
Cleared version of May 24, 1981

ALTO SUBSYSTEMS

Compiled on: May 24, 1981

Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304

© Xerox Corporation 1981

Alto Subsystems

Cleared version of May 24, 1981

May 24,1981

Alto Subsystems

2

This document is a directory of major Alto BCPL subsystems. Mesa subsystems are collected together and
documented elsewhere.

Binary versions of these programs are available on the <Alto> directory. If the documentation for the
subsystem is short, it is included in this file directly. If it is somewhat longer, the documentation is stored
separately and the entry is marked with a *. The documentation for these objects is available on
<AltoDocs> in .TrY files. Programs that have quite bulky documentation are denoted by **. These
programs have separate documentation on <AltoDocs>, usually as <AltoDocs>Name.press. Some of the
most common ones (e.g., Bravo) are documented in the Alto User's Handbook.

If you would like a full listing of documentation for all but the ** programs give the command "Press
<AltoDocs>Subsystems.press". .

The person last known to be responsible for each subsystem is also given.

* ASM: an assembler for Alto machine language, producing object files compatible with the Bcpl
loader. (Ed McCreight)

**BCPL: a compiler for the Bcpllanguage. (Dan Swinehart)

**BLDR: a loader for object files produced by Bcpl and Asm. It is documented in the Bcpl manual.
(Dan Swinehart)

**BRAVO: a display editor. Documentation is in the Alto User's Handbook. (no longer
maintained) ·

*BUILDBOOT: a program for constructing Alto boot files. (David Boggs)

*CHA T: establishes PUP Telnet connections between a pair of cooperating parties. (Ed Taft)

CLEANDIR: does a garbage collection on a file- directory (not on the disk space, though). Call it
with
>CLEANDIR directory-name n
to clean up the specified directory. The system directory is called SYSDIR. The second
parameter, n, tells how much extra space to append to the directory. The reason for it is that
extending the directory in this way will tend to get the pages allocated to consecutive disk sectors,
so that subsequent 100kuQs will go faster. Note that the cleanll~ function of CLEANDIR is
superceded by the "WriteDirectory"· command of the EXECUTIVE; CLEANDIR is now useful
only for extending a directory. (David Boggs)

*COPYDISK: copies whole Diablo and Trident disk packs from one drive to another on the same
Alto, or through the net between two Altos, or to and from a disk image stored on an IFS.
(David Boggs)

*CREATEFILE: creates a file of a given size, trying to allocate it contiguously. (David Boggs)

*DDS: The Descriptive Directory System is a front end for the Alto file system, providing a
relational data base management system and facilities for displaying information related to Alto
files. (Peter Deutsch)

*DMT IPEEK/PEEKSUM: Alto memory diagnostic program and related statistics-gathering
programs. (David Boggs)

*DPRINT: Prints disk files on the Diablo Printer. (Ed Taft)

Alto Subsystems

Cleared version of ~1ay 24, 1981

May 24, 1981 3

**DRAW: An illustrator. Documentation is in the Alto User's Handbook. (Patrick Beaudelaire)

EMPRESS: Converts ordinary text files to Press files, and performs simple formatting operations,
intended for listing programs. (David Boggs)

*EXECUTIVE: The Alto command processor. (Richard Johnsson)

*FIND: a program to search text files for user-supplied strings. This program originated as a
demonstration of the power of compiling microcode from the given problem. (Peter Deutsch)

*FTP: a Pup-based File Transfer Program for moving files to and from an Alto file system. (David
Boggs)

*LISTSYMS: converts the .Syms file produced by BLDR into human readable form. (Peter
Deutsch)

*MAILCHECK: A program that will check for waiting mail on Maxc. (Larry Masinter)

**MARKUP: A document illustrator. Documentation is in the Alto User's Handbook. (William
Newman)

**MICRO: The microcode assembler for Maxc, Dorado, DO, and other machines. Basic
documentation is available only in the CSL archives. It is called "Maxc document 9.2". Recent
changes are documented in <AltoDocs>Micro.tty. (Peter Deutsch) .

MICROD: Loads, binds, and determines absolute placement of Dolphin and Dorado
microprograms. (Peter Deutsch)

MOVETOKEYS: Moves page 1 of the named file to the appropriate page of the disk so that
depressing the key-combination and the boot button will boot-load the file. (Roy Levin)

*MU: The microcode assembler for the Alto. (Ed Taft)

Neptune: A program for listing, copying, and deletin~ files. It is capable of dealing with both drives
of a two-drive Alto, and also with Trident dISks. The pr£~ram offers help on its use.
Documentation is in the Alto User's Handbook. (Keith Knox -- w RC)

*NETEXEC: This subsystem, which is bootstrapped over the Ethernet, provides a convenient
interface to the other systems available from "boot servers" on the network. (David Boggs)

NEWOS.BOOT: is the name of a ready-to-install Operating System. Retrieve it, say "Install
NewOS.boot" to the Exec, and then delete it (it writes itself out on the file Sys.boot) (David
Boggs)

*OEDIT: allows you to look at and modify arbitrary files in octal. (Lyle Ramshaw)

*ORAM: A scheme for overlaying several segments of microcode in the Alto RAM. (Peter
Deutsch)

*PACKMU/RPRAM: These two subsystems, in conjunction with the subroutine ReadPRAM or
LoadRam, allow programs using the RAM to check the constant memory and load the RAM as a
part of their initialization. (Peter Deutsch)

*PEEKPUP: a Pup software debugging aid. (David Boggs)

**PREPRESS: A program for manipulating font files. (Lyle Ramshaw)

*PRESSEDIT: combines, merges, and performs various other operations on Press files. (William
Newman)

Alto Subsystems

Cleared version of May 24, 1981

May 24, 1981

PROOFREADER: Proofreader for English text. (Ed McCreight)

4

*RAMLOAD: a program for loading the Alto RAM from the files produced by the microcode
assembler, MU. (Dave Boggs)

READPRESS: reads Press files and di~lays a text-listing of the entity commands, DL strings, etc.
Command line is of the form: "ReadPress Test.Press". (Joe Maleson)

*SCAVENGER: a subsystem for repairing a damaged Alto file system. (Richard Johnsson)

**SIL, Analyze, Route, Build, NetDelays, etc.: A system for automating logic design, including an
illustrator specialized to logic drawings. (Roger Bates, Ed McCreight)

*SW AT: a debugger for Bcpl programs. (David Boggs)

SYS.BOOT: is the name of the boot file for the operating system on the Alto disk. (David Boggs)

*Trident disk software: TFU, TRIEX and the TFS software package. The Bcpl software package
and utility programs for driving Trident disks interfaced to the Alto. (Ed Taft)

*VIEWDATA: a subsystem that displays 2D projections of 3D data on the Alto screen. (Dick
Lyon) .

Alto Subsystems

Cleared version of May 24, 1981

May 24,1981

MISCELLANEOUS PROCEDURES AND INFORMA TION
FOR PARC ALTO USERS

5

*NEWDISK: a procedure for creating a virgin disk and getting fresh, up-to-date software from
MAXC. (David Boggs)

*PARCALTOS: a document containing miscellaneous information for Alto users and maintainers
atPARC.

ASM

Cleared version of May 24, 1981

February 10,1979

ASM

6

This assembler, written in BCPL, runs on the Alto and produces BCPL-compatible relocatable binary
output files, suitable for input to BLDR, the BCPL loader. The Alto Hardware manual describes the
source language and the virtual machine. .

1. Symbols

Symbols may be up to 130 characters in length, and every character ofa symbol must be used to identify it.
By default u1?per- and lower-case characters are different, and two character strings represent the same
symbol only If the same letters and cases are used in both. However, the IU switch causes all lower-case
letters in symbols to be changed to upper case (even in external symbols). Thus if you want an assembly
language program to link to symbols containing lower-case letters, you must either default lower-case
conversion in ASM or map all symbols to upper case in BLDR using its IU switch.

2. Strings

Strings follow BCPL conventions. They may not extend from one line to the next.

3. Assembly Regions

This assembler can assemble into three regions: two static regions (one in page 0) and one code region.
The directives .NREL, .SREL, and .ZREL cause the assembler to begin placing code in the code region,
the non-page-O static region, and the page 0 static region, respectively. The BCPL loader causes the
restrictions that the code area may not contain pointers into the code area, that the first word of the code
area may not point to a static area, and that no static area may contain pointers to a static area. The only
external symbols are statics.

Arithmetic is not allowed on symbols denoting statics, and the symbol "." is undefined in .SREL and
.ZREL. Am' absolute or code- relative expression (including such goodies as JMP@ 62) may be placed in
.SREL or .ZREL. Any absolute expression, static reference, or instruction reference to .ZREL may appear
in .NREL.

There are two text modes, .TXTM Band .TXTM L. Mode B causes the generation of standard BCPL
strings. Mode L causes the generation of long strings, a full word length followed by the string characters,
two per word.

5 .. GET

ASM

Cleared version of May 24, 1981

February 10,1979 7

The directive .GET "FOO" causes the file FOO to be inserted into the source text at that point. .GETcan
be used up to two levels deep. Its primary utility is likely to be for lists of externals and for canned entry
and exit sequences.

6 .. GETNOLIST

Works exactly like .GET, except that the "gotten" file is not included in the listing, nor are any files which
it .GET's.

7 .. BEXT

In addition to .EXTN and .EXTD and .ENT, I have added two directives .BEXT and .BEXTZ which work
exactly as BCPL's External works for non-page-O and page 0 statics, respectively. This should increase the
utility of the .GET feature above.

8. Expressions

Parentheses (but not precedence) are supported. Constructs like "K and $*N and 5 and 17. and 3B10are
all primaries. Most BCPL and customary assembler operators are allowed. The construct 1BIO means
40(octal), unlike BCPL's convention. I am willing to be convinced on this point.

9. Predefined Symbols

All predefined symbols and directives and opcodes are defined both in all upper-case and all lower-case
letters. For example, both LDA and Ida are predefined, but Lda is not. The following Alto-specific
opcodes are preloaded in the symbol table:

JSRII JSRIS CYCLE CONVERT OIR EIR BRI
RCLK SIO BLT BLKS SIT RDRM WTRM
JMPRM MUL DIV

In addition, the following pile of skips which test various conditions has been added, courtesy of Dan
Ingalls. Only the names have been changed to confuse the innocent:
Two 0I2erands:

SZE SZ SNZ SP SGZ SN SEQ
SE SNE SLT SLE SGT SGE SOTU
SLEU SGEU SLTU SODD SKEVEN SNIL SNNIL
MKZERO MKONE MKNIL MKMINUSONE

No OQerands:
NOP SKIP

It should be explained that U stands for unsigned, and that Dan thinks of NIL as -l.

ASM

10. Operation

Cleared version of May 24, 1981

February 10, 1979

If the source file is called FOO.ASM, type

ASMFOO.ASM

8

If you just type ASM FOO it will first try to use FOO and, failing in that, try FOO.ASM. The assembler
will usually want to construct several files, which it will do by substituting various extensions on FOO
unless J'ou specify otherwise. There are a lot of switches which apply to ASM:
IL Construct a listing file
IS Include the symbols defined by the user, for what they're worth
I A Include all symbols, even the J;>redefined ones
IR Include a pnntout of the .BR file
IN Don't make a .BR file
IE Make an .ER file which is a copy of the error messages

sent to the terminal
ID Print debugging messages (as errors, in fact)
IP Pause after printing each error message (continue with CR)
IU Map all lower-case letters in symbols to upper-case

There are also a lot of switches which· apply to file names, and which tell the assembler to use this name
instead of the one it was about to invent:
IL N ames the listing file
IE Names the error file
IS Names the source file (also no switches)
IT N ames the temporary file
IB Names the relocatable binary file

Boot Files

Cleared version of May 24, 1981

February 17, 1979

Alto Boot Files: Formats and Construction

9

The process of "booting" the Alto is one of setting some or all of the Alto's state either by reading a file
from the disk or by accepting packets from the Ethernet. This document attempts to explain the various
ways that state is restored, and the formats of "boot files" built by various programs. .

There are four basic steps in "booting" the Alto: (1) the tasks in the microprocessor are reset; (2) a 256-
word "boot loader" is loaded into main memory and started; (3) the boot loader loads a portion of Alto
main memory from a "boot file" and finishes by transfering to a known place; (4) the user's program
loaded by the third step can restore even more of the Alto's state.

1. Booting

"Booting" is accomplished either by pushing the "boot button" located on the rear of the keyboard orby
executing the SIO instruction (see Alto Hardware Manual). Unless overridden by the Reset Mode
Register, the emulator task is started in a standard boot program. This program reads location 177034b, a
word whose contents can be altered by pushing various Keys on the keyboard. If the <bs> key is depressed
during booting, the machine state will be restored from the Eth.ernet; oL1.ervvise, L1.e state is restored from
the disk.

When booting from the disk, the keyboard word is interpreted as a disk address where a "disk bootloader"
is located. If no keys are depressed, disk address 0 is generated, which is the normal resting place of the
"disk boot loader" for the operating system. The emulator reads a single 256-word disk record into
memory locations 1,2, .. .400b; the 8-word disk label for this page is placed in 402b, 403b, ... 411b. When
the disk transfer is complete, control is transferred to location 1 in the loader. The boot loader uses the
saved label to point to the remainder of a "boot file" which is read into main memory and started. The
types of "disk boot loaders" and "boot files" are discussed below.

When booting from the Ethernet, the microcode waits until a "breath of life" packet arrives, containing a
256-word "Ethernet boot loader" which is read into locations 1 - 400b and executed by transferring to
location 3. It is up to this loader to establish communications with a party willing to deliver the remainder
of the state needea.

2. Boot File Formats and Boot Loaders

There are two basic kinds of boot files, and a variant:

B-File: Built by the BuildBoot program; loader is DiskBoot.

S-File: Built by the OutLd subroutine; "s" loader.

SO-File: Variant ofS-File built by the SaveState subroutine.

A B-File can be distinguished from an S-File or SO-File because B-Files have a 0 in their second data word.

Words 4 & 5 of B, S, and SO boot files do not contain code and are reserved for holding the (Alto format)
date on which the file was built. Boot servers use this information to propagate the latest versions. Old
format type B files which don't contain a date have 402b in file word O. Ola fonnat type S files have 355b
in file word O.

Boot Files

2.1. B-Files

Cleared version of May 24,1981

February 17, 1979 10

B-Files ("BuildBoot" files) are the simplest sort of boot file. The booting process itself does not restore the
entire state of the machine; page 1 (addresses 400b to 777b) is not restored; no RAM or R-register state is
restored except for the program counter. .

A boot loader resides in the first (256-word) data page of a B-File. It is this page that is read in by the
booting process. The file is formatted as follows:

File page 1 =)
File page 2 = >
File page 3 = >
File page 4 = >
File page n = >

DiskBoot loader
Image of memory page 0 ~O-377b)
Image of memory page 2 1000b-1377b)
Image of memory page 3 1400b-1777b)

Image of memory page n-1

The file can be of any length, except that n must not exceed 254. After reading the entire file, control is
transferred to the restored state by doing JMP@ O.

2.2. S-Files

S-Files ("Swat" files) are a somewhat complicated construction that permits more of the Alto state to be
restored: the interrupt system, active display, and so forth are all restored. In order to achieve this, the
restored state must contain a copy of the OutLd subroutine that is responsible for the final stage of the
restore; when the state is fully restored, this subroutine simply returns to its caller. This full state saveand
restore was originally designed for the Swat debugger. (Note: no RAM or R-register state except for the
PC and accumulators is restored by this kind ofboot.)

A boot loader resides in the first (256-word) data page of an S-File. This is the page read by the booting
process. The file looks like:

File page 1 => "s" loader
File page 2 = > Image of memory page 2 (1000b-1377b)
File page 3 => Image of memory page 3 (1400b-1777b)

File page 253 =) Image of memory page 253 (176400b-176777b)
File page 254 =) Image of memory page 1 (400b-777b)
File page 255 => Image of memory page 0 (0-377b)

The S-File must contain at least 255 data pages; additional pages are ignored by the booting process, and
can be used to save additional state. When the restore is finished, control returns to the caller ofOutLd
(see Alto Operating System Manual).

ssec(SO-Files)

SO-Files are a minor variant of S-Files that can be used to restore the Alto state in 2 different ways. The
variation is simply that location 0 of the restored memory image (Le., word 0 of file data page 255) contains
an "alternate starting address." The file can be loaded by (1) using it as an S-File, and executing theloader
saved in its first file data page, or (2) by a loading process that loads all memory but page 1 (file page 254)
and does a JMP@ O. The operating system boot file, Sys.Boot, is an SO-File.

The SO-File is designed to permit Ethernet booting from states conveniently saved by OutLd.

Boot Files

2.3. DiskBoot loader: B-Files

Cleared version of May 24, 1981

February 17,1979 11

The DiskBoot loader is commonly placed as the first data page in B-Files. Its source is DiskBoot.Asm (in
BuildBoot.Dm); BuildBoot will normally include this loader on the front of the B-Files it constructes.
NOTE: the file "DiskBoot.Run" is not a literal copy of the 256 words that go on the front of the file, but
the result of applying Bldr to the relocatable file generated by assembling DlskBoot.Asm. B-files were the
first boot format desIgned for the Alto. Unlike an S-file which must be at least 255 data pages long, aB-file
need be big enough to contain all of the code to be loaded.

2.4. InOutLd loader: S-Files and SO-Files

This loader is part of the Operating SY?tem and available as a separate package. For more details read the
descriptions of InLd, OutLd and BootFrom in the Alto Operating System manual.

2.5. EtherBoot loader: "Breath Of Life"

The "breath of life" loader, which is periodically broadcast by gateways, is loaded into locations 1-400b
when the Alto is booted with the (os> key pressed. The standard form of this loader reads location
177035b (a keyboard word), and transmits "MayDay" packets containing the 16-bit result. Some serveron
the network will interpret the 16-bit argument as a request for a specific program. The server will open an
EFTP connection with the Alto which sent the MayDay. It transmits data pages in the same order as they
are recorded in B-Files (including the first data page, even though it contains a disk-oriented loader).
When the connection is closed, the loader starts the restored image oy doing a JMP@ O.

By convention, the 16-bit argument 177777b is never answered by a server. This convention is· used by
programs which have specifically started a "breath of life" loader and are expecting an EFfP connection
from some specific party.

The EtherBoot lmider is available as a package: see the Alto Packages manual. Protocol details are in the
Pup documentation. .

3. Constructing B-Files: BuildBoot

BuildBoot.Run constructs files for direct booting into the Alto. The program copies its input files into an
output file according to directives in the command line and in the mput files themselves. Two kinds of
input files are supported at the moment One is the segment file, WhICh contains a block of words to be
loaded into contiguous addresses. The other is the executable (.Run) file, which is what Bldr produces on
the Alto (see Alto Operating System Reference Manual for details). If several files in the command line
specify the contents of the same memory location, the last one will win. In addition to the data already in
the output file, the program maintains four state variables between items in the command line. One is the
location counter which specifies the address where the next segment file (if any) will be placed. Anotheris
the address where the loaded image is to begin execution. This defaults to the starting address of the last
executable file in the command line. The third is the address (if any) where the layout vector of the next
executable file is to be loaded. If this address is missing, the layout vector will not be loaded. The fourthis
the address (if any) in the boot loader where the current date and time will be placed.

Here are the switches:

IE
ID

IS
IN
10
10

This is an executable file (also no switches or IR) .
This is the address of a two word block in the boot loader

where the cutrent date and time are placed.
This is a segment file
Reset the location counter to this octal number
This is the output file
This octal number specifies where execution begins

Boot Files

Cleared version of May 24, 1981

February 17, 1979

IB This executable file contains a boot loader in its code
area. If omitted, defaults to "DiskBoot.Run"

IL Write load map on this file
IV The layout vector of the next

executable file will be loaded in a contiguous
block starting at the address specified by this
octal number

Ifwe wanted to bootify the .Run file Prom.run, we might say·

BuildBoot Prom.bootiO Prom.map/L 201N 1000/0t
Prom.run/S

12

Similarly, if we had the diagnostic DMT.RUN as an executable file (including any runtime support it
might need), we could simply say

BuildBoot DMT.bootiO DMT.DMT.map/L DMT.run/E

The disk boot loader DiskBoot.Run is also included in the file BuildBoot.Dm, and is required by
BuildBoot unless another boot loader file is specified by the IB switch.

The BootBase package «AltoSource)BootBase.dm) makes it possible to construct a B-format boot file out
of most any .Run file wIthout any souce-Ievel changes. It initializes an execution environment; provides a
runtirrie environment including TeleSwat, the Bcpl runti.tlle routines, Calendar c1oekmaintenance, parity
error handling; and supplies selected Operating System routines.

Two standard configurations' are available: BasicBoot is a bare bones Bcpl environment suitable for
diagnostics; FullBoot adds most of the facilities of the Alto OperatinK System except for the BFS, Disk
Streams, and Directories. Other configurations are straight forward. Each configuration consists of four
files: xBootBase.run (x = Basic or Full) contains code. xBootBase.bj contains Bldr linkage information
similar to Sys.bk. xBootBase.xc contains part of the Bcpl runtime. LoadxBoot.cm is a command file
template containing incantations to Bldr and BuildBoot and slots which you must fill in.

4. Constructing S-Files: OutLd

S-Files are constructed by the OutLd subroutine, which is documented in the Alto Operating System
Manual. ,

5. Constructing SO-Files: SaveState

The SaveS tate subroutine, also included in BuildBoot.Dm, can be called in a fashion similar to OutLd, but
it will create an SO-File. The Bcpl call is:

SaveState(filename, [flags])

It behaves like OutLd in that it returns 0 if the file has just been written, 1 if it has been restored by an
InLd, 2 ifby a disk boot, and (unlike OutLd) 3 ifby an EtherBoot. Ifbit 15 of flags is set, the disk state is
flushed after creating the boot file. Ifbit 14 is set, the disk state is recomputed when the boot file isstarted.
SaveState requires the presence of operating system levels through disk streams.

Boot Files

Cleared version of May 24, 1981

February 17, 1979

6. The "standard boot file": disk address 0

13

The 256-word data page saved on real disk address 0 cannot be part of any legal Alto file because of the
way the file system IS designed. As a result, the standard b00t file is established by copying the first data
page of the boot file (e.g., Sys.Boot) into disk address 0 (the label and data portions are both copied
verbatim). Thus the proper data (disk boot loader) will be read when booting, and the label will point
forward to the (legal) boot file, data page 2. This makes Sys.boot have an illegal format (the forward links
of two pages pomt at page 2 of Sys. boot), but the Scavenger knows this and ignores it

Chat

Cleared version of May 24, 1981

October 19,1980

CHAT

14

Chat is a 'program for establishing Pup Telnet connections between a pair of cooperating parties. Its chief
function IS to permit Alto users to login to Maxc and IFS servers. Chat includes an extension to support
text-display control and graphics. .

1. Simple operation

Chat is organized so that default operation with Maxcl is simple. Simply saying "Chat" will establish a
connection with Maxc and (provided you are "logged in" on your Alto) will try to establish the Alto as
controlling terminal for a Maxc job that is logged in under your name. Chat will perfonn a "login" or
"attach" as appropriate. If the simple methods fail you must deal with Maxc yourself (life is hard).

To connect to some server besides Maxc, type "Chat name" where "name" is the name of the desired
server (Maxc2, Ivy, DLS, etc.) Chat will perform the automatic login if the server is a Maxc or an IFS.

If you don't have the file Chat.Run on your disk, the Alto Executive will boot-load it from a boot server on
the network. In this case, Chat will not use the "nru"Jle" you supply on the cOIllilland line but ratherwill
require you to type the server name directly to Chat.

If you are not logged in on your Alto at the time you start Chat, or you booted Chat from the network,
Chat will first request that you type in your user name (if different from the one installed on your disk) and
password.

The preferred method for exitin~ Chat is to dej:>ress the key immediately to the right of the "return" keyon
the Keyboard, and then to press q" for Quit. The other method, (shift>SW AT, is frowned upon and is not
guaranteed to work.

If the connection fails or is broken by the server, Chat will display an appropriate message and will
ordinarily terminate. However, if you booted Chat from the network, Chat will continue runnmg and will
ask you for the name of a new server to connect to. .

2. Command Interpreter

While Chat is running, you may wish to give various commands that alter its operation. Depressing the
key immediately to the right of the RETURN key will cause Chat to enter a command mode. The
commands are:

C

D

E

F

Change control character output setting. Control characters other than CR, LF, and Tab are
normally displayed as "tx". Changing this setting causes control characters to be thrown away.

Specify a "do" file to insert now. The text of the file will be treated as if it had been typ,ed in at the
keyboard--it will be transmitted to the connected party. This is a simple way to 'can" Maxc
procedures that you use a lot.

Change local echo setting. Chat starts out assuming that the connected party will echo all
characters. In some instances, Chat will want to echo your typein locally (e.g., when connected to
another Chat).

Specify a new font. The screen will be re-initialized, which will cause recent typeout to disappear.
If insufficient core space is available for the font, the system font will be used.

Chat

I

N

o

Q

T

Cleared version of May 24, 1981

October 19,1980 15

Toggle the '\n~ut" switch for the typescript file, set by the USER.CM entry
TYPESCRIPTCHARS (see below).

Pennits you to establish a New connection (after breaking the current one), without leaving Chat.

Ipggle the "outI~ut" switch for the typescript file, set by the USER.CM entry
TYPESCRIPTCHARS (see below).

Quit--tenninate the connection.

Specify a new typescript file. The old typescript, if any, is closed. The new typescript will grow
without bound, even if the old typescript had a length limit specified in USER.eM (see below).

3. Command-line options

Several options may be passed to Chat by global switches in the command line (Le., by typing Chat/sIt
where "s' and "t" are the switches):

IA

IC

10

IE

II

IL

IN

IPor/D

IS

IT

"Attach" -- meaningful only when connecting to Maxc. This will force the Maxc attach
sequence to be typed rather than whatever Chat considers appropriate.

Chat will suppress output of control characters, rather than displaying them as "tx".

See IP below.

Chat will cause local echoing of input characters.

Equivalent to the command-line entry Chat.InitiallO (see below).

"Login" -- meaningful only when connecting to Maxc or an IFS. This forces a login
sequence to be typed, regardless of what Chat considers appropriate. For example, if you
already have a detached job on Maxc and wish to create a new job, you must use this
option.

Chat will not attempt any automatic login or attach.

Chat will enable a display protocol (see below).

Chat will be a "Pup Telnet Server," and will respond to requests for connection from
others rather than initiate requests itself.

Chat will write a ty~escrip~ on file Chat.ts$, regardless of whether or not a TYPESCRIPT
entry appears in USER.CM.

Several options may be specified with "local" switches:

string

filename/O

filenamelE

This gives the "name" of the party with whom Chat should initiate a connection. The
name may be an address constant of the fonn net#host#socket, or may be a full symbolic
name like Maxc+ Telnet (see "Naming and Addressing Conventions for Pup" fordetails).
The default socket is 1, the Telnet socket. Thus typing "Chat Regis" will try to connect to
a Telnet server on the host named Regis. .

This gives a "do" file name that is fed to the connected party. When the last character of
the file has been sent, Chat will not close the connection.

Similar to 10, but will end the connection when end of file is encountered.

Chat

Cleared version of May 24, 1981

October 19, 1980 16

filenamelF

filename/T

Specifies the name of the font to use.

Specifies the name of the typescript file.

4. USER.CM Options

The USER.CM file may also contain defaults that Chat examines at initialization. The section of
USER.CM that Chat examines must begin with a line with the 6 characters [CHAT] on it Thereafter,lines
begin with "labels," followed immediately by colons, followed by arguments.

Note that Chat does not look at User.cm (or anything else on your disk) if you boot-loaded it from the
network.

In the following descriptions, square brackets enclose parameters that are optional--you shouldn't actually
type the square brackets.

BELL: [DING] [FLASH] [AUDIO]

Tells what to do when a bell character is received. If DING is specified, a pattern that spells out
DING will be displayed at the top of the screen. If FLASH is specified, the bottom area of the
screen will flash black. If AUDIO is specified, and you have a loudspeaker connected to your
Alto's Diablo printer interface, an audible tone will sound. Any comoination of options can be
specified together (default: DING FLASH). _ _ _ __ .

BORDER: BLACKIWHITE

Gives the color of the top border of the screen (default: white).

CONNECT: net# host# socket or host-name

Gives the network address constant or name of the party with whom a connection should be
initiated (see "Naming and Addressing Conventions for Pup" for details). Default is
Maxc + Telnet, the Maxc Pup Telnet server.

CONTROLCHARS: ONIOFF

Normally, control characters other than CR, LF, and Tab are displayed in the form "1'x". This
option forces them not to be displayed at all. Default is ON.

DISPLA YPROTOCOL: ONIOFF

This entry enables a di~lay protocol. The same effect can be achieved with the IP or ID
command-line switches. Default is OFF.

ECHO: ONIOFF

This option tutus on local echoing. This is usually necessary only if you are connecting to another
Alto running Chat that has used the IS option.

FONT: AltoFontName.AL [width height]

Gives the name of a font to use when displaying typeout from the connected party (default: system
font). If two numbers follow the name, they are interpreted as the width of a line (in characters)
and the height of a page (in lines). These numbers override the calculations made by Chat, and are
shipped to the server to set the terminal parameters.

LINEFEEDS: ONIOFF

Chat

Cleared version of May 24, 1981

October 19; 1980 17

Normally, line feeds transmitted by the otheuarty are included in the typescript file. If you wish
to keep lme feeds out of the file, set LINEFEEDS: OFF.

TYPESCRIPT: filename [length]

Gives the name of a file on which to record a typescript of the session. If length is specified, the
file will be treated as a "ring" buffer of that length (in bytes; 65535 maximum). The file will be
created at the beginning of the session, so that the user can be certain the disk will not overflow
when recording typescript information. The characters "(=)" will mark the end of the ring
buffer, which will be updated periodicallY. If length is not specified, the file will grow without
bound and "(=)" will not be appended. In this case, if the disk becomes full the typescript will be
closed and a warning message displayed.

TYPESCRIPTCHARS: [ONIOFF] [ONIOFF]

This entry governs the selection of characters that are included in the typescript file. The first
on/off switch controls characters typed on the Alto keyboard: if the switch is "on," these
characters will be entered in the typescript file. The second switch controls characters sent from
the other paI1Y to the Alto: if the switch is "on," these characters will be entered in the file.
Default is OFF ON.

5. Display Protocol

Chat allows a remote program to control carefully the entire Alto display. The interactive facilities of the
Alto can thus be used by MAXC programs and others. A set of Interlisp-l0 functions has been written to
ease use of the display from LISP. These functions are documented in "Raster Graphics for Interactive
Programming Environments," by R.F. Sproull, CSL-79-6, and are contained in (SPROULL)ADIS.COM;
the symbolics (should you need them) in (SPROULL)ADIS.

"Display Chat" is almost completely different from "teletype Chat"; they are loaded as one program
largely for convenience. To exit display Chat, use the (shiftXSwat> convention. Be very careful when
attaching and detaching jobs that have Chat disIJlav connections ope. n. If you re-attach to a LISP job that
previously had connections open, and CONTINUE your LISP job, the connections are no longer usable
because the Pup executive has timed them out. ADISCheck should be called to verify the state of the
connection. After this call, it may be necessary to invoke ADISInit again. If this procedure is not followed,
you may get traps with "10 Data Error" or some such message coming out of your LISP program!

Fonts are declared in User.Cm as follows: a line of the form "DISPLAY-FONT: FileName" is a font
declaration. Numbers are associated with the fonts by the order in the file: the first is font 0, the second
font 1, etc. The fonts must be in "strike" format; several fonts in this format are saved on the
(ALTOFONTS) directory with extension .STRIKE.

The number of "regions" available to Chat can be altered by including a line of the form "DISPLA Y
REGIONS: 6" in User.Cm.

Two functions for making hard copies are not documented in the CSL report:

ADISPress[file] (Flush). This function writes a one-page Press file of the given name on your Alto disk.
The page contains a bit-map for the current contents of the Chat display area. WARNING: This function
reqUIres considerable quantities of disk space (about 130 pages per file), and may lead to errors while
wnting the file. Best use it only when your state IS safe.

ADISPressMaxc[file;scaleFactorl (Flush). This function is similar to ADISPress, but the file will be
written on the connected MAXC directory. The scaleFactor defaults to 1.0, but can be set to any fraction.
It will cause the Press file to contain directives to reduce the size of the image of the screen when it is
printed.

Chat

Cleared version of May 24, 1981

October 19,1980 18

Efficien~y and space. The ADIS protocol operations cost a certain amount in LISP function call and
Tenex JSYS overhead; they also have a cost detennined by the number of bytes of protocol commands
that are sent to Chat. Thus we can express the communication cost in tenns of the number of " characters"
we could display by transmitting the same number of bits. Here are approximate numbers:

ADISRegion
ADISLimits
ADISSetX,ADISSetY,ADISFont
ADISBold,ADISltalic,ADISSetCR,ADISSetLF
ADISLineTo
ADISRegionOp
ADISScroll

ADISButtonEnable
ADISTypeOnEvent

ADISCursor
ADISCursorMove

4
16
5
5
6
130r21
34 in most cases

16
4

43
7

Space in the Alto is at a premium. At present, about 6700 words must be shared among all fonts and
region descriptions. Note that font sizes vary. Sizes are:

Region
Helvetica8.strike
Helvetica10.strike

34 words (always)
570 words
630 words

CopyDisk

Cleared version of May 24, 1981

November 12, 1980

CopyDisk

19

Copy Disk is a program for copying entire disk packs. It will copy from one drive to another on the same
machine, or between drives on separate machines via a network.

l. History

The first Alto CopyDisk was called Quick and was written by Gene McDaniel in 1973. During the
summer of 1975 Graeme Williams wrote a new CopyDisk adding the ability to copy disks over the
network. During the summer of 1976 David Boggs redesigned the network protocol and added the ability
to copy Trident disks. In the spring of 1980 the network protocol was extended to speak to CopyDisk
servers in Interim File Systems {and eventually Tape servers). The CopyDisk network protocol is specified
in (Pup>CopyDisk.press.

2. Concepts and Terminology

In a disk copy operation, the information on a 'Source' disk is copied to a 'Destination' disk, destroying any
previous information on the destination. A copy operation usually consists of two steps: .

[Copy] Step one copies bit-for-bit the information from the source disk to the destination
disk.

[Checkl Step two reads the destination disk and checks that it is indentical with the source
disk. This step can be omitted at the user's peril. .

Copying a disk from one machine (or 'host') to another over a network requires the active coop,erationof
P!ograms on both machines. In a typical scenario, a human user invokes a program called a CopyDisk
User' and directs it to establish contact with a 'CopyDisk Server' on another machine. Once contact has
been established, the CopyDisk User initiates requests and s!}pplies parameters for the actual copy
QPeration which the User and Server carry out together. The User and Server roles differ in that the
CopyDisk User interacts with a human user (usually through some keyboard interpreter) and takes the
initiative in User/Server interactions, whereas the CopyDisk Server plays a comparatively passive role.
The question of which machine is the CopyDisk User and which is the CopyDisk Server is independent of
the dIrection in which data moves.

The Alto CopyDisk subsystem contains both a CopyDisk User and a CopyDisk Server, running as
independent processes. Therefore to copy a disk from one machine to another you should start up the
CopyDisk subsystem on both machines and then type commands to one of them, which becomes the
CopyDisk User. Subsequent operations are controlled entirely from the User end, with no human
intervention required at the Server machine. This arran~ment is similar to the way the Alto FfP
subsystem works, and different from the way the older Copyuisk worked.

3. Calling CopyDisk

CopyDisk can be run in two modes: interactive mode in which commands come from the keyboard, and
non-interactive mode in which commands come from the command line (Com.cm). The general form of
the command line to invoke CopyDisk looks like:

CopyDisk

Cleared version of May 24,1981

~ovenaber12,1980

Copy Disk [[/<option switches>] [from] <source> [to] <destination)]

20

The square brackets denote portions of the cOn1n1and line that are optional and naay be onaitted. If you
just type "CopyDisk" the program goes into interactive naode, otherwise the renaainder of the cOn1n1and
line naust be a complete description of the desired operation. .

3.1. Option Switches

Each option switch has a default value which is used if the switch is not explicitly set. To set a switch to
'false' proceed it with a 'nainus' sign (thus CopyDisk/-C means 'no checking'). To set a switch to'true'just
mention the switch.

Switch

14

IC

IW

IR

ID

fA

Default

false

true

true

true

false

false

Function

[Model441 tells CopyDisk to copy an entire Diablo naodel 44, without asking for
confirmatlOn.

[Check] tells CopyDisk whether to check the copy operation. CopyDisk/-C,
which onaits the check step, is faster but more risky.

[WriteProtect] prevents the CopyDisk network Server from writing on a local
Ciisk. So unless you say COpyDISklW or issue the WRITEPROTECT command,
someone can make a copy of your disk over the network, but no one can
(maliciously or accidentally) overwrite it.

[Ram]tells CopyDisk to attem:Qt to load the ram with some microcode which
speeds things up considerably. CopyDisk will still work, though naore slowly ifit
can't load the ram.

[D~bug] enables extra printout that should be interesting only to CopyDisk
naamtainers.

[AllocatorDebug] enables extra consistancy checks in the free storage allocator.

3.2. Source and Destination Syntax

The general form of a source or destination disk name is:

[Host-name]Disk-name

for example "IBoggs]DPO". Ordinarily 'host name' can be a string, e.g., "Boggs". Most Altos have names
which are regIstered in ~ame Lookup Servers. So long as a name lookup server is available, CopyDiskis
able to obtam the information necessary to translate a host name to an inter-network address {which is
what the underlying network mechanism uses). You may omit the host name for disks attached to thelocal
machine.

