
ALTO: A Personal Computer System
Hardware Manual

May, 1979

Abstract

This manual is a revision of the original description of the Alto: "Alto, A Personal Computer
System." It includes a complete description of the Alto I and Alto II hardware and of the standard
microcode (I: 24, II:3).

Xerox Corporation © 1978, 1979
All rights reserved.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto . / California 94304

Alto Hardware Manual

Table of Contents
1.0 Introduction
2.0 Microprocessor
2.1 Arithmetic section

. 2.2 Constant Memory
2.3 Main Memory
2.4 Microprocessor control
3.0 Emulator
3.1 Standard Instruction Set
3.2 Interrupts
3.3 Bootstrapping
3.4 Hardware
4.0 Display Controller
4.1 Programming Characteristics
4.2 Hardware
4.3 Display Controller Microcode
4.4 Cursor
5.0 Miscellaneous Peripherals
5.1 Keyboard
5.2 Mouse
5.3 Keyset
5.4 Diablo Printer
5.5 Parity Error Detection
6.0 Disk and Controller
6.1 Disk Controller Implementation
7.0 Ethernet
7.1 Programming Characteristics
7.2 Ethernet Hardware .
7.3 Ethernet Microcode
8.0 Control RAM, ROM, and S Registers
8.1 RAM-Related Tasks
8.2 Processor Bus and ALU Interface
8.3 Microinstruction Bus Interface
8.4 Microinstruction Memory Banks
8.5 Standard Emulator Access
8.6 Interpretation of Emulator Traps
8.7 M and S Registers
8.8 Restrictions and Caveats
9.0 Nuts and Bolts for the Microcoder
9.1 Standard Microcode Conventions
9.2 Microcode Techniques Which Need Not Be Rediscovered
A Microinstruction Summary
B Standard Reserved Memory Locations
C Standard Reserved SIO (STARTF) Bits
D Standard Tasks
E S-Group Instruction Summary
F Alto II Alto II Differences
G Summary of Known FeatureslBugs in Released Microcode Versions

1.0 INTRODUCTION

This document is a description of the Alto, a small personal computing system originally designed at
PARCo By "personal computer" we mean a non-shared system containing sufficient processing power,
storage, and input-output capability to satisfy the computational needs of a single user.

A basic Alto system is:

*

*
*
*
*

*

*
*

*

Some

*
*
*
*
*
*
*

An 875-line television monitor, with a viewing area of about 8%" x 11", oriented with the long
tube dimension vertical. The controller provides a 606 by 808 point display which is refreshed
from main memory at 60 fields (30 frames) per second. It has programmable polarity, a low .
resolution mode which conserves memory space, and a 16 by 16 cursor whose position and
content are under program control.

An unencoded 64-key keyboard.

A mouse (pointing device) and five-finger key set.

Up to two Diablo Model 31 disk drives or a Model 44 disk drive.

An interface to the Ethernet, a 3 Mbps local network that can connect up to 256 Altos and other
computers separated by as much as a mile. Most Ethernets are interconnected by gateways and
leased lines to form a nationwide internet.

A microprogrammed processor which controls the disk, display and Ethernet, and emulates an
instruction set. The standard instruction set for which emulation microcode is supplied in the
microinstruction ROM is described in. section 3.0.

64K 16 bit words of 850ns error corrected semiconductor memory, expandable to 256K.

1K microinstruction RAM that can be read and written with special microcode to extend the
standard instruction set or to emulate a different instruction set or to drive special I/O devices.

The processor, disk, and their power supplies are packaged in a small cabinet. The other I/O
devices may be a few feet away, and are pleasingly packaged for desk top use.

options:

An expanded microinstruction memory consisting of either 2K of PROM or 3K of RAM.

A Diablo HyType printer.

A Versatec Printer/Plotter.

A controller for CalComp Trident disk drives.

A controller for MDS and Kennedy tape drives.

An Orbit, the controller for a vast array of laser-scanned printers.

Communications controllers for BBN-1822, SDLC, BiSync and Async.

The remaining sections of this document will discuss the hardware and microcode of the standard
configuration Alto. At present, two slightly different versions of the Alto exist: the Alto I and the Alto
II. Most passages of this document pertain to both machines; those that apply to one only are clearly
marked.

This document does not deal with the numerous non-standard peripheral devices that have been
interfaced to the Alto. Non-standard interfaces and their designers are tabulated in an appendix.

Alto Hardware Manual Section 1: Introduction 2

1.1 Guide to this Document

This document is a comprehensive description of the Alto. Information about hardware, microcode, and
CPU programming is sprinkled throughout. Programmers interested primarily in the CPU emulator should
concentrate on the sections labeled with an asterisk in the table of contents.

1.2 People

The Alto was originally designed by Charles P. Thacker and Edward M. McCreight and was based on
requirements and ideas contributed by Alan Kay, Butler Lampson and other members of PARC'S
Computer Sciences Laboratory and Systems Sciences Laboratory. Bob Metcalfe and David Boggs
designed the Ethernet; Severo Ornstein and Bob Sproull designed the Orbit; Roger Bates designed the
Trident controller; David Boggs designed the tape controller; Tat Lam, Dick Lyon, Ed McCreight and
Dan Swinehart designed the Audio Board; Larry Stewart designed the BBN-1822 interface.

The machine was re-engineered as the Alto II for ITG/SDD to a specification developed by John Ellenby.
The engineering and production were carried out by EOD Special Programs Group, managed by Doug
Stewart and coordinated on behalf of PARC and SDD by John Ellenby. The members of EOD/SPG who
worked on the project are Doug Stewart, Ron Cude, Ron Freeman, Jim Leung, Tom Logan, Bob
Nishimura, Abbey Silverstone, Nathan Tobol, and Ed Wakida.

This hardware manual has had a long history of modification and extension and has benefited from
endless toil by numerous individuals. The original manual was written by Chuck Thacker and Ed
McCreight. The last major revision was edited by Bob Sproull and Diana Merry. The present document
is the responsibility of Ed McCreight, David Boggs, and Ed Taft.

1.3 Conventions and Notation

Numbers in this document are decimal unless followed by "B"; thus 10 = 12B.

Bits in registers are numbered from the most significant bit (0) toward the least significant bit. Fields
within registers are given by following the register name with a pair of numbers in brackets: IR[a-b]
describes the b-a+ 1 bit field of the IR register beginning with bit a and ending with bit b inclusive. IR[a]·
is short for IR[a-a].

The symbol" t-" is used to mean "is replaced by." Thus IR[4-5] t- 2 means that the 2-bit field of IR
including bits 4 and 5 is replaced by the bit values 1 and 0 respectively. The symbol" =" is used as an
equality test.

Memory is by convention divided into 256-word "pages." Page n thus contains addresses 256*n to
256*n + 255 inclusive. The notation "rv(adr)" is used, as in BCPL, to denote "the contents of the memory
location with address adr."

Alto Hardware Manual Section 2: Microprocessor 3

2.0 MICROPROCESSOR

This section describes the Alto microprocessor structure. If your programming needs on the Alto do not
extend to writing new microcode, this section is best left untackled. If you do need to decipher what
follows, it may be helpful to have a listing of the "standard" Alto microcode at your side.

The microprocessor is shown schematically in Figures 'I and 2. A principal design goal in this system
was to achieve the simplest structure adequate for the required tasks. As a result, the central portion of
the processor contains very little application-specific logic, and no specialized data paths. The entire
system is synchronous, with a clock interval of approximately 170 nsec. All microinstructions require one -
cycle for their execution.

A second design goal was to minimize the amount of hardware in the liD controllers. This is achieved
by doing most of the processing associated with 110 transfers with microprograms. To allow devices to
proceed in parallel with each other and with CPU activity, a control structure was devised which allows
the microprocessor to be shared among up to 16 fixed priority tasks. Switching among tasks requires
very little overhead, and occurs typically every few microseconds.

2.1 Arithmetic Section

The arithmetic section of the processor consists of two 32-word by 16-bit register files Rand S, and five
registers, T, L, M, MAR, and IR, The registers are connected to the memory and to an ALU with a 16-bit
parallel bus. For historical reasons, the sand M registers are viewed as part of the microinstruction RAM
and are described in section 8.

The ALU is a sl\'74181 type, restricted so that it can do only 16 arithmetic and logical functions. The ALU
output feeds the L, M, and MAR registers. T may also be loaded from the ALU output under certain
conditions. L is connected to a shifter capable of left and right shifts by one place, and cycles of 8. It
has a mode in which it does the peculiar 17-bit shifts of the standard instruction set, and a mode which
allows double-length shifts to be done.

The IR register is used by the emulator to hold the current emulated instruction -- see section 3.5.

Attached to the bus is a 256-word read only memory (ROM) which holds arbitrary 16-bit constants.

The fields of the 32-bit microinstruction are:

FIELD NAME MEANING

0-4 RSELECT R Register Select
5-8 ALUF ALU Function
9-11 BS Bus Data Source
12-15 Fl Function 1
16-19 F2 Function 2
20 T Load T
21 L Load L & M
22-31 NEXT Next microinstruction address (subject to modifiers)

When microprogramming the Alto, it is important to understand where the machine's state resides and
how it changes. At the beginning of a microinstruction cycle, the various registers (principally T, L, M,
and IR, but also various bits of state such as ALUCO) contain values that remain unchanged throughout
execution of the microinstruction. During this time, the various non-state-retaining data paths and
elements, such as the bus, ALU, and shifter, compute results based entirely on the initial values of these

RSEL[O·2] ---~ ~
~

RSEL[3·4] ~ M

IR[1·2] . ~ P I--~

IR[3.4] ~ x ---

LOADT

r--
P I--

ALUF[O·3] ~ R 6

0
SKIP ~ M ---

LOADL

3
SBANK ---,

L RSEL -.-

t

R S
4
~ 8x

32x 16 32x 16

" " L
t ~

j 1 ..
MPX I

t
I T I

I t
A B

ALU

F

,

I
.... .1 L M I

I

Shifter I

5
RSEL -4 Constant

3 ROM
BS -4 256 x 16

Processor , .

Bus

,
IR

- ALU Bus

MAR

Memory
Address
Bus II

16

Decode
&

Control

Figure 1 -- Processor Data Paths

Monitor Transceiver
I Drive I
I I I

I Display Ethernet
Control I Control·

I
I' f'

I

Disk
Control

f'

I II W
,

I' 16

\11

Drivers
& --- ..

Parity • •
I~ • - •

Memory J - - Mous e
Data Bus I--

U
- - Keybo ard N

32 K

,It -

Main
Memory

4x64Kx 16 + 7
Error Corrected

DynamicMOS

t

- - Keyse t

Alto Hardware Manual Section 2: Microprocessor 4

registers. However, the registers themselves do not change.

At the end of the cycle, if the microinstruction specifies that one or more registers be loaded, they are
loaded instantaneously and simultaneously with the newly-computed values. These then serve as the
initial register values for the next microinstruction. As a result, it is possible (and in fact very common)
to both read and load a register during the same microinstruction. The R registers behave similarly
except that it is not possible to both read and load an R register during the same microinstruction.

R SELECT

The R select field specifies one of the 32 R cells to be loaded or read under control of the bus source
field,or, in conjunction with the bus source field, one of the 256 locations to be read from the constant·
ROM. The R field is also used to address registers in S -- see section 8.

The low order two bits of the R address (but not the constant ROM address) may be taken from fields in
IR under control of the functions. This allows the emulator to address its central registers easily.

ALU FUNCTIONS

The ALUF field controls the sN74181 ALU. This device can do a total of 48 arithmetic and logical
operations, most of which are relatively useless. The 4-bit field is mapped by a PROM into the 16 most
useful functions.

ALUF T FUNCTION S3 S2 Sl SO M C OPERA.TION

0 * BUS 1 1 1 1 1 0 A
1 T 1 0 1 0 1 0 B
2 * BUS OR T 1 1 1 0 1 0 A+B
3 BUS AND T 1 0 1 1 1 0 AB
4 BUS XOR T 0 1 1 0 1 0 AXORB
5 * BUS + 1 0 0 0 0 0 0 A PLUS 1
6 * BUS -1 1 1 1 1 0 1 A MINUS 1
7 BUS + T 1 0 0 1 0 1 A PLUS B
lOB BUS - T 0 1 1 0 0 0 A MINUS B
llB BUS - T - 1 0 1 1 0 0 1 A MINUS B MINUS 1
12B * BUS + T + 1 1 0 0 1 0 0 A PLUS B PLUS 1
l3B * BUS + SKIP 0 0 0 0 0 SKIP A PLUS 1
14B * BUS. T (AND) 1 0 1 1 1 0 AB
15B BUS AND NOTT 0 1 1 1 1 0 A & NOT B
16B-17B UNDEFINED

If T is loaded in an instruction containing an ALUF with a * in the T column, it will be loaded from the
ALU output rather than from BUS.

S3-S0 selects the function; M selects logical or arithmetic mode by controlling carry propagation; C is the
carry into the LSB. The carry output is forced to zero during logical operations (M = 0).
input to the ALU; T is the B input.

BUS SOURCES

The bus data source (BS) field

BS NAME

o <-RName
1 RName<-
2 (None)
3 Task-specific

specifies one of 8 data sources for the bus:

SOURCE

Read R
Load R from shifter output (see below)
Enables no source to the BUS, leaving it all ones
Performs different functions in different tasks.

BUS is the A

Alto Hardware Manual

4
5
6
7

Task-specific
"'MD
... MOUSE
"'DISP

Section 2: Microprocessor

Performs different functions in different tasks.
Memory data
Bus[12-15]+- MOUSE; BUS[O-13]+- -1
IR[8-15], possibly sign extended (see section 3.5)

5

RName+- is not logically a source, but because it is gated to the bus during both reading "and writing, it is
included in the source specifiers. Loading R forces the BUS to 0 so that an ALU function of 0 and T may
be executed simultaneously.

The bus has the property that if more than one source is gated to it during a single microinstruction, it
computes the AND of the source values. This is true regardless of the means by which the sources are
enabled (BS, Fl, or F2).

This bus source decoding is not performed if Fl=7 or F2=7. These functions use the BS field to provide
part of the address to the constant ROM.

SPECIAL FUNCTIONS

The two function fields specify the address modifiers, register load signals (other than those for R, S, L, M
and T), and other special conditions required in the processor. The first eight conditions specified by
each field (except BLOCK) are interpreted identically by all tasks, but the interpretation of the second
eight depends on the active task. The task-independent functions are given below; the task-specific
functions are included with the task descriptions.

FUNCTION 1:

Fl
o
1

2
3

4
5
6
7

NAME

MAR'"

TASK
BLOCK

"'L LSH 1

"'L RSH 1

"'L LCY8
"'CONSTANT

MEANING
No Activity
Load MAR from ALU output; start main memory reference (see section
2.3).
Switch tasks if higher priority wakeup is pending (see section 2.4).
Disable the current task until re-enabled by a hardware-generated
condition. Note: this function is reserved by convention only; it is not
done by the microprocessor.
SHIFTER OUTPUT will be L shifted left one place*
SHIFTER OUTPUT will be L shifted right one place*
SHIFTER OUTPUT will be L rotated left 8 places*
Put on the bus the constant from the constant ROM location addressed by
RSELECT.BS

*Modified by DNS (DO Novel Shifts) function, and MAGIC function. L LSH land L RSH 1
ordinarily shift a zero into the vacated bit position.

FUNCTION 2:

F2 NAME MEANING
0 No Activity
1 BUS=O NEXT'" NEXT OR (if (BUS=O) then 1 else 0).
2 SH(O NEXT'" NEXT OR (if (SHIFTER OUTPUT(O) then 1 else 0).*
3 SH=O NEXT'" NEXT OR (if (SHIFTER OutPUT=O) then 1 else 0).*
4 BUS NEXT'" NEXT OR Bus[6-15]

Alto Hardware Manual Section 2: Microprocessor 6

5

6
7

ALUCY

MD<­
<-CONSTANT

NEXT<- NEXT OR ALUco. ALUCO is the carry produced by the ALU during
the most recent microinstruction that loaded L. It is not the carry
produced during execution of the microinstruction that contains the
ALUCY function.
Deliver BUS data to memory (see section 2.3)
Same as Fl=7

*Note that the value of the SHIFTER Ourpur is determined by the value of L as the
microinstruction begins execution and the shifter function (L LSH 1, L RSH 1, or L LCY 8)
specified during the current microinstruction (if no shifter function is specified, the shifter output
is equal to L).

2.2 Constant Memory

The constant memory is a 256 x 16 PROM that holds arbitrary constants. The constant memory is gated
to the bus by Fl=7, F2=7, or BS>4. The constant memory is addressed by the (8 bit) concatenation of
RSELECT and BS. The intent in enabling constants with Bs>4 is to provide a masking facility, particularly
for the <-MOUSE and <-DISP bus sources. This works because the processor bus ANDS if more than one
source is gated to it. Up to 32 such mask constants can be provided for each of the four bus sources
>4.

Alto I: Note that it is not possible to use a constant other than -1 with the +- MD bus source, because
memory parity is calculated on the bus, and a parity error will result if bits are masked off in a word
fetched from memory.

2.3 Main Memory

Main memory references are handled differently on Alto I and Alto II. It is, however, possible to write
most microcode so that it will operate correctly on both machines.

BASICS

Memory is addressed by a 16-bit number that refers to a 16-bit word in the memory. Addresses 0
through 176777B are true memory storage locations; addresses 177000B through 177777B are used to
control 1/0 devices that are attached to the Alto memory bus. Some operations on memory are
performed on "double-words." The double-word beginning at location adr (adr is even) is a 32-bit
quantity equivalent to the 16-bit contents of location adr, together with the 16-bit contents of location
adr+ 1. (Double-word references operate correctly only on true memory locations, not on I/O device
locations.)

MEMORY REFERENCES

Alto I and Alto II: A memory reference is initiated by executing Fl = 1, MAR <-. The results of a read
operation are delivered somewhat later onto the bus with BS = 5, "MD. A store into the addressed
memory location is achieved with F2=6, MD<-. The microprogram partially controls memory timing, and
must observe certain rules to insure correct operation.

a) A minimum of one microinstruction must intervene between the initiation of a memory
reference and an MD<- or <-MD.

b) On both Alto I and Alto II, memory cycles last a total of 5 micro-cycles, although double­
word operations may extend the memory cycle to take a total of 6 micro-cycles. Although
the exact details of memory timing differ on Alto I and Alto II, both machines share the
property that the processor will suspend execution of microinstructions if the memory

Alto Hardware Manual Section 2: Microprocessor 7

interface cannot process the function (MAR <-, MD<- or <- MD) specified; processing will resume
as soon as the interface is free. It is permissible to "abandon" a memory reference that has
already been started simply by not referencing MD within the first 5 cycles, or by starting a
new memory reference with MAR ~ .

c) The memory checks parity on all fetches, unless the cycle is a refresh cycle or the address is
between 177000B and 177777B inclusive, in which case an I/O device is being referenced.
Parity errors result in activation of a high-priority task (task number 15B) whose purpose is to
deal with the error (see section 5.5). The Alto II checks memory parity on store as well as
fetch cycles.

d) If RSELECT = 37B during the instruction which starts the memory, a refresh cycle is assumed
and all memory cards are activated. . This is used by the refresh task.

e) MAR<- cannot be invoked in the same instruction as <-MD of a previous access.

In the discussion that follows, we assume that a memory reference has been started with MAR <-, and we
designate this instruction (micro)cycle 1. Examples of proper sequences are given below.

Alto I

Alto II

f) During cycle 5, if F2=6,. MD<-, a store of bus data into the word addressed by MAR will
occur. The MD<- may not be issued later than cycle 5. (Note: Some Alto 1's have been
modified to allow a "double-word store." On these machines, it is permissible to issue two
MD<- instructions in a row, the first coming in cycle 5, and the second in cycle 6. If MAR is
loaded with an even address adr, the two words will be stored at adr and adr+ 1
respectively.)

g) During cycle 5 of a reference, if BS = 5, <- MD, the reference is a fetch of the word addressed
by MAR. During cycle 6, if BS = 5, <- MD, the odd word of the doubleword addressed by MAR
is delivered. If MD is referenced during cycle 6, it also must have been referenced (by either
+-MD or MD+-) during cycle 5.

f) During cycle 4, if F2=6, MD<-, a store of bus data into the word addressed by MAR will
occur. The MD<- may not be issued later than cycle 4. Alto II's allow a "double-word
store:" it is permissible to issue two MD<- instructions in a row, the first coming in cycle 3,
and the second in cycle 4. If MAR is loaded with an address adr, the two words will be
stored at adr and (adr XOR 1) respectively.

g) During cycle 5, if Bs=5, <-MD, the reference is a fetch of the word addressed by MAR.
During cycle 6, if Bs=5, <-MD, the other word of the doubleword addressed by MAR is
delivered. Again, if MAR is loaded with address adr, the two words fetched will be from
location adr and (adr XOR 1) respectively.

h) Because the Alto II latches memory contents, it is possible to execute <- MD anytime after cycle
5 of a reference and obtain the results of the read operation.

EXAMPLES

Because the description above is a bit terse, we shall give several examples for Alto I operation, for Alto
II operation, and for coding schemes that will work properly on both kinds of Altos. In the coding
examples, REQUIRED stands for some microinstruction (you supply it) that must appear in the sequence;
SUSPEND stands for a microinstruction which if omitted will cause execution to suspend for one cycle
because the memory interface is not ready; OPTIONAL stands for a microinstruction which may be
omitted without penalty. The notation ANY will be used to stand for an arbitrary 16-bit address; EVEN
will stand for an even 16-bit address. All of these examples apply to extended memory references also
(described in the next section); simply substitute XMAR for MAR.

Alto Hardware Manual

Simple

Simple

Simple

fetch:

Alto I

MAR+-ANY;
REQUIRED;
SUSPEND;
SUSPEND;
whereever+-MD;

store:

Alto I

MAR+-ANY;
REQUIRED;
SUSPEND;
SUSPEND;
MD+-whatever;

store, followed

Alto I

MAR+-ANY;
REQUIRED;
SUSPEND;
SUSPEND;
MD+-whatever;
MAR+-ANY;

Double-word fetch:

Alto I

MAR+-EVEN;
REQUIRED;
SUSPEND;
SUSPEND;
whereever+-MD;
whereever+-MD;

Alto II

MAR+-ANY;
REQUIRED;
SUSPEND;
SUSPEND;
whereever+-MD;

Alto II

MAR+-ANY;
REQUIRED;
OPTIONAL;
MD+-whatever;

immediately by another

Alto II

MAR+-ANY;
REQUIRED;
REQUIRED;
MD+-whatever;
SUSPEND;
MAR+-At-.'Y;

Alto II

MAR+-ANY;
REQUIRED;
$USPEND;
SUSPEND;
whereever+-MD;
whereever+-MD;

Double-word store/fetch:

Alto I

MAR+-EVEN;
REQUIRED;
SUSPEND;
SUSPEND;
MD+-whatever;
whereever+-MD;

Alto II

MAR+-ANY;
REQUIRED;
SUSPEND;
MD+-whatever;
whereever+-MD;

Double-word store (only on modified Alto Is):

Alto I Alto II

MAR+-EVEN;
REQUIRED;
SUSPEND;

MAR +- Al\'Y;
REQUIRED;
MD+-whatever;

Section 2: Microprocessor

memory cycle:

Alto II

MAR+-ANY;
REQUIRED;
MD+-whatever;
SUSPEND;
SUSPEND;
MAR+-ANY;

8

Alto Hardware Manual

SUSPEND;
MD+-whatever;

. MD+-whatever;

Section 2: Microprocessor

MD+-whatever;

The Alto II memory buffering permits a double-word "exchange":

MAR+-ANY;
REQUIRED;
MD+-newcontents1;
MD+-newcontents2;
L+-MD;
T+-MD;
0idContents1 +-L, L+-T;
0ldContents2+-L;

address
address
address
address

=. adr
= adr XOR 1
= adr
= adr XOR 1

Microcode which uses the memory timings below will work on either vintage of Alto:

Simple fetch: (as Alto I).

