
MICRO

MACHINE·INDEPENDENT

MICROASSEMBLER

11 July 1980

... by.

Edward Fiala
Peter Deutsch

Butler Lampson

Xerox Palo Alto Research Center
3333 Coyote Hill Rd.
Palo Alto, CA. 94304

Filed on: [Maxcl]<AltoDOCS>Micro.Press
Sources on: [Ivy]<DoradoSource)MicroMemo.Dm

This manual describes a machine-independent microassembly language originally developed for the Maxcl
computer and since used for the Maxc2, Dorado, and DO computers as well as for several smaller projects.

This manual is the property of Xerox Corporation and is to be used solely for evaluative purposes. No part
thereof may be reproduced, stored in a retrieval system transmited, disseminated, or disclosed to others in any
form or by any means without prior written permission of Xerox. .

Micro: Machine-Independent MicroAssembler 11 July 1980

TABLE OF CONTENTS

1. Introduction .. 3
2. Assembly Procedures .. 3
3. Error Messages. .. 6

4. Assembly Listings '. 7

5. Cross Reference Listings. .. 8
6. Comments 9
7. Statements.................................... 10

7.1 Builtins.................................. 11
7.2 Defining Symbols 11
7.3 Tokens.................................. 13
7.4 Neutrals and Tails 14
7.5 Clause Evaluation 16
7.6 Treatment of Arguments 16
7.7 Undefined Symbols. .. 17

7.7.1 Destination Addresses 18
7.7.2 Octal Numbers 18
7.7.3 Literals 18

.8. Integers 18
9. Macros _ 19

10. Neutrals........................ 20
11. Fields, Assignments, and Preassignments 20

12. Conditionals.................................. 21
13. Memories, Addresses, and Stores 21

13.1. Target Memory .. 23

13.2. Default Statement: 23

13.3. Post Macros ; 23
14. Repeat and While. .. 23
15. Select .. 24
16. Bit Tables . • 24
17. Multi-Statement Conditionals 25
18. Trace Mode 26

Appendix 1. Micro Error Messages 27
Appendix 2. Limitations of the Language 29
Appendix: 3: Binary Output Format 32

Table 1: Builtins...... ... ~ .. 12
Table 2: Top Level Evaluation. 16
Table 3: Conditionals 21
Table 4: Micro Binary Output File Format. 32

2

Micro: M achine-Independent M icroAssembler 11 July 1980 3

l. Introduction

This document describes MICRO, originally implemented in 1971 for NOVA in Algol to assemble
microprograms for the Maxc1 microprocessor. It has since been reimplemented for Alto in Bcpl
and is now used to assemble microprograms for Maxc1, Maxc2, Dorado, and DO. Its output format
is compatible with the MIDAS loader/debugger, for which there are versions on each of these four
machines.

Micro is a rather unspecialized one-pass assembler. It does not know anything specific about the
target machine, but instead has a general facility for defining fields and memories, a standard string­
. oriented macro capability, and a rather unusual parsing algorithm which allows setting fields in
memories in a natural way by defining suitable macros and neutrals with properly chosen names.

This document will be of interest primarily to someone who is going to define a new assembly
language for some machine. There are a number of complications inside Micro that this person
must be aware of when defining the language. However, once the language has been appropriately
defined, the interface seen by someone writing programs for a target machine is natural and simple.

In other words, if you were going to write microprograms for Dorado or DO, for example, you
would need to read "The Dorado Microassembler" or "The DO Microassembler", which define
languages for those machines,· but would probably not require this document

2. Assembly Procedures

To assemble microprograms on your Alto, you must obtain [Maxc]<Alto>Micro.run or
[Ivy]<Alto)Micro.run. In addition, you will need to get the definition file(s) for the particular
microlariguage that you will be using (see other relevant documentation).

Micro flushes Bravo trailers, so you can use Bravo formatting in the preparation of microprograms.
However, MCross, a Maxc program that produces cross-reference listings of Micro programs, does
not ignore Bravo trailers, so you may not use any Bravo formatting features if you are going to use
MCross. In addition, error messages produced during assembly have line numbers that will be
more difficult to correlate with source statements if automatic Bravo line breaks occur in the source
text rather than explicit carriage returns.

We recommend use of GACHA8 (Le., a relatively small fixed pitch font) for printing hardcopy
microprogram listings, and the use of GACHA10.AL for editting microprograms with Bravo. Bravo
tab stops should be set at precisely 8 character interals for identical tabulation in Bravo and MCross.

The two relevant lines in USER.CM for Bravo are:

FONT:O GACHA 8 GACHA 10
TABS: Standard tab width = 1795

You will probably want to delete the other Font lines for Bravo in USER.eM.

Suppose that you have prepared a language definition file LANG.MC and a number of source files
for assembly by Micro. Then a microassembly is accomplished by the following dialog with the

Micro: Machine-Independent MicroAssembler 11 July 1980 4

Alto Executive:

MICRO/L LANG SRCO SRCI ... SRCn

This causes the source files "LANG.MC", "SRCO.MC", ... , "SRCn.MC" to be assembled. The
binary output and symbol table at the end of assembly are written onto "SRCn.MB" and
"SRCn.ST", the error messages onto "SRCn.ER", and an assembly listing onto "SRCn.LS".

In other words, Micro assembles a sequence of source files with default extension ".MC" and
outputs four files whose extensions are ".MB", ".ER", ".LS", and ".ST". The default name for
these is the name of the last source file assembled. Direct output to particular files as follows:

MICRO SYS/LIB LANG SRCO SRCI ... SRCN

This would cause listing output to be put on "SYS.LS" and symbol table and binary output onto
"SYS.ST" and "SYS.MB".

A summary of the local and global flags for Micro is as follows:

Global: IL
IN
10
IU

Local: IR
IL
IB

IE
IS
IU

produces an expanded listing of the output
suppress binary output
suppress symbol table output
convert text in all source files to upper case

recover from symbol table file.
put expanded listing on named file
puts binary output and symbol table output on named file with extensions .MB and .ST,
respectively. Default error listing to named file.
put error listing on named file
put symbol table on named file
convert text in named file (and any file which it INSERT's) to upper case

Local flags override global ones.

INSERT[file);

statements may be put into source files so you don't have to type as many source names on the
command line. This is exactly equivalent to the text of file.mc. INSERT's may be nested to a
reasonable depth. However, although INSERT saves typing it is slower than putting the file names
on the command line because Micro uses a fast file-lookup routine to get handles on every file
named in the command line in about 1 second; each INSERT adds an additional 1 second for file
name lookup.

Another shortcut is to define a command file MI containing "Micro/O/U LANG" or whatever and
then type @MI@ SRCO ... SRCN", which avoids some typing.

The SETMBEXT[.ext] builtin allows the binary output file extension to be changed from .MB to
something else. This declaration has to be assembled before defming any memories (else the output
file will have already been opened with extension .MB). The Dorado and DO micro assemblers use
this to change the extension to .DIB, as expected by the postprocessor, MicroD.

Micro: Machine-Independent MicroAssembler 11 July 1980 5

Micro creates a temporary file Micro.fixups and deletes it at the end of assembly. If you abort
assembly with sh.ift-swat, you may delete it yourself.

Micro's binary output is generated in one pass and consists of memory definitions, store directives
to memories, forward and external reference fixup directives, and new or changed address symbols
for each memory. The block types written on the output file are given in Appendix 3.

