For Xerox Internal Use Only -- April 29, 1978

ALTO SUBSYSTEMS

Compiled on: April 29, 1978

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

For Xerox Internal 1Jse Only -- April 29, 1978
Alto Subsystems April 29, 1978 2

Alto Subsystems

This document is a directory of mafor Alto BCPL subsystems. Mesa subsystems are
collected together and documented elsewhere.

Binary versions of these programs are available on the <ALTO) directory. If the
documentaticn for the subsystem is short, it is included in this file directly. If it is
somewhat longer, the documentation is stored separately and the entry is marked with a *
The documentation for these objects is available on <ALTODOCS> in .TTY files. Programs
that have quite bulky documentation are denoted by ** These programs have separate
documentation on <ALTODOCS>, usually &s CALTODOCS>name.EARS.

If you would like a full listing of documentation for all but the ** programs give the
command."EARS <ALTODOCS>SUBSYSTEMS.EARS".

The person last known to be responsible for each subsystem is also given.

*ANSRV: a program that permits a Nova to be used from an Alto as a "remote batch”
computer. (Bruce Parsley)

*ASM: an assembler for Alto machine language, producing object files compatible with
the Bepl loader. (Ed McCreight)

**BCPL: a compiler for the Bepl language. (Dan Swinehart)

**BLLDR: a loader for object files produced by Bcpl and Asm. It is documented in the
Bepl manual. (Dan Swinehart)

*BRAVO: a display editor. (Charles Simonyi)
*BUILDBOOT: a program for constructing Alto boot files. .(Ed McCreight)

*CHAT: establishes PUP Telnet connecticns between a pair of cooperating parties.
(Bob Sproull)

CLEANDIR: does a garbage collection on a file directory (not on the disk space,
though). Call it with
>CLEANDIR directory-name n
to clean up the specified directory. The system directory is called SYSDIR. The
second parameter, n, tells how much extra space to append to the directory. The
reason for it is that extending the directory in this way will tend to get the pages
allocated to consecutive disk sectors, so that subsequent lookups will go faster. If
this program fails, it will leave your disk unusable. To guard against lhis, you can
copy SYSDIR to a dummy file and run CLEANDIR on that first, then run it again
on SYSDIR. DO NOT ury to copy the cleaned-up dummy file back to SYSDIR.
(Butler Lampson)

*CCPYDISK: is run on an Alto with a dual disk drive to copy an entire disk to a new
disk; it may also be run on a standard Alto to copy entire disks over the Ethernet.
All old data on the disk to which you copy is destroyed. (David Boggs)

*CREATEFILE: creates a file of a given size, a]locatihg consecutively if possible.
(Peter Deutsch)

*DDS: The Descriptive Directory System is a front end for the Alto file system,
providing a relational data base management system and facilities for displaying
information related to Alto files. (Peter Dcul.sch§

For Xerox Internal Use Only -- April 29, 1978
Alto Subsystems April 29, 1978 3

*DMT.BOCT: Alto memory diagnostic program and related statistics-gathering
programs. (D:vid Boggs)

*DPRINT: Prints disk files on the Diablo Printer. (Ed Taft)
*DRAW: An illustrator. (Patrick Beaudelaire)

EMPRESS: Converts ordinary text files to Press files, and performs simple formatting
operations. (David Boggs)

*EXECUTIVE: The Alto command processor. (Ed McCreight)

The f(>]lowir_1rg commands are a part of the EXEC:
BOOTFROM: allows you to initiate a software boot of your Alto from an
arbitrary file on the disk.
BOOTKEYS: tells you what keys to hold down to boot from a file.
COPY: copies from one file to another.
DIAGNOSE: invokes the memory diagnostic, DMT.
DELETE: deletes files.
DUMP: dumps a set of files onto a single "dump" file which can be
manipulated as a unit. The files can be recovered later by a LOAD. There is
al:;ow? Maxc subsystem called DUMP-LOAD which will do DUMPs and LOADs
on Maxc.
FILESTAT: displays attributes of files {length, creation date, etc.). The files
may be specified by name or serial number. :
INSTALL: installs Sys.Boot, or the file specified. Install allows you to erase an
oid disk and create a new one. Refer to the Operating System manual for
documentation of Install. .
LOAD: reads a file produced by DUMP and extracts the embedded files.
LOGIN: stores user name and password in the resident system to be provided
to subsystems which deal with access-controlled resources.
QUIT: terminates the operating system.
RELEASE: displays the version number and date of the currently running
operating system. :
RENAME: renames files. '
RESUME: restarts a resumable file. Call it with

>RESUME file

If file is omitted, SWATEE is assumed.

SETTIME: sets the date and time. .
STANDARDRAM: loads the Ram with a standard package. (See documentation
for RAMLOAD).

TYPE: types text files.

*FIND: a program to search text files for user-supplied strings. This program
originated as a demonstration of the power of compiling microcode from the given
problem. (Peter Deutsch)

*FTP: a P'up-based File Transfer Program tor moving files to and from an Alto file
system. (David Boggs)

*GEARS, FEARS, DEFAULT.ED: sends files over the Ethernet to be printed on
EARS. (David Boggs)

*LISTSYMS: converts the .Syms file .produced by BLDR into human readable form.
(Peter Deulsch)

*MAILCHECK: A program thét will check for waiting MAXC mail. (Larry Masinter)

For Xero». Internal Use Only -- April 29, 1978
Alto Subsystems ' April 29, 1978 4

*MARKUP: A document illustrator. (William Newman)

MICRO: The microcode assembler for Maxc, Dorado, DO, and other machines. Basic
documentation is available only in the CSL archives. It is called "Maxc document
9.2". Recent changes are documented in <AltoDocs>Micro.tty. (Peter Deutsch)

MOVETOKEYS: Moves page 1 of the named file to the appropriate page of the disk
so that depressing the key-combination and the boot button will boot-load the file.
Whatever was on that leﬁe before is moved to the original page 1 of the file; i.e.
tte two pages are swa\PEe , and the necessary pointers are fixed ul]a\;‘ The legal keys
are 5,4,6,7,D.E,K,P,U,V,0,-,/, and-\. 1If you want to type '/" to MoveToKeys type
"?" instead.

Examples:

MOVETOKEYS DUMPER DU is a typical call)

MoveToKeys BOOT 5?76 allows one to invoke BOOT by holding down 5,/, and 6.
(Jim Morris)

*MU: The microcode assembler for the Alto. (Chuck Thacker)

*NETEXEC: This subsystem, which is bootstrapped over the Ethernet, provides a
convenient interface to the other systems available from "boot servers" on the
network. (David Boggs))

*OQEDIT: allows you to look at and modify arbitrary files in octal. (Butler Lampson)

*ORAM: A scheme for overlaying several segments of microcode in the Alto RAM.
(Peter Deutsch)

*PACKMU/RPRAM: These two subsystems, in conjunction with the subroutine
ReadPRAM or LoadRam, allow programs using the RAM to check the constant
memory and load the RAM as a part of their initialization. (Peter Deutsch)

*PEEKPUP: a Pup software debugging aid. (Ed Taft)

**PREPRESS: A program for manipulating font files. (Bob Sproull)

*PRESSEDIT: éombines Press files, converts Ears files into Press format, or adds extra
fonts to a Press file. (William Newman)

*PRINT: can be used to dprint. any Press file on Ears via Maxc. That is its only use.
EmPress should be used to send Press files to Press printers. (William Newman)

PROOFREADER: Proofreader for English text. (Ed McCreight)

PUT: A program for listing, copying, and deleting files. It is capable of dealing with
botl\xﬁ/?{r{i‘\)'es of a two-drive Alto. The program offers help on its use. (Keith Knox

*QED: a teletype-oriented editor.

*RAMLOAD: a program for loadingi the Alto RAM from the files produced by the
microcode assembfer, MU. (Dave Boggs)

READPRESS: reads Press files and displays a text-listing of the entity commands, DL
strings, etc. Command line is of the form: "ReadPress Test.Press”. (Joe Maleson)

RENAME: renames a file quickly. Call it by typing:
>Rename oldFileName newFileName (David Boggs)

*SCAVENGER: a subsystem for checking and correcting disk packs. (Jim Morris)

For Xerox Internal Use Only -- April 29, 1978

Alto Subsystems April 29, 1978 5

**SIL, Analyze, Gobble, GPR, PPR, Etc:A system for automating logic design,
includeing an illustrator specialized to logic drawings. (Chuck Thacker)

SORT: a very small subsystem which will sort files containing less than 1000 entries,
each terminated by a carriage return. Call it with

>SORT <sortfilein> <sortfileout>

If <sortfileout> is omitted, the sorted dara will be written back to <sortfilein>.
(Barbara Hunt)

*SWAT: a dzbugger for Bepl programs. (Jim Morris)

SYS.BOOT: is the name of the boot file for the operating system on the Alto disk.
(David Boggs)

*Trident disk software: TFU, TRIEX and the TFS software package. The Bepl
software (;)uckaae and utility programs for driving Trident disks interfaced to the
Alto. (Ed Taft ‘

*VIEWDATA: a subsystem that displays 2D projections of 3D data on the Alto screen.
(Dick Lyon)

For Xerox Internal Use Only -- April 29, 1978
Alto Subsystems April 29, 1978 _ 6

MISCELLANEOUS PROCEDURES AND INFORMATION
FOR PARC ALTO USERS

*NEWDISK: a procedure for creating a virgin disk and getting fresh, up-to-date
software from MAXC. (Bob Sproull)

*PARCALTOS: a_document containing miscellaneous information for Alto users and
maintainers at PARC.

For Xerox Internal Use Only -- April 29, 1978
ANSRV ' March 4, 1977 7

ANSRYV, NNSRV -- Nova Server

The purpose of this "system" is to do something like remote job entry to a Nova. There are
two subsystems involved in this system: NNSRV.sv running on a Nova and ANSRV.run
running on an Alto. The two subsystems communicate with each other via FTP over the
Ethernet. ANSRV.run may be found in the <Alto> directory and NNSRV.sv in the
<RDOS> directory.

First a user must get NNSRV.sv running on some Nova that is running under the RDOS 03
operating system and that is connected to the Ethernet. This may be done in the standard
way, ie., by typing "NNSRV" to the Nova Command Line Interpreter (CLI). NNSRYV
decesn't use any global or local switches nor take any parameters. NSRV will start FTP
(presumably as a server only) and wait for FTP to be "killed" (aborted). Someday there
may be a Nova server on tne Ethernet dedicated to running NNSRYV, but until then users
must start one up themselves.

In order to use the Nova server, a user should type the following command line to the Alto
Executive: ANSRV[/s <Nova-host-name>] <{Nova-command-line>.

The "ANSRV" invokes the ANSRV.run subsystem.

ANSRYV accepts one global switch /S. If that switch is not present, then it is assumed that
the Nova host is named "NovaServer”. If the /S is present, then the next token of the Alto
command line (indicated by "<Nova-host-name>" above) is taken to be a host name. See
the FTP manual for a discussion of host names. It is supposed to be the Ethernel name of
the Nova running NNSRV.

The rest of the Alto command line ‘indicated by "<Nova-command-line>" above) is taken
as a Nova command line. In general it is just the same sequence of characters you would
type to the Nova CLI, but see the documentation for the Alto subsysiem ARDOS for details
because there are some restrictions and inconsistencies with respect to normal Nova
command lines. .

ANSRV will run FTP to send two files to the Nova host/server. One of those files
becomes COM.CM on the Nova and contains a version of what the user typed for <Nova-
command-line>. Ignore the other file. The Alto FTP also tells the Nova FTP to "kill"
itself. Then the Alto FTP finishes norrally and the user will be talking to the Alto
Executive again.

When the Nova FTP is "killed", NNSRV will get control. NNSRV creates any necessary
files and makes some entries on a log that it maintains on the file SLPT (perhaps the paper
of an on-line printer). NNSRV then runs the appropriate .SV file. When that .SV file is
finished, NNSRV" gets control -again, makes another entry in the log, and starts up FTP
again, ready for another go~round.

There are several things that should be noted about this procedure. NNSRV must be
running on some Nova when ANSRYV is invoked, otherwise the Alto FTP will eventually
give up trying to establish contact. All the requisite files must be present on the Nova
when ANSRYV is invoked, e.g., the .SV file and any input “iles it needs. But note that FTP
is running on the server Nova most of the time, so a user may use the Alto FTP to transfer
any necessary files to the Nova btefore invoking ANSRV. Note that no "answers" are
automatically sent back to the Alto. The way to take care of this is to have your Nova .SV
file put its results in a Nova file. Then try to run the Alto FTP to retrieve that file (copy
it to the Alto). If the Alto FTP can't establish a connection with the Nova FTP, then you
lknow that your .SV program (or somebody else's) is still running and you can try again
ater.

For Xerox Internal Use Only -- April 29, 1978
ANSRYV : March 4, 1977 8

Now it's time for some examples. We'll assume that NNSRV has been started on a Nova
named foo. We have a Fortran source code file called FProg.fr on our Alto and we want to
compile, load, and finally run it. We will give the Alto file fprog.in as input to FPROG.SV
and tell it to produce the file fprog.ot as output. Indented lines below are command lines
that might be typed to the Alto Executive.

ftp foo store/c fprog.fr
ansrv/s foo fort fprog.fr

Now we'll work on something else on our Alto for awhile and then do:

ftp foo retrieve/c fprog.er
type fprog.er

We'll repeat the above until the file fprog.er comes back with no new compilation errors. If
there are some errors, then the source code file must be edited and the updated fprog.fr sent
back to the Nova. Now we'll load FProg.

ansrv/s foo ridr fprog fort.lb
And wait for the results:

ftp foo retrieve/c fprog.er
type fprog.er

And finally run fprog after it has loaded correctly:

ftp foo store/c fprog.in =
ansrv/s foo fprog fprog.in/i fprog.ot/o

Where fprog.in is the input file to fprog and the output file named fprog.ot is to be created
by fprog.sv. Now we'll wait awhile (or occupy ourselves doing something clse) and finally
examine the results:

ftp foo retrieve/c fprog.ot
bravo/n fprog.ot

For Xerox Internal Use Only -- April 29, 1978
ASM 2 October 1974 9

ASM

This assembler, written in BCPL, runs on the Alto and produces BCPL-compatible
relocatable binary outgut files, suitable for input to BLDR, the BCPL, loader. The source
lanzuage of this assembler is patterned after that of the Data General NOVA DOS assembler
l(sele document 093-000017-02). Additions, deletions, and incompatibilities are described
relow.

1. Symbols

Symbols may be up to 130 characters in length, and every character of a symbol must be
used to identify it. By default upper- and lower-case characters are different, and two
character strings represent the same symbol only if the same letters and cases are used in
both. However, the /U switch causes all lower-case letters in symbols to be changed to
upper case %even in external symbols). Thus if you want an assembly-language program to
link to symbols containing lower-case letters, you must either default lower-case conversion
in ASM or map all symbo:fs to upper case in BLDR using its /U switch.

2. Strings

Strings follow BCPL. conventions. They may not extend from one line to the next.

3. Omitted Pseudo-operations

The following have been omitted: .TXTO, . TXTE, .TXTF, .XPNG, .IFE, .IFN, .ENDC, and
.EOT. No flocting point input format or operators are supported.

4. Assembly Regions

This assembler can asserable into three regions: two static regions (one in page () and one
code region. The directives .NREL, .SREL, and .ZREL cause the assembler to begin placing
code in the conde region, the non-page-0 static region, and the page 0 static region,
respectively. The BCPL loader causes the restrictions that the code arca may not contain
pointers into the code area, that the first word of the code area may not point to a static
arca, and that no static area may contain pointers to a static area. The only external symbols
are statics.

Arithmetic is not allowed on symbols denoting statics, and the symbol "." is undefined in
SREL and .ZREL. Any absolute or code-relative expression (including such gocodies as
JMP@ 62) may be placed in .SREL »r .ZREL. Any absolute expression, static referznce, or
instruction reference to .ZREL may appear in .NREL.

For Xerox Internal Use Only -- April 29, 1978
ASM : 2 October 1974 10

5. Text

There are two text modes, .TXTM B and .TXTM L. Mode B causes the generation of
sta-dard BCPL strings. Mode L causes the generation of long strings, a full word length
followed by the string characters, two per word.

6. .GET

The directive .GET "FOO" causes the file FOO to be shoehorned into the source text at that
poirt. .GET can be used up to two levels deep. Its primary utility is likely to be for lists
& externals and for canned entry and exit sequences.

1. .GETNOLIST

Works exactly like .GET, except that the "gotten™ file is no: included in the listing, nor are
any files which it .GET's. ‘

8. .BEXT

In_adcition to .EXTN and .EXTD and .ENT, | have added two directives .BEXT and
BEXTZ which work exactly as BCPL's External works for non-page-0 and page 0 statics,
respectively. This should increase the utility of the .GET feature above.

9. Expressions

Parentheses (but not precedence) have been added. Constructs like "K and $*N and 5 and
17. anc 3B10 are all primaries. Most BCPL and INOVA DOS assembler operators are
allowed. The construct 1B10 means 40(octal) , following the NOVA assembler's convention
-ather thay BCPL's. 1 am willing to be convinced on this point.

10. 170

‘This has been [eft out. DOA, 10P, .DIO, .DIOA, .DIAC, etc., won't work.

11. Predefined Symbols

All predefined symtols and directives and opcodes are defined both in all upper-case and
all lower-case letters. For example, both LDA and Ida are predefined, but Lda is not. The
following alto-specific opcodes are preloaded-in the symbol table: :

JSRIT JSRIS YCLE CONVERT DIR EIR BRI

RCLK SIO BLT BLKS SIT RDRM 'WTRM

For Xerox Internal Use Only -- April 29, 1978
ASM : 2 October 1974 11

JMPRM MUL DIV

In addition, the following pile of skips which test various conditions has been added,
courtesy of Dan Ingalls. Only the names have been changed to confuse the innocent:

Two osperands:
ZE SZ SNZ SP SGZ SN SEQ
SE SNE SLT SLE SGT SGE SGTU
SLEU SGEU SLTU SODD SKEVEN SNIL SNNIL
MKZERO MKONE MKNIL MKMINUSONE

No Operands:
(0] SKIP

It should te explained :hat U stands for unsigned, and that Dan thinks of NIL as -1.

12. Operation

If the source file is called FOO.SR, type
ASM FOO.SR

If you just type ASM FOO it will first try to use FOO and, failing in that, try FOO.SR.
The assembler will usually want to construct several files, which it will do by substituting
varicus extensions on FOO unless you specify otherwise. There are a lot of switches which

apply to ASM
/R Construct a listing file

/S Include the symbols defined by the user, for what they're worth
/A Include all symbols, even the predefined ones

/R Include a printout of the .BR file

/N Don't make a .BR file

/E Make an .ER file which is a copy of the error messages

' sent to the terminal :

/D Print debugging messages (as errors, in fact)

/P Pause after printing each error message (continue with CR)

/U Map all lower-case letters in symbols to upper-case

There are also a lot of switches which a%ply to file names, and which tell the assembler to
use this name instead of the one it was about to invent:

/L Names the listing file

/E Names the error file

/S Names the source file (also no switches)
/T MNames the temporary file

/B Names the relocatable binary file

For Xerox Internal Use Only -- April 29, 1978
Boot Files August 7, 1976 12

Alto Boot Files: Formats and Construction

The process of "booting" the Alto is one of setting some or all of the Altc's state either by
reading a file from the disk or by accepting packets from the Ethernet. This document
attempts to explain the various ways that state is restored, and the formats of "boot files"
built by various programs.

There ar: four basic steps in "booting” the Alto: (1) the tasks in the microprocessor are
resst; (2) a 256-word "boot loader” is loaded into main memory and started; (3) the boot
loader loads a portion of Alto main memory from a "boot file" and finishes by transfering
lg aAlinown place; (4) the user's program loaded by the third step can restore even more of
the Alto's state.

1. Booting

"Booting™" 1s accomplished either by pushing the "boot button" located on the rear of the
keyboard cr by executing the SIO instruction (see Alto Hardware Manual). Unless
overridden by the Reset Mode Register, the emulator task is started in a standard boot
pro%ram. This program reads location #177034, a word whose contents can be altered by
pushing various keys on the keyboard. If the <bs> key is depressed during booting, the
gmﬁhine state will be restored from the Ethernet; otherwise, the state is restored from the
isk.

When booting from the disk, the leyboard word is interpreted as a disk address where a
"disk boct loader” is located. I no keys are depressed, disk address 0 is generated, which is
the normal resting place of the "disk boot loader” for the operating system. The emulator
reads a single 256-word disk record into memory locations 1, 2, ..#400; the 8-word disk
label for this page is placed in #402, #403, ... #411. When the disk transfer is complete,
control is transferred to location 1 in the loader. The boot loader uses the saved label to
point to the remainder of a "boot file" which is read into main memory and started. The
types of "cisk boot loaders" and "boot files" -are discussed below.

When booting from the Ethernet, the microcode waits until a "breath of life" packet arrives,
containing a 256-word "Ethernet bcot loader” which is read into locations 1 - #400 and
executed by lransferring to location 3. It is up to this loader to establish communications
with a party willing to deliver the remainder of the state needed.

2. Boot File Formats and Boot Loaders

There are two basic kinds of boot files, and a variant:
B-File: Built by the BuildBoot program; loader is’DiskBoot.'
S-File: Built by the OutLd subroutine; "S" loader.
SO-File: Variant of S-File built by the SaveState subroutine.

A B-File can be distinguished from an S-File or S0-File because B-Files have a 0 in their
second data word.

For Xerox Internal Use Only -- April 29, 1978
Boot Files August 7, 1976 13

B-Files

B-Files ("BuildBoot" files) are the simr!e:;t sort of boot file. The bootin§ ;;rqcess itself does
not restore the entire state of the machine; page 1 (addresses #400 to #777) is not restored;
no RAM or R-register state is restored except for the program counter.

A boot loader resides in the first (256-word) data page of a B-File. It is this page that is
read in by the booting process. The file is formatted as follows:

File page 1 =) DiskBoot loader

File page 2 => Image of memory. page 0 (#0-#377)
File page 3 =) Image of memory page 2 #1000-#1377;
File page 4 => Image of memory page 3 (#1400-#1777
File pagg n => Image of me'fﬁory page n-1

The file can be of any length, except that n must not exceed 254. After reading the entire
file, control is transferred to the restored state by doing JIMP@ 0.

S-Files

S-Files ("Swat" files) are a somewhat complicated ccnstruction that permits more of the
Alto state to be restored: the interrupt system, active display, and so forth are all restored.
In order to achieve this, the restored state must contain a copy of the OutLd subroutine that
is resicnsible for the final stage of the restore; when the state is fully restored, this
subroutine simply returns -to its caller. This full state save and restore was originally
designed for the Swat debugger. (Note: no RAM or R-register state except for the PC and
accumulators is restored by this kind of boot.)

A boot loader resides in the first (256-word) data page of an S-File. This is the page read
by the booting process. The file looks like:

File page 1 => "S" loader
File page 2 => Image of memory page 2 g#lOOO-#ISW;
File page 3 => . Image of memory page 3 (#1400-#1777

File page 253 => Image of memory page 253 (#176400-#176777)
File page 254 => Image of memory page 1 2#400—#777)
File page 255 => Image of memory page 0 (#0-#377)

The S-File must contain at least 255 data pages; additional pages are ignored by the booting
process, and can be used to save additional state. When the restore is finished, control
returns to the caller of OutlLd (see Alto Operating System Manual). ‘

S0-Files

St-Files are a minor variant of S-Files that can be used fo restore the Alto state in 2
different ways. The variation is simply that location 0 of the restored memory image (i.e.,
word 0 of file data page 255) contains an "alternate starting address." The file can be loaded
by (1) using it as an S-File, and executing the loader saved in its first file data page, or (2)
by a loading process that loads all memory but page 1 (file page 254) and does a JMP@ 0.
The operating system boot file, Sys.Boot, is an SO-File.

’(gheLgo-File is designed to permit Etherret booting from states conveniently saved by
utld.

DiskBoot loader (B-Files)

For Xerox Internal Use Only -~ April 29, 1978
Boot Files August 7, 1976 14

The DiskBoot loader is commonly placed as the first data page in BE-Files. Its source is
DiskBoot.Asm (in BuildBoot.Dm); BuildBoot will normally included this loader on the front
of the B-Files it constructes. NOTE: the file "DiskBoot.Run" is not a literal copy of the
2560 words that go on the front of the file, but the result of applying Bldr to the relocatable
file generated by assembling DiskBoot.Asm.

$ loader (S-Files and S0-Files)

This loader is physically contained within the OutLd subroutine. OutLd simply copies the
loader onto the first data page of the file on which it saves state. The sources for this
loader are stored with Operating System sources.

EtherNet loader ("Breath Of Life")

The "breath of life" loader, which is periodically broadcast by gateways, is loaded into
locations 1-#400 when the Alto is booted with the <bs> key pressed. The standard form of
this loader reads location #177035 (a keyboard word), and transmits "MayDay" packets
containing the 16-bit result. Some server on the network will interpret the 16-bit argument
as a request for a specific Frogram. The server will open an EFTP connection with the Alto
which sent the MayDay. [t transmits data pages in the same order as they are recorded in
B-Files (including the first data page, even though it contains a disk-oriented loader).
When the connection is closed, the loader dces JMP@ 0.

By convention, the 16-bit argument #177777 is never answered by a server. This
convention is used l_)ly programs which have specifically started a "breath of life" loader and
are expecting an EFTP connection from some specific party. .

{More information on Ethernet booting can be found in Ethernet protocols documentatior.)

3. Constructing B-Files: BuildBoot

The program BUILDBOOT.Run will construct files for direct booting into the Alto. The
program copies its input file into its output file according to directives in the command line
and in the in»yut files themselves. Two kinds of input files are supported at the moment.
One is the segment file, which contains a block of words to be loaded into contiguous
addresses. The other is rhe executable file, which is what Bldr produces on the Alto (see
Alto Operating System Reference Manual for details). If several files in the command line
specify the conients of the same memory location, the last one will win. In addition to the
ata already in the output file, the program maintains three state variables belween items in
the command line. One is the location counter which specifies the address where the next
segment file (if any) vill be placed. Another is the address where the loaded image is to
begin execution. This defaults to thc starting address of the last executable file in the
command line. The. third is the address (if any) where the layout vector of the next
]exeguctlable file is to be loaded. If this address is missing, the layout vector will not be
oaded.

Here are the switches:

/E This is an executable file (also no switches)

/S This is a segment file

/N Reset the location counter to this octal number
/0 This is the output file ‘

/G This octal number specifies where execution begins

/B This executable file contains a boot loader in its code
] area. If omitted, defaults to "DiskBoot.Run"
/L Write load rap on this file

/v The layout vector of the next-

For Xerox Internal Use Only -- April 29, 1978
Boot Files August 7, 1976 15

executatle file will be loaded in a cont'guous
block starting at the address specified by this
octal number

If we wanted to bootify the Nova .SV file PROM.SV, we might say

BUILDBOOT PROM.BOOT/O PROM.BOOTLIST/L 20/N 1000/G+*
PROM.SV/S

Similarly, if we had the diagnostic YAMT.Run as an executable file (including any runtime
support it might neecl), we could simply say

BUILDBOOT YAMT.BOOT/C YAMT.BOOTLIST/L YAMT.Run/E

The disk boot loader DiskBoot.Run is also included in the file BuildBoot.Dm, and is
required by BuildBoot un ess another boot loader file is specified by the /B switch.

4. Constructing S-Files: OutLd

S-Files are constructed by the Ou!Ld subroutine, which is documented in the Alto Operating
tystem Manual.

5. Constructing SO-Files: SaveState

The SaveState subroutine, also included in BuildBoot.Dm, can be called in a fashion similar
to OutLd, but it will create an SO-File. The Bcpl call is:

SaveState("filename" [,inits])

It tehaves like OutLd in that it returns O if the file has just been written, 1 if it has been
restored by an InLd, and 2 if by a booting process. The ogponal argument inits controls
the saving and restoring of critical operating system state (bit table of free pages on the
disk, open system log information, etc.). The values of inits are:

0. No OS state saving or restoring is done.

1. Before saving state, the bit table will be written out and the log closed.

2. Afte- restoring state, -he bit table will be read in and the log re-opened.

3. Functions 1 & 2 are both performed.

6. The "standarvd boot file": disk address O

The 256-word data pegz save:l on real disk address 0 cannot be part of any legal Alto file
because of the way t{m file system is designed. As a result, the standard boot file is
established by copying the first data page of the boot file (e.g., Sys.Boot) into disk address 0
(the label and data porticns are both copied verbatim). Thus the proper data (disk boot
g)udar) v.i]zl be read when booting, and the label will point forward to the (legal) boot file,
ala page 2.

For Xerox Inlémal Use Only -- April 29, 1978
CHAT ' February 1, 1978 16

CHAT

CHAT is a program for establishing PUP Telnet connections between a Eair of cooperating
parties. Its chicf function is to permit Alto users to login to MAXC. Eventual extensions
will support text-display control.

1. Simple operation

CHAT is organized so that default operation with MAXC is simple. Simply saying "CHAT"
will establish a connection with MAXC and (provided you are "logged in" on your Alto)
will trv to establish the Alto as controlling terminal for a MAXC job that is logged in
under your name. CHAT will perform a "login" or "attach" as appropriate. If the simple
methods Tail you must deal with MAXC yourself (life is hard).

The preferred method for exiting CHAT is to depress the key immediately to the right of

the "return’ key on the keyboard, and then to press "q" for Quit. The other method,
{shift>)SWAT. is frowned upon and is 1.0t guaranteed to work.

2. Command Interpreter

While CHAT is running, you may wish to give various commands that alter its operation.
Derressing the key immediately to the right of the "return"” key will cause CHAT to enter a
command mode. The commands are:

Q Quit--terminate the connection.

F Specify a new font. The screen will be re-initialized, which will cause recent typeout
{)0 disappear. If insufficient core space is available for the font, the system font will
e used.

D Specify a "do" file to insert now. The text of the file will be treated as if it had
been typed i1 at the keyboard--it will be transmitted to the connected party. This is
a simple way to "can” MAXC procedures that you use a lot,

E Change local echo setting. CHAT starts out assuming that the connected party will
echo ail characters. In some instances, CHAT will want to echo your typein locally
(e.g., when connected to another CHAT).

I Toggles the "input" switch for the typescript file, set by the USER.CM entry
TYPESCRIPTCHARS (see below). :

0 TOf,gles the "output" switch for the typescript file, set by the USER CM entry
TYFESCRIPTCHARS (see below).

3. Command-line options

Several o[])tion:;'may te passed to CHAT by global switches in the command line (i.e., by
typing CHAT/s/t where "s" and "t" are the switches):

For Xerox Internal Use Only -- April 29, 1978
CHAT February 1, 1978 17

/A Attach" -- meaningful only when connecting to MAXC. This will force the
MAXC attach sequence to be typed rather than whatever CHAT considers
ajpropriate.

/L "Logi1" -- meaningful only when connecting to MAXC. This forces a login
sequence to be typed, regardless of what CHAT considers appropriate. For
example, if you already have a detached job on MAXC and wish to create a
new job, you must use this option.

/N CHAT will not attempt any automatic login or attach for MAXC connections.

/S CHAT will be a "PUP Telnet Server,” and will respond to requests for
connection from others rather than initiate requests itselfl?

/E CHAT will cause local echoing of input characters.

/1 Equivalent to the command-line entry CHAT.INITIAL/D (see below).

/P CHAT will enable a display protocol (see below).

Severe] options may be specified with "local" switches:

string This gives the "name" of the party with whom CHAT should initiate a
connection. The name may be an address constant of the form
net#host{fsocket, or may be a full symbolic name like Maxc+Telnet (sce
"Naming and Addressing Conventions for Pup" for details). The default
sccket is 1, the Telnet socket. Thus typing "CHAT Regis" will try to connect
to a Telnet server on the host named Regis.

filename/F Specifies the name of the font to use.

filename/D) This gives a "do" file name that is fed to the connected party. When the last
character of the file has been sent, CHAT will not close the connection.

filename/E Similar to /D, but will end the connection when end of file is-encountered.
(Because of current synchronization problems, this feature will not work well
lfr) 010;1]““0“0“ with MAXC. This problem will be among the first to be
ixed.

4. USER.CM Options

The USEE.CM file ma?' also contain defaults that CHAT examines at initialization. The
sectios of USER.CM .that CHAT examines must begin with a line with the 6 characters
CHATiI on it. Thereafter, lines begin with "labels,” followed immediately by colons,
olloved by arguments:

FONT: altofontname. AL [width height]

Jives the name of a font to use when disrlaying typeout from the connected party
(default: system font). If two numbers follow the name, they are interpreted as the
width of a line (in characters) and the height of a page (in lines). These numbers
override the calculations made by CHAT, and are shipped to MAXC to set the
terminal parameters.

BORDER: [BLACKIWHITE]

Gives the color of the top border of the screen (default: white).

For Xerox Internal Use Only -~ April 29, 1978
CHAT February 1, 1978 18

BELL: [DING] [FLASH]

Tells what to do when a bell character is received. If DING is specified, a pattern
that spells out DING will be displayed at the top of the screen. If FLASH is
specified, the bottom area of the screen will flash black. Both options can be
specified together (default: DING FLASH). :

CONNECT: net#host#socket or ..network.name...

Gives the network address constant or name of the party with whom a connection
should be initiated (see "Naming and Addressing Conventions for PUP" for details).
Default is Maxc+Telnet, the MAXC PUP Telnet server.

TYPESCRIPT: filename [length]

Gives the name of a file on which to record a typescript of the session. The file
will be treated as a "ring” buffer of specified length (in bytes; default 5120). The
file will be created at the beginning of the session, so that the user can be certain the
disk will not overflow when recording ty?escript information. The string <=> will
mark the end of the ring buffer, which will be updated periodically.

TYPESCRIPTCHARS: [ONJOFF] [ON|OFF]

This entry governs the selection of characters that are included in the typescript file.
The first on/off switch controls characters typed on the Alto keyboard: if the switch
is "on," these characters will be entered in the typescript file. The second switch
controls characters sent from the other party to the Alto: i the switch is "on," these
characters will be entered in the file. Default is OFF ON.

LINEFEEDS: [ONJOFF]

Normally, line feeds transmitted by the other party are included in the typescript
file. If you wish to keep line feeds out of the file, set LINEFEEDS: OFF.

ECHO: [ON|OFF]

This option turns on local echoing. This is usuzlly necessary only if you are
connecting to another Alto running CHAT that has used the /S option.

DISPLAYPROTOCOL: [ONJOFF]

This entry enables a display protocol. This permits the connected party (usually a
MAXC program) to establish another BSP connection for transmitting a simple
display protocol to the Alto. A set of INTERLISP-10 functions has been written to
ease use of the display from LISP. Please see Bob Sproull for more information
about this protocol and its use.

'For Xerox Internal Use Only -- April 29, 1978
CopyDisk : March 22, 1978 19

CopyDisk

CopyDisk is a program for copging entire disk packs. It will copy from one drive to
another on the same machine, or between drives on separate machines via a network.

1. History

The first Alto CopyDisk was called Quick and was written by Gene McDaniel in 1973.
During the summer of 1975 Graeme Williams wrote a new CopyDisk adding the ability to
copy disks over the network. During the summer of 1976 David Boggs redesigned the
network protocol and added the ability to copy Trident disks. The CopyDisk network
protocol is specified in <Pup>CopyDisk.ears.

2. Concepts and Terminology

In a disk copy cperation, the informatiorn on a 'Source' disk is copied to a 'Destination’
disk, destroying any previous information on the destination. A copy operation usually
consists of two steps:

g(bpy].Step one copies bit-for-bit the information from the source disk to the
estination disk.

