
ALTO SOFTWARE PACKAGES

Compiled on: June 30, 1975

Computer Sciences Laboratory
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, California 94304

Copyright © 1975 by Xerox Corporation.

2

This list is a directory of major Alto software packages. Source files for these
programs are available on the (ALTO) directory. The documentation for these
packages is saved indivually at .TTY files on (ALTODOCS). This document is filed
as (ALTODOCS) P ACKAGES.EARS.

ALLOC: A boundary-tag storage allocator. (Ed McCreight)

BARGRAPH: displays histograms of arbitrary data on an Alto and prints them
on Ears. (David Boggs)

BFS: The "basic file system" subroutines. These do page-oriented I/O to disk
files organized according to standard Alto conventions. (Butler Lampson)

DPDIVIDE: Computes the quotient and remainder from the division of one 32-
bit 2's complement number by another. (Peter Deutsch)

FLOAT: Floating-point package for the Alto that uses no special microcode.
(Bob Sproull)

FORMAT: Routines for doing formatted I/O. (Ed McCreight)

GP: General-purpose routines for parsing command lines and the like. (Butler
Lampson)

MDI: Subroutine that· looks up multiple files in one pass through the
directory. (Peter Deutsch)

PROC: Creates BCPL processes for the Alto. (Bob Metcalfe)

PICO: Subroutine package for creating filled-area pictures on the Alto. Also
drives Ben Laws run-code display. Documentation is not on-line; consult a
member of the graphics group. (Graphics Group)

RACK: A BCPL storage allocator. (Larry Tesler)

READMU: Subroutine for reading microcode files created by MU. (Chuck
Thacker)

ReadPackedRAM: Allows Alto programs which use the RAM to check the
constant memory and load the RAM as a part of their initialization. (Peter
Deutsch)

SCV: Scan-converts objects from a description of the boundaries of the object.
(Bob Sproull)

SPRINT: Subroutines for driving the Diablo printer. (Chuck Thacker)

TIME: Subroutines for converting time-of-day readings to and from human­
readable form. (Peter Deutsch)

TRACE: Routines for tracing BCPL procedures. (Peter Deutsch)

VMEM: A software virtual memory package for the Alto. (Peter Deutsch)

ALLOC April 25, 1975 3

ALLOC -- A Basic Storage Allocator

The file ALLOC (.SR for BCPL source, .BR for relocatable binary) contains. a small
and efficient non-relocating storage allocator. It doesn't do much, but what it does
it does very well. Initially the user gives the allocator one (or several) blocks of
storage b)' calls on INITIALIZEZONE. The user can later add storage to a zone by
calling ADDTOZONE. The allocator maintains as local state the zone from which it
is currently allocating. To change or initialize this the user calls NEWZONE. The
function ALLOCATE returns a pointer to a block allocated from the current zone.
Calling FREE returns a previously-allocated block to the currently allocating zone.

The function INITIALIZEZONE(ZONE, LENGTH, OOPSRTN, CALLERR) initializes
the block of storage beginning at ZONE and containing LENGTH words to be a free
storage zone. OOPSRTN is taken to be the default allocation error handling routine
for the zone. @CALLERR is set to 2 if the block is too small to contain a zone
header. INITIALIZEZONE retp~ns ZONE as its value .. Thus CALLERR can be
omitted, but only if the block being initialized is certainly larger than the zone
overhead.

The function NEWZONECZONE) sets the allocator's local variable CURZONE to
ZONE, and returns the former value of CURZONE.

The function ADDTOZONE(BLOCK, LENGTH) adds the block of storage beginning
at BLOCK and containing LENGTH words to the zone pointed to by CURZONE. Its
value is a pointer to the zone.

The function ALLOCATE(LENGTH, CALLERR) allocates a block of LENGTH words
from the zone pointed to by CURZONE and returns a pointer to that block.
CALLERR is an o~tional parameter. If the allocation cannot be done and CALLERR
is present, @CALLERR is set to 1 and the value FALSE is returned to the caller. If
the allocation cannot be done and CALLERR is not present, the value returned to
the caller is OOPSRTN(CURZONE, LENGTH), where OOPSRTN is the default
allocation error handling routine declared by the call on INITIALIZEZONE for the
zone pointed to by CURZONE.

The procedure FREE(BLOCK) gives a previously-allocated block of storage back to
the zone ~ointed to by CURZONE. BLOCK must have been the value of a call on
ALLOCATE.

The following implementation of the factorial function illustrates the use of ALLOC:

static [Spare
SparelsAvail
]

let Factorial(n) = valof
[let FactZone = vec 256
let MySpare = vec 37
Spare = MySpare
SpareIsA vail = true

let ErrVar = 0
INITIALIZEZONE(FactZone, 256, StkOvfl, Iv ErrVar)
if Err Var ne 0, then StkOvfl()

let OldZone = NEWZONE(FactZone)
let FactVal = InnerFact(n)
NEWZONE(OldZone)

ALLOC April 25, 1975

resultis FactVal
]

and InnerFact(n) = valof
[structure STKENT:

[link word
value word
]

manifest [empty = -1;
wordslze = 16
]

let stack = empty

while n 15r 1 do
L let stkent = ALLOCATE(size STKENT/wordsize)
stkent))STKENT.link = stack
stkent))STKENT.value = n
stack = stkent

n = n-l
]

let value = 1

while stack ne empty do
[value = value*(stack))STKENT.value)

let stkent = stack
stack = stkent))STKENT.link
FREE(stkent)
]

resultis value
]

and StkOvfl(Zone, Length) = valof
[unless Sp~reIsAvail do

[WS(nAargh! Stack stuck!")
finish
]

ADDTOZONE(Spare, 37)
SparelsAvail = false
resul tis ALLOCA'rE(Length)
]

4

BARGRAPH April 15, 1975 5

BARGRAPH -- A Histogram Plotting Package

BargraJ?h is a package of routines for displa;;ing historgrams of arbitrary data on an
Alto dIsplay and ~rinting same on Ears. fhree other files must be loaded along
with Bargraph.br: Format.br, Ctime.br, and Logscale.br. The first two are standard
utili ty packages available on <alto>. Logscale is a bcpl assembly file for logarithmic
scaling. Bargraph.br and Logscale.br are available as <alto>Bargraph.dm, a dump
file containing the two .br files. The sources are available on <altosource>.

The histograms are 256 bars of maximum height 256 points. Two scaling modes are
presently available: Linear and Logarithmic; if someone needs (and comes up with
the routine to do) another form of scaling, it is easily added. Bargraph will scale
the incoming data so that the largest element is in the upper half of the histogram
if the scaling mode is linear.

A bargraph requires 336 scanlines, thus two can be displayed at once. At present,
the Alto as has only two display streams, so before creating the second bargraph,
you must give the as some storage to use for an additional display streanl. You do
this in the following way:

let ds = vec 100
ADDOBJ(5,ds)

ADDOBJ is an OS procedure and must be declared external. This is I?art of the
'undocumented way' of increasing the number of objects in the as, and IS likely to
change.

The bargraph display consists of 16 border scan lines at the top, 256 scan lines of
graph, 16 border scan lines at the bottom (4 of which are part of the horizontal
axis) and 3 lines of text. The first text line displays vertical scaling information
and the other two are available to the user as title text. A Bargraph consists of 5
items:

ht
cb

db
ts1

ts2

a 256 word vector. htli contains the height of bar i (left to right).
a 16 word vector. cb contains the information about a particular instance
of Bargraph. This is like a stream handle, and must be passed in all calls
to the other procedures in the bargraph package.
a 38x336 word vector. This is the bit map area for the display.
a bcpl string. This is displayed as a line of text below the vertical
scaling information at the bottom of the graph. This should be zero if no
ti tIe string is desired. Do not include carria&e returns.
another ,bcpl string, displayed below ts1. ThIS should be zero if no string
is desired.

BARGRAPH April 15, 1975 6

CreateBarGraph(db,ht,tsl,ts2,cb)

Draws the vertical and horizontal axes with ticks every 16 dots vertically and every
8 bars horizontally. Displays tsl and ts2 below the empty graph. Sets up the cb
vector. Stores away in cb the creation time (from the OS) of the graph.

UpdateBarGraph(cb,mode,extra)

Recreates the bars:raph using the values in ht at the time of the call. cb is the 16
word vector descnbed above. Mode is the scaling mode: 0 = linear, 1 = logarithmic.
Extra is a number added to the internal scaling factor before displaying the vertical
scaling text. This is a kludgy way to display values greater than 21' 16: when an
element of the ht vector overflows, right shift all elements of the vector by 1 and
add one to 'extra'. The verti"al scaling information will now say 'max = 21' 17' for
linear and '21'1 to 21'17' for logarithmic.

Pri n tBarGra ph(c b,mode,s,port)

Generates a Gears format text file which is a fairly faithful copy of what you saw
on the display__ cb and mode are the same as for UpdateBarGraph. s is a stream
opened DISKWOCH. port is a boolean: true for rortrait mode and false for
landscape mode printing. At the' top of the page wil be the creation time of the
graph lsee CreateBarGraph) and the time it was output to the file for printing.
Multiple calls on PrintBarGraph with the same stream will append one graph (one
printed page) to the file for each call. To print, say 'GEARS/D FOO' where FOO is
the name of the disk file.

Destroy BarGra ph(c b)

Destroys the bargraph in an orderly way.

If you have more than two sets of data you would like to display (or print), you
can call CreateBarGraph for each dataset (!) to set up the graphhandle lcb vector),
but use the same db vector (or one of the same two). Since the information for
Updateing and Printing is all contained in cb, once it has been set up, Print and
Update will do the right thing printing or updating the data in the ht vector passed
in the call to CreateBarGraph along with that cb vector (the updated display area
will be the db vector passed along with cb to CreateBarGraph).

BFS March 7, 1975 12

BFS: Basic File System

The Alto basic file system does page-oriented input/output to disk files organized
according to the standard Alto conventions; i. e. each Qage is identified in its label,
and the pages are chained on a doubly-linked list. It also includes facilities for
doing disk operations directly, ignoring the file structure. When properly used, it
can do input/output at full disk speed.

The basic file system consists of two Bcpl source files, BFS.C and DVEC.C, and one
assembly-language file BFSML.C. All these can be found in BFS.DM, together with
a file BFSEXT.C which contains some optional procedures.