Micro assembles declarations at a rate of about 60 statements/second and, with typical
microlanguages, assembles microinstructions at about 7 statements/second. On very large assemblies
this rate slows slightly as the symbol table grows larger. The assembly time for the Maxc system
microcode is about 7 minutes ("-2000 72-bit microinstructions, -500 36-bit words in other
memories, -500 definitions, and -1400 addresses).

Comments are flushed very quickly by the prescan, so do not worry about a profusion of comments
slowing assembly.

Presently, the Micro-Midas system has no provision for relocating independently assembled source
programs. However, the Micro symbol table is dumped onto a file at the end of the assembly.
Later, assembly can be continued at that point onto another binary output file, thereby reducing
assembly time. For example, you can build a LANG.ST file as follows:

. MICRO LANG

Then do all further assemblies as follows:

MICRO/aU LANGIR SYSIB SRCO ... SRCN

This saves a little assembly time but still does not allow several people to independently maintain
sources used in a common System.

To avoid reassembling unchanged files, one would have to partition his program into separate
assemblies, each of which used absolute location-counters for the various memories. This would be
difficult, probably not as good as reassembling everything. However, if this were done, Midas could
link external references between the different modules at load time.

The MicroD program, used to post-process Micro assemblies for Dorado and DO. has limited
provisions for relocation. Programmers using the Dorado or DO microlanguages should read the
relevant documentation.

Micro: M achine-Independent MicroAssembler 11 July 1980 6

3. Error Messages

During assembly, any error messages are output both to the terminal and to the error file. If an
assembly listing is being printed, the error messages are also printed there.

As Micro churns through the source files it prints the name of each on the error file (and terminal),
and when INSERT[file] statements appear it outputs "* FILE file ... " and "* RETURN to file"
messages. These will pinpoint any error message' to a particular source file.

Micro error messages are in one of two forms, like the following:

statement
218 ... error message

statement
TAG+39 ... error message

The first example indicates an error in a statement beginning on the 218th line of the source file.
This form is used for errors that precede the first label in the source file. The second form is used
afterwards, indicating an error on the 39th line after the label "TAG". Micro also prints the source
statement causing the error before printing the error message.

Note that the line count measures carriage returns in the source, so if you are using Bravo
formatting in the source files, you may have trouble distinguishing carriage returns from line breaks
inserted by Bravo's hardcopy command.

ER is the builtin by which a Micro program outputs fatal and non-fatal errors, warnings, and other
messages.

ER[message,stopcode,valuej

Blanks are squeezed out of the message argument (a literal string) by the prescan so "-" "." or other
printing characters sho]..I1d be used instead of blanks in the message.

Stopcode equal 0 is used for progress messages; 1 for fatal errors; 2 for ordinary errors; 3 for
warnings. A nulstring in the stop code defaults to O. Assembly continues from the error except
when a fatal error (stopcode=l) is evaluated. Ordinary errors are counted together with Micro
builtin errors; warnings are counted separately. At the end of assembly the error and warning
counts are printed on the Alto display; only when these counts are non-zero do you have to look in
the .ER file for details.

ER first prints the source statement and then the message in one of the two forms given above;
then, if the value argument is present, it is evaluated (e.g., it may be an IP or other arithmetic
expression) and printed in octal; then, if stopcode is 1, assembly is aborted.

When the assembly is not aborted, assembly of the statement in which the error occurred will
continue from the point of the error. This may result in more error messages if the assembler gets
confused by an undefined symbol or some other condition. The location counter gets incremented
iff at least one store is done by the statement, so a statement with an error may still generate an
output word, or it may not.

Micro: M achine-Independent M icroAssembler 11 July 1980 7

A summary of Micro builtin error messages is given in Appendix 1.

4. Assembly Listings

An expanded listing is produced only when either the global or local /L option is selected. When
the listing file is being produced, the information output is controlled independently for each
memory by the LIST builtin. .

LIST[memory,mode]

controls assembly listing output for all stores to the selected memory. The value of mode is bit­
encoded as follows:

1 enable listing of stores in the memory as octal numbers; by default these are divided into 12-
bit groups starting at the right-most bit of the value; the bit of value 20 and the
LISTFIELDS builtin modifY the form of the octal printout

2 list stores in the memory as field assignments;
4 produce a numerically-ordered list of symbols at end of assembly;

10 produce an alphabetically-ordered list of symbols at end of assembly;
20 makes the octal printout divide stores into 16-bit groups.

The actions of these bits are or'ed. LIST may be given many times during the assembly, to
enable/disable listing output for code sections with difficult bugs. The value of mode at the end of
assembly determines whether or not numerically or alphabetically-ordered address lists are. printed.

When a statement of the form:

ANAME[(TAG: mumble)];

is assembled, the listing output would be as follows:

302 (TAG) NN1\TN NNNN ... NNNN for mode 1

302 (TAG) NNNNNN ... NNNNNN for mode 21

302 (TAG) A+-3, F2+-34, F3+-20; for mode 2

302 (TAG) l\TNNN NNNN ... NNNN for mode 3
A+-3, F2+-34, F3+-20

Mode equals 0 disables all listing for the specified memory.

Fl, F2, and F3 in the above example represent all the fields to which explicit assignments were
made during the assembly of (mumble). Fields which have non-zero values due to the action of a
DEFAULT statement for the memory are not listed, nor are preassignments listed. Also, fields
filled in by forward references will be erroneously listed as containing their default value.

Error messages are printed on the line after the listing of the memory word or between memory
words if no field assignments were completed in the statement.

LIST[,mode], where .the memory name is null, AND's mode with the listing mode for all memories

Micro: M achine-Independent MicroAssembler 11 July 1980 8

other than the target, e.g. LIST[,O] suppresses listing of all non-target memories and LIST[,3]
restores.

The LISTFIELDS builtin can be used to control the assembly listing more precisely. Micro
assembles

USTFIELDS[MNAME,(clauselist)];

as a word for memory MNAME and then notes the positions of all the I-bits in the result
Thereafter, in the octal listing for that memory, rather than each field being precisely 12 or 16 bits
wide, I-bits in the word given to LISTFIELDS are taken as the rightmost bits of the fields. For
example, if the word contains I-bits only in positions 2, 5, and 6,the octal listing will show a 3-bit
field (bits 0:2), another 3-bit field (bits 3:5), a I-bit field (bit 6), and then the rest of the word
chopped up into groups of 12 or 16 bits.

The mode argument to LIST determines whether or not the stores are printed, but LISTFIELDS
controls the format of the numerical printout whenever that is turned on by the mode = Is bit.

5. Cross Reference Listings

A Tenex program called MCross will parse source files according to Micro syntax and produce
cross-reference listings. Several simple files must be prepared to tailor MCross for the language file
being used. These files eliminate the garbage tokens that would otherwise clutter the cross-refernce
listing.

A cross-reference listing is not very useful for small microprograms but becomes increasingly
valuable for large systems. Consequently, if you are maintaining a large system, you will probably
wish to obtain an account on our Maxc timesharing system. Occasionally, you will dump the
sources on your Tenex directory and run MCross over them.

A typical dialog with MCross is given below. The program is more-or-Iess self-documenting and
will give you a list of its commands if you type "?".

@MCross
output file:
Machine:
Action:
File:
Action:
HIe:
Action:
File:

Action:
Action:
Action:
@

LPT:GACHAS
D
N
LANG<cr>
CL
SRCl<cr>
CL
SRC2<cr>

,p

G
E

(selects Dorado syntax-oM for Maxc, 0 for DO)
(read defs, no printout)

(read defs, produce cross ref.)