If the host name of the Server machine is not known, you may specify an inter-network address in itsplace.
The general form of an inter-network address is:

<network> # <host> # <socket>

where each of the three fields is an octal nunaber. The <network> number designates the network to which
the Server host is connected (which may be different from the one to which the User host is connected);
this (along with the "#" that follows it) may be omitted if the Server and User are known to be connected
to the same network. The <host> number designates the Server host's address on <network>. The<socket>
number designates the actual Server process on that host; ordinarily it should be omitted, since thedefault
is the regular CopyDisk server socket. Hence to specify a CoPy DISk server running in Alto hostnunaber
241 on the directly connected network, you should say "241#' (the trailing" #" is required).

CopyDisk

Cleared version of May 24,1981

~ovember12,1980 21

The 'disk-name' is interpreted by the CopyDisk program on the host where the disk is. This program
knows how to copy two types of disks, which shoulo be referred to by the following names:

DPn

TPn

Diablo disk unit 'n'. Most Altos have one Diablo disk called 'DPO'.

Trident disk unit 'n'. The unit number must be in the range 0-7.

In addition, you may tell CopyDisk to copy an entire Alto file system by referring to it by the name 'BFS',
(for Basic File Svstem, whicli IS the name of the software packase that implements it). If you use thisname
rather than 'DPQ' or whatever, you won't have to answer quesuons such as whether the disk is a model 31
or a model 44. Best of all, CopyDisk can detect that its a double-disk file system, and it will copy both
disks automatically.

When you are copying through the network to another random Alto (as opposed to say, an IFS or a Tape
server), you are presumably talking to another instance of this program, so you use the above syntax when
refemng to its disks.

When you are copyin¥ to an IFS, which keeps disk images in files, the disk-name is an IFS file name, and
must conform to IFS s conventions. If you copy a double disk filesystem referring to it as 'BFS', then
Copy Disk will create one file containing both disk images.

Fine Qoint for Dorado and DO users: 'DPO' and 'DPI' refer to units 0 and 1 in the current partition. 'DP10'
and 'DP11' refer to units 0 and 1 in partition 1 regardless of the current default partition; and similarly for
'DP20' and'DP21'. 'BFS' and 'BFSO' refer to the Alto file system in L'1e current partition; 'BFSI' to the
filesystem in partition 1, etc.

4. The Copv Disk display

Copy Disk displays a title line about one inch from the top of the screen, and below that the main display
window, which consumes about half of the screen. The nlain window is shared by the User and Server
processes, only one of which is active at any time. The process which currently owns the window identifies
Itself at the right side of the title line. The title also shows the release date of the program and the Alto's
name. When a copy operation is in progress, the current disk address is displayeo in the area above the
title line.

When CopyDisk is started, the User is listening for commands from the keypoard and the Server is
listenins for connections from the network. If you start typing commands, the User takes over control of
the mam window ('User' appears near the right end of the title line), and your commands and their
responses are displayed there. The Server refuses network connections while the User is active. Ifanother
CopyDisk program connects to the Server, the Server takes over control of the main window ('Server'
appears near the right end of the title line), and the Server logs its activity there. The User ignores type-in
(flashing the screen if any keys are typed) while the Server is active.

5. Keyboard Command Syntax

CopyDisk's interactive command interpreter presents a user interface very similar to that of the Alto FTP
subsystem. The standard editing characters, command recognition features, and help facility (via "?") are
available.

CopyDisk

Cleared version of May 24, 1981

~ovember12,1980 22

5.1. Keyboard Commands

COPY

QUIT

HELP

Starts a dialog to gather the information for copying a disk. Copy Disk first asks for the name of the
source disk by displaying "Copy from". If the disk Is-local, it makes sure it is ready; if the disk is on
another machine, it opens a connection and asks the remote machine if the disk is ready. If you
want to abort the connection attempt, hit the middle unmarked ('Chat'} key. If the source disk is
ready, CopyDisk prompts you for the destination disk by displaying "Copy to", and then checks
that that disk is ready also. ~ext, it verifies that the disks are compatible, and depending on thedisk
!ype, may ask some questions about things peculiar to that disk (such as "Do all of the model44?").
Then CopyDisk asks you to confirm your intention to overwrite the destination disk. If you change
your mind, type '~' or <delete>. If you respond yes, Copy Disk will pause for a few seconds,
ignoring the keyboard, and then ask you to confirm once again. Type-ahead does not work for this
second confirmation. This is your last chance to look at the disks and make sure that you are not
overwriting the wrong one. It happens! This feature was in the original CopyDisk, was left out of
the second version, and is back in this third version by popular demand from the many people who
made that fatal mistake.

Terminates CopyDisk. One of three things happens:

The Alto Exec is restarted if DPO is ready, and has not been written on, and if
Copy Disk was not booted from the net.

DPO is booted if it is ready but has been written on or if Copy Disk was booted from
the net.

~etExec is booted from the net ifDPO is not ready.

All of this is attempting to leave the Alto running something useful. If the disk in DPO does not
have an operating system on it when CopyDisk quits, the disk boot (option 2, above) will fail. This
will not hurt the disk, but you will have to boot manually.

Displays a rather terse summary of how to use the program.

LOGI~
Supplies any login parameters required by the remote server before it will permit copy operations.
CopyDisk will use the user name and password in the Operating System ifiliey are there (they won't
be if CopyDisk is booted from the net). Logging into CopyDisk will set the user name and
password in the as (in the same manner as the Alto Executive's "Login" command. Thiscommand
IS only meaningful when copying to or from an IFS; the Alto CopyDisk server ignores login
parameters.

When you issue the LOGI~ command, CopyDisk will first display the existing user name known to
the as. If you now type a space, Copy Disk will prompt you for a password, whereas if you want to
provide a different user name, you sliould first type that name (whIch will replace the previous one)
followed by a space. The command may be terminated by a carriage return after entering the user
name to omit entering a password.

Ther parameters are not immediately checked for legality, but rather are sent to the server for
checkmg when the next copy command is issued. If a command is refused by the server because the
name or password is incorrect, Copy Disk will prompt. you as if you had issued the LOG IN
command and then retry the command.

CO~~ECT
Requests the remote CopyDisk server to 'connect' you to the specified directory on the remote
system, i.e., to give you owner-like access to it. The password may be omitted by typing carriage
return after the directory name. As with LOGI~, these parameters are not verified until the next

CopyDisk

Cleared version of May 24, 1981

November 12, 1980 23

transfer command is issued. This command is only meaningful when copying to or from an IFS;
the Alto Copy Disk server ignores connect requests.

PARTITION
This command is only available on DOs and Dorados. It prompts you for a partition number (for
DOs in the range 1-2 for Dorados in the range 1-5), and sets the default partItion. It supplies as a
default the current partition number, so you can find out where you are by saying 'Partition' and
then typing carriage return.

CHECK
Toggles the switch which controls whether a disk is checked after copying. CopyDisk displays "on"
if checking is now enabled, and "off' ifit is now disabled.

DEBUG
Toggles the switch which controls the display of debugging information. The performance data
presented at the end of this document is part of the debuggmg information; the network protocol
mteractions are displayed when this switch is set also.

WRITEPROTECT
Toggles the switch which allows the network Server to write on local disks. The default is that
people can't overwrite your disk.

COMPRESS
Toggles the switch which suppresses the transmission and checking oftt'1e data records of freepa.,&es.
ThlS can significantly speed up network copies and reduce the size of disk linages stored on Ir SSe
The default is to compress.

COMPARE
Compares two disks. The dialog is very similar to the COPY command. Neither disk is ever
written. This is useful to verify the health of your disk drive (but remember that it does notcheck
the write logic).

6. Command Line Syntax

CopyDisk can also be controlled from the command line. If there is anything in the command line except
"CopyDisk" and global switches, the command line interpreter is started instead of the interactive
keyooard interpreter. Its operation is most easily explained by examples:

6.1. Command line examples

To copy DPO to DP1:

CopyDisk from DPO to DPI

Note that 'from' and 'to' are optional (though stongly recommended for clarity), and one or both maybe
omitted or abbreviated:

Copy Disk DPO t DP1

is equivalent, though less obvious.

To copy the Basic non-programmer's disk from host 'Boggs' (which is running CopyDisk) onto a disk in
your own machine: .

CopyDisk from [Boggs]DPO to DPO

CopyDisk

or, equivalently:

Cleared version of May 24,1981

~ovenIber12,1980

CopyDisk frOnI [3' #24l' #]DPO to DPO

24

The single quotes are necessary to keep the # s out of the clutches of the Alto Exec. The quotes are not
needed when typing to the keyboard interpreter. ~ote that no spaces are allowed between the hostnanne
and the device nanne.

If the command line interpreter runs into trouble, it displays an error message and then starts the
interactive interpreter.

7. Disk Errors

Disk errors are termed 'soft' or 'hard' depending on whether retrying the operation corrects the difficulty.
IfCopyDisk is still having trouble after many retries, it displays a message of the form "Hard error atDPn:
cyl xxx hd y sec zz" in the main window and moves on.

Soft errors are not reported unless the debug switch is true, so as not to alarm users. Their frequency
depends on several factors. Copying over the network will cause more soft errors then copying between
two disks on the same machine. Alto lIs get many more errors then Alto Is.

During the Check pass, in addition to soft and hard errors, 'data compare' errors are also possible. A data
compare error nIeans that the corresponding sections of the source and destination disks are not identical.
If any hard errors have been reported, then data compare errors are likely, otherwise getting data compare
errors means that something is very wrong. You should suspect the Alto.

Hard errors and data compare errors are serious, and you should not trust the copied pack if any are
reported. If the errors are on the source disk, try Scavenging it. Bear in mind that there is some variancein
alIgnment among disk drives, and that a pack which reads fine on one drive may have trouble on another.
Is the source disk in a different drive than where it is normally used? Before allowing the Scaven~er to
rewrite sectors, consider that the pack may be OK, but the drive it is in may be out of ali~nment. In this
case, allowing the scavenger to rewrite the sectors is a bad idea. If the errors are on the destination disk, try
the copy agaIn, and then suspect the pack or the disk drive itself. If the destination pack was much colder
than the temperature inside the drive, sectors written early in the copy pass may read incorrectly duringthe
check pass. It's a good idea to wait a few minutes for the pack to reach normal operating temperature
before using it.

8. Creating a new disk

Suppose you want to make a new disk by copying one of the 'Basic' disks. There are three major ways to
do this:

Put a blank disk in your Alto, and copy the basic disk from an IFS. This is called the 'IFS
copy' method.

Find an Alto with two disk drives and put a basic disk in one drive and a blank disk in the
other. This is called the 'double disk copy' method.

Find two Altos, each with one drive, that are connected by a network and put a basic disk in
one Alto and a blank disk in the other. This is called the 'network copy' method.

Having decided on one of the above methods, you must now get CopyDisk running on the Alto(s). There
are two major ways to do this:

CopyDisk

Cleared version of May 24, 1981

~ovember12,1980

Start CopyDisk from a disk which has 'CopyDisk.run' on it.

Boot CopyDisk over the network from a 'Boot Server'.

8.1. Starting CopyDisk from another Disk

25

If you do not have access to a Boot Server, you must start CopyDisk from a disk that has it on it. Put adisk
with CopyDisk on it into the Alto and type "CopyDisk<return>". Then switch disks. BE CAREFUL!!
People sometimes forget to switch disks at this point and accidentally copy the wrong one. This is why
CopyDisk asks you to confirm your intentions so many times.

8.2. Booting Copy disk from the net

The best way to start Copy Disk is to boot it from the network. That way you are more likely to get the
latest version, and you avoid the pitfall mentioned above. Of course, you must have network access to a
Boot Server. Most Gateways have Boot Servers. If this method doesn't seem to work, you will have to fall
back to starting CopyDisk from another disk.

Hold down the <BS) and <Quote> keys while pressing the boot button on the Alto. You must continue to
hold down <BS) and <Quote> (but let go of the boot button!) until a small sguare appears in the middleof
the screen. This can take up to 30 seconds, but usually happens in less than 5 seconds. You are now taking
to the NetExec (see the documentation in the Subsystems manual if you are curious), and you should type
"CopyDisk<return)". The screen will go blank, the little square will appear again (you don't have to hold
down any keys this time), and soon CopyDisk should appear on the screen.

8.3. The IFS Copy Method

Put a blank disk in DPO. Type "Copy<space)", and when it s~s "from" type a name of the form: [IFS
name]File-name, where 'IFS-name' IS the name of your local IFS (such as Ivy', which is the name of my
IFS), and 'File-name' is the name of the file on which the basic disk is kept. This may be installation
dependent; here at Parc the basic non-pro~rammers disk is called '<BasicDisks>NonProg.disk', so to geta
CQPj' of that disk I would type "[Ivy]<BaslcDisks>~onProg.disk". When CopyDisk says "Copy to" type·
"DPO<return>". Then type <return) each time it asks for confirmation. Some numbers will appear in the
top center of the screen. When they disappear, Copy Disk is done. Type "Quit<return>". It WIll bootthe
disk, and you should find yourself talking to the Alto Exec.

8.4. The Double-Disk Copy Method

Put the basic disk in DPO and put your disk.in DPl. Type "Cogy<space)", and when it says "from" type
DPO<return>. When it says "COPy to", type "DPl<return>". Then type <return> each time it asks for
confirmation. Some numbers wil appear 10 the top center of the screen. When they disappear,CopyDisk
is done. Type "Quit<return>". Put the basic disk back where it belongs, and take your disk with you.

8.5. The Network Copy Method

It doesn't matter which Alto you type commands to. Assume that the basic disk is in the Alto called
"Tape-Controller", your disk IS in the Alto called "Myrddin" and you are aoing to typ,e commands to
T?pe-Controller. Type "Co~y<space>", and when it says "from" type "Dj:JO<return>'. When it says
"Copy to", type "[Myrddin]DPO<return>". Then type <return> each time it asks for confirmation. Some
numbers will appear in the top center of the screen. When they disappear, C01?XDisk is done. Type
"Quit<return)", and put the basic disk back in the rack. Go to Myrddin and type {Juit<return>". It will
boot the disk, and you should find yourself talking to the Alto Exec.

CopyDisk

9. Performance

Cleared version of May 24, 1981

~ovember12,1980 26

This section calculates the times to copy disks under different conditions. CopyDisk times its operations
and displays the results if the debug switch is set, so you . can compare the numbers derived here with
reality. .

9.1. TSweep

First, we calculate TSweep, the time to read or write a disk assuming that we can consume or produce data
faster than the disk. This best possible case is the sum of two terms. The first term is the time necessary to
sweep an active read/write head over every sector on the disk:

Rot * nCyl * nHds.

The second term is the time lost while seeking to the next cylinder. We assume that these seeks take less
than one rotation but that a whole rotation is lost:

Rot * nCyl.

Combining, we get:
TSweep = Rot * nCyl * (nHds+ 1).

where: Rot is the rotation time of the disk in seconds
nCyl is the number of cylinders, and
nHds is the number of heads.

9.2. Disk-To-Disk COPY

By disk-to-disk copy we mean copying from one disk to another on the same machine, using a single
controller and not overlapping seeks. The fastest way to do this is to read the entire source disk into
memory, switch to the destInatIOn disk, and then write It all. The switch from the source to the destination
disk, will lose on the average half a revolution while waiting for the right sector on the new disk to come
under a head. Neglecting the switch time which is small compared to th.e other two terms, the bestpossible
disk-to-disk copy time is 2 * TSweep.

With limited memory, the best we can do is fill all available memory buffers reading the source disk,
switch disks, write them onto the destination disk, and then switch back to the source disk for another load.
In this case we can't ignore the switch time, which is the total number of sectors on the disk divided by the
number of sector buffers times the rotation time of the disk: .

where

Rot * (nCyl * nHds * nSec)/nBuf

nSec is the number of sectors per track, and
nBuf is the number of memory buffers.

So the disk-to-disk copy time, TDDCopy, is:

TDDCopy = 2 * TSweep + Rot * (nCyl * nHds * nSec)/nBuf

9.3. ~et Copy

By net copy we mean copying from a disk on one machine through a network to a disk on another
machine. In this case the disk controllers can be going in parallel, and the factor of two in the first term of
mDCopy vanishes. In additon, if the bandwidth of the network connection is higher than the transfer
rate of the disks so that as soon as a sector is read from the disk it is sent out of the machine, the memory
limitation goes away and the second term ofTDDCopy vanishes.

Copy Disk

Cleared version of May 24, 1981

~ovemberI2,1980 27

The Copy Disk network protocol sends a small amount of infonnation along with each sector which must
be factored into the calculation of the bandwidth needed to run without memory limitation. Note thatthe
bandwidth we are concerned with here is that perceived by a client of the network services: user data bits
per second, not raw bits per second through the network hardware.

If the network is slower than the disks, then the time to copy a disk is the time required to transmit all of
the bits on a disk plus the protocol overhead bits:

TNetCopy = nCyl * nHds * nSec * (sB + sOv)/bwNet

where sB is the bits of disk infonnation per sector,
sOv is the CopyDisk protocol overhead per sector, and
bw~et is the bandwidth of the network connection.

The bandwidth of the network connection is hard to state, and depends on a number of factors. Here area
few:

Reduction of the emulator's instruction execution rate due to interference from the disk and
network hardware.

Reduction of the amount of the emulator cycles available to the network and disk code due to
mutual interference.

Reduction of the peak network bandwitJl due to interference from other hosts-on the network.

The minimum network bandwith required to copy a disk at full speed is:

MinBwNet = 16 * nCy! * nHds * nSec * (sB + sOv)/TSweep.

9.4. The Numbers for Altos

Here are the relevant numbers for the disks which this program can copy:

Diablo-31 Diablo-44 Trident-80 Trident-300

Rot (ms) 40 25 16.66 16.66
nCyl 203 406 815 815
nHds 2 2 5 19
nSec 12 12 9 9

sB 266 266 1036 1036
sOy 2 2 2 2
nBuf 80 80 18 18

9.5. Reality

Here are the results of plugging the numbers into the equations, and comparing them against actual
measurements. The fonnat is predicted(measured). ~A means not available.

Diablo-31 Diablo-44 Trident-80 Trident-300

TSwe(?c 0:24 0:30 1:21 4:32
TDD opy 0:51~:51) 1:048:16) 3:18(3:31) 11:20(19:27)
TNetCopy (1:0 (2:1 (26:31) (NA)

bw~et ~323 Kb/s) ~308 Kb/s) (383 Kb/s) ~~JMb/S MinBwNet 59 Kb/s .375 Mb/s 7.520 Mb/s

CopyDisk

10. Revision History

August 7, 1977

First relese.

August 28, 1977

Cleared version of May 24,1981

~ovember12,1980 28

Soft errors are only ~_orted if the debug switch is set. Data compare errors now display the offending
disk address. VERIFY and WRITEPROTECT commands addeu to keyboard command interpreter.
Write protect global switch added.

October 16,1977

More microcode to speed things up

October 27,1977

Bug fixes.

December 18, 1977

Fixed a bug which prevented it from copying the second half of a two disk file ·system. The network
format for Diablo disks changed.

March 22, 1978

Copy Disk will now do the right thing for "[thisHost]device". The default value of WRITEPROTECT is
now TRUE. .

October 27,1978

Internal reorganization -- no external changes.

December 12,1978

Fix bug in Copying T -300s.

September 10, 1979

Reload with current packages.

April 26, 1980

Network 8rotocol extended to speak to IFSs. Much internal work, but very little visible change.
PARTITI N and HELP commands added. VERIFY command renamed COMPARE

November 12, 1980

BFS protocol extended to handle multi'ple disk file systems. Referring to a file system as 'BFS' will cause
both (lisks to be copied automatically. CopyDisk now works on Shugarts emulating Tridents.

Create file

Cleared version of May 24,1981

March 19,1979

Create file

29

This subsystem creates a file of a given size, attempting to allocate it contiguously on the disk. To run the
program, use

>CreateFile filename npages

where filename is the name of the file and npages is the size of the file in J?ages (in octal unless you suffix a
"d": 99d). This program is primarily intended for creating files which wIll be accessed using the Indexed
Sequential File (ISF) package, which influences its notion of what a contiguous file looks like. The
algorithm is: 1) search the disk bit table and locate the largest group of contiguous free pages. 2) ifnPages
is less than the size of this group, allocate nPages and finish; otherwise allocate the whole group, decrease
nPages by the size of the group and repeat step l. This program can be fooled into allocating pages in less
than optimal ways if your bit table is not in sync with the disk, so if in doubt, run the Scavenger first. If
there aren't enough pages on your disk, it will fail gracefully, perhaps after thrashing around for a while.

DDS 1.13

Cleared version of May 24,1981

October 12,1977

DDS - Descriptive Directory System - release 1.13

30

The Descriptive Directory System ~DDS) is a front- end for the Alto file system that provides
substantially greater flexibility than the '?" facility in the operating system's command processor. In
addition to file names, the DDS can display file lengths, creation-read-write dates, and contents.

If you have used DDS before and merely wish to learn about changes, bug fixes, and new features,
you probably want to skip to section 5 of this document. If not, sections 0 through 4 are a complete
description of the current release. Sections significantly changed since the last release are marked willi ***.

O. The mouse and cursor

The three buttons on the mouse are called RED (left or top button), YELLOW (middle button), and
BLUE (right or bottom button). Most mouse-controlled actions in DDS happen as soon as you depress the
mouse button: these are described below using phrases like "RED does xxx", meanins "As soon as you
depress RED, xxx happens." Some actions requIre deQressing a button and then releaSIng it: phrases like
"clicking RED does xxx" mean "If you depress RED and then release it, xxx will happen." Careful
reading, or a little experimenting, will familiarize you quickly with the distinction.

The cursor changes shape according to its location on the display and according to how DDS is
inte-rpreting the buttons. Generally speaking, when the cursor is circular, RED selects what you are
pointing at in some way, and BLUE deselects It. When the cursor assumes the shape of an hourglass,DDS
IS busy doing something and is not listening to the mouse buttons.

1. The display

Like Bravo, DDS divides the display into a command area at the top, and one or more windows
below. Currently DDS just supports a single window. A heavy black bar separates the command area
from the window. Section 2 (below) describes the command area.

The window has three parts, separated by lighter horizontal bars:
1) The top part is the VIew speCIfication area, or viewspec area for short. It contains a set ofkeywords

that describe what information IS to be displayed for the files being examined in this window, and a setof
keywords that describe how the displayed files are sorted.

2) The second part is the selection specification area, or selspec area for short. It contains a pair of
expressions which together determine what set of files is being examined in the window. View and
selection specification are completely independent: each can be changed without affecting the other.

3) The main part of the window is the data area, which actually displays a set of files. The names are
always displayed: other information is controlled by the viewspecs.

1.1 The viewspec area

There are 10 keywords in the viewspec area that control what is displayed:
"created" - the date when the file was created
"written" - the date when the file was last altered
"read" - the date when the file was last read
"referenced" - the date when the file was last referenced (Le. the most recent of "created",

"written", and "read") .
"size" - the size of the file in disk pages
"length" - the length of the file in bytes (characters)
"address" - the hardware address, in the form directory-pointer: (SN1,SN2)!VN @virtual-Ieader

address
"contents" - the contents of the file (in octal, if a binary file)
"pagemap" - the disk addresses of all pages of the file, with a u*" before each address that

represents a change of head position
uleader" - the contents of the file's leader page, in octal

DDS 1.13

Cleared version of May 24, 1981

October 12,1977 31

If the keyword is displayed white-on-black, the corresponding infonnation is displayed in the data area,
otherwise not.

There are 6 kerwords that control other aspects of how the data are dis~layed:
"(marked)' - if turned on, DDS only dIsplays marked files (see sec. 1.4 below)
"(small)" - if turned on, DDS uses a smaller font for the data, which allows more data to appearon

the screen (see sec. 3 below for how to tell DDS the name of the font)
"(packed)" - if turned on, DDS displays several files per line if possible (not implemented yet)
"(times)' - in conjunction with "created", "written' , "read", or "referenced", shows the time of

day as well as the date
"(browse)" - if turned on, then when "contents" is turned on, DDS only displays the first 5 lines of

text files and the message "*** binary file ***" for binary files, instead of the complete contents of the file.
"(chart)" - if turned on, changes the data display to be a chart made up of boxes in which the

height of the box is proportional to the file length. (Try it -- you'll like it.)

When the cursor is positioned over a keyword name, RED turns the keyword on; BLUE turns the
keyword off. When the cursor is over the word "Show:" at the upper left of the keywords, BLUE turns all
keywords off. -

There are currently 8 keywords that control sorting of the data:
"name" - alphabetic order by name (upper and lower case letters are equivalent)
"extension" - alphabetic order by extension .
"created", "written", "read" -the corresponding date and time
"referenced" - the date last referenced
"length" - the file length
"serial" - the file's senal number (not of general interest)

The keywords which are displayed white-on-black are those actually used to sort the data area. They
are displayed in the order most- to least-significant criterion, e.g. "extenslOnt" followed by "namet" means
sort by extension first, then sort files with the same extension by name. Following each keyword, whether
active or not, is an arrow which indicates whether the sort is to be in ascending (upward arrow) or
descending (downward arrow).

When the cursor is positioned over a sorting keyword name, clicking RED turns the keyword on and
adds it to the list of white-on-black keywords actually used for sorting; clicking BLUE turns the keyword
off and removes it from the list; clicking YELLO\V inverts the dIrection of the arrow, regardless of
whether the k~yword is in the list. When the cursor is over the words "Sort by:" at the left of the sorting
keywords, BLUE turns off all sorting criteria. .

Since sorting may take a long time and it is easy to request sorting by accident, you can abort sorting at
any time by typing any character. Be sure the cursor is not in the data area when you do this: if it is, DDS
may start the sort over again!

Whenever the cursor moves into the data area, regardless of whether any mouse buttons are down,
DDS repaints the display to be as specified by the viewspecs if the viewspecs have changed since the last
time the display was repainted.

1.2 The selspec area

The selspec area contains two expressions which defines what subset of the directory will actually be
displayed in the data area. These e_xpressions are built up from name patterns which are similar to those
recognized by the Alto Executive. More precisely, a name pattern is a sequence of characters which may
contain "*"s and" #"s: "*" matches any sequence of characters in a name (including no characters atall},
"#" matches any single character. Upper and lower case letters are not distinguished. Note that DDS
deletes the final"." from file names. Here are some examples of name patterns and what they match:

*.BC All files with extension BC (or bc, bC, or Bc). .
*.B All files with extension B.
.B All files whose names contain the string .B -- this includes all files with extension Bsomething,

but also includes files like THIS.BINARY.THAT.
*.B# All files whose extensions consist ofB and one more character.

DDS 1.13

* All the files in the directory.

Cleared version of May 24, 1981

October 12, 1977 32

You can build up more complex expressions using the words "and", "or", and "not", and parentheses.
Here are some examples of such expreSSIOns and what they select: '

LPD* and not *.temp
All files beginning with LPD, except those with extension temp.

*.memo or *.memo$
All files with extension memo or memo$.

(* .BT or * .BS) and not X* . -
All files with extension BT or BS, except those beginning with X.

The upper expression in the selspec area is called the selspec; the lower one is called the context. (The
two together are simply called the selspecs.) Only files which satisfy both expressions will be displayed.
The idea is that if you are going to be working on memos, for example, you can set the context to
"*.memo" and use the selspec to further select within this set. As another example, if there is some setof
files you want not to see (like "*$"), you can set the context to "not *$".

To change the selspec or the context, point at it, or at the word "Selspec:" or "Context:", and click
RED or YELLOW. ThIS will cause it to change to white-on-black. As soon as you start typing, the oldtext
will vanish and what you type will appear white-on-black in its place. Eventually you must type one of the
following three things before you can point anywhere else or select any commands (see sec. 2 below):

<return> confirms the change, and repaints the display to reflect it
<esc> is equivalent to *<retum>, i.e. it adds a * to what you have typed and then confirms the change.
<deD aborts the typein and restores the old selspec or context expression. - .

See section 3 below for how to Ket the selspec and/or context initialized autornatically to something
other than "*" when you first enter DDS.' ,

The third line of the selspec area is a message of the form "nnn files are selected, of which mmm are
marked" where nnn is the count of files selected by the current selspec and mmm is the count of those
which are marked (see 1.4 below). If there are marked files not selected Q.y_the sel~ec (again, see 1.4), the
message "there are kkk files marked but not selected" also appears. While DDS is sorting data, the
message "Sorting ... " appears in this area in place of the file counts.

1.3 The data area

As mentioned above, whenever the cursor moves into the data area, DDS regenerates the display if
necessary to conform to the current viewspecs.

The left edge of the data area is a scrolling bar which works the same way as in Bravo: clicking RED
scrolls up, clicking BLUE scrolls down, and clicking YELLOW jumps proportionately to the vertical
location In the window. A hollow arrow in the left margin shows where In the lIst you are positioned: if the
arrow is at the top, you are at the beginning of the list; if the arrow is at the bottom, you are at the end.
The idea is that If you were to move the cursor to this arrow and click YELLOW, the list would stay
positioned just as it IS. (This feature may appear in Bravo some day too.)

If you are positioned at the beginning of the list of selected files, DDS displays the message "-
BEG IN ,.",.,," at the head of the list; if not, DDS displays ",." nnn files not shown,...,,... ",
indicating the position within the list of the first file actually shown on the screen (e.g. "2 files not shown"
means the first file on the screen is actually the third in the list). Similarly, if the last file shown on the
screen is actually the last file in the list, DDS displays",.",." ,... END,... ,... " below it.

A vertical strip at the right edge of the data area will be used in the future to control the formatting of
the screen into windows. Currently the cursor changes shape when it is in this area, but the buttons have
no effect. Another vertical strip just to the left of this one is used for mass marking and unmarking offiles:
see the following section.

1.4 Marking files

DDS 1.13

Cleared version of May 24, 1981

October 12, 1977 33

DDS IJrovides a facility for marking any set of files for later processing by commands such as
<Delete>, <Send to Maxc>, etc. Marked files are displayed with a small dark arrow in the left margin, and
a count of how many marked files are in the current selected set is maintained in the selspec window.
When the cursor is in the data area of a window, other than the right or left edge areas, the mouse buttons
control marking and unmarking of individual files: RED marks the file on wnose line the cursor resides;
BLUE unmarks the file. When the cursor is in the vertical strip about 1" in from the right edge of the
screen, the cursor changes to the word "ALL", and the buttons mark and unmark files en masse: clicking
RED marks all the files selected by the selspecs; clicking BLUE unmarks all the files.

Note that files may be marked even though they are not selected by the current selspecs, i.e. marking
is associated with the file rather than the display. (If this proves confusmg it will be changed.) Thecount
of "files marked but not selected" in the selspec area lets you know when there are marked files not
selected by the current selspecs.

Since marking_or unmarking individual files occurs as soon as the button is depressed, you can hold
down RED or BLUE and slide the mouse (slowly) in the vertical direction to mark or unmark a group of
adjacent files.

The marked file counts in the selspec window are adjusted as soon as a file is marked or unmarked,
but if the "marked" viewspec is on and you unmark a file, you must scroll the data to get the unmarked
file(s) deleted from the display.

2. Commands

The command area at the top of the screen consists of four parts:
1~ A header with the DDS version number, time of day, and count of free disk pages;
2 A type-in area, where typed characters appear;
4 An error message line;
3 A menu of commands, with each built-in command being enclosed in angle brackets O.

'Vhen the mouse is in the command menu area, RED selects a command for subsequent execution:
the selected command is displayed white-on-black, and any previously selected command is deselected.
BLUE deselects the currently selected command and selects the default command <Quit>. Typing <esc> or
<return> finally initiates the command: you can freely select or deselect commands, type and edit your
type-in, change viewspecs, etc. up to that moment. For commands which do not require type-in, you may
also initiate the command by clicking YELLOW with the mouse in the command menu area. The cursor
takes the shape of a circle with a cross when this is allowed, and a circle with a dot when it is not.

Some commands require or allow type-in before the final <esc> or <return> . You may type at any
time. All typed characters are accumulated in the type-in area just below the header until the <esc> or
<return>. Control-A (or backspace), control-W, control-Q, and <deD are available for editing as in Bravo.
DDS displays a vertical bar when It is waiting for your typing, and of course you can "type ahead" while
DDS is processing a command. However, as for selspec and context changes (sec. 1.2), once you have
started to type, you must either confirm the command with <esc> or <return>, or abort with <deD, before
you can select another command or another place to type (selspec or context).

\Vhen you have selected a command with RED, then when you release the button, DDS may display
something in the type-in area which is a default for that command. If you want to execute the command
with that default type-in, you can just confirm it (with <esc>, <return>, or YELLOW); otherwise, the
default disappears as soon as you start typing, just like the old selspec or context.

In the description of commands below, "something" following the command name means thatDDS
expects you to nave typed something before the final <esc> or <return> that initiates the command;
"optional:someth~ng" me~ns you may type so~ething or not. To help ~ou rem~mber, a!l the commands
that reqUIre type-m end WIth I ... ", and those WhICh allow but do not reqUIre type-In end WIth "[... J".

Many commands operate on a set of files: they use precisely those files which, at the time you typethe
final <esc> or <return>, are both selected (Le. match the selspec) and marked. "Filename-I ... filename-nil
in the descriptions below refer to these files, which are also called the "designated" files.

DDS 1.13

Cleared version of May 24,1981

October 12,1977 34

DDS presently has two classes of commands: those which leave you in DDS after execution (internal
commands), and those which send you back to the Alto Executive (external commands). DDS has afixed
collection of internal commands, but you can add new external commands of your own: see section 3
below for how to do this. For external commands, DDS saves away a command line so that if something
goes wrong, you can execute the command again by typing @DDS.CM@<return> to the Executive.

2.1- Internal commands (those which leave you in DDS)

<Put on file ...) "filename" writes on the file named "filename" (in text form) the contents of the
window. DDS also writes a header with your name, the disk name, and the date and time. The default for
"filename" is "Dir.Lst", an arbitrary name which DDS supplies so that you don't have to make one up.

<List on file ...) "filename" writes on the file named "filename" (in text form) the names of the
designated files, separated by blanks. This makes it easy for you to make up an @-file for the Executive by
adding a command name to the front of this file. The default for "filename" is "Dir.Cm", an arbitrary
name which DDS supplies so you don't have to make one up.

<Delete> deletes the designated files. There is presently no way to un-delete files, so be careful: the
count of marked files in the selspec window is a good clue as to whether you are deleting more than you
want. You can stop a <Delete> at any time by typmg any character: of course, some files may already have
been deleted. DDS changes the "free pages" count at the top of the screen as it deletes each file.

<Rename as ...) "filename" requires that there be exactly one designated file, and changes its nameto
"filename". If there is already a file named "filename", <Rename> gives an error message and does
nothing else.

<Initialize [select ...]> "selspec" restores your selspec, context, and viewspecs to what you have
specified in User.Cm. If you typed something, DDS takes that in place of the selspec in User.em.

2.2 External commands (those which leave you in the Executive)

<Quit> leaves DDS gracefully. Shift-Swat is also safe whenever DDS is awaiting input (Le. not in the
midst of sorting, deleting, etc.).

<Bravo/[...]> "optional-switches" gives control to Bravo in the following way:
If there are no designated files, DDS effectively executes "Bravo/switches".
If there is more than one designated file, DDS gives an error message and does nothing else.
If there is a single designated file and you did not type anything, DDS effectively executes "Bravo/N

filename", i.e. instructs Bravo to read in the file.
If there is a single designated file and you did type in switches, DDS executes "Bravo/switches

filename".

<Gears/f. ..]> "optional-switches" executes "Gears/switches filename-I ... filename-n", Le. prints the
designated fifes.

<Send to Maxc directory < ... » "directory-name" sends the designated files to the directory named
"directory-name" on Maxc, using Ftp. The default for directory-name is the user name on your Alto disk.
If you acce.Qt the ·default, DDS assumes you have already'- done a Login in the Executive to supply the
password; If you supply some other directory-name XYZ, DDS arranges things so the Executive will
prompt you with the message "File XYZ-Password does not exist, type what it would contain" and you
should type in the password for XYZ at that time.

<Send to ...) "name" sends the designated files to the Alto whose name is "name", using F!p.
"Name" may be anything acceptable to Ftp, i.e. an Alto name, an Alto number, etc. The default for
"name" is Maxc, which is not really very useful.

<Execute ...) "command" constructs a command line formed from "command" and the names of the
designated files, and then executes the command line thus formed by either j!lmping directly to the
subsystem or returning to the Alto Executive. (If there are no designated files, DDS produces an error
message "No files are marked" and does nothing else.) The command line is formed in the following way:

DDS 1.13

Cleared version of May 24, 1981

October 12,1977 35

If "command" does not contain any "*" characters, the command line is just "command" followed by
the names of the designated files. For example, if files ALPHA and BETA are designated, <Execute ... >
"BLDR/L" would execute the command line "BLDR/L ALPHA BETA". "String" may contain blanks,
so for example <Execute> "BLDR FOOlS" would execute "BLDRFOO/S ALPHA BETA".

If "command" does contain a "*", DDS divides "command" into 3 parts "sl s2*s3", where s2 is the
Prart of "command" extending backwards from the "*" to the first preceding blank (or the beginning of
'command"). Then the command line is "sl s2fls3 s2£1s3 ... " where fl, £1, etc. are the names of the files.
For example, if ALPHA and BETA are desjgnated, <Execute ... > "BLDR @*@" would execute the
command line "BLDR @ALPHA@ @BETA@". (If this seems confusing or useless, don't worry aboutit
too much -- some future version of DDS may find a better way to provide this facility.)

