Inter-Office Memorandum

To Alto Users Date January 28,
1976
From Dan Ingalls & Diana Merry Location Palo Alto
Subject Bit Boundary Block Transfer Organization LRG

(Bit BLT)

XEROX

THE "Bit BLT" package is a group of subroutines that implements various operations on display
windows. Among their several uses are displaying characters, scrolling, and "painting" with brushes.
The operations which can be performed using Bit BLT are not necessarily confined to uses with the
Alto display, but the description below focuses on simple cases with the display in mind. More
complicated possibilities are left to the reader to invent as necessity and curiousity dictate. The
binary files required are available as BitBLTB.Br, BitBLTA.Br, BitBLT.Mb in <ALTO>BitBLT.Dm
The sources, BitBLTB.Bcpl, BitBLTA.Asm, BitBLT.Mu are available on <ALTOSOURCEDY.

Definitions

A bit map is a region of memory that describes a collection of scan-lines which have a base core
address (bca) and bit map width (bmw), the later being a word value. Our discussion will assume
that scan-lines run horizontally from left to right (bits are addressed from x = 0 to x = bmw*16-1).
Scan-lines appear consecutively in a bit map. Thus the point (0,0) is at the upper left of the
display bit map -- y = 0 is the first scan-line, the next y = 1, etc. The core address of the first
word of scan-line 0 is bca. The number of scan-lines is not relevant, for the purposes of Bit BLT.
(Note that these conventions are similar to those for the Alto display bit map; if bca and bmw are
both even, the bit map may be displayed using standard Alto facilities.)

A block is a rectangle within a bit map. It has four corners which need not fall on word
boundaries. Any given block is described by a block descriptor whose contents are:

Bit map's base core address (hca)
Bit map's width in words (bmw)
Block's Leftx (“x offset")

Block's Topy ("y offset")

Block's Width

Block's Height

Thus the block is defined by: :
Leftx < x € Leftx + Width-1
Topy < y < Topy + Height - 1.

It is left to the caller to insure that ranges of x and y indeed fall within the bit map.

The Bcpl routine contains a structure declaration for managing this descriptor:

strﬁcture BITRECTANGLE :
L

bca
bmw
Leftx’
Topy
Width
Height
]

A block is sometimes used to designate a sequence of bits in memory, such as a 16 wide by 14 high
region containing the bit pattern of a font character. In this case, bca points to the font character,
bmw is 1, x and y are 0, width is 16, and height is 14.
Block Operations
From Bcpl, one uses the call:

FillBitMap(lv destination, function, lv source, gray).

The destination is a pointer to a BITRECTANGLE structure.

The function is encoded as operation + source-type. The operation codes (2 low-order bits) are:

0 replacefunction: Destination ¢ Source

1 paintfunction: Destination ¢ Source ior Destination

2 invertfunction: Destination « Source xor Destination

3 erasefunction: Destination ¢ not Source and Destination

These names and values are declares as manifests in the Bepl routine.

The source-types (next 2 bits) are:

0 blocksource: A block of a bit map
4 compblocksource: The complement of a block of a bit map
8 brushsource: A block as a brush with a gray

A brush emits gray where the brush

is 1, and a copy of the destination

(transparency) where the brush is 0
12 constantsource: A gray

A gray is a one-word item of four 4-bit bytes that defines a 4-by-4 repeating bit pattern to be
used as a source. A solid constant source is specified with a gray whose four fields are equal.
(Note: - The pattern always repeats so as to start at x and y positions in the destination that are even
multiples of 4. Thus several adjoining blocks filled with the same gray pattern will not show a
ragged halftone phase seam between them.)

There are several manifests declared defining a collection of useful values as constant sources:

black = -1
darkestgray = #76575
darkergray = #165727

darkgray = #125125
gray = #55132
lightgray = #36074
lightergray = #12050
lightestgray = #101202
white = 0 -
texturel = #27164
texture2 = #154033
texture3 = #31714
textured = #63
textureS = #177714
The source depends on the source type:
0,4 A pointer to a block descriptor
8 A pointer to a block descriptor
and a gray ’
12 A gray

For source types 0 and 4, the source width and height are ignored and a simple transfer between
equally-sized rectangles is performed.

The routine first considers the possibility of source-destination overlap and decides in which order
to transfer words. It also generates masks and counts to be used in the transfer loops. Then a lower
level routine is called which jumps into microcode if the RAM is loaded; otherwise it does the work
in novacode. The check for whether or not the microcode is present is performed every time the
-lowerlevel routine (FillBits) is called.

‘Timing Details

The microcode has roughly the following speed characteristics:

Horizontally, along one raster line (so to spéak)

Store constant 15 cycles/word
Move block (store) 36 cycles/word
Move block (OR) 42 cycles/word

Vertical loop overhead (time to change raster lines)
25-30 cycles, depending on source/dest alignment
Initial setup overhead (time to get going or resume from interrupt)
approx 150 cycles

These are all in terms of Alto minor cycles and do include all memory wait time and do not
include any degradation due to competing tasks, such as the display or disk.

