheap.

[now comes a gap in my notes labeled "very long discussion®, seemed to
include:] Where do interrupts fit into language structure. (by
interrupts here, we mean pre-emption). How does this multiprogramming
. proposal interract with virtual memory and address spaces?

' V) Gold Coin Utj]itie; and Library Functions

Symonyi and McCreight produced a document "Proposed golden wutilitis and
Library Functions". This document proposed a list of 10 utilities and
-10 library packages which should be considered for gold coinage.This
proveoked an item by item discussion which will lead to a new version of
the document to appear subsequently. [{The following paragraphs reflect
those topics which I.succedded in writing down.]

Where should the executive lie? In a display editor, in Lisp, or in
MESA? An executive is a progrmming system, hence should be 1imbedded in
an existing languago.

Debuggers. Should be a machine language debugger (for the machine
maintainers, at least). (Even though the machine is a gold coin it does
not follow that all tools required to maintain ‘the machine are goild
coins.) There should be a debugger based in each language.

BCFL;l BCPL isia lead coin, not quite a gold coin, but needed for now.
Hence any virtual memory system should permit BCPL (as presently
compiled) to run.

Peter: send msg should be a utility, while intermachine communication
~should be a 1library routine, used by send msg and other utilities.
,.Sending a msg and sending a file are different. Should be relatively
casy for any program to send a file to another machine, But sending a
message " will be a utility since it will have a 1lot of associated
. baggage.

Bil11 Duvall: Proposes as an additional gold coin a file maintaining
facility. It will some how assure that all users have current versions
of a given set of files. -

.Discussion that "Gold Coinlets" (utilities, not language systems) should
be self documenting. This is to replace a stack of documents.

_Eafﬂgtreight will produce an edited version of "McCreight and Simonyi"
At the 1lcast, it will have machine language debugger removed from gold
coin status.

Geschke: We should not depend on MAXC in order to run. MAXC (or the
"connection to MAXC) may be down. This was in response to discussion
about file storage and time of day service to be performed by MAXC.

Some discussion about strings: should their representation -be common
among the gold coin languages, or language dependent?

-Floating point numbers: Make a new library function for all floating
point number stuff. 1{1.e. input output conversion, math library etc.

“"Decision: all languages will use IBM 360 floating point representation.
--Thus a library of good math routines already exists, and all we have to
. do 1is transliterate it. This is at the cost of a slight 1loss of
precision due to the HEX exponents. "

Pétéf Streams:

1) at present back end of a stream looks different from the front end.

Want a co-routine structure so that stream code can have 1t's state

automatically saved. : .

' 2) The current Song and Dance aboutlstream storage allocation 1is too

complicated. (BWL: it will - be improved) Want to be able to supply.

stream space explicitly to the operating system. Thus Peter can control

the usage of storage space as his needs dynamically fluctuate.

: 3)4How do streams:interact with module coupling facilities in MESA?

Howard: We want multiple directories supported.

peter: Computation and IO must overlap in the new dperating system. At
the least, disk transfers and computation should overtap. :

VI) FOR NEXT MEETING

For the next meeting: Subgroups will discuss virtual memory stuff.
--Some rough schedule will be produced for MESA, LISP and the operating
system. (BWL: the operating system changes will be 1incremental, rather
“than a re-write.) . ‘

Bi1l Duvall-will produce a schédule for his project to see how it meshes
with_that-of-the gold -coins.

Next Meeting: Monday Jjune 17.

HENO

To: CcSL, ‘OCG Date: June 16, 1974
'From: P. Deutsch ' deation:'Ph}o Alto
Subject: Proposal for a partially automatic Organization: PARC/CSL

source file bookkeeper

File: SFB . :
-Archive category: Programming research

‘Bill Duvall mentioned at the second Gold Coin meeting that he would like
to see some aids for keeping track of the migration and alteration of the
multifarious source files that compose the Office System software. Similarly,
1 have wanted such aids for some time, both for my own work with large, complex
programs and to aid in the maintenance of Interlisp. It seems to me that any
system we contemplate along these lines should have the following properties:

It should be fairly non-language-specific. By this I mean that it
‘should bo possible to extend it to cover new languages by writing a modest
‘amount of new code, as opposed to major alterations in its structure.

It should be network-oriented. By this I mean that it should not
assume that it has access to every file of interest to it at every stage
of that file's evolution.

It should be free-standing. By this I mean that its use. should not
require alterations in existing 1language processors, editors, file
systems, etc. This point is likely to be controversial, since much of the
success of Interlisp's tools, for example, arises from their close
integration with the language system. : -

It may be that these properties are overly constraining -- that they put

-unacceptable limits on the future evolution of the system we build initially. -
I would like to hear discussion of this issue. However, I believe an initial
system can be constructed which satisfies the above criteria in the following
~ specific ways:

- It can handle BCPL, ASH, Interlisp, and Mesa programs. In certain
cases, it does require the insertion of extra comments in the source code
-about the interrelationships of files.

It can deal with programs that are shipped off to Novas, Altos, or.
-other ARPANET machines. However, it assumes that the "home location" for
.programs is a Tenex system on wh;ch it runs. :

- It does not require alterations to any existing programs. Its only'
interface to the rest of the world is through the terminal and through
standard Tenex source files.

--Source -file bookkeeper June 16, 1974 Page 2
P. Deutsch

1. Abstractions

Taking a leaf from Charles Simonyi's practicum, I will enumerate the
"qb§tractions which the proposed system deals with. '

4 The most important concept, of course, is the file. Files come in two or
more flavors: source files, and derived files (.RB, .BR, .COM, .SV, .SAV, etc.)

that are generated from source files or intermediate derived files by a variety

‘of processors (ASM, BCPL, Interlisp compiler, BLDR, etc.). The proposed system
does not necessarily know how derived files are constructed, but it does need
to know how to correlate derived files with the source files that produced

them, and vice versa. Source files also carry, permanently, a designation of
~their syntax class, i.e. what language they are written in. In addition to
. their content, files carry a write date and an author (the name of the person
who last modified them).

Internally, source files carry several different kinds of information of -

use to the system. The programs on a file are divided into units. These may
correspond to procedures, groups of procedures, etc.: it is with units that the
system associates information about editing history and responsibility. For
each syntax class, the system knows how to identify the unit boundaries in a
. source file of that class. Some of the program may not fit naturally into a
unit, for example the comments at the head of a file. This is also acceptable.
In either unit or non-unit portions of the program, there may be external
~references to units in other files. (By definition, a unit is the only thing

that can be referenced from another file -- maybe?). 1In BCPL, these are the
"get" statements. . In ASM, comments are required to identify the files in which .

.EXT names are defined. In Interlisp, comments are required to specify the
filesS which must be loaded for a given file to run. Mesa has something similar
to a "get" statement, but additional comments may be required. Finally, the
~.system itself adds comments at various points within the source file to record

its history in human readable form, and at the end of the file for 1its own
purposes. ' - ' .

2. Operation

The proposed system could operate in either "executive" or "worker" mode.
Executive mode would be rather like DEC's CCL: there would be a command
“anguage including operations like edit, compile, send/receive, query, etc.,
and the systém would call in the appropriate programs to do the work it could
not do- itself.” Worker mode implies running the system separately from the

editing, compiling, etc. operations; in this mode the system might have to go'

to more trouble to determine what had happened "in its absence".

