
(ALTODOCS)BCPLRUNTIME.TTY;3 MON 17-0CT-77 1:42AM PAGE 1

For Xerox Internal Use Only -- October 17, 1977

Bcpl Runtime Package October 16, 1977 1

Bcpl Runtime Package

This package is a replacement for the standard Bcpl runtime (the one
built into the Alto Operating System), in which nearly all of the
operations have been microprogrammed. Typical Bcpl programs run 25 to
30 percent faster than with the standard routines, depending primarily
on their frequency of procedure calls and their richness in complex
structure references. Use of this package also permits one to Junta to
levBasic if desired, for a savings of approximately 500 words of main
memory.

The microprogrammed runtime is entirely compatible with the standard
one. It does not require programs to be modified or recompiled, and it
works correctly during calls to the Operating System as well as to your
own procedures. The simplest use of this package requires only that
you load the necessary microcode into the Ram and call one
initialization routine.

The package also provides a convenient framework in which to define and
microprogram additional emulator opcodes.

1. Standard Use

The simplest case applies when you do not need to include any special
microcode of your own. The file BcplRuntime.Dm is a dump-format file
containing Bcp1Runtime.Br and BcplRuntimeMc.Br. These modules should
be loaded with your program, along with the LoadRam procedure,
available separately as LoadRam.Br.

Early during initialization, your program should execute the following:

external [LoadRam; InitBcplRuntime; RamImage]
if LoadRam(Ramlmage) eq 0 then InitBcp1Runtime()

(LoadRam returns zero if it successfully loaded the Ram and a nonzero
result otherwise, e.g., because no Ram board is installed.)

Once this has been done, the space occupied by LoadRam.Br and
BcplRuntimeMc.Br may be reclaimed. Bcp1Runtime.Br must remain resident
throughout execution of the program, but it occupies only about 150
words whereas the others consume nearly 3000.

InitBcplRuntime sets up a 'user finish procedure' (in the manner
described in the O.S. manual, section 3.12), whose purpose is to
restore the normal Bcpl runtime routines when the program 'finish'es
for any reason. Operation of this mechanism is ordinarily invisible;
however, there are two situations in which the programmer must be aware
of its workings.

<ALTODOCS)BCPLRUNTIME.TTY;3 MON 17-0CT-77 1:42AM PAGE 1:1

First. if you execute a Junta and later a CounterJunta. the
CounterJunta will itself cause the standard Bcpl runtime to be
restored. The later restoration performed by the BcplRuntime package
will be redundant and will do no harm. but the standard (slower) Bcpl
runtime will be in use once the CounterJunta has been executed.
tL

......... _ .. _----_ ... _---------------------

(ALTOOOCS)BCPLRUNTIME.TTY;3 MON 17-0CT-77 1:42AM PAGE 2

For Xerox Internal Use Only -- October 17, 1977 :." .
".' I

Bcpl Runtime Package October 16, 1977 2

Second, if you Junta away the standard Bcpl runtime routines
themselves, you must be careful to perform initialization in the
correct order. In particular, InitBcplRuntime must be called before
the Junta and before any other code that sets up user finish
procedures. This ensures that at 'finish' time, the cleanup procedure
in the BcplRuntime package will be the last user finish procedure
executed, immediately before control returns to the operating system
for the final time. If this convention is not followed, a subsequent
call on the Bcpl runtime would end up diving into garbage (since
InitBcplRuntime saves and restores only the runtime statics, not the
code) .

2. Adding Your Own Microcode

In order to implement additional emulator instructions or install
microcode for special devices, it is necessary to understand the
workings of the package in some detail. If you don't want to do those
things, you need read no further.

The source files are contained in the dump-format file
BcplRuntimeSource.Om. It includes, among other things, the following
microcode source files:

BcplRuntimeMc.Mu

EmulatorOefs.Mu

RamTrap.Mu

GetFrame.Mu

BcplUtil.Mu

The top-level microcode source file, which
'includes' all the others.

Standard label and R-register definitions useful in
writing code to be run as part of the emulator
task.

Declarations and code for dispatching all opcodes
that trap into the Ram.

Microcode implementing the Bcpl runtime 'GetFrame'
and 'Return' operations.

Microcode implementing all remaining Bcpl runtime
operations.

In addition to these files, you need AltoConsts23.Mu (or
current version is), MU.Run, and PackMu.Run. The latest
1977) version of Mu is required.

whatever the
(October 11,

To add new opcodes, you will need to edit BcplRuntimeMc.Mu and
RamTrap.Mu (which should be renamed to something else first). The
changes to Bcp1RuntimeMc.Mu are trivial: simply append 'include'
statements for each of your own source files.

RamTrap.Mu contains the following predefinition:

!37,40, TrapDispatch", GetFrame, Return, BcplUtility;

-_ .. _ _ _ _ _._-_._ .. _-_ ... _._-------------------------

(ALTODOCS>BCPLRUNTIME.TTY;3 MON 17-0CT-77 1:42AM PAGE 2:1

The labels in
#60400, #61000,
of these cannot
into the Ram.
tL

this predefinition correspond to the opcodes #60000,
#61400, ... , #77400 (a total of 32). However, several
be used because their execution does not cause a trap

These are #60000, #60400, #61000, #64400, #65000,

(ALTODOCS)BCPLRUNTIME.TTY;3 MON 17-0CT-77 1:42AM PAGE 3-

For Xerox Internal Use Only -- October 17, 1977

Bcpl Runtime Package October 16, 1977 3

#67000, and #77400. The GetFrame, Return, and BcplUtility instructions
use #61400, #62000, and #62400. All others are available for your own
use simply by adding labels to the predefinition.

When one of these labels is reached, the Alto is in a clean state (no
TASK or memory reference pending), the accumulators ACO through AC3
contain the values supplied by the emulated program, and IR (the DISP
bus source) contains the low-order 8 bits of the opcode, which may be
used for further dispatch if desired.

The routine should finish by executing the following sequence of
operations:

TASK;
something;
SWMODE;
:START;

It is essential that the TASK be executed as late as possible before
the branch to START. The worst-case path in the Rom microcode
beginning at START consists of 19 microinstruction cycles without a
TASK. It has been determined empirically that as few as 3
microinstructions inserted between 'something' and 'SvJMODE' in the
above sequence causes Diablo Model 44 disks to get data-late errors.
(Alas, it is not possible to say 'SWf.100E, TASK' in one microinstruction
because they are both F1's. In hindsight, it would have been nice if
SWMOOE had been implemented in such a way as to cause a TASK also.)

BcplUtil.Mu contains three convenient exit points to which opcode
emulation routines may branch. The code for these exit points is:

StartO: PC~L;

Start1: L~PC, SWMODE;
Start2: PC~L, :START;

One may branch to StartO having just executed 'L~ new PC, TASK;', to
Start1 having just executed 'TASK; something;', or to Start2 having
just executed 'TASK; something; L~ new PC, SWMOOE;'.

