
(ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977

Pup File Transfer Protocol Package

This package is a collection of modules implementing the
Transfer Protocol. The package is used by the FTP subsystem
Interim File System and runs on Altos and Novas.

1. Overview

PAGE 1

1

Pup File
and the

This document is organized as a general overview
descriptions of each of the modules in the package.
revisions to the package is included at the end.

followed by
A history of

Before beginning the main documentation, some general comments are in
order.

a. The File Transfer Protocol is (alas) complex; this package
requires the Pup package and all of its supporting packages plus
some other packages not specific to Pup. This docUmentation is
less tutorial than normal Alto package descriptions so you should
be prepared to consult its author.

b. This document describes the external program interfaces for a
particular implementation of the File Transfer Protocol, and does
not deal with the internal implementation nor the reasons for
design choices in the protocol or this implementation. Before
considering the details of this package, you should read
(Pup>FtpSpec.ears to get the flavor of how the File Transfer
Protocol works. The <Pup> directory also contains descriptions of
the lower level protocols on which FTP is based. Detailed
knowledge of these protocols is not necessary to use this package,
but you must be familiar with the operation of the Pup package.

c. This package and the protocol are under active development so
users should expect modifications and extensions.

d. This package is designed to run on both Altos and Novas, under
several operating systems and with several file systems.
Functions are carefuly split into protocol-specific and
environment-specific modules. This package provides the protocol
modules; you must write the matching environment-specific modules.

1.1. Organization

The FTP package comes in four modules: Server, User, Utilities, and
Property lists. The utility and property list modules are shared by
the User and Server.

The User and Server modules implement their respective halves of the
protocol exchanges.

<ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 1 :-1

The Property List module generates and
filesystem-independent descriptions of files.
tL

parses property lists,
\,Jllen passed between User

<ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 2

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977 2

and Server FTPs through the network byte stream, their form is defined
by protocol as a parenthesized list. When passed between these
protocol modules and ·the user-supplied modules in a program, they take
the form of a data structure defined by this package.

The Utility module contains protocol routines
Server modules and some efficient routines
between a network stream and a disk stream.

shared by the User and
for transferring data

1.2. File Conventions

The FTP package is distributed as fi-le FTPPackage.dm, and contains the
following files:

User
FtpUserProt.br
FtpUserProtFile.br
FtpUserProtMail.br

Server
FtpServProtFi1e.br
FtpServProtMail.br

Property lists
F tpPL i stP rot. b r
FtpPListl.br
FtpPListInit.br

Utility
FtpUtil B. br
FtpUtilXfer.br
FtpUtilDmpLd.br
FtpUtilA.br
FtpUtillnit.br

Definitions
FtpProt.dec1

Command files
Compi1eFtpPackage.cm
DumpFtpPackage.cm
FtpPackage.cm

User protocol common to file and mail
User file commands
User mail commands

Server file commands
Server mail commands

Property list protocol
Implements a 'standard' property list
Initialization

Common protocol
Unformatted data transfer
Dump/Load data transfer
Assembly-language utility code
Initialization

Protocol parameters and structures

Compiles all files
A list of all binary files
A list of all source files

All of these modules are swappable, and are broken up into pieces no
lar'ger than 1024 words. Modules whose names end in "init" are
initialization code which should be executed once and thrown away.

The source files are kept with the subsystem sources in FTP.dm and are
formatted for printing in a small fixed-pitch font such as Gacha8 (use
the command 'Gears/s @FtpPackage~cm@').

1.3. Other Packages

FTP is a level 3 Pup protocol, and this package uses a number of other
Alto software packages. As always, files whose names end in "init" may
be discarded after initialization (except Contextlnit.br).

<ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 3

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package

Pup Package
PupBSPBlock.br
PupRTP.br
Puplb.br
PupA1Ethb.br

Context Package
Context. br

Interrupt Package
Interrupt.br

Queue Package
AltoQueue.br

Timer Package
AltoTimer.br

Time Package
CTime.br

ByteBLT Package
AltoByteBLT.br

CmdScan Package
Keyword.br

Strings Package
StringUtil.br

Template Package
Template.br

October 24, 1977

PupBSPStreams.br
PupDummyGate.br
PupA11a.br
PupA1Etha.br

ContextInit.br

InterruptInit.br

KeywordInit.br

1.4. Principal Data Structures

PupBSPProt.br Pup6SPa.br
PupRoute.br
PuplInit.br
PupA1EthInit.br

3

The following data structures are of interest to users, and together
with the procedures described later, constitute the package interface.

FPL

FTPI

FTPSFI

FTPSMI

FtpCtx

File Property List, is this implementation's internal
representation of the protocol-specified property list. An
FPL structure will be referred to as a 'pList' from here on.

File Transfer Package Interface, contains pOinters to the
network byte stream, user disk stream, log stream, the file
buffer, and various flags.

FTP Server File Interface, is a vector of user-supplied
procedures constituting the interface between the protocol and
environment-specific modules in a file Server.

FTP Server Mail Interface, same as an FTPSFI except for a mail
server.

FTP Context, is the process-global storage for a User or
Server FTP process. It consists of an FTPI, and if the
process is a Server, an FTPSFI or FTPSMI. This is a
convenient place for the user-supplied modules to keep
process-private data. You can do this by adding items to the
FtpCtx definition and then recompiling everything.