[Check] Step two reads the destination disk and checks that it is indentical with
the source disk. This step can be omitted at the user's peril.

Copying a disk from one machine (or 'host') to another over a network requires the active
cooperation of programs on both machines. In a typical scenario, a human user invokes a
program called a 'CopyDisk User' and directs it to establish contact with a 'CopyDisk Server'
on arother machine. Once contact has been established, the CopyDisk User initiates requests
and supplies parameters for the actual cofp/ operation which the User and Server carry out
together. The User and Server roles di f)er in that the CopyDisk User interacts with a
human user (usually through some keyboard interpreter) and takes the initiative in
User/Server interactions, whereas the CopyDisk Server plays a comparatively passive role.
The question of which machine is the CopyDisk User and which is the CopyDisk Server is
independent of the direction in which data moves.

The Alto CopyDisk subsystem contains both a CopyDisk User and a CopyDisk Server,
running as independent processes. Therefore to copy a disk from one machine to another
you should start up the CopyDisk subsystem on both machines and then type commands to
one of them, which becomes the Co‘)yDisk User. Subsequent operations are controlled
entirely from the User end, with no human intervention required at the Server machine.
Th's arrangement is similar to the way the Alto FTP subsystem works, and different from
the way the older CopyDisk worked.

3. Calling CopyDisk

CopyDisk can be run in two modes: interactive mode in which commands come from the

For Xerox Internal Use Only -- April 29, 1978
CopyDisk : March 22, 1978 20

keyboard, and non-interactive mode in which commands come from the command line
(Com.cm). The general form of the command line to invoke CopyDisk looks like:

CopyDisk [[/<option switches>] [from] <source> [to] <destination>]
The square brackets denote portions of the command line that are optional and may be

omitted. If you just type "CopyDisk” the program goes into interactive mode, otherwise the
remainder of the command line must be a complete description of the desired operation.

3.1. Option Switches

Each option switch has a default value which is used if the switch is not explicitly s2t. To
set a_switch to 'false’ proceed it with a 'minus' sign (thus CopyDisk/-C means 'no
checking'). To set a switch to 'true' just mention the switch.

Switch Default Function

/4 false [Model44] tells CopyDisk to copy an entire Diablo model 44, without
© asking for confirmation.

/C - true Checi] tells CopyDisk whether to check the copy operation.
‘opyDisk/-C, which omits the check step, is faster but more risky.

/W true [WriteProtect] prevents the CopyDisk network Server from writing on
a local disk. So unless you say CopyDisk/W or issue the
WRITEPROTECT commanc, someone can make a copy of your disk’
over the network, but no one can (maliciously or accidentally)
overwrite it.

/R true [Ram] tells CopyDisk to attempt to load the ram _with some
microcode which speeds things up considerably. CopyDisk will still
work, though more slowly if it can't load the ram.-

/D false (L«chug] enables extra printout that should be interesting only to
opyDisk maintainers,
/B false [Boot] creates 'CopyDisk.boot' for distribution to boot servers.
FA false [ﬁ\llocator[)ebug] enables extra consistancy checks in the free storage
allocator.

3.2. Source and Destination 'Syntax

The general form of a source or destination disk name is:
[Host name]Device

fer example "[Myrddin]DP0". Ordinarily 'host name' can be a string, e.g., "Myrddin". Most
Aitos have names which are registered in Name Lookup Servers. So long as a name lookup
server is available, CopyDisk is able to obtain the information necessary to translate a host
name to an inter-network address (which is what the underlying network mechanism uses).
You may omit the host name for disks attached to the local machine,.

If the host name of the Server machine is not known, you may specify an inter-network
address in its place. The gencral form of an inter-nctwork address is: '

<network> # <host> # <socket>

For Xercx Internal Use Only -- April 29, 1978
CopyDisk March 22, 1978 21

where each of the three fields is an octal number. The <network)> number designates the
network to which the Server host is cornected (which may be different from the one to
v hich the User host is »onnected); this (along with the "#" that follows it) may be omitted
it the Server and User are known to be connected to the same retwork. The <host> number
designates the Server host's address on <network>. The <socket> number designates the
actual Server process on that host; ordinarily it should be omitted, since the default is the
regular Copylisk server socket. Hence to specify a CopyDisk server running in Alto host
nu1n_l>e1;j)24l on the directly connected network, you should say "241#" (the trailing "#" is
required).

The syntax of the 'device’ part of a disk name depends on the disk type. CopyDisk
currently knows how to copy two kinds of disks:

DPn IID-iS(l;lo disk unit 'n'. Most Altos have one Diablo disk called
' ") l-
TPn "}'rident disk unit 'n'. The unit number must be in the range 0-

4. The CopyDisk display

CopyDisk displays a title line about one inch from the top of the screen, and below that the
main display window, whichk consumes about half of the screen. The main window is shared
by the User and -Se-ver processes, only one of which is active at any time. The process
which currently owns the window identifies itself at the right side of the title line. The
title also shows the release date of the program and the host number of the Alto. When a
co y]pperzntion is in progress, the current disk address is displayed in the area above the
title line.

When CopyDisk is started, the User is listening for commands from the keyboard and the
Server is listening for connections from the network. If you start typing commands, the
User 1akes over control of the main window (‘User' appears near the right end of the title
line), and your commands and their responses are c(i)splayed there. The Server refuses
network connections while the User is active. If another CopyDisk program conrects to the
Server, the Server takes over control of the main window ('Server' appears near the right end
of the title line), and the Server logs its actlivity there. The User ignores type-in (flashing
the screen if any keys are typed) while the Server is active.

5. Keyboard Command Syntax

CopyDisk's interactive command interpreter presents a user interface very similar to that of
the 4lto FTP subsystem., The standard editing characters, command recognition features,
and help facility (via "?") are available. :

5.1. Keyboard Commands

COPY
Starts a dialog to gather the information for copying a disk. CopyDisk first asks for
the name of the source disk by displaying "Copy from"”. If the disk is local, it makes
sure it is ready; if the disk is on another machine, it opens a connection and asks the
remote machine if the disk is ready. If you want to abort the connection attempt, hit
the middle unmarked ('Chat') key. If the source disk is ready, CopyDisk prompts you

"For Xerox lniernal Use Only -~ April 29, 197¢&
CopyDisk : March 22, 1978 22

for the destinaticn disk by displafling "Copy to", and then checks that that disk is
ready also. Next, it verifies that the disks are compatible, and depending on the disk
tﬁpe, may ask some questions about things peculiar to that disk (such as "Copy all of
the model 447"). Then CopyDisk asks you to confirm your intention to overwrite the
destination disk. If you change your mind, type 'N' or <delete>. If you respond yes,
CopyDisk will pause for a few seconds, ignoring the keyboard, and then ask you to
confirm once again. Type-ahead does not work for this second corfirmation. This is
your last chance to look at the disks and make sure that you are not overwriting the
wrong one. It happens! This feature was in the original CopyDisk, was left out of
the second version, and is back in this third version by popular demand from the
many people who made that fatal mistake.

QUIT
Terminates CopyDisk. One of three things happens:

The Alto Exec is restarted if DPO is ready, and has not been written on,
and if CopyDisk was not booted from the net.

DPO is booted if it is ready but has been written on or if CopyDisk was
booted from the net.

DMT is booted from the net if DPO is not ready.

All of this is attempting to leave the Alto running something useful. If the disk in
DPO cloes not have an operating system on it when CopyDisk quits, the disk boot
(option 2, above) will fail. This will not hurt the disk, it will just leave the Alto in a
bad state. You will have to boot DMT manually.

CHECK
Toggles the switch which controls whether a disk is checked after copying. CopyDisk
displays "on" if checking is now enabled, and "off" if it is now disabled.

DEBUG
Toggles the switch which controls the display of debugginz information. The
performance data presented at the end of this document 1s part of the debugging
nl]formatlon; the network protocol interactions are displayed when this switch i1s set
also.

WRITEPROTECT]))
Toggles the switch which allows the network Server to write on local disks. The
detault is that people can't overwrite your disk.

VERIFY
Verifies that two disks are identical. The dialog is very similar to the COPY
command. Neither disk is ever written. This is useful to verify the health of your
disk drive (bu: remember that it does not check the write logic).

6. Command Line Syntax

CopyDisk can also be controlled from the command line. If there is anything in the
command line except "CopyDisk” and global switches, the command line interpreter is
started instead c¢f the interactive keyboard interpreter. Its operation is most easily explained
by examples:

For Xerox Internal Use Only -~ April 29, 1978
CopyDisk March 22, 1978 23

6.1. Command line examples
To copy DPO to DPI:
CopyDisk from DPO to DP1

Note that 'from’ and 'to’ are optional (though stongly recommended for clarity), and one or
both may be omitted or abbreviated:

CopyDisk DP0 t DP1

is equivalent, though less obvious.

To copy the Basic non-programmer's disk from host "Tape-Controller’ (which is running
CopyDisk) onto a disk in your own machine:

CopyDisk from [Tape-Controller]JDPC to DPO
or, equivalently: ’
CopyDisk from [3'#6'#]DP0 to DPO

The single quotes are necessary to keep the #s out of the clutches of the Alto Exec. The
quotes are not nceded when typing to the keyboard interpreter. Note that no spaces are
allowed between the host name and the device name. '

If the command line interpreter runs into trouble, it displays an error message and. then
starts the interactive interpreter.

7. Disk Errors

Disk errors are termed 'soft’ or 'hard' depending on whether retrying the operation corrects
the difficulty. If CopyDisk is still having trouble after many retries, it displays a message
of the tform "Hard error at DPn: cyl xxx hd y sec zz" in the main window and moves on.

Soft errors are not reported unless the debug switch is true, so as not to alarm users, Their

frequency depends on several factors. Copying over the network will cause more soft errors

xllen Icopymg between two disks on the same machine. Alto ils get many more errors then
to Is.

During the Check pass, in addition to soft and hard errors, 'data compare' errors are also
possible. A data compare error means that the corresponding sections of the source and
destination disks are. not identical. If any hard errors have been reported, then data
compare errors are likely, otherwise getting data compare errors means that something is
very wrong. You should suspect the Alto.

Hard errors and data compare errors are serious, and you should not trust the copied pack if
any are reported. If the errors are on the source disk, trv Scavenging it. Bear in mind that
there is some variance in alighment.among disk drives, and that a pack which reads fine on
one drive may have trouble on another. El's the source disk in a different drive than where
it is normally used? Before allowing the Scavenger to rewrite sectors, consider that the pack
may be OK, but the drive it is in may be out of alignment. In this case, allowing the
scavenger to rewrite the sectors is a bad idea. If the errors are on the destination disk, tr
the copy again, and then suspect the pack or the disk drive itself.” If the destination pac
was much colder than the temperature inside the drive, sectors written early in the copy pass
may read incorrectly during the check pass. It's a good idea to wait a few minutes for the
pack to reach normal operating temperature before using it.

For Xerex Internal Use Only -- April 29, 1978
CopyDisk March 22, 1978 24

3. Creating a new disk

Suppose vou want to make a new disk by copying one of the 'Basic’ disks. There are two
niajor ways to do this:

Find an Alto with two disk drives. These are relatively rare beasts. This
method is called the 'double disk copy' method.

Find two Altos, each with one drive, that are connected by a network. This
should be relatively easy. This method is called the 'network copy' method.

Having decided on one of the above methods, you must now get CopyDisk running on the
A to(s). There arz two major ways to do this:

Start CopyDisk from a disk which has 'CopyDisk.run’ on it.

Boot CopyDisk over the nztwork from a 'Boot Server'.

3.1. Starting CopyDisk from another Disk

If you do rot have access to a Boot Server, you must start CopyDisk from a disk that has it
on it. Put a disk with CopyDisk on it into the Alto and type "CopyDisk<return>". Then
switch disks. BE CAREFULY People sometimes forget to switch disks at this point and
accidentally copy the wrong one. This is why CopyDisk asks you to confirm your
intentions so m:ny times.

3.2. Booting Copydisk from the net

The best way to start CopyDisk is to boot it from the network. That way you are more
likelv to get the latest version, and you avoid the pitfall mentioned above. Of course, you
must have network access to a Boot Server. Most Gateways hkave Boot Servers. If this
?l]'elt(hOd doesn't s:em to work, you will have to fall back to starting CopyDisk from another
isk.

Hold down the <BS> and <Quote> keys while pressing the boot buttornn on the Alto. You
must cortinue to hold down <BS> and <Quote> (but let go of the boot button!) until a
small square appears in the middle of the screen. 'This can take up to 30 seconds, but
usually happens in less than 5 seconds. You are now taking to the NetExec ﬁsee the
documentation in the Subsystems manual if you are curious), and you should type
"CopyDisk<return>". The screen will go blank, the little square will appear again (you don't

have to hold cdown any keys this time), and soon CopyDisk should appear on the screen.

3.3. The Double-Disk Copy Method

Put the basic disk in DP0 and put your disk in DP1l. Type "Copy<space>"”, and when it
says "from" type DPO<return>. When it says "Copy to", typz "DPl<return>". Then type
(return> eack time it ashs for confirmation. Some numbers will appear in the top center
of the screen. When they disappear, CopyPDisk is done. Type "(guiKretllrn)". Put the
basic disk back where it belongs, and take your disk with you.

8.4. The Network Copy Method

Unlike the old CopyDisk, you need only type commands to one of the two Altos. It doesn't
matter which one. Assume that the basic disk is in the Alto called "Tape-Controller”, your

For Xerox Internal Use Only -- April 29, 1978
CopyDisk : March 22, 1978 25

disk is in the Alto called "Myrddin"” and you are going to t.yPe commands to Tape-
Controller. Type "Copy<space>”, and when it says "from" type "DPO<return>". When it
says "Copy to", type 'flMyrddin]DPO<retum)". Then type <return> each time it asks for
confirmation. Some nurabers will appear in the top center of the screen. When they
disappear, CopyDisk is done. Type "(5uit<return>", and put the basic disk back in the rack.
Go to Myrddin and lyFe "Quit<return>”. It will boot the disk, and you should find
yourself talking to the Alto Exec.

9. Performance

This section calculates the times to copy disks under different conditions. CopyDisk times
its operations and dnspl‘a%s the results if the debug switch is set, so you can compare the
numbers derived here with reality.

9.1. TSweep

First, we calculate TSweep, the time to read -or write a disk assuming that we can consume
or produce data faster than the disk. This best possible case is the sum of two terms. The
first term is the time necessary to sweep an active read/write head over every sector on the

disk:
Rot * nCyl * nHds.
The second term is the time lost while seeking to the next cylinder. We assume that these
seeks take less than one rotation but that a whole rotation is lost:
Rot * nCyl.

Combining, we get:
TSweep = Rot * nCyl * (nHds+1).

where: Rot is the rotation time of the disk in seconds

nCyl is the number of cylinders, and
nHds is the number of heads.

9.2. Disk-To-Disk Copy

By disk-to-disk copy we mean copying from one disk to another on the same machine,
using a single controller and not overlapping seeks. The fastest way to do this is to read the
entire source disk into memory, switch to the destination disk, and then write it all. The
switch frora the source to the destination disk, will lose on the average half a revolution
while waiting for the right sector on the new disk to come under a head. Neglecting the
switch time which is small compared to the other two terms, the best possible disk-to-disk
copy time is 2 * TSweep. :

With limited memory, the best we can do is fill all available memory buffers reading the
source diss, switch disks, write thern onto the destination disk, and then switch back to the
source disk for another load. In this case we can't ignore the switch time, which is the total
number of sectors on the disk divided by the number of sector buffers times the rotation
time of the disk:

Rot * (nCyl * nHds * nSec)/nBuf

where nSec is tke number of sectors per track, and
nBuf is the number of memory buffers.

So the disk~to-disk copy time, TDDCopy, is:

For Xerox Internal Use Only -- April 29, 1978
CopyDisk March 22, 1978 , 26

TDDCopy = 2 * TSweep + Rot * (nCyl * nHds * nSec)/nBuf

9.3. Net Copy

By net copy we mean copying from a disk on one machine through a network to a disk on
another machine, In this case the disk controllers can be going in parallel, and the factor
of two in the first term of TDDCopy vanishes. In additon, if the bandwidth of the
network connection is higher than the transfer rate of the disks so that as soon as a sector
is read from the disk it is sent out of the machine, the memory limitation goes away and
the second term of TDI)Copy vanishes.

The CopyDisk network protocol sends a small amount of information along with each sector
which must be factored into the calculation of the bandwidth needed to run without
meraory limitation. Note that the tandwidth we are concerned with here is that perceived
bv a client of the network services: user data bits per second, not raw bits per second
through the network hardware.

If the network is slower than the disks, then the time to copy a disk is the time required to
transmit all of the bits on & disk plus the protocol overhead bits:

TNetCopy = nCyl * nHds * nSec * (sB + sOv)/bwNet
where sB is_the bits of disk information per sector, '
sOv is the CopyDisk protocol overhead per sector, and
bwNet is the bandwidth of the network connection.

The bandwidth of the network connection is hard to state, and depends on a number of
factors. Here are a few:

Reduction of the emulator's instruction execution rate due to interference from the
disk and network hardware.

Reduction of the amount of the emulator cycles available to the network and disk
code due to mutual interference. :

Reduct‘i(on of the peak network bandwith due to interference from other hosts on the
netvork.

The minimum network bandwith required to copy a disk at full speed is:
MinBwNet = 16 * nCyl * nHds * nSec * (sB + sOv)/TSweep.

9.4. The Numbers for Altos

Here are the relevant numbers for the disks which this program can copy:

Diablo-31 Diablo-44 Trident-80 Trident-300
Rot (ms) 40 Z5 16.66 16.66
nCyl 203 406 815 815
nHds 2 2 5 19
nSec 12 12 9 9
sB 266 266 1036 1036
sOv 2 2 2

2
nBuf 30 80 18 18

For Xerox Internal Use Only -- April 29, 1978
CopyDisk March 22, 1978 27

9.5. Reality

Here are the results of plugging the numbers into the equations, and comparing them against
actual measurements. The tormat is predicted(measured). NA means not available.

Diablo-31 Diablo~-44 Trident-80 Trident-300
TSweep 0:24 0:30 1:21 4:32
TDDCopy 0:51§0:51) 1:04é1:16) 3:18(4:00) 11:20(19:27)
TMetCopy (1:05) (2:16) (26:31) (NA)
bwiNet g323 Kb/s) 5308 Kb/s) 383 Kb/s) gNA
MinBwNet 59 Kb/s 375 Mb/s 520 Mb/s .509 Mb/s

10. Revision History

August 7, 1977

First relese.

August 28, 1977

Soft errors are only reported if the debug switch is set. Data compare errors now display
the offending disk address. VERIFY and WRITEPROTECT coramands added to keyboard
command interpreter. Write protect global switch added.

October 16, 1977

More microcode to speed things up

October 27, 1977

Bug fixes

December 18, 1977

Fixed a bug which prevented it from copying the second half of a two disk file system.
The netviork format for Diablo disks changed.

March 22, 1978

Co}gyDisk will now do the right thing for "[thisHost]device". The default value of
WRITEPROTECT is now TRUE.

For Xerox Internal Use Only ~-- April 29, 1978
Createfile : April 21, 1975 28

Createfile

The CREATEFILE subsystem will create a file of a given size, attempting to allocate it
consecutively on the disk. To run the program, use

>CREATEFILE filename npages

where filename is the name of the file and npages is ths size of the file in pages (in octal).
If the file already exists, CREATEFILE will print "Old file -- deleted” and delete the file,
If the file does not exist, CREATEFILE will print "New file". If there is no block of
npages consecutive free pages on the disk, CREATEFILE will print "Only nnn consecutive
Pages" and create the file at an arbitrary place on the disk; otherwise, CREATEFILE will
ind the smallest block of free pages of size at least npages, and create the file there.

For Xerox Internal Use Only -- April 29, 1978
DDS 1.13 : October 12, 1977 29

DDS - Descriptive Directory System - release 1.13

The Descriptive Directory System (DDS) is a front end for the Alto file system that
provides substantially greater flexibility than the "?" facility in the operating system's
command processor. In addition to file names, the DDS can display file lengths, creation-
read-write dates, and contents.

If you have used DDS before and merely wish to learn about changes, bug fixes, and
new features, you probably want to skiF to section 5 of this document. If not, sections 0
through 4 are a complete description of the current release. Sections significantly changed
since the last release are marked with ***,

0. The mouse and cursor

The three buttons on the mouse are called RED (left or tcp button), YELLOW
%middle button), and BLUE (right or bottom button). Most mouse-controlled actions in
DS har en as soon as you depress the mouse button: these are described below using
phrases iLe "RED does xxx", meaning "As soon as you depress RED, xxx happens.” Some
actions require depressing a buttor and then releasing it: phrases like "clicking RED does
xxx" mean "If you depress RED and then release it, xxx will happen.” Careful reading, or a
little experimenting, will familiarize you quickly with the distinction.

The cursor changes shape according to its location on the display and according to
how DDS is interpreting the buttons. Generally speaking, when the cursor is circular, RED
selects what you are pointing at in some way, arnd BLUE deselects it. When the cursor
assumes the shape of an hourglass, DDS is busy doing something and is not listening to the
mouse buttons. :

1. The display

Like Bravo, DDS divides the display into a command area at the top, and one or
more windows below. Currently DDS just supports a single window. A heavy black bar
separates the command area from the window. Section 2 (below) describes the command
area.

The window has three parts, separated by lighter horizontal bars:

1) The top part is the view specification area, or viewspec area for short. It contains
a set of keywords that describe what information is to be displayed for the files being
exam&ned in this window, .and a set of keywords that describe how the displayed files are
sorted.

2) The second part is the selection specification area, or selspec area for short. It
contains a pair of expressions which together determine what set of files is being examined
in the window. View and selection specification are completely independent: each can be
changed without affecting the other. -

} The main part of the window is the data area, which actually displays a set of files.
The names are always displayed: other information is controlled by the viewspecs.

1.1 The viewspec area

There are 10 keywords in the viewspec area that control what is displayed:
"created" -~ the date when the file was created
"written"” - the date when the file was last altered
"read" - the date when the file was last read :
"referenced” - the date when the file was last referenced (i.e. the most recent
of "craated"”, "written", and "rcad"?\ _
"size" - the size of the file in disk pages

For Xerox Internal Use Only -~ April 29, 1978
DDS 1.13 October 12, 1977 30

"length" - the length of the file in bytes (characters) .

"address" - the hardware address, in the form directory-pointer: (SN1,SN2)IVN
@ virtual-leader-address

"contents” - the contents of the file (in octal, if a binary file)

"pagemap" - the disk addresses of all pages of the file, with ‘a "*" before each
address that represents a change of head position ‘

"leader” - the contents of the file's leader page, in octal L .
If the keyword is displayed white-on-black, the corresponding information is displayed in
the data area, otherwise not.

There are 6 keywords that control other aspects of how the data are displayed:
"Emarked " - if turned on, DDS only displays marked files (see sec. 1.4 below)
"(small)" - if turned on, DDS uses a smaller font for the data, which allows
1rnore; data to appear on the screen (see sec. 3 below for how to tell DDS the name of the
ont

"(packed)" - if turned on, DDS displays several files per line if possible (not
implemented yet) -
, "(times)" - in conjunction with "created”, "written", "read", or "referenced",
shows the time of day as well as the date

"(browse)" - if turned on, then when "contents” is turned on, DDS only
displays the first 5 lines of text files and the message "*** binary file ***" for binary files,
instead of the complete contents of the file. .

"(chart)" - if turned on, changes the data display to be a chart made up of
})_(')xeg, ;n which the height of the box is proportional to the file length. Try it -- you'll
ike it. .

When the cursor is positioned over a keyword name, RED turns the keyword on;
BLUE turns the keyword off. When the cursor is over the word "Show:" at the upper left
of the keywords, BLUE turns all keywords off.

There are currently 8 keywords that control sorting of the data:
"name"” - alphabetic order by name (upper and lower case letters are
equivalent)
"extension” - alphabetic order by extension
"created”, "written", "read” - the corresponding date and time
"referenced” - the date last referenced
"length” - the file length

"serial" - the file's serial number (not of general interest)

The keywords which are displayed white-on-black are those actually used to sort the
data area. They are displayed in the order most- to least-significant criterion, e.g.
"extensiont"” followed by "namet" means sort by extension first, then sort files with the
same extension by name. Following each keyword, whether active or not, is an arrow which
indica)tes whether the sort is to be in ascending (upward arrow) or descending (downward
arrow).

When the cursor is positioned over a sorting keyword name, clicking RED turns the
keyword on and adds it to the list of white-on-black keywords actually used for sorting;
clicking BLUE turns the keyword off and removes it from the list; clicking YELLO
inverts the direction of the arrow, regardless of whether the keyword is in the list. When
the cursor is over the words "Sort by:" at the left of the sorting keywords, BLUE turns off
all sorting criteria.

Since sorting may take a long time and it is easy to request sorting by accident, you
can abort sorting at any time by typing any character. Be sure the cursor is not in the data
area when you do this; if it is, 5 may start the sort over again!

Whenever the cursor moves into the data area, regardless of whether any mouse
buttons are dowrn, DDS repaints the display to be as specified by the viewspecs if the
viewspecs have changed since the last time the display was repainted.

‘For Xerox Internal Use Only -- April 29, 1978
DDS 1.13 ' QOctober 12, 1977 31

1.2 The selspec area

The selspec area contains two expressions which defines what subset of the directory
will actually be displayed in the data area. These expressions are built up from name
patterns which are similar to those recognized by the Alto Executive. More precisely, a
name pattern is a sequence of characters which may contain "*'s and "#"s: "™*" matches any
sequence of characters in a name (including no characters at all), "#" matches any single
character. Upper and lower case letters are not distinguished. Note that DDS deletes the
final "." from file names. Here are some examples of name patterns and what they match:

* BC All fites with extension BC (or be, bC, or Bc).

*B All files with extension B. -
B All files whose naraes contain the strin§ .B -- this includes all files with
extension Bsomething, but also includes files like THIS.BINARY.THAT.

*B# All files whose extensions consist of B and one more character.
* All the files in the directory.

You can build up more complex exPressions using the words "and", "or", and "not",
and parentheses. Here are some examples of such expressions and what they select:
LPD* and not *.temp
All files beginning with LPD, except those with extension temp.
*memo or *.memo$
All files with extension memo or memo§.
(*.BT or *.BS) and not X* ‘
All files with extension BT or BS, except those beginning with X.

The upper expression in the selspec area is called the selspec; the lower one is called
the context. (The two together are simply called the selspecs.) Only files which satisfy both
expressions will be displayed. The idea is that if you are going to be working on memos,
for example, you can set the context to "*.memo" and use the selspec to further select within
this set. As another example, if there is some set of files you want nct to see (like "*§"),
you can set the context to "not *$",

To change the selspec or the context, point at it, or at the word "Selspec:" or
"Context:", and click RED or YELLOW. This will cause it to change to white-on-black.
AS soon as you start ty%ing, the old text will vanish and what you type will appear white-
on-black in its place. Eventually you must type one of the following three things before
you can point anywhere else or select any commands (see sec. 2 below):

{return> confirms the change, and repaints the display to reflect it.

<esc> is equivalent to *<return>, i.e. it adds a * to what you have typed and then
confirms the change.

 aborts the typein and restores the old selspec or context expression.

See section 3 below for how to get the selspec _and/or context initialized
automatically to something other than "*" when you first enter DDS.

The third line of the selspec area is a message of the form "nnn files are selected, of
which mmm are marked" where nnn is the count of files selected by the current selspec and
mmm is the count of those which are marked (see 1.4 below). If there are marked files not
selected by the selspec (again, sec 1.4), the message "there are kkk files marked but.not
selected" also appears. While DDS is sorting data, the message "Sorting .." appears in this
area in place of the file counts.

1.3 The data area

_As mentioned above, whenever the cursor moves into the data area, DDS regenerates
the display if necessary to conform to the current viewspecs.

The left edge of the data area is a scrolling bar which works the same way as in
Bravo: clicking RED scrolls up, clicking BLUE scrolls down, and clicking YELLOW jumps

For Xerox Internal Use Only -- April 29, 1978
DDS 1.13 : October 12, 1977 32

proportionately to the vertical location in the window. A hollow arrow in the left margin
shows where in the list you are positioned: if the .arrow is at the top, you are at the
beginning of the list; if the arrow 1s at the bottom, you are at the end. The idea is that if
you were to move the cursor tc this arrow and click YELLOW, the list would stay
positioned just as it is. (This feature may appear in Bravo some day too.)

If you are positioned at the beginning of the list of selected files, DDS displays the
message "~~~ BEGIN ~~~~~" at the head of the list; if not, DDS displays "~~~~~ nnn
files not shown ~~~~~"_indicating the position within the list of the first file actually
-shown on the screen (e.g. "2 files not shown” means the first file on the screen is actually
the third in the list). Similarly, if the last file shown on the screen is actually the last file
in the list, DDS displays "~~~~~ END ~~~~~" below il.

A vertical strip at the right edge of the data area will be used in the future to
control the formatting of the screen into windows. Currently the cursor changes shape when
it is in this area, but the buttons have no effect. Another vertical strip just to the left of
this one is used for mass marking and unmarking of files: see the following section.

1.4 Marking files

DDS provides a facility for marking any set of files for later processing b
commands such as <Delete>, <Send to Maxc>, etc. Marked files are displayed with a small
dark arrow in the left margin, and a count of how many marked files are in the current
selected set is maintained in the selspec window. When the cursor is in the data area of a
window, other than the right or left edge areas, the mouse buttons control marking and
unmarking of individial files: RED marks the file on whose line the cursor resides; BLUE
unmarks the file. When the cursor is in the vertical strip about 1" in from the right edge
of the screen, the cursor changes to the word "ALL", and the buttons mark and unmark files
eﬂ l’ll]]aS?E;:l clicking RED marks all the files selected by the selspecs; clicking BLUE unmarks
all the files.

Note that files may be marked even though they are not selected by the current
selspecs, i.e. marking is associatad with the file rather than the display. (If this proves
confusing it will be changed.) The count of "files marked but not sclected” in the selspec
area lets you know when there are marked files not selected by the current selspecs.

Since marking or unmarking individual files occurs as soon as the button is
depressed, you can hold dowr RED or BLUE and slide the mouse (slowly) in the vertical
direction to mark or unmark a group of adjacent files.

The marked file counts in the selspec window are adjusted as soon as a file is
marked or unmarked, but if the "marked"” viewspec is on and you unmark a file, you must
scroll the data to get the unmarked file(s) deleted from the display.

2. Commands

“The command area at the top of the screen consists of four parts:

1) A header with the DDS version number, time of day, and count of free disk pages;

2) A type-in area, where typed characters appear;

4) An error message ling; : :

3) A menu of commands, with each built-in command being enclosed in angle
brackets <>. ‘

When the mouse is in the command menu areca, RED selects a command for
subsequent execution: the selected command is displayed white-on-black, and any previously
selected command is deselected. BLUE deselects the currently selected (:ommandy and selects
the default command <Quit>. Typing <esc> or <return> finally initiates the command: you
can freely select or deselect commands, type and edit your type-in, change viewspecs, etc. up

For Xercx Internal Use Only -- April 29, 1978
DDS 1.13 4 October 12, 1977 33

to that moment, For commands which do not require type-in, you may also initiate the
command by clicking YELLOW with the mouse in the command menu area. The cursor
takes the shape of a circle with a cross when this is allowed, and a circle with a dot when it
1S not.

- Some commands require or allow type-in before the final <esc> or <return>. You
may type at any time. All typed characters are accumulated in the type-in area just below
the header until the <esc> or <return>. Control-A (or backspace), control-W, control-Q,
and are available for editing as in Bravo. DDS displays a vertical bar when it is
waiting for your typing, and of course you can "type ahead" while DDS is processing a
command. However, as for selspec and context changss (sec. 1.2), once you have started to
type, you must either confirm the command with <esc> or <return>, or abort with ,
before you can select another command or another place to type (selspec or context).

When you have selected a command with RED, then when you release the button,
DDS may display scmething in the type-in area which is a default for that command. If
you want to execute the command with that default type-in, you can just confirm it (with
{esc>, <return>, or YELLOW); otherwise, the default disappears as soon as you start typing,
-just like the old selspec or context.

In the description of commands below, "scmething" following the command name
means that DDS expects vou to have typed something before the final <esc> or <return>
that initiates the command; "optional-something” means you may type something or not.
To help you remember, all the commands that require type-in end with "..", and those

which allow but do not require type-in end with "[...]".

Many commands operate on a set of files: they use preciseiy those files which, at the
time you type the final <esc> or <return>, are both selected (i.e. match the selspec) and
marked. "Filename-1 ... filename-n" in the descriptions below refer to these files, which are
also called the "designated" files.

DDS presently has two classes of command:.: those which leave you in DDS after
execution (internal commands), and those which send you back to the Alto Executive
(external commands). DDS has a fixed collection.of irternal commands, but you can add
new external commands of your own: see section 3 below for how to do this. For external
commands, DDS saves away a command line so that if something goes wrong, you can
execuie the command again by typing @DDS.CM@<return> to the Executive.

2.1 Internal commands (those which leave you in DDS)

<{Put on file ..> "filename" writes on the file named "filename” (in text form) the
contents of the window. DDS also writes a header with your name, the disk name, and the
date and time. The default for "filename" is "Dir.Lst", an arbitrary name which DDS
supplies so that you don't have to make one up.

<List on file ..> "filename" writes on the file named "filename" (in text form) the
names. of the designated files, separated by blanks. This makes it easy for you to make up
an @-file for the Executive by adding a command name to the front of this file. The
default for "filename"” is "Dir.Cm", an arbitrary name which DDS supplies so you don't
have to make one up.

{Delete> deletes the designated files. There is presently no way to un-delete files, so
be careful: the count of marked files in the selspec window is a good clue as to whether you
are deleting more than you want. Ycu can stop a <Delete> at any time by typing any
character: of course, some files may alreadel have been deleted. DDS changes the "free
pages” count at the top of the screen as it deletes each file.

{Rename as ..> "filename" requires_that there be exactly one designated file, and
changes its name to “filename". If there is alrzady a file named "filename", {Rename>
gives an error message and does nothing else.

For Xerox Intérnal Use Only -- April 29, 1978
DDS 1.13 : October 12, 1977 34

<Initialize [select ..]> "selspec” restores your selspec, context, and viewspecs to what
you have specified in User.Cm. If you typed something, DDS takes that in place of the
selspec in User.Cm.

2.2 External commands (those which leave you in the Executive)

<Quit> leaves DDS gracefully. Shift-Swat is also safe whenever DDS is awaiting

input (i.e. not in the midst of sorting, deleting, etc.).
<Bravo/[...]> "optional-switches" gives control to Bravo in the following way:

If there are no designated files, DDS effectively executes "Bravo/switches".

If there is more than one designated file, DDS gives an error message and does
nothing else.

If there is a single designated file and you did not type anything, DDS effectively
exectites "Bravo/N filename”, i.e. instructs Bravo to read in the file.

If there is a single designated file and you did type in switches, DDS executes
"Bravo/switches filename".

) _ <Gears/[...]> "optional-switches" executes "Gears/switches filename-1 ... filename-n",
i.e. prints the designated Tiles.

{Send to Maxc directory <..>> "directory-name" sends the designated files to the
directory named "directory-name" on Maxc, ‘using Ftp. The default for directory-name is
the user name on your Alto disk. If you accept the default, DDS assumes you have already
done a Login in the Executive to supply the password; if you supply some other directory-
name XYZ, DDS arranges things so the Executive will prompt you with the message "File
XYZ-Password does not exist, type what it would contain” and you should type in the
password for XYZ at that time.