. We now consider what the system should be able to do. The particular set
of user-initiated operations which are -of 1interest to the system are as
follows: .
Edit a source file;
o Process a source file or intermediate file to yield another derived
o file; . .
. Make a copy of a file, possibly involving another machine or
directory;

Create a new filo, or rename, split, or merge existing files;

Relcase an executable file to a user community.
To be more precise, these are the user-initiated operations- which can take
place outside the proposed system. It is likely that the system will not be
able to reconstruct the necessary information if the user performs arbitrary

-

Source file bookkeeper - June 16, 1974 Page 3
“"P.Deutsch ‘ S

combinations of these operations -outside its purview; further thought is needed
to determine what combination of requiring certain operations to be performed
from within the system, on one hand, and providing incomplete service, on the
-other, .is appropriate and feasible. '

As "should be clear by now, the system operates largely on the basis of"
source comparisons between versions of files, comparison of write dates, and
history information recorded in source files in the form of comments. It
should be possible to provide the following services: -

Determine which processors need to be run, on the basis of write
‘dates of derived vs. source files (CCL exists essentially for this
purpose);
Determine where the current versions of files reside, and collect
them together; '
Provide multi-way comparisons to aid in merging independent changes,
~or-prevent such situations from arising;
- Provide responsibility information at the program unit level, in case
-of. user complaints;
Retain information required to identify the consistent set of source

‘files which produced a given release of a program.

‘I would very much like to see further discussion of these suggestions. I
think. it would not be too difficult to implement a system with all the
.aforementioned properties. I would propose that it be written in Interlisp --
--this..makes it somewhat less accessible to Nova users, but it will be available
on Alto. Alternatively, the Mesa group may have plans along these lines.

Inter-Oifice Memorandum

To: cSL, SSbL pate: June 18, 1974
From: = Chuck Geschke & Jerry Elkind Loc.: Palo Alto
Subject: Standards for Gold Coins : Org.: PARC/CSL

XEROX

: ' the term "Gold

The purposes of this memo arc (1) to define what we mean by
'“Co1n?' (2) to enumcrate the principal Gold Coins that we have f{dentified to
date, (3) to set forth some of the properties that characterize Gold Coins and

. {4) to identify some problems with the administration of the proposed "curroncy

of the realm.*

Definition

A Gold Coin is a dependable, efficient software or hardware facility which

rvices a wide spectrum of Alto-based CSL/SSL computer and systems research
zztivstics. Gold coins will be' fully supported in the sense that bugs will be
repaired, improvements will be made, user-level documentation will be providodE
conmpatibility will be maintained, etc. The set of Gold Coins will cover most
of our common needs for tools.

Enunecration

The fellowing is our list of specific facilities that will be inciuded in the
Gold Coin set initially:

Alto

Ethernet

Operating System Kernel
Operating System Utilities
Hesa

Interlisp

Office Services

t of
The Office Services are the various systems being developed by SSL as par
thetir rosearch on office cormmunications that will be in widespread use at PARC,

ince 1t will take some time to achfeve a ccherent and complate set of Gold
'ioins, some interin facitities like BCPL will be supported. It is likely that
in the future other facilities will be proposed for inclusion in the set of
Gold Coins. The discussion below provides some possible criteria against which
-these proposals.can be cvaluated. .

Propertics of Gold Coins

We have chosén to classify the properties that characterize a Gold Coin unde:
four catcgories: completendss, research relevancy, longevity, and genera
usefulness. . .

Completenoess

The set of Gold Coins will constitute the common base of facilities and
tools upon which much of CSL's and SSL's rescarch will depend. The set
must be made complete cnough to support all of our principal research
projects by providing those facilities that are used in common. Oui
initial notions of what constitutes an adequate set of facilities 1is
derived from our present computing environment. The best examples of Gold
Coin-like facilities arc Tenex and Interlisp. The Alto Gold Coin set must
cover our needs at least as well as theé Tenex system and subsystens do,

Rescarch Bp]evanqxl

Creating and maintaining Gold Coins will require a large comnitment of

* time and energy over an extended period. It is important therefore that
Gold Coins for the most part be in the mainstream of our rescarch and not
be viewed as extraneous and offensive social obligations. Indced, as
Perlis has argued, onec of our principal resecarch objectives should be to
Tearn how to build and maintain systems of Gold Coin quality. But more
than that, the principal coins should be congruent with principal research
projects in the way that Mesa and Interlisp are. Of course, some Gold
Coin-like facilities will not have this intrinsic interest to us, but that
necd not be a serious problem provided that most of the treasury is filled
with gems of research quality. But beware of error 33.

Longevity

If Gold Coins are -to provide the bases for ongoing research activities
there must be reasonable guarantees that the Gold Coins thenmselves will be
continuously supported for a long time into the future. In addition the
Gold Coins must be capable of evolution, both because they or the problens
they address are objects of research and because the reguirements of the
user community will change over time. Thus the keepers of Gold Coins have
an obligation to maintain compatibility between new and old versions of
their system, or otherwisc to help users make a transition between
systems. -

General Usefulness

Wo will not attempt to maintain as Gold Coins those facilities that are
used solgly by individual research projects., Such facilities are the
responsibility of those projects. Gold Coin status will be reserved for
faciltities which are of more general usefulness.

The fact that Gold Coins will be used widely and that users will not
attempt individually to nmaintain and develop then, imposes sonme
significant responsibility upon the keepers. We should insist on high
standards of reliability, repair, and responsiveness to evolving demands.
The keepers must furnish documentation at a level appropriate to the
averaqe user,of the facility, typically at the reference manual level not
the primer level. Care must be exercised to insdyre reasonable
compatibiltity through successive releases and documentation must be kept
current. This level of support requires significant resources because the
tasks are large and wil)l continue in time. Succession of responsibility
must be maintained over the life-time of the facility.

Mechanics of Administration

There scem to be three major administrative issues that must be resolved:

(1) deciding whether or not to embark on a new Gold Coin development
venture.

(2) certifying that particular facility satisfies the criteria for Gold
- Coins, and

(3) managing the development and long-term maintenance of a Gold Coin in
"7 a way that is responsive to user nceds.

A1l three of these require some type of consensus from the comnmunity. The
problem is to find a facile mechanism.

1Usually the phrase "research relevancy® implies concern with the relevancy of

research to X. Here we are concerned with the relevancy of Gold Coins to
research, .

To: ‘Those Interested in Gold Coins ‘ Date: June 19, 1974
From: ... McCreight and Simonyi Location: Palo Alto

Subject: Proposed Golden Utilities and Library Organization: PARC/CSL
“Functions .

File: UTILITIES

" This memo proposes a preliminary set of utility and library functions to be
included as Gold Coinlets with Alto operating systems in the future.
Standardizing such functions has a number of benefits. It encourages the use of

cstandard representations for data.objects. By recycling a single module of
vode through many applications it represents programming ecology. And since
these standard functions arce Gold Coinlets, all the wonderful properties of

Gold Coins obtain, such as good documentation and maintenance. .
A distinction is drawn here between library functions and utilities. Utilities

are big monolithic programs which are called infreguently and which communicate

with their callers through the file system. Library functions are smaller

programsé which are called frequently and which communicate with their callers .
through main memory. This distinction is necessarily and properly fuzzy, and
it is intended that there exist a universal 1library function capable of
invoking any utility, and a universal utility capable of calling any library
function. .