Interim Details

The microcode is not presently interruptable, and consequently large operations will cause significant
delays in interrupt service (like 1/4 second to move most of the screen). This will be relieved
shortly by allowing the microcode to save its state in the ACs and emerge to the nova emulator,

later to resume where it left off.

The machine code is not presently reentrant, and consequently will crash if you try to use it in

separate processes. We do not intend to alter this situation since the microcode modification cited
above will permit reentrant operation.

i//FILE MAINTENANCE ---- BBSCAN.SR
-3/ /April 20, 1976

://Notes and Code ---

BitBIt and Scan Conversion

D. MERRY

;//The formal format for the table associated with BitBlt looks as follows:

/70

/71
/72

/73
W/

/74
/75
/76
24|
/710
/711
/712
/713
/714
W/
74
/715
/716
/717

FUNCTION

“GRAY"
DESTINATION CORE BASE
DESTINATION RASTER

DESTINATION X
DESTINATION Y
WIDTH

HEIGHT

SOURCE CORE BASE
SOURCE RASTER
SOURCE X

SOURCE Y
SCRATCH GRAY

SCRATCH GRAY
SCRATCH GRAY
SCRATCH GRAY

First address must be on even
word boundary

One-word constant defined by user

Width in "Nova" words of
destination rectangle

In bits
In bits

Four locations for building gray
words for
microcade

i//The format of the “strike” font is the simple case of Cypress Glyphs as described
i//in the FONT FORMAT memo of January 29, 1976. <(MERRY>STRIKEFORMAT.BRAVO

/70
/7
/7
/7
/7
/71
/72

/73
/

FORMAT

MAXIMUM WIDTH
ASCENT
DESCENT

XOFFSET

MIN

MAX

NSEGS
SEGMENT WIDTH

If high order bit on, it's a "strike"
format font. otherwise it's in AL
format. For the simple case only the
high order bit can be on in the strike
format.

Width of the widest character

Ascent + Descent = Segheight
(Fontheight)

Negative for kerned font, 0
normally.

Smallest legal Ascii in this font.
Characters less than Min not used
for some sort of control by the user
will be displayed as illegal character

Largest legal Ascii in this font,

- Max + 1 will frobubly be the "Shazam"
h

character which will be displayed
whenever a character greater than
Max is requested.

Must be 1 in the simple case

Total width of font in bits.

This value + 15 and divided by 16
yields the raster value for BitBlit.
(simple case)

/711
/712
//13
W24
S/
W/
i/
/7

://The followin
./ /the “strike"

/70

/7
/1

»

3//2
/73
3//4
i/

E//S
%

/76
17

/710

/711
/712
/713
/14

/715
/716
/17
/720
/721
/722
/123
24

PINCH TOP
PINCH BOTTOM
CHARPOINTERS

SEGMENT

0 in simple case.
0 in simple case.

MIN thru MAX+2, indexed by Ascii.
Value is left x of selected glyph.
MAX + 1 is the "illegal” character
and MAX + 2 the right x of
"illegal” character.

((Segwidth + 15)/16) * segheight

is code for scan conversion of characters using BitBIt and

ont format. The table passed to BitBit will look like this:

FUNCTION

"GRAY'

DESTINATION CORE BASE

DESTINATION RASTER

DESTINATION X

DESTINATION Y

WIDTH
HEIGHT
SOURCE CORE BASE

SOURCE RASTER
SOURCE X
SOURCE Y
SCRATCH GRAY

SCRATCH GRAY
SCRATCH GRAY
SCRATCH GRAY
SAVE ACl1

SAVE AC2
SAVE AC3
BITBLT FONT

CHARACTER

CHANGE

WIDTH SUBROUTINE

May vary with cach character -- set
by user. This location must be on
even word boundary.

Only relevant if "painting”
characters, i.e. Function > 7.

First word address of memory used
for Alto display

Width of Display in "Nova" words

Must be set by user for every
"new line", updated by routine on
each character.

Set by user -- will typically
have “fontheight” added to it for
a new line

Computed -- Ascii+l's x - Ascii's x.
Fontheight

Pointer to the bits of the font --
created by some sctup routine

(Segmentpointer + 15) 7 16
Value in location Charpointers + Ascii
0

Place for Scratch Grays in case
painting font.

Place to save AC's.

Place to _kecpipointer to font whilst putting
out a string of characters.

Place to hold character code, to
facilitate exception checking,

Zero means therc has been no change

in the font, the function, or the "gray"
since the last time a string was scan
converted. > 0 means to sct up BBSTABLE
according to information provided in
SCANTABLE passed in ACI,

Pointer to subroutine which when called
will return width of character passed in

A -- expects pointer to BBSTABLE
in AC2

W/ HEIGHT SUBROUTINE Pointer to subroutine which when called
7 will return height of font --

N4 expects pointer to BBSTABLE in AC2
/726 SCAN SUBROUTINE Pointer to subroutine which will make call
14 on_BitBIt -- depends on the kind of font
W/ being used.