1. Data Structures

The following data structures are part of the interface between the user and the file
system:

pageNumber: pages in a file are numbered from O. Page 0 is the leader page, and
the first data page is page 1. The page number is represented by an integer.

DAs: a vector indexed by page number in which the ith entry
address of page i of the file, or one of two special values (which
in statics with the same names):

eofDA: this page is beyond the current end of the file;
fillInDA: the address of this page is not known.

con tains the disk
can also be found

Note that a particular call on the file system will only reference certain elements of
this vector, and the others do not have to exist. Thus, reading page i will cause
references only to DAs!i and DAs!(i+l), so the user can have a two-word vector v to
hold these quantities, and pass v-i to the file system as DAs.

CAs: a vector indexed by page number in which the ith entry contains the core
address to or from which page i should be transfered. The note for DAs applies
here also.

fileId: a three-word vector which contains the serial number and version number
which identify the file. The order of the entries in this vector is the order in
which they appear in a disk label, which is unfortunately not the same as the order
in which they appear in a directory entry:

fileId:
version number
first word of serial number
second word of serial number

directory entry:
flrst word of serial number
second word of serial number
version number
unused word
disk address of leader page

WARNING: the disk address in the directory entry is a virtual address, but all the
basic file system routines expect a real address. The routine RealDA described
below will do the conversion.

BFS March 7, 1975 13

action: a magic number which specifies what the disk should do. Possible values
are:

DCread: check the header and label, and read the data;
DCwrite: check the header and label, and write the data;
DCdoN othing:
DCseekOnly: just seek to the specified track
DCwriteLabel: check the header, write the label and data.

The numbers for these action can be found in statics which are declared external by
the basic file system. There are other operations which are possible, but they are
not normally available to users.

2. Subroutines

There are two high-level calls on the file system:

ActOnPages(CAs, DAs, fileld, firstPage, lastPage, action, IvNumChal's, lastAction,
fixedCA, cleanupRoutine). Parameters beyond "action" are optional and may be
defaulted by omi tting them or making them o.
Here firstPage and lastPage are the page numbers of the first and last pages to be
acted on (Le. read or written, in normal use). This routine· does tile specified
action on each page and returns the page number of the last page successfully acted
on. This may be less than lastPage if the file turns out to have fewer pages.
DAs!firstPage must contain a disk address, but any of DAs(firstPage+1) through
DAs!(lastPage+1) may be fillInDA, in which case it will be replaced wIth the actual
disk address, as determined from the chain when the labels are read. Note that the
routine will fill into DAs!(lastPage+1), so this word must exist.

The value of the numChars field in the label of the last page acted on will be left
in rv IvNumChars. If lastAction is supplied, it will be used as the action for
lastPage instead of action. If CAs eq 0, flxedCA is used as the core address for all
the data transfers. If cleanupRoutine is supplied, it is called with the command
block (see below) as a parameter after the successful completion of each disk
command.

Disk errors are retried five times and then, in the current implementation, call
Swat.

Note that the label is not rewritten by DCwrite, so that the number of characters
per page wi 11 not change. If you need to change the label, you should use
WritePages unless you know what you are doing.

WritePages(CAs, DAs, fileld, firstPage, lastPage, lastAction, IvNumChars,
lastNumChars, fixedCA). Arguments beyond lastPage are optional and may be
defaulted by omitting them or making them 0 (but lastNumChars is not defaulted if
it is 0).

This routine writes the specified pages from CAs (or from fixedCA if CAs is 0, as
for ActOnPages). It fills in pages in the same way as ActOnPages, and also
allocates enough new pages to complete the specified write. The numChars field in
the label of the last page will be set to lastNumChars (which defaults to #1000).
It is not necessar:y for DAs!firstPage to contain a disk address; it may be fillInDA,
and a new page WIll be allocated.

In most cases, DAs!(firstPage-1) should have the value which you want written into
the backward chain pointer for firstPage, since this value is needed whenever the

BFS March 7, 1975 14

label for firstPage needs to be rewritten. The only case in which it doesnlt need to
be rewri tten is when the page is already allocated, the next page is not being
allocated, and the numChars field is not changing.

If lastPage already exists:

1) the old value of the numChars field of its label is left in rv IvNumChars.

2) if lastAction is supplied, it is applied to lastPage instead of DCwrite. 'It
defaults to DCwri teo

In addition to these two routines, there are two others which are not strictly part
of the basic file system, but which do not use any other data structures:

CreateFile(name, filePtr) creates a new disk file and writes the name into its leader
page. It returns the serial number and leader disk address in the structure filePtr.
A newly created file has one data page (page 1) with numChars eq o.
DeletePages(CA, firstDA, fileld; firstPage) deletes the pages of a file, starting with
the page whose number is firstPage and whose disk address is firstDA. CA is a
page-sized buffer which is clobbered by the routine.

These two routines can be found on BFSEXT.C, a Bcpl file which can be appended
to BFS.C if you want a version of the BFS which has them.

3. Lower Level Use

It is also possible to use the file system at a lower level. This level uses two data
structures, zones (defined by the structure CBZ) and control blocks (cbls, defined by
the structure CB). The general idea is that a zone is set l!P with disk command
blocks in it. A free block is obtained from the zone with GetCb and sent to the
disk with DoDiskCommand. When it is sent to the disk, it is also put on the queue
which GetCb uses, but GetCb waits until the disk is done with the command before
returning it, and also checks for errors.

If you plan to use these routines, I recommend that you read the code for
ActOnPages to find out how they are intended to be called.

Ini tializeCbStorage(zone, length, firstPage, retry) Zone is the address of a block of
length words which can be used to store CbIS. It takes at least three CblS to run
the disk at full speed; CBzoneLength is a constant which gives the size of a zone
which can hold three CbIS. FirstPage is used to initialize the currentPage field of
the zone. Retry is used to ini tialzize the retry fields of all the cbls.

GetCb(zone) returns the next cb for the zone. If the next cb is still on the disk
command queue, the routine waits until the disk has finished with it. Before
returning a cb, GetCb checks for errors. If it finds one, it increments
zone) >CBZ.errorCount. If this number is ge the static maxEC, GetCb calls Swat.
Otherwise, after doing a restore on the disk if errorCount ge restoreEC, it
reinitializes t~e zone with first;page equal to the pase wi~h the error, and returns .to
cb))CB~retry Instead of returnIng normally. The Idea IS that the code there WIll
retry all the incomplete commands. If there is no error, cb> >CB.cleanupRoutine is
called (if it is non-zero) with cb as its ar~ument. Then the numChars field of the
label is copied into the currentNumChars fIeld of the zone, and the errorCount field
of the zone is cleared. Next, unless GetCb was supplied with a true second
argument, the cb is zeroed. Finally, the cb is returned as the value of GetCb.

BFS March 7, 1975 15

DoDiskCommand(cb, CA, DA, fileId, pageNumber, action) Constructs a disk command
in cb with data address CA, disk address DA, serial and version number taken from
fileId, page number taken from pageNumber, and disk command specified by action.
It expects the cb to be zeroed, except that the following fields may be preset; if
they are zero the indicated default is sUPflied:

labelAddress Iv cb> >CB.labe
numChars 0
normalWakeups cb> >CB.zone> >CBZ.normaIWakeups
error W akeups c b > >CB .zone > >CBZ.error W akeu ps

If DA eq fillInDA, the DA field is not set; presumably it is the target of the label
for a previous command. Actions are checked for legality (left byte eq #321).

4. Allocating Disk Space

The basic file system also contains routines for allocating disk space. They need to
have the follOWIng statics supplied to them (values in parentheses are for a Diablo
31):

nTracks:
nHeads:
nSectors:
diskBi tTable:

the
the
the
the
the
the

number of tracks on the disk (203)
number of heads per track (2)
number of sectors per revolution (12)
address of a vector containing
disk bit table

diskBTsize: size (words) of the disk bit table (305)

The bit table can be found on the disk in a file called "SYS.STAT". Its format is:
diskBTsize words: the bit table
1 word: 0
2 words: the largest serial number used so far

There are four routines:

VirtualDA(real disk address) returns the virtual disk address.

ReaIDA(virtual disk address) returns the real disk address.

AssignDiskPage(reaIDA) returns the real disk address of the first free Ilage
following realDA, according to the bit table, and sets the corresponding bit. It aoes
not do any checking that the page is actually free (but WritePages does). If there
are no free pages it calls Swat.

ReleaseDiskPage(reaIDA) marks the page as free in the bit table.
anything on the disk (but DeletePages does).

These routines are used by WritePages, CreateFile and DeletePages.

I t does not write

DPDIVIDE May 15, 1975 16

32-by-32-bit division routine

There is now an assembly code routine available to compute the quotient and
remainder from the division of one 32-bit 2's complement number by another. This
is not a trivial <?peration (see Knuth, vol. 2, pp. 237 ff.). The calling sequence is

flag = DPDIVIDE(numerator, denominator, quotient, remainder)

where each of the four arguments is a pointer to a 2-word vector containing a 32-
bit number (high-order word first). If overflow would occur, which can happen
only when the denominator is zero, DPDIVIDE returns true and does not affect the
quotient or remainder vectors. If no overflow occurs, DPDIVIDE returns false and
stores the appropriate results in the quotient and remainder vectors. The remainder
always has the same sign as the denominator, and its magnitude lies in [0,
abs(denominator)); the quotient is I?ositive if the numerator and denominator have
the same sign, negative (if not zero) if they have different signs. DPDIVIDE takes
about 5 to 10 times as long as an ordinary 32-by-16-bit division: it does NOT use
repeated subtraction and shifting.

FLOAT March 29, 1975 17

FLOAT

FLOAT is a floating~J?oint package for the Alto, intended for use with BCPL. (It
uses standard Alto Inlcrocode -- no special instructions are needed.) There are 32
floating-point accumulators, numbered 0-31. These accumulators may be loaded,
stored, operated on, and tested with the operations provided in this package.
'Storing' an accumulator means converting it to a 2-word packed format (described
below) and storing the packed form.

In the discussion below, 'ARG' means: if the 16-bit value is less than the number of
accumulators (32), then use the contents of the accumulator of that number.
Otherwise, the 16-bit value is assumed to be a pointer to a packed floating-point
number.

All of the functions listed below that do not have "==>" after them return their
first argument as their value.