Standard R-registers available to the routine are listed in
EmulatorOefs.Mu. These are SAD, XREG, XH, MTEMP, DWAX, and MASK. All
except MTEMP are used exclusively by the emulator task and may be
clobbered arbitrarily (the standard Nova emulator in the Rom does not
depend on them). MTEMP is usable by any task but is safe only until
the next TASK.

You may need to modify EmulatorOefs.f.1u if your microcode defines labels
in low, fixed locations (e.g., START or the task starting addresses).
Note that EmulatorDefs.Mu defines all labels except TRAP1 in a way that
does not consume space in the Ram. You may need to change one or more
of these (e.g., START) to ordinary predefinitions if you intend to
define them in the Ram.

The microcode is assembled and turned into a .Br file by means of the
commands:

Mu BcplRuntimeMc.Mu
PackMu BcplRuntimeMc.Mb BcplRuntimeMc.Br

------------------------------,----,-,-----,-,-"'-"""-'- ,,-, ,,---,,-,--,-------------------- -,----------------------

(ALTODOCS>BCPLRUNTIHE.TTY;3 MON 17-0CT-77 1:42AM PAGE 4

For Xerox Internal Use Only -- October 17. 1977

Bcpl Runtime Package October' 16. 1977 4

The Bcpl runtime microcode contained in the package occupies 337
(decimal) microinstruction words.
tL

------_._---_. __ ",-----,-,-,- ,------------------ ,-_ ... _-,-"---,----------

musum.txt

T .. <BUS>
<ALU Function>·

L .. <ALU Function>

9-MAY-78 9:29:21

Mu Summary

M" (Sympathetic to L)
MAR .. <ALU Function>

MD .. <BUS>

[R] +- L
L LSH 1
L RSH 1
L LCY 8

[S] +- M (L)

. <ALU Function> ::=
T
<BUS>
<BUS) + 1
<BUS) - 1
<BUS) 0+ T
<BUS> - T
<BUS) + T + 1
<BUS> - T - 1
<BUS) OR T
<BUS) AND T

.. <BUS).T (AND T)
<BUS) AND NOT T
<BUS> XOR .

<BUS> ::=
[R]

[8]
[CONSTANT]

o
. -1·

M
MD
MOUSE

[OEST]
[DEST]

- [OEST, T]
[OEST, T]
[DEST]
[OEST]

[OEST, T]
[OEST]

[OEST, T]
[DEST]

[OEST, T]
[OEST]
[OEST]

DISP [low order 8 bits of IR, sign extemled]

Sequencing of Oata Movements

<BUS> .. 1

<ALU) .. T [2]
<BUS> [2]

. MD +- <BUS>[2]

Page 1

musum.txt 9-MAY-78 9:29:21

[R] +- L [2,31 (data goes to shifter on cycle 2)
L LSH 1 [2,3]
L RSH 1 [2,3]
L LCY 8 [2,3]

T, +- <BUS)[3] ,
<ALU Function)*[3]

L+- <ALU Function)[3]
M +- (Sympathetic Jo. L)
MAR'" <ALU Functiori>[3]

rS] +- ~ (L) [3]

Compatible Simultaneous Data ~ovements
<BUS)+­

T+-
L+­
MAR'"

·T ... ·
... '{SUS}+- 'or'[R]+- orIS]'"

L+-
MAR+-

. MD'"

MAR'"
<BUS)+- or [R]+- or· [S]+­
L+-
T+-

[R]+-L
T,L,MAR "'<ALU Function (BUS ... O,T»

[R]+-L <SHIFf OPERATION>
T,L"'<1\LU Function (BU~ .. ~ O,T»

[S]+-L ' ... '
T,L,MAR "'<ALU Function (BUS O;T»

Page 2

ALTOCONSTS23.MU 9-MAY-78 12:27:42

ALTOCONSTS23.MU

; Symbol and constant definitons for the standard Alto microcode.
; These definitions are for:
-; '. AltoCode23, AltoCode24, AltoIICode2, and AltoIICode3
; By convention, . (leople writing microcode should 'include' this file

in front of their microcode using the following MU construct:
~ ;. # AltoConsts23.mu;
; This entire file is full of magic. I£ you modify it in any way
;. you run the risk of being incompatible with the Alto world,

r ;i :, not to'mention having your Alto stop working .
. (,~' '.' ... , . - '

(Revision -History: .
; September 20, 1977 8:33 PM by Boggs
; Created from old AltoConsts23.mu
; September 23, 197712:17 PM by Taft
; October 11, 1977 2:07 PM by Boggs

Added XMAU defitlition

---------.--....•....... _._-_._._- .- ... -.... - .. ,-_._._.-------,---_.--------

Page 1

ALTOCONSTS23.MU 9-MAY-78 12:27:42

;Symbol definitons

;Bus Sources
; BS ° +- RRegister
;BS 1 zeros the bus during RRegister+-, BUT NOT SRegister+­
;BS 2 is undefined and therefore makes the bus all ones

.. ;BS 3 and 4 are task specific. For the 'Ram related' tasks they are:
~ '.; ns 3: +- S Register·. \ .

. ~ BS 4: SRegister+- :' ; ..
;BS 5 is main memory (see definiton for MD, below)
$MOUSE $LOOOOOO,014006,OOOlOOj BS = 6 .
$DIS!> $LOOOOOO,014007,000120; BS = 7

;Standard Fls
$XMAR
$MAR
$TASI(
$BLOCK

$L072000,000000,] 44000j FI = 1 and F2 = 6 (Extended MAR)
$L020001,000000,144000; Fl = 1

·$LLSHI
.$LRSHI

- $LLCY8

;Standard F2s
$BUS=O
$SH(O
$SH=O
$nUS
$ALUCY
$MD

$L016002,000000,OOOOOO; Fl = 2
$L016003,000000,000000; Fl = 3
$LOOOOOO,022004,000200j FI = 4
$LOOOOOO,022005,000200j Fl = 5
$LOOOOOO,022006,000200j FI = 6

$L02400 I ,000000,000000; F2 = I
$L024002,OOOOOO,OOOOOOj F2 = 2
$L024003,000000,000000; F2 = 3
$L024004,OOOOOO,OOOOOO~ F2 = 4

$L024005,000000,000000; F2 = 5
$L0260q6,01~~05,124100;' F2 = 6, BS = 5

jEmulator specific functions
$BUSODD $L024010,000000,000000; F2 = 10
$LMRSHI $LOOOOOO,062005,000200j F2 = 11 Magic Right Shift
$LMLSHI $LOOOOOO,062004,000200j F2 = 11 Magic Left Shift
$DNS $L030012,OOOOOO,060000; F2 = 12 Do Nova Shift
$ACDEST $L030013,032013,060100; F2 = 13 Nova Destination AC
$IR $L026014,OOOOOO,124000; F2 = 14 Instruction Register
$IOlS}> $L02401S,000000,OOOOOO; F2 = 15 IR Dispatch
$ACSOURCE $LOOOOOO,032016,OOOI00; F2·= 16 Nova Source AC

jEmulator -specific functions decode~1 by. the RAM board
"' '$S\VMODE . - - $L016010;OOOOOO,000000;' FI = 10 Switch Mode

$WRTRAM $L016011,OOOOOO,000000; FI = 11 Write Ram
$RDRAM $L016012,000000,OOOOOO; FI = 12 Read Ram
$RMU $L020013,OOOOOO,124000; Fl = 13 Reset Mode Register
jFl = 14 and 15 are used by the mag~c ~!.l~ftS .'

