Cleared version of May 24, 1981

ALTO SUBSYSTEMS

Compiled on: May 24, 1981

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

® Xerox Corporation 1981



Cleared version of May 24, 1981
Alto Subsystems - May 24, 1981 2

Alto Subsystems

This document is a directory of major Alto BCPL subsystems. Mesa subsystems are collected togetherand
documented elsewhere.

Binary versions of these programs are available on the <Alto> directory. If the documentation for the
subsystem is short, it is included in this file directly. If it is somewhat longer, the documentation isstored
s?arately and the entry is marked with a *. The documentation for these objects is available on
<AltoDocs> in .TTY files. Programs that have quite bulky documentation are denoted by **. These
programs have separate documentation on <AltoDocs>, usually as <AltoDocs>Name.press. Some of the
most common ones (e.g., Bravo) are documented in the Alto User’s Handbook.

If you would like a full listing of documentation for all but the ** programs give the command "Press
<AltoDocs>Subsystems.press”.

The person last known to be responsible for each subsystem is also given.

*ASM: an assembler for Alto machine language, producing object files compatible with the Bepl
loader. (Ed McCreight)

**BCPL: a compiler for the Bepl language. (Dan Swinehart)

**BLDR; aloader for object files produced by Bepl and Asm. It is documented in the Bcpimanual.
(Dan Swinehart)

**BRAVO: a display editor. Documentation is in the Alto User’s Handbook. (no longer
maintained) '

*BUILDBOOQT: a program for constructihg Alto boot files. (David Boggs)
*CHAT: establishes PUP Telnet connections between a pair of cooperating parties. (Ed Taft)
CLEANDIR: does a garbage collection on a file directory (not on the disk space, though). Callit

with

>CLEANDIR directory-name n : _

to clean up the specified directory. The system directory is called SYSDIR. The second
parameter, n, tells how much extra space to append to the directory. The reason for it is that
extending the directory in this way will tend to get the pages allocated to consecutive disk sectors,
so that subsequent lookups will go faster. Note that the cleanup function of CLEANDIR is
superceded by the “"WriteDirectory" command of the EXECUTIVE; CLEANDIR is now useful
only for extending a directory. (David Boggs)

*COPYDISK: copies whole Diablo and Trident disk packs from one drive to another on the same
Alto, or through the net between two Altos, or to and from a disk image stored on an IFS.
~ (David Boggs)
*CREATEFILE: creates a file of a given size, trying to allocate it contiguously. (David Boggs)
*DDS: The Descriptive Directory System is a front end for the Alto file system, providing a
relational data base management system and facilities for displaying information related to Alto
files. (Peter Deutsch)

*DMT/PEEK/PEEKSUM: Alto memory diagnostic program and related statistics-gathering
programs. (David Boggs) ~

*DPRINT: Prints disk files on the Diablo Printer. (Ed Taft)



Cleared version of May 24, 1981
Alto Subsystems May 24, 1981 3

*DRAW: An illustrator. Documentation is in the Alto User’s Handbook. (Patrick Beaudelaire)

EMPRESS: Converts ordinary text files to Press files, and performs simple formatting operations,
intended for listing programs. (David Boggs)

*EXECUTIVE: The Alto command processor. (Richard Johnsson)

*FIND: a program to search text files for user-supplied strings. This Rrogram originated as a
demonstration of the power of compiling microcode from the given problem. (Peter Deutsch)

*F}Ig'P: a)Pup-based File Transfer Program for moving files to and from an Alto file system. (David
0ggs

*L]IDSTSY%S: converts the .Syms file produced by BLDR into human readable form. (Peter
eutsc

*MAILCHECK: A program that will check for waiting mail on Maxc. (Larry Masinter)

**I\IGIARKU)P: A document illustrator. Documentation is in the Alto User’s Handbook. (William
ewman

*MICRO: The microcode assembler for Maxc, Dorado, D0, and other machines. Basic
documentation is available only in the CSL archives. It is called "Maxc document 9.2". Recent
changes are documented in <AltoDocs>Micro.tty. (Peter Deutsch)

MICROD: Loads, binds, and determines absolute placement of Dolphin and Dorado
microprograms. (Peter Deutsch)

MOVETOKEYS: Moves page 1 of the named file to the appropriate fpage of the disk so that
depressing the key-combination and the boot button will boot-load the file. (Roy Levin)

*MU: The microcode assembler for the Alto. (Ed Taft)

Neptune: A program for listing, copying, and deleting files. It is capable of dealing with both drives
of a two-drive Alto, and also with Trident disks. The program offers help on its use.
Documentation is in the Alto User’s Handbook. (Keith Knox -- WRC)

*NETEXEC: This subsystem, which is bootstrapped over the Ethernet, provides a convenient
interface to the other systems available from "boot servers” on the network. (David Boggs)

NEWOS.BOOT: is the name of a ready-to-install Operating System. Retrieve it, say "Install
lglewO)S.boot" to the Exec, and then delete it (it writes itself out on the file Sys.boot) (David
088s
*QEDIT: allows you to look at and modify arbitrary files in octal. (Lyle Ramshaw)

*O}%AM:h,)A scheme for overlaying several segments of microcode in the Alto RAM. (Peter
eutsc

*PACKMU/RPRAM: These two subsystems, in conjunction with the subroutine ReadPRAM or
LoadRam, allow programs using the RAM to check the constant memory and load the RAM asa
part of their initialization. (Peter Deutsch)

*PEEKPUP: a Pup software debugging aid. (David Boggs)

**PREPRESS: A program for manipulating font files. (Lyle Ramshaw)

*P%ESSED)IT: combines, merges, and performs various other operations on Press files. (William
ewman



Cleared version of May 24, 1981
Alto Subsystems May 24, 1981 4

PROOFREADER: Proofreader for English text. (Ed McCreight)

*RAMLOAD: a program for loading the Alto RAM from the files produced by the microcode
assembler, MU. (Dave Boggs)

READPRESS: reads Press files and displays a téxt-listing of the entity commands, DL strings, etc.
Command line is of the form: "ReadPress Test.Press". (Joe Maleson)

*SCAVENGER: a subsystem for repairing a damaged Alto file system. (Richard Johnsson)

**SIL, Analyze, Route, Build, NetDelays, etc.: A system for automating logic design, including an
illustrator specialized to logic drawings. (Roger Bates, Ed McCreight)

*SWAT: a debugger for Bepl programs. (David Boggs)
SYS.BOOT: is the name of the boot file for the operating system on the Alto disk. (David Boggs)

*Trident disk software: TFU, TRIEX and the TFS software package. The Bcpl software package
and utility programs for driving Trident disks interfaced to the Alto. (Ed Taft?

*V{EW]))ATA: a subsystem that displays 2D projections of 3D data on the Alto screen. (Dick
yon »



Cleared version of May 24, 1981
Alto SubsysAtems May 24, 1981 5

***MISCELLANEOUS PROCEDURES AND INFORMATION***
***FOR PARC ALTO USERS***

*NEWDISK: a procedure for creating a virgin disk and getting fresh, up-to-date software from
MAXC. (David Boggs) '

*PAI})%%I&TOS: a document containing miscellaneous information for Alto users and maintainers
at .



Cleared version of May 24, 1981
ASM February 10, 1979 6

ASM

This assembler, written in BCPL, runs on the Alto and dproduces BCPL-compatible relocatable binary
output files, suitable for input to BLDR, the BCPL loader. The Alto Hardware manual describes the
source language and the virtual machine. :

1. Symbols

Symbols may be up to 130 characters in length, and every character of a symbol must be used to identifyit.
By default upper- and lower-case characters are different, and two character strings represent the same
symbol only if the same letters and cases are used in both. However, the /U switch causes all lower-case
letters in symbols to be changed to upper case (even in external symbols). Thus if you want an assembly-
language program to link to symbols containing lower-case letters, you must either default lower-case
conversion in ASM or map all symbols to upper case in BLDR using its /U switch.

2. Strings

Strings follow BCPL conventions. They may not extend from one line to the next.

3. Assembly Regions

This assembler can assemble into three regions: two static regions (one in page 0) and one code region.
The directives .NREL, .SREL, and .ZREL cause the assembler to begin placing code in the code region,
the non-page-0 static region, and the page 0 static region, respectively. The BCPL loader causes the
restrictions that the code area may not contain pointers into the code area, that the first word of the code
area may not point to a static area, and that no static area may contain pointers to a static area. The only
external symbols are statics.

Arithmetic is not allowed on symbols denoting statics, and the symbol "." is undefined in .SREL and
ZREL. Any absolute or code- relative expression (including such goodies as JMP@ 62) may be placed in
:SRI\EIIﬁ IEZ){. .ZREL. Any absolute expression, static reference, or instruction reference to .ZREL may appear
in. . ‘ :

4. Text

There are two text modes, TXTM B and .TXTM L. Mode B causes the generation of standard BCPL
strings. Moge L causes the generation of long strings, a full word length followed by the string characters,
two per word. :

5. .GET



Cleared version of May 24, 1981
ASM February 10, 1979 7

The directive .GET "FOQ" causes the file FOO to be inserted into the source text at that point. .GETcan
be used up to two levels deep. Its primary utility is likely to be for lists of externals and for canned entry
and exit sequences.

6. GETNOLIST

W%'légr exactly like .GET, except that the "gotten" file is not included in the listing, nor are any fileswhich
it. ’S.

7. .BEXT

In addition to .EXTN and .EXTD and .ENT, I have added two directives .BEXT and .BEXTZ which work
exactly as BCPL’s External works for non-page-0 and page 0 statics, respectively. This should increase the
utility of the .GET feature above.

8. Expressions

Parentheses (but not precedence) are supported. Constructs like "K and $*N and 5 and 17. and 3B10are
all primaries, Most BCPL and customary assembler operators are allowed. The construct 1B10 means
40(octal), unlike BCPL’s convention. I am willing to be convinced on this point.

9. Predefined Symbols

All predefined symbols and directives and opcodes are defined both in all upper-case and all lower-case
letters. For example, both LDA and lda are predefined, but Lda is not. e following Alto-specific
opcodes are preloaded in the symbol table:

JSRII JSRIS CYCLE CONVERTDIR EIR BRI

RCLK SIO BLT BLKS SIT RDRM WTRM

JMPRM MUL DIV

In addition, the following pile of skips which test various conditions has been added, courtesy of Dan
Ingalls. Only the names have been changed to confuse the innocent:
wo operands:
SZE SZ SNZ SP SGZ SN SE
SE SNE SLT SLE SGT SGE SGTU
SLEU SGEU SLTU SODD SKEVEN SNIL SNNIL
MKZERO MKONE MKNIL MKMINUSONE

No Operands:
NOP SKIP

It should be explained that U stands for unsigned, and that Dan thinks of NIL as -1.



Cleared version of May 24, 1981
ASM February 10, 1979 8

10. Operation

If the source file is called FOO.ASM, type
ASM FOO.ASM

If f'ou just type ASM FOO it will first L?/ to use FOO and, failing in that, try FOO.ASM. The assembler
will usually want to construct several files, which it will do by substituting various extensions on FOO
unless éou specify otherwise. There are a lot of switches which apply to ASM:
/L onstruct a listing file
/S Include the symbols defined by the user, for what they’re worth
/A Include all symbols, even the gredeﬁned ones
/R Include a printout of the .BR file
/N Don’t make a .BR file
/E  Make an .ER file which is a copy of the error messages
sent to the terminal
/D Print debugging messages (as errors, in fact) )
/P Pause after printing each error message (continue with CR)
/U Map all lower-case letters in symbols to upper-case

There are also a lot of switches which apply to file names, and which tell the assembler to use thisname
instead of the one it was about to invent:

/L "Names the listing file

/E  Names the error file i

/S Names the source file (also no switches)

/T Names the temporary file

/B Names the relocatable binary file



Cleared version of May 24, 1981
Boot Files February 17, 1979 9

Alto Boot Files: Formats and Construction

The process of "booting" the Alto is one of setting some or all of the Alto’s state either bly reading a file
from the disk or by accepting packets from the Ethernet. This document attempts to explain the various
ways that state is restored, and the formats of "boot files” built by various programs. '

There are four basic steps in "booting” the Alto: (1) the tasks in the microprocessor are reset; (2) a256-
word "boot loader" is loaded into main memory and started; (3) the boot loader loads a portion of Alto
main memory from a "boot file" and finishes by transfering to a known place; (4) the user’s program
loaded by the third step can restore even more of the Alto’s state.

1. Booting

"Booting" is accomplished either by pushing the "boot button" located on the rear of the keyboard orby

executing the SIO instruction (see Alto Hardware Manual). Unless overridden by the Reset Mode

Register, the emulator task is started in a standard boot program. This program reads location 177034b,a

word whose contents can be altered by pushing various keys on the keyboard. If the <bs> key isdepressed

g;niggkbooting, the machine state will be restored from the Ethernet; otherwise, the state is restored from
e disk.

When booting from the disk, the keyboard word is interpreted as a disk address where a "disk bootloader"
is located. If no keys are depressed, disk address 0 is generated, which is the normal resnpﬁ place of the
"disk boot loader” for the operating system. The emulator reads a single 256-word disk record into
memory locations 1, 2, ...400b; the 8-word disk label for this pa%e'is placed in 402b, 403b, ... 411b. When
the disk transfer is complete, control is transferred to location 1 in the loader. The boot loader uses the
saved label to point to the remainder of a "boot file" which is read into main memory and started. The
types of "disk boot loaders" and "boot files" are discussed below.

When booting from the Ethernet, the microcode waits until a "breath of life" packet arrives, containinga
256-word "Ethernet boot loader” which is read into locations 1 - 400b and executed by transferring to
lofctell'}ion LIt 1sdug to this loader to establish communications with a party willing to deliver the remainder
of the state needed.

2. Boot File Formats and Boot I oaders

There are two basic kinds of boot files, and a variant:
B-File: Built by the BuildBoot program; loader is DiskBoot.
S-File: Built by the OutLd subroutine; "S" loader.
S0-File: Variant of S-File built by the SaveState subroutine.

A B-File can be distinguished from an S-File or S0-File because B-Files have a 0 in their second data word.

Words 4 & 5 of B, S, and SO boot files do not contain code and are reserved for holding the (Alto format)
date on which the file was built. Boot servers use this information to propagate the latest versions. Old
forg}llat typé:(l? files which don’t contain a date have 402b in file word 0. Old format type S files have 355b
in file word 0.



Cleared version of May 24, 1981
“Boot Files February 17, 1979 10

2.1. B-Files

B-Files ("BuildBoot" files) are the simplest sort of boot file. The booting process itself does not restore the
entire state of the machine; page 1 (addresses 400b to 777b) is not restored; no RAM or R-register stateis
restored except for the program counter. .

A boot loader resides in the first (256-word) data page of a B-File. It is this page that is read in by the
booting process. The file is formatted as follows: '

Filepagel => DiskBootloader

Filepage2 => Image of memory page 0 (0-377b)
Filepage3 => Image of memory page 2 1000b-1377bg
Filepage4 => Image of memory page 3 (1400b-1777b
File ﬁége n => Irriage of memory page n-1

The file can be of any length, except that n must not exceed 254. After reading the entire file, control is
transferred to the restored state by doing JMP@ 0.

2.2. S-Files

S-Files ("Swat" files) are a somewhat complicated construction that permits more of the Alto state to be
restored: the interrupt system, active display, and so forth are all restored. In order to achieve this, the
restored state must contain a copy of the OutlLd subroutine that is responsible for the final stage of the
restore; when the state is fully restored, this subroutine simply returns to its caller. This full state saveand
restore was originally designed for the Swat debugger. (Note: no RAM or R-register state except for the
PC and accumulators is restored by this kind of boot.)

A boot loader resides in the first (256-word) data page of an S-File. This is the page read by the booting
process. The file looks like:

Filepagel => "S"loader
Filepage2 => Image of memory page2 ElOOOb-1377bg
Filepage3 => Image of memory page 3 (1400b-1777b

File page 253 => Image of memory page 253 (176400b-176777b)
File page 254 => Image of memory page 1 2400b-777b)
File page 255 => Image of memory page 0 (0-377b)

The S-File must contain at least 255 data pages; additional pages are ignored by the booting process, and
can be used to save additional state. When the restore is finished, control returns to the caller of OutLd
(see Alto Operating System Manual).

ssec(S0-Files)

S0-Files are a minor variant of S-Files that can be used to restore the Alto state in 2 different ways. The
variation is simply that location 0 of the restored memory image (i.e., word 0 of file data page 255) contains
an "alternate starting address." The file can be loaded by (1) using it as an S-File, and executing theloader
saved in its first file data page, or (2) by a loadm% 1process at loads all memory but page 1 (file page 254)
and does a IMP@ 0. The operating system boot file, Sys.Boot, is an S0-File.

The S0-File is designed to permit Ethernet booting from states conveniently saved by OutLd.



Cleared version of May 24, 1981
Boot Files February 17, 1979 11

2.3. DiskBoot loader: B-Files

The DiskBoot loader is commonly placed as the first data page in B-Files. Its source is DiskBoot.Asm (in
BuildBoot.Dm); BuildBoot will normally include this loader on the front of the B-Files it constructes.
NOTE: the file "DiskBoot.Run" is not a literal copy of the 256 words that go on the front of the file, but
the result of applying BIdr to the relocatable file generated by assembling DiskBoot.Asm. B-files were the
first boot format designed for the Alto. Unlike an S-file which must be atleast 255 data pages long, aB-file
need be big enough to contain all of the code to be loaded.

2.4. InOutl_d loader: S-Files and S0-Files

This loader is part of the O(ferating System and available as a separate package. For more details read the
descriptions of InL.d, Outl.d and BootFrom in the Alto Operating System manual.

2.5. EtherBoot loader: "Breath Of Life"

The "breath of life" loader, which is periodically broadcast by gateways, is loaded into locations 1-400b
when the Alto is booted with the <bs> key pressed. The standard form of this loader reads location
177035b (a keyboard word), and transmits "MayDay" packets containing the 16-bit result. Some serveron
the network will inte;{gret the 16-bit argument as a request for a specific program. The server will openan
EFTP connection with the Alto which sent the MayDay. It transmits data pages in the same order asthey
are recorded in B-Files (including the first data page, even though it contains a disk-oriented loader).
When the connection is closed, the loader starts the restored image by doing a JIMP@ 0.

By convention, the 16-bit argument 177777b is never answered by a server. This convention is used by
tIgrrograms which have specifically started a "breath of life" loader and are expecting an EFTP connection
om some specific party.

The EtherBoot loader is available as a package: see the Alto Packages manual. Protocol details are in the

Pup documentation. :

3. Constructing B-Files: BuildBoot

BuildBoot.Run constructs files for direct booting into the Alto. The program copies its input files into an
output file according to directives in the command line and in the input files themselves. Two kinds of
input files are supported at the moment. One is the segment file, which contains a block of words to be
loaded into contiguous addresses. The other is the executable (.Run) file, which is what Bldr produceson
the Alto (see Alto Operating System Reference Manual for details). If several files in the command line
specify the contents of the same memory location, the last one will win. In addition to the data already in

e output file, the program maintains four state variables between items in the command line. One isthe
location counter which specifies the address where the next segment file (if any) will be placed. Anotheris
the address where the loaded image is to begin execution. This defaults to the starting address of thelast
executable file in the command line. The third is the address (if any) where the layout vector of the next
executable file is to be loaded. If this address is missing, the layout vector will not be loaded. The fourthis
the address (if any) in the boot loader where the current date and time will be placed.

Here are the switches:

/E This is an executable file (also no switches or /R) .

/D This is the address of a two word block in the boot loader
where the cutrent date and time are placed.

/S This is a segment file

/N Reset the location counter to this octal number

/0 This is the output file

/G This octal number specifies where execution begins



- Cleared version of May 24, 1981
Boot Files February 17, 1979 12

/B This executable file contains a boot loader in its code
area. If omitted, defaults to "DiskBoot.Run"
/L Write load map on this file
/v The layout vector of the next
executable file will be loaded in a contiguous
block starting at the address specified by this
octal number

If we wanted to bootify the .Run file Prom.run, we might say-

BuildBoot Prom.boot/O Prom.map/L 20/N 1000/G+t
Prom.run/S

Si;nilarly, if we had the diagnostic DMT.RUN as an executable file (including any runtime support it
might need), we could simply say

BuildBoot DMT.boot/O DMT.DMT.map/L DMT.run/E

The disk boot loader DiskBoot.Run_is also included in the file BuildBoot.Dm, and is required by
BuildBoot unless another boot loader file is specified by the /B switch.

The BootBase package (AltoSource>BootBase.dm) makes it possible to construct a B-format boot file out
of most any .Run file without any souce-level changes. It inifializes an execution environment; providesa
runtime environment including TeleSwat, the Bepl runtime routines, Calendar clock maintenance, parity
error handling; and supplies selected Operating System routines.

Two standard configurations are available: BasicBoot is a bare bones Bcpl environment suitable for
diagnostics; FullBoot adds most of the facilities of the Alto Operatm%aSystem except for the BFS, Disk
Streams, and Directories. Other configurations are straight forward. Each configuration consists of four
files: xBootBase.run (x = Basic or Full) contains code. xBootBase.bj contains Bldr linkage information
similar to Sys.bk. xBootBase.xc contains part of the Bcpl runtime. LoadxBoot.cm is a command file
template containing incantations to Bldr and BuildBoot and slots which you must fill in.