1. Floating point routines

FLD (acnum,arg)

FST (acnum, ptr-to-num)

FTR (acnum) ==> integer

FLDI (acnum,integer)

FNEG (acnum)

FAD (acnum,arg)

FSB (acnum,arg)

Load the specified accumulator from source
specified by argo See above for a definition of
'arg'.

Store the contents of the accumulator into a 2-
word packed floati~g point format. Error if
exponent is too large or small to fit into the
packed representation.

Truncate the floating point number
accumulator and return the integer value.
number in ac cannot fit in an
represen ta ti on.

in the
Error if

integer

Load-immediate of an accumulator with the integer
contents (signed 2's complement).

Negate the contents of the accumulator.

Add the number in the accumulator to the number
specified by arg and leave the result in the
accumulator. See above for a definition of 'arg'.

Subtract the number specified by 'arg' from the
number in the accumulator, and leave the result in
the accum ula tor.

FML (acnum,arg) [also FMP] Multiply the number specified by 'arg' by the
number in the accumulator, and leave the result in
the ac.

FDV (acnum,arg) Divide the contents of the accumulator by the
number specified by arg, and leave the result in
the ac. Error if attempt to divide by zero.

FLOAT March 29, 1975 18

FCM (acnum,arg) ==> integeComp,are the number in the ac with the number
s-'peclfied by 'arg'. Return

-1 IF ARGI < ARG2
o IF ARGI = ARG2
1 IF ARGI > ARG2

FSN (acnum) ==> integer Return the sign of the floating point number.
-1 if sign negative
o if value is exactly 0 (quick test!)
1 if sign positive and number non-zero

FLDV (acnum,ptr-to-vec) Read the 4-element vector into the internal
representation of a floating point number.

FSTV (acnum,ptr-to-vector) Write the accumulator into the 4-element vector in
internal representation.

2. Double precision fixed point

There are also some functions for dealing with 2-word fixed point numbers.
functions are chosen to be helpful to DDA scan-converters and the like.

The

FSTDP(ac,ptr- to-num)

FLDDP(ac,ptr-to-num)

DPAD(a,b) => ip

DPSB(a,b) => ip

DPSHR(a) => ip

Stores the contents of the floating point ac into
the specified double-precision number. First word
of the number is the integer part, second is
fraction. Two's complement. Error if exponent too
large.

Loads floating point ac from dp number.

a and b are both pointers to dp numbers. The dp
sum is formed, and stored in a. Result is the
integer part of the number.

Same as DP AD, but subtraction.

Shift a double-precision number right one bit, and
return the integer part.

3. Format of a packed floating point number

structure FP: [
sign bit 1 I II if negative.
expon bit 8 Ilexcess 128 format (complemented if number <0)
mantissa 1 bit 7 IIHigh order 7 bits of mantissa
mantissa2 bit 16 IILow order 16 bits of mantissa

]

Note this format permits 12acked numbers to be tested for sign, to be compared (by
comparing first words first), to be tested for zero (first word zero is sufficIent), and
(with some care) to be complemented.

FLOAT March 29, 1975 19

4. Errors

If you wish to capture errors, put the address of a BCPL subroutine in the static
FPerrprint. The routine will be called with one parameter:

o Exponent too large -- FTR
1 Exponent too large -- FST
2 Dividing by zero -- FDV
3 Ac n urn ber out of range (any rou tine)
4 Exponent too large -- FSTDP

FORMAT March 31, 1975 20

FORMAT An Output Formatting Package

The file FORMAT (.SR for BCPL source, .BR for relocatable binary) contains a set
of subroutines whIch implement a reasonably nice set of outfut formatting
primi tives and a reasonably nice protocol for invoking them. A call 0 the form

FORMAT(S, F, VI, V2, ... , Vn)

will copy the BCPL string F into the BCPL string S, except that items in F
delimited by angle brackets «» will be interpreted as format srecifications. For
those, the format sIl_ecification and the next input variable Vi wil determine what
will be put into S. The current format specifications are:

<S) The variable is a BCPL string and is to be copied into S.
<UPS>The variable is an unpacked string (V!O is the number of characters

and V!1 throut:'u V!(V!O) are the characters) to be cOJ2ied into S.
<C> The variable contaIns a single ASCII character, right-justIfied.
<D> The variable is numeric, and should be represented as signed decimal.
<UD> unsigned decimal.
 unsigned octal.
<OCT) ~nsigned octal.
<SB) slgned octal.
<SOCT) signed octal.
<BIN) unsigned binary.

In addition, the format specifiers take two optional numeric parameters (numbers
represented using BCPL conventions) which give the minimum length and fill
character to be used in the conversion. For example <OCT #20 $0) will produce an
octal number at least 16 (and, in fact, at most 16) characters long, right-justified
and padded to the left with zeros.

FORMATN is exactly like FORMAT except that by a small subterfuge it supplies its
own local string, whose address it returns. This string will not change from one call
of FORMATN to the next, so that something like WS(FORMATN("It is <D>.",
1975)) will work perfectly.

Finally, the package includes a concatenation routine. After a call of the form

CONCATENATE(D, SI, S2, ... , Sn)

D will be a BCPL string which is the concatenation of the BCPL strings SI, S2, ... ,
Sn, in that order.

GP: parse command lines April 2, 1975 21

GP: Routines for parsing command lines

The routines described here are a convenient package for parsing command lines and
doing a few related functions. They may be found in GP.C (source) and GP.BR
(binary). The source needs OSSYMS to compile. No external routines are called
except those supplied by the operating system.

An "unpacked strin~" is a vector v such that v!1, v!2, ... , v!(v!O) contain the
characters of the strlng, one per word, right justified.

A "parameter" in a command line is a maximal sequence of characters not containing
$*S or $*N. All the characters before the first $1 are the "body"; the remaining
characters, with any $1 characters ignored, are the "switches". Thus

BCPL/F FOO.SR

contains two parameters. The first has body "BCPL" and switches "F". The second
has body "FOO.SR" and no switches.

SetupReadParam (stringVec, switchVec, stream, comSwitchVec)

stringVec is a vector whose length in words should be greater than the
number of characters in the longest body in the command line. A 0
defaults it to a 256-word vector inacessible to the user; this may be
useful if all the parameters of the command are files or numbers (see the
discussion of ReadParam below).

switchVec is a vector whose length in words should be greater than the
largest number of switches on any unit in the command line. A 0
defaults it to a 128-word vector inaccessible to the user.

stream is an OS character stream from which the command line will be
read. It will not be RESET or CLOSED. A 0 defaults it to the disk file
"COM.CM". The stream is left in the external static ReadParamStream.

comSwitchVec is a vector whose length in words should be greater than
the number of switches on the first unit in the command line. A 0
defaults it to switchVec.

Missing parameters are defaulted.

This routine initializes the parameter-reading machinery. It then does a
ReadParam() which will pick off the first parameter (i.e., the name of the program)
and leave tne name and switches as unpacked strings in stringVec and comSwitchVec.
If either of these was defaulted to an inaccessible vector, the corresponding
information is lost.

GP: parse command lines April 2, 1975 22

ReadParam (type, prompt, resultVec, switchVec, returnOnNull)

type is an integer or Bcpl string representing the expected type of the
parameter. If type < 256, it is interpreted as a character which must
select a defined type from the list described below. If type) 256 it is
treated as a Bcpl string. If the string is one character Tong, it is
interpreted as though that character had been used. If it is longer, the
first two characters must select a defined type from the list below.

prompt is a Bcpl string which is used to prompt the user for another try
at the parameter if a syntax error is discovered. A 0 defaults it to urfry
again: ".

resultVec is a vector used to return the result for types which need more
than one word to r~resent their result. A 0 defaults it to the stringVec
passed to SetupReadParam.

switch Vec is a vector used to return the switches as an unpacked string.
A 0 defaults it to the switchVec passed to SetupReadParam.

returnOnNull is a boolean which decides what to do if the parameter
body is null. It defaults to false.

Missing parameters are defaulted. If type is missing, it is defaulted to O.

One parameter is read from the stream passed to SetupReadParam. The switches are
separated off and left in switchVec. Any $1 characters among the switches are
stripped off. If there are no switches, switchVec!O will be o.
Then the body is handled in a way which depends on the type:

0: It is returned in resultVec as an unpacked string. Result is resultVec.

P: It is returned in resultVec as a packed (Bcpl) string. Result is resultVec.

I or IC: It is treated as the name of an input character file, to be opened with
OPENAFILE(body, DISKROCH). If the 02en fails, _prompt for another
name. Result is the stream returned by OPENAFILE. In addition, the
file name is returned in resultvec as a Bcpl string.

IW: Like I, but a word stream is created.

o or OC: Like I, but GETAFILE(body, DISKWOCH) is called.

OW: Like 0, but a word stream is created.

F: Like I, but GETAFILE(body, DISKRW) is called.

EF: Like I, but OPENAFILE(body, DISKRW) is called.

B: An octal number is collected and returned. Numbers may start with #,
which forces them octal, and may end with B, b, 0, or 0 (which forces
them octal) or with D or d, which forces them decimal. Anything else is
a syntax error and causes a prompt for another number. Result is the
number.

D: Like B, but for decimal number.

GP: parse command lines April 2, 1975 23

Any undefined type results in a call on Swat.

If the body is empty, ReadParam immediately_ prompts, without generating an error
message from the null body, unless returnOnNull is true or prompt eq -1, in which
case it returns -1 when it sees a null body. When prompting for new input, DEL
cancels whatever has been typed and allows another try, and BS and control-A
backspace one character.

EvalParam (body, type, prompt, resultVec)

body is an unpacked string

the other arguments are like the corresponding ones for ReadParam.
resultVec defaults to body.

body and type may not be omitted.

Works exactly like ReadParam, using body as the parameter body. Does nothing
about switches. This routine is useful for programs whose interpretation of
parameters depends on the switches attached to them.

ReadString (result, breaks, inStream, edi tFlag, prompt)

result is a vector in which the string read will be returned, unpacked.
May not be defaulted.

breaks is a Bcpl string containing the characters which will cause reading
to terminate. Defaults to "*N".

inStream is the stream to read from. Defaults to KEYS.

editFlag says whether DEL, BS and control-A should be interpreted as
edi ting characters. If it is false, they are not. Otherwise they are, and
furthermore, editFlag is taken as the stream on which echoing of the
input should be done. It defaults to false unless inStream is KEYS, in
which case it defaults to DSP.

prompt is echoed after a DEL. It defaults to ""

Reads characters from inStream until one of the characters in breaks is encountered,
leaving the characters read in result as an unpacked string. Returns the break
character. Allows editing of the input as described under editFlag above.