Simple store: (as Alto II). ««(Nota Bene

Double-word fetch: (as Alto I).

Double-word store/fetch: (as Alto II).

Others are not possible.

EXTENDED MEMORY

9

Main memory on Alto lIs can be optionally expanded to up to 256K words in 64K banks. Each task has
associated with it four extra bank bits which are presented to the memory along with the 16 bit addresses
generated by the task's microcode. Normal memory references are microcoded in the usual way and use
two of the bank bits to specify the task's normal bank. Extended memory references are microcoded
slightly differently and use the two other bank bits to specify the task's alternate bank. Thus a task can
reference 64K very easily, another 64K with a little difficulty, and the other two 64K banks only after
loading its bank registers appropriately.

To signal that a memory reference should go to the alternate bank, the microinstruction which loads MAR
must also contain F2=6 (MD+-). The microassembler will generate this conbination of functions for a
clause whose left hand side is XMAR (i.e., XMAR+- address will generate an instruction with Fl=l and
F2=~ .

The bank registers appear as 16 words in the liD area which can be read and written. Location (177740B
+ N) is the bank register location for task N. Booting the Alto clears the registers to zeros making all
references for all tasks go to bank zero, thus making the machine operate as a standard Alto without the
extended memory option. Within a bank register, the layout is as follows:

BR[O-U]
BR[12-13]
BR[14-15] .

undefined
normal reference bank number
extended reference bank number

The highest 512 locations in each bank are not mapped by the bank registers and always refer to the 110
area. That means that location 177740B is the emulator's bank register regardless of what the referencing
task's bank register contains and regardless of whether it is referenced with a normal or an extended
memory reference.

No changes are necessary in order to run the display, disk, or Ethernet in different banks. The easiest
and least confusing way to do this is to load the bank registers for all concerned tasks (e.g. DVT, DHT and
DWT for the display, or KSEC and KWD for the disk) with some other bank number. Then the device is

Alto Hardware Manual Section 2: Microprocessor 10

controlled by the relevant words of page 1 in its bank.

Programs which use the extended memory must fIrst initialize it to have correct parity. This involves
disabling parity interrupts, storing something in every word, flushing any parity interrupts that result, and
then reenabling parity interrupts. The standard bootstrap loaders initialize bank zero only.

All Alto lIs manufactured starting with the 7th build have the extended memory option but are normally
shipped with memory chips for bank zero only. Some earlier Alto lIs have been modifIed in the fIeld.
Machines with the extended memory option have engineering number 3 -- see the description of the
VERS instruction.

2.4 Microprocessor Control

Control of the Alto microprocessor is shared among 16 "tasks" arranged in a priority order. The tasks
are numbered 0 to 15: 0 is the lowest priority task and 15 is the highest. The lowest priority task is the
emulator task which fetches instructions and executes them.

The only state saved for each task is a "micro program counter," MPC. The current task number, saved
in the current task register, addresses a 16 by 12 MPC RAM. The result is an MPC for the current task; it
is used to address a lK by 32-bit read-only microinstruction memory (MI ROMO) or a 1K by 32-bit
writeable microinstruction memory (MI RAMO), described in section 8. An optional feature of Alto lIs
extends the MI ROM to 2K or the RAM to 3K -- see section 8.

BRANCHING

The microprocessor offers a limited branching capability which, although somewhat cumbersome, has
proven adequate for chores undertaken by Alto microcode. The basic idea is that special microprocessor
functions may. modify the NEXT fIeld, and consequently alter the flow Of control. Modification is
accomplished by DRing various bits into the NEXT field.

Address modification is complicated slightly because the Alto pre-fetches one microinstruction ahead.
Consequently, a branch condition modifies the NEXT field of the microinstruction following the one in
which the condition test is placed. This property i~~ best" illustrated ... with an example:

MI location MI

100B
10lB
102B
103B

F2=2 (SH<O). NEXT=101B
... , NEXT = 102B

When the instruction at location 100B is being executed, the instruction at location 101B has already been
fetched. Therefore, the SH<O test modifies the NEXT field of the on-deck instruction, the one at 10lB.
Thus the two possible execution sequences are: (1) if L>O on entering the code above: 100B, 100B, 102B;
(2) if L<O on entering the code: 100B, 10lB, 103B.

TASK SWITCHING

Only one of the 16 tasks is executing microinstructions at anyone time. Once a task begins execution, it
continues to execute until it invokes a task switch function that enables switching to another task. A task
is considered eligible for execution if its hardware-generated "wakeup signal" is asserted (these signals are
not accessible to the microprogram). The wakeup signals enter a' priority encoder that calculates the
number of the highest-priority eligible task. When a running task invokes a task switch, control will

W
A S
K I
E G
U N
P A

L
S

== == == :::::::::::::

=== == == ==

II

D
E
C
0
D
E
R

p
R E

I N

0 C

R 0
I D

T E
Iv R

C
U
R T

R A MPCRAM ...
S 4 E 4

N K 16x12

T
2 ,10

I
. Address

........ Modification /'

Logic

CRAM Address I

-, _J
I MPX I

\It \

Address Address

Control Control Next
Microinstruction

RAM ROM Address
Bus

....
1Kx32 ~ 1Kx32

or or
3Kx32 2Kx32

Data Out Data Out

I I I
10

22

il

I MIR I
t

Instruction

Figure 2 -- Processor Control

Alto Hardware Manual Section 2: Microprocessor 11

switch to another task only if a higher priority task has a wakeup signal held true, or if the current task
no longer has a wakeup signal true. In the latter case, control goes to a lower priority task. The lowest
priority task is the CPU emulator, which is always requesting wakeup.

If the processor executes the TASK function (Fl=2) during an instruction, the current task register is
loaded (at the end of the instruction) with the number of the highest priority task currently requesting a
wakeup. This causes the next instruction to be fetched from the ROM location specified by the saved
task's MPC. One additional instruction is executed by the current task before the switch becomes
effective. This instruction may execute task-specific functions, but it must do no NEXT address
modification, since· any such modification would affect the new task. The situation for two streams of
instructions A-F and J-M in two different tasks is shown below:

Instruction Instruction Address stored in
being executed being fetched MPC at end of cycle

A B C
B C D
C1 D E
D J K
J2 K L
K3 L M
L E F
E F G

lInstruction C allows task switching. New task's MPC = J.
2Instruction J does an operation which removes its task's wakeup request.
3Instruciion K allows task switching, and the original task is now highest priority.

The BLOCK function (Fl=3) is used, by convention, to signal a hardware device associated with the
currently running task to remove its wakeup signal. This function is not accomplished by the Alto
microprocessor, but rather by the individual device interfaces.

Task switches must occur only at times when the current task has no state in any register (except R
registers dedicated to the task) and has no main memory operation in progress, since there is no
provision in the hardware for saving this information. That is, all state important to the task must have
been stored in safe places by the end of the microinstruction after the one containing the TASK function.
It is not legal to place TASK functions in two consecutive microinstructions.

INITIALIZATION

The only way in which the microprogram can affect the task structure is to request a task switch. In
particular, it cannot affect the MPCS of tasks other than itself. This presents an initialization problem
which is solved by having each task start at the location which is its task number (thus the emulator task
finds its first instruction to execute at MPC = 0). Task numbers are written into the MPC RAM during a
reset cycle, which may be initiated manually or by a CPU instruction (see SID instruction in section 3.3).
Tasks ordinarily begin execution in ROMO. In order to start tasks in the RAM, there is a mechanism for
modifying the initial MPC'S of tasks so that they will begin execution in RAMO (see section 8.4)

STANDARD TASKS

The standard Alto and its associated device controllers use many of the available tasks. Detailed
descriptions of the operation of most tasks· are found in the sections of this manual relevant to the
hardware devices. Appendix D is a list of the standard tasks.

Alto Hardwa.re Manual Section 3: Emulator 12

3.0 EMULATOR

The lowest-priority Alto task is called the Emulator task. This task is always requesting wakeup, but can
be interrupted by a wakeup request from any other task. In effect, the emulator task is the "background
job." The standard Alto microcode ROM includes standard emulator task microcode for fetching from
Alto memory, decoding,· and interpreting instructions from the Standard Instruction Set. In the rest of
this chapter we shall frequently use the term "emulator" to mean "standard emulator task microcode."
This standard microcode can be extended or replaced, usually by executing special emulator task
microcode in the microinstruction RAM.

This section describes microcode versions installed after June 1976. To determine the vintage of a
machine's microcode, see descriptions of SIO and VERS (section 3.2).

3.1 Standard Instruction Set

REGISTERS

The emulator state is carried from instruction to instruction in several registers:

PC: The "program counter," which contains the 16-bit address of the next instruction to be
fetched and executed. It is actually implemented as R -register 6.

ACO, ACl, AC2, Ac3: The accumulators, each of which contains 16 bits. Instructions are available
for transferring contents of accumulators to and from memory registers and for performing
arithmetic and logical operations among accumulators. The notation AC(n) is often used to
refer to the contents of accumulator n (n= 0,1,2,3). These accumulators are implemented as
R -registers 3-0 respectively.

C: The "carry" bit which is modified by most arithmetic operations. It is implemented as special
hardware (see section 3.5).

MEMORY: The Alto has "64K" 16-bit memory words, addressed by values ranging from 0 to
176777B. Addresses 177000B to 177777B are reserved for various I/O device uses (see
Appendix B). Memory on Alto IIs can be extended to 256K in 64K banks (see Section 2.3).

Additional R - and S-registers may be used temporarily during emulation of a single instruction.

INSTRUCTION FORMAT

The standard instruction set is best described by breaking it into four groups according to the way the
instructions are formatted (see Figure 3).

Several of the instructions compute an "effective address" based on the values of the I (indirect), X
(index) and DISP (displacement) fields of the M-group, J-group and some s-group instructions. The
effective address calculation is best described by a brief "program." First we define the function
SignExtend(x) to represent the sign-extension of the 8-bit number x:

SignExtend(x) = if x > 200B then x+177400B else x.

Then EffAddrO, the function to compute the effective address is:

o I) 2

o I MFunc I DestAC I I x

M-Group LDA (MFunc = 1)

ST A (MFunc = 2)

o IJFUnC I I X

J-Group JMP (JFunc = 0)

JSR (JFunc = 1)
ISZ (JFunc = 2)

DSZ (JFunc = 3)

1 I SrcAC I DestAC I AFunc
A-Group

1 1

S-Group

COM (AFunc = 0)
NEG (AFunc = 1)

MOV (AFunc = 2)

INC (AFunc = 3)

ADC (AFunc = 4)
SUB (AFunc = 5)

ADD (AFunc = 6)

AND (AFunc = 7)

AugmentedFunc

8)) 12 113

DISP

x = 0: Page 0 addressing

X = 1: PC-relative addressing

X= 2: Base-register (AC2)

X = 3: Base-register (AC3)

DISP

14

SH CY INL I . SK

L(SH= 1)
R (SH=2)

S (SH=3)

Z(CY=1)
O(CY=2)

C(CY=3)

DISP·

--# (NL=1) SKP(SK=1)

SZC(SK=2)

SNC(SK=3)
SZR (SK=4)

SNR(SK=5)
SEZ(SK=6)

SBN(SK=7)

Figure 3 -- Instruction Formats

Alto Hardware Manual

EffAddrO =
[
E+- (

if
elseif
elseif
elseif
)

Section 3: Emulator

liThe symbol "E"denotes effective address
I IValues of I,X, and DISP are from the instruction

x = 0 then DISP
x=l then SignExtend(DIsP)+PC
x = 2 then SignExtend(DIsP) + AC(2)
x=3 then SignExtend(DIsP)+AC(3)

I/"page 0 addressing"
I I"relative addressing"
I /"base register addressing"
I /"base register addressing"

13

if I ;t: a then E+-rv(E)
].

IINow do single-level indirection

The notation for these addressing modes is demonstrated below. The DISP value is always specified first; .
the x value is not given explicitly, but is determined either by the address of the label or by a modifier
",2" or ",3" which specifies base register indexing:

JMP LABEL2
JMP 15,3
JMP @3

; If LABEL2 is in page 0, X=O; otherwise X=l.
; OISP=15; 3 means use AC3 as base register.
; The character @ causes I to be 1.

Note that instructions which compute an effective address always do so before any other operations.
Thus JSR 1,3 computes the effective address of 1 + Ac(3) before saving PC+ 1 in AC3.

MEMORY GROUP OPERATIONS

The DestA.C field specifies one of the four accumulators (DestA.C = a for ACO, DestAC = 1 for Ac1, etc.).
The MFunc field specifies one of two operations:

Mnemonic MFunc Action

LDA
STA

1
2

This operation loads an accumulator from memory.
This operation stores an accumulator into memory.

AC(DeStAc)+-rv(E).
rv(E)+-AC(DeStAc).

These instructions are written by giving the mnemonic, followed by the accumulator number (DeStAC),
followed by an effective address notation:

STA 3 .+4
LOA 0 4,2
LOA 0 @.+2

Store AC3 in the fourth location following here
Load ACO from address=4+AC(2)
Load ACO from address contained in second location following here

JUMP AND MODIFY GROUP OPERATIONS

The JFunC field specifies one of four operations:

Mnemonic JFunc

1MP a
JSR 1

ISZ 2

DSZ 3

Action

This operation causes a "jump" by changing the value of the PC. PC+-E.
This operation is useful when calling subroutines because it saves a return
address in Ac3. AC(3)+-pc+1; PC+-E.
This operation increments the contents of a memory cell and skips if the
new contents are zero. rv(E)+-rv(E)+ 1; if rv(E) = 0 then PC+-PC+ 1. This
instruction does not alter the C bit.
This instruction decrements the contents of a memory cell and skips if the
new contents are zero. rv(E)+-rv(E)-l; if rv(E) = 0 then PC+-PC+1. This
instruction does not alter the C bit.

Alto Hardware Manual Section 3: Emulator 14

These instructions are written by giving the mnemonic and the effective address notation:

JSR SUBR
JMP 1,3

AC3 is left pOinting to the location after this one
Jump to AC(3)+1

ARITHMEfIC GROUP OPERATIONS

All 8 of these instructions operate on the contents of the accumulators and the carry bit. Typically, a
binary operation involves the contents of the "source accumulator" (srcAc) and the "destination
accumulator" (DeStAc) and leaves the result in the destination accumulator. The carry bit (c bit) and the
PC can also be modified in the process.

The operation of the instructions is best explained by following the flow in Figure 4. The 16-bit contents
of the source and destination accumulators are fetched and passed to the function generator.

The carry generator produces an output that depends on the value of the C bit and the CY field of the
instruction:

Mnemonic CY Output

none 0 C
Z 1 0
0 2 1
C 3 l-C (Le., the complement of c).

The function generator is controlled by the AFUnc field; various values will be described below. It takes
two 16-bit numbers and a carry input and generates a 16-bit Result and a carryResult.

The shifter is controlled by the SH field in the instruction:

Mnemonic SH

none 0
L 1

R 2

S 3

Action

No shifting; the 17 output bits are the same as the 17 input bits.
Rotate the 17 input bits left by one bit. This has the effect of rotating bit
o left into the carry position and the carry bit into bit 15.
Rotate the 17 bits right by one bit. Bit 15 is rotated into the carry
position and the carry bit into bit O.
Swap the 8-bit halves of the 16-bit result. The carry is not affected.

The skip sensor tests various of the 17 bits presented to it and may cause a skip (pc+-PC+ 1) if an
appropriate condition is detected:

Mnemonic SK

none 0
SKP 1
SZC 2
SNC 3
SZR 4
SNR 5
SEZ 6
SBN 7

Action

Never skip
Always skip
Skip if the carryResult is zero
Skip if the carryResult is non-zero
Skip if the 16-bit Result is zero
Skip if the 16-bit Result is non-zero
Skip if either carryResult or Result is zero
Skip if both carryResult and Result are non-zero

To/From Memory
D tAC es

Accumulators

Carry

SrcAC DestAC
Carry Generator

1 16 16

Function Generator

1 16

Shifter

1 16

Skip Sensor

1 16

Governed by NL

Y I
Figure 4 ee Instruction Execution

Alto Hardware Manual Section 3: Emulator 15

The alert reader will detect that the SK field is microcoded. The skip condition can be described as:

skip = (SK[2):;e0) XOR
«SK[O):;eO AND result = 0) OR (sK[l):;eO AND carryResult= 0))

where SK[O) is the first bit of the field, SK[1] the second and SK[2]the third.

The NL bit in the instruction controls the operation of the switch in the illustration. If NL= 1, neither the
destination accumulator nor the carry bit is loaded; otherwise the destination accumulator is loaded from
Result and the carry bit from carryResult The "no-load" feature is useful for instructions whose only
use is testing some value. The character # is appended to the mnemonic for operations if the NL bit is
to be set

The AFUnc operations are described below. Note that "Result" will be stored into the destination
accumulator (DeStAc) unless NL=l.

Mnemonic AFUnc Operation Description

COM

NEG

MOV

INC

ADC

SUB

ADD

AND

o

1

2

3

4

5

6

7

COMPLEMENT The function generator produces the logical complement
of Ac(srcAc). It passes the carry bit unaffected.

NEGATE The function generator produces the two's complement
of Ac(srcAc). If Ac(srcAc) contains zero, complement
the value of the carry supplied to the function generator,
otherwise supply the specified value.

MOVE The function generator passes Ac(srcAc) and the carry
bit unaffected.

INCREMENT The Result produced ·.is AC(SrcAC) + 1; the carry is
complemented if Ac(srcAc) = 177777B.

ADD COMPLEMENT The Result produced is the sum of AC(DeStAc) and
the logical complement of AC(SfCAC). The carry bit is
complemented if the addition generates a carry.

SUBTRACT Subtracts by adding the two's complement of Ac(srcAc)
to AC(DeStAc). The carry bit is complemented if the
addition generates a carry ..

ADD Adds Ac(srcAC) to AC(DestAc). The carry bit is
complemented if the addition generates a carry.

AND The Result is the logical and of Ac(srcAC) and
AC(DeStAc). The carry is passed unaffected.

The arithmetic instructions are written by citing. the AFUnc mnemonic, followed optionally by the CY
mnemonic, followed optionally by the SH mnemonic, followed optionally by the NL mnemonic. Then
after a space, the source accumulator number is given, the destination accumulator number, and
optionally an SK mnemonic. For example:

SUB 0 0
MOVZ 2 1
SUBZL 1 1
ADC 0 0
SUB# 2 3 SNR

COM# 1 1 SZR
SUBZ# 1 0 SZC
ADCZ# 1 0 SZC

Zero ACO by subtracting it from itself
Move AC2 to AC1, and zero C
Set AC1 to 1
Set ACO to 177777B
Skips if AC2 and AC3 are unequal but
affects neither
Skips if AC1 is 177777B but leaves it unchanged
Skips if ACO(AC1 unsigned.
Skips if ACOiAC1 unsigned

To subtract the constant 1 from Ac1:

Alto Hardware Manual Section 3: Emulator

NEG 1 1
COM 1 1

To OR together the contents of ACO and Ac1; result in ACO:

COM 1 1
AND 1 0
ADC 1 0

To XOR together the contents of ACO and- Ac1; result in ACO:

MOV 0 2
ANDZL 1 2
ADD 1 0
SUB 2 0

To negate a double-length number in ACO and Ac1:

NEG 1 1 SNR
NEG 0 0 SKP
COM 0 0

To add the double-length number in Ac2,AC3 to one in ACO,AC1:

ADDZ 3 1 SZC
INC 2 2
ADD 2 0

To subtract the double-length number in Ac2,AC3 from one in ACO,AC1:

SUBZ 3 1 SZC
SUB 2 0 SKP
ADC 2 0

16

The Bcpl construct "if a gr b then uses code which does a subtract and checks the sign.
Unfortunately, this is not a true signed compare because the subtract may overflow. With this
code, 2 gr 0 is true, but 077777B gr 100000B is false (077777B is the largest positive number and
100000B the largest negative). The code generated by Bcpl looks like:

LDA 0 4,2
LDA 1 5,2
ADCL# 1 0 SZC
JMP falsePart
JMP truePart

Pick up a
Pick up b
Subtract and check sign
Not true
True

The "true signed compare" for vb is:

LDA 0 4,2
LDA 1 5,2
SUBZR 2 2
AND 1 2
ADDL 0 2
ADC# 1 0 SNC
JMP falsePart
JMP truePart

S-GROUP INSTRUCTIONS

Pick up a
Pick up b
Place 100000B in AC2
AC2=(if b<O then 100000B else 0)
CARRY=(if a and b signs differ then 1 else 0)

Opcodes in the range 60000B-77777B, are assigned to the s-group, which comprises a variety of
miscellaneous instructions and unimplemented operations. Bits 3 through 7 of the instruction determine
32 opcodes, each of which may use the displacement field (bits 8-15 of the instruction). One of these
opcodes (61xxx, O<xxx::S;377B) uses the displacement field to represent up to 256 instructions which do
not require a displacement or a parameter as part of the opcode.

Alto Hardware Manual Section 3: Emulator 17

Currently, only a small number of the available s-group instructions have been implemented. The
remaining unimplemented instructions all trap in one of two ways:

ROM trap PC is saved in location TRAPPC, and then a JMP@ TRAPVEC+OP instruction is simulated.
OP is bits 3-7 of the trapping instruction.

TRAPPC 527B

TRAPVEC 530B-567B

When an unimplemented opcode is executed by the emulator,
the PC is saved here. It points to the location after the
trapping instruction.

Contains pointers to the trap routines for the 32 opcodes (bits
3-7 of· the . trapping instruction). The first word corresponds
to opcode 6Oxxx, O<xxx<377B.

RAM trap If no microinstruction RAM is present, the trap is handled as a ROM trap. If a RAM is
present, the microcode transfers to location TRAPl in the RAM with the trapping instruction
in L, the instruction cycled by 8 bits in the R-register XREG, and PC pointing to the
location after the trapping instruction.