2.3 User-defined commands

If you define your own external commands with a SUBSYSTEMS entry in User.Cm as describedin
section 3 below, these commands will also appear in the command menu along with all the commands
listed just above. They behave exactly like the <Execute> command with respect to what they do about *'s,
typein, and designated files. For example, suppose your SUBSYSTEMS list looks like this:

SUBSYSTEMS: Chat, Ftp/-S Maxc, Foo
Then if you select the second command with files Alpha and Beta designated and type Dump/C Blap.DM,
what will actually get executed is Ftp/-S Maxc Dump/C Blap.DM Alpha Beta.

2.4 Error messages

N on-fatal error messa~es appear in bold characters just below the type-in line. -Such messages always
abort the current commana and reset the command to <Quit>, but they do not change the state of DDS m
any other way. The message disappears as soon as you type any character.

Fatal errors cause DDS to call Swat. When this happens, the screen changes completely and a
heading like "Swat.21 (August 28, 1976)" appears at the top; the error message itself appears at the bottom
of the screen just above a "#". Fatal errors are never supposed to happen, but if one ever does, summona
DDS expert. If none is available, write down the message and what you were doing at the time, and then
type control-K. This will throw you out of DDS and back to the Executive.

3. User profile

DDS examines the user profile (User.em) during initialization to obtain the names of the fonts which
will be used to diSPlg various tho ings, and other rarely-changed information. Just as Bravo's section of
User.Cm begins with BRAVO] and then follows the format of OPTION: STRING, DDS looks for [DDS]
and follows the same ormat for its entries.

- The entries which DDS recognizes in User.Cm fall into two classes. "Initialization-only" entries are
those which DDS only consults when you ask it to do a full initialization (by usin~ the FULLINIT: Yes
entry in User.Cm, or the II switch in the command line, both described below). 'Ordinary" entries are
those which DDS looks at every time.

The names of the "ordinary" entries are:
FONT: fontname - specifies the name of the normal font (used for the command window, the file

count line, and the data area).
BOLDFONT: fontname - specifies the name of the bold font (used for error messages, the viewspec

and selspec disQI?~, and the heaoings on the data area).
SMALLFONT: fontname - specifies the name of the small font (used for displaying data when the

"(small)" viewspec is turned on).
SMALLBOLDFONT: fontname - specifies the name of the small bold font.
USERTYPE: type - lets DDS know what kind of user you are. If typ~ is NON-PROGRAMMER,

DDS doesn't provide the "pagemap" and "address" viewspecs. If type is WIZARD, DDS provides some
extra features for debugging which are not described in this document.

WINDOWS: Yes - enables you to use some experimental facilities for splitting the screen intomultiEle
windows in a Bravo-like manner. These facilities are NOT DOCUMENTED, NOT FUL Y
DEBUGGED, AND NOT RECOMMENDED.

DDS 1.13

Cleared version of May 24,1981

October 12, 1977 36

RAMOK: Yes - tells DDS to use the RAM on your Alto. If your Alto is a standard one, this will make
DDS run about 30% faster; if not, DDS may not run faster, and may not run at all. Try it once (or use the
/R switch in the command line as described below) and see what happens.

FULLINIT: Yes - tells DDS to scan the whole Alto file directory _each time it starts up,and reinitialize
the selspec,context, etc. from the "initialization-only" entries in User.Cm (possibly overridden by the
command line: see sec. 4}. FULLINIT: No - tells DDS to update its knowledge of the world fromSys.Log
(an incremental record of file activity since you last ran DDS), and restore the selspec, context, etc. towhat
they were when you last left DDS. The default is FULLINIT: No which leads to much faster startup-,
BECAUSE OF DEFICIENCIES IN THE ALTO OS AND IN BRAVO, THE RELEASED VERSION
OF DDS FORCES FULLINIT: YES REGARDLESS OF WHAT IS IN USER.eM.

REENTER: Yes - tells DDS that you want to go back to DDS after completion of an external
command. (Nonnally the Executive retains control after an external command finishes.)

The names of the "initialization-only" entries are:
SELSPEC: expression - specifies the initial value of the selspec when you enter DDS .. If there is

something illegal about the expression, DDS just uses "*" for the mitial selspec, as though there were no
SELSPEC entD' in User.Cm.

CONTEXT: expression - specifies the initial value of the context when you enter DDS.
SHOW: list of viewspecs - allows you to initialize the viewspecs. Use commas between viewspecs if

there is more than one.
SORT BY: list of sorting keywords - allows you to initialize the sorting order. Each keyword may be

followed by "t" for ascendmg order or "+-" for descending order (neither means ascending order). Use
commas between keywords if there is more than one.

. SUBSYSTEMS: list of commands - allows you to add your own favorite subsysterris to DDS'command
set Each command may be just a subsystem name (e.g. Chat) or a subsystem name followed by some
initial arguments (e.g. Ftp/-S Maxc Dump/C). Use commas between entries ifthereis more than one.

A word about fonts: if FONT is not specified in User.Cm, DDS uses the standard system font
SysFont.AI. If BOLDFONT is not specified, DDS fabricates a boldface version of the normal font,
whatever it may be. IfSMALLFONT IS not sj)ecified, the "(small)" viewspec has no effect. If you specify
a font name and there is no file by that name, DDS just ignores that entry in User.Cm.

4. The command line

Just typing DDS to the Alto Executive will activate DDS in its nonnal way, in which various aspects of
its behavior are controlled by entries in User.Cm if present. However, you can override User.Cm by
typing switches following the name DDS to the Executive. Here are the switches currently implemented:

DDS/E - equivalent to REENTER: Yes in User.Cm.
DDS/-E - overrides (cancels) REENTER: Yes in User.Cm. .
DDS/I - equivalent to FUL(INIT: Yes in User.Cm.
DDS/-I - overrides (cancels) FULLINIT: Yes in User.Cm.
DDS/R - equivalent to RAMOK: Yes in User.Cm.
DDS/-R - overrides (cancels) RAMOK: Yes in User.Cm.
DDSIW - equivalent to WINDOWS: Yes in User.Cm.
DDS/-W - overrides (cancels) WINDOWS: Yes in User.Cm.
DDS/S - causes DDS to write some statistics in a file DDS.ST A TS. Not currently of general interest.
DDS/P - causes DDS to write some data regarding disk activity in DDS.STATS. Not of general

interest.
DDSIX - causes DDS to display some mysterious statistics at the top of the screen. Not of general

interest.
These switches can be combined, e.g. DDS/I1R causes both full initialization and use of the RAM.
Switches may be either upper or lower case.

If DDS is doing a full initialization (either because FULLINIT: Yes appears in User.Cm or because
you said DDS/I), you may also suPpJy initial selspec and context strings in the command line, and these
will take precedence over those in User.Cm, if any. Unfortunately, the Alto Executive makes it a little
inconvenient to include *'s in these strings, and you can't have blanks in them at all. To include a *, you
must type '*, e.g. to start up DDS and specify alpha* as the selspec, you must type

DDS/I alpha'*

DDS 1.13

Cleared version of May 24,1981

October 12,1977

to the Executive. To specify beta* as the selspec and *.cm as the context, you must type
DDSII beta'* '*.cm

5. Record of bug fixes, changes, and enhancements

Release 1.13:

Bugs fixed: user-defined commands were usually ignored even on full init.

Additions: REENTER in User.Cm (sec. 3); IE in command line (sec. 4).

Release 1.12:

Bugs fixed: crash ifUser.Cm!n existed but no User.Cm.

Changes: fast startup permanently disabled.

37

Additions: "leader" viewspec (sec. 1.1); <List> and <Initialize> commands (sec. 2.1); user-defined
commands (sec. 2.3, 3); IX in command line (sec. 4).

Release 1.11:

Bugs fixed: falling into Swat when running on non-standard Alto configurations; fast startup now
works.

Changes: can point at "Sel~ec:" and "Context" (sec. 1.2); feedback after deleting each file (sec. 2.1);
user and dISk name appear on <Put> file (sec. 2.1); fast startup IS the default (sec. 3).

Additions: WINDOWS and RAMOK in User.Cm (sec. 3); switches, initial selspec and context in
command line (sec. 4).

Release 1.10:

Bugs fixed: "Bad VP" and "Bad tree" from <Delete>.

Changes: runs only under Alto OS version 5 or later; typing in selspec directly (sec. 1.2), It All" strip
for marking/unmarking all files (sec. 1.3,1.4), new typein scheme for commands (sec. 2); change in<Send>
commands (sec. 2.1).

Additions: "(chart)" viewspec for pictorial file lengths (sec. 1.1); BEGIN, END, arrow for clearer
indication of position within data list (sec. 1.3); default typein for commands (sec. 2); saving command line
in DDS.CM (sec. 2); initializing viewspecs and sorting from User.Cm (sec. 3); fast startup feature (sec. 3).

Release 1.9:

*** There was no official release 1.9.

Release 1.8:

Bugs fixed: stack overflows (really!), "Vstream error" after <Delete>; file name from (Put> wasn't
getting added to data base.

Changes: runs under new Alto Operating System; "contents" viewspec shows the whole file (sec. 1.1);
marking all files is now done in selspec area (sec. 1.4); error message line moved to just below type-in line
(sec. 2).

Enhancements: "referenced", "(browse)", and "(small)" viewspecs (sec. 1.1); interrupting sorting by

DDS 1.13

Cleared version of May 24,1981

October 12, 1977 38

typing (sec. 1.1); context expression (sec. 1.2); initiating commands with YELLOW in command menu
(sec. 2); <Context> and <Rename> commands (sec. 2.1); inteITllpqng_ <Delete> by typin~ (sec. 2.1);
SMALtFONT, SMALLBOLDFONT, SELSPEC, CONTEXT, USERTYPE options in User.em (sec. 3).

Release 1.7:

. Bugs fixed: "Break at 0" or "Break at 1" during <Delete>; occasional stack overflows ("Break at
getframe + 36"). .

Changes: error messages now appear in their own area (sec. 2.2); cursor need not be in the window
when confinning a command (sec. 2).

Enhancements: documentation sec. 2 has been expanded and improved to clarify the notion of
designated files.

Release 1.6:

Bugs fixed: DDS would go into SWAT "Break at getframe+ 36" (stack overflows); also occasional
"Bad vp" or "Vstream error" messages. A couple of typos in the documentation also fixed.

Enhancements: blinking caret for type-in (sec. 2); complex selspec expressions (sec. 1.2); count of
marked files not selected (sec. 1.2, 1.4).

Release 1.5:

Changes: command menu in place of control characters (sec. 2); viewspecs do not require clicking
(sec. 1.1) ..

Enhancements: Delete, Send,Bravo, Gears commands are built in (sec. 2); sorting by serial # (sec.
1.2).

Release 1.4:

Changes: date-and-time line rearranged; better behavior when displayed properties do not fit on one
line. .

Enhancements: "Sorting ... " message (sec. 1.2); "*" feature in 1'Execute (sec. 2).

Release 1.3:

Bugs fixed: system would blow up on any attempt to produce an error message such as "Mouse isnot
in a window"; system would sometimes blow up when starting up; the date-and-time line no longer blinks.

Changes: 1'Execute now only processes marked files (sec. 1.4, 2); sorting by extension is implemented
(sec. 1.1).

Enhancements: marking individual files (sec. 1.4); displaying the file count (sec. 1.2, 1.4); "pagemap"
viewspec (sec. 1.1); user-selectable fonts (sec. 2.1).

DMT, Peek, PeekSum

Cleared version of May 24,1981

February 12, 1979

DMT, Peek, PeekSum

39

This documentation describes the operation of three related Alto Subsystems: DMT, theMemory/ControI
Ram diagnostic; Peek, the program to which DMT reports its findings; and PeekSum, the program which
summarizes the reports collected by Peek.

1. Creating a Peek Disk

You should devote a separate disk to Peek. Boot files can take up a lot of space and the Peek report file
can get quite large over a long holiday weekend if your network has many 11osts. To avoid coming in on
Monday and discovering your Peeker in Swat out of disk space, clean the disk out regularly. Peek
automatically keeps its network directory and boot files up-to-date, so building a new peek disk amountsto
building an bare disk (OS, Exec, Ftp, Empress, perhaps Bravo), getting Peek and PeekSum and just
running it: it does the rest. I have written a canned procedure for building a Peek disk from scratch:

1) Boot an as from the net and respond 'Yes' when it asks if you want the long installation dialog,
and 'Yes' when it asks if you want to ERASE the disk. .

2) When the erase procedure finishes, retrieve [Maxc]<Alto>PeekDisk.cm and invoke it by typing to
the Exec:

)@PeekDisk.cm@

3) When the smoke clears, install your printer's name in the rHardCopy] section of user.cm and re
install Bravo. If you aren't on the west coast, change the ZONE parameter (e.g to +5:00 if you
are on the east coast).

2. History

Chuck Thacker made DMT (early 1973) by combining many small diasnostics which he had developed to
stress main memory using certain emulator instructions. There were on.sinally two versions: PMT (Printer
Memory Test) which logged statistics on the Diablo printer; and DMT (uisplay Memory Test) which used
the display. Later (late 1973), an Ethernet driver was added to DMT, Bob Metcalfe wrote Peek, and Chuck
wrote PeekSum. At this point, development and maintenance of PMT stopped. Still later (mid 1975),
David Boggs added a Control Ram test to DMT, rewrote the Ethernet driver and took over maintenance.
Nate Tobol, who designed the Alto II memory system, wrote the Alto II memory test (mid 1976) which was
merged into DMT. David rewrote Peek and took over its maintenance. Doug Clark extended PeekSum,
and took over its maintenance (early 1977).

3.DMT

DMT is written in the Alto BCPL-compatible. variant of machine language and is distributed as a type-B
boot file (see the BuildBoot documentatIOn for more details). .

When DMT is running, the Alto screen is black with a white cursor changing position once each time
through the main loop. For Alto I the cursor flips at random intervals; for Alto II the interval is about 1
second. On Alto lIs with extended memory, the cursor contains a number between 0 and 3 indicating
which bank it is currently testing. DMT contains a TeleSwat server. The key combination <ControlXLeft
ShiftXSwat) causes Dlv1T to stop and enter the debugger.

DMT, Peek, PeekS urn

3.1. Statistics

Cleared version of May 24, 1981

February 12, 1979 40

If the'S' key is depressed, DMT will display (and transmit on the Ethernet) the statistics it has
accumulated. The display looks something like this:

DMT of25 Dec 78, Alto II XM 241. 456 blocks, testing 17341 to 176777
o bad main memory chips
o bad control memory chips

If there are errors, a line describing each type of error will be disJ)layed, and then, if the errors can be
resolved to a particular chip, the Card, Rowand Column (for Alto I), or the Card and Chip number (for
Alto II) will be displayed. This display will stay up as long as the "S" key is depressed. Periodically the
statistics are automatically broadcast on the Ethernet and appear briefly on the screen. .

3.2. Booting in Response to Packets

IfDMT receives a request-for-connection (RFC) Pup and DPO is ready, then it boots the Operating system
and passes it a message of type eventRFC. If the Executive section of user.cm contains an entry of the
form:

eventRFC: <arbitrary command line)

then the executive will consume the event and execute the command line. «If DMT receives an EFTP
data packet with sequence number 0 and DPO is ready then it boots the as and passes it a message oftype
eventEFTP. This is included so that printers (which use the.EFTPprotocol) can drop into DMT when
nobody is using them, and automatically wake up when someone wants to print. » If DMT receives a
Kiss-of-Death Pup for socket 4 (miscellaneous services), then it EtherBoots the fIle whose ID iscontained
in the low 16 bits of the Pup ID.

4. Peek

Peek opens several windows on the display. The top window is for user commands. There is currently
only one: Quit. The next window displays the release date of the program, a digital clock, the Pup
internetwork address of the machine, and the number of free pages on the disk. The next window IS
opened by the Peek Server and displays DMT reports as they arrive.

Peek loads special Ethernet microcode so that it can receive Peek reports directed to host 376b as well as
conduct busmess as itself. If it can't load the ram, it runs the Ether interface promiscuously and filter
packets in software. More diagnostic reports will be lost and booting may be slower, but things should still
work.

Peek has a lot of options, and reads User.cm to find out what to do. An example of the Peek slice of a
User.cm file is given below. In addition, it contains a host of network servers:

4.1. Peek Server

If there is a line of the form "Peek <filename)" in User.cm, Peek will start up a Peeking process which will
listen for raw Ether Jlackets of type PeekReport and write them on <filename). The filename should be
'Peek.reports' since PeekSum, described below, assumes this (I was just feeling general the day I wrote that
code).

DMT, Peek, PeekSum

4.2. Event Report Server

Cleared version of May 24, 1981

February 12, 1979 41

Peek implements the Pup Event Report protocol. For each line of the form "ERP <number> <filename>"
in User.cm, Peek will instantiate an event report process which wi11listen on socket <number> and write
event reports on <filename>. The default aadress which the as uses is Maxc, so I don't expect many
people will use this, however it might be helpful for an Alto site that isn't connected to the Parc Internet

4.3. Pup Echo Server

Peek contains a Pup Echo server running continuously in the background. PupTest and GateControl
contain Echo users with which you can poke it.

4.4. Raw Ether Echo Server

Peek also contains a raw Ethernet Echo server. This is the echo protocol used by EDP and NEDP, the
diagnostic programs for the Alto and Nova Ethernet interfaces.

4.5. Boot Server

Peek implements the p,rotocols necessary to be an Alto boot file server. For each line of the form "Boot
<number> <filename) I in User.cm, Peek will send <filename) when it receives a 1-1ayday packet requesting
bootfile <number). If the file isn't on the disk, or if Peek discovers a neighboring Boot server with a later
version, your Peek will aquire it. The more boot files you tell Peek to keep, the less space there is for Peek
reports.

4.6. Name Server

PeekSUITI consults the file 'Pup-Network.Directory' to get the owner and location of Altos. Peek contains a
name lookup server and in addition to answering lookup requests, keeps its copy of the directory current.

4.7. Time Server

Peek also has a time server. Alto time is based on Greenwich Mean Time, and local users must know their '
local time zone and the beginning and ending days of Daylight Savings Time to convert to local time.
Time servers are the source of this information, so it is important that the time parameters in User.cm be
correct. "Zone +8:00" means that the peek disk is 8 hours west of Greenwich -- in the USA PacificTime
zone. The standard User.cm contains this, so you must edit it if you live elsewhere. The DaylightSavings '
Time parameters are set by the line "DST 121,305", and only change when Congress messes with time.
Keep an eye on your local CongressPerson.

4.8. User.cm Example

Below is an example of the Peek part of a User.cm file. In this example DMT statistics go to the file
'Peek.reports', Event reports addressed to socket 30 (swat error reports) go to the file 'Swat.ERP', and some
maintenance-type boot files are available for diagnosing Altos. Notice that all characters between a
semicolon and a carriage return are considered to be comments and ignored by Peek (this is not true for all
programs that use User.cm).

[EXECUTIVE]
... executive stuff ...

[PEEK]
; Syntax:
; Boot <boot file number) <filename)

DMT, Peek, PeekSum

Cleared version of May 24, 1981

February 12, 1979

; ERP <socket number> <fIlename>
; Peek <filename>
; Correction <seconds per day> (decimal) [positive makes clock go faster]
; DST <beginning day> <ending day> (decunal)
; Probe <hours> (decunal) .
; Zone <signXhours>:<minutes> (decimal, plus is west of Greenwich)

Peek Peek.reports ; for PeekSum.run

ERP 30 Swat.erp ; Swat Error reports

Zone + 8:00 ; USA Pacific Time Zone
DST 121,305 ; DST begins on day 121 and ends on day 305

Boot 0 DMT.boot
Boot 5 CRTTest.Boot
Boot 6 MadTest.Boot
Boot 10 NetExec.boot
Boot 11 PupTest.boot
Boot 12 EtherWatch.Boot
Boot 13 Ke}'Test.boot
Boot 15 DiEx.Boot
Boot 17 EDP .Boot
Boot 20 BFSTest.Boot

[BRAVO]
... bravo stuff ...

42

Peek writes the contents ofUser.cm into the Command window as it reads through the file. If the fIlehas
bad syntax, Peek will call Swat with a description of its complaint (e.g. "[ReadNumberl- number contains
illegal characters" if it is expecting a number and reads something other than 0-7). typing <ctD-U will
restore the user display. The last item in the Command window is what Peek is having trouble with.

The source code for most of the servers in Peek is borrowed from the gateway program, and so there are
some more specialized commands which you can ianore and which default to reasonable actions. I
mention there here for completeness. "Correction + 2'0" means the Alto's clock looses 20 secondslJerday,
and the time server should correct by gaining 1 second at 20 equally spaced times during a day. "Probe1"
means attempt to locate newer versions of boot files and the network directory once an hour.

5. PeekSum

PeekSum reads the file "Peek.Reports" (the output of Peek) and constructs a summary of the errors
reported by DMT (see above) for each Alto. PeekSum writes on the file 'PeekSummary.Tx' a tabulation of
the error reports, together WIth the owner's name and the machine's location, retrieved (if possible) from
the file "Pup-Network.Directory", which is maintained by Peek, as described above.

As Peek is started and sto{,ped, it writes short messages to this effect on Peek.Reports; these messages are
reproduced at the beginmng of PeekSummary.Tx. The number of the local network is also written. If
Peek.Reports contains multiple reports from a single Alto (which is usually the case), PeekSum will record
the largest number of errors of each type, over all such reports.

PeekSum will complain and then gracefully stop execution if the files Peek.Reports or PeekSummary.Tx
are unopenable for some reason. If Pup-Network.Directory is unopenable or absent, the ouput file
Peek Summary .Tx will not include names and locations of Altos, but wIll contain error reports grouped by
Alto host number.

To run PeekSum, just type:

DMT, Peek, PeekSum

>PeekSum

Cleared version of May 24, 1981

February 12, 1979 43

and the program will go about its business. When it has finished, PeekSummary.Tx should be printedon
your local printer.

DPrint

Cleared version of May 24, 1981

March 23, 1977

DPrint - Diablo Printer Program

44

This _program Jypes text files on a Diablo printer connected to the Alto. It is a vanilla program with very
few features. Use Bravo if DPrint's facilities are inadequate.

The syntax of the command line is: . -
DPrintlswitch parameterlswitch ... filename filename ...

The only switch permitted on the word "DPrint" is "/P", which instructs DPrint to pause before the
beginning of each page.

One or more parameters may optionally be specified:

nlW Sets the line width to be n characters. Lines longer than this will wrap around to the next
line. The default is 75 characters.

nIL Sets the J?age length to be n lines. This determines the point at which printout will pause (if
IP was Invoked) and also controls the amount of paper spewed when a form-feed is
encountered in the file. The default is 66 lines (11 inches) if IP is not in effect or 57 lines (9.5
inches) if it is. .

nlM Sets the left margin to be n units of 1/10 inch from the hardware left margin of the printer.
The default is zero. . . _

Command line parameters without switches are assumed to be names of text flIes to be printed. If a file
cannot be found or a parameter is otherwise incorrect, you will be prompted for the correct value.

When DPrint J?auses, you may either type space to resume printout or "Q" to abort it and quit out of the
program. DPnnt will pause immediately if you strike any key while it is printing, and also if the printer
becomes not ready.

EmPress

Cleared version of May 24,1981

December 14, 1977

EmPress

45

EmPress has several functions. Its primary use is to convert ordinary text files into Press fonnat, and to
send the converted files to a Press printing server. Options include the ability to produce a Press file
witt'1out transmitting it, and to transmit Press files that have been previously produced. Additionalfeatures
provide for merging several Press page images into a single Press file, and for personalizing individual
copies of documents.

EmPress can distinguish Press files from text files, so it need not be told whether to convert. As a text file
converter, EmPress is intended for formatting program listings and supports only simple formatting
operations such as Tab and FormFeed. Bravo trailers are ignored.

Joe Maleson wrote the original program. David Boggs made the modifications that allowed transmission of
files to printers. Rick TIberi produced the current version, adding the Press file merger and copy
personahzation facilities, and curing many problems.

Standard Case:

To send one or more Press or text files to your default Press printer, using a default font to convert the text
files, type:

empress filel file2 file3 ...

and read no further. The more general command line to EmPress is:

EmPress[/<global switches>] [<parameters>l<switches>] inputFiles

The square brackets denote portions of the command line that are optional and Inay be omitted. EmPress
will pnnt up to 100 input files.

Each global switch has a default value which is used if the switch is not explicitly set. To set a switch to
'false' proceed it with a 'minus' sign; to set it to 'true' just mention the switch.

Switch Default

IT true

Inumber 8

IH true

ID false

12 false

IS false

IW false

Function

[Transmit] will send the resulting press file to a printer.

(text files only) tab width -- see below.

(text files only) [Headings] will print a heading and page number on each page.

(press files only) [Datel will add the machine-readable time stamp to Press files
that need them and don't have them. This allows Press files created by old
software to print correctly. If your Press file prints with improper line
justification and character spacing, try this switch before giving up.

[Duplex] will format text files for 2-sided printing and inform the server to print
the transmitted file duplex.

[Secret] will send the current Alto password to the server, requesting that the
server not print the files until the password is entered at the server workstation.

[Wait I after sending the files, will wait for input from the keyboard to check
comp etion status of the print request. If the user confirms with a RETURN,
Empress will check and print the status of the file, if possible. DEL exits from
Empress.

EmPress

Cleared version of May 24,1981

December 14, 1977 46

EmPress recognizes a number of optional parameters which can be set from the command line.
Parameters set from the command line take precedence over defaults built into the program.

Parameter

string/O

numb erIC

string/H

string/I

string/S

string IN

string

number/T

string/F

number/P

Default

Swatee

1

none

none

none

none

none

Function

[Output] the name of the output file. EmPress uses Swatee unless told
otherwise, since the output press file is usually sent to the printer and then
discarded. .

[Copies] the number of copies to print.

1H0stNamel the name of the printer. This takes.precedence over the name
following pRESS: in the [HardCopy] section ofUser.cm. .

[Input] the name of an input text file to be formatted and saved or
transmitted, or of an input Press file to be transmitted.

[Secret] a password to be sent for confirmation, as the global IS switch
above.

[Name] the name of a user for whom the file is being printed, to be sent to
the printer for direction to that user's mailbox.

a string without any switches is assumed to be an input file.

The remaining switches apply to text conversion only.

8

Gacha

8

[Tab] the width of a tab character in multiples of the width if a space
character.

[FontFace] the font to use. You must have 'Fonts. Widths' on your disk.

[pointSize] the point size of the font

EmPress

User.Cm Entries

Cleared version of May 24, 1981

December 14, 1977 47

The following is a sample User.Cm hardcopy section, configured to use the Menlo Press printing server as
the preferred printer:

rHARDCOPYl
iJREFERREDFORMAT: Press
EARS: Palo
PRESS: Menlo
PRINTEDBY: "$"
FONT: TIMES ROMAN 10 MIR

The FONT entry specifies that TimesRoman10i (italic) should be used as a default font instead ofGacha8
(EmPress's default choice). The second, point size argument, and the third, face specification argument are
optional. The face argument contains three letters specifying weight (M, B, or L), slope (R or I), and
expansion (C, R, or E), respectively.

The PRINTEDBY field, ifpresent, specifies the name to be used in the Name field on the break page. The
current disk login name will replace the character $. EmPress chooses "$" as a default in the absence ofa
specification.

EmPress

Program operation

Cleared version of May 24,1981

December 14, 1977 48

When EmPress encounters a Press file in the input list, it transmits (or stores) any text file that it is
currently converting, then transmits the Press file. A new break page will be pnnted for each Press file,
containing that file's name. EmPress will override the "created by' field of a Press file with a name derived
as described. above. It will fill in blank file name and date fields with the obvious defaults. If copies are
specified in the command line, EmPress will override the number of copies specified in the Press file with
the command line value.

EmPress uses the file Swatee for temporary storage while converting text for transmission. If in so doing
Swatee becomes nearly full, EmPress will suspend fonnatting, send what has accumulated so far, and then
press on. This has two desirable consequences: 1) a very full disk will not run outQf ~ace and 2) some
pipelining can take place since the pnnter can munch on the first chunk while EmPress empressifies
another.

Press File Merging

EmPress will merge several one page Press files into a single one page Press file. This allows the outputs of
Bravo, Sil, Draw, Markup, etc., to be merged without a separate pass through Markup. One additional text
or Press file may also be submitted, and it will be printed following the one page merge result.

One invok~s the merge feature through one additional global switch, and one additional local switch:

Additional Global Switch:

1m Merge. All subsequent input files that are not qualified by switches must be single-page Press
files. They will be merged to form a single (cover) page in the Press file result, containing all
their Press specifications. This switch also conditions Empress to expect the additional local
switches, described just below and in the Personalization section.

Additional Local Switch:

Id Document. This switch may be used to identify an optional main document, when the merge
option is used. The file may be a simple text file or a Press file. It will follow the one page
merge result in each copy printed.

EmPress

Personalization

Cleared version of May 24, 1981

December 14, 1977 49

This relatively specialized feature is provided to allow the personalization of individual copies of a
document. Each copy of the document might contain, for instance, the name and address of the personfor
whom it is intended. Up to six lines of personalized infonnation can be specified. This information will
replace distinctive "key strings" that have been placed in the cover page (merged) files or in the main
document.

The key strings must aRpear in contiguous groups of up to six lines each. The personalized information for
the current copy, specified in a paragraph of a special Bravo-format addressee file or in the command line,
will replace the key strings in each groug, line for line. Thus the personalized information may occur more
than once in each document (Dear Mr. PARC/SDD: ... yes, you and all the members ofthePARC/SDD
household can enjoy the benefits of ...). Lines in the addressee paragraph for which no keys are provided
are discarded.

The default key is "(", forty hyphens ("-"), then ")". If the string "(--title--)" appears anywhere in the
document, the name of the "main" document (the one specified using the "/d" switch) will replace it.

The "1m" (merge) global switch must be specified before any of these personalization specification
switches are valid.

Additional Local Switches:

Ik Key. The item is a key that replaces the default (see above).

I a Addressee. The item is either the name of a Bravo format file containing a list of addressees-
one per paragraph, one line in each paragraph for each key line in the cover page or main
document -- or a literal addressee, enclosed in double quotes. In a literal, use hyphens where
you wish blanks to appear in the name.

ERP

Cleared version of May 24,1981

February 17, 1979

ERP - Event Report Protocol Server

ERP is an event report protocol server. You invoke it by saying to the Exec:

ERP <socket> <filename>

50

where <socket> is a 16-bit socket number (the high 16 bits are zero), and <filename> is the name of a fileon
your disk. It starts a Event report senTer on <socket> which appends events to <filename>. This programis
merely a thin veneer on the PupERPServ package, whose documentation you should consult for the file
format.

Executive User's Guide

Cleared version of May 24, 1981

June 26, 1980

Executive User's Guide

51

Executive, the Alto command processing subsystem, is the intermediary by which Alto users generally
invoke other subsystems and ask simple questions about the state of the Alto file system. It isjust thesame
as any other subsystem, except that its name is known by the Alto Operating System, and it IS invoked by
the Operating System whenever the Bcpl operator "finish" or equivalent is executed. This document
describes version 11 of Executive.

l. What It Does

The operation of Executive proceeds thus:

l. It reads any leftover unexecuted commands from a file called Rem.Cm into a main memory command
queue.

2. It begins building up a command line (terminated by a CR). If the command queue empties before the
command line is terminated, additional characters are read from the keyboard untIl a CR is read. Editingis
done during this phase. If the corrunand line has been empty for about twenty minutes~ the user is assumed
to be occupied elsewhere, and the diagnostic program Dmt.Boot is invoked either from the disk (if it can
be found) or from the Ethernet.

3. The edited command is placed at the front of the command queue and the command queue is analyzed
for *-, #-, and @-substitutions. If something of the form @filename@ is discovered in tlie first line inthe
command queue, it is replaced by the contents of the named file and analysis continues with the first
character of the replacement. Executive makes no attempt to detect or recover from infinitely recursive
replacements. If the characters * or # are encountered in a filename in the first line, the file directory is
used to replicate that filename with appropriate substitutions. This step results in a completely edited
command line.

4. The first atom (contiguous sequence of legal file name characters) in the command line is analyzed to see
whether it is the name of a subsystem in the file directory or the name of a command internal to Executive
or neither. If neither, then Executive attempts to extend the atom into the name of a subsystem or
Executive cornmand. (The subsystem lookup algortithm is described below.) Failing in this, it complains
and resets itself. Otherwise the line is written on the file Com.Cm. Then if the first atom was or could be
extended into a subsystem name, the rest of the command queue is written on Rem.Cm, and the subsystem
is invoked with a CallSubSys Qperating System call. If it is an internal Executive command, the
appropriate subroutine is called. Executive passes the switches found on the subsystem name in the user
parameters vector of CallSubSys. See the documentation of CallSubSys for more details.

In parallel with these steps, Executive does a few housekeeping chores:

a. It reads the entire file directory into memory, merges in the names of user-callable routines internal to
Executive, and sorts the resulting list alphabetically.

b. Having nothing else to do, it puts a line containing a continuously-updating digital clock and the
number of free dISk pages on the user's screen, and flashes a vertical bar cursor wliere the next typed
character will go.

A number of characters have special meaning during the editing step (2):

Null:
Ignored

Carriage Return:

Executive User's Guide

Cleared version of May 24,1981

June 26, 1980 52

Terminates the line, beginning step 3.

Control-A:
Backspace:

Removes the last character from the line queue.

Control-W:
Removes the last item which looks like a file name from the line queue.

UpArrow:
Single quote:

Causes itself and the next character both to be appended to the line queue, regardless of what
the next character is.

Control-U:
Signals that at the conclusion of step 2 the line queue is to be written on the file Line.Cm andits
contents replaced by the text "Bravo/n Line.Cm". If one has the proper Bravo and User.Cm,
this will invoke Bravo on the command line. (This is also an easy way to build small command
files. Just type the desired command followed by Control-U and CR. Then copy or rename
Line.Cm.)

Control-X:
Performs step 3 on the linequeue as it is, returns to step 2. In other words, it eXpands @, *, and
#. --

Control-C:
Delete:

Escape:

?:

Tab:

LineFeed:

Blank1:
Blank2:
Blank3:

Empties out the line queue, starts over again.

InterPrets the last atom in the line queue as the prefix of a file name; continues that file name
until It is complete or ambiguous. Flashes the screen ifit is ambiguous.

Interprets the last atom of the line queue as the prefix of a file name; types out all file names
which begin that way.

Same as "?" except it deletes the atom from the line queue after typing the file names. This
would be what one would normally use to interrogate the directory. * and # work as expected.

If the file Line.Cm exists, its contents are appended to the line queue.

These are the three blank keys on the right side of the Microswitch keyboard, numbered from
top to bottom. These keys behave like LineFeed except the files used are Keyl.cm, Key2.cm
and Key3.cm. These are called "macro keys" and make it convenient to have several frequently
used command sequences available as single keystrokes. (The Control-U feature is a convenient
way to generate the text for these files.)

In step 3, several characters have special meaning:

Semicolon:
Carriage Return:

Terminate the line; control goes to step 4.

UpArrow:

Executive User's Guide

Cleared version of May 24,1981

June 26, 1980 53

I:

@:

#:

If followed by a carriage return, do nothing. If followed by an up arrow, put one up arrow in
the line queue. If followed by any other character, put both characters in the line queue (Ugh!}.

If followed by another" I", this begins a comment, so scan ahead until finding a carriage return
or semicolon. If not, put the "I" in the line queue.

Scan ahead until finding another @ (the second @ may be omitted ifit comes at the end of the
command). The atom in between is a file name. Replace the @atom@ by the contents of the
named file. If the file doesn't exist exactly as specified, try extending the specification and
forcing a .Cm suffix.

Expand the atom using these characters by making a search through the file directory. * matches
any sequence of file name characters. # matches any single character except a period. File
names are defined to end with an infinite number of periods. The atom is replaced by all file
names matching its pattern. Switches on the atom, if any, are replicated.

There is one special character recognized during step 4.

Control-C:
Aborts the command and starts over again. Control-C is effective up until the time that
Executive gives up control to the subsystem being invoked. If you realize a mistake in your
command after typing CR, quickly typing Contral-C will abort it. (When Executive's header
line disappears, it IS too late.)

In step 4, one switch is taken to have special meaning on the subsystem name only. The switch I! will set
the pause parameter in the call to CallSubSys to true causing you to enter Swat after your program is
loaded, but before its first instruction is executed. This switch, if detected, is removed from the command
line before Com.Cm is created. This feature is extremely useful if your program is hitting a bug before its
first user interaction.

2. Executive Commands

The Executive contains a number of subroutines which can be invoked from the command line. The
commands corresponding to these subroutines can be identified by the extension character " ", which is
illegal in a file name. Executive commands include the following:

Type.- FileName
Display the contents of the named file(s) on the screen. After each page, it asks whether you
want to see more of the current file. A Ctrl-C at this point terminates the entire Type command.
You can type any files, even binary ones, but typing some files will give you more useful
information than typing others. .

Delete."" FileName ...
Removes the named files from the directory and frees their disk space. Use this command very
carefully. Its effect cannot be undone. Typing Ctrl-C will abort the command cleanly between
deletions.

Copy.- DestFileName +- SourceFileName ...
Copies a file. If there are several SourceFileN ames then the copy will contain the concatenation
of the information in the source files, in the order listed. In accordance with the Alto File Date
Standard, copying a file preserves the creation date of the file; concatenating files generates a
new creation date.

Executive User's Guide

Cleared version of May 24,1981

June 26,1980 54

Rename.- OldFileName NewFileName (or NewFileName ~ OldFileName)
Changes the name of Old FileName. NewFileName must not already exist unlessOldFileName
and NewFileName are the same (use this feature to change the capitalization of a file name).

BootFrom. - FileName [... Sys.Boot] .
Initiates a software-simulated bootstrap sequence on the file named by FileName. Most

. probably the FileName should have the .Boot extension. Like the OS system call BootFrom
(which it uses) this command does not actually do a hardware bootstrap operation, so it does not
re-initialize any Alto hardware or microcode tasks. If you don't know what this implies, don't
worry about it.