GP: parse command lines April 2, 1975

DefaultArgs (lvNa, first, dO, dl, ...)

This routine should be called only in the following context:

and Foo (aO, aI, a2, a3; numargs na) be [

Default Args (Iv na, 1, "alpha", 12)

24

IvNa is the Iv of the numargs formal (na in the example), which MUST
have been present in the declaration of the routine or function which
calls DefaultArgs. It must not be omitted.

first is the number of the first argument which may be defaulted,
counting from o. It defaults to O. If fewer than first arguments were
supplied to the calling routine, Swat is called. If first is negative, its
absolute value is used, and actual arguments from first on which are zero
are replaced by the corresponding default values.

dO, dl, etc. are the default values for arguments p!first, p!(first + 1), etc.
There must not be more than 10 of them.

Checks that at least first arguments were supplied to the caller, and calls Swat if
not. Let ai be the last ar~ument supplied to the caller. Sets a(i + 1) = d(i - first)!
a(i + 2) = d(i - first + 1), and so on for all the parameters in the caller's forma
parameter list. If not enough ds were supplied, the last one is used repeatedly.

In the example above, a call of Foo(n) will result in

aO = n
al = "alpha"
a2 = 12
a3 = 12

after the call of DefauItArgs.

AddItem (vek, value)

vek is a vector whose current size is given by vek!O.

value is an uninterpreted 16-bit quantity.

Increments vek!O and stores value at the new vek!(vek!O).

MDI April 25, 1975 25

MDI: Multiple Directory Lookups

There is now available a routine to look up a group of file names in a directory in
a single pass, and return the directory entries without actually opening the files.
This may be useful for programs (such as BLDR) which wish to avoid time­
consuming multiple scans of a directory. It may be found on MDI.BR.

The code is written in BCPL. It declares one entry procedure LOOKUPENTRIES,
and only uses standard procedures from the operating system.

LOOKUPENTRIES(S, NAMEVEC, tpRVEC, CNT, FILESONLY)

S is a directory: it must be a disk stream (for example, SYSTEMDIR).
LOOKUPENTRIES resets S and then reads through it. NAMEVEC is a vector of
CNT strings, the file names. PRVEC is a vector of DIRPREAMBLESIZE*CNT
words, where LOOKUPENTRIES stores the directory preambles corresponding to
NAMEVEC. If a given name is not found, its block in PRVEC will be zeros: since
the first word of a directory entry can never be zero, one can test the first word of
the PRVEC block to determine if a name was found. If FILESONLY is true,
LOOKUPENTRIES will onlJ: check directory entries that designate real files; if
false, LOOKUPENTRIES will check all entries (including links, or any other types
that may be defined eventually).

LOOKUPENTRIES returns the number of names not found. Thus if all names were
found, LOOKUPENTRIES returns zero.

Process Primi ti ves June 30, 1975 26

Process Primitives

These Process Primitives are a minimal set of procedures for creating BCPL
processes for the Alto.

The example program BOUNCE.C (2 pages of BCPL with PROCC and PROCA) is
intended to teach the use of these procedures; you must study the example while
reading this documentation. An understanding of the Alto interrupt system is
helpful.

The process procedures establish and maintain a set of contexts, each normally
associated with an Alto priori ty interrl!pt level. The levels are numbered from 1 to
16 and carry enough state so that a BCPL-coded J?rocess can operate in each. Level
1 has the highest priority and is currently assigned to a pari ty process by the
operating system; level 9 is used by SWAT; and level 13 is the keyboard process.

A program wishin~ to use the jJrimitives must first call InitProcessSystem() which
(1) clobbers BCPLs GETFRAME so that it will fall into SWAT if a stack overflow
occurs, (2) establishes the main pro?ram level (16) as a process with a PCB (process
control brock), and (3) fixes BCPL s FINISH to restore the state of the interrupt
system before returning to the operating _system. The 1st and 3rd of these
functions will not be required when GETFRAME is fixed and when the OS properly
initializes the interrupt system between subsystems. The first function is
important, you should note, because there can now be more than one stack to
overflow.

To create a process, BeginProcessInit(Level,Stack,Size) and EndProcessInit(StartPC)
must be called. The ~rocess must be assigned an interrupt level (Level=1-15) and
some space for a BCPL stack if required (say Stack=GetFixed(100) and Size=100).
BeginProcessIni t returns the address to which the Alto should transfer control when
the process is to be awakened. EndProcessIni t finishes initialization of the process
and provides the process's starting PC. The initial context of the process is a copy
of the stack frame of the procedure calling BeginProcessIni t. Between the call to
BeginProcessInit and the matching call to EndProcessInit, the calling procedure
executes in the context of the new process and initialization can be performed.
After initialization, the process is ready to be awakened. Normally, the process's
wakeup address is placed in the Alto's interrupt vector, the associated level is
enabled, and wakeups are be~un. Wakeugs can be generated either by some input­
outRut device (e.g., the dIsplay, the Ethernet) or by another process. lSee
BOUNCE. C)

Process Primi ti ves June 30, 1975 27

The ~rocedure WakeUpBits(Bits) ORs Bits into the Alto interrupt system's
WakeUps\Vaiting word thus causIng interrupts to take on the specified interrupt
channel(s) if activated.

The procedure WakeUp(LeveI) checks that Level is a legal level number (1-16) and
that the interrupt vector is fixed up to receive an interrupt on that level. If so, it
computes the appropriate interrupt bit and calls WakeUpBIts.

The procedure Block() is executed by a process to stop computing and await a new
wakeup. Block() saves the state of the calling process and restores the state of the
preempted lower-priority process.

Once awakened, a process continues to run until either it blocks or is preempted by
a higher priority (lower numbered) ,Erocess. Thus, a process is in one of three
states: (1) running, (2) suspended, or l3) blocked.

The procedures DisableInterrupts() and EnableInterrupts() do an Alto DIR and EIR,
respectively.

The procedure MoveBlock(Dst,Src,Num) moves Num memory words from Src to Dst.

Process Primitives June 30, 1975 28

The sources PROCC.C (4 _pages of BCPL) and PROCA.A (4 pages of ALTOASM) are
in (ALTOSOURCE)PROCSOURCES.DM; the BRs are in (ALTO)PROCBRS.DM.

We plan to add these process primtives to a future version of the Alto OS. Earlier
verSlons of these procedures are now being used in Ears, Gears, Maxc, FTP, Bravo,
and assorted others.

A companion set of utility procedures for process scheduling and communication
exists and is now being documented.

Two improvements to these procedures are already on a list. The first is to
generalize the stack frame allocation scheme now in GETFRAME so that frames can
be allocated from a heap. The second is to provide procedures for switching among
numerous processes at level 16. Can you suggest some others?

Process Primi ti ves June 30, 1975

Ilbounce.c - Example use of ~rocess primitives - Bob Metcalfe
Ilbldr bounce procc proca inl tal toio

external

manifest

[
INITALTOIO; GetFixed; WS; WO
BeginProcesslni t; EndProcesslni t; Ini tProcessSystem
Disablelnterrupts; Enablelnterrupts; Block; WakeUp
]

[
AdrCursor Map=#431
AdrCursorX=#426; AdrCursorY=#427 IICursor X&Y
AdrMouseX=#424; AdrMouseY=#425 IIMouse X&Y
MouseLevel=15; FlashLevel=14 IIProcess levels
]

IIMain program; initializes pr('r.esses and loops WSing
let BounceMain() be
[BounceMain
INITALTOIO() IILink to OS 10
lni tProcessSystem()
@#453=11~01 IISwat and parity wakeups only 5not old keyboard)
lni tFlashCursor(FlashLevel,GetFixed(50),50) I Make cursor flasn
Ini tBounce(MouseLevel,GetFixed(50),50)

I/Strange mouse control of cursor
[WS("*NCursor XY "); WO(@AdrCursorX); WO(@AdrCursorY)] repeat
]BounceMain

IIProcess which makes cursor a bouncing ball with shove from mouse
and Ini tBounce(Level,Stack,Size) be
[lni tBounce
let WakeBit=1 lshift (Level-I) IIBit of chosen process level
@(#500+ Level)=BeginProcesslni t(Level,Stack,Size) I lInt dispatch
@AdrCursorX=O; @AdrCursorY=O I I At top left
@AdrMouseX=O; @AdrMouseY=O IINo shove
let CursorSjJeedX=O; let CursorSpeedY =0 I IN ot mavinS'
EndProcesslnit(MouseFix) IIProcess init ended; give Init PC
Disa bleln terrupts()
@#421=(@#421)%WakeBit I I Arrange J?eriodic wakeup from display
@#453=(@#453)%WakeBit I I Activate Interrupt
Enablelnterrupts()
return IIProcess Ini tialized and running, proceed at level 16

MouseFix: IIComes here when process first awakened
CursorSpeedX=Li mi t(CursorSpeedX +(@AdrMouseX/ 2), -30,30) IIShove cursor
CursorSpeedY =Limi t(CursorSpeedY +(@AdrMouseY/2),-30,30)
@AdrcursorX=Limit~@AdrCursorx+cursorspeedx,0,606-16) IICursor is moving
@AdrCursorY=Limit @AdrCursorY+CursorSpeedY,0,808-16)
@AdrMouseX=O; @A r Mouse Y =0 I IIncremen tal shoves .
if !@Adrcursorx Ie 0) then CursorSpeedX=Abs(CursorSpeedX) IIBounce
if @AdrCursorY Ie 0) then CursorSpeedY=Abs(Cursor~peedYl
if @AdrCursorX ge 606-16) then CursorSpeedX=-Abs(CursorSpeedX)
if @AdrCursorY ge 808-16) then CursorSpeedY=-Abs(CursorSpeedY)
if (@AdrCursorX eq O)&(@AdrCursorY eq 0)) then

[
@AdrMouseX=O; @AdrMouseY=O IINo shove
CursorSpeedX=O; CursorSpeedY =0 I IN ot moving
]

WakeUp(FlashLevel) IIProvide periodic wakeup of flashing

29

Process Primitives June 30, 1975

Block()
IIDone for now, let lower processes run until next display wakeup
goto MouseFix I I Awake again, do the same thing again
JIni tBounce

IIProcess which flashes cursor (gra:{ and black slowly)
and InitFlashCursor(Level,Stack,Size) be
[lni tFlashCursor
let WakeBit=1 lshift (Level-I) IIBit of chosen process level
@(#500+Level)=BeginProcessInit(Level,Stack,Size) I lInt dispatch
EndProcesslnlt(B~inFlaSh) IIProcess init ended; give init PC
DisableInterrupts
@#453=(@1I453)% akeBit I I Activate interrupt
Enablelnterrupts()
return II Process Initialized and running, proceed at level 16

IIPeriodically sweep cursor on and off (driven by mouse routine)
BeginFlash:
for i=O to 15 do [@(AdrCursorMap+i)=-I; Block()] IIGradually blacken
for i=O to 15 do [@(AdrCursorMap+i)=#125252; l3lockO] IINow gray
go to BeginFlash
Jlni tFlashCursor

and Abs(Value)=valof
[test (Value Is 0) ifso resultis (-Value) ifnot resultis (+Value)]

and Limit(Val,Min,Max)=valof
[if (Valgr Max) then Val=Max; if (Val Is Min) then Val=Min;

resul tis Val]

30

RACK May 14, 1975 31

"RACK" Storage Allocator

May 7, 1975 (rev. May 14, 1975)

The RACK is an Alto BCPL storage allocator with the following properties:

When a record is created, both a movable "instance" and an immovable "finger"
are allocated, each pointing at the other.