The entire FtpCtx need not be filled in all of the time. For each
group of procedures, the items they require will be specified. A
general description of the contents of the FTPI part of an FtpCtx is in
order here.

(ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 3~1

bspSoc

tL

a pointer to a SSP socket open to a remote FTP
process.

<ALTODOCS)FTPPACKAGE.TTY:6 THU 17-NOV-77 4:45PM PAGE 4

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package

bspStream

dspStream

diskStream

buffer

bufferLength

debugFlag

connFlag

serverFlag

savedBSPErrors

October 24, 1977 4

a pointer to the stream in the above BSP socket.
Pup package experts will recognize that this is
redundant, but it is often convenient and makes the
code clearer.

a pointer to a stream to which this package will
output generally useful information, including
copious amounts of debugging information if
debugFlag is true. The only operation that need be
defined is 'Puts'.

a pointer to a disk stream.
opened in byte mode.

It should always be

a pointer to a block of memory which can be used for
block transfer 1/0 operations. The bigger this is
the faster things will go.

the length in words of the above buffer

a boolean. If true, the protocol exchanges for this
context are output to dspStream as text, along with
some other useful information. Use this! It will
save you much head-scratching.

a boolean. This should be true if bspSoc is open.
The package will cooperate in maintaining this flag,
which is valub1e when finishing.

a boolean. This flag is tested by procedures in the
shared modules to determine whether the caller is a
User or Server.

the default BSP error procedure is saved here. This
package handles certain errors itself.

1.5. Programming Conventions

This package can be used with
FtpOEPlnit.br contains a procedure
should consult with the author.

the Bcp1 Overlay package. File
which will help do this, but you

This package does a lot of string manipulation, and uses the following
conventions:

a. All strings are allocated from 'sysZone'.

b. Strings are represented in data structures (such as property
lists) as addresses. Zero means no string is present.

All of the procedures in this package expect to execute in contexts (in
the sense of the Context package), and expect CtxRunning (defined by
the Context package) to point to an appropriately filled in FtpCtx.
tL

<ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 5

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977 5

1.6. Timeouts

If a Get or Put ope~ation times o~t. the bspStream Get and Put routines
are changed so that all subsequent operations fail immediately. This
will cause the current command to fail quickly, so that its caller can
take appropriate action. This package makes timeouts look the same as
if the stream closed, and treats them as unretryable. Two timeouts are
used by the package and kept in statics.

getCmdTimeout
This timeout is used in situations
interaction and should be fairly long.
defGetCmdTimeout, defined in FtpProt.decl.

getPutTimeout

involving human user
Its default value is

This timeout is used when transferring data and should be fairly
short. Its default value is defGetPutTimeout, defined in
FtpProt.decl.

'2. Server

The FTP Server module consists of two files: FtpServProtFile.br, a file
server, and FtpServProtMail.br, a mail server. The internal
organization of both files is the same; they just implement different
sets of commands. Each file has one external procedure:

FtpServProtFi1e() or FtpServProtMail()
which carry out protocol commands received over bspStream by
calling the user-supplied procedures in FTPSFI or FTPSMI. When
the BSP connection is closed by the remote FTP User process, these
procedures return.

This module uses the following fields in FtpCtx: dspStream, bspStream,
bspSoc, and FTPSFI or FTPSMI. All of the primary command slots
(Version, Store, Retrieve, StoreMail. etc.) must contain procedures.
If you do not wish to implement a command. it suffices to point the
command's slot at the following procedure:

and NYI(nil) = valof
[
FTPM(markNo,l,"Unimplemented Command")
resultis false
]

in which case any subsidiary procedures for that command (such as
StoreFile and StoreCleanup for the Store command) need not be filled
in. FTPM is described in more detail below. For the remainder of this
section, 'FtpServProt' refers to 'FtpServProtFile' or
'FtpServProtMail'.

<ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 5:1

2.1. Version Command

By convention. Version
opened FTP connection.
tL

is the first command exchanged over a newly
The User sends its protocol version number and

(ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 6

For Xerox Internal Use Only November 17, 1977

Pup FTP Package October 24, 1977 6

a string such as "Maxc Pup Ftp User 1.04 19-Mar-77". When FtpServProt
receives this command, it replys with its protocol version number and
then calls

(CtxRunning»FtpCtx.Version)()

which should generate some herald text:

Wss(CtxRunning»FtpCtx.bspStream, "Alto Pup FTP Server ")

to which FtpServProt will append a string of the form "1.13 14-May-77".

2.2. Retrieve Command

When the remote FTP User process sends the command 'Retrieve' and a
property list describing the files it wants to retrieve, FtpServProt
parses the property list and calls

(CtxRunning»FtpCtx.Retrieve)(remotePList,localPList)

which should decide whether to accept the command. Retrieve's decision
may involve checking passwords. looking up files, and other actions
using the information in remotePList plus other environment-specific
information, such as whether the requester has the correct
capabilities, etc. To refuse the request, Retrieve should call

FTPM(markNo, code, string)

and return false. To accept the command, it should return a new pList
describing a file matchi~g remotePList which Retrieve is willing to
send. FtpServProt will return this pList as '10ca1PList' in the next
call to Retrieve, so that it can be deallocted. On the first call,
10calPList will be zero. Some FTP implementations require a mlnlmum
set of properties here, but the whole subject of who should specify
what properties is rather involved and beyond the scope of this
description. For more information, consult the FTP specification.
This package provides a fast procedure (in the Utility module) for
deciding the 'type' of a file (text or binary) which you may find
useful.