We have tried to estimate the resources needed to implement these utilities and
library functions. In many cases an Alto ‘implementation of the function in BCPL:
or asscembly language already exists. In these cases we have assumed that very
little new design would be done, and that the existing function would be
transliterated into Mesa in a straightforward way. For these conversions our .
resource ostimates should be reasonably accurate, since the difficulty of the
original programming is known, and since the conversion is to consist of a
simple transliteration. In .many other cases no Alto implementation currently
exists and considerable design is required in the algorithm and/or "the
implementation. The resource estimates for these cases are not expected to be
very accurate. ' ' .

- UTILITIES
1. Display Editor.

As currently envisioned, the display editor would be able to edit text, edit
binary files (lecaving semantic interpretations to the user), act as a smart
terminal to another computer, act as a calculator (SNOBOL "as a subset for
“editing macros?), and probably even act as EXEC for the Alto Operating System.
~If Lisp bhas taught us nothing else, it has taught us that command line
interpreters ought to he forgiving and helpful. Thus, although any program
which contains: a universal utility and a universal library function can be an
EXEC, it makes sense for the EXEC to be the smartest interactive program you
have. The editor might also include the abilities to print structures in
_symbolic form-.and to support a personal file system based on Kkeys and
attributes. . : o

Proposed Golden Utilities June 19, 1974 Page 2
and Library Functions ’
McCreight and Simonyi

2. BCPL Systoem

Until the following facilities are available in Mesa, the following items will
have to be available and suported:

a. BCPL Compiler

b. Assembler ‘

c. Loader capable of combining modules produced by (a) and (b)

“d. Debugger with some knowledge of BCPL environment

_The BCPL compiler, loader, and debugger already exist in final form, except for
perhaps one or two man-months of improvements. An assembler has been written in
Lisp and another written in BCPL is a few man-weecks from completion.

3. Communication Utility

We-will- certainly want a utility enabling TTY communication (e. g. TELNET),
file transfer (e. g. FTP), age-based automatic file backup, and automatic:
printing (e. g. XGP part of MINX) among Altos, between Altos and HMaxc, and
between Altos .and the ARPANET. HMore sophistication would include a SNDHSG
facility and smart terminal properties. One might hope, for example, to leave
one's Alto in his office and use it from his home ‘terminal via Maxc. '

Many of these functions ecither already exist or will shortly exist in .a
collection of BCPL programs written by Metcalfe, Boggs, and Rider. EEFTP is a
utility which transfers files through the Ethernet. NEWMCA implements a Telnet
‘protocol to Maxc, and supports the Alto end of the MINX file transfer protocol.
XPRINT causes a file or set of files to be sent to an XGP-owning Nova for
printing. EPRINT sends files to Rider's Alto for printing on Slot.

"Metcalfe estimates that transliterating these programs and adding age-based
“file backup, etc., would take at most five man-months given the availability of
a multiprogramming - operating system and a Mesa. with multiprogramming
primitives. .

4. Diagnostics

This means a full set of user-runnable hardware diagnostics, for the processor,
.. main memory, display, disk, and Ethernet.

At present only the Ethernet diagnostic and the control RAM loader/diagnostic
are written in BCPL; the disk diagnostic and memory diagnostic and display
~diagnostic are . all written 'in assembly code. Of these only the memory
diagnostic really neceds to be written in assembly code for precise control of
the generated machine code. A new disk diagnostic should be written in a high-
level language. However since the current diagnostic is more or less adequate,
the rewrite could be in Mesa rather than BCPL. To transliterate the Ethernet
diagnostic and control RAM loader, and to rewrite the disk diagnostic ought not
to take more than two man-months.

"5.°A utility for creating bootable files.
One man-week.

6. DUMP/LOAD file bundling

One man-woeek.

7. Microcode assenbler and debugger

This now exists as Nova assembly code. Thacker estimates one man-month to
rewrite the assembler part in BCPL. Probably an additional one or two man-

Proposcd Golden Utilities June 19, 1974 Page 3
and Library Functions
McCreight and Simonyi

months will be required to design and inploment a microdebugger suitable for
control RAM operation on a stand-alone Alto.

8. Diablo printer utility
Already exists in BCPL; less than one man-week to convert.
9. Librarian program

This program. would include facilities to aid in managing the development and
maintenance of large software systems. It would include a cross reference
generator and structure finder. It would know about versions and compilation
dates-and which modules might need to be recompiled if the format of some
structure is changed. Some of these facilities, such as c¢ross reference
goneration, may be more or less independent of the source language in which the
software systems are built, Other facilities, such as those which deduce the

ramifications of a change in a data structure, would certainly depend on a
knowledqge of the syntax and semantics of the langilage.

Deutsch‘has written a memo entltled "Proposal for a partially automatic source
file bookkeeper” describing such a utility. His estimate is that such a program
would consist of 30 paqc» of Lisp code, and would take perhaps two man-months
L to write,

10. Environment initializer

This program would initialize the state of the Alto and notify the world at
large that the Alto is being initialized. For example, it could find out the
time, for initializing the Alto's real-time clock. 1t could broadcast a message
of the form "Alto X is being initialized, tell me if you're willing to talk to
me" and post the results in a file or table. It could scavenge the disk, and
run cursory diagnostics to verify that the machine has no serious flaws. And so

on

This 1is a very open-ended utility, for which no code now exists. Specifying,
_designing, and implementing it would probably take on the order of three man-
months. : '

- LIBRARY FUNCTIONS AND PROCESSES
1. Environment Inquiries

A whole- - host of things, ranging from "What time is 1t?" (real-time standard,
probably initialized from Maxc) to "Do I have a Diablo printer?" to "How much
display space remains?" to "How many disk 1/0 references have been made since
system startup?” and so on. '

This is also very open-ended, should probably be designed and implemented in
conjunction with the environment initializer, and would probably take on the
order of an additional man-month,.

2. Representation Conversion

For exanmple,

a. Number/string cnnverﬁinn

b. Floating-point number/string conversion
c. Time/string conversion

This is somewhat less open-ended, and would probably take less than one man-
month after the set of conversions was specified.

3. Storage Suballocator

Proposed Golden Utilities Junc 19, 1974 Page 4
and Library Functions
MeCreight and-Simonyi

-Less than one man-month.
q., Floatinq Point

,L]hrnry routines or microcode are neceded for basic floating point operations

(+, -, %, /). Furthermore library routines are needéd to implement functions
“like SIN and EXP and ATAN and such like. A tentative decision has been made to
-adapt as standard representation for floating point numbers the IBM/36G0 single
mand double precision formats. This has the advantage of making programs for the
"various trig functions fairly ecasy to generate, and it has the disadvantage of
losing up to 3 bits of precision in exchange for 2 bits of magnitude. It is
also more bulky to implement than a straight binary format, although both
formats probably run at comparable speeds. .