This arrangement makes it convenient to extend the Alto's standard instruction set by implementing
additional functions in software which is dispatched to via TRAPVEC, or in microcode which is dispatched
to via a RAM trap. An appendix tabulates the s-group instruction set opcodes and what each does or how
it traps.

MUL

DIV

CYCLE

JSRII

JSRlS

61020B Unsigned multiply:

Multiply the unsigned integers in Ac1 and Ac2 to generate-a- 32-bit product; add the product to
the integer in ACO. Leave the high-order part of the result in ACO and the low-order part in ACl.
Ac2 is unaffected.

61021B Unsigned divide:

The double-length unsigned integer in ACO and Ac1 is divided by the unsigned integer in Ac2.
The quotient is left in Ac1; the remainder in ACO. Ac2 is unaffected. The instruction normally
skips the next instruction; if overflow occurs (ACO > Ac2 unsigned), DIV does not skip.

60000B Left cycle ACO:

Left cycle (rotate) the contents of ACO by the amount specified in instruction bits 12-15, unless
this value is zero, in which case cycle ACO left by the amount specified in bits 12-15 of Acl.

64400B Jump to subroutine double indirect, PC relative:

AC3+-PC+l
PC+- rv(rv(pc+ SignExtend(DIsP»)

65000B Jump to subroutine double indirect, AC2 relative:

AC3+-PC+l
PC+-rv(rv(AC2+ SignExtend(DISP»)

Alto Hardware Manual Section 3: Emulator 18

CONVERT 67000B Scan convert a font character:

The CONVERT instruction does scan conversion of characters, i.e., it transfers data between an
area of main memory containing a font and an area of memory containing a bit map to be
displayed on the TV monitor.

CONVERT takes a number of arguments:

ACO contains the address of the destination' word into which the upper left corner of the
character is to be placed, offset by NWRDS, the number of words to be displayed on each scan
line (ACO=DWA-NWRDS).

Ac3 points to a character pointer in the font for the character to be displayed
(Ac3 = FONTBASE + CHARACTER CODE).

Ac2+SignExtend(DISP) is the address of a two-word table:

word 0:

word 1:

NWRDS (number of words per to scan line); NWRDS < 128.

DBA, the destination bit address corresponding to the left hand edge of the
character. CONVERT interprets this bit address reversed from the normal
convention, i.e., 0 is the least significant bit, 15 the most significant bit.

CONVERT requires that a 16 word mask table be set up starting at MASKTAB (460B) in page l.
rv(MAsKTAB+n)= (21'(n + 1»-1 (~ns...15).

The format of an Alto font designed for use with CONVERT is given below; names of font files in
this format conventionally have an extension ".AL". The CONVERT instruction does not examine
the words at FONTBASE-2 and FONTBASE-l; these are provided solely for convenience of software.

FONTBASE-2:

The height of a line of text in scan lines. This number incorporates the effects
of the highest and lowest character in the font, i.e. it is max(HD+xH)-min(HD)
where the max and min are taken independently and HD and XH are defined
below.

FONTBASE-l:

Bit 0: 0 = Fixed width font.
1 = Proportional width font.

Bits 1-7: Baseline -- number of scan-lines from top of highest character in
font to the baseline.

Bits 8-15: The width of the widest character in raster points.

FONTBASE to FONTBASE+ 377B:

Self-relative pointers to word xw of the character descriptor block for the
character codes 0-377B.

FONTBASE+400B to FONTBASE+400B+EXTCNT-l:

These locations contain self-relative pointers to word xw of the character
descriptor blocks for extensions, i.e., portions of characters which are wider than
16 bits. EXTCNT is the total number of character extensions.

Alto Hardware Manual Section 3: Emulator 19

RCLK

SIO

FONTBASE+400B+ EXTCNT to end:

Contains a number of character descriptor blocks of the form:

word 0 to word xw-I:
The bit map for the character and surrounding spaces. The bit map
does not include O's at the top and bottom of the character, as the
character will be vertically positioned by CONVERT. The upper left-hand
bit of the character is in the MSB of word O.

word xw:
If the character is ~ 16 bits wide, this word contains (2*width)+1. If
the character is > 16 bits wide, this word contains 2* a pseudo-character
which is used as a character code to index an extension character in the
font. If this is the last extension block of a character, this word contains
(2* the width of the fmal extension), rather than the total width. The
pointer indexed by the character code points to this word.

word xw+I:
In the left byte, HD. In the right byte, XH. HD is the number of scan
lines to skip before displaying the character, XH is the height of the bit
map for this character.

The CONVERT instruction ORS the character bitmap into the display area. If the character does
not require an extension, CONVERT skips, with the following information in the AC'S:

ACO: unchanged
ACI: DBA AND 17B
Ac2: unchanged
Ac3: the width of the character in bits

If the character requires an extension, CONVERT returns does not skip. Ac3 contains the pseudo­
character code for the extension, and AC'S 0-2 are as above.

6I003B Read Clock:

The microcode maintains a 26 bit real time clock which is incremented by the memory refresh
task at 38.08 microsecond intervals (more precisely, once every 224 ticks of the system clock,
whose nominal frequency is 5.880000 MHz). The high-order 16 bits of this clock are maintained
in location RTC (430B) in page 1 The low-order 10 bits are kept in R37. The remaining 6 bits of
R37 contain state information unrelated to the time. RCLK loads ACO with the contents of
location RTC, and loads AcI with the contents of R37. The period of the full 26-bit clock is
about 40 minutes.

The contents of R37 are slightly different on Alto I and Alto II: on Alto I, R37[0-9] contain. the
low order clock bits; on Alto II, R37[4-13] are used. Consequently, on the Alto I, the contents of
ACO and AcI returned by RCLK may be viewed as a 32-bit clock in units of .595 microseconds,
provided AcI[IO-I5] is first zeroed.

61004B Start 110:

Start I/O is included to facilitate 110 control. It places the contents of ACO on the processor bus
and executes the STARTF function (Fl= 17B). By convention, bits of ACO must be "1" in order to
signal . devices. See Appendix C for a· summary of assigned bits.

Alto Hardware Manual Section 3: Emulator 20

BLT

BLKS

SIT

If bit 0 of ACO is 1, and if an Ethernet board is plugged into the Alto, the machine will boot, just
as if the "boot button" were pressed (see sections 3.4, S.4, and 9.2.2 for discussions of
bootstrapping).

SIO also returns a result in ACO. If the Ethernet hardware is installed, the serial number and/or
Ethernet host address of the machine (0-377B) is loaded into AcO[S-lS]. (On Alto I, the serial
number and Ethernet host address are equivalent; on Alto II, the value loaded into ACO is the
Ethernet host address only.) If Ethernet hardware is missing, AcO[S-lS] = 377B. Microcode
installed after June 1976, which this manual describes, returns ACO[O]=O. Microcode installed
prior to June 1976 returns ACO[O] = 1; this is a quick way to acquire the approximate vintage of a
machine's microcode. .

6100SB

61006B

Block transfer:

Block store:

These instructions use tight microcode loops to move a block of memory from one place to
another (BLT) or to store a constant value into a block of memory (BLKS). Block transfer and
block store take the following arguments:

ACO: Address of the first source word-1 (BLT), or data to be stored (BLKS).
Ac1: Address of the last word of the destination area.
Ac3: Negative word count.

Because these instructions are potentially time consuming, and keep their state in the AC'S, they
are interruptable. If an interrupt occurs, the PC is decremented by one, and the AC'S contain the
intermediate state. On return, the instruction continues. On completion, the AC'S are:

ACO: Address of last source word + 1 (BLT), or unchanged (BLKS).
Ac1: Unchanged.
Ac2: Unchanged.
Ac3: O.

The first word of the destination area (Ac1 + Ac3 + 1) is the first to be stored into.

61007B Start interval timer:

The microcode implements an interval timer which has a resolution of 3S.0S microseconds, and a
maximum period of 10 bits. Because the principal application for this timer is to do bit sampling
for a serial EIA-RS232 compatible communications line, the timer is specialized for this purpose.
It uses three dedicated locations in page 1:

ITTIME S2SB Contains the time at which the next timer interrupt should be caused. On

mBITS

ITQUAN

Alto I, the lO-bit time is stored in ITTIME[0-9], and the remaining bits must
be zero. On Alto II, the time is stored in ITTIME[4-13], and the remaining
bits must be zero.

423B This word contains one or more bits specifying the channel or channels on
which the timer interrupt is to occur.

422B When the interval timer interrupt is caused, the microcode stores a quantity
in this location which depends on the mode.

The SIT instruction ORS the contents of ACO into R37. The high 14 bits should be 0; the low­
order 2 bits determine the interval timer mode:

Alto Hardware Manual Section 3: Emulator 21

R37[14-1S]

o Off.

1 Normal mode. Every 38.08 microseconds, test to see if (R37 AND
TIMEMASK)=ITIIME (on Alto I, TIMEMASK=177700B; on Alto II, the proper
value for TIMEMASK is 7774B, but version 23 of Alto II microcode uses a
value of 7700B). If they are equal, cause an interrupt on the channel
specified by ITIBITS. Store the current state of the EIA interface in ITQUAN,
and set R37[14-1S] to zero. The state of the EIA interface is bit IS of location
EIALOC (17770lB) in page 377B. This bit is 0 if the line is spacing, 1 if it is
marking.

2 Same as O.

3 Every 38.08 microseconds, check the state of the. EIA line by reading EIALOC.
If the line is marking (EIALOC is non zero), do nothing. If the line is
spacing, cause an interrupt on the channel specified by ITIBITS. Store the
current value of R37 in ITQUAN, and set R37[14-1S] to zero.

The intention is that a program which does EIA input can use mode 3 to monitor the line for the
arrival of a character, and can then use mode 1 to time the center of each bit. By storing the
state of the line, the interrupt latency can be as much as 1 bit time without errors.

JMPRAM 610l0B Jump to RAM: (see section 8.S for details)

RDRAM

Switches the emulator task micro PC to another microinstruction bank ih ROM or RAM . The next
emulator microinstruction will be determined from the value in ACI (mod 1024) -- see the
discussion of bank switching in section 8.4. . .

61011B Read RAM: (see section 8.5 for details)

Reads· the control RAM halfword addressed by ACI into ACO.

Note: In Alto lIs running microcode version 2, this instruction does not work reliably if the
Ethernet interface is running.

WRTRAM 610l2B Write RAM: (see section 8.S for details)

VERS

Writes ACO into the high-order half and AC3 into the low-order half of the control RA.M word
addressed by ACl.

61014B Version:

ACO is loaded with a number which is coded as follows:

bits 0-3 Alto engineering number

00r1 Alto I
2 Alto II
3 Alto II with extended memory

bits 4-7 Alto build number.

bits 8-lS Version number of the microcode.

This instruction permits programs to know the differences among various kinds of Altos. Use of
the Alto build number (bits 4-7) has been abandoned; its contents are undefined. The two
flavors of Alto maintain separate enumerations of microcode versions (see section 9 for some

Alto Hardware Manual Section 3: Emulator 22

conventions).

DREAD 610lSB Double-word read (Alto II only):

ACO+- rv(AC3); ACI +- rv(Ac3 XOR 1)

DWRITE 61016B Double-word write (Alto)! only):

rv(AC3)+- ACO; rv(Ac3 XOR I)+-Acl

DEXCH 610l7B Double-word exchange (Alto II only):

t+- rv(AC3); rv(AC3)+- ACO; ACO+-t
t+- rv(Ac3 XOR 1); rv(Ac3 XOR I)+- Acl; Acl +- t

DIAGNOSEl 61022B Diagnostic instruction (Alto II only):

This instruction starts a special double-word write cycle that also writes the Hamming code check
bits.

rv(177026B)+- Ac2 (set Hamming code)
rv(Ac3)+- ACO; rv(Ac3 XOR I)+- Acl

DIAGNOSE2 61023B Diagnostic instruction (Alto II only):

BITBLT

This instruction writes the same memory location with two different values in quick succession:

rv(AC3)+- ACO
rv(AC3)+- ACO xor Acl
ACO+- ACO xor ACI

61024B Bit-boundary block transfer:

An instruction for moving bits around in memory. It is particularly helpful for dealing with the
display bit map. BITBLT requires the RAM to be present in order to use some S registers (41B
through SIB). If the RAM is not present, BITBLTwill trap as if it were an unimplemented
operation.

CALLING SEQUENCE

The BITBLT function is invoked with:

ACl: 0
AC2: pointer to BBTable, which. must be even.

Only Ac2 is preserved by BITBLT.

The most common errors when using this instruction are failing to align the BBTable on an even
word boundary, failing to zero Acl, and failing to zero FUNCI10N[O-9].

The format of the BBTable is:

Alto .Hardware Manual Section 3: Emulator 23

Word Name Remarks

O· FUNCTION Operation, SourceType, Bank, etc
1 unused
2 DBCA Destination BCA
3 DBMR* Destination BMR
4 DLX* Destination LX
5 DTY* Destination TY
6 DW* Destination W
7 DH* Destination H
8 SBCA Source BCA
9 SBMR Source BMR
10 SLX* Source LX ' ..

11 STY* Source TY
12 GrayO ' Four words to specify gray block ...
13 Grayl
14 Gray2
15 Gray3

*These should all be positive values, although if DH<O or DW<O then BITBLT is a NOP.

Trick: since BITBLT uses all of the accumulators, BCPL programmers must save AC2, the stack
pointer, somewhere. Put it in word 1 of the BBTable, since AC2 still points at the table after the
instruction finishes, making it easy to recover.

'The instruction is interruptable as it begins consideration of each scan line. If an interrupt
happens, the state of its progress is saved in Acl and the PC is backed up so that on return from
the interrupt, BITBLT will finish its job. This isthe reason w4y Aclmust be zero when starting
the instruction.

DEFINITIONS

A bit map is a region of memory defined by BCA and BMR, where BCA is the base core address
(starting location) and BMR is the bit map raster width in words; the number of scan lines is
irrelevant for our purposes. (If both BMR and BCA are even, then the bit map may be displayed
on the screen using standard Alto facilities.)

A block is a rectangle within a bit map. It has four corners which need not fall on word
boundaries. A block is described by 6 numbers:

BCA Bit map's base core address
BMR Bit map's width in words
LX Block's left X ("x offset" from first bit of scan-line)
TY Block's top Y ("y offset" from first scan-line)
W Block's width in bits
H Block's height in scan-lines

Example: A block is used to designate a sequence of bits in memory, such as a 16 wide 14 high
region containing the bit pattern of a font character. In this . case, BCA points to the font
character, BMR is 1, LX and TY are 0, W is 16, and H is 14. If source and destination blocks
overlap, they had better have the same BCA. .

Alto Hardware Manual Section 3: Emulator 24

BLOCK OPERATIONS

The basic block operations operate by storing some bits into a "destination block." The source
of these bits varies; often it is another block, the "source block." There are various functions
that BITBLT can perform.

The FUNCTION word of the BBTabie contains a number of fields:

FUNCTION[O-9]
FUNCTION[lO]
FUNCTION[ll]
FUNCTION[12-13]
FUNCTION[14-15]

Must be zero
Source block is in the alternate bank
Destination block is in the alternate bank
SourceType
Operation

The operation field specifies the operation to be performed on the source and destination blocks:

Operation Name Action

0 Replace Destination Block +- Source
1 Paint Destination Block +- Source OR Destination
2 Invert Destination Block +- Source XOR Destination
3 Erase Destination Block +- (NOT Source) AND Destination

The SourceType specifies how the Source as used in the above 4 operations is to be computed.
The encodings are:

SourceType Meaning

o
1
2

3

Source is a block of a bit map
Source is the complement of a block of 'a bit map
Source is the logical "and" of a source block and the "gray block" (see
below).
Source is the "gray block.".

The "gray block" is conceptually a block of infinite extent in which a pattern of dots is repeated.
The pattern is specified by four words (GrayO through Gray3). These give the patterns to write
into the destination. block where called for, one gray word per scan line. The words will align
with destination block word boundaries, but BITBLT will use GrayO through Gray3 in the order in
which BITBLT processes scanlines (either top to bottom (DTY(STY) or bottom to top (DTY> STY».

The most common use of these gray values is to generate a uniform pattern. While the BITBLT
instruction takes care of going through these values appropriately, the table must be phased
properly to eliminate seams. Specifically, if ABC D are the desired 16-bit word-aligned values of
gray for scan-lines 0 1 2 3 (mod 4), then two adjustments must be made:

Let Q = DTY + l.
If DTY (STY, then exchange Band D and let Q = -(DTY + DR + 2).
Rotate the pattern left (Le., A+- B, B +- C, etc) a total of (Q AND 3) times.
Set GrayO+-A, Grayl+-B, Gray2+-c, Gray3+-D

When the source is a block of bit map, the width and height parameters of the block are not
needed: the width and height. of the destination block are· also used as the width and height of
the source block. It is permissible for the source and destination blocks to overlap, such as when
sliding an existing block around within a bit map; BITBLT will move words in the order required
for the correct results. However, if the source and destination blocks do overlap, they must
belong to the same bit map (Le., DBCA=SBCA and DBMR=SBMR).

Alto Hardware Manual Section 3: Emulator 25

XMLDA

XMSTA

TIMING DETAILS

The microcode has roughly the following speed characteristics:

Horizontally, along one raster line (so to speak):

store constant
move block
if skew not zero
if source not zero
1st or last word
function not store

13 cycles/word
23 cycles/word
add 6
add 7
add 13
add 6.

Vertical loop overhead (time to change· raster lines):

14-21 cycles/scanline, depending on source/dest alignment
add 6 if function uses gray

Initial setup overhead (time to start or resume from interrupt):

approximately 240 cycles

Total for a typical character, 8 wide by 14 high:

approximately 1500 cycles

These timings all in units of Alto microinstruction cycles and, do include all memory wait time
and do not include any degradation due to competing tasks, such as the display or disk. For
typical characters on the Alto screen, BITBLT is about 2/3 the speed of CONVERT.

61025B Extended Memory Load Accumulator (Alto II only)

Loads ACO from the location addressed by ACI in the alternate bank.'

61026B Extended Memory Store Accumulator (Alto II only)

Stores ACO into the location addressed by Acl in the alternate bank. If the the addressed bank
of memory has not been installed, the instruction yields undefined results and will probably
cause a .parity error. See section 2.3.

Alto Hardware Manual Section 3: Emulator 26

3.2 Interrupts

The emulator microcode provides 15 channels of vectored interrupts. The microcode implements only a
single level of interrupts; however, a multi-level priority interrupt system may easily be implemented in
software (see below).

Interrupts may be caused in two ways:

microcode

software

This method is used by I/O device microcode. A device usually has a dedicated location
in which the CPU program places a word containing ones in the bit positions
corresponding to the channels on which to cause interrupt(s) upon completion of I/O
activity. The emulator is guaranteed to notice an interrupt caused in this way within
one instruction.

This method is used by a CPU program. A program causes interrupts by oRing into
location ww one bits corresponding to the channels on which interrupts should occur.
The emulator is not guaranteed to notice an interrupt caused in this way until an EIR
instruction is executed.

When an interrupt occurs, further interrupts are disabled and the state of the interrupted CPU program is
contained in ACO-3, CARRY, and PC, which must be saved and restored by the interrupt routine.
Interrupts can occur between instructions or during long instructions, in which case the instruction's
intennediate state is saved in the accumulators and PC is backed up so that the interrupted instruction is
re-executed when the interrupt is dismissed.

If two interrupts are requested simultaneously, the one with the highest-numbered channel will be
serviced first.

The interrupt system uses a number of fixed locations in page 1:

ACTIVE 453B

ww 452B

PCLOC 500B

INTVEC 501B-517B

This word contains ones for the channels on which interrupts are permitted to
occur. Bit N is set to one to enable channel N. Bit 0 is reserved and should
not be set by any program.

This word contains bits for channels on which interrupts are pending. This·
information is only valid while the interrupt system is enabled. Bit
conventions are the same as. for ACTIVE. WW is not updated when intemlpts
are disabled -- wakeups caused from microcode accumulate in }..rww until
interrupts are enabled.

When an interrupt is initiated, the PC is saved here. If the CPU program allows
nested interrupts, this location must be saved before re-enabling interrupts.

Contains pointers to the service routines for the 15 interrupt channels. The
first word corresponds to channel 15 (bit 15) and the last corresponds to
channel 1 (bit 1). Channel 15 is permanently assigned to handling main
memory parity errors.

The interrupt system uses four instructions:

Alto Hardware Manual Section 3: Emulator 27

DIR 61000B Disable interrupts:

Disables the interrupt system. If more than one interrupt is initiated on a channel while
interrupts are disabled, only one will occur when interrupts are re-enabled.

DIRS 61013B Disable interrupts and skip if on:

Disables the interrupt system and skips the next instruction if interrupts were enabled at the start
of this instruction.

ErR 6100lB Enable interrupts:

Enables the interrupt system. Interrupts initiated while interrupts were disabled occur after this
instruction.

BRI 61002B Branch and return from interrupt:

Simulates a JMP @PCLOC instruction, and then enables the interrupt system. Interrupts initiated
while interrupts were disabled occur after this instruction.

EXAMPLES

The code below is a sample interrupt handler for one channel, say channel 10. It permits nested
interrupts from higher priority channels, where the priority is determined by software. This is
accomplished by turning off all lower-priority channels and re-enabling interrupts (which were disabled
by· the microcode at the onset of this interrupt). Before dismissing the interrupt.; it is necessary to disable
the interrupt system and tum the lower-priority channels back on.

Interrupt:

SavedACO
SavedACl
SavedAC2
SavedAC3

STA 0 SavedACO
STA 1 SavedACl
STA 2 SavedAC2
STA 3 SavedAC3
MOVR 0 0
STA 0 SavedCarry
LOA 0 @PCLOC
STA 0 SavedPC

LOA 0 @ACTIVE
STA 0 SavedActive
LOA 1 ChanMask
AND 1 0
STA 0 @ACTIVE

EIR

OIR

LOA 0 SavedActive
STA 0 @ACTIVE

LOA 0 Saved PC
STA 0 @PCLOC
LOA 0 SavedCarry
MOVL 0 0
LOA 3 SavedAC3
LOA 2 SavedAC2
LOA 1 SavedACl
LOA 0 SavedACO
BRI

o
o
o
o

; save the interrupted program state

disable lower priority channels

re-enable interrupts
service the interrupt
disable interrupts

re-enable lower priority channels

restore the interrupted program state

dismiss the interrupt

these locations must be private to this channel

Alto Hardware Manual

SavedCa r ry: 0
SavedPC: 0
SavedAct ive: ·0

PCLOC:
ACTIVE:
ChanMask:

500
453
37

Section 3: Emulator 28

; contains ones for higher priority channels

It is customary (though not essential) to assign interrupt channel priorities such that channel 15 has the
highest priority and channel 1 the lowest. In this case, the ChanMask for channel ts interrupt routine will
consist of 15-i one bits right-justified. In any case, ChanMask must contain zero in the bit corresponding to
the· interrupt channel being serviced.