/7217 SAVE GRAY Only necessary if going to

/Y (TEMP1) have "gray" characters

/730 GRAY COUNT Ditto

W/ (TEMP2)

/731 TRAIL CHARS Needed only for justification in Smalltalk,
7/ Signals whether there have been non-space
W/ characters since the last space -- helps to
i/ deal with multiple spaces. o

i/ CROSSLEFT Used in Smalltalk for window clipping

W/ CROSSRIGHT Ditto

1/ RIGHTMARGIN Ditto

/7 MEASURE Smalltalk switch -- so'that PUTCHARS code
H2A can be used both for measuring and scan
o4 converting

/7 TEMP3 Needed only if .AL fonts expected

7/ LASTVISIBLE For returning last visible character

NZ4 when clipping occurs

i//The format of the SCANTABLE passed in AC1 whenever there is a call for
;//Futting a string of characters is or setting up the BBSTABLE in preparation

o//for a call for displaying a string of characters is as follows:

//0 FUNCTION OR, STORE, etc.

/1 GRAY Meaningful only if FUNCTION >7.

/72 FONT Pointer to first word of font.

/73 DESTINATION X Beginning X of first character of STRING,
/74 DESTINATION Y "Top" Y of first character of STRING.
/75 STRING TABLE Pointer to table with following format:

44 STRING POINTER

a4 BEGINNING CHARACTER (BYTE)

i/ LAST CHARACTER

i//The following code will probably eventually check to see if the font has
i//been set up and call setup code if nccessary. In any event it assumes
;//the following contain appropriate values:

://FUNCTION Usually "or” or "store"

//"GRAY" Usually not relevant

;//DESTINATION CORE BASE Usually upper left hand corner display word ad
;//DESTINATION RASTER "Display width" o

i//DESTINATION X Set by user for first character in line --

i/ updated by this routine for subsequent characters

a4 in line
//DESTINATION Y Set by user line by line
//HEIGHT Fontheight -- set once per font

://SOURCE CORE BASE
//SOURCE RASTER
i//SOURCE Y

/!
;//The Ascii value is received in ACO and a pointer to the BitBIlt table in ACl.

First word ad of font bits -- set once per font
Width of font bits in words -~ sct once per font
Always 0 in the simple case

.TITL STRIKESCAN

.GETNOLIST "SMALL.OPS"
GETNOLIST "SMALL.SYMS"
.GETNOLIST "SMDISP.SYMS"

//.BEXTZ SMF --DECLARED IN SMALLSYMS
i// BEXT SETSCAN, PUTCHARS, DISPAD, DISPWD,DOJST
;//--DECLARED IN SMDISP.SYMS

.SREL

SETSCAN: SETSCANC
PUTCHARS: PUTCHARSC
DISPAD: 0
DISPWD: 0

EXCEPT: EXCEPTC ;//LOCAL SRELS
CLIP: CLIPC

STRIKESCAN: ST RIKE'SCANC

ALSCAN: ALSCA

DOIJST: DOJSTC

.NREL -

CT. T

C13: 13

.DSPAD: DISPAD

.DSPWD: DISPWD

BITBLT = 60400

;//OFFSETS DEFINED IN SMDISP.SYMS

i//FUNC = 0 ;//OFFSETS INTO BBSTABLE

i//GRAY = 1

://DBASE = 2

i//DRAST = 3

;//DESTX = 4

//DESTY = 5

//WIDTH = 6

//HEIGHT = 7

i/ /SBASE = 10

i//SRAST =z 11

i//SRCX = 12

i//SRCY = 13

//GRAY1 = 14

i//GRAY?2 =z 15

i//GRAY3 = 16

;//GRAY4 = 17

i//SAV1 = 20

//SAV2 = 21

i//SAV3 = 22

;//BBFONT = 23

//CHAR = 24

//CHANGE = 25

;//WIDTHSUBR = 26

://HEIGHTSUBR = 27

;//SCANSUBR = 30

i//SAVGRAY = 31

i//GRAYCNT = 32

i//TEMP1 = 31 ;//SHARED WITH 'GRAY' LOCATIONS --
i/ TEMP2 = 32 //USED MOSTLY FOR SAVING RETURNS
/7 ://IN SMALLTALK UTILITY SUBROUTINES
//TRLCHR = 33 +//USED WITH SMALLTALK JUSTICATION
;//CROSSLEFT = 34 ;//FOR SMALLTALK WINDOW CLIPPING
;//CROSSRIGHT = 35

//RIGHTMARGIN = 36 i

;//MEASURE = - 37 ;//SMALLTALK SWITCH -- SO PUTCHARS

// ;//CAN BE USED BOTH FOR MEASURING

;//AND SCANNING
//TEMP3 = . 40 ;//NEEDED ONLY IF .AL FONTS
//MIGHT BE USED

/fLASTVISIBLE = 41 i//LASTVISIBLE CHARACTER FOR CLIPPING
//

////FUNC = 0 ;//0FFSETS INTO SCANTABLE
i//://GRAY = 1

i//FONT = 2

;//DX = 3

//DY = 4

;;;STRINGTAB = 5

;//FORMAT = 0 ;//OFFSETS INTO FONT
//MAXWIDTH = 1

i//ASCENT = 2

;//DESCENT = 3

i//XOFFSET = 4

//MIN = 5

//MAX = 6

i/ /NSEGS = 1

//SEGWIDTH = 10

//PINCHTOP = 11

;//PINCHBOT = 12

;//CHARPTRS = 13

7

;//BBSTABLEA: .BLK 41 //ALLOCATED IN DSPGLBS.SR

//SETSCAN SETS UP_AS MUCH OF BITBLT'S TABLE AS POSSIBLE.