Leo Guibas has a]ready begun work on this. It is estimated that to implement
Basic floating point arithmetic with a combination of microcode and Nova
machine code will take about two months of Leo's full time. To re-implement the
IBM 360 transcendental functions for the Alto ought to take at most one man-
month. Leo is not anxious to do this.

5. Streams

The main virtue of streams from the user's point of view is that they conceal
the less. endearing (and also the more endearing) properties of the I/0 devices
to which. they arce connected, making all I/0 devices appear the same. Streams
should be connactable to disk files or strings in memory or the Ethernet or to
~keyboard and display. Stream operations include Open and Close, GetItem . and
“PutTtem, and Resct to previous position. Stream -inquiries include "“how big is
it?", "where are we now?", and "are we at the end now?". The input and output
ends of streams should appear symmetric, particularly if the language system
within which the operating system exists supports coroutines (yet another
" reason why Lisp might want to be written in Hesa).

Somewhat restricted streams alrecady exist in BCPL in McDaniels' operating
system. To make them symmetric and to transliterate them into Mesa (probably
.some redesiagn will be indicated) ought to take on the order of one to two man-
months.

6. Display TTY Simulation

This already. exists in assembly code as a part of McDaniels' operating system.
However ™ a number of people have indicated a desire for greater flexibility in
acquiring display arcas and formatting the display. The redesign appecars to be
the hard part; no matter what is designed, the implementation appears to.Dbe
straightforward., The implementation ought to take on the order of one man-month
after the design is complete.

7. Directory Manipulation

This would do essentially what Tenex does, implementing string to file handle
conversions with defaults, version numbers, etc.- Facilities available to get
next version number, sequence through the files in a directory or a % group,
etc. Also able to create and delete files and expunge the disk.

This would praobably not rvduiro more than one to two man-months to implement,
and the design can be pretty much a copy of what Tenex does.

8. 1/0 Routines

These would build upon the operating system's page-at-a-time, hard disk address
1/0 routines to implement sequential I1/0, direct disk access within partitions,

Proposcd Golden Utilities June 19, 1974 ~Page .5 -
and Library Functions
McCreight and Simonyi

block 1/0, and random 1/0 on sequential files using indexes of pointers..
Probably most of the operating system's capabilities for extending files by
adding pages, for finding free pages, for marking pages as free, and so on
would exist in these routines, rather than in the kernel operating system.

This would probably require two to four man-months, depending on how many
features are provided. For example, one feature might be automatically building
an index in memory to a file as it is initially read, so that later random
reads can proceed without scanning. These routines could be augmented or
‘replaced by those described in Deutsch's memo "A LISP-based file system." »

9. Communication Processes

“These would build upon the Ethernet's pup-at-a-time I/0 to implement stream
ends. and at least a Telnet and an FTP.

Metcalfe estimates that this will take at most two to three man-months in the
presence--of a multiprogramming operating system.

MEMNO
To: CSL, SSL : Date: June 24, 1974
'From: Bob Sproull, obedient scribe Location: Palo Alto
Subject: Gold Coins Organization: PARC/CSL

File: GOLD

This tome describes the "Gold Coin®™ effort about to begin. It is an attempt to
outfit Alto's with a beautiful suit of software that anticipates as many users
and uses of the Alto as possible.

The chief purpose of this particular exposition is to present the current state
of plans, to name the actors, and to solicit reviews. The extraordinary
anbition represented by the items mentioned in these pages should not be
squandered on projects that are ultimately of 1little use. Careful and
constructive criticism seems the best way to avold such disappointments.

Don't infer any fierce tyranny in the Gold Coin plan: gold coin software and
hardware are intended to be helpful, not authoritative.

The next step in the Gold Coin expedition is to make sure that the plans map
well against need and reality. To that end we solicit everyone's input. There
will be a meeting Tuesday June 25 at 1:00 to discuss these proposals. Please
come.

Definition

A Gold Coin is a dependable, efficient software or hardware facility which
services a wide spectrum of Alto-based CSL/SSL computer and systems research
activities. Gold coins will be fully supported in the sense that bugs will be
repaired, improvements will be made, user-level documentation will be provided,
compatibility will be maintained, etc. The set of Gold Coins will cover most
of our common needs for tools. . -

Enumeration

The following is our list of specific facilities that will be included in the
Gold Coin set initially:

Alto

Ethernet

Operating System Kernel
Operating System Utilities
Mesa

Interlisp

Gold Coins June 24, 1974 Pago 2
Bob Sproull, obedient
scribe

-Sinée it will take some time to achieve a coherent and complete set of Gold

Coins, some interim facilities like BCPL will be supported. It is likely that
in the future other facilities will be proposed for inclusion in the set of
Gold Coins. The discussion below provides some possible criteria against which
these proposals can be evaluated.

Properties of Gold Coins

We have chosen to classify the properties that characterize a Gold Coin under
four categories: completeness, research relevancy, longevity, and general
usefulness.

Completeness

The set of Gold Coins will constitute the common base of facilities and

.tools upon which much of CSL's and SSL's research will depend. The set
must be made complete enough to support all of cur principal research
projects by providing those facilities that are used in common. Cur
.initial notions of what constitutes an adequate set of facilities {s
derived from our present computing environment. The best examples of Gold
Coin-like facilities are Tenex and Interlisp. The Alto Gold Coin set must
cover our needs at least as well as the Tenex system and subsystens do.

Research Rclcvancxi

Creating and maintaining Gold Coins will require a large commitment of
time and energy over an extended period. It is important therefore that
Gold Coins for the most part be in the mainstrean of our research and not
be viewed as extrancous and offensive social obligations. Indeed, as
Perlis has argued, one of our principal research objectives should be to
learn how to build and maintain systems of Gold Coin gquality. But more
than that, the principal coins should be congruent with principal research
projects in the way that Mesa and Interlisp are. Of course, some Gold
Coin-1like facilities will not have this intrinsic interest to us, but that
nced not be a serious problem provided that most of the trecasury is filled
with gems of research quality. But beware of error 33.

Longevity

If Gold Coins are to provide the bases for ongoing research activities
there must be rcascnable guarantees that the Gold Coins themselves will be
continuously supported for a long time into the future. In addition the
Gold Coins must be capable of evolution, both because they or the problenms
they address are objeccts of research and because the requirements of the
user cormunity will change over time. Thus the keepers of Gold Coins have
an obligation to maintain compatibility between new and old versions of
their system, or otherwise to help users make a transition between
systoms.

General Usefulness

We will not attempt to maintain as Gold Coins those facilities that are
used solely by individual research projects. Such facilities are the
responsibility of those projects. Gold Coin status will be reserved for
facilities which are of more general usefulness.

........................ L L L L L T e Y L L DL L L T TP

IUsually the phrase "research relevancy® implies concern with the relevancy of

. research to X. Hore wo are concerned with the relevancy of Gold Coins to

rescarch.

.