Quit.

Login.-

SetTime.-

Has the effect of BootFrom Dmt.Boot. This commences the running of the diagnostic program,
which doesn't use the Operating System at all. This is done automatically after a machine has
been idle in Executive for about 20 minutes. If Dmt.Boot is not on your disk or you tum the
disk off, Dmt will be loaded from the Ethernet.

Places your user name and password in the system area of main memory for use by programs
which interact with access-controlled resources (like timesharing or file systems, for example).

Sets the Alto's internal time-of-day clock. The time is obtained from the Ethernet if possible.
Failing that you will be asked to supply the time (and possibly titile zone) manually in the fonn
12-jan-78 14:45. Use SetTimelm to bypass the Ethernet and set time manually. Use Iz to force
setting of time zone in manual mode. (When Executive is started it examines the time-of-day
clock. If the value is not reasonable Executive attempts to obtain the time from the Ethernet
before proceeding. If the time cannot be obtained, the time-of-day displayed at the tOJ2 of the
screen will be "Date and Time Unknown" indicating that you should invoke the SetTime.
command manually.) As a side effect of obtaining the time from the Etherne~ Executive learns
the network number of the local Ethernet and displays it along with the Alto's host address in
one of the header lines at the top of the screen. A network number of 0 means "I don't know.".

Dump.- DumpFileName SourceFileName ...
Writes DumRFile as a structured file (in Dump fonnat) containing the names and data of all the
SourceFiles. This is a convenient way of packa$ing up a collection of related files into a single
comp'osite file that can later be decomposed mto its constituent parts. See Appendix A for
detaIls of Dump fonnat. The primary virtue of this particular fonnat is that it is Intended to be
compatible with the Dump fonnat of the Data General Nova DOS operating system, and it is
compatible with the Tenex subsystem DUMP-LOAD.SAV and the Dump and Load commands
in Ftp.

Load DumpFileName
ThIS reads through a Dump fonnat file and creates individual files corresponding to its
constituent parts. The IV switch causes Load to ask you about each constituent part, whetherto
copy it from the DumpFile to an individual file or not. Acceptable responses are Y, N, and C.
The latter indicates that you would like it to be copied, but into a file with a different name than
that indicated. You are then asked to supply the name you prefer.

Release.-
TellsJou the release number and date of Executive. The release number is also shown in the
first Executive herald line, just after the slash following "Xerox Alto Executive."

StandardRam. -
For any Trap except the Swat Trap (#774xx) the Alto microcode sends control of the emulator
task to the microcode Ram for interpretation. StandardRam initializes the microcode Ram to
send control of the emulator task back to the Rom Trap-handling microcode. If you don't
initialize the microcode Ram before executing a program which 1) uses Traps, and 2) doesn't
initialize the Ram itself, then when the fIrst Trap happens your machine will probably do
something bizarre, but it usually will not destroy disk data.

Executive User's Guide

Cleared version of May 24, 1981

June 26, 1980 55

Install.~ FileName [... Sys.Boot]
Causes a customized version of the operating system on the file named by FileName to be
written on the file Sys.Boot. For further details, please see the section on "Installing the
operating system" in the Alto Operating System manual.

BootKeys.~ FileName [... Sys.Boot]
Did you know that by fiolding down various combinations of keys on the Alto keyboard while
pressing the boot button it is possible to get the Alto to bootstraQ load itself from any file on the
disk? (This bootstrap will probably crash fairly quickly on any file except one in .Boot fonnat.)
Bootstrapping the Operating system is simply a special case of this: all keyboard keys ug refers
to disk address 0, which by convention is where a copy of the first data page of Sys.Boot is
stored. To find out what keys to push in order to bootstrap load other files, you use the
BootKeys command.

Resume.~ FileName [... Swateel
The file named by FileName is patched so that its Swatee file pointer is the same as the current
Swatee file pointer, and then it is loaded in and run. For best results, this file should be Swatee,
or a copy of a Swatee. If you want to return to Swat with an old Swatee (for example, originally
you didn't have the right .SYMS file) you can say

Chat.~
Ftp.~ .
Scavenger.~
NetExec.~

Copy. ~ Swatee .- OldSwatee (no need to do this if Swatee is already correct)
Resume.~ Swat

These commands load the corresponding programs from the Ethernet. If you have the .Runfile
for one of these, it will be found Instead by the nonnal Executive lookup strategy.

EtherBoot.~ octal number
This command will boot any available Ethernet bootable file provided that you know its
number.

FileStat.- FileName ...
This command will tell you several things about a file: its length in bytes, size in pages, serial
number and disk address, creation, read and write dates. If any FileName is of the fonn octal/ s
(or octall,octaI2/s) the file will be looked up by serial number rather than by name. This is
useful if Scavenger or some other program gives you a serial number without telling you the
name. The fonns octal/v and octallr tell you about the file that owns the specified virtual or
real disk address.

MesaBanks. -- bank specifiers
This command sets the default memory configuration for Mesa programs. Uses and
implications of this command are described in the Mesa documentation and will not be covered
here.

WriteDirectory.~
This command causes Executive to write the sorted version of your directory back onto SysDir
on your disk. Keeping the directory approximately sorted on the disk greatly reduces the time
required for Executive to sort it during initialization. Executive will periodically perfonn a
WriteDirectorx in an attempt to keep the directory reasonably sorted. WriteDirectory also will
compac~ the directory collecting all the free space at the end and will report several statistics
about dIrectory useage.

3. Subsystem Lookup

Executive User's Guide

Cleared version of May 24,1981

June 26, 1980 56

Executive recognizes and knows how to invoke several kinds of subsystems. In order to select a subsystem
matching the name given in the command line Executive uses the following algorithm:

1. For each of the strings <nuID, ".run", ".image", ".bcd", " ", "*.run", "*.image", .. * " and
"*.bcd" ask how many directory entries are matched by appending the string to the typed name.
As soon as the answer is one the subsystem is found. Note that the question is asked separately
for each extending string and that the questions are asked in the order specified. The order of
the search means that the order of subsystem types is: Bcpl program, Mesa image file, Mesa bcd
file, internal command (the order of Mesa bcd·files and internal commands is reversed if the
name is not completely specified).

2. If the subsystem name ends in ".image" it is assumed to be a Mesa image file and is invoked
using the program RunMesa.run.

3. If the subsystem name ends in ".bcd" it is assumed to be a runnable Mesa configuration.
"Mesa.image" is added to the front of the command and the lookup starts over.

4. Otherwise the subsystem is invoked directly (if internal) or via CallSubsys. (If the file does not
look like a valid .Run file you will be asked to confirm that you want to try to run it.)

4. User.Cm Entries

The Executive section of User.Cm may contain several corrimands to the Executive. Most of these are
command lines to be executed if some event is noted (see the Operating System· documentation for a
description of events). In addition to standard events, any other event may be specified using thenotation
eventN where N is the event number (in decimal).

The command in the line labeled eventAboutToDie: will be executed after the twent}' minute timeout
described above but before Dmt is loaded. If you use this feature you should include a ~uit. as the final
command.

The number of text lines in the user command window can be set from User.em using the selector
DisplayLines: followed by a number. You are advised not to set this number higher than its default value
(currently 16), but you might want to reduce the number in order to leave more memory space for your
directory if you have a large number of files (say, more than 500).

The line "Screen: Black" in User.Cm directs Executive to use the display in white-on-black rather than the
normal black-on-white mode.

5. Dump Format

A dump file is a sequence of blocks of eight-bit bytes. The first byte of each block is the block type. A
typical Clump file might look like:

<name blockXdate blockXdata block l> ... <data block n>

<name blockXdate blockXdata block l> ... <data block m>
<end block>

Name Block - Type = #377

A name block contains two bytes of file attributes and then the file name. The file attributes are used by
the Nova operating system; Alto Dump sets these bytes to 0, and Alto Load ignores them. The file
name is a sequence of ASCII characters terminated by a 0 byte.

Executive User's Guide

Data Block - Type= # 376

Cleared version of May 24, 1981

June 26, 1980 57

A data block contains two bytes of byte count (high-order byte first), two bytes of checksum (high-order
byte first), and a sequence of data bytes. The byte count must be less than or equal to 256 for compatibility
with Novas, and the count does not include the checksum or byte count; only the data bytes are counted.
Novas do not handle data blocks with byte counts of 0 or 1 correctl~. Alto Dump will not produce such
blocks unless forced to dump a file whose length is less than 2 bytes. The checksum is a 16-bit add ignoring
carry, over the data and byte count. If the block has an odd number of bytes, the last byte is NOT included
in the checksum computation.

Error Block - Type = # 375

Novas generate error blocks. Alto Dump does not. Alto Load terminates ifit encounters one.

End Block - Type = # 374

An end block has no contents and terminates a Load."".

Date Block - Type = #373

Date blocks with six bytes of date are generated by Nova RDOS. Alto Dump.,... puts the four byte Alto
creation date into the first four bytes and zeros the remaining two. For compatibility with older Alto
implementations, date blocks are optional.

N .B. This appendix is included thanks to David Boggs.

Find

Cleared version of May 24,1981

November 6, 1979

Find - a file searching subsystem

58

The Find subsystem allows you to search text files at very high speed on an Alto. Examples of such files
might be an address/telephone list, a source program, or a library catalog.

Find basically looks for all the occurrences of a pattern in a file, just like doing repeated Jump commands
in Bravo. A pattern is just a character sequence, except for the following:

in a pattern means "any character at all", e.g. CAP and CUP count as occurrences of the pattern
C#P.

,.., in a pattern means "allow one character in the occurrence to disagree with the corresponding
character in the pattern". For example, LAP, CUP, and CAT all count as occurrences of the pattern CAP
(or CAP or C AP). Two -s mean "allow two disagreements", and so on. Note that "disagreement"
only means substituting one character for another: it does not include insertions (e.g. CLAP for CAP),
deletions (CP for CAP), or transpositions (CPA for CAP).

If you really want to have a pattern containing # or "", you have to type a ' before it, e.g. to search for
the character sequence ATOM #, you have to type A TOM #. .

Unless you use the /c (Case) switch described below, upper and lower case letters are considered
identical, e.g. Cap, cap, and CAP all count as occurrences of CAP or of cap.

Unless you use the /s (Space) switch described below, blanks (spaces) in the file are completely
ignored, e.g. CAP counts as an occurrence of CAP; blanks in the pattern are also ignored.

There are two ways to invoke Find. The first way just searches a file for one pattern:
>Find filename pattern

(Since the Executive does something special about @, #, %, *, 1', and; in command lines, you must
precede any of these characters in your pattern by a '. This is in addition to any's you may need as
described in the preceding paragraph.) The second way only specifies the file:

>Find filename
and Find then prompts you repeatedly for patterns. To leave Find when using it this way, use shift-Swator
tvpe an empty pattern (just type <return> when Find says Pattern:). You can also use Find to search
several files together, by mvokmg it with '

>Find/m filename 1 ... filenamen
which also prompts you for patterns.

In any of the above command lines, you can also use the /c, /d, and/or /s switches described above, i.e.
any of the forms

>Find/s filename pattern
>Find/s filename
>Findlms filename1 ... filenamen

The switches may be in any order or combination, e.g.
>Findlcsm filenamel ... filenamen

tells Find to search filenamel ... filenamen treating upper and lower case as different and not ignoring
spaces. This also applies to the switches described below.

After completing the search, Find displays at the top of the screen a summary of the form:
79 occurrences, 1200 ms, 150 pages

giving the total number of occurrences, the time in milliseconds, and the number of disk pages in the file.
In the remainder of the screen, Find displays the line containing each occurrence of a pattern, with the
occurrence indicated in boldface. To the left of the line, Find displays the character position in the file
where the occurrence was found. After each screenful, Find waits for you to type <space) if you want
more, or <deD if you don't.

In addition to displaying matches on the screen, Find always writes the lines containing matches on a file
called Find.Matches. Normally, Find only writes those matches which it displayed, so ifYQu stopped the
display of matches with <deD, only those matches you actually saw will appear on the file. However, if you
use the /a (All) switch\ Find will write all matches on the file, not just the ones you saw displayed; if you
use the /w (Write only) switch, Find will write all matches on the file and not display them at all.

Find

Cleared version of May 24, 1981

November 6, 1979 59

What Find finds for you is all the "items" containing occurrences of the pattern. Normally an "item" is
just a single line of text, delimited by <cr> on both ends. However, Find also knows about two other kinds
of items: Bravo paragra~hs. and groups of lines separated from each other by a blank line. If you use the
Ip (Paragraph) switch, Find will show (displal and write on Find.Matches) the entire Bravo paragraph
containing the occurrence. If you use the Ib (Blank line) switch, Find will show everything surrounding
the occurrence up to the next preceding and following blank line.

So that you can examine Find.Matches with Bravo, Find normally removes any character sequences that
Bravo might confuse with its own formatting information. There are two exceptions to this. If you ask for
entire paragraphs (/p switch), Find preserves the formatting. If for some reason you want the characters
around the match copied regardless of their possible interpretation by Bravo (e.g. if you are searching a
binary file or some unusual kind of text file), you can use the Iv (Verbatim) switch, which instructsFind
not to remove sequences that look like Bravo formatting; if you do this, you will probably not be able to
read the file into Bravo with the ordinary Get command, but should use the tZ (unformatted Get)
command instead.

Find normally displays, but does not write on Find.Matches, the position of each occurrence within the
file, in octal. If you want this number written Find.Matches as well, use the 10 (Octal) switch.

Find produces a large number of error messages. The messages
Pattern too long
Can't preallocate
RAM full

all mean the same thing, namely that your pattern is too lon~ or too complicated (iuifortunately, it is too
complicated to explain exactly what "too complicated" means). The message

Can't load RAM
means that your Alto has old or non-standard ROMs and Find can't do what it needs to do: you should
contact a hardware maintainer. (This should never happen on Alto II's.)

Find has many obvious limitations. They can all be removed if people complain about them. The
following features could also be added upon request:

Boolean combinations of matches, maybe.
Ability to work with Trident disks.
Possibly other features requested by users.

Programmers should note that the file searching capability is also available as a library package (called
FindPkg), so programs can use it as well as people.

Alphabetic summary of switches:
la - write All matches on file
Ib - item = text between Blank lines
Ic - distinguish between upper and lower Case
1m - MultIple files
10 - write Octal position on Find.Matches
Ip - item = Bravo Paragraph
Is - consider Spaces significant
Iv - write Veroatim on Find.Matches (don't strip possible formatting)
Iw - only \Vrite on Find.Matches, don t display

History of changes:

Release of October 30, 1979

Added 10 (write octal position), Iv (verbatim output of matches, i.e. don't flush Bravo formatting),/a
(write all matches to file), and Iw (only write matches, don't display). Fixed bugs which caused display
garbage and occasional crashes when lines were very long, and infinite loop when searching files
contaIning <del)s. Changed default to remove Bravo formatting from matches file unless Ip or Iv switch
set.

Release of January 16, 1978

Find

Cleared version of May 24,1981

~ovenaber6,1979 60

Added Ie (distinguish upper and lower case), Ip (item = paragraph), and /b (itena = between blank
lines) switches. .

Alto Pup FfP

Cleared version of May 24, 1981

October 26, 1980

Alto Pup File Transfer Program

61

FTP is a Pup-based File Transfer Program for moving files to and from an Alto file system. The program
comes in 3 parts:

1) An FTP Server, which listens for file transfer requests from other hosts,

2) An FTP User, which initiates file transfers under control of either the keyboard or the
command line, and

3) A User Telnet for logging into a remote host using the Pup Telnet protocol.

1. Concepts and Terminology

Tranferring a file from one machine (or "host") to another over a network requires the active cooperation
of programs on both machines. In a typical scenario for file transfer, a human user (or a program actin~r~
his behalf) invokes a program called an "FTP User" and directs it to establish contact with an "
Server" program on another machine. Once contact has been established, the FfP User initiates requests
and supplies parameters for the actual transfer of files, which the User and Server proceed to carry out
cooperatively. The FfP User and FTP Server roles differ in that the FTP User interacts with the human
user (usually through some sort of keyboard interpreter) and takes the initiative in user/server interactions,
whereas the FTP Server plays a comparatively passive role.

The ~uestion of which machine is the FTP User and which is the FTP Server is completely independent of
the dIrection of file transfer. The two basic file transfer op~rations are called "Retneve" and "Store"; the
Retrieve operation causes a file to move from Server to User, whereas Store causes a file to move from
User to Server.

The Alto FTP subsystem contains both an FTP User and an FTP Server, running as independent
processes. Therefore, to transfer files between_~pair of Altos, one should start up the FIP subsystem on
both machines, then issue commands to the FTP User process on one machine directing it to establish
contact with the FTP Server process in the other machine. Subsequent file transfers are controlled entirely
from the FfP User end, with no human intervention required at the Server machine.

Transferring files to or from a Maxc system or an IFS involves establishing contact with FIP Server
processes that run all the time on those machines. Hence, one may simply invoke the Alto FfP subsystem
and direct its FTP User process to connect to the machine.

In the descriptions that follow, the terms "local" and "remote" are relative to the machine on which the
FTP User program is active. That is, w~M>eak of typing commands to our "local" FfP User program and
directing it to establish contact with an FTP Server on some "remote" machine. A Retrieve command then
copies a file from the "remote" file system to the "local" file system, whereas a Store command copies a file
from the "local" file system to the "remote" file system.

Furthermore, we refer to "local" and "remote" filenames. These must conform to the conventions used by
the "local" and "remote" host computers, which may be dissimilar (for example, Alto versus Maxc). The
Alto FTP knows nothing about Maxc filename conventions or vice versa.

The Alto FTP subsystem also includes a third process, called a "User Telnet", which simulates a terminal
in a manner exactly analogous to the Chat subsystem (though lacking some of its finer features). By this
means, you may log in to a file sytem machine to 'perform operations not direct~ipailable via the basic file
transfer mechanisms. If you log into Maxc, it IS even possible to run "Pup ", the Maxc FTP User
program, and direct it to establish contact with the FTP Server in your own Alto. You should probably not

Alto Pup FfP

Cleared version of May 24,1981

October 26, 1980 62

try this unless you really understand what you are doip~'phowever, since the terms "local" and "remote"
are relative to Maxc rather than to your Alto (since the User program is running on Maxc in thiscase),
which can be confusing.

2. Calling the FfP Subsystem

A number of options are available when running FfP. The program decides which parts of itself to enable
and where user commands will come from by inspecting the command line. The general form of the
command line to invoke FfP looks like:

FfP[/(Global-switches>] [(Host-name> [<Command-list>]]

The square brackets denote portions of the command line that are optional and may be omitted.

Global switches, explained below, select some global program options such as using the Trident disk
instead of the Diablo. The first token after the <global-switches>, if present, is assumed to be a <host
name> (a discussion of which appears later in the description of the "Open" command). The User FTP
will attempt to connect to the FfP Server on that host. After connecting to the server, if a <command-list>
is present, an interpreter is started which feeds these commands to the User FfP. When the command list
is exhausted, FfP returns to the Alto Executive. If no command list is present, an interactive keyboard
command interpreter is started.

Each global switch has a default value which is used if the switch is not explicitly set. To set a switch to
'false' proceed it with a 'minus' sign (thus FfP/-S means 'no Server'), to set a switch to 'true' just mention
the SWItch.

Switch

IS

IU

IC

IT

IL

IA

IE

IR

Default

true

true

true

false

*

false

true

true

Function

[Server] starts the FfP Server. The Server is not started if the User is enabled
and is being controlled from the command line.

[User] starts the FfP User. As explained above, the interactive command
mterpreter or the command line interpreter will be started depending on the
contents of the command line.

rChat] starts the Telnet. The Telnet is not started if the User is enabled and is
being controlled from the command line, or if the system disk is a Trident

[Trident] sets the system disk to be a Trident drive. The default is 0, but can be
changed by following the IT with a unit number. The unit number is octal; the
high byte IS the logical filesystem number and the low byte is the physical drive
number. User and Server commands apply to files on this disk but command
line input and log output use the Diablo (irive.

[Log] causes all output to the User FfP window to also go to the file "FfP.log"
on DPO, overwriting the previous contents. Log is true if the User is enabledand
is being controlled from the command line.

[AppendLog] enables the log but appends to FfP.1og rather than overwriting it.

fError] causes FIP to ask you if you want to continue when a non-fatal error
happens during execution of a command line. FfP I -E will cause FfP to recover
automatically from non fatal errors without consulting you.

[Ram] allows FfP to use some microcode which speeds things up slightly. If
your Alto has no ram, this switch is ignored.

Alto Pup FfP

ID false

Cleared version of May 24, 1981

October 26, 1980

[Debug] starts FfP in debug mode.

63

The rest of the global switches are explained below under 'Server Options'.

2.1. FfP User Log

FTP can keep a 108 (typescript) file for the FfP User window. The file name is 'FfP.log'. It is always
enabled when FTP IS beIng controlled from the command line; otherwise it is controlled by the IL andl A
global switches. .

2.2. Using a Trident Disk

Starting FfP with the IT global switch causes FfP to store and retreive files from a Trident disk. By
default, FfP will open TPO; other disks rna)' be opened by appending their unit numbers to the ITswitch.
Thus "FfP/T1" WIll open TP1, and "FfP/T400" will open logical filesystem 1 on physical unit O.

AccessjPfp a file on a Trident requires more code and more free storage than accessing a file on the Diablo.
Since is very short on space, only a User or a Server FfP is started when the IT switch is set. The
default is to start a User FTP, but specifying no user (FTPIT-U) or specifying a server (FfP/TS) will start
a Server FTP instead.

2.3. Server Options

Server options are controlled by switches on the subsystem name and sub commands of the SERVER
keyboard command. There are currently four options:

switch Default

none

IP false

10 false

IK false

3. The FfP Display

Function

If no server option is specified, retrieve requests (disk to net) are allowed. Store
requests (net to disk) are allowed unless the store would overwrite an existing
file. Delete and Rename are not permitted.

(Protected] Retrieve requests are allowed. No stores are allowed. Delete and
Rename are not permitted. .

rOverwritel Retrieve requests are allowed. Store requests can overwrite files.
Delete ana rename are permitted. '

[Kill] FfP will return to the Alto Exec when the server connection is closed. A
simple form of remote job entry can be performed by storing into Rem.cm.

The top inch or so of the diS~ltp contains a title line and an error window. The title line displays the
release date of that version of , the current date and time, the machine's internetwork address, and the
number of free pages on the disk. The error window displays certain error messages if they arrive from the
network (errors are discussed in more detail below). A window is created below the title line for each part
of FTP which is enabled during a session (server, user, and telnet). .

If the FTP Server is enabled, it opens a window and identifies itself. If a User FIP subsequently connects
to this Server, the User's network address will be displayed. The Server will log the commands it carries
out on behalf of the remote User in this window. The Server is not enabled when FfP is being controlled
from the command line.

Alto Pup FfP

Cleared version of May 24, 1981

October 26, 1980

The FfP User opens the next window down and identifies itself. The command herald is an asterisk.

64

The User Telnet opens the bottommost window, identifies itself, and waits for a host name to be entered.
The Telnet is not enabled when FfP is being controlled from the command line.

4. Keyboard Command Syntax

FfP's interactive command interpreter presents a user interface very similar to that of the Alto Executive.
Its command structure is also very similar to that of the Maxc Pup FfP program (PupFfP), and theMaxc
ArpaNet FTP program (FTP). The standard editing characters, command recognition features, andhelp
facility (via "?") are available. When FfP is waiting for keyboard input, a blinking cursor appears at the
next character position.

4.1. Directing Keyboard input to the User and Telnet Windows

The bottom two unmarked keys control which window gets characters from the keyboard. Hitting the
unmarked key to the right of'right-shift' (also known as the 'Swat key') directs keyboard inQut to the
Telnet window. Hitting the unmarked key to the right of the 'return' key (also known as the 'Chat key')
directs keyboard input to the FTP User window. The window which currently owns the keyboard will
blink a cursor at the next character position if it is waiting for type-in. -

4.2. Keyboard Commands

OPEN <host name>
Opens a connection to the FfP Server in the specified host. FTP permits only one user connection
at a time. In most cases the word OPEN may be omitted: i.e., a well formed <host name> is a legal
command and implies a request to OPEN a connection. FTP will try for one minute to connect to
the specified host If you made a mistake typing the host name and wish to abort the connection
attempt, hit the middle unmarked key (to the right of<return».

Ordinarily, host name should be the name of the machine you wish to connect to (e.g., "Maxc").
Most Altos have names which are registered in Name Lookup Servers. So long as a name lookup
server is available, FfP is able to obtain the information necessary to translate a known host name
to an inter-network address.

If the host name of the server machine is not known or if no name lookup servers are available, you
may specify an inter-network address in place of the host name. The general form of an inter
network address is:

<network> # <host> # <socket>

where each of the three fields is an octal number. The <network> number designates the network to
which the Server host is connected (which may be different from the one to which the User hostis
connected); this (along with the "#" that follows it) may be omitted if the Server and User are
known to be connected to the same network. The <host> number designates the Server host's

. address on that network. The <socket> number designates the actual Server process on that host;
ordin,Pljt should be omitted, since the default is the regular FTP server socket. Hence, to connect
to the server running in Alto host number 123 on the directly-connected Ethernet, you should
say "OPEN 123#" (the trailing" #" is required).

CLOSE
Closes the currently open User FfP connection. CLOSE cancels any defaults set by CONNECT,
DIRECTORY, DEVICE, BYTE, TYPE, or EOLC commands.

Alto Pup FfP

Cleared version of May 24, 1981

October 26, 1980 65

LOGIN <user name> <password>
Supplies any logm parameters required by the remote server before it will pennit file transfers. FTP
will use the user name and password in the Operating System, if they are there. Logging into FfP
will set the user name and password in the OS (in the same manner as the Alto Executive's "Login"
command).

When you issue the "Login" command, FfP will first display the existing user name known to the
OS. If you now type a space, FfP will prompt you for a password, whereas if you want to provide a
different user name, you should first type that name (WhICh will replace the previous one) followed
by a space. The command may be terminated by carriage return after entering the user name to
omit entering the password.

The parameters are not immediately checked for legality, but rather are sent to the server for
checKing when the next file transfer command is issued. If a command is refused by the server
because the name or password is incorrect, FfP will prompt you as if you had issued the LOG IN
command and then retry the transfer request. Hitting oelete in this context will abort the command.

A user name and ~aIs~word must be supplied when transferring files to and from a Maxc system or
an IFS. The Alto Server requires a user-password to be supplied if the server machine's disk is
password-protected and if the password in the server machine's as does not match the password on
the disk. Thus if the OS was booted and FfP invoked because a Request-for-Connection was
received (which bypasses password checking), FTP will refuse access to files unless a password is
supplied. However if the as was booted normally, FfP assumes that the disk owner (wlio knew the
password) will control access by using the server option switches. The user-name is ignored.

CONNECT <directory name> <password>
Requests the FfP server to "connect" you to the specified directory on the remote system, i.e., to
give you owner-like access to it. The password may be omitted by typing carriage return after the
directory name. As with LOGIN, these parameters are not verified until the next transfer command
is issued. CONNECT cancels the effect of any previous DIRECTORY command. At present, the
"Connect" command is meaningful only when transferring files to or from a Maxc system or an
IFS; the Alto FfP server currently ignores connect requests. If the "multiple directory" feature of
the Alto Operating System ever comes into widespread use, this may be changed.

DIRECTORY <directory name>
Causes <directory name> to be used as the default remote directory in data transfer commands
(essentially it causes <directory-name> to be attached to all remote filenames that do not explicitly
mention a directory). Specifying a default directory in no way modifies your access privileges,
whereas CONNECTing gives you 'owner access' (and usually requires a password). Explicitly
mentioning a directory In a file name overrides the default directory, which overrides the connected
directory, which overrides the login directory. Punctuation separating <directory name> from other
parts of a remote filename should not be included. For example you might type "Directory Alto"
not "Directory <Alto>".

RETRIEVE <remote filename>
Initiates transfer of the specified remote file to the local host. The syntax of <remote filename> must
conform to the remote host's file system name conventions. Before transferring a file, FfP will
suggest a local-filename (generally the same as the remote-filename without directory or version),
and will tell you whether or not the file already exists on your local disk. At this point you may
make one of three choices:

1. Type Carriage Return to cause the data to be transferred to the local filename.

2. Type Delete to indicate that the file is not to be transferred.

3. Type any desired local filename followed by Return. The previous local filename will
disappear, the new filename will replace it, and FfP will tell you whether a file exists with that
name. This filename must conform to local conventions. You now have the same three
choices.

Alto Pup FfP

Cleared version of May 24,1981

October 26, 1980 66

If the remote-filename designates multiple files (the remote host pennits "*" or some equivalent in
file names), each file will be transferred seRarately and FfP will ask you to make one of the above
three choies for each file. At present, only Maxc and IFS support this capability. That is, you may
supply "*"s in the remote-filename when retrieving files from a Maxc or an IFS, but not when
retneving files from another Alto. .

STORE <local filename)
Initiates transfer of the specified local file to the remote host. Alto file name conventions apply to
the <local filename); "*' expansion is not supported. FfP will suggest a remote-filename to which
you should respond in a manner similar to that described under RETRIEVE except that if you
supply a different filename, it must confonn to the remote file system's conventions. The default
remote filename is one with the same name and extension as the local file; the remote server
defaults other fields as necessary. If the remote host is a Maxc system or an IFS, then the directory
is that most recently supplied in LOGIN or CONNECT or DIRECTORY commands and the
version is the next higher. .

DUMP <remote filename)
Bundles together a group of files from the local file system into a 'dump-format' file (see the Alto
Executive documentation for the tUrf,p-file fonnat and more on dump-files in general) and stores
the result as <remote filename). will ask you for the names of local files to include in the
dump-file. Tenninate the dump by typing just <return> when FfP asks for another filename. By
convention, files in dump-fonnat have extension '.dm'. ,

LOAD <remote filename>
Perfonns the inverse operation of DUMP, unbundling a dump-fonnat file from the remote file
system and storing the constituent files in the local file system. For each file in the dump-file, FTP
will suggest a local file name and tell you whether a file by that name exists on your disk. You
should respond in the manner described under RETRIEVE. .

LIST <remote file designator>
Lists all files in the remote file system which correspond to <remote file designator>. The remote
file designator must confonn to file naming conventions on the remote host, and may designate
multiple files if"*" expansion or some equivalent is supported there. If the <remote file designator>
is tenninated by <comma carriage return> rather than Just a <carriage-return>, FfP prints a prompt
of "**" at the left margin and prepares to accept one or more subcommands. These sub commands
request printout of additional infonnation about each file. To tenninate subcommand input, typea
<return> in response to the subcommand prompt. The subcommands are:

Type
Length
Creation
Write
Read
Times
Author
Verbose
Everything

Print file type and byte size.
Print lengtli. of file in bytes.
Print date of creation.
Print date of last write.
Print date of last read.
Print times as well as dates.
Print author (creator) of file.
Same as Type + Write + Read+ Author.
Print all infonnation about the file.

This infonnation is only as reliable as the Server that provided it, and not all Servers provide all of
these file properties. Altos derive much of this infonnation from hints, so do not be alarmed if it is
sometimes wrong.

DELETE <remote filename>
Deletes <remote filename> from the remote filesystem. The syntax of the remote filename must
confonn to the remote host's file system name conventions. After detennining that the remote file
exists, FfP asks you to confinn your intention to delete it. If the remote filename designates
multiple files (the remote host permits "*" or some equivalent in file names), FfP asks you to
confinn the deletion of each file.

RENAME <old filename> <new filename>

Alto Pup FfP

Cleared version of May 24,1981

October 26, 1980 67

QUIT

Renames <old filename> in the remote filesystem to be <new filename>. The syntax of the two
filenames must conform to the remote host's file system name conventions, and each filename must
specify exactly one file.

Returns control to the Alto Executive, closing all open connections.

TYPE <data type>
Forces the data to be interpreted according to the specified <data type>, which may be TEXT or
BINARY. Initially the type is UNSPECIFIED, meaning that the source process shoulcL ifpossible,

- decide on the appropriate type based on local information.

BYTE-SIZE <decimal number>
Applicable only to files of type Binary, BYTE-SIZE specifies the logical byte size of the data to be
transferred. The default is 8.

EOL <convention>
Applicable only to files of type Text, EOL specifies the End-of-Line Convention to be used for
transferring text files. The values for <convention> are CR, CRLF, and TRANSPARENT. The
default is CR.

DEVICE <string>
Causes <string> to be used as the default device in data transfer commands (essentially it causes
<device> to be attached to all remote filenarnes that do not explicitly mention one). The
punctuation separating <device> from the other components of a remote filename should not be
mcluded. For example you might specify "Device DSK" to Tenex, not "Device DSK:" .

VERSION <string>
Causes <string> to be used as the default version in data transfer commands (essentially it causes the
version string to be attached to all remote filenames that do not explicitly mention one). The
punctuation separating the version information from other components of a remote filename should
not be included. For example you might specify "Version 123", to IFS, not "Version 1123"

USER
Allows ~ou to toggle switches which control operation of the FTP User. There is currently only
one: DEBUG, WhICh controls display of protocol interactions. Warning: this printout (and the
corresponding one in the SERVER command below) sometimes includes passwords.

SERVER
Allows you to toggle switches which control Qperation of the FTP Server. The switches are
PROTECTED, OVERWRITE, KILL, and DEBUG, corresponding to the global switches IP,IO,
IK, and 10.

TELNET
Allows you to toggle switches which control operation of the Telnet. There is currently only one:
CLOSE, which closes the Telnet connection if one is open, and clears the Telnet window.

5. Command Line Syntax

The User FTP can also be controlled from the command line. As explained above, the first token afterthe
subsystem name and server switches must be a legal host name; if ilie User FTP can't connect to the FTP
Server on that host it will abort and return control to the Alto Executive. If a command list follows the
host name, the command line interpreter is invoked instead of the interactive keyboard interpreter. This
permits the full capabilities of the Alto Executive (filename recognition, "*" expansion, command files,
etc.) to be used in constructing commands for FTP.

Each command is of the form:

Alto Pup FfP

Cleared version of May 24,1981

October 26, 1980

<Keyword)/<SwitchList) <arg> ... <arg>

68

To get a special character (anyone of "*#';") past the Alto Executive, it must be preceded by a single
quote. T~ nt a "I" into an FTP argument, the "I" must be proceeded by two single quotes (the second
one tells to treat the "I" as an ordinary character in the argument, and the first one gets the second
one past the Alto Executive).

UnamQiguous abbreviations of command keywords (which in most cases amount to the first letter) are
legal. However, when constructing command files, r.0lp should always spell commands in full, since the
uniqueness of abbreviations in the present version of is not guaranteed in future versions.

A command is distinguished from arguments to the previous command by having a switch on it, so every
command must have at least one switch. The switch It IC" has no special meaning and should be used on
commands where no other switches are needed or desired.