//IT WILL BE CALLED WHENEVER THERE IS A FONT CHANGE, A FUNCTION CHANGE,
i//0R A "GRAY" CHANGE. IT MUST BE CALLED ONCE BY THE USER IN ORDER

i// TO GET THE BBSTABLE 0{\110 AN EVEN WORD BOUNDARY. THEREAFTER,

//PUTCHARS WILL CHECK THE CHANGE LOCATION IN THl- BBSTABLE TO
://DETERMINE IF IT NEED BE CALLED. THE CALL EXPECTS

/7 ACO -- POINTER TO BLOCK OF 31 (OCTAL) WORDS FOR BITBLT TABLE
W/ ACl -- POINTER 10 SCANTABLE:

/7 FUNCTION

7 GRAY

7 FONT

7/ DX

W/ DY

.x STRINGTAB

AC2 -- STACK FRAMC PTR IN BCPL

i/ 1 OF LOCATION TO SAVE RETURN PTR IF CALLED FROM ASM
i//AC3 UPON RETURN WILL CONTAIN A PTR TO THE BITBLT TABLE FORCED TO AN
ZE\VIVENYWORD BOUNDARY -- WHICH ONE WILL PROBABLY WANT TO SQUIRREL

H A

i//FOR A STRIKE FONT, THE ROUTINE WILL ESTABLISH:
FUNCTION

/7

74 GRAY

W/ DESTINATION CORE BASE

/7 DESTINATION RASTER

a4 HEIGHT

W/ - SOURCE CORE BASE

4 SOURCE RASTER

/7 SOURCE Y

N4 BBFONT

Z SCAN CONVERSION SUBROUTINE

i//FOR AN AL FONT, THE ROUTINE WILL ESTABLISH
FUNCTION

W/
/ GRAY
R4 DESTINATION CORE BASE
i/ DESTINATION RASTER
/7 HEIGHT
74 SOURCE RASTER
i/ SOURCE X
44 SOUR(,E Y
N BBFON
,Z SCAN CONVERSION SUBROUTINE
.GETWDSTRK: GETWDSTRK
.GETHTSTRK: GETHTSTRK
STRIKESCAN: STRIKESCAN
.GETWDAL: GETWDAL
.GETHTAL: GETHTAL
.ALSCAN: ALSCAN
JMASK 7411
NIBMASK 17
DOGRAY:
STA 3,SAV32 ://BBSTABLE PASSED IN AC2
i//MOSTLY A COPY OF DAN INGALLS CODE
;//HERE BELOW
LDA 3,DESTY,2
LDA 1,SRCY,2
SGE 3,1
JMP NOINVERT
LDA 3,JMASK //INVERT NIBBLE ORDER
AND 0,3 //A B C D BECOMES
SUBS 0,3 // ADCB
ADDS 3.0
EG 1,1
NOINVERT:
DA %JIH:.IGHTZ
LDA 3C3

i//SRCY - HEIGHT MOD 4

GRAYLOOP:

SETSCANC:

NOGRAY:

==

ADDZL 1,1
CYCLE 0

STA 0,SAVGRAY,2
LDA 1,C4

STA 1LLGRAYCNT,2
MOV 2.3

LDA 0,SAVGRAY,2
CYCLE 4

STA 0,SAVGRAY,2
LDA 1,NIBMASK

MOVS 0,1

zzN=nZY
QQ;OmO;

v o
=-oXQo-
>E—.-—1§>E
LS

oo

poel

>

=<

N

N
73]
=>
o
@)
Q
>
o =<

LDA 0,@.DSPAD

STA 0,DBASE,2
LDA 0,@.DSPWD
STA 0,DRAST,2
LDA 3,FONT3
STA 3,BBFONT,2
MKZERO 0.0

STA 0,SRCY,2
STA 0,CHANGE,2
LDA 0,FORMAT,3
MOVZL #0,0 SNC
JMP SETAL

LLDA 0,ASCENT,3
LDA 1,DESCENT,3
ADD 0,1

STA 1LLHEIGHT,2
LDA 0,MIN,3

LDA 1,MAX,3
C

//* 4

//1S HOW MUCH TO ROTATE GRAY

//SAVE IT IN BBSTABLE TEMP

//SET UP COUNTER FOR FILLING SCRATCH WORDS
;//GRAY PASSED IN ACO

//GET BBSTABLE INTO AC3 SO COUNT DOWN IN
;//GRAYLOOP WILL WORK

;//GET HIGH ORDER NIBBLE INTO LOW ORDER
i//SAVE FOR NEXT PASS

//MASK OFF LOW ORDER NIBBLE
i//SAVE IN ACl

;//MOVE NIBBLE A NIBBLE TO LEFT
i//NOW ACO + AC1 MAKE A BYTE
//MAKE HIGH ORDER BYTE
//NOW ACO + AC1 MAKE A WORD
//SAVE IT