Gold Coins June 24, 1974 Page 3 ' Gold Coins June 24, 1974 Page 4
Bobigproull.-obedtent ! . . § Bob Sproull, obedient ! ’
scribe

scribe
The fact that Gold Coins will be used widely and that users will not Current Plans for the Projects
attempt individually to maintain and develop them, imposes some -
significant responsibility upon the keepers. We should insist on high : This section provides a precis of cach of the proposed Gold Coins, together
standards of reliability, repair, and responsiveness to evolving demands. : with the names of the individuals likely to be involved, and a time schedule.
The keepers must furnish documentation at a level appropriate to the (This part of tho memo is the ‘'minutes' of the most recent Gold Coin meeting.)
average user of the facility, typically at the reference manual level not More detailed information on several of the projects can be elicited from
the primer level. Care mnust be exercised to insure reasonable i appendices.
compatibility through successive releases and documentation must be kept)
current. This level of support requires significant resources because the Alto (congratulate Chuck Thacker, Alan Kay, Larry Clark, Mike Overton, Ed-
tasks are large and will continue in time. Succession of responsibility McCreight, and others far too numerous to mention)

must be maintained over the life-time of the facility.

The Alto Gold Coin is rolling off the production line, and is working very
well. They are available by walking up to them. the "Personal Cemputer”
document describing their operation is available fronm Vicki Parish.

Not all Altos are or will be identical. This is important to bear in nind
when considering Gold Coin software: what special requirements, if any, are
necessary for -a plece of software to run? The two most important
considerations are: memory size (48 or 64 K) and the presence or absence of
a RAM for microcode.

Virtual Memory (encourage Peter Deutsch, Ben Wegbreit)

A uniform virtual memory addressing scheme shculd be adopted for the Alto.
This notion seems to be endorsed by all proprietors of major languages on
the Alto.- The current plan is to implement a 24-bit address space: hardware
in the memory interface of the Alto will perform the mapping function; if
this fails, microcode will look up pages in a hash table in Alto mnain
memory. The hash table records all pages that are present in core. If the
requested address is not in core, the microcode gives up, and "paging
strategy™ code is invoked. This code will vary from language to language.
The central notion 1s that the microcode makes no strategic decisions, it
only computes.

Schedule: Approximately 3 weeks are required to complete the functional
design, including in particular the interface between the NOVA enmulator and
the mapping microcode (i.e. NOVA enmulator mnust be wundisturbed). An
additional 3 weecks are required to design the hardware modifications to the
memory interface. A wire-wrap memory board can be constructed in 1.5
months; production versions in 6 months. Software developaent (hashing,
strategy) 1is complete for LISP now; none will be required for the NOVA
emulator. Development will require a RAM and microcode wutilities
(assembler, debugger).

Ethernet {(encourage Bob Metcalfe, David Boggs)

The Ethernet, as a hardware facility, is nearing completion. Hardware
interfaces are being constructed at the maximum rate consistent with
suppliers and with Gold Coin-style caution. The new transceiver design is
nearly finished. A fairly extensive set of diagnostics has already been
constructed.

The only significant design activity remaining is to complete the design of
PUP (PARC Universal Packet -- see Metcalfe/Boggs memos on this subject).
This is an attempt to design data formats and protocols that can be used to
transmit among any machines reachable from Alto's, MAXC, etc. (This is a
serious endeavor -- please contribute if you have particular needs or
prejudices.) The design 1s expected to be complete by Sept. 1. (See
Utilities appendix for description of proposed user software.)

Hesa (encourage Jim Mitchell, et al)

Gold Coins June 24, 1974 Page § Gold Coins June 24, 1974 Page 6
Bob Sproull, obedient) Bob Sproull, obedient

scribe . scribe

Mesa, the new name for MPS, is advanced as the system-implementation
language for Alto. Documentation about the language is available from Jim
Mitchell and the Mesa group; an appendix to this document gives a schedule.
Generally, the group intends to spend about 10 wecks completing
modifications to TENEX Mesa, then to design an interpreter for Mesa
progranms, then to construct such an interpreter on MAXC and to modify the
compiler to produce code for the interpreter. Then, in order to move Mesa
to an Alto, the interpreter will be written for the Alto in BCPL or machine
language. Thus it is expected that by January, 1975, Mesa will run on an
Alto at a spced about 1/20 to 1/50 that of BCPL. Microcoding the
interpreter should be done by July 1975. Although this will speed the
interpretation considerably, there is debate about the ultimate speed of
Mesa interpreted in this way. Estimates range from 1/2 to 1/5 the speed of
BCPL, a degradation that some feel is inherent in interpreting a language
like Mesa on a machine like the Alto.

Since Mesa is proposed as the Gold Coin system-building language, issues of
speed are vitally important to some potential uses of the language. It may
simply be that Mesa can never fully supplant BCPL. Those expecting to use
Mesa must clearly talk to those expecting to provide it.

The development of Mesa requires specifications for the interface to the
operating system kernel, MAXC, and an Alto in October.

BCPL (encourage Howard Sturgis, Dan Swinehart)

Mesa is far enough off that we need to maintain a commitment to BCPL. This
is essential to on-going projects in both SSL and CSL.

There is a substantial list of requested modifications to BCPL, ranging from
wishes to requirements. Some subset of the modifications will actually be
undertaken. .

Language changes:
Operations on entities > 16 bits, to facilitate
manipulating 24-bit addresses and the like
Unsigned arithmetic (esp. compares)
Conditional compilation
Macros
Embedded assignment
Modification to switches
Restrictions or difficulties to be removed:
Size of symbol table in compiler
Fix loader to handle larger overlays
Inprove documentation (beautiful document forthcoming)
Problems with scope rules for EXTERNALS
Improvements:
Faster compiler, better error recovery
Version-checking in source files
Loader library features
Rewrite runtime system in ASM

The BCPL problem is substantial: John Melvin estimates that 40% of the
programming overhead of the POLOS group is °‘'living around BCPL.' (See
Appendix for a more discursive account of BCPL issues.)

Interlisp (encourage Peter.Deutsch)
The Alto implementation of INTERLISP is progressing well. Within 3 months,

- a slow LISP will be available, without the byte interpreter. Within 5§
nonths, a "nice” LISP will be available, that uses byte-compiled functions

for the most part. These will be interproted by BCPL software with a 20:1
CPU slowdown of byte-compiled code on the Alto as compared to block-conpiled
code on the PDP-10. A nmicrocode interpreter should change the ratio to
about 1:1.

Note: The INTERLISP Gold Coin is intended for use on 64K Altos with Model 44
disks,

The prerequisites for completing the INTERLISP developnent are: the ability.
to recad the stream position in the operating system, RAM, microcode
assembler and debugger, Model 44 disk, a better idea of what display utility
routines are desired, and machine-independent sources for INTERLISP (which
Warren is graciously providing!).

Operating System Kernel (encourage Butler Lampson, Bill Duvall)

This is the most vague of the Gold Coins; thought, talking and design are
still required to specify it. The basic idea is to provide an operating
system that: (1) is usable by the Gold Coin languages (Interlisp, BCPL, and
eventually Mesa), and (2) meets as many user needs as scemS reasonable for
any operating system to do. The hope is to design a system that supports
multiprogramming, disk access (both as a file system and as a secondary
storage device for virtual nemory), and which has a library of functicns for
handling I/0 (e.g. Ethernet, disk, Diablo printer, etc.) The system ray
look like a combination of Noxios and Gene McDaniel's cperating systen.