5.1. Command Line Errors

Command line errors fall into three groups: syntax errors, file errors, and connection errors. FfP can
recover from some of these, though it leaves the decision about whether to try up to you.

~~~ax errors such as unrecognized commands or the wrong number of arguments to a command cause 
's command interpreter to get out of sync with the command file. FfP can recover from syntax errors 

by simply ignoring text until it encounters another comrnand (Le. ruiother token with a· switch). 

File errors such as trying to retrieve a file which does notexist are relatively harmless. FfP recovers from 
file errors by skipping the offending file. 

Connection errors such as executing a store command when there is no open connection could cause FTP 
to crash. FfP can'.t recover from connection errors. 

When FfP detects an error, it displays an error message in the User window. If the error is fatal, FTP 
waits for you to type any character and then aborts, causing the Alto Executive to flush the rest of the 
command line, including any commands to invoke other subsytems after FTP. If FfP can recover from 
the error, it asks you to confirm whether you wish to continue. If F~'i> confIrm, it plunges on, otherwise it 
aborts. The confirmation request can be bypassed by invoking with the global error switch false 
(FTPI-E ... ) in which case it will plunge on after all non fatal errors. If you aren't around when an error 
happens and you have told FTP to get confirmation before continuing after an error, the remote Server 
will probably time out and close the connection. If you then return and tell FfP to continue, it will geta 
fatal connection error and abort. 

5.2. Command Line Switches 

Most commands take local switches. These switches have default values which are used if the switch isnot 
mentioned. Proceeding a switch with a minus sign inverts its sense: Retrieve/-O means retrieve butdon't 
overwrite. While the interpretation of a switch sometimes depends on the command, the general idea is: 

Switch 

IC 

IS 

ID 

IV 

Default 

false 

update 

false 

Function 

[Command] null switch which tells the command line parser that this token is a 
command. 

[Selective] the remote and local file names differ. The LOAD command uses this 
switch slightly differently. 

[Dates] show file creation dates. 

[Verify] request confirmation from the keyboard. 



Alto Pup FfP 

10 true 

Cleared version of May 24, 1981 

October 26,1980 

[Overwrite] allow overwriting existing files. 

69 

Transfers may be conditioned upon comparison of the creation dates of corresRonding local and remote 
files. The comRarison is <source file> <operator> <destination file). For STORE, the source file is the 
local file; for RETRIEVE, the source file is the remote file. The operators are: 

Switch Function 

1# 

1= 

I) 

1< 

IU 

IA 

rNotEqual] transfer the file if the creation dates are not equal. This must be quoted (I' #) to 
keep it out of the clutches of the Alto Exec. 

[Equal] transfer the file if the creation dates are equal. 

[Greater] transfer the file if the source's creation date is greater than the destination's. 

[Less] transfer the file if the source's creation date is less than the destination's. 

[Update] same as I> (for backward compatibility). 

[All] transfer the file even if no corresponding file exists in the other file system. 

If more than one switch is present, they are ORed together, so, for example, "I) =" means transfer the file 
if the source's creation date is greater than or equal to the destination's .. 

The sense ofa switch is inverted ifit is preceeded by a minus sign. Thus: 
1-= is equivalent to 1#, 
1-# is equivalent to 1=, 
I -< is equivalent to I) =, and 
1-> is equivalent to 1<=. 

Note t1!at a minus sign inverts the sense of the immediately following character, not the entire operator 
expreSSIOn. 

5.3. Command Line Commands 

OPEN IC <host name) 
See description in "Keyboard commands". The first token after the subsystem name and global 
switches is assumed to be a host name and no OPEN verb is required (in fact if you supply it, FfP 
will try to make a connection the host named OPEN which is alniost certainly not what you want). 

CLOSE/C 
Closes the currently open Use~ FTP connection. 

LOGIN/C <user name) <Q~ssword) 
See description in "Keyboard commands". The <password) may be omitted. 

LOGIN/Q <user name) 
Causes FTP to prompt you for the password. This form of LOGIN should be used in command 
files since including passwords in command files is a bad practice. 

CONNECT IC <directory name) <password> 
See description in "Keyboard commands". The <password) may be omitted. 

CONNECT 10 <directory name) 
Causes FTp to prompt you for the password needed to connect to the specified <directory name). 
This form of CONNECT should be used in command files since including passwords in command 
files is a bad practice. 

DIRECTORY IC <default directory) 



Alto Pup FTP 

Cleared version of May 24, 1981 

October 26,1980 

See discription in "Keyboard commands". 

RETRIEVE/C <remote filename> ... <remote filename> 

70 

Retrieves each <remote filename>, constructing a local file name from the actual remote file name as 
received from the Server. FTP will overwrite an existing file unless the IN (No overwrite) switchis 
appended to the RETRIEVE command keyword. 

If the remote host allows "*" (or some equivalent) in a filename, a single remote filename may result 
in the retrieval of several files. (Note that you must quote the "*" to get it past the Alto Executive's 
command scanner.) As mentioned previously, this capability is implemented only by Maxc andIFS 
FTP Servers at present. 

RETRIEVE/S <remote filename> <local filename> 
Retrieves <remote filename> and names it <local filename> in the local file system. This version of 
RETRIEVE must have exactly two arguments. FTP will overwrite an existing file unless the 1·0 
(No Overwrite) switch is also appended to the RETRIEVE command keyword. The remote 
filename should not cause the server to send multiple files. 

RETRIEVE/> <remote filename> ... <remote filename> 
Retrieves <remote filename> if its creation date is greater than that of the local file. If the 
corresponding local file doesn't exist, the remote file is not retrieved. This option can be combined 
with RETRIEVE/S to rename the file as it is transferred. 

RETRIEVE/> A <remote filename> ... <remote filenfulle> 
Same as RETRIEVE/) except if the corresponding local file doesn't exist, the remote file is 
retrieved anyway. .. . 

RETRIEVE/V 
Requests confirmation from the keyboard before writing a local file. This option is useful in 
combination with the Update option since creation date is not a fool·proof critenon for updating a 
file. 

RETRIEVE/·O Retrieves a file only if the corresponding local file doesn't exist 

STORE/C <local filename> ... <local filename> 
Stores each <local filename> on the remote host, constructing a remote filename from the name 
body of the local filename. A local filename may contain "*", since it will be expanded by theAlto 

,Executive into the actual list of filenames before the FTP subsystem is invoked. 

STORE/S <local filename> <remote filename> 
Stores <local filename> on the remote host as <remote filename>. The remote filename must 
conform to the file name conventions of the remote host. This version of store must have exactly 
two arguments. 

STORE/> <local filename> ... <local filename> 
Stores each <local filename> on the remote host if the local file's creation date is greater than the 
remote file's. If the corresponding remote file doesn't exist, the local file is not stored. This option 
can be combined with STORE/S to rename the file as it is transferred. 

STORE/>A <local filename> ... <local filename> 
Same as STORE!) except if the corresponding remote file doesn't exist, the local file is stored 
anyway. 

STORE/V 
Requests confirmation from the keyboard before writing a remote file. This option is useful in 
combination with the Update option since creation date is not a fool-proof criterion for updating a 
file. 

DUMP/C<remote filename> <local filename> ... <1ocal filename> 
See the description in "keyboard Commands". 



Alto Pup FfP 

Cleared version of May 24, 1981 

October 26, 1980 

LOAD/C <remote filename> ... <remote filename> 

71 

See the description in "keyboard Commands". If the IV switch is ap~nded to the LOAD 
command keyword, FfP will request confimation before writing each file. Type <return> to write 
the file, <deD to skip it. FrP will overwrite an existing file unless the IN (No overwrite) switch is 
appended to the LOAD command keyword. 

LOAD/) <remote filename> ... <remote filename> 
Loads files from <remote filename> if their creation dates are greater than the corresponding 
creation dates of local files. If the corresponding local file doesn't exist, the remote file is not 
loaded. 

LOAD/)A <remote filename> ... <remote filename> 
Same as LOAD/) except if the corresponding local file doesn't exist, the remote file is loaded 
anyway 

LOAD/S <remote filename> <filename 1> ... <filename 0> 
Loads files from <remote filename) if their names are in the list <filename I) ... <filename 0>. Files 
within the dump file that are not in the list are skipped. This option can be combined with the IU, 
IV, and IN opoons. 

LIST IC <remote filename> ... <remote filename> 
See the description in "Keyboard Commands". The subcommands are specified by local switches: 

IT 
IL 
ID 
IW 
IR 
IA 
IV 
IE 

Type, 
Length in bytes, 
Creation date (see below), 
Write date, 
Read date, 
Author (creator), 
Verbose = ITWRA, and 
Everything = ITLDWRA. 

Dates always include times. IC should have been the creation date but that collides with the useof 
IC to mean no local options (sigh). 

DELETE/C <remote filename> 
See the description in "Keyboard Commands". If the IV switch is appended to the DELETE 
command keyword, FfP will reguest confirmation before deleting each file. Type <return> to 
delete the file, and <deD (oops!) if you don't want to delete it. . 

COMPARE/C <remote filename> ... <remote filename> 
Compares the contents of <remote filename> with the file by the same name in the local file system. 
It tells you how long the files are if they are identical or the byte position of the first mismatch if 
they are not. (No corresponding command is available in the Keyboard command interpreter for 
implementation reasons: there is not enough room for it in Alto memory.) 

COMPARE/S <remote filename> <local filename> 
Compares <remote filename) with <local filename>. The remote filename must conform to the file 
name conventions of the remote host. This version of COMPARE must have exactly two 
arguments. 

CO MMENT IS <arbitrary text> 
The <arbitrary text> is ignored until a token with an imbedded "I" is encountered. This token is 
taken as the next command. The quote character is a single quote. Thus "foo'/bar" does not 
terminate a comment. 

RENAME/C <old filename> <new filename> 
See the description in "Keyboard Commands". 

TYPE/C <data type> 



Alto Pup FTP 

Cleared version of May 24,1981 

October 26, 1980 

See the description in "Keyboard Commands". 

BYTE-SIZE/C <decimal number> 
See the description in "Keyboard Commands". 

EOL/C <convention> 
See the description in "Keyboard Commands". 

DEVICE/C <string> . 
See the description in "Keyboard Commands". 

VERSION/C <string> 
See the description in "Keyboard Commands". 

DEBUG/C 

72 

See the description of the DEBUG subcommand under the USER command in "Keyboard 
Commands". 

5.4. CLI Examples 

To transfer files FTP.run and FTP.syms from the Alto called "Michelson" to the Alto called "Morley",one 
might start up FTP on Michelson (to act as an FTP Server), then walk over to Morley and type: 

FTPMichelson Retrieve/C FTP.runoFTP.syms 

Alternatively, one could start an FTP server on Morley (invokingit by "FTPIO"to permit files to be 
overwritten on Morley's disk), then issue the following command to Michelson: 

FTP Morley Store/C FTP.run FTP.syms 

The latter approach is recommended for transferring large groups of files such as "* .run" (since expansion 
of the "*" will be performed by the Alto Executive). 

To retrieve User.cm from the FTP server running on Alto serial number 123 (name unknown, but it is on 
the local Ethernet): 

FTP 123' # Retrieve/C User.cm 

Note that the" #" must be preceded by a single quote when included in a command line, since otherwise 
the Alto Executive does funny things with it. (Quotes are not necessary when typing to FTP's interactive 
keyboard interpreter). 

To start FfP, have the FTP User connect to Maxc, and then accept further commands from the keyboard: 

FTPMaxc 

To retrieve <System>Pup-Network.txt from Maxc and store it on the Alto as 
PugDirectory.bravo, and store PupRTP.bcpl, Puplb.bcpl, and PupBSPStreams.bcpl on 
<DRB> with their names unchanged: 

FTP Maxc ConnectiC drb mypassword Retrieve/S <System)Pup-Network.txt 
PupDirectory.bravo Store/C PupRTP.bcpl Puplb.bcpl PupBSPStreams.bcpl 

To retrieve the latest copy of all .RUN files from the <alto> directory, overwriting copies on 
the Alto disk (The single quote is necessary to prevent the Alto Executive from expanding the 
"*"): 

FTP Maxc Retrieve/C <alto>' * .run 



Alto Pup FrP 

Cleared version of May 24, 1981 

October 26, 1980 

To update the Alto disk with new copies of all <alto) files whose names are contained in file 
UpdateFiles.cm, requesting confirmation before each retrieval: 

FrP Maxc Directory/C Alto Ret/)V @UpdateFiles.cm@ 

To store all files with extension .BCPL from the local Alto disk to your login directory on 
Maxc (the Alto Executive will expand "*.bcpl" before invoking FfP): 

FTPMaxc Store/C *.bcpl 

To retrieve <System)Host-name/descri}tI~file.txt;43 (two single quotes are necessary to get 
the "I" r.ast the Alto Executive and the command scanner, and one quote is necessary to 
get the ' ;" past the Alto Executive): 

FTP Maxc Ret/C <System>Host-name"/descriptor-file.txt';43 

To cause Memo.press to be spooled for printing by the Maxc printing system: 

FrP Maxc Store/S Memo.press LPT: 

This also works unformatted text files if you know what you are doing. It does not do the 
right thing for Bravo-format files. 

To use FTP as a stop-gap IFS: 

FTP/T-UO 

This starts only a server with overwriti~g of existiIlg files permitted. When using the trident, 
there isn't enough space to start both a User and a Server. 

6. File Property Defaulting 

73 

Without explicit information from the file system, it is often difficult to detennine whether a file is Binary 
or Text, if Binary, what its byte-size is, and if Text, what End-Of-Line convention is used. The User and 
Server FTPs use some simple heuristics to determine the correct manner in which to transfer a file. The 
heuristics generally do the right thing in the face of incomplete information, and can be overridden by 
explicit commands from a human user who knows better. 

The FTP protocol specifies a standard representation for a file while in transit over a network. If the file is 
of type Bmary, each logical byte is packed right-justified in an integral number of 8-bit bytes. The byte
size is sent as a property along with the file. If the file is of type Text, each character is sent right-justified 
in an 8-bit byte. An EOL convention may be sent as a file property. The default is that <return> marksthe 
end of a line. 

6.1. File Types 

FfP determines the type of a local file by reading it and looking for bytes with the high-order bit on. If 
any byte in the file has a high-order bit on, the file is assumed to be Type Binary, otherwise it is assumedto 
be Type Text. FrP will generate a warning, but allowJou to send what it thinks to be a text file as type 
Binary, since no infonnatlOn is lost. It will refuse to sen a binary file as type text. 

Don't specify a Type unless you know what you are doing. The heuristic will not lose 
infonnation. 



Alto Pup FfP 

6.2. Byte-Size 

Cleared version of May 24, 1981 

October 26, 1980 74 

If a file is type Binary, the byte-size is assumed to be 8 unless otherwise specified. The FfP User and 
Server will both accept binary files of any byte-size and write them as 8 bit bytes on the disk. No 
transformation is done on the data as it is written to the disk: it is stored in network default fonnat. Since 
there is no place in the Alto file system to save the byte-size property, it is lost. 

Similarly, requests for Binary files will be honored with any byte size, and whatever is on the disk will be 
sent to the net without transfonnation. Since Alto files have no byte size information, the byte-size 
property will be defaulted to 8 unless otherwise specified (by the BYTE command), in which case whatever 
was otherwise specified will be sent as the byte size. 

Don't specify a Byte-size unless you know what you are doing. Alto-Alto transfers can't go 
wrong. Alto-Maxc transfers with weird byte-sizes will not work unless the byte-size specified 
in the Alto to Maxc direction is the same as the byte-size in which the file was stored on the 
Alto. If it isn't, the Alto will not give any error indication, but the result will be garbage. 

6.3. End-of-Line Conventions 

FTPs are expected to be able to convert text files between the local file system End-Of-Line (EOL) 
convention and the network convention. Conveniently enough, the Alto file system's internal 
representation of a text file is the same as the network standard (a bare <return> marks the end of a line). 
The Alto FrP does not do any transformations on text files. It will refuse to store a text file coming in 
from the net whose EOL convention is CRLF. 

As an escape to bypass conversion and checking, EOL convention 'transparent' tells both ends NOT to 
convert to network standard, but rather send a file 'as is'. This is included for Lisp files which contain 
internal character pointers that are messed up by removing line feed characters. 

Don't specify an EOL convention unless }lou know what you are doing. If your text file is a 
Lisp source file, specify EOL convention 'Transparent'. 

6.4. File Dates 

The Alto file system keeps three dates with each file: Creation, Read, and Write. FfP treats the read and 
write dates as proPI~ies describing the local copy of a file: when the file was last read and written in the 
local file system. treats the creation date as a propeI"!Y of the file contents: when the file contents were 
originally created, not when the local copy was created. Thus when FTP makes a file on the local disk, the 
creation date is set to the creation date supplied by the remote FTP, the write date is set to 'now' and the 
read date is set to 'never read'. 

7. Abort and Error messages 

Error and Abort packets are displayed in a window above the title line. Abort packets are fatal; Error 
packets are not necessarily so. . 

The most common Abort message is "Timeout. Good bye", generated when a server process has not 
received any commands for a long time (typically 3 minutes). 

The most common Error message is "Port 10 overflow" indicating a momentary shortage of input buffers 
at the remote host. Receiving an Error Pup does not imply that the file in tranSIt has been damaged. Loss 
of or damage to a file will be indicated by an eXI>licit message in the User FTP window. The next iteration 
of Pup will probably rename 'Error Pups to be 'Infonnation Pups'. 



Alto Pup FfP 

8. Telnet 

Cleared version of May 249 1981 

October 269 1980 75 

FfP provides a simple User Telnet as a convenience for logging into a remote host (e.g., Maxc) to Roke 
around without havmg to leave the FTP subsystem and start Chat. It lacks most of the creature comforts 
Chat provides9 such as automatic attaching to detached jobs9 automatic logging in, etc. The Telnet is not 
enabled when the User FfP is being controlled from the command line. When the Telnet does not have 
an open connection, it waits for you to type a host name with the syntax explained above for the OPEN 
command9 and then attempts to connect to the specified host. If you wish to abort the connection attempt, 
hit the bottom unmarked key (opposite right-shlft). You can get a larger Telnet window by not starting a 
server (type FTP/-S to the Executlve). 

9. Revision History 

April 1976 

First release. 

May 1976 

IQ switch added to CONNECT. Connection requests to the User FrP and Telnet can be aborted. Login 
prompt changed. 1 minute Timeout added when waiting to finish after a command line error. User FrP 
automatically recovers from more "No" responses from the remote server. __ 

June 1976 

Dos version released. DIRECTORY and LIST, commands added. Update (/U) option added. File 
creation dates added. 3 minute no-activi9' timeout added to FTP Server. FfP version, tirne-of-daY9 and 
machine address added in top window. "Ding" now flashes only the affected window instead of the whole 
display. 

August 1976 

RDos version released. Same as June release for Dos and Alto. 

October 1976 

DUMP and LOAD commands added to user FTP. KILL command added. Free disk page count addedto 
the title line. Verify (IV) switch added to the RETRIEVE command. 

November 1976 

Bug fixes to the October release. 

May 1977 

This version was only released to friends. KILL command removed and turned into a server option. 
DEBUG command moved into new USER and SERVER commands. Trident disk option (IT) added. 
User LIST command improved and Server LIST response implemented. Password checking by the FfP 
server implemented. Telnet window enlarged at the exp~nse of Rossibly losing information from the top of 
the window if the lines are very full. DELETE, RENAME, and DEVICE commands implemented. Much 
internal reorganization so that the protocol modules could be used in IFS and released as a package. 

July 1977 

Global switches changed. (Shift-Swat> should work more reliably now. User LIST command further 



AltoPupFfP 

Cleared version of May 24,1981 

October 26,1980 76 

improved. Keyboard command interpreter is much more robust and consistant. Command line STORE 
ana DUMP go much faster since they look up files using MDI. FfPlTx opens Trident unit 'x'. LOGIN 
command added to command line interpreter. 

November 1977 

Microcode' added to speed up execution. 

March 1978 

User log oRtion added (see IL and / A switches and 'FfP User Log' section). AllocatorDebug switch 
removed. New command line commands COMPARE, OPEN, and CLOSE added. Command line errors 
are handled differently (see IE global switch and 'Command Line Errors' section). When using a Trident, 
either a User or a Server FfP is started but not both (see the section on Trident disks). 

September 1979 

This is a maintenance release coordinated with OS17, fixing a few bugs and reloading with current 
Qackages. CONNECT cancels anYJ2Ievious DIRECTORY. CLOSE cancels any previous CONNECT, 
DIRECTORY, DEVICE, TYPE, BYTE, or EOLC. Multiple logical file systems on a T-300 can now be 
addressed: Ftp/T400 opens logical filesystem 1 on physical unit O. 

October 1979 

The command line version of the OPEN command retries failed connection attempts every five seconds 
under control of the error flag. Ftp.boot is now a type B boot file. It EtherBoots faster and consumes less 
disk space in boot servers. It now works with all Alto file system configurations.' , 

June 1980 

New command line commands: LIST, LOAD/U and LOAD/S. Ftp handles file creation dates in dump
format files. Subcommand mode in the keyboard LIST command IS the same as Maxc and IFS, namely 
one tenninates the filename with <comma carriage-return>, and the VERBOSE option includes file 
lengths. The keyboard DIRECTORY and DEVICE commands display their previous values. STOREand 
RETRIEVE report bits per second. The TFS option now works on Alto/Sugartsystems. 

September 1980 

New commands STORE/U, STORE/V, COMMENT IC, and VERSION. I A switch during date 
controlled transfers controls whether to transfer a file when the corresponding file in the other filesystem 
doesn't exist. ID switch controls display of file creation dates. 

October 1980 

New switches: 1=, 1#, I), 1<, which generalize date-controlled transfers (see section 5.2). When Ftp 
finishes, it only updates the usemame and password in the as ifno~assword was present when itstarted. 
Thus, if you log in as "guest" to access a file on a foreign file server, Ftp won't clobber your real identity. 



Listing Syms files 

Cleared version of May 24, 1981 

March 28, 1978 

ListSyms - a subsystem for listing Syms files 

77 

The ListSyms subsystem takes a Syms file (produced by BLDR) and converts it to a useful human
readable fonn. ListSyms produces a file with several parts: 

A listing of the space occupied by each binary output file CRun or .BB). 
A listing similar to the listing optionally produced by BtDR, i.e. a fist, sorted by BR file and 

location within the file, of all static symbols defined, with an indication as to whether the symbol is 
external and whether it is a procedure, label, or static variable. 

A list of all statics in alphabetic order, accompanied by the name of the BR file in which each 
one is defined and (optionally) a list of all the BR files in which each is used. 

A list similar to the preceding, but listing the statics for each file separately, and only listing 
statics declared externalll.e. accessible from other files). 

A concordance of undefined externals: for each BR file which references undefined externals, it 
lists those externals in alphabetic order under the file name. 

One invokes ListSyms as follows: 
)ListSyms inputfile outputfile 

Inputfile will nonnally be something.Syms: if it has no extension, ListSyms will supply .Syms. Outputfile 
may be omitted, in which case ListSyms will take inputfile (shorn of extension if any) and append .BZ to 
form the output file name. 

ListSyms accepts 7 switches, all global: 
I A produces the alphabetic listing 
IF produces a file-by-file alphabetic listins with cross-reference 
IN produces the numeric (file-by-file) listing 
10 produces only the listing of the binary file sizes 
IS includes static variables, which are nonnally omitted 
IU produces the listing of undefined externals 
IX produces the alphabetic listing with cross-reference 

The switches may be either upper or lower case, and IS is independent of the other switches. If none of 
I A, IF, IN, 10, IU, or IX appears, you will get the I A, IN, and IU listings but no cross-reference. 

ListSyms starts by printing a message of the fonn 
ListSyms of [date] -- [inputfile] -) foutputfile] 

If ListSyms completes nonnally, it wi I pnnt a message of the fonn 
12345b characters written on outputfile 

ListSyms produces a variety of error messages. Currently these are: 
{filename] does not exist 

indIcates ListSyms was unable to open the Syms file. 
Syms file too big 

indicates insufficient room for reading the Syms file. ListSyms aborts. 
Can't open [filename] 

ListSyms was unable to open the outputfile or one of the BR files required for IU or IX. In the fonner 
case, ListSyms aborts; in the latter, it continues. 

[filename 1 is not a proper BR file 
One of the BR files mentIOned in the Syms file does not have the proper fonnat. ListSyms ignores the file 
and continues. 

[filenamel is too big to process 
One of the Bk files was too big to read in. ListSyms ignores it and continues. 

Too many BR files 
There were too many BR files to process in the available memory. ListSyms aborts. 

No room for bit table 
There was not enough room to hold the bit table used for IU or IX (or I A if any undefined symbols were 
present). ListSyms aborts. 

ListSyms is quite fast: it processes BRA VO.Syms in about 20 seconds, and a typical modest program 
takes less than 10 seconds. 



MailCheck 

Cleared version of May 24, 1981 

March 6, 1978 

MailCheck 

78 

This simple subsystem attempts to check for mail for a user at some other host (e.g. Maxc) via the Ethemet. 
It displays one of the following messages: 

? This Alto has no Ethernet interface! 
? Can't find a host named '<host>': <error message) 
? No response from <host> 
? <user) not valid user at <host>: <error message) 
? Error: (pup error message) 
New mail for <user) on <host>: <date) <sender) 
No new mail for <user> on <host> 

Various options can be controlled by switches and/or by an entry in your User.Cm. 

Valid switches are: 
II Check mail on Maxcl (default). 
12 Check mail on Maxc2. 
<host> IH Check mail on <host>. 
<user)/U Check mail for <user) (default is the user name obtained from the Alto QPerating system). 
IR . If there is new mail, execute a command line when }v1ailCheck exits. The command line 

defaults to "@READMAIL.CM@", i.e. to execute the contents of the file 
READMAIL.CM as a command, but this can be changed in the User.Cm as outlined 
below. 

In addition, if there may be a section in your User.Cm labeled [MAILCHECK] with the following possible 
entries: 
HOST: <host> 
USER: <user) 
NEWMAIL: <string> 

Sets the default host to check. 
Sets the default usemame to check. 
Sets the command line to be executed if there is new mail. Within the command 
line, the host name is substituted for"@H" and the user name for"@U"; to put 
an "@" in the command line it is neccessary to put two in the string. 

For example, you mig]1t add the section: 
fMAILCHECK] 
BaST: Maxc2 
NEWMAIL: CHAT@HMSG.DO/D 

Where MSG.DO is a file on your alto disk which contains "MSG<return}". 

One useful option is to put Mailcheck.Run inside the eventBooted section of your USER. eM, so that 
Mailcheck will be run whenever you boot, e.g. 

[EXECUTIVE] 
eventBooted: Mailcheck.Run I I eventBooted 
eventRFC: FTP/OKlleventRFC 

eventClockWrong: SetTime I I eventClockWrong 

Updates: As of March 1978, Mailcheck no longer does a SetTime 



MicroD 

Cleared version of May 24, 1981 

August 1, 1978 

MicroD - Dorado/DO instruction placer 

79 

MicroD takes microprograms for the Dorado or DO, assembled by Micro, and completes the assembly 
process by assigning absolute locations to the microinstructions. The resulting file can be loaded into aD
machine by MIdas and run. MicroD's job is to find a way to assign locations to microinstructions in a way 
that satisfies both the semantics of the source program and the peculiar addressing restrictions of the 
hardware. 

This document is deliberately somewhat sketchy, since it assumes that its readers have already absorbed 
the necessary "culture" surrounding D-machine microprogramming and just want to know how toconvert 
Micro output into Midas input. At some future date it may be expanded to be more helpful to peoplejust 
getting started. 

The simplest way to use MicroD is to assemble your entire microprogram at once with Micro, producing a 
single file xxx.DIB. (DIB stands for "D-machine Intermediate Binary".) Then you invoke MicroD as 
follows: 

MicroD xxx 
to produce a listing file xxx.DLS and a final binary file xxx.MB which can be fed to Midas. 

MicroD normally J?roduces a listing with the following parts: 
The name and Initial contents of each defined R memory location. 
The initial contents of each IFU and ALUF memory location. 
The label and octal representation of each microinstruction. 
A summary of how much of each page of I (microinstruction) memory was used. 

MicroD accepts the following global flags which affect the listing: 
IN (No listing) - only produce the summary 
IC (Concise) - produce everything but the octal contents of I meinory 

The following global flags produce additional information, not useful to the ordinary user: 
ID (Debug) - print a large amount of debugging information 
IT (Trace) - print a trace of the calls on the storage allocator 

Normally MicroD produces its output on xxx.DLS and xxx.MB, where xxx is the name of the last (or only) 
input file. You can specify a different name with the local 10 switch, e.g. 

MicroD xxx yyy I 0 
to process xxx.DIB but produce yyy.DLS and yyy.MB. 

If you wish, you can assemble your microprogram in pieces and let MicroD link the pieces together. (This 
can save a large amount of assembly time for large programs.) Suppose your program consists of the 
following parts: some definitions defsl.MC and defs2.MC; one large piece of code thisl.MC and 
this2.MC; another large piece of code that.MC. Then you can proceed as follows: 

Micro saveitls defs/lJ defs1 defs2 
This assembles the definitions, saves Micro's state on saveit.ST, and produces a file defs.DIB. 

Micro saveitlr this/b this1 this2 
This resumes assembly with the definitions saved in saveit, producing this.DIB. Micro will give you a list 
of "undefined symbols", which are references to symbols not defined in this 1 or this2 (presumably defined 
in that). 

Micro saveitlr that 
This again resumes assembly with the saved definitions, producing thatDIB. Again, Micro will list the 
symbols not defined in that (presumably defined in this1 or this2). 

MicroD myprog/o defs tliis that 
MicroD will link together any references from this to that (or vice versa) and produce the output files 
myprog.DLS and myprog.MB. 

Note that you do not need to do anything special in your source files to declare labels which are exported 
(defined here, used elsewhere) or imported (used here, defined elsewhere): Micro assumes that al!Y 
undefined symbol is meant to be imported (but gives you the list just so you can check), and MicroD 
assumes that all labels are· exported. MicroD also discards all but the last definition of a name (e.g. the 
name ILC is defined in every file as the address of the last microinstruction). 



MicroD 

Cleared version of May 24, 1981 

August 1, 1978 80 

If you have multiple .DIB files, you can control the listing mode (normal, No listing, or Concise) for each 
file individually by using IL (List), IN, or IC as a local switch on the file name. The ~lobal switch, ifany, 
applies to any mput file that jacks a local switch. For example, to get only a concise lIsting for the second 
part of the program in the above example, you can use 

MicroD/n myprog/o defs this thatlc 



MoveToKeys 

Cleared version of May 24, 1981 

January 2,1979 

MoveToKeys 

81 

The Alto can boot-load a file beginning at any legal disk address. The disk address is s!!J)plied by holding 
down a collection of keys simultaneously while pressing the boot button. The MoveToKeys subsystem 
simplifies the task of getting a .boot file to begin at a specified physical disk location. To invoke 
110veToKeys, type: 

MoveToKeys filename keylist 

to the Alto Executive. "filename" is the name of the file whose first page (technically, page 1, notpa~eO) 
is to be moved to the disk address corresponding to "keylist". The legal keys are 5, 4, 6, 7, D, E, K, P, U, 
V, 0, I, and . (Remember, to type a ' I" to the Alto Executive, you must quote it.) A typical use of 
MoveToKeys is: 

MoveToKeys Dumper DU 

The file Dumper.boot could then be boot-loaded by holding down the D and U keys while pressing the 
boot button. 

MoveToKeys will prompt for rarameters omitted from the command line and will complain if any of the 
parameters supplied are illega. (For example, not all subsets of tt'1e set of legal keys correspond to legal 
aisk addresses.). In addition, the global switch IV ("verbose mode") will give you detailed information 
about the pages MoveToKeys manipulates. 

MoveToKeys actually works by determining what page resides at the specified disk address and swapping 
it with page 1 of the specified file. Depending upon the pages involved, MoveToKeys must patch up 
various pointers within the Alto file system to ensure a consistent representation of files and directories. (A 
previous version of MoveToKeys did not do this correctly inall cases.) 



Mu: Alto Microassembler 

Cleared version of May 24,1981 

March 25, 1978 

Mu: Alto Microassembler 

82 

This document describes the source language and operation of Mu, the Alto microcode assembler. Mu is 
downward compatible with Debal. the origmal Alto assembler/debugger, but has a number ofadditional 
features. Mu is implemented in BCPL, and runs on the Alto. . 

1. The source language 

An Alto microprogram consists of a number of statements and comments. Statements are terminated by 
semicolons, and everything between the semIcolon and the next Return is treated as a comment. 
Statements can thus span several text lines (the current limit is 500 characters). All other control characters 
and blanks are ignoreCl. Bravo formatting is also ignored. 

Statements are of four basic types: include statements, declarations, address predefinitions, and executable 
code. The syntax and semantics of these constructs is as follows: 

1.1. Include Statements 

Include statements have the form: 

# filename; 

They cause the contents of the specified file to replace the include statement. Nesting to three levels is 
allowed. 

1.2. Declarations 

Declarations are of three types: symbol definitions, constant definitions, and R memory names. 

1.2.1. Symbol Definitions 

Symbol definitions have the form: 

$name$Lnl,n2,n3; 

The symbol "name" is defmed, with values nl, n2 and n3. There is a standard package of symbols forthe 
Alto (AltoConstsxx.Mu, where xx is the current microcode version) which should be 'included' at the 
beginning of every source program. For those who must add symbol definitions, the interpretation of the 
n's is given in the appendix. 

1.2.2. Constant declarations 

Normal constants are declared thus: 

$name$n; 

This declares a 16 bit unsigned constant with value n. The assembler assigns the constant to the first free 
location in the constant memory, unless the value has appeared before unCler another name in which case 
the value of the name is the address of the previously declared constant. 



Mu: Alto Microassembler 

Cleared version of May 24, 1981 

March 25, 1978 83 

An alternative constant definition is used for mask constants which have a specified bus source field (recall 
that the constant memory address is the concatmatIon of the rselect and bus source fields of the 
microinstruction). The syntax is: 

$name$Mn:v; 4~n~7, ~v(2**16 

N specifies the desired bus source value, v is the constant value. 

1.2.3. R Memorv declarations 

R memory names are defined with: 

$name$Rn; O<n(40B 
(lOOB if your Alto has a RAKiI board, as most do) 

An R location may have several names. 

1.3. Address predefinitions 

Address predefinitions allow groups of instructions to be placed in specified locations in the control 
memory, as is required by the OR branching scheme used in the Alto. Their syntax is: 

In, k, nameO, namel, name2, ... , narriek-l; 

This declaration causes a block of k consecutive locations to be allocated in the instruction memory, and 
the names assigned to them. n defines the location of the block, in that if L is the address of the last 
location of the block, L and n = n. Usually, n will be 2**p-l for some small p. For example, if the 
predefinition 

!3, 4, fooO, fool, fo02, fo03; 

is encountered in the source text before any executable statements, the labels fooO-fo03 will be assigned to 
control memory locations 0-3. If there are too few names, they are assigned to the low addresses in the 
block. If there are too many, they are discarded, and an error is indicated. If there are missing labels, e.g. 
"fooO"fo02,;", the locations remain available for the normal instruction allocation process. A predefinition 
must be the first mention of the name in the source text (forward references or labels encountered before a 
predefinition of a given name cause an error when the predefinition is encountered.) 

A more general variant of the predefinition facility is available. The syntax is: 

%mask2, maskl, init, L1, L2, ... Ln; 
The effect of this is to find a block of instructions starting at location P, where P and maskl = init, and 
assign the L's to 'successive' locations under mask2. For example: 

%1, 1, 0, xO, xl; 

would force xO to an even instruction, xl to odd (the normal predefinition for most branches). 

%360, 377, 17, LO, Ll, ... LIS; 

Would place LO at xx17, L1 at xx37, L2 at xx57, etc. 

As before, if there are unused slots (e.g., 'L12"L14') they are available for reassignment, and MU 
complains if there are too many labels for the block. 



Mu: Alto Microassembler 

1.4. Executable statements 

Cleared version of May 24, 1981 

March 25, 1978 84 

Executable code statements consist of an optional label followed by a number of clauses separated by 
commas, and terminated with a semi-colon 

label: clause, clause, clause, ... ; 

If a label has been predefined, the instruction is placed at the control memory locaion reserved for it. 
Otherwise, it is assigned to the lowest unused location. . - - -

Clauses are of three types: gotos, non data functions, and assignments. 

Ooto 

Ooto clauses are of the form ':label', and cause the value of the label to be assembled into theNext 
field of the instruction. If the label is undefined, a chain of forward references is constructed which 
will be fixed up when the symbol is encountered as a label. 

Nondata Functions 

Nondata functions must be defined (by a literal symbol definition) before being encountered in a 
code clause. This type of clause assembles into the Fl, 2, or 3 fields, and represents either a branch 
condition or a control function (e.g. BUS=O, TASK). - -

Data transfers (assignments). 

All data transfers are specified by assignments of the form: 

destl ~ dest2~ ... ~source 

This type of clause is assembled by looking up the destinations, checking their legality, andmaking 
the field assignments implied by the symbol types. Each destination imposes definitional 
requirements on the source (e.g., ALU output must be defined, Bus must be defmed). These 
requirements must be satisfied by the source in order for the statement to be legal. 

When the source is encountered, it is looked up in the symbol table. If it is legal and satisfies the 