//BUMP PTR

;//INSURE ON EVEN WORD BOUNDARY
i//SAVE AC2 -- MOSTLY FOR BCPL
;//GET BBSTABLE IN AC2

//GET SCANTABLE IN AC3

//SET UP FUNCTION

;//IF FUNCTION >7 DO GRAY SHUFFLE

;//SAVE PTR TO SCANTABLE WHILE DOING GRAY FIX
i//SAV] HAPPENS TO BE AVAILABLE

i//RESOTRE SCANTABLE INTO AC3

//BEGINNING AD OF DISPLAY -- MOST LIKELY
i//A GLOBAL IN SREL OR ZREL

//THAT'S THE CORE BASE FOR BB'S DESTINATION
//LIKEWISE DISPLAY WIDTH IS RASTER FOR
;//BB'S DESTINATION

://BBSTABLE NEEDS ITS OWN PTR TO THE FONT
;//SOURCE Y IS ZERO

+//TURN OFF CHANGE SWITCH

//HIGH ORDER BIT OF FIRST WORD OF FONT TELLS
//US IF STRIKE OR .AL FORMAT. 1=STRIKE. 0=.AL

+//1F STRIKE COMPUTE HEIGHT OF FONT

;//SOURCE BASE ADDRESS FIRST
;//WORD OF GLYPHS

i//MAX+2 - MIN + TOP OF XTABLE GET TO GLYPHS

i//(SEGMENT WIDTH + 15) / 16 = SOURCE RASTER

;//SET UP WIDTH GETTING ROUTINE
;//SET UP HEIGHT GETTING ROUTINE

SETRTN:

SETAL:

PUTCHARSC:

NOCHANGE:

LDA 0,@STRIKESCAN
STA 0,SCANSUBR,2
MOV 2.3

LDA 2,SAV22

IMP @1,2

INC 3,3

INC 3.3

STA 3BBFONT,2

@
>
-
[o2]

STA 3,12
MOV 0,3
é‘(l;)/\ 0,CHANGE,3
IMP NOCIIANGE

LDA 0,1,2
STA 05AV3,3

MOV 3,0
JSR SETSCANC
LDA 0SAV33

STA 0,1,2
STA 2,SAV23

MOV 3.2
MOV 1,3
LDA 1,DX,3

STA 1,DESTX,2
LDA 1,DY,3
STA 1,DESTY,2
MKZERO 1,1

STA 1,WIDTH,2
LDA 1,STRINGTAB,3
LDA 0,SCANSUBR,2

;//PASS BACK PTR TO SCAN CONVERTING SUBR IN
//BBSTABLE

i//RESTORE AC2 -- AC3 CONTAINS

//PTR TO BBSTABLE
//WHICH CALLER WILL WANT TO SQUIRREL AWAY

;//MAKE BBFONT POINT AT FIRST TABLE ENTRY

;//SET UP WIDTH GETTING ROUTINE
;//SET UP HEIGHT GETTING ROUTINE

C
TRTN //PASS BACK PTR TO SCAN CONVERTING SUBR IN

;//BBSTABLE

;//CHECK IF FONT, FUNCTION, OR GRAY CHANGED
;//SINCE LAST USE OF THIS TABLE

;//1IF CHANGE SAVE RETURN PTR FOR PUTCHAR
://IN BBSTABLE AND CAL

i/ /SETSCAN WITH PTR

://TO BBSTABLE IN ACO -- PTR IN SCANTABLE
3//STILL IN AC]

i//RESTORE RETURN PTR --

;//BOMBED BY SETSCAN

i//SAVE PTR TO AC2 IN BBSTABLE --
i//FOR BCPL

://BBSTABLE IN AC2

i//SCANTABLE IN AC3

i//SET UP DESTINATION X OF FIRST
i//CHAR IN STRING

i//AND TOP Y

//WIDTH GOES INTO SCAN
;//CONVERSION AS ZERO

i//PTR TO STRING TABLE IN AC1 FOR SMF
;//SCAN CONVERSION SUBR CALLED BY SMF

//SMF (SUBSTRECTOR-MAP-FETCH) IS AN ENTRY IN A STRING PACKAGE WRITTEN BY
i//LARRY TESLER --

;//GOING IN:

PTR TO SUBROUTINE (MAP FUNCTION) TO BE CALLED

STRING POINTER
FIRST CHARACTER (BYTE PTR;
LAST CHARACTERT(BYTE PTR

ACO =
WITH EACH CHARACTER
ACl1 = PTR TO STRING TABLE:
AC2 = TRANSPARENT

//THE 1 FOLLOWING THE JSR MEANS WE'RE LOOKING AT A STRING AND

i//PROCEEDING FROM FIRST TO LAST

//A -1 WOULD MEAN TO PROCEED FROM LAST TO FIRST

EACH TIME SMF CALLS THE DESIGNATED SUBROUTINE WITH AN
ASCII VALUE IN AC0 AND THE CURRENT CHARACTER (BYTE PTR)

IN AC1

//A NOSKIP RETURN MEANS THAT THE STRING HAS BEEN EXHAUSTED -- EITHER
i//LAST CHARACTER REACHED OR BEYOND LENGTH OF STRING. A SKIP RETURN

://71S CAUSED BY A SKIP RETURN FROM THE USER'S SUBROUTINE.