(print operation usage statistics)
(print global cross reference)

Micro: Machine-Independent MicroAssembler 11 July 1980 9

6. Comments

Micro ignores all non-printing characters and Bravo trailers. This means that you can freely use
spaces, tabs, and carriage returns to format your file for readability without in any way affecting the
meaning of the statements.

Comments are handled as follows:

"*" begins a comment terminated by carriage return.

"%" begins a comment terminated by the next "%". This is used for multi-line comments.

";" terminates a statement. Note that if you omit the ";" terminating a statement, and for example,
put a "*" to begin a comment, the same statement will be continued on the next line.

Micro has a now-obsolete method of producing conditional comments which is discussed here; at
one time this was used for multi-statement conditional assembly, but now conditional assembly
builtins discussed later are used instead.

The COMCHAR builtin provides conditional assembly of a large block of instructions by altering
the interpretation of comments.

COMCHAR[charj

makes *char be a comment bracket similar to %. Micro will discard everything from an occurrence
of *char through the end-of-line following the next occurrence of *char. Note that this is not quite
like % because % stops discarding immediately at its matching occurrence.

You can disable this feature· with

COMCHARD

which is Micro's initial state. As an example, suppose you want to assemble one of two code
sequences depending upon whether some integer symbol X is zero. You could write the following:

IFE[X,O,COMCHAR[#j,COMCHAR[= ll:
* = here is some code to skip if X neq 0 (assemble if X eq 0)

*= end of X eq 0 code

* # here is some code to skip if X eq 0 (assemble. if X neq 0)

*# end of X neq 0 code
COM CHARD: *Disable feature

Micro: Machine-Independent MicroAssembler 11 July 1980 10

7. Statements

After comments and non-printing characters are stripped out, the rest of the text forms
STATEMENTS. There is no level of program structure superior to the statement (e.g., conditionals
cannot span more than one statement) except for the COM CHAR kludge.

Statements are terminated by";". You can have as many statements as you want on a text line,
and you can spread statements over as many text lines as you want. Statements may be indefinitely
long.

However, the size of Micro's statement buffer limits statements to 500-decimal characters at anyone
time. If this is exceeded at any time during assembly of a statement, an error message is output.
Since horrendous macro expansions occur during ihstruction assembly, overflow is a possibility, and
care is required when defining complicated macros.

The special characters in statements are:

"[" and "]"
"(" and ")"
"~"
n ...

".n ,
n#tt

"01234567"

for enclosing builtin, macro, field, memory, and address argument lists;
for causing nested evaluation;
as the final character of the token to its left;
to put the address to its left into the symbol table with value equal to the
current location in the current memory;
separates clauses or arguments;
separates statements
#1, #2, etc. are the formal parameters inside macro definitions;
are number components (all arithmetic in octal)

All other printing characters are ordinary symbol constituents, so it is perfectly ok to have symbols
containing "+", "-", II &", etc. which would be syntactically significant in other languages. Also,
don't forget that blanks, carriage returns, line feeds, and tabs are syntactically meaningless (flushed
by the prescan), so "P+Q" = "P + Q",each of which is a single symbol.

Micro handles all code generation by table lookup and minimal use of conditionals. In particular, it
does not evaluate P + Q + I but rather looks it up in the symbol table. Since P + Q + 1 is the same
for a human, we have chosen to suppress all blanks. Other non-printing characters are suppressed
so that control characters don't appear invisibly in print names.

Note that name length is limited only by the size of the statement buffer. However, avoid defining
address symbols longer than about 13 characters because of problems you will encounter with the
debugger Midas.

Statements are divided into clauses by commas. An indefinite number of clauses may appear in a
statement.

Micro: M achine-Independent M icrpAssembler 11 July 1980 11

Examples of clauses are:

NAME,
NAME[ARGl, ARG2, ... , ARGN],
FOO" FOOl" F002 .. P+Q + I P+Q+l is a "source" while FOO, FOOl, and F002 are

"destinations" or "sinks."
P .. STEMP
NAME[NI[N2[ARG]],ARG2]" FOO[X].

7.1 Builtins

All of the predefined operations of Micro are called builtins. With the exception of the BUILTIN
and INSERT builtins, none of them have a priori names but instead are assigned names by the
programmer. Names are assigned to builtin operations by declaration statements of the form:_

BUILTIN[BUILTIN,I];

where the second argument is the intrinsic operation number and the first argument is the name by
which it is referred to.

All builtins are called using this same syntax:

- NAME[ARGI, ARG2, ... , ARG9];

The all-inclusive list of builtins is given in Table 1. Note that the only print-.names assembled into
Micro are BUILTIN and INSERT; i.e., the other names in Table 1 are chosen by convention.

7.2 Defining- Symbols

The builtins BUILTIN, MACRO, NEUTRAL, MEMORY, FIELD, and SET are used to define
symbols of different types, as discussed later. The name of a defined memory can then be used to
define addresses in that memory, and addresses are also defined when labels appear in statements
being assembled for storage in a memory. Once a symbol has been defined, it is an error to
redefine it as any other type of symbol.

It is legal to change the value of a symbol of type integer.

Redefining a macro is legal (but Micro prints a warning message).

When an address is defined by a label, any attempt to change its value is illegal, but when defined
by MEMNAME[symbol,value] it is legal to change the integer part of the value (illegal to change
the memory part of the value).

Micro: M achine-Independent M icroAssembler 11 July 1980 12

Builtin No.

I
2
3
4
5
6
7
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50
52
53
54

Name

BUILTIN
MACRO
NEUTRAL
MEMORY
TARGET
DEFAULT
HELD
PF
SET
ADD
IP
IFSE
IFA
IFE
IFG
IFDEF
IFME
ER
LIST
INSERT
NOT
REPEAT
OR
XOR
AND
COM CHAR
BITTABLE
GETBIT
SETBIT
HNDBIT
MEMBT
LSHIFT
RSHIFT
FVAL
SELECT
SETPOST

LISTFIELDS
SETMBEXT
SUB
ASMMODE
TRACEMODE
WHILE

Table I: Builtins

Discussion

Section 7.1
Macro definition (usually the short name "M" is used), section 9
Neutral definition (usually the short name "N" is used), sections 7.3, 10
Memory definition, section 13
Target memory declaration, section 13.1
Default value of memory bits, section 13.2
Field definition, section 11
Field preassignments, section 11
Integer definition and set, section 8
Section 8
Integer part of an address, section 8
If-string-equals conditional, section 12
If-field-assigned conditional, section 12
If-integers-equal conditional, section 12
If-integer-greater conditional, section 12
If-symbol-defined conditional, section 12
If-memory-part-of-address-equals-string conditional, section 12
Print error message, section 3
Control assembly listing, section 4
Insert file, section 2
Section 8
Repeat evaluation, section 14
Section 8
Section 8
Section 8
Multi-statement conditionals, section 6
Define bit table, section 16
Section 16
Section 16
Section 16
Section 16
Left-shift integer, section 8
Right-shift integer, section 8
Get value in field, section 11
Switchon integer, section 15
Define post-evaluation macro for memory, section 13.3
Deimplemented
Control assembly listing, section 4
Set binary output file extension, section 2
Section 8
Multi-statement conditional assembly, section 17
Macro expansion tracing, section 18
Repeat evaluation, section 14

Micro: Machine-Independent MicroAssembler 11 July 1980 13

7.3 Tokens

The rules for delimiting clauses into tokens have been carefully chosen to permit the user of Micro
to write readable programs. The parsing of statements is strictly right-to-Ieft and the following
definitions are required in explanation:

Then:

An L-token terminates the token to its left.
An R -token terminates the token to its right.