-
;Emulator specific functions decoded by the- ETHERNET board, .
$RSNI~ $LOOOOOO,070016,000l 00;:'. . \',. Fl = 16 Read.Se'ria). (Host) Number
$STARTF $LOI6017,000000,000000; FI = 17,start liD

$M
$L
$T

- f" ~ , •

~ .. ~ .~ ~ 1 ~ ~"

$R40; The M Register
$L040001,036001,144200; The L Register·
$L052001,054001,124040; ALUF = 1, The T Register

. ;ALU Functions. ,.. =) loads T from·ALU output
$ORT $LOOOOOO,050002,000002; ALUF = 2 •
$ANDT $LOO()()()O,050003,000002; ALUF = 3
$XORT $LOOOOOO,050004,000002; ALUF = 4

. Page 2

ALTOCONSTS23.MU 9-MAY-78 12:27:42

$+ 1 $LOOOOOO,050005,000002; ALUF = 5 •
$-1 $LOOOOOO,050006,000002; ALUF = 6 •
$+ T $LOOOOOO,050007,000002; ALUF = 7
$-T $LOOOOOO,050010,000002; ALUF = 10
$-T-1 $LOOOOOO,050011,000002; ALUF = 11
$+INCT $LOOOOOO,050012,000002; ALUF = 12 • synonym for +T+l
$+ T +1 $LOOOOOO,050012,000002; ALUF = 12 •
$+SKIP $LOOOOOO,050013,000002; ALUF = 13
:$:r $LOOOOOO~050014,000002; ALUF = 14 *
·.$AN 0 NOT T $LOOOOOO,0500 15,000002;. ALUF = 15
;$ZEROALU $LOOOOOO,050016,000040; ALUF = 16 .

··;ALUF 17 is unassigned

;Handy fakes
$SINK . $L044000,OOOOOO,124000;
$NOP $L042000,000000,OOOOOO;

DF3 = 0 Bus source without .dest _
NDF3 = 0 every computer needs one

; Definitions for the Nova debugger andDEBAL
$HALT $L04200 1 ,000000,000000;
$nnEAK $L042003,OOOOOO,OOOOOO;
$WENB $L042005,OOOOOO,OOOOOO;
$READY? $L042006,OOOOOO,OOOOOO;
>$NOVA $1..044002,046003,124100;
. SEND $L034000,OOOOOO,000000;

Page 3

ALTOCONSTS23.MU 9-MAY-78 12:27:42

;Constant definitions

SO

SALLONES4
$t\LLONES5

$LOOOOOO,O 12000,000 100; Constant 0 is SUPER SPECIAL

'SMI7
$ALLONES7
$M177770
$M7

, :$XI7

$M4:177777;
$M5:177777; ,
$M 6:0000-l7;
$M 7: t 77777;
$M7:t77770;
$M 7:000007;
$M 7:0000-1-7;

'''SONE $1;
$2: $2;
S-2 $177776;
$3 $3;
$4 $4;
$5 $5;
S6 $6;
S7$7;
$10 $10;

Constant normally ANDcd with KSTAT
Constant normally ANDcd with MD
Constant normally ANDcd with MOUSE
Constant' normally ANDed with DISP
Mask for DISP
Mask ·f or D ISP

-'Maslc:for'DISP

The constant 1

- Disk header word count

~S":"10 . $177770; '. _":" .. Disk .Iabel word count
;~_$17· $17;
. ·$20 $20;

$37" , $37;
, $ALLONES $177777; The REAL -1 (not a mask)
-~$40' _ . $40;
- $77 $77;

$]00 -. $100;
$177 $177;

. -$200 $200;
$377· $377;
$177400 $177400;

, $-400 $177400; -, .;. DISK DATA WORD COUNT
, $2000·

$PAGE1
$2000;

$DASTART $420;
.. $KBLKADR- $521;

$MOUSELOC $424;
$CURLOG--

~-$CLOCKLOC $430;­
$CONIOO

$400;

·$426;

$100;

MAIN MEMORY DISPLAY HEADER ADDRESS
-MAIN MEMORY DISK BLOCK ADD-RESS­

MAIN MEMORY MOUSE BLOCK ADDRESS
MAIN MEMORY CURSOR BLOCK ADDRESS

, $7772; CYLINDER AND DISK'MASK $CA:DM
$SECTMSK
$SECT2CM

$]70000; SECTOR MASK ...

::: $-4
~ .• $177766
" $177753
,;:$TOTUWC

$TOWrf

$40000; CAUSES ILLEGAL SECTORS TO CARRY OUT'
$177774; CURHENTLY UNUSED,,<

.. $177766; CURRENTLY UNUSED
, $177753; ~ ',CURRENTLY l:JNUSED

$44000; ::: NO DATA TRANSFER, USE WRITE CLOCK
$66000; ,NO DATA TnANSFEI~, DISAIlLE \-VORD TASK
$4000; ",TRANSFER DATA·:USING WIHTIl'NG;;CLOCK

Page 4

:~ ,$STU\VC -
$STRC\VFS
$177000
$77777
$77740
$LOW14
$77400
$-67D
$7400

$10000; TRANSFER DATA USING NORMAL CLOCK, WAIT FOR SYNC
$177000;

$77777;
$77740;- .

$177774;
$77400;
$177675;
$7400;

ALTOCONSTS23.MU 9-MAY-78 12:27:42

$7417
$170360
$60110
$30000
$70531
$20411.
$65074
$41023
$122645
$177034
$37400
$BIAS
$WWLOC

." $PCLOC'
. $100000 .