) <Send to ..> "name" sends the designated files to the Alto whose name is "name”,
using Ftp. "Name" may be anything acceptable to HF. i.e. an Alto name, an Alto number,
etc. The default for "name" is Maxc, which is not really very useful.

<{Execute ..> "command” constructs a command line formed from "command” and
the names of the designated files, and then executes the command line thus formed by
either jumping directly 1o the subsystem or returning to the Alto Executive. (If there are no
designated files, DDS produces an error message "No files are marked” and does nothing
else.) The command line is formed in the following way:

If "command"” does not contain any "*" characters, the command line is just
"command" followed by the names of the designated files. For example, if files ALPHA
and BETA are designated, <{Execute ..> "BLDR/L" would execute the command line
"BLDR/L ALPHA BETA". "Strin%" may contain blanks, so for example <Execute> "BLDR
FOO/S" would execute "BLDR FOO/S ALPHA BETA".

If "command" does contain a "*", DDS divides "command"” into .3 parts "sl s2*s3",
where s2 is the part of "command” extending backwards from the "*" to the first precedinggz
blank (or the beginning of "command"”). Then the command line is "sl s2f1s3 s2f2s3 .."
where f1, f2, etc. are the names of the files. For example, if ALPHA and BETA are
cdesignated, <Execute ..> "BLDR @*@" would execute the command line "BLDR
@ALPHA@ @BETA@". (If this seems confusing or useless, don't worry about it too much
-- some future version of DDS may find a better way to provide this facility.)

2.3 User-defined commands

If you define your own external commands with a SUBSYSTEMS entry in User.Cm
as described in section 1 below, these commands will also appear in the command menu
alonz with all the commands listed just above. 'They behave exactly like the <{Execute>
command with respect to what they do about *'s, typein, and designated files. For example,
suppose your SUBSYSTEMS list looks like this:

SUBSYSTEMS: Chat, Ftp/-S Maxc, Foo

For Xerox Internal Use Cnly -- April 29, 1978
DDS 1.13 October 12, 1977 35

Then if you select the second command with files Alpha and Beta designated and tyﬁe
Eump/C Blap.DM, what will actually get executed is Ftp/-S Maxc Dump/C Blap.DM Alpha
eta.

2.4 Error messages

Nor -fatal error messages appear in bold characters just below the type-in line. Such
messages always abort the current command and reset the command to <Quit>, but they do
not change the state of DDS in any other way. The message disappears as soon as you type
any character.

Fatal errors cause DDS to call Swat. When this happens, the screen changes
completely and a heading like "Swat.21 (August 28, 1976)" appears at the top; the error
message itself appears at the bottom of the screen just above a "#". Fatal errors are never
supposed to happen, but if one ever does, summon a DDS expert. [f none is available, write
down the message and what you were doing at the time, and then type control-K. This will
throw you out of DDS and back to the Executive.

3. User profile

DDS examines the user profile (User.Cm) during initialization to obtain the names
of the fonts which will be used to display various things, and other rarely-changed
information. Just as Bravo's section of User.Cm begins with FBRAVO] and_then follows
the format of OPTION:STRING, DDS locks for [DDS] and follows the same format for its
entries.

The entries which DDS recognizes in User.Cm fall into two classes. "Initialization-
only"” entries are those which DDS only consults when you ask it to do a full initialization
(by using the FULLINIT: Yes entry in User.Cm, or the /] switch in thz command ling, both
described below). "Ordinary"” entries are those which DDS looks at every time.

The rames of the "ordinary"” entries are: '

FONT: fontname - specifies the name of the normal font (used for the command
window, ‘the file count line, and the data area).

BOLDFONT: fontname - specifies the name of the bold font (used for error messages,
the viewspec and selspec display, and the headings on the data area). .]

SMALLFONT: fontname - specifies the name of the small font (used for displaying
data when the "(sn1a_18" viewspec is turned on). :

SMALLBOLDFONT: fontname - specifies the name of the small bold font.

USERTYPE: type - lets DDS know what kind of user you are. If type is NON-
PROGRAMMER, DDS doesn't provide the "pagemap” and "address” viewspecs. [f type is
(\;VIZARD. DDS provides some extra features for debugging which are not described in this

ocument.

WINDOWS: Yes - enables you to use some experimental facilities for splitting the
screen into multiple windows in a Bravo-like manner. These facilities are NOT
DOCUMENTED, NOT FULLY DEBUGGED., AND NOT RECOMMENDED.

RAMOK: Yes - tells DDS to use the RAM on your Alto. If your Alto is a standard
one, this will make DDS run about 30% faster; if not, DDS may not run faster, and ma
not run at all. Try it once (or use the /R switch in the command line as described below
and see what happens. :

FULLINIT: Yes - tells DDS to scan the whole Alto file directory each time it starts
up, and reinitialize the s:zlspec, context, etc. from the "initialization-only" entries in User.Cm
(possibly overridden by the command line: see sec. 4). FULLINIT: No - tells DDS to
updete 1ts kowledge of the world from Sys.Log (an incremental record of file activity since
you last ran DDS), and restore the selspec, context, etc. to what they were when you last left
DDS. The default is FULLINIT: No which leads to much faster startup. BECAUSE OF
DEFICIENCIES IN THE ALTO OS5 AND IN BRAVO, THE RELEASED VERSION OF
DDS FORCES FULLINIT: YES REGAFDILESS OF WHAT IS IN USER.CM.

For Xerox Internal Use Only -- April 29, 1978
DDS 1.13 October 12, 1977 36

REENTER: Yes - tells DDS that you want to go back to DDS after completion of an
gxte}rgal)command. (Normally the Executive retains control after an external command
inishes.

The names of the "initialization-only" entries are:

SELSPEC: expression - specifies the initial value of the selspec when you enter DDS.
If there is something illegal about the expression, DDS just uses "*" for the initial selspec, as
though there were no SELSPEC entry in User.Cm.

ONTEXT: expression - specifies the initial value of the context when you enter DDS.

SHOW: list of viewspecs - allows you to initialize the viewspecs. Use comrmas between
viewspecs if there is more than one.

SORT BY: list of sorting keywords - allows you to initialize the sorting order, Each
keyword may be followed by "t" for ascending order or "«" for descending order (neither
means ascending order). Use commas between keywords if there is more than one.

SUBSYSTEMS: list of commands - allows you to add your own favorite subsystems to
DDS' command set. Each command may be just a subsystem name (e.g. Chatg or a
subsystem name followed by some initial arguments (e.g. Ftp/-S Maxc Dump/C). Use
commas between entries if there is more than one.

A word about fonts: if FONT is not specified in User.Cm, DDS uses the standard
system font SysFont.Al. If BOLDFONT is not specified, DDS fabricates a boldface version
of the normal font, whatever it may be. If SMALLFONT is not specified, the "(small)"
viewspec has no effect. If you specify a font name and there is no file by that name, DDS
just igncres that entry in User.Cm.

4. The command line

Just typing DDS to the Alto Executive will activate DDS in its normal way, in
which various aspects of its behavior are controlled by entries in User.Cm if present.
However, you can override User.Cm by typing switches following the name DDS to the
Executive. Here are the switches currently implemented:

DDS/E - equivalent to REENTER: Yes in User.Cm.

DDS/ -E - overrides (cancels) REENTER: Yes in User.Cm.

DDS/1 - equivalent to FULLINIT: Yes in User.Cm.

DDS/-1 - overrides (carcels) FULLINIT: Yes in User.Cm.

DDS/R - equivalent to RAMOK: Ye: in User.Cm.

DDS/-R - overrides (cancels) RAMOK: Yes in User.Cm.

DDS/W - equivalent to WINDOWS: Yes in User.Cm.

DDS/-W -~ overrides (cancels) WINDOWS: Yes in User.Cm.

DDS/S - causes DDS to write some statistics in a file DDS.STATS. Not currently of
general interest.)

DDS/P - causes DDS to write some data regarding disk activity in DDS.STATS. Not
of general interest.

DDS/X - causes DDS to display some mysterious statistics at the top of the screen.
Not of general interest.]
T'hese switches can be combined, e.g. DDS/I/R causes both full initialization and use of the
RAM. Switches may be either upper or lower case.

If DDS is doing a full initialization (either because FULLINIT: Yes appears in
User.Cm or because you said DDS/I), you may also supply initial selspec and context strings
in the command line, and these will take precedznce over those in User.Cm, if any.
Unfortunately, the Alto Executive makes it a little inconvenient to include *'s in these
strings, and you.can't have blanks in them at all. To include a *, you must type ¥, eg. to
start up DDS and specity alpha* as the selspec, you must type

DDS/1 alpha'™
to the Executive. To specify beta* as the selspec and *.cm as the context, you must type
DDS/I bata™ ".cm

For Xerox lntérnal Use Only -- April 29, 1978
DDS 1.13 : October 12, 1977 37

5. Record of bug fixes, changes, and enhancements

Release 1.13:
Bugs fixed: user-defined commands were usually ignored even on full init.
Additions: REENTER in User.Cm (sec. 3); /E in command line (sec. 4).
Release 1.12:
Bugs fixed: crash if User.Cm!n exiéted tut no User.Cm.
Changes: fast startup permanently disabled.

Additions: "leader” viewspec (sec. 1.1); <List> and <Initialize> commands (sec. 2.1);
user-defined commands (sec. 2.3, 3): /X in command line (sec. 4).

Release 1.11:

Bugs fixed: félling into Swat when running on non-standard Alto configurations; fast
startup now works.,

Changes: can point at "Selspec:” and "Context:" (sec. 1.2); feedback after deleting each
{ile (ggc. 2.1); user and disk name appear on <Put> file (sec. 2.1); fast startup is the default
sec.

Additions: WINDOWS and RAMOK in User.Cm (sec. 3); switches, initial selspec and
context in command line (sec. 4).

Release 1.10:

Bugs fixed: "Bad VP" and "Bad tree" from <Delete>.

Changes: runs only under Alto OS version 5 or later; typing in selspec directly (sec.
1.2), "All" strip for marking/unmarking all files (sec. 1.3, 1.4), new typein scheme for
commands (sec. 2); change in <Send> commands (sec. 2.1).

Additions: "(chart)" viewspec for pictorial file lengths (sec. 1.1); BEGIN, END, arrow
for clearer indication of position within data list (sec. 1.3); default typein for commands

Scc. 2); saving command line in DDS.CM (sec. 2); initializing viewspecs and sorting from
ser.Cm (sec. 3); fast startup feature (sec. 3).

Release 1.9:
***¥ There was no official release 1.9.
Release 1.8:

Bugs fixed: stack overflows (really!), "Vstream error” after <Delete>; file name from
<Put> wasn't getting added to data base.

) Changes: runs under new Alto Operating System; "contents” viewspec shows the whole
file (sec. 1.1); marking all files is now done in selspec area (sec. L.4); error message line
moved to just below type-in line (sec. 2).

) Enhancements: "referenced”, "(browse)”, and "(small)" viewspecs (sec. 1.1);
interrupting sorting by tvping (sec. 1.1); context expression (sec. 1.2); initiating commands
with YELLOW in command menu (sec. 2); <Context> and <Rename> commands (sec. 2.1);

IFor Xerox Internal Use Only -- April 29, 1978
DDS 1.13 : October 12, 1977 38

interrupting <Delete> by typing (sec. 2.1); SMALLFONT, SMALLBCLDFONT, SELSPEC,
CONTEXT, USERTYPE options in User.Cm (sec. 3). -

Release 1.7:

Bugs fixed: "Break at 0" or "Break at 1" during <Delete>; occasional stack overflows
("Break at getframe+36").

) Changes: error messages now appear in their own area (sec. 2.2); cursor need not be
in the window when confirming a command (sec. 2).

_ Enhancements: documentation sec. 2 has been expanded and improved to clarify the
notion of designated files.

Release 1.6:

_ Bugs fixed: DDS would go into SWAT "Break at getframe+36" (stack overflows); also
olccasfx_on%l "Bad vp" or "Vstream error” messages. A couple of typos in the documentation
also fixed. '

Enhancements: blinking caret for type-in (sec. 2); complex selspec expressions (sec.
1.2); count of marked files not selected (sec. 1.2, 1.4).

Release 1.5:

. Changes: command menu in place of control characters (sec. 2); viewspecs do not
require clicking (sec. 1.1) ; .

) Enhancements: Delete, Send, Bravo, Gears commands are built in (sec. 2); sorting by
serial # (sec. 1.2).

Release 1.1:

_ Changes: date-and-time line rearranged; better behavior when displayed properties do
not fit on one line.

Enhancements; "Sorting ..." message (sec. 1.2); "*" feature in tExecute (sec. 2).

Release 1.3:

Bugs fixed: system would blow up on any attempt to produce an error message such
as "Mouse is not in a window"; system would sometimes blow up when starting up; the date-
and-time line no longer blinks.

o Changes: 1Executz now only.processes marked files (sec. 1.4, 2); sorting by extension
is implemented (szc. 1.1)

Enhancements: marking individual files (sec. 1.4); displaying the file count (sec. 1.2,
1.4); "pagemap" viewspec (sec. 1.1); user-selectable fonts (sec. .1{.

For Xerox Internal Use Only -- April 29, 1978
DMT, Peck, PeekSum March 9, 1978 39

DMT, Peek, PeekSum

This documentation describes the operation of three related Alto Subsystems: DMT, the
Memory/Control Ram diagnostic; Peek, the program to which DMT reports its findings; and
PeekSum, the program which summarizes the reports collected by Peek.

1. Creating a Peck Disk

You should devote a separate disk to Peek -- it has special requirements. If the Peek disk
isn't cleaned out regularly, you will find the Peeking Alto in Swat out of disk space after a
long hcliday weekend, especially if your network has many machines. Peek is also a boot
server (see below for details), so it is important that the boot files on the Peek disk be
current. The easiest way to meet both of these requirements is to periodically recreate the
Peek disk frorn scratch:

1) Boot an OS from the net and respond 'Yes' when it asks if you want the long
installation dialog, and 'Yes' when it asks if you want to ERASE the disk.

2) Retrieve <A.Ito>PeckDisk.cm and invoke it by typing to the Exec:
>@PeckDisk.cm@

2. History

Chuck Thacker made DMT (early 1973) by combining many small diagnostics which he had
developed to stress main memory using certain emulator instructions. There were originally
two versions: PMT (Printer Memor%r Test) which loggid statistics on the Diablo printer; and
DMT (Display Memory Test) which used the display. Later (late 1973), an Ethernet driver
was added to DMIT, Bob Metcalfe wrote Peek, and Chuck wrote PeekSum. At this point,
development and maintenance of PMT stopped. Still later (mid 1975), Dave Bcggs added a
Control Ram tes: to DMT, rewrote the Ethernet driver and took over maintenance. Nate
Tobol wrote the Alto Il memory test (mid 1976), which was merged into DMT. Dave
rewrote Peek and took over its maintenance. Doug Claik extended PeekSum, and took over
its maintenance (early 1977).

3. DMT

DMT is written in the BCPL-compatible variant of Nova Machine language and distributed
as a type-B boot file (see the BuildBoot documentation for more details).

When DMT is runniag, the Alto screen is black with a white cursor changing position once
each time through the main loop. For Alto I the cursor flips at random intervals; for Alto
Il the interval is about 1 second. On Ailto lIs with extended memory, the cursor contains a
numoer between 0 and 3 indicating which bank it is currently testing. Two keys are
checked each time threough the main f’oop.

For Xerox Internal Use Only -- April 29, 1978
DMT, Peek, PeekSum March 9, 1978 40

3.1. Statistics

If the 'S' key is depressed, DMT will display (and transmit on the Ethernet) the statistics it
has accumulated. The display lcoks something like this:

DMT of 10 Dec 77, Alto 11 XM 241, 456 blocks, testing 17341 to 176777
0 bad main memory chips
0 bad control 1memory chips

If there are errors, a line describing each tyge of error will be displayed, and then, if the
errors can be resolved to a particular chip, the Card, Row and Column (for Alto 1), or the
Card and Chip number (for Alto 1) will be displayed. This display will stay up as long as
the S key is depressed. Periodically the statistics are automatically broadcast on the Ethernet
and appear briefly on the screen.

3.2. Super Simple Debugger - SSD

If the 'Q' key is depressed, DMT will enter 55D, an octal debugger. The screen will change
1o white background, and 3 rows of numbers will appear. :

The top row of numbers are the emulator state when the debugger got control: ACO, ACI,
AC2, AC3, Carry, and PC. There are two ways to enter the debugger: by executing some
flavor of JSR whose effective address is the debugger entry point, in which case PC will be
zero; or by executing an unimplemented op-code, in which case PC will contain TRAPPC
(location £27). The most common way for a Nova program to die is to jump to some small
address, so DMT sets up low core to call the debugger. A less likely way to die, but useful
for setting breakpoints, is to execute an unimplementec. op-code, so DMT sets up the
TrapVector in page 1 to call the debugger also.

The middle row of numbers are the the R-registzrs from the last parity error: DCBR,
KNMAR, DWA, CBA, FC, and SAD. These locations are written by the parity task
microcode and read by diagnostic programs when analyzing a parity error.

The bottom row displays two internal debugger registers, User Value 0 (UV0) and User
Value 1 (UV1). UV1 is displayed only if SSD has opened a main memory location.

SSD recognizes the commands listed below. C(UV0) means contents of the memory location
addr:ssed by UV0. 'OpenCell’ is true if UV1 is being displayed. Type-in goes into UVO if
no cell is open, otherwise it goes into UVI,
/ it OpenCell then UV0O « UV1; UV1 « ¢(UV0); OpenCell + true
cr if OpenCell then c¢(UV0) « UV1; OpenCell « false
del OpenCell « false)
bs if OpenCell then CEUV% « ﬁUVleJ rshift 3
If if OpenCell then c(UV0) « UVI1; UV0 « UV0+1; UV1 « c(UVO);
OpenCell « true :
T if OpenCell then c(UV0) « UVL; UV0 « UV0-1; UV1 « c(UVD);
OpenCell « true
G R.estore Stete; Goto UVO
P Restore state; Goto (PC eq 0 7 AC3, PC)

4. Peck

Peek currently conditions the Ethernet interface to masquerade as host #1376, ignoring the
normal Alto Kosl address. This way peek can run on any machine and DMT does not have
to find il. This will eventually be changed when DMT implements the Pup Rescurce
Locatior Protocol.

For Xerox Internal Use Only -- April 29, 1978
DMT, Peek, FeekSum March 9, 1978 41

Peek opens several windows on the display. The top window is for user commands. There
is current'y only one: Quit. The next window displays the release date of the program, a
digitel clock, the Pup internetwork address of the machine, and the number of free pages on
the disk. The next window is opened by the Peek Server and displays DMT reports as they
arrive,

Peek has a number of options, and reads User.cm to find out what to do. An example of
the Peek slice of a User.cm file is given below.

4.1. Peek Server

If there is a line of the form "Peek: <filename>” in User.cm, Peek will start up a Peeking
process which_ will listen for raw Ether packets of type PeekReport and write them on
<:hf.|lename>. The filename skould be 'Peek.reports’ since PeekSum, described below, assumes
this.

4.2. Event Report Server

Peek iriplements the Pup Event Report protocol. For each line of the form "ERP:
«<number> <filename>" in User.cm, Peek will instantiate an event report process which will
listen or socket <number> and write event reports on <filename>.

4.3. Boot File Server

Peek implements the protocols necessary to be an Alto boot file server. For each line of the
form "Boot: <number> <filename>" in User.cm, Peek will send <filename> when it receives
a Mayday packet requesting bootfile <number>.

4.4. Raw Ether Echo Server

Peek implements the raw Ethernet Echo protocol. This is the echo protocol used by EDP
and NEDP, the diagnostic programs for the Alto and Nova Ethernet interfaces. As
mentioned abave, the host address is #376.

4.5. Network Directory Maintenance

PeekSum uses the network directory, which is available from Name-Lookup servers on the
network as a file called 'Pup-Network.Directory’. Peek implements a subset of the network
update protocol to keep the local copy up~to-date.

4.6. User.cm Example

Below i5 an example of th: Peek part of a User.cm file. In this example DMT statistics go
to. the file 'Peek.reports’, Event reports addressed to socket 30 (swat parity error reports) go
to the file 'Swat.ERP’, and three maintenance-type boot files are available for diagnosing
Altos. Notice that all characters between a semicolon and a carriage return are considered
to be comments and ignored by Peek (this is not true for all programs that use User.cm).

[EXECUTIVE]
...executive stuff...

[PEEK]
; Syntax:
; Boot <bootFileNumber> <fileName>

Fcr Xerox Internal Use Only -- April 29, 1978
DMT, Peek, PeekSum March 9, 1978 42

; ERP <{socLow> <fileName>
; Peek <fileName>
; All numbers are in octal

Peek: Peek.reports ; PeekSum.run assumes this

-; only diagnostic boot files should be kept on this disk --
. the other kinds change too frequently.

Beot: 5 CrtTest.Boot

Boot: 6 MadTest.Boot

Boot: 1.. PupTest.boot

Boot: 12 DiskTest.boot

Boot: 15 KeyTest.boot

ERP; 30 Swat.ERP ; swat errors

[BRAVO]
.bravo stuff...

Peek writes the contents of User.cm into the Command window as it reads through the file.
If the file has bad syntax, Peek will call Swat with a description of its complaint (e.g.
"[ReadNumber] - number contains illegal characters" if it is expecting 2 number and rea(fs
something other than 0-7). Ty;)ing {ctI>-U will restore the user display. The last item in
the Command window is what Peek is having trouble with.

5. PeekSum

PeekSum reads the file Peek.Reports (the output of Peek) and constructs a summary of the
errors repocted by DMT (see above) for each Alto. PeekSum writes on the file
'PeckSummary. Tx' a tabulation of the error reports, together with the owner's name and the
machine's location, retrieved (if possible) from the file Pup-Network.Directory, which is
maintained by Peek, as described above. ‘

As Peek is started and stopped, it writes short messages to this effect on Peek.Reporis; these
messages are reproduced at the beginning of PeekSuminary. Tx. The number of the local
network is also written. If Peek.Reports contains multiple reports from a sinﬁle Alto (which
is iisually the case), PeekSum will record the largest number of errors of each type, over all
such reports,

Pcekbum will complain and then gracefully stop execution if the files Peek.Reports or
PeekSummary. Tx are unopenable for some reason. [f Pup-Network.Directory is unopenable
or absent, the otput file PeekSummary.Tx will not include names and locations of Altos, but
will contain error reports grouped by Alto serial number.

To run PeekSum, just type:

>PeekSum

and the program will go about its business. When it has finished, PeekSummary.Tx should
be printed. ‘

‘For Xerox lnfernal Use Only -- April 29, 1978
DPrint : March 23, 1977 43

DPrint - Diablo Printer Program

This program types text files on a Diablo printer connected to the Alto. It is a vanilla
program with very few features. Use Bravo if DPrint's facilities are inadequate.

The %nth of the command line is:) .
Print/switch parameter/switch ... filename filename ...

The onle/ switch permitted on the word "DPrint" is "/P", which instructs DPrint to pause
before the beginning of cach page.

One or more parameters may optionally be specified:

n/W Sets the line width to be n characters. Lines longer than this will wrap around
~ to the next line. The default is 75 characters.

n/L Sets the page length to be n lines. This determines the point at which printout
will pause (if /P was invoked) and also controls the amount of paper spewed
when a form-feed is encountered in the file, The default is 66 lines (11 inches)
if /P is not in effect or 57 lines (9.5 inches) if it is.

n/M Sets the left margin to be n units of 1/10 inch from the hardware left margin
of the printer. The default is zero.

Command line parameters without switches are assumed to be names of text files to be
printed. If a file cannot be found or a parameter is otherwise incorrect, you will be
prompted for the correct value.

When DPrint pauses, you may either type space to resume printout or "Q" to abort it and
quit out of the program. DPrint will pause immediately if you strike any key while it is
printing, and also if the printer becornes not ready.

For Xerox Internal Use Only -- April 29, 1978
EmPress December 14, 1977 44

EmPress

EmPress has several functions. Its primary use is to convert ordinary text files into Press
format, and to send the converted files to a Press printing server. Options include the ability
to produce a Press file without trangmitting it, and to transmit Press files that have been
previously produced. Additional features provide for merging several Press page images into
a single Press file, and for personalizing individual copies of documents.

EmPress can distinguish Press files from text files, so it need not be told whether to
convert. As a text file converter, EmPress is intended for formatting program listings and
supports only simple formatting operations such as Tab and FormFeed. Bravo trailers are
ignored.

Joe Maleson wrote the original program. David Boggs made the modifications that allowed
transmission of files to printers. Rick Tiberi produced the current version, adding the Press
file merger and copy personalization facilities, and curing many problems.

Standard Case:

To send one or more Press or text files to your default Press printer, using a default font to
convert the text files, type:

empress filel file2 file3 ...
and read no further. The more general command line to EmPress is:
EmPress[/<global switches>] [<parameters>/<switches>] inputFiles

The square brackets denote portions of the command line that are optional and may be
omitted. EmPress will print up to 100 input files. :

Each global switch has a default value which is used if the switch is not explicitly set. To
set. al switch to 'false’ proceed it with a 'minus’ sign; to set it to 'true’ just mention the
switch.

Switch Default IFunction

/T true [Transmit] will send the resulting press file to a printer.
/number 8 (text files only) tab width -- see below.
/H true (text files only) [Headings] will print a heading and page number on

each page.

EmPress

For Xerox Internal Use Only -- April 29, 1978

December 14, 1977 45

EmPress recognizes a number of optional parameters which can be set from the command
line. Parameters set from the command line take precedence over defaults built into the

program,
Parameter

string/0

number/C
string/H
string/I

string

number/T
string/F

number/P

Default

Swatee

1

none

none

none

Function

[Output] the name of tie output file. EmPress uses Swatee

unless told otherwise, since the output press file is usually sent

to the printer and then discarded.

[Copies] the number of copies to print.

[HostName] the name of the printer. This takes precedence

%ver the name following PRESS: in the [HardCopy] section of
ser.cm.

[Input] the name of an input text file to be formatted and
saved or transmitted, or of an input Press file to be transmitted.

a string without any switches is assumed to be an input file.

The remaining switches apply to text conversion only.

8

Gacha

[Tab] the width of a tab character in multiples of the width if
a space character.

[FontFace] the font to use. You must have 'Fonts. Widths' on
your disk.

[PointSize] the point size of the font.

For Xerox Internal Use Only -- April 29, 1978
EmPress December 14, 1977 46

User.Cm Entries

The following is a sample User.Cm hardcopy section, configured to use the Menlo Press
printing server as the preferred printer:

FHARDCOPYE
REFERREDFORMAT: Press
EARS: Palo

PRESS: Menlo

PRINTEDBY: "§"

FONT: TIMESROMAN 10 MIR

The FONT entry specifies that TimesRomanl0i (italic) should be used as a default font
instead of Gacha8 (EmPress's default choice). The second, point size argument, and the
third, face specification argument are optional. The face argument contains three letters
specifying weight (M, B, or L), slope (R or 1), and expansion (C, R, or E), respectively.

The PRINTEDBY field, if present, specifie_s’ the name to be used in the Name field on the
break page. The current disk login name will replace the character §. EmPress chooses "$" as
a default in the absence of a specification.

For Xerox Internal Use Only -- April 29, 1978
EmPress December 14, 1977 47

Program operation

When EmPress encounters a Press file in the input list, it transmits (or stores) any text file
that it is currently converting, then transmits the Press file. A new break page will be
Brinted for each Press file, containing that file's name. EmPress will override the “created
y" field of a Press file with a name derived as described above. It will fill in blank file
name and date fields with the obvious defaults. If copies are specified in the command line,
lE‘mPresls will override the number of copies specified in the Press file with the command
ine value.

EmPress uses the file Swatee for temporary storage while converting text for transmission. If
in so doing Swatee becomes nearly full, EmPress will suspend formatting, send what has
accumulated so far, and then press on. This has two desirable consequences: 1) a very full
disk will not run out of space and 2) some pipelining can take place since the printer can
munch on the first chunk while EmPress empressifies another.

Press File Merging

EmPress will merge several one page Press files into a single one page Press file. This allows
the outputs of Bravo, Sil, Draw, Markup, etc., to be merged without a separate Pass through
Markup. One additional text or Press file may also be submitted, and it will be printed
following the one page merge result.

One invokes the merge feature through one additional global switch, and one additional
local switch:

Adcitional Global Switch:

/m Merge. All subsequent input files that are not qualified by switches must be
single-page Press (}iles. They will be merged to form a single (cover) page in the
Press file result, containing all their Press specifications. This switch also
conditions Empress to expect the additional local switches, described just below
and in the Personalization section.

Additional Local Switch:
/d Document. This switch may be used to identify an optional rnain document, when

the merge option is used. The file may be a simple text file or a Press file. It will
follow the one page merge result in each copy printed.

For Xerox Internal Use Only -- April 29, 1978
EmPress December 14, 1977 48

Fersonalization

This relatively specialized feature is provided to allow the personalization of individual
copies of a document. Each copy of the document might contain, for instance, the name
and address of the person for whom it is intended. Up to six lines of personalized
information can be specified. This information will replace distinctive "key strings" that
have been placed in the cover page (merged) files or in the main document.

The key strings must appear in contiguous groups of up to six lines each. The personalized
information for the current copy, specified in a Faragraph of a special Bravo-format
addressee file or in the command line, will replace the key strings in each group, line for
line. Thus the personzlized information may occur more than once in each document (Dear
Mr. PARC/SDD: ... yes, you and all the members of the PARC/SDD household can enjoy
él}e bznc(:lfits of ..). Lines in the addressee paragraph for which no keys are provided are
iscarded.

The default key is "<", fort?l hyphens ("-"), then ">". If the string "<--title-->" appears
anywhere in the document, the name of the "main” document (the one specified using the
"/d" switch) will replace it. :

The "/m" (me[geP global switch must be specified before an‘y' of these personalization
specification switches are valid.

Additional Local Switches:

/k Key. The item is a key that replaces the default (see above).

/a Addressee. The item is either the name of a Bravo format file containing a list of
addressees -- one per paragraph, one line in each paragraph for each key line in
the cover page or main document -- or a literal addressee, enclosed in double

quotes. In a literal, use hyphens where you wish blanks to appear in the name,

For Xerox Intérnal Use Only -- April 29, 1978
Executive User's Guide March 20, 1978 49

Executive User's Guide

Executive, the Alto command processing subsystem, is the intermediary by which Alto users
generally invoke other subsystems and ask simple questions about the state of the Alto file
system. It is just the same as any other subsystem, except that its name is known by the Alto

perating System, and it is invoked by the Operating System whenever the BCPL operator
"finish" or equivalent is executed. This document describes version 8 of Executive.

1. What Tt Does

The operation of Executive proceeds thus:

1. It reads any leftover unexecuted commands from a file called Rem.Cm into a main .
memory command queue.

2. Tt begins building up a command line (terminated by a CR). If the command queue
empties »efore the command line is terminated, additional characters are read from the
keyboard until a CR is read. Editing is done during this phase. If the command line has
been empty for about twenty minutes, the user is assumed to be occupied elsewhere, and the
driagléolil.lc program Dmt.Boot is invoked either from the disk. (if it can be found) or from
the Ethernet.

3. The edited command is placed at the front of the command queue and the command
ueue is analyzed for *-, #-, and @-substitutions. If something of the form @filename@ is
iscovered in the first line in the command queue, it is replaced by the contents of the
named file and analysis continues with the first character of the replacement. Executive
makes no attempt to detect or recover from infinitely recursive replacements. If the
characters * or # are encountered in a filename in the first line, the file directory is used
to replicate that filename with appropriate substitutions. This step results in a completely
edited command line.

4. The first atom (contiguous sequence of legal file name characters) in the command line is
analyzed to see whether it is the name of a subsystem in the file directory or the name of a
command internal to Executive or neither. If neither, then Executive attempts to extend the
atom into the name of a subsystem or Executive command. Failing in this, it complains and
resets itself. Otherwise the line is written on the file Com.Cm. Then if the first atom was
or could be extended into a subsystem name, the rest of the command queue is written on
Rem.Cm, and the subsystem is invoked with a CallSubSys Operating System call. If it is an
internal Executive command, the appropriate subroutine is called. The Executive passes the
switches found on the subsystem name in the user parameters vector of CallSubSys. See the
documentation of CallSubSys for more details.

In parallel with these steps, Executive does a few housekeeping chores:

a. It reads the entire file directory into memory, merges in the names of user-callable
routines internal to Executive, and sorts the resulting list alphabetically.

b. Having nothing else to do, it puts a line containing a continuously-updating digital clock
and the number of free disk pages on the user's screen, and flashes a cursor where the next
typed character will go.

A number of characters have special meaning during the editing step (2):

Null:

For Xerox Internal Use Only -- April 29, 1978
Executive User's Guide - March 20, 1978 50

Linefeed:
Ignored

Carriage Return:) oo
Terminates the line, beginning step 3.

Control-A:
Backspace: .
Removes the last character from the line queue.

Control-W:))) .)
Removes the last item which iooks like a file name from the line queue.

UpArrow:

Single quote:
Causes itself and the next character both to be appended to the line queue,
regardless of what the next character is.

Control-U: '

Signals that at the conclusion of step 2 the line queue is to be written on the file
Line.Cm and its contents replaced by the text "Bravo/n Line.Cm". If one has the
proper Bravo and User.Cm, this will invoke Bravo on the command line.

Control-X: . S .
Performs step 3 on the line queue as it is, returns to step 2. In other words, it

eXpands @, *, and #.

Control-C:

Delete:] .)
Empties out the line queue, starts over again.

Escape:
Interprets the last atom in the line queue as the prefix of a file name; continues
that file name until it is complete or ambiguous. Flashes the screen if it is
ambiguous.

7
Interprets the last atom of the line queue as the prefix of a file name; types out all
file names which begin that way.

Tab:

Same as "7" except it dcletes the atom from the line queue after typing the file
names. This would be what one would normally use to interrogate the directory. *
and # work as expected.

In step 3, several characters have special meaning:

Semicolon:
Carriage Return:)
Terminate the line; control goes to step 4.

Up Arrow:
If followed by a carriage return, do nothing. If followed by an up arrow, put one
up arrow in the line queue. If followed by any other character, put both characters
in the line queue (Ugh!).

If followed by another "/", this begins a comment, so scan ahead until finding a
carriage return or semicolon, If not, put the "/" in the line queue.

For Xerox Internal Use Only -- April 29, 1978
Executive User's Guide March 20, 1978 51

Scan ahead until finding another @ (the second @ may be omitted if it comes at
the end of the command). The atom in between is a file name. Replace the
@atom@ by the contents of the ramed file. If the file doesn't exist exactly as
specified, try extending the specification and forcing a .Cm suffix.

#*

Expand the atom using these characters by making a search through the file
directory. * matches any sequence of file name characters. # matches any single
character except a period. File names are defined to end with an infinite number
of periods. The atom is replaced by all file names matching its pattern. Switches
on the atom, if any, are replicated.

In step 4, one switch is taken to have sFecial meaning on the subsystem name only. The
switch /! will set the pause parameter in the call to CallSubSys to true allowing you to enter
Swat after your program is loaded, but before its first instruction is executed. This switch,
if detected, is removed from the command line before Com.Cm is created. This feature is
extremely useful if your program is hitting a bug before its first user interaction.