The code below initiates interrupts on the channels corresponding to one bits in ACO. It must disable
interrupts to prevent ww from being changed by microcode-initiated interrupts.

CauseInt:

WW:

COM 0 0
DIR
LDA 1 @WW
AND 0 1
ADC 0 1
STA 1 @WW
EIR

452

AC1 ~ ACO OR AC1

the interrupt happens after this

If a channel's ACTIVE bit is 0 when viewed from non-interrupt level, u1.en u1.e channel is not in use. The
code below searches ACTIVE for the highest priority free channel. It is careful not to assign the parity
interrupt channel. It then initializes an interrupt handler on that channel and returns a word with a one
in the bit position of the assigned channel. It must not be called from interrupt level.

; enter with ACO = the address of the interrupt handler
InitChan: STA 0 INTHANDLER

FFC:

SUB 1 1
SUBZL 0 0
LDA 2 @ACTIVE
MOVZL 0 0 SZC

JMP fail
INC 1 1
AND# 0 2 SZR

JMP FFC

LDA 2 INTVEC
ADD 1 2
LDA 3 INTHANDLER
STA 3 0 2

AC1 ~ 0
ACO ~ 1

no interrupt channels free.

free?
no.T ry the next one

install handler in INTVEC

LDA 2 @ACTIVE ; turn on the channel
ADD 0 2 ; cant carry: equivalent to OR
STA 2 @ACTIVE

; ACO = one-bit mask designating the assigned channel

INTVEC: 501
INTHANDLER: 0 ; temp

The code below destroys the interrupt channels corresponding to one bits in ACO. It must not be called
from interrupt level.

DestroyInt: COM 0 0
LDA 1 @ACTIVE
AND 0 1

Alto Hardware Manual Section 3: Emulator 29

STA 1 @ACTIVE

IMPLEMENTATION

In addition to the main memory locations, the interrupt system uses one R-register: NWW, new interrupts
waiting. Bit 0 of NWW is 0 if the interrupt system is enabled and one if it is disabled. This is why there
are only 15 channels of interrupts and why ww[O] should never be set. lIO device microcode ORS bits
into this register to cause interrupts. (NWW OR WW) expresses all pending interrupts.

The main loop of the emulator checks NWW during the fetch of each emulated instruction. If hTWW is
greater than zero (i.e., NWW[O] is not set meaning the interrupt system is on, and at least one bit is set in
NWW[I-IS] meaning an interrupt is pending on some channel) then the microcode computes (NWW OR
ww) AND ACTIVE. If this quantity is nonzero (Le., an interrupt is pending and its channel is active) then
an interrupt is caused. If not, NWW OR WW is stored in WW, NWW is zeroed, and the instruction is
restarted.

If an interrupt is caused, the microcode stores the program counter in PCLOC, sets NWW[O] to disable
further interrupts, clears the bit in NWW and in WW corresponding to the channel on which the interrupt
is occurring, and loads PC with rv(INTVEC+ IS-CHANNEL).

When the interrupt system is disabled (by executing DIR or DIRS or initiation of an interrupt), the
microcode sets NWW[O]. When the interrupt system is enabled (by executing EIR or BRI), the microcode
clears NWW[O] and ORS WW into NWW.

This organization is optimized to minimize the cost (in additional microinstructions in the emulator main
loop) of the most common case where the interrupt system is enabled and no interrupts are pending.
When a . bit appears in hTWW while the interrupt system is· active, it is either cleared by causing an
interrupt or flushed into WW where it is checked less often, since the cost of deciding that an interrupt is
pending but that the channel is inactive is too high to tolerate on each pass through the main loop. The
assumption in flushing inactive bits into WW is that the CPU program will enable interrupts shortly after
changing· ACTIVE, and doing so will cause the pending bits in WW to be reconsidered.

3.3 Bootstrapping

The emulator contains microcode for initializing the Alto in certain ways, and thereby "bootstrapping" a
runnable program into the machine. A "boot," which is invoked either by pressing the small button at
the rear of the keyboard or by executing an appropriate 8IO instruction (see section 3.3), simply resets all
micro-PC's to fixed initial values determined by their task numbers. Unless the Reset Mode Register
specifies otherwise (see section 8.4), the emulator task is started in the PROM and performs a number of
operations:

1. The current value of PC is stored in memory location O. The emulator accumulators are not
·altered during booting.

2. The display is turned off; Le. rv(420B) +-0.

3. Interrupts are disabled.

4. The first keyboard word (KBDAD, 177034B) is read to determine what sort of boot is to be
done: .

Disk Boot: If the (BS) key is not depressed, the microcode interprets any depressed keys
reported in this keyboard word as a real disk address. If no keys are depressed,
this results in a real disk address . of O.

Alto Hardware Manual

Ether Boot:

3.4 Hardware

Section 3: Emulator 30

The single disk sector at the given address is read: the 256 data words are read
into locations 1 to 400B inclusive; the label is read into locations 402B to 411B
inclusive. When the transfer is complete, pc+-1, and the emulator is started.
The disk status is stored in location 2, so the bootstrapping code must skip this
location.

If the <BS) key is depressed, the microcode anticipates breathing life into the
Alto via the Ethernet. The Ethernet hardware is set up to read any packet with
destination Alto number 377B' into locations 1 to 400B inclusive. If a packet
arrives with good status and with memory location 2 (Le., the second word of the
packet) equal to 602B (a "Breath-of-Life" packet), pc+-3, and the emulator is
started.

More information regarding boot loaders and boot file formats is found with
Buildboot documentation in the Alto Subsystems Manual.

There is a small amount of special hardware which is used exclusively by the emulator. This hardware is
controlled by the task specific F2's, and by the ~ DISP bus source.

The IR register is used to hold the current instruction. It is loaded with IR~ (F2=14B). IR~ also merges
bus bits 0,5,6 and 7 into NEXT[6-9], which does a first level instruction dispatch.

The high order bits of IR cannot be read directly, but the displacement field of IR (8 low order bits), may
be read with the .. DISP bus source. If the x field of the instruction is zero (Le., it specifies page 0
addressing) then the DISP field of the instruction is put on Bus[8-15] and BUS[O-7] is zeroed. If the x
field of the instruction is nonzero (Le. it specifies pC-relative or base-register addressing) then the DISP
field is sign-extended and put on the bus.

Bus[8-15]~ IR[8-15]
Bus[0-7] +- if IR[6-7] = 0 then 0 elseif IR[8] = 0 then 0 else-1

There are two additional F2'S which assist in instruction decoding, IDISP and +-ACSOURCE. The Imsp
function (F2= 15B) does a 16 way dispatch under control of a PROM and a multiplexer. The values are
tabulated below:

Conditions

if IR[O] = 1
elseif IR[l-2] = 0
elseif IR[l-2] = 1
elseif IR[l-2] = 2
elseif IR[4-7] = 0
elseif IR[4-7] = 1
elseif IR[4-7] = 6
elseif IR[4-7] = 16B
else

ORed onto NEXT

then 3-IR[8-9]
then IR[3-4]
then 4
then 5
then 1
then 0
then 16B
then 6
IR[4-7]

Comment

complement of SH field of IR
JMP, JSR, ISZ, DSZ
IDA
STA

CONVERT

~ACSOURCE (F2=16B) has two roles. First, it replaces the two-low order bits of the R select field with
the complement of the SrcAC field of IR, (IR[1-2] XOR 3), allowing the emulator to address its
accumulators (which are assigned to RO-R3). Second, a dispatch is performed:

Alto Hardware Manual

Conditions

if IR[O] = 1
elseif IR[l-2] :;t:. 3
elseif IR[3-7] = 0
elseif IR[3-7] = 1
elseif IR[3-7] = 2
elseif IR[3-7] = 3
elseif IR[3-7] = 4
elseif IR[3-7] = llB
elseif IR[3-7] = 12B
elseif IR[3-7]::;: 16B
elseif IR[3-7] = 37B
else

ORed onto NEXT

then 3-IR[8-9]
then IR[S]
then 2
then 5
then 3
then 6
then 7
then 4
then 4
then 1

. then 17B
16B

Section 3: Emulator

Comment

the complement of the SH field of IR
the Indirect bit of IR
CYCLE
RAMTRAP
NOPAR -- parameterless opcode group
RAMTRAP
RAMTRAP
JSRII
JSRIS
CONVERT

31

ROMTRAP -- used by Swat, the debugger
RAMTRAP

ACDEST, F2= l3B, causes (IR[3-4] XOR 3) to be used as the low-order two bits of the RSELECT field. This
addresses the accumulators from the destination field of the instruction. The selected register may be
loaded or read.

The emulator has two additional bits of state, the SKIP and CARRY flip flops. CARRY is distinct from the
microprocessor's ALUCO bit, tested by the ALUCY function. CARRY is set or cleared as a function of IR and
many other things (see section 3.1) when the DNS~ (do novel shifts,F2=12B) function is executed. In
particular, if IR[12] is true, CARRY will not change. DNS also addresses R from (3-IR[3-4]), causes a store
into Runless IR[12] is set, and sets the SKIP flip flop if appropriate (see section 3.1). The emulator
microcode increments PC by 1 at the beginning of the next emulated instruction if SKIP is set, using
BUS+SKIP (ALUF=13B). IR~ clears SKIP .

. Note that the functions which replace the low bits of RSELECT with IR affect only the selection of R; they
do not affect the address supplied to the constant ROM.

Two additional emulator specific functions, BUSODD (F2= lOB) and MAGIC (F2= llB), are not peculiar to
emulation, but are included for their general usefulness. BUSODD merges Bus[lS] into NEXT[9]. MAGIC is
a modifier applied to L LSH 1 and L RSH 1 to allow double length shifts. L LSH 1 and L RSH 1 normally
shift zero into the vacated bit position in the shifter output. MAGIC places the high order bit of T into
the low order bit of the shifter output on left shifts, and places the .low order bit of T into the high order
bit position of the. shifter output on right shifts. (The microassembler accepts L MLSH 1 to specify the
combination of L LSH 1 and MAGIC, and similarly for L MRSH 1.)

The STARTF function (Fl=17B) is generated by the SIO instruction, and is used to define commands for
I/O hardware, including the Ethernet.

The RSNF function (F1=16B) is decoded by the Ethernet interface, which gates the host address wired on
the backplane onto Bus[8-1S]. Bus[O-7] is not driven and will therefore be -1. If no Ethernet interface is
present, BUS will be -1. .

Alto Hardw~re Manual Section 4: Display Controller 32

4.0 DISPLAY CONTROLLER

4.1 Programming Charactelistics

The display controller handles transfers between the main memory and the CRT. The CRT is a standard
875 line raster-scanned TV monitor, refreshed at 60 fields per second from a bit map in main memory.
The CRT contains 606 points horizontally, and 808 points vertically, or 489,648 points total.

The basic way in which information is presented on the display is by fetching a series of words from Alto
main memory, and serially extracting bits to become the video signal. Therefore, 38 16-bit words are
required to represent each scan line; 30704 words are required to fill the screen.

The display is defined by one or more display control blocks in main memory. Control blocks (DCB'S)
are linked together starting at location DASTART(420B) in page 1:

DASTART:

DASTART+1:

Pointer to word 0 of the first (top on the screen) DCB, or 0 if display is off.

Vertical field interrupt bit mask. Every 1/60 second, this word is OR'ed into
NWW to cause interrupts, even if the display is off (Le., rv(DASTART) = 0).

Display control blocks must begin at even addresses in memory, and have the following format:

DCB: Pointer to next DCB, or 0 if this is the last

DCB+l: Bit 0: 0 = high resolution mode
1 = low resolution mode

Bit 1: 0 = black on white background presentation
1 = white on black background

Bits 2-7 (HTAB): On each scan line of this block, wait 16*HTAB bits before
displaying information from memory.

Bits 8-15 (NWRDS): Each scan line in this block is defined by NWRDS 16 bit
words. (NWRDS must be even). In order to skip space on the
screen without requiring bit-map, set NWRDS to O.

DCB+2 (SA): Bit map starting address, which must be even.

DCB+ 3 (SLC): This block defmes 2*SLC scan lines, SLC in each field.

At the start of each field, the display controller inspects DASTART and DASTART+ 1. An interrupt is
initiated on the channel(s) specified by the bites) in DASTART+ 1. The controller then executes each DCB
sequentially until the display list or the field ends. At normal resolution, the first scan line of the first
(even) field of a block is taken from location SA to SA + NWRDS-l, the first scan line of the odd field is
taken from locations SA + NWRDS to SA + 2*NWRDS-1. During each display field, the bit map address is
incremented by an extra NWRDS between each pair of scan lines. In low resolution mode, the video is
generated at half speed, and each scan line is displayed twice (once in each field). During each field, the
bit map address is not incremented by an extra NWRDS between the display of adjacent scan lines. This
makes the format of the bit map in memory identical for both modes--only the size of the presentation is
affected by the mode.

4.1 Hardware

The display controller consists of a sync generator, a data buffer and serializing shift register, and three
microcode tasks which control data handling and communicate with the Alto program. The hardware is
shown in block form in Figure 5. The 16 word buffer is loaded from the Alto bus with the DDR+-

Alto Hardware Manual Section 4: Display Controller 33

function (F2=10B, specific to the display word task DWT, illegal in an instruction which stops the clocks).
The purpose of the intermediate buffer is to synchronize data transfers between the main buffer, which is
synchronous with ·the 170ns. master clock, and the shift register, which is clocked with an asynchronous
bit clock. The sync generator provides this clock and the vertical and horizontal synchronization signals
required by the monitor .

. The bit clock is disabled by vertical and horizontal blanking, and its rate can be set by the microcode to
either 50 or 100 ns. by the function SETMODE (F2 = llB, specific to the display horizontal task DHT). This
function examines the two high order bits of the processor bus. If bit 0=1, the bit clock rate is set to
lOOns period (at the start of the next scan line), and a 1 is merged into NEXT[9]. SE1MODE also latches bit
1 of the processor bus and uses the value to control the polarity of the video output. A third function,
EVENFIELD (F2 = lOB, specific to DHT and to the display. vertical task DVT), merges a 1 into NEXT[9] if the
display is in the even field.

The display control hardware also generates· wakeup requests to the microprocessor tasking hardware.
The vertical task DVT is awakened once per field, at the beginning of vertical retrace. The display
horizontal task is awakened once at the beginning of each field, and thereafter whenever the display
word task blocks. DHT can block itself, in which case neither it nor the word task can be awakened until
the start of the next field. The wakeup request for the display word task (DWT) is controlled by the state
of the 16 word buffer. If DWT has not executed a BLOCK, if DHT is not blocked, and if the buffer is not
full, DWT wakeups are generated. The hardware sets the buffer empty and clears the DWT block flip-flop
at the beginning of horizontal retrace for every scan line.

4.3 Display Controller Microcode

. The display controller microcode is divided into three tasks. The highest prioiitytask is DVT, the display
vertical task, the next is DHT, the horizontal task, and the third is DWT, the display word task. The
display controller uses 6 registers in R:

CBA: Holds the address of the currently active DCB+ 1.
AECL: Holds the address of the end of the currently active scan line's bit map in main

memory.
SLC: Holds the number of scan lines remaining in the currently active DCB.
HTAB: Holds the number of tab words remaining on the current scan line.
DWA: Holds the address of the bit map doubleword currently being fetched for

transmission to the hardware buffer.
MTEMP: Is a temporary cell.

The vertical task initializes the controller by setting SLC to 0 and CBA to DASTART+ 1. It also merges the
contents of DASTART+ 1 into NWW, which will cause an interrupt if the specified channel is active. DVT
also sets up information required for the cursor (see below), TASKS and becomes inactive until the next
field.

DHT starts by initiating a fetch to the word addressed by CBA. It checks SLC, and if it is zero, the
controller is finished with the current DCB, and the link word of the DCB is fetched. If this word is non­
zero, it replaces CBA and processing of a new DCB is begun. If the link word is zero, DHT blocks until
the start of the next field.

If the check of SLC indicates that more scan lines remain in the current DCB, SLC is decremented by one·
and the fetch of (CBA) is used to obtain the second word of the DCB, rather than the link word. The
contents of this word are used to set the display mode and polarity, and the tab count is extracted and
put into HTAB. NWRDS is extracted, and used to increment DWA and AECL by the appropriate amount,
depending on the mode and field. All the registers required by DWT have now been set up, and DHT
TASKS and becomes inactive until DWT blocks.

Alto Hardware Manual Section 4: Display Controller 34

If a new DCB is required, DHT fetches all four words of the new DCB, and initializes all the registers.
During all scan lines of a DCB except the first, DHT only accesses the first doubleword of the block.

DWT has the sole task of transferring words from memory to the hardware. When it first awakens during
horizontal retrace, it checks HTAB. If it is non-zero, it enters a loop which outputs HTAB D'S to the
display. When HTAB is zero, a second loop is entered which fetches a doubleword from the location
specified by DWA. DWA is compared with AECL, and if they are equal, DWT blocks until the next scan
line. DWA is incremented by 2, in preparation for the fetch of the next doubleword. If DWA:;CAECL,
DWT continues to supply words to the buffer whenever it becomes non-full.

4.4 Cursor

Because of the difficulty of inserting a cursor at the appropriate place in the display bit map at
reasonable speed, a hardware cursor is included in the Alto. The cursor consists of an arbitrary 16x16 bit
patch, which is merged with the video at the appropriate time. The bit map for the cursor is contained
in 16 words starting at location CURMAP(431B} in page one, and the X,y coordinates of the cursor are
specified by location CURLOC (426B) and CURLOC+1 (427B) in page 1. The coordinate origin for the
cursor is the upper left hand comer of the screen. The cursor presentation is unaffected by changes in
display resolution. Its polarity is that of the current DCB, or the last DCB processed if it is located on an
area of the screen not defined by a DCB. The cursor may be removed from view in a number of ways.
The most efficient in terms of processing time is to set the x coordinate to -1.

The cursor hardware consists of a 16-bit shift register which holds the information to be displayed on the
current scan line, and a counter which is incremented by the bit clock, and determines the x coordinate
at which the shift register begins shifting. .

The hardware is loaded during horizontal retrace by the cursor task microcode, which simply copies the x
coordinate and bit map segment from the R memory into the hardware.

The values of x and the bit map are set up in R by a section of the memory refresh task, whose wakeup
and priority are arranged so that it runs during every scan line after DWT has done all necessary output
and DHT has set up the information required by DWT for the next scan line. MRT checks the current y
position of the display, and if it is in the range in which the cursor should be displayed, fetches the
appropriate bit map segment from CURMAP. When the cursor y position is exceeded by the display, a
flag is set in MRT to disable further processing. The x and y coordinates of the cursor are fetched from
CURLOC and CURLOC+ 1 at the beginning of each display field by a section of the display vertical task
microcode.

Cursor processing is distributed as it is to minimize the amount of processing which must be done during
the monitor's horizontal retrace time. This time is approximately 6 microseconds, and it must include the
worst case latency imposed by tasks at lower priority than the display, plus the worst case disk word
processing time (the disk word task is at higher priority than the display), plus the time necessary for
DWT to partially fill the display buffer, plus cursor processing time.

Alto Processor Bus
,

I

16

16-word
,...--

Buffer

Cursor
Shift Register ~

f-- 1 -word Buffer

Video
f-- Display Digital , ,

Shift Register .- Mixer ,

.. Bit
Clock ., Sync Sync .. .- .' - . -- _. - - ".---

Generator ...
/

Buffer
/ Control

Figure 5 -- Display Control

· · . · . · ·
Pointer to next DeB

• I • .1. I J • · . · · ·
Resol BkGnd Horizontal Tab Words per Scan Line

• • , • • - · I · ·
Bit map address

• • , ., • • I · · I · · ·
Scan Lines

• • I • • •

Alto Hardware Manual Section 5: Miscellaneous Peripherals 35

5.0 MISCELLANEOUS PERIPHERALS

The Alto can have a number of slow peripherals which appear to programs as memory locations in the
range 177000-177777B. The standard peripherals are described here.

5.1 Keyboard

The Alto keyboard contains 61 or 64 keys. It appears 'to the program as four 16 bit words in 4 adjacent
locations starting at KBDAD (177034B). Depressed keys correspond to zeroes in memory, idle keys
correspond to ones. Figure 6 shows layouts of the Microswitch and ADL keyboards, including key tops
and the word number, bit number corresponding to each key. All Alto Is and the more recent Alto IIs_
have Microswitch keyboards; earlier Alto lIs have ADL keyboards, which are somewhat larger and have
columns of function keys on the left and right sides.

MICROS~TCHKEYBOARD

Bit KBDAD (177034B) KBDAD+1 (177035B) KBDAD+2 (177036B) KBDAD+3 (177037B)

0 5 3 1 R
1 4 2 ESC T
2 6 W TAB G
3 E Q F Y
4 7 S CTRL H
5 D A C 8
6 U 9 J N
7 V I B M
8 o (zero) X Z LOCK
9 K 0 . <shift-left> SPACE
10 L . (period) [
11 P . (comma) , +
12 / " (quote) RETURN <shift-right>
13 \ 1 <- <blank-bottom>
14 LF <blank-middle> DEL xxx
15 BS <blank-top> xxx xxx

ADL KEYBOARD
Bit KBDAD (177034B) KBDAD+l (177035B) KBDAD+2 (177036B) KBDAD+3 (177037B)

0 5 3 1 R
1 4 2 ESC T
2 6 W TAB G
3 E Q F y
4 7 S CTRL H
5 D A C 8
6 U 9 J N
7 V I B M
8 o (zero) X Z LOCK
9 K 0 <shift-left> SPACE
10 L . (period) [
11 P . (comma) , +
12 / " (quote) RETURN <shift-right>
13 \ (FR2) 1 <- (FR3) FRI
14 LF (FL2) FR4 DEL(FLl) FL4
15 BS BW FL3 FR5

FL stands for the function keys at the left of the keyboard; FR for those at the right.

Figure 6

Alto Hardware Manual Section 5: Miscellaneous Peripherals 36

Note: Connecting an Alto I keyboard to an Alto II or an Alto II Microswitch keyboard to an Alto I
requires rewiring a connector or installing an adaptor cable. An ADL keyboard requires additional logic
to connect to an Alto 1.

5.2 Mouse

The mouse is a hand-held pointing device which contains two encoders which digitize its position as it is
rolled over a table-top. It also has three buttons which may be read as the three low-order bits of
memory location UfILIN (177030B), in the manner of the keyboard. The bit/button correspondences in
UfILIN are (depressed keys correspond to O's in memory):

UfILIN[13]
UfILIN[14]
UfILIN[lS]

Top or Left Button (RED)
Bottom or Right Button (BLUE)
Middle Button (YELLOW)

The mouse coordinates are maintained by the MRT microcode in locations MOUSELoc(424B)=X and
MOUSELOC+1(42SB)=Y in page one of the Alto memory. These coordinates are relative, i.e., the
hardware only increments and decrements them. The resolution of the mouse is approximately 100
points per inch.