4. Constructing S-Files: OQutlLd

1S\iFﬂe§1 are constructed by the OutLd subroutine, which is documented in the Alto Operating System
anual. ,

5. Constructing S0-Files: SaveState

The SaveState subroutine, also included in BuildBoot.Dm, can be called in a fashion similar to OutlLd, but
it will create an S0-File. The Bcpl call is:

SaveState(filename, [flags])

It behaves like OutLd in that it returns 0 if the file has I%'ust been written, 1 if it has been restored by an
InLd, 2 if by a disk boot, and (unlike OutLd) 3 if by an EtherBoot. If bit 15 of flags is set, the disk stateis
flushed after creating the boot file. If bit 14 is set, the disk state is recomputed when the boot file isstarted.
SaveState requires the presence of operating system levels through disk streams.



Cleared version of May 24, 1981
Boot Files February 17, 1979 13

6. The "standard boot file": disk address 0

The 256-word data page saved on real disk address 0 cannot be part of anf' legal Alto file because of the
way the file system is designed. As a result, the standard boot file is established by copying the first data
page of the boot file (e.g., Sys.Boot) into disk address 0 (the label and data portions are both copied
verbatim). Thus the %roper data (disk boot loader) will be read when booting, and the label will point
forward to the (legal) boot file, data page 2. This makes Sys.boot have an illegal format (the forward links
of two pages point at page 2 of Sys.boot), but the Scavenger knows this and ignores it.



Cleared version of May 24, 1981
Chat October 19, 1980 ’ 14

CHAT

Chat is a program for establishing Pup Telnet connections between a gair. of cooperating parties. Itschief
function is to permit Alto users to login to Maxc and IFS servers. Chat includes an extension to support
text-display control and graphics. :

1. Simple operation

Chat is organized so that default operation with Maxcl is simple. Simply saying "Chat" will establish a
connection with Maxc and (provided you are "logged in" on your Alto) will try to establish the Alto as
controlling terminal for a Maxc job that is logged in under your name. Chat will perform a "login" or
"attach" as appropriate. If the simple methods fail you must deal with Maxc yourself (life is hard).

To connect to some server besides Maxc, type "Chat name™ where "name" is the name of the desired
server (Maxc2, Ivy, DLS, etc.) Chat will perform the automatic login if the server is a Maxc or an IFS.

If you don’t have the file Chat.Run on your disk, the Alto Executive will boot-load it from a boot serveron
the network. In this case, Chat will not use the "name" you supply on the command line but rather will
require you to type the server name directly to Chat.

If you are not logged in on your Alto at the time you start Chat, or you booted Chat from the network,
Chat wilcl1 first request that you type in your user name (if different from the one installed on your disk)and
password.

The preferred method for exiting Chat is to depress the key immediately to the right of the "return” keyon
the keyboard, and then to press "q" for Quit. The other method, <shiftbSWAT, is frowned upon and isnot
guaranteed to work.

If the connection fails or is broken by the server, Chat will display an apﬁropriate message and will

ordinarily terminate. However, if you booted Chat from the network, Chat will continue running and will
ask you for the name of a new server to connect to. :

2. Command Interpreter

While Chat is running, you may wish to %we various commands that alter its operation. Depressing the
key unm;dxately to the right of the RETURN key will cause Chat to enter a command mode. The
commands are: v

C Change control character output setting. Control characters other than CR, LF, and Tab are
normally displayed as "+x". Changing this setting causes control characters to be thrown away.

D Specify a "do" file to insert now. The text of the file will be treated as if it had been typed in atthe
keyboard--it will be transmitted to the connected party. This is a simple way to "can" Maxc
procedures that you use a lot.

E Change local echo setting. Chat starts out assuming that the connected party will echo all
Chart%ae&sh II)I some instances, Chat will want to echo your typein locally (e.g., when connected to
another Chat).

F Specify a new font. The screen will be re-initialized, which will cause recent typeout to disappear.
' If insufficient core space is available for the font, the system font will be used.



Cleared version of May 24, 1981
Chat October 19, 1980 15

I To the "input" switch for the typescript file, set by the USER.CM entry

le
SCRIPTCHARS (see below).

N Permits you to establish a New connection (after breaking the current one), without leaving Chat.

(0] Toggle the "output” switch for the typescript file, set by the USER.CM entry
T&%ESCRIPTCHARS (see below).

Q Quit--terminate the connection. ‘

T Specify a new typescript file. The old tyﬁ)escri t, if any, is closed. The new g&escript will grow

without bound, even if the old typescript had a length limit specified in USER (see below).

3. Command-line options

Several options may be passed to Chat by global switches in the command line (i.e., by typing Chat/s/t
where "s' and "t" are the switches):

/A "Attach" -- meaningful only when connecting to Maxc. This will force the Maxc attach
sequence to be typed rather than whatever Chat considers appropriate.

/C Chat will suppress output of control characters, rather than displaying them as "+x".

/D See /P below. .

/E Chat will cause local echoing of input characters.

/1 Equivalent to the command-line entry Chat.Initial/D (see below).

/L "Login" -- meaningful only when connecting to Maxc or an IFS. This forces a login

sequence to be typed, regardless of what Chat considers appropriate. For example, ifyou
already have a detached job on Maxc and wish to create a new job, you must use this

option.
/N Chat will not attempt any automatic login or attach.
/Por/D Chat will enable a display protocol (see below).
/S Chat will be a "Pup Telnet Server,"” and will respond to requests for connection from
v others rather than initiate requests itself.
/T , Chat will write a typescript on file Chat.ts$, regardless of whether or not a TYPESCRIPT

entry appears in USER.CM.
Several options may be specified with "local" switches:

string This gives the "name” of the party with whom Chat should initiate a connection. The
name may be an address constant of the form net#host# socket, or may be a full symbolic
name like Maxc+ Telnet (see "Naming and Addressing Conventions for Pup” for details).
The default socket is 1, the Telnet socket. Thus typing "Chat Regis" will try to connectto
a Telnet server on the host named Regis. :

filename/D  This gives a "do" file name that is fed to the connected party. When the last character of
the file has been sent, Chat will not close the connection.

filename/E Similar to /D, but will end the connection when end of file i_s encountered.



. Cleared version of May 24, 1981
Chat ' October 19, 1980 16

filename/F Specifies the name of the font to use.

filename/T Specifies the name of the typescript file.

4. USER.CM Options

The USER.CM file may also 'contain defaults thatb Chat_ | examinés at biniti‘alization. The section of
USER.CM that Chat examines must begin with a line with the 6 characters [CHAT] on it. Thereafter,lines
begin with "labels," followed immediately by colons, followed by arguments.

Note tlla(at Chat does not look at User.cm (or anything else on your disk) if you boot-loaded it from the
network.

In the following descriptions, square brackets enclose parameters that are optional--you shouldn’t actually
type the square brackets. _

BELL: [DING] [FLASH] [AUDIO]

Tells what to do when a bell character is received. If DING is specified, a pattern that spells out
DING will be displayed at the top of the screen. If FLASH is specified, the bottom area of the
screen will flash black. If AUDIO is specified, and you have a loudspeaker connected to your
Alto’s Diablo printer interface, an audible tone will sound. Any combination of options can be
specified together (default: DING FLASH). v

BORDER: BLACK|WHITE
Gives the color of the top border of the screen (default: white).

CONNECT: net#host#socket or host-name
Gives the network address constant or name of the party with whom a connection should be
initiated (see "Naming and Addressing Conventions for Pup"” for details). Default is
Maxc+ Telnet, the Maxc Pup Telnet server.

CONTROLCHARS: ON|OFF

Normally, control characters other than CR, LF, and Tab are displayed in the form "+x". This
option forces them not to be displayed at all. Default is ON.

DISPLAYPROTOCOL: ON|OFF

This entry enables a display protocol. The same effect can be achieved with the /P or /D
command-line switches. Default is OFF.

ECHO: ON|OFF

This option turns on local echoing. This is usually necessary only if you are connecting to another
Alto running Chat that has used the /S option.

FONT: AltoFontName.AL [width height]

Gives the name of a font to use when displaying typeout from the connected fpart.y (default: system
font). If two numbers follow the name, they are interpreted as the width of a line (in characters)
and the height of a page (in lines). These numbers override the calculations made by Chat, andare
shipped to the server to set the terminal parameters.

LINEFEEDS: ON|OFF



Cleared version of May 24, 1981
Chat October 19, 1980 17

Normally, line feeds transmitted by the oLherE%arty are included in the typescript file. If you wish
to keep line feeds out of the file, set LINEFEEDS: OFF.

TYPESCRIPT: filename [length]

Gives the name of a file on which to record a typescript of the session. If length is specified, the
file will be treated as a "ring" buffer of that length (in bytes; 65535 maximum). The file will be
created at the beginning of the session, so that the user can be certain the disk will not overflow
when recording tygescrlpt information. The characters "<{=>" will mark the end of the ring
buffer, which will be updated penodlcallly. If length is not specified, the file will grow without
bound and "<=>" will not be zéppended. n this case, if the disk becomes full the typescript willbe
closed and a warning message displayed.

TYPESCRIPTCHARS: [ON|OFF] [ON|OFF]

This entry governs the selection of characters that are included in the typescript file. The first

on/off switch controls characters typed on the Alto keyboard: if the switch is "on," these

characters will be entered in the typescript file. The second switch controls characters sent from

%efotﬁle'r zi:rt Ot?\l the Alto: if the switch is "on," these characters will be entered in the file.
efault is .

5. Display Protocol

Chat allows a remote program to control carefully the entire Alto display. The interactive facilities ofthe
Alto can thus be used by MAXC Ig)rorlg;;ams and others. A set of Interlisp-10 functions has been written to
ease use of the display from LISP. These functions are documented in "Raster Graphics for Interactive
Programming Environments,” by R.F. Sproull, CSL-79-6, and are contained in <SSPROULL>ADIS.COM:;
the symbolics (should you need them) in <SSPROULL>ADIS.

"Display Chat" is almost completely different from "telet_;f/'pe Chat"; they are loaded as one lIjzurogram
largely for convenience. To exit display Chat, use the <shif><Swat> convention. Be very careful when
attaching and detaching jobs that have Chat diiglav connections ogen. If you re-attach to a LISP job that
reviously had connections open, and CONTINUE your LISP job, the connections are no longer usable
ecause the Pup executive has timed them out. ADISCheck should be called to verify the state of the
connection. After this call, it may be necessary to invoke ADISInit again. If this procedure is not followed,
you may get traps with "IO Data Error" or some such message coming out of your LISP program!

Fonts are declared in User.Cm as follows: a line of the form "DISPLAY-FONT: FileName" is a font
declaration. Numbers are associated with the fonts by the order in the file: the first is font 0, the second
font 1, etc. The fonts must be in "strike" format; several fonts in this format are saved on the
<ALTOFONTS> directory with extension .STRIKE. o

The number of "regions™ available to Chat can be altered by including a line of the form "DISPLAY-
REGIONS: 6" in User.Cm.

Two functions for making hard copies are not documented in the CSL report:

ADISPress[file] (Flush). This function writes a one-page Press file of the given name on your Alto disk.
The page contains a bit-map for the current contents of the Chat display area. WARNING: This function
requires considerable quantities of disk space (about 130 pages per file), and may lead to errors while
writing the file. Best use it only when your state is safe.

ADISPressMaxc[ﬁle;scaleFacto(r;l (Flush). This function is similar to ADISPress, but the file will be
written on the connected MAXC directory. The scaleFactor defaults to 1.0, but can be set to any fraction.
It yvilldcause the Press file to contain directives to reduce the size of the image of the screen when it is
printed.



Cleared version of May 24, 1981
Chat October 19, 1980 18

Efficiency and space. The ADIS protocol operations cost a certain amount in LISP function call and
Tenex JSYS overhead; they also have a cost determined by the number of bytes of protocol commands
that are sent to Chat. Thus we can express the communication cost in terms of the number of "characters”
we could display by transmitting the same number of bits. Here are approximate numbers:

ADISRegion 4
ADISLimits 16
ADISSetX,ADISSetY, ADISFont 5
ADISBold,ADISItalic, ADISSetCR,ADISSetLLF 5
ADISLineTo 6
ADISRegionOp 13 0r21
ADISScroll 34 in most cases
ADISButtonEnable 16
ADISTypeOnEvent ’ 4
ADISCursor 43
ADISCursorMove 7

Space in the Alto is at a premium. At present, about 6700 words must be shared among all fonts and
region descriptions. Note that font sizes vary. Sizes are:

Region 34 words (always)
Helvetica8.Strike : 570 words
HelveticalO.Strike 630 words



Cleared version of May 24, 1981
CopyDisk November 12, 1980 19

CopyDisk

CopyDisk is a program for copying entire disk packs. It will copy from one drive to another on the same
machine, or between drives on separate machines via a network.

1. History

The first Alto CopyDisk was called Quick and was written by Gene McDaniel in 1973. During the
summer of 1975 Graeme Williams wrote a_new ch)yDisk adding the ability to cogy disks over the
network. During the summer of 1976 David Boggs redesigned the network protocol and added the ability
to copy Trident disks. In the spring of 1980 the network protocol was extended to speak to CopyDisk
servers in Interim File Systems (and eventually Tape servers). The CopyDisk network protocol isspecified
in <Pup>CopyDisk.press.

2. Concepts and Terminology

In a disk copy operation, the information on a *Source’ disk is copied to a "Destination’ disk, destroyingany
previous information on the destination. A copy operation usually consists of two steps:

£1C(i(py] Step one copies bit-for-bit the information from the source disk to the destination
isk. ,

[Check] Step two reads the destination disk and checks that it is indentical with the source
disk. This step can be omitted at the user’s peril. ’

Copying a disk from one machine (or ’host’) to another over a network requires the active cooperation of
;L)}ograms on both machines. In a typical scenario, a human user invokes a program called a "CopyDisk

ser’ and directs it to establish contact with a 'CopyDisk Server’ on another machine. Once contacthas
been established, the CopyDisk User initiates requests and supplies parameters for the actual copy
operation which the User and Server carry out together. The User and Server roles differ in that the

opyDisk User interacts with a human user (usu %r through some keyboard interpreter) and takes the
initiative in User/Server interactions, whereas the CopyDisk Server plays a comparatively passive role,
The question of which machine is the CopyDisk User and which is the CopyDisk Server is independentof
the direction in which data moves.

The Alto CopyDisk subsystem contains both a CopyDisk User and a CopyDisk Server, running as
independent processes. Therefore to copy a disk from one machine to another you should start up the
CopyDisk subsystem on both machines and then type commands to one of them, which becomes the
CopyDisk User. Subsequent operations are controlled entirely from the User end, with no human
intervention required at the Server machine. This arrangement is similar to the way the Alto FTP
subsystemn works, and different from the way the older Copybisk worked.

‘3. Calling CopyDisk

CopyDisk can be run in two modes: interactive mode in which commands come from the keyboard, and
non-interactive mode in which commands come from the command line (Com.cm). The general form of
the command line to invoke CopyDisk looks like:



Cleared version of May 24, 1981
CopyDisk November 12, 1980 20

CopyDisk [ [/<option switches>] [from] <source> [to] <destination>]
The square brackets denote portions of the command line that are optional and may be omitted. Ifyou

{li.lSt type "CopyDisk" the program goes into interactive mode, otherwise the remainder of the command
ne must be a complete description of the desired operation.

3.1. Option Switches

Each option switch has a default value which is used if the switch is not explicitly set. To set a switch to
*false’ pr%cieed it V;’llth a 'minus’ sign (thus CopyDisk/-C means 'no checkmg’g. To set a switch to 'true’just
mention the switch.

Switch Default Function

/4 false [Model44] tells CopyDisk to copy an entire Diablo model 44, without asking for
confirmation.
/C true [Check] tells CopyDisk whether to check the copy operation. CopyDisk/-C,

which omits the check step, is faster but more risky.

/W true [WriteProtect] prevents the CopKDisk network Server from writing on a local
disk. So unless you say CopyDisk/W or issue the WRITEPROTECT command,
someone can make a copy of your disk over the network, but no one can
(maliciously or accidentallygl overwrite it.

/R true [Ram] tells CopyDisk to attemgt to load the ram with some microcode which
speeds things up considerably. CopyDisk will still work, though more slowly ifit
can’t load the ram.

/D false [Debug] enables extra printout that should be interesting only to CopyDisk
maintainers.

/A false [AllocatorDebug] enables extra consistancy checks in the free storage allocator.

3.2, Source and Destination Syntax

The general form of a source or destination disk name is:
‘ [Host-name]Disk-name

for example "[Boggs]DP0". Ordinarily ’host name’ can be a string, e.g., "Boggs". Most Altos have names
which are registered in Name Lookup Servers. So long as a name lookup server is available, CopyDisk is
able to obtain the information necessary to translate a host name to an inter-network address (which is
whalt1 the underlying network mechanism uses). You may omit the host name for disks attached to thelocal
machine.

If the host name of the Server machine is not known, you may specify an inter-network address in itsplace.
The general form of an inter-network address is:

<network> # <host> # <socket>

where each of the three fields is an octal number. The <{network> number _desiglnates the network towhich
the Server host is connected (which may be different from the one to which the User host is connected);
this (along with the " #" that follows it) may be omitted if the Server and User are known to beconnected
to the same network. The <host> number designates the Server host’s address on <network>. The <socket>
number designates the actual Server process on that host; ordinarily it should be omitted, since the default
is the regular CopyDisk server socket. Hence to specify a Cop Disk server running in Alto host number
241 on the directly connected network, you should say "241 #"' (ythe trailing " # "' is required).



Cleared version of May 24, 1981
CopyDisk November 12, 1980 21

The ’disk-name’ is interpreted by the CopyDisk program on the host where the disk is. This program
knows how to copy two types of disks, which should be referred to by the following names:

DPn Diablo disk unit 'n’. Most Altos have one Diablo disk called "DPO’.
TPn Trident disk unit 'n’. The unit number must be in the range 0-7.

In addition, you may tell CopyDisk to copy an entire Alto file system by referring to it by the name’BFS’,
(for Basic File System, which 1s the name of the software package that implements it). If you use thisname
rather than "DP0’ or whatever, you won’t have to answer questions such as whether the disk is a model 31
or a model 44. Best of all, CopyDisk can detect that its a double-disk file system, and it will copy both
disks automatically.

When you are copying through the network to another random Alto (as opposed to say, an IFS or aTape
server), you are presumably talking to another instance of this program, so you use the above syntax when
referring to its disks.

When you are copying to an IFS, which keeps disk images in files, the disk-name is an IFS file name, and
must conform to IFS’s conventions. If you copy a double disk filesystem referring to it as *BFS’, then
CopyDisk will create one file containing both disk images.

Fine point for Dorado and DO users: 'DPQ’ and "DPY’ refer to units 0 and 1 in the current partition. "DP10’
and *DP11’ refer to units 0 and 1 in partition 1 regardless of the current default partition; and similarly for
'DP20" and °DP21’. "BFS’ and 'BFSQ’ refer to the Alto filesystem in the current partition; "BFS1’ to the
filesystem in partition 1, etc.

4. The CopyDisk display

CopyDisk displays a title line about one inch from the top of the screen, and below that the main display
window, which consumes about half of the screen. The main window is shared by the User and Server
processes, only one of which is active at any time. The process which currently owns the window identifies
itself at the right side of the title line. The title also shows the release date of the program and the Alto’s
qalln%. ‘When a copy operation is in progress, the current disk address is displayed in the area above the
utle hne.

When Cc%pyDisk is started, the User is listening for commands from the ke{}:oard and the Server is
listening for connections from the network. If you start typing commands, the User takes over control of
the main window ('User’ appears near the right end of the title line), and your commands and their
responses are displayed there. The Server refuses network connections while the User is active. Ifanother
CopyDisk program connects to the Server, the Server takes over control of the main window (’Server’
ah)pears near the right end of the title line), and the Server logs its activity there. The User ignores type-in
(flashing the screen if any keys are typed) while the Server is active.

5. Keyboard Command Syntax

CopyDisk’s interactive command interpreter presents a user interface very similar to that of the Alto FTP
sub;ly%]em. The standard editing characters, command recognition features, and help facility (via "7")are
available.



Cleared version of May 24, 1981
CopyDisk November 12, 1980 ; 22

5.1. Keyboard Commands

COPY
Starts a dialog to gather the information for copying a disk. CopyDisk first asks for the name of the
source disk by displaying "Copy from". If the disk is local, it makes sure it is ready; if the disk ison
another machine, it opens a connection and asks the remote machine if the disk is ready. Ifyou
want to abort the connection attempt, hit the middle unmarked ("Chat’) key. If the source disk is
ready, CopyDisk prompts you for the destination disk by dlsplaylr;g "Copy to", and then checks
that that disk is ready also. Next, it verifies that the disks are compatible, and depending on thedisk
type, may ask some questions about things peculiar to that disk (such as "Do all of the model447").
en CopyDisk asks you to confirm your intention to overwrite the destination disk. If you change
your mind, type ‘N’ or <delete>. If you respond yes, CopyDisk will pause for a few seconds,
ignoring the keyboard, and then ask you to confirm once again. Type-ahead does not work for this
second confirmation. This is your last chance to look at the disks and make sure that you are not
overwriting the wrong one. It happens! This feature was in the original CopyDisk, was left out of
the second version, and is back in this third version by popular demand from the many people who
made that fatal mistake.

QUIT )
Terminates CopyDisk. One of three things happens:

The Alto Exec is restarted if DPO is ready, and has not been written on, and if
CopyDisk was not booted from the net.

I&DIPO is booted if it is ready but has been written on or if CopyDisk was booted from
e net. '

NetExec is booted from the net if DPO is not ready.