$177740
$COMERRI
$-7
$177760
$-3
$4560

. $56440
$34104
$64024

. $176000
$177040
$177042
$203
$360
$177600
$174000
$160000
$140000
$777
$1777
$3777
$7777
$17777
-$37777
$1000
$20000
$40000
$-150
$TRAPDISP
$TRAPPC
$TUAPCON
$JSRC
$MASKTAB
$SH3CONST

" . ,
·-$600- .
-$601
$602
$603
$604
$605
$606
$607

. $610

$7417;
$170360;

$60110;
$30000;
$70531;
$20411;
$65074;
$41023;

$37400;

$122645;
$177034;

$177700; e-URSO'R Y BIAS
$452;
$500;
$100000; .
$177740;

. 'WAKEUP WAITING IN PAGE 1
PC VECTOR IN PAGE 1

$277; COMMAND ERROR.MASK
$177771; CURRENTLY UNUSED

$177760;
$177775;

.. $4560; .
. --$56440; .

$34104;
$64024;

$176000;
$177040;
$177042;

$203;
$360;

$177600;
$174000;
$160000; -
$140000;

$777;
$1777;
$3777;
$7777;
$17777;
$37777;
$1000;
$20000;
$40000;
$177761;
$526;

$527;

JSR@;O
$470;
$6000;
$460;
$14023;

Mask Table Starting addrcs's for convert
DESTINATION = 3, SKIl~'IF NONZEROt-GAnRY,
BASE ~CARnY = 0

0$600;
$601;
$602;

o $603;
$604;
$605;
$606;
$607;
$610;

,I ".

Ethernet addresses

o Page 5

ALTOCONSTS23.MU 9-MAY-78 12:27:42 Page 6

$612 $612;

$ITQUAN
$ITIBIT
$402
$M177760
$JSRCX
$KBLKADR2
$KBLKADR3

$MFRRDL
$MFROBL
$MIRRDL
$MIROBL .
$MRPAL
$MWPAL
$BDAD -

$REFMSK
$X37
$M177740
$EIALOC.

$7000
-$t16
- -$177576

$30 .
--$15 _
-·$1770

$101771
$175777
$11

·:-$13.
$14
$16
$60
$776
$177577
$100777
$177677

-S177714

$2527
$101
$630 -
$631
$642

$Igml
$lgm3

. $lgmlO
$lgml4
$lgm20
SIgm40

- $lgml00
- $lgm200

$disp.300
$-616
$-650

$422;
$423;

S402;
$M7:177760;

$4000;

where label block· is stored on disk boot
MASK FOR DISI>. FOR I/O INSTRUCTIONS

JSR 0
$523;
$524;

$177757; DISK HEADER READ DELAY IS 21!'WORDS
. $177744; DISK HEADER PREAMBLE IS 34 rWORDS
$177774; DISK INTERRECORD READ DELAY IS 4 WORDS
$177775; DISK INTERRECORD PREAMBLE IS 3 WORDS
$177775; DISK READ POSTAMBLE LENGTH IS 3 'VORDS
$177773; DISK WRITE POSTAMBLE LENGTH IS 5 WORDS

$12; ON BOOT, DISK ADDRESS GOES IN LOC 12

$77740; MRT Refresh mask
SM7:37; NOPAR MASK
$M7:177740; DITTO

$177701; LOCATION .. OF EIA INPUT HARDWARE

$7000;
$176;

mapbase
mapmask

$177576; mapmask3
-$30;
$15;
$1770;

reprobiilc .
wrt-1

. -ciad .-
$101771; cHow
$175777; for resetting fbn

$11;
$13;
$14;
$16;
$60;
$776;

just to have small integers

for 2CODE
low -R to high R bus source

$2527;
$101;
$630;
$631;
$642;

$177577;
$100777;
$177677;
$177714;

$M7:1;
$M7:3;
$M7:10j
$M7:14j
$M7:20;
$M7:40j

$M7:l00;
$M7:200;

$M7:300; -
$177162;
$177130;

-129

(-2fvar+14)

ALTOCONSTS23.MU

$22
$24
$-20
$335
$1377
$401
$2001
$21

'$23
$25
$26
$27
$31
$1675
$736
$-660
$300
$disp.377
$6001
$disp.3

$22;
$24;
$177760;
$335;
$1377;
$401;
$2001;
$21;
$23;
$25;
$26;
$27;
$31;
$1675;
$736;
$177120;
$300;
$M7:377;
$6001;
$M7:3;

9-MAY -78 12:27:42

endcode for getframe
smallnzero

just to have them

f.e. fig, quick fig, use count

; Constants for subroutine returns using IR.
; See 9.2.1 of the hardware manual for details.

$srl $60110;
$srO $70531;
$sr2 $61000;
$sr3 .. $61400;
$sr4 $62000;
$sr5 $62400;
$sr6 $67000; value of 16b mapped to 6 by disp prom
$sr7 $63400;
$srlO $64024;
$srl1 $64400;
$srl2 $65074;
; Are you wondering why sr13 is missing? So is everyone else.
$sr14 $66000;
$sr15 $66400;
$srl6 $63000; value of 6 mapped to 16b by dispprom
$srl7 $77400;
$sr20 $65400;
$sr21 $65401;
$sr22 $65402;
$sr23 $65403;
$sr24 $65404;
$sr25 $65405;
$sr26 $65406;
$sr27 $65407;
$sr30 $65410;
$sr31 $65411;
$sr32 $65412;
$sr33 $65413;
$sr34 $65414;
$sr35 $65415;
$sr36 $65416;
$sr37 $65417;

$-13D $177763;

$ERRADDR $177024; AltoII MEAR (Memory Error Address Reg)

Page 7

ALTOCONSTS23.MU 9-MAY-78 12:27:42

$ERRSTAT
$ERRCTRL
$REFZERO

$2377
$2777
$3377
$477
$576
$177175

$177025;
$177026;
$7774;

AltoII MESR (Memory Error Status Reg)
Altoll MECR (Memory Error Control Reg)

Added for changed Ethernet microcode

Added for BitBIt

$2377;
$2777;
$3377;
$477;
$576; Added for Ethernet boot

$177175;

;Requests for the following new constants have been made:
;NOTE THAT THESE ARE NOT YET DEFINED

;$lgm2
;$lgm4
;$32
;$33
;$34
;$35
;$36

$M7:2;
$M7:4;
$32;
$33;
$34;
$35;
$36;

. Page 8

RamTrap.mu 9-MAY-78 12:27:42

; RamTrap.mu

Last modified October 11, ·1977 11:26 AM

; Trap handler and dispatcher for instructions that trap into
; the RAM. In the following predefinition, the tags correspond
; to opcodes 60000, 60400, 61000, 61400, ... 77400.
; Note that opcodes 60000, 60400, 61000, 64400, 65000, 67000, and 77400
; cannot be used since control never gets to the RAM for these).

; 61400 62000 62400
!37,40, TrapDispatch", GetFrame, Return, BcplUtility;

; Control comes here with the .instruction LCY 8 in XREG
TRAP1:T4-37;

L4-XREG AND T;
, TrapDispatch: .