5.3 Keyset

The standard Alto includes a five-finger keyset which is presented to the program as S bits of memory
location· UTILIN (177030B), similar to the keyboard. The·· bit/key correspondences in UfILIN are
(depressed keys correspond to O's in memory):

UfILIN[8]
UfILIN[9]
UfILIN[10]
UfILIN[ll]
UfILIN[12]

5.4 External Device Interface

Key 0 (left-most)
Key 1
Key 2
Key 3
Key 4 (right-most)

Two memory locations, UTILIN (177030B) and UTlLOUf (1770l6B), provide an interface to external
devices through a connector on the rear of the Alto. If a quantity is stored into UTILOUf, it is latched
and appears as 16 output signals; if a 1 bit is stored; a more negative logic level is generated (TTL "low").
For input, bits 0 to S and bit 7 of UTILIN are available; more positive logic levels (TTL "high") are
reported as 1 bits. The remaining bits of this location are used by the mouse, keyset and memory
configuration switch.

On the Alto I, this connector also provides various power supply voltages. These are absent on Alto II.

The Alto II provides an additional 16-bit input port (the x bus), which can be read by accessing memory
locations 177020B-177023B. The connector on the rear of the Alto II provides the low 2 bits of memory
address and a signal that indicates the x bus is being read, together with the 16 input data signals. More
positive logic levels (TIL "high") are reported as 1 bits.

The two sections below describe two common devices connected to UfILIN/UTILOUf, the Diablo HyType
printer and Versatec printer/plotter. The descriptions are for the programmer: the bit values (0 or 1)
refer to values that will be stored into UTlLOUT or read from UfILIN by an Alto program.

Alto Hardware Manual Section 5: Miscellaneous Peripherals 37

5.4.1 Diahlo Printer

The Diablo HyType printer plugs into a connector on. the rear of the Alto, and is controlled by
referencing two locations in Alto memory. None of the timing signals required by the printer are
generated automatically--all must be program generated. For detailed infonnation on the printer, refer to
the Diablo manuaL

Location UTILIN (177030B):

UTILIN[O] Paper ready bit. 0 when the printer is ready for a paper scrolling operation.

UTILIN[l]

UTILIN[2]

UTILIN[3]

UTILIN[4]

UTILIN[5]

UTILIN[6]

UTILIN[7]

Printer check bit Should the printer find itself in an abnonnal state, it sets this
bit to O.

Unused.

Daisy ready bit. 0 when the printer is ready to print a character.

Carriage ready bit. 0 when the printer is ready for horizontal positioning.

Ready bit.· Both this bit and the appropriate other ready bit (carriage, daisy,
etc.) must be 0 before attempting any output operation.

(Memory configuration switch -- see section 5.5)

Unused.

Location UTlLOUT (177016B):

Several of the output operations are invoked by "toggling" a bit in the output status word. To toggle a
bit, set it first to 1, then back to 0 immediately.

UTILOUT[O] Paper strobe bit. Toggling this bit causes a paper scrolling operation.

UTILOUT[l] Restore bit. Toggling this bit resets the printer (including clearing the "check"
condition if present) and moves the carriage to the left margin.

UTILOUT[2] Ribbon bit. When this bit is 1 the ribbon is up (in printing position); when 0,
it is down.

UTlLOUT[3] Daisy strobe bit. Toggling this bit causes a character to be printed.

UTlLOUT[4] Carriage strobe bit. Toggling this bit causes a horizontal positioning operation.

UTlLOUT[5-15] Argument to various output operations:

1. Printing characters. When the daisy bit is toggled bits 9-15 of this field
are interpreted as an ASCII character code ·to be printed (it should be
noted that all codes less than 40B print as lower case "w").

2. For paper and carriage operations the field is interpreted as a displacement
(-1024 to +1023), in units of 1/48 inch for paper and 1/60 inch for
carriage. Positive is down or to the right, negative up or to the left. The
value is represented as sign-magnitude (Le., bit 5 is 1 for negative
numbers, 0 for positive; bits 6-15 are the absolute value of the number).

The printer is initialized by toggling the restore bit, then waiting for all ready bits to be O. A typical
output sequence, say printing a character,' involves examining the check bit for abnonnal status, waiting
for both the ready and daisy ready bits to be 0, then writing in the printer output location the character
code, the character code oRed with the daisy strobe bit, and the unmodified code again.

The device behaves more or less like a plotter, i.e. you must explicitly position each character in
software; a print operation does not affect the position of either the carriage or the paper. All coordinates

Alto Hardware Manual Section 5: Miscellaneous Peripherals 38

in paper or carriage operations are relative; the device does not know its absolute position. Again, you
must keep track. of this in software.

WARNING: On Alto I, the printer cable should not be changed (connected or disconnected) while Alto
power is on. The printer power is derived from the Alto power supplies; changing the cable causes a
large transient which usually crashes the processor and does bad things to the disk drive. On Alto II, the
printer is independently powered and may therefore be connected or discoIltlected at any time.

5.4.2 Versatec Plotters and Printer/Plotters

Because of their delightfully simple hardware interface, -all manner of Versatec equipment may be driven
from the Alto with ease. The description below gives the signal assignments and a small number of
coding tricks; the programmer should consult a Versatec manual for details (bulletin 6002, Matrix Basic
Interface Description is particularly helpful). The notation * is used below to indicate a signal whose
sense is inverted.

Location UTILIN (177030B):

UfILIN[I] ONLINE*
UTILIN[2] NOPAP
UfILIN[3] READY*

Location UTlLOUT (177016B):

UfILOUT[O] RFFED
UfILOUT[1] CLEAR
UTlLOUT[2] RLTER
UfILOUT[3] PICLK*
UTlLOUT[4] PRINT*
UfILOUT[5] SPP
UTlLOUT[6] RESET
UfILOUT[7] REOTR

On-line (inverted).
No paper.
Ready (inverted).

Remote form feed.
Clear print line;
Remote line terminate.
Print clock (inverted).
Print select (inverted) -- print = 0, plot = 1
Simultaneous print/plot.
Remote reset
Remote end of transmission.

UfILOUT[8-15] !N08'" to INOI * Data bits to be sent to the Versatec (inverted). Bit 8 is
the most significant bit of the nibble; bit 15 is the least
significant.

None of the timing _ signals (PICLK) are generated automatically by the Alto--the programmer must cause -.
the signals to wave appropriately. The Alto II DIAGNOSE2 instruction is particularly helpful for
generating the clock signals. The control functions (RFFED, CLEAR, RLTER, RESET, REOTR) are generated
by raising and then lowering them:

LOA 0 FORMFEED
LOA 1 FORMTOGGLE
LOA 3 UTILOUTADR
DIAGNOSE2

FORMFEED: 114000
FORMTOGGLE: 100000
UTILOUTADR: 177016

RFFED + PICLK* + PRINT*
RFFED

Data bytes must be sent with care, because the UfILOUT data lines take a little time to set up. The data
is first set, then the _ clock bit is toggled, and then . the clock bit is toggled again:

Alto Hardware Manual

LDA 0 DATA
COM 0 0
LDA l·DATAMASK
AND 1 0
LDA 3 UTILOUTADR
STA 0 0 3
LDA 1 DATATOGGLE
DIAGNOSE2

DATA: 111
DATAMASK: 014377
DATATOGGLE: 010000
UTILOUTADR: 177016

Section 5: Miscellaneous Peripherals

Note that data must be inverted

Save IN08*-IN01*,picLK*,PRINT*. We're plotting

Let data settle--clock is "off"

Toggle clock "on" then "off"

ASCII code for "I".
PICLK* + PRINT* + data mask
PICLK*

On Alto I; DIAGNOSE2 is not available, but its effect may be emulated.

5.5 Parity Error Detection

39

The detection and reporting of parity errors is accomplished somewhat differently on Alto I and Alto II.
In both machines, the processing of errors is undertaken by a high-priority microtask, which is invoked
very soon after an error occurs. The microtask reports a parity error by causing an interrupt on emulator
interrupt channel 15, i.e., by ORing a one into NWW[15j. Bear in mind that parity errors can be generated
by memory references undertaken by any microtask; as a result, it may be some time between the
occurrence of the error and the next execution of the emulator task and consequent servicing of the
interrupt

When a parity error happens, the parity task stores the contents of various R registers into some page 1
reserved locations given below. Unfortunately, the information recorded by the parity task is not
sufficient to determine precisely where the parity error occurred. The intent of the collection is to save
values of the R registers most likely to be used as a source of memory addresses.

Alto II

Address

614B
615B
616B
617B
620B
621B

R-Register

DCBR
KNMAR
DWA
CBA
PC
SAD

Use

Disk control block fetch pointer
Disk word fetch/store pointer
Display word fetch address
Display control block fetch address
Current program counter in the emulator
Temporary register for indirection in emulator

The Alto II memory contains circuitry for correcting single-bit errors and detecting double-bit errors.
The logic expects a good deal of set-up and in turn reports copious error information. Interaction with
the error control is effected through three memory locations (177024B, 177025B and 177026B). Detailed
information on the operation of the error correction mechanism is best obtained from the logic drawings.

Memory Error Address Register (MEAR = 177024B). This register is a 'shadow MAR': it holds the
address of the first error since the error status was last reset. If no error has occurred, MEAR reports the
address of the most recent memory access. Note that MEAR is set whenever an error of any kind (single­
bit or double-bit) is detected.

Memory Error Status Register (MESR = 177025B). This register reports specifics of the first error that
occurred since MESR was last reset. Storing anything into this register resets the error logic and enables it
to detect a new error. Bits are "low true," i.e. if the bit is 0, the condition is true.

Alto Hardware Manual Section 5: Miscellaneous Peripherals 40

MESR[0-5] Hamming code reported from error
MESR[6] . Parity Error
MESR[7] Memory parity bit
MESR[8-13] Syndrome bits
MESR[14-15] Bank number in which error occurred

MESR[14-15] is an extension to the most significant end of MEAR. This field is only present if the
extended memory option is installed (see section 2.3), otherwise it reads out -1.

Memory Error Control Register (MECR = 177026B). Storing into this register is the means for
controlling the memory error logic. This register is set to all ones (disable all interrupts) when the Alto
is bootstrapped and when the parity error task first detects an error. When an error has occurred, MEAR
and MESR should be read before setting the MECR. Bits are "low true," Le. a 0 bit enables the condition.

MECR[O-3] Spare
MECR[4-10] Test Hamming code (used only for special diagnostics)
MECR[ll] Test mode (used only for special diagnostics)
MECR[12] Cause interrupt on single-bit errors if zero
MECR[13] Cause interrupt on double-bit errors if zero
MECR[14] Do not use error correction if zero
MECR[15] Spare

Note that MECR[12]. and [13] govern only the initiation of interrupts; MEAR and MESR hold information
about the first error that occurs after reseting MESR regardless of what kind of errors are to cause
interrupts.

ADDRESS MAPPING

The mapping of addresses to memory chips can be altered by the setting of the "memory configuration
switch." This switch is located on the front of Alto 1's, and at the top of the backplane of the Alto II.
The current setting of the switch is reported in bit 6 of UTILIN (location 177030B): if this bit is 0, the
switch is in the "normal" position ("up" on Alto I, "back" on Alto II), otherwise the switch is in the
"alternate" position. On Alto I, if the switch is in the alternate position, the first two 16K portions of
memory are exchanged (i.e., the memory address is modified by the algorithm: if MAR[O] = 0 then
MAR[l]+-MAR[l] XOR 1). On Alto II, if the switch is in the alternate position, the first and second 32K
portions of memory are exchanged (Le., the memory address is. modified by the algorithm:
MAR[O]+-MAR[O] XOR 1).

In order to fix many memory problems, it is necessary to know the mapping between memory admesses
(and bit numbers) to actual memory chips on the memory boards. Herewith the mapping, given in the
style of a program: the algorithm is given the memory address (address) and the bit position in the word
(bit). The function odd(x) returns true if the 16-bit number x is odd. The variable switch corresponds to
the setting of the memory configuration switch (Le., switch +-UTILIN[6]). .

Alto I

The variables row and column are the "coordinates" of the memory chip on the given cardSlot, as printed
by the memory diagnostic. The chipNumber is the chip number on the memory board. Bit 16 is the
parity bit.

if address[O]=O then (if switch=l then address[l]+-address[l] xor 1)
row +-address[2-4]
cardSlot+-(address[0-1])*4 + 13
if odd(address) then card+-card+2
column +- bit
if bit ~ 12 then [card+-card+1; column+-bit-5]

Alto Hardware Manual Section 5: Miscellaneous Peripherals 41

chipNumber+- 15 + column + 14*row

Alto II

The Alto II memory system is organized around 32-bit doublewords. Stored along with each double
word is 6 bits of hamming code and a parity bit for a total of 39 bits:

bits 0-15
bits 16-31
bits 32-37
bit 38

even data word
odd data word
Hamming code
parity bit

Things are further complicated by the fact that two types of memory chips are used: 16K chips in
machines with the extended memory option (see section 2.3), and 4K chips for all others.

The bits in a I-chip deep slice of memory are called a group. A group contains 4K or 16K double
words, depending on chip type. The bits of a group on a single board are called a subgroup. Thus a
subgroup contains 10 of the 40 bits in a group. There are 8 subgroups on a memory board. Subgroups
are numbered from the high 3 bits of the address: for 4K chips this means MAR[0-2]; for 16K chips (Le.
an Alto with extended memory) this means BANK.MAR[O]:

Subgroup chip positions

7
6
5
4
3
2
1
o

81-90
71-80
61-70
51-60
41-50
31-40
21-30
11-20 Nearest the edge connector

The location of the bits in group 0 is:

CARD 1 CARD 2
32 24 16 08 00 I 33 25 17 09 01
36 28 20 12 04 I 37 29 21 13 05

chip posltlon 11

CARD 3
34 26 18 10 02
38 30 22 14 06

l'

CARD 4
35 27 19 11 03
XX 31 23 15 07

l'

Chips 15, 25, 35, 45, 55, 65, 75, and 85 on board 4 aren't used. If you are out of replacement memory·
chips, you can use one of these, but then the board with the missing chips will only work in Slot 4.

The algorithm for converting address and bit into cardSlot and chipNumber is (the variable 'xm' is true if
the Alto has extended memory):

if odd(address) then bit+-bit+16
a: if switch = 1 then address[O] +- address[Ol xor 1

cardSlot+- (bit mod 4) + 1
chipNumber+- bitl8 + 16 - (if odd(bitl4) then 5 else 0) +

10 * (if xm then address[O] else address[O-2]) +
(if xm then bank*20 else 0)

A second entry to this algorithm is with an address (usually read from MEAR), and a syndrome (usually
read from MESR, but remember that it must be complemented: syndrome+-(rv(MESR»)[8-13] XOR 77B».

Alto Hardware Manual Section 5: Miscellaneous Peripherals 42

bit+- syndromeMapping[syndrome] (see table below)
if bit= -1 then error ("impossible" syndrome)
enter the algorithm above at 0:.

The syndromeMapping maps a 6-bit number (range 0 to 63) into the number of the bad bit (0 to 38)
or -1 if the syndrome is incorrect:

0 1 2 3 4 5 6 7

0 38 37 36 -1 35 -1 18 -1 (syndrome values 0 to 7)
10 34 29 14 -1 7 -1 22 -1
20 33 27 12 -1 5 -1 20 -1
30 2 31 16 -1 9 -1 24 -1
40 32 26 11 -1 4 -1 19 -1
50 1 30 15 -1 8 -1 23 -1
60 0 28 13 -1 6 -1 21 -1
70 3 -1 17 -1 10 -1 25 -1

Alto Hardware Manual Section 6: Disk and Controller 43

6.0 DISK AND CONTROLLER'

The disk controller is designed to accommodate one of a variety of DIABLO disk drives, including models
31 and 44. Each drive accommodates one or two disks. Each disk has two heads, one per side.
Information is recorded on each disk in a 12-sector format on each of up to 406 (depending on the disk
model) radial track positions. Thus, each disk contains up to 9744 recording positions (2 heads x 12
sectors x 406 track positions). Figure 7 tabulates various useful information about the performance of the
disk drives. .

DEVICE DIABLO 31 DIABLO 44

Number of drives/Alto 1 or 2 1
Number of packs 1 removable 1 removable

1 fixed

Number of cylinders 203 406
Tracks/cylinder/pack 2 2
Sectors per track 12 12
Words per sector 2 header 2 header

8 label 8 label
256 data 256 data

Data words/track 3072 3072
Sectors/pack 4872 9744

Rotation time 40 25 ms
Seek time (approx.) 15 + 8.6*sqrt(dt) 8 + 3*sqrt(dt) ms*

min-avg-max 15-70-135 8-30-68 ms
Average access to 1 megabyte 80 32 (using both packs) ms

Transfer rate:
. peaklavg 1.6/1.22 2.5/1.9 MHz
peaklavg 10.2/13 6.7/8. Its/word
per sector 3.3 2.1 ms
for full display .460 .266 sec
for 64k memory 1.03 .6 sec
whole drive 19.3 44(both packs) sec
* The notation dt stands for the number of tracks traveled during the seek.

Figure 7

The disk controller records three independent data blocks in each sector. The first is two words long,
and is intended to include the address of the sector. This block is called the Header block. The second
block is eight words long, and is called the Label block. The third block is 256 words long, and is the
Data block. Each block may be independently read, written, or checked, except that writing, once begun,
must continue until the end of the sector.

When a block is checked, information on the disk is compared word for word with a specified block of
main memory. During checking, a main memory word containing 0 has special significance. When this
word is encountered, the matching word read from the disk is stored in its place and does not take part
in the check. This feature permits a combination of reading and checking to occur in the same block.
(It also has the drawback of making it impossible to use the disk controller to check for words containing
o on the disk.)

The Alto program communicates with the disk controller via a four-word block of main memory
beginning at location KBLK (521B). The first word is interpreted as a pointer to a chain of disk command
blocks. If it contains 0, the disk controller will remain idle. Otherwise, the disk controller will
commence execution of the command contained in the first disk command block. When a command is
completed successfully, the disk controller stores in KBLK a pointer to the next command in the chain
and the cycle repeats. If a command terminates in error, a 0 is immediately stored in KBLK and the disk

Alto Hardware Manual Section 6: Disk and Controller 44

controller idles. At the beginning of each sector, status information, including the number of the current
sector, is stored in KBLK + 1. . This can be used by the Alto program to sense the readiness of the disk
and to schedule disk transfers, for example. When the disk controller begins executing a command, it
stores the disk address of that command in KBLK + 2. This information is later used by the disk
controller to decide whether seek operations or disk switches are necessary. It can be used by the Alto
program for scheduling disk arm motion. If the Alto program stores an illegal disk address (like -1) in
this word, the disk controller will perform a seek at the beginning' of the next disk operation. (This is
useful, for example, when a disk driver wants to force a restore operation.) The disk controller also
communicates with the Alto program by interrupts (see Section 3.2). At the beginning of each sector
interrupts are initiated on the channels specified by the bits in KBLK + 3.

KBLK (521B): Pointer to first disk command block.
KBLK + 1 (522B): Status at beginning of current sector.
KBLK+2 (523B): Disk address of most-recently started disk command.
KBLK+3 (524B): Sector interrupt bit mask.

A disk command block is a ten-word block of memory which describes a disk transfer operation to the
disk controller, and which is also used by the controller to record the status of that operation. The first
word is a pointer to the next disk command block in this chain. A 0 means that this is the last disk
command block in the chain. When the command is complete, the disk controller stores its status in the
second word. The third word contains the command itself, telling the disk controller what to do. The
fourth word contains a pointer to the block of memory from/to which the header block will be
transferred. The fifth word contains a similar pointer for the label block. The sixth word contains a
similar pointer for the data block.

The seventh and eighth words of the disk command block control the initiation of interrupts when the
command block is finished. If the command terminates without error, interrupts are initiated on the
channels specified by the bits in DCB+6. However, if the command term..inates with an error, the bits in
DCB + 7 are used instead.

The ninth word is unused by the disk controller, and may be used by the Alto program to facilitate
chained disk operations. The tenth word contains the disk address at which the current operation is to
take place.

DCB:
DCB+l:
DCB+2:
DCB+3:
DCB+4:
DCB+5:
DCB+6:
DCB+7:
DCB+8:
DCB+9:

Pointer to next command block.
Status.
Command.
Header block pointer.
Label block pointer.
Data pointer.
Command complete no-error interrupt bit mask~
Command complete error interrupt bit mask.
Currently unused.
Disk address.

A disk address word A contains the following fields:

FIELD RANGE
A[O-3] O-13B

A[4-12] 0-625B (Model 44)
0-312B (Model 31)

A[13] 0-1

A[14] 0-1

SIGNIFICANCE

Sector number.

Cylinder number.

Head number.

Disk number (see also C[15]). 0 is removable pack
on Model 44. 1 is optional second Model 31 drive.

Alto Hardware Manual

A[15] 0-1

Section 6: Disk and Controller 45

o normally.
1 if cylinder 0 is to be addressed via a hardware
"restore" operation.

A disk command word C contains the following fields:

FIELD RANGE

C[0-7] 110B

C[8-9] 0-3

C[1O-11] 0-3

C[12-13] 0-3

C[14] 0-1

C[15] 0-1

A disk status word S has the following fields:

FIELD VALUES

S[0-3] 0-13B

S[4-7] 17B

S[8] 0-1

S[9] 0-1

S[10] 0-1

S[11] 0-1

S[12] 0-1

S[13] 0-1

S[14-15] 0-3

SIGNIFICANCE

Checked to verify that this is a valid disk command.

o if Header block to be read.
1 if Header block to be checked.
2 or 3 if Header block to be written.

o if Label block to be read.
1 if Label block to be checked.
2 or 3 if Label block to be written.

o if Data block to be read.
1 if Data block to be checked.
2 or 3 if Data block to be written.

o normally.
1 if the command is to terminate immediately after
the correct cylinder position is reached (before any
data is transferred).

xOR'ed with A[14] to yield hardware disk number.

SIGNIFICANCE

Current sector number.

One can tell whether status has been stored by
setting this field initially to 0 and then checking for
non-zero.

1 means seek failed, possibly due to illegal cylinder
address.

1 means seek in progress.

1 means disk unit not ready.

1 means data or sector processing was late during the
last sector. Data and current sector number
unreliable.

1 means disk interface was not transferring data last
sector.

1 means checksum error. Command allowed to
proceed.

o means command completed correctly.
1 means hardware error (see S[8-11]) or sector
overflow.
2 means check error. Command terminated instantly.
3 means disk command specified illegal sector.