All of this is attempting to leave the Alto running something useful. If the disk in DP0Q does not
have an operating s¥stem on it when CopyDisk quits, the disk boot (option 2, above) will fail. This
will not hurt the disk, but you will have to boot manually. ‘

HELP
Displays a rather terse summary of how to use the program.

LOGIN
Supplies any login tl;_)larameters required by the remote server before it will permit copy operations.
CopyDisk will use the user name and password in the Operating System if they are there (they won’t
be if CopyDisk is booted from the net). Log%m into CopyDisk will set the user name and
password in the OS (in the same manner as the Alto Executive’s "Login" command. Thiscommand
1s only meaningful when copying to or from an IFS; the Alto CopyDisk server ignores login
parameters. _

When you issue the LOGIN command, CopyDisk will first display the existing user name known to
the OS. If you now type a space, CopyDisk will prompt you for a password, whereas if you wantto
If)rovide a different user name, you should first type that name (which will replace the previousone)

ollowed by a space. The command may be terminated by a carriage return after entering the user
name to omit entering a password.

Ther parameters are not immediately checked for legality, but rather are sent to the server for
checking when the next copy command is issued. If a command is refused by the server becausethe
name or password is incorrect, CopgrDisk will prompt you as if you had issued the LOGIN
command and then retry the command.

CONNECT
Requests the remote CopyDisk server to ’connect’ you to the specified directory on the remote
system, i.e., to give you owner-like access to it. The password may be omitted by typm_% carriage
return after the directory name. As with LOGIN, these parameters are not verified until the next



Cleared version of May 24, 1981
CopyDisk November 12, 1980 23

transfer command is issued. This command is only meaningful when copying to or from an IFS;
the Alto CopyDisk server ignores connect requests.

PARTITION
This command is only available on D0s and Dorados. It prompts you for a partition number (for
DO0s in the range 1-2 for Dorados in the range 1-5), and sets the default partition. It supplies asa
default the current partition number, so you can find out where you are by saying ’Partition’ and
then typing carriage return.

CHECK
To%gles the switch which controls whether a disk is checked after copying. CopyDisk displays“on"
if checking is now enabled, and "off" if it is now disabled.

DEBUG
Toggles the switch which controls the display of debugging information. The performance data
presented at the end of this document is part of the debugging information; the network protocol
Interactions are displayed when this switch is set also.

WRITEPROTECT )
Toggles the switch which allows the network Server to write on local disks. The default is that
people can’t overwrite your disk.

COMPRESS '
Toggles the switch which suppresses the transmission and checking of the data records of freepages.
This can significantly speed up network copies and reduce the size of disk images stored on IFSs.
The default is to compress.

COMPARE ,
Compares two disks. The dialog is very similar to the COPY command. Neither disk is ever
t\}rlritter'x. '%‘hijs i)s useful to verify the health of your disk drive (but remember that it does notcheck
e write logic).

6. Command Line Syntax

CopyDisk can also be controlled from the command line, If there is anything in the command line except
"CopyDisk" and global switches, the command line interpreter is started instead of the interactive
keyboard interpreter. Its operation is most easily explained by examples: .
6.1. Command line examples

" To copy DP0 to DP1:

CopyDisk from DP0 to DP1

Note that *from’ and ’to’ are optional (though stongly recommended for clarity), and one or both may be
omitted or abbreviated:

CopyDisk DP0 t DP1
is equivalent, though less obvious.

To copy the Basic non-programmer’s disk from host 'Boggs’ (which is running CopyDisk) onto a disk in
your own machine: _

CopyDisk from [Boggs]DPO0 to DP0



Cleared version of May 24, 1981
CopyDisk November 12, 1980 . 24

or, equivalently:
CopyDisk from [3’# 241’ #]DP0 to DP0

The single quotes are necessary to keep the #s out of the clutches of the Alto Exec. The quotes arenot
needed when typing to the keyboard interpreter. Note that no spaces are allowed between the hostname
and the device name.

If the command line interpreter runs into trouble, it displays an error message and then starts the
interactive interpreter.

7. Disk Errors

Disk errors are termed “soft’ or *hard’ depending on whether retrying the operation corrects the difficulty.
If CopyDisk is still having trouble after many retries, it displays a message of the form "Hard error at DPn:
cyl xxx hd y sec zz" in the main window and moves on.

Soft errors are not reported unless the debug switch is true, so as not to alarm users. Their frequency
depends on several factors. Copying over the network will cause more soft errors then copying between
“two disks on the same machine. Alto IIs get many more errors then Alto Is. :

During the Check pass, in addition to soft and hard errors, *data compare’ errors are also possible. A data
compare error means that the corresponding sections of the source and destination disks are notidentical.
If any hard errors have been reported, then data compare errors are likely, otherwise getting datacompare
errors means that something is very wrong. You should suspect the Alto.

Hard errors and data compare errors are serious, and you should not trust the copied pack if any are
reported. If the errors are on the source disk, try Scavengmg it. Bear in mind that there is some variancein
alignment among disk drives, and that a pack which reads fine on one drive may have trouble onanother.
Is the source disk in a different drive than where it is normally used? Before allowing the Scavenger to
rewrite sectors, consider that the pack may be OK, but the drive it is in may be out of alignment. In this
case, allowing the scavenger to rewrite the sectors is a bad idea. If the errors are on the destination disk, try
the copy again, and then suspect the pack or the disk drive itself. If the destination pack was much colder
than the temperature inside the drive, sectors written early in the copy pass may read incorrectly duringthe
check pass. It’s a good idea to wait a few minutes for the pack to reach normal operating temperature
before using it.

8. Creating a new disk

cSiuptg_ose you want to make a new disk by copying one of the *Basic’ disks. There are three major waysto
o this:

Put a blank disk in your Alto, and copy the basic disk from an IFS. This is called the 'IFS
copy’ method.

Find an Alto with two disk drives and put a basic disk in one drive and a blank disk in the
other. This is called the 'double disk copy’ method.

Find two Altos, each with one drive, that are connected by a network and put a basic diskin
one Alto and a blank disk in the other. This is called the 'network copy’ method.

Having decided on one of the above methods, you must now get CopyDisk running on the Alto(s). There
are two major ways to do this: :



Cleared version of May 24, 1981
CopyDisk November 12, 1980 25

Start CopyDisk from a disk which has *CopyDisk.run’ on it.

Boot CopyDisk over the network from a *Boot Server’.

8.1. Starting CopyDisk from another Disk

If you do not have access to a Boot Server, you must start CopyDisk from a disk that has it on it. Put adisk
with CopyDisk on it into the Alto and type "CopyDisk<return>". Then switch disks. BE CAREFUL!!
People sometimes forget to switch disks at this point and accidentally copy the wrong one. This is why
CopyDisk asks you to confirm your intentions so many times.

8.2. Booting Copvdisk from the net

The best way to start CopyDisk is to boot it from the network. That way you are more likely to get the
latest version, and you avoid the pitfall mentioned above. Of course, you must have network access toa
Boot Server. Most Gateways have Boot Servers. If this method doesn’t seem to work, you will have to fall
back to starting CopyDisk from another disk.

Hold down the <BS> and <Quote> keys while pressing the boot button on the Alto. You must continueto
hold down <BS> and <Quote> (but let go of the boot button!) until a small sbguare agpears in the middleof
the screen. This can take up to 30 seconds, but usually happens in less than 5 seconds. You are nowtaking
to the NetExec (see the documentation in the Subsystems manual if you are curious), and you should type
"CopyDisk<return>". The screen will go blank, the little square will appear again (you don’t have tohold
down any keys this time), and soon CopyDisk should appear on the screen.

8.3. The IFS Copy Method

Put a blank disk in DP0, Type "Copy<space>", and when it s%ys "from" tylpe a name of the form: [IFS-
name]File-name, where *IFS-name’ is the name of your local IFS (such as ‘Ivy’, which is the name of my
IFS), and "File-name’ is the name of the file on which the basic disk is kept. This may be installation-
dependent; here at Parc the basic non-grogrammers disk is called <BasicDisks>NonProg.disk’, so to geta
c%)g of that disk I would t)gae "[IvyKBasicDisks>NonProg.disk". When CopyDisk says "Copy to" t){ge :
"DP0<return>". Then type <return> each time it asks for confirmation. Some numbers will appear inthe
top center of the screen. When they disappear, CopyDisk is done. Type "Quit<return>". It will bootthe
disk, and you should find yourself talking to the Alto Exec.

8.4. The Double-Disk Copy Method

Put the basic disk in DP0 and gut your disk in DP1. Type "Copl%(spacey', and when it says "from" type
DP(Kreturn>. When it says "Copy to", type "DPI<return>". en type <return> each time it asks for
confirmation. Some numbers will appear in the top center of the screen. When they dlsaEpear, CopyDisk
is done. Type "Quit<return>". Put the basic disk back where it belongs, and take your disk with you.

8.5. The Network Copy Method

It doesn’t matter which Alto you type commands to. Assume that the basic disk is in the Alto called-
"Tape-Controller”, your disk 1s in the Alto called "Myrddin" and you are %oing to type commands to
Tape-Controller. Type "Co %f)(sg)ace)", and when it says "from" type "DPO<return>”. When it says
"Copy to", type "[Myrddin]DPO<return>". Then type <return> each time it asks for confirmation. Some
numbers will appear in the top center of the screen. When they disappear, CopyDisk is done. Type
"Quitreturn>", and put the basic disk back in the rack. Go to Myrddin and type &ult(l‘emm)". Itwill
boot the disk, and you should find yourself talking to the Alto Exec.




Cleared version of May 24, 1981
" CopyDisk November 12, 1980 26

9. Performance

This section calculates the times to copy disks under different conditions. CopyDisk times its operations
anc%. displays the results if the debug switch is set, so you-can compare the numbers derived here with
reality. '

9.1. TSweep

First, we calculate TSweep, the time to read or write a disk assuming that we can consume or producedata
faster than the disk. This best possible case is the sum of two terms. The first term is the time necessaryto
sweep an active read/write head over every sector on the disk:

Rot * nCyl * nHds.

The second term is the time lost while seeking to the next cylinder. We assume that these seeks take less
than one rotation but that a whole rotation is lost:
Rot * nCyl.

Combining, we get: '
TSweep = Rot * nCyl * (nHds+1).

where: Rot is the rotation time of the disk in seconds
nCyl is the number of cylinders, and
nHds is the number of heads.

9.2. Disk-To-Disk Copy

By disk-to-disk copy we mean copying from one disk to another on the same machine, using a single
controller and not overlapping seeks. The fastest way to do this is to read the entire source disk into
memory, switch to the destination disk, and then write 1t all. The switch from the source to the destination
disk, will lose on the averz:ﬁe half a revolution while waiting for the right sector on the new disk to come
under a head. Neglecting the switch time which is small compared to the other two terms, the bestpossible
disk-to-disk copy time is 2 * TSweep. :

With limited memory, the best we can do is fill all available memory buffers reading the source disk,
switch disks, write them onto the destination disk, and then switch back to the source disk for anotherload.
In this case we can’t ignore the switch time, which is the total number of sectors on the disk divided bythe
number of sector buffers times the rotation time of the disk: '

Rot * (nCyl * nHds * nSec)/nBuf

where nSec is the number of sectors per track, and
nBufis the number of memory buffers.

So the disk-to-disk copy time, TDDCopy, is:
TDDCopy = 2 * TSweep + Rot * (nCyl * nHds * nSec)/nBuf

9.3. Net Copy

By Illlgt con we mean copying from a disk on one machine through a network to a disk on another
machine.

TDDCopy vanishes. In additon, if the bandwidth of the network connection is higher than the transfer
rate of the disks so that as soon as a sector is read from the disk it is sent out of the machine, the memory
limitation goes away and the second term of TDDCopy vanishes.

1 this case the disk controllers can be going in parallel, and the factor of two in the first termof



Cleared version of May 24, 1981
CopyDisk November 12, 1980 27

The CopyDisk network protocol sends a small amount of information along with each sector which must
be factored into the calculation of the bandwidth needed to run without memory limitation. Note thatthe
bandwidth we are concerned with here is that perceived by a client of the network services: user data bits
per second, not raw bits per second through the network hardware,

If the network is slower than the disks, then the time to copy a disk is the time required to transmit all of
the bits on a disk plus the protocol overhead bits:

TNetCopy = nCyl * nHds * nSec * (sB + sOv)/bwNet
where sB is the bits of disk information per sector,
sOv is the CopyDisk protocol overhead per sector, and
bwNet is the bandwidth of the network connection.

"t{he bandwidth of the network connection is hard to state, and depends on a number of factors. Here area
ew:

Reduction of the emulator’s instruction execution rate due to interference from the disk and
network hardware.

Reduction of the amount of the emulator cycles available to the network and disk code due to
mutual interference.

Reduction of the peak network bandwith due to interference from other hosts on the network.
The minimum network bandwith required to copy a disk at full speed is:
MinBwNet = 16 * nCyl * nHds * nSec * (sB + sOv)/TSweep.

9.4. The Numbers for Altos

Here are the relevant numbers for the disks which this program can copy:

Diablo-31 Diablo-44 Trident-80 Trident-300
Rot (ms) 40 25 16.66 16.66
nCyl 203 406 815 815
nHds 2 2 5 19
nSec 12 12 9 9
sB 266 266 1036 1036
sOv 2 2 2 2
nBuf 80 30 18 18
9.5. Reality

Here are the results of plugging the numbers into the equations, and comparing them against actual
measurements. The format is predicted(measured). NA means not available.

Diablo-31 Diablo-44 Trident-80 Trident-300
TSwee 0:24 0:30 1:21 : 4:32
TDDCopy O:Slg):Sl) 1:048:16) 3:18(3:31) 11:20(19:27)
TNetCopy 1.0 (2:1 (26:31) (NA)
bwNet §323 Kb/s) 308 Kb/s) (383 Kb/s) gNAg
MinBwNet 59 Kb/s 375 Mb/s 7.520 Mb/s .509 Mb/s



Cleared version of May 24, 1981
CopyDisk November 12, 1980 28

10. Revision History

August 7, 1977

First relese.

August 28, 1977

csii)s% eré'grs are \(;%l Ire orte(cii 1\% tf{lf T%}?ﬁ%%géc% is sét. Dgta ccclicrlngare ekrrogs 'n%w display (tihg offending
Writeapr g&sgi gloal switc%nadded. commands added to keyboard command interpreter.
October 16, 1977

More microcode to speed things up

October 27,1977

Bug fixes.

December 18, 1977

~Fixed a bug which prevented it from copying the second half of a two disk file system. The network
format for Diablo disks changed.

March 22, 1978

Cop)%%(Ewill now do the right thing for "[thisHost]device”. The default value of WRITEPROTECT is
now . ,

October 27, 1978

Internal reorganization -- no external changes.
December 12, 1978

Fix bug in Copying T-300s.

September 10, 1979

Reload with current packages.

April 26, 1980

Network protocol extended to speak to IFSs. Much internal work, but very little visible change.
PARTITION and HELP commands added. VERIFY command renamed COMPARE

November 12, 1980

BFS protocol extended to handle multiple disk file systems. Referring to a file system as ’BFS’ will cause
both disks to be copied automatically. CopyDisk now works on Shugarts emulating Tridents.



Cleared version of May 24, 1981
Createfile March 19, 1979 29

Createfile

This subsystem creates a file of a given size, attempting to allocate it contiguously on the disk. To runthe
program, use

>CreateFile filename npages

where filename is the name of the file and npages is the size of the file in pages (in octal unless you suffixa
"d": 99d). This pro}%ram is primarily intended for creating files which will be accessed using the Indexed
Sequential File (IS g package, which influences its notion of what a contiguous file looks like. The
algorithm is: 1) search the disk bit table and locate the largest group of contiguous free pages. 2) ifnPages
is less than the size of this group, allocate nPages and finish; otherwise allocate the whole group, decrease
nPages by the size of the group and repeat step 1. This program can be fooled into allocating pages inless
than optimal ways if your bit table is not in sync with the disk, so if in doubt, run the Scavenger first. If
there aren’t enough pages on your disk, it will fail gracefully, perhaps after thrashing around for a while.



Cleared version of May 24, 1981
- DDS 1.13 October 12, 1977 30

DDS - Descriptive Directory System - release 1.13

The Descriptive Directory System (DDS) is a front end for the Alto file system that provides
substantially greater flexibility than the "?" facility in the operating system’s command processor. In
addition to file names, the DDS can display file lengths, creation-read-write dates, and contents.

If you have used DDS before and merely wish to learn about changes, bug fixes, and new features,
you probably want to skip to section 5 of this document. If not, sections 0 through 4 are a complete
description of the current release. Sections significantly changed since the last release are marked with ***,

0. The mouse and cursor

The three buttons on the mouse are called RED (left or top button), YELLOW (middle button),and
BLUE (right or bottom button). Most mouse-controlled actions in DDS happen as soon as you depressthe
mouse button: these are described below using phrases like "RED does xxx"', meaning "As soon asyou
deFress RED, xxx happens.” Some actions require de%ressing a button and then releasing it: phraseslike

clicking RED does xxx™" mean "If you depress RED and then release it, xxx will happen." Careful
reading, or a little experimenting, will familiarize you quickly with the distinction.

“The cursor changes shape according to its location on the display and according to how DDS is
interpreting the buttons. Generally speaking, when the cursor is circular, RED selects what you are
pointing at in some way, and BLUE deselects it. When the cursor assumes the shape of an hourglass, DDS
is busy doing something and is not listening to the mouse buttons.

1. The display

Like Bravo, DDS divides the display into a command area at the top, and one or more windows
below. Currently DDS just supports a single window. A heavy black bar separates the command area
from the window. Section 2 (below) describes the command area.

The window has three parts, separated by lighter horizontal bars: ‘

1) The top part is the view specification area, or viewspec area for short. It contains a set ofkeywords
that describe what information is to be displayed for the files being examined in this window, and a setof
keywords that describe how the displayed files are sorted.

2) The second part is the selection specification area, or selspec area for short. It contains a pair of
exlpressions which together determine what set of files is being examined in the window. View and
selection specification are completely independent: each can be changed without affecting the other.

3) The main part of the window is the data area, which actually displays a set of files. The namesare
always displayed: other information is controlled by the viewspecs.

1.1 The viewspec area

There are 10 keywords in the viewspec area that control what is displayed:

"created” - the date when the file was created

"written" - the date when the file was last altered

"read" - the date when the file was last read

"referenced"” - the date when the file was last referenced (i.e. the most recent of "created",
"written"”, and "read") '

"size" - the size of the file in disk pages

"length" - the length of the file in bytes (characters)

ddr "address” - the hardware address, in the form directory-pointer: (SN1,SN2)IVN @ virtual-leader-

address

"contents” - the contents of the file (in octal, if a binary file)

"pagemap"” - the disk addresses of all pages of the file, with a "*" before each address that
represents a change of head position

"leader" - the contents of the file’s leader page, in octal



Cleared version of May 24, 1981
DDS1.13 October 12, 1977 31

If the keyword is displayed white-on-black, the corresponding information is displayed in the data area,
otherwise not.

There are 6 keywords that control other aspects of how the data are displ?/ed:
"émarked)‘ - if turned on, DDS only displays marked files (see sec. 1.4 below)
"(small)" - if turned on, DDS uses a smaller font for the data, which allows more data to appearon
the screen (see sec. 3 below for how to tell DDS the name of the font) )
"'(packed)" - if turned on, DDS displays several files per line if possible (not implemented yet)
"(times)" - in conjunction with "created", "written", "read”, or "referenced", shows the time of
day as well as the date . . .
"(browse)" - if turned on, then when "contents" is turned on, DDS only displays the first 5 linesof
text files and the message "*** binary file ***" for binary files, instead of the complete contents of the file.
. "(chart)" - if turned on, changes the data display to be a chart made up of boxes in which the
height of the box is proportional to the file length. (Try it -- you’ll like it.)

When the cursor is positioned over a keyword name, RED turns the keyword on; BLUE turns the
lléeyworg of{\.f When the cursor is over the word "Show:" at the upper left of the keywords, BLUE turnsall
eywords off.

There are currently 8 keywords that control sorting of the data:
"name" - alphabetic order by name (upper and lower case letters are equivalent)
"extension” - alphabetic order by extension ' '
"created", "written", "read" - the corresponding date and time
"referenced" - the date last referenced
"length" - the file length
"serial" - the file’s serial number (not of general interest)

The keywords which are displayed white-on-black are those actually used to sort the data area. They
are displayed in the order most- to least-significant criterion, e.g. "extensiont" followed by "namet" means
sort by extension first, then sort files with the same extension by name. Following each keyword, whether
active or not, is an arrow which indicates whether the sort is to be in ascending (upward arrow) or
descending (downward arrow). -

When the cursor is positioned over a sorting ke%rword name, clicking RED turns the keyword on and
adds it to the list of white-on-black keywords actually used for sorting; clicking BLUE turns the keyword
off and removes it from the list; clicking YELLOW inverts the direction of the arrow, regardless of
whether the keyword is in the list. When the cursor is over the words "Sort by:" at the left of the sorting
keywords, BLLUE turns off all sorting criteria. :

Since sorting may take a long time and it is easy to request sorting by accident, you can gabqrt_sqrtin%at
any time by typing any character. Be sure the cursor is not in the data area when you do this: if it is, DDS
may start the sort over again!

Whenever the cursor moves into the data area, regardless of whether any mouse buttons are down,
DDS repaints the display to be as specified by the viewspecs if the viewspecs have changed since thelast
time the display was repainted.