Property lists in retrieve requests may specify multiple files, so
FtpServProt will continue to call Retrieve until it returns false. On
each call, remotePList will be the same original pList sent from the
remote User, and 10calPList will be the last pList returned by
Retrieve. If Retrieve supports multiple file requests then it must
save some information so that the next time FtpServProt calls it, it
can generate the next file. If Retrieve does not support multiple file
requests then it should do its thing during the first call and remember
that it is finished. The next time it is called it should return false
having only deallocated localPList (it should not call FTPM).

If Retrieve returns true, FtpServProt sends the returned property list
back to the User to more fully describe the file. At this point the
User may back out of the transfer, in which case the" next procedure
will be skipped, and RetrieveCleanup will be called immediately. If
the User indicates a willingness to proceed, FtpServProt then calls

<ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 6:1

(CtxRunning»FtpCtx.RetrieveFile)(pList)
tL

<ALTODOCS>FTPPACK~GE.TTY:6 THU 17-NOV-77 4:45PM PAGE 7·

For Xerox Internal Use Only,-- November 17, 1977

Pup FTP Package October 24, 1977 7

to transfer the file data. This package provides a procedure (in the
Utility module) for transferring data from a disk Stream to a BSP
Stream, but you are free write your own. When RetrieveFile has
finished the transfer, it should return true if everything went OK.

Next, FtpServProt calls

(CtxRunning»FtpCtx.RetrieveCleanup)(pList,ok)

where 'ok' is false if RetrieveFile returned false or the User backed
out of the command. Note that if Retrieve returned true,
RetrieveCleanup will always be called, but RetrieveFile may not. If
Retrieve allocates any resources (such as opening a file) they should
be deallocated here.

Finally, FtpServProt calls Retrieve again, and the process repeats
until Retrieve returns false.

2.3. Store Command

When the remote FTP User process sends the command 'Store'
a property list describing the file. FtpServProt parses
list and calls

(CtxRunning»FtpCtx.Store)(pList)

followed by
the property

which should decide whether to accept the command. To accept. Store
need only return true; no property list is sent back in this command.
To refuse the command Store should call FTPM(markNo, code, string) and
return false, in which case the next procedure (StoreFile) is not
called.

If Store returns true, FtpServProt tells the User process to go ahead
and send the file, and then calls

(CtxRunning»FtpCtx.StoreFi1e)(pList)

to transfer the file data. This package provides a procedure (in the
Utility module) for transferring data from a BSP Stream to a disk
Stream, but you may write your own. When StoreFile has finished the
transfer, it should return true if everything went OK.

Finally, FtpServProt calls

(CtxRunning»FtpCtx.StoreCleanup)(pList.ok)

where 'ok' is true if StoreFile returned true and the User indicated
that everything went ok. If 'ok' is false, StoreCleanup should delete
the file, since it is almost certainly damaged. Note that if Store
returned true, StoreCleanup will always be called, but StoreFile may
not. If Store allocates any resources (such as opening a file) they
should be deallocated here. I.

<ALTODOCS)FTPPACKAG(.TTY;6 THU 17-NOV-77 4:45PM PAGE 7:1

2.4. Delete Command

When the remote FTP User process sends the co~nand 'Delete' followed by
a property list describing the files which it wants to delete,
FtpServProt parses the property list and calls
tL

(ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 8

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977 8

(CtxRunning»FtpCtx.Oelete)(rem~tePList,localPList)

which should decide whether to accept the command. Don't delete
anything yet! The User may still back out. To refuse the delete
request, Delete should call FTPM(markNo, code, string) and return
false. To accept the command, it should return a new pList with every
property it can find, so that the User can be sure of the identity of
file to be deleted, and return true. FtpServProt will return this
pList as 'localPList' in the next call to Delete, so that it can be
deal10cted.

Property lists in delete requests may specify multiple files. so
FtpServProt will continue to call Delete until it returns false. On
each call. remotePList will be the same original pList sent from the
remote User. and 10calPList will be the last pList returned by Delete.
If Delete supports multiple file requests then it must save some
information so that the next time FtpServProt calls it. it can generate
the pList for the next file. If Delete does not support multiple file
requests then it should do its thing during the first call and remember
that it is finished. The next time it is called it should return false
having only deallocated localPList (it should not call FTPM).

If Delete returns a Plist. FtpServProt will send it back to the User
and wait for confirmation. If the User still wants to del~te the file.
FtpServProt calls

(CtxRunning»FtpCtx.OeleteFi1e)(pList)

which should delete the file. Finally, FtpServProtFile calls Delete
again. and the process repeats until Delete returns false.