definitional requirements imposed by the deStinations, the necessary field assignments are made, 
and processing ~ontinues. If the entire source defines the Bus, and the only remaining requirement 
is that the ALU output must be defined (e.g., L~ MD), the ALUF field is set to 0 (ALU output = 
Bus), and processing continues. 

If neither of the above conditions holds, the source cali legally be only a bus source concatenated 
with an ALU function. The source token is repeatedly broken into two substrings, and each is 
looked up in the symbol table. If two substrings can be found which satisfy the requirements, the 
field assignments implied by both are made; otherwise, an error is generated. This method of 
evaluation is simple, but it ha~'pitfalls. For instance, L~2+T is legal {providing that the constant 
"2" has been defined) but L~T + 2 is not (the Bus operand must always be on the left). Note that 
'L ~ foo + T + l' specifies a bus source of 'foo' and an ALU function of' + T + l'. 
CA VEAT: The T register may be loaded from either the Bus or the output of the ALU, depending 
on the ALU function. The assembler does not check to see whether an assignment of the form 
'T~ ALU' sQecifies an ALU function that actually loads T from the ALU. For example, the clause 
'L~T~ MD-T' is accepted, but its effect is to load T directlx from MD. If this is what you intend, it 
makes matters clearer if you write 'L~MD-T, T~MD'; If it is not what you intend, you are in 
trouble. Beware! 

The constant "0" is special, in that when one or more clauses in a statement require that the bus be 
0, generation of the constant is deferred until the end of the statement. At that point, if any clause 



Mu: Alto Microassembler 

Cleared version of May 24, 1981 

March 25, 1978 85 

has caused the R memory to be loaded, the constant is not used, since the hardware forces the bus to 
o in this case. 

The destination "SINK" allows a clause to specify a bus source without specification of a 
destination. It is useful, for example, in constructs of the form 'SINK.- ACO, BUS = 0', which puts 
ACO on the bus to be tested ~ the nondata function 'BUS = 0' . You can also write things like 
'SINK +-mask constant, L.-DISP XOR T', which will cause the value of DISP to be anded on the 
bus with the mask constant. 

2. Operation 

The assembler is invoked with: 

MU/global-switches sourcefile listfile/L binfile/B statfile/S 

Legal global switches are: 

IL produce a listing file 
ID debug mode 
IN do not produce a binary file (overridden by binfile/B) 

Iflistfile/L is absent but the IL global switch is set, listing output will be sent to sourcefile.LS. 

Ifbinfile/B is absent, binary output is sent to sourcefile.MB. 

If statfile/S is absent, statistics for the assembled program are appended to the listing fue if there is one; 
otherwise, no statistics are generated. The default extension for a IS file is '.Stats'. 

The default extension for sourcefile is '.Mu'. 

Error messages will be sent to the listing file if one has been specified, unless debug mode has been set. In 
debug mode, errors are sent to the system display area, and a pause occurs at at every error (and at certain 
other times). Typing any character proceeds. 

If no listing file has been requested, debug mode is set independent of the global switch. 

3. Output file 

The assembler ~roduceds Micro format binary output. The string names of the two memories specifiedin 
the file are CONSTANT and INSTRUCTION. Only defined locations in these memories are output. 
I\1icro format is compatible with the PRom blowing program, the RamLoad 'program, and the 
PackMu/LoadRam software. Note that the instruction memory specified in the bInary file does not 
include the 3 bit F3 field, which exists only in the debugging RAM. 

4. Listing file 

The listing file contains: 

1.) All error messages (unless debug mode is set) 



Mu: Alto Microassembler 

Cleared version of May 24, 1981 

March 25, 1978 

2.) A listing of all unused but predefined locations and unresolved forward references. 

86 

3.) Two listings of the contents of the constant memory, the first sorted by address and the second 
by value. " 

4.) A listing of the names assigned to the R memory 

5.) A listing of the object and source code (with comments and declarations removed. The "35 bit 
instruction IS printed out in the following order: 

Location: RSel, ALUF, BS, Fl, F2, LoadL, LoadT, F3 

6.) The microprogram statistics (unless sent to a separate file). 



Mu: Alto Microassembler 

Cleared ver~ion of May 24,1981 

March 25, 1978 

Appendix I: Literal symbol definitions 

87 

The value of a symbol is a 3 word quantity. The first word contains a tY'pe (6 bits) and a value (10 bits) 
which detemines the interpretation of the symbol in all cases except when It is encountered as the sourcein 
a data transfer clause (assignment). The second word contains the type and value used in this case. 

The third word contains bits specifying the definitional requirements and source attributes applied when 
the symbol is encountered in an assignment. The definitional requirements are represented by single bits, 
where zero means 'must be defined' and one means' don't care'. 

Bit 0: 0 ifL output must be defined 
Bit 1: 0 if BUS must be defined 
Bit 2: 0 if ALU output must be defined 
Bits 3-7: Unused (?) 
Bit 8: L is defined 
Bit 9: Bus is defined 
Bit 10: ALU output is defined 
Bit 14: ALU output is defined 

if BUS is defmed 

(~estination-imposed requirements) 

(~ource attributes) 

Assignment processing proceeds by ANDing together the attribute words for all the destinations. The 
result contains zeroes in bits 0-2 for things that must be defined and ones elsewhere. . 

When the source token is encountered, if it is a defined symbol it is tested by checking the definitional 
requirements of the destinations against the corresponding attributes in the source. If all destination 
requirements are satisfied, the clause is com'plete. If the only unsatisfied requirement is ALU definition, 
and if the Bus is defined, the ALU function IS set to gate the bus through (thereby defining the ALU), and 
the clause is complete. If this doesn't work, or the source token is not a defined symbol, the source stringis 
dismembered in a search for two substrings, the first of which defines the Bus (bit 9), and the second of 
which defines the ALU output if the Bus is defined (bit 14). If two substrings are found, the implied 
assignments are made, and the clause is complete. Otherwise, an error is indicated. 

The svmbol type(s) detennine the fields to be set in the microinstruction: Some types are legal only as an 
isolated clause, some are legal only as the source or destination in an assignment. The currently defined 
types are: 

Type: 

o Illegal 
1 Undefined address 
2 Defined address 
3 R location +-
4 +- R location 
5 +-Constant 
6 Bus source 
7 Non-data Fl 
10 Fl +-
11 +- L defini~ Fl 
12 Non-data 2 
13 F2+-
14 +-Data F2 

15 Data F2+-

16 END 
17 +-L 
20 L+-

Legal as: 

never 
address 
address 
destination 
source 
source 
source 
clause 
destination 
source 
clause 
destination 
source 

destination 

clause 
source 
destination 

Instruction Field 
Receiving Value: 

Next 
RSel 
RSel 
RSel, BS 
BS 
Fl 
Fl 
Fl 
F2 
F2 
F2 

F2 

LoadL 

Side Effects: 

Defines Bus to be 0 

( +- L LSH 1, etc.) 

BS+-l RSEL+-O 
( +- DNS, +- ACDEST) 
BS+-O RSEL+-O 
(ACriEST+-, ACSOURCE+-) 
Not used by Mu. 



Mu: Alto Microassembler 

21 Non -data F3 
22 F3+-
23 +- F3 
24 +- ALU functions 
25 T+-
26 +-T 
27 No longer used 
30 Predefined address 
31 +- LMRSH, +- LMLSH 
32 +- Mask constant 
33 +-F2 
34 +-F1 

Cleared version of May 24, 1981 

March 25, 1978 

clause 
destination 
source 
source 
destination 
source 

F3 
F3 
F3 
ALUF 
LoadT 
ALUF 

F2 

ALUF+-1 

BS+-2 
BS+-2 

35 XMAR+-

source 
source 
source 
source 
destination 

Fl 
Fl,F2 F1 +-1, F2+-6 

The current symbol definitions are contained in file AltoConsts23.Mu. 

5. Revision History 

October 24,,1974 

'%' predefinition facility added. 

March 4,1975 

88 

This version has changed from previous releases in that the .BM file contains micro fonnat type 5 blocks 
which contain address symbols for the constant, instruction, and R memories. Programs whicli read these 
files will be expected to deal with this type of block. 

Octo~er 11,1977 

Bugs fixed: garbage in listing if statement too long; occasionally scrambled R -register listings; premature 
tennination at the end of 'insert' files. 

Features: longer statement buffer (500 characters); symbol type 35 for XMAR +-; '.Stats' file generated 
conditionally; checks for loading S-register from shifter; reports length in octal and decimal; strips Bravo 
fonnatting. , 

March 25, 1978 

Bug fixed: leaving the semicolon off the end of a predefmition yielded erroneous results with no error 
message. 

Features: listing file contains constants sorted by value as well as by address; source filename extension ' 
defaults to '.Mu'. 



Network Executive 

Cleared version of May 24, 1981 

January 12, 1980 

Network Executive 

89 

NetExec is an Alto command processor for invoking certain subsystems via the Ethernet without using the 
local disk. It is useful for rebuilding a smashed disk and for loading diagnostic programs when the dISk is 
sick. Its user interface is intentionally similar to the standard Alto Executive. . 

The program is invoked by holding down the <backspace) and <quote) keys while pressing the boot 
button. You must continue to hold the keys down until a small square appears in the middle of lliescreen, 
then you can let go. NetExec and all of the programs invoked by it are boot-format files kept by 'boot
servers' -- programs which implement the Alto boot protocol. Most gateways and some other programs 
(such as Peek) contain boot-servers. 

When the NetExec arrives, it displays a ")" and blinks its cursor to indicate that it is ready forcommands 
from the user. In parallel with this it displays a pair of lines near the top of the screen with its name and 
version number, a digital clock, and the machine's internetwork address. 

Typing "?" causes the NetExec to display a list of the boot-files it knows how to invoke. NetExec builds 
this list by probing the network for boot servers and asking them what boot files they are willing to give 
out. There are also some built-in functions which are listed by "?" as if they were boot files: 

BootDPO 

FileStat 

Partition 

Probe 

Quit 

SetTime 

Causes NetExec to boot the operating system on DPO of the current partition. 

Prompts you for a boot file name and tells you all about it: its boot fue number, 
the host from which the NetExec will obtain it, and the key combination which 
will boot it directly. 

prompts you for a disk partition number. If this number is zero, NetExec tells 
you the current disk partition. If it is non-zero, it attempts to set the' partition to 
that number. This command is only available on machines that support multiple 
disk partitions: Dorados and DOs. 

Causes NetExec to probe the network looking for boot servers. If it discovers 
any new ones, it will add the new boot files to its list. This is done once 
automatically when NetExec starts, and whenever the user types an unrecognized 
command. 

BootsDMT 

Causes NetExec to probe the network looking for a time server. If it discovers 
one, it sets the Alto's clock from it. This IS done once automatically when 
N etExec starts. 

In the future, common subsytems should be stored in a few places throughout the network, not on every 
local disk; perhaps the local disk can be eliminated entirely. Doing so requires a much better integration 
of network and as facilites than currently exists. The NetExec described here is not intended to do this. 
There are several limitations in the current implementation: 

1) 

2) 

Most boot-files are quite large. Typical boot-servers have space for only the few 
most commonly used programs. 

Boot-servers typically run in machines with some other primary purpose, such as 
gateways, and must not consume too many resources. As a result, booting is slow 
and only one machine can be served at a tIme. 



OEDIT 

Cleared version of May 24, 1981 

~ovember23,1980 

OED IT 

90 

The OEDIT program is for looking at and modifying Alto files and Alto Trident files, in octal and other 
fonnats. Call it with OEDIT fl. f2 ... where the fs are the names of the files you want to look at (you are 
limited to about 4 Trident files, 15 or 20 Diablo files). OEDIT will display the contents of the 
corresponding words of all the files on the same line, with wrap-around printing If they don't all fit. 

Each filename can be optionally preceded by a disk drive specification as in the following examples: 
"tp5:name.ext" means the file "name.ext" on Trident drive number 5, while "DPl:name.ext" means 
"name.ext" on Diablo drive 1. The default is "dp,O:", which means the standard system disk. EachT-300 
disk has up to three distinct Alto file systems; If Trident drive 2 were a T-300 drive, these file systems 
would be referred to as "tp2:", "tp402:", and "tpl002:" (a 2 in the right byte, and either 0, 1, or 2 in theleft 
byte). 

The files are initially opened with read-only access. The second and subsequent files can only be readand 
displayed by OEDIT. But OEDIT has commands that write into the first of the specified files. If you want 
to be able to alter the first file, use the IW switch on the OEDIT command. Otherwise, OEDIT will have 
to reopen the first file to obtain read/write access the first time that you try to store into it; DEDIT will 
request confirmation before reopening the first file. 

OEDIT output usually goes to the Alto screen only; the font used is the one stored in the file named 
"dpO:gachalO.a1" if that file exists, otherwise the standard system font (fixed pitch looks better). If you 
would like a permanent record of your OEDIT session, use the IF or IL switch on the OEDIT command, 
which will copy the session on the file "dpO:Oedit.Lst". ~ote that this provides a way to get octal dumps 
of Alto files. 

When it starts, the program computes the lengths (in bytes and words) of all of the specified files. For 
large files this can take upwards of 15 seconds (if the file system hints prove to be wrong), so don't be 
alarmed by the delay. 

After typing the lengths, OEDIT waits for commands: 
nl show location n of each file in the standard modes 
If show the next location of each file 
t show the previous location of each file 
cr show the current location again 
tab show the location pointed to by the last displayed location 
n! show locations n to n +40b of each file 
) show the next 40b locations of each file 
< show the previous 40b locations of each file 
n V display the value n itself in both octal and decimal 
nF beginning at current location in the first file, 

find a word containing the value n, show it and its address 
Q quit 

The If, t, tab, <, ), and cr commands can be preceded by a number which is written into the current 
location of the first file. Control-W is synonymous with 1', and control-V is synonymous with V. 

All numbers can be input in a variety of formats, called modes. Each mode is referred to be a one-letter 
code (either upper or lower case), as described in the following table: 

o 
W 
H 
A,S,orC 
X 
E 
D 

a double-word octal number 
a single-word octal number 
an octal byte 
an ASCII byte 
a hexadecimal byte 
an EBCDIC byte 
a double-word decimal number 



OEDIT 

~ a decimal byte 

Cleared version of May 24, 1981 

~ovember23,1980 91 

When inputting a number, vou announce the intended mode by giving a mode letter followed by acolon; 
the default is "0:". Thus, 1"0:354" or "0:354" or "354" inputs the integer 354b, while "C:A" inputs the 
character code for upper case A in ASCII. The register that you are loading with this input is a double 
word, 32 bit integer; this is necessary since file addresses may exceed 16 bits in length. In sItuations where 
only 16 bits make sense, such as specifying the new contents of the current word of the first file, the least 
significant 16 bits of the input register are used. Each input mode specifies a new chunk of data to be 
shifted in at the ri~ht of the mput register. Input modes that describe only a byte of data shift this newbyte 
in at the risJ1t, whIle modes that describe a double-word of data reset the entire re{!ister. Se~aratemultiple 
chunks of Input with spaces. For example, "0:40502", "40502", "h:IOI h:I02", 9'C:A c:B', "x:41 x:42", 
"x:41 c:B", and "d:I6706" are all legal ways to describe the input value 40502b (a one-word quantity). 

When inputting a number in octal, decimal, or hexadecimal, preceding the digits with a minus sign will 
take the two's complement. In particular, "-1" is an easy way to input a number that has all one bits. Thus, 
to give another example, "0:37777600000", "W:-I W:O", and "li:-I x:FF w:O" are all ways to specify a 
double word quantity consisting of 16 ones followed by 16 zeros. 

When inputting a number in octal, decimal, or hexadecimal, preceding the digits with a minus sign will 
take the two's complement. In particular, "-1" is an easy way to input a number that has all one bits. 

All addresses are word addresses (even though the file lengths are also shown in bytes.) Furthennore, 
addresses are only displayed in octal. The data words in the files can be displayed in modes analogous to 
the modes listed above: . 

o 
H 
A,S,orC 
X 
E 
D 
~ 

displays a full-word octal value 
two octal bytes 
two ASCII bytes 
two hexadecimal bytes 
two EBCDIC bytes 
a full-word signed decimal value 
two decimal bytes 

The control character correponding to each output mode is a command to type out the current location in 
that mode. If the control character is preceded by a number, it means open that location and display itin 
the specified mode. When no particular mode is spcified, OEDIT uses a set of modes called the standard 
modes. Unless you say otherWIse, the standard mode set is OHA. You may add modes to the standard set 
by specifying them as global switches on the OEDIT command; you can also remove a mode from the 
standard set by preceding that letter with a minus sign in the list of global switches. Thus, if one wanted to 
display the files in hexadecimal, ASCII, and EBCDIC only, one would type "OEDIT/-O-HXE filename". 

A note on EBCDIC: the underline character in EBCDIC is represented by left-arrow in ASCII; the cents 
symbol in EBCDIC is represented by backslash in ASCII; and the hook symbol in EBCDIC (logical 
negation) is represented by up-arrow in ASCII. All unassigned character codes in EBCDIC are represeted 
by tilde in ASCII. 

It is often useful to be able to scan through a portion of a file looking at every d'th word, t1-}at is, ala setof 
addresses that form an arithmetic progression, and either searching for a particular value in a particular 
field, or writing a particular value into a particular field. "This capacity exists in OEDIT by means of a 
special command, invoked by typing "F" or "f' without first giving a number. You will first be prompted 
to input a starting address, ending address, and the parameter d (the common difference of the arithnietic 
progression; d must be positive). Then, input a mask that specifies by its one bits the relevant field. Next, 
say S for Searching or R for Replacing. Finally, give the new data, with the bits already in the correct field; 
data bits that are obscured by the mask don't matter. Each number that you are inputting during this 
process can be in any mode; separate multiple bytes with spaces, and end each numeric argument with 
carriage return or escap~. ' 



Alto microcode overlays 

Cleared version of May 24,1981 

October 20, 1976 

Alto microcode overlays 

92 

Large systems which use the Alto control RAM, such as ByteLisp and Mesa, inevitably want to put 
more instructions in the RAM than will fit. When this happens, the system implementors can choose 
either to implement the additional functions in software, or to change the contents of the RAM 
gynamically. The package described here· provides for relativ~ly cheap dynamic overlaying of the RAM. 
The overlay regime can De very simple Gust one overlay in RAM at a time) or complex (a nested allocation 
scheme) with no changes in the swapper or the overlays themselves. 

Users of this package must, of course, still decide when loading microcode is preferable to falling ~ack 
into Nova code. In terms of space, one microinstruction does about 2/3 as much work as a Nova 
instruction, and takes 32 bits· rather than 16, so (overlaid) microcode takes about 3 times as much core 
space for equivalent tasks. The package presented here imposes an additional space overhead which may 
amount to as much as 2 * the square of the number of overlays. In terms of speed, loading a 
microinstruction takes about as long as executing a Nova instruction, and the package described here adds 
an additional time roughly equal to 1 Nova instruction for each overlay each time a new overlay must be 
loaded, so for totally straight-line code the net execution time favors Nova imI>lementation by about a 
factor of 2 (Le. to break even, a given overlay must be executed at least twice). However, microcode has 
easy access to the state information stored in the processor's R registers, while Nova code does not(unless 
it can all be passed through the AC's), so this may make microcode execution preferable even in the caseof 
straight-line code executed only once. 

l. How to use it 

Using microcode overlays reguires three steps that differ from normal use of the RAM. The Mu 
assembly process is different; the Oram program must be run to construct the data structures necessary for 
the swapper; and a small amount of extra imtialization is required at runtime. 

The first step In constructing overlay able microcode is to decide how to break up one's microcode into 
overlays and to Identify the entry points to each overlay. (One overlay may have more than one entry 
point.) The microcode sources must be broken up into files: a main file that includes all the resident code, 
plus predefinitions (but no code) for all entry points of all overlays; an initialization file (to be describedin 
a moment) that supplies dummy code for all entry points; and files for the individual overlays. 

The main file must include the following code at the beginning: 

!O,l,zero; Required by the swapper 
$ramvec2$Rnn; An S register for the base of the overlay table 

[other predefinitions, symbol defs, constants, registers, etc.] 

# swapper.mu; The swapper 

This code must occur at the beginning of the main file because the swapper's entry point (label "swapper") 
must be predefined as location 1000 in the RAM. 

The initialization file must have the following form: 

#main.mu; (or whatever the main file is called) 

entO: T +- 0, :swapper; 
entl: T +- 1, :swapper; 
ent2: T +- 2, :swapper; 
ent3: T +- 3, :swapper; 

and so on for all the entry points. (EntO, etc. should be replaced by the names of the entry points, of 
course.) 



Alto microcode overlays 

Cleared version of May 24, 1981 

October 20, 1976 93 

Since microcode is not relocatable in the RAM, all decisions about what overlays can be co-resident 
must be made at assembly time. 

After assembling the dummy file and each leaf overlay file with Mu in the usual way, run the Oram 
subsystem as follows: . 

)Oram xx.BR init.MB ov l.MB ... ovm.MB 
where xx.BR is the BR file on which Oram will write the overlay tables, init.MB is the result of assembling 
the initialization file, and ov l.MB through ovm.MB are the results of assembling the leaf overlay files. If 
all goes well, Oram will produce a variety of messages ending with 

nnn words written on xx.BR 
and return to the Executive. Oram also writes all its messages on a file called Oram.Lst. 

When you load your program with Bldr, you must include the file xx.BR produced by Oram. The 
data in this file, unlike the mitIal RAM image produced by PackMu, is required throughout the running of 
your program. You must also load the RWREG library package to obtam the Write~eg procedure used 
below, but this is only needed during initialization. . 

When loading the RAM during initialization, your program must include the following code: 

e~ternal [MCbase; MCtop] / / defined in xx.BR 
if (MCbase&l) ne 0 then 
[ let len = @MCtop 
MoveBlock(MCtop-len-l, MCtop-len, len) 
MCbase = MCbase-l 

*riteReg(nn, MCbase-2) 

wh.ere nn is the register number in the· definition oframvec2 in the main file. 

2. Design details 

In the RAM, the entry instructions of each overlay are all in the permanently resident code. If the 
overlay is present, the entry instruction is just the first instruction of its code; in this case we say the entry 
instruction is "valid". If the overlay is absent, the entry instnlction loads T with the entry number and 
branches to the swapper (the entry instruction is "invalid"). Thus when an overlay is loaded, the entry 
instructions of all overlays it overlaps must be invalidated. The chief advantage of this approach is that 
there is absolutely no time overhead if the overlay is already in the RAM, so it is feasible to overlay very 
short sequences (15 instructions, say). 

There is just one global data structure (in core) that describes the overlay structure: a table indexed by 
2 * entry number which points to overlay descriptIOns, described in the next paragraph, and also specifies 
where to start execution after the overlay is loaded. (This arrangement permits a SIngle overlay to have 
multiple entry points.) The origin of this table is the only thing known to the swapper. 

The description of an overlay (in core) must begin at an even location, and has two parts: 
1) An invalidation table which specifies how to overwrite entry instructions. Each entry in this table isa 

2-word object: the first word is a RAM address, the second word is the upper half of the microinstruction 
to write there (the lower half always being "BUS~constant, Load T, brancli. to swapperlt). The last entry is 
flagged by havmg bit 0 of the RAM address set. 

. 2) A sequence of instruction blocks. Each block begins with a 2-word header (lOOOOOb + RAM address, 
0). The following data are a sequence of instructions where each instruction's NEXT field specifies where 
to load the following one: this sequencing scheme eventually requires the block to end. This sequence is 
terminated by a final block consistmg of two zero words. 

The swapper is a routine in the resident microcode which expects an entry number in T, loads the 
appropriate overlay, and c:anches to the entry. It must fetch the overlay's descnption from core and then 
do the following things: 

1~ Invalidate the entry instrucl~<ms of all o. verlayswith which the one being loaded conflicts. 
2 Load the code, which mu~t .H!clu<le the entry instructions specified as being newly valid; 
3 Branch to the code. The InItIal RAh110ad must have all entry instructions invalid. 



Alto microcode overlays 

3. Mu/Bldr interface 

Cleared version of May 24, 1981 

October 20, 1976 94 

The third design issue is how best to get the necessary data structures incorporated into Bcpl/Nova 
programs. It turns out that it is possible to support nested overlays with no changes to Mu. Forexamj)le, 
suppose that the main body of the microcode IS M, and that we have three overlays: X (entry pointXI), 
which takes all the overlay space, and Y (entry points YI and Y2) and Z (entry point Zl), which will both 
fit at the same time. Assemole the followmg configurations with Mu: M + X, M + Y, and M + Y + Z. Then 
an overlay preparation pro~ram, Oram, can compute all the necessary tables and produce a .BR file that 
can be loaded with the user s program. . ' 

It is necessary to be a little careful to arrange that the entry instructions fall in the same locations in all 
assemblies. Furthermore, if it is desired that one routine occupy a subset of the RAM locations of another, 
they must have the same configuration of predefinitions (and, of course, appear at the same place in the 
assembly sequence). Here is a sketch for the example: 

M contains (somewhere): 
!O,I,XI; 
!O,l,YI; 
!O,l,Y2; 
!O,l,ZI; 

X contains: 
Xl: [code for X] 

Y contains: 
YI: [code for Y] 
Y2: ,[more code for Y] 

Zcontains: 
Zl: [code for Z] 

In general, some of the predefinitions could be omitted if the entry addresses were to be predefined earlier, 
for example if they were entries in some kind of opcode dispatch. In addition, there must be another file 
W which is assembled with M to produce the initial RAM load: 

W contains: 
Xl: T +- 0, :swapper; 
YI: T +- 1, :swapper; 
Y2: T +- 2, :swapper; 
Zl: T +- 3, :swapper; 

The pointer table would have the appearance 
Xdesc; Xl; 
Ydesc; YI; 
Ydesc; Y2; 
Zdesc' Zl' 

and the individual descriptions would be as follows: 
Xdesc: YI; invalidate Y and Z 

BUS+-I (hi part); 
Y2' 
BUS+-2 (hi ~art); 
#lOOOOO+ZI; 
BUS+-3 (hifart); 
b~ode for X 

0; 
Ydesc: #IOOOOO+XI; invalidate X 

BUS+-O (l}LPart); 
~ode for YJ 



Alto microcode overlays 

Cleared version of May 24, 1981 

October 20, 1976 

O' 
Zdesc: #100000+X1; invalidate X 

BUS +-0 (hi part); 
b~ode for Z] 

0; 

95 

Fortunately, given the .MB files, the Oram subsystem can construct all the tables itself. Oram assumes that 
any instruction in the base file (W) which branches to the swapper is an entry instruction. 



Packed RAM images 

Cleared version of May 24,1981 

March 17, 1979 

PackMu, Rpram, ReadPram 

96 

These two subsystems and one library package make it easy for Alto programs which use the RAM to 
check the constant memory and load the RAM as part of their initialization. The first subsystem,PackMu, 
takes the output ofMu (a .MB file) and converts It to a "packed RAM image" which is easy to load. The 
second subsystem, Rpram, reads a llilcked RAM image, checks the constant memory, and loads the RAM 
(Le., it is a microcode loader). This function is also· available through a parr of library routines 
ReadPackedRAM and LoadPackedRAM (available on a file called ReadPram.bcpl). 

A packed RAM image is a .BR file containing 4401b words of data. The first word is ignored. The 
next 400b words are the desired contents of the constant memory: a zero word (which Mu cannot generate) 
means "don't care". Constant 0 is reserved for a version number, to help programs check that they are 
getting the correct RAM contents. The remaining 4000b words are the contents of the RAM. Each 
mstruction occupies two words, first high-order part, then low-order part, e.g. words 0 and 1 go into RAM 
location 0, words 2 and 3 into RAM location 1, and so on. 

The invocation format for PackMu is 
)PackMu foo.MB foo.BR version staticname 

Foo.MB is the output from MU. Foo.BR is the file for the packed RAM image. Version (optional) is a 
RAM version number which will be written as constant 0 in the output file; if omitted, it defaults to zero. 
Staticname (optional) is the name for the static in foo.BR which wilf point to the RAM data; if omitted, it 
defaults to Ramlmage. PackMu prints out - . 

xxx constants, yyy instructions 
to indicate the number of constants and instructions read from foo.MB. If foo.MB is somehow illegal, 
PackMuprints 

Error: 
and an error message instead. 

The invocation format for Rpram is 
)Rpram foo.BR version rambank 

where foo.BR is the output from PackMu and rambank is the bank number (1, 2, or 3) if Alto has the 3K 
RAM option. If there are any disagreements between the constants in foo.BR and the actual constant 
memory, Rpramprints 

Constant nnn is xxx, should be yyy 
for each constant that disagrees, and a summary message 

nnn constants differ 
at the end of loading (but it still loads the RAM). If version is supplied and disagrees with constant 
location 0 in foo.BR, Rpram prints 

RamVersion in file is xxx; version expected is mmm . 
IfRpram believes that foo.BR is not a file wntten by PackMu, it prints 

Bad RAM image 
If everything is OK, Rpram prints nothing. 

To read in a packed RAM image file from a program, use the subroutine ReadPackedRAM(stream, 
IvRamV [], rambank [11). The stream argument should be a word-item input stream positioned at the 
beginning ofa foo.BR file; IvRamV, if supplied, is taken as the address ofa variable in which to store the 
value given by the file for constant 0 (Le. the RAM version). ReadPackedRAM does exactly the same 
thing as the Rpram subsystem, including printing disagreement messages on the display, but instead of 
printing the summary message it just returns the number of disagreements, or -1 in the case of a bad RAM 
lIDage file. Rpram essentially just opens foo.BR and calls ReadPackedRAM. 

Alternatively, you may wish to load the RAM image foo.BR with your program. In this case, use the 
subroutine LoadPackedRAM(staticname, lvRamV [], rambank [11) where staticname is the name you gave 
to PackMu. LoadPackedRAM does the same thing as ReadPacKedRAM, except it takes the data out of 
memory instead of from a file. 

On Altos with the 3K RAM, note that since LoadPackedRAM and ReadPackedRAM use two words 



Packed RAM images 

Cleared version of May 24,1981 

March 17, 1979 97 

in RAM bank 1 for checking the constant memory, you should load bank 1 last if you have amulti-bank 
microprogram. 

Maintainer's notes: 

PackMu uses the library packages GP and ReadMu. 

Rpram uses the library package GP. 



PeekPup 

Cleared version of May 24, 1981 

May 17, 1976 

PeekPup 

98 

PeekPup is a small subsystem enabling one to peek at Pups going to and from a particular Ethernet host. It 
is intended as an aid in debugging new Pup software. . 

PeekPup is invoked by the command 

PeekPup hostnumber filename 

where "hostnumber" is the Ethernet address (octal) of the host whose packets you want to spy on and 
"filename" is the name of a file to write the output on. The program then looks for paCKets whose 
Ethernet source or destination address is equal to "hostnumber", and buffers them in memory. Foreach 
Pup so processed, "!" is displayed on the screen. PeekPup terminates when any key is pressed, at which 
pOInt it Interprets the last 200 Pups received and writes the result on the specified file. 

The output is mostly self-explanatory. The numbers in the left margin represent a millisecond clock (with 
no partIcular starting value and wrapping around at 32768). For each Pup, a few lines of output are 
generated; the information about Pups sent to the host being spied upon is indented further than 
mformation about Pups generated by that host. Pup headers are fully interpreted, and Pup contents are 
displayed as either text or a series of octal numbers representing bytes; large Pups get only the initial 
portion of their contents displayed, followed by" ... ". 



Pressedit 

Cleared version of May 24, 1981 

September 15, 1980 

Pressedit 

99 

Pressedit is useful for combining Press files together, selecting certain pages from a Press file, or adding 
extra fonts to a Press file. The general command format is illustrated in the following example: 

pressedit foo.press ~ a.press b.press 2 5 c.press 3 to 79 TimesRomanl0/f 

This means "make a Press file roo.press from all pages of a.press, pages 2 and 5 of the Press file b.press, and 
pages 3, 4, 5, 6, 7 and 9 of c.press; add font TimesRomanlO to the fonts defined in roo.press". The 
resulting file will be arranged in the same order as the component input files. 

Examples: 

To extract pages 3 and 17 from a Press file long.press, and put them in short.press: 

pressedit short.press ~ long. press 3 17 

To addfonts logo24 andhelyetica14 to a.press: 

pressedit a.press ~ a.press log024/fhelvetica14/f 

Here the arguments on the right hand side of the arrow may be given in any order. 

To make a blank, one-page Press file containing all threefaces ofTimesromanlO: 

pressedit blanktiInes.press ~ timesromanl0/ftimesromanlOi/ftimesroman10b/f 

To append to the elld of chap3.press all the Press files with names fig3·1.press, fig3-2.press, fig3-3.press etc: 

pressedit chap3.press ~ chap3.press fig3-*.press 

Caution: when you combine files with Pressedit, try not to use different sets of fonts, or the same fonts in 
different orders. This will result in proliferation of/ant sets, making the file more bulky and creating other 
minor sources of inefficiency. 

Ai erging Press files tQgether: Pressedit allows any number of Press files to be merged onto the pages of 
another Press file. This is useful for inserting illustrations in a formatted document. The following 
description assumes that the user wishes to add illustration figures figl.press, fig2.press, .... fig9.press toa 
document file doc.press. 

Illustration files should be of one page only; Pressedit will ignore all but the first page. The document file 
may have any number of pages. The illustrations are placed in position on the appropriate page with the 
aid of an ARROW. The document file must have an arrow for every occurrence of an illustration; every 
illustration must also have an arrow. Pressedit aligns the pairs of arrows when merging the files, and 
removes the two arrows. 

In the document file, arrows have the form: 

<= =<fig3.press< 

In other words, the name of the illustration file is preceeded by the string < == = < and is followed by the 
character <. NO SPACES are allowed befon~ the arrow, but you may use tabs to position it if you wish. 

In the illustration files, arrows have no file name: 

<==« 



Pressedit 

Cleared version of May 24, 1981 

September IS, 1980 

Again, no spaces before the arrow, please. 

To merge the files, run Pressedit with a 1m switch: 

presseditlm foo.press +- doc.press figl.press fig2.press .... fig 9.press 

This command can of course be typed more concisely as follows: 

presseditlm foo.press +- doc.press fig# .press 

100 

for the command interpreter to expand. All illustration files must thus be included in the input file list, 
preceded by the document file name. The same illustration may be inserted on several pages, using arrows 
In the document file containin~ the same file name. In such cases, it is not necessary to mention the 
illustration file more than once In the command file. For example, if doc.press has an arrow on every page 
referring to squiggle.press, it is sufficient to type: 

presseditlm foo.press +- doc.press squiggle.press 

When merging files, Pressedit uses a special third pass during which it types out the page numbers 
containing Illustrations and the names of merged files. If the merged file was not listed in the command 
line or was found not to contain the necessary arrow for positioning, Pressedit will complain, and will omit 
the illustration. 

Three limitations 

It is not currently possible to merge with selected pages of the document file, thus 

presseditlm foo.press +- doc.press 2 to 6 figl.press fig2.press ... 

Instead you must select the pages and merge in separate operations. 

Illustrations may include any legal Press entities, but at present there are likely to be difficulties with very 
large images. 

Certain illustration files will give Pressedit problems, and will result in the message "negative origin."This 
means that the illustration was drawn near the top of the page, and is now being Inserted near the bottom, 
causing the "origin" to move off the bottom of the document page. This happens only in rare cases ofPress 
files created with obsolete versions of Draw. If you should encounter thIS problem, get an up-to-date 
version of Draw, read the Draw file in and write it out as a new Press file: the problem will go away. 

Page Numbers 

Pressedit will add page numbers to the output file if you use the Ip switch: 

presseditlp foo.press +- doc.press 

The Ip switch may be used on partial and multiple input files. It will omit the page number on the first 
page, and number the remaining pages starting at 2. Numbers appear about 3/4 inch down from the top 
and 1 114 inches in from the nght. To change these default options, append any of the following 
paramenters to your command line: 

xxx/o omit numbers on the first xxx pages. (default 1) xxx/s start numbering at xxx (default 2) xxxIx x 
. coordinate of number, in 100ths of an inch (default about 67 S), measured from the left edge of the paper. 
xxx/y y coordinate of number (default about 102S) measured trom the BOTIOM edge of the paper. 

Thus to start numbering on the third page (Le. omitting the first two), numbering from 17, with the 
number positioned at x = 6.5 inches and y = 10 inches, use the following command: 

pressedit/p foo.press +- doc.press 2/0 171 s 6S0/x lOOO/y 



Pressedit 

Cleared version of May 24, 1981 

September 15, 1980 

Any and all of the page-numbering paramenters may be omitted if the default value is OK. 

101 



RAMLOAD 

Cleared version of May 24, 1981 

April 1, 1975 102 

RAMLOAD 

RAMLOAD is a program that acts as a microcode loader, using the output of the microcode assembler 
Mu. Since there are now two types of microcode memory for the ALTO, some distinction must be made. 
Hereafer, ROM means some combination of roms on the ALTO control board, and add-on goodies which 
hang on the end of the control board like debuggers with 512 words of ram. RA11 means the extra board 
with lK of ram which plugs into a slot in the processor. 

RAMLOAD gets its parameters from the command line and default values. If you do not specify a 
parameter, the default is used. In addition there are some global switches which do other useful things as 
explained below: 
GLOBAL SWITCHES (of the form RAMLOAD/switchlist) 

IR 
IV 
IC 

IT 

10 
IN 

compare the micro binary file against the contents of the RAM and display differences. 
compare the micro binary file against the contents of the ROM and display differences. 
compare the micro binary file against the contents of the constant memory and display 
differences. 
Test the RAM and extra R registers by writing random numbers and then reading them back 
displaying differences and addresses. 