Every record is accessed indirectly through its finger.

Instances are allocated in a stack-like manner.

If the rack overflows trying to allocate, it compacts.

Incremental compaction can be done during waits.

Records that exist for a long period of time sift to the bottom of the rack and
do not take the time of the compacter.

Every record belongs to a "class". Most classes have fixed-length instances, but
class "array" has variable length instances.

Every instance has a three word header. Counting the finger, the total
overhead is four words per record. The header contains: Back pointer to the
finger; Class; Length of Data.

A record can be "changed" by repointing its finger; for example, the length of
an array can change;

There may be several racks, each with its own fingers.

This document describes the highlights of the package. For more details, see the
comments before each procedure in the source code.

1. VECTORS

It is assumed that the caller has a vector allocator to allocate immovable permanent
storage in memory. As you know, a vector 'x' is accessed by:

Structured vector access
x»S.f.

The

Subscripted vector access
x ! i

RACK p_ackage provides the following procedures to operate on vectors:
FillVec(dest, value, nwords)

dest[O:nwords-1]f-value
Zero V ec(dest~ nwords)

destLO:nwords-1]f-O
MoveVec(dest, source, nwords)

dest[O:nwords-1]f-source[O:nwords-1]

RACK May 14, 1975 32

2. RECORDS

A record 'x' is accessed through its finger lJ)1:
x> >0 OR R(x) OR W(x)

These are all equivalent, but the first form IS fastest. They all provide indirect
access to the record through a finger. Rand Ware provided for users who expect
later to upgrade their storage management system to one which has more complex
access, such as virtual memory. Similarly, the redundant functions Rsub(x,i) and
Wsub(x,i,value) are provided for compatibility with more complex access methods,
such as virtuaf memory and hash tables.

Read from structured record
value = x> >0> >S.f
value = R(x» >S.f

Wri te into structured record
x> >0> >S.f = value
W(x» >S.f = VP lue

Read from subscripted record
value = x»o ! i
value = R(x) ! i
value = Rsub(x, i)

Write into subscripted record
x»o ! i = value
W(x) ! i = value
Wsub(x, i, value) / / resultis value

The procedures in this package take fingers as their arguments and return fingers
as their values -- never instances. IT IS STRONGLY RECOMMENDED THAT ALL
REFERENCE TO A RECORD BE THROUGH ITS FINGER. Such caution will
prevent BUGS due to the instance moving out from under you.

3. MAKING RECORDS

An array "tbl" of n elements can be made by:
let tbl = Array(n)

A structure "e" of class "employee" can be made by:
let e = New(employee)

All fields of a new record are zero.

4. FREEING

A record is freed b~:
Free(record

This frees both t e finger and the instance. Further access to the record is
impossible. Its space will be reclaimed during a subsequent compaction.

RACK May 14, 1975

5. FILLING RECORDS

Fill(dest, value)
Every field is set to "value".
E.G., let tbl = Fill(Array(25), -1)

Zero(dest)
Every field is set to o.

Load(dest, a, b, c, ...)
rrhe record is loaded word by word from a, b, c,
E.G., let e = Load(New(employee), "Joe Doe", 52, $M)
Limi t: 33 fields.

Move(dest, source)
The fields of dest are copied from those of source.
(There are other calling sequences to move subrecords.)

dest = CQpy(source)
Makes a duplicate of source.

6. MULTIPLE RACKS

33

Records are allocated on the rack "defaultrack" unless otherwise specified. The
following functions have an optional last argument which overrides defaultrack:

Array(length, rack)
Copy(source, rack)
N ewe class, rack)

The rack that contains a certain record can be determined by:
Rack Wi the record)

7. COMPACTING

If you want to compact a little bit of a rack from a user wait loop, call:
CompactRack(rack)

If the rack is alreaay compact and nothing needs to be moved, it returns false.
Otherwise, it moves one instance and returns true.

8. LENGTHS

The length of data in any record can be determined by:
Length(record)

The length of an array record can be changed by:
ChangeLengtht tbl, new length)

What this does is to allocate a new array, move the data from the old one, swap the
fingers, and deallocate the old instance and the new finger. If you would like to
glay similar games with other data types, see the procedures ChangeLength() and
Change() in RACK.C.

RACK IVlay 14, 1975

9. CLASSES

The class of a record can be determined by:
Class(rec)

To make a new class 'emJ!IQ)"ee', do this:
structure EMPLOYEE:

[
name
age
sex
]

word
word
word

/ / string
// integer
/ / character

employee = MakeClass("employee", size EMPLOYEE/16)

34

To make a class of variable length instances, imitate the code for 'classarray' in
RACK.C.

10. LOADING AND INITIALIZING THE PACKAGE

Load RACK.BR and RACKML.BR (2300b words) with your program. The program
should include code like this:

get "RACK.DF" / / declares external statics such as 'rackvec'

structure XXX: / / or whatever classes you have
[
fld word

static [r
rackyyy / / or whatever racks you want
rackzzz

classxxx

let maine v) be
[

/ / or whatever classes you have

let t = vec maxnumracks / / maxnumracks=lO in RACK.DF
rackvec = t
rackyyy = MakeRack((bot), (top»)
rackzzz = MakeRack((bot), (top»
MakeBasicClassesf)
classxxx = MakeClass("xxx", size XXX/16)

j"

and
let Error(string) be Swat()

The first rack created by MakeRack() becomes the initial 'defaultrack'.

RACK May 14, 1975 35

11. BASIC CLASSES

MakeBasicClasses() makes classes called "classclass" and "classarray". Instances of
class "classclass" have two fields: "title" and "length". For example:

Class(New(employee)) : employee
R(employee»>CLASS.title : "employee"
R(employee»>CLASS.length : 3

Classes of variable length instances do not have a classwide length, so:
R(classarray»>CLASS.length : 0

12. OTHER PROCEDURES

See RACK.C for more information about the procedures mentioned above, plus:
ChangeClass(record, newclass)
En umera teRacks(proc)
EnumerateRecords(proc, rack, justclass)
FindRecord(proc, rack, justclass)
InRack(record, rack)
SwapInstances(record1, record2)

In RACKML.A are provided:
MulDiv(a,b,c) a*b/c, with interim product in double precision
Min(a, bl Signed minimum
Max(a, b Signed maximum
Umin(a,) Unsigned minimum
Umax(a, b) Unsigned maximum
Usc(a" b) Unsigned compare = a<b?-l, a=b?O, a>b?l
Swat()

13. POSSIBLE IMPROVEMENTS

Users who are convinced by the SPY or by other methods that RACK performance
is inadequate for their needs can improve it in several ways. There are various
places where space can be traded off for speed, speed of allocation for speed of
compaction, speed for code length, and so forth. Certain routines are good
candidates for machine code, notably Class(), Length(), InRack(), and RackWith().

If you have only one rack, you can s~eed up Free(~ and certain other functions by
replacing every call of "RackWith(...)' by simply 'defaultrack". If you have only
two racks, Rack Wi the) can be simplifIed to an unsigned compare.

If you regard all records as array,s, you can eliminate the entire class mechanism
and combine the procedures ArrayL) and AllocateD into a single routine.

RACK May 14, 1975 36

14. CHECKING PROCEDURES

It is not necessar:y to load CHECK.C to run the RACK package, but if it is loaded
(in 1200b words) It provides:

Error(string)

Check(string)

Iden ti ty(x)

Random(lo, hi)

A procedure of this name is required by. RACK.C.
Thls version of ·Error just calls Swat().

Calls Error(string) unless string=false.

Returns x

A random integer between 10 and hi inclusive.

There are also routines with names like Badxxx() which are called like this:

Badxxx(x) Returns false if x good, returns an error string if
x bad

Badxxx(x, 1?roc) Returns false if x good, calls J2roc(string) if x bad
Badxxx(x, Check) is equivalent to Check(Badxxx(x)) except in tile former case Check
is called from wi thin Badxxx so Swat is more helpful.

BadName(string [,proc]) Approves strings of letters and digits.

BadRack(rack [,proc]) Approves well-formed racks.

BadRecord(record [,proc]) Approves consistent records.

BadOrder(a1, ... ,an) and
BadStrictOrder(a 1, ... ,an) Test for unsigned ascending sequence. They may

take 1 or monegumen ts: but no proc.

Checking procedures can be used to close in on mysterious bugs.

Another condition you might want to check is that the number of records in the
rack changes by a certain number (like 0) during a computation. The number of
records in rack "rackyyy" is determined by:

rackyyy)) RACK. records

15. SUPPORT

This package will be maintained by the author (Larry Tesler).

16. NEWS

May 14, 1975: Changed RACK.DF and RACK.C -- Fixed bugs; made Enumerators be
routines instead of functions; added FindRecord().