2.5. Directory Command

When t~e remote FTP User process sends the command 'Directory' followed
by a property list naming the files about which it wants information.
FtpServProt parses the property lists and calls

(CtxRunning»FtpCtx.Directory)(pList)

which should decide
request (because for
access capabilities)
and return false.
describing a file.

whether to accept the command. To refuse the
example the requestor does not have the correct

Directory should call FTPM(markNo. code, string)
To accept the command it should return a pList

Property lists in directory requests may specify multiple files. so
FtpServProt will continue to call Directory until it returns false. If
Directory supports multiple file requests then it must save some
information so that the next time FtpServProt calls it. it can generate
the pList for the next file. If Directory does not support multiple
file requests then it should do its thing during the first call and
remember that it is finished. The next time it is called it should
return false having only deallocated 10calPList (it should not call
FTPM).
tl

(ALTOOOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 9

For Xerox Internal Use Only -- November 17. 1977

Pup FTP Package October 24, 1977 9

2.6. Rename Command

When the remote FTP User process ~ends the command 'Rename' fOllowed by
two property lists describing the old and new files, FtpServProt parses
the property lists and calls

(CtxRunning»FtpCtx.Rename)(oldPList,newPList)

which should decide whether to accept the command. The FTP protocol
does not require that user access information be present in newPList,
so access checking should be done on oldPlist only. To refuse the
rename request, Rename should call FTPM(markNo, code, string) and
return false. Otherwise it should rename the file returning true if
successful. If the rename operation fails, Rename should call
FTPM(markNo, code, string) and return false.

File FtpServProtMail.br implements the server part of the Mail Transfer
Protocol. This description ignores various critical sections and other
vital considerations which must be handled by the user-supplied
routines in order to provide a reliable mail service. For the
semantics of the protocol see <Pup>Mai1Transfer.ears.

2.7. StoreMai1 Command

When the remote FTP User process sends the command 'StoreMai1' followed
by a property list, FtpServProt parses the property list and calls

(CtxRunning»FtpCtx.StoreMail)(pList)

which should decide whether to accept the command. To accept.
StoreMai1 need only return true; no property list is sent back in this
command. To refuse the command StoreMail should call FTPM(markNo,
code, string) and return false, in which case the next procedure
(StoreMailFile) is not called.

If StoreMail returns true, FtpServProt tells the User process to go
ahead and send the mail, and then calls

(CtxRunning»FtpCtx.StoreMai1Fi1e)(pList)

to transfer the file data. When StoreMai1Fi1e has finished the
transfer, it should return true if everything went OK.

Finally, FtpServProt calls

(CtxRunning»FtpCtx.StoreMai1Cleanup)(pList.ok)

where 'ok' is true if StoreMailFile returned true and the User
indicated that everything went ok. If 'ok' is false, StoreMai1C1eanup
should delete the file, since it is almost certainly damaged. Note
that if StoreMail returned true, StoreMailCleanup will always be
called, but StoreMai1File may not. If StoreMai1 . allocates any
resources (such as opening a file) they should ~e deallocated here.
tL

<ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 10

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977 10

2.B. RetrieveMail Command

When the remote FTP
followed by a property
calls

User process sends the command RetrieveMai1
list, FtpServProt parses the property list and

(CtxRunning»FtpCtx.RetrieveMail)(pList)

which should decide whether to accept the request. To refuse,
RetrieveMail should call FTPM(markNo, code, string) and return false.
To acce~t, it should return true; no property list is sent back in this
command.

If RetrieveMai1 returns true, FtpServProt then calls

(CtxRunning»FtpCtx.RetrieveMailFile)(pList)

which should transfer the file. When RetrieveMai1File has finished, it
should return true if everything went OK.

Next, FtpServProt calls

(CtxRunning»FtpCtx.F1ushMailBox)(pList)

which should flush the contents of the mailbox. If this operation
fails, FlushMai1Box should call FTPM(markNo, code, string) and return
false, otherwise it should return true.

2.9. MoveMai1ToFi1e Commmand

When the remote FTP
followed by a property
calls

User process sends the command MoveMai1ToFile
list, FtpServProt parses the property list and

(CtxRunning»FtpCtx.MoveMailToFile)(pList)

which should decide whether to accept the request. To refuse,
MoveMai1ToFi1e should call FTPM(markNo, code, string) and return false.
To accept the request, it should perform the operation and return true.
If the operation fails, MoveMai1ToFi1e should call FTPM(markNo, code,
string) and return false.

(ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NQV-77 4:45PM I PAGE 10: 1

3. User

The FTP User module (files FtpUserProt.br, FtpUserProtFi1e.br, and
FtpUserProtMai1.br) implements the User protocol exchanges.

Many of the procedures in this module report results by returning a
word'containing an FTP mark code in the right byte and a subcode in the
left byte (referred to below as 'subcode"mark'). Marks and subcodes
are the first two arguments to the FTPM procedure which is described in
more detail in the Util ity section. If the mark type is 'markNo', the
subcode describes the reason why the Server refused; your modules may
be able to fix the problem and retry the command. The package will
output to dspStream text accompanying No, Version, and Comment marks.
1'L

(ALTODOCS)F1PPACKAGE.TTV;6 THU 17-NOV-77 4:45PM PAGE li

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977 11

3.1. Common User Protocol

File FtpUserProt.bcpl contains routines shared by FtpUserProtFile.br
and FtpUserProtMail.br. It uses the bspStream,· bspSoc, and dspStream
fields in its FtpCtx and contains the foll?wing external procedures:

UserOpen(Version) = truelfalse
UserOpen should be called after the BSP Connection is open. It
sends a version command and aborts the connection returning false
if the Server's protocol is incompatible. Otherwise it calls

Version(stream,nil)

which should generate some herald text:

Wss(stream, "Alto Pup FTP User ")

to which UserOpen will append a string
77", and then return true. The herald
Server is output to dspStream.