I ASSUME THERE

i/71S A SIMILAR PACKAGE FOR PUMPING STRINGS IN BCPL

{SR @.SMF
SKIP

;//NOSKP - SUBSTRG EXHAUSTED
;//FOR MEASURING
;//AC0 = CHAR CODE
;//ACl1 = BYTE PTR

RETURN:

JMP RETURN
LDA 3,.DSPGLBS
NIL 0.0

STA 0,NSPC,3

//SKP RTN FROM STRIKESCAN MEANS STOP PICKING
;//WHEN SUBSTRING EXHAUSTED ACO ¢« NIL
;//AND NSPC GETS NIL TO TURN OFF JUSTIFICATION

h\ll)é\ 11 SAVI2;//AND AC1 GETS BYTE PTR + 1 -- WHEN SUBSTRG

LDA 2SAV2.2
IMP @1,2

STRIKESCANC:
STA 3SAV32 ://BBSTABLE IN AC2

NOSCAN:

CLIPC:

SPCIT:

LDA 3,BBFONT,2
STA 0,CHAR,2
STA 18AV12

LDA 1,MIN,3
SGE 0,1

JSR EXCEPTC
LDA 1,MAX,3

SLE 0,1

INC 1,0
STA 0,CHAR,2

//SMF DOES NOT RETURN BYTE PTR

://CHECK FOR 'LEGAL' ASCII
;//EXPEDIENT -- MAY NOT BE NEEDED

i//DITTO -- BUT REQUIRED IN SMALLTALK
i//CURRENT BYTE PTR FROM SMF HERE

//MAX + 1 IS 'ILLEGAL' CHARACTER

;//EXCEPTION CODE, E.G. FOR CRSPACEETC.
//COULD BE PUT HERE -- FOR SMALLTALK
//EXCEPTION CHARACTERS WILL BE KNOWN BY
//THEIR ZERO WIDTH

éllj)[/}\ 1IOMIN ,3 ;//SUB MIN FROM CHAR CODE -- SO INDEXING

LDA 3,WIDTH,2
LDA 1 DESTX 2

STA 3, DESTX 2
LDA 3 BBFONT 2

LDA l CIIARPTRS 3
STA 1,5RCX,2

LDA 0,CHARPTRS+1,3
SUB 1,0

STA 0 WlDTH 2
SNZ 0
JSR LXCFPTC

-JSR CLIPC

JMP NOSCAN

JMP @SAV3,2

MOV 31

STA 1, TEMPI,2
LDA 0,CHAR,2
LDA 1SPACE

SNE 0.1

IMP SPCIT

ISZ TRLCHR,2

NOP
LDA 1,WIDTH,2

LDA 0,DESTX,2
LDA 3,CROSSLEFT,2

SLT 0,3
- JMP CHKRTI

ADD 0,1
MOV 1,0
SGT 1.3

JMP RTN

. SUB 3,1

LDA 3, WIDTH,2
STA LWIDTH,2
SUB 1,3

//CORRECT

;//UPDATE DESTX--WIDTH 0 FIRST TIME--SET IN
://PUTCHARS

3//SET UP SOURCE X

//SET UP WIDTH
//NEXTX - THISX

i//BBSTABLE SENT IN ACO FOR NOW#*#++ss+
//AND ACL IS FLAG****s++s+

;//PUT TABLE BACK IN 2 CAUSE SMF BOMBS 3

i//SUBR FOR WINDOW CLIPPING
;//SAVE RETURN -- BBSTABLE COMES IN AC2

;//INDICATE NON-SPACE CHAR -- HELP DEAL
//WITH MULTIPLE SPACES IN JUSTIFICATION
;//SOMETIMES USED AS NIL FLAG -- ARGHHY

;//CHECK DESTX VISIBLE

//CROSSLEFT SET UP BEFORE PUTCHARS CALLED
//1F DESTX GE CROSSLEFT THEN CHECK
;//CROSSRIGHT

;//OTHERWISE ADD IN WIDTH

//GET IN BOTH ACO AND AC1

i//1F STILL NOT CROSSLEFT

;//THEN NOSKIP RTN AVOIDS BITBLT CALL

i//1F SPANNING CROSSLEFT PRUNE SRCX

;//TO GET PARTIAL CHARACTER

;//DIFF BETWEEN CROSSLEFT AND RIGHTX IS WIDTH
;//WIDTH - DIFF TO BE ADDED TO SRCX AND DESTX

CHKRTI:

CHKRT?2:

PRUNE:

CHKCHAR:

CHKEDGE:

SKPRTN:

RTN:

LDA 1,SRCX,2
DD 3,1

STA 1,SRCX,2

LDA 1, DESTX 2

ADD 3,1

STA 1,DESTX,2
JMP CHKRT?