SINK4-LREG, BUS, TASK;
:TrapDispatch;

. Page 1

EmulatorDefs.mu 9-MAY-78 12:27:42

; EmulatorDefs.mu -- Alto definitions for emulator-level microprogramming

Last modified October 12, 1977 2:57 PM

; Standard microinstruction addresses in the Rom
'; (see Alto Hardware Manual, section 9.1).
; These declarations do not cause space to be allocated in the· Ram
;: (except TRAPl, which we presumably want to define in the Ram)

·$START
$RAMCYCX.
$BLT
$BLKS
$MUL
$DIV
$BITBLT
$LO

!37,t, TRAPt;

$L4020, 0, 0;
$L4022, 0, 0;
$L4105, 0, 0;
$L4l06, 0, 0;
$L4120, 0, 0;
$L4121, 0, 0;

$L4124, 0, 0;
$L4160, 0, 0;

- ; Standard R-registers usable by the emulator task

$AC3
$AC2
$ACl
$ACO
$NWW
$SAD
$PC
$XREG . ,
$XH
$MTEMP
$DWAX
$MASK

- $LREG

$RO;
$RI;
$R2;
$R3;
$R4;
$R5;
$R6;
$R7;

$RI0;

Accumulators

New wakeups waiting (communication between tasks)
Temporary private to emulator
Program Counter for emulated Nova
Temporary private to emulator.
Contains instruction LCY 8 upon dispatch to TRAPt •
Temporary private to emulator
$R25; Temporary usable by any task
$R35; Temporary private to emulator
$R36; Temporary private to emulator

$R40; Another name for the M-register

Page 1

BcplRuntimeMc.mu 9-MAY-78 12:27:42

; BcplRuntimeMc.mu -- top-level microprogram for Bcpl runtime code

; Last modified October 11, 1977 11:25 AM

AltoCollsts23.mu;
#EmulatorDefs.mu;
#RamTrap.mu;
#GetFrame.mu;
BcpIUtil.mu;

Page 1

BcplUtil.mu 9-MAY-78 12:27:42

; BcplUtil.Mu -- bcpl runtime utilities (except GetFrame and Return)

Last modified October 16, 1977 6:38 PM

; All Bcpl runtime utilities in this module are invoked by an opcode
; of the form XXnnn, where XX is the opcode for the main dispatch in RamTrap
; and nnn is the DISP field used for sub-dispatching here.

!77,lOO, LqO.O, LqO.l, LqO.2, LqO.3, LqO.4, LqO.5, LqO.6, LqO.7,
, Lql.l, Lq1.2, Lq1.3, Lq1.4, Lq1.5, Lq1.6, Lq1.7,

SnqO, SqO.l, SqO.2, SqO.3, SqO.4, SqO.5, SqO.6, SqO.7,
Snql, Sql.l, Sq1.2, Sq1.3, Sq1.4, Sq1.5, Sq1.6, Sq1.7,
LongJump, Branch, Lookup, Rsh, Lsh, lor, Xor, Eqv,
Mult, DivUem, MulPlus, LyOl, Lyl0, SyOl, SylO;

; RamTrap dispatches here for the Bcpl utility opcode

BcplUtility: .
SINK+- DISP, BUS, TASK;

. :LqO.O;

; LongJump
; Jumps to AC3. + @AC3
; Calling sequence is:

jsr @355
target-. (i.e., a self-relative pointer)

LongJump:
MAR+-T+-AC3;

LongJl:NOP;
L+-MD+T, TASK;

Branch on sub-code

; -Some useful exit sequences­
StartO: PC+- L; Branch here having done L+- new PC, TASK;

Here after TASK; something;

Page 1

Startl: L+-PC, SWMODE;
. Start2: ·PC+-L, :START; Here after TASK; something; L+- new PC, SWMODE;

BcplUti1.mu

Branch
Calling sequence is:

Ida 0 switchon value
jsr @350
value of last case
number of cases
lastTarget-.

firstTarget-.

9-MAY-78 12:27:42

return here if out of range, ACO unchanged

!t,2, BranO, Branl;
!t,2, Bran2, Bran3;

Branch: MAR~T~AC3; Fetch value of last case
L~2+T;
AC3~ L; AC3~ address of first branch table entry
T~ACO; Value we are branching on
L~MD-T; L~ ·lastCase~·value, carry~ lastCase ge value
MAR ~T~ AC3-1, ALUCY; Fetch number of cases
T~LREG, L~LREG+T, :BranO; [BranO, Branl] T~ lastCase-value,

L~ AC3+(IastCase-value)-1

j Value greater than last case, take out of range exit.
BranO: L~T~MD, :BranIaj Finish fetch of numCases, turn off ALUCY

'j Value. Ie last case, test number of cases'
BranI: SAD~L; Save address-l of branch table entry

L~MD-T-l, T~MD; L~ nurnCases-(lastCase-value)-l, T~ numeases
BranIa: L~AC3+T, ALUCY, TASK; Carry if numCases gr (IastCase-value)

AC3~ L, :Bran2; [Bran2, Bran3] Adr of inst after branch table

; Value in range, execute branch.
; SAD/ address-l of branch table entry
Bran3: MAR ~T~SAD+ 1, :LongJl; Just like LongJump

; Value less than first case, take out of range exit.
Bran2: L~AC3, SWMODE,.:Start2;

. Page 2

BcplUtil.mu

; Lookup
; Calling sequence is:

Ida 0 switchon value
jsr @351
number of cases
case value 1
targetl-.

case value n
- targetn-.

9-MAY-78 12:27:42

return here if out of range
I

n,2,LookO, Look1;
!I,2, Look2, Look3;

Lookup:MAR +-T+-AC3;
NOP;
L+-MD+T, T+-MD;
L+-LREG+T+l, TASK;
ACl+-L;

LookO: MAR +-T+-AC3+ 1;
L+-ACl-T;
T+--ACO, L+-T, SH=O;
AC3+- L, :Look2; .~

Look2: L+-MD-T;

Fetch number of cases

L+- AC3+numCases, T+- numCases
L+- AC3+(2*numCases)+1
Save- for- end· test -

Increment pointer, fetch next case value
Test for end
T+- switchon value

[Look2, Look3]

L+-AC3+1; SH=O, TASK;
AC3+-L, :LookO;

Compare switchon value with case
Increment pointer again
[LookO, Lookl]

; Found matching case value. AC31 address of dispatch for case.
-Lookl: MAR+-T+-AC3, :LongJl; Just like LongJump

.. ...
; -Lookup failed. AC31 adr of inst after lookup table
Look3: L+-AC3, TASK, :StartO;.