(R group delimiter
) L group delimiter
[L builtin argument list delimiter
] builtin argument list delimiter

LR clause delimiter
LR clause delimiter which takes the preceding token as an address in the current

memory at the current address
~ LR separator which is part of the symbol to its left

Any text with an R -token to its left and an L-token to its right constitutes a token called a symbol
whose meaning is determined by looking it up in the symbol table. Text enclosed in parentheses is
lexically independent of anything outside, and a parenthesized string of text is lexically equivalent to
the "tail" which its evaluation produces. The following example clarifies this. .

In the expression:

F005(FOOl[F002]F003[F004])F006[F007]

the order in which expansions are recognized assuming that each Faa expansion leaves behind no
text is:

FOOl[F002]
F003[F004]
F005F006[F007]

Micro: Machine-Independent MicroAssembler 11 July 1980 14

7.4 Neutrals and Tails

The handling of tails, a distinguishing peculiarity of Micro, works as follows. The tail is initialized
to the nulstring at the start of processing a clause. When a neutral symbol is recognized using the
rules for delimiting tokens (previous section), it is concatenated on the left of a string called the tail
thusly:

temp .- concatenate (symbol, tail);
if tail eq null do;

tail .- temp;
else do;

tail .- null;
treat temp as a symbol;

end;

Parentheses push down the current tail and start a new null one. When the text inside is
completely processed, its tail (null or neutral) is treated as though it were a string which had
appeared without parentheses.

The use of neutral tails permits complicated machines like Maxc and Dorado to be described by a
relatively small number of macros and neutrals. The following example shows how this works.

Maxc has about 30 bus sources and 30 bus destinations, but not all combinations of source and
destination are legal (a slow source may not feed a slow destination). An example using the bus is:

MDR+-X

X is a macro that expands to a store into the bus source field of the microinstruction and leaves
behind the neutral symbol B. MDR fo, the next token recognized, is a macro that expands into a
store into the bus destination field and leaves behind the neutral symbol B.-. B.-B is the next
token recognized. Since the connection of a fast bus source to a fast bus destination is legal, Bfo B
has also been entered into the symbol table as a macro equivalent to the neutral symbol B.

If B.- could not have been legally connected to B, then the B.-B macro would not have been
defined, and Micro would have output an error like "Bfo B undefined" when assembling the
statement.

Thus the number of symbols which must be defined for describing bus sources and destinations is
roughly l/source plus l/destination plus a small number of macros to describe legal connections of a
class of sources to a class of destinations. Each class of objects is represented by a neutral symbol.

In other words, the connection concept, which neutral 'tails implement, decouples sources and
destinations inside the language definition file. In conjunction with the peculiar handling of ".-",
this permits a natural assembly language to be defined in which the programmer thinks of sources
flowing over buses to destinations. It is impossible to create a natural language of this type with an
ordinary macroassembler.

Here is a more complicated example:

Micro: Machine-Independent MicrqAssembler 11 July 1980 15

STEMP <-MDR <-(RTEMP <-P) U (X)

In this example (from Maxcl), there is an interior routing of data from P (a register) to RTEMP (an
address in the RM memory); this routing moves data from P through the ALU and into RTEMP.
The ALU data is also routed onto B (a bus) where it is or'ed with data from X (a register). Then
the bus data is written into MDR (a register) and into 8TEMP (an address in the 8M memory). A
crude outline of the way this is assembled is as follows:

P is a macro that stores the P control in the ALUF field of the microinstruction and leaves the neutral ALU;

RTEMP<- is recognized as an RM destination (details later); its address is stored in the RA field leaving the
neutral RB<-; .

RB<-ALU is a (connection) macro, leaving the neutral ALU behind;

X is a macro that stores the code for B<-X into the BS field of the microinstruction leaving the neutral B;

ALUUB is a (connection) macro that stores the code for B<-ALU into the Fl field and leaves the neutral B;

MDR<- is a macro that stores the code for MDR<-B into the BD field leaving the neutral B<-;

B<-B is a (connection) macro leaving the neutral B;

STEMP<- is recognized as an SM destination (details later); its address is stored in the SA field leaving the
neutral SB<-;

SB<-B is a (connection) macro that stores the code for loading SM into the F2 field leaving the neutral B;

B is the final tail which is thrown away.

This example is as complicated as any we have used in real assemblers thus far. The construction
of "(..) U (..)"to represent merging different sources on a bus is used systematically throughout the
Maxc microlanguage; sources can be given in arbitary order so, in the above example, (X) U
(RTEMP+-P) would also assemble. All of these factors contribute to an easily readable, easily
rememberable assembly language.

In the above example, the assembler also successfully concealed some complicated alternate
encoding issues from the programmer. B+-ALU could have been encoded in either the BS or Fl
fields; the assembler picked Fl since BS was needed for B+-X. SB+-B could have been encoded in
either BD, Fl, or F2; the assembler picked F2 because BD and Fl had already been used. These
are some of the issues that the designer of a microlanguage must consider.

Micro: Machine-Independent MicroAssembler 11 July 1980 16

7.5 Clause Evaluation

When a clause is broken into top level tokens, the possible resulting symbol types and actions are
given by the table below:

Symbol type

undefined
integer
address[c1auselist]

address SYM
address SYM +­

unbound address
MNAME[SYM,integer]
FNAME[address]
FNAME[integer]
FNAME[undefined]

macro [args]
macro
neutral
neutral [args]
builtin [args]

Table 2: Top Level Evaluation

Action

See section 7.7
Error message and abort clause expansion
Carry out a store of the word assembled by the c1auselist at the location
and memory of the address, and then increment the integer part of the
address symbol.
Replace by sourcemacro[SYM] (section 13)
Replace by sinkmacro[SYM] (sections 7.7, 13)
Error message
Create an address symbol "SYM" in memory MNAME with value "integer"
Store IP[address] in field FNAME (section 11)
Store integer in field FNAME
Generate forward reference for eventual field assignment at end of assembly
or by MIDAS.
Expand it (section 9)
Expand it
See sections 7.4, 10
Error message
Call the builtin function (Table 1) with arguments handled· as discussed in
section 7.6

Ultimately, the original clause must reduce through macro and neutral expansions to a series of
field assignments, preassignments, and builtin calls with a neutral symbol in the "tail." The neutral
symbol is then thrown away and the next clause is evaluated.

7.6 Treatment of Arguments

Many symbol types may be followed by argument lists. The only difference among these is that
fields, memories, addresses, and most builtins must be followed by an exact number of arguments.
Macros, on the other hand, may have surplus arguments (ignored) or deficient arguments (nulstrings
supplied). Conditionals may omit arguments (nulstrings supplied).

The nulstring argument is special in the following sense. If it appears where an integer result is
wanted, it is equivalent to the value 0 (except for the AND builtin, where it is equivalent to
177777); if it appears where a string is wanted, it is the nulstring; and, if it is looked up, it is
undefined. Micro does not allow the programmer to define the nulstring as a symbol.

Each builtin may choose one of three basic ways to receive its arguments: quoted, looked up in the
symbol table, or evaluated. Some languages have a step short of evaluation which might be called
"macro expansion", but Micro does not make any distinction between macro expansion and
complete evaluation of an argument. However, if a string of the form

NAME[arguments]:

Micro: Machine-Independent MicroAssembler 11 July 1980 17

occurs in a clause being evaluated, NAME[arguments] is expanded until a string is left without
brackets or parentheses, and then this string is the one affected by the "." However,

IFDEF[NAME[argumentsJ, ... J

which looks up its first argument, will look up the entire string including the brackets. This is a
limitation of Micro which may someday be repaired. It prevents symbol names from being
generated in some situations.