1.2 The selspec area

The selspec area contains two expressions which defines what subset of the directory will actually be
displayed in the data area. These expressions are built up from name patterns which are similar to those
recognized by the Alto Executive. More precisely, a name pattern is a sequence of characters which may
contain "*"s and " #"'s; "*" matches any sequence of characters in a name (including no characters atall),
"#" matches any single character. Upper and lower case letters are not distinguished. Note that DDS
deletes the final "." from file names. Here are some examples of name patterns and what they match:

*BC All files with extension BC (or be, bC, or Bc). '
- *B  All files with extension B. .
*B* All files whose names contain the string .B -- this includes all files with extension Bsomething,
but also includes files like THIS.BINARY.THAT.
*B# All files whose extensions consist of B and one more character.



Cleared version of May 24, 1981
DDS 1.13 October 12, 1977 : 32

*  All the files in the directory.

You can build up more complex expressions using the words "and", "or", and "not", and parentheses.
Here are some examples of such expressions and what they select:

LPD* and not *.tem ;
All files beginning with LPD, except those with extension temp.

* memo or *.memo$
All files with extension memo or memo$.

(*.BT or *.BS) and not X* : o )
All files with extension BT or BS, except those beginning with X.

The upper expression in the selspec area is called the selspec; the lower one is called the context. (The
two t%ether are simply called the selsgecs.) Only files which satisfy both expressions will be displayed.
The idea is that if you are gomtgu to be working on memos, for example, you can set the context to
"* memo" and use the selspec to further select within this set. As another example, if there is some setof
files you want not to see (like "*$"), you can set the context to "not *$".

To change the selspec or the context, point at it, or at the word "Selspec:™ or "Context:", and click
RED or YELLOW. This will cause it to change to white-on-black. As soon as %'ou start typing, the old text
will vanish and what you type will appear white-on-black in its place. Eventually you must type one ofthe
following three things before you can point anywhere else or select any commands (see sec. 2 below):

<return> confirms the change, and repaints the display to reflect it.
<esc> is equivalent to *<return>, i.e. it adds a * to what you have typed and then confirms the change.
<deD> aborts the typein and restores the old selspec or context expression.

See section 3 below for how to get the selspec and/or context initialized automatically to something
other than "*" when you first enter DDS.

The third line of the selspec area is a message of the form "nnn files are selected, of which mmm are
marked" where nnn is the count of files selected by the current selspec and mmm is the count of those
which are marked (see 1.4 below). If there are marked files not selected b‘{,the selspec (again, see 1.4), the
message "there are kkk files marked but not selected” also appears. While DDS is sorting data, the
message ""Sorting ..." appears in this area in place of the file counts.

1.3 The data area

As mentioned above, whenever the cursor moves into the data area, DDS regenerates the display if
necessary to conform to the current viewspecs.

The left edge of the data area is a scrolling bar which works the same way as in Bravo: clicking RED
scrolls up, clicking BLUE scrolls down, and clicking YELLOW jumps tgroporuonately to the vertical
location in the window. A hollow arrow in the left margin shows where in the list you are positioned: ifthe
arrow is at the top, you are at the beginning of the list; if the arrow is at the bottom, you are at the end.
The idea is that if you were to move the cursor to this arrow and click YELLOW, the list would stay
positioned just as itis. (This feature may appear in Bravo some day t00.).

If]'\}/ou are positioned at the beginning of the list of selected files, DDS displays the message "~~~ ~~
BEGIN ~~~~~ " at the head of the list; if not, DDS displays "~ ~~~~ nnn files not shown ~~~~~",
indicating the position within the list of the first file actually shown on the screen (e.g. "2 files notshown"
means the first file on the screen is actuallgr the third in the list). Similarly, if the last file shown on the
screen is actually the last file in the list, DDS displays " ~~~~~ ND ~~~~~"below it.

A vertical strip at the right edge of the data area will be used in the future to control the formatting of
the screen into windows. Currently the cursor changes shape when it is in this area, but the buttonshave
no effect. Another vertical strip just to the left of this one is used for mass marking and unmarking offiles:
see the following section.

1.4 Marking files



Cleared version of May 24, 1981
DDS 1.13 October 12, 1977 33

DDS JJrovides a facility for markin% any set of files for later processing by commands such as
<{Delete>, <Send to Maxc>, etc. Marked files are displayed with a small dark arrow in the left margin, and
a count of how many marked files are in the current selected set is maintained in the selspec window.
When the cursor is in the data area of a window, other than the right or left edge areas, the mouse buttons
control marking and unmarking of individual files: RED marks the file on whose line the cursor resides;
BLUE unmarks the file. When the cursor is in the vertical strip about 1" in from the right edge of the
screen, the cursor changes to the word "ALL", and the buttons mark and unmark files en masse: clicking
RED marks all the files selected by the selspecs; clicking BLUE unmarks all the files.

Note that files may be marked even though they are not selected by the current selspecs, i.e. marking
is associated with the file rather than the display. (If this proves confusing it will be changed.) Thecount
of "files marked but not selected" in the selspec area lets you know when there are marked files not
selected by the current selspecs.

Since marking or unmarking individual files occurs as soon as the button is depressed, you can hold
dgyvn REf_I? or BLUE and slide the mouse (slowly) in the vertical direction to mark or unmark a group of
adjacent files.

The marked file counts in the selsé)ec window are adjusted as soon as a file is marked or unmarked,
but if the "marked" viewspec is on and you unmark a file, you must scroll the data to get the unmarked
file(s) deleted from the display.

2. Commands

The command area at the top of the screen consists of four parts: .
1) A header with the DDS version number, time of day, and count of free disk pages;
2) A type-in area, where typed characters appear;
4) An error message line;
3) A menu of commands, with each built-in command being enclosed in angle brackets <.

When the mouse is in the command menu area, RED selects a command for subsequent execution:
the selected command is displalyed white-on-black, and any previously selected command is deselected.
BLUE deselects the currently selected command and selects the default command <Quit>. Typing <esc>or
<return> finally initiates the command: you can freely select or deselect commands, type and edit your
type-in, change viewspecs, etc. up to that moment. For commands which do not require type-in, youmay
also injtiate the command by clicking YELLOW with the mouse in the command menu area. Thecursor
takes the shape of a circle with a cross when this is allowed, and a circle with a dot when it is not.

Some commands require or allow type-in before the final <esc> or <return>. You may type at any
time. All typed characters are accumulated in the type-in area just below the header until the <esc> or
<return>. Control-A (or backspace), control-W, control-Q, and <deD> are available for editing as in Bravo.
DDS displays a vertical bar when it is waiting for your typing, and of course you can "type ahead" while
DDS is processing a command. However, as for selspec and context cha;lges (sec. 1.2), once you have
started to type, you must either confirm the command with <esc> or <return>, or abort with <deD>, before
you can select another command or another place to type (selspec or context).

When you have selected a command with RED, then when you release the button, DDS may display
something in the type-in area which is a default for that command. If you want to execute the command
with that default type-in, you can just confirm it (with <esc>, <return>, or YELLOW); otherwise, the
default disappears as soon as you start typing, just like the old selspec or context.

In the description of commands below, "something" following the command name means that DDS
expects you to have typed something before the final <esc> or <return> that initiates the command;
"optional-something” means you may type something or not. To help you remember, all the commands

Al "
.

that require type-in end with "...", and those which allow but do not require type-in end with "[...]

Many commands operate on a set of files: they use precisely those files which, at the time you typethe
final <esc> or <return>, are both selected (i.e. match the selspec) and marked. "Filename-1 ...filename-n"
in the descriptions below refer to these files, which are also called the "designated"” files.



Cleared version of May 24, 1981
DDS 1.13 October 12, 1977 34

DDS presently has two classes of commands: those which leave you in DDS after execution (internal
commands), and those which send you back to the Alto Executive (external commands). DDS has afixed
collection of internal commands, but you can add new external commands of your own: see section 3
below for how to do this. For external commands, DDS saves away a command line so that if something
goes wrong, you can execute the command again by typing @DDS.CM@<return> to the Executive.

2.1 Internal commands (those which leave you in DDS)

<Put on file ...> "filename" writes on the file named "filename" (in text form) the contents of the
window. DDS also writes a header with your name, the disk name, and the date and time. The defaultfor
"filename" is "Dir.Lst", an arbitrary name which DDS supplies so that you don’t have to make one up.

_<List on file ...> "filename" writes on the file named "filename" (in text form) the names of the
designated files, separated by blanks. This makes it easy for you to make up an @-file for the Executiveby
adding a command name to the front of this file. The default for "filename” is "Dir.Cm", an arbitrary
name which DDS supplies so you don’t have to make one up.

<{Delete> deletes the designated files. There is presently no way to un-delete files, so be careful: the
count of marked files in the selspec window is a good clue as to whether you are deleting more than you
want. You can stop a <Delete)> at any time by typing any character: of course, some files may already have
been deleted. DDS changes the "free pages” count at the top of the screen as it deletes each file.

<Rename as ...> "filename" requires that there be exactly one designated file, and changes its nameto
"filename". If there is already a file named "filename", <Rename> gives an error message and does
nothing else. o

<Initialize [select ...]> "selspec” restores Igour selspec, context, and viewspecs to what you have
specified in User.Cm. If you typed something, DDS takes that in place of the seispec in User.Cm.

2.2 External commands (those which leave you in the Executive)

<Quit> leaves DDS gracefully. Shift-Swat is also safe whenever DDS is awaiting input (i.e. not inthe
midst of sorting, deleting, etc.).

<Bravo/[...]> "optional-switches" gives control to Bravo in the following way:
If there are no designated files, DDS effectively executes "Bravo/switches”. .
If there is more than one deszignated file, DDS gives an error m.essa%: and does nothing else.
- If there is a single designated file and you did not type anything, DDS effectively executes "Bravo/N
filename", i.e. instructs Bravo to read in the file. .
il If there is a single designated file and you did type in switches, DDS executes "Bravo/switches
ilename".

) (Gears/l[...]> "optional-switches" executes "Gears/switches filename-1 ... filename-n", i.e. prints the
designated files.

_ <Send to Maxc directory <...>> "directory-name" sends the designated files to the directory named
"directory-name"” on Maxc, using Ftp. The default for directory-name is the user name on your Alto disk.
If you accept the default, DDS assumes you have already done a Login in the Executive to supply the
password; if you supply some other directory-name XYZ, DDS arranges things so the Executive will
prompt you with the message "File XYZ-Password does not exist, type what it would contain" and you
should type in the password for XYZ at that time.

<Send to ..> "name" sends the designated files to the Alto whose name is "name", using Ftp.
"Name” may be anything acceptable to Ftp, i.e. an Alto name, an Alto number, etc. The default for
"name" is Maxc, which is not really very useful. : :

<Execute ...> "command"” constructs a command line formed from "command" and the names ofthe
designated files, and then executes the command line thus formed by either 'umgmg directly to the
subsystem or returning to the Alto Executive. (If there are no designated files, DDS produces an error
message "No files are marked" and does nothing else.) The command line is formed in the following way:



Cleared version of May 24, 1981
DDS 1.13 October 12, 1977 35

If "command" does not contain any "*" characters, the command line is just "command" followedb
the names of the designated files. For example, if files ALPHA and BETA are designated, <Execute...
"BLDR/L" would execute the command line "BLDR/L ALPHA BETA". "String" may contain blanks,
so for example <Execute> "BLDR FOO/S" would execute "BLDR FOO/S ALPHA BETA". .

If "command"” does contain a "*", DDS divides "command” into 3 parts sl s2*s3", where s2 isthe
part of "command" extending backwards from the "*" to the first preceding blank (or the beginning of
‘command”). Then the command line is "sl s2fls3 s2f2s3 ..." where fl, {2, etc. are the names of the files.
For example, if ALPHA and BETA are designated, {Execute ..> "BLDR @*@" would execute the
command line "BLDR @ALPHA@ @BETA@". (If this seems confusing or useless, don’t worry aboutit
too much -- some future version of DDS may find a better way to provide this facility.)

2.3 User-defined commands

If you define your own external commands with a SUBSYSTEMS entry in User.Cm as describedin
section 3 below, these commands will also appear in the command menu along with all the commands
listed just above. They behave exactly like the <Execute> command with respect to what they do about™’s,
typein, and designated files. For example, suppose your SUBSYSTEMS list looks like this:

SUBSYSTEMS: Chat, Ftp/-S Maxc, Foo )
Then if you select the second command with files Alpha and Beta designated and type Dump/CBlap.DM,
what will actually get executed is Ftp/-S Maxc Dump/C Blap.DM Alpha Beta.

2.4 Error messages _

Non-fatal error messages appear in bold characters just below the t%pe-in line. Such messagesalways
abort the current command and reset the command to <Quit>, but they do not change the state of DDSin
any other way. The message disappears as soon as you type any character.

Fatal errors cause DDS to call Swat. When this happens, the screen changes completely and a
heading like "Swat.21 (August 28, 1976)" appears at the top; the error message itself appears at thebottom
of the screen just above a " #". Fatal errors are never supposed to happen, but if one ever does, summona
DDS expert._If none is available, write down the messaie and what you were doing at the time, and then
type control-K. This will throw you out of DDS and back to the Executive.

3. User profile

DDS examines the user profile (User.Cm) during initialization to obtain the names of the fonts which
will be used to display various things, and other rarely-changed information. Just as Bravo’s section of
User.Cm begins with [BRAVO] and then follows the format of OPTION:STRING, DDS looks for[DDS]
and follows the same format for its entries.

- The entries which DDS recognizes in User.Cm fall into two classes. "Initialization-only" entries are
those which DDS only consults when you ask it to do a full initialization (by using the FULLINIT: Yes
entry in User.Cm, or the /I switch in the command line, both described below). "Ordinary” entries are
those which DDS looks at every time.

The names of the "ordinary" entries are: .

FONT: fontname - specifies the name of the normal font (used for the command window, the file
count line, and the data area). :

BOLDFONT: fontname - specifies the name of the bold font (used for error messages, the viewspec
and selspec dis%a_[y, and the headings on the data area). .

SMALLFONT: fontname - specifies the name of the small font (used for displaying data when the
"(small)" viewsEec is turned on). i

SMALLBOLDFONT: fontname - specifies the name of the small bold font.

USERTYPE: type - lets DDS know what kind of user you are. If type is NON-PROGRAMMER,
DDS doesn’t provide the "pagemap” and "address” viewspecs. If type is WIZARD, DDS provides some
extra features for debugging which are not described in this document. . .

WINDOWS: Yes - enables you to use some experimental facilities for splitting the screen into multiple
windows in a Bravo-like manner. These facilities are NOT DOCUMENTED, NOT FULLY
DEBUGGED, AND NOT RECOMMENDED.



Cleared version of May 24, 1981
DDS 1.13 October 12, 1977 36

RAMOK: Yes - tells DDS to use the RAM on your Alto. If your Alto is a standard one, this willmake
DDS run about 30% faster; if not, DDS may not run faster, and may not run at all. Try it once (or usethe
/R switch in the command line as described below) and see what happens. ]

FULLINIT: Yes - tells DDS to scan the whole Alto file director{Jeach time it starts up, and reinitialize
the selspec, -context, etc, from the "initialization-only" entries in User.Cm (possibly overridden by the
command line: see sec. 4). FULLINIT: No - tells DDS to ugdate its knowledge of the world from Sys.Log
(an incremental record of file activity since you last ran DDS), and restore the selspec, context, etc. towhat
they were when you last left DDS. The default is FULLINIT:; No which leads to much faster startup.
BECAUSE OF DEFICIENCIES IN THE ALTO OS AND IN BRAVQ, THE RELEASED VERSIO
OF DDS FORCES FULLINIT: YES REGARDLESS OF WHAT IS IN USER.CM.

REENTER: Yes - tells DDS that you want to go back to DDS after corpﬁlenon of an external
command. (Normally the Executive retains control after an external command finishes.)

The names of the "initialization-only" entries are:

SELSPEC: expression - specifies the initial value of the selspec when you enter DDS. If there is
something illegal about the expression, DDS just uses "*" for the initial selspec, as though there were no
SELSPEC entry in User.Cm. o

CONTEXT: expression - specifies the initial value of the context when you enter DDS.

SHOW: list of viewspecs - allows you to initialize the viewspecs. Use commas between viewspecs if
there is more than one. .

SORT BY: list of sorting keywords - allows you to initialize the sorting order. Each keyword may be
followed by "+" for ascending order or "«" for descending order (neither means ascending order). Use

~commas between keywords if there is more than one. o

SUBSYSTEMS: list of commands - allows you to add your own favorite subsystems to DDS’ command
set. Each command may be &Jst a subsystem name (e.g. Chat) or a subsystem name followed by some
initial arguments (e.g. Ftp/-S Maxc Dump/C). Use commas between entries if there is more than one.

A word about fonts: if FONT is not sgeciﬁed in User.Cm, DDS uses the standard system font
SysFont.Al. If BOLDFONT is not specified, DDS fabricates a boldface version of the normal font,
whatever it may be. If SMALLFONT is not sBeciﬁed, the "(small)" viewspec has no effect. If youspecify
a font name and there is no file by that name, DDS just ignores that entry in User.Cm.

4, The command line

Just typing DDS to the Alto Executive will activate DDS in its normal way, in which various aspectsof
its behavior are controlled by entries in User.Cm if present. However, you can override User.Cm by
typm%)switches following the name DDS to the Executive. Here are the switches currently implemented:

DDS/E - equivalent to REENTER: Yes in User.Cm.

DDS/-E - overrides (cancels) REENTER: Yes in User.Cm.

DDS/I - equivalent to FULLINIT: Yes in User.Cm.

DDS/-I - overrides (cancels) FULLINIT: Yes in User.Cm.

DDS/R - equivalent to RAMOK: Yes in User.Cm.

DDS/-R - overrides (cancels) RAMOK: Yes in User.Cm.

DDS/W - equivalent to WINDOWS: Yes in User.Cm.

DDS/-W - overrides (cancels) WINDOWS: Yes in User.Cm. : .

DDS/S - causes DDS to write some statistics in a file DDS.STATS. Not currently of general interest.
~ DDS/P - causes DDS to write some data regarding disk activity in DDS.STATS. Not of general
interest.
~ DDS/X - causes DDS to display some mysterious statistics at the top of the screen. Not of general
interest. '
These switches can be combined, e.g. DDS/I/R causes both full initialization and use of the RAM.
Switches may be either upper or lower case.

If DDS is doing a full initialization (either because FULLINIT: Yes appears in User.Cm or because
you said DDS/I), you may also supply initial selspec and context strings in the command line, and these
will take precedence over those in User.Cm, if any. Unfortunately, the Alto Executive makes it a little
inconvenient to include *’s in these strings, and you can’t have blanks in them at all. To include a *, you
must %ge **_ e.g. to start up DDS and specify alpha* as the selspec, you must type

DDS/1 alpha™



Cleared version of May 24, 1981
DDS 1.13 October 12,1977 37

to the Executive. To specify beta* as the selspec and *.cm as the context, you must type
DDS/I beta™* **.cm

5. Record of bug fixes, changes, and enhancements

Release 1.13:
Bugs fixed: user-defined commands were usually ignored even on full init.
Additions: REENTER in User.Cm (sec. 3); /E in command line (sec. 4).
Release 1.12:
Bugs fixed: crash if User.Cm!n existed but no User.Cm.
) Changes: fast startup permanently disabled.

Additions: "leader” viewspec (sec. 1.1); <List> and <Initialize> commands (sec. 2.1); user-defined
commands (sec. 2.3, 3); /X in command line (sec. 4).

Release 1.11:

kBugs fixed: falling into Swat when running on non-standard Alto configurations; fast startup now
works. ‘

Changes: can point at "Selspec:" and "Context:" (sec. 1.2); feedback after deleting each file (sec.2.1);
user and disk name appear on <Put> file (sec. 2.1); fast startup 1s the default (sec. 3).

Additions: WINDOWS and RAMOK in User.Cm (sec. 3); switches, initial selspec and context in
command line (sec. 4).

Release 1.10:

Bugs fixed: "Bad VP" and "Bad tree" from <Delete>.

Changes: runs only under Alto OS version 5 or later; typing in selspec directly (sec. 1.2), "All" strip
for marking/unmarking all files (sec. 1.3, 1.4), new typein scheme for commands (sec. 2); change in<Send>
commands (sec. 2.1).

Additions: "(chart)" viewspec for pictorial file lengths (sec. 1.1); BEGIN, END, arrow for clearer
indication of position within data list (sec. 1.3); default typein for commands (sec. 2); saving commandline
in DDS.CM (sec. 2); initializing viewspecs and sorting from User.Cm (sec. 3); fast startup feature (sec. 3).
Release 1.9:

*** There was no official release 1.9.

Release 1.8:

Bugs fixed: stack overflows (really!), "Vstream error” after <Delete>; file name from <Put> wasn’t
getting added to data base.

Changes: runs under new Alto Operating System; "contents” viewspec shows the whole file (sec.1.1);
?'lal‘kél)lg all files is now done in selspec area (sec. 1.4); error message line moved to just below type-inline
sec. 2).

Enhancements: "referenced”, "(browse)", and "(small)" viewspecs (sec. 1.1); interrupting sorting by



Cleared version of May 24, 1981
'DDS 1.13 October 12,1977 , 38

typin% (sec. 1.1); context expression (sec. 1.2); initiating commands with YELLOW in command menu

sec. }d <{Context> and {Rename> commands (sec. 2.1); interrupting <Delete> by typing (sec. 2.1);
MALLFONT, SMALLBOLDFONT, SELSPEC, CONTEXT, US E options in User.Cm (sec. 3).
Release 1.7: |

- Bugs fixed: "Break at 0" or "Break at 1" during <Delete>; occasional stack overflows ("Break at
getframe+36"). : : A

Changes: error messages now appear in their own area (sec. 2.2); cursor need not be in the window
when confirming a command (sec. 2).