UserClose(abortIt [false])

of the form "1.13 15-May­
string received from the

UserClose closes the FTP connection, aborting it if 'abortIt' is
true.

UserFlushEOC() = truelfalse
flushes bspStream up to the next command, and returns true if it is
EndOfCommand. If the stream closes or times out, it returns false.
It calls UserProtocolError if it encounters anything except an EOC.

UserGetYesNo(flushEOC) = subcode"mark
flushes bspStream up to the next command, which must be 'Yes' or
'No'. If flushEOC is true, it then calls UserFlushEOC and returns
the Yes or No mark and accompanying subCode. If the stream closes
or times out, it returns false. Us~rGetYesNo calls
UserProtocolError if it encounters anything except Yes or No
followed by EOC.

UserProtocolError()
Writes an error message to dspStream and then calls UserClose to
abort the connection.

3.2. User File Operations

File FtpUserProtFile.br implements the User protocol for standard file
operations. It uses the bspStream, bspSoc. and dspStream fields in its
FtpCtx and contains the following external procedures:

UserStore(pList. StoreFile) = subcode, ,mark
Attempts to send the file described by 'pList' to the remote
Server, calling the user-supplied procedure 'StoreFile' to transfer
the data. It returns zero if something catastrophic' happens (such
as the Server aborts the connection), in ~hich case retrying is
probably futile.

tL

(ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 11:1

UserStore sends pList to the Server for approval. The Server can
refuse the command at this point, in which case UserStore returns
subcode, ,markNo. If the Server accepts the command. UserS tore
calls

<ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 12

For Xerox Internal Use Only November 17. 1977

Pup FTP Package October 24, 1977 12

StoreFi1e(pList)

which should transfer the file data. This package provides
procedures for transferring data from a disk stream to a network
stream, but you are free to write your own. StoreFiJe should
return true if the transfer went successfully. If some
environment-specific thing goes wrong (such as an unrecoverable
disk error), StoreFi1e should call FTPM(markNo, code, string, true)
before returning false. UserStore then asks the Server· if the
transfer went successfully and returns subcode"mark. If mark is
'markYes', the file arrived at the Server safely.

UserRetrieve(pList, Retrieve) = subcode, ,mark
Attempts to retrieve the file described by 'pList' from the remote
Server, calling the user-supplied procedure 'RetrieveFi1e' to
transfer the data. UserRetrieve returns zero if some catastrophic
error occurs, markNo if the Server refuses the command, and
markEndOfCommand if the everything goes OK.

UserRetrieve sends pList to the Server and waits for approval. The
Server can refuse the command at this point, in which case
UserRetieve returns subcode, ,markNo. If the Server can handle
property lists that specify multiple files, then the following
steps are taken for each file:

If the Server has no more files matching the original pList.
UserRetrieve returns subcode"markEndOfCommand (subcode is
undefined in this case). Otherwise the Server sends a fully­
specified property list describing a file which it is willing
to send. UserRetrieve parses this into pList and calls

Retrieve(pList)

which should decide whether to accept the file. To skip the
file, Retrieve should return false. UserRetrieve so informs
the Server and then loops. To accept the file, Retrieve
should return a procedure which UserRetrieve can call to
transfer the data. Don't open the file yet. because the
Server can still back out, in which case UserRetrieve skips
the next step and just loops. If Retrieve returns true,
UserRetrieve tells the Server to send the file and then calls

RetrieveFile(pList)

which should open the file, transfer the data, and close the
file. This package contains procedures for transferring data
from a network stream to a disk stream; but you are free to
write your own. When RetrieveFi1e is done, it should return
true if everything went OK. UserRetrieve then loops.

UserDelete(pList,De1ete) = subcode, ,mark
Reque~ts the remote Server to delete the files described by
'pList', ca1~ing the user-supplied procedure DeleteFi1e before
allowing the server to actually delete anything. UserDelete
returns zero if some catastrophic error occurs, markNo if the
Server refuses the command, and markEndOfCommand if the everything
goes OK.

<ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 12:1

UserDelete sends pList to the Server and waits for approval. The
tL

<ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 13

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977 13

Server can refuse the command at this point, in which case
UserDelete returns subcode"markNo. If the Server can handle
property lists that specify multiple files, then the following
steps are taken for each file:

If the Server has no more files matching the original pList,
UserDe1ete returns subcode, ,markEndOfCommand. Otherwise the
Server sends a fully-specified property list describing a file
which it is willing to delete. UserDelete parses this into
pList and calls

De1ete(pList)

which should return
described by 'pList'.
Server and then loops.

true to confirm deleting the file
UserDelete passes this answer on to the

UserDirectory(pList, Directory) = subcode"mark
Requests the remote Server to describe in as much detail as it can
files matching 'pList', and then calls the user-supplied procedure
Directory when the answers come back.

UserDirectory sends pList to the Server and waits for an answer.
The Server can refuse the command at this point, in which case
UserDirectory returns subcode"markNo. If the Server can handle
property lists that specify multiple files, then the following
steps are taken for each file:

If the Server has no more files matching the original pList,
UserDirectory returns subcode"markEndOfCommand. Otherwise
the Server sends a property list which UserDirectory parses
into pList and calls

Directory(pList)

and then loops,.