LDA 3 CROSSRIGHT,2
SLE 0,3

JMP RTN
ADD 1,0

LDA 3 RIGHTMARGIN,2

LDA lCROSSRIGHT.Z
SNNIL 1,1

%MP 1C.!’-IKEDGE

JMP CHKEDGE

SGT 0,1

JMP CHKCHAR

NIL 3,3

STA 3,CROSSRIGHT,2

i//AND DESTX

i//AND CHECK RIGHT BOUNDARIES
//CHECK HERE IS INITIAL DESTX OFF RIGHT

;//NOSKIP RTN AVOIDS BITBLT CALL
;//ADD IN WIDTH FOR NEXT CHECK

i//NOW CHECK FOR SPANNING CROSSRIGHT

i//IF CROSSRIGHT NIL-- WE'VE ALREADY CROSSED IT
//S0 CHECK RIGHTMARGIN -- SO MEASURING WORKS
//TF CROSSRIGHT LESS THAN RIGHTMARGIN

i//IF EQUAL CHECK SPANNING OF RIGHTMARGIN

;//1F WITHIN CROSSRIGHT SCAN IN

;//OTHERWISE SET CROSSRIGHT TO NIL AND
;//PRUNE

LDA 3SAV1.2;//PRUNED CHARACTER WILL BE LAST VISIBLE

STA 3,LASTVISIBLE,?2
SUB 1,0

LDA 1,WIDTH,2

SU

B0l
STA 1,LWIDTH,2

LDA 0.CHAR,2
DA 1.SPACE
DA 3TAB
SEQ 0

SNE 0

™Mb RN

IMP SKPRTN

MOV 3,1

L.DA 3,CROSSRIGHT,2
SNNIL 3,3

JMP RTN

SGT 0,1

JMP (,HKCHAR

STA 3TRL(,HR 2
JMP PRUNE

LDA 1,MEASURE,2
SZE 1,1
JMP MRTN

L.LDA 3,TEMP1,2
JMP 1,3

LDA 1, MEASURE,2
SZE 1,1

JMP MRTN
IMP @TEMP1,2

//MAINLY FOR SMALLTALK PURPOSES
//1F SPANNING CROSSRIGHT OR RIGHT MARGIN
i//PRUNING WIDTH WILL GET PARTIAL CHAR

i//SKPRTN WILL CALL BITBLT

//1F ALREADY CROSSED RIGHT DON'T SCAN

i//1F SPANNING RIGHT MARGIN THEN PRUNE

i//NIL TRAIL CHAR COUNT AS FLAG FOR STOPPING
i//AT MEASURING TIME
//AND GO PRUNE

//AC() PRFSFRVED HERE FOR MSE FINDING ROUTINES

/‘t*t‘l"“#‘t#

//FIRST SEE IF WE'RE MEASURING -- DIFFERENT RTN

;//SKPRTN MEAN SCAN IT IN

//ACO PRESERVED HERE FOR MSE FINDING ROUTINES

EEI L2222 222223

,//FIRST SEE IF WE'RE MEASURING -- DIFFERENT RTN

;//NOSKP MEANS NO SCAN

;//EXCEPTION CODE -- HANDLES CR, TAB, AND SPACE

EXCEPTC:

MOV 3,1

STA 1,TEMPI,2
LDA 3,.DSPGLBS
LDA 0,CHAR,2

" LDA 1SPACE

SNE 0,1

JMP DOSPACE
LDA 1,TAB
SNE 0,1

IMP DOTAB
LDA 1CR
SNE 0,1

ZER 0,0

;//BBSTABLE COMES IN AC2
//FOR SMALLTALK

STA 0,WIDTH,2
LDA 0,C257

LDA 3,SCANSUBR,2
JMP 1,3

DOSPACE:
LDA 0,MEASURE,2
SZE 0,0

JMP MSPACE
LgA ObTHISLINE,S

SGZ 0,

JMP NOIJST
DSZ CNTI1,3
JMP JUSTIT

LDA 1,CNT2,3
SGZ 1,1

DOIJSTC:

10

;//RECALL SCAN SUBR
//WITH ILLEGAL CHAR

i//+1 TO KEEP SCANSUBR'S RETURN CORRECT
;//SEE IF IN MEASURE MODE

i//1F ACTUALLY SCAN CONVERTING THEN
://SEE IF JUSIFYING

//ENTRY USED BY SMALLTALK FNDMS ROUTINE

i//1F SO, SEE IF WE'VE
i//COUNTED DOWN COUNTERS

i//CNT2 ALREADY ZERO OR COUNTED DOWN?