Vhen Mosa becomes a coin of the realm, the system will doubtless be recoded
in Mesa.

Operating System Utilities (encourage Ed McCreight and all individuals
1isted in the appendix)

These efforts total about 2 man~ycars of miscellany. As they all interface

- tightly with the operating system, the specifications for the system will be

needed before the utilities are completed. Please see the appendix for
details.

Gold Coins June 24, 1974
Bob Sproull, obedient
scribe

VIRTUAL MEMORY PROPOSAL (Dubbed “alpha")

(At press time, this proposal was undergoing substantial change.

Ben Wegbreit will be available 6/25.)

Page 7

:New memo by

Gold Coins . June 24, 1974 * Ppage 8
Bob Sproull, obedient
scribe

PROPOSED GOLDEN UTILITIES AND LIBRARY FUNCTIONS

This memo proposes a preliminary set of utility and library functions to be.
included as Gold <Coinlets with Alto operating systens 4in the future.
Standardizing such functions has a number of benefits. It ecncourages the use of
standard recpresentations for data objects. By recycling a single nodule of
code through many applications it represents programming ecology. And since
these standard functions are Gold Coinlets, all the wonderful properties of
Gold Coins obtain, such as good documentation and maintenance.

A distinction is drawn here between library functions and utilities. Utilities
are big monolithic programs which are called infrequently and which communicate
with their callers through the file system. Library functions are smaller
programs which are called frequently and which communicate with their callers
through main memory. This distinction is necessarily and properly fuzzy, and
it is intended that there exist a universal library function capable of
invoking any utility, and a universal utility capable of calling any library
function.

We have tried to estimate the resources neecded to inplement these utilities and
library functions. In many cases an Alto implementation of the function in BCPL
or assembly language alrcady exists. In these cases we have assumed that very
little new design would be done, and that the existing function would be
transliterated into Mesa in a straightforward way. For these conversions our
resource estimates should be reasonably accurate, since the difficully of the
original programming is known, and since the conversion 1is to consist of a
simple transliteration. In many other cases no Alto implenmentation currently
exists and considerable design 1is required in the algorithm and/or the
implementation. The resource estimates for these cases are not expected to be
very accurate.

UTILITIES
1. Display Editor.

As currently envisioned, the display editor would be able to edit text, edit
binary files (leaving semantic interpretations to the user), act as a smart
terminal to another computer, act as a calculator (SNOBOL as a subset for
editing macros?), and probably even act as EXEC for the Alto Operating Systenm.
If Lisp has taught us nothing else, it has taught us that comdand 1line
interpreters ought to be forgiving and helpful. Thus, although any progranm
which contains a universal utility and a universal library function can be an
EXEC, it makes sense for the EXEC to be the smartest interactive program you
have. The editor might also include the abilities to print structures in
symbolic form and to support a personal file system based on keys and
attributes,

2. BCPL Systenm

Until the following facilities are available in Mesa, the following items will
have to be available and suported:

a. BCPL Compiler

b. Assenbler

c. Loader capable of combining modules produced by (a) and (b)

d. Debugger with some knowledge of BCPL environment

The BCPL compiler, loader, and debugger already exist in final form, except for
perhaps one or two man-months of improvements. An assembler has been written in
Lisp and another written in BCPL is a few man-weeks from completion.

Gold Coins June 24, 1974 ’ Page 9
Bob Sproull, obedient
scribe

3., Communication Utility

We will certainly want a utility enabling TTY communication (e. g. TELNET),
file transfer (e. g. FTP), age-based automatic file backup, and automatic
printing (e. g. XGP part of MINX) among Altos, between Altos and Maxc, and
between Altos and the ARPANET. More sophistication would include a SNDMSG
facility and smart terminal properties. One might hope, for example, to leave
one's Alto in his office and use it from his home terminal via Maxc.

Many of these functions either already exist or will shortly oxist in a
collection of BCPL programs written by Metcalfe, Boggs, and Rider. EEFTP is a
utility which transfers files through the Ethernet. NEWMCA implements a Telnet
protocol to Maxc, and supports the Alto end of the MINX file transfer protocol.
XPRINT causes a file or set of files to be sent to an XGP-owning Nova for
printing. EPRINT sends files to Rider's Alto for printing on Slot.

Metcalfe estimates that transliterating these programs and adding age-based
file backup, etc., would take at most five man-months given the availability of
a multiprogramming operating system and a Mesa with mnultiprogramming
primitives.

4. Diagnostics

This means a full set of user-runnable hardware diagnostics, for the processor,
nain memory, display, disk, and Ethernet.

At present only the Ethernet diagnostic and the control RAM loader/diagnostic
are written in BCPL; the disk diagnostic and memory diagnostic and display
diagnostic are all written in assembly code. Of these only the menory
diagnostic really needs to be written in assembly code for precise control of
the generated machine code. A new disk diagnostic should be written in a high-
level language. However since the current diagnostic is more or less adequate,
the rewrite could be in Mesa rather than BCPL. To transliterate the Ethernet
diagnostic and control RAM loader, and to rewrite the disk diagnostic ought not
to take more than two man-months.

5. A utility for creating bootable files.

One man-week.

6. DUMP/LOAD file bundling

One man-week.

7. Microcode assembler and debugger

This now exists as Nova assembly code. Thacker estimates one man-month to
rewrite the assembler part in BCPL. Probably an additional one or two man-
months will be required to design and implement a microdabugger suitable for
control RAM operation on a stand-alone Alto.

8. Diablo printer utlll%y

Already exists in BCPL; less than one man-waeek to convert.

9. Librarian program

This program would include facilities to aid in managing the development and
maintenance of large software systems. It would include a cross reference

generator and structure finder. It would know about versions and compilation
dates and which modules might need to be recompiled if the format of some

Gold Coins R June 24, 1974 Pago 10
Bob Sproull, obedient
scribe

structure is changed. Somc of these facilities, such as cross reference
generation, may be more or less independent of the source language in which the
software systems are built. Other facilities, such as those which deduce the
ramifications of a change in a data structure, would certainly depend on &
knowledge of the syntax and semantics of the language.

Deutsch has written a memo entitled "Proposal for a partially automatic source
file bookkecper™ describing such a utility. His estimate is that such a prograz
would consist of 30 pages of Lisp code, and would take perhaps two man-months
to write.

10. Environment initializer

This program would initialize the state of the Alto and notify the world at
large that the Alto is being initialized. For example, it could find out the
time, for initializing the Alto's recal-time clock. It could broadcast a message
of the fornm "Alto x is being initialized, tell me if you're willing to talk to
me" and post the results in a file or table. It could scavenge the disk, and
run cursory diagnostics to verify that the machine has no serious flaws. And so
on.

This is a very open-ended utility, for which no code now exists. Specifying,
designing, and implementing it would probably take on the order of three man-
months. .

LIBRARY FUNCTIONS AND PROCESSES

i. Environment Inquiries

A whole host of things, ranging from "What time is it?" (recal-time standard,
probably initialized from Maxc) to "Do I have a Diablo printer?™ to "How much
display space rcmains?" to "How many disk I/0 references have been made since
system startup?" and so on.

This 1s also very open-ended, should probably be designed and implemented in
conjunction with the environment initializer, and would probably take on the
order of an additional man-month.