Same as IT but do not test the R registers. 
Do not request Confirming (CR) for ruiY operation. 

LOCAL SWITCHES (of the form foo/switch) 

IF use foo as the name of the micro binary file. Default is "BINFILE." 
1M use foo as the name of the instruction memory in the micro binary file. Default is 

"INSTRUCTION". 
IC use foo as the name of the constant memory· in the micro binary file. Default is 

"CONSTANT". 
IV foo is an octal number. Use it as the boot locus vector. Bit 15 corresponds to task 0 

(emulator). 0 means run task in the RAM. Default is # 177777 - keep all tasks In ROM. 
I A foo is an octal number, representing the base address of a 5 word area in the RAM which 

RAMLOAD can use for utility purposes. Default is the top 5 words (# 1772). See warnings 
below about restrictions for speCIfic operations. 

IS foo is an octal number interpreted as the beginning address of the emulator main loop 
(START for microcode hackers). Default is the current START address, #20. 

Note that global switches IV, IC, and IT do the same things that ;V, ;C, and ;T do in DEBAL. 
RAMLOAD in effect does a ;L, and also sets the boot locus vector. The IR global switch was added 
because it was easy and people might want to see if the microcode got smashed after a fiasco. 

When RAMLOAD is called, it will first display what it thinks it is supposed to do as governed by the 
switches and defaults, and wait for a confirming carriage return. When this is received, it will attempt to 
open the micro binary file. If this is unsuccessfUl, it will put out a message to that effect. Next, operatIons 
specified by global switches will be performed (If the micro binary file could not be opened, the only tests 
possible are IT and 10). If no global switches were set, the program will assume you wanted to load, and 
do so without waiting for confirmation. Loading is a three step operation in which the first step, settingthe 
boot locus vector, does not require an open micro binary file. This allows a user to change the boot locus 
vector without reloading the RAM, by specifying a nonexsistant file name for the micro binary file. The 
program will report the value the vector IS set to. Steps two and three, unsnarling the micro binary fileand 
loading its contents, obviously require an open file and will cause RAMLOAD to bomb if there is none. 
When the loading operation is complete, the number of instructions loaded, and the highest address will be 
reported ala DEBAL. Next the program will ask if you want to boot, thus moving the tasks specified in the 
boot locus vector into the newly loaded microcode in the RAM. If you confirm, and if you have an 
Ethernet board, the machine will do a software initiated boot. If you do not have an Ethernet, the bootwill 
be a NOP, and a FINISH is executed. Hitting the boot button. after the program is finished will work for 
those hermits who do not have Ethernets. 



RAMLOAD 

Cleared version of May 24, 1981 

April 1, 1975 103 

The routine which reads the micro binary file expects the limited subset of block-types that DEBAL puts 
out. Ifit encounters an unusual block-type (3, 5, or 6) , it will endeavor to do the right thing, andcontmue 
on. When it is finished reading, if any unusual types were encountered, it will list how many of each it 
read. If the microcode was assembled using DEBAL, this is cause for grave doubts about the correctness of 
the file, since DEBAL will not currently generate these types. 

Where the 5 word utility area is specified can have profound (ie. ~Qtentia1ly disasterous) effects on the 
machine's oI?eration if you are currently running from the RAM. While it is possible to load the RAM 
while executmg in it, thIS is living very dangerously. However, if you must, observe the following caveats: 

* if constant memory is being checked, and you are executing out of the low 256 locations, you are 
dead. 

* the 5 word utility area must be specified in a place you will not be executing from during the 
RAMLOAD program. RAMLOAD always saves any word in RAM it modifies for utility 
purposes, and restores it when it is done, but while in use, it can have an arbitrary value. 

A number of things can cause fatal errors during execution. If one happens, an error message is written in 
the system display area, and the program is aborted. 



SCAVENGER 

Cleared version of May 24,1981 

May 24,1976 

SCAVENGER 

104 

A subsystem for checking and correcting disk packs is available as SCA VENGER. Invoke it with no 
parameters and it will give you an opportunity to (1) change disks and (2) prevent it from altering yourdisk 
seriously (see below). 

The scavenger does the following: 
1. Corrects header blocks, prompting for confirmation. 
2. Corrects check sum errors, by re-writing whatever came in, prompting for confirmation. 
3. Discovers all well-fonned files and all free pages. Any disk page (except page 0) that is neither free 

. nor part of a well-formed file is considered bad. 
4. Makes the serial numbers of all wel1-formed files are distinct. 
5. Corrects the system's notion of what pages are free. 
6. Corrects the system's latest serial number. 
7. Corrects the directory to contain precisely the well-formed files. If a directory entry points into a 

chain of bad pages it attempts to salvage the file. If need be a directory is created from scratch. 
8. Links all bad, unsalvaged pages together as part of the file Garbage.$. 
9. Describes all changes to the disk in the file ScavengerLog, even those which were not actually 

j)erformed. 
10. Corrects leader page information. Changes to leader pages should not cause alarm. The 

information there is used as a hint by various systems. . . 

The data in bad pa~es is not changed so you can attempt to reconstruct a lost file by suitable operationson 
Garbage.$, consultmg ScavengerLog to interpret its contents.· . 

A hopelessly smashed disk may be put back in shape by the following: 
1. Invoke scavenger on a good disk and answer yes to "Do you want to change disks?" 
2. Replace the good disk with the bad one. 
3. Answer yes to "Is the new disk ready?" when the yellow ready light comes on. 
4. Answer yes to "May I alter your disk to corrct errors?" 
5. If FfP hves on your disk, the scavenger will offer to invoke it rather than retuning to the executive. 

Once you are in FfP you can receive critcal files (like Executive.Run or SysFont.Al) or evacuate 
your disk by sending files elsewhere. If the scavenger does not offer FfP, it is not there andyou 
will have to do some more disk suffling to retreive files; i.e. invoke FfP from a good disk and 
change disks after you are in. . 

You should take precautions to avoid losing vital files (such as QUICKing your disk to another disk pack 
prior to running SCAVENGER). 



SCAVENGER 

PARC infonnation 

Cleared version of May 24, 1981 

May 24,1976 lOS 

The following, more or less independent, procedure can be used to recover vital files that might have been 
lost during scavf~ng. 

1. Invoke on a good disk. . 
2. At an early point in the dialogue replace the good disk with the bad one and wait for the yellow 

ready liglit to come on. 
3. Retrieve the needed files from MAXC (Executive.Run and FTP are the minimum required, I 

think.) 
4. Quit out ofFTP. 
S. :Run the scavenger. It will correct the DiskDescriptor file which became inaccurate during this 

process. 



SWAT 

Cleared version of May 24,1981 

March 16, 1980 

Swat, a BCPL-oriented debugger 

106 

Swat is a debugger meant to be used with the Alto operating system. While many of its features are BCPL 
oriented, it can be used on any Alto program. This document describes versIOn 28 of Swat, which is 
compatible with Operating System versions 17 and greater. . 

1. History 

Swat was designed and built by Jim Morris and Alan Brown durin~ the summer of 1973. Bob Sproull 
added the error file mechanism and parity error logging during 1976. Peter Deutsch rewrote thecommand 
processor and added the command file facility in early 1977. David Boggs renovated the program, adding 
mulitple proceed break points and TeleSwat, and Ed Taft added the help facility in late 1978. Everyone 
agrees that the human interface is awful. Each person who has worked on Swat has added several more 
obscure commands while they were at it. 

2. How it works 

Swat is an external debugger: with the exception of a small piece of 'resident' code in your address space, it 
lives in a separate space. When Swat is invoked, the resident saves your state on the file Swatee, and swaps 
in Swat. References to your memory from within Swat go to the Swatee file. When you tell Swat to 
proceed, it saves itself on the file Swat, swaps you (the Swatee) in and resumes you. Your state at the time 
Swat got control is displayed in a window at the bottom ot the screen. "AeO", "PC", etc are built-in 
symbols with which you can manipulate it. 

3. Invocation 

Swat may be applied to any program running under the operating system after it has been installed (see 
Installation below). There are six ways of getting its attention: 

(1) Hold down the <con troD and <left-shift> keys and then 
press the <Swat> key. 

(2) Have your program execute the op-code 77400B. 

(3) Invoke the Resume/S command (see below). 

(4) Boot the file Dumper.Boot, normally by booting with the "DU" 
keys depressed. 

(5) Type <programName)/! to the Alto command processor. 

(6) Call the function CallSwat. Up to 2 arguments will be printed 
as BCPL strings. Thus CallSwat("No more memory") 



SWAT 

4. Commands 

Cleared version of May 24, 1981 

March 16, 1980 107 

The command scanner has suffix action symbols, all of which are control characters (e.g. l'C). "n" is any 
BCPL expression (see Expressions below), "$" is escaJ?e except where noted, "cr" means carriage return, 
''If' means line-feed. You can abort whatever Swat IS doing at any time and get back to the top level 
command scanner by pressing the (Swat> key. 

4.1. Help facility 

Most debuggers have a terse and obscure command syntax, and Swat is no different. In fact it's worse 
since it doesn't follow DDT conventions. Typin~ .,?" prompts you for a command character which Swat 
looks up in the file "Swat.help". Responding .,?' to its prompt gives you a small table of contents forthe 
rest of the help file. 

4.2. Displaying cells 

address'tD 
address'tl 
address'tN 
address'tO 
address'tS 
address'tV 

prints the contents of n in decimal 
prints the contents ofn as two 8-bit bytes 
prints the contents of n as an instruction 
prints the contents of n in octal 
prints the contents ofn as a pair of characters 
prints address in octal and decimal 

The last cell printed is called the open cell. 'to, 'tD, 'tl, l'N, or 'tS alone re-prints the open cell in the 
aQPropriate format. If you wish to pnnt out a number of cells, beginning with the open cell, say n$'tD, 
n$'t I, etc. The last cell printed becomes the open cell. 

If (1' J) 

'tW 

'tA 

'tE 

opens and prints the contents of the next cell (after the open one) in the same mode. 

opens and prints the cell before the open cell. 

opens and prints the cell pointed at by the open cell. 

opens and prints the cell at the effective address of the open cell. 

The last cell that was opened by any command except LF or l' W is called the last open cell. Often you are 
stepping through code, follow a pomter with 'tE or 'tA, look around, decide it'S-not Interesting and wishto 
resume where you were before following the pointer. You can get back to last open cell plus or minus one 
by: 

$lf($'t 1) 

$cr ($'tM) 

$'tW 

4.3. Changinl2: ('''11s 

open and print last open cell + 1. 

open and print last open cell. 

open and print last open cell-1 

The contents of the open cell (if there is one) may be changed by typing an expression for the new value 
follov:ed by a cr, If or l'W. A$B followed by cr, If or 'tW stores A Ishift 8 + B into the open cell. 



SWAT 

4.4. Searching 

Cleared version of May 24,1981 

March 16, 1980 108 

nt= 

n$'t= 

searches from the open cell + 1 for a cell whose contents is n. Prints and opens that cell. 

searches from the open cell + 1 for a cell whose effective address is n. Prints and opens that 
cell. 

A search terminates at the end of mem~ry (location 176777b -- the 1/0 area is not touched) and can take 
quite a while: abort by hitting <swat>. The argument· for a search command is defaulted to the last value 
searched for if omitted. 

4.5. Running the program 

'tP resumes the program, i.e. proceeds. 

addresstGresumes the program at address, i.e. goes there. 

<procName>$<e1>$ ... $<en>'tC calls the BCPL procedure "RrocName" with parameters <e1>, ... ,<en> 
(n<6). If you wish one of the arguments to be a BCPL-format string, merely enclose it in 
quotes. Thus OpenFile$"Com.Cm."'tC will return a stream on the file. AC2 is assumed to 
contain a legal stack frame pointer and 'procN ame' will allocate a new frame on top ofit. 
Often AC2 IS not valid (e.g., Swat interrupted the program in the middle of allocating a 
frame), and calling a procedure at this point may not work. Most" of the time Swat can 
detect this and warn you. 

'tU restores the user's screen. Hitting the <swat> key brings back Swat. 

'tK forces the user program to· abort, just as if you had typed <left-shiftXswat> while it was 
running. 

4.6. Break Points 

A Break point can be referred to by its address or by the index assigned by Swat when the break pointwas 
set. When printing or deleting a breakpoint, Swat reaches out into the user's address space to check that 
the break is still there. 

address'tB 

'tB 

O$addresst B 

sets a break at address 

set a break at the open cell 

deletes the break at address 

proceedCnt$addresstB sets a multiple-proceed break point at address. The breakpoint will take effect 
when it has been hit proceedCnt times, and then it will be deleted. Passing 
through a multiple proceed break point without stopping takes about 200 us. 

index$1'B 

O$$1'B 

$$1'B 

$1'P 

address$$tP 

deletes the break with index index 

deletes all breaks 

prints all broken locations. 

removes the current break and proceeds. 

sets a one-shot break point at address and then proceeds. A one-shot break point 
is one that is removed after it is hit. 



SWAT 

Cleared version of May 24,1981 

March 16, 1980 109 

stackIndex$t P sets a break at a BCPL return point in the stack somewhere and proceeds from 
the present break. The parametern specifies the frame number, where the most 
recent (top) frame is O. Thus if tT typed out 0:GOO+56 1:HAM+5, l$tP 
would set a break at HAM + 6 and proceed. 

4.7~ Stack Study 

See Chapter 10 of the BCPL manual and section 4.8 of the Operating System manual for the details ofa 
BCPLstack. 

tT prints the current PC and all return addresses in the call stack (symbolically), until an 
l11consistency in the stack (usually signaling its end) is encountered. After each return 
address is listed the parameters passed to the procedure that will be returned to. "2: 43752 
137 0 Foo+45--(14 177777)" means the 2nd most recent frame at 43752, of length 137 is 
procedure Foo in bank 0, called with arguments 14 and -1 (fine point: 14 and 177777 are the 
first two local variables in Foo's frame, which Foo could have modified before Swat was 
called, in which case they won't be the values passed at call time). 

ntT traces a stack beginning with the frame at location n. 

indext F prints the parameters of the nth latest stack frame and sets the pseudo symbol "$" (not 
escajJe) equal to the base of that frame. If tT displayed something like 0:FOO+3, 
l:BLETCH + 10, ... Type 1 tF to see the parameters that were passed to BLETCH. $ is setto 
the base of BLETCH's frame (Le., $ points at the frame's back link: the first local variable is 
in $+4. 

4.8. Svmbol table 

tY prompts you for the name of a symbol file. Type the name of the subsystem that's running. 
If it can't find a file with the name you typed, Swat appends" .syms" to it and looks up the 
resultin~file name before re]?orting failure. If BLDR created the file FOO.RUN it also 
created FOO.SYMS, which gIves die locations of all the static names. Only statics can be 
used in Swat. There are permanent built-in symbols for the interestin$. page-1 and high 
memory locations, BCPL runtime routines, and the user's state variables (ACO-3, PC, etc.). 

4.9. Save/Restore 

See 'Resumable files' below for more details: 

tL prompts you for a file name on which it saves the current Swatee. 

tQ prompts you for a file name which it installs as the current Swatee. 

4.10. The Spy Facility 

The spy can be used to estimate where the time is going on a percentage basis. It samples the PC every 
3D-milliseconds. 

(1) Type tX and Swat will display how much user memory it needs for the metering code and tables. 

(2) Probe around to find a block of storage of the required size, and tell Swat by typing 

ntX 

where 11 is the first word of the block. 



SWAT 

Cleared version of May 24, 1981 

March 16, 1980 110 

(3) Proceed to run the program. 

(4) Once Swat gets control again you can type 

$tX 

to display the results and terminate the spying activity, or 

$$tX 

to display the results so far and continue the spying. 

4.l1. Miscellaneous 

$tY Prompts for the name of a (text) file from which Swat commands should be taken. Reading 
will continue across "proceeds" from breakpoints, but will be aborted if Swat is invoked by 
the keyboard «controlXleft-shiftXswat» or by the standard break-point trap (77400B). 

$$1' Y Puts Swat into TeleSwat server mode. The keyboard is ignored: to regain local control hit 
the <Swat) key. For more on TeleSwat see the sections on Address Spaces and TeleSwat 

nt R Prints the value of R or S register n. You must have a RAM for this to work. 

$tR Prints all of the Rand S registers. 

$$tZ Repeats the message that was displayed when Swat was invoked. This is sometimes usefulif 
an error message has scrolled ·away as a result of poking around. 

4.12. Address Spaces 

tZ prompts for the target address space. Swat can treat any file created by OutLd, any bank of memory, 
and any host in the internet (with the host's cooperation) as the Swatee: the address space into whichyou 
peer with Swat. The syntax for address spaces is: 

filename 

BankO 

Bank1. .. 3 

[host] 

4.13. Examples 

XtOtD 

func + 31' N If If 

11'07 

labeltB 

this is 'Swatee' for normal debugging, but can be any file created by OutLd 
(sysOut files (tL) are in this category), or Dumper. 

Swat itself. 

the extended memory banks. These are only legal on AltoII XMs. No check is 
made that a bank actually exists. If it doesn't, or if it hasn't been written into 
since the Alto was powered up, you are likely to get parity errors. 

a host that implements the server half of the TeleSwat protocol (usually. another 
Swat). [host] can be either a name: [Boggs], or an internet address: [3#241#]. 
The square brackets are required: this is how Swat decides that you mean a 
[host] rather than a file. 

prints the value of X in octal, then decimal. 

prints instructions 3, 4, and 5 of func. 

sets location 1 to 7. 

sets a break at htbel 



SWAT 

7562tB 

SQRT$16tC 

label+3tG 

OtT 

OtF 

2tF 

$1'0 

$+ltO 

$+61'0 

5. Expressions 

Cleared version of May 24, 1981 

March 16, 1980 

sets a break at location 7562B 

calls the (user) function SQRT (the returned value is printed) 

transfers to the third instruction after label. 

prints the PC 

prints the parameters of the most recent call 

prints the parameters of the third most recently called procedure; then 

prints the saved stack pointer (frame!O) 

prints the return address (frame!l) 

prints the first local (if the procedure has 2 parameters). 

Expressions are as in BCPL with the following exceptions 

\ 
I 

means exclusive OR 
means REMAINDER 
means LSHIFT for positive arguments, RSHIFf for negative 
means NOT 

A string of digits is interpreted as octal unless suffixed by a "." 

$ (not escape) is the base of the last opened stack frame (see tF above). Initially it is the last frame. 

III 

t<static name), "1''' followed immediately by a static name, means use the address of the static, not its 
value, even ifit is a procedure- or label-type static . 

. is the last opened cell 

PC is the address of the cell containing the user PC. This is the address at which Swat will resume Swatee 
when you say tP. 

AC1, ... ,AC3 are the addresses of the user's accumulators. 

CR Y is the address of the user's carry bit. 

INT = on = non zero ifinterrupts where on when the Swat trap happened. 

No function calls in expressions. 

No relational operators (e.g. EQ) 

No conditional expression:; 

No Iv operator (weil...see 1'(static name> above) 



SWAT 

Cleared version of May 24, 1981 

March 16, 1980 

5.1. Examples 
.-11'0 prints the cell before the currently open cell . 

. +11'0 

AC1t06 

PCt072 
tP 

is like line-feed. 

sets AC1 to 6 

is like 721'0 

PCtO lflflflf prints the PC and the AC's 

112 

The conventions for expression evaluation are not truly BCPL-like. "FtO" will print the first instruction of 
F if BLDR thought it was a procedure or label, but print the contents of static cell F if BLDR thoushtit 
was a variable. If F started life as a variable, but had a procedure assigned to it you must call It by 
"@FtC" instead of "FtC". 

6. Resumable Files 

The file Swatee is a snapshot of a "running program and can be saved for subseqent resumption or 
examination. You can create a copy ofSwatee by using COPY or, if you are in Swa~ typing tL and giving 
a file name. This copies Swatee to the named file and appends some information internal to Swat -- the 
current symbol table and break point data. _ """ _" " 

There are several ways to restart resumable files: 

1) Press the boot button while holding down the keys for the file. 

2) Type the command (it is interpreted by the Exec) 

RESUME file 

3) 

7. TeleSwat 

If"file" is omitted Swatee is assumed. 

RESUME/S file 

writes file onto Swatee and invokes Swat. 

While in Swat, type tQ and give a file name. The file is copied onto Swatee and Swat's 
internal information is restored to whatever was saved by the tL command that created 
the file. If the file was created in some way other than tL, the internal information is 
reset to an empty state. 

Swat implements a simple Pup protocol, TeleSwat, by which it can treat a machine anywhere in the 
internet as the Swatee (with the consent and cooperation of the other machine). The Swatee is made 
receJ?tive to control from the network by typing $$tY. The controlling Swat's attention is directed at itby 
specIfying the Swatee's network address as the target virtual memory (see the 'tZ command). When you 
tell the Swatee to proceed (tP, 1'0, tU), you loose control: your Swat starts probing the Swatee once per 
second, but if the Swatee never returns, you must get help from someone at ~e other end. Each time a 
packet is sent, the cursor is inverted to let you know something is happenIng. Executing the opcode 
77412b is equivalent to CallSwat(string1 D, string2 D) followed by $$tY, 



SWAT 

8. Desperation Debugging 

Cleared version of May 24, 1981 

March 16, 1980 113 

If the resident is broken so you can't use <Left-ShiftXControlXSwat> to get to Swat to see what went 
wrong, then you are desQerate. Press the boot button· while holding down the keys for the file 
Dumper.Boot(the OS and InstallSwat conspire to make this be "DU" normally). This writes the existing 
memory onto Swatee with the exception of page 0 which is lost (Dumper lands in page 0 when you bootitJ. 
Also the display word (420b) is cleared. Finally, Swat is invoked. . 

9. Error Message Printing 

Swat contains some facilities to aid in printing error messages. Because the Swat resident is almost always 
present when a program is running, an error message can be printed by simulating a Swat "break," and 
letting the Swat program decipher the error specification and print a reasonable message. 

If Swat is invoked by the 77403b trap instruction, the contents of ACO are taken to be a pointer to aBCPL 
string for a file name; ACI is a pointer to table ~ errCode%ClearBit; pI; p2; p3; p4 .... ], where errCode (Ole 
errCode Ie 32000.) is an error code, the p's are' parameters," and ClearBit is either 100000b (clear the Swat 
screen before printing the message) or 0 (do not clear). 

The intended use is with a BCPL procedure like: 
let BravoError(code, pI, p2, nil, nil, nil) be [ . 

code = code% U serClearScreenBit 
(table [77403B; 1401B ])("bravo.errors", Iv code) 
/ / do a "finish" here if tatal error 
] 

The error messages file is a sequence of error messages, searched in a dumb fashion. An error message is: 

a. An unsigned decimal error number (digits only) 
b. Followed optionally by: 

C Always clear the screen before printing the message 
M (see below) 
L Log the error via the Ethernet. 

c. Followed by a <space>. 
d. Followed by text for the message, including carriage returns, etc. 

If you wish to refer to a parameter, give: 
$ 
followed by a digit to specify the p'arameter number (1-9) 
followed optionally by "!<offset> ' which treats parameter as a 

number, adds offset to it, and sets parameter to the 
contents of the resulting address (Le. a vector ref). 

followed by a character to say how to print the parameter: 
o = octal 
D = decimal 
S = string (parameter is pointer to BCPL string) 

(example: $ID will print parameter 1 in decimal) 
The quote character is (escape>. 

e. Followed by $$. 

After the message is typed, if M was specified, the message "Type <control>K to kill, or <controDP to 
proceed." is typed ou t. 



SWAT 

10. Parity Error Infonnation 

Cleared version of May 24,1981 

March 16,1980 114 

When the Alto detects a parity error, Swat is usually invoked to print a message about the details of the 
error. It then attempts to "log" the error with an Ethernet server responsible for keeping maintenance 
infonnation. If the server is not operating, or if your Alto is not connected to an Ethernet with such a 
server, simply strike the <Swat> key, and the familiar" #" will appear. 

In many cases, you will want to continue execution of your program after a parity error is detected. Simply 
type <controDP to Swat 

11. Installation 

Oet the file InstallSwatRun. Then invoke it to create Swat (the debugger), Swatee (the swap file forthe 
user's memory image), and Dumper.Boot (the de§Peration debugger Invoker). InstallSwat.Run may be 
deleted after it has been run once. Use the Exec's BootKeys command to discover the keys to depress for 
Dumper.Boot; nonnally they are "DU". 

InstallSwat.run is the Swat Rrogram. When invoked it, it hooks up to the current operating system, 
initializes itself, and then OutLds all of core including the as (suitably Junted and slightly patched) onto 
the file Swat. 

12. CaveatS 

1. Swat has about lk of resident code in high memory. This code is not changed when new subsystems 
come in. Therefore re-boot if it seems to be in a bad state. Swat can get itself into a bad state too. 
SYSINing (,tQ) Swatee is a very effective general purgative; ignore the warning message - its doing exactly 
what you want it to. If all else fails, make sure you have a clean copy of the OS, and then reinstall Swatby 
running InstallSwat.run. 

2. Instructions 77400B - 77777B are used by Swat. The actions of some of these (e.g. 77401B) are 
published; you get what you deserve if you use the unpublished ones. Location 567B (in the trap vector)is 
used. 

3. Interrupt channel 8 (00400B) is used by the resident for keyboard interrupts (getting to swat via a 
<controD<left-shiftXswat> key combination). . 

4. A program fetching data from a broken location will get 774xxB. 

5. While most interrupt routines are reasonably polite and always resume the interrupted code where itleft 
off, the politeness of Swat's keyboard interrupt IS entirely in the hands of the person at the controls. Ifhe 
re-starts by saying 'tP, all goes well; but he may say 'to or'tC. Therefore 

a) You should disable the keyboard interrupt by anding 77377B into 453B during critical sectionsof 
code (once they are debugged). 

b) Expect occasional anomalies after 'tC or 'to is used. 

6. The mappings between symbols and addresses are naive about BCPL's block structure. 

a) If a symbol is defined twice or more you get the lowest address. 

b) An address is mapped into a procedure name plus a displacement for symbolic type out (e.g. for 



SWAT 

Cleared version of May 24, 1981 

March 16, 1980 115 

tT}. If procedure A is defined inside procedure B, most of B's addresses will be typed as if 
they were A's. 

7. If a disk error prevents swapping, the offending disk control block and label are displayed in the "boot
lights" manner. 

8. Locations 700b through 707b are used to save the machine state before each swap. 

9. If a file created on a different disk is resumed by booting, invoking Swat may not work because Swatand 
Swatee may not reside at the same disk addresses on the different disks. This difficulty does not occur if 
the Exec's RESUME command is used, since it will fix up the addresses before resuming it. 



Trident disk software 

1. Introduction 

Cleared version of May 24, 1981 

June 14, 1980 

Software and Utilities for Trident Disks: 
Tfsand Tfu 

116 

This document describes B~pl-based software for operating any of the family of Trident disk drives 
attached to an Alto using a "Trident controller card" (the software presently deals with the T-80 andT-300 
models). Hardware and diagnostic information can be found in the document "Trident disk for the Alto" 
(on <AftoDocs>AltoTrident.press), by Roger Bates. 

A "Shugart controller card" also exists, for connecting to Shugart model SA-4004 and SA-4008 disk drives. 
The Shugart controller is microprogram compatible with the Trident controller, and the Trident software 
can operate it as well. In this document, all references to Trident disks apply to Shugart disks as well, 
except where noted otherwise. 

The software documentation is divided into three parts: (1) a brief "how-to" section describing the 
software package available for operating the Trident; {2) a section describing the utility program Tfu;and 
(3) a sectIOn describing the software package in more detail. There is a short revision history at the end. 
(Documentation for the Triex program, formerly included here, has been eliminated. Triex is now needed 
only for hardware checkout and is not required during normal operation~) _ _ _ 

The Tfs package and utilities all assume that the disk is to be fonnatted with 1024 data words per sector. 
The maxunum capacity of each disk is given in the following table. 

Disk 
T-80 
T-300 
SA-4004 
SA-4008 

Tracks 
815 
815 
202 
202 

Heads 
5 
19 
4 
8 

Sectors 
9 
9 
8 
8 

Total pages 
36,675 
139,675 
6,464 
12,928 

Total words 
37,555,200 
142,709,760 
6,619,136 
13,238,272 

For all disks except the T-300, it is possible to construct a single Alto-fonnat file system utilizing the full 
disk capacity. Due to the restriction of virtual disk addresses to 16 bits, a single file system may utHizeonly 
about 47 percent of a T-300 disk, and it is necessary to construct multiple file systems in order to makeuse 
of the entire disk. 

Because of bandwidth limitations, it is unwise to operate the Trident disk while the Alto display is on. 
Although the Tfs package will save the display state, tum it off, run the disk, and restore the oisplay for 
every transfer, the user may prefer to turn the display off himself. The Tfs management of the display 
causes the screen to flash objectionably whenever frequent calls to Tfs are underway. 

The present version runs only under Operating System version 16 or newer. 

2. Trident File System (Tfs) software package 

The software for QPerating the Trident disk is contained in <Alto>Tfs.dm, and consists of the following 
relocatable files: TfsInit.br, TfsBase.br, TfsA.br, TfsWrite.br TfsCreate.br, TfsClose.br, TfsDDMgr.br, 
TfsNewDisk.br, TfsSwat.br, and TriConMc.br. The definitions file Tfs.d is also included. 

Source files are contained in <AltoSource>TfsSources.dm. Included also are the Trident microcode source 
files, TriConMc.mu and TriConBody.mu. These are needed if you want to load other microcode into the 
Ram along with the Trident microcode. 



Trident disk software 

Cleared version of May 24,1981 

June 14, 1980 

The LoadRam.br file, formerly included as part of the Tfs, is now available as a separate package. 

2.1. Initializing the microcode 

117 

Operating the Trident requires special microcode that must be loaded into the RAM before disk activity 
can start. The procedure LoadRam wi11load the RAM from a table loaded into your program (it is 
actually part of TriConMc.br). It will then "boot" the Alto in order to start the appropriate micro-tasks in 
the RAM. (This booting process is "silent" -- it does not re-Ioad Alto memory from the file Sys.Boot, but 
instead lets your program continue.) The standard way to call LoadRam to load the Trident disk microcode 
is: 

external DiskRamImage 
external LoadRam 

let result = LoadRam(DiskRamImage, true) IILoad and boot 
if result Is 0 then 

\vs("The Alto has no RAM or no Ethernet board.") 
Ws(" Cannot operate Trident") 
finish 
] 

After LoadRam has returned successfully, the code of LoadRat-n and TriCon~1c may be overlaid with data 
-- they are no longer needed. 

\\'hen exiting a program that has micro-tasks active in the RAM, it is helpful to "silently" boot the Alto so 
that all micro-tasks are returned to the ROM. If this is not done, subsequent use of the RAM may cause 
some running micro-task to run awry. To achieve the "silent boot," simply call the procedure 
TFSSilentBootO at 'finish' time or as part of a 'user finish procedure'. 

For further information, consult the LoadRam package documentation. 

2.2. Initializing the Trident drive 

Once the RAM has been loaded, the Trident disk can be initialized. The procedure TFSInit will do this, 
provided that a legal file structure has previously been established on the dnve (see Tfu Erase, below). The 
procedure returns a "disk object," a handle which can be used to invoke all the disk routines. This disk 
object (or "disk" for short) can be passed to various Alto Operating System procedures in order to open 
streams on Trident disk files, delete Trident disk files, etc. 

tridentDisk = TFSInit(zone, allocate [false], driveNumber [0], ddMgr [0], freshDisk [false]) 

zone 

allocate 

You must provide a free-storage pool from which memory for the disk object and possibly 
for a buffer window on the disk bit table can be seized. The zone must obey the normal 
conventions (see Alto Operating System Manual); zones created by InitializeZone are fine. 

This flag is true if you wish the machinery for allocating or de-allocating disk space 
enabled. If it is enabled, a small DDMgr object and a 1024-word buffer will be extracted 
from the zone in order to buffer the bit table (unless you supply a ddMgr argument, 
described below). 

driveNumber This argument, which defaults to 0, specifies the number of the Trident disk drive being 
initialized. If the drive is a T-300, the left-hand byte sQecifies the number of the file 
system to be accessed on that drive, in the range 0 to 2. (For further information, consult 
the section entitled 'Disk Format'.) 

ddrvfgr This argument, which defaults to 0, supplies a handle on a 'DiskDescriptor Manager' 



Trident disk software 

Cleared version of May 24, 1981 

June 14, 1980 118 

freshDisk 

tridentDisk 

(DDMgr) object, whose responsibility it is to manage pages of the DiskDescriptor (bit 
table), which, on the Trident, must be paged into and out of memory due to its 
considerable size. If this argument is defaulted, a separate DDM~r will be created upon 
each call to TFSInit, at a cost of a little over 1024 words. If you Intend to have multIple 
Trident drives open simultaneously, you may conserve memory by first issuing the call 
'ddMgr = TFSCreateDDMgr(zone)' and then 'passing the returned pointer as the ddMgr 
argument in each call to TFSlnit, thereby permItting the single ddMgr to be shared among 
all drives. (This argument is ignored unless the allocate argument is true.) . 

Normally, TFSlnit attempts to open and read in the DiskDescriptor file in order to obtain 
information about the file system. However, if freshDisk is true, this operation is inhibited 
and the corresponding portions of the disk object are set up with default values. This 
operation is essential for creating a virgin file system. 

The procedure returns a disk object, or 0 if the Trident cannot be operated for some 
reason. The most likely reasons are: 

l. No Trident disk controller plugged into the Alto. 

2. No such disk unit, or disk unit not on-line. 

3. Can't find SysDir, can't open DiskDescriptor, or DiskDescriptor format is incompatible. 
(These errors can't happen if freshDisk is true.) 

Important: If the AC power to drive 0 is turned off or no drive 0 is connected, it is not 
possible to operate any drive. (Drive 0 need not be on-line, however.) This is due to a 
hardware bug that has been deemed too difficult to fix. 

After TFSInit has been executed, the code can be overlaid, as it is not used for normal disk operation. 

2.3. Closing the Trident disk 

When all operations on the disk are completed, the TFSClose. procedure will insure that any important 
state saved in Alto memory is correctly written on the disk. This step can be omitted if the 'allocate' 
argument to TFSInit was false (assuming you don't mind the loss of ilie storage that was extracted from 
'zone' by TFSInit). 

TFSClose(tridentDisk, dontFree [false]) 

The second argument is optional (default = false), and if true will not permit the DiskDescriptor Manager 
(DDMgr) to be destroyed. This option is useful in conjunction with the 'ddMgr' argument to TFSlnit. 

2.4. Example 

Following is an example that uses the Trident disk system and demonstrates the procedures described 
above. Note that the calls on operating system disk stream routines all pass a private zone to use forstream 
structures, rather than the default sysZone. The reason is that streams on Trident disks require large 
buffers (1024 words) which quickly exhaust the available space in sysZone. In addition, the stream 
routines will consume more stack space when operating the Tndent disk than they do when operating the 
standard Alto disk. 

Since the Alto as does not know about Trident disks, a call to Swat will not properly wait for all Trident 
transfers to complete, with consequent undefined results. This problem is easily remedied through use of 
an assembly-language Swat context-switching procedure TFSSwat, which is included as part of the TFS 
package. The example shows how it is set up. 

IIExaIlJple.bcpl -- TFS Example 
IIBldr Example TfsBase TfsA TfsWrite TfsCreate TfsClose TfsDDMgr 



Trident disk software 

Cleared version of May 24, 1981 

June 14,1980 

II TfsSwat Tfslnit LoadRam TriConMc 

get "streams.d" 

external r 
TFSlnit 
TFSClose 
TFSSilentBoot 
LoadRam 
DiskRamImage 

OpenFile 
Closes 
Puts 
DeleteFile 

InitializeZone 
SetEndCode 
TFSSwatContextProc 
IvUserFinishProc 
IvSwatContextProc 
] 

static [savedUFP; savedSCP; TFSdisk = 0] 

let TryItO be 

[ let driveNumber= ° 
let zonevec = vec 3000 
let TFSzone = InitializeZone(zonevec, 3000) 

II Initialize the RAM: 
let res = LoadRam(DiskRamImage, true) 
if res Is ° then [ W s(" Cannot load the RAM. "); finish] 

I ISet up to cleanly finish or call swat 
savedUFP = @lvUserFinishProc 
@lvUserFinishProc = MyFinish 
savedSCP = @lvSwatContextProc 
@lvSwatContextProc = TFSSwatContextProc 

/IInitialize the disk: 
TFSdisk = TFSInit(TFSzone, true, driveNumber) 
ifTFSdisk eq ° then 

[Ws("Cannot operate Trident disk"); finish] 

I IRec1aim s~ace used by initialization code: 
SetEndCode(TFSlnit) IIOverlay TFSinit, LoadRam, TriConMc 

IINow we are ready to operate the disk: 
DeleteFile("Old.Bad", 0,0, TFSzone, 0, TFSdisk) 

let s = OpenFile("New.Good", ksTypeReadWrite, 0,0,0,0, 
TFSzone, 0, TFSdisk) 

for i= 1 to 1000 do 
for j = 1 to 1000 do Puts(s, $a) IIWrite a million bytes! 

Closes(s) 

119 



Trident disk software 

finish 

Cleared version of May 24, 1981 

June 14, 1980 

and MyFinishO be 

[ ifTFSdisk ne 0 then TFSClose(TFSdisk} 
@lvUserFinishProc = savedUFP 
@lvSwatContextProc = savedSCP 
TFSSilentBootO 

3. Trident File Utility, Tfu 

120 

The Tfu utility (saved on <Alto>Tfu.Run) is used to certify a new Trident pack for operation, to initialize a 
pack with a virgin file system, and to perform various file copying, deleting, and directory listing 
operations. 

Commands are given to Tfu on the command line: immediately following the word "Tfu" is a sub
command name (onl¥ enough characters of a sub-command are needed in order to, distinguish it from 
other sub-commands), followed by' optional arguments. Several subcommands may ~ppear on one 
command line, separated by vertical bars. Thus "TFU Drive 1 I Erase" will erase drive 1. There must be a 
space on each side of the vertical bar. 

All information shown on the display by Tfu is also written into file'Tfu.1og (on the'Diablo disk}. Certain 
commands pause and type" Contmue?" after each screenful; type any character to proceed. 

In what follows, an "Xfile" argument is a filename, perhaps preceded by a string that specifies which disk 
is to be used: -

DPO:name.extension -- use standard Alto (Diablo) disk 
TPn:name.extension -- use Trident drive n (n= 0 to 7) 
name. extension -~ use default disk (Trident) 

The "default disk" is always a Trident drive; the identity of the drive is set with the Drive command. 

TFU DRIVE driveNumber 

This command sets the default Trident drive number to use for the remainder of the command 
line. The default drive is effectively an 'argument' to the CERTIFY, ERASE, DIRECTORY, 
CONVERT, and BAD SPOTS commands. (On a T-300, file systems 0, 1, and 2 are specified as 