READMU March 21, 1975 37

READMU

A library routine is now available for reading MU binary output. This routine may
be useful for those interested in debugging, analyzin&" or otherwise manipulating
Alto microcode. The packa&,e is called HEADMU; it 1S written in BCPL and the
only file required to use 1t is READMU.BR. It declares one entry procedure,
ReadMU, and one entry static, MuSegNo. The arguments to ReadMU are (stream,
wri teram, wri tecon, definename) of which only stream is required. 'fheir
significance is as follows:

stream must be a word-oriented input stream, the MU binary file. ReadMU
only reads from this stream.

writeram(addr, hipart, lopart) is called for every instruction in the file. If the
writeram argument is missing or 0, instructions are discarded.

writecon(addr, value) is called for every constant in the file. If writecon is
miss1ng or 0, constants are discarded.

definename(addr, strin~, memoryid) is called for every symbol definition in the
file. memoryid 1S $R for R registers, $C for constants, or $1 for
instructions. If defi!1ename is missing or 0, symbol definitions are ignored.

MU outputs instructions in an unspecified order, but with each instruction it
outputs a "sequence number" that reflects the order of appearance of the
instructions in the source file. ReadMU leaves this sequence number in the static
MuSeqNo for use by the writeram procedure.

ReadMU returns ° if everything went normally. If an error occurs, ReadMU returns
immediately (leaving the stream ,Positioned just past the item in error) and the
value returnea is a string which 1dentifies the type of error. ReadMU detects the
following errors:

Unexpected end of stream
Bad memory #
Data for undefined memory
Bad width
Bad memory name
Invalid block type

Packed RAM images May 14, 1975 38

PACKMU, RPRAM, READPRAM

There are now available two subsystems and a library routine which make it easy
for Alto programs which use the RAM to check the constant memory_ and load the
RAM as part of their initialization. The first subsystem, PACKMU, takes the
output of MU (a .MB file) and converts it to a "packed RAM image" which is easy
to load. The second subsystem, RPRAM, reads a packed RAM image, checks the
constant memory, and loads the RAM. This function is also available through a
library routine.

A packed RAM image is a file containing 4400b words. The first 400b words are
the desired contents of the constant memory: a zero word (which MU cannot
generate) means "don't care". The remaining 4000b words are the contents of the
RAM. Each instruction occupies two words, first high-order part, then low-order
part, e.g. words 0 and 1 go into RAM location 0, words 2 and 3 into RAM location
1, and so on.

The invocation format for PACKMU is) PACKMU mbfile pramfile where mbfile is
the output from MU (normally something.MB) and pramfile is the file for the
packed RAM image. PACKMU prints out xxx constants, yyy instructions to indicate
the number of constants and instructions read from mbfile. If mbfile is somehow
illegal, PACKMU prints Error: and an error message instead.

The invocation format for RPRAM is)RPRAM pramfile where pramfile is the
output from PACKMU. If there are any disagreements between the constants in
pramfile and the actual constant memory, RPRAM prints Constant nnn is xxx,
should be yyy for each constant that disagrees, and a summary message nnn
constants differ at the end of loading (but it still loads the RAM). If there are no
disagreements, RPRAM prints nothing.

The subroutine is called ReadPackedRAM(stream). The argument should be an open,
word-oriented input stream positioned at the beginning of a J?ramfile.
ReadPackedRAM does exactly the same thing as the RPRAM subsystem, Including
printing disagreement messages (on the standard display stream DSP), but instead of
printing the summary message it just returns the number of disagreements. RPRAM
essentially just opens the pramfile and calls ReadPackedRAM.

Maintainer's notes:

PACKMU uses the library packages GP and READMU.

RPRAM uses the library package GP.

scv 23 May 1975 39

sev: Scan Converter Package

SCV is a package for scan-converting objects from a description of the boundaries of
the object. The package computes which bits of each scan-line fall under the object
described; if these bits are displayed in black, the object will appear, colored black.

The input to sev is an ordered sequence of edge descriptions; an edge may be
either a straight line or a spline curve. sev scales the coordinates of the edge and
computes the intersections of the edges with the coordinate grid. Finally, the
intersections are sorted, first by scan-line number, and then by "run direction"
wi thin the scan-line.

Thus the coordinate system is based on "scan-direction" and "run-direction" rather
than on x and y. The coordinates of a point are (s,r) where s is the scan-line
number, and r is measured along the scan-line. For example, on the Alto, s might
run from ° to 807, a vertical measure; r might run from ° to 605, a horizontal
measure.

Before passing to detailed explanations, consider the following example:

SCVBegi n Obr' ect(false)
SCVM~veTo 0,0)
SCVDrawTo 10,0)
SCVDrawTo 5,10)
SCVEndObject(v)

. .,(details)
SCVReadRuns(v,buf, 100)

~~,10)
/ \

/ \
/ \

/--------\
(0,0) (10,0)

This returns a list of intersections: (1,0) (1,2) (2,0) (2,4) (3,0) (3,6) (4,0) (4,8) (5,0)
(5,10) (6,0) (6,8) (7,0) (7,6) (8,0) (8,4) (9,0) (9,2) (10,0) (10,0). If these
intersections are paired Into "runs," we can see which bits to turn on (e.g. on scan­
line 3, we turn on bits ° (inclusive) through 6 (exclusive); more on this below).
Thus we get (remember, scan-lines are vertical in the above example):

Ini tialization

SCVlni t(Getb,Putb,Error)

*
* ***

This routine must be called before any objects are scan-converted. Getb is
the address of a routine for obtaining blocks of storage; Putb is a routine to
return these blocks to the pool; Error is an error routine. Templates for
these subroutines are: .

let
Getb(BlockSize) = valof [

/ /Get a free storage block of length BlockSize.
/ /Suppose Addr is the address of the first usable word.
resul tis Addr
] and

SCV 23 May 1975

Putb(Addr) be [
IIReturns block acquired previously by Getb.
] and

Error(Strins-) be [
I/String IS a BCPL string that describes the error.
]

40

SCVMa trix(a, b,c,d)

This routine sets the scaling matrix. In all functions that have sand r
values as parameters, the following scaling takes place:

S = a*s + c*r
R = b*s + d*r

and the values of Sand R are actually used. In all explanations below, if
upper-case Sand R are used, they represent scaled versions of sand r. The
arguments to SCVMatrix are either:

a. 0. The corresponding coefficient is zero.

b. A pointer to a packed floating-point number.

c. The number of a floating-point accumulator. (See "Restrictions,"
below.)

Thus the identity transformation can be established with: FLDI(2,1);
SCVMatrix(2,0,O,2).

SCVTransf ormF(s, r , v)

This routine scales sand r by the scaling matrix, and returns
Floor(Round(S)) in v!O and Floor(Round(R)) in v!1. The full value of S is
left in floating-point accumulator 8; that of R in accumulator 9.

Generating Object Descriptions

The operations of generating object descriptions and of actually comp_uting the
intersections are separated in order to cater to certain applications. The object
generation process is: (1) initialize by callinK SCVBeginObject, (2) pass boundary
descriptions to SCVMoveTo, SCVDrawTo or SCVDrawCurve, and (3) finish by calling
SCVEndObject, which returns an object descriptor (structure SCV).

SCVBeginObject(Care)

Called to begin describing a new object. Care is true if "careful" scan
conversion is required (see SCVEndObject).

SCVMoveTo(s,r) -or- SCVMoveToF(s,r)

Starts a new boundary, and sets the "current" point to (S,R). The arguments
to SCVMoveTo are signed 16-bit integers; SCVMoveToF is identical in
function, but requires floating-point numbers (or accumulator numbers) as
arguments.

SCVDrawTo(s,r) -or- SCVDrawToF(s,r)

sev 23 May 1975 41

Specifies that the next leg of the boundary is an edge from the "current"
point to (S,R). The current point is set to (S,R). The arguments to
SeVDrawTo are signed 16-bit integers; SCVDrawToF is identical in function,
but requires floating-point numbers (or accumulator numbers) as arguments.

SCVDrawCurve(sa,ra,sb,rb,sc,rc)

Specifies that the next leg of the boundary is a parametric cubic spline
traced out by values of t from 0 to I in the equatIons ("current" point is
(So,Ro)):

Set) = So + Sa t + Sb tt2 + Sc t1'3
R(t) = Ro + Ra t + Rb tt2 + Rc t1'3

The "current" point is set to (S(I),R(I)). Arguments are floating-point
numbers (or accumulator numbers).

SCVEndObject(v)

Finishes the object descr;ption, and returns useful data in v:

v»SCV.Smin, v»SCV.Smax. Minimum and maximum values of S (inclusive)
where the object lies. Signed 16-bit integers.

v> >SCV.Rmin, v> >SCV.Rmax. Minimum and maximum values of R (inclusive).
(If splines are used, these two numbers are accurate only if the Care
argument to SCVBeginObject is "true".) Signed 16-bit integers.

Generating Intersections

Armed with an object description ("v" argument to SCVEndObject), intersections can
be calculated with calls to SCVReaaRuns.

SCVReadRuns(v,Buffer,Bufsize)

Calculates some intersections, and records them in a buffer (Buffer is the
address of the first usable word of the buffer, Bufsize is the number of
words in the buffer). Two values in the vector v govern the range of S
values to consider: values from v»SCV.Sbegin and v»SCV.Send (inclusive)
are considered. NB: This S range must l!~oceed unhesitatingly from
v> >SCV.Smin to v> >SCV.Smax, as returned by SCVEndObject.

The function returns, in v:

v»SCV.lntPtr. Pointer to the first intersection.

v»SCV.IntCnt. Number of intersections calculated. This is guaranteed to be
even, so that an integral number of intersection pairs ("runs") are in the
buffer.

v> >SCV.Sen'd. Largest S value considered. If the buffer is too small to
contain all intersections in the S range requested, the range is reduced until
the intersections will fit. On return, v»SCV.Sbegin and v»SCV.Send
represent the range actually calculated.

The intersections returned by SCVReadRuns are sorted in the buffer by S and then
by R. Each intersection requires two words: the first is the S value, the second the
R value.

SCV 23 May 1975 42

The following code demonstrates a probable use of SCVReadRuns:

SCVBeginObject(false)
... specify boundaries ...
let v=vec size SCV 116
SCVEndObject(v)

let b=vec 200
v> >SCV.Sbegin=v> >SCV.Smin

[
IIFirst range

v> >SCV.Send=v> >SCV.Smax I I Assume entire range fits.
SCVReadRuns(v,b,200) IICalculate intersections.
let n=v»SCV.lntCnt
if n eq 0 then break
let 1?=v> >SCV.IntPtr
for 1=1 to n by 2 do

[

IIAll done.