2. Executive Commands

The Executive contains a number of subroutines which can be invoked from the command
line. The commands corresponding to these subroutines can be identified by the cxtension
character "~", which is illegal in a file name. Executive commands include the following:

Type.~ FileName ...
Display the contents of the named file(s) on the screen. After each page, it asks
whether you want to see more of the current file. A Ctrl-C at this point
terminates the entire Type command. You can type any files, even binary ones, but
typing some files will give you more useful information than typing others.

Delete.~ FileName L .
Removes the named files from the directory and frees their disk space. Use this
command very carefully. Its effect cannot be undone.

Copy.~ DestFileName ¢ SourceFileName
Copies a file. If there are several SourceFileNames then the copy will contain the
concatenation of the information in the source files, in the order listed.

Rename.~ OldFileName NewFileName (or NewFileName « OldFileName)
Changes the name of OldFileNaine. NewFileName must not already exist unless
OldFileName and NewFileName are the same (use this feature to change the
capitalization of a file name).

BootFrom.~ FileName [...Sys.Boot]
Initiates a software-simulated boolstrap sequence on the file named by FileName.
Most probably the FileName should have the .Boot extension. Like the OS system
call BootFrom (which it uses) this command does not actually do a hardware
bootstrap operation, so it does not re-initialize any Alto hardware or microcode
tasks. If you don't know what this implies, don't worry about it.

Quit.~

Diagnose.~
Has the effect of BootFrom DmtBoot. This commences the running of the
diagnostic program, which doesn't use the Operating System at all. This is done

‘For Xerox Internal Use Only -- April 29, 1978
Executive User's Guide March 20, 1978 52

automatically after a machine has been idle in Executive for about 20 minutes, If
l?mtEBgot is not on your disk or you turn the disk off Dmt will be loaded from
the Ethernet.

Login.~
Places your user name and password in the system area of main memory for use
by programs which interact with access~controlled resources (like timesharing
systems, for example).

SetTime.~
Sets the Alto's internal time-of-day clock. The time is obtained from the Ethernet
if possible. Failing that t2/0u will be asked to supply the time (and possibly time
zone) manually in the form 12-jan-78 14:45. Use SetTime/m to bypass the
Ethernet and set time manually.

Dump.~ DumpFileName SourceFileName ...

Writes DumpFile as a structured file (in Dump format) containing the names and
data of all the SourceFiles. This is a convenient way of packaging up a collection
of related files into a single composite file that can later be decomposed into its
constituent parts. See Appendix A for details of Dump format. The primary virtue
of this particular format is that it is intended to be compatible with the Dumﬁ
format of the Data General Nova DOS operating system, and it is compatible wit

the Tenex subsystem DUMP-LOAD.SAV.

Load.~ DuripFileName
This reads through a Dunuls_ format file and creates individual files correspondin
to its constituent parts. The /V switch causes Load to ask you about eac
constituent part, whether to ccpy it from the DumpFile to an individual file or
not. Acceptable responses are Y, N, and C. The latter indicates that you would like
it to be copied, but into a file with a different narae than that indicated. You are
then asked to supply the name you prefer.

Release.~
Tells you the release number and date of Executive. The release number is also
ihown in the first Executive herald line, just after the slash following "Xerox Alto
“xecutive."

StandardRam.~ .

For any Trap except the Swat Trap (#77400) the Alto microcode sends control of
the emulator task to the inicrocode Ram for interpretation. StandardRam initializes
the microcode Ram to send control of the emulator task back to the Rom Trap-
handling microcode. If you don't initialize :he microcode Ram before executing a
program which 1) uses Traps, and 2) doesn't initialize the Ram itself, then when
the first Trap happens your machine will probably do something bizarre, but it
usually will not destroy disk data. :

Install.~ FileName [...Sys.Boot
Causes a customized version of the operatin% system on the file named by
IFileName Lo be written on the file Sys.Boot. For further details, please see the
section on "Installing the operating system" in the Alto Operating System manual.

BootKeys.~ FileName [...Sys.Boot]

Did you know that by holding down various combinations of keys on the Alto
keyboard while pressing the boot button it is possible to get the Alto to bootstrap
load itself from any file on the disk? (This bootstrap will probably crash fairly
quickly on any file except one in .Boot format.) Bootstrapping the Operating
system is simply a special case of this: all keyboard keys up refers to disk address
0, which by convention is where a copy of the first data page of Sys.Boot is stored.
To find out what keys to push in order to bootstrap load other files, you use the
BootKeys command.

For Xerox Internal Use Only -- April 29, 1978
Executive User's Guide March 20, 1978 53

Resume.~ FileName [...Swatce!;]
The file named by FileName is patched so that its Swatee file pointer is the same
as the current Swatee file pointer, and then it is loaded in and run. For best
results, this file should be Swatee, or a copy of a Swatee. If you want to return to
Swat with an old Swatee (for example, originally you didn't have the right .SYMS
file) you can say
Copy.~ Swatee ¢ OldSwatee (no need to do this if Swatee is already
correct)
Resume.~ Swat

Chat.~

Ftp.~

Scavenger.~

NetExec.~
These commands load the corresponding programs from the Ethernet. If you have
the .Run file for one of these, it will be found instead by the normal Executive
lookup strategy.

EtherBoot.~ octal number) ‘))
This command will boot any available Ethernet bootable file provided that you
know its number,

IileStat.~ FileName ...
This command will tell you several things about a file: its length in bytes, size in
pages, seria_ number and disk address, creation and write dates. If any FileName
1s of the form octal/s (or octall,octal2/s) the file will be looked up by serial
number rather than by name. This is useful if Scavenger or some other program
gives you a serial number without telling you the name,.

3. User.Cm Entries

The Executive section of User.Cm may contain several commands to the Executive. Most of
these are command lines to be executed if some event is noted (see the Operating System
documentstion for a description cf events). In addition to the standard events, lZxecutive
will post eventClockWrong if it finds the value of the time-of-day clock unreasonable,

The number of text lines in the user command window can be set from User.Cm using the
selector userDisplayLines: followed by a number. You are advised not to set this number
higher than its default value (currently 16), but you might want to reduce the number in
order to leave more memory space for your directory if you have a large number of files
(say, more than 300).

4. Dump Format

A dump filz is a sequence of blocks of eight-bit bytes. The first byte of each block is the
block type. A typical dump file might look like:
<{name block><data block 1>..<{data block n>

.

<name block><data block 1>..<data block m>
<end block>

Name Block - Type=#377

For Xerox Internal Use Only -- April 29, 1978
Executive User's Guide March 20, 1978 54

A name block contains two bytes of file attributes and then the file name. The file

attributes are used by the Nova operating system; Alto Dump.~ sets these bytes to 0, and

6\1';0 Load.~ ignores them. The file name is a sequence of ASCII characters terminated by a
yte.

~ Data Block - Type=#376

A data block contains two bytes of byte count (high-order byte first), two bytes of
checksum (high-order byte firsti and a sequence of data bytes. The byte count must be less
than or equal to 256 for compatibility with Novas, and the count does not inciude the
checksum or byte count; only the data bvtes are counted. Novas do not handle data blocks
with byte counts of 0 or 1 correctly. Alto Dump.~ will not produce such blocks unless
forced to dump a file whose length is less than 2 bytes. The checksum is a 16-bit add
ignoring carry, over the data and Eyte count. If the block has an odd number of bytes, the
. last byte is NOT included in the checksum computation,

Error Block - Type=#375

Novas generate error blocks. Alto Dump.~ does not. Alto Load.~ terminates if it encounters
one.

End Block - Type=#374
An end block has no contents and terminates a Load.~.
Date Block - Type=#373

Date blocks with six bytes of date are generated by Nova RDOS. Alto Dump.~ does not
generate them; Alto Load.~ ignores them.

N.B. This appendix is included thanks to David Boggs.

"For Xerox Internal Use Only -- April 29, 1978
Find : January 16, 1978 55

Find - a file searching subsystem

The Find subsystem allows you to search text files at very high speed cn an Alto. Examples
of such files might be an address/telephone list, a source program, or a library catalog,.

Find basically looks for all the occurrences of a pattern in a file, just like doing repeated
Jump commands in Bravo. A pattern is just a character sequence, except for the following:

in a pattern means "any character at all", e.g. CAP and CUP count as occurrences of
the pattein C#P. .

~ in a pattern means "allow one character in the occurrence to disagree with the
corresponding character in the pattern”. For example, LAP, CUP, and CAT all count as
occurrences of the pattern ~CAP (or CAP~ or C~AP). Two ~s mean "allow two
disagreements”, and so on. Note that "disagreement” only means substituting one character
for another: it does not include insertions (e.g. CLAP for CAP), deletions (CP for CAP), or
transpositions (CPA for CAP). :

If you really want to have a pattern containing # or ~, you have to type a ' before it,
e.g. to search for the character sequence ATOM #, you have to type ATOM "#.

Unless you use the /c switch described below, upper and lower case letters are
considered identical, e.g. Cap, cap, and CAP all count as occurrences of CAP or of cap.

Unless you use the /s switch described below, blanks (spaces) in the file are completely
ignored, ¢.g. C A P counts as an occurrence of CAP; blanks in the pattern are also ignored.

There are two ways to invoke Find. The first way just searches a file for one pattern:
>Find filename pattern
(Since the Executive does something special about @, #, %, *, t, and ; in command lines,
ou must precede any of these characters in your pattern by a '. This is in addition to any
?‘_ :/Cf)pl may neced as described in the preceding paragraph.) The second way only specifies
the file:
>Find filename
and Find then prompts you repeatedly for patterns. To leave Find when using it this way,
use shift-Swat or type an empty pattern (just type <return> when Find says Pattern:). You
can also use Find to search several files together, by invoking it with
>Find/m filenamel ... filenamen
which also prompts.you for patterns.

In any of the above command lines, you can also use the /s switch, i.e. any of the forms
>Find/s filename pattern :
>Find/s filename
>Find/ms filenamel ... filenamen
This causes Find to treat spaces (blanks) just the same as any other character in the file and
in the pattern.

In any of the above command lines, you can also use the /c switch, which causes Find to
treat upper and lower case letters as different from each other.

After completing the search, Find displays at the top of the screen a summary of the form:
79 occurrences, 1200 ms, 150 pages

giving the total number of occurrences, the time in milliseconds, and the number of disk

pages in the file. In the remainder of the screen, Find displays the line containing each

occurrence of a pattern, with the occurrence indicated in boldface. To the left of the line,

Find displays the character position in the file wheri: the occurrence was found. After each

screenful, Find waits for you to type <space> if you want more, or if you don't.

In addition to displaying matches on the screen, Find always writes the lines containing
matches on a file called Find.Matches. However, it only writes those matches which it
displayed, so if you stopped the display of matches with , only those matches you
actually saw will appear on the file.

For Xerox Internal Use Only -- April 29, 1978
Find : January 16, 1978 56

What Find finds for you is all the "items" containing occurrences of the pattern. Normally
an "item" is just a single line of text, delimited by <ecr> on both ends. However, Find also
knows about two other kinds of items: Bravo paragraphs, and groups of lines separated from
each other by a blank line. [f you use the /p (tor Paragrapllg switch, Find will show
%display and write on Find.Matches) the entire Bravo paragraph containing the occurrence.
f you use the /b (for Blank line) switch, Find will show everything surrounding the
cccurrence up to the next preceding and following blank line.

Find produces a large number of error messages. The messages
attern too long

Can't preallocate

RAM full
all mean the same thing, namely that your pattern is too long or too complicated
(unfortunately, it is too complicated to explain excctly what "too complicated” means). The
message

Can't load RAM
means that your Alto has old or non-standard ROMs and Find can't do what it needs to do:
you should contact a hardware maintainer. (This should never happen on Alto II's.)

Find has many obvious limitations. They can all be removed if people complain about
them. The following features could also be added upon request:

Requiring that a match be delimited by non-alphanumerics.

Boolean combinations of matches, maybe.

Ability to work with Trident disks. A

Possibly other features requested by users.
Programmers should note that the file searching capability is also available as a library
pacﬁage (called FindPkg), so programs can use it as well as people. .

History of changes:
Release of 1/16/78

Added /c (distinguish upper and lower case), /p (item = paragraph), and /b (item =
between blank lines) switches.

For Xerox Internal Use Only -- April 29, 1978
Alto Pup FTP March 15, 1978 57

Alto Pup File Transfer Program

FTP is a Pup-based File Transfer Program for moving files to and from an Alto file
system. The program comes in 3 parts:

1) An FTP Server, vhich listens for file transfer requests from other hosts,

2) An FTP lser, which initiates file transfers under control of either the keyboard
or the command line, and

3) A User Telnet for logging into a remote host using the Pup Telnet protocol.

1. Concepts and Terminology

Tranferring a file from one machine (or "host") to another over a network requires the
active coogeration of programs on both machines. In a typical scenario for file transfer, a
human user (or a program acting on his behalf) invokes a program called an "FTP User"
and directs it to establish contact with an "FTP Server" program on another machine. Once
contact has been established, the FTP User initiates requests and supplies parameters for the
actual transfer of files, which the User and Server proceed to carry out cooperatively. The
'IP User and FTP Server roles differ in that the FTP User interacts with the human user
(usually through some sort of keybcard interpreter) and takes the initiative in user/server
i1teractions, whereas the 1T Server plays a comparatively passive role.

The questicn of which machine is the FTP User and which is the FTP Server is completely
independent of the direction of file transfer. The two basic file transfer operations are
cal'ed "Retrieve” and "Store"; the Retrieve operation causes a file to move from Server to
User, whereas Store causes a file to move from User to Server.

The Alto FTP subsystem contains both an FTP User and an FTP Server, running as
mdeﬁendent processes. Therefore, to transfer files between a pair of Altos, one should start
up the FTP sutsystem on both machines, then issue commands to the FTP User process on
one machine directing it to establish contact with the FTP Server process in the other
machine. Subsequent file transfers are controlled entirely from the FTP User end, with no
human intervention required at the Server machine.

Transferring files to or from a Maxc system or an IFS involves establishing contact with
FTP Server processes that run all the time on those machines. Hence, one may simply
invoke the Altc FTP subsystem and direct its FTP User process to connect to the machine,

In the descriptions that follow, the terms "iocal” and "remote" are relative to the machine
on which the FTP User program is active. That is, we speak of typing commands to our
"local™ FTP User program and directing it to establish contact with an FTP Server on some
"remote” machine. A Retrieve command then copies a file from the "remote” file system to
the "local" file system, whereas a Store command copies a file from the "local" file system
to the "remote” file system. Furthermore, we refer to "local” and "remote” filenames. These
must conform to the conventions used by the "local” and "remote” host computers, which
may be dissimilar (for exariple, Alto versus Maxc). The Alto FTP knows nothing about
Maxc filename corventions or vice versa.

The Alto FTP subsystem also includes a third process, called a "User Telnet”, which
simulates a terminal in a manner exactly analogous to the Chat subsystem (though lacking
some of its finer features). By this means, you may log in to a file sytem machine to

For Xerox lntérnal Use Only -~ April 29, 1978
Alto Pup FTP : March 15, 1978 58

perform operations not directly available via the basic file transfer mechanisms. If you log
into Maxc, it is even possible to run "PupFTP", the Maxc FTP User program, and direct it
to establish contact with the FTP Server in your own Alto. You should probably not,try
this unless you really understand what you are doing, however, since the terms "local" and
"remote” are relative to Maxc rather than to your Alto (since the FTP User program is
running on Maxc in this case), which can be confusing.

2. Calling the FTP Subsystem

A number of options are available when running FTP. The program decides which parts of
itself 1o enable and where user commands will come from b?'_ inspecting the command line.
The general form of the command line to invoke FTP looks like:

FTP[/<Global-switches>] [<Host-name> [<Command-list>]]

The s%uare brackets denote portions of the command line that are optional and may be
omitted.

Global switches, explained below, select some global program options such as using the
Trident disk instead of the Diablo. The first token after the <{global-switches>, if present,
is assumed to be a <host-name> (a discussion of which appears later in the description of
the "Open" command). The User FTP will attempt to connect to the FTP Server on that
host. After connecting to the server, if a <{command-list> is present, an interpreter is
started which feeds thes: commands to the User FTP. When the command list is exhausted,
FTP returns to the Al:o Executive. If no command list is present, an interactive keyboard
command interpreter is started.

Each global switch has a default value which is used if the switch is not explicitly set. To
set a switch to 'falsz’ proceed it with a 'minus' sign (thus FTP/-S means 'no Server'), to set
a switch to 'true’ just mention the switch.

Switch Default . Function

/S true [Server] starts the FTP Server. The Server is not started if the User
1s enabled and is being controlled from th: command line.

/U true [User] starts the FTP User. As explained above, the interactive
command interpreter or the command line interpreter will be started
depending on the contents of the command line.

/C true [Chat] starts the Telnet. The Telnet is not started if the User is
enabled and is_being controlled from the command line, or if the
system disk is TPO.

/T false E’I'ridenl sets the system disk to be a Trident drive. The default is 0,
ut can be changed by following the /T with a unit number between
0 and 7 (thus F(TP/’.S means use Trident unit 5). User and Server
commands apply to files on this disk but command linc input is still
taken from Com.cm on the Diablo drive.

/L * ”Lo%] causes all output to the User FTP window to also go to the file
‘FTP.log" on DPO, overwriting the previous contents. lLog is true if
the User is enabled and is being controlled from the command line.

/A false [ArpendLog] enables the log but appends to FTP.og rather than
overwriting it.

For Xerox Internal Use Only -- April 29, 1978
Alto Pup FTP : March 15, 1978 59

/E true [Error] causes FTP to ask you if you want t> continue when a non-
fatal error happens during execution of a command line. FTP/-E
will cause FTP to automatically recover from non fatal errors without
consulting you.

/R true [Ram] allows FTP to use some microcode which speeds things up
slightly. If your Alto has no ram, this switch is ignored.

/B false [Boot] creates 'FTP.Boot' for distribution to boot servers.

/D falsz [Debug] starts FTP in debug mode.

. "The rest of the global switches are explained below under 'Server Options'.

3. The FTP Display

The top inch or so of the display contains a title line and an error window. The title line
displays the release date of that version of FTP, the current date and time, the machine's
internetwork address, and the number of free pages on the disk. The error window displays
certain error messages if they arrive from the network (errors are discussed in more detail
belcw). A window is created below the title line for each part of FTP which is enabled
during a session {server, user, and telnet). '

If the FTP Server is enabied, it opens a window and identifies itself. [f a User FTP
subszquently connects to this Server, the User's network address wiil be displayed. Thez
Server will log the commands il carries out on behalf of the remote User in this window.
The Server is not 2nabled when FTP is being controlled from the command line.

The FTPkUs;er opens the next window down and identifies itself. The command herald is
an asterisk. ‘

The User Telnet opens the bottommost window, identifies itself, and waits for a host name

to be eitered. The Telnet is not enabled when FTP is being controlled from the command
‘ine.

3.1. Directing Keyboard input to the User and Telnet Windows

The bottom two unmarked keys control which window gets characters from the keyboard.
Hitting the unmarked key to the right of 'right-shift' (also known as the 'Swat key') directs
keyboard input to the Telnet window. Hitting the unriarked key to the right of the 'return’
key (also known as the 'Chat key').directs kevboard input to the FTP User window. The
window which currently owns the keyboard will blink a cursor at the next character position

if it is waiting vor type~in.

4. Keyboard Command Syntax

FTP's inzeractive command interpreter presents a user interface very similar to that of the
Aito Executive. Its command structure is also very similar to that of the Maxc Pup FTP
program (PupFTP), and the Maxc ArpaNet FTP program (FTP). The standard editing
characiers, command recognition features, and help facility (via "?") are available.

For Xerox Internal Use Only -- April 29, 1978
Ato Pup FTP March 15, 1978 60

4,1. Keyboard Commands

CPE™M <host name> -
Opens a connection to the FTP Server in the specified host. FTP permits only one
user connection at a time. In most cases the word "OPEN" may be omitted: ie., a
well formed <host name> is a legal command and implies a request to "OPEN" a
connection. FTP will "K for one minute to connect to the specified host. If you
made a mistake typing the host name and wish to abort the connection attempt, hit
the middle unmarked ﬁey (to the right of <return>).

Ordinarily, the host name can be a string, eg., "Maxc”. Most Altos and Novas have
names which are registered in Name Lookup fervers. So long as a name lookup server
is available, FTP is able to obtain the information necessary to translate a known host
name to an inter~network address.

If the host name of the server machine is not known, you may specify an inter-
nceiéwork'address in place of the host name. The general form of an inter-network
address is:

<{network> # <host> # <socket>

where each of the three fields is an octal number. The <network> number designates
the network to which the Server host is connected (which may be different from the
one tc which the User host is connected); this (along with the "#" that follows it)
may be omitted if the Server and User are known to be connected to the same
network. The <host> number designates the Server host's address on <{network>. The
{socket> number designates the actual Server process on that host; ordinarily it should
be omitted, since the default is the regular FTP server socket. Hence, to connect to
the FTP server running in Alto host number 123 on the directly-connected Ethernet,
you should say "OPEN 123#" (the trailing "#" is required).

CLOSE
Closes the currently open User IFTP connection.

LOGIN <user name> <{password>
Supplies any login parameters required by the remote server before it will permit file
transfers. FTP will use the user name and password in the Operating System, if they
are there. Logging into FTP will set the user name and password in the OS (in the
same manner as the Alto Executive's "Login" command).

When you issue the "Login™ command, FTP will first display the existing user name
known to the OS. If you now type a space, FTP will prompt you for a password,
whereas if you want to provide a different user name, you should first type ttmt name
(which will replace the previous one) followed by a space. The command may be
terminated by carriage return after entering the user name to omit entering the
password.

The parameters are not immediately checked for legality, but rather are sent to the
server for checking when the next file transfer command is issued. [f a command is
refused by the server because the name or password is incorrect, FTP will prompt you
as if you had issued the LOGIN command and then retry the command. Hitting
delete in this context will abort the command.

A user name and password must be supplied when transferring files to and from a
Maxc system or an IFS. The Alto FTP Server requires a user-password to be supplied
if the server machine's disk is password-protected and if the password in the server
machine's OS does not match the password on the disk. Thus if the OS was booted
and FTP invoked Dbecause a Request-for-Connection was reccived (which bypasses

For Xerox Internal Use Only -- April 29, 1978
Alto Pup FTP : March 15, 1978 61

E{assword checking), FTP will refuse access to files unless a password is supplied.
owever if the OS was booted normally, FTP assumes that the disk owner (who knew
the passu(/lord) will control access by using the server option switches. The user-name
is ignored.

CONNECT <directory name> <password>

Requests the TP server to "connect" you (in the Tenex sense) to the specified
directory_on the remote system. The password may be omitted by typing carriage
return after the directory name. As with LOGIN, these parameters are not verified
until the next transfer command is issued. At present, the "Connect” command is
meaningful only when transferring files to or from a Maxc system or an IFS; the Alto
FTP server currently ignores connect requests. If the "multiple directory” feature of
the Alto Operating System ever comes into widespread use, this may be changed.

RETRIEVE <remote filename> .
Initiates transfer of the specified remote file to the local host. The syntax of <remote
filename> must conform to the remote host's file system name conventions.

If the server can find the file, FTP will then print cut the complete filename followed
by the message "to local file <local filename> [Old|New file]”, where the local
filename is generally the same as the remote filename without directory or version.
At this point you may make one of three choices:

1. Type Carriage Return to cause the data to be transferred to <local filename>.
2. Type Delete to indicate that the file is not to be transferred.

3. Type any desired local filename followed by Return. The previous lecal filename
will disappear, the new filenarme will replace it, and FTP will tell you whether a
file exists with that name. This filenamg must conform to local conventions.
You now have the same three choices.

If the remote filename designates multiple files (the remote host permits "*" or some

equivalent in file names), each file will be transferred separately and FTP will ask you

to make one of the above three choies for each file. At present, only Maxc and IFS

support this capability. That is, you may supply "*"s in the remote filename when

Xz}meving files from Tenex or an IFS, but not when retrieving fiies from another
to.

STORE <local filename>

Initiates transfer of the specified local file to the remote host. Alto file name
conventions apply to the <local filename>; "*" expansion is not supported. FTP will
suggest a remote filename to which you should respond in a ranner similar to that
described under RETRIEVE except that if you supply a different filename, it must
conform to the remote file system's conventions. The default remote filename is one
with the same 'name body' (name and extension) as the local file; the remote server
defaults other fields as necessary. If the remote host is a Maxc system or an IFS, then
the directory is that mosl recently supplied in LOGIN or CONNECT commands and
the version is the next higher.

DUMP <remote filename>
Bundles together a group of files from the focal file system into a 'dump-format’ file
?see the Alto Execulive documentation for the dump-file format and more on dumﬂ-~
iles in general) and stores the result as <remote filename>. FTP will ask you for the
names of local files to include in the dump-file. Terminate the dump by typing just
{return> when FTP asks for another filename. By convention, files in dump-format
have extension ".dm'.

LOAD <remote filename>

For Xerox Internal Use Only -- April 29, 1978
Alto Pup FTP March 15, 1978 62

Performs the inverse operation of DUMP, unbundling a dump-format file from the
remote file system and storing the constituent files in the local file system. For each
file in the dump-file, FTP will su%’est a local file name and tell you whether a file
RyE'%hI{z{Er{;xgue exists on your disk. You should respond in the manner described under

LIST <{remote file designator>

Lists all files in the remote file system which correspond to <remote file designator>.
The remote file designator must conform to file naming conventions on the remote
host, and may designate muitiple files if ™" expansion or some equivalent is supported
there. If the <remote filename> is terminated by a comma, FTP prints a prompt of
" at the left margin and prepares to acceFt one or more subcommands, hese
subcornmands request printout of additional information about each file. To
terminate subcommand input, type a <return> in response to the subcommand prompt.
The subcommands are:

Type Print file type and byte size.

Length Print length of file in bytes.
Creation Print date of creation. -

V/rite ‘ Print date of last write.

Read Print date of last read.

Times Print tirnes as well as dates.

A.uthor Print author (creator) of file.
Verbose Same as Type+Write+Read+Author.
Everything Print all information about the file.

This information is oniy as reliable as the Server that provided it, and not all Servers
provide all of these file properties. Altos derive much of this information from hints,
so do not be alarmed if 1t is sometimes wrong.

DELETE <remote filename>
Dieletes <remote filename> from the remote filesystem. The syntax of the remote
filename must conform to the remote host's file system name conventions. After
determining that the remote file exists, FTP asks you to confirin your intention to
delete it. If the remote filename designates multiple files (the remote host permits "*"
or some equivalent in file names), FTP asks you to confirm the deletion of each file.

RENAME <old filename> <new filename>
Renames <old filename)> in the remote filesystem to be <new filename>. The syntax
of the two filenames must conform to the remote host's file system name conventions,
and each filename must specify exactly one file.

QuUIT
Returns control to the Alto Executive, closing all open connections.

TYPE <data tgpe) .
Forces the data to be interpreted according to the specified <data type>, which may be
TEXT or BINARY. Initially the type 1s UNSPECIFIED, meaning that the source
process should, if possible, decide on the appropriate type based on locai information.

BYTE-SIZE <decimal number> .)
Applicable only to files of type Binary, BYTE-SIZE specifies the logical byte size of
the data to be transferred. The default is 8. ' _

EOL <convention> ,
Applicable only to files of type Text, EOL specifies the End-of-Line Convention to
be used for transferring text files. The values for <convention> are CR, CRLF, and
TRANSPARENT. The default is CR.

DEVICE <device>

For Xercx Internal Use Only -- Agril 29, 1978
Alto Pup FTP March 15, 1978 63

Causes <device> to be used as the default device in data transfer commands
(essentially it causes <device)> to be attached to all remote filenames that do not
explicitly mention one). The punctuation separating <device> from -the other
components of a remote filename should not be included. For example you might
specify "Device DSK" to Tenex, not "Device DSK:"

CIRECTORY <directory name>

Causes <directory name> to be used as the default remote directory in data transfer
commands (essentially it causes <directory-name> to be attached to all remote
filenames that do not explicitly mention a directory). Specifying a default directory
in no way mcdifies your access privileges, whereas CONNECTing gives you ‘owner
access' (and usually requires a password). Explicitly mentioning a directory in a file
name overrides the default directory, which overrides the connected directory, which
overrides the login directory. Punctuation separating <directory name> from other
parts of a remote filename should not be included. For example you might type
'Directory Alto" not "Directory <Alto>".

USER
Allows you to toggle switches which control operation of the FTP User. There is
currently only one: DEBUG, which controls display of protocol interactions. Warning;
this printout (and the corresponding one in the SERVER command below) sometimes
includes passwords.

SERVER
Allows you to_toggle switches which control operation of the FTP Server. The
switches are PROTECTED, OVERWRITE, KILL, and DEBUG. The first three are
explained below under 'Server Options'.

TELNET
- Allows you to toggle switches which control operation of the Telnet. There is
currently only one: CLOSE, which closes the Telnet connectior. if one is open, and
clears the Tzlnet window.

5. Command Line Syntax

The User FTP can also be contrclled from the command line. As eX{)lained above, the first
token after the subsystem name and server switches must be a legal host name; if the User
“FTP can't connect to the FTP Server on that host it will abort and return control to the
Alto Executive. If a command list tollows the host name, the command line interpreter is
invoked instead of the interactive keyboard interpreter. This permits the full capabilities of
the Alto Executive (filename recognition, "*" expansion, command files, etc.) to be used in
constructing commands for FTP,

Each command is of the form:
{Keyword>/<{SwitchList> <arg> ... <arg>

To get a special character (any one of "*#'") past the Alto Executive, it must bec preceded
by a single quote. To get a "/" into an FTP argument, the "/" must be proceededpby two
single quotes (the second one tells FTP to treat the "/" as an ordinary character in the
argument, and the first one gets the second one past the Alto Executive).

Unambiguous abbreviations of command keywords (which in most cases amount to the first
latter) are legal. However, when constructing command files, you should always spell
commands in full, since the uniqueness of abbreviations in the present version of FTP is
net guaranteed in future versions.

‘For Xerox Imérnal Use Only -- April 29, 1978
Alto Pup FTP : March 15, 1978 64

A command is distinguished from arguments to the previous command by having a switch
on it, so every command must have at least one switch. The switch "/C" has no_special
raeaning and should be used on commands where no other switches are needed or desired.

5.1. Command Line Errors

Command line errors fall into three groups: syntax errors, file errors, and connection errors.
FTP can recover from some cf these, though it leaves the decision about whether to try up
to you.

Syntax errors such as unrecognized commands or the wrong number of arguments to a
command cause FTP's command interpreter to get out of sync with the command file.
FTP can recover from syntax errors by simply ignoring text until it encounters
another command (i.e. another token with a switch).

File errors such as trying to retrieve a file which does not exist are relatively harmless.
FTF recovers from file errors by skipping the offending file.

Connection errors such as executing a store command when there is no open
connection could cause FTP to crash. FTP can't recover from connection errors.

When FTP detects an error, it displays an error message in the User window. If the error is
fatal, FTP waits for you to type any character and then aborts, causing the Alto Executive
to flush the rest of the command line, including any commands to invoke other subsytems
after FTP. If FTP can recover from the error, 1t asks you to confirm whether you wish to
continue. [t you confirm, it plunges on, otherwise it aborts. The confirmation request can
be bypassed by invoking FTP with the global error switch false (FTP/-E ..) in whi((:lh case it
wiil plunge on after all non fatal errors. If you aren't around when an error happens and
you have told FTF to get confirmation before continuing after an error, the remote Server
will probably time out and close the connection. If you then return and tell FTP to
continue, it will get a fatal connection error and abort.

5.2. Command Line Commands

OPEM/C <host name>
See description in "Keyboard commands”. The first token after ths subsystem name
and global switches is assumed to be a host name and no OPEN verb is required (in
fact if you supply it, FTP will try to make a connection the host named OPEN which
is almost certainly not what you want).

CLOSE/C
Closes the currently open User FTP connection,.

LOGIN/C <user name> <password>)
See description in "Keyboard commands”. The <password> may be omitted.

LOGIN/Q <user name>
Causes FTP to prompt the user for the password. This form of LOGIN should be
used in command files since including passwords in command files is bad practice.

CONNECT/C <directory name> <password> .
See description in "Keyboard commands”. The <passwcrd> may be omitted.

CONNECT/Q <directory name»>
Causes FTP to prompt the user for the password needed to connect to the specified
{directory name>. This form of CONNECT should be used in command files since
includir.g passwords in command files is bad practice.

For Xerox Internal Use Only -- April 29, 1978
Alto Pup IFTP March 15, 1978 65

RETRIEVE/C <remote filename> ... <remote filename>

Retrieves each <{remote filename)> and writes it in the local file system, constructing a
local file name from the name body of the actual remote file name as received from
the Server. FTP will overwrite an existing file unless the /N (No overwrite) switch is
appended to the RETRIEVE command keyword. If the remote host allows "*" (or
some eguivalent) in a filename, a single remote filename may result in the retrieval of
several files. (Note that you must quote the "*" to get it past the Alto Executive's
command scanner.) As mentioned previously, this capability is implemented only by
Maxc and IFS FTP Servers at present.

RETRIEVE/S <remote filename> <locel filename>
Retrieves <remote filename> and names it <local filename> in the local file system.
This_version of RETRIEVE must have exactly two ar%uments. FTP will overwrite an
existing file unless the /IN (No overwrite) switch is also appended to the RETRIEVE
gplmmand keyword. The remote filename should not cause the server to send multiple
iles.

RETRIEVE/U <remote filename> ... <remote filename>
Retrieves <remote filename> if its creation date is later than the creation date of the
local file. A file will not be retrieved unless a local file with name and extension
equal to the name and extension of the remote filename exists, or if the FTP server
does not send a CREATION-DATE property. This option can be combined with
RETRIEVE/S to rename the file as it is transferred. _

RETRIEVE/V) ' o) o
Requests confirmation from the keyboard before writing a local file. This option is
usetul in combination with the Update option since creation date is not a fool-proof
criterion for updating a file.

STORE/C <iocal filename> ... <lo:zal filename>
Stores each <local filename> on the remote hcst, constructing a remote filename from
the name bodg of the local filename. A local filename may contain "*", since it will
be expanded by the Alto Executive into the actual list of filenames before the FTP
subsystem is invoked.

STORE/S <local filename> <remote filename>
Stores <local filename> on the remote host as <{remote filename>. The remote
filename must conform to the file name conventions of the remote host. This version
of store must have exactly two arguments.

DUMP/C <remote filename> <local filename>...<local filename>
See the description in "keyboard Commands".

LOAD/C <remote filename>
See the description in "keytoard Commands”. If the /V switch is appended to the
LOAD command keyword, FTP will request confimation before writing each file.
Type <return> to write the fire, to skip it. FTP will overwrite an existing file
unless the /N (No overwrite) switch is appended to the LOAD command keyword.

DELETE/C <remote filename>
See the description in "Keyboard Commands”. If the /V switch is appended to the
DELETE command keyword, FTP will request confirmation before deleting each file.
Type <return> to delete the file, and (oops!) if you don't want to delete it.

COMPARE/C <remote filename>..<remote filename>
Compares the contents of <remote filecname> with the file by the same name in the
local file system. It tells you how long the files are if they are identical or the byte
osition of the first mismatch if they are not. This command is not availal:le in the
Keyboard command interpreter simply Dbecause there is no space left (when the

For Xercx Internal Use Only -- April 29, 1978
Alto Pup FTP March 15, 1978 66

commar.;i line interpreter is running there is no Telnet and no Server so there is lots
of space).