Several clever programming tricks have been suggested to drive the disk controller. For an initial
program load, KBLK should be set to point to a. disk command block representing a read into location

.
I

.
I

0

1

2

3

4

5

6

7

10

11

Disk Address

. . . .
Command Seal (110B)

I I I I I I

Disk Command

. . .
Sector -1 if done

I I I

Disk Status

Pointer to next KCB

Disk status

Disk command

Header record memory address

Label record memory address

Data record memory address

No-Error Interrupt bit mask

Error Interrupt bit mask

Reserved

Disk address

Disk Command Block (KCB)

Header
Action

I

Seek Seek Fail

521

522

523

524

:

. .
Label Data
Action Action

I

0: Read
1: Check

2or3: Write

Not Data
Rdy Late Idle

Pointer to next KCB

I

ChSm
Error

Status at beginning of sector

Disk address of most recent KCB

Sector interrupt bit mask

Reserved Page 1 Locations

Figure 8 -- Disk Data Structures

Rst

No Drive Xfer

Completion
Code

I

0: Good status
1: Hardware error
2: Check error
3: Illegal sector

Alto Hardware Manual Section 6: Disk and Controller 46

STRT. Before setting KBLK, the Alto program should put a JMP STRT instruction in STRT; afterward it
should jump to STRT. The disk controller transfers data downward, from high to low addresses, so that
when location' STRT is changed the reading of the block is complete. (See section 3.4 on the standard
bootstrap loading microcode.)

Another trick is to chain disk reads through their label blocks. That is, the label block for sector n
contains part of the disk command block for reading sector n + 1, and so on.

6.1 Disk Controller Implementation

The following walk-through of an average day in the life of the standard disk controller is not intended
for the casual reader, but rather as a roadmap to ease the pain of learning the innermost workings of the
controller. If you really want to benefit from this next section, you should have a copy of the standard
disk controller microcode and logic drawings close at hand.

The disk controller consists of a modest amount of hardware and two microcode tasks (the sector task
and the word task). Communication with the emulator is via the four special main memory words, the
disk command blocks, and the interrupts described earlier. In following few paragraphs the actions of the
standard disk controller microcode are described. Occasionally it may be unclear whether the actor is
microcode or hardware. Referring to microcode listings and/or logic drawings will resolve any such
questions.

The sector task is awakened by a sector signal from the disk. When awakened, it stores the status of the
disk and controller in the special disk status word (KBLK + 1). In addition, if this sector signal terminates
a disk command (for example; a data transfer during the previous sector), the status of the disk and
controller are stored in the status word of the disk command block containing the terminated command,
and the command block pointer (KBLK) is advanced. If a command was terminated with an error, KBLK
(DeB pointer) is set to 0 and KBLK + 2 (current disk address) is set to -1. The effect of this is to cause the
disk controller to abandon the current disk command chain and to forget where the disk arm is
positioned. '

Next, the sector task considers the first command on the disk command block chain (by using KBLK). If
there is none, or if the disk unit is not ready to accept a command, the sector task goes to sleep until the
next sector pulse. Otherwise, the sector specified in the new command is verified to be less than 13.
Then, the disk and cylinder specified in the new command are compared with those stored in KBLK + 2
(current disk address), and then the new disk address is stored in KBLK+2 and in the disk controller
hardware. Part of the new command is also stored in the hardware. If the comparison is unequal, a seek
is initiated and the sector task goes to sleep until the next sector pulse.

If the comparison was equal, the SEEKOK hardware flag is tested. If that is OK, then the no-transfer bit
of the disk command (bit 14 of the command word of the current disk command block) is tested to see
whether a data transfer is required. If not, the sector task goes to sleep such that the command will
terminate at the next sector pulse. If a data transfer is required, the specified sector number and the
current disk sector number are compared. If unequal, the sector task goes to sleep until the next sector
pulse. If sector numbers are equal, awakening of the word task is enabled and the sector task goes to
sleep such that the command will terminate at the next sector pulse.

The word task awakens when a word has been processed by the disk controller hardware and the word
task has been enabled by the sector task. First, a starting delay is computed, based on whether the
current record is to be read or written. Second, control is dispatched based on the current record
number. A record length and main memory starting address are computed based on the record number.
In addition, special starting delays are computed for record number O. The disk unit is set into the delay
mode appropriate for the operation (read/write) and the word task goes to sleep the appropriate number
of times;

Alto Hardware Manual Section 6: Disk and Controller 47

Then a sync word is written (if writing) or awaited (if reading). Finally the main transfer loop is entered.
Here the word count is decremented, a memory operation is started, and control is dispatched on the
transfer type. If read, the disk word is stored in memory. If write, the memory word is sent to the disk.
If check, the memory word is compared with O. If non-zero, the disk and memory words are compared.
An unequal compare here terminates this sector's operation 'with an error immediately. If the memory
word is 0, it is replaced by the disk word. In any case, the checksum is updated and control returns to
the main transfer loop. Due to the ALU functions available, the main transfer loop moves in sequence
from high to low main memory addresses.

After. the word count reaches 0, the checksum is written or checked. A checksum error will be noted in
the status word, but will not terminate this sector's operation. A finishing delay is computed, based on
the current operation, the disk unit is set into a delay mode appropriate to the operation, and the delay
happens. Finally, all disk transfers are shut off, the record number is incremented, and control returns to
the beginning of the word task.

To accomplish all this, the disk controller hardware communicates with the microprocessor in four ways:
first, by task wakeup signals for the sector and word tasks; second, by five task-specific F2'S which modify
the next microinstruction address; third, by seven task-specific Fl'S, four of which activate bus destination
registers, and the remaining three of which provide useful pulses; and fourth, by two task-specific BS'S.
The following tables describe the effects of these.

Fl VALUE

17B

16B

15B

14B

13B

12B

NAME

KDATA~

KADR~

KCOM+-

CLRSTAT

INCRECNO

KSTAT~

EFFECT

The KDATA register is loaded from Bus[0-15]. This register is the
data output register to the disk, and is also used to hold the disk
address during KADR+- and seek commands. When used as a disk
address it has the format of word A in section 6.0 above.

This causes the KADR register to be loaded from BuS[8-14].This
register has the format of word C in section 6.0 above. In
addition, it causes the head address bit to be loaded from
KDATA[13].

This causes the KCOM register to be loaded from BUS[1-5]. The
KCOM register has the following interpretation:

(1) XFEROFF = 1 inhibits data transmission to/from the disk.
,

(2) WDINHIB = '1 prevents the disk word task from awakening.

(3) BCLKSRC = 1 takes bit clock from disk input or crystal clock,
as appropriate. BCLKSRC = 1 forces use of crystal clock.

(4) WFFO = 0 holds the disk bit counter at -1 until a I-bit is read.
WFFO = 1 allows the bit counter to proceed normally.

(5) SENDADR = I causes KDATA[4-12] and KDATA[15] to be
transmitted to disk unit as track address. SENDADR = 0 Inhibits
such transmission.

Causes all error latches in disk controller hardware to reset, clears
KSTAT[13].

Advances the shift registers holding the KADR register so that they
present the number and read/write/check status of the next record
to the hardware.

KSTAT[12-I5] are loaded from Bus[12-I5]. (Actually, BUS[13] is
ORed into' KSTAT[13].) This enables the microcode to enter
conditions it detects into the status register.

Alto Hardware Manual

llB

F2 VALUE

lOB
llB

12B

l3B

14B

15B

16B

BS VALUE

3

4

STROBE

NAME

INIT

RWC

RECNO

XFRDAT

SWRNRDY

NFER

STROBON

NAME

"KSTAT

"KDATA

Section 6: Disk and Controller 48

Initiates a disk seek operation. The KDATA register must have
been loaded previously, and the SENDADR bit of the KCOMM
register previously set to 1.

EFFECT

NEXT .. NEXT OR (if WDTASKACT AND WDINIT) then 37B else 0)

NEXT" NEXT OR (if current record to be written then 3 elseif
current record to be checked then 2 else 0)

NEXT"NEXT OR MAP (current record number) where

MAP(O) = 0
MAP(l) = 2
MAP(2) = 3
MAP(3) = 1

NEXT"NEXT OR (if current command wants data transfer then 1
else 0)

NEXT"NEXT OR (if disk not ready to accept command then 1 else
0)

NEXT"NEXT OR (if fatal error in latches then 0 else 1).

NEXT"NEXT OR (if seek strobe still on then 1 else 0).

EFFECT

The KSTAT register is placed on BUS. It has the format of a disk
status word.

The disk mput data register is placed on BUS.

A feature of interest mostly to the diagnostic microcode writer is that if one reads the disk input data
register while writing, what should appear is delayed written data correctly aligned on word boundaries.
This is a painless way of checking most of the data paths in the disk controller hardware.

Alto Hardware Manual Section 7: Ethernet 49

7.0 ETHERNET

An Ethernet is the principal means of communications between an Alto and the outside world. The
object was to design a communication system which could grow smoothly to accommodate several
buildings full of personal computers and the facilities needed for their support. The Ethernet is a
broadcast, multi-drop, packet-switching, bit serial, digital communications network: it connects up to 256
nodes, separated by as much as 1 kilometer, with a 2.94 megabits/sec channel. Control of the Ethernet is
distributed among the communicating computers to eliminate the reliability problems of an active central
controller, to avoid a bottleneck in a system rich in parallelism, and to reduce the flxed costs which make
small systems uneconomical.

The Ethernet is intended to be an· efficient, low-level ·packet transport mechanism which gives its best
efforts to delivering packets, but it is not error free. Even when transmitted without source-detected
interference, a packet may not reach its destination without error; thus, packets are delivered only with
high probability. Stations requiring a residual error rate lower than that provided by this bare packet
transport mechanism must follow mutually agreed upon packet protocols.

Alto Ethernets come in three pieces: the transceiver, the interface, and the microcode. The transceiver is
a small device which taps into the passing Ether, inserting and extracting bits under the control of the
interface while disturbing the Ether as little as possible. The same device is used to connect all types of
Ethernet interfaces to the Ether, so the transceiver design is not specific to the Alto, and will not be
described here. The following sections describe the programming characteristics of the Alto Ethernet,
and then the implementations. of the interface a..'ld microprogram.

7.1 Programming Characteristics

Programs communicate with the interface and the microcode via the emulator instruction SIO and 9
reserved locations in page 1. Word counts, buffer addresses, etc., are put in the appropriate locations and
then SIO is executed with an Ethernet command in ACO.

The special page 1

EPLOC = 600B:

EBLOC = 601B:

EELOC = 602B:

ELLOC = 603B:

EICLOC = 604B:

EIPLOC = 605B:

memory locations and their functions are:

~ost location. Microcode and interface status information is posted in this
location when a command completes.

Interrupt Qit location. The contents of this location is ORed into NWW when
a command completes, thereby causing interrupt(s) on the channels
corresponding to the one bits in EBLOC.

gnd count location. The number of words remaining in the main memory
buffer at command completion is stored here as part of the posting
operation.

Load location. This location is used by the microcode to hold a mask of
ones shifted in from the right for generating random retransmission intervals.
ELLOC should be zeroed before starting the transmitter.

Input fount location. The emulator program should put the size of the
input buffer (in words) into this location before starting the receiver. If a
packet arrives that is longer than EICLOC, the receiver will post an Input
Buffer Overrun error status.

Input 120inter location. The emulator program should put a pointer to the
beginning of the input buffer into this location before starting the receiver.

Alto Hardware Manual

EOCLOC = 606B:

EOPLOC = 607B:

EHLOC = 610B:

Section 7: Ethernet 50

Output fount location. The emulator program should put the size of the
output buffer (in words) into this location before starting the transmitter. By
convention, packets should not be substantially longer than 256 words.

Output Qointer location. The emulator program should put a pointer to the
beginning of the output buffer into this location before starting the
transmitter.

Host address location. This location must contain zero in the left byte and
the host address in the rigbt byte. The microcode matches this host address
against the first byte of a passing packet to decide whether to accept it.

SIc) passes commands to the interface and returns the host address of the Alto. Commands to the.
Ethernet interface are encoded in the two low order bits of ACO and have the following meaning (the
remaining bits of ACO may be interpreted by other devices and thus should be zero):

AcO[14-15]: 0 Do nothing
1 Start the transmitter
2 Start the receiver
3 Reset the interface and microcode.

The host address, returned in AcO[8-15] by SIO, is set by wires on the Alto backpanel. This number is
normally put in EHLOC thereby causing packets with destination addresses matching the address set with
the wires to be accepted by the receiver. For more on addressing, see below.

Upon completion of a command, EPLOC contains the status of the microcode in the left byte and the
status of the interface in the right byte. The possible values of the microcode status byte, EPLoc[0-7],
and their meanings are:

EPLoc[0-7] = 0:

EPLOc[0-7] = 1:

EPLOc[0-7] = 2:

Input done. If the hardware status byte is 377B, the interface believes the
packet was received without error.

Output done. If the hardware status byte is 377B, the interface believes the
packet was sent without error. The number of collisions experienced while
sending the packet is log2(ELLOCl2 + 1)-1.

Input buffer overrun. The received packet was longer than the buffer, and
the excess words were lost. Buffer overrun causes an early exit from the
microcode input main loop, so it is likely that the CRC error and Jncomplete
,!ransmission bits in the hardware status byte will be set.

EPLoc[O-7] = 3: Load overflow. The transmitter experienced 16 consecutive collisions
(assuming ELLOC was zeroed before starting the transmitter) while trying to
transmit the packet described by EOPLOC and EOCLOC. ELLOC[O] will be
one.

EPLoc[0-7] = 4: The command (input or output) specified a zero length buffer.

EPLoc[0-7] = 5: Reset. Generally indicates that a reset command (SIO with AcO[14-15] = 3)
was issued to the interface when it was idle or any command was issued
when it was not idle.

EPLOc[O-7] = 6: Microcode branch conditions that should never happen cause this code to be
posted if they do happen.

EPLOC[O-7] = 7-377B: The microcode does not generate these values for status.

Note that the microcode statuses are small integers and not individual bits as in the interface status byte.
Bits in the interface status byte, EPLOc[8-15], are low true. When zero, their meanings are:

Alto Hardware Manual

EPLoc[8-9]

EPLoc[lO]

EPLOc[ll]

EPLOC[12]

EPLOC[13]

EPLOC[14]

EPLOc[lS]

Section 7: Ethernet 51

Unused. These should always be one.

Input data late. The interface did not get enough processor cycles.

Collision.

Input CRC bad.

Input command issued. (AcO[14] in last SIO)

Output command issued. (AcO[lS] in last SIO)

Incomplete transmission. The received packet did not end on a word
boundary.

Command completion can be detected in two ways: (1) zero EPLOC and wait for it to go non-zero, or (2)
set bits in EBLOC corresponding to the channels on which interrupts are desired at command completion.

When a program wishes to send a packet, it must first tum off the receiver if it is on. If the receiver is
actively copying a packet into memory, the transmitter should wait for the receiver to finish (a maximum
of about loS ms. assuming 2S0-300 word packets). The program can tell whether the receiver is actively
transferring or idle by zeroing the first word of the input buffer before starting the receiver. When the
program wants to start the transmitter, it checks the first word of the input buffer: if it is still zero, input
has not yet begun and the interface may be reset and the transmitter started with a high probability of
not missing an incoming packet There is still a small window between testing the word and starting the
transmitter when a packet can arrive and be missed, but paragraph two of this chapter warned that the
Ethernet is not error free anyway, so missing a few more packets should be harmless.

A program can determine the size of an input message (and though not too useful, the number of words
transferred to the interface by the output microcode) by subtracting.the contents of EELOC from the
original buffer count in EICLOC or EOCLOC. The microcode never modifies the buffer count or pointer
locations.

To keep the receiver listening as much of the time as possible, if EICLoe is non-zero when an output
command is issued, the microcode will start the receiver 'under' the transmitter: while the transmitter is
counting down a random retransmission interval after a collision, the receiver is listening. If a message
arrives addressed to the receiver, the transmission attempt is aborted and the incoming message is
received into the buffer described by EICLOC and EIPLOC. The transmit command is not executed in this
case, and must be reissued. The microcode status byte in EPLOC will have an 'input done' status value if
the transmission attempt was aborted by an incoming packet.

The first word of all Ethernet packets must contain the address to which the packet is destined in the left
byte, and the address of the sender (or 'source') in the right byte. Receivers examine at least the
destination byte, and in some cases (not in Altos) the source byte to determine whether to copy the
message into memory as it passes by. Address zero has special meaning to the Ethernet. Packets with
destination zero are broadcast packets, and all active receivers will receive them. If a program wishes to
receive all packets on the Ether regardless of address (useful for debugging and diagnostic programs). it
should put zero into EHLOC instead of the host number returned by SIO. A host which does this is said
to be promiscuous. Address 377B is reserved for Ethernet booting (see section 3.4). Address 376B is
reserved as the destination for diagnostic messages.

By convention, the second word of all Ethernet packets is the packet type. Communication protocols
using the Ethernet should set· the type word to describe the protocol to which the packet belongs (for
example Pup protocol packets have 1000B in the type word). 'The type word is purely a software
convention; no Ethernet hardware or microcode interprets it.

Alto Hardware Manual Section 7: Ethernet 52

7.2 Ethernet Hardware

The Ethernet hardware consists of a FIFO buffer, an output shift register· and phase encoder, a clock
recovery circuit, an input shift register, a eRe register, and one microcode task. The hardware is shown
in block diagram form in Figure 8. Packets on the Ether are phase encoded and transmitter
synchronous: it is the responsibility of the receiver to decide where a packet begins (and thus establish
the phase of the data clock), separate the clock from the data, and deserialize the incoming bit stream.
The purpose of the write register is to synchronize data transfers between the input shift register whose
clock is derived from the incoming data, and the FIFO which is synchronous to the processor system
. clock. The large FIFO is necessary because the Ethernet task has relatively low priority, and the worst
case latency from request to task wakeup is on the order of 20 microseconds. The phase encoder uses
the system clock (one Ethernet bit time is two clock periods).

Included in the clock recovery section is a one-shot which is retriggered by each level transition of a
passing packet. This detects the envelope of a packet and is called its 'carrier'. Ethernet phase encoders
mark the beginning of a packet by prefixing a single 1 bit, called the sync bit, to the front of all
transmissions. The leading edge of the sync bit of a packet will trigger the carrier one-shot of a listening
receiver and establish the receiver clock phase. The sync bit is clocked into the input shift register and
recirculated every 16 bit times thereafter to mark the presence of a complete word in the register. If
carrier drops without the sync bit at the end of the register, the transmission was incomplete, and is
flagged in the hardware status bits. When the shift register is full, the word is transferred to the write
register where it sits until the FIFO control has synchronized its presence and there is room to accept it.
If the shift register fills up again before the word has been transferred from the write register to the FIFO,
data has been lost and the .!nput gata late flip flop is set.

Ethernet transmitters accumulate a 16 bit grc1ic redundancy .£hecksum on the data as it is serialized, and
append it to an outgoing packet after the last data word. As a receiver deserializes an incoming packet it
recomputes the checksum over the data plus the appended eRe word. If the resulting receiver checksum
is non-zero, the received packet is assumed to be in error, and the condition is flagged in the hardware
status byte. Since the eRe is of no interest to the emulator program, a wakeup request to empty data
from the FIFO is only made when it contains two or more words. This reduces the effective size of the
FIFO by one word, but insures that the eRe will be left behind at the end of a packet.

The phase encoder is started when the microcode has decremented the countdown to zero, there is no
carrier present, and either the FIFO is full, or if the message is less than 16 words long, all of it has been
transferred to the FIFO. The phase encoder will not start up while there is carrier present. This means
that collisions can only happen because of delay in sensing carrier between widely spaced transmitters.
Collisions are detected at the transceiver by comparing the data the interface is supplying to the data
being received off the Ether. If the two are not identical, a signal is returned to the interface which sets
the collision flip flop causing a wakeup request to the microcode which resets the interface. Countdowns
are accomplished by setting a flip flop from the microcode which will cause a wakeup request on the
next occurrence of SWAKMRT. This makes the grain size of countdowns about 38 microseconds.

The interface and the transceiver are connected together by three twisted pairs for signals plus two
supply voltages and ground supplied from the interface. The signals are (1) transmitted data to the
transceiver, (2) received data from the transceiver, and (3) the collision signal from the transceiver
indicating interference.

7.3 Ethernet Microcode

The Ethernet microcode uses a single task and 2 registers in R:

16 ,

16 ,

Input Shifter

Clock

Phase
Decoder

Read data

.
Microcode Status

I I I

0: Normal input completion

1: Normal output completion

2: Input buffer overrun

3: Load overflow

4: Zero ,length buffer

5: Reset by software

I

6: Impossible microcode condition

7 ·377b: Reserved

Alto Processor Bus
1\

~

Interface Buffer

... 16 (16 words) 16

II

..... Output Shifter

Write
register

II

Phase
Encoder

Transceiver
Write data

1 1

I
Ethernet

Figure 9-- Ethernet Control

IDL Coli CRC ICmd OCmd IT
I . .

Hardware Status

Alto Hardware Manual Section 7: Ethernet 53

ECNTR: The number of words remammg in the buffer.
EPNTR: Points at the word prior to that next to be processed.

The task and R registers are shared by input and output so that at any time they are (1) unused, (2)
transmitting a packet, or (3) receiving a packet. When an Ethernet SIO is issued while the Ethernet
microcode is reset, the code . dispatches on whether it is an input, output, or reset command.

Each Ethernet SIO has a result which is posted when the command. completes. The state of the
microcode and hardware at the time of the post is deposited in EPLOC, the contents of ECNTR is
deposited in EELOC, and the contents of EBLOC is ORed into NWW. Note that resetting the interface with
EBLOC non-zero will result in an interrupt.

An input command (SIO with AcO[14:1S] = 2) causes the microcode to start the input hardware searching
for the start of a packet and then block. When a packet begins to arrive, the hardware wakes up the
microcode which compares the packet's address against the filtering instructions left in EHLOC by the
emulator program. The packet will be accepted if any of three conditions is true: (1) If EHLOC is zero,
the receiver is said to be promiscuous - all packets are accepted; (2) if the destination address (left byte of
the first word) of the packet is zero, the packet is a broadcast packet - all receivers accept broadcast
packets; or (3) if the destination byte matches the right byte of EHLOC - the packet was sent to that
specific host. If none of these conditions is met, the packet is rejected by restarting the receiver, which
causes it to ignore the current packet and to hunt for the beginning of the next packet. If the packet is
accepted, the microcode enters the input main loop.

The input main loop first loads ECl\'TR and EPl\'TR from EICLOC and EIPLOC. Note that EICLOC and
EIPLOC are not read until the receiver is committed to transferring data to memory, which may be long
after the receiver was started; therefore, these locations should not be disturbed while the receiver is on.
The main loop repeatedly counts down the buffer size in ECNTR and advances the buffer pointer in
EPNTR depositing packet words until either the hardware says that the packet has ended or the buffer
overflows; in either case, the input operation terminates and. posts.

An output command (SIO with AcO[14-1S] = 1) causes the microcode to compute a random
retransmission interval, wait that long, and then start transmitting the packet described by EOCLOC and
EOPLOC. The retransmission interval is computed by ANDing the contents of ELLOC with the contents of
R37, the low part of the real time clock (ELLOC is not modified). Then a one bit is left shifted into
ELLOC and the high order bit of the result is tested. If the high order bit is on, the transmission attempt
is aborted with a 'load overflow' microcode status. The above process is repeated each time the
transmitter detects a collision while transmitting the packet. If ELLOC started out zero, each collision will
double the value of ELLOC, thus doubling the mean of the random number generated by ANDing ELLOC
with the real time clock. If 16 consecutive collisions occur without successfully transmitting the packet,
the attempt is aborted.