The exact meaning of "look up" and "evaluate" changes with the builtin. Those builtins which
"lookup" an argument generally do so for a symbol type check or to decide what action to carry out
based upon the symbol type. There is no way for macro definitions to get at symbol types. Only
builtins can do this. This is an unfortunate limitation of Micro.

Argument evaluation is slightly different from clause evaluation. For example, evaluating the
argument for the field assignment FNAME[V ALUE] takes place as follows: evaluate the tokens in
the argument right-to-Ieft expanding all macros and neutrals, looking for one of the following:

1) Address: Use its integer part to complete the field assignments discussed in section 11.

2) Unbound address: Generate a forward reference.

3) Undefined symbol: Create an unbound address and generate a forward reference.

4) Integer: Complete the assignment as discussed in section 11.

If the argument is the nulstring, put the integer 0 into the field. If the argument is a
neutral symbol, if any text is left when the address, integer, or undefmed symbol is found,
generate an error.

Note that a neutral symbol results in no error for clause evaluation, but an error for a field
assignment while an integer results in an error in a clause but no error in an assignment. Other
builtins which evaluate their arguments may have different requirements.

For example, the integer builtin ADD (see section 8) accepts only integer arguments. Address
[clauselist] evaluates the clauselist exactly as if it had occurred at the top level. In all cases, if part
of the argument being evaluated is in parentheses, that part is evaluated exactly as if it had occurred
at the top level.

7.7 Undefined Symbols

The print-name of a symbol is a character string by which the symbol can be referred to in the
source. However, when the lexical scan finds a string S of characters which is a symbol token
(delimited by Lor R-tokens), it looks for a symbol with print-name S. If no such symbol exists, an
error is indicated except in the following cases:

Micro: Machine-Independent MicrC!Assembler 11 July 1980 18

7.7.1 Destination Addresses

S ends with +-. In this case the +- is stripped off and the resulting string S' is looked up. If S' is an
address in memory MEM. S is replaced by MEMSINK[S'] as discussed in section 11.

7.7.2 Octal Numbers

S consists entirely of octal characters with an optional leading "-" sign~ In this case it is treated like
a symbol of type integer whose value is the octal number. Note that integers may not be larger
than 16 bits. Micro does not allow an integer string ~o be en~ered into the symbol table, which
would usurp the natural use of that integer.

7.7.3 Literals

S starts with an octal character or with a "-" followed by an octal character. In this case the "-" (if
any) is stripped off and the rest is split into a head OCT and a tail SYM such that OCT consists
entirely of octal characters and SYM does not start with an octal character. Then the macro SYM
or -SYM is called as described below.

The fIrst argument of SYM is· the four right-most octal characters. The second argument is the next
four octal characters, and so on until the octal characters are used up.· For example,

37436521000Vand
-1234567V

are replaced by

V[IOOO.3652.374] and
-V[4567.1231.

The awkwardness of the l6-bit limitation for integers is clearly pointed out by this kludge. Clearly
V[3743652l000] would have been much easier to work with and would have been possible if the
integer size was greater than or equal to the memory size. Also, going from a three-integer 36-bit
result back to a text string is made impractical by the integer size limit

8. Integers

Micro permits use of integer variables constrained. to 16 bits.

SET[NAME.VALUE]

looks up its first argument and evaluates its second with the following results:

Type of Name

Undefined

Integer

Type of Value

Integer

Integer

Action

Enter NAME in .the symbol table with type integer and value
VALUE.

Change the v.alue of NAME to VALUE.

Micro: M achine-Independent MicroAssembler 11 July 1980

All other combinations are errors.

The following builtins accept integers as arguments and produce an integer as value:

ADD[iO, il. ... • i7]
SUB[iO. il. ... • i7]
NOT[iO]
OR[iO. il. ... • i7]
XOR[iO. il. i7]
AND[iO. il, ... • i7]
LSHIFT[iO. ill
RSHIFT[iO. ill

Sums iO ... i7
Subtracts the sum of il ... i7 from iO
l's complement of iO
Inclusive-or of iO .,. i7
Exclusive-or of iO ... i7
And of iO ... i7
Logical left-shifts the integer iO by il bits
Logical right-shifts the integer iO by il bits

19

In these, omitted arguments are D's for every operation except AND, which supplies 177777 (Le., -1)
for omitted arguments. Note that octal strings may begin with an optional "-". However, the
negative of an integer-valued symbol cannot be obtained by inserting a leading "_"; -(ISYM) will
not work, either.

The value of these integer operations is the unsigned octal string representing the result_ Example:
ADD[3, 4, 15]S is equivalent to 24S.

IP[ANAME], where ANAME must be an address, is the integer part of the address. This must be
done when an address is used in an arithmetic or set expression. (It is not reasonable to
automatically take the integer part of an address because of confusion between its use as a source
and its use as an integer).

FV AL[FNAME], where FNAME must be a field, is the integer contents of the field FNAME in the
word currently being assembled. If nothing has been stored in that field yet, then the contents are
whatever value was setup by the DEFAULT statement for the current memory, or are 0, if no
DEFAULT statement applies.

9. Macros

A symbol can be given a macro value by the clause

M[NAME. body]

where the body is an arbitrary balanced string of characters (Le., parentheses and brackets match up
and are nested). Occurrences of the text

#digit

in the body will be replaced by the corresponding actual parameters (counting left-to-right from 1)
when the macro is called. Unsupplied arguments are nulstrings, surplus arguments are ignored, and
#0 will be replaced by the number of arguments supplied.

Micro: Machine-Independent MicroAssembler 11 July 1980 20

The lexical scan of a statement is done from right to left. Whenever a symbol S is detected, it is
looked up. If S turns out to bea macro, then the macro body replaces both S and the bracketed
argument list immediately to the right of S, if there is one. Thus after

M[FOQ, MUMBLE#l];

the text FOO[E]D; expands into MUMBLEED; note that D is not a symbol since] is not an R­
token. Note that the macro body is quoted and that Micro has no provision for getting any part of
it expanded at definition time.

Due to the way in which macro bodies are stored in the Micro symbol table symbols used in the
macro body should be defined before the macro is defined when ftasible. Assembly will be quicker if
this rule is followed.

10. Neutrals

A symbol which has been declared neutral by a clause of the form

NEUTRAL[SYM]

is concatenated with the tail and handled as discussed in section 7.4.

. 11. Fields, Assignments, and Preassignments.

FIELD[FNAME, leftbit, rightbit] causes a symbol of type field to be created. Leftbit and rightbit
must evaluate .to integers. Also, because of the Alto's 16-bit integer size, the field should not be
wider than 16 bits or else some bits of the field could never be set Finally, leftbit must be in the
range [0, 255] and rightbit in the range [leftbit, min(1eftbit + 15, 255)].

Clauses of the form

FNAME[integer] ;
FNAME[address];
FNAME[unbound address]; or
FNAME[undefined];

where FNAME isa field, are used to construct memory words. A field assignment evaluates its
argument in the manner discussed in section 7.6.

Field assignments also have the property that attempting more than one assignment to a field in a
statement will cause an error unless the new value = old value. (When an error occurs, the value
ultimately left in a field is that of the final assignment to it.) Forward references fixup the true
value later.