COIMPARE/S <remote filename> <local filename>
Compares <remote filename> with <local filename>. The remote filename must
conform to the file name conventions of the remote host. This version of COMPARE
must have exactly two arguments,

RENAME/C <old filename> <new filename>
See the description in "Keyboard Commands".

TYPE/C <data type>
See the description in "Keyboard Commands".

BYTE-SIZE/C <decimal number>
See the description in "Keyboard Commands".

.EOL/C <convention>
See the description in "Keyboard Commands".

DEVICE/C
See the description in "Keyboard Commands".

DIRECTORY/C <default directory>
See discription in "Keyboard commands".

DEBUG/C

See the description of the DEBUG subcommand under the USER command in
"Keyboard Commands".

6. Using a Trident Disk

Starting FTP with the /T global switch causes FTP to store and retreive files from a Trident
disk. Accessin%a file on a Trident requires more code and more free storage than accessing
a file on the Diablo. Since FTP is very short on space, only an User or a Server FTP is
started when the /T switch is set. The default is to start a User FTP, but specifying no user
(FTP/T-U) or specifying a server (FTF/TS) will start a Server FTP instead.

7. Telnet

FTP provides a simple User Telnet as a convenience for logging into a remote host (e.g.,
Maxc) to poke around without having to leave the FTP subsystern and start Chat. It lacks
" most of the creature comforts Chat provides, such as automatic attaching to detached jobs,
avtomatic logging in, etc. The Telnet is not enabled when the User FTP is being controlled
from the command line. When the Telnct does not have an open connection, it waits for
you to type a host name with the syntax exrlained above for the OPEN command, and then
attempts to connect to the specified host. If you wish to abort the connection attempt, hit
the bottym unmarked key (opposite right-shift). You can get a larger Telnet window by not
starting a server (type FTP/-S to the Executive).

For Xerox lntérnal Use Only -- April 29, 1978
A'to Pup FTP : March 15, 1978 67

8. File Properties

Without explicit information from the file system, it is often difficult to determine whether
a file is Binary or Text, if Binary, what its byte-size is, and if Text, what End-Of-Line
convention is used. The User and Server FTPs use some simple heuristics to determine the
correct manner in which to transfer a file. The hkeuristics generally do the right thing in
the face of incomplete information, and can be overridden by explicit commands from a
human user who knows better.

The FTP protocol specifies a standard representation for a file while in transit over a
network. If the file is of type Binary, each logical byte is packed right-justified in an
integral number of 8-bit bytes. The byte-size is sent as a property along with the file. If
the file is of tyge Text, each character is sent right-justified in an 8-bit byte. An EOL
fpnvention may be sent as a file property. The default is that <return> marks the end of a
ine.

3.1. File Types

FTP dectermines the type of a local file by reading it and looking for bytes with the high-
orde bit on. [f any byte ir the file has a high-order bit on, the file is assumed to be Type
Einary, otherwise it is assumed to bz Type Text.

FTP will warn you, but allow you to send what it thinks to be a text file as type Binary,
since no information is lost. It will refuse to send a binary file as type text.

Don't specify a Type unless you know what you are doing. The heuristic will not
lose information.

8.2. Byte-Size

If a file is type Pinary, the byte-size is assumed to be 8 unless otherwise specified. The
FTP User and Server will both accept binary files of any byle-size and write them as 8 bit
bytes on the disk. No transformation is done on the data as it is written to the disk: it is
stored in network default format. Since there is no place in the Alto file system to save the
.byte-size property, it is lost.

Similarly, requests for Binary files will be honored with any byte size, and whatever is on
the disk will be sent to the net without transformation. Since Alto files have no byte size
information, the byte-size property will be defaulted to 8 unless otherwise specified (by the
BYTE command), in which case whatever was otherwise speciried will be sent as the byte
size.

Don't specify a Byte-size unless you know what you are doing. Alto-Alto
transfers can't go wrong. Alto-Maxc transfers with weird byte-sizes will not work
unless the byte-size specified in the Alto to Maxc direction is the same as the
byte-size in which the file was stored on the Alto. If it isn't, the Alto will not
give any error indication, but the result wiil be garbage.

8.3. End-of -Linc Conventions

FTPs are expected to be able to convert text files between the local file system End-Of-Line
(EOL) convention and the network convention. Conveniently enough, the Alto file system's
internal representation of a text file is the same as the network standard (a bare <{return>
marks the end of a line). The Alto FTP does not do any transformations on text files. It
will refise to store a text file coming in from the net whose EOL convention is CRLF.

For Xerox Internal Use Only -- Aprii 29, 1978
Alto Pup FTP March 15, 1978 68

As an escape to bypass conversion and checking, EOL convention ‘transparent' tells both
ends NOT to convert to network standard, but rather send a file ‘as is'. This is included for
Lisp source files which use EOL convention CRLF and contain internal character pointers
that are messed up by removing line feed characters.

Don't specify an EOL convention unless you know what you are doing. If your
text file is a Lisp source file, specify EOL convention "Transparent'.

8.4. File Dates

The Alt> file system keeps three dates with each file: Creation, Read, and Write. FTP treats
the read and write dates as properties describing the local copy of a file: when the file was
last 1ead and written in the local file system. FTP treats the creation date as a property of
the file contents: when the file contents were originally created, not when the local copy was
created. Thus when FTP makes a file on the local disk, the creation date is set to the
creation date sugplied by the remote FTP, the write date is set to 'now' and the read date is
et to 'never read'.

9. FTP User Log

FTP can keep a log (tvpescript) file for the FTP User window. The file name is 'FTP.log".
It is always enabled when FTP is being controlled from the command line; otherwise it 1s
controlled by the /L and /A global switches. Some keyboard commands do not treat the
user window as_a simple teletype, so the typescript for these commands will not be exactly
wha: you saw, sigh.

10. Abort and Error messages

Error and Abort packets are displayed in a window above the title line. Abort packets are
fatal; Error packets are not necessarily so. The most common Abort message is "Timeout.
Good bye", generated when a server process has not received any commands for a long time
(typically 5 minutes).

The most common Error message is "Port 1Q overflow" indicating a momentary shortage of
input buffers at the reraote host. Receiving an Error Pup does not imply that the file in
transit has been damaged. Loss of or damage to a file will be indicated by an explicit
message in the User FI'P window. The next iteration of the Pup protocols will probably
rename ‘'Error Pups' to be 'Information Pups'.

11. Server Options

Server _options are controlled by switches on the subsystem name and subcommands of the
SERVER keyboard command. There are currently four options:

switch Default Function

none If no server option is specified, retrieve requests (disk to net) are
allowed. Store requests (net to disk) arz allowed unless the store
would overwrite an already existing file. Delete and Rename are not
permitted. .

For Xerox Internal Use Only -- April 29, 1978

Alto Pup FTP March 15, 1978 69
/P false BProtected Retrieve requests are allowed. No stores are allowed.
elete and Rename are not permitted.

/70 false [Overwrite] Retrieve requests are allowed. Store requests can
overwrite files. Delete and rename are permitted.

/K false [Kill] FTP will return to the Alto Exec when the server connection is

closed. A simple form of remote job entry can be performed if the
user FTP stores into Rem.cm (Com.cm on Novas).

12. CLI Examples

Here are some examples of Command lines.

To transfer files FTP.run and FTP.syms from the Alto called "Michelson"” to the Alto called
"Morley", one might start up FTP on Michelson (to act as an FTP Server), then walk over to
Morley and type:

FTP Michelson Retrieve/c FTP.run FTP.syms

Alternatively, one could start an FTP server on Morley (invoking it by "FTP/0" to permit
files to be overwritten on Morley's disk), then issue the following command to Michelson:

FTP Morley Store/c FTP.run FTP.syms

The latter approach is recommended for transferring large groups of files such as "*.run"
(since expansion of the "*" will be performed by the Alto Executive).

To retrieve User.cm from the FTP server running on Alto serial number 123 (name
unknown, but it is on the local Ethernet):

FTP 123'# Retrieve User.cm

Note that the "+ must be preceded by a single quote when included in a command line,
since otherwise the Alto Executive does funny things with it. (Quotes are not necessary
when typing to FTP's interactive keyboard interpreter).

To start FTP, have the FTF User connect to Maxc, and then accept further commands from
the keyboard:

FTP Maxc
To retrieve <System>Pup-Network.txt from Maxc and store it on the Alto as
PupDirectory.brave, and store PupRTP.bcpl, Puplb.bcpl, and PupBSPStreams.bcpl on <DRB>
with their names unchanged:

FTP Maxc Connect/c drb mypassword Retrieve/s <System>Pup~Network.txt
PupDirectory.bravo Store/c PupRTP.bepl Puplb.bepl PupBSPStreams.bepl

To retrieve the latest copy of all .RUN files from the <alto> directory, overwriting copies
on the Alto disk (The single quote is necessary to prevent the Alto Execulive from
expanding the "*") : ,

FTP Maxc Ret/c <alto>"™.run

To update the Alto disk with new_copies of all <alto> files whose names are contained in
file UpdateFiles.cm, requesting confirmation before each retrieval:

For Xerox Internal Use Only -- April 29, 1978
Alto Pup FTP : March 15, 1978 70

FTP Maxc Dir/c Alto Ret/u/v @UpdateFiles.cm@

To store all files with extension .BCPL [rom the local Alto disk to your login directory, on
Maxc (the Alto Executive will expand "*.bcpl" before invoking FTP):

FTP Maxc St/c *.bepl

To retrieve <Systzm>Host-name/desc iptor-file.txt;43 (two single quotes are necessary to get
the "/" past the Alto Executive and the FTP command scanner, and one quote is necessary

nn

to get the ";" past the Alto Executive):
FTP Maxc Ret/c <System>Host-nmﬁe"/descriptor-file.txt';43

To send Prog.f4, Data.f4, and Command.f4 to Fortran-Machine and then cause the FTP
server on Fortran-Machine to_quit (presumably to execute Prog.f4 on Data.f4 according to
the commands in Command.f4):

FTP Fortran-Machine Store/c¢ Prog.f4 Data.f4 Store/s Command.f4 Rem.cm

FTP on Fortan-Machine must be started with the /K server option switch, and Command.f4
should re-invoke FTP as its last act so that the results can be retrieved.

To release a new version of FTP, I incant;
@ReleaseAltoFTP.cm@
which the Alto Executive expands into:

FTP Maxc Connect/q Alto Store/c FTP.run FTPsyms Connect/q AltoSource
Dump/c FTP.dm @ftp.cm@

and then into:

FTP Maxc Connect/q Alto Store/c FTP.run FTPsyms Connect/q AltoSource
Dump/c FTP.dm @FtpSubsys.cm@ @FtpPackage.cm@ FTP.cm

and finally into:

FTP.run Maxc Connect/q Alto Store/c FTP.run FTP.syms Connect/q AltoSource
Dump/c Ftp.dm Ftp.bepl FtpNv.bepl Ftplnit.bepl Ftplnitl.bepl F? vinit.bcpl
FtpUserlnit.bcpl Ft Subs%;s.c'lecl FtpKbdlnit.bcpl FtpKbd.bepl FtpKbdl.bepl
FtpKbd2.bepl FipClilnit.bep! FtpCli.bepl FtpClil.bepl FtpCli2.hepl
FtpCliUtil.bcpl FtpMiscb.bepl Fiphisca.asm FtpServerlnit.bcpl FtpServer.bepl
FtpTelnetinit.bepl FtpTelnet.bepl thKeys.bcpl FtpCmdScanDsp.bepl FtpMc.mu
FtpRamTrap.mu CompileFtpmc.cm FtpSubsys.cm CompileFtpSubsys.cm
CompileAltoFtp.cm LoadAltoFtp.cm MakeHiddenFtp.cm LoadHiddenFtp.cm
ReleaszAltoFtp.cm CompileNovaFtp.cm LoadDosFtp.cm LoadRDosFtp.cm
FipProt.decl FtpUserProt.bepl FtpUserProtFile.bepl FtpUserProtMail.bepl
FipServFrotFile.bcpl FipServProtiMail.bepl FipPListinit.bepl FtpPListProt.chl
FtpPListl.bepl FipUtilinit.bepl FlBUtilB.bcpl FipUti'Aasm FtpUtilXfer.bep
FtpUtitDmpLd.bepl FtpUtilCempB.bepl FtpUtilCompA.asm BlockEg.mu
I;tpOEPlnil.bcpl ompileFtpPackage.cm DumpFipPackage.cm FtpPackage.cm
tp.cm

To load Ftp.dm from <AltoSource>, expanding it out into its constituent files:
IFTP Maxc Load/c <AltoSource>Ftp.dm

To cause Memo.ears to be spooled for printing on Ears by the Maxc printing system:

For Xerox Internal Use Only -- April 29, 1978
Alto Pup FTP . March 15, 1978 71

FTP Maxc Store/s Memo.ears LPT:

This also works for Press files and unformatted text files if you know what you are doing.
It does not do the right thing for Bravo-format files.

To use FTP as a stop-gap IFS:
FTR/T--UO

This starts only a server with overwriting of existing files permitted. When using the
tricent, there isn't enough space to start both a User and a Server.

13. Nova FTP

FTF is also available runninF under Dos Rev 4 and RDos Rev 3. Since_the Nova versions
are nearly identical to the Alto version (the same source files except for initialization), only
the differences are listed here.

1) Ignore all references to display windows. All printout goes to device #11,
whate ver that is.

2) Ignore all references to ‘unmarked keys' such as for aborting connection
attempts and directing keyboard input to various windows.

3) Lack of memory and lack of a windowing display made including a Telnet
iripractical on the Nova.

4) The syntax of the command line is limited to that acceptable to the Nova
operating system. Warning: the command line examples given above may not all
work on a Nova. ‘

5) The Nova OS does not maintain a_ username or password, so all interactions
with a Maxc system or an IFS will require the user to supply them.

6) File creation dates are not supported, so there is no Update option to
RETRIEVE, and the LIST command does not show dates.

13.1. FTP releases

The Ncva FTP subsystern consists of a save-file, FTP.SV, and an overlay-file, FTP.BB. You
must get BCTH files when a new version of FTP is released. If you rename FTP.SV you
must rename FTP.BB to have the same name (for instance if you rename FTP.SV to be
OLDFTP.SV you must also rename FTP.BB to be OLDFTP.BB). New releases of FTP will
o distributed as dump files with a consistant pair of save- and overlay~files.

13.2. Device codes

FTP assumes that Nova Ethernet interfaces have device codes 73 and 74, 63 and 64, or 53
and 54. It will use all interfaces with these codes that seem (from reading some status
registers) to be Ethernets. The Dos version of FTP assumes that Nova MCA interfaces are
ugevri\%%gode 6 and 7, or 46 and 47. It will use all interfaces with these codes that seem to
e S. '

For Xerox Internal Use Only -- April 29, 1978
Alto Pup FTP March 15, 1978 72

13.3. RDos notes

FTP 1s big, and will not run under some RDos systems. If you have trouble, generate a
smaller system and boot from it when running FTP. FTP disables parts of RDos with
atches which may not work for versions other than Rev 3. It will NOT work under an
l{l_)os that uses the memory map hardware. The RDos version does not include MCA
drivers.

14. Revision History

April 1976
First release.
May 1976

/Q swi-ch added to CONNECT. Connection requests to the User FTP and Telret can be
aborted. Login prompt changed. 1 minute Timeout added when waiting to finish after a
command ling error. User FI'P automatically recovers from more "No" responses from the
remote server.

June 1976

Dos versicn releassd. DIRECTORY and LIST, commands added. Update (/U) option
added. File creation dates added. 5 minute no-activity timeout addzd to FTP Server. FTP
version, time-of-day, and machine address added in top window. "Ding" now flashes only
the affected window instead of the whole display.

August 1976
RDos version released. Same as June release for Dos and Alto.
October 1976

DUMP and LOAD commands added to user FTP. KILL command added. Free disk page
count added to the title line. Verify (/V) switch added to the RETRIEVE command.

November 1976
Bug fixes to the October release.
May 1977

This version was only released to friends. KILL command removed and turned into a server
option. DEEUG command moved into new USER and SERVER commands. Trident disk
option (/T) added. User LIST command improved and Server LIST response implemented.
Passworc checking by the FTP server implemented. Telnet window enlarged at the expense
of pcssibly losing information frcm the top of the window if the lines are very full.
DELETE, RENAME, and DEVICE commands implemented. Much internal reorganization
so that the protocol modules could be used in IFS and released as a package.

Julv 1977
Global switches changed. <Shift-Swat> should work more reliably now. User LIST

command further improved. Keyboard command interpreter is much more robust and
consistant. Command line STORE and DUMP go much faster since they look up files using

For Xerox lntémal Use Only -- April 29, 1978
Alto Pup FTP : March 15, 1978 73

MDI. FTP/Tx opens Trident unit 'x". LOGIN command added to command line
interpreter. *

November 1977
Special microcode added to speed up execution.
March 1978

User log option added (see /L and /A switches and 'FTP User Log' section).
AllocatorDebug switch removed. TMew command line commands COMPARE, OPEN, and
CLOSE added. Command line errors are handled differently (se¢ /E global switch and
'‘Command Line Errors' section). When using a Trident, either a User or a Server FTP is
started but not both (see the section on Trident disks).

For Xerox Internal Use Only -~ April 29, 1978
EAES, GEARS, SEARS - June 21, 1977 74

EARS, GEARS, SEARS, and Other Related Items
(Revised 8 April 1975)
(Revised 21 June 1977)

The EARS printing system is available in CSL roorn 2077. The EARS system may
be accessed directly from any machine on the Ethernet. ALTOs currently may access EARS
via the E)rogram GEARS which is described in this merao. Access to EARS via MAXC is
descrllbec in another memo. The use of PUB with respect to EARS is also described in
another memo.

1. EARS

EARS is a one page per second printing system consisting of an Ethernet, Alto,
RCG (Research Character Generator), and SLOT/7000. The EARS system s designed to
spool more than 1000 pages of output dn its disk and to Frint graphic art quality
documents. Up to 190 individual documents may be spooled simultaneously.

EARS does no page composition. Page composition is done by other computers on
the Ethernet. This approach distributes the composition load, minimizes changes to the
EARS system software, and allows users to write their own special composition software.
Th: standard EARS File Format allows a user to get at all of the features of EARS while
also allowing simple pages to be easily composed.

The EARS system will print multi-page documents in portrait, landscape, or mixed
mode. The system is designed with the following limits:

1. 15k characters/page (including directives)

2. 512 text strings/page

3. 128 characters/font

4. 16 fonts/page

5. 64 font sets/document

6. 500 pages/document

7. 32k words of compressed font storage/font set
8. 600k words of guaranteed document storage space

_on disk at connect time

For Xerox Internal Use Only -- April 29, 1978
EARS, GEARS, SEARS June 21, 1977 75

2. SEARS

SEARS is the subsystem that may be run on the ALTO named Palo to start the
EARS system. Once EARS has been started, it displays various information about itself.
There are two display areas on the ALTO screen. The first is a journal that records ethernet
ransactions and operator recuests. The second records current system status such as

LU} "non

"spooling”, "printing"”, "call key operator”, etc.
The printing system accepts the following keyboard commands from an operator:

rint
Backspace printer (5 pages)*
delete current file*
restart current file*
complete current file and halt
halt printer
Spoo inPut
no spooling
quit
enable auto mode
disable auto mode

NEOZATOFTWT

*These commands only work when the printer is in the HALT state.

When SEARS is executed the system is initialized with both printing and spooling
enabled. The quit command is the only reliable method to terminate EARS. (Booting the
mechine will merely cause a restart.)

If the status display area recuests a key operator, the duplicator_portion of EARS is
progiﬂbly jammed or out of paper. Follow the instructions posted near EARS to remedy this
problem.

'For Xerox Internal Use Only -- April 29, 1978
EARS, GEARS, SEARS June 21, 1977 76

3. GEARS

GEARS is an interim program that will compose text files and transmit them to
E4RS via the Ethernet. The EARS Alto is named Palo, and is host 3 on 35-Ethernet.

CGEARS may be controlled with global switches, Iccal switches, imbedded directives,
and items in User.cm. In the simplest case, you would type GEARS, followed by any
number of text file names. Each file will be printed in the default fixed pitch font and
will receive appropriate headings. .

If the default conditions are not acceptable, all of the capabilities of the system may
be accessed via the switches and directives. 1 believe the global switches are self-
explanatory--if not, try one. (See Summary of Comimands.)

GEARS searches Usercm for a [HARDCOPY] section to set some parameters.
Currently the network address of an EARS format printer and the 'Printed by' string on the
break page cen be set from User.cm. Here is an example:

L:HARDCOPY]
ARS: Palo
PRINTEDBY: "SDD - §"

'$" in the PRINTEDBY string is special: it means insert the Username (from the OS)
in place of the § character. The default string for PRINTEDBY is "$".

EARS font selection is quite flexible. Ears hzs two font concepts: A font and a
font set. A font is an arbitrary collection of up to 128 distinct characters while a font set
1s a group of up to 16 fonts.

Normally a user will select a font from the default set. This font set is maintained
by EARS and cces not reside on each user's disk. Rather a directory for this font set is on
each user's disk and is named DEFAULT.ED. A program named FEARS will list the fonts
in DEFAULT.ED by name and by number. A new dzfault font may be selected by name in
the command Tine or by number with a global directive. Local font changes are by number.
ifote the font names must have an extension since FONT.EP is a portrait font and
FONT.EL is a similar landscape font.

In general, EARS can completely change font sets between each page. GEARS,
hewever, only supports font set changes between text files. A user may generate his own
font sets by concatinating any sixteen fonts of his choi.e. This is accomplished with the
local switch i (generate) in the command line.

First & file FOO.EC should be generated with an editor. The file is a list of up to
sixteen fonts to be corcatinat:d. The font names appear on separate text lines and are
assigned numbers in order of occurence. Fonts specified in_the FOO.EC file must either be
in .EP (EARS portrait) or .EL (EARS landscape) format. Fonts in these formats are found
on the MAXC <FONTS> directory. Alternatively, .EP and .EL files may be generated from
.CU (Carnegiz format) fonts using the Frc»grznn COMPRESS from the <EARS> directory on
MAXC. COMPRESS is called with the font(s) to be compressed in the command line
(COMPRESS FONTI1.CU FONT2.CU, etc). Besides creating .EP and .EL files, COMPRESS

For Xerox Internal Use Only -- April 29, 1978
EARS, GEARS, SEARS - June 21, 1977 717

creates an .ES (EARS specification) file which may be printed and contains information
about each character. .

After FOO.EC has been created and all of the fonts are on your disk you run
GEARS FOO/G TEXT. This will print your file TEXT in your font set and generate two
other files: FOO.ED (EARS directory) and FOO.EM (EARS multiple). After the initial
generation of a font set run GEARS FOO/S TEXT.

) Global directives must appear at the beginning of a text file and only one global
directive may a{)pear on a text line. Note that many global directives require a special
password since they are used for debug only and can produce bizarre results. GEARS makes
very few consistency checks (e.g., if the line height is set less than the font height, the lines
merzly overlap a little) -- so be careful!

Local directives may be arbitrarily sprinkled throughout the text with interesting
results. The coordinate system for page composition' is shown in Figure 1. The basic unit
is .002 inches with the origin in the lower left of a portrait page. Some care should be used
in applying directives. For example, it is avisable, although not necessary, to change to a
landscape font if the 1L landscape directive is used.

_ . A list of the primitive microcode directives that are accessed by the local directives
is given in Appendix

For Xerox Internal Use Only -- April 29, 1978
ZARS, GEARS, SEARS June 21, 1977 78

3.1. Summary of Gears Options

3.1.1. G obal Switches
/A absolute, no formatting except page breaks
/D process directive preceded by t (Not control)
/F generate intermediate file FOO.EB where FOO is name of
irst text file
/L print in landscape mode
/N no heading
/P proportional default font
/R long lines truncated instead of wrapped around
/S small default font
/T test mode--no EFTP
/Z reads RCG-format files
/n make n copies forn=1to 9

3.1.2. Local Switches
use font FOO (must include extensions listed

by FEARS)

FOO/G enerate font set

) or all following files

FOO/S use font set FOO
for all following files

Text/H add this text to the default heading
on each page - no blanks or slashes

, allowed
FOO/n print text file FOO with the TTY Tab set for

n spaces rathe- than the default value of 8

. Note: Font set and Default font must come before text file name. Font set and/or
font specification is optional. As many files as you like may be printed subject to disk
-estrictions (<500 pages).

_GEARS processes four control characters, fourteen global directives, and sixteen
‘ocal directives.

3.1.3. Control Characters
carriage return- end of line
form feed - end of page
tab - space to next column
line feed - ignored

For Xerox Internal Use Only -- April 29, 1978
EARS, GEARS, SEARS June 21, 1977

3.1.4. Global Directives - [Must be at beginning of file but may be
embedded 1n _a text string such as a BCPL comment.]
tBn. Bottom Margin L
+Cn. Clock Frequency in bits/inch*
tDn. Default font (0-15)
t+Gn. Software Left Margin (Gap)
tHn. Height from one line to next
+In. FHardware Left Mar;[z,in* (Indent
tLn. Lergth of line in characters before wrap around.
+Mn. Motor speed in lines/inck*
t+Nn. Number of scan lines al'owed on page*
+Pn. Password*
t+Rn. Raise bottorn margin (Hardware)*
+Sn. Change TTY tat stops to n spaces
+Tn. Top Margin.
+Xn. Xerox n copies

*These parameters are preset ard modified for
debug only. The system ignores these directives
without the proper password.

3.1.5. Local Directive [imbedded in text strings]

tan. Alter text line location to n
bits from bottom page
tbn. Blank of width n bits
td. revert to default font with default spacing
te l:nd of page (same as Form feed)
t+fn. Font change to n (0-13)
thn. Change height frcm one line to next.

1”{11. A relative to text base line (Jump)
1 Landscape string follows
10 Overlay next character

trw.h. Solid rectangle of width v and height h.
Used to generate vertical arid horizon:al lines in forms.
This directive only works after an tfn. that
selects font RECTANGLE.EP

Tsn. 'Srpace modification for next character

ttn. ab to line n

tun. Unusual line--print only on «opy n

tvn. Vector mode--modify space and width
of next character

twn, Width modification of next character

t*n. Fescape as in BCPL-ng becomes Ascii

Note: Unknown directives are ignored so that t1 will print +.

79

For Xerox Internal Use Only -~ April 29, 1978
EARS, GEARS, SEARS June 21, 1977 80

4. EARS FILE FORMAT

This secticn is included for those who would like to write their own text composers.
This file type has an .EB extension on ALTOs and an .EARS extension on MAXC and may
be sent to Palo via EFTP on an ALTO or COPY on MAXC. The standard EARS file
format is page oriented. Each section of the print file is blocked in 256 word records. The
cornplete flile is structured as follows:

Mnemonics Optional? Description

DL 1 No Display list page 1

TL 1 No Text line array page 1
DL n Yes Display list page n

TL n Yes Text line array page n
PD No Page directory

FD Ye Font directory

FM 1 Yes _ Font memory-set 1

FS 1 Yes Font specification set 1
FM m Yes Font memory set m

F& Yes Font specification set m
DD No Document Directory

~ The page layout for EARS is shown in Figure 1. The default scan resolution is 500
scanr line'inch and 500 bits/inch. These numbers are independently variable for special
applications.

4.1. Display List [DL]

EARY requires » separate display list for each page. A display list contains strings
of ascii characters with imbedded directives. Each entry in the display list is an eight bit
code. Characters have values between 0 and 177 octal. Directives have a value between 200
and 377. Directives may be either one or two bytes long. Appendix 1 gives the EARS 8-
bits character and directive code. The DL may also contain up to 40 tab stops. [f used, the
first word of the DL must be -1 followed by 40 tab positions.

For Xerox Internal Use Only -- April 29, 1978
EARS, GEARS, SEARS June 21, 1977 81

4.2. Text Line Array [TL]

EARS requires initialization information for each text string on a page. A page may have
512 strings. The TL arrav kas four entries per text string.

Entry
3 distribution index**

1 byte pointer to first character of string in DL

2 initial font *128

K] initial text line location *8 (i.e. YBA *3)

**If this entry is zcro, the corresponding text string is
printed on all copies. If the entry is n, the string is only

printed on copy n. The last distribution index for a page
musl. have its sign bit set.

4.3. Page Directory [PD]
Ears allows up to 255 pages/document. Each page requires four entries in the PD.

Entry

¢ starting record of DL for this page
(referenced from start of file - first entry equals zero)

ju—

Numbzr of records in DL

N

Number of records in TL

b

K Font set number (negative implies default font set)

4.4. Font Directory [FD] [Optional]

Entry

(Starting record of FM for this font set
(referenced from beginning of first FM)

o

Number of records in FM

[\

Number of records in FS

3

K TTY tab for this font set

4.5. Font Memory [FM1 [Optional]

EAKS allows up to 32k of font memory for each set. This data must be in the standard
MRLI format for the RCG. The first word of FM is special and must always be #20200.
No checks are made on this data so beware!

For Xerox Internal Use Only -- April 29, 1978
EARS, GEARS, SEARS June 21, 1977 82

4.6. Font Specification [FS] [Optional]

This array allows the user to properly identify 128 charactrers in each of 16 fonts. Each
character requires four tlements.

Entry

0 character alignmen|. (zero implies
special character--i.e., undef m.d
or blank)

1 space

2 width-1(10MSH) and height-1(6LSB)
3 height-1(MSB) and font address(15LSB)

For Xerox Internal Use Only -- April 29, 1978

EARS, GEARS, SEARS

4.7. Document Directory [DD]
This is a single 256 word record.

Entry

0 eneral password (31415)
Ereplaced by first seclor in core

total number of records in this gile

number of pages
number of copies

conventions as used in

June 21, 1977 83

font set used on last pag%§same default

length of last page DL
length of last page TL
length of PD
11 length of FD
12 left margin
13 bottom margin
14 bits/inch
15 lines/inch
16 maximum number *
of scan lines *x
17 igecial password (default is zero)

reserved for PUB

1
2
3
4
g starting record of last page
7
0

to *
*k

** .1 implies use of default values
* All values ignored .
: unless special password is used.

The following entries are printed on the break

page between files.
200g
232¢

252g Creation date terminated by EOL

(24¢ words)

4.8. Disclaimer
] It is clear that the
is not given and the exact i
uszrs do not need to know thie messy details.

ID string terminated by EOL (32g words)
Creator terminated by EOL (20g words)

receding file definition is not complete (e.g., the format of FM
efinitions for FS are not given).

T This is intentional since most
If you need these details, come talk {0 me.

For Xer:x Internal UUse Only -- April 29, 1978
EARS. GIZARS, LEARS June 21, 1977 34

5. EARS FONT FILES

There are five types of font files which are used either directly or indirectly by the
IEAF.S system. '

5.1. .CU [Carnegie University] Font Files

The font compressor uses .CU files as input and creates .EP, .EL and .ES files.

Record 0 (2 words)

0 MH (Maximum height of character matrix in bitsg
1 MW (Maximum width of character matrix in 16-bit words)

Record 1 (1 record per character 2 + MH ¥ MV words)

0 Ascii code for charicter
1 Width of this character in bits

The remaining MH*MW words contain a matrix representation of the character
scanied left to right and top to bottom. '

5.2. .EP [EARS portrait] and .EL [EARS Landscape] Font Files

) Trese files are usuall(\)' generated by the font compressor and contain redundant
information that is easily usable by either a compositicn program or the EARS character
generalion hardware.

Record 0 (64 words - only 8 words are used)

Length of record 2 in words

Maximum character ‘width in bits

Maximum character height in bits

Refault TTY Tab in bit: (usually one space)

: [.eserved for PSPOOL on MAXC

*%

NSO\ WNRA WO

Record I (1024 words - 8 entries/character)

font address. in words
storage length in words
character spece in bits
character wicth in bits
character height in bits
character baseline in bits
code <0; MRLI coding

AU WLINI-O

For Xerox lntérnal Use Only -- April 29, 1978
EARS, GEARS, SEARS June 21, 1977 85

=0; sgecial character
(blank or undefined)

>0; matrix coding
height in bytes

7 character alignment in bits - i.e, the same as
baseline in .EP but equals the distance from
top of matrix to bottom of ink in .EL

Record 2 (font storage)
FM data in MRLI format

Record 3 (512 words - Font Specification Table
- ¢ entries/character)

0 Alignment (13 MSB) and Code (3LSB)
Alignment two's complement
Matrix bit 13
End of page bit 14
Not end of line bit 15

%&ace in_bits .

idth -1 in bits (10 MS3) and
height-1 in bytes (¢ LSB)

3 LSB of height-1 (MSBE) and
font address in words (15 LSB)

o

5.3. .ES [EARS specification]

This i a tek,t file output by the font compresser which gives detailed information
¢bout each character in the font, .

5.4. .EM [EARS Multiple] font file

This file contains up to sixteen fonts. It is constructed from .EP and .EL files and
is equivalent to the FM and FS5 entries in an .EB or .EARS file. An .ED (EAnRS
directory) file is created simultaneously with an .EM file. The .ED file is discussed in the
next sectinn and is a small directory into the .EM file.

Record 0 (up to 32k worids long - padded to
be a multiple of 256 words)
Word 0 of this record is always #20200. The
rest of the record is MRLI data copies from the
second record cf selected .EP and .EL files.

Record 1

For Xerox Internal Use Only -- April 29, 1978
EARS, GEARS, SEARS June 21, 1977 86

This record is a directory or specification for the font data in record 0 of this file.
Each character is speci’ied by four numbers as follows:

0 Alignment (13 MSB) and Code (3 LSB)
1 Space 1 bits
2 Width-1 in bits (10MSB) and
height-1 i1 bytes (6 LSB)
3 LSB of height-1 SMSB) and font address
in words (15 LSB

N-ste that this data may be copied directly from record 3 of an appropriate .EP or
EL file with the exception that each font address entry must be relocated to point to the
proper data i~ record 0, The first 128 characters of this record represent characters 0-127
in font 0. The next 128 characters represent characters 0-127 in font 1. Up to 16 fonts
inay te included provided record 0 does not exceed 32k words.

5.5. .ED [EARS Directory] file

This is a small file that is a directory for a .EM file and is used by GEARS. It is
always 260 word: long of which the first four words are a header and the remaining are
allocated 16 words per font. Unused space should be zero'd.

Header
Number of fonts in font set
1 Number of 256 word records in FM
2 Number of 256 word records in FS
3 Defauit TTY Tab in bits
Font Data
0 Number of characters in font name
1 Maximum width in bits
2 Maxim.um height in bits
3 TTY tab in bits
4-17 BCPL string containing font naine

(unused bytes should contain nulls)

For Xerox Internal Use Only -~ April 29, 1978
Listing Syms files March 28, 1978 87

ListSyms - a subsystem for listing Syms files

The ListSyms subsystem tzkes a Syms file (Froduced by BLDR) and converts it to a
useful human-readable form. ListSyms produces a file with severzl parts: '

A listing of the space occupied by each binary output file ((Run or .BB).

A listing similar to the listing optionally produced by BLDR, i.e. a list, sorted by
BR file and location within the file, of all static symbols defined, with an indication
as ;oblwllether the symbol is external and whether it is a procedure, label, or static
variable.

A list of all statics in alphatetic order, accompanied by the name of the BR file
in wh(ijcn each one is defined and (optionally) a list of all the BR files in which each
is used.

A list similar to the preceding, but listing the statics for each filz separately, and
only listing statics declared external (i.e. accessible from other files).

concordance of undefined externals: for each BR file ‘which references
undecfined externals, it lists those externals in aiphabetic order under the file name.