Enhancements: documentation sec. 2 has been expanded and improved to clarify the notion of
designated files.

Release 1.6:

Bugs fixed: DDS would go into SWAT "Break at getframe+ 36" (stack overflows); also occasional
"Bad vp" or "Vstream error" messages. A couple of typos in the documentation also fixed.

Enhancements: blinking caret for type-in (sec. 2); complex selspec expressions (sec. 1.2); count of
marked files not selected (sec. 1.2, 1.4).

Release 1.5:

( (lll'ia)mges: command menu in place of control characters (sec. 2); viewspecs do not require clicking
sec. 1.1).

12) Enhancements: Delete, Send, Bravo, Gears commands are built in (sec. 2); sorting by serial # (sec.

Release 1.4:

i Changes: date-and-time line rearranged; better behavior when displayed properties do not fit on one
ne.

Enhancements: "Sorting ..." message (sec. 1.2); "*" feature in tExecute (sec. 2).
Release 1.3:

. Bugs fixed: system would blow up on any attempt to produce an error message such as "Mouse isnot
in a window"; system would sometimes blow up when starting up; the date-and-time line no longer blinks.

( (lirﬁmges: t+Execute now only processes marked files (sec. 1.4, 2); sorting by extension isimplemented
sec. 1.1).

Enhancements: marking individual files (sec. 1.4); displaying the file count (sec. 1.2, 1.4); "pagemap”
viewspec (sec. 1.1); user-selectable fonts (sec. 2.1).



Cleared version of May 24, 1981
DMT, Peek, PeekSum February 12, 1979 39

DMT, Peek, PeekSum

This documentation describes the operation of three related Alto Subsystems: DMT, the Memory/Control
Ram diagnostic; Peek, the 1program to which DMT reports its findings; and PeekSum, the program which
summarizes the reports collected by Peek.

1. Creating a Peek Disk

You should devote a separate disk to Peek. Boot files can take up a lot of space and the Peek report file
can get quite large over a long holiday weekend if your network has many hosts. To avoid coming in on
Monday and discovering your Peeker in Swat out of disk space, clean the disk out regularly. Peek
automatically keeps its network directory and boot files up-to-date, so building a new peek disk amountsto
building an bare disk (OS, Exec, Ftp, Empress, perhaps Bravo), .%e_ttmg eek and PeekSum and just
running it: it does the rest. I have written a canned procedure for building a Peek disk from scratch:

1) Boot an OS from the net and respond "Yes’ when it asks if you want the long installation dialog,
and Yes’ when it asks if you want to ERASE the disk.

2) Wﬂlllellli the erase procedure finishes, retrieve [Maxc]<Alto>PeekDisk.cm and invoke it by typingto
e Exec:
>@PeekDisk.cm@ ~ - A

3) When the smoke clears, install your printer’s name in the [HardCopy] section of user.cm and re-
install Bravo. If you aren’t on the west coast, change the ZONE parameter (e.g to +5:00 ifyou
are on the east coast).

2. History

Chuck Thacker made DMT (early 1973) by combining many small diagnostics which he had developedto
stress main memory using certain emulator instructions. There were originally two versions: PMT (Printer
Memory Test) which lo%ged statistics on the Diablo printer; and DMT (Display Memory Test) which used
the display. Later (late 1973), an Ethernet driver was added to DMT, Bob Metcalfe wrote Peek, and Chuck
wrote PeekSum. At this point, development and maintenance of PMT stopped. Still later (mid 1975),
David Boggs added a Control Ram test to DMT, rewrote the Ethernet driver and took over maintenance.
Nate Tobol, who designed the Alto II memory system, wrote the Alto IT memory test (tnid 1976) which was
merged into DMT. David rewrote Peek and took over its maintenance. Doug Clark extended PeekSum,
and took over its maintenance (early 1977).

3.DMT

DMT is written in the Alto BCPL-compatible variant of machine language and is distributed as atype-B
boot file (see the BuildBoot documentation for more details). ~

When DMT is running, the Alto screen is black with a white cursor changing position once each time
through the main loop. For Alto I the cursor flips at random intervals; for Alto II the interval is about1
second. On Alto IIs with extended memory, the cursor contains a number between 0 and 3 indicating
which bank it is currently testing. DMT contains a TeleSwat server. The key combination<{Control><Left-
Shifto<Swat> causes DMT to stop and enter the debugger.



Cleared version of May 24, 1981
DMT, Peek, PeekSum February 12, 1979 40

3.1. Statistics

If the °S’ key is depressed, DMT will display (and transmit on the Ethernet) the statistics it has
accumulated. The display looks something like this:

DMT of 25 Dec 78, Alto II XM 241. 456 blocks, testing 17341 to 176777
0 bad main memory chips
0 bad control memory chips

If there are errors, a line describing each type of error will be displayed, and then, if the errors can be
resolved to a particular chip, the Card, Row and Column (for Alto I), or the Card and Chip number (for
Alto IJ) will be displayed. This display will stay up as long as the "S" key is depressed. Periodically the
statistics are automatically broadcast on the Ethernet and appear briefly on the screen. .

3.2. Booting in Response to Packets

If DMT receives a request-for-connection C(JRFC) Pup and DPO is ready, then it boots the Operatingsystem
?nd passes it a message of type eventRFC. If the Executive section of user.cm contains an entry of the
orm:

eventRFC: <arbitrary command line>

then the executive will consume the event and execute the command line. << If DMT receives an EFTP
data packet with sequence number 0 and DPO is ready then it boots the OS and passes it a message oftype
eventEFTP. This is included so that printers (which use the EFTP protocol) can drop into DMT when
nobody is using them, and automatically wake up when someone wants to ﬂ?nnt' >> If DMT receives a
Kiss-of-Death Pup for socket 4 (miscellaneous services), then it EtherBoots the file whose ID iscontained
in the low 16 bits of the Pup ID.

4, Peek

Peek opens several windows on the display. The top window is for user commands. There is currently
only one: Quit, The next window displays the release date of the program, a digital clock, the Pup
internetwork address of the machine, and the number of free pages on the disk. e next window 1s
opened by the Peek Server and displays DMT reports as they arrive.

Peek loads special Ethernet microcode so that it can receive Peek repons directed to host 376b as wellas
conduct business as itself. If it can’t load the ram, it runs the Ether interface promiscuously and filter
pacllc(ets in software. More diagnostic reports will be lost and booting may be slower, but things should still
work.

Peek has a lot of options, and reads User.cm to find out what to do. An example of the Peek slice ofa
User.cm file is given below. In addition, it contains a host of network servers:

4.]1. Peek Server

If there is a line of the form "Peek <filename>" in User.cm, Peek will start up a Peeking ﬁE>roc:ess which will
listen for raw Ether packets of type PeekReport and write them on <filename>. The filename should be
’Pzel;.reports’ since PeekSum, described below, assumes this (I was just feeling general the day I wrote that
code).



Cleared version of May 24, 1981
DMT, Peek, PeekSum February 12, 1979 41

4.2. Event Report Server

Peek implements the Pup Event Report protocol. For each line of the form "ERP <number><filename>"
in User.cm, Peek will instantiate an event report process which will listen on socket <number> and write
event reports on <filename>. The default address which the OS uses is Maxc, so I don’t expect many
people will use this, however it might be helpful for an Alto site that isn’t connected to the Parc Internet.

4.3. Pup Echo Server

Peek contains a Pup Echo server running continuously in the background. PupTest and GateControl
contain Echo users with which you can poke it.

4.4. Raw Ether Echo Server

Peek also contains a raw Ethernet Echo server. This is the echo protocol used by EDP and NEDP, the
diagnostic programs for the Alto and Nova Ethernet interfaces.

4.5. Boot Server

Peek implements the protocols necessary to be an Alto boot file server. For each line of the form "Boot
<number) <filename>" in User.cm, Peek will send <filename> when it receives a Mayday packetrequesting
bootfile <number). If the file isn’t on the disk, or if Peek discovers a neighboring Boot server with a later
version, your Peek will aquire it. The more boot files you tell Peek to keep, the less space there is for Peek
reports.

4.6. Name Server

PeekSum consults the file "Pup-Network.Directory’ to get the owner and location of Altos. Peek containsa
name lookup server and in addition to answering lookup requests, keeps its copy of the directory current.

4.7. Time Server

Peek also has a time server. Alto time is based on Greenwich Mean Time, and local users must know their .
local time zone and the beginning and ending days of Daylight Savings Time to convert to local time.
Time servers are the source of this information, so it is important that the time parameters in User.cm be
correct. "Zone +8:00" means that the peek disk is 8 hours west of Greenwich -- in the USA Pacific Time
zone. The standard User.cm contains this, so you must edit it if you live elsewhere. The DaylightSavings -
Time parameters are set by the line "DST 121,305", and only change when Congress messes with time.
Keep an eye on your local CongressPerson.

4.8. User.cm Example

Below is an example of the Peek part of a User.cm file. In this example DMT statistics go to the file
"Peek.reports’, Event reports addressed to socket 30 (swat error reports) go to the file ’Swat.ERP’, andsome
maintenance-type boot files are available for diagnosing Altos. Notice that all characters between a
semicolon and a carriage return are considered to be comments and ignored by Peek (this is not true forall
programs that use User.cm).

[EXECUTIVE]
...executive stuff...

[PEEK]
; Syntax:
; Boot <boot file number> <filename>



Cleared version of May 24, 1981 ;
DMT, Peek, PeekSum February 12, 1979 ‘ 42

; ERP <{socket number> <filename>

; Peek <filename>

; Correction <seconds ger day> (decimal) [positive makes clock go faster]
; DST <beginning day> <ending day> (decimal)

; Probe <hours> (decimal) . .

; Zone <sign><hours>:{minutes> (decimal, plus is west of Greenwich)

Peek Peek.reports  ; for PeekSum.run

ERP 30 Swat.erp ; Swat Error reports

Zone +8:00 ; USA Pacific Time Zone

DST 121,305 ; DST begins on day 121 and ends on day 305
Boot 0 DMT.boot

Boot 5 CRTTest.Boot

Boot 6 MadTest.Boot

Boot 10 NetExec.boot

Boot 11 PupTest.boot
Boot 12 EtherWatch.Boot
Boot 13 KeyTest.boot
Boot 15 DiEx.Boot

Boot 17 EDP.Boot

Boot 20 BFSTest.Boot

[BRAVO]
...bravo stuff...

Peek writes the contents of User.cm into the Command window as it reads through the file. If the filehas
bad syntax, Peek will call Swat with a description of its complaint (e.g. "[ReadNumber] - numbercontains
illegal characters” if it is expecting a number and reads something other than 0-7). Typing <ctD-U will
restore the user display. The last item in the Command window is what Peek is having trouble with.

The source code for most of the servers in Peek is borrowed from the gateway program, and so there are
some more specialized commands which you can i%nore and which default to reasonable actions. I
mention there here for completeness. "Correction +20" means the Alto’s clock looses 20 seconds perday,
and the time server should correct by gaining 1 second at 20 equally spaced times during a day. "Probel”
means attempt to locate newer versions of boot files and the network directory once an hour.

5. PeekSum

PeekSum reads the file "Peek.Reports” (the outg)ut of Peek) and constructs a summary of the errors
reported by DMT (see above) for each Alto. PeekSum writes on the file 'PeekSummary.Tx’ a tabulationof
the error reports, together with the owner’s name and the machine’s location, retrieved (if possible) from
the file "Pup-Network.Directory”, which is maintained by Peek, as described above.

As Peek is started and stopped, it writes short messag[gﬁ to this effect on Peek.Reports; these messages are
reproduced at the beginning of PeekSummary.Tx. The number of the local network is also written. If
Peek.Reports contains multiple reports from a single Alto (which is usually the case), PeekSum willrecord
the largest number of errors of each type, over all such reports.

PeekSum will complain and then gracefully stop execution if the files Peek.Reports or PeekSummary.Tx

are unopenable for some reason. If Pup-Network.Directory is unopenable or absent, the ouput file

R?ekﬁummaryBTx will not include names and locations of Altos, but will contain error reports grouped by
to host number.

To run PeekSum, just type:



Cleared version of May 24, 1981
DMT, Peek, PeekSum February 12, 1979 43

>PeekSum

and the program will go about its business. When it has finished, PeekSummary.Tx should be printed on
your local printer.



Cleared version of May 24, 1981
DPrint March 23,1977 44

DPrint - Diablo Printer Program

This program ‘?rpes text files on a Diélpl_q printer connected to the Alto. It is a vanilla program with very
few features. Use Bravo if DPrint’s facilities are inadequate.

The syntax of the command line is; -
Print/switch parameter/switch ... filename filename ...

The only switch permitted on the word "DPrint" is "/P", which instructs DPrint to pause before the
beginning of each page.

One or more parameters may optionally be specified:

n/W Sets the line width to be n characters. Lines longer than this will wrap around to the next
line. The defaultis 75 characters.

n/L  Sets the page length to be n lines. This determines the point at which printout will pause (if
/P was invoked) and also controls the amount of paper spewed when a form-feed is
g:nclg)ur)n.efr.eq in the file. The default is 66 lines (11 inches) if /P is not in effect or 57 lines (9.5
mches) if it is. '

n/M Sets the left margin to be n units of 1/10 inch from the hardware left margin of the printer.
~ The default is zero. ' , o

Command line parameters without switches are assumed to be names of text files to be printed. If afile
cannot be found or a parameter is otherwise incorrect, you will be prompted for the correct value.

When DPrint pauses, you may either type space to resume printout or "Q" to abort it and quit out of the
grogram. DPrint will pause immediately if you strike any key while it is printing, and also if the printer
ecomes not ready.



Cleared version of May 24, 1981
EmPress December 14, 1977 45

EmPress

EmPress has several functions. Its primary use is to convert ordinary text files into Press format, and to
send the converted files to a Press printing server. Options include the ability to produce a Press file
without transmitting it, and to transmit Press files that have been previously produced. Additional features
provide for merging several Press page images into a single Press file, and for personalizing individual
copies of documents.

EmPress can distinguish Press files from text files, so it need not be told whether to convert. As a text file
converter, EmPress is intended for formatting program listings and supports only simple formatting
operations such as Tab and FormFeed. Bravo trailers are ignored.

Joe Maleson wrote the original program. David Boggs made the modifications that allowed transmissionof
files to printers. Rick Tiberi produced the current version, adding the Press file merger and copy
personalization facilities, and curing many problems.

Standard Case:

'fI_l“i) send one or more Press or text files to your defauit Press printer, using a default font to convert the text
es, type:

empress filel file2 file3 ...
and read no further. The more general command line to EmPress is:
EmPress[/<{global switches>] [<parameters>/<{switches>] inputFiles

The square brackets denote portions of the command line that are optional and may be omitted. EmPress
will print up to 100 input files.

Each global switch has a default value which is used if the switch is not explicitly set. To set a switch to
*false’ proceed it with a 'minus’ sign; to set it to ’true’ just mention the switch.

Switch Default Function

/T true [Transmit] will send the resulting press file to a printer.

/number 8 (text files only) tab width -- see below.

/H true (text files only) [Headings] will print a heading and page number on each page.
P fale (B heed thom. nd dont hiave thom. This aitows. Pross fles Grosted by oia

software to print correctly. If your Press file prints with improper line
justification and character spacing, try this switch before giving up.

© /2 false [Duplex] will format text files for 2-sided printing and inform the server to print
the transmitted file duplex.
/S false [Secret] will send the current Alto password to the server, requesting that the
server not print the files until the password is entered at the server workstation.
/W false [Waitl after sending the files, will wait for input from the keyboard to check
completion status of the print request. If the user confirms with a RETURN,

Empress will check and print the status of the file, if possible. DEL exits from
Empress.



" EmPress

Cleared version of May 24, 1981
December 14, 1977 46

EmPress recognizes a number of optional parameters which can be set from the command line.
Parameters set from the command line take precedence over defaults built into the program.

Parameter
string/O

number/C
string/H
string/1
string/S
string/N

string

number/T

string/F

number/P

Default

Swatee

none

none

none

none

none

Function

[Output] the name of the output file. EmPress uses Swatee unless told
otherwise, since the output press file is usually sent to the printer and then
discarded. :
[Copies] the number of copies to print.

lfHostName the name of the printer. This takes precedence over thename
ollowing PRESS: in the [HardCopy] section of User.cm.

[Input] the name of an input text file to be formatted and saved or
transmitted, or of an input Press file to be transmitted.

[%ecret] a password to be sent for confirmation, as the global /S switch
above.

[Name] the name of a user for whom the file is being printed, to be sentto
the printer for direction to that user’s mailbox.

a string without any switches is assumed to be an input file.

The remaining switches apply to text conversion only.

8

Gacha

[Tab] the width of a tab character in multiples of the width if a space
character.

[FontFace] the font to use. You must have 'Fonts. Widths’ on your disk.
[PointSize] the point size of the font.



Cleared version of May 24, 1981
EmPress December 14, 1977 47

User.Cm Entries

The following is a sample User.Cm hardcopy section, configured to use the Menlo Press printing serveras
the preferred printer:

E—IARDCOP
REFERREDFORMAT: Press
EARS: Palo

PRESS: Menlo

PRINTEDBY: "$"

FONT: TIMESROMAN 10 MIR

The FONT entry specifies that TimesRoman]10i (italic) should be used as a default font instead of Gacha8
(EmPress’s default choice). The second, point size argument, and the third, face specification argumentare
optional. The face argument contains three letters specifying weight (M, B, or L), slope (R or I), and
expansion (C, R, or E), respectively.

The PRINTEDBY field, if Fresent, specifies the name to be used in the Name field on the break page.The
curre_:gt disk login name will replace the character §. EmPress chooses "$" as a default in the absence ofa
specification.



Cleared version of May 24, 1981
EmPress December 14, 1977 48

Program operation

When EmPress encounters a Press file in the input list, it transmits (or stores) any text file that it is

currently converting, then transmits the Press file. A new break page will be printed for each Press file,

containing that file’s name. EmPress will override the "created by" field of a Press file with a namederived

as described above. It will fill in blank file name and date fields with the obvious defaults. If copies are

specified in the command line, EmPress will override the number of copies specified in the Press file with
e command line value. '

EmPress uses the file Swatee for temporary storage while converting text for transmission. If in so doing
Swatee becomes nearly full, EmPress will suspend formatting, send what has accumulated so far, and then
press on. This has two desirable consequences: 1) a very full disk will not run out of space and 2) some
pipiﬁning can take place since the printer can munch on the first chunk while ress empressifies
another.

Press File Merging

EmPress will mer%\claI several one page Press files into a single one page Press file. This allows the outputsof
Bravo, Sil, Draw, Markup, etc., to be merged without a sefparate_ pass through Markup. One additional text
or Press file may also be submitted, and it will be printed following the one page merge result.

One invokes the merge feature through one additional global switch, and one additional local switch:
Additional Global Switch:

/m Merge. All subsequent input files that are not qualified by switches must be single-page Press
files. They will be merged to form a Sil;fle (cover) page in the Press file result, containing all
their Press specifications. This switch also conditions Empress to expect the additional local
switches, described just below and in the Personalization section.

Additional Local Switch:
/d Document. This switch may be used to identify an optional main document, when the merge

option is used. The file may be a simple text file or a Press file. It will follow the one page
merge result in each copy printed.



Cleared version of May 24, 1981
EmPress ' December 14, 1977 49

Personalization

This relatively specialized feature is provided to allow the personalization of individual copies of a

document. Each copy of the document might contain, for instance, the name and address of the person for

whom it is intended. Up to six lines of personalized information can be specified. This information will

Ic'leplace distinctive "key strings" that have been placed in the cover page (merged) files or in the main
ocument.

The key strings must al%pea; in contiguous groups of up to six lines each. The personalized information for
the current copy, specified in a paragraph of a special Bravo-format addressee file or in the commandline,
will replace the key strings in each group, line for line. Thus the personalized information may occurmore
than once in each document (Dear Mr. PARC/SDD: ... yes, you and all the members of the PARC/SDD
hou(slgholccl1 cgn enjoy the benefits of ...). Lines in the addressee paragraph for which no keys are provided
are discarded.

The default key is "<", forty hyphens ("-"), then ">". If the string "<--title-->" appears anywhere in the
document, the name of the "main" document (the one specified using the "/d" switch) will replace it.

The "/m" (merge) global switch must be specified before any of these personalization specification
switches are valid.

Additional Local Switches:

/k Key. The item is a key that replaces the default (see above).

/a Addressee. The item is either the name of a Bravo format file containing a list of addressees --
one per paragraph, one line in each paragraph for each key line in the cover page or main

document -- or a literal addressee, enclosed in double quotes. In a literal, use hyphens where
you wish blanks to appear in the name.



Cleared version of May 24, 1981 :
ERP February 17, 1979 50

ERP - Event Report Protocol Server

ERP is an event report protocol server. You invoke it by saying to the Exec:
ERP <socket> <filename>

where <socket> is a 16-bit socket number (the high 16 bits are zero), and <filename> is the name of a fileon

your disk. It starts a Event report server on <socket> which acllppends events to <filename>. This programis

;perely a thin veneer on the PupERPServ package, whose documentation you should consult for the file
ormat.