2. Representation Conversion

For example,

a. Number/string conversion

b. Floating-point number/string conversion
c. Time/string conversion

This is somewhat less open-ended, and would probably take less than one man-
month after the set of conversions was specified.

3. Storage Suballocator
Less than one man-month.
4, Fioating Point

Library routines or microcode are needed for basic floating point operations
(+, =, %, /). Furthermore library routines are nceded to implement functions
like SIN and EXP and ATAN and such like. A tentative decision has been made to
adopt as standard representation for floating point numbers the IBM/260 single
and double precision formats. This has the advantage of making programs for the
various trig functions fairly easy to generate, and it has the disadvantage of
losing up to 3 bits of precision in exchange for 2 bits of magnitude. It is

Gold Coins . June 24, 1974 . Page 11
Bob Sproull, obedient .
scribe

also more bulky to implement than a straight binary format, - although both
formats probably run at comparable speeds.

Leo Guibas has already begun work on this. It is estimated that to implement
basic floating point arithmetic with a combination of microcode and Nova
machine code will take about two months of Leo's full time. To re-implement the
IBM 360 transcendental functions for the Alto ocught to take at most one man-
nonth. Leo is not anxious to do this.

5. Streans)
The main virtue of streams from the user's point of view is that they conceal

the less endearing (and also the more endearing) properties of the 1/0 devices
to which they are connected, making all I/0 devices appear the same. Streams

should be connectable to disk files or strings in memory or the Ethernet or to-

keyboard and display. Stream operations include Open and Close, Getltem and
PutIten, and Reset to previous position. Strecam inquiries include “how big is
it?", "where are we now?", and "arc wo at the end now?", The input and output
ends of streams should appear symmetric, particularly if the language systcm
within which the opcrating system exists supports coroutines (yet another
reason why Lisp might want to be written in Mesa).

Somewhat restricted streams already exist in BCPL in McDaniels' ope}ating
system. To make them symmetric and to transliterate them into Mesa (probably
sone redesign will be indicated) ought to take on the order of one to two man-~
months.

6. Display Utilities

Teletype simulation already exists in assembly code as a part of McDaniels'
operating system. However a number of people have indicated a desire for
greater flexibility in acquiring display areas and formatting the display. The
redesign appears to be the hard part; no matter what 1is designed, the
implementation appears to be strajightforward. The implementation ought to take
on the order of one man-month after the design is complete.

In addition, there is a need for some form of display routines that can do
rudimentary graphics (nothing as complicated as the graphics group's current
system). These routines could be used, for example, to "show" data structures
as records, lists and the like by drawing boxes, arrows, etc. Again, design is
the hard part; implementation is relatively easy. (This might be the "mini-
system" that the Graphics Group is contemplating.)

7. Directory Manipulation

This would do esscntially what Tenex does, implementing string to file handle.

conversions with defaults, version numbers, etc. Facilities available to get
next version. number, sequence through the files in a directory or a * group,
etc. Also able to create and delete files and expunge the disk.

This would probably not require more than one to two man-months to implement,
and the design can be pretty much a copy of what Tenex does.

8. 1/0 Routines

These would build upon the opcfating systen's page-at-a-time, hard disk address

I1/0 routines to implement sequential 1/0, direct disk access within partitions,
block 1/0, and random 1/0 on sequential files using 1indexes of pointers.
Probably most of the operating system's capabilities for oxtending files by
adding pages, for finding free pages, for marking pages as free, and so on
would exist in these routines, rather than in the kernel operating system.

Gold Coins : June 24, 1974 Page 12
Bob Sproull, obedient
scribe

This would probably require two to four man-ponths, depending on how nany
features are provided. For example, one feature might be automatically building
an- index in memory to a file as it is initially read, so that later randon
reads can proceed without scanning. These routines could be augmented or
replaced by those described in Deutsch's memo "A LISP-based file system.”

9. Communication Processes

These would build upon the Ethernet's pup-at-a-time I1/0 to implement strean
ends and at lecast a Telnet and an FTP.

Metcalfe estimates that this will take at most two to three man-months in the
prescnce of a multiprogramming operating systen.

Gold Coins June 24, 1974 Page 13) Gold Coins June 24, 1974 Page 14
Bob Sproull, obedient .) Bob Sproull, obedient
scribe . scribe

BCPL ISSUES (by Dan Swinehart)

OCG Needs

The Office Comnmunications Group is devoting most of its efforts to
the understanding of the problems of building interactive editing
facilities in the NOVA/VTS distributed environment. We have not
sensed a great mismatch between the BCPL language and our language
needs for acconplishing this task. (This is not a universal opinion;
some of us yearn for a very high-level language ~- irrelevant for
these purposes.) We have, however, encountered serious difficulties
in the current compiler and loader configuration:

There are no current software aids for system development by more
than one person -- .

There exist multiple copies of shared sources ~- on multiple
NOVAS and on MAXC.

It is difficult to assess which sources need compilation even
though they have not changed (to accormodate changes to shared
declarations ("getted® files), etc.)

There are no current software aids for multi-file development by ONE
or more persons --

It is difficult to remember when a file must be recompiled,
either because the source has changed or some "“getted"” source
has changed.

Ne source-comparison and file update mechanism is readily
available -- a function of the current NOVA-centered operation,
and outside the realm of language considerations, really.

BCPL is quite slow -- one two-page program took 50 seconds,
generated 235 (octal) instructions -- just over 3 per second. Lots
of that was in the lexical pass, and most of that due to all the
"getted” declaration files, most of whose entries are unreferenced
in the source.

The compiler often runs out of space, quite often unnecessarily, due
to many declarations (again) which don't need to be there (from
"getted" files), and more than likely for other curable reasons.
When files can simply be broken up, this is usually not too big a
problem, but when the nunber of declarations (legitimate or
otherwise) dominates, the problem becomes nearly insuperable.

VWe currently load our POGOS operating system with our programs, and,
lacking any EXEC which we don't provide ourselves, we run that until
it breaks, then find the bug, rcboot to get DOS back, edit, compile,
and reload. The edit/compiler/reload process takes on the order of
ten minutes, a large part of it active effort. There are current
proposals for improvements to this, requiring the writing of a new
BLDR to run as a swapped nodule in a POGOS image, which could
incrementally load or replace user modules (with some restrictions).
We have this under control, but some of the proposals below which
advocate complete replacement would have to address themselves to
this issue.

The debugging environment in POGOS is deficient, but improving
rapidly. There are some BCPL changes, mostly the issuance of
additional and more complex symbol table information (locals,

structure indicies) which would help, and could be incrementally
added.

Remarks on the list above (sec page 5):

WSD and others have made specific, nedium-to-low

priority requests, for changes to the language (e.g., conditional
compilation (easy); macros (not too bad, as long as we're
conservative about it); switchon changes -- endcase the default,
repcatcase and other useful switchon control structures; and
multiple-level break/loop facilities, as in SAIL or BLISS. Lack of
these features are retarding us no worse than linearly with respect
to their predicted value.

CSL Needs

<Howard's 1list>, the most frightening item on which is the 32-bit
quantity, with linited implementation, proposed by LPD. This adds
types, not to mention types whose instances are of different sizes,
to the language (and, more importantly, to the compiler.)