Page 3

BcplUtil.mu 9-MAY -78 12:27:42

; Right shift
; Computes acO ~ ncO rshift acl
; Called by jsr @347
; Note that shift count may be either positive or negative

!1,2, RshPos, RshNeg;
!1,2, RshG 16, RshL16;
!1,2, RshG8, RshL8;
!1,l, RshNl;
!1,l, LtoACO;

Rsh: L+-T+-ACl; -Shift count negative?"
L~17-T, SH(Oj " 16 or greater?
.L~10 AND T, ALUCY, :RshPos; [RshPos, RshNeg] 8 or greater? .

RshPos:L~7 AND T, SH=O, :RshG16; [RshG16, RshL16] Compute count mod 8
RshL16: T~177400, :RshG8j [UshG8, RshL8]

; Shift count in range 8 to 15. Start by right-shifting ~
UshG8: T~ACO.T;

SINK+-LREG, L+-T, BUS, TASK; Branch on shift count mod 8
ACO+- L LCY 8, :LqO.O;

; Shift count less than 8. Branch on shift count
RshL8: SINK~ACl, BUS, TASK;

:LqO.O;

; This shift table is also used .in the LqO.n series of instructions
LqO. 7: L~ ACOj

ACO+- L RSH 1;
LqO.6: L~ ACO;

ACO+- L RSH 1;
LqO.5: L+-ACOj

ACO+- L RSH 1;
LqO.4: L+-ACOj

ACQ+- L RSH 1;
LqO.3: L+-ACOj

ACO+- L RSH 1;
LqO.2: L~ ACOj

ACO+- L RSH 1; .
LqO.l: L~ACO, TASK;

ACO+-L RSH 1, :Bran2;Do I)C+-AC3 and go to START

; Shift count 0, do nothing
LqO.O: L~AC3, SWMODE, :Start2; Do PC~L and go to START

; Shift count 16 or greater, return zero
RshG 16: L+-O, TASK, :LtoACOj [LtoACO, LtoACO]
LtoACO: ACO~ L, :Bran2j Do I PC~ AC3" and· go to .sTART

; Shift count negative. Convert to Left Shift
RshNcg: L+-O-T, TASK; [RshNl, RshNl] Negate shift count
RshN 1: ACI +- L, :Lsh;

Page 4

BcplUtil.mu 9-MAY-78 12:27:42

; Right shift constant amount
; Computes acO ... acO rshift n (n in range 1 to 7)
; Calling sequence is:

Ida 0 value
; jsr 314 - 2*n
; (dispatches into LqO.n table, above)

. ; Right shift constant amount
; Computes acl ... acl rshift n (n in range 1 to'7)
; Calling sequence is:

•• 0 • ,
Ida 1 value
jsr 315. - 2*n

Lq1.7: L"'AC1;
ACl"'L RSH 1;

Lq1.6: L"'AC1;
ACl"'L RSH 1;

Lq1.5: L.-AC1;
ACt"'L RSH 1;

Lq1.4: L"'AC1;
. ACl"'L RSH 1;

. 'Lq1.3: L"'AC1;

Lq1.2:

Lq1.1:

ACI"'L RSH 1;
L"'AC1;
ACl"'L RSH 1;
L"'AC1, TASK;
AC1"'L RSH 1, :Bran2;Do PC"'AC3 and go to START

. Page 5

BcplUtil.mu 9-MAY -78 12:27:42

; Left shift
; Computes acO +- acO Ishift acl
; called by jsr @346
; Note that shift count may be either positive or negative

!l,2, LshPos, LshNeg;
!1,2, LshG16, LshL16;
!l ,2, LshG8, LshL8;
!7,lO, LshO, Lshl, Lsh2, Lsh3, Lsh4, Lsh5, Lsh6, Lsh7;
!l,l, LshNI;

Lsh: L+-T+-ACl; Shift count negative?
- L+-17-T, SH(O; 16 or greater?

L+-IO AND T, ALUCY, :LshPos; [LshPos, LshNeg] 8 or greater?
LshPos: L+--7 AND T, SH=O, :LshG16; [LshG16, LshL16] Compute count mod 8
LshLI6:T+-377, :LshG8; [LshG8, LshL8]

; Shift count in range 8 to 15. Start by left-shifting 8
LshG8: T+-ACO.T;. _

SINK+-LREG, L+-T, BUS, TASK; Branch on shift count mod 8
ACO+- L LCY 8, :LshO;

-; Shift count less than 8. Branch on shift count
LshL8: SINK+-AC1, BUS, TASK;

Lsh7:

Lsh6:

Lsh5:

Lsh4:

':Lsh3:

Lsh2:

Lshl:

:LshO;

-L+-A(O;·
ACO+- L LSH 1;
L+-ACO;
ACO+- L LSH 1;
L+-ACO;
ACO+- L LSH 1;
L+-ACO;
ACO+- L LSH 1;
L+-ACO; - "
ACO+-L LSH 1;
L+-ACO;
ACO+- L LSH 1;
L+-ACO, TASK;
,ACO+-L LSH 1, :Bran2;Do PC+-AC3 and go to START

; Shift count '0, do nothing
LshO: L+-ACO, TASK, :LtoACO;

; Shift count 16 or greater, return zero
.. LshG16: : L+-O, TASK, ':LtoACO; [LtoACO, LtoACO]

-; Shift count negative. Convert to Right Shift
, LshNeg: L+-O-T, TASK; [LshN I, LshNl] Negate shift count
LshNl: ACt +-L, :Rsh;

Page 6

BcplUtil.mu

; lor
; Computes acO +- acO % acl
; Called by jsr @340

lor: T+-ACl;

9-MAY-78 12:27:42

L+-ACO OR T, TASK, :LtoACO;

; Xor
; Computes acO ,~ acO xor act
; Called by jsr @34l

Xor: T+-ACl;
Xorl: L+-ACO XOR T, TASK, :LtoACO;

; Eqv
; Computes acO +- acO eqv act
; Called by jsr @342

Eqv: T+-ACt;
L+-ALLONES XOR T; acO eqv acl = acO xor (not acl)
T+- LREG, :Xorl;

; MulPlus
; Computes acll ~ ac3 ~ (acl*@ac3)+acO
; Calling sequence is:

Ida 0 addend
Ida 1 multiplicand
jsr @357
multiplier

return here with result in acO and ac3

!1,2, MPNoAd, MPAdd;
!1,2, MPLoop, MPDone;

MulPlus:
MAR~AC3;
L+-AC3+1;
PC+-L;

Start fetch of multiplier
Compute return pc

L+-MD, BUSODD, :MPLpl; Test low bit of multiplier

; MulPlus loop. During each iteration, the multiplier is right-shifted 1
; and the multiplicand is left-shifted 1. The loop terminates when the
; multiplier becomes zero .. This is good because in the standard use of
; MulPlus the multiplier is typically a small integer.
MPLoop: L~AC3, BUSODD; Test low bit of multiplier
MPLpl: AC3+-L RSH 1, :MPNoAd; [MPNoAd, MPAdd] Shift it out