One invokes ListSyms as follows:
>ListSyms inputfile outputfile
Inputfile will normally be something.Syms: if it has no c¢xtension, ListSyms will supply
Syms. Outputfile may be omitted, in which case ListSyms will take inputfile (shorn of
extension if any) and append .BZ to form the output file name.

ListSyms accepts 7 switches, all global:

/A produces the alphabetic listing

/F produces a file-by-file alphabetic listing with cross-reference

/N produces the numeric (file-by-file) listing

/0 produces only the listing of the binary file sizes

/S includes static variables, which are normally omitted

/U produces the listing of undefined externals

/X produces the alphabetic listing with cross-reference .
The switches may be either upper or lower case, and /S is independent of the other switches.
If none of /A, /F, /N, /0, /U, or /X appears, you will get the /A, /N, and /U listings but
no cross-reference. -

ListSyms starts by printing a message of the form
ListSyms of [date] -- I}inputf'ilel] -> [outputfile]
If ListSyms cornpletes normally, it will print a message of the form
12345b characters written on outputfile
ListSyms produces a variety of error messages. Currently these are:
[filenarie] does not exist
indicates ListSyms was unable to open the Syms file.
Syms file too big
indicates insufficient room for reading the Syms file. ListSyms aborts.
Can't open Iifilename]
ListSyms was unable to open the outputfile or one of the BR files required for /U or /X.
In the former case, ListSyms aborts; in the latter, it continues. ‘
[%filename] is not a proper BR fiie
One of the BR files mentioned in the Syms file does not have the proper format. ListSyms
ignores the file and continues.
[filename] is too big to process
One of the BR Ttiles was too big to read in. ListSyms ignores it and continues.
Too many BR files :
There were too many BR files to process in the available memory. ListSyms aborts.
No room for bit table
There was not enough room to hold the bit table used for /U or /X (or /A if any
undefined symbols were present). ListSyms aborts.

For Xerox lntérnal Use Only -- April 29, 1978
Listing Syms files - March 28, 1978 88

ListSyms is quite fast: it processes BRAVO.Syms in about 20 seconds, and a typical
modest program takes less than 10 seconds. :

For Xerox Internal Use Only -~ April 29, 1978
MailCheck : March 6, 1978 89

MailCheck

This simple subsystem attempts to check for mail for a user at some other host (e.g. Maxc)
via the Ethernet. It displays one of the following messages:

? This Alto has no Ethernet interface!

? Can't find a host named '<host>": <error message>
? No response from <host>

7 <user> not valid user at <host>: <error message>
7 Error: {pup error message>

New mail for <user> on <host>: <date> <sender>
No new mail for <user> on <host>

Various options can be controlled by switches and/or by an entry in your User.Cm.

Valid switches are:

/1 Check mail on Maxcl (default).

/2 Check mail on Maxc2.

<host>/H Check mail on <host>.

<{user>/U Check mail for <user> (default is the user name obtained from the Alto
ofperating system).)

/R If there is new mail, execute a command line when MailCheck exits. The

command line defaulis to "@READMAIL.CM@", i.e. to execule the contents

of the file READMAIL.CM as a command, but this can be changed in the

User.Cm as outlined below.

In addition, if there may be a section in your User.Cm labeled [MAILCHECK] with the

following possible entries: -

HOST: <host> Sets the default host to check.

USER: <user> Sets the default username to check.

NEWMAIL: <string> Sets the command line (o be executed if there is new mail. Within the
command line, the host name is substituted for "@H" and the user
namz for "@U"; to put an "@" in the command line it is neccessary
to put two in the string.

For example, you might add the section:
Pw ILCHECK]
HOST: Maxc2
NEWMAIL: CHAT @H MSG.DO/D

Where MSG.DO is a file on your alto disk which contains "MSG<return>".

One useful option is to put Mailcheck.Run inside the eventBooted section of your
USER.CM, so that Mailcheck will be run whenever you boot, e.g. :

[EXECUTIVE? :

eventBooted: Mailcheck.Run // eventBooted
eventRFC: FTP/OK //eventRFC
eventClockWrong: SetTime // eventClockWrong

Updates: As of March 1978, Mailcheck no longer does a SetTime

For Xercx Internal Use Only -- April 29, 1978
Mu: Alto Microassemblzr March 25, 1978 90

Mu: Alt> Microassembler

This document describes the source language and operation of Mu, the Alto Inicrocode
asseribler. Mu is downward compatible with Debal, the original Alto assembler/debugger,
b\l]lt. has a number of additional features. Mu is implemented in BCPL, and runs on the
Alto.

1. The source language

An Alto micr:progr:m consists of a number of statements and comments. Statements are
terminated by semicolons, and everything between the semicolon and the next Return is
‘treited as a comrnent. Statements can thus span several text lines (the current limit is 500
pharac(tjers). All other control characters and blanks are ignored. Bravo formatting is also
ignored.

Statements are of four basic types: include statements, declarations, address predefinitions,
and executable code. The syntax and semantics of these construclts is as follows:

1.1. Include Stalements

Include statements have the form:

filename;
They caus:z the contents of the specified file to replace the include statement. Nesting to
chree levels is allowed.

1.2. Declarations

Declarations are of three tyvpes: symbol definitions, constant definitions, and R imemory
names. :

1.2.1. Symbol Definitions

Symbol definitions have the form:

$name$Lny,ny,ng;
The symbol "name” is defined, with values ny, ny and n3. There is a standard package of
symbols for the Alto (AltoConstsxx.Mu, where xX is.the current microcode version) which

should be 'included' at the beginning of every source program. For those who must add
symbol definitions, the interpretation of the n's is given in the appendix.

1.2.2. Constant declarations

Normal constants are declared thus:

$namedn;

For Xerox Internal Use Only -- April 29, 1978
Mu: Alto Microassembler March 25, 1978 91

This declares a 16 bit unsigned constant with value n. The assembler assigns the constant to
the first free location in the constant memory, unless the value has appeared before under
another name in which case the value of the name is the address of the previously declared
constant.

An alternative constant definition is used for mask constants which have a specified bus
source field (recall that the constant memory address is the concatination of the rselect and
bus source fields of the microinstruction). The syntax is:

$namefMniv; 4<{n<7, 0KvK2**16

N specifies the desired bus source value, v is the constant value.

1.2.3. R Memory declarations

Y memory names are defined with:

$name$Rn; 0<n<40B
(100B if your Alto has a RAM bcard, as most do)

An R location may have several names.

1.3. Address predefinitions

Address predefinitions al cw groups of instructions to be placed in specified locations in the
control memory, as is required by the OR branching scheme used in the Alto. Their syntax
is:

In, k, namg(, namej, name,, ..., namek-1;

This declaration ccuses a block of k consecutive locations to be allocated in the instruction
memory, and the names assigned to them. n defines the location of the block, in that if L
is the address of the last location of the block, L and n = n. Usually, n will be 2*¥*p-1 for
some small p. For example, if the predefinition

13, 4, foo0, fool, foo2, foo3;

is encountered in the source text before any executable statements, the labels foo0-foo3 will
be assigned to control memory locations 0-3. If there are too few names, they are assigned
to the low addresses in the block. If there are too man , they are discarded, and an error is
indicated. If there are missing labels, e.g. "f000,f002,;", the locations remain available for
.the normal instruction allocation process. A predefinition must be the first mention of the
name in the source text (forward references or labzls encountered before a predefinition of

a given name cause an error when the predefinition is encountered.)
A more general variant of the predefinition facility is available. The syntax is:
Jomask2, maskl, init, Ly, Ly, ... L;;

The effect of this is to find a block of instructions starting at location P, where P and
maskl = init, and assign the L's to 'successive' locations under mask2. For example:

%1, 1, 0, x0, x1;

;;/ouldi fc)>rce x0 to an even instruction, x1 to odd (the normal predefinition for most
ranches).

For Xerox Internal Use Only -- April 29, 1978
Mu: Alto Microassembler- March 25, 1978 92

%360, 3717, 17, LO, L1, ... L15;
Would place LO at xx17, L1 at xx37, L2 at xx57, etc. .

As before, if there are unused slots (e.g., 'L12,L14") they are available for reassignment, and
MU complains if there are too many labels for the block.

1.4. Executable statements

Executable code statements consist of an optional label followed by a number of clauses
separated by commas, and terminated with a semi-colon

label: clause, clause, clause, ...;
If a label has been predefined, the instruction is placed at the control memory locaion
reserved for it. Otherwise, it is assigned to the lowest unused location.
Clauses are of three types: gotos, nondata functions, and assignments.
Goto
Goto clauses are of the form “label', and cause the value of the label to be assembled
into the Next field of the instruction. If the label is undefined, a chain of forward
lre{)e{ences is constructed witich will be fixed up when the symbol is encountered as a
abel. .

Nondata Functions

Nondata functions must be defined (by a literal symbol definition) before being
encountered in a code clause. This type of cla.use assembles into the F1, 2, or 3 fields,
and represents either a branch condition or a control function (e.g. BUS=0, TASK).

Data transfers (assignments)

All data transfers are specified by assignments of the form:
desty ¢« desty« ... «source

This type of clause is assembled by lookirg up the destinations, checking their legality,
and making the field assignments implied gy the symbol types. Each destination
imposes definitional l‘e?uirements on the source (e.g., ALU output must be defined,
Bus must te defined). These requirements must be satisfied by the source in order for
the statement to be legal. .

When the source is encountered, it is looked up in the symbol table. If it is legal and
satisfies the definitional requirements imposed by the destinations, the necessary field
assignments are made, and processing continues. If the entire source defines the Bus,
and the only remaining requirement is that the ALU output must be defined (e.g.,
L+MD), the ALUF field is set to 0 (ALU output = Bus), and processing continues.

If neither of the above conditions holds, the source can legally be only a bus source
concatenated with an ALU function. The tource token is repeatedly broken into two
substrings, and each is locked up in the symbol table. If two substrings can be found
which saiisfy the requirements, the field assignments implied by both are made;
otherviise, an error is generated. This method of evaluation is simple, but it has
pitfalls. For instance, L<2+T is legal (providing that the constant "2" has been
defined) tut L«T+2 is not (the Bus operand must always be on the left). [Note that
'Lefoo+T+1" specifies a bus source of 'foo' and an ALU function of '+T+1".

For Xerox Internal Use Only -- April 29, 1978
Mu: Alto Microassembler March 235, 1978 93

- CAVEAT: The T register may be loaded from either the Bus or tte output of the
ALU, depending cn the ALU function. The assembler does not check to see whether
an assignment of the form 'T«ALU' specifies an ALU function that actually loads T
from the ALU. For example, the clause 'LeT«MD-T' is accepted, but its effect is to
load T directly from MD. If this is what you intend, it makes matters clearer if you
write 'L«MD-T, Te¢MD"; if it is not what you intend, you are in trouble. Beware!

The constant "0" is special, in that when one or more clauses in a statement require
that the bus be 0, generation of the constant is deferred until the end of the
statemient. At that point, if any clause has caused the R memory to be loaded, the
constant is not used, sirce the hardware forces the bus to 0 in this case.

The dsstination "SINK" allows a clause to specify a bus source without specification
of a destination. It is useful, for example, in constructs of the form 'SINK«ACO,
BUS=0', which puts ACO on the bus to be tested by the nondata function 'BUS=0Q'.

You can also write things like 'SINK¢mask constant, L«DISP XOR T, which will
cause the value of DISP to be anded on the bus with the mask constant.

2. Operation

The assembler is invoked with:
MU/globai-switches sourcefile listfile/L binfile/B statfile/S
Legal globa: switches are:
/L produce a listing file
/D debug mode . . .
/I do not produce a binary file (overridden by binfile/B)

If listfile/L is absent but the /L global switch is set, listing output will be sent to
sourcefile.LS.

If winfile/B is absent, binary output is sent to sourcefile.MB.

If statfile/S is absent, statistics for the assembled program are alppended_to the listing file if
[léere is one; otherwise, no statistics are generated. The default extensicn for a /S file is
' Stats'.

The default extension for sourcefile is ".Mu'.

Error messages will be sent to the listing file if one has been specified, unless debug mode
has be:n sct. In debug mode, errors are sent to the system display area, and a pause occurs
at at every error (and at certain other times). Typing any character proceeds.

If no listing file has been requested, debug mode is set independent of the global switch.

3. Output file

The assenbler produceds Micro format binary output. The striné names of the two
memories specified in the file are CONSTANT and INSTRUCTION. Only defined locations

For Xerox Internal Use Only -- April 29, 1978
Mu: Alto Microassembler March 25, 1978 94

in these memories are output. Micro format is compatible with the PRom blowing program,
the RamLoad program, and the PackMu/LoadRam software. Note that the instruction
raerrory specified in the binary file does not include the 3 bit F3 field, which exists only in
the debugging RAM.

4. Listing file

The listing file contains:
1.) All error messages (unless debug mode is set)
2.) A listing of all unused but predefined locations and unresolved forward references.

3) Two listings of the contents of the constant memory, the first sorted by address
and the second by value.

4) A listing of the names assigned to the R memory

5.? A listing of the object and source code (with comments and declarations removed.
The 35 bit instruction 1s printed out in"the following order:

Lo:ation: RSel, ALUF, BS, F1, F2, LoadL, LoadT, F3

6.) The microprogram s:atistics (unless sent to a separate file).

For Xerox Internal Use Only -~ April 29, 1978

Mu: Alto Microassembler March 25, 1978 95

Appendix I: Literal symbol definitions

The value of a symbol is a 3 word quantity. The first word contains a type (6 bits) and a
value (10 bits) which detemines the interpretation of the symbol in all cases except when it
is encountered as the source in a data transfer clause (assignment). The second word
contains the type and value used in this case.

The third word contains bits specifying the definitional requirements and source attributes
applied when the symbol is encountered in an assighment. The definitional requirements
are reoresented by single bits, where zero means 'must be defined' and one means ‘don't
care'.

Bit 0: 0 if L output must be defined
Bit 1. 0 if BUS must be defined
Bit 2. 0 if ALU output must be defined "
Bits 3-7: Unused (?)
Bit 8: L is define
Bit 9: Bus is defined
Bit 10: ALU output is defined "
Bit 14: ALU output is defined ‘

if BUS is defined

(destination-imposed requirements)

(Source attributes)

Assignment processing proceeds by ANDing together the attribute words for all the
destinations. The result contains zeroes in bits 0-2 for things that must bz defined and
ones elsewhere. .

When the source token is encountered, if it is a defined symbol it is tested by checking the
definitional requirements of the destinations against the corresponding attributes in the
source. If all destination requirements are satisfied, the clause is complete. If the only
unsatisfied requirement is ALU definition, and if the Bus is defined, the ALU function is
set to gate the bus through (thereby defining the ALU), and the clause is complete. If this
doesn't work, or the source token is not a defined symbol, the source string is dismembered
in a search for two substrings, the first of which defines the Bus (bit 9), and the second of
which defines the ALU output if the Bus is defined (bit 14). If two substrings are found,
;hg.im%lied assignments are made, and the clause is complete. Otherwise, an error is
indicated.

The symbol type(s) determine the fields to be set in the microinstruction; Some types are
legal only as _an isolated clause, some are iegal only as the source or destination in an
assignment. The currently defined types are:

Type: Legal as: Instruction Field Side Effects:
Receiving Value:

0 Illegal never

1 Undefined address address

2 Defined address address Next

3 K locaticne destination RSel Defines Bus to be 0

4 <R lccation solrce - RSel

5 <«Constant source RSel, BS

¢ Bus source source BS

7 Non-data F1 clause F1

10 Fle destination F1

11 €L defining F1 source Fl : (¢L LSH 1, etc.)

12 Non-data F2 clause F2 :

13 F2« cestination F2

14 «Data F2 source F2 BS«1, RSEL«0

(¢DNS, «ACDEST;

For Xerox Internal Use Only -- April 29, 1978

Mu: Alto Microassembler March 25, 1978 96

15 Data F2« destination F2 BS«0, RSEL«0
(ACDIST«, ACSOURCE®)

16 END clause - Not used by Mu. :

17 <L source -

20 Le destination LoadL

21 Non-data F3 clause F3

22 F3e destination F3

23 «F3 source F3

24 <4 LU functions source ALUF

25 Te destination LoadT

26 €T source ALUF ALUF+1

27 No longer used
30 Predefined address
31 «LMRSH, «LMLSH source

32 «Mask constant source ‘

34 «F2 source F2 BS«2

34 <«F1 source F1 BS¢2

35 XMARe destination Fl1, F2 Fl¢1, F2«6

The current symbol definitions are contained in file AltoConsts23.Mu.

5. Revision History

October 24, 1974

%' predefinition facility added.

March 4, 1975

This version has changed from previous releases in.that the .BM file contains micro format
type 5 blocks which contain address symbols for the constant, instruction, and R memories.
Programs which read these files will be expected to deal with this type of block.

October 11, 1977

Bugs fixed: garbage in listing if statement too long; occasionally scrambled R-register
listings; premature termination at the end of 'insert' files.

Features: longer statement buffer (500 characters); symbol type 35 for XMAR«; 'Stats’ file
generated conditionally; checks for loading S-register from shifter; reports length in octal
and decimal; strips Bravo formatting,.

March 25, 1978

Bug fixed: leaving the semicolon off the end of a predefinition yielded erroneous resuits
with no error message.

Features: listing file contains constants sorted by value as well as by address; source filename
extension de’aults to '.Mu'.

For Xerox Internal Use Only -- April 29, 1978
Network Executive - March 9, 1978 97

Network Executive

NetExec is an Alto command [processor for invoking certain subsystems via the Ethernet
without using the local disk. It is useful for rebuilding a smashed disk and for loading
diagnostic l)rovrams when the disk is sick. Its user interface is intentionally similar to the
standard Alto Executive.

The program is invoked bty holding down the <{backspace> and <{quote> keys while pressing
the boot button. You must continue to hold the keys down until a small square appears in
the middie of the screen, then you can let go. NetExec and all of the programs invcked by
it are boot-format files kept by 'boot-servers' -- programs which implement the Alto boot
protocol. Most gateways and some other programs (such as Peek) contain boot-servers.

When the NetExec arrives, it displays a ">" and blinks its cursor to indicate that it is ready
for commands from the user. In parallel with this it displays a pair of lines near the top
of the screen with its name and version number, a digital clock, and the machine's
internetwork address.

Typing "7" causes the NetExec to display a list of the boot-files it knows how to invoke.
NetExec builds this list by probing the network for boot servers and asking them what boot
files they are willing to give out. There are also some built-in functions which are listed by
"I as if they were boot files: ‘

Probe Causes NetExec to probe the network looking for boot servers. If it
discovers any new ongs, it will add the new boot files to its list. This
is done once automatically when NetExec starts,

SetTime Causes NetExec to probe the network looking for a time server. If it
discovers one, it sets the Alto's clock from it. This is done once
automatically when NetExec starts.

Keys Pro.mpts.{ou for a boot file name and tells you the key combination
which will boot it directly.

Host Prompts you for a boot file name and tells you which Ethernet host
NetExec will get the file from.

Quit Boots DMT

In the future, common subsytems should be stored in a few places throughout the network,
not on every local disk; perhaps the local disk can bz eliminated entirely. Doing so requires
a much better integration of network and OS facilites than currently exists. The NetExec
described here is not intended to do this. There are several limitations in the current
implementation: :

1) Most boot-files are core images and go are quite large. Typical boot-
servers have space for about 15 core-image files.

2) Boot-files are not properly hooked into the local disk. Programs
which use overlays or keep internal file pointers (such as Bravo and
DDS) will not work.

3) Boot-servers typically run in machines with some other primary
purpose, such as gateways, and must not consume too many resources.
As a result, booting is slow and only one machine can be served at a
time,

For Xerox Internal Use Only -- April 29, 1978
OEDIT January 17, 1978 98

OEDIT

The OEDIT program is for looking at and modifying Alto files in octal. Call it with
OEDIT f1 f2 .. where the f's are the names of the files you want to look at. It will
display the contents of the corresponding words of all the files on the same line. There is a
limit of four files which can be looked at simultancously. If you want to be able to
modify the first file, use the /W switch on the OEDIT command. [f you don't use this
switch, OEDIT will request confirmation before letting you write into any of the files.

When it starts, the program computes the length (in bytes) of all the files. For large files
this can take upwards of 15 seconds, so don't be alarmed by the delay.

A/fter typing the lengths, OEDIT waits for commands:

n show location n of each file

If show the next location of each file

t show the previous location of each file

cr show the current location again

n! show locations n to n+37 of each file

> -show the next 40 locations of each file

< show the previous 40 locations of ech file

nF beginning at current location in the first file,

o find a word containing n, show it and its address
quit

The If, 1, <, >, and cr_commands can be preceded by a number which is wrilten into the
current location of the first file.

All numbers are octal. All addresses are word addresses (even though the lengths are shown
1?1 bytes.) Oedit shows each value as an octal number, two octal bytes, and two Ascii
characters. :

For Xercx Internal Use Only -- April 29, 1978
Alto microcode overlays October 20, 1976 99

Alto microcode overlays

Large systems which use the Alto control RAM, such as ByteLisp and Mesa,
inevitably want to put more instructions in the RAM than will fit. When this happens, the
system implementors can choose either to implement the additional functions in software, or
to change the contents of the RAM dynamically. The package described here provides for
relatively cheap dynamic overlaying of the RAM. The overlay regime can be very simple
(just one overlay in RAM at a time) or complex (a nested allocation scheme) with no
changes in the swapper or the overlays themselves.

Users of this package must, of course, still decide when loading microcode is
preferable to falling back into Nova code. In terms of space, one microinstruction does
about 2/3 as much work as a Nova instruction, and takes 32 bits rather than 16, so
(overlaid) microcode takes about 3 times as much core gpace_ for equivalent tasks. The
package presented here imposes an additional space overhead which may amount to as much
‘as 2 * the square of the number of overlays. In terms of speed, loading a microinstruction
takes about as long as executing a Nova instruction, and the package described here adds an
additional time roughly equal to 1 Nova instruction for each overlav each time a new
overlay must be loaded; so for totally straight-line code the net execution time favors Nova
implementation by about a factor of 2 (i.e. to break even, a given overlay must be executed
at least twice). However, microcode has easy access to the state information stored in the
processor's R registers, while Nova code does not (unless it can all be passed through the
AC's), sc this may make microcode execution preferable even in the case of straight-line
code executed only once.

1. How to use it

Using microcode overlays requires three steps that differ from normal use of the
RAM. The Mu assembly process is different; the Oram program must be run to construct
the data structures necessary for the swapper; and a smalramount of extra initialization is
required at runtime,

The first step in constructing overfayable microcode is to decide how to break up
one's microcode into overlays and to identify the entry points to each overlay. (One overlay
may have more than one entry Eoint.) The microcode sources must be broken up into files:
a main file that includes all the resident code, plus predefinitions (but no code) for all
entry points of all overlays; an initialization file (to be described in a moment) that
supplies dummy code for all entry points; and files for the individual overlays.

The main file must include the following code at the beginning:

10,1,zero; Required by the swapper
$ramvec2$Rnn; An S register for the base of the overlay table

[other predefinitions, syrabol defs, constants, registers, etc.]
#swapper.mu; The swapper

This coce must occur at the beginning of the main file because the swapper's entry point
(label "swapper") must be predefined as location 1000 in the RAM.

The initialization file must have the following form:
#main.mu; (or whatever the main file is called)
entd: T « 0, :swapper;

entl: T « 1, :swapper;
ent2: T « 2, iswapper;

For Xerox Internal Use Only -- April 29, 1978
Alto microcode cverlays October 20, 1976 100

ent3: T « 3, :swapper;

and so on for all the entry points. (Ent0, etc. should be replaced by the names of the entry
points, of course.)

Since microcode is not relocatable in the RAM, all decisions about what overlays can
be co-resident must be made at assembly time,

After assembling the dummy file and each leaf overlay file with Mu in the usual

way, run the Oram subsystem as follows:

>Oram xx.BR init.MB ovl.MB ... ovm.MB
where xx.BR is the BR file on which Oram will write the overlay tables, initMB is the
result of assembling the initialization file, and ovl.MB through ovm.MB are the results of
-assembling the leaf overlay files. If all goes well, Oram will produce a variety of messages
ending with

nnn words written on xx.BR
and return to the Executive. Oram also writes all its messages on a file called Oram.Lst.

When you load your program with Bldr, you must include the file xx.BR produced
by Oram. The data in this file, unlike the initial RAM image produced by PackMu, is
required throughout the running of your program. You must also load the RWREG library
pa:c}_ca{c;e to obtain the WriteReg procedure used below, but this is only needed during
initialization.

When loading the RAM during initialization, your program must include the
following code: :

external [MCbase; MCtop] // defined in xx.BR
if SMCbase&l) ne 0 then

et len = @MCtop

MeveBlock(MCtop-len-1, MCtop-len, len)

MCbase = MCbase-1

riteReg(nn, MCbase-2)
where nn is the register number in the definition of ramvec2 in the main file.
2. Design details

In the RAM, the entry instructions of each overlay are all in the permanently
resident code. If the overlay is present, the entry instruction is just the first instruction of
its code; in this case we say the entry instruction is "valid". If the overlay is absent, the
entry instruction loads T with the entry number and branches to the swapper (the cntr
instruction is "invalid"). Thus when an overlay is loaded, the entry instructions of all
overlays it overlaps must be invalidated. The chief advantage of this approach is that there
is absolutely no time overhead if the overlay is already in the RAM, so it is feasible to
overlay very short sequences (15 instructions, say). '

There is just one global data structure (in core) that describes the overlay structure: a
table indexed by 2 * entry number which points to overlay descriptions, described in the
next parazraph, and also specifies where to start execution after the overlay is loaded. (This
arrangement permits a singie overlay to have multiple entry points.) 'the origin of this
table 1s the only thing known to the swapper.

The description of an overlay (in core) must begin at an even location, and has two

parts: . I
1) An invalidation table which s[)e(:l‘f.xes how to overwriie entry instructions. Each
entry in this table is a 2-word object: the first word is a RAM address, the second word is
the upper half of the microinstruction to write there (the lower half always being

For Xerox Internal Use Only -- April 29, 1978
Alto microcode overlays - October 20, 1976 101

"BUS«constant, Load T, branch to swapper”). The last entry is flagged by having bit 0 of
the RAM address set. .

2) A sequence of instruction blocks. Each block begins with a 2-word header
(100000b+RAM address, 0). The following data are a sequence of instructions where cach
instruction's NEXT field specifies where to load the following one: this sequencing scheme
eventually requires the block to end. This sequence is terminated by a final block consisting
of two zero words.

) The swapper is a routine in the resident microcode which expects an entry number
in T, loads the appropriate overlay, and branches to the entry. It must fetch the overlay's
description from core and then do the followmi; things:)) .

”) Invalidate the entry instructions of all overlays with which the one being loaded
conflicts,

id 2) Load the code, which must include the entry instructions specified as being newly
valid;

3) Branch to the code. The initial RAM load must have all entry instructions invalid.

3. Mu/Bldr interface

~ The third design issue is how best to get the necessary data structures incorporated
into Bepl/Nova programs. It turns out that it is possible to support nested overlays with no
changes to Mu. For example, suppose that the main body of the microcode is M, and that
we have three overlays: X (entry point X1), which takes all the overlay space, and Y (entry
points Y1 and Y2) and Z (entry point Z1), which will both fit at the same time. Assemble
the following configurations with Mu: M+X, M+Y, and M+Y+Z. Then an overlay
preparation program, Oram, can compute all the necessary tables and produce a .BR file that
can be loaded with the user's program. .

It is necessary to Le a little careful to arrange that the entry instructions fall in the
same locations in all assemblies, - Furthermore, if it is desired that one routine occupy a
subset of the RAM locations of another, they must have the same configuration of
predefinitions (and, of course, appear at the same place in the assembly sequence). Here is a
sketch for the example: :

M contains)gsomewhere):
10,1,X1;
10,1,Y1;
10,1,Y2;
10,1,71;

X contains:
X1: [code for X]

Y contains:
Y
Y2:

Z contains:
VAR [code for Z]

In general, some of the predefinitions could be omitted if the entry addresses were to be

predefined earlier, for example if they were entries in some kind of opcode dispatch. In

zlx{d‘g;&lu)ln,dthere must be another file W which is assembled with M to produce the initial
oad:

=

[code for Y]
more. code for Y]

W contains:

: T « 0, ;swapper;
Yl T « 1, :swapper;
Y2: T « 2, :swapper;
Z1: T « 3, :swapper;

For Xerox Internal Use Only -- April 29, 1978

Alto microcode overliays October 20, 1976

The pointer table would have the appearance
Xdesc; X1;
Ydesc; YI;
Ydesc; Y2;
Zdesc; Z1;
and the individuel descrxptlons would be as follows:
Xdesc: Y1, invelidate Y and Z
!\3/L215<-1 (hi part);

BUS«2 (hi_part);

ol
« i part);

Bcode for)&

, 0

Ydesc: #100000+X1; invalidate X
BUS«0 (hi part);

Bcode for

0: .
Zdesc: #100000+‘(] invalidate X

BUS«0 (hi 'lrt)'
([)code for Z':)]

102

0;
Fortunately, given the .MB files, the Oram subsystem can construct all the tables itself.
Oram assumes that any instruction in the base file (W) which branches to the swapper is an

entry instruction.

For Xerox Internal Use Only -- April 29, 1978
Packed RAM images February 11, 1976 103

PackMu, Rpram, ReadPram

These two subsysiems and one library package make it easy for Alto programs which
use the RAM to check the constant merory and load the RAM as Rart of their
initialization. The first subsystem, PackMu, takes the output of Mu (a .MB file) and
converts it to a "packed RAM image" which is easy to load. The second subsystem, Rpram,
reads a packed RAM image. checks the constant memory, and loads the RAM (ie, it is a
microcode loader). This function is also available through a pair of library routines
ReadPackedRAM and LoadPackedRAM (available on a file called ReadPram.bepl).

A packed RAM image is a .BR file containing 4401b words of data. The first word
is ignored. The next 400b words are the desired contents of the constant memory: a zero
word (which Mu cannot generate) means "don't care”. Constant 0 is reserved for a version
number, to help programs check that they are getting the correct RAM contents. The
remaining 4000t words are the contents of the RAM. Each instruction occupies two words,
first high-order part, then low-order part, eg. words 0 and 1 go into RAM location 0,
words 2 and 3 into RAM location 1, and so on.

The invocation format for PackMu is

>PackMu foo.MB foo.BR version staticname
Foo.MB is the outRAut from MU. Foo.BR is the file for the packed RAM image. Version
(optional) is a RAM version number which will be written as constant 0 in the output file;
if omitted, il defaults to zero. Staticname (optional) is the name for the static in foo.BR
which will point to the RAM data; if omitted, it defaults to RamlImage. PackMu prints out

XXX constants, yyy instructions
to indicate the number of constants and instructions read from foo.MB. If foo.MB is
somehow illegal, PackMu prints

Error:
and an error message instead.

The invocation format for Rpram is

>Rpram foo.BR version '
where foo.BR is the output from PackMu. If there are any disagreements between the
constants in foo.BR and the actual constant memory, Rpram prints

Constant nnn is xxx, should be yyy
for each constant that disagrees, and a summary message

nnn constants differ
at the end of loading (but it still loads the RAM). If version is supplied and disagrees with
constant lacation 0 in foo.BR, Rpram prints

RamVersion in file is xxx; version expected is mmm
If Rpram believes that foo.BR is not a file written by PackMu, it prints

Bad RAM image
If everything is OK, Rpram prints nothing.

To read in a packed RAM image file froma a program, use the subroutine
ReadPackedRAM(stream, IvRamV []). The stream argument should be a word~item input
stream positioned at the beginning of a foo.BR file; IvRamV, if supplied, is taken as the
address of a variable in which to store the value given by the file tfor constant 0 (i.e. the
RAM version). ReadPackedRAM does exactly the same thing as the Rpram subsystem,
including printing disagreernent messages on the display, but instead of printing the
summary message it just returns the number of disagreements, or -1 in the case of a bad
RAM image file. Rpram egsentially just opens foo.BR and calls ReadPackedRAM.

Alternatively, you may wish to load the RAM image foo.BR with your program. In
this case, use the subroutine LoadPackedRAM(staticname, IvRamV []) where staticname is
the name you gave to PackMu. LoadPackedRAM does the same thing as KeadPackedRAM,
except it takes the data out of memory instead of from a file.

For Xerox Internal Use Only -- April 29, 1978
Packed RAM images . February 11, 1976 104

Maintainer's notes:
PackMu uses the library packages GP and ReadMu.
Rpram uses the library package GP.

For Xerox Internal Use Only -- April 29, 1978
PeekPup May 17, 1976 105

PeekPup

PeekPup is a small subsystem enablip% one to peck at Pups going to and from a particular
Ethernet host. It is intended as an aid in debugging new Pup software.

PeekPup is invoked by the command
PeekPup hostnumber filename

where "hostnumber" is the Ethernet address (octal) of the host whose paclkets you want to
spy on and "filename" is the name of a file to write the output on. The program then
looks for packets whose Ethernet source or destination address is equal to "hosthumber”, and
buffers them in memory. For each Pup so processed, "!" is displayed on the screen.
PeekPup terminates when any key is pressed, at which point it interprets the last 200 Pups
received and writes the rasult on the specified file.

The output is mostly self-explanatory. The numbers in the left margin represent a
millisecond clock (with no particular startinéz value and wrapping around at 32768). For
each Pup, a few lines of output are generated; the information about Pups sent to the host
being spied upon is indented further than information about Pups generated by that host.
Pup headers are fully interpreted, and Pug contents are displayed as either text or a series of
octal numbers representing bytes; large Pups get only the initial portion of their contents

"o

displayed, followed by "..".

For Xerox Internal Use Only -- April 29, 1978
Pressedit : April 26, 1976 106

Pressedit

Pressedit is useful for combining Press files together, converting the Ears files generated by
Pub and Bravo into Press format, selecting certain pages from a Press or Ears file, or adding
extra fonts to a Press file. The general command format is illustrated in the following
example:
pressedit foo.press « a.press b.ears 2 5 c.press 3 to 7 9 meteor9/f
This means "make a Press file foo.press from all pages of a.press, pages 2 and 5 of the Ears
file b.ears, and pages 3, 4, 5, 6, 7 and 9 of c.press; add font meteor9 to the fonts defined in
Fplo.press". The resulting file will be arranged in the same order as the component input
files.
Examples:
To convert an Ears file foe.ears to a file foo.press in Press format:
pressedit foo.press ¢ foo.ears]
To extract pages 3 and 17 from a Press file long.press, and put them in short.press:
pressedit short.press « iong.press 3 17 '
To extract pages 5 through 12 from fooe.ears, and put them in short.press:
pressedit short.press « foo.ears 5 to 12
To add fonts lego24 and helveticald to a.press:
pressedit a.press « a.press 1ogo24/7 helvetical4/f
Here the arguments on the right hand side of the arrow may be given in any order.
To make a blank, one~page Press file containing all three faces of Timesromanl0:
pressedit blanktimes.press ¢ timesromanl0/f timesromanlOQi/f timesromanl10b/f

To append to the end of chap3.press all the Press files with names fig3-1.press, fig3-2.press,
fig3-3.press. etc:

pressedit chap3.press f-vchap3.press fig3-*.press
Caution: when you combine files with Pressedit, try not to use different sets of fonts, or the

same fonts in different orders. This will result in proliferation of foat sets, making the
file more bulky and creating other minor sources of inefficiency.

For Xerox Internal Use Only -- April 29, 1978
April 26, 1976 107

Press Print Program

The Print program can be used to print any Press file. Simply type:
print filel.press file2.press <return>

If you type /s after a file name, the file will be saved on Maxc in Ears format. You
may print more than one copy, as follows:
print 5/c foo.press

This will print five copies of foo.press.