'TPx', 'TP40x', and 'TPI00x', where 'x' is the actual unit number.) 

TFU CERTIFY [passes] 

This command initializes the headers on a virgin Trident disk pack, then runs the specified number 
of passes (default 10) over the entire pack, testing it using random data. Any sector exhibiting an 
uncorrectable ECC error, or correctable ECC errors on two or more separate occasions, is 
permanently marked unusable in the pack's bad page list. This information will survive across all 
subsequent normal file system operations (including TFU ERASE), but may be clobbered by the 
Triex program. 

This command should be executed on every new Trident {!ack before performing any other 
operations (such as TFU ERASE). 10 passes of TFU CERTIFY are adequate for reasonably 
thorough testing. though more are recommended for ~acks to be used in applications requiring 
high reliability. The running time per pass for TFU CERTIFY is approximately 3 minutes on a 
Trident T-80, 9 minutes on a T-300, and 1.5 minutes on a Shugart SA-4008. 



Trident disk software 

Cleared version of May 24, 1981 

June 14, 1980 121 

TFU CERTIFY may be terminatecJ prematu[~ly by striking any character to get its attention, then 
typing 'Q'. Subsequent runs ofTFU CERTIFY will not clobber the existing bad~ageinfonnation 
but rather will append to it. It is recommended (though not necessary) that TFU CERTIFY be 
executed before each TFU ERASE so as to pick up any new bad spots that may have developed. 

TFU CERTIFY ordinarily asks you to confinn wiping out the disk before going ahead and doing 
so; however, the IN global switch may be used to indicate that no confinnatlOn is necessary. 

TFU BAD SPOTS 

Displays the addresses of all known bad spots on the disk pack mounted on the default drive. 

TFU RESETBADSPOTS 

Resets the bad spot table of the disk pack mounted on the default drive. (Note that TFU 
CERTIFY appends to the existing bad spot table.) There should normally be no need to execute 
this command, but it may be useful, for example, after a disk pack is cleaned, if the known bad 
spots were caused by dirt. 

TFU ERASE [tracks] 

This command initializes (or reinitializes) a file system on the pack mounted on the defaultTrident 
drive, after asking you to confirm your destructive intentions {overridden by the IN global switch). 
The tracks argument specifies how many "tracks" of the drive are to be included in the file system; 
it defaults to the maximum possible. If smaller numbers are used, the initialization is 
correspondingly faster. In any case, tracks beyond the one specified are available for use outside 
the confines of the file system. (Note that one "track" is 45 pages; this corresponds to one cylinder 
on a T-80 and to nothing in partIcular on other disks.) 

The disk pack should previously have been initialized and tested by means of the TFU CERTIFY 
command. 

The DiskDescriptor file is normally located in the middle of the file system so as to minimize 
average head movement between DiskDescriptor and file pages. However, this does limit the 
maximum size contiguous file that can be created to a little less than half the file system. If you 
wish to create a contiguous file larger than that, use the IB local switch (i.e., TFU ERASE/B) to 
force the DiskDescriptor to be located at the beginning of the file system instead. 

TFU COpy Xfile ~ Xfile 

This command copies a file in the direction of the arrow. The destination file may be optionally 
followed by the switch IC, in which case (provided it is a Trident disk file), the file will be 
allocated on the disk at consecutive disk addresses. (Note: More precisely, an attempt will bemade 
to perform such an allocation. If the attempt fails, you will sometimes get an error message. The 
best way to verify that a file is contiguous is to use the "address" command, below.) 

TFU CREA TEFILE Xfile pages 

This command creates a contiguous file named Xfile with length "pages." 

TFU DELETE Xfile Xfile ... 

This command deletes the given file(s). 

TFU RENAME Xfile ~ Xfile 

This command renames a file. 

TFU DIRECTORY [Xfile] 



Trident disk software 

Cleared version of May 24, 1981 

June 14, 1980 122 

This command lists the directory of the default Trident drive on the file Xfile; if Xfile is omitted, 
each entry will be shown on the display. A somewhat more verbose listing can be obtained with 
TFUDIR/V. 

TFU ADDRESS Xfile 

This command reads the entire file and displays a list (in octal) of virtual disk addresses of the file 
pages. . 

TFUCONVERT 

An incompatible change in the format of DiskDescriptor was made in the Tfs release of July 24, 
1977. The current Tfs software will refuse to access Trident disks written in the old format 
(sl'ecifically, TFSInit will return zero). The TFU CONVERT command reformats the 
DIskDescriptor to conform to current conventions (it is a no-op if applied to a disk that has already 
been converted). Once you have converted all your Trident disks, you should take care to get rid 
of all programs loaded with the old Tfs, since the old Tfs did NOT check for version compatibility. 

TFU EXERCISE passes drive drive drive ... 

This command embarks on a lengthy "exercise" procedure; it is repeated 'passes' times 
(default = 10), and uses the disk drives listed after 'passes' (if none are s~ecified, all drives thatare 
on-line are used). It operates by making a series of files (test.OOl, test.002 etc.) on the disk packs, 
and performing various copying, deleting, writing and positioning operations. The files are deleted 
when the exercise finishes. It is not essential that the packs be fUlly erased initially; the procedure 
for building test files will try to fill up the disk, just short of overflowing. Each pass of the test 
takes approximately 20 minutes per T-80, 60 minutes per T-300, and 10 minutes per SA-4008. 

One or more of the following global switches may be specified (Le., a command of the form 
TFU/switch EXER ... ): 

IW Use a systematic data pattern when writing files, rather than arbitrary garbage. 

IC Carefully check the data read from the disk (implies IW). Use of this switch makes the test 
run considerably slower than normal. 

ID Leave the disl'lay on during Trident disk transfers. This causes data late errors to occur and 
thereby exerCIses the error recovery logic. (It also slows down the test by at least a factor of 
illJ . 

IE Tum the Ethernet on during Trident disk transfers, with results similar to ID. 

4. The Tfs software package in more detail 

If programmers wish to interface the the Trident disk at levels lower than Operating System streams, the 
Tfs package provides an additional interface. The "disk" object created by TFSInit has a number of 
abstract operations defined on it, which the Tfs package implements. Documentation for these operations 
can be found in the Alto Operating System Manual in the section labeled "Disks and Bfs." The catalog of 
available procedures is: 

In TfsBase.Br and TfsA.Br: 
ActOnDiskPages( disk, CAs, DAs, .... ) 
ReaIDiskDA(disk, vda, .... ) 
VirtualDiskDA(disk, .... ) . 
InitializeDiskCBZ( disk, cbz, ... ) 
DoDiskCommand( disk, cb, ... ) 
GetDiskCb( disk, cbz, ... ) 



Trident disk software 

In TfsWrite.Br: 

Cleared version of May 24, 1981 

June 14, 1980 

\VriteDiskPages(disk, CAs, DAs, .... ) 
AssignDiskPage( disk, vda)* 

In TfsCreate .Br 
CreateDiskFile(disk, name, .... )* 
DeleteDiskPages(disk, CA, .... )* 
ReleaseDiskPage( disk, vda)* 

In TfsClose.Br 
CloseDisk( disk, dontFree) 

123 

The items with *'s following may be invoked only if the disk object was created with the 'allocate' 
argument set to true. WriteDiskPages may be invoked even if 'allocate' is false, provided it never allocates 
new disk space. It should be noted that the standard Alto Streams package invokes WriteDiskPages even 
for files opened for readillg only, and that TFSlnit uses Streams to read in the DiskDes~rij)tor. Hence itis 
necessary that all of the Tfs modules (TfsBase, TfsA, TfsWrite, TfsCreate, and TfsDDMgr) be loaded in 
order to avoid undefined 'external' references. However, after initialization is complete, the space 
occupied by TfsCreate and TfsDDMgr may be reclaimed if you do not intend to allocate or delete pages, 
and TfsWrite may be discarded if you are not using streams but rather are calling ActOnDiskPages 
directly. . ' 

The TfsWrite and TfsCreate modules require that TfsDD~1gr.Br (or some equivalent) be loaded. This 
module provides the standard primitives necessary for managing the DiskDescriptor. The DDMgr is an 
'object', so it may be replaced by one of your own devising so long as it provides equivalent operations. An 
example of this would be to manage pages of the DiskDescriptor as part of a more general VIrtual memory 
mechanism (perhaps through use of the Alto VMem package). A cOII1Plete description of the required 
DDMgr operations may be found as comments at the beginning ofTfsDDMgr.Bcpl. 

In addition to the standard "actions" defined in Disks.d, Tfs permits the following. These actions are 
defined in Tfs.<l and are available only on Trident disks. 

DCreadLnD Read header, read label, no data. 

DCreadnD Check header, check label, no data. 

DCwriteLnD Check header, write label, no data. 

These actions neither read nor write the data record and therefore do not require a buffer to be provided. 

CreateDiskFile has a s~ecial feature for operating the Trident disks -- an o}:!tional seventh argument. If 
this argument (pageBu is present, it is assumed to point to a 1024-word buffer that will be used to create 
the leader page for the Ie. This feature may be used to save stack space in CreateDisk file and! or to write 
interesting data into the portion of the leader page not used by the file system (only the first 256 words are 
used by the file system; the remainder has no standard interpretation). 

VirtualDiskDA returns fillInDA as the virtual address for a real disk address that is either illegal oroutside 
the confines of the file system. 

The procedures for creating and destroying the disk object, TFSlnit and TFSClose, were explained above. 
The procedure TFSWriteDiskDescriptor( disk) will write out onto the disk all vital information about the 
disk that is presently saved in memory. Iryou write programs that run the disk for extremely long periods 
of time, It is wise to write the disk descriptor occasionally .. The only automatic call on 
TFSWriteDiskDescriptor is performed by TFSClose. 

Tfslnit.Br contains a procedure TFSDiskModel(disk) that returns the model number of the drive 
referenced by the disk handle (80 = T-80, 300 = T-300, 4004 = SA-4004, 4008 = SA-4008). This is 
useful in deciding whether to open a second· or third file system on a T -300. 



Trident disk software 

Cleared version of May 24, 1981 

June 14, 1980 124 

A lower level of access is pennitted with the routines InitializeDiskCBZ, GeilliskCb, and 
DoDiskCommand, analogous to the Bfs routines described in the Operating System Manual. Users of 
these routines may wish to retrieve source files for the Tfs package and examine the definitions in Tfs.D 
and the actual disk operation in some detail. Sources are on <AltoSource>TfsSources.Dm. 

4.1. TFSNewDisk 

The TFSNewDisk procedure, defined in TfsNewDisk.Br, "erases" a disk (formatting it and making allits 
pages appear free) and creates a virgin Alto file system (SysDir and DiskDescriptor). lt is called by: 

success = TFSNewDisk(zone, driveNumber [0], diskSize [default], ddVDA [diskSize/2]) 

The zone passed to TFSNewDisk must be capable of supplying about 3500 words of storage. If the driveis 
a T -300, the driveN umber may include a file system number (0 to 2) in its left byte, as is the case for 
TFSlnit. The diskSize argument is the number of disk pages to be included in the file system; it defaults to 
the maximum possible, which is all of any disk besides a T-300 or a little less than half of a T-300. ddVDA 
is the virtual disk address at which to locate the DiskDescriptor file; see the TFU ERASE command for 
elaboration on this. 

TFSNewDisk returns true if successful. 

. 4.2. DiskFiridHole 

The procedure DiskFindHole, in DiskFindHole.Br, can be used to locate a "hole" of available space in the 
disk bit table. The call: . .. . 

virtualDA = DiskFindHole(disk, nPages) 

will attempt to locate a contiguous hole nPages long. If it fails, the procedure returns -1, otherwise the 
virtual disk address of the first page of the hole. 

In order to create a contiguous file, it is first necessary to create the minimal file with a leader paRe at the 
given disk address and then to use Operating System or Tfs routines to extend the file properly. The first 
step is achieved by calling 

ReleaseDiskPage( disk, AssignDiskPage( disk, vda-1» 

where 'vda' is the desired disk address (Le., the result returned by DiskFindHole). This value will control 
the selection of an initial disk address for the leader page. Once the file is created, it is wise to extend it to 
its final length immediately, as other disk allocations might encroach on the "hole" that was located. 

For example, if we are using the Operating System, we might proceed as follows: 

let nPages = 433 IINumber of data pages needed. 
let vda= DiskFindHole(disk, nPages+ 2) 

II( + 2 = 1 for leader, 1 for last page) 
test vda eq -1 

ifso Ws("Cannot find a hole big enough")] 
ifnot ReleaseDiskPage(disk, AssignDiskPage(disk,vda-1» 

let s= OpenFile("New.Contiguous" ,ksTypeWriteOnly,O,verNew,O,O,O, 
TFSzone, 0, disk) . 

PositionPage(s, nPages) IIMake the file the right length 
Closes(s) 



Trident disk software 

5. File structure on the Trident disk 

Cleared version of May 24,1981 

June 14, 1980 125 

The file structure built on the Trident disk by Tfs (Trident File System) is as exact a copy of the Alto file 
structure built Bfs (Basic File System) as is possible. Certain exceptions are present due to hardware and 
microcode differences. The Alto Operating System Reference Manual should be consulted for all file 
formats and internal information not presented here. 

5.1. Disk Format 

The Trident or Shugart disk drives are set up to run with the following parameters: 

Disk 
T-80 
T-300 
SA-4004 
SA-4008 

Cylinders 
815 
815 
202 
202 

Heads 
5 
19 
4 
8 

Sectors 
9 
9 
8 
8 

TFU CERTIFY will format each sector of the disk in the standard Tfs format: 

header words per sector: 2 
label words per sector: 10 
data words per sector: 1024 

Thus, for example, a T-80 disk will have 9*5*815 = 36,675 sectors = 37,555,200 words. Sector 0 will not 
be used by Tfs. All but sector 0 will be available to the file system. 

Ordinarily, Tfs utilizes only the first 383 cylinders (= 65,493 sectors = 67,064,032 words) ofa T-300disk. 
This is the largest integral number of cylinders that can be addressed using a 16-bit virtual disk address. 
The 16-bit virtual address limitation is deeply embedded in all existing higher-level Alto file system 
software, so changing the Tfs interface to permit a larger virtual address space would be impractical. 

Instead, Tfs permits one to obtain another, entirely independent disk object for referencing the second383 
~ylinders of the same T-300, thereby permitting a separate, self-contained file s~stem to be constructed. 
This is done by passing a '1' in the left byte of the 'driveNumber' argument to TFSlnit or TFSNewDisk 
(that is, drive' #400' refers to the second file system on a T-300 pack mounted on drive 0). A third file 
system (number '2', drive' #1000') may also be constructed, but it contains only 49 cylinders (= 8379 
pages, only 6 percent of the disk's total capacity), so doing so is probably not worthwhile. 

5.2. Disk Header and Label 

On the Trident, a real disk address requires two words to express, rather than the single word on the 
Diablo 31. Also, microcode considerations gave rise to a reordering of the entries in the Label. The result 
is that both the header and label formats are different for the Trident. The Trident format follows. If you 
are interested in this level of detail, the file Tfs.d (contained within <Alto)Tfs.dm) should be consulted. 

/ / disk header 
structure DH: 

[ 
track word 
head byte 
sector byte 
] 

/ / disk label 
structure DL: 

hleid word IFID 



Trident disk software 

packID word 
numChars word 
pageNumber word 
previous @DH 
next@DH 

Cleared version of May 24, 1981 

June 14,1980 

kanifest IDL = size DL/16 

5.3. Disk Descriptor 

126 

Every valid Tfs disk has on it two files which must contain the state information necessary to maintain the 
integrity of the file system. The Tfs system directory, "SysDir.", is identical in format and purpose withits 
Bfs counte~art. However the Tfs disk descriptor file, "DiskDescriptor.", while identical in purpose, is 
formatted dIfferently to allow easy manipulation of the bit table (which, for the Trident, has to be paged in 
and out of memory). This difference In format should not be evident to even low-level Trident users 
(unless you write your own DDMgr), but is mentioned here for completeness. 

5.4. Bad Page Table 

Tfs and Tfu observe the standard Alto file system convention of recording -2's in the labels of all known 
bad pages. However, if this were the only location of such information, "erasing" a disk (to create a virgin 
file system) would require two passes over the entire disk: one to collect the addresses of all known bad 
pages and one to mark all remaining pages deleted. This would require an excessive amount of time, 
particularly on a T-300. .. . 

A duplicate table of known bad pages is therefore recorded on physical page zero (= cylinder 0, head 0, 
sector 0) of the disk. This page is not available to the file system for other reasons having to do with end
of-file detection. The format of the table is given by the BPL structure, which is defined in Tfs.d. Note 
that the entries are REAL disk addresses and can therefore refer to any page on the disk regardless of 
whether or not such a page is accessible through the file system. (A T-300 lias only one bad page table, 
even ifit contains several file systems.) 

The TFU CERTIFY command is resQonsible for testing the pack and building the bad page table. The 
TFSNewDisk procedure (called by TFU ERASE) is careful not to clobber this information but rather to 
propagate it to the other places where it is needed (namely, the disk bit table and the labels of the bad 
pages themselves). As a result, the bad page information, once initialized, will survive across all normal 
operations on the disk, including "erase" operations. 

There does not presently exist any facility for manually appending to this list when new bad pages are 
discovered. Experience to date with the Trident disks (WhICh provide correction for error bursts of up to 
11 bits in length) has shown that such a facility is probably not needed. Thorough testing of disks (using 
TFU CERTIFy) is recommended before putting them into regular use, however. 

6. Revision History 

July 24, 1977 

Incompatibilities: 

The format of DiskDescriptor has changed. The new Tfs cannot access old disks or vice versa. See 
description under "TFU CONVERT". 

There is now another file, TfsA.Br, that is logically part of TfsBase.Br and must be loaded along with it. It 
contains assembly-language code formerly included as l'tables" in TfsBase.Br .. 



Trident disk software 

New Features: 

Partial support for T -300 disks. 

Cleared version of May 24, 1981 

June 14, 1980 

Confonns to new conventions for maintaining addresses of known bad pages. 

TFSInit checks for valid SysDir leader page and DiskDescriptor version. 

127 

Count of bit table discrepancies added to DiskDescriptor. (These are pages falsely claimed to be free in 
the bit table.) 

VirtualDiskDA returns fillInDA for illegal real disk addresses. 

Additional Trident-specific disk actions. 

Tfs is now entirely reentrant, so it is safe for the IdleO procedure to give control to another process thatin 
turn calls Tfs procedures. 

October 21, 1977 

Incompatibilities: 

The fonner Tfs\Vrite module has been broken into four pieces: TfsWrite, TfsCreate, TfsClose, and 
TfsDDMgr. In most applications, all four must be loaded. 

The 'sharedBT' argument to TFSInit has been replaced by a 'ddMgr' argument. The mechanism for 
sharing a bit table buffer among multiple drives has been entirely changed. (Programs that omit this 
argument are unaffected by the change.) 

The TFSCreateVDA static has been removed. In its place is a new procedure TFSSetStartingVDA(disk, 
vda) that serves the same purpose. 

The syntax of the TFU EXERCISE command has been changed. It is now 'TFU EXERCISE <passes> 
<list of drives>', and <list of drives> defaults to all drives that are on-line. 

New features: 

Complete support for T -300 disks. In conjunction with this, the TFSDiskModel procedure has been 
added. 

It is now possible for DiskDescriptor pages to be managed externally (perhaps through some sort of virtual 
memory mechanism) by use of a user-defined 'DiskDescriptor Manager' object 

TFSSilentBoot procedure added. 

November 9,1977 

Incompatibilities: None. 

New features: 

TFU CERTIFY and TFU BADSPOTS commands added. TFU CERTIFY initializes the headers on a 
virgin disk pack and then runs repeated tests over the entire pack, pennanently recording any bad spots 
that it finds. This command replaces all the normal uses of tlie Triex program, documentation for which 
has been removed. • 

Microcode modified for more efficient reading on Alto-IIs (by about 25%). 

February 26, 1978 



Trident disk software 

Cleared version of May 24, 1981 

June 14, 1980 128 

Incompatibilities: Software updated to new time standard; will not run under as versions earlier than 14. 

New features: Microcode source now in two parts, to facilitate combining it with other microprograms. 

December 15,1978 

Incompatibilities: some of the TFS DDMgr procedures renamed (used internally). 

New features: returnlfNoCb argument to TFSGetCb;- ddVDA argument to TFSNewDisk; TFU 
ERASE/B option to maximize contiguous free storage; TFU RESETBADSPOTS command added; TFS 
and TFU should run on Dorado. 

June 25,1979 

Incompatibilities: none. 

Changes: Optional "hintLastPage" argument added to ActOnDiskPages, WriteDiskPages, and 
DeleteDiskPages; several minor bugs fixed. 

July 17,1979 

Incomwatibilities: The structure of a DSK (and therefore a TFSDSK) changed, so programs that get 
"Tfs.d must be recompiled; TFSSetStartingVDA(disk, vda) procedure removed--instead use 
ReleaseDiskPage(disk, AssignDiskPage(disk, vda-l». - -

Changes: New operations InitializeDiskCBZ, DoDiskCommand, and GetDiskCb added to the DSKobject 
in ~reparation for OS 17. Note that the new TFS will work under earlier versions of the as, but the old 
TFS will not work under OS 17. 

November24,1979 

Incompatibilities: The manner in which the TFS turns the display off and on has been changed so that it 
works correctly even if the caller accesses the disk at the DoDlskCommand/GetDiskCb level, and even if 
there are mUltiple contexts making calls to the TFS. Existing software that uses the low-level procedures 
may require modification. 

The microcode has been modified, so recompilation is required of any microprograms that include 
TriConMc.mu or TriConBody.mu as a comjJonent. (The interface to the microcode has changed slightly; 
consult the revised documentation in <AltoDocs>Altolridentpress.) 

Changes: This release includes some substantial changes in error recovery at both the microcode and the 
software level. Formerly there were problems that could cause the software to get hung up under extreme 
conditions such as operating the disk with the display on. 

Unrecoverable disk errors are now reported with more complete information. (This requires new versions 
of Swat and Sys.errors, being released simultaneously.) Additionally, if the currently-selected drive goes 
not-ready, TFS generates an error rather than hanging mdefinitely. Finally, attempting to write on aread-
only drive gives rise to a distinct error. . 

TFU has been cleaned~ somewhat. It always generates a typescript in file TFU.log (this replaces the 
former TFU .ExerciseLo . Disk drive names are now standardized: TPO for Trident drive 0, DPO for 
Diablo drive O. TFU D ETE can take multiple arguments. TFU RENAME command has been added . 

. June 14, 1980 

Incompatibilities: none. 

Changes: The software is now capable of dealing with Shugart SA-4004 and SA-4008 disk drives, 
interfaced through a Shugart controller card. The TFSDiskModel procedure has been changed 
appropriately. 



Trident disk software 

Cleared version of May 24, 1981 

June 14, 1980 129 

Note: This version of the software must be compiled with the as 18 system definitions files (Disks.d, etc.), 
but may be operated under as releases as old as as 16. 



VIEWDATA 

Cleared version of May 24,1981 

September 9, 1977 

ViewData -- 2D projections of 3D data on Display Screen 

130 

ViewData is a BCPL subsystem that will draw a picture of a file of data on your dispaly screen, and allow 
you to interactively control your point of view on the data. It handles· only a two-dimensional array of 
single-word values (Le. a three-dimensional surface, a function of two variables evaluated over a regular 
fimte grid). Here is a list of features: 

1) ViewData accepts input in the simplest possible file format: an optional header of any number of 
words (with any contents, which are ignored), followed by a block of (signed) data words of any size, 
with any dimensions. 

2) ViewData takes all parameters from a dialog with the user via keyboard and mouse. By specifying 
different header sizes and dimension sizes, the user can exercise limited control over the selection of 
data from his file. 

3) ViewData takes all sraphical parameters from screen points clicked with the mouse. A point of view 
is specified by clickmg the screen positions of three comers of the data array. Zooming is 
accomplished by clicking opposite corners of the rectangle to be expanded. Prompts appear belowthe 
plot region to indicate what points and! or switches to click. 

4) ViewData contains a call to DCBPress to allow generation ofa one-page output file with a picture of 
your data. This can be annotated by Markup and printed by an appropriate server. With PressEdit, it 
can be editted into a report. . 

5) ViewData uses the new PlotStream package (to be released soon) to provide a display interface 
which is transparent to the average programmer; thus the program is easily modified to better suit your 
data viewing requirements. 

6) ViewData is reasonably small, e~~ecially if one deletes unneeded routines from the various files 
which are loaded with it (MathUtil, SDialog, UtilStr, PlotStream, FractionProduct, DCBPress). 

Getting and Running Viewdata: 

Use FTP to retreive viewdata.run. If you need some sample data, use the FTP Load command to get 
Test.Data from ViewData.Dm (stored with sources). Execute ViewData and default all the parameters 
with CR to set a sample display. Using the mouse, rollow the instructions of the prompts to zoom,redraw 
in a new onentation, or overvIew (zoom back out to the highest level). After you finish by pressing all 
three mouse buttons at once, you have the options of producing a press file, restarting (possibly with anew 
data file), or quitting. . 



New Disks 

Cleared version of May 24, 1981 

May 24,1981 

Making a new Alto disk 

131 

This document describes procedures for creating a new disk, either by copying a "Basic disk" or by using 
the File Transfer Program. It may be helpful to refer to documentation for Copydisk and FfP. 

I. 

The normal way to obtain a new, clean disk is to copy one of the Basic Alto Disks (Non-Programmer's, 
BCPL Programmer's, Mesa Programmer's, or Proofreader's) using COjJydisk. Images of these basic disks 
are kept in the <BootFiles> directories of various file servers; at PARe the desired server is Ivy. The disk 
image file names are NonProg.bfs, BCPLProg.bfs, MesaProg.bfs, and Proofreader.bfs. Put a blank diskin 
your Alto and type: 

>NetExec 
>CopyDisk 
*Copy from: [fileServerl<BasicDisks>fileName.bfs 
Copy to: dpO 

where fileServer is the file server name and fileName is the disk image file name, as explained above. 
Copydisk will copy the basic disk image onto your disk, overwriting its previous contents. 

An alternative way of building a new disk from scratch is to erase it by means of the Install procedure, then 
use FTP to retrieve the subsystems and other files that you need. This procedure is required if you are 
building a non-standard disk (for example, a double-disk system or a Dolphin or Dorado partition)~ 

First, bootstrap the NetExec by booting the Alto with the BS and single-quote keys depressed. Then type: 
>NewOS.boot . 

This will load a copy of the as from the network. When it starts up, it will ask you if you want to install 
the OS; respond 'Y'. 

Install will ask if you want the long dialog; respond 'Y'. Then it. will ask if you want to erase a disk. Reply 
'Y'. It will ask you for the name of the local file server (at PARC this should be 'Maxc') and the name of 
the directory on that server from which to obtain files (the correct response to the latter question isusually 
'Alto'). Finally, it will ask the usual questions about your name, the dIsk name, and the password. 

When Install has finished initializing the disk it will run FTP to obtain the Executive. Now, to obtain 
current versions of the 'basic' software type 
>lliJ fileServer retlc <alto>newdisk.cm 
>@newdisk.cm@ 

where 'fileServer' is the name of your local file server. 

After this has completed, to obtain additional software for a 'basic non-programmer's disk' type 
>@npdisk.cm@ 

To obtain additional software for a 'basic BCPL programmer's disk' type 
>@pdisk.cm@ 

To obtain additional software for a 'basic ~fesa programmer's disk' type 
>@mesadisk.cm@ 

II. 

You can copy files from your old disk to the new one in two ways. One is to put them onto a file server 
and retrieve them with FfP. If there are many, it is a good idea to package them into a dump file. The 



New Disks 

Cleared version of May 24, 1981 

May 24,1981 132 

other way is to copy them from the old disk on one Alto to the new disk on another Alto. On your new· 
disk, type 
)ftp 

On the Alto with the old disk, type 
)ftp <Host name> store/c <filenamel> <filename2> ... 

<Host name> is the name of the Alto which has the new disk. 

The easiest w~y to specify and transfer lots of files between two disks is to put both·disks into a double-disk 
Alto and use Neptune; see the Neptune documentation for details. 

Another method is to use DDS (if you have it on your old disk) to select the desired files, then issue the 
<Send to ... ) command and type in the name of the Alto with your new disk, which should be running 
FfP. 

Without DDS, a way to _specify lots of files is to obtain a file with all your file names by typing 
)*(control-XXcontrol-UXreturnXreturn> 

This will automatically invoke Bravo and read in 'line.cm'. You may then edit line.cm to exclude the files 
which you do not want to transfer and insert the necessary FTP commands, thereby creating a command 
file which may be invoked in the usual way. For example, at the beginning of the file insert 
ftp <Host name> store/c· . . 

then delete everything except the files which you want to transfer. 'P'ut the command string onto a file. 
;9@~~o@t of BRAVO and type _ . - . _. . 

where 'foo' is the name of the file which you just created with BRAVO. The selected files will be sent to 
the waiting Alto with the new disk. 

Executing either variant of procedure I to erase and initialize your disk, followed by procedure II to 
transfer all of your files using FTP, is a good way to compact a fractured disk. 



For PARC Alto Users 

1. PARC Infonnation 

1.1. Getting Started 

Cleared version of May 24,1981 

May 24,1981 133 

Each administrative group in Pare handles disk pack allocation differently. Ask your secretary how to geta 
disk. . . 

A set of BASIC ALTO DISK images is maintained on [Ivy](BasicDisks), as discussed in the "NewDisk" 
procedure. 

1.2. MAXC Directories for Alto Software 

The (ALTODOCS) directory contains documentation for the subsystems and subroutine packages. 

The (ALTO) directory contains current versions of all the Altoprograms. Programs are nonnally kept in 
executable fonn; thus the CopyDisk program appears as (ALTO)Co~yDisk.Run. In addition to the 
executable file, some programs also have a symool file on (ALTO). The symbol file for Copy Disk is 
(ALTO)CopyDisk.Syms. This file is useful to the author when something goes wrong with a subsystem, 
but it is not normally needed by users. Subsystems which need more than one file, either because they 
have overlays or because they need data files, should have the individual files stored, together with a 
command file which may be run to retrieve each file via FfP. The COIIhl1aild file should have the 
extension .CM. Definition files have the extension .0. These files are useful only to programmers. 

Subroutine packages are kept on <ALTO) with an extension of .BR or as "dump" files (extension .DM) if 
several files belong together as a package. 

The (ALTOSOURCE) directory contains the source files for the subsystems and subroutine packages. It 
also contains the PUB files for the documentation which is on <ALTODOCS). 

1.3. Alto Software Maintenance Procedure 

The maintainer of a subsystem or subroutine package handles a new or revised release in the following 
manner: 

A. Copy a dul!!P file with a name of the fonn SubsystemName.DM and the following contents to 
(ALTOSOURCE): 

1) The source files from which the subsystem may be created. 

2) The command files which are needed to create the subsystem from the enclosed source, unless 
the creation procedure is "obvious." The following are the usual ingredients: 

a) A command file containing statements to compile the enclosed source. Compiler 
messages should be written to a file. For example: 

BCPL/F FOO.BCPL. 

The filename should be in the fonnat, COMPILEsubsysName.CM. 

b) A command file to load the files which were produced in step a. For example: 

BLDRFOO 

The filename should be in the fonnat, LOADsubsysName.CM. 



ForPARC Alto Users 

Cleared version of May 24, 1981 

May 24,1981 134 

If the subsystem is small, the two command files may be combined into one. The 
name should be in the format, CREA TEsubsysName.CM. The following example 
will create the package for subsystem FOO. 

BCPL/F FOO.BCPL; BLDR FOO . 

c) A command file containing statements to save all relevant files in subsysName.DM, e.g. 
the file DUMPFOO.CM would contain; . 

DUMP FOO.DM FOO.BCPL CREATEFOO.CM DUMPFOO.CM 

B. When you have a change to make to documentation, or wish to introduce new documentation into the 
system, the following three steps are required: 

1. Retrieve the relevant .PUB file from (ALTO SOURCE). The file name is in the format, 
sys.PUB, where 'sys' is the name of the subsystem or subroutine package. If you are creating brand new 
documentation, start with the file (ALTOSOURCE)ALTODOCTEMPLATE.PUB, which contains the 
necessary Pub incantations and some instructions to authors. 

2. Edit the pub file. Pass it to PUB-- a .TTY version of the documentation will be produced. 

3. When you are finished, copy the pub file back to (ALTOSOURCE), and copy the .TrY 
version to (ALTODOCS). 

Please be sure to copy the pub files from (ALTOSOURCE) afresh each time you edit them, because they 
may have been edited to produce expurgated versions (for distribution outside PARC), to produce indexes, 
remedy formatting problems, etc. 

Please try to avoid needless references to PARC or Maxc facilities. Other sites maintain copies ofrelease 
directories such as (ALTO) on their own file servers; and users at those sites are encouraged NOT to go to 
Maxc for their software. 

C. Copy files needed for the new release to (ALTO). 

D. It was formerly the custom to notify all interested parties of the new version of the software, bysending 
a message either to AltoUsers·PA (for subsystems o(general interest) or AltoBCPLProgrammers'PA (for 
BCPL packages of interest only to programmers). However, this should now be done only for major 
releases. The subject of the message should be the name of the subsystem or subroutine package. Try to 
keep the message short. 

All Xerox users with MAXC accounts can connect to the ALTO-related directories without givin~ a 
~assword. Software maintainers are cautioned to alter only files for which they will take responsibilIty. 
Feel free to archive old versions, but please leave the current version of all files. (If you can't find 
something, it may have been archived forcibly due to disuse; browse the archive directory using the 
INTERROGATE command before creating version 1 of some previously-existing program.) 

104. Alto Documentation 

Formal documentation is provided in two forms: a "perusal" form, which can be conveniently typed atan 
Alto using CHAT (or from some other MAXC terminal) or perused with Bravo on an Alto, and a 
"notebook" form, which can only be printed on a Press printer, and may have fancy illustrations or fontsin 
it. 

A. The "perusal" documentation is always stored on (ALTODOCS) under a file name like sys.TTY, where 
"sys" is the name of the subystem or package you are interested in. For eXa!J1ple, the documentation fora 
subroutine package, FOO, would be found on (ALTODOCS)FOO.TTY. There is one exceJ)tion to this 
rule: for very simple sPf~stems the documentation is in (ALTODOCS)SMALLSUBSYSTEN1S.TTY. (If 
you can't find the . file you want, it might be archived; check the archive directory using the 
INTERROGATE command.) 



For PARC Alto Users 

Cleared version of May 24, 1981 

May 24,1981 135 

B. The "notebook" documentation is packaged in larger packages to reduce storage overhead and to 
provide more manageable sets of documentation for printing. Currently, the following files are maintained 
ill notebook-style: 

Alto User's Handbook. This document is available only as a printed, bound manual. It contains 
the Non-Programmer's Guide to the Alto, and manuals for Bravo, Markup, Draw, and 
FfP. 

A number of subsystems have their own separate Press documentation, stored as 
(ALTODOCS)*.PRESS. (Exception: the SIL and Design Automation documentation is 
stored as (SIL)SIL.PRESS.) 

OS.PRESS. Operating System manual. 

BCPL.PRESS. BCPL manual. 

SUBSYSTEMS.PRESS. Documentation for most Alto subsystems. These are arranged 
alphabetically, with headings to indicate which system is being described. A directory at 
the front of the file contains documentation about very simple subsystems. The last 
section of this manual contains special infonnation relating to Altos at PARC--where to 
find the software, how to maintain it, etc. 

PACKAGES.PRESS. This contains documentation for the software packages available for the 
Alto. A directory at the front of the file contains documentation about very simple 
packages. 

ALTOHARDWARE.PRESS. This is the "hardware" manual for the Alto. 

These files are fonnatted, and should therefore be printed with 

@PRESS fileN ame.PRESS 

1.5. Command Files 

In addition to the subsystems, packages, and definition files, the following command files may be foundon 
the (ALTO) directory: 

NEWDISK.CM: creates a minimal system on a new disk. See the NewDisk procedure, in the Alto 
Subsystems manual. 

MESADISK.CM: creates a Basic Mesa Disk. NEWDISK.CM must be run first. 

NPDISK.CM: creates a Non Programmer's Disk. NEWDISK.CM must be run first. 

PDISK.CM: creates a BCPL Programmer's Disk. NEWDISK.CM must be run first. 

PROOFDISK.CM: creates a ProofReader'S Disk. NEWDISK.CM must be run first. 



INDEX 

<ALTO) 
<ALTODOCS) 
<ALTO SOURCE) 
<controDP 

An?lyze 
ASM 

BCPL 
BLDR 
Boot Files 
BootBase 
BootFrom 
Booting 
BootK~s 
BRAVO 
Build 
BUILDBOOT 

CallSubSys 
CHAT 
CLEANDIR 
Com.Cm 
-command p"iocessing 
Copy 
COPYDISK 
CREATEFILE 

DDS 
Delete 
disk 
DiskBoot.Run 
display protocol 
DMT 
Documentation 
DPRINT 
DRAW 
Dump . 
Dump Format 
Dumper.Boot 

EMPRESS 
ERP 
EtherBoot 
EtherBoot loader 
EXECUTIVE 
Executive Commands 

File Stat 
FIND 
font files 
FTP 

IFS 
illustrator 
Install 
InstallSwat.Run 

LISTSYMS 
Load 

Cleared version of May 24,1981 

May 24,1981 

133 
133 
133 
113,114 

4 
2,6 

........ -.......... -2-
2,3,6 
9 
12 
54 
9 
55 
2 
4 
2,11 

51,56 
2,14,55 
2 
51 
51 
53 
2,19,131 
2,29 -

2,30 
53 
104 
11 
16 
2,39 
134 
2 
3 
54 
56 
106,113,114 

3,45 
50 
55 
11 
3,51 
53 

55 
3 
3 
3,55,61,131 

14 
3 
55 
114 

.................. 3 
54 

136 



INDEX 

Login 

MAILCHECK 
MARKUP 
Maxc 
memory diagnostic 
Mesa bcd file 
Mesa image file 
MesaBanks 
MICRO 
microcode assembler 
microcode loader 
MICROD 
MOVETOKEYS 
MU 

NeRtune 
NetDelays 
NETEXEC 
new disk 
NEWDISK 
NEWOS.BOOT 

OEDIT 
ORAM 

PACKMU 
PARC Infonnation 
PARCALTOS 
parity error 
PEEK 
PEEKPUP 
PEEKSUM 
PREPRESS 
Press file 
Press files 
PRESSEDIT 
PROOFREADER 

~PTelnet 
Quit 

RAM 
RAMLOAD 
ReadPram 
READPRESS 
Release 
Rem.Cm 
Rename 
Resume 
Route 
RPRAM 
RunMesa.run 

Cleared version of May 24, 1981 

May 24,1981 

54,65 

3, 78 
3 
14 
2 
56 
56 
55 
3 
3,82 
96,102 
3 
3 
3,4,82,96,102 

3 
4 
3,55 
131 
5 
3 

3,90 
3 

3,96 
133 
5 
114 
2,39 
3,98 
2,39 
3 
4,99 
3 
3,99 
4 
98 
2,14 

.................. 54 

3,4,96,102 
4,102 
96 
4 
54 
51 
54 
55,106,112 
4 
3,96 
56 

SaveState . . . . . . . . . . . . . . . . .. 12 
SeA VENGER . . . . . . . . . . . . . . . . .. 4, 55, 104 
SetTime .................. 54 
SIL .................. 4 .. 
Software Maintenance Procedure 133 

137 



INDEX 

StandardRam 
Subsystem Lookup 
SWAT 
Swatee 
SYS.BOOT 

TeleSwat 
TFS 
TFU . 
Trident disk software 
TRIEX 
Type 

User.Cm 

VIEWDATA 

WriteDirectory 

Cleared version of May 24,1981 

May 24, 1981 

54 
55 
4,10,106,114 
114 
4,13 

12,112 
4 
4 
4 
4 
53 

.................. 56 

.................. 4 

55 

138 