; Multiplier bit was 0, don't add but just shift multiplicand
MPNoAd: L~ACl, SH=O, TASK, :MPShft; Test for no more bits in multiplier

; Multiplier bit was I, add multiplicand to product
MPAdd: T~ACl; Multiplicand

L+-ACO+ 'I; Add to partial product
ACO+-L, L~T, TASK; L~ multiplicand

Page 7

MPShft: ACI +-L LSH 1, :MPLoop; [MPLoop, MPDone] Shift multiplicand left

BcplUtil.mu 9-MAY-78 12:27:42 . Page 8

; Here when done
MPDone: L+-ACO, S\VMODE; Copy result to ac3

AC3+-L, :START;

BcpIUtil.mu 9-MAY-78 12:27:42

; Mult
; Computes (acO,acl) ~ acO*acl
; Called by jsr @343

!1,2, DoMul, NoMul;
!] ,2, M N oAdd, MAdd;
!l ,2, NoSpil, Spill;
!l,2, MultLp, MuUDn;

Mult: L~ACO-l, BUS=O; Get multiplicand-I, test for zero
SAD~L, L~O, :DoMul; [DoMul, NoMul] Save it away

DoMul: ACO~ L, TASK; Init partial product to 0
IR ~ONE; Init loop count; done when it reaches '20

; Multiply loop
MultLp: L~AC1, BUSODO;

T~ACO, :MNoAdd;
Test low bit of multiplier

[MNoAdd, MAdd] Get partial product

; Multiplier bit was 1, add multiplicand to product·
MAdd: . L~T~SAD+ T + 1; Add multiplicand to partial product

L~ACl, -ALUCY; _.. Low part of partial product

; Multiplier bit was 0, just shift multiplicand and partial product
-M-NoAdd: -_ .. ACI ~ L MRSH·], L~T, T~O, :NoSpil; [NoSpil, Spill]
Spill: T~ONE; Carry into high partial product

.. NoSpil: ACO~ L MRSH 1; .
. L~OISP+l, L~XI7+1, BUS=O, TASK; Check and update 1001) count
IR~LREG, :MuItLp; [MuItLp, MultDn] Branch if it was 20

. ; Here when done
MultOn: L~AC3, SWMODE, :Start2;

; Here when multiplicand is zero, just return zero
NoMul: ACt ~ L, :Bran2;

Page 9

BcpIUtil.mu 9-MAY-78 12:27:42

; DivRem
; Computes act ~ acO/act and acO ~ acO rem acl (signed)
; Called by jsr@344 or jsr@345

!l,2, DvsPos, DvsNeg;
!1,2, DndPos, DndNeg;
!1,2, NoSub, DoSub;
!l,2:, DivLp, DivDn;
!1,2, RcmPos, RemNcg;
!l,2, QuoPos, QuoNeg;·

DivRem: Li-T~ACl; Fctch divisor
SAD~L, SH(O; Save it, test sign
XREG~L, Li-O-T, :DvsPos; [DvsPos, DvsNeg] Save original divisor

DvsNeg: SADi-L; Ncgative, negatc divisor
DvsPos: L~Ti-ACO; Fetch dividend

PCi- L, L~O-T, SH (0; Savc it, te~t sign
:DndPos; [DndPos, DndNeg] Init loop count

DndNeg: Ti-LREG; Negative, ncgate .dividend
D~dPos: Li-20; Init loop count

XH i- L, L~O, :DivLpO; Init high dividend

; Divide loop
-:-=-DivLp: L~ACO;' . --~-'Current--high dividend

- T~ACl;" Currentlowdividcnd and quotient
DivLpO:ACOi- L MLSH 1, Li-T;Shift another bit into high dividend

ACl ~ L' LSH 1; Shift a zero into quotient
Ti-SAD; Divisor
Li-ACO-T, T~ACO; Try to subtract divisor from high dividend
ACO~ L, ALUCY; Storc dividend assuming subtract ok
L~ XH -1, :NoSub; [NoSub, DoSub] Decrement and test loop count

; Subtract ok, put a 1 in the quotient
DoSub: XH ~ L; Update loop count

.Li-ACl+l, SH=O, TASK; Changc quotient bit .to 1
ACl i- L, :DivLp; [DivLI), DivDn] Branch if done

; Subtract not ok, restorc old dividend and leave quotient bit 0
NoSub: XH ~ L, Li-T, SH =0, TASK; Ulldate loop count

ACOi- L, :DivLp; [DivLp, DivDn] Restore ACO, branch if done

; Hcre whcn done. Fix up signs and exit
DivDn: Li-PC; Get original dividend

Ti-ACO, SH (0;. Tcst sign
Li-O-T, Ti-O, :RemPos; [RcmPos, RemNeg]

RemNeg: ACOi- L, Ti-O-:, 1; Was ncgative, negate rcmainder
RemPos:' Li-XREG XOR T; Get divisor sign, xor with dividend

Ti-ACl, SH (0;. ,Test sign
Li-O-T, TASK, :QuoPos;

QuoNcg: ACI i-L, :Bran2; Negate quotient
QuoPos: :BraI12; Set PC~AC3 and go to START

...... _. __ ._----------------------_ _ .. _._ _ ... _-_ _-_._ ... _. __ ... _-_ .. _-... _.

Page 10

BcplUtil.mu 9-MAY-78 12:27:42

; SqO
; Left shifts data a constant amount, then stores in partial-word field
; in same manner as SnqO. .
; Executes @acI ~ (@acl & not @ac3) + «acO Ishift n) & @ac3)
; Calling sequence is:

Ida 0 value (right-justified)
Ida 1 address of word being ·stored into
jsr 333 - 2*n (n is number of left shifts desired, in range 0-7)
mask word (ones in field being stored into, zeroes elsewhere)·

returns here .