3.3. User Mail Operations

File FtpUserProtMail.br implements the user part of the Mail Transfer
Protocol. This description ignores variou~ critical sections and other
vital considerations which must be handled by the user-supplied
routines in order to provide a reliable mail service. For the
semantics of the protocol see (Pup>MailTransfer.ears.

UserStoreMail(pList,StoreMail)
Attempts to send mail to the mailbox described by 'pList' at the
remote Server, calling the user-supplied procedure 'StoreMail' to
transfer the data. It returns zero if something catastrophic
happens (such as the Server aborts the connection). in which case
retrying is probably futile.

UserStoreMail sends pList to the Server for approval. The Server
can refuse the command at this point, in which case UserStoreMail
returns subcode. ,markNo. If the Server accepts the command,
UserStoreMail calls

(ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NQV-77 4:45PM PAGE 13:1

StoreMail(pList)
tL

(ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 14

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977 14

which should transfer the mail. StoreMail should return true if
the transfer went successfully. If some environment-specific thing
goes wrong (such as an unrecoverable disk error), StoreMai1 should
call FTPM(markNo. code. string. true) before returning false.
UserStoreMai1 then asks the Server if the transfer went
successfully and returns subcode"mark. If mark is 'markYes'. the
mail arrived at the Server safely.

UserRetrieveMail(pList.RetrieveMail) = subCode"mark
Attempts to retrieve the contents of the mailbox described by
'pList' from the remote Server. calling the user-supplied procedure
'RetrieveMail' to transfer the data. UserRetrieveMail returns zero
if some catastrophic error occurs, markNo if the Server refuses the
command, and markEndOfCommand if the everything goes OK.

UserRetrieveMail sends pList to the Server and waits for approval.
The Server can refuse the command at this point, in which case
UserRetieveMail returns subcode,.markNo. Otherwise
UserRetrieveMail calls

RetrieveMail(pList)

which should transfer the file data. When RetrieveMail is done, it
should return true if everything went OK.

UserMoveMai1ToFile(pList) = subCode.,mark
requests the server to move the contents of the mailbox described
by 'pList' to the file also described by pList. UserMoveMailToFile
returns zero if some catastrophic error occurs, markNo if the
Server refuses the command and markYes if everything goes OK.

4. Utility Routines

The utility module (files FtpUti1B.br, FtpUtilA.br, FtpUtilXfer,
FtpUtilDmpLd, and FtpUtillnit.br) contains protocol routines shared by
the User and Server modules, and some routines for efficiently
manipulating disk streams.

InitFtpUti1()
builds" some internal tables and streams, getting space from
sysZone. You must call this procedure before starting a Server or
issuing any User commands.

(ALTODOCS)FTPPACKAGE.fTY;6 THU 17-NOV-77 4:45PM PAGE 14:1

FTPM(mark, subCode [0], string [], eoc [false], parD, parl, par2, par3,
par4)

tL

sends the FTP command 'mark' to the remote FTP process, including
'subCode' if the command requires one, and 'string' if one is
present. Then, if 'eoc' is true, an EOC command is sent. 'String'
is ~ritten to bspStream using the Template package, and may contain
imbedded format information. 'ParD' through 'par4' are passed as
arguments to the PutTemplate call. The subcode and string
arguments further explain certain commands. For markNo, subCode is
a machine-readable explanation of why a request was refused, and
'String' is human-readable text such as "UserName and Password
required". Codes are tabulated in an appendix to
<Pup>FtpSpec.ears. New. codes may be registered on request.

<ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 15

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977 15

GetCommand(timeout [30000]) = subCode, ,mark
flushes bspStream up to the next command and returns the mark and
subcode (if any). Returns false if the stream closes or it hangs
for 'timeout' miliseconds while waiting for a byte. Comment
commands are ignored. GetCommand writes the strings accompanying
Version, No, and Comment commands to dspStream.

The utility module makes three 'process-relative streams' for use by
the rest of the package. The only operation defined is 'Puts'.

1st writes to dspStream
dls writes to dspStream if debugFlag is true
dbls writes to bspStream and if debugFlag to dspStream

For example. Wss(d1s,string) writes 'string' to the running process'
dspStream if the process' debugFlag is set.

4.1. Unformatted Data Transfer

File FtpUtilXfer.br contains procedures for performing efficient
operations on disk Streams. They use the following fields in FtpCtx:
bspSoc, bspStream, dspStream, diskStream, buffer, and bufferLength.
The following Alto operating system disk stream procedures are used:
SetFi1ePos, FilePos, FileLength, ReadBlock, WriteB1ock, plus the
generic stream operations: Gets. Puts, Resets, and Endofs.

DiskToNet() = truelfalse
Transfers bytes from diskStream to bspStream up to end-of-file, and
returns true if everything went OK. Before starting the transfer,
DiskToNet outputs " ... transferring ... " to dspStream, and before
returning it outputs "xxx bytes ... ".

NetToDisk() = truelfalse
Transfers bytes from
another FTP command

bspStream to diskStream until it encounters
returning true if everything went smoothly.