Cleared version of May 24, 1981
Executive User’s Guide June 26, 1980 51

Executive User’s Guide

Executive, the Alto command IE)rocessing subsystem, is the intermediary by which Alto users generally
invoke other subsystems and ask simple questions about the state of the Alto file system. It is just thesame
as any other subsystem, except that its name is known by the Alto Operating System, and it is invoked by
the Operating System whenever the Bcpl operator "finish” or equivalent is executed. This document
describes version 11 of Executive.

1. What It Does

The operation of Executive proceeds thus:

1. It reads any leftover unexecuted commands from a file called Rem.Cm into a main memory command
queue.

2. It begins building up a command line (terminated by a CR). If the command queue empties before the
command line is terminated, additional characters are read from the keyboard until a CR is read. Editingis
done during this 1phase. If the command line has been empty for about twenty minutes, the user isassumed
to be occupied elsewhere, and the diagnostic program Dmt.Boot is invoked either from the disk (if itcan
be found) or from the Ethernet.

3. The edited command is placed at the front of the command queue and the command queue isanalyzed
for *-, # -, and @-substitutions. If something of the form @filename@ is discovered in the first line inthe
command queue, it is replaced by the contents of the named file and analysis continues with the first
character of the replacement. Executive makes no attempt to detect or recover from infinitely recursive
replacements. If the characters * or # are encountered in a filename in the first line, the file directory is
used to Ee licate that filename with appropriate substitutions. This step results in a completely edited
command line.

4. The first atom (contiguous sequence of legal file name characters) in the command line is analyzed tosee
whether it is the name of a subsystem in the file directory or the name of a command internal to Executive
or neither. If neither, then Executive attempts to extend the atom into the name of a subsystem or
Executive command. (The subsystem lookup algortithm is described below.) Failing in this, it complains
and resets itself. Otherwise the line is written on the file Com.Cm. Then if the first atom was or could be
extended into a subsystem name, the rest of the command queue is written on Rem.Cm, and thesubsystem
is invoked with a CallSubSys Operating System call. If it is an internal Executive command, the
appropriate subroutine is called. Executive passes the switches found on the subsystem name in the user
parameters vector of CallSubSys. See the documentation of CallSubSys for more details.

In parallel with these steps, Executive does a few housekeeping chores:

a. It reads the entire file direqtory_ into memory, merges in the names of user-callable routines internal to
Executive, and sorts the resulting list alphabetically.

b. Having nothing else to do, it puts a line containing a continuously-updating digital clock and the
number of free disk pages on the user’s screen, and flashes a vertical bar cursor where the next typed
character will go.

A number of characters have special meaning during the editing step (2):

Null:
Ignored

Carriage Return:



Cleared version of May 24, 1981
Executive User’s Guide June 26, 1980 52

Terminates the line, beginning step 3.

Control-A:
Backspace:
Removes the last character from the line queue.

Control-W:
Removes the last item which looks like a file name from the line queue.

UpArrow:

Single quote: i
Causes itself and the next character both to be appended to the line queue, regardless of what
the next character is.

Control-U:
Signals that at the conclusion of step 2 the line queue is to be written on the file Line.Cm andits
contents replaced by the text "Bravo/n Line.Cm". If one has the proper Bravo and User.Cm,
this will invoke Bravo on the command line. (This is also an easy way to build small command
files. Just type the desired command followed by Control-U and CR. Then copy or rename

Line.Cm.)
Control-X: ) . .
l;;rforms step 3 on the line queue as it is, returns to step 2. In other words, it eXpands @, *,and
Control-C:
Delete: . .
Empties out the line queue, starts over again.
Escape: _ . .
Interprets the last atom in the line queue as the prefix of a file name; continues that file name
until it is complete or ambiguous. Flashes the screen if it is ambiguous.
%
Interprets the last atom of the line queue as the prefix of a file name; types out all file names
which begin that way.
Tab:

Same as "7" except it deletes the atom from the line queue after typing the file names. This
would be what one would normally use to interrogate the directory. ¥ and # work as expected.

LineFeed:
If the file Line.Cm exists, its contents are appended to the line queue.

Blankl:

Blank2:

Blank3: .
These are the three blank keys on the right side of the Microswitch keyboard, numbered from
top to bottom. These keys behave like LineFeed except the files used are Keyl.cm, Key2.cm
and Key3.cm. These are called "macro keys" and make it convenient to have several frequently
used command sequences available as single keystrokes. (The Control-U feature is aconvenient
way to generate the text for these files.)

In step 3, several characters have special meaning:
Semicolon:
Carriage Return: )

Terminate the line; control goes to step 4.

Up Arrow:



Cleared version of May 24, 1981
Executive User’'s Guide June 26, 1980 53

If followed by a carriage return, do nothing. If followed by an up arrow, put one up arrow in
the line queue. If followed by any other character, put both characters in the line queue (Ugh!).

/: :
If followed by another "/", this begins a comment, so scan ahead until finding a carriage return
or semicolon. If not, put the "/" in the line queue.

@:
Scan ahead until finding another @ (the second @ may be omitted if it comes at the end ofthe
command). The atom in between is a file name. Replace the @atom@ by the contents of the
named file, If the file doesn’t exist exactly as specified, try extending the specification and
forcing a .Cm suffix.

*:

#:

Expand the atom using these characters by making a search through the file directory. *matches
any sequence of file name characters. # matches any single character except a period. File
names are defined to end with an infinite number of periods. The atom is replaced by all file
names matching its pattern. Switches on the atom, if any, are replicated.

There is one special character recognized during step 4.

Control-C:
Aborts the command and starts over again. Control-C is effective up until the time that
Executive gives up control to the subsystem being invoked. If you realize a mistake in your
command after typing CR, quickly typing Control-C will abort it. (When Executive’s header
line disappears, it is too late.)

In step 4, one switch is taken to have special meaning on the subsystem name only. The switch /! willset
the pause parameter in the call to CallSubSys to true causing you to enter Swat after your program is
loaded, but before its first instruction is executed. This switch, if detected, is removed from the command
line before Com.Cm is created. This feature is extremely useful if your program is hitting a bug beforeits
first user interaction.

2. Executive Commands

The Executive contains a number of subroutines which can be invoked from the command line. The
commands corresponding to these subroutines can be identified by the extension character "~", which s
illegal in a file name. Executive commands include the following:

Type.~ FileName ... :
Display the contents of the named file(s) on the screen. After each page, it asks whether you
want to see more of the current file. A Ctrl-C at this point terminates the entire Type command.
You can type any files, even binary ones, but typing some files will give you more useful
information than typing others.

Delete.~ FileName ...
Removes the named files from the directory and frees their disk space. Use this command very
garlefplly. Its effect cannot be undone. Typing Ctrl-C will abort the command cleanly between
eletions.

Copy.~ DestFileName « SourceFileName ... )
Copies a file. If there are several SourceFileNames then the copy will contain the concatenation
of the information in the source files, in the order listed. In accordance with the Alto File Date
Standard, copying a file preserves the creation date of the file; concatenating files generates a
new creation date.



Cleared version of May 24, 1981
“Executive User’s Guide June 26, 1980 54

Rename.~ OldFileName NewFileName (or NewFileName « OldFileName)
Changes the name of OldFileName. NewFileName must not already exist unless OldFileName
and NewFileName are the same (use this feature to change the capitalization of a file name).

BootFrom. ~ FileName [...Sys.Boot] . i
Initiates a software-simulated bootstrap sequence on the file named by FileName. Most
robably the FileName should have the .Boot extension. Like the OS system call BootFrom
which it uses) this command does not actually do a hardware bootstrap o%erathn,. so it doesnot
re-initiaéize any Alto hardware or microcode tasks. If you don’t know what this implies, don’t
worry about it.

Quit.~
Has the effect of BootFrom Dmt.Boot. This commences the running of the diagnostic program,
which doesn’t use the Operating System at all. This is done automatically after a machine has
been idle in Executive for about 20 minutes. If Dmt.Boot is not on your disk or you turn the
disk off, Dmt will be loaded from the Ethernet.

Login.~ . . ‘
Places your user name and password in the system area of main memory for use by programs
which interact with access-controlled resources (like timesharing or file systems, for example).

SetTime.~

Sets the Alto’s internal time-of-day clock. The time is obtained from the Ethernet if possible.
Failing that you will be asked to supply the time (and possibly time zone) manually in the form
12-jan-78 14:45. Use SetTime/m to bypass the Ethernet and set time manually. Use /z to force
setting of time zone in manual mode. (When Executive is started it examines the time-of-day
clock. If the value is not reasonable Executive attempts to obtain the time from the Ethernet
before proceeding. If the time cannot be obtained, the time-of-day displayed at the top of the
screen will be "Date and Time Unknown" indicating that you should invoke the SetTime.~
command manually.) As a side effect of obtaining the time from the Ethernet, Executive learns
the network number of the local Ethernet and displays it along with the Alto’s host address in
one of the header lines at the top of the screen. A network number of 0 means "I don’t know.".

Dump.~ DumpFileName SourceFileName ...

Writes DumpFile as a structured file (in Dump format) containing the names and data of allthe
SourceFiles. This is a convenient way of packaging up a collection of related files into asingle
composite file that can later be decomposed into its constituent parts. See Appendix A for
details of Dump format. The primary virtue of this particular format is that it is intended to be
compatible with the Dump format of the Data General Nova DOS operating system, and itis
c;oxlrrlpatible with the Tenex subsystem DUMP-LOAD.SAV and the Dump and Load commands
in Ftp.

Load.~ DumpFileName o i
This reads through a Dump format file and creates individual files corresponding to its
constituent parts. The /V switch causes Load to ask you about each constituent part, whetherto
copy it from the DumpFile to an individual file or not. Acceptable responses are Y, N, and C.
The latter indicates that you would like it to be copied, but into a file with a different name than
that indicated. You are then asked to supply the name you prefer.

Release.~
Tells you the release number and date of Executive. The release number is also shown in the
first Executive herald line, just after the slash following "Xerox Alto Executive.”

StandardRam.~
For any Trap except the Swat Trap (#774xx) the Alto microcode sends control of the emulator
task to the microcode Ram for interpretation. StandardRam initializes the microcode Ram to
send control of the emulator task back to the Rom Trap-handling microcode. If gou don’t
initialize the microcode Ram before executing a program which 1) uses Traps, and 2) doesn’t
initialize the Ram itself, then when the first Trap happens your machine will probably do
something bizarre, but it usually will not destroy disk data.



Cleared version of May 24, 1981
Executive User’s Guide June 26, 1980 55

Install.~ FileName [...Sys.Boot] . .
Causes a customized version of the operating system on the file named by FileName to be
written on the file Sys.Boot. For further details, please see the section on "Installing the
operating system" in the Alto Operating System manual.

BootKeys.~ FileName [...Sys.Boot] )

Did you know that by holding down various combinations of keys on the Alto keyboard while
pressing the boot button it is possible to get the Alto to bootstrag load itself from any file onthe
disk? (This bootstrg: will probably crash fairly quickly on any file except one in .Boot format.)
Bootstrapping the Operating system is simply a special case of this: all keyboard keys up refers
to disk address 0, which by convention is where a copy of the first data page of Sys.Boot is
stored. To find out what keys to push in order to bootstrap load other files, you use the
BootKeys command.

Resume.~ FileName [...Swatele:] .
The file named by FileName is patched so that its Swatee file pointer is the same as the current
Swatee file pointer, and then it is loaded in and run. For best results, this file should be Swatee,
or a copy of a Swatee. If you want to return to Swat with an old Swatee (for example, originally
you didn’t have the right .SYMS file) you can say .
Copy.~ Swatee « OldSwatee (no need to do this if Swatee is already correct)
Resume.~ Swat

Chat.~
Ftp.~
Scavenger.~
NetExec.~
These commands load the correspondin%prograrns from the Ethernet. If you have the Runfile
for one of these, it will be found instead by the normal Executive lookup strategy.

EtherBoot.~ octal number
Thisbcommand will boot any available Ethernet bootable file provided that you know its
number.

FileStat.~ FileName ...
This command will tell you several things about a file: its length in bytes, size in pages, serial
number and disk address, creation, read and write dates. If any FileName is of the form octal/s
(or octall,octal2/s) the file will be looked up by serial number rather than by name. This is
useful if Scavenger or some other program gives you a serial number without telling you the
nar{lg.i ]"(l‘hgdforms octal/v and octal/r tell you about the file that owns the specified virtual or
real disk address.

MesaBanks.~ bank specifiers )
This command sets the default memory configuration for Mesa programs. Uses and
gnphcauons of this command are described in the Mesa documentation and will not be covered
ere.

‘WriteDirectory.~
This command causes Executive to write the sorted version of your directory back onto SysDir
on your disk. Keeping the directory approximately sorted on the disk greatly reduces the time
required for Executive to sort it during initialization. Executive will periodically perform a
WriteDirectory in an attempt to keep the directory reasonably sorted. WriteDirectory also will
compact the directory collecting all the free space at the end and will report several statistics
about directory useage.

3. Subsystem Lookup




Cleared version of May 24, 1981
Executive User’s Guide June 26, 1980 56

Executive recognizes and knows how to invoke several kinds of subsystems. In order to select a subsystem
matching the name given in the command line Executive uses the following algorithm:

1. For each of the strings <nulD>, ".run", ".image", ".bcd", ".~", "*.run", "*.image", "*.~" and
"*bed" ask how many directory entries are matched bl{zappendmg the string to the typed name.
As soon as the answer is one the subsystem is found. Note that the 3uestion. is asked separately
for each extending string and that the questions are asked in the order specified. The order of
the search means that the order of subsystem types is: Bc(f)l_ program, Mesa image file, Mesabcd
file, internal command (the order of Mesa bed files and internal commands is reversed if the
name is not completely specified).

2. If the subsystem name ends in ".image" it is assumed to be a Mesa image file and is invoked
using the program RunMesa.run.

3. If the subsystem name ends in ".bcd"” it is assumed to be a runnable Mesa configuration.
"Mesa.image" is added to the front of the command and the lookup starts over.

4. Otherwise the subsystem is invoked directly (if internal) or via CallSubsys. (If the file doesnot
look like a valid .Run file you will be asked to confirm that you want to try to run it.)

4, User.Cm Entries

The Executive section of User.Cm may contain several commands to the Executive. Most of these are
command lines to be executed if some event is noted (see the Operating System documentation for a
description of events). In addition to standard events, any other event may be specified using thenotation
eventN where N is the event number (in decimal).

The command in the line labeled eventAboutToDie: will be executed after the twenty minute timeout
descn'bec(i1 above but before Dmt is loaded. If you use this feature you should include a éult.~ as the final
command.

The number of text lines in the user command window can be set from User.Cm using the selector
DisplayLines: followed by a number. You are advised not to set this number higher than its default value
(currently 16), but you might want to reduce the number in order to leave more memory space for your
directory if you have a large number of files (say, more than 500).

The line "Screen: Black” in User.Cm directs Executive to use the display in white-on-black rather thanthe
normal black-on-white mode.

5. Dump Format

A dump file is a sequence of blocks of eight-bit bytes. The first byte of each block is the block type. A
typical dumg file might look like:
<name block><date block><data block 1>...{data block n>

<name block><date block><data block 1>..<data block m>
<end block> :
Name Block - Type= #1377
A name block contains two bytes of file attributes and then the file name. The file attributes are used by

the Nova operating system; Alto Dump.~ sets these bytes to 0, and Alto Load.~ ignores them. The file
name is a sequence of ASCII characters terminated by a 0 byte.



Cleared version of May 24, 1981
Executive User’s Guide June 26, 1980 57

Data Block - Type= #376

A data block contains two bytes of byte count (high-order byte first), two bytes of checksum (high-order
byte first), and a sequence of data bytes, The byte count must be less than or equal to 256 forcompatibili?
with Novas, and the count does not include the checksum or byte count; only the data bytes are counted.
Novas do not handle data blocks with byte counts of 0 or 1 correctly. Alto Dump.~ will not produce such
blocks unless forced to dump a file whose length is less than 2 bytes. The checksum is a 16-bit addignoring
carry, over the data and byte count. If the block has an odd number of bytes, the last byte is NOT included
in the checksum computation.

Error Block - Type= #375

Novas generate error blocks. Alto Dump.~ does not. Alto Load.~ terminates if it encounters one.

End Block - Type= # 374

An end block has no contents and terminates a Load.~.

Date Block - Type= #373

Date blocks with six bytes of date are generated by Nova RDOS. Alto Dump.~ puts the four byte Alto
creation date into the first four bytes and zeros the remaining two. For compatibility with older Alto
implementations, date blocks are optional.

N.B. This appendix is included thanks to David Boggs.



Cleared version of May 24, 1981
Find November 6, 1979 : 58

Find - a file searching subsystem

The Find subsystem allows you to search text files at very high speed on an Alto. Examples of such files
might be an address/telephone list, a source program, or a library catalog. :

Find basically looks for all the occurrences of a pattern in a file, just like doing repeated Jump commands
in Bravo. A pattern is just a character sequence, except for the following:
g in a pattern means "any character at all”, e.g. CAP and CUP count as occurrences of the pattern

~ in a pattern means "allow one character in the occurrence to disagree with the correspondin
character in the pattern”. For example, LAP, CUP, and CAT all count as occurrences of the pattern ~C
(or CAP~ or C~AP). Two ~s mean "allow two disagreements”, and so on. Note that "disagreement”
only means substituting one character for another: it does not include insertions (e.g. CLAP for CAP),
deletions (CP for CAP), or transpositions (CPA for CAP).

If you really want to have a gattem containing # or ~, you have to type a’ before it, e.g. to search for
the character sequence ATOM #, you have to type ATOM “#. »

Unless you use the /c (Case) switch described below, upper and lower case letters are considered
identical, e.g. Cap, cap, and CAP all count as occurrences of CAP or of cap.

Unless you use the /s (Space) switch described below, blanks (spaces) in the file are completely
ignored, e.g. C A P counts as an occurrence of CAP; blanks in the pattern are also ignored.

There are two ways to invoke Find. The first way just searches a file for one pattern:
_ >Find filename pattern ) ) ) )

(Since the Executive does something special about @, #, %, *, *, and ; in command lines, you must
precede any of these characters in your pattern by a *. This is in addition to any ’s you may need as
described in the preceding paragraph.) The second way only specifies the file:

>Find filename ) L )
and Find then prompts you repeatedly for patterns. To leave Find when using it this way, use shift-Swator
type an_empty pattern (just type <return> when Find says Pattern:). You can also use Find to search
several files together, by invoking it with -

>Find/m filenamel .., filenamen
which also prompts you for patterns.

In any of the above command lines, you can also use the /c, /d, and/or /s switches described above, i.e.
any of the forms

>Find/s filename pattern

>Find/s filename

>Find/ms filenamel ... filenamen
The switches may be in any order or combination, e.g.

>Find/csm filenamel ... filenamen : )
tells Find to search filenamel ... filenamen treating upper and lower case as different and not ignoring
spaces. This also applies to the switches described below. :

After completing the search, Find displays at the top of the screen a summary of the form:
79 occurrences, 1200 ms, 150 pages ) .
%iving the total number of occurrences, the time in milliseconds, and the number of disk pages in the file.
n the remainder of the screen, Find displays the line containing each occurrence of a pattern, with the
occurrence indicated in boldface. To the left of the line, Find displays the character position in the file
where the occurrence was found. After each screenful, Find waits for you to type <space> if you want
more, or <del> if you don’t. :

In addition to displaying matches on the screen, Find always writes the lines containing matches on afile
called Find.Matches. Normally, Find only writes those matches which it displayed, so if ﬁm stopped the
display of matches with <deD>, only those matches you actually saw will a:Epear on the file. However, ifyou
use the /a iAll) switch, Find will write all matches on the file, not just the ones you saw displayed; ifyou
use the /w (Write only} switch, Find will write all matches on the file and not display them at all.



Cleared version of May 24, 1981
Find November 6, 1979 59

What Find finds for you is all the "items" containing occurrences of the pattern. Normally an "item" is
just a single line of text, delimited by <cr> on both ends. However, Find also knows about two otherkinds
of items: Bravo paragra;l):hs, and groups of lines separated from each other by a blank line. If you usethe
/p (Paragraph) switch, Find will show (display and write on Find.Matches) the entire Bravo paragraph
containing the occurrence. If you use the (%lapk line) switch, Find will show everything surrounding
the occurrence up to the next preceding and following blank line.

So that you can examine Find.Matches with Bravo, Find normally removes any character sequences that
Bravo might confuse with its own formatting information. There are two exceptions to this. If you ask for
entire paragraphs (/p switch), Find preserves the formatting. If for some reason you want the characters
around the match copied re%zlirdless of their possible interpretation by Bravo (e.g. if you are searching a
binary file or some unusual kind of text file), you can use the /v (Verbatim) switch, which instructs Find
not to remove sequences that look like Bravo formatting; if you do this, you will probably not be able to
read thedﬁle inté) Bravo with the ordinary Get command, but should use the tZ (unformatted Get)
command instead.

Find normalli/ displays, but does not write on Find.Matches, the position of each occurrence within the
file, in octal. If you want this number written Find.Matches as well, use the /o (Octal) switch.

Find produces a large number of error messages. The messages

Pattern too long

Can’t preallocate

RAM full o
all mean the same thing, namely that your pattern is too long or too complicated (unfortunately, it istoo
complicated to ex;l)\lllain exactly what "too complicated” means). The message

an’t load RA _ v '

means that your Alto has old or non-standard ROMs and Find can’t do what it needs to do: you should
contact a hardware maintainer. (This should never happen on Alto II’s.) -

Find has many obvious limitations. They can all be removed if people complain about them. The
following features could also be added upon request:

Boolean combinations of matches, maybe.