JMP LASTIST-;//IF SO ONE MORE TIME AND STOP

STA 1,CNT],3
ISZ LEAD,3
ISZ NWID,3
MKZERO 0.0
STA 0,CNT2.3
JMP JUSTIT

STA 1,THISLINE,3

LASTIST:

JUSTIT:
LDA 0,LEAD,3
LDAD })DELTA 3

STA 1,DELTA,3

LDA G,NWID,3
UPDATEWIDTH:

STA 0,WIDTH,2

LDA 1,DESTX,2

ADD 0,1
STA 1.SPCX,3
JMP RTN

//UPDATE LEAD SO TABS WORK RIGHT
//NWID+1 NEW JUST SPACE

i//ZERO CNT2

//SHUT OFF JUQTIFICATION FOR NEXT TIME
i//AND UPDAT

//BUMP TAB DELTA -- LEAD SET IN LNOUT.SR

;//SAVE PROPER RIGHTX
;//FOR JUSTIFICATION

;//IN DSPUTILS.SR
i//RETURNS TABWIDTH IN ACO

;//SAVE FOR CHECKING IN JUSTIFICATION

LDA 1.SAV1,2;//GET CURRENT BYTE PTR INTO ACI

NOJST:

LDA 0,FSPACE,3

JMP UPDATEWIDTH
CR: 15
TAB: 11
SPACE: 40
TABWD: TABWD
DOTAB:

JSRII .TABWD

IMP UPDATEWIDTH
DOCR:

STA 0,JSTCR,3

LDA 3SAV32

IMP 1,3
MSPACE:

LDQ‘ é’ TRLCHR,2

JMP MULSPC

ZER 0,0

STA 0, TRLCHR,2

STA O0.NSPC2,3
MULSPC:;

LDA 1SAV1,2

STA 1,LSTSP.3

ISZ NSPC,3

1SZ NSPC2.3

JMP NOJST
MRTN:

LDA 0,TRLCHR,2
SNIL 0,0

JMP @TEMP1,2
LDA 3,.DSPGLBS
LDA 0,CHAR,2
LDA 1,LSTSP,3
SNNIL 1,1

JMP NOSPC

;//POP OUT OF SMF IN PUTCHARS

i//SPACE EXCEPTION CODE WHEN MEASURING
;//FIX MULTIPLE SPACES IF NECESSARY

i//SAVE PTR TO THIS SPACE
;//BUMP SPACE COUNTERS

;//1F NOT GO GET MORE CHARS

;//NIL TRLCHR TELLS US PAST RIGHTMARGIN
;//IF NOT GET MORE CHARS

i//GET LAST CHAR INTO AC0 FOR PSTRG

;//NIL LSTSP MEANS NO SPACES IN LINE

MOUT:

NOSPC:

LBYTEMSK:
RBYTEMSK:
C20:

C257.

.CLIP:

ALSCANC:

EXTENTION:

EXCEPTION:

NOSCANAL:

.EXCEPT:
.END

LDA 1,SPCX,3
STA 1,DESTX,2

LDA 1,LSTSP,3
INC 1,1

LDA 3SAV32
IMP 1.3 ‘
LDA 1SAV1,2
JMP MOUT
177400

377

cLIp

STA 3,5AV3.2

11

;//MAKE LAST DEXTX
i//CORRECT FOR JUSTIFICATION

://SEND BYTE PTR BACK IN ACl1 AND CHAR CODE IN
i//ACO -- EXPECTED IN PSTRG.SR

;//SKPRTN OUT OF SMF IN PUTCHARS
;//NO SPACES IN LINE MEANS

i//SAV1 HAS CORRECT
://BYTE PTR FOR PSTRG.SR

;//BBSTABLE COMES IN AC2

STA 15AVi2 //SAVE SMF'S BYTE PTR

STA 0.CHAR,2
LDA 1,WIDTH,2
LDA 3,DESTX,2
ADD 1.3

STA 3,DESTX,2
LDA 3,BBFONT,2
ADD 0,3

’STA 0, TEMP2,

A 1,C20
MOVZR 0,0 SNC
MOV 1,
STA 0,WIDTH,2
LDA 0,1,3
LDA l,LBYTEMSK
ANDS 0
LDA O,DESTY 2
SFA OITOEM P3,2
STA 0,DESTY,2
LDA 0,1,3
LI')\JA 1,RBYTEMSK

v

DO
STA IHEIGHTZ
sUB 1,3

B
STA 3:SBASE,2
LDA 0,CHAR2
LDA ISPACE
SNE 0
IMP EXCEPTION
LDA lTAB

E 01l
JMP EXCEPTION
LDA 1,CR
SNE 0,1

JSRIT .EXCEPT
JSRII .CLIP

IMP NOSCANAL
MOV

ZER l 1

BITBLT

MOV 0,2

LDA 0,TEMP3,2
STA 0.DESTY,2

=)

;//SAVE CHAR CODE FOR EXCEPTION CHECKING

i//UPDATE X
;//NOW GET FONT INTO AC2

i//GET WIDTH WORD
//SAVE WIDTH WORD -- IN CASE OF EXTENTION

;//SAVE DESTY FOR HIGHER ROUTINES

;//GET HEIGHT/DISPLACEMENT WORD BACK
i//MASK OFF HEIGHT
;//ADDR OF WIDTH - HEIGHT SHOULD BE SBASE

//FIX DESTY

MKZERO 0,0 ";//FIX SRCX -- LEFTSIDE CLIPPING MAY ALTER

STA 0,SRCX,2
LDA 0,TEMP2,2
MOVZR 0,0 SNC
JMP EXTENTION

IMP @SAV3,2;//AND GO FOR ANOTHER CHARACTER
EXCEPT