IILoop for each run.

let S=p!O I IS value
for R=p!1 to p!3-1 do TurnOnBit(S,R)
]=P+4 IINext intersectIon pair.

v> >SCV .Sbegin=v > >SCV .Send + 1 IIPrepare next S range.
] repeat

The 100J? on R values of the intersection pair stops just short of the second
intersection. That the R interval should be open can be demonstrated with the
following example: suppose that two edges intersect a particular scan-line at R=0.5
and R=2.5. Clearly the "width" of the object on this scan-line is 2.5-0.5=2.0. SCV
truncates the R values before sorting them, and so reports intersections at R=O and
R=2, again a "width" of 2.

Operation

SCV code is contained in the files SCVMAIN.C and SCVSORT.C. The definitions
for the SCV structure are in SCV.DFS. The SCV package requires the floating-point
package FLOAT. The program SCVTEST.C is an example of the use of SCV.

Strategies

The orderly way in which SCVReadRuns proceeds from small values of S to large
values can sometimes be linked to the order in which information is used, e.g. added
to the screen. If several objects are to be added in one pass over the screen, SCV
can handle that as follows:

a. Generate object descriptions for all objects, saving the "v" vectors for each
one.

b. Call SCVReadRuns for each object, dumping intersections into separate
buffers. Use the intersection information to update the screen. (Or, for the
energetic, merge the runs from the several objects!)

c. Repeat step b until all objects are finished.

Note that objects may have several closed boundaries (a call to SCVMoveTo signals

scv 23 May 1975 43

the beginning of a new boundary). The most common use of this feature is to
specify the boundaries of "holes" in the object.

Restrictions and Caveats

1. After scaling, Sand R must both lie between -16000 and +16000.

2. The SCV package uses many floating-point accumulators. However, it guarantees
never to clobber AC 0 to 7 inclusive. Similarly, the caller must guarantee:

a. Not to clobber AC's 28-31 inclusive unless he is willing to re-establish the
scaling matrix with a call to SCVMatrix.

b. Not to clobber AC's 22-27 inclusive during object generation (Le. between a
call to SCVBeginObject and SCVEndObject).

3. If you do not intend to use splines at all, the code in SCVMAIN.C can be
shortened considerably. Remove all code between comments II BEGIN $$$ and
I lEND $$$. (Eventually, conditional compilation will be used.)

4. Free storage use. For each edge, an 8 word block is acquired (24 if it is a
spline); the blocks are released by SCVReadRuns when it is no longer needed.

SPRINT September 2, 1974 44

Diablo Printer Utility

SPRINT.DM contains an Alto .BR file with 4 routines for driving the Diablo
printer:

INITPRINTER(v1,v2) must be called before doing anything else. It takes two vec
255's which it uses throughout the life of your program. It returns true if
it could restore and init the printer, else false.

DCHAR(CHAR) prints the character

DSTR(STRING) prints the string

DOCT(NUMBER) prints the octal number, unsigned, with leading D's converted to
spaces.

Things are not printed until an entire line (132 chars or to a CR) is supplied.
Tabs are 8 spaces, and a pa~e eject is done every 55 lines. If the printer hangs in
some awful way, a message IS printed on the system display area, and a "finish" is
done.

TIME April 25, 1975 45

Daytime and interval timing package

There now exist a pair of packages which provide the following useful facilities for
Al to programs:

The "timer" package, which provides (the illusion of) a continuously
running timer with a grain of 1 millisecond and a width of 32 bits, thus
a period of about a month, and (the illusion of) a time-of-day clock with
a grain of 1 second and a width of 32 bi ts, origined at 1901 and good
through about 2050. These routines are now available in the operating
system itself. See the Operating System Reference Manual.

The "daytime" package, which provides for converting time-of-day
readings to and from human-readable form.

The chief value of the timer package is that it continues to function properly
without losing time even if the Alto is booted, provided that page 1 is not
clobbered and that the Alto does not remain non compos mentis for longer than the
period of the hardware clock (about 20 minutes). Even in this case, timing will
resume properly if one obtains the correct time of day from some other source and
informs the timer package thereof; of course, the accuracy of timings spanning such
an event is dependent on the accuracy of the new time.

1. Daytime

The daytime Q!ckage is written in Bcpl. It is found in CTIME.BR. It defines 7
procedures NPACKDT, PACKDT, WRITEUDT, CONVUDT, FINDMONTH,
lVI0NTHNAM ,WEEKDAY). It requires the timer package. The procedures do the
following:

UNPACKDT(dv, uv) - dv!D and dv!1 contain a time-of-day. (If dv=O,
uses the current time from DAYTIME.) Unpacks this into uv!D through
uv!6 as follows:

uvIO
uv!1
uv!2
uv!3
uvI4
uv!5
uv!6

- actual year (e.g. 1974)
month (January=O)
day of month lfirst day=l)
hour of day (midnight=O)
minute
second
true if daylight saving time in effect

PACKDT(uv, dv, dstflag) - performs the inverse of UNPACKDT.
Returns 0 if successful; otherwise, returns l+j, where uv!j was illegal (e.g.
returns 2 if the month was invalid). If dstflag is not supplied or false,
assumes uv is the result of converting a string, and uses daylight saving
time if appropriate to the date in uv (ignoring uv!6); if dstflag is true,
uses uv!6 to decide whether daylight saVIng time is in effect.

WRITEUDT(strm, uv) - takes an unpacked time-of-day (in uv!O
" through uv!6) and writes it on the stream strm in the form 29-DEC-

74 18:39:47. If uv=O, uses the current time from DAYTIME. Does not
perform any of the error checks of PACKDT, so will produce garbage if
gi ven garbage.

TIME April 25, 1975

CONVUDT(strg, uv) - performs the same conversion as WRITEUDT,
but deposits the result in the string strg. Returns strg as its value.

FINDMONTH(strg) - tries to interpret the string strg as the name
of a month. If successful, returns the month number (0 through 11); if
unsuccessful, returns -1. Strg must be at least 3 characters long, and
must be the prefix of some month name, ignoring upper/lower case
distinctions.

MONTHNAME(mo) - returns a string which is the name of month
mo (0 through 11), e.g. "December". The user should not write into this
string.

WEEKDA Y(dv) - returns the day of the week of dv (Monday=O,
Sunday=6).

2. Timer

46

The timer package is written in assembly language. It is found in TIMER.BR. It
defines 3 procedures (TIMER, SETDA YTIME, DAYTIME) and does not require any
external procedures. It does use 6 locations in page 1, currently 572 through 577,
which are permanently reserved for it. The procedures perform the following
functions.

TIMER(tv) - reads
Returns tv! 1 as its value.
operating system.

the millisecond timer into tv!O and tv!1.
This function is available as part of the Alto

SETDAYTIME(dv) - declares the current time-of-day to be the
time-of-day in dv!O and dv!1. (This value might have been constructed
using the PACKDT procedure in the daytime package. It is not
reasonable to compute time-of-day values by hand.) This function is
available as part of the Alto operating system.

DAYTIME(dv) - reads the current time-of-day into dv!O and dv!1.
Returns dv as its value. This function is available as part of the Alto
operating system.

2.1. UPDATETIMER

The timer package uses an auxiliary procedure UPDATETIMER(), found in
UPDATETIMER.BR, to move timing information from the hardware clock into
software variables. Since this procedure must be called at least once a second (on
the average) for the timer package to function properlY, the operating system calls
UPDATETIMER() on every display field interrupt. The timer package also calls
UPDATETIMER under some exceptional circumstances (turning the interrl!PJ system
off during the call), so UPDATETIMER must be loaded to use TIMER. User
programs should not call UPDATETIMER at all.

O.S. maintainers note: the page 1 pointers in UPDATETIMER.A must agree with
those in TIMER.A, otherwise there will be chaos.

TRACE December 9, 1974 47

Procedure tracing package

A package is now available for tracing BCPL procedures on the Alto, similar to the
TRACE facility available in Interlisp. The tracing package is available as TRACE.C,
a BCPL source program. To use it, you will normally also need the formatted
output package, available as FORMAT.SR, also BCPL source.

The tracing package supplies six J?rocedures (TRACE, PTRACE, UNTRACE,
TRACETABIN, TRACEWS, TRACEPUTS) and two statics (TRACESTREAM,
TRACELINES). TRACE(proc, str) turns on tracing of procedure proc'
UNTRACE(proc) turns off tracing of proc. PTRACE(proc, tproc) turns on tracing of
proc, but lnstead of using str to construct a message as described below, it calls
tproc before entering the body of proc, as

tproc(proc, Iv argO, n, 0)

where n is the number of ar~uments and argO is the first argument; when proc
returns, the tracer calls

tproc(proc, Iv argO, n, Iv val)

where val is the value returned. (Note that tproc may alter the arguments or the
return value if it wishes.) Proc may be any BCPL procedure (including the
procedures in the TRACE and FORMAT packages), or any assembly language
procedure that begins with the same 4 instructions as a standard BCPL procedure,
I.e.

STA 3,1,2
JSR @370
frame size
JSR @367

All output produced by tracing goes to the stream TRACESTREAM; if
TRACESTREAM=O, output goes to the system display- stream DSP. If TRACELINES
is non-zero, the tracer will pause after every TRACELINES lines of its own output,
as follows:

print 3 *'s;
wai ting for a character to be typed;
print 2 more *'s'

before proceeding. Note that other output to the same stream <e.g. from the
program being traced) is normally not counted, since the tracer can t intercept it.
However, programs such as the procedures supplied as the tproc argument for
PTRACE may take advantage of the pause feature by using TRACEWS(string) or
TRACEPUTS8char) to do their output: aside from line counting, these are equivalent
to WSS(TRA ESTREAM, string) and PUTS(TRACESTREAM, char).

The output produced for a TRACEd procedure consists essentially of the arguments
when the procedure is entered, and the value when the procedure returns. Outllut is
indented 2N mod 16 spaces, where N is the depth of nesting in traced proceaures,
similar to the Interlisp convention. (The p_rocedure TRACETABIN() writes the
appropriate number of spaces on TRACESTREAM.) The format of the output is
determined by the str argument to TRACE. There are 4 cases:

1) Str=O, or str omitted, e.g. TRACE(foo). In this case, the message on entry is
locfoo:
argl arg2 ... argn

where locfoo is the octal location of the first instruction of foo, and the arguments
are printed in octal (by WOS). The return message is

locfoo returns val

TRACE December 9, 1974 48

where val is the value returned, also in octal.