Ability to work with Trident disks.

Possibly other features requested by users. 5 .
Programmers should note that the file searching capability is also available as a library package (called
FindPkg), so programs can use it as well as people.

Alphabetic summary of switches:
/a - write All matches on file
/b -item = text between Blank lines
/c - distinguish between upper and lower Case
/m - M_ultlgle files )
/o - write Octal position on Find.Matches
/p - item = Bravo Paragraph
/s - consider Spaces significant ) )
/v - write Verbatim on Find.Matches (don’t strip possible formatting)
/w - only Write on Find.Matches, don't display

History of changes:
Release of October 30, 1979

Added /o (write octal position), /v (verbatim output of matches, i.e. don’t flush Bravo formatting), /a
(write all matches to file), and /w (only write matches, don’t display). Fixed bugs which caused display
garbage and occasional crashes when lines were very long, and infinite loop when searching files
containing <del>s. Changed default to remove Bravo formatting from matches file unless /p or /v switch
set.

Release of January 16, 1978



Cleared version of May 24, 1981
Find : November 6, 1979 60

Added /c (distinguish upper and lower case), /p (item = paragraph), and /b (item = between blank
lines) switches.



Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 61

Alto Pup File Transfer Program

FTP is a Pup-based File Transfer Program for moving files to and from an Alto file system. The program
comes in 3 parts:

1) An FTP Server, which listens for file transfer requests from other hosts,

2) An FTP User, which initiates file transfers under control of either the keyboard or the
command line, and

3) A User Telnet for logging into a remote host using the Pup Telnet protocol.

1. Concepts and Terminology

Tranferring a file from one machine (or "host™) to another over a network requires the active cooperation
of programs on both machines. In a typical scenario for file transfer, a human user (or a program acting on
his behalf) invokes a program called an "FTP User" and directs it to establish contact with an "
Server” program on another machine. Once contact has been established, the FTP User initiates requests
and supplies parameters for the actual transfer of files, which the User and Server proceed to carry out
cooperatively. The FTP User and FTP Server roles differ in that the FTP User interacts with the human
user (usually through some sort of keyboard interpreter) and takes the initiative in user/serverinteractions,
whereas the FTP Server plays a comparatively passive role.

The question of which machine is the FTP User and which is the FTP Server is completely independentof

the direction of file transfer. The two basic file transfer operations are called "Retrieve" and "Store"; the

%etrieves operation causes a file to move from Server to User, whereas Store causes a file to move from
ser to Server.

The Alto FTP subsystem contains both an FIP User and an FTP Server, runninl_gras independent
grocesses. Therefore, to transfer files between a pair of Altos, one should start up the FTP subsystem on

oth machines, then issue commands to the User process on one machine directing it to establish
contact with the FTP Server process in the other machine. Subsequent file transfers are controlled entirely
from the FTP User end, with no human intervention required at the Server machine.

Transferring files to or from a Maxc system or an IF S involves establishing contact with FTP Server
processes that run all the time on those machines. Hence, one may simply invoke the Alto FTP subsystem
and direct its FTP User process to connect to the machine.

In the descriptions that follow, the terms "local” and "remote” are relative to the machine on which the
FTP User program is active. That is, we speak of typing commands to our "local” FTP User program and
directing it to establish contact with an Server on some "remote” machine. A Retrieve commandthen
copies a file from the "remote" file system to the "local” file system, whereas a Store command copies afile
from the "local” file system to the "remote" file system.

Furthermore, we refer to "local” and "remote" filenames. These must conform to the conventions usedby
the "local” and "remote" host computers, which may be dissimilar (for example, Alto versus Maxc). The
Alto FTP knows nothing about Maxc filename conventions or vice versa.

The Alto FTP subsystem also includes a third process, called a "User Telnet”, which simulates a terminal
in a manner exactly analogous to the Chat subsystem (though lacking some of its finer features). By this
means, you may log in to a file sytem machine to perform operations not directly available via the basicfile
transfer mechanisms. If you log into Maxc, it is even possible to run "PuFl%!I P", the Maxc FTP User
program, and direct it to establish contact with the FTP Server in your own Alto. You should probablynot



Cleared version of May 24, 1981
“Alto Pup FTP October 26, 1980 62

try this unless you really understand what you are doing, however, since the terms "local” and "remote”
are relative to Maxc rather than to your Alto (since the User program is running on Maxc in thiscase),
which can be confusing.

2. Calling the FTP Subsystem

A number of options are available when running FTP. The program decides which parts of itself toenable
and where user commands will come from by inspecting the command line. The general form of the
command line to invoke FTP looks like:

FTP[/<Global-switches>] [{Host-name> [{Command-list>] ]

The square brackets denote portions of the command line that are optional and may be omitted.

Global switches, explained below, select some global program options such as using the Trident disk
instead of the Diablo. The first token after the <{global-switches>, if present, is assumed to be a<host-
name> (a discussion of which appears later in the description of the "Open" command). The User FTP
will attempt to connect to the Server on that host. After connecting to the server, if a<command-lis>
is present, an interpreter is started which feeds these commands to the User FTP. When the commandlist
is exhausted, FTP returns to the Alto Executive. If no command list is present, an interactive keyboard
command interpreter is started.

Each global switch has a default value which is used if the switch is not explicitly set. To set a switch to
;{fﬂse’ prﬁceed it with a ‘minus’ sign (thus FTP/-S means 'no Server’), to set a switch to "true’ justmention
e switch.

Switch Default Function

/8 true [Server] starts the FTP Server. The Server is not started if the User is enabled
and is being controlled from the command line.

/U true [User] starts the FTP User. As explained above, the interactive command
interpreter_or the command line interpreter will be started depending on the
contents of the command line.

/C true LChat] starts the Telnet. The Telnet is not started if the User is enabled and is
eing controlled from the command line, or if the system disk is a Trident.

/T false [Trident] sets the system disk to be a Trident drive. The default is 0, but can be
changed by following the /T with a unit number. The unit number is octal; the
high byte 1s the logical filesystem number and the low byte is the physical drive
number. User and Server commands apply to files on this disk but command
line input and log output use the Diablo drive.

/L * [Lo% causes all output to the User FTP window to also go to the file "FTP.log"
on DPQ, overwritin§ the previous contents. Log is true if the User is enabled and
is being controlled from the command line.

/A false [AppendLog] enables the log but appends to FTP.log rather than overwriting it.

/E true EError] causes FTP to ask you if you want to_continue when a non-fatal error

appens during execution of a command line. FTP/-E will cause FTP torecover

automatically from non fatal errors without consulting you.

/R true [Ram] allows FTP to use some microcode which speeds things up slightly, If
your Alto has no ram, this switch is ignored.



Cleared version of May 24, 1981
Alto Pup FTP QOctober 26, 1980 63

/D false [Debug] starts FTP in debug mode.

The rest of the global switches are explained below under ’Server Options’.

2.1. FTP User Log

FTP can keep a log (typescript) file for the FTP User window. The file name is 'FTP.log’. It isalways
e{laé)lled vyh%n FTP 1s being controlled from the command line; otherwise it is controlled by the /L and/A
global switches. »

2.2. Using a Trident Disk

Starting FTP with the /T global switch causes FTP to store and retreive files from a Trident disk. By
default, FTP will open TPO0; other disks may be opened by appending their unit numbers to the /Tswitch.
Thus "FTP/T1" will open TP, and "FTP/T400" will open logical filesystem 1 on physical unit 0.

Accessing a file on a Trident requires more code and more free storage than accessing a file on the Diablo.
Since is very short on space, only a User or a Server FTP is started when the /T switch is set. The
default is to start a User FTP, but specifying no user (FTP/T-U) or specifying a server (FTP/TS) willstart
a Server FTP instead.

2.3. Server Options

Server options are controlled by switches on the subsystem name and subcommands of the SERVER
keyboard command. There are currently four options:

switch Default Function

none If no server option is specified, retrieve requests (disk to net) are allowed. Store
requests (net to disk) are allowed unless the store would overwrite an existing
file. Delete and Rename are not permitted.

/P false Erotected] Retrieve requests are allowed. No stores are allowed. Delete and
ename are not permitted. :

/0 false Overwrite] Retrieve requests are allowed. Store requests can overwrite files.
- elete and rename are permitted. .

/K false [I.(ill]l FTP will return to the Alto Exec when the server connection is closed. A
simple form of remote job entry can be performed by storing into Rem.cm.

3. The FTP Display

The top inch or so of the display contains a title line and an error window. The title line displays the
release date of that version of , the current date and time, the machine’s internetwork address, andthe
number of free pages on the disk. The error window displays certain error messages if they arrive fromthe
network (errors are discussed in more detail below). A window is created below the title line for each part
of FTP which is enabled during a session (server, user, and telnet). :

If the FTP Server is enabled, it oEens a window and identifies itself. If a User FTP subsequently connects
to this Server, the User’s network address will be displayed. The Server will log the commands it carries
out on behalf of the remote User in this window. The Server is not enabled when FTP is beingcontrolled
from the command line.



Cleared version of May 24, 1981
AltoPup FTP October 26, 1980 64

The FTP User opens the next window down and identifies itself. The command herald is an asterisk.

The User Telnet opens the bottommost window, identifies itself, and waits for a host name to be entered.
The Telnet is not enabled when FTP is being controlled from the command line.

4. Keyboard Command Syntax

FTP’s interactive command interpreter presents a user interface very similar to that of the Alto Executive.
Its command structure is also very similar to that of the Maxc Pup FTP program (PupFTP), and the Maxc
ArpaNet FTP program (FTP). The standard editing characters, command recognition features, and help
facility (via "?'8 are available. When FTP is waiting for keyboard input, a blinking cursor appears at the
next character position.

4.1. Directing Keyboard input to the User and Telnet Windows

The bottom two unmarked keys control which window gets characters from the keyboard. Hitting the
unmarked key to the right of "right-shift’ (also known as the ’Swat key’) directs keyboard in%ut to the
Telnet window. Hitting the unmarked key to the right of the 'return’ key (also known as the "Chatkey’)
directs keyboard input to the FTP User window. The window which currently owns the keyboard will
blink a cursor at the next character position if it is waiting for type-in.

4.2. Keyboard Commands

OPEN <host name> ) .
Opens a connection to the FTP Server in the sgeciﬁed host. FTP permits only one user connection
at a time. In most cases the word OPEN may be omitted: i.e., a well formed <host name> is alegal
command and implies a request to OPEN a connection. FTP will try for one minute to connectto
the specified host, If you made a mistake typing the host name and wish to abort the connection
attempt, hit the middle unmarked key (to the right of <return>).

Ordinarily, host name should be the name of the machine you wish to connect to (e.g., "Maxc").
Most Altos have names which are registered in Name Lookup Servers. So long as a name lookup
server is available, FTP is able to obtain the information necessary to translate a known host name
to an inter-network address. :

If the host name.'of the server machine is not known or if no name lookup servers are available, you
may specify an inter-network address in place of the host name. The general form of an inter-
network address is:

<network> # <host> # {socket>

where each of the three fields is an octal number. The <network> number designates the network to
which the Server host is connected (which may be different from the one to which the User hostis
connected); this (along with the "#" that follows it} may be omitted if the Server and User are
known to be connected to the same network. The <host> number designates the Server host’s
- address on that network. The <{socket> number designates the actual Server process on that host;
ordinarily it should be omitted, since the default is the regular FTP server socket. Hence, toconnect

to the server running in Alto host number 123 on the directly-connected Ethernet, you should
say "OPEN 123 #" (the trailing " # " is required).
CLOSE

Closes the currently open User FTP connection. CLOSE cancels any defaults set by CONNECT,
DIRECTORY, DEVICE, BYTE, TYPE, or EOLC commands.



, Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 65

LOGIN <user name) <password> o )
Su]pplies any login parameters required by the remote server before it will permit file transfers. FTP
will use the user name and password in the Operating System, if they are there. Logging into FTP
will set tlcllt)z user name and password in the OS (in the same manner as the Alto Executive’s "Login"
command). :

When you issue the "Login" command, FTP will first display the existing user name known to the
OS. If you now type a space, FTP will prompt you for a password, whereas if you want to providea
different user name, you should first type that name {(which will replace the previous one) followed
by a space. The command may be terminated by carriage return after entering the user name to
omit entering the password.

The parameters are not immediately checked for legality, but rather are sent to the server for
checking when the next file transfer command is issued. If a command is refused by the server
because the name or password is incorrect, FTP will prompt you as if you had issued the LOGIN
command and then retry the transfer request. Hitting delete in this context will abort the command.

A user name and password must be supplied when transferring files to and from a Maxc system or
an IFS. The Alto Server requires a user-password to be supplied if the server machine’s diskis
password-protected and if the password in the server machine’s OS does not match the password on
the disk. us if the OS was booted and FTP invoked because a Request-for-Connection was
received (which bypasses password checking), FTP will refuse access to files unless a password is
supplied. However if the OS was booted normally, FTP assumes that the disk owner (who knew the
password) will control access by using the server option switches. The user-name is ignored.

CONNECT <directory name> <password> . )
Requests the server to "connect” you to the specified directory on the remote system, i.e., to
give you owner-like access to it. The password may be omitted %y typing carriage return after the
directory name. As with LOGIN, these parameters are not verified until the next transfercommand
is issued. CONNECT cancels the effect of any previous DIRECTORY command. At present, the
"Connect” command is meaningful only when transferring files to or from a Maxc system or an
IFS; the Alto FTP server currently ignores connect requests. If the "multiple directory™ feature of
the Alto Operating System ever comes into widespread use, this may be changed.

DIRECTORY <directory name> i )

Causes <directory name> to be used as the default remote directory in data transfer commands
(essentially it causes <directory-name> to be attached to all remote filenames that do not explicitly
mention a directory_l). Specifying a default directory in no way modifies your access privileges,
whereas CONNECTing gives you ’owner access’ (and usually requires a password). Explicitly
mentioning a directory in a file name overrides the default directory, which overrides the connected
directory, which overrides the login directory. Punctuation separating <directory name> from other
parts of a remote filename should not be included. For example you might type "Directory Alto"
not "Directory <Alto>".

RETRIEVE <remote filename> :
Initiates transfer of the specified remote file to the local host. The syntax of <remote filename> must
conform to the remote host’s file system name conventions. Before transferring a file, FTP will
suggest a local-filename (generally the same as the remote-filename without directory or version),
and will tell you whether or not the file already exists on your local disk. At this point you may
make one of three choices:

1.  Type Carriage Return to cause the data to be transferred to the local filename.

2. Type Delete to indicate that the file is not to be transferred.

3. Type any desired local filename followed by Return. The previous local filename will
disappear, the new filename will replace it, and FTP will tell you whether a file exists with that

nlalln;e. This filename must conform to local conventions. You now have the same three
choices.



Cleared version of May 24, 1981
" Alto Pup FTP October 26, 1980 66

If the remote-filename designates multiple files (the remote host permits "*" or some equivalentin
file names), each file will be transferred separately and FTP will ask you to make one of the above
three choies for each file. At present, only Maxc and IFS support this capability. That is, you may
supply "*"s in the remote-filename when retrieving files from a Maxc or an IFS, but not when
retrieving files from another Alto. .

STORE <local filename> L

Initiates transfer of the specified local file to the remote host. Alto file name conyentions apply to
the <local filename>; "*'* expansion is not supriorted. FTP will sug%st a remote-filename to which
you should respond in a manner similar to that described under RETRIEVE except that if you
supply a different filename, it must conform to the remote file system’s conventions. The default
remote filename is one with the same name and extension as the local file, the remote server
defaults other fields as necessary. If the remote host is a Maxc system or an IFS, then the directory
is that most recently supplied in LOGIN or CONNECT or DIRECTORY commands and the
version is the next higher. ‘

DUMP <remote filename> .
Bundles together a group of files from the local file system into a ’dump-format’ file (see the Alto
Executive documentation for the dump-file format and more on dumfp-ﬁles in general) and stores
the result as <remote filename>. will ask you for the names of local files to include in the
dump-file. Terminate the dump by typing just <return> when FTP asks for another filename. By
convention, files in dump-format have extensiog .dm’.

LOAD <remote filename> .
Performs the inverse operation of DUMP, unbundling a dump-format file from the remote file
system and storing the constituent files in the local file system. For each file in the dump-file, FTP
will suggest a local file name and tell you whether a file by that name exists on your disk. You
should respond in the manner described under RETRIEVE. .

LIST <remote file designator> ‘

Lists all files in the remote file system which correspond to <remote file designator>. The remote
file designator must conform to file naming conventions on the remote host, and may designate
multiple files if "*" expansion or some equivalent is supported there. If the <remote file designator>
is terminated by <comma carriage return> rather than just a <carriage-return>, FTP prints aprompt
of "**" at the left margin and prepares to accept one or more subcommands. These subcommands
request printout of additional information about each file. To terminate subcommand input, typea
{return> in response to the subcommand prompt. The subcommands are:

Type Print file type and byte size.

Length Print length of file in bytes.

Creation Print date of creation.

Write Print date of last write.

Read Print date of last read.

Times Print times as well as dates.

Author Print author (creator) of file.

Verbose Same as Type+ Write+ Read 4 Author.
Everything Print all information about the file.

This information is only as reliable as the Server that provided it, and not all Servers provide all of
these file properties. Altos derive much of this information from hints, so do not be alarmed if itis
sometimes wrong.

DELETE <remote filename>
Deletes <remote filename> from the remote filesystem. The syntax of the remote filename must
conform to the remote host’s file system name conventions. After determining that the remote file
exists, FTP asks you to confirm your intention to delete it. If the remote filename designates
multiple files %the remote host permits "*" or some equivalent in file names), FTP asks you to
confirm the deletion of each file. '

RENAME <old filename> <new filename>



Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 67

Renames <old filename> in the remote filesystem to be <new filename>. The syntax of the two
filenames must conform to the remote host’s file system name conventions, and each filename must
specify exactly one file.

QUIT
Returns control to the Alto Executive, closing all open connections.

TYPE <data type>
Forces the data to be interpreted according to the specified <data type>, which may be TEXT or
BINARY. Initially the type is UNSPECIFIED, meaning that the source process should, if possible,
- decide on the appropriate type based on local information.

BYTE-SIZE <decimal number)>
Applicable only to files of type Binary, BYTE-SIZE specifies the logical byte size of the data tobe
transferred. The default is 8.

EOL <convention>
Applicable only to files of type Text, EOL specifies the End-of-Line Convention to be used for
ga%lsfler_rin Rtext files. The values for <convention> are CR, CRLF, and TRANSPARENT. The
efault is CR.

DEVICE <string> | .
Causes <string> to be used as the default device in data transfer commands (essentially it causes
<device> to be attached to all remote filenames that do not explicitly mention one). The
punctuation separating <device> from the other components of a remote filename should not be
included. For example you might specify "Device DSK" to Tenex, not "Device DSK:" :

VERSION <string>
Causes <string> to be used as the default version in data transfer commands (essentially it causesthe
version string to be attached to all remote filenames that do not explicitly mention one). The
punctuation segarating the version information from other components of a remote filename should
not be included. For example you might specify "Version 123", to IFS, not "Version 123"

USER
Allows you to toggle switches which control operation of the FTP User. There is currently only
one: DEBUG, which controls display of protocol interactions. Warning: this printout (and the
corresponding one in the SERVER command below) sometimes includes passwords.

SERVER
Allows you to toggle switches which control operation of the FTP Server. The switches are
%IEOTSC;%ED, OVERWRITE, KILL, and DEBUG, corresponding to the global switches /P, /0,
, an .

TELNET

Allows you to toggle switches which control operation of the Telnet. There is currently only one:
CLOSE, which closes the Telnet connection if one is open, and clears the Telnet window.

5. Command Line Syntax

The User FTP can also be controlled from the command line. As explained above, the first token afterthe
subsystem name and server switches must be a legal host name; if the User FTP can’t connect to the FTP
Server on that host it will abort and return control to the Alto Executive. If a command list follows the
host name, the command line interpreter is invoked instead of the interactive keyboard interpreter. This
permits the full capabilities of the Alto Executive (filename recognition, "*" expansion, command files,
etc.) to be used in constructing commands for FTP.

Each command is of the form:



Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 68

<Keyword>/<SwitchList> <arg> ... <arg>

To get a special character (any one of "*#’;") past the Alto Executive, it must be preceded by a single
quote. To geta "/" into an FTP argument, the "/" must be proceeded by two single quotes (the second
one tells to treat the "/" as an ordinary character in the argument, and the first one gets the second
one past the Alto Executive).

Unambiguous abbreviations of command keywords (which in most cases amount to the first letter) are
legal. However, when constructing command files, ¥0u should always spell commands in full, since the
uniqueness of abbreviations in the present version of is not guaranteed in future versions.

A command is distinguished from arguments to the previous command by having a switch on it, soevery

command must have at least one switch. The switch "/C" has no special meaning and should be used on
commands where no other switches are needed or desired.

5.1. Command Line Errors

Command line errors fall into three groups: syntax errors, file errors, and connection errors. FTP can
recover from some of these, though it leaves the decision about whether to try up to you.

Syntax errors such as unrecognized commands or the wrong number of arguments to a command cause
”’s command interpreter to get out of sync with the command file. FTP can recover from syntax errors
by simply ignoring text until it encounters another command (i.e. another token with a switch).

File errors such as trying to retrieve a file which does not exist are relatively harmless. FTP recovers from
file errors by skipping the offending file.