CSL (LPD and Willie-Sue, at least) also suffer the size restrictions
of the current compiler, but not so much the speed ones, or lack of
softwdare aids.

Possible Approaches

1. Fight fires, incrementally fixing the compiler to address POLOS
needs, joint needs, and perhaps some of those on the CSL list which
are easy -- I can envision a 20%4 devotion of my time to this project
with acceptable results. Drawback: Peter doesn't get his 32-bit
entities, etc. I favor this approach, based on my predicted
commitment.

2. Peter Deutsch rewrites BCPL in INTERLISP, which he can dash out
in three wecks (sic), using the tools he already has. Advantages:
all new features; great flexibility; potential speed gain sometimes;
potential for software aids, esp. wrt time and date storage with
output. Drawbacks: Peter's time is more valuable than that; the
three weeks sounds a bit optimistic; new programs have bugs; it
will probably be too slow when load average exceeds 5.

3. Some sort of joint effort between me and somebody in CSL.
Undecidable advantages and drawbacks.

4. 1 do everything, starting with current conmpiler -- unacceptable.

5. Mesa group will write sub-Mesa in 6 mo. or so which will run, on
NOVAS, better (efficiency, size, debugging) than BCPL. W¥e fight
fires in meantime.

6. Charles Simonyi creates a meta-programmer/technician tean, OCG
designs a new MOL (machine oriented language) by choosing features
from a shopping list of systems of that 11k, with emphasis on the
debugging aids, software aids, and somewhat incremental
compilation/loading/running facilities discussed above; and with
32-bit quantities, etc., for virtual memory on Altos. Would be
written to run readily on either machine, etc. We fight fires in the
meantime.

Suégestions

Gold Coins : June 24, 1974 Page 15
Bob Sproull, obedient

scribe Inter-0ffice Hemorandum

I'm hard pressed to make any. In all cases but (2) above, a little
bit of (1) will probably have to happen. That's fine. (2) seens
quite risky, and an expensive use of Deutsch cycles. (3) would
probably not work very well. (5) could easily divert effort from a
crucial and already very demanding task: to put full-blown,
world-saving Mesa on small machines, probably Altos -- though it
might be a forcing function for learning about small machines.(6)
sounds promising, since Charles would in any case get what he wants
from the effort. It would also provide an interesting testbed for
incremental/modular/Mesa-like concepts without the distraction of
state of the art control and data structures. It is at least
intriguing enough that somcbody should talk to C. Simonyi about it.

My current main goals are quite short-term -~ the next month or two -

should see changes to facilitate our current editor design.

Many of the software aid goals can be accomplished outside of
BCPL/BLDR via offline MAXC progranms.

Remarks by Howard Sturgis:

The 32-bit entity request is unreasonable in the light of
benefits versus costs (latter extreme).

The "endcase" default 1is unreasonable because it will eitﬁer
nmake old programs incompatible with tho new BCPL, or
require an ugly compiler switch.

To: esL/SSL . ' : pate: June 15, 1974
From: Ed.Satterthwaite - toc.: Palo Alto
Subject: Mesa for the Alto) org.: PARC/CSL

_On June 12 and 13, the group actively invalved in the implementation of

Mesa (Goschke, Mitchell, Satterthwaite, Sweet) met to consider the
problen of crecating a version of Mesa for the Alto. Our conclusions .
about the major steps as well as time estimates for each are summarized
below. -An attachment sumnarizes the more important interdependencies of |
the steps and indicates a possible division of the work znong the ncmbcrs
of the group.
Vo believe that certain additions and changes to TEMEX Mesa are essential
before Mesa can be moved to the Alto. Most of these are wall understood;
we propose to implement tliem in parallel with design of an- interpretive
system for bolh MAXC and the Alto.
TENEX Mesa

(1) ﬁnw version of the segmentation machinery (3 weeks)

,_(d) . complete and test new SEGRUN and associated modules

(L) - modify debugger, loader, and ﬁootstrappcr

(c) change the compiler to produca modules with new synbol
table formats, cxpanded initialization code

(d) ALSO: extend the compiler to allow arbitrary named types
(2) Finish control structures (4 weeks)

(a) implenment support for the control primitives

(b) change éomni]cr's code genecrators

(c) modify debugger, binder, loader, error handling

(3) General cleanup (3 weeks)
(a) control structures cleanup

(b) inplenent INCLUDEd program modules, revised binding
mechanism

(c) introduction of simple constructors and of sets as data
types

(4) Docurientation (indefinite)

1to Hesa

(5) besign the interpretive machine (8 wceks)
(a) instruction set
{b) interpretive engine
~{c) - Alto microcode fcasibility study

(c

~—

Inplement interpretive Hesa (i-Hesa) for TENEX (8 weeks)
(a) make an i-Mesa TEREX compiler

(L) make a TENEX {-Mesa interpretive engine

(c) allew i-lMesa and c-Mesa modules to interact

(d) make a complete i-Mesa system for TENEX

Hote that this will not be quite identical to an i-Mesa

systen fuor Alto {e.g., 36 vs. 16 bit words, different
operating system services, etc.)

(7) Move 1-Mesa to the Alto (8 weeks)

{a) write a sinulator of the Alto operating system interface
for TENEX ’

(b) alter low-level routines of {-Mesa to match the Alto

(c) - modify i-Hesa compiler to produce code for the Alto's
interpretive enqine

(d) nmodify the T{REX interpretive engine to accopt Alto 1-Mesa

(e) make a complete {i-Hesa systen for Alto (running under
simulation by TENEX Mesa) .

(f) write an interpretive engine in BCPL
(g) transfer i-Hesa system from TENEX to Alto

(8) Move t-Hesa interpreter to Alte microcode {{ndefinfite)

External Constraints

Early in the design of the interpretive machine (step 5) we neec ..
understand the bastc facilities to be provided by the kernel
operaling system for the Alto.

Prior to steps 7a and 7b, we will need a precise definition of that
operating systen's behavior and interfaces.

Prior to step 7f, we will necd one or more dedicated Altos with
reltable and reasonably conmplete (but not highly tuned) utilities and
operating syslem. [asy cccess to an Alto for faniliarizing curselves
with the utilities and scrvice routines would be helpful toward the
end of step 5.

- Notes

These time estimates, which are thought to be somewhere between

- realistic and optinistic, imply that a slow but usable version of

Mesa could be running on Altos by the end of 1974 (with some Tuck and
few diversions).

They also imply that, with present manpower cormitments, further
investigation of the substantive issues in the design of Hesa data
structuring facilities as well as the implementation of any sclutions
will be pushed well into 1975,

During the remainder of 1974, we would 1ike to encourage others to
begin using TEKREX Mesa to the extent that this {s possible without a
major effort to produce additional documentation.

	1-01_19740223
	1-02
	2-01_19740305
	3-01_19740524
	3-02
	3-03
	4-01_19740530
	4-02
	4-03
	4-04
	5-01_19740611
	5-02
	5-03
	5-04
	6-01_19740616
	6-02
	6-03
	7-01_19740618
	8-01_19740619
	8-02
	8-03
	8-04
	8-05
	9-01_19740621
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09