The retransmission interval is decremented every 38.08 microseconds (the memory refresh task wakeup
signal is used for this) until it reaches zero, at which time ECNTR and EPNTR are loaded from EOCLOC
and EOPLOC and the transmitter part of the interface is started. This may occur long after the emulator
program issued the output command, so EOCLOC and EOPLOC should not be changed while the
transmitter is on. Note that the mean of the first retransmission interval will be zero, so the first
transmission attempt will begin immediately. Actual transmission of the packet does not begin until the
BFO has been filled by the output main loop (or if the packet is smaller than the· FIFO, until all of the
packet is in the FIFO) and there is silence on the Ether. IfEICLOC is non zero while the transmitter is
counting down a retransmission interval, the receiver is turned on and if a packet arrives with an
acceptable address, the transmission attempt is forgotten and the microcode enters the input main loop as
if an input command had been issued.

The output main loop repeatedly counts down the packet length in ECNTR and advances the address in
EPNTR taking words from the output buffer and putting them in the FIFO. until either the main memory
buffer is emptied or a hardware condition aborts the operation. The output main loop is awakened for a

Alto Hardware Manual Section 7: Ethernet 54

data word once every 5.44 microseconds on the average. The microcode signals the hardware when the
main memory buffer is empty and waits for the hardware to terminate; it then posts status.

A reset cominand (SIO with AcO[14-15] = 3) will always bring the interface back to a reset state. If the
receiver was on, it is stopped even if a packet was pouring into memory. If the transmitter was on, it is
stopped, even if it was in the middle of transmitting a packet (the result to the receiver of the interrupted
packet will almost certainly be an incomplete transmission and incorrect CRC). - Status will immediately
be -posted in EPLOC: the microcode will post the reset status (5) in the microcode status byte, and the
hardware will post the conditions at the time of the reset in the hardware status byte. The contents of
the ECNTR R register will be deposited in EELOC, and the contents of EBLOC will be ORed into NWW,
possibly causing interrupts. After doing this, the interface and microcode are reset and ready for another
command.

The task specific microcode functions for the Ethernet interface are summarized below.

EIDFCT * BS = 4 Input Data function. Gates the contents of the FIFO to Bus[O-15], and
increments the read pointer at the end of the cycle.

EILFCT * Fl=13B Input Look Function. Gates the contents of the FIFO to BUS[O-15] but does
not increment the read pointer.

EPFCT Fl = 14B Post Function. Gates interface status to Bus[S-15]. Resets the interface at
the end of the cycle. -

EWFCT

EODFCT

EOSFCT

ERBFCT

EEFCT

EBFCT

ECBFCT

EISFCT

Fl=15B

F2=10B

F2=llB

F2=12B

F2=13B

F2=14B

F2=15B

F2=16B

Countdown Wakeup function. Sets a flip flop in the interface that will
cause a wakeup to the Ether task on the next tick of SWAKMRT. This
function must be issued in the instruction aftet -a TASK. The· resulting
wakeup is cleared when the Ether task next runs,

- - -

Output Data fun£!ion. -Loads theHFo-from-Bus[O-15], then increments the
write pointer at the end of the cycle.

Output §tart funf!ion. Sets the OBUSY flip flop in the interface, starting
data wakeups to fill the FIFO for output. When the FIFO is full, or EEFct has
been issued, the interface will wait for silence on the Ether and begin
transmitting.

Reset Branch Function. This command dispatch function merges the ICMD
and 00.10 flip flops, into NEXT[6-7]. These flip flops are the means of
communication between the emulator task and the Ethernet task. The
emulator task sets them from BUS[14-15] with the STARTF function, causing
the Ethernet task to wakeup, dispatch on them and then reset them with
EPFCT.

End of transmission Function. This function is issued when all of the main
memory output buffer has been transferred to the FIFO. EEFCT disables
further data wakeups.

Branch Function. ORs a one into NEXT[7] if an input data late is detected,
or an SID with AcO[14:1S] non-zero is issued, or if the transmitter or receiver
goes done. ORs a one into NEXT[6] if a collision is detected.

Countdown !!ranch funf!ion.oRs a one into NEXT[7] if the FIFO is not
empty.

Input Start Function. Sets the !Busy flip flop in the interface, causing it to
hunt fur the beginning of a packet: ·silence -on the Ether followed by a
transition. When the interface has collected two words, it will begin
generating data wakeups to the microcode.

Alto Hardware Manual Section 7: Ethernet 55

* These functions have a peculiar timing restriction associated with them. The microinstruction that
executes one of them must stop the clock for one cycle. On Alto I, the microprogrammer must do
this using memory timing (i.e., by referencing MD in the same microinstruction, during the third or
fourth cycle of a memory reference). On Alto II, the hardware automatically stops the clock for
one cycle when necessary; however, due to a design error, the instruction following the one
specifying EIDFCf or EILFCT is occasionally stopped instead. Consequently, the programmer must
not permit a task switch to occur between these two microinstructions, nor start a memory
reference in the following microinstruction.

Alto Hardware Manual Section 8: Control RAM, ROM, and s Registers 56

8.0 CONTROL RAM, ROM, AND S REGISTERS

In addition to the lK microinstruction ROM containing the standard emulator and I/O microcode, an Alto
may contain additional microinstruction memory in the form of either ROM or RAM; these are
accompanied by additional registers, called S registers, whose purpose and operation are similar to the
standard R registers.

Several different configurations exist, depending on the Alto vintage:

lKRAM

2KROM

3K RAM

All Altos have at least lK of read/write microinstruction memory and one bank of 31 S
registers. (At one time these were optional_on Alto !, but they are now considered standard.)

Certain Alto IIs have 2K of read-only microinstruction memory rather than lK. The first lK
contain the standard emulator and I/O microcode, and the second lK may be programmed
with additional microcode. This configuration includes the lK RAM and 31 S registers
described previously.

Certain other Alto IIs have 3K of read/write microinstruction memory and 8 banks of 31 S
registers.

8.1 RAM-Related Tasks

The control RAM and S registers perform data manipulation (as distinct from microcode fetching)
functions in response to certain values of the FI and BS fields of the microinstruction. Not all tasks are
likely to· be interested in these functions. Moreover, not· all tasks will have the appropriate values of the
F1 and BS fields uncommitted. A RAM-related task is defined as one during whose execution the control
RA.M: card will respond to FI and BS fields of microinstructions. The standard Alto is wired so that the
emulator task is the only RAM-related task. At most two other tasks can be made RAM-related by a
simple backpanel wiring change.

8.2 Processor Bus and ALU Interface

The Alto's ALU output and processor bus are each 16 bits wide and its microinstruction bus is 32 bits
wide, so loading the control RAM from the ALU output and reading the control RAM (or ROM) onto the
processor bus is slightly clumsy. It is done by using the RAM-related Fl'S WRTRAM and RDRAM (see
Appendix A).

For both reading and writing, the control RAM address is specified by the control RAM address register
(see Figure 2), which is loaded from the ALU output whenever T is loaded from its source. This load
may take place as late as the microinstruction in which WRTRAM or RDRAM is asserted. The bits of the
ALU output have the following significance as a control RAM address:

BIT USE

0-1 Ignored (should be zero).

2-3 BANKSEL - Selects RAM bank in 3K RAM configuration; ignored when operating on
ROM.
o RAMO
1 RAMI

·2 RAM2
3 Undefined

Alto Hardware Manual . Section 8: Control RAM, ROM, and s Registers 57

4 RAM/ROM
o Means operate on the control RAM.
1 Means operate on the control ROM. (This doesn't quite work the way you might

think. See section 8.8 for details.)

5 HALFSEL - Ignored when writing
o Means read out the low-order 16-bits of the addressed word.
1 Means read out the high-order 16-bits of the addressed word.

6-15 Word address (0-1023).

Since it is expected that reading the control RAM will be a relatively infrequent operation, a single
assertion of RDRAM reads out only one half of a 32-bit control RA.l\1 (or ROM) word onto the processor.
bus. To read out both halves, the control RAM address register must be loaded twice and RDRAM
invoked twice. Data resulting from RDRAM is AND'ed onto the processor bus during the microinstruction
following that in which the RDRAM was asserted.

In contrast, it is expected that writing into the control RAM will occur frequently. Therefore a single
application of WRTRAM writes both halves of a control RAM word at once. The M register contents (see
section 8.7) after the microinstruction containing the WRTRAM will be written into the high-order half of
the addressed control RAM word. The ALU output during the microinstruction following the WRTRAM
will be written into the low-order half. This protocol mates well with doubleword main memory reads.

8.3 Microinstruction Bus Interface

The correspondence of ALU. output bits with microinstruction fields appears in the following table:

High/Low Order Bit of ALU Meaning Value in
Halfword Output Example

H 0-4 R Register Select 0
H 5-8 ALU Function Select 0
H 9-11 Bus Data Source 5
H 12-15* Function 1 2
L 0-3 * Function 2 0
L 4 LoadT 0
L 5* Load L 1
L 6-15 Next micro address 325B

Fields denoted by * are represented with their high-order bit inverted; this is an artifact of
hardware microinstruction decoding.

As an example, consider the representation of the· microinstruction

L+-MD, TASK, :LOCA;

where LOCA is 325B. The values for the various microinstruction fields are listed in the table above.
After complementing the appropriate high-order bits and concatenating, we see that the microinstruction
above would be represented as 132B in its high-order halfword and 100325B in its low-order halfword.

8.4 Microinstruction Memory Banks

An alert reader will by now have noticed that the NEXT field of each microinstruction provides a lO-bit
address, and that more bits are required to fully address the microinstruction memory. The Ml memory
is divided into up to four banks of 1024 instructions each:

Alto Hardware Manual

NAME

MI RaMO·
MI RaMI
MI RAMO
MI RAMI
MI RAM2

Section 8: Control RAM, ROM, and s Registers

WHAT

The standard microcode ROM.
Second bank of ROM in the 2K ROM configuration.
The standard microcode writeable RAM.
Second bank of RAM in the 3K RAM configuration.
Third bank of RAM in the 3K RAM configuration.

58

Switching among banks is controlled in two ways: (1) a RAM related task already running may "switch"
banks, and (2) it possible to initiate a task in either ROMO or RAMO.

Bank switching is accomplished with a special transfer mechanism, available only to the emulator task, in
the form of SWMODE, a RAM-related Fl. SWMODE will'switchthe bank cjf the running task, taking effect
after the microinstruction following that in which the SWMODE appears. In other words, the emulator
task SWMODE behaves much like an address modifier. Tasks other than the emulator cannot switch
banks. The effect of SWMODE depends on the ROMIRAM configuration, the bank in which the task is
currently executing, and the value of NEXT in the instruction following the one that asserts SWMODE.

In the 1K RAM configuration (neither the 2K ROM nor the 3K RAM option installed):

If currently go to NEXT in'
executing in

RaMO
RAMO

RAMO
ROMO

In the 2K ROM configuration (which includes 1K of RAM):

If currently and NEXT[l J = 0 then else
executing in go to NEXT in go to NEXT in

RaMO RAMO ROMI
RaMI . RaMO RAMO
RAMO RaMO ROMI

In the 3K RAM configuration:

If currently
executing in

NEXT[lJ=O NEXT[lJ=l

ROMO
RAMO
RAMI
RAM2

NEXT[2J=0 NEXT[2J=1

RAMO
ROMO
ROMO
ROMO

RAM2
RAM2
RAM2
RAMI

NEXT[2] =0 NEXT[2J=1

RAMI
RAMI
RAMO
RAMO·

RAMO
RAMI
RAMO
RAMO

If the table above determines that control is to be transferred to the RAM, and the RAM is not installed.
control remains in the bank in which the task is currently executing.

Many Alto IIs have the 2K ROM capability but contain nothing in ROMI. In these Altos, the SWMODE
operation is normally configured so that it behaves as if RaMI didn't exist (Le., according to the first
table rather than the second). This is determined by the chip in position 51 on the control board. If it is
labelled SW2K then RaMI exists, but if SWIK then it does not. The alternate chip is kept in unused
socket 76.

SWMODE is actually defined in all RAM-related tasks, not just the' emulator; however, it does not work
correctly in tasks other than the emulator in Altos with the 2K ROM or 3K RAM configuration.

Each of the 16 micro-tasks may be started either in RaMO or in RAMO when a hardware reset
("bootstrap") operation is performed, regardless of whether the task is RAM-related A 16-bit "reset mode

Alto Hardware Manual . Section 8: Control RAM, ROM, and s Registers 59

register" is used to detennine which tasks will start in ROMO and which will start in RAMO. The emulator
Fl RMR +- causes the reset mode register to be loaded from the processor bus. The 16 bits of the
processor bus ·correspond to the 16 Alto tasks in the. following way: the low order bit of the processor
bus.specifies the initial mode of task 0, the lowest priority task (emulator), and the high-order bit of the
bus specifies the initial mode of task 15, the highest priority task (recall that task i starts at location i; the
reset mode register detennines only which microinstruction bank will be used at the outset). A task will
commence in ROMO if its associated bit in the reset mode register contains the value 1; otherwise it will
start in RAMO. Upon initial power-up of the Alto, and after each reset operation, the reset mode register
is automatically set to all ones, corresponding to 'Starting all tasks in ROMO.

8.5 Standard Emulator Access

The . standard emulator includes three instructions allowing basic access to the control RAM. More
sophisticated access may be implemented by using the basic access primitives to write other access
microcode into the control RAM and theri transferring control to that microcode.

RDRAM (61011B) Read from Control RAM:

Reads the control RAM (or ROM) halfword addressed by ACI into ACO. The microcode is:

T+-ACl, RDRAM;
L+-ALLONES; (AND'ed with control RAM data)
ACO+-L, : START;

Note: In Alto IIs running microcode version 2, this instruction does not work reliably if the
Ethernet interface is running.

WRTRAM (61012B) Write into Control RAM:

Writes ACO into the high-order half and AC3 into the low-order half of the control RAM word
addressed by ACl. The microcode· is: .

T+-ACl;
L+-ACO, WRTRAM; (This loads the M register)
L+-AC3;
:START;

JMPRAM (61010B) Jump to Control RAM:

This emulator instruction provides a software interface to the SWMODE instruction so that the
emulator task may enter another bank in RAM or ROM. The next emulator microinstruction will
be detennined from the value in ACI (mod 1024) -- see the discussion of bank switching in
section 8.4. Note that the instruction name (jump to fUM) is misleading, as SWMODE may jump to
other places as well. The microcode for JMPRAM is:

T+-ACl, BUS, SWMODE;
:NOVEM; (NOVEM = 0)

This operation is fraught with peril. If done in error it is the one of the few emulator
instructions which can cause the machine to plunge completely off the deep end. Although
clever coders can use JMPRAM to detennine whether or not a control RAM is installed, they are
better advised to make this detennination using WRTRAM and RDRAM (see section 9.2.4).

Alto Hardware Manual Section 8: Control RAM, ROM, and s Registers 60

8.6 Interpretation of Emulator Traps

All unused opcodes except 77400B-77777B (which is used by Swat, the Alto debugger) and 61xxxB, where
xxx is between 0 and 377B, transfer to microlocation RAMTRAP with the instruction in L, the instruction
cycled by 8 bits in the R-register XREG, and the emulator's R-register PC counted one beyond the
trapping instruction:

RAMTRAP: SWMODE, :TRAP;

...
TRAP: :TRAPl;

The result of this is that if your machine has a control RAM, these instructions will cause control to enter
it at a location which is equal to TRAPl in the ROM microcode. If no RAM is present, the unimplemented
opcode will be handled as described in Section 3.3.

8.7 M and S Registers

The control RAM card also includes an M register and 31 S registers. If the 3K RAM option is installed,
there are 8 banks of 31 S registers (see below). The M register is the analog of the basic Alto's L register.
It provides data for the S registers, which are analogous to the basic Alto's R registers. These additional
registers are provided to ease the tight constraint on R register availability which might limit the utility of
the control RAM.

The similarities between the M and L registers and between the R and S registers are striking. Both M
and L are loaded from the output of the ALU, and only when _the Load L bit of the microinstruction is
active. R registers are loaded from L, and S registers are loaded from M. Both Rand S registers output
data onto the processor bus. Both R and S registers are addressed by the RSELECT field of the
microinstruction. (Thus the same caveats which apply to the use of R37 apply to S37 (see section 2.3 f).)
Loading and reading of both Rand S registers are controlled by the BS field of the microinstruction.

Nevertheless there are considerable differences. To begin with, the M and S registers are active only
when a RAM-related task is executing. This means, for example, that in the highest-priority RAI\1-related
task it is not necessary to save the value of M across a TASK, since no higher-priority task can change the
value of M. (It is perilous to take advantage of this "feature", however, since several non-standard Alto
peripherals make use of RAM-related tasks.)

Unlike the data path from the L register to the R registers, the data path from the M register to the S
registers contains no shifter. When an S register is being loaded from M, the processor bus receives an
undefined value rather than being set to zero. The emulator-specific functions ACSOURCE and ACDEST
have no effect on S register addressing. And finally, when reading data from the s registers onto the
processor bus, the RSELECT value 0 causes the current value of the M register to appear on the bus.
(This explains why there are only 31 useful S registers.)

For the purposes of writing microcode, the S registers are assigned numbers 40B through 77B, and appear
to the microassembler as if they simply extended the R register address space. Hence, for example, the M
register is defined as R40.

In the 3K RAM configuration, there are 8 banks of 31 S registers rather than only a single one. Each
RAM-related task has associated with it a 3-bit register bank number that determines which bank is
referenced when a microinstriction specifies that an S register be read or loaded. There is an emulator Fl
called ESRB<- and a RAM-related Fl called SRB<- that sets the register bank number for the currently­
executing task from Bus[12-14]. It is illegal to execute ESRB<- or SRB<- in the last cycle before a task
switch; i.e., in the microinstruction after a TASK is executed.

Alto Hardware Manual . Section 8: Control RAM, ROM, and s Registers 61

Note that the function code is different for emulator and non-emulator tasks: ESRB~ is F1=15 and is
defined only in the emulator task, while SRB .. is F1= 13 and is defined in all RAM-related tasks besides
the emulator .. (Fl=13 corresponds to RMR~ in the emulator. In Altos without the 3K RAM option,
F1=13 performs RMR~ in all RAM-related tasks, including the emulator.)

The register bank numbers are all reset to zero by a reset (bootstrap) operation, thereby causing the Alto
to behave the same as a standard Alto with a single bank of S registers shared among all RAM-related
tasks.

8.8 Restrictions and Caveats

1. Both RDRAM and WRTRAM cause the microprocessor's system clock to stop for one cycle. This may
yield unspecified results if the system clock is also stopped for some other reason (e.g., waiting for
memory data). As a general rule, the system clock should run without hesitation during the
microinstruction following a RDRAM or WRTRAM, except for the effect of the RDRAM or WRTRAM itself.
On Alto I, there is an additional timing problem which manifests itself in some machines, for example, in
the following microcode sequence:

MAR"FOO; Starts memory reference
T" FIE; Loads the control RAM address register
L .. MD, WRTRAM; Save away the high-order word in M
L" MD; Completes the write into the RAM

What happens is that the last instruction suspends the system clock for one microinstruction, and some
Alto I memories cannot keep the memory data good for two microinstruction times, so a parity error may
occur. The data is actually stored in the RAM at the end of the first microinstruction time, so there is
probably no error in the data even if a parity interrupt subsequently occurs. This "phantom" parity error
may be averted by the following code, which takes three more microinstruction times, but does not
invoke the horrendous microcode overhead of parity error recording:

MAR" FOO;
NOP;
L~MD;

T~MD;

TEMP" L, L"T;
T"FIE, WRTRAM;
L<-TEMP;

Starts memory reference
Required for· memory timing
Save away the low-order word
Save away the high-order word

. Loads the address register, starts the write.
Complete the write into the RAM

2. Unlike the control RAM, which can be addressed from 2 places, the control ROM gets its address only
from the MPC RAM. Consequently, to read ROM location x, the instruction following the one with
F1 = 12B (RDRAM) must reside at location (x mod 1024). Therefore, you'll probably want to put the
"reading" code in the RAM:

T<-ACl, RDRAM, :X;
X: L" ALLONES;

ACO~L, ...

Only ACl[4-5] are relevant
Here the read takes place

Note also that only RaMO can be read by these means. There is no known way to read RaMI.

3. Some Alto Is have been observed not to evaluate the BUS=O function correctly when reading an S­
register during the first microinstruction after a task switch. The same operation in other than the first
microinstruction causes no difficulty.

Alto Hardware Manual Section 9: Nuts and Bolts for the Microcoder 62

9.0 NUTS AND BOLTS FOR THE MICROCODER

9.1 Standllrd Microcode Conventions

The microassembler which assembles microcode for the Alto is called Mu. By convention, microcode
source files have the extension .MU, and binary files have the extension .MB. Standard Alto I ROM
microcode versions will be called AltoCodex.MU; those for Alto II will be called AltoIICodex.Mu. A
microcode source file can be divided into three largely separable pieces: the language definitions, which
tell Mu what names will be used for what octal values of what microcode fields; the constant definitions,
which declare all constants that may later be referenced, and which cause the constant memory to be laid
out; and the register declarations, microinstruction" label declarations, and microinstructions.

In order for microprograms written to execute in the RAM to be compatible with those in the ROM, at a
minimum the constants assumed by the RAM microcode must be a subset of those declared by the ROM
microcode, and the subset must reside in the same addresses. As a practical matter, one should preface
one's RAM microcode by the same constant definitions which were used in the assembly of one's ROM
microcode. In order to facilitate and encourage this compatibility, the file AltoConstsx.MU will be
maintained (the x corresponding to the latest AltoCodex) containing definitions and constants for both
Alto I and Alto II. These can be logically incorporated into other microcode assemblies via the
"include" feature of Mu (# AltoConstsx.Mu;).

If one or more microcode tasks pass control back and forth between ROM and RAM, it becomes necessary
to associate addresses with microinstruction labels. It is possible to do this completely generally, based
on the microcode version number. A more limited solution is simply to fix the addresses of certain
useful labels. The following addresses are guaranteed in all standard Alto I microcode versions after 20,
and all standard Alto II microcode versions (and are included ill· AltoConstsx.Mu): .

ADDRESS

20B

37B

22B
l05B
l06B
120B
121B
124B
160B
777B

LABEL

START

TRAP!

RAMCYCX
BLT
BLKS
MUL
DIY
BITBLT
LO
SWRET

SEMANTICS

Beginning of emulator's main loop; starts a new emulated
instruction.
RAM location to which unfamiliar traps are sent; ROM location
which implements trap sequence.
Fast cyclic shift subroutine.
Block transfer subroutine.
Block store subroutine.
Multiply subroutine.
Divide subroutine.
BITBLT subroutine.
Cyclic shift dispatch table.
In ROM! only -- see below

A standard convention requires that location SWRET in ROM! have the following microcode:

SWRET: SWMODE;
: START;

This sequence enables a program to discover whether ROM! exists, i.e., whether the Alto has the 2K
PROM option (see section 9.2.4).