Printing is at present done via Maxc. If you are logged in to Maxc, yvou may print a
Press file, 'foo.press,” on your Maxc directory by typing the following:
ears foo.press <return>

All of the normal subcommands, for extra copies etc., are available.

For Xercx Internal Use Only -- April 29, 1978
QED October 31, 1974 108

Alto QED Text Editor

Alto QED provides a subset of the facilities incorporated in_the original QED
implementation, the most notable omission being facilities for line editing.

QED is designed to run on a 64K Alto. All of the body of text being edited is maintained
permanintly in core. This makes for fairly rapid operation, but restricts the amount of text
lthat cap be edited to about 1500 lines of average BCPL program. The screen can display 20
1nes of text.

Line numbers are not stored internally, but are computed by QED. Whenever text is added
or deleted, the numbers of the lines following the alteration are changed accordingly.

A complete list of commands in QED is as follows. Here s, f, and e are line numbers or
expressions (see below); ¢ is the confirm character (carriage return). The user types the
underlined text; commands may be typed in upper or lower case. :
eArpendc The following text is added after line e.
s,fChangec ""he following text replaces lines s to f.
s.fDeletec Lines s to f are deleted.
Finishc Terminates editing and returns to the operating systent.
elesertc The following text is added before line e. ‘
s,fMove a copy after ec A copy of lines s to f is placed after line e.

s.fOverwrite old file name ¢ Lines s to f are written onto the file which was last read
or written. .

eRead from filenamec Text is read from file and is added after line e,
fS

sfSubstitute newc for oldc QED substitutes the new text for the old text wherever the
old text is found within the given range. The number of substitutions is typed.

s,fTransfer after ec Lines s to f are moved after line e.

eWrite on filenamec Lines s to f are written out onto the named file. Note that this
command does not affect the contents of the buffer.

s,fXchange newc for oldc Similar to Substitute, but the user must confirm each
substitution with ¢, otherwise the substitution is not made. The line containing
each occurrence of the old text is printed, with the text surrounded by double
quotes. If ctrl-O is typed instead of c, then no further substitutions are made.

s,f/ Lines s to f are listed on the screen.
e= The value of expression e is typed on the screen.

QED allows expressions to be used in place of line numbers: thus e, s and f may be any one
of the following:

-- a line rumber

-- the symbol §, meaning the last line in the buffer;

-- a period, meaning the current line;

-- text; or 'text, meaning the next line following the current

For Xerox Internal Use Only -- April 29, 1978
QED : October 31, 1974 109

one on which the given text occurs;
-- text:, meaning the next line starting with the given text;
-- an expression formed by combining the above, using the
symbols + or space for addition, - for subtraction.

If s is omitted, QED assumes that the first line was meant; if f is omitted, it assumes the
last line; both may be omitted..thus a single comina is equivalent to 1,%, i.e. the entire
buffer contents. In addition the user may omit line numbers altogether: most commands
will then assume that the current line was meant with the exception of Write and Overwrite
which assume the entire buffer; and Read and Append which assume that the last line was
meant. :

The current line changes whenever text is read in, written out, added or deleted. The
commands Substitute, Xchange and = leave the line number unchanged; all others leave it at
the last line of input or output or last line moved, with the exception of Delete which -
leaves it at the line after the deletion. The easiest way to reset the current line to a fresh
osition is to type the new line. To type the line following the current one, type line-feed
ELF); to type the previous one, type t.

T> start input to QED, type QED to the operating system, and then ty})e A to append.
During input, you may erase the last character typed with Ctrl-A, the whole line with DEL
or Ctrl-D, and retype the line being input with Ctrl-R. DEL wili normally cancel any
cZommand being typed. Input following Appénd, Change and Insert is terminated with Ctrl-
Note:

1. QED removes line feeds, rubouts and nulls when reading from a file, and appends a
line feed after each line when writing to a file,

2. Control characters within a file are invisible.

For Xerox Internal Use Only -- April 29, 1978
RAMLOAD April 1, 1975 110

RAMLOAD

RAMLOAD is a program that acts as a microcode loader, using the output of the microcode
assembler Mu. Since there are now two types of microcode memory for the ALTO, some
distinction must be made. Hereafer, ROM means some combination of roms on the ALTO
control board, and add-on goodies which hang on the end of the control board like
debuggers with 512 words of ram. RAM means the extra board with 1K of ram which
plugs into a slot in the processor.

RAMLOAD gets its parameters from the command line and default values. If you do not
specify a parameter, the default is used. In addition there are some global switches which
do other useful things as explained below: .

GLOBAL SWITCHES (of the form RAMLOAD/switchlist)

/R clgpf]pare the micro binary file against the contents of thz RAM and display
differences. '

/V compare "the micro binary file against the contents of the ROM and display
differences.

/C compare the micro binary file against the contents of the constant merory and
display differences.)

/T Test the RAM and extra R registers by writing random numbers and then reading
them back displaying differences and addresses.

/0 Same as /T but do not test the R registers.

/N Do not request Confirming <CR> for any operation.

LOCAL SWITCHES (of the form foo/switch)

/F use foo as the name of the micro binary file. Default is "BINFILE."

/M useé foo as the name of the instruction memory in the micro binery file, Default
is "INSTRUCTION". ' :

/C use foo as the name of the constant memory in the micro binary file. Default is
"CONSTANT".]

/v foo is an octal number. Use it as the boot locus vector. Bit 15 corresponds to

task 0 (eriulator). 0 means run task in the RAM. Default is #177777 - keep all
tasks in ROM.

/A foo is an octal number, representing the base address of a 5 word area in the
RAM which RAMLOAD can use for utility purposes. Default is the top 5 words
(#1772). See warnings below about restrictions for specific operations.

/S foo is an octal nuinber interpreted as the beginning address of the emulator main
];4988 (START for microcode hackers). Detault is the current START address,

Note :hat global switches /V, /C, and /7 do the same things that ;V, ;C, and ;T do in
DEBAL. RAMLOAD in effect does a ;L, and also sets the boot locus vector. The /R
global switch was added because it was casy and people might want to see if the microcode
got smashed after a fiasco. :

When RAMLOAD is called, it will first display what it thinks it is supposed to do as
governed by the switches and defaults, and wait for a confirming carriage return. When
this is received, it will attempt to open the raicro binary file. If this is unsuccessful, it will
put out a message to thet effect. Next, operations specified bv global switches will be
performed (If the micro binary file could not be opened, the only tests possible are /T and
/0). If no global switches were set, the program will assume you wanted to load, and do so
without waiting for confirmation. Loading 1s a three step operation in which the first step,
setting the boot locus vector, does not require an open micro binary file, This allows a user
to change the boot locus vector without reloading the RAM, by specifying a nonexsistant

For Xerox Internal Use Only -- April 29, 1978
RAMLOAD April 1, 1975 111

file name for the micro binary file. The program will report the value the vector is set to.
Steps two and thres, unsnarling the micro birary file and loading its contents, obviously
require an open file and will cause RAMLOAD to bomb if there is none. When the
loading operation is complete, the number of instructions loaded, and the highest address
will be reported ala DEBAL. Next the program will ask if you want to boot, thus movilr\llig
the tasks specified in the boot locus vector into the newly loaded microcode in the RAM.
If you confirm, and if you have an Ethernet board, the machine will do a software initiated
boot. If you do not have an Ethernet, the boot will be a NOP, and a FINISH is executed.
Hitting the boot button after the program is finished will work for those hermits who do
not have Ethernets.

The routine which reads the micro binary file expects the limited subset of block-types that
DEBAL puts out. If it encounters an unusual block-type (3, 5, or 6) , it will endeavor to
do the right thing, and continue on. When it is finished reading, if any unusual types were
encountered, it will list how many of each it read. If the microcode was assembled using
DEBAL, this is cause for grave doubts about the correctness of the file, since DEBAL will
not currently generate these types.

Where the 5 word utility area is specified can havz profound (ie. potentially disasterous)
effects on the machine's operation it you are currently running from the RAM. While it is
possible to load the RAM while executing in it, this is living very dangerously. However, if
you must, observe the following caveats:

* if constant memory is being checked, and you are executing out of the low 256
locations, you are dead.

* the 5 word utility area must be specified in a place you will not be executing from
during the RAMLOAD program. RAMLOAIg always saves zm[\)l word in RAM it
modities for utility purposes, and restores it when 1t is done, bu
can have an arbitrary value.

t while in use, it

A number of things can cause fatal errors during execution. If one happens, an error
message is written in the system display area, and the program is aborted.

f

"For Xerox Internal Use Only -- April 29, 1978
SCAVENGER : May 24, 1976 112

SCAVENGER

A subsystem for checking and correcting disk packs is available as SCAYENGER. Invoke it
with no parameters and it will give you an opportunity to (1) change disks and (2) prevent
it from altering your disk seriously (see belowg.

The scavenger does the following:

. Corrects header blocks, prompting for confirmation.

Corrects check sum errors, by re-writing whatever came in, prompting for
confirmation.

Discovers all well-formed files and all free pages. Any disk page (except page 0) that
is neither free nor part of a well-formed file is considered bad.

Makes the serial nurnbers of all well-formed files are distinct.

Corrects the system's notion of what pages are free.

Corrects the system's latest serial number.)

Corrects the directory to contain precisely the well-formed files. If a directory entry
points into a chain of bad pages it attempts to salvage the file. If need be a
directory is created from scratch.

8. Links all gad, unsalvaged pages togetier as part of the file Garbage..

9, Describes all changes to the disk in the file ScavengerlLog, even those which were not

actually performed.

10. Corrects leader page information. Changes to leader pages should not cause alarm.

The information there is used as a hint by various systems.

o~

Nondk =

The data in bad pages is not changed so you can attempt to reconstruct a lost file by
suitable operations on Garbage.$, consulting ScavengzerLog to interpret its contents.

A hO{)elessly smashed disk may be put back in shape by the following:
. Invoke scavenger on a good disk and answer yes to "Do you want to change disks?"

2. Replace the good disk with the bad one.

3. Answer yes to "Is the new disk ready?" when the yellow ready light comes on.

4. Answer ?'es to "May 1 alter your disk to corrct errors?”

5. If FTP lives on your disk, the scavenger will offer to invoke it rather than retuning
to the executive. Once you are in FTP you can receive critcal files (like
Executive.Run or SysFont.Al) or evacuate your dislk by sending files elsewhere. If
the scavenger does not offer FTP, it is not there and you will have to do some
more disk suffling to retreive files; i.e. invoke FTP from a good disk and change
disks after you are in.

You should take precautions to avoid losing vital files (such as QUICKing your disk to
another disk pack prior to running SCAVEN ER).

For Xerox Internal Use Only -- April 29, 1978
SCAVENGER : May 24, 1976 113

PARC information

The following, more or less independent, procedure can be used to recover vital files that
might have been lost during scavenging.
1. Invoke FTP on a good disk.) .
2. At an early point in the dialogue replace the good disk with the bad one and wait
for the yellow ready light to come on.)
. Retrieve the needed files from MAXC (Executive.Run and FTP are the minimum
required, 1 think.)
. Quit out of FTP. . .
. Run the scavenger. It will correct the DiskDescriptor file which became inaccurate
during this process.

2

b

For Xerox Internal Use Only -- April 29, 1978
SetTime January 2, 1978 114

SetTime

This sinyale subsystem attempts to_obtain the date and time from a time server on the
connected Ethernet. If it is successful, it sets the date and time in the operating system and
3]50 dls([l)lays it. If unsuccessful, it displays an error message and prompts you to type in the
ate and time,

This subsystem intentionally has the same name as the corresponding Alto Executive
command 'SetTime.~'. If your Alto does not know the date and time when the Executive is
started, it executes an automatic SetTime command. If SetTime.Run exists on your disk, it
will be run in preference to e<ecuting the Executive command 'SetTime.~".

If SetTime.Run is unsuccessful in obtaining the date and time (which is unlikely unless the
Ethernet is broken or your Alto isn't connected), it will ask you to type in the date and
time in the form 'day-month-year hour:minute’, e.g., '2-Jen-78 19:15'. Additionally, it may
ask you to enter the lozal time zone, which may %e Eastern, Central, Mountain, or Pacific.
(You may also enter '+' or '-' followed by a time in the form 'hours:minutes’ designating
hours west (+) or east (-) of Greenwich.) :

For Xerox Internal Use Only -- April 29, 1978
SWAT : February 2, 1977 115

Swat, a BCPL-oriented debugger

Swat is a debugger meant to be us:d with the ALTO operating system. While many of its
features are B(,PL oriented, it can be used on any NOVA code program. This document
describe: version 18 of Swat.

1. Invocation
Swat may be applied to any program running under the operating system after it has been
installed (see Installation below}. There are four ways of getting its attention: -

(1) Press the lowest, right-hand key of the ALTO keyboard,
together with the <{control> and <shift> keys at the left.

(2) Have your program execute the cp-code 77400B.
(3) Invoke the Resume/S command (se€ below).

(4) Boot the file Dumper.Boot, normally by booting with the "DU"
keys depressuc.

(5) Type <programname>/! to the Alto command processor.

(6) Call the function CallSwat. Up to 2 arguments will be printed
as BZPL strings. Thus CallSwat("No more memory")
2. Commands

The command has suffix action symbols, all control characters (e.g. TC). 'n" is any BCPL
expression (see Expressions belowi, "$" is escape except where noted, “"cr" means carriage
recurn, "If" means line-feed.

2.1. Displaying cells

ntD prints the contents of n in decimal

ntl prints the contents of n as two 3-bit bytes
ntN prints the contents of n as a NOVA instruction
ntO prints the contents of n in octal

ntS prints the contents of n as a pair of characters
ntV prints n (in octal) rather than its contents

The last cell printed is called the open cell. 1O, 1D, 71, N, or tS alone re-prints the open
cell in the appropriate format. [If you wish to print out a number of cells, beginning with
thel open cell, say n$1D, n$l, etc. This command will not change the identity of the open
cell. ,

If (tJ) prints the contents of the next cell (after the open one) in the same mode.

W prints the cell before the open cell.

‘ For Xerox Internal Use Only -- April 29, 1978
SWAT - February 2, 1977 - 116

1A prints the cell pointed at by the open cell.
+E treats the open call as a NOVA instruction, computes its effective address and

prints its contents.

2.2. Changing cells

The contents of the Oé)en cell (if there is one) may be changed by typing an expression for
‘he new value rollowed by a cr or If.

1.3. Running the program

tP resumes the program, i.e. proceeds.

ntG resumes the program at n, i.e. goes there,

<ep>8<e3>5..8<e > 1C calls procedure (e(t))> with parameters <ep>,...<ey> (n<6?. If you
wish offe of the arguments to be a BCPL-format string, merely enclose it in
quotes. Thus Openkile$"Com.Cm."t+C will return a stream on the file.

tU restores the user's screen. Hitting the break key brings back Swat.

1K forces the user programs to abort.

2.4. Break Points _

ntk sets a break at n

+E set a break ¢t the open cell

0$n+B deletes the break at n

0$$tB delets all breaks

5B prints all broken locations and checks that they haven't been clobbered.

2P removes the current break and proceeds.

n$tP sets a break at a BCPL return point in the stack somewhere and proceeds from

the present break. The parameter n specifies the frame. Thus if tT typed out
0:GOO+56 1:HAM+5, 151P would set a break at HAM+6 and proceed.

2.5. Stack Study

+T prints the current PC and all return addresses in the call stack (symbolically),
until an inconsistency is found in the stack. Afler each return address is listed
the parameters passed to the procedure that will be returned to. Thus, if you
see an entry like "3: Findlt+45--(14 177777)", the procedure FindIt was called
with arguments 140 and -1.

ntT prints n (or less) return addresses.

ntF Prinls the parameters of the nth latest stack frame and sets the pseudo symbol
" (not escu{)e) equal to the base of that frame. If +T displayed something
like 0:FOO+3, L:BLETCH+10,.. Type 11F to s:e the parameters that were
passed to BLETCH. § is set to the base of BLETCH's frame.

For Xerox Internal Use Only -- April 29, 1978
SWAT February 2, 1977 117

1.6. Symbol table

1Y rompts to get a symbol file. Type the name of the subsystem that's running.
If BLDR created the file FOO it also created FOO.SYMS which gives the
locations of all the static names. Only statics can be used in Swat.)

).7. Save/Restore

1Q saves the current SWATEE on a file (prompts) (see below)
1L makes a (prompted for) file the current SWATEE (see below)

1.8. The Spy Facility

The spy can be used to estimate where the time is going on a percentage basis. (It samples
-he PC every 30-rmilliseconds).

i1) Type tX anc Swat will display how much user memory it needs for the metering
code and tables.

2) Probe around to find a bléck of storage of the required size, and tell Swat by typing
ntX
where n is the first word of the block.
3) Proceed to run the program.
4) Once Swat gets control again you can type
$+X
to display the resuits and terminate the spying activity, or
$$+X

to display the results so far and continue the spying.

1.9. Miscellaneous

Y Will prompt for the name of a (text) file from which Swat commands should
be taken. Reading will continue across "proceeds” from breakpoints, but will
bz aborted if Swat is invoked by the keyboard or by the standard break-point
trap (77400b). ‘ ,

ntR Prints out the value of an R or S register n. You must have a RAM for this
to work, and n cannot be 37b or 77b.

2.10. Examples '
-0rD prints the value of X in octal, then decimal.

FUMC+3++N If If prints instructions 3, 4, and 5 of FUNC.

1107 sets location 1 to 7.

SWAT

LAEEL*B
75621B
SQRT3161C
LABEL+31G
0+T

0tF

2¢F

$+0

§+110
$+610

3. Expressions

‘For Xerox ln&:rnal Use Only -~ April 29, 1978
February 2, 1977

sets a break at LABEL

sets a break at location 7562B

118

calls the (user) function SQRT (the returned value is printed)

transfers to the third instruction after LABEL.
prints the PC

prints the parameters. of the most recent call

prints the parameters of the third most recently called procedure; then

prints the saved stack pointer (FLAST)
prints the return address (FRET)

prints the first local (if the procedure has 2 parameters).

Expressions are as in BCPL with the following exceptions

\
|

A string of digits is interpreted as octal unless suffixed by a ".

means exclusive or

means remainder

means Ishift for positive arguments, rshift for negative
means NOT

$ (not escape) is the base of the last opened stack frame (see tF above).

last frame.

. is the last opened cell
.PC is the address (sic) of the PC

WACL,...,.AC3 are the addresses of the accumulators

.CRY is the address of the carry bit

No function calls in expressions.

No relational operators (e.g. EQ)

No conditional expressions

No lv operation

Initially it is the

For Xerox Internal Use Only -- April 29, 1978
SWAT : February 2, 1977 119

3.1. Examples

~170 prints the ce'|l before the currently open «<ell.
+11t0 is like line-feed.

AC1106 sets AC1 to 6

PC1072

+P is like 721G

LPCtO I fIF If prints the PC and the AC's

The conventions for expression evaluation are not truly BCPL-like. “Ft0" will print the
first instruction of F if BLDR thought it was a procedure or label, but print the contents of
sta ic cell F iff BLDR thought it was a variable. If F started life as a variable, but had a
procedure assigned to it you must call it by "@F+C" instead of "Ft+C".

4. Resumable Files -

The file SWATEE is a snagshot of a running program and can be saved for subseqent
resumpiion or examination. You can create a copy of SWATEL by using COPY or, if you
are in Swat, typing tL and giving a file name. This copies SWATEE to the named file and
alppends some information internal to Swat -- the current symbol table and break point
data. ,
There are several ways to restart resumable files:

1. P'ress the boot button vwhile holding down the keys for the file.

2. Type the command (it is interpreted by the command processor)

RESUME file

If "file" is omitted SWATEE is assumed.

RESUME/S file

writes file onto SWATEE and invokes Swat.

3. While in Swat, type tQ and give a file name. The file is copied onto SWATEE and
Swat's internal information is restored to whatever was saved by the tL command that

createdd the file. If -he file was. created in some way other than tL, the internal
inforraation is reset to an empty state.

5. Invoking Swat with the Boot Button

At any time, press the boot button while holding down the keys for the file Dumper.Boot
(hopefully "DU"). This writes the existing merzory onto SWATEE with the omission of page
0 which is lost. "Also the display word (420) is cleared. Finally, Swat is invoked.

For Xerex Internal Use Only -~ April 29, 1978
SWAT February 2, 1977 120

6. Error Message Printing

Swat contains some facilities to aid in printing error messages. Because the Swat resident is
almost always present when a program is running, an error message can be printed by
simulating a Swat "break," and letting the Swat program decipher the error specification and
print a reasonable message.

If Swat is invoked by the #77403 trap instruction, the contents of ACO are taken to be a
pointer to a BCPL string for a file name; ACI1 is a pointer to table [errCode%ClearBit; pl;
p2; p3; pd.. 1, where errCode (0 le errCode le 32000.) is an error code, the p's are
'‘parameters,” and ClearBit is either #100000 (clear the Swat screen before printing the
message) or 0 (do not clear).

The intended use is with a BCPL procedure like:
let BravoError(code, pl, p2, nil, nil, nil) be

code=code%UserClearScreenBit
(table [#77403; #1401])("bravo.errors”, lv code)
// do a "finish" here if fatal error

The error messages file is a sequence of error messages, searched in a dumb fashion. An
error message is:

a. An unsigned decimal error number (digits only)
b. Followed optionally by:)
C Always clear the screen before printing the message
M (see below)
L Log the error via the Ethernet.
¢. Followed by a <space>.
d. Followed by text for the message, including carriage returns, etc.
If you \%'ish to refer to a parameter, give:

followed by a digit to specify the parameter number (1,2,...)
followed by a character to say how to print the parameter:
O = octal
D = decimal
S = string (parameter is pointer to BCPL string)
(example: $1D will print parameter 1 in decimal)
e. Followed by 5%

After the message is typed, if M was specified, the message "Type <control>K to kill, or
{control>P to proceed.” is typed out.

~ 7. Parity Error Information

When the Alto detects a parity error, Swat is usually invoked to print a message about the
details of the error. It then attempts to "log" the e-ror with an Ethernet server responsible
for keeping maintenance information. If the server is not operating, or if your Alto is not
connected to an Ethernet with such a server; simply strike the "Swat” key (<blank~bottom>),
and the familiar "#" will appcar.

In many cases, you will want to_continue execution of your program after a parity error is
detected. Simply type <control>P to Swat.

For Xerox lntevrnal Use Only -- April 29, 1978
SWAT ‘ February 2, 1977 121

8. Installation

Get the file InstallSwat.Run. Then invoke it to will create SWAT (the debugger), SWATEE
(the swapout file for the user's memory image), and Dumper.Boot. InstallSwat.Run may be
d:leted after it has been run once. se BOOTKEYS to discover the keys to depress for
Dumper.Boot. If the answer is not "DU" invoke

MOVETOKEYS Dumper.Boot DU

9. Caveats

1. Swat has about 1k of resident code in high core. This code is not changed when new
sukbsystems come in. Therefore re-toot if it seems to be in a bad state.

2. Instruction 77400B is used for breaks, and location 567B (in the trap vector) is used.

3. Interrupt channel 8 (00400B) is used for keyboard interrupts.

4. The resident disables interru[))ts 'on entry and enables them on exit (clobbering 500B) so
putting breaks in non-interruptable code is dubious.

5. A program fetching data from a broken location will get 77400B.

6. Vhile most interrupt routines are reasonably polite and always resume the interrupted
code where it left off, the politeness of Swat's keyboard interrupt is entirely in the hands of
lhé pgrrﬁon fat the controls. If he re-starts by saying 1P, all goes well; but he may say tG or
tC. erefore

(1) You should disable the keyboard interrupt by anding 77377B into 453B during
critical sections of code (once they are debugged).

(2) Expect occasional anomalies after t1C or G is used.
7. The mappings between symbols and addresses arz naive about BCPL's block structure
a) If a symbol is defined twice or more you get the lowest address.
b) An address is mapped into a procedure name plus a displacement for symbolic tyge
out (e.g. for tT). If procedurc A is defined inside procedure B, most of B's
addresses will be typed as if they were A's.

8. If a disk er_ror'[')revents swapping the offending disk control block and label are diéplayed
in the "boot-lights" manner.

9. Locations 700 through 706 are used to save the registers before each swap.
10. If a file created on a different disk is resumed by booting, invoking Swat may not work

because SWAT and SWATEE may not reside at the same disk addresses on the diffzrent
disks. This difficulty does not occur if the RESUME command is used.

For Xerox Internal Use Only -- April 29, 1978
Trident disk software - February 26, 1978 122

Software and Utilities for Trident Disks:
Tfs and Tfu

1. Introduction

This document describes Bepl-based software for operating any of the family of Trident
disk drives attached to an Alto using a "Trident controller card” (the software |g)wsently
deals with the T-80 and T-300 models). Hardware and diagnostic information can be found
iEn the document "Trident disk for the Alto" (on <ALTODOCS>TRIDENT.EARS), by Roger
ates.

The software documentation is divided into three parts: (1) a brief "how-to" section
describing thz software package available for operating the Trident; (2) a section describin{;
the utility program Tfu; and (3) a section describing the software package in more detail.
There is a short revision history at the end. (Documentation for the Triex lpro ram,
formerly includcd here, has been eliminated. Triex is now needed only for hardware
checkout and is not required. during normal operation.)

The Tfs package and utilities all assume that the disk is to be formatted with 9 sectors per
track, 1024 data words per sector. Thus a T-80 disk has a capacity (815 tracks, 5 surfaces, 9
sectors, 1024 words per sector) of 26,675 pages or 37,555,200 words. A T-300 (19 surfaces
rather than 5) has a capacity of 139,365 pages or 142,709,760 words; however, due to the
restriction_of virtual disk addresses to 16 bits, a single file system may utilizz only about 47
percent of this capacity, and it is necessary to construct multiple file systems in order to
make use of the entire disk.

Because of bandwidth limitations, it is unwise to operate the Trident disk while the Alto
display is on. Although the Tfs package will save the display state, turn it off, run the disk,
and restore the display for every transfer, the user may prefer to turn the display off
himself. The Tfs management of the display causes the screen to flash objectionably
whenever frequent calls to Tfs are underway.

The present version of the software corforms to the new Alto time standard and runs only
inder Operating System version 14 or newer.

2. Trident File System (Tfs) software package

The software for operating the Trident disk is contained in <Alto>Tfs.Dm, and consists of
the following relocatable files: Tfslnit.Br, TfsBase.Br, TfsA.Br, TfsWrite.Br TfsCreate.Br,
TfsClose. Br, TfsDDMgr.Br, TfsMNewDisk.Br, TfsSwat.Br, and TriConMc.Br. The decfinitions
file Tfs.D is also included.

Included also are the Trident microcode scurce Files, TriConMc.Mu and TriConBody.Mu.
These z\iie needed if you want to load other microcode into the Ram along with the Trident
microcode.

Thek LoadRam.Br file, formerly included as part of the Tfs, is now available as a separate
package. : ' ‘

For Xerox Internal Use Only -- April 29, 1978
Tridert disk software February 26, 1978 123

2.1. Initializing the microcode

Operating the Trident requires special microcode that must be loaded into the RAM before
disk activity can start. The procedure Loa¢Ram will load the RAM from a table loaded
into your program (it is actually part of TriConMc.Br). It will then "boot" the Alto in
order to start the ac[)propriale micro~tasks in the RAM. (This booting process is "silent” --
it does not re-load Alto memory from the file Sys.Boot, but instead lets your program
continue.) The standard way to call LoadRam to load the Trident disk microcode is:

external DiskRamImage
external LoadRam

let resuli=LoadRam(DiskRamlImage, true) //Load and boot
if result Is O then

sé"The Alto has no RAM or Ethernet board.")
Ws("l Cannct operate Trident")
finish

After LoadRam has returned successfully, the code of LoadRam and TriConMc may be
overlaid with data -~ they are no longer needed.

VWhen exiting a program that has micro-tasks active in the RAM, it is helpful to "silently"
boot the Alto so that all micro-tasks are returned to the ROM. If this is not done,
subsequent use of the RAM may cause some running micro-task to run awry. To achieve
the "silent boot,” simply call the procedure TFSSilentBoot() at 'finish' time or as part of a
"aser finish procedure'.

For further information, consult the LoadRam package documentation.

2.2. Initializing the Trident drive

Ornce the RAM has been loaded, the Trident disk can be initialized. The procedure TFSInit
will do this, provided that a legal file structure has previously been established on the drive
(sce Tfu Erase, below). The procedure returns a "disk object,” a handle which can be used
to invoke all the disk routines. This disk okject (or "disk" for short) can be (Fassed to
various Alto Operating System procedures in order to open streams on Trident disk files,
delete Trident disk files, etc. '

tridentDisk = TFSInit(zone, allocate [false], driveNumber [0], ddMgr [0], freshDisk [false])

zone You must provide a free-storage pool from which memory for the disk object
and possibly for a buffer window on the disk bit table can be seized. The
zone must obey the normal ccnventions (see Alto Operating System Manual);
zones created by InitializeZone are fine.

allocate This flag is true if you wish the machinary for allocating or de-allocating
disk space enabled. If it is enabled, a small DDMgr object and a 1024-word
buffer will be extracted from the zone in order to buffer the bit table (unless
you supply a ddMgr argument, described below).

driveNumber This argument, which defaults to 0, specifies the number of the Trident disk
drive being initialized. If the drive 1s a T-300, the left-hand byte specifies
the number of the fiie system to be accessed on that drive, in the range 0 to
2. (For further information, consult the section entitled '‘Disk Format'.)

ddMgr This argument, which defaults to 0, supplies a handle on a 'DiskDescriptor

For Xerox Internal Use Only -- April 29, 1978
Trident disk software February 26. 1978 _ 124

Manager' (DDM%r) object, whose responsibility it is to manage pages of the
Disk Descriptor (bit table), which, on the Trident, must be paged into and out
cf memory due to its considerable size. If this argument is defaulted, a
separate DDMgr wiil be created upon each call to TFSInit, at a cost of a little
over 1024 v-ords. If you intend to have multiple Trident drives open
simultancously, you may conserve memory by first issuing the call 'ddMgr =
TFSCreateDDMgr(zone)” and then passing the returned pointer as the ddMgr
argument -in each call to TFSInit, thereby permitting the single ddMgr to be
shared among all drives. (This argument is ignored unless the allocate
argument is true.)

freshDisk Mormally, TFSInjt attempts to open and read in the DiskDescriptor file in
order to obtain information about the file system. However, if freshDisk is
true, this operation is inhibited and the corresponding portions of the disk
object are set up with default values. This operation is essential for creating a
virgin file system.

triden:Disk. The procedure returns a disk object, or 0 if the Trident cannot be operated
for some reason. The most likely reasons are:

1. No Trident disk controller plugged into the Alto.
2. Mo such disk unit, or disk unit not on-line,

3. Can't find SysDir, can't open DiskDescriptor, or DiskDescriptor format is
incompatible. (These errors can't happen if freshDisk is true.)

Important: If the AC power to drive 0 is turned off or no drive 0 is
connected, it is not possible to operate any drive. (Drive 0 need not be on-
line, however.) This is due to a hardware bug that has been deemed too
difficult to fix.

A7ter TFSInit has been executed, the code can be overlaid, as it is not used for normal disk
operation.

2.3. Closing the Trident disk

When all operations on the disk are completed, the TFSClose procedure will insure that any
important state saved in Alto memory is correctly written on the disk. This step can be
omitted if the 'allocate' argument to TFSInit was false (assuming you don't mind the loss of
the storage that was extracted from 'zone' by TFSInit).

TFSClose(tridentDisk, dontFree [false])

The second argument is_optional (default=false), :nd if true will not perlﬁit the
DiskDescrintor Manager (DDMgr) to be destroyed. This option is useful in conjunction
with the 'ddMgr' argument to TFSInit.

2.4. Example

Following is an .example that uses the Trident disk system and demonstrates the procedures
describec above. Note that the calls on operating system disk stream routines all pass a
private zone to use for stream structures, rather than the default sysZone. The reason is
that streams on Trident disks require large buffers (1024 words) which quickly exhaust the
available space in sysZone. In addition, the stream routines will consume more stack space
when operating the Trident disk than they do when operating the standard Alto disk.

For Xerox Internal Use Only -- April 29, 1978
Trident disk software - February 26, 1978 125

Since the Alto OS does not know about Trident disks, a call to Swat will not properlr wait
for all Trident transfers to complete, with consequent undefined results. This problem is
casily remedied through use of an assembly-language Swat context-switching procedure
TFSSwat, which is included as part of the TFS package. The example shows how it is set
up.

//Example.bcpl -- TES Example
//Bldr Example TfsBase TfsA TfsWrite TfsCreate TfsClose TfsDDMgr
// TfsSwat Tfslnit LoadRam TriConMc

get "streams.d"

externalT[i:
SInit

TESClose
TFSSilentBoot
LoadRam
DiskRamiImage

OpenFile
Closes
Puts
DeleteFile

InitializeZone
SetEndCode
TFSSwatContextProc
IvUserFinishProc
lvSwatContextProc

static [savedUFP; savedSCP; TFSdisk = 0]
let Trylt() be

let driveNumber=0
let zonevec= vec 3000
let TFSzore = InitializeZone(zonevec, 3000)

//Initialize the RAM:
let res=LoadRam(DiskRamImage, true)
if res Is 0 then [Ws("Cannot load the RAM."); finish]

//Set up to cleanly finish or call swat
saved UFP = @lvUserFinishProc
@lvUserFinishProc = MyFinish
savedSCP = @lvSwatContextProc
@IlvSwatContextProc = TFSSwatContextProc

//Initialize the disk:
TFSdisk = TFSInit(TFSzone, true, driveNumber)
if TFSdisk eq 0 then)
[Ws("Cannot operate Trident disk™); finish]

//Reclaim space used by initialization code: ')
SetEndCode(TFSInit) //Overlay TFSinit, LoadRam, TriConMc

//Now we are ready to operate the disk:
DeleteFile("Old.Bad", 0, 0, TFSzone, 0, TFSdisk)

For Xerox Internal Use Only -- April 29, 1978
Tridert disk software February 26, 1978 126

let s=OpenFile("New.Good", ksTdeeReadWrite, 0,0,0,0,
TFSzone, 0, TFSdisk)

for i=1 to 1000 do
for j=1 to 1000 do Puts(s, $a) //Write a million bytes!

Closes(s)
finish

]

and MyFinish{) be

if TFSdisk ne 0 then TFSClose(TFSdisk)
@IvUserFinishProc = savedUFP
@lvSwatContextProc = savedSCP
TFSSilentBoot()

3. Trident File Utility, Tfu

The Tfu utility (saved on <Alto>Tfu.Run) is used to certify a new Trident pack for
operation, to initialize a pack with a virgin file system, and to perform various file copying,
deleting, and directory listing operaticns. Commands are given to Tfu on the command
line: immediately following the word "Tfu" is a sub-command name (only enough characters
of a sub-command are needed in order to distinguish it from other sub-commands),
followed -by optional arguments. Several subcommands may appear on one command ling,
separated by vertical bars. Thus "TFU Drive 1 | Erase” will erase drive 1. There must be a
space on each side of the vertical bar.

In what follows, an "Xfile" argument is a filename, perhaps preceded by a string that
specifies which disk is to be used:

s:name.extension -- use standard Alto system disk
tn:name.extension -- use Trident drive n (n=0 to 7)
name.extension -~ use default disk (Trident)

The "cefault disk" is always a Trident drive; the icentity of the drive is set with the Drive
command.