SqO.1: L+-ACO; "
ACO~L LSH 1;

SqO.6: L+- ACO;
. ACO~L LSH .1;

SqO.5: L+-ACO;
ACO~L LSH 1;

SqO.4: L+-ACO;
AC()~L LSH 1;

SqO.3: L+-ACO;
ACO~L LSH 1;

SqO.2: L+-ACO;
ACO~L LSH 1;

SqO.t: L~ACO, TASK;
ACO~ L LSH 1, :SnqO;

; SnqO
; Stores partial-word field into a structure.
; Executes @acl ~ (@acl & not @ac3) + (acO & @ac3)
; Calling sequence is:

Ida 0 value (must be bit-aligned with field being stored into)
Ida 1 address of word being stored into
jsr @360
mask word (ones in-field being stored into, zeroes elsewhere)

returns here

SnqO: MAR ~ AC3; . Fetch mask
L+-ACI; Address of word being stored into

SnqOa: T+-MD;
MAR +- LREG; Fetch word being stored into
ACt ~L; Save address (in case came from Snqt)
L+-MD AND NOT T; Zero bits to be changed
MAR~ACl; Start to store back updated word
T+-ACO.T; Mask out cxtnlncous bits in new value
L+- LUEG+ T, TASK; Merge: new bits into. old word
MD~LREG; Store back in memory , ,
L+-AC3+1, S\VMODE, :Start2; PC+-AC3+1 and go to START

. Page 11

BcplUtiI.mu 9-MAY-78 12:27:42

; Sql
; Left shifts data a constant amount, then stores in partial-word field
; in same manner as Snq1.
; Executes @acO +- (@acO & not @ac3) + «act Ishift n) & @ac3)
; Calling sequence is:

"'

Ida 1 value (right-justified)
Ida 0 address of word being stored into
jsr 334 - 2*n (n is number of left shifts desired; in nlnge 0-7)
mask word (ones in field being stored into, zeroes elsewhere)

returns here

Sqt.7: L+-ACl;
ACt +- L LSH 1;

Sql.6: L+-ACl;
ACI +- L LSH 1;

Sqt.5: L+-ACl;
ACI +- L LSH 1;

Sql.4: -L+-ACl~ I

ACt +-L LSH 1;
Sq1.3: L+-ACl;­

AClf-L LSH 1;
"Sqt.2: L+-ACl;

ACI +- L LSH 1;
Sqt.l: L+-ACl, TASK;

ACt +- b- LSH 1, :Snql;

; Snql
; Stores partial-word field into a structure.
; Executes @acO +- (@acO & not @ac3) + act & @ac3

"- ; Calling sequence is: .
Ida 1 value (must be bit-aligned with field being stored into)
Ida 0 address of word being stored into
jsr @360
mask word (ones in field being stored into, zeroes elsewhere)

returns here

Snql: MAR+-AC3; Feteh mask
L+-ACl; Get value
.T+-ACO; Get address
ACO+- L, L+-T, :SnqOa; Swap them and join common code

Page 12

BcplUtil.mu 9-MAY-78 12:27:42

; Load byte from array
; Loads the acl 'th byte from the array pointed to by acO
; and returns it right-justified in acO.
; Cal led by jsr @362
; Note: acl may be negative.

!t,2, LyOIP, Ly01N;
!1,2, LyOIL, LyOIR;

·;LyOI: L+-AC1; Get index
Tf-ACO, SH (0; Get address, test for negative index
MTEMP+-L RSH 1, :LyOIP; [LyOIP, LyOIN] Divide index by 2

LyOIN: Tf-77777+ T + 1; Negative index, extend sign of index/2
LyOI P: MAR+- MTEMP+ T; Positive index, start fetch

SINK+-ACI, BUSODD; Which byte?
Tf-377, :LyOlL; [LyOIL, LyOIR]

LyOIL: L+-MD AND NOT '1', TASK; Left ,byte, mask and swap to right
ACO+- L LCY 8, :Bran2;

LyOlR: L+-MD AND T, TASK,. :LtoACO; Right byte, mask and store

; Load byte from array
. ; Loads the a'cO'th byte from the array pointed to by acl
; and returns it right-justified in acl.·
; Called by jsr @363
f Note: -acO may be negative.

!1,2, LylOP, LylON;
!1,2, LyIOL, LylOR;

LyIO: L+-ACO; Get index
Tf-ACl, SH(O; Get address, test for negative index
MTEMP+-L RSH 1, :Ly10P; [LylOP, Ly10N] Divide index by 2

LytON:· Tf-77777+ T + 1; . . Negative index, extend sign of index/-2
LytOP: MAR+-MTEMP+T; Positive index, start fetch

SINK'-ACO, BUSODO; W·hich byte?
T+-377, :LytOL;- [LyIOL, LytOR]

LylOL: Lf-MD AND NOT ·T, TASK; Left byte, mask and swap to right
ACt +-L LCY 8, :Bran2;

:. LylOR: Lf-MD AND '1', TASK; Right byte, mask and store
'ACI +- L, :Bran2;

Page 13

BcplUtil.mu 9-MAY-78 12:27:42

; Store byte into array
; Stores the byte now contained in frame temp 3 (ac2!3) into
; the acl'th byte of the array pointed to by acO. '
; Called by jsr@364
; Note: acl may be negative.

!1,2, SyOlP, SyOlN;
!1,2, SyOlL, SyOlR;

SyOl: L+-ACl; Get index
1'+-3, SH (0; Frame offset, test for negative index
MAR+-AC2+T, :SyOlP; [SyOlP, SyOlN] Start fetch of byte to store-

SyOtN: MTEMP+- L MRSH .1, :SyOlA; Negative index, divide by 2 and extend sign
SyOlP: MTEMP+- L RSH I; Positive index, just divide by 2

SyOlA: T+-M1'EMP; Get word index
L+-ACO+ T; Compute address of word
T+-MD; Here comes the byte to store
MTEMP+- L; Save word address
MAR +- MTEMP; Fetch word being stored into
SINK+-ACt, BUSODD; \Vhich byte?

SyOtC: L+-377 AND T, T+-377, :SyOlL; [SyOlL, SyOIR] Isolate byte being stored

SyOlL: ACt +- L LCY 8; Storing into left byte, swap halves,
L+-MD AND T, :Sy01B; Zero left byte of word being stored into

SyOlR: ACt +- L; Storing into right byte, already set 'up
L+-MD AND NOT T; Zero right byte of word being stored into

SyOlB: MAR+-MTEMP; Start store
T+-LREG; Existing contents to preserve
L+-ACl OR T, TASK; Merge old and new bytes
MD+-LREG, :Bran2; Finish store, then PC+-AC3 and go to START

; Store byte into array
. ; Stores· the byte now contained in ·frame temp 3 (ac2t3) into
; the acO'th byte of the array pointed to by act.
; Called by js.r@365
; Note: acO may be negative.

!1,2, SytOP, SylON;

SylO: L+-ACO; Get index
T+-3, SH (0; Frame offset, test for negative index
MAR+-AC2+T, :SylOP; [SylOP, SylON] Start fetch of byte to store

SyiON: MTEMP+- L MUSH 1, :SylOA; Negative index, divide by 2 and extend sign
Syl0P: MTEMP+- L nSH 1; Positive index, just divide by 2

Syl0A: T+-MTEMP; Get word index
L+-ACI + T; Compute address of word
T+-MD; Here comes the byte to store
MTEMP+-L; Save word address
MAH+-MTEMP; Fetch word being stored into
SINK+-ACO, BUSODD, :SyOlC; Which byte? Join common code

,Page 14