The preassignment

PF[FNAME, integer]

does nothing if any bits of FNAME have previously been assigned. Otherwise, it is equivalent to

Micro: Machine-Independent MicroAssembler 11 July 1980 21

FNAME[integer] except that a later assignment will overrule the preassignment and cause no error.
Forward references are illegal in preassignments.

The integer value stored in any field of the memory word currently being assembled may be
obtained by using

FV AL[FNAME].

If the field has not yet been set, FV AL returns the default value.

13. Conditionals

There are a number of builtins which will substitute the text represented by one of their arguments
if the other arguments meet some condition. These are called conditionals, summarized in Table 2.

A conditional and the argument list to its right are equivalent to the "true" string, if the specified
condition is met, or the "false" string, if it is not met. Note that any number of arguments may be
omitted. The true and false strings may be any balanced strings of characters.

Although these conditionals can be used at the top level, they are intended for use inside macro
definitions, and the string compare conditional could be used sensibly only inside macro definitions.

Table 2: Conditionals

Form

lFE[it, i2, (true), (false»)
IFG[il, i2, (true), (false)]
IFDEF[sl, (true), (false»)
IFSE[sl, s2, (true), (false)]
IFA[field, (true), (false»)
IFME[address, sl, (true), (false»)

Condition

it = i2
i1 > i2
sl in symbol table and not unbound address
sl = s2
any bit of field previously assigned
memory name for address = string

Note that the text in the selected arm of a conditional is concatenated with the text to the right of
the conditional before evaulation, so

IFE[2.l,FOO,GLOT]AB

will evaulate GLOTAB.

13. Memories, Addresses, and Stores

MEMORY[MEM, wordlength, length, sourcemacro, sinkmacro)

causes creation of a memory. Micro can manage a reasonable number (15) of these memories,
subject to a 255-bit word-length limit and 64K-I length limit. Once MEM has been defined,
symbols can be defined as addresses in MEM and words of MEM can be initialized.

Micro: Machine-Independent M icrqAssembler 11 July 1980 22

An address ANAME in MEM is created by an expression of the fonn:

MEM[ANAME, integer]

or by using

ANAME:

in a clauselist which is stored in MEM.

Stores into MEM are generated either by selecting an_ address in MEM as the target (see section
13.1) or by writing

ANAME[(clauselist)]

which stores the word assembled by the clauselist into MEM at the location of the address ANAME
and then increments ANAME. Note that the memory store and incrementing the address are done
iff one or more field assignments or preassignments result from the clauselist.

The value stored is generated as follows: It is initialized according to the value assembled by the
DEFAULT statement (0 if there has been no DEFAULT statement). Next, the clauselist is
evaluated. Then the post macro for the memory, declared by the SETPOST builtin, is evaluated.
Finally, - if ANAME is out-of-bounds, an elTor message will occur.- -

-The sourcemacro MSRC and sinkmacro MSINK are applied when the address ANAMEappears in
a clauselist. If ANAME is evaluated as a token in a clauselist without a following argument list, it
is replaced by the string

MSRC[ANAME].

If ANAME+- appears and is undefined, it is replaced by

MSINK[ANAME].

Note, however, that forward and external references can be generated only in the context

FNAME[ANAME],

not when ANAME is used as a source or sink.

Micro: Machine- Independent M icroAssembler 11 July 1980 23

13.1. Target Memory

At any time TARGET[ANAME] will set the target address to ANAME which means that a
statement of the form

X: mumble;

where mumble must do at least one field assignment, is equivalent to

ANAME[(X: mumble)];

Otherwise, the target has no effect. Note that the target memory is not preserved in the IR file and
must be given again for each assembly.

13.2. Default Statement

Before assembly of a clauselist for storage into a memory MEM, the word is initialized to a value
which may be overruled by the various assignments in the clauselist. Normally, the initial value is
0, but this may be changed by the statement

DEFAULT[MEM, (clauselist)];

which assembles clauselist into a value that will subsequently initialize words being assembled for
MEM. Note that forward references are not permitted in the clauselist and that any of the default
settings may be overruled by explicit assignments in a statement being assembled.

13.3. Post Macros

SETPOST[MNAME,POSTMACRO]

arranges things so that the macro POSTMACRO will be called just after a word has been assembled
for the memory named MNAME but just before the word is output to the binary file. If
POSTMACRO is null, SETPOST simply turns off this feature for the memory MNAME.

14. Repeat and While

REPEA T[il,TEXT]

assembles TEXT il times. This is used primarily for initializing blocks of memory and for
replicating nearly-identical instructions in diagnostics.

Since TEXT cannot include ";" stores to the target memory must be put in explicitly. In other
words, the program cannot rely on the TARGET directive to insert "ILC[fEXT]" or whatever each
time TEXT is repeated. Note that the statement buffer is cleared after each assembly of TEXT.

WHILE[il,TEXT]

evaluates the expression il, which must evaluate to an integer; so long as the result is non-zero,
TEXT will be· evaluated and the while will repeat.

Micro: Machine-Independent MicroAssembler 11 July 1980 24

15. Select

The SELECT builtin corresponds to the Bcpl switchon (case selection) statement. Its form is

SELECT[index,textO,textl, ... , textn]

and its effect is to replace itself with one of textO, textl, ... , textn depending on whether the value of
index is 0, 1, ... , n. Note that although index is evaluated and must produce an integer result, the
text arguments may be any balanced strings, just as in the comparison builtins IFE, IFG, etc. If the
index does not have a value in the range 0 through n, an error results.

16. Bit Tables

Several builtins manipulate bittables. The rationale for bittables in Micro is the existence of
microprocessors (such as the Alto) in which the addressing structure imposes constraints on the
locations of certain instructions, and for which the assembler must therefore keep track of precisely
which locations have already been used for instructions. The bittable facilities in Micro are
adequate for this task in simple cases.

The builtin

- BITTABLE[table,n]

makes table a bittable of size n (the bits are numbered from--O through n-l). All the bits in the
bittable are initially zero.

GETBIT[table,i]

returns the value of the i'th bit in the table, 0 or 1. Setting bits is a little more complicated.

SETBIT[table,i,n,delta, val]

sets n bits in table starting with the i'th bit and going up by increments of delta (Le., bits i, i + delta,
... , i + (n-l)*delta) to val; however, SETBIT may be called with any number of arguments from 2 to
5, with the omitted trailing arguments defaulted as follows: n = 1, delta = 1, val = 1.

There is a builtin similar to SETBIT for locating patterns of O-bits (available locations) in a table:

FINDBIT[table,i,n,delta,hop,count]

starts out seeing if bits i, i+delta, ... , i+(n-l)*delta in table are all zero. If so, FIND BIT -returns
the initial location i. If not, it increments i by hop and tries again, until it has tried a total of count
times. If the search fails, -FINDBIT returns a null string. As for SETBIT, FINDBIT will supply
default values for trailing arguments: n = 1, delta = 1, hop = 1, count= 177777 (infinity, i.e., until the
size of the bit table is reached). The idea is that, for example, to find a pair of consecutive free
locations whose last 3 address bits are no, III respectively, you would use FINDBIT[table,6,2,l,l0].

Micro: Machine-Independent MicroAssembler 11 July 1980 25

17. Multi-Statement Conditionals

The ASMMODE builtin is used for multi-statement conditional assemblies. ASMMODE[O] is
normal and is the initial setting; in this case all statements are assembled normally. ASMMODE[l]
disables normal assembly; in this case only statements beginning with the character are
evaluated--other statements are flushed.