TFU DRIVE driveMumber

This command sets the default Trident drive number to use for the remainder of the
command line. The default drive is effectively an 'argument' to the CERTIFY,
ERASE, DIRECTORY, CONVERT, and BADSPOTS commz‘mds.' '(On a T-300, file

systems 0, 1, and 2 are specified as 'x', '40x’, and '100x’, where '<' is the actual unit
number.)

TFU CERTIFY [passes]

This command initializes the headers on a virgin Trident disk pack, then runs the
specified number of passes (default 10) over the entire pack, testing it using random
data. Any sector exhibiting an uncorrectable ECC error, or correctable ECC errors
on two or more se¢parate occasions, is permanently marked unusable in the pack’s bad
page list. This information will survive across all subsequent normal file system
operations (in:luding TFU ERASE), but may be clobbered by the Triex program,

For Xerox Internal Use Only -~ April 29, 1978
Trident disk software February 26, 1978 127

This command should be executed on every new Trident pack before Rerforming any
otter operations (such as TFU ERASE). 10 passes of U CERTIFY are adequate
for reasonably thorough testing, though more are recommended for packs to be used
in applications requiring high reliability. The running time for TFU CERTIFY is
approximatelv 3 minutes per pass on a T-80 and 9 minutes per pass on a T-300.

TFU CERTIFY may be terminated prematurely by striking any character to get its
attention, then typing 'Q'. Subsequent runs of TFU CERTIFY will not clobber the
existing bad page information but rather will append to it. It is recommended
(though not necessary) that TFU CERTIFY be executed before each TFU ERASE so
as to pick up any new bad spots that may have developed.

TFU CERTIFY ordinarily asks you to confirm wiping out the disk before going
ahead and doing so; however, the /N global switch may be used to indicate that no
confirmation is necessary.

TFU BADSPOTS

Displays the addresses of all known bad spots on the disk pack mounted on the
default drive. o

TFU ERASE [tracks]

This command initializes (or reinitializes) a file system on the pack mounted on the
default Trident drive, after asking you to confirm your destructive intentions
(overridden by the /N global switch). The tracks argument S{)ecifies how many
tracks of the drive are to be included in the file system; it defaults to the maximum
possible. If smaller numbers are used, the initialization is correspondingly faster. In
any case, tracks beyond the one specified are available for use outside the confines of
the file system. (INotz that onc "track™ is 45 pages; this corresponds to one cylinder
on a T-80 and to nothing in particular on a T-300.)

The disk pack should previously have been initialized and tested by means of the
TFU CERTIFY command.

TFU COPY Xfile « .Xfile

This command copies a file in the direction of the arrow. The destination file ma
be optionally tollowed by the switch /C, in which case (provided it -is a Trident dis
file), the file will be allocated on the disk at consecutive disk addresses. (Note: More
Frecisely, an_attempt will be made to perform such an allocation. If the attempt
ails, you will sometimes get an error message. The best way to verify that a file is
contiguous is to use the "address” command, below.)

TFU CREATEFILE Xfile pages
This command creates a contiguous file named Xfile with length "pages.”

TFU DELETE Xfile
This command deletes the given file.

TFU DIRECTORY [Xfile]
This command lists the directory of the default Trident drive on the file Xfile; if
Xfile is omitted, each entry will be typed on the display. When the display fills up
or the listing is finished, Ttu waits for you to type any character before proceeding.
A somewhat more verbose listing can be achieved with TFU DIR/V.

TFU ADDRESS Xfile

For Xerox Intarnal Use Only -- April 29, 1978
Tridant disk softviare . February 26, 1978 128

~ This command reads the entire file and prints a list (in octal) of virtual disk
?_ddresses of the file pages. Typing any character will proceed to the next output
ine.

TFU CONVERT

An incompatible change in the format of DiskDescriptor was made in the Tfs release
of July 24, 1977. The current Tfs software will refuse to access Trident disks written
in the old format (specifically, TFSInit will return zero). The TFU CONVERT
command reformats the DiskDescriptor to conform to current conventions (it is a
no-op if applied to a disk that has already been converted). Once you have
converted all your Trident disks, you should take care to get rid of all programs
loaded with the old Tfs, since the old Tfs did NOT check for version compatibility.

TFU EXERCISE passes drive drive drive ...

This command embarks on a lengthy "exercise" procedure; it is repeated 'passes’ times
(default=10), and uses the disk drives listed after 'passes’ (if none are specified, all
drives that are on-line are used). It operates by making a series of files (test.001,
test.002 etc.) on the disk packs, and performing various copying, deleting, writing and
positioring operations. The files are deleted when the exercise finishes. [t is not
essential that the packs be fully erased initially; the procedure for building test files
will try to fill up the disk, just short of overflowing. The test takes 20 to 30
minutes per full pack per pass.

One or more of the following global switches may be specified (i.e., a command of
the form TFU/switch EXER.S: _ :

/W Use a systematic data pattern when writing files, rather than arbitrary garbage.

/C Carefully check the data read from the disk (implies /W). Use of this switch
makes the test run considerably slower than nermal.

/D Leave the display on during Tiident disk transfers. This causes data late errors
to occur and thereby exercises the error recovery logic.

/E Turn the Ethernet on duvring Trident disk transfers, with results similar to /D.

4. The Tfs software package in more detail

If programmers wish to interface the the Trident disk at levels lower than Operating System
~streams, the Tfs package provides .an additional interface. The "disk” object created by
" TFSInit has a number of abstract operations defined on it, which the Tfs package
implem:nts. Docuraentation for these operations can be found in the Alto Operating System
Manual in the section labeled "Disks and Bfs." The catalog of available procedures is:

In TfsBase.Br and TfsA.Br:
ActOnDiskPages(disk, CAs, DAs,)
RealDisk DA(disk, vda, ...)

Virtual DiskDA(disk,)

In TfsWrite.Br: .
WriteDiskPagcs§d|sk, CAs, DAs,)
AssignDiskPage(disk, vda)*

In TfsCreate.Br i
CreateDiskFile(disk, name,)*

For Xerox Internal Use Only -- April 29, 1978
Trident disk software February 26, 1978 129

DeleteDisk Pages(disk, CA, ...)*
ReleaseDiskPage(disk, vda)*

The items with *'s following may be invoked only if the disk object was created with the
‘allocate’ argument set to true. riteDiskPages may be invoked even if ‘'allocate" is false,
rovided it never allocates new disk space. It should be noted that the standard Alto
streams pickage invokes WriteDiskPages even for files opened for reading only, and that
TFSInit uses Streams to read in the DiskDescriptor. Hence it is necessary that all of the Tfs
modules (TfsBase, TfsA, TfsWrite, TfsCreate, and TfsDDMgr) be loaded in order to avoid
undefined 'external’ references. However, after inilialization is complete, the space occupied
by TfsCreate and TfsDDMgr may be reclaimed if you do not intend to allocate or delete
pages, and TfsWrite may be discarded if you are not using streams but rather are calling
ActOnDiskPages directly.

The TfsWrite and TfsCreate modules require that TfslDDMgr.Br (or some equivalent) be

loaded. This module provides the standard primitives necessary for managing the

DiskDescriptor. The DDMgr is an ‘'object!, so it may be replaced by one of your own

devising so long as it provides equivalent operations. An example of this would be to

manage pages ot the DiskDescriptor as part of a rnore general virtual memory mechanism

g)erhaps through use of the Alto VMem package). A complete description of the required
DMgr operations may be found- as comments at the beginning of TfsDDMgr.Bepl. -

In addition to the standard "actions" defined in Disks.d, Tfs permits the following. These
actions are defined in Tfs.d and are available only on Trident disks.

DCreadLnD Read header, read label, no data.
DCreadnD Check header, check label, no data.
DCwriteLnD Check header, write label, no data.

These actions neither read nor write the data record and therefore do not require a buffer
to be provided. .

CreateDiskFile has a special feature for operating the Trident disks -- an optional seventh
argument. If this argument (pageBuf) is present, it is assumed to point to a 1024-word
buffer that will be used to create the leader page for the file. This feature may be used to
save stack space in CreateDisk file and/or to write interesting data into the portion of the
leader page not used by the file system (only the first 256 words are used by the file system;
the remainder has no standard interpretation).

VirtualDiskDA returns fillinDA as the virtual address for a real disk address that is either
illegal or outside the confines of the file system. :

.The procedures for creating and destroying the disk object, TFSInit and TFSClose, were
explained above. The procedure TFSWriteDiskDescriptor(disk) will write out onto the disk
afl vital information about the disk that is presently saved in memory. If you write
programs that run the disk for extremely long Feriods of time, it is wise to write the disk
descriptor occasionally. The only automatic call on TFSWriteDiskDescriptor is performed
by TESClose.

TfsinitBr contains a procedure TFSDiskModel(disk) that returns the model number (80 or
300) of the drive referenced by the disk handle. This is useful in Jdeciding whether to open
a second or third file system on a T-300. . -

A lower level of access is permitted with the routines TFSInitializeCbStorage, TFSGetCb,
and TFSDoDiskCommand, analogous to the Bfs routines described in the O1peralm System
Manual. Users of these routines may wish to retrieve source files for the Tfs package and

For Xerox Int-ernal Use Only -~ April 29, 1978
Trid:nt disk software February 26, 1978 130

examine the definitions in Tfs.D and the actual disk operation in some detail. Sources are
on <AltoSourze>TfsSources.Cm. :

4.1. TFSNewDisk

The TFSiHewDisk procedure, dzfined in TfsNewDisk.Br, "erases" a_disk (formattin% it and
making all its pages a[)pear free) and creates a virgin Alto file system (SysDir and
DiskDescriptcr). It is called by:

success = TFSNewDisk(zone, driveNumber [0], diskSize [default])

The zone passed to TFSNewDisk must be capable of supplying about 3500 words of storage.
If the drive is a T-300, the driveNumber mag include a file system number (0 to 2) in its
left byte, as is the case for TFSInit. The diskSize argument is the number of disk pages to
be included ir. the file system; it defaults to the maximum possible, which is all of a T-&0
or a little less than half of a T-300. TFSNewDisk returns true if successful.

4.2. DiskFindHole

The procedure DiskFindHole, in DiskFindHole.Br, can be used to locate a "hole" of
available space in the disk bit table. The cail:

virtue1DA=DiskFindHcle(disk, nPages)

will attempt to locate a contiguous hole nPages long. If it fails, the procedure returns -1,
otherwise the virtual disk address of the first page of the hole.

In order to create a contiguous file, it is first necessary to create the minimal file with a
leadler page at the given cisk address and then to use Operating System or Tfs routines to
extend the file properly. The first step is achieved by calling TFSSetStartingV DA(disk, vda),
where 'vda' is the desired disk address (i.e., the result returned by DiskFindHole). This
valuz will be used to bias the selection of an initial disk address for the leader page. Once
the file is creazed, it is wise to extend it to its final length immediately, as other disk
allocations might encroach on the "hole" that was located.

For example, if we are using the Operating System, we might proceed as follows:

let nPages=433 //Number of data pages needed.
let vda=DiskFFindHole(TFSdisk, nPages+2)

//{+2= 1 for leader, 1 for last pa;xe)
if vda eq -1 1hen/E Ws("Cannot find a hole big enough")]
TFSSetStartingV DA(TFSdisk, vda)

let s=OpenFile("New.Contiguous" ksTypeWriteOnly,0,verNew,0,0,0,
TFSzone, 0, TFSdisk)

l’cl)sitic(n)Page(_s, nPages) //Make the file the right length

Closes(s

5. File structure on the Trident disk

The file structure built on the Trident disk by Tfs (Trident File System) is as exact a copy
of the Alto file structure built Bfs (Basic File System) as is possible. Certain exceptions are
resen: due to hardware and microcode differences. The Alto Operating System Reference
anual should be consulted for all file formats and internal information not presented here.

For Xercx Internal Use Only -- April 29, 1978
Trident disk software - February 26, 1978 131

5.1. Disk Format

The Trident disk unit and pack, as it comes from Calcomp, is set up to run with the
following parameters:

number of cylinders: 815
number of surfaces: 5 (T-80), 19 (T-300)

TFU CERTIFY will format each surface in the standard Tfs format:

number of sectors per track: 9
heiader words per sector:

label words per sector: 10
data words per sector: 1024

Thus, a T-80 disk will have 9*5*815 = 26,675 sectors = 37,555,200 words. Sector 0 will not
be used by Tfs. All but sector 0 will be available to the file system.

Ordinarily, Tfs utilizes only the first 383 cylinders (= 65,493 sectors = 67,064,032 words) of
a T-300 disk. This is the largest integral. number of cylinders that can be addressed using a
16-bit virtual disk address. The 16-bit virtual address limitation is deeply embedded in all
existing higher-level Alto file system software, so changing the Tfs interface to permit a
larger virtual address space would be impractical.

Instead, Tfs permits one to obtain another, entirely independent disk object for referencing
the second 383 cylinders of the same T-300, thereby permitting a separate, self-contained
- filz system to be constructed. This is done by passing a 'l' in the left byte of the

‘driveNumber' argument to TFSInit or TFSNewDisk (that is, drive '#400"' refers to the
second file system on a T-300 pack mounted on drive 0). A third file system (number "2’
drive '#1000") may also be constructec, but it contains onI[\; 49 cylinders %: 8379 pages, only
(percent of the disk's total capacity), so doing so is probably not worthwhile.

5.2. Disk Header and Label

On the Trident, a real disk address requires two words to express, rather than the single
word on the Diablo 31. Also, microcode considerations gave rise (o a reordering of the
entries in the Label. The result is that both the header and label formats are different for
the Trident. The Trident format follows. If you are interested in this level of detail, the
file T'fs.d (contained within <Alto>Tfs.dm) should be consulted.

// disk header
structure DH;

track word
head byte
sector byte

// disk label
structure DL:

ileid word IFID
packID word
numChars word
pageNumber word
previous @DH
next @DH

1 .
manifest DL = size DL/16

For Xerex Internal Use Only -- April 29, 1978
Trident disk software February 26, 1978 4 132

5.3. Disk Descriptor

Every valid Tfs disk has on it two files which must contain the state information necessary
to maintain the integrity of the file system. The Tfs system directory, "SysDir.", is ider.tical
in format ancd purpose with its Bfs counterpart. However the Tfs disk descriptor file,
"DiskDescriptor.”, while identical in purpose, is formatted differently to allow easy
manipulation of the bit table (which, for the Trident, has to be paged in and out of
memory). This difference in format should not be evident to even low-level Trident users
(unless you writ: your own DDMgr), but is mentioned here for completeness.

5.4. Bad Page Table

Tfs and Tfu observe the standard Alto file system convention of recording -2's in the labels
of all known bad pages. However, if this. were the only location of such information,
"erasing” a disk (to create a virgin file system) would require two passes over the entire
disk: one to collect the addresses of all known bad pages and one to mark all remaining
pages deleted. This would require an excessive amount of time, particularly on a T-300.

A duplicate table of known bad pages is therefore recorded on physical page zero (=
cylinder 0, head 0, sector 0) of the disk. This page is not available to the file system for
other reasons having to do with end-of-file detection. The format of the table is given by
the BPL structure, which is defined in Tfs.d. Mote that the entries are REAL disk addresses
and can therefore refer to any page on the disk regardless of wtether or not such a page is
accessible through the file system. (A T-300 has only one bad page table, even if it
contains several file systems.)

The TFU CERTIFY command is responsible for testin% the pack and building the bad page
table. The TFSNewDisk procedure écalled by TFU ERASE) is careful not to clobber this
information but rather to propagate it to the other places where it is needed (namely, the
disk bit table and the labels of the bad pages themselves). As a result, the bad page
information, once initialized, will survive across all normal operations on the disk, including
"erase" operations.

There does not presently exist any facility for manually appending to this list when new bad
Fage:; are disccvered. Experience to date with the Trident disks (which provide correction
or error bursts of up to 11 bits in length) has shown that such a facility is probably not
needed. Therough testing of disks (using TFU CERTIFY) is recommended before putting
them into regular use, however.

6. Revision History

July 24, 1977
Incompatibilities:

The formet of DiskDescriptor has changed. The new Tfs cannot access old disks or vice
versa. See description under "TFU CONVERT".

There is now_another file, TfsA.Br, that is logically part of TfsBase.Br and must be loaded
along with it. It contains assembly-language code formerly included as "tables” in
TfsBase.Br. :

New Features:

Partial support for T-300 disks.

"For Xerox Internal Use Only -- April 29, 1978
Trident disk software February 26, 1978 133

Conforms to new corventions for maintaining addresses of known bad pages.
TFSInit checks for valid SysDir leader page and DiskDescriptor version.

Count of bit table discrepancies added to DiskDescriptor. (These are pages falsely claimed
to be free in the bit table.)

VirtualDiskDA returns filllnDA for illegal real disk addresses.
Additional Trident-specific disk actions.

Tfs is now entirely reentrant, so it is safe for the ldle() procedure to give control to another
process that in turn calls Tfs procedures.

October 21, 1977
Incompatibilities:

The former TfsWrite module has been'_broken into four pieces: TfsWrite, TfsCreate,
TfsClose, and TfsDDMgr. In most applications, all four must be loaded.

The: 'sharedBT' argument to TF3lnit has been replaced by a 'ddMgr' argument. The
mechanism for sharing a bit table buffer among multiple drives has been entirely changed.
(Programs that omit this argument are unaffected by the change.)

The TFSCreateVDA static has been removed. In its place is a new proéedure
TFSSetStartingVDA{disk, vda) that serves the same purpose.

The syntax of the TFU EXERCISE command has been changed. It is now 'TFU EXERCISE
<{passes> <list of drives>', and <list of drives> defaults to all drives that are on-line.

New features:

Complete support for T-300 disks. In conjunction with this, the TFSDiskModel procedure
has been added.

It is now possible for DiskDescriptor pages to be managed ex.ternall[v)‘({erhaps. through some
sort of virtual memory mechanism) by use of a user-defined 'DiskDescriptor Manager'
object. :

TFSSilentBoot procedure added.

November 9, 1977

Incompatibilities: None.

New features:

TFU CERTIFY and TFU BADSPOTS cormmands added. TFU CERTIFY initializes the
headers on a virgin disk pack and then runs repeated tests over the entire pack, permanently
recording any bad spots that it finds. This command replaces all the normal uses of the
Triex program, documentation for which has been removed.

Microcode modified for more efficient reading on Alto-IIs (by about 25%).

February 26, 1978

Incompatibilities: Software updated to new time standard; will not run under OS versions
earlier than 14, v

For Xerox Internal Use Only -~ April 29, 1978
Trident disk software . February 26, 1978 134

New features: Microcode source now in two parts, to facilitate combining it with other
microprograms. .

For Xercx Internal Use Only -- April 29, 1978
VIEWDATA September 9, 1977 135

ViewData -- 2D projections of 3D data on Display Screen

ViewData is a BCPL subsystem that will draw a picture of a file of data on your dispaly
screen, and allow you to interactively control your point of view on the data. It handles
only a two-dimensional array of single-word values (i.e. a three-dimensional surface, a
function of two variables evaluated over a regular finite grid). Here is a list of features:

1) ViewData accepts input in the simplest possible file format: an optional header of an
number of words (with any contents, which are ignored), followed by a block of (mgned%
data words of any size, with any dimensions.

2) ViewData takes all parameters from a dialog with the user via keyboard and mouse.
By specifying different header sizes and dimension sizes, the user can exercise limited
control over the selection of data from his file.

3) ViewData takes all graphical parameters from screen points clicked with the mouse.
A point of view is specified by clicking the screen positions of three corners of the data
array. Zooming is accomplisged by clicking opposite corners of the rectangle to be
expa]ndked. Prompts appear belcw the plot region to indicate what points and/or switches
to click.

4) ViewData contains a call to DCBPress to allow generation of a one-page output file
with a picture of your data. This can be annotated by Markup and printed by an
appropriate server. With PressEdit, it can be editted into a report.

'5) ViewData uses the new PlotStream package (to be released soon) to provide a display
interface which is transparent to the average programmer; thus the program is easily
modified to better suit your data viewing requirements.

6) ViewData is reasonably small, especially if one deletes unneeded routines from the
various files which are loaded with 1t (MathUtil, SDialog, UtiiStr, PlotStream,
FractionProduct, DCBPress).

Getting and Running Viewdata:

Use FTP to retreive viewdata.run. If you need some sample data, use the FTP Load
command to get Test.Data from ViewData.Dm (stored with sources). Execute ViewData and
default all the parameters with CR to get a sample display. Using the mouse, follow the
instructions of the prompts to zoom, redraw in a new orientation, or overview {zoom back
out to the highest level). After you finish by pressing all three mouse buttons at once, you
have the options of producing a press file, restarting (possibly with a new data file), or
quitting.

For Xerox Iniernal Use Only -- April 29, 1978
New Disks April 29, 1978 136

Making a new Alto disk

This document describes procedures for creating a new disk, either by copying the disk or
bv using the File Transfer Program. It may be helpful to refer to documentation for
Copydisi and FTP.

I

The normal way to obtain a new, clean disk is to copy one of the Basic Alto Disks (Non-
Programmer's, BCPL Programmer's, Mesa Programmer’'s, or Proofreader s) usilhg' C(Zipydlsk.
You will need an Alto with a dual disk drive. Place the Basic Alto Disk into disk drive 0.
Place the new disk into disk drive 1. Type

>NetExec
>CopyDisk
*Copy from: dp0
Copy to: dpl

Copydisk will copy disk 0 to disk 1, overwriting everything on the disk.

You can also copy the Basic disk from one Alto to another over the Ethernet. The
CopyDisk documentation explains how to do this.

Thgre ghould be a date on the label of the Basic Alto Disk which tells when it was last
upaated.

An alternative way of building 2 new disk from scratch is to erase it by means of the
Install procedure, then use FTP to retrieve the subsystems and other files that you need.

First, bootstrap the NetExec by booting the Alto with the BS and single-quote keys
depressed. Then type:

>Sys.boot

This will load a coby of the OS from the network. When it starts up, it will ask ycu if you
want to install the OS; respond 'Y'.

Install will ask if you want the long dialog; respond 'Y'. Then it will ask if you want to
erase a disk. Reply 'Y'. It will ask you for the name of the local file server and the name
of the directory on that server from which to obtain files (the correct response to the latter
question is usually 'Alto"). Finally, it will ask the usual questions about your name, the disk
name, and the password.

When Install has finished initializing the ‘disk it will run FTP to obtain the Executive.
Now, to obtain current versions of the 'basic’ software type

>ftp file-server ret/c <alto>newdisk.cm

>@newdisk.cm@ _

where 'file-server' is the name of your local file server.

After this has completed, to obtain additional software for a 'basic non-programmer's disk’
type

>£andisk.cm@

To obtain additional software for a 'basic BCPL programmer's disk' type
>@pdisk.cm@

To obtain additional software for a 'basic Mesa programmer's disk' type

For Xerox Internal Use Only -- April 29, 1978
New Disks : April 29, 1978 137

>@mesadisk.cm@
.

You can copy files from your old disk to the new one in two ways. One is to put them
onto a file server and retrieve them with FTP. If there arz many, it is a good idea to
package them .into a dump file. The other way is to copy them from the old disk on one
/}\flto to the new disk on another Alto. On your new disk, type

tp

On the Alto with the old disk, type
>ftp <Host name> store/c <filenamel> <filename2> ...

<{Host name> is the name of the Alto which has the new disk.

The easiest way to specify and transfer lots of files is to use DDS (if ycu have it on your
old disk) to select the desired files, then issue the <Send to ..> command and type in the
name of the Alto with your new disk.

Without DDS, a wdy to specify lots of files is to obtain a file with all your file names by
typing
>*<control-X><control-U><return><return>

This will automatically invoke Bravo and read in 'line.cn’. You may then edit line.cm to
exclude the files which you do not want to transfer and insert the necessary FTP commands,
thereby creating a command file which may be invoked in the usual way. For example, at
the teginning of the file insert ,

ftp <Host name> store/c

then delete everything except the files which you want to transfer. 'P'ut the command string
onto a file. 'Q'uit out of BRAVO and type
>@foo@

where 'foo’ is the name of the file which you just created with BRAVO. The selected files
will be sent {o the waiting Alto with the new disk.

Executing either variant of procedure 1 to erase and initialize your disk, followed by
g.rokcczdure IT to transfer all of your files using FTP, is a good way to compact a fractured
isk.

For Xercx Internai Use Only -- April 29, 1978
For PARC Alto Users April 29, 1978 138

1. PARC Information

1.1. Getting Started |

Each administrative group in Parc handles disk pack allocation differently. Ask your
secretary how to get a disk.

A set of BASIC ALTO DISKS is kept in a rack near the Altos in the Maxc room. These
disks are recreated once a week. The date when a disk was last created is on its label.
Procedures for copying a Basic Alto Disk to your new disk are described in the "new disk"
section of this document.

1.2. MAXC Directories for Alto Software

‘Thek <CALTODOCS> directcry contains documentation for the subsystems and subroutine
packages.

The <ALTO> dire:tory contains current versions of all the Alto programs. Programs are
normally kept in executable - form; thus the CopyDisk program eppears as
(ALTO>CopyDisk.Run. In addition to the executable file, some programs also have a
symbol file on <ALTO>. The symbol file for CopyDisk is <KALTO>CopyDisk.Syms. This
f1e is useful to the author when something goes wrong with a subsystem, but it is not
normally reeded by users. Subsystems which need- more than one file, either because the
have overlays or because they need data files, should have the individual files stored,
together with a command file which may be run to retrieve each file via FTP. The
command file should have the extension .CM. Definition files have the extension .D.
These files are useful only to programmers.

Subroutine packages are kept on <(ALTO> with an extension of .BR or as "dump"” files
(extension .DM) if several files Lelong together as a package.

The <ALTOSOURCE) directory contains_the source files for the §ubsysiems and subroutine
packages. It also contains the PUB files for the documentation which is on (ALTODOCS>.

1.3. Alto Software Maintenance Procedure

The maintainer of a subsystem or subroutine package handles a new or revised release in the
following manner:

A. Copy a dump file with a name of the form SubsystemName.DM and the following
contents to <ALTOSOURCED>:

1) The source files from which the subsystem may be created.

2) The command files which are needed to create the subsystem from the enclosed
source, unless the creation procedure is "obvious." The ftollowing are the usual
ingredients:

a) A command file containing statements to compile the enclosed source.
Compiler messages should be written to a file. For example:

BCPL/F FOO.BCPL.
The filename should be in the format, COMPILEsubsysMName.CM.

For Xerox Internal Use Only -- April 29, 1978
For PARC Alto Users April 29, 1978 139

b) A command file to load the files which were produced in step a. For
example:

BLDR FOO
The filename should be in the format, LOADsubsysName.CM.

If the subsystem is small, the two command files may be combined
into one. The name should be in the format,
CREATEsubsysName.CM. The following example will create the
package for subsystem FOO.

BCPL/F FOO.BCPL; BLDR FOO

¢) A command file containing statements to save all relevant files in
subsysName.DM, e.g. the file DUMPFOO.CM would contain;

DUMP FOO.DM FOO.BCPL CREATEFOO.CM DUMPFOO.CM

B. When you have a change (o make to documentation, or wish to introduce new
documentation into the system, the following three steps are required:

1. Retrieve the relevant .PUB file from <ALTOSOURCE>. The file name is in the
format, sys.PUB, where 'sys' is the name of the subsystem or subroutine package. If you are
creating brand new documentation, start with the file
{ALTGSOURCE>ALTODOCTEMPLATE.PUB, which contains the necessary Pub
incantations and some instructions to authors.

2. Edit the pub file. Pass it to PUB-- a .TTY version of the documentation will be
produced.

3. When you are finished, copy the pub file back to <AILLTOSOURCED, and copy
the .-TTY version to <ALTODOCS>.

-Please Le sure to copy the pub files from <ALTOSOURCE> afresh each time you adit them,
because they may have been edited to produce expurgated versions (for distribution outside
PARC), to produce indexes, remedy formatting problems, etc.

Please try to avoid needless references to PARC or Maxc facilities. For example, it is
frowned upon to mention the <ALTO> directory as a place to_find something. That is
assumed for PARC users. Similarly, avoid needless references to GEARS or EARS.

C. Copy files needed for the new release to <ALTOD.

D. Send a message to Alto users describing the changes which will be effective with this
release. The list of Alto users is on the file, <Secretary>AltoUsers.DL. The subject of the
message slhould be the name of the subsystem or subroutine package. Try to keep the
message short.

Passwords: The password io all Alto-related directories on MAXC is ISFWGI. Software

rnaintainers are cautioned to altzr only files for which they will take responsibility. Feel
tree to archive old versions, but please leave the current version of all files.

1.4. Alto Documentation

Formal documentation is provided in two forms. a "perusal” form, which can be
conveniently typed at a TI or VTS terminal on Maxc or perused with Bravo on an Alto, and-
a "notebook" form, which can only be printed on Ears or a Press printer, and may have

For Xerox Internal Use Only -- April 29, 1978
For PARC Alto Users April 29, 1978 140

fancy illustrations or fonts in it. Informal "message" documentation can be extracted from
the CALTOXMESSAGE.TXT file. :

A. The "perusal” documentation is always stored on <ALTODOCS> under a file name like
sys. TTY, where "sys" is the name of the subystem or package you are interested in. For
example, the documentation for a subroutine package, FOO, would be found on
CALTODOCS>FOO.TTY. There is one exception to this rule: for very simple subsystems
the documentation is in <ALTODOCS>SMALLSUBSYSTEMS. TTY.

B. The "notebook" documentation is packaged in larger packages to reduce storage overhead
and to provide mecre manageable sets of documentation for printing. Currently, the
following files are maintained in notebook-style:

Alto User's Handbook. This document is available only as a printed, bound manual.
It contains the Non-Programmer's Guide to the Alto, and manuals for Bravo,
Markup, Draw, and FTP.

BRAVO.EARS, MARKUP.EARS, DRAW.EARS, NSIL.EARS, GYPSY.EARS.
Currgntly, these subsysteins have their own separate Ears documentation.

OS.EARS. Operating System manual.
BCPL.EARS. BCPL manual.

SUBSYSTEMS.EARS, .PRESS. Documentation for most Alto subsystems. These are

: arranged alphabetically, with headings to indicate which system is being
described. A directory at the front of the file contains documentation about
very simple subsystems. The last section of this manual contains special
information relating to Altos at PARC--where to find the software, how to
maintain it, etc.

PACKAGES.EARS, .PRESS. This contains documentation for the software packages
available for the Alto. A directory at the front of the file contains
documentation about very simple packages.
ALTOHARDWARE.EARS, .PRESS. This is the "hardware" manual for the Alto.
TRIDENT.EARS. Documentation for the Trident disk controller.
These files are formatted, and should therefore be printed with

@EARS FOO.EARS -- or -- PRESS FOO.PRESS
C. The file CALTO>MESSAGE.TXT contains all of the information which has been sent to
Alto users with SNDMSG. Information about recent changes to a specific subsystem may be

selected by using the.'subjzct string’ option of the MSG subsystem. For example, you may
type .

MSG <ALTO>MESSAGE.TXT T S FOO
Or you can read the entire file by saying
File: CALTO>MESSAGE.TXT

to READMAIL. Every six months this file will be purged and its old contents left on the
next version of OLDMESSAGE. TXT.

" For Xerox Internal Use Only -- April 29, 1978
For PARC Alto Users April 29, 1978 141

1.5. Command Files

In addition to th: subsystems, packages, and definition files, the following command files
may be found on the <ALTO> directory:

NEWDISK.CM: creates a minimal systtm on a new disk. See the NewDisk
procedure, in the Alto Subsystems manual.

DISTDISK.CM: creates the disk for distribution to other Xerox sites. NEWDISK.CM
must be run first.

MESADISK.CM: creates a Basic Mesa Disk. NEWDISK.CM must be run first.
NPDISK.CM: creates a Non Programmer's Disk. NEWDISK.CM must be run first,
PDISK.CM: creates a Programmer's Disk. NEWDISK.CM must be run first.
PROOFDISK.CM: creates a ProofReader's Disk. NEWDISK.CM must be run first.

INDEX

<ALTO>
<ALTODOCS>
<ALTOSOURCE>
<{control>P
Analﬁze

ANSRV

ASM

BCPL

BLDR

Boot Files
BOOTFROM
Booting
BOOTKEYS
BRAVYQ
BUILDBOOT

CallSubSys
CHAT

CLEANDIR

Com.Cm

command processing
OPY

COPYDISK
CREATEFILE

DDS
DEFAULT.ED
DELETE
DIAGNOSE
disk
cli)jsk]Boot.Run ,
1Ispiay protoco
DMT |

DMT.BOOT
Documentation
DPRINT
DRAW

DUMP

Dump Format
Dumper.Boot

EARS

EMPRESS

EtherBoot

EtherNet loader
EXECUTIVE ,
Executive Commands

FEARS
FILESTAT
FIND

FTP
GEARS
Gobble
GPR-

illustrator

For Xerox lntérnal Use Only -~ April 29, 1978

.....

. - . .

.....

.....

April 29, 1978

.....

. .

oooooo

......

......

.....

-
\D

SN
w W
—

V=)

PINWELHN NG

Yt bk U1y
S ON
=N

-

53

115, 119, 121

74, 106, 107
44

53
14
3, 49
51

a

.
)

W

,

3, 53, 57, 136
, 14

SELIT YN

(8,30 YOS

-
L 4
-~

142

For Xerox Internal Use Only -- April 29, 1978

INDEX - April 29, 1978 143
“"INSTALL e e e e e e e 3, 52
InstallSwat.Run e e e e e e e . 121
LISTSYMS e e e e e e e e 3
LOAD e e e e e e e e 3, 52
LOGIN 3, 52, 60
MAILCHECK e e e e 3, 89
MARKUP e e e 4
MAXC e e e e e 16
MAXC mail . .. L. . 3
memory diagnostic e e e e 3
MlCRg 4
microcode assembler 4, 90
microcode loader 103, 110
MOVETOKEYS O <
MU e e e e e e e 4, 90, 103, 110
NETEXEC 4,53
new disk 136
NEWDISK 6
OEDIT 4, 98
ORAM 4
PACKMU 4, 103
PARC Information 138
PARCALTOS 6
Barity error 120
eek 39
PEEKPUP 4, 105
PeekSum 39
PPR 5
PREPRESS 4
Press file 4, 106, 107
Press files 3
PRESSEDIT 4, 106
PRINT 4, 107
Brinting O
ROOFREADER e e e e e e e 4
Pu e e e e e e e e 105
PUP Telnet e e e e e e e e 2, 16
PUT -
QED 108
QUIT 3, 51
RAM e e e e e e e 4,103, 110
RAMLOAD e e e e e e e 4, 110
ReadPram e e e e e e e 103
READPRESS e e e e e e e e 4
RELEASE e e e e e e e 3, 52
Rem.Cm e e e e e e e 49
RENAME 3, 4, 51
RESUME %, 53, 115, 119
RPRAM 4, 103
SaveState subroutine 15
SCAVENGER 4, 53, 112
SETTIME 3, 52, 114

For Xerox Internal Use Only -~ April 29, 1978

INDEX April 29, 1978
SIL e e e e e e e e 5
Software Maintenance Procedure 138
SORT e e e e e e e e)
STANDARDRAM e e e e e e e e 3, 52
SWAT e e e e e e e e e 5, 13, 115, 121
SWATEE e e e e e e e e . 121
SYS.BOOT e e e e e e e 5, 15
TFS 5
TFU 5
time e e e e e e e e e 114
Trident disk software 5
TRIEX e e e e e e .. 5
TYPE e e e e e e e e e 3, 51
UserCm e e e 53

VIEWDATA C e e e e e e e e e S

144