Before starting the transfer, NetToDisk outputs
" ... transferring ... "
"xxx bytes ... ".

to dspStream, and before returning it outputs

FileType() = TextlBinary
Resets diskStream, scans it looking for high order bits
then Resets it again. As soon as it encounters a byte
high order bit on, it returns 'Binary', otherwise (having
entire file) it returns 'Text'. This routine does not
bspSoc or bspStream fields in FtpCtx.

4.2. Dump Format Data Transfer

on, and
with the
read the
use the

File FtpUserDmpLd.br contains procedures for transferring data between
a disk and an FTP connection in dump format. They may be used as the
inner loops of the user-supplied data transfer procedures passed to
UserStore and UserRetrieve and will create and unbundle dump-format
files on the fly. If you don't want to handle dump format, you don't
need this file. Dump-file format is described in an appendix to the
Alto Executive documentation.

(ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 16

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977 16

These procedures use the same fields in FtpCtx and the same Alto OS
routines as the unformatted transfer routines. Buffer must be at least
130 words long. Making it longer does not speed up the transfer.

DumpToNet(filename []) = truelfa1se
Dumps 'filename' from diskStream to bspStream converting it to dump
format, returning true if things go OK. DumpToNet outputs" ... xxx
bytes" to dspStream before returning. To terminate a dump file,
call DumpToNet without a filename.

LoadFromNet() = string or zero
Loads files from bspStream to diskStream (if it is non-zero),
converting them from dump format, returning a string when it
encounters a name block and zero when it encounters an 'end block'.
The caller should not modify the returned string. LoadFromNet
outputs " ... skipped" or " ... xxx bytes" to dspStream for each
component file in the dump file.

5. Property Lists

The property list module (files FtpPListProt.br, FtpPList1.br, and
FtpPListlnit.br) translates between this package's internal
representation of a property list and the protocol-specified network
representation.

The FTP protocol specifies the syntax of a property list and the syntax
of a set of properties sufficient for standard file operations, but
states that property lists are extensible. Therefore the property list
module comes in two parts: a part that knows the syntax of property
lists, and a part which knows the syntax of individual properties. To
add new properties you need only modify the latter.

The principal data structure in this module is the File Property List
Keyword Table, or fplKT. This table, built by InitFtpPlist, contains
(propertyName,propertyObjects) pairs. PropertyNames are strings such
as "Byte-size". PropertyObjects know how to Scan (parse) properties
into pLists, Generate properties from pLists, initialize properties
from a pList full of default values, and Free properties stored in
pLists.

5.1. Property List Protocol

File' FtpPlistProt.br implements four operations on property lists.
This is the module that knows the syntax of a property list, but not
the syntax of individual properties. Procedures in this file use the
bspStream, bspSoc, and dspStream fields of the FtpCtx and contain the
following external procedures:

InitPList(defaultPList []) = pList
Creates an empty pList, and initializes 'it to be a copy of
'defaultPList' if one was supplied.

(ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 16:1

FreePL ist(pL ist)
Destroys 'pList'
FreePList(pList).
doing anything.

tL

and retu~ns 0 to facilite writing pList ~

If pList is zero •. J~eeP~ist retur~s zero without

<ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 17

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977 17

ScanPList() = pListlfalse
Expects to find a property list in bspStream. ScanPList parses
this property list and returns a pList if it had proper syntax. If
the property list is malformed, ScanPList calls FTpr~(markNo, code,
string) and returns false. If the connection closes or ScanPList
waits for more than 30 seconds while trying 'to read from bspStream,
it returns false.

GenPList(pList)
Generates a property list in network format from 'pList' and sends
it to bspStream.

5.2. The 'Standard' Properties

Files FtpPlistl.br and FtpPlistInit.br implement the standard
properties. These files know the syntax of individual properties; they
contain the operation procedures for the standard property objects.
These files are used by the FTP sUbsystem and IFS and are sufficient
for performing 'standard' file operations. If you wish to add
properties, these are the modules which you must change. In addition
to the property operations which are rather specialized to their task.
there are a few generally useful procedures which are made external:

InitFtpPList()
which makes the standard property objects and builds fplKT, getting
space from sysZone. This procedure must be called before calling
any of the procedures in FtpPlist.br (which typically means before
starting a server or calling any procedures in the User module).

Nin(string,lvDest) = truelfalse
Interprets 'string' as a decimal number and leaves the result in
'lvDest', ignoring leading blanks and terminating on end of string.
A null string results in lvDest getting O. Returns false if the
string contains any characters other than 0-9 and <space).

ParseDate(string,lvRes) = truelfalse
Parses the string format date into an Alto format date which it
puts into the two word vector at 'lvRes'. Returns true if it could
parse the date. ParseDate expects the format of the string to bear
some similarity to "day-month-year hour:minute:second".

WriteDT(stream,dt)
converts 'dt' from 32 bit Alto date format to a string of the form
"dd-mmm-yy hh:mm:ss" and writes it to 'stream'.

<ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 17:1

6, Example

The following example program makes use of most of the facilities in
the User part of the Ftp Package. I have run it and it works. It is a
rock-bottom minimal User Ftp with no redeeming features whatsoever.
More extensive and realistic examples can be found by looking at the
sources for the Ftp subsystem.