2) Str contains neither $; nor $:, e.g. TRACE(foo, "Foo"). The messages are the
same, except that the string Foo appears in place of the location locfoo.

3) Str contains a $;, e.g. TRACE(foo, "foo: a1=<D>;foo = "). In this case, the
portion of str before the $; is used as the format for printing the arguments, and
the portion after the $; is used for printing the value. If there are more arguments
than <> fields, the extra arguments are printed with WOS; if there are fewer,
printing stops after the last <> field for which an argument was supplied. This
produces pleasing output for procedures which take variable numbers of arguments.

4) Str contains no $;, but does contain a $:, e.g. TRACE(foo, "FOO: Al=<D>"). This
is equivalent to TRACE(foo, "FOO: Al=<D>;FOO returns <B 6>"), i.e. the string up
to the $: is taken as the procedure name and the word "returns" and an octal
format are supplied.

Of the 4 options, 1 and 2 do not require the presence of the FORMAT package; 3
and 4 do require FORMAT if str contains any <> fields. In the latter case, if the
FORMAT package is not loaded, all values will be printed with WOS. Use of
PTRACE does not require the FORMAT package, unless, of course, the user's own
trace-print procedures use FORMAT.

Note that TRACE can be called from SWAT, but only with str omitted or zero.
PTRACE and UNTRACE can be called freely from SW Arr.

VMEM February 21, 1975 49

Alto virtual memory

A package is now available which provides a virtual memory facility for Alto
programs. The virtual address space is 21'1'24 16-bit words; the page size is any
power of 2 times the disk sector size (256 words).

The VMEM package uses several data structures for which you (the user) must
supply storage, as follows:

1) A hash map, whose size is 2P+3 words, where P is the largest number of 256-
word yaging buffers you will ever have allocated at one time, rounded up to a power
of 2 le.g. if you have 20K for paging buffers, this is 80 buffers, so P=128).

2) A buffer pointer table of 256 words.

3) Paging buffers, as many as you want, located anywhere in core (not necessarily
contiguous). Each group of buffers is truncated if necessary so that it starts on a
multiple of the page size and is a multiple of the page size long.

4) A locked cell list, whose size is the largest number of cells you will ever want to
use as locks (see below).

5) Two statistics tables, of 100b words each (optional).

The code comes in a fair number of pieces. It uses BFS.C, DVEC.C, and BFSML.A
from Butler's basic file ~}'stem, which is in <ALTO>BFS.DM. The other pieces are
in <ALTO>VMEM.DM. VMEM.C is the main logic. ASMAP.A is a small assembly
code package that actually invokes the mapping microcode. If you don't have a
RAM, you need SOFTMAP.A in addition, which patches into the emulator trap
vector.

****************** CAVEATS ******************
In the version of VMEM currently released, page groups are not implemented
(though variant page sizes are implemented). This will be rectified eventually.

The procedure for getting the relevant microcode into a RAM and getting it
properly hooked up to the Nova emulator has not been worked out. The best
current solution (being used for Lisp) requires changes to the standard Alto and is
not recommended for the world at large.

1. Initialization

INITIALIZEVMEM(HMAP, HMAPSIZE, BPTAB, LCL, LLCL, PGSIZE)

HMAP is the address of the hash map; HMAPSIZE is 2P (256 in the example of 80
buffers.) (VMEM will clear the hash map.) BPTAB is the address of the buffer
!Jointer table. LCL is the address of the locked cell list, and LLCL is its length.
PGSIZE is the page size (400b, 1000b, etc.).

Before doing any mapping operations, you may initialize PAGESTATS and
MAPSTATS to the origins of the two statistics vectors; if you don't, you just won't
get any statistics. You must clear these vectors yourself.

INITSOFTMAP()

VMEM February 21, 1975 50

If l.0u don't have mapping microcode, you must call INITSOFTMAP after calling
INI fIALIZEVMEM.

ADDBUFFERS(FIRST, LAST)

In order for the ma.pping routines to function, you must give them space for page
buffers with ADDBUFFERS. FIRST and LAST are the bounds of a core area to be
used for this purpose. FIRSrr will be rounded up to the next multi.Ele of the page
size if necessary, and LAST+1 rounded down; thus ADDBUFFERSl7700b, 10077b)
followed by ADDBUFFERS(lOlOOb, 10377b) will NOT result in the space from
10000b through 10377b being made into a page buffer.

2. Mapping functions

A 24-bit address:
$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$
I high part I low part I
$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$
I virtual page part I word part I
$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$-+-+-+-+-+-+-+-$

"The virtual address (HI, LO)" means a virtual address whose high part is bits 8-15
of HI (bits 0-7 being zero) and whose low part is LO. Note that the "paI?e size"
referred to above ONLY affects the uni t of transfer to and from the disk: 'virtual
page part" ALWAYS refers to the high 16 bits of a 24-bit address.

All of the mapping functions described in this section are declared global (page
zero), so you must declare them external with @-sign.

VRR2(HI, LO)

Returns a core address corresponding to the virtual address (HI, LO), having read
the page into a buffer if necessary.

VWR2(HI, LO)

Same as VRR2, but assumes you are about to write into the page, so marks it as
needing to be rewritten onto the disk.

VRR1(LO)

Same as VRR2(0, LO). If you only have a 21'1' 16-word virtual space, you can save a
small amount of code by using VRRI instead of VRR2.

VWRl(LO)

Same as VWR2(0, LO).

VRR(PTR)

Same as VRR2(PTR!0, PTR!l). Useful if you are carrying around addresses in
vectors, as Lisp does.

VWR(PTR)

Same as VWR2(PTR!0, PTR!1).

VRRP(VP)

VMEM February 21, 1975 51

Same as VRR2(VP RSHIFT 8, VP LSHIFT 8), i.e. converts a virtual address whose
virtual page number is VP and whose word part is zero. Useful if you are only
using the virtual memory package to manage buffers, and doing your own data
scanning.

VWRP(VP)

Same as VWR2(VP RSHIFT 8, VP LSHIFT 8).

3. Statistics

PAGESTATS is a table of 20b pairs of 32-bit counters. Letting- G be the high 4
bits of the 24-bit address, entry 2G (words 4G and 4G+1) In PAGESTATS is
incremented for each disk read, and entry 2G+l (words 4G+2 and 4G+3) is
incremented for each write. MAPSTATS is a similar table, incremented for each
mapping reference.

If you use SOFTMAP, NPROBE points to a 32-bit counter of the number of
secondary probes in the hash map.

4. Other facilities

REHASHMAP(VP)

Looks up the virtual address VP*400b in the hash map, returning 0 if present, or
the address of an appropriate empty slot if not present. Used by the page fault
routine to reconstruct the hash map, but also useful for determining quickly
whether a page is in core.

SNARFBUFFER(BUFPTR)

BUFPTR must be the address of a buffer (i.e. a multiple of the _p~ge size) within
the scope of some previous call to ADDBUFFERS. The effect of SNARFBUFFER is
to remove that buffer from use by the virtual memory package, for example if you
want to use it to hold display data.

If the buffer is locked (see below), SNARFBUFFER returns 0; normally
SNARFBUFFER returns the address of the buffer. If you don't care what buffer
you snarf, BUFPTR=O will select an arbitrary non-locked buffer.

UNSNARFBUFFER(BUFPTR)

Reverses the action of SNARFBUFFER.

LOCKCELL(LVLOCK, RELOC)

Declares that the cell whose address is LVLOCKholds a core address which must
remain valid across page faults, i.e. the buffer in which it lies must not be re-used.
Note that the extra level of indirection means that your program can store into the
lock cell freely. As a consequence, if you store some arbitrary bit pattern into a
lock cell, it will function as a lock if it happens to constitute an address within
some buffer.

If RELOC is false or absent, the buffer pointed to from rv LVLOCK will not be

VMEM February 21, 1975 52

swapped or moved, nor can it be snarfed. If RELOC is true, the contents of the
buffer may be moved to another buffer (if the buffer is snarfed, or if this is
necessary to be able to read in a page group), and the pointer will be fixed up.

The number of different lock cells is limited to the parameter LLCL supplied to
INITIALIZEVMEM. If the lock list is full, LOCKCELL calls SWAT.

UNLOCKCELL(L VLOCK)

Undoes the action of LOCKCELL. Returns true if LVLOCK was actually in the lock
cell list, or false if it was not.

ISLOCKED(PTR, RELOC)

If PTR is a pointer into a locked buffer, returns the address of the entry in the
lock cell list which points to the relevant lock cell; if not, returns O. If RELOC is
absent, considers all lock cells; if RELOC is true, considers only relocatable locks; if
RELOC is false, considers only non-relocatable locks.

FLUSHBUFFERS()

Rewrites all dirty pages from buffers onto the disk, including locked pages, and
generally tidies things up in preparation for quitting. (It is OK to gp on using the
virtual memory after this, you just have to do another FLUSH BUFFERS before
quitting eventually.)

DOUBLEADDl(PTR)

Adds 1 to (PTR!O, PTR!l) as a 32-bit number.

5. User routines

The VMEM package makes no assu~ptions about the correspondence between virtual
addresses and disk pages. In fact, VMEM does not even assume that the swapping
is done on the disk -- you can use the Ethernet or magtape if this suits your fancy.
Consequently, you must supply a number of routines to establish thiS
correspondence.

Remember that VPAGE, below, always refers to 256-word pages.

CHECKVPAGE(VPAGE, WFLAG)

This routine is called on a page fault to determine if a page has never been
referenced, already exists, or is invalid. VPAGE is a virtual page number (the high
16 bits of a 24-bi t address); WFLAG is true if the fault was from a write reference,
false if from a read reference. CHECKVPAGE must return true if the page is a
new jJage, false if the page already exists. If the page is invalid, CHECKVPAGE
can do whatever it wants, but it should not return.

DOPAGEIO(VPAGE, CORE, NPGS, WFLAG)

This routine must transfer NPGS 256-word pages, starting at virtual page VPAGE
and core address CORE, to or from the swapping medium, depending on WFLAG:
false means read, true means write.

P AGEGROUPBASE(VP AGE)

P AGEGROUPSIZE(VPAGE)