The following collection of macros shows how conditional assembly of statements nested up to four
levels deep can be accomplished:

SET[ALEV,O]; *Number of nested :IFs
SET[ASMF,l]; *1 if assembling, 0 if not assembling
SET[ASML,l]; *1 if assembling at this level, 0 if ignoring
SET[Ll,O]; SET[L2,O]; SET[L3,O]; SET[Gl,O]; SET[G2,O]; SET[G3,O];

M[NOIF,ER[No.:IF.preceding.: #1]];

M[IF,sELECT[ALEV"

];

SET[L1,ASML] SET[Gl,ASMF],
SET[L2,ASML] SET[G2,ASMF],
SET[L3,ASML] SET[G3,ASMF],
ER[:IFs.nested.more.than.4.levels,1]]

SET[ALEV,ADD[ALEV,lJ] SET[ASML,ASMF]
IFE[ASML,l,

IFE[#l,O,ASMMODE[l) SET[ASMF,O],ASMMODE[O) SET[ASMF,lJl]

M[ELSEIF,IFE[ALEV,O,NOIF[ELSEIF],
IFE[ASML,l,IFE[ASMF,l,SET[ASMF,O] SET[ASML,O) ASMMODE[l],

SET[ASMF,#l) ASMMODE[Il-"E[ASMF,O,l,Olll]]
);

M[ELSE,IFE[ALEV,O,NOIF[ELSE),

];

IFE[ASML,l,IFE[ASMF,l,SET[ASMF,O) SET[ASML,O] ASMMODE[l],
ASMMODE[O] SET[ASMF,l]]]]

M[ENDIF,sELECT[ALEV,
NOIF[ENDIF],

];

SET[ASMF,l] SET[ASML,l],
SET[ASML,Ll] SET[ASMF,Gl],
SET[ASML,L2] SET[ASMF,G2],
SET[ASML,L3] SET[ASMF,G3]]

SET[ALEV,SUB[ALEV,l]]
IFE[ASMF,l,ASMMODE[O]]

Using these macros, programs can use the following statements for conditional assembly:

:IF[IM16K];
... statements for IM16K ne 0 ...

:ELSEIF[IM8K] ;
... statements for IM8K ne 0 ...

:ELSE;

Micro: Machine-Independent MicroAssembler

... statements for IM16K and IM8K both 0 ...
:ENDlF;
... undonditionally assembled statements ...

18. Trace Mode

11 July 1980 26

The TRACEMODE builtin is used to produce a trace of the assembly on the .ER file. This aims at
debugging complicated macros and at performance tuning of definition files. The format of the
trace output is not particularly pretty but is self-explanatory.

TRACEMODE[n,v] turns on tracing feature n if v is unequal toO, or turns it off if v is zero.n=O
traces symbol table insertions; n= 1 traces all applications of the form name[args].

Micro: Machine-Independent MicroAssembler 11 July 1980 27

Appendix 1. Micro Error Messages

Micro error messages are enumerated below, in which the character @ should be replaced by the
priIitname of the token related to the error. Unless marked with a 1, assembly continues from the
error with no special action; errors marked with 1 terminate assembly.

Program Organization Errors

SOURCE FILE @ DOES NOT EXISTl

COULD NOT OPEN FILE @ FOR 'INSERTl

STORAGE FULL 1
Storage required during the assembly is roughly proportional to the following computation:

II2*Sum [namelength +1] for all symbols
+ 6* no. symbols
+ 1I2"Sum [length + I] of all macro definitions.

When this number is greater than the size of the buffer (approx. ? Alto words), the STORAGE FULL
message results.

TOO MANY MEMORIESl
Limit is currently 15 memories.

Declaration Errors

@ ALREADY DEFINED
The new definition. will replace the old and this warning message will be printed.

MACRO @ REDEFINED
Just a warning (doesn't increment error count)

ARG NOT A MEMORY NAME
For DEFAULT, which requires an argument to be of type. memory.

UNDEFINED SYMBOL @ IN 'DEFAULTl

BAD PARA.M:ETERS FOR 'F
A field may not be larger than 16 bits nor a memory wider than 256 bits, so rightbit > 255 or rightbit-Ieftbit
> 16 are field definition errors.

MEMORY @ ALREADY USEDl

ILLEGAL WIDTH OR SIZE FOR 'MEMORy,l
Limits are 256 bits wide and 64K-I in size

WRONG NO. ARGS FOR '@'
Only for those bulltins which must have correct number of arguments.
Macros may have too many or too few.

ILLEGAL BUILTIN NUMBER FOR ,@,l

Statement Assembly Errors

END OF FILE INSIDE COMMENT
Terminates comment and forges ahead

INPUT STATEMENT TOO LONG
Maximum length is 500 characters. Text to the right of the 500th character is truncated.

STATEMENT TOO WNG
During macro expansion of the input statement, the unprocessed text is never permitted to exceed 500

Micro: Machine-Independent MicroAssembler 11 July 1980

characters. Text to the right is truncated.

MACRO ARGUMENT STORAGE FULL
Truncates characters right-to-left up to matching '[' and proceeds.

SYMBOL @ NOT LEGAL AS TOKEN
Symbol appears without its required argument list

@ MAY NOT BE FOLLOWED BY [1
Only macros, builtins, fields, addresses, and memories may have '[' to their right

UNPAIRED) OR 1 IN ARGUMENT LIST

UNPAIRED)

UNPAIRED (

TOO MUCH NESTING OF () AND [1 IN CLAUSE
Limit is 8 levels

MISSING MACRO NAME OR TAG SYMBOL
No symbol to the left of a : or [.

MACRO '@' NOT DEFINED
Symbol to the left of a "[" wasn't defined

TAG @ ALREADY DEFINED

'TARGET' GIVEN AFTER FIELD SETl

NO TARGET FOR FIELD SETl

'TARGET' NOT LEGAL INSIDE A STOREl

@ UNDEFINED
Not including forward references. Plunges ahead with value -0 and type -integer

FIELD @ DOES NOT FIT IN MEMORY @
Right bit of field > right bit of memory

VALUE @ DOES NOT FIT IN FIELD @
Left bits of value truncated before store

ARG IN FIELD STORE NOT INTEGER OR ADDRESS
Doesn't do field assignment and plunges ahead

FIELD @ ALREADY SET

28

The new value is stored into the field. This message will occur iff new value # old value.

ARG DOES NOT YIELD INTEGER VALUE
Assumes 0 _ and proceeds. Syntax OK but undefined symbol or address instead of integer.

BAD SYNTAX WHERE VALUE REQUIRED
Something complicated where a simple value expected

FIRST ARG OF 'PF NOT FIELD
No action

FORWARD REFERENCE NOT LEGAL IN 'PF'
No action

STORE TO @ OUT OF RANGE FOR @

@ BAD FIRST ARG FOR 'SET'
Must be integer or undefined symbol. However, redefinition will take place.

INTEGER '@' TOO LARGE
Integer MOD 2**16 is used.

ARG NOT A FIELD NAME IN 'IFSET'

Micro: Machine-Independent MicroAssembler 11 July 1980 29

Appendix 2. Limitations of the Language

Micro lacks some features and possesses certain limitations discussed below:

1. It is impossible to relocate a microprogram at load time.

2. Forward and external references are permitted only on field assignments which means that the
occurrence of

MDR"'STEMP, or STEMP"'MDR

where STEMP is an address in SM, cannot be assembled if STEMP is a forward or external
reference. Forward references to symbols that are not addresses are also impossible.