The main procedure FtpUserExample performs initialization. which
consists of augmenting SysZone, initializing the Ftp and Pup packages.
and creating and starting a context running the procedure User.
~L

(ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 18

For Xerox Internal Use Only -- November 17, 1977

Pup FTP Package October 24, 1977 18

User opens a BSP connection to Maxc. sets up its FtpCtx, gets and fills
a blank pList. and calls UserRetrieve. When UserRetrieve returns, User
closes the connection. releases its resources and commits suicide.
IIFtpUserExample.bcpl - Example Ftp User

Illast modified October 24, 1977 6:05 PM

II The load command file is:
II Bldr/l/v 600/W FtpUserExample t

II t
II FtpUserProt FtpUserProtFile t
II FtpPListProt FtpPList1 t

II FtpUtilb FtpUtila FtpUtilXfer t

II t
II PupBspStreams PupBspProt PupBspBlock PupBspA t
II PupRtp PupNameLookup t
II Pup1B PupA11A PupRoute PupDummyGate t

II PupA1EthB PupA1EthA t

II t
II Context ContextInit Interrupt t

II AltoQueue AltoTimer AltoByteBlt t
II Template CTime StringUtil Keyword t

II t

II FtpPlistInit FtpUtilInit Keywordlnit t
II PuplInit PupA1Ethlnit InterruptInit

get "FtpProt.decl"
get "Pup.decl"

external
[
Ilincoming procedures
InitFtpUtil; InitFtpPList; InitPupLevell
GetFixed; CallSwat; AddToZone; Allocate; Free
InitializeContext; CallContextList; Enqueue
GetPartner; OpenLevellSocket; OpenRTPSocket; CreateBSPSt~eam

InitPList; FreePList; NetToDisk
UserRetrieve; UserOpen; UserClose; NetToDisk
ExtractSubstring; OpenFile; Closes; Wss

<ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM

//ineoming statics
sysZone; dsp; CtxRunning; UserName; UserPassword
]

let FtpUserExamp1e() be
[
let v = GetFixed(lOOOO)
if v eq 0 then Cal1Swat("GetFixed failed")
AddToZone(sysZone,v.10000)
let etxQ = vee 1; ctxQ!O = 0
InitFtpUtil()
InitFtpPList()
InitPupLevell(sysZone,etxQ,10)
Enqueue(etxQ,InitializeContext(Allocate(sysZone,lOOO),

lOOO,User, lenExtraCtx»
CallContextList(ctxQ!O) repeat
]

and User(ctx) be /Ia context
[
tL

PAGE 18:1

<ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM

For Xerox Internal Use Only -- November 17. 1977

Pup FTP Package October 24, 1977

let soc = Al1ocate(sysZone,lenBSPSoc)
let maxcPort = vec lenPort
unless GetPartner("Maxc",dsp,maxcPort,O,socketFTP) do

CallSwat("GetPartner failed")
OpenLevellSocket(soc,O,maxcPort)
unless OpenRTPSocket(soc) do

Ca11Swat("OpenRTPSocket failed")

CtxRunning»FtpCtx.bspStream = CreateBSPStream(soc)
CtxRunning»FtpCtx.bspSoc = soc
CtxRunning»FtpCtx.dspStream = dsp
CtxRunning»FtpCtx.buffer = Allocate(sysZone,256)
CtxRunning»FtpCtx.bufferLength = 256
CtxRunning»FtpCtx.debugF1ag = true
unless UserOpen(Version) do

CallSwat("UserOpen failed")

let pList = InitPList()
pList»FPL.UNAM ExtractSubstring(UserName)
pList»FPL.UPSW = ExtractSubstring(UserPassword)
pList»FPL.SFIL = ExtractSubstring("(system>Pup-Network.txt")

let mark = UserRetrieve(pList. Retrieve)
if mark ne markEndOfCommand then

CallSwat("UserRetrieve failed")
FreePList(pList)
UserClose()
Free(sysZone,soc)
Free(sysZone,CtxRunning»FtpCtx.buffer)
finish
]

and Version(stream,nil) be Wss(stream,IIExample FTP User")

and Retrieve(pList) = RetrieveFile

and RetrieveFile(pList) = valof
[
let s = OpenFile(pList»FPL.NAMB,ksTypeWriteOnly,charltem)
CtxRunning»FtpCtx.diskStream = s
unless NetToDisk() do CallSwat("NetToDisk failed")
Closes(s)
resultis true
]

PAGE 19

19

<ALTODOCS>FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 19:1

7. Revision History

March 30, 1977

First release.

May 15, 1977

Added Directory and Rename commands. Server now handles property lists
which specify multiple files. Added User and Server mail operations.

June 8, 1977
tL

(ALTODOCS)FTPPACKAGE.TTY;6 THU 17-NOV-77 4:45PM PAGE 20

For Xerox Internal Use Only -- November 11, 1977

Pup FTP Package October 24, 1977 20

Overlay machinery was changed and some bugs were fixed. Some structure
definitions changed, so recompilation of user programs is necessary.

July 17, 1977

DiskToNet and NetToDisk moved out of FtpUtilb into a new file
FtpUtilXfer. Property lists reorganized, causing changes to the
calling interface in FTPSFI. Plist module now uses the Keyword
routines in the CmdScan package. Recompi1ation of user programs is
necessary. FtpUserDmpLd renamed FtpUtilDmpLd. Timeouts cleaned up.

October 24, 1977

Example program added.
tL