Alto Hardware Manual Section 9: Nuts and Bolts for the Microcoder 63

9.2 Microcode Techniques Which Need Not Be Rediscovered

For the most part, since the Alto is such a simple machine, writing Alto microcode is a straightforward
exercise in rule-following. However, during the course of writing the few-odd thousand microinstructions
which have ever been written by anybody for the Alto, a few microcoding techniques have emerged as
particularly ingenious or useful or both. They are recorded here for posterity.

The beginning microcoder is advised to acquire a copy of the standard microcode (AltoCodex.MU), and
to study it carefully in conjunction with this manual. The knack comes easily.

9.2.1 Microcode Subroutines

You have probably already noticed that that the Alto hardware does not provide an easy way of doing
microcode-level subroutine calls and returns. Several subroutine-call techniques have evolved. Two of
these are used for RAM-tO-ROM subroutine calls, and these will be presented first.

PC CALL (used with BLT, BLKS, MUL, DIV, BITBLT)

This call takes advantage of the assumption that nobody in his right mind would want the
emulator to execute in the non-memory 1/0 area from 177000B to 177777B. Therefore when one
of these ROM subroutines terminates, the R-register PC is examined. If it is outside the range
177000B-177777B, then control is passed to the beginning of the emulator'S main loop in the
ROM. Otherwise, control is passed to location PC AND 777B in RAM or ROMI. The bank
dispatched to is determined by the SWMODE rules described in section 8.4.

Warning: Some of these ROM subroutines modify PC during execution. If BLT or BLKS or
BITBLT is terminated by an interrupt condition, PC is decremented by 1 so that the instruction
can be resumed later. If a DIV is successful, PC is incremented by 1 to cause a skip.

REGISTER CALL (used with RAMCYCX)

This call uses an R-register, in this case CYRET (R-register 5), to dispatch into a table of successor
instructions. The cyclic shift subroutine, for example, is called from six places in the ROM. Each
of these places sets CYRET to the index of its successor instruction in the return dispatch table [O­
S], and then dispatches into the cycle table beginning at 1.0. The successor corresponding to
RAMCYCX dispatches into RAM or ROMlusing the low-order 10 bits of the PC register, according
to the SWMODE rules described in section 8.4. .

IR CALLS

These calls use the emulator'S IR register in various ways: some straightforward and some
devious. The main advantages of IR calls are that

1) several levels of return can be encoded into a single number, because it is fairly easy
to dispatch on various parts of IR, and

2) unlike R-registers, IR can be loaded in one microinstruction.

The most straightforward use of IR is dispatching on its low-order 8 bits using the DISP bus
source. Since DISP is a bus source)3, a constant may be "and-ed" onto the bus with DISP,
allowing one to dispatch on sub-fields of DISP.

Alto Hardware Manual Section 9: Nuts and Bolts for the Microcoder 64

The most devious use of IR involves a group of constants labeled srO to sr12, sr14 to srl7, and
sr20 to sr37 (as you might suspect, the numbers on these constant names are octal). If the
constant sri has been loaded into IR, then the following code will cause control to transfer to
location FOO OR i:

IDISP; (see section 3.5)
:FOO;

The statement above is only true if i is less than 20B; otherwise an additional dispatch on the
DISP field of IR is required to get the desired effect:

F00l3: SINK~DISP, BUS;
:F0020;.

(This explains why there is no srB. Any of sr20-sr37 will carry control to the 13Bth entry in
FOO'S dispatch table, where an additional level of dispatch can be used to differentiate among
them if necessary .. You may be wondering what is special about 13B. You are in good company.)

9.2.2 The Silent Boot

Many of the effects of a hardware "reset" operation (invoked by the boot button, or BUS[O] = I in
conjunction with the emulator-specific Fl STARTF (17B» can be faithfully simulated by emulated software.
At least two important ones cannot A reset operation is the only way of moving non-RAM-related tasks
back and forth between ROMO and RAMO, and the only way of guaranteeing tllat all tasks are initialized.
However, the time required for a reset operation is not necessariiy longer than a few microseconds. On
both Alto Is and Alto lIs a reset operation does not alter the contents of the Alto's R or S registers, its

. microinstruction RAM, or its main memory. Therefore if these memories contain appropriate contents it
is not really necessary to go through the full disk or Ethernet bootstrap load sequence, since the major
purpose of those sequences is to initialize these memories with desired. contents.

The "silent boot" consists first of getting the desired contents into the RAM and main memory. RAMO
should contain an emulator task (beginning with address 0) which, for example, simply jumps into the
main loop of the ROM emulator code, skipping all . the bootstrap code. For example:

NOVEM: SWMODE; (RAMO location 0, task O's reset location,)
:START; (to ROMO location ·20B)

Second, the reset mode register should be set so that the reset operation will begin execution of the
emulator task in RAMO, and the other tasks wherever they are desired,Finally, the reset operation is
initiated, the emulator hiccoughs momentarily into RAMO, and then proceeds in ROMO as if p.othing had
happened.

9.2.3 Debugging the Emulator

As someday it may happen that a bug must be. found in a new version of the emulator, microcodes
should be aware of a nice trick. Suppose you have an Alto with a working emulator in its ROM, and
load the suspect emulator into the RAM. Your courage leads you to execute a JMPRAM with Acl = 20B
(START), and hope that the new emulator behaves. But alas, the machine dives into oblivion. Now the
trick applies: before jumping into the RAM version, plant a JMPRAM (with Acl=20B) somewhere in the
Nova code that you know will be executed. Now go to the RAM with the horrid JMPRAM. If the suspect
emulator has not died by the time it executes· the JMPRAM you planted, control will return to the benign
ROM. This method, together with the obvious search technique, may locate an offending emulator
instruction.

Alto Hardware Manual Section 9: Nuts and Bolts for the Microcoder 65

9.2.4 How to tell if extended ROM or RAM exists

A standard convention assures that location 777B in RaMI, if it exists, contains the code:

SWRET: SWMODE;
:START;

First, we store the following snatch of code in RAMO, with INRAM located at location 777B:

INRAM: L+-ACO+ 1, SWMODE;
ACO ... L, :START;

Now we store 0 in ACO, and use the JMPRAM emulator instruction to branch to location 777B. This will
cause either the SWRET or INRAM code to be executed; in any case, the emulator instruction following the
JMPRAM will eventually be executed. If ACO has been set to 1, RaMI does not exist; otherwise RaMI does
exist.

To determine whether the 3K RAM option is present, use WRTRAM to write different values into
corresponding locations in two different RAM banks, then use RDRAM to read back the first location
written. If the 3K RAM option is present, the location will still contain the value written into it; if the
option is absent, it will have been clobbered by the value intended for the second RAM bank.

9.2.5 RAM Utility Area

It sometimes happens that a small piece of microcode must be loaded into the RAM so that the emulator
can execute it by doing a JMPRAM to it; it will then return to the emulator. For example, such a piece
of code is required in order to set the reset mode register. By convention, we reserve a utility area of
RAMO for this purpose. The normal procedure is to save the contents of this area (using RDRAM), store
the piece of code that is to be executed (using WRTRAM), execute the code (using JMPRAM), and then
restore the original contents. Writers of microcode should avoid placing code in the utility area that is
not part of the emulator task, as it may be temporarily altered for these utility operations.

The normal utility area is 774B through 1003B inclusive. The alert reader will recognize that JMPRAM can
successfully transfer into this area in RAMO when coming from RaMO (locations 1000B-1003B are
accessible) or from RaMI (locations 774B-777B are accessible). A program will therefore need to know
where it is executing (RaMO or RaMI) and use an appropriate entry point to the utility area.

9.2.6 Other Information

Correct operation of most Alto peripherals depends vitally on their tasks receiving adequate service. This
in tum depends on two things: '

l. A task must have sufficient priority to gain however many cycles it needs for service, at the
expense of lower-priority tasks. The choice of priority must be made carefully when the
interface is designed.

2. Other tasks at the same and lower priorities must be well-behaved. In particular, they must
perform task switches no further apart than the maximum latency permitted for the task in
question.

Alto Hardware Manual Section 9: Nuts and Bolts for the Microcoder 66

It is believed that the standard Alto peripheral most sensitive to task latency is the Diablo disk controller
when connected to a Model 44 disk drive. This is due to the fact that the data rate is relatively high and
the controller has only 16 bits of buffering.

It has been determined empirically that task latency greater than 20 microinstruction times causes Diablo
Model 44 disks to encounter data-late errors. Therefore, when writing microprograms, it is essential that
you issue a TASK at least once every 20 microinstructions (preferably once every 15). When counting
microinstruction times, do not forget to include the cycles during which the processor is suspended due
to memory references.

Alto Hardware Manual

FIELDS: 0-4.
5-8
9-11
12-15
16-19
20

APPENDIX A - MICROINSTRUCTION SUMMARY
RSELECT

21
22-31

ALUF
BS
Fl*
F2*
LOADT
LOADL&M*
NEXT

*High-order bit complemented by RDRAM and WRTRAM.

All subsequent numbers on this page are in octal.

ALUF:

0: BUS
1: T
2: BUS OR T*
3: BUS ANDT

*Loads T from ALU output

BUS SOURCE (standard):

0: ~RLOCATION
1: RLOCA TION ~
2: None (BUS~-I)
3: (task-specific)

Fl (standard):

0: -
1: MAR~
2: TASK
3: BLOCK

F2 (standard):

0: -
·1: BUS=O

2: SH(0
3: SH = 0

BUS SOURCE (task-specific):

4: BUS XOR T
5: BUS+l*
6: BUS-l*
7: BUS+T

4: (task-specific)
5: ~MD
6: ~MOUSE
7: ~DISP

4: ~L LSH 1
5: ~L RSH 1
6: ~L LCY 8
7: ~CONSTANT

4: BUS
5: ALUCY
6: MD+-
7: ~CONSTANT

4.16 7

10: BUS-T
11: BUS-T-l
12: BUS+T+l*
13: BUS+SKIP*

RAM o
CPU KSEC,KWD EfHER Related

14: BUS.T*
15: BUS AND NOT T
16: UNDEFINED
17: UNDEFINED

3: ~SLOCATION
4: SLOCATION~

~KSTAT
~KDATA EIDFCT

+-SLOCATION
SLOCATION+-

Fl (task-specific):

0 4, 16 7 11 12 13 14
CPU KSEC,KWD EfHER DWT CURT DHT DVT

10: SWMODE
11: ·WRTRAM STROBE
12: RDRAM KSTAT+-
13: RMR+- INCRECNO ELFCT
14: - CLRSTAT EPFCT
15: ESRB~ KCOMM+- EWFCT
16: RSNF KADR+-
17: STARTF KDATA~

F2 (task-specific):

0 4,16 7 11 12 13 14
CPU KSEC,KWD EfHER DWT CURT DHT DVT

10: BUSODD INIT EODFCT DDR+- XPREG+- EVENFIELD EVENFIELD
11: MAGIC RWC EOSFCT CSR+- SEIMODE
12: DNS+- RECNO ERBFCT
13: ACDEST XFRDAT EEFCT
14: IR~ SWRNRDY EBFCT
15: IDISP NFER ECBFCT
16: ACSOURCE STROBON EISFCT
17: -

67

RAM
Related

(SWMODE)
WRTRAM
RDRAM
SRB+-

RAM
Related

Alto Hardware Manual

APPENDIX B· STANDARD RESERVED MEMORY LOCATIONS
All numbers are in octal.

Location

Page 0:
0-17
Page 1:
400-412
420
421
422
423
424
425.
426
427
430
431-450
452
453
457
460-477
500
501-517
521
522
523
524
525
527
530-567
570-577
600
601
602
603
604
605
606
607
610
611-612
613
614
615
616
617
620
621

DASTART

ITQUAN
ITBITS
MOUSEX
MOUSEY
CURSORX
CURSORY
RTC
CURMAP
WW
ACTIVE

MASKTAB
PCLOC
INTVEC
KBLK
KSTAT
KADDR

ITTIME
TRAPPC
TRAPVEC

EPLOC
EBLOC
EELOC
ELLOC
EICLOC
EIPLOC
EOCLOC
EOPLOC
EHLOC

DCBR
KNMAR
DWA
CBA
PC
SAD

Contents

Set to 77400B by OS (Swat)

Used by standard bootstrap operation
Display list header (Std. Microcode)
Display vertical field interrupt bitword (Std. Microcode)
Interval timer stored quantity (Std. Microcode)
Interval timer bitword (Std. MIcrocode)
Mouse X coordinate IStd. Microcodel
Mouse Y coordinate Std. Microcode
Cursor X coordinate Std. Microcode
Cursor Y coordinate Std. Microcode
Real Time Clock (Std. Microcode)
Cursor bitmap (Std. Microcode)
Interru:pt wakeups waitin~(Std. Microcode)
Active mterrupt bitword Std. Microcode)
Zero (Extension of MAS TAB by convention; set by OS)
Mask table for convert (Std. Microcode; set by OS)
Saved interrupt PC (Std. Microcode)
Interrupt Transfer Vector (Std. Microcode)
Disk command block address (Std. Microcode)
Disk status at start of current sector (Std. Microcode)
Disk address of latest disk command (Std. Microcode)
Sector interrupt bit mask (Std. Microcode)
Interval timer time (Std. Microcode)
Trap saved PC (Std. Microcode)
Trap vector (Std. Microcode)
Timer data (OS)
Ethernet post location (Std. Microcode)
Ethernet mterrupt bit mask (Std. Microcode)
Ethernet ending count (Std. Microcode).
Ethernet load. location (Std. Microcode)
Ethernet input buffer coun~ (Std. Microcode)
Ethernet input buffer poinier (Std. Microcode)
Ethernet output buffer count (Std. Microcode)
Ethernet output buffer pointer (Std. Microcode)
Ethernet host address (Std. Microcode)
Reserved for Ethernet expansion (Std. Microcode)
Alto IIII indication that microcode can interrogate (O=Alto I, -l=Alto II)
Posted by parity task when a main memory parity error is detected.
:: (Std. Microcode)

(Note: Disk and Ethernet bootstrap loaders run in 622-777.)
700-707 Saved registers (Swat)
Page 376B:
177016-177017
177020-177023
177024
177025
177026
177030-177033
177034-177037
Page 377B:
177740-177757

UTILOUT
XBUS
MEAR
MESR
MECR
UTIUN
KBDAD

Printer output (Std. Hardware)
Utility input bus (Alto II Std. Hardware) .
Memory Error Address Register (Alto If Std. Hardware)
Memory error status register (Alto II Std. Hardware)
Memory error control register (Alto II Std. Hardware)
Printer status, mouse, keyset (all 4 locations return same thing)
Undecoded keyboard (Std. Hardware) . .

BANKREGS Extended memory option bank registers -- see section 2.3

68

Alto Hardware Manual

Bit 0
Bit 14
Bit 15

Task
o
1
2
3
4
5
6
7
lOB
llB
12B
l3B
14B
15B
16B
17B

APPENDIX C . RESERVED SIO BITS
·100000B
000002B
OOOOOlB

Standard Alto: Software boot feature -- See SID, section 3.3
Standard Alto: Ethernet
Standard Alto: Ethernet

Name Section
Emulator 3

KSEC 6

ETHER 7
MRT
DWT. 4
CURT 4
DHT 4
DVT 4
PART 5.5
KWD 6

APPENDIX D· STANDARD TASKS
Description
Lowest priority. Wakeup always true.
unused
unused
unused
Disk sector task
unused
unused
Ethernet task
Memory refresh task. Wakeup every 38.08 microseconds.
Display word task
Cursor task
Display horizontal task
Display vertical task. Wakeup every 16.666 milliseconds.
Panty task. Wakeup generated by parity error.
Disk word task
unused

69

Alto Hardware Manual 70

APPENDIX E - S-GROUP INSTRUCTION SUMMARY

Opcode Trap location Name

60000-60377 CYCLE
60400-60777 531 RAM trap
61000-61377 532 Parameterless opcodes to 61026, ROM trap for rest
61400-61777 533 RAM trap
62000-62377 534 RAM trap
62400-62777 535 RAM trap
63000-63377 536 RAM trap
63400-63777 537 RAM trap
64000-64377 540 RAM trap
64400-64777 JSRII
65000-65377 JSRIS
65400-65777 543 RAM trap
66000-66377 544 RAM trap
66400-66777 545 RAM trap
67000-67377 CONVERT
67400-67777 . 547 RAM trap
70000-70377 550 RAM trap
70400-70777 551 RAM trap
71000-71377 552 RAM trap
71400-71777 553 RAM trap
72000-72377 554 RAM trap
72400-72777 555 RAM trap
73000-73377 556 RAM trap
73400-73777 557 RAM trap
74000-74377 560 RAM trap
74400-74777 561 RAM trap
75000-75377 562 RAM trap
75400-75777 563 RAM trap
76000-76377 564 RAM trap
76400-76777 565 RAM trap
77000-77377 566 RAM trap
77400-77777 567 ROM trap, reserved for Swat

APPENDIX F - ALTO I / ALTO II DIFFERENCES

The minor differences between Alto I and Alto II are explained in this manual. This appendix serves as
an index of those differences:

Memory reference timing (section 2.3)
Certain emulator instructions (RCLK, SID, SIT, VERS, DREAD,

DEXCH, DIAGNOSE1, DIAGNOSE2; section 3.3)
Keyboard layout (section 5.1)
External device connector (section 5.4)
Memory. configuration switch (section 5.5)
Memory parity error detection (section 5.5)
2K ROM and 3K RAM options (section 8.4)
Extended memory option (section 2.3)

Alto Hardware Manual

APPENDIX G - SUMMARY OF KNOWN FEATURESIBUGS·
IN RELEASED MICROCODE VERSIONS

Alto I version 23:

VERS instruction:

BITBLT instruction:

Alto II version 2:

VERS instruction:

BITBLT instruction:

RDRAM instruction:

DEXCH instruction:

SIT instruction:

ACSOURCE function:

Alto I version 24:

No known bugs.

Alto II version 3:

SIT instruction:

returns engineering number 0, microcode version 1.

doesn't work reliably if some ram-related task is running
(e.g., the Trident disk).

returns engineering number 2, microcode version O.

doesn't work reliably if some ram-related task is running
(e.g., the Trident disk). Expects L to be zeroed by the
caller.

does not work. reliably when the Ethernet interface is
active.

does not work at all.

TIMEMASK is 7700B but should be 7774B. Fails to store
into ITQUAN.

does not work precisely as documented.
McCreight if you really need to know.

Fails to store into ITQUAN.

Consult

71

Alto Hardware Manual

APPENDIX H • PARC/SDD RESERVED MEMORY LOCATIONS

All numbers are in octal.

Location Name
Page 0:
451
456
526
622
630-640
631-661
640-644
640-651
720-777
776-777
Page 376B:
177100
177101
177140-177157
177200-177204
177234-177237
177240-177257
177244-177247
Page 377B:
177400-177405
177400
177420
177440
177460
177600-177677
177700

Contents

Color map pointer
Mesa disaster flag
SamllTaik trap exit instruction
Tape control block list
Second Ethernet control block
Hexadecimal floating-point microcode
Trident disk control block
Third Ethernet control block
SLOT devices
Music

Summagraphics tablet X
Summagraphics tablet Y
Organ keyboard
PROM programmer
Experimental cursor control
Alto II debugger
Graphics keyboard

Maxc2 maintenance interface
!,Jto DLS input

Alto DLS output

177701
177720-177737
177764-177773

EIALOC
EIA interface output bit
EIA interface input bit

- 177776
177776
177777

TV Camera Interface
Redactron tape drive
Digital-Analog Converter -
Digital-Anslog Converter, Joystick
Digital-Analog Converter, Joystick

APPENDIX I • PARC/SDD RESERVED 8IO (8TARTF) BITS

Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 8
Bit 9
Bit 10
Bit 11
Bit 12
Bit 13

O4OO00B
020000B
O10000B
OO4000B
oo2000B
oo1000B
000200B
000looB
000040B
ooOO20B
000010B
000004B

Maxc2 Memory Interface
Maxc2 Memory Interface
Maxc2 Memory Interface
Aurora .
Arpanet Interface
Arpanet Interface
Tape controller
available
Trident disk interface
Trident disk interface
available
Printer interfaces (Orbit, Slot)

Bits 10-11 Second Ethernet interface
Bits 12-13 Third Ethernet interface

APPENDIX J. PARC/SDD TASKS

Devices

Trident Disk Controller
Orbit
Slot
Tape Controller
Audio
Aurora
Maxc2 Memory Interface

Tasks

3 and 17B
1
1
5 and 6
?
?
17B

72

Alto Hardware Manual 73

APPENDIX K - OPTIONAL ALTO PERIPHERALS

This appendix· lists hardware items that have been interfaced to the Alto in quantities greater than one.
EOD/SPG is the source for information about many of these interfaces and devices, and may be willing to
contract to provide necessary hardware. Sources in PARe are not committed to producing any hardware.
No software guarantees are made about any of these devices, except as noted.

HyType Printer. A spinning daisy printer can be ordered from Diablo Systems, Inc.
Arrangements can be made with SPG to build a cable that will connect the printer to
the "printer connector" on the rear of the Alto. No additonal hardware is required,
although printers attached to Alto II are required to be self-powered. Software:
Bravo prints on the Diablo printer, and a Bcpl subroutine package (DiabloPrinter.Br)
is available to drive the interface.

Versatec PrinterlPlotter. The Versatec plotters and printer/plotters can be connected
to the Alto II without additional hardware. Contact SPG to get a cable (PIN 216540).

Tape Controller. A two-card processor-bus interface to MDS and Kennedy tape
drives. It will handle 1600 bpi phase-encoded tapes only. Contact ASD-South.

Trident Disk Interface. An interface to the Trident family of disk drives,
manufactured by Calcomp. Alto II owners should contact SPG, Alto I owners contact
PARC/CSL. Software: The Trident disks may be accessed in conjunction with
Operating-System routines, using the TFS software package (see Alto Subsystems
documentation).

Orbit. A piece of hardware which can be used to drive a variety of SLOT printers
that obey the "9-wire standard ROS interface." Contact ASD·South.

Extra Ethernets. Up to two extra Ethenets can be installed in an Alto of any vintage.
Contact PARC/CSL.

Ethernet Repeaters. Many miles of Ethernet can be hooked together with these.
Contact PARC/CSL.

ArpaNet (BBN 1822) Interface. An interface to ArpaNet Imps and Packet Radio Units.
Contact PARC/SSL.

EIA Interface. An interface to an AMI S1883 UART and an AMI S2350 USRT. Contact
ASD-South.

Communications Processor. Terminates up to 16 lines at many speeds, codes and line
control disciplines. Contact ASD·South.