3. Significant size limits:

a. Symbol table storage is tight.

b. Integers are limited to 16 bits.

4. It is impossible to check the memory part of an address on forward or external references. Nor
is it possible for programs to get at the type of a symbol, at the parameters of a field or memory, or
at the name of the target memory. The 'lookup' capability of builtins is not available through any
language constructs.

5. Macros which expand to more than one statement are impossible.

6. It is impossible to pull print names apart or to construct print names except by using neutral
sub symbols. In particular, it is impossible to construct constants larger than 16 bits parametrically
such that, if several constants contain the same value they can be assigned the same location. This
is true because one cannot generate the print name "1420000S" (a literal) either directly from an
integer or indirectly from the value assembled by assignments. (Note that if integers were large
enough ADD [PI, P2, ... , P7]S would generate the literal in S.)

7. There are a number of situations when part of an otherwise quoted argument wants to be
expanded and there is no way to do this. For example,

IFDEF[FOO[E],(true clause),(false clause)]

should lead to expansion of the macro FOO[E] before checking for a defined symbol.

8. Blanks in user-defined error messages are impossible.

9. The REPEAT builtin should supply a ";" after each repetition of the text, so that the ILq ...] in
REPEAT[n,(lLq ...])] can be omitted.

10. PF [field, value] was a bad choice because it makes parameterizing the values of a field
impractical. For example, suppose that the function P+-PI is accomplished by setting the PS field to
50. What we would like to do is to define neutrals P+- and PI and then define the macro P+-Pl as
PS[50]. If the hardware is changed so that P+-PI is accomplished by PS[20] instead of PS[50], we

Micro: Machine-Independent M icroAssembler 11 July 1980 30

would prefer to change only the one macro P+-PI. However, there are also several instances of
PF[PS,50] which have to be found and changed and this is the reason why PF[field, value] was a
bad choice. Instead, a preset-clauselist operation would have been better because then no other
usage than P+-PI would be needed.

To prevent some of the above limitations or to otherwise streamline or augment the language, the
following changes should be considered (the ones followed by ? or ?? or ??? are not serious
proposals).

1. Make integers at least 36 bits long for MAXC, and consider variable length integers. Currently,
considerable inconvenience results from "making do" with 16-bit integers. Also this would make it
possible to get the literal equivalent of a constant constructed from parameters, which would allow
merging identically-valued constants.

2. Provide a builtin like the one for defining fields except that it takes an additional argument
which is a memory name:

AFIELD[AFNAME, leftbit, rightbit, memory].

AFNAME[address] works like FNAME[integer] except that its argument must expand to an address
in "memory" rather than an integer, or if its argument is undefined, a forward address reference is
assumed. Forward references to FNAME[undefined] would be illegal and FNAME[address] would
be illegal. Unbound addresses would contain the memory type. This would permit memory

. checking of addresses very conveniently (currently it is cumbersome) and would pennit forward
references to be checked also (71).

3. Multi-statement macro definitions should be added. Perhaps "{" and "}" could be used
syntactically to enclose multi-statement stuff.

4. It should be permissible for an argument list to appear to the right of a neutral symbol because
of the following usage:

P.-LB RSH [1]

where LBRSH is a neutral symbol, P+- is a neutral symbol, and P+-LBRSH is a macro. The
argument list [1] should be preserved until P+-LB RSH [1] is expanded.

5. In every place where an argument string is "looked up" for a builtin, all macros and neutrals
should be expanded. In other words, "looking up" an argument should be identical to evaluating
an argument, except that occurrence of any builtin causes an error. Expansion stops when a non­
neutral non-macro symbol without brackets, parentheses, +-, or : is left.

6. Currently address~ is handled by the assembler, but undefined~ and macro~ are not handled in
any special way. Similarly, an undefined source is not handled. It might be useful to have these
cases result in the substitutions UDEST[undefined], MDEST[macro] and USRC[undefined]. This
would permit forward or external references to succeed where they don't currently· and would
permit macros which expand to addresses to be used. MDEST, UDEST, and USRC should be
macro names selectable by the programmer.

Micro: M achine-Independent M icroAssembler 11 July 1980 31

7. Currently the TARGET directive causes a top level statement to be equivalent to

TARGLC[(#1)];

where # 1 stands for the top level statement. This could be changed to a general macro whose first
argument is the c1auselist of the statement. . However, this would slow assembly.

8. Instead of causing an error, integer results should be treated at the top level as neutral symbols
equal to the octal text string for the integer. This would permit arithmetic to be performed and the
result concatenated with text to select one of many macros or address symbols.

Micro: Machine-Independent MicroAssembler 11 July 1980 32

Appendix 3. Binary Output Format

Micro outputs binary memory images as a series of short blocks of 16-bit words. Each block begins
with a word that specifies the type of the block; the number and format of following words depend
on the block type. During its pass through the source files, Micro outputs a message to the file
Micro.fixups whenever it encounters an assignment

FNAME [NAME]

and NAME is undefined. At the end of processing the source files, Micro reads back Micro.fixups
and outputs either a type 3 or type 6 message (see below) to the binary fIle depending upon
whether the symbol was a forward reference or undefined. Finally, it orders new or changed
address symbols by memory and outputs them to the binary file.

Midas can link up external address references at load time. Address symbols for Midas to use in
linking up external references are output as described below.

Type

o.

1

2

3

Table 4: Micro Binary Output File Format

Followed by

nothing

source line # (1 word);
data (N words)

memory # (1 word);
location (1 word)

memory # (1 word);
location (1 word);
first bit * 256 + last
value (1 word)

Use

Indicates the end of the binary file.

_ Specifies a data word .to go in the current me:nory at the C\.1rrent
location. The current location is to be incremented. N is just large
enough to cover the width of the memory, and the value is left­
justified, e.g., for a 36-bit memory N = 3 and the first word goes in
bits 0:15, the second in 16:31, and bits 0:3 of the third in 32:35.

The source line # is zero if the word was generated by an INSERT
file, and has bit 0 set if the word was generated in the main file by a
STORE.

Sets the current memory and the current location. Memory numbers
are related to memory names by type 4 blocks (see below).

bit (1 word);
Specifies a forward reference fixup. The value is to be stored into the
given bits at the given location in the given memory. (Current
memory and location settings are not affected.)

4 memory # (1 word);
width of memory in bits (1 word);
symbolic name of memory (L words)

5 memory # (1 word);
value (1 word);

Correlates a memory number with a user-supplied name.
The name is packed 2 8-bit characters per word terminated by a null
(all O's) character; L=(C+2)/2 where C is the number of characters
in the name. The type 4 block defining a memory will appear before
any type 2 or 3 blocks storing into that memory.

address symbol name (L words)
Gives the definition of an address symbol There is a type 5 block.

Micro: M achine-Independent M icroAssembler 11 July 1980

6 memory # (1 word);
location (1 word);

for every new or changed address symbol. All type 5 blocks appear
together at the end of the binary file.

first bit * 256 + last bit (1 word);
undefined symbol name (L words)

Specifies a reference to an undefined (external) symbol. The first
three words have the same interpretation as for block type 3.

33

The Midas program accepts any of the block types above. In addition. Midas accepts the following compact block types
which ate more compact than the ones above and use less storage.

11 block address (I word);
word count N (I word);
N data words;

12 address (1 word);
Bcpl string (L words);

The left-half of the word containing the type is the memory #. The
N data words are in the same form as block type 1.

The left-half of the word containing the type is the memory #. The
first word of the Bcpl string contains a character count in the first
byte (0:7). followed by the characters of the string.