Connection errors such as executing a store command when there is no open connection could cause FTP
to crash. FTP can’t recover from connection errors.

When FTP detects an error, it displays an error message in the User window, If the error is fatal, FTP
waits for you to type any character and then aborts, causing the Alto Executive to flush the rest of the
command line, including any commands to invoke other subsytems after FTP. If FTP can recover from
the error, it asks fylou to confirm whether you wish to continue. If %_r%xjconf'um, it &)lun es on, otherwiseit
aborts. The confirmation request can be bypassed by invoking with the global error switch false
(FTP/-E ...) in which case it will plunge on after all non fatal errors. If you aren’t around when an error
haf)pens and you have told FTP to get confirmation before continuing after an error, the remote Server
will probably time out and close the connection. If you then return and tell FTP to continue, it will geta
fatal connection error and abort.

5'.2. Command Line Switches

Most commands take local switches. These switches have default values which are used if the switch isnot
mentioned. Proceeding a switch with a minus sign inverts its sense: Retrieve/-O means retrieve butdon’t
overwrite. While the interpretation of a switch sometimes depends on the command, the general idea is:

Switch Default Function

/C - [Command] null switch which tells the command line parser that this token isa
command.
/8 false [Selective] the remote and local file names differ. The LOAD command uses this
switch slightly differe:ntly. :
/D update [Dates] show file creation dates.

/N false [Verify] request confirmation from the keyboard.



Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 69

/0 true [Overwrite] allow overwriting existing files.

Transfers may be conditioned upon comparison of the creation dates of corresponding local and remote
files. The comEarison is <source file> <operator> <{destination file>. For STORE, the source file is the
local file; for RETRIEVE, the source file is the remote file. The operators are:

Switch Function

/# otEqual] transfer the file if the creation dates are not equal. This must be quoted (/> #) to

eep it out of the clutches of the Alto Exec.
/= [Equal] transfer the file if the creation dates are equal.
o4 [Greater] transfer the file if the source’s creation date is greater than the destination’s.
/K [Less] transfer the file if the source’s creation date is less than the destination’s.
/U [Update] same as /> (for backward compatibility).
/A [Al]] transfer the file even if no corresponding file exists in the other file system.

If more than one switch is present, they are ORed together, so, for example, "/>=" means transfer the file
if the source’s creation date is greater than or equal to the destination’s. .

The sense of a switch is inverted if it is preceeded by a minus sign. Thus:
/-= isequivalent to / #,
/-# is equivalent to /=,
/-<is equivalent to /> =, and
/->is equivalent to /<=.

Note that a minus sign inverts the sense of the immediately following character, not the entire operator
expression.

5.3. Command Line Commands

OPEN/C<host name> '
See description in "Keyboard commands”. The first token after the subsystem name and global
switches is assumed to be a host name and no OPEN verb is required (in fact if you supply it, FTP
will try to make a connection the host named OPEN which is almost certainly not what you want).

CLOSE/C '
Closes the currently open User FTP connection.

LOGIN/C <user name> <password>
See description in "“Keyboard commands"”. The <password> may be omitted.

LOGIN/Q <user name>
Causes FIP to (ivrompt you for the password. This form of LOGIN should be used in command
files since including passwords in command files is a bad practice.

CONNECT/C <directory name> <password>
See description in "Keyboard commands”. The <password> may be omitted.

CONNECT/Q <directory name> ) )
Causes to grom t you for the password needed to connect to the specified <directory name>.
This form of CONNECT should be used in command files since including passwords in command
files is a bad practice.

DIRECTORY/C <default directory>




Cleared version of May 24, 1981
~ Alto Pup FTP October 26, 1980 70

See discription in "Keyboard commands”.

RETRIEVE/C <remote filename> ... <remote filename>
Retrieves each <remote filename>, constructing a local file name from the actual remote file nameas
received from the Server. FTP will overwrite an existing file unless the /N (No overwrite) switch is
appended to the RETRIEVE command keyword.

If the remote host allows "*" (or some equivalent) in a filename, a single remote filename may result
in the retrieval of several files. (Note that you must quote the "*" to get it past the Alto Executive’s
command scanner.) As mentioned previously, this capability is implemented only by Maxc and IFS
FTP Servers at present.

RETRIEVE/S <remote filename> <local filename> .
Retrieves <remote filename> and names it <local filename> in the local file system. This version of
RETRIEVE must have exactly two arguments. FTP will overwrite an existing file unless the /-O
(g\lo Overwrite) switch is also appended to the RETRIEVE command keyword. The remote
lename should not cause the server to send multiple files.

RETRIEVE/> <remote filename> ... <remote filename>
Retrieves <remote filename> if its creation date is greater than that of the local file. If the
corresponding local file doesn’t exist, the remote file is not retrieved. This option can be combined
with RETRIEVE/S to rename the file as it is transferred.

RETRIEVE/>A <remote filename> ... <remote filename>
Same as RETRIEVE/> except if the corresponding local file doesn’t exist, the remote file is
retrieved anyway. T

RETRIEVE/V
Requests confirmation from the keyboard before writing a local file. This option is useful in
tf:_l(lambination with the Update option since creation date is not a fool-proof criterion for updating a
e. ;

RETRIEVE/-O Retrieves a file only if the corresponding local file doesn’t exist.

STORE/C <local filename) ... <local filename> )
Stores each <local filename> on the remote host, constructing a remote filename from the name
body of the local filename. A local filename may contain "*", since it will be expanded by the Alto
-Executive into the actual list of filenames before the FTP subsystem is invoked.

STOREY/S <local filename> <remote filename>
Stores <local filename> on the remote host as <remote filename>. The remote filename must
conform to the file name conventions of the remote host. This version of store must have exactly
two arguments.

STORE/> <local filename) ...<local filename>
Stores each <local filename> on the remote host if the local file’s creation date is greater than the
remote file’s. If the corresponding remote file doesn’t exist, the local file is not stored. This option
can be combined with STORE/S to rename the file as it is transferred.

STORE/>A <local filename> ... <local filename> ’
Same as STORE/> except if the corresponding remote file doesn’t exist, the local file is stored
anyway.

STORE/V :
Requests confirmation from the keyboard before writing a remote file. This option is useful in
%?mbmaﬁon with the Update option since creation date is not a fool-proof criterion for updatinga
ile.

DUMP/C <remote filename) <local filename>...<local filename>
See the description in "keyboard Commands".



Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 ‘ 71

LOAD/C <remote filename> ... {remote filename> o
See the description in "keyboard Commands". If the /V switch is appended to the LOAD
command keyword, FTP will request confimation before writing each file. Type <return> to write
the file, <deD> to skip it. FTP will overwrite an existing file unless the /N (No overwrite) switch is
appended to the LOAD command keyword.

LOADY/> <remote filename> ... <remote filename>
Loads files from <remote filename> if their creation dates are greater than the corresFonding
i:regtign dates of local files. If the corresponding local file doesn’t exist, the remote file is not
oaded.

LOAD/>A <remote filename) ... <remote filename>
Same as LOAD/> except if the corresponding local file doesn’t exist, the remote file is loaded
anyway ‘

LOADV/S <remote filename> <filename 1> ... <filename n>
Loads files from <remote filename> if their names are in the list <filename 1> ... <filename n>. Files
within the dump file that are not in the list are skipped. This option can be combined with the /U,
/V, and /N options.

LIST/C <remote filename> ... <remote filename>
See the description in "Keyboard Commands”. The subcommands are specified by local switches:

/T Type,

/L Length in bytes,

/D Creation date (see below),
/W Write date,

/R Read date,

/A Author (creator),

/V Verbose = /TWRA, and
/E Everything = /TLDWRA.

Dates always include times. /C should have been the creation date but that collides with the useof
/C to mean no local options (sigh).

DELETE/C <remote filename>
See the description in "Keyboard Commands”. If the /V switch is apﬁ)ended to the DELETE
command keyword, FTP will request confirmation before deleting each file. Type <return> to
delete the file, and <deD> (oops!) if you don’t want to delete it. -

COMPARE/C <remote filename>...<remote filename>

: Com{)ares the contents of <remote filename> with the file by the same name in the local file system.
It tells you how long the files are if they are identical or the byte position of the first mismatch if
they are not. (No corresponding command is available in the Keyboard command interpreter for
implementation reasons: there is not enough room for it in Alto memory.)

COMPARE/S <remote filename> <local filename>
Compares <remote filename> with <local filename>. The remote filename must conform to the file
name conventions of the remote host. This version of COMPARE must have exactly two
arguments.

COMMENTY/S <arbitrary text>
The <arbitrary text> is ignored until a token with an imbedded "/" is encountered. This token is
taken as the next command. The quote character is a single quote. Thus "foo’/bar” does not
terminate a comment.

RENAME/C<old filename> {new filename>
See the description in "Keyboard Commands".

TYPE/C <data type>



Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 72

See the description in "Keyboard Commands".

BYTE-SIZE/C <decimal number>
See the description in "Keyboard Commands”.

EOL/C <convention>
See the description in "Keyboard Commands".

DEVICE/C <string> : :
See the description in "Keyboard Commands”.

VERSION/C <string>
See the description in "Keyboard Commands™.

DEBUG/C

See the description of the DEBUG subcommand under the USER command in "Keyboard
Commands".

5.4. CLI Examples

To transfer files FTP.run and FTP.syms from the Alto called "Michelson" to the Alto called "Morley", one
might start up FTP on Michelson (to act as an FTP Server), then walk over to Morley and type: ‘

FTP Michelson Retrieve/C FTP.run FTP.syms

Alternatively, one could start an FTP server on Morley (invoking it by "FITP/O" to permit files to be
overwritten on Morley’s disk), then issue the following command to Michelson:

FTP Morley Store/C FTP.run FTP.syms

The latter ap?roach is recommended for transferring large groups of files such as "*.run" (since expansion
of the "*" will be performed by the Alto Executive). ,

To retrieve User.cm from the FTP server running on Alto serial number 123 (name unknown, but it ison
the local Ethernet):

FTP 123’ # Retrieve/C User.cm

Note that the " # " must be preceded by a single quote when included in a command line, since otherwise
the Alto Executive does funny things with it. (Quotes are not necessary when typing to FTP’s interactive
keyboard interpreter).

To start FTP, have the FTP User connect to Maxc, and then accept further commands from the keyboard:
FTP Maxc

To retrieve <System>Pup-Network.txt from Maxc and store it on the Alto as
Pu%Directory.bravo, and store PupRTP.bcpl, Puplb.bepl, and PupBSPStreams.bcpl on
<DRB> with their names unchanged:

FTP Maxc Connect/C drb mypassword Retrieve/S <System>Pup-Network.txt
PupDirectory.bravo Store/C PupRTP.bcpl Puplb.bepl PupBSPStreams.bepl

To retrieve the latest copy of all RUN files from the <alto> directory, overwriting copies on
FH}?, Sklto disk (The single quote is necessary to prevent the Alto Executive from expanding the

FTP Maxc Retrieve/C <alto>’*.run



Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 73

To update the Alto disk with new copies of all <alto)> files whose names are contained in file
UpdateFiles.cm, requesting confirmation before each retrieval:

FTP Maxc Directory/C Alto Ret/>V @UpdateFiles.cm@

To store all files with extension .BCPL from the local Alto disk to your login directory on
Maxc (the Alto Executive will expand "*.bcpl” before invoking FTP):

FTP Maxc Store/C *.bepl
To retrieve <System>Host-name/descriptor-file.txt;43 (two single quotes are necessary to get
the "/" past the Alto Executive and the command scanner, and one quote is necessary to

get the ";" past the Alto Executive):

FTP Maxc Ret/C <System>Host-name”/descriptor-file.txt’;43

To cause Memo.press to be spooled for printing by the Maxc printing system:
FTP Maxc Store/S Memo.press LPT:

This also works unformatted text files if you know what you are doing. It does not do the
right thing for Bravo-format files.

To use FTP as a stop-gap IFS:
FTP/T-UO

This starts only a server with overwriting of existing files permitted. When using the trident,
there isn’t enough space to start both a User and a Server. -

6. File Property Defaulting

Without explicit information from the file system, it is often difficult to determine whether a file is Binary
or Text, if Binary, what its byte-size is, and if Text, what End-Of-Line convention is used. The User and
Server FTPs use some simple heuristics to determine the correct manner in which to transfer a file. The
heuristics generally do the right thing in the face of incomplete information, and can be overridden by
explicit commands from a human user who knows better.

The FTP protocol sgeciﬁes a standard representation for a file while in transit over a network. If the fileis
of type Binary, each logical byte is packed night-jusnﬁed in an integral number of 8-bit bytes. The byte-
size is sent as a property along with the file. If the file is of type Text, each character is sentright-justified
in gn ?-blijc byte. An EOL convention may be sent as a file property. The default is that <return> marksthe
end of a line.

6.1. File Types

FTP determines the type of a local file by reading it and looking for bytes with the high-order bit on. If
any byte in the file has a high-order bit on, the file is assumed to be Type Binary, otherwise it is assumedto
be Type Text. FTP will generate a warning, but allow you to send what it thinks to be a text file astype
Binary, since no information is lost. It will refuse to send a binary file as type text.

Don’t specify a Type unless you know what you are doing. The heuristic will not lose
information.



Cleared version of May 24, 1981
~ Alto Pup FTP October 26, 1980 74

6.2. Byte-Size

If a file is type Binary, the byte-size is assumed to be 8 unless otherwise specified. The FTP User and
Server will both accept binary files of any byte-size and write them as § bit bytes on the disk. No
transformation is done on the data as it is written to the disk: it is stored in network default format. Since
there is no place in the Alto file system to save the byte-size property, it is lost.

Similarly, requests for Binary files will be honored with any byte size, and whatever is on the disk willbe
sent to the net without transformation. Since Alto files have no byte size information, the byte-size
property will be defaulted to 8 unless otherwise specified (by the BYTE command), in which case whatever
was otherwise specified will be sent as the byte size.

Don’t specify a Byte-size unless you know what you are doing. Alto-Alto transfers can’t go
wrong. Alto-Maxc transfers with weird byte-sizes will not work unless the byte-size specified
in the Alto to Maxc direction is the same as the byte-size in which the file was stored on the
Alto. Ifitisn’t, the Alto will not give any error indication, but the result will be garbage.

6.3. End-of-Line Conventions

FTPs are expected to be able to convert text files between the local file system End-Of-Line (EOL)
convention and the network convention. Conveniently enough, the Alto file system’s internal
representation of a text file is the same as the network standard (a bare <return> marks the end of aline).
The Alto FTP does not do any transformations on text files. It will refuse to store a text file coming in
from the net whose EOL convention is CRLF.

As an escape to bypass conversion and checking, EOL convention ’transparent’ tells both ends NOT to
convert to network standard, but rather send a file *as is’. This is included for Lisp files which contain
internal character pointers that are messed up by removing line feed characters.

Don’t speciffy an EOL convention unless you know what you are doing. If your text file isa
Lisp source file, specify EOL convention "Transparent’.

6.4. File Dates

The Alto file system keeps three dates with each file: Creation, Read, and Write. FTP treats the read and
write dates as properties describing the local copy of a file: when the file was last read and written in the
local file system. treats the creation date as a proger%/]of the file contents: when the file contentswere
-originally created, not when the local copy was created. Thus when FTP makes a file on the local disk, the
creation date is set to the creation date supplied by the remote FTP, the write date is set to 'now’ and the
read date is set to 'never read’.

7. Abort and Error messages

Error and Abort packets are displayed in a window above the title line. Abort packets are fatal; Error
packets are not necessarily so. '

The most common Abort message is "Timeout. Good bye", generated when a server process has not
received any commands for a long time (typically 3 mlnutesg,. :

The most common Error message is "Port IQ overflow" indicating a momentary shortage of input buffers
at the remote host. Receiving an Error Pup does not imply that the file in transit has been damaged. Loss
of or damage to a file will be indicated by an explicit message in the User FTP window. The nextiteration
of Pup will probably rename "Error Pups’ to be “Information Pups’. :



Cleared version of May 24, 1981 -
Alto Pup FTP October 26, 1980 75

8. Telnet

FTP provides a simple User Telnet as a convenience for logging into a remote host (e.g., Maxc) to poke
around without having to leave the FTP subsystem and start Chat. It lacks most of the creature comforts
Chat provides, such as automatic attaching to detached jobs, automatic logging in, etc. The Telnet isnot
enabled when the User FTP is being controlled from the command line. When the Telnet does nothave
an open connection, it waits for you to type a host name with the syntax explained above for the OPEN
command, and then attempts to connect to the specified host. If you wish to abort the connectionattempt,
hit the bottom unmarked key (opposite right-shift). You can get a larger Telnet window by not starting a
server (type FTP/-S to the Executive).

9. Revision History

April 1976
First release.
May 1976

/Q switch added to CONNECT. Connection requests to the User FTP and Telnet can be aborted. Login
prompt changed. 1 minute Timeout added when waiting to finish after a command line error. User
automatically recovers from more "No" responses from the remote server.

June 1976

Dos version released. DIRECTORY and LIST, commands added. Update (/U) option added. File

creation dates added. 3 minute no—activi% timeout added to FTP Server. FTP version, time-of-day, and

g;ac{mine address added in top window. "Ding" now flashes only the affected window instead of the whole
isplay.

August 1976
RDos version released. Same as June release for Dos and Alto.
October 1976

DUMP and LOAD commands added to user FTP. KILL command added. Free disk page count addedto
the title line. Verify (/V) switch added to the RETRIEVE command.

November 1976

Bug fixes to the October release.

May 1977

This version was only released to friends. KILL command removed and turned into a server option.
DEBUG command moved into new USER and SERVER commands. Trident disk option (/T) added.
User LIST command improved and Server LIST response implemented. Password checking by the FTP
server implemented. Telnet window enlarged at the expense of possibly losing information from the top of
the window if the lines are very full. DELETE, RENAME, and DEVICE commands implemented. Much
internal reorganization so that the protocol modules could be used in IFS and released as a package.

July 1977

Global switches changed. <Shift-Swat> should work more reliably now. User LIST command further



Cleared version of May 24, 1981
Alto Pup FTP October 26, 1980 , 76

improved. Keyboard command interpreter is much more robust and consistant. Command line STORE
and DUMP go much faster since they look up files using MDI. FTP/Tx opens Trident unit 'x’. LOGIN
command added to command line interpreter.

November 1977
Microcode added to speed up execution.
March 1978

User log olstion added (see /L and /A switches and "FTP User Log’ section). AllocatorDebug switch
removed. New command line commands COMPARE, OPEN, and CLOSE added. Command line errors
are handled differently (see /E global switch and ’Command Line Errors’ section). When using aTrident,
either a User or a Server FTP is started but not both (see the section on Trident disks).

September 1979

This is a maintenance release coordinated with OS17, fixing a few bugs and reloading with current
Backages. CONNECT cancels an S}glrievious DIRECTORY. CLOSE cancels any previous CONNECT,

IRECTORY, DEVICE, TYPE, E, or EOLC. Multiple logical file systems on a T-300 can now be
addressed: Ftp/T400 opens logical filesystem 1 on physical unit 0.

October 1979

The command line version of the OPEN command retries failed connection attempts every five seconds
under control of the error flag. Ftp.boot is now a type B boot file. It EtherBoots faster and consumesless
disk space in boot servers. It now works with all Alto file system configurations.

June 1980

New command line commands: LIST, LOAD/U and LOAD/S. Ftp handles file creation dates in dump-
format files. Subcommand mode in the keyboard LIST command is the same as Maxc and IFS, namely
one terminates the filename with {comma carriage-return>, and the VERBOSE option includes file
lengths. The keyboard DIRECTORY and DEVICE commands display their previous values. STOREand
RETRIEVE report bits per second. The TFS option now works on Alto/Sugart.systems.

September 1980

New commands STORE/U, STORE/V, COMMENT/C, and VERSION. /A switch during date
controlled transfers controls whether to transfer a file when the corresponding file in the other filesystem
doesn’t exist. /D switch controls display of file creation dates.

October 1980
New switches: /=, /#, />, /<, which generalize date-controlled transfers (see section 5.2). When F

finishes, it only updates the username and password in the OS if no password was present when itstarted.
Thus, if you log in as "guest” to access a file on a foreign file server, Ftp won’t clobber your real identity.



Cleared version of May 24, 1981
Listing Syms files March 28, 1978 77

ListSyms - a subsystem for listing Syms files

The ListSyms subsystem takes a Syms file (produced by BLDR) and converts it to a useful human-
readable form. ListSyms produces a file with several parts:

A listing of the space occupied by each binary output file (Run or .BB?.

A listing similar to the listing optionally produced by BLDR, i.e. a list, sorted by BR file and
location within the file, of all static symbols defined, with an indication as to whether the symbolis
external and whether it is a procedure, label, or static variable. . .

A list of all statics in aI{Jhabeuc order, accompanied by the name of the BR file in which each
one is defined and (optionally) a list of all the BR files in which each is used.

A list similar to the preceding, but listing the statics for each file separately, and only listing
statics declared external (i.e. accessible from other files).

A concordance of undefined externals: for each BR file which references undefined externals, it
lists those externals in alphabetic order under the file name.

One invokes ListSyms as follows:
>ListSyms inputfile outputfile . i . .
Inputfile will normally be something.Syms: if it has no extension, ListSyms will supply .Syms. Outputfile
may be omitted, in which case ListSyms will take inputfile (shorn of extension if any) and append .BZto
form the output file name.

ListSyms accepts 7 switches, all global:

/A produces the alphabetic listing )

/F produces a file-by-file allfphabetic listing with cross-reference

/N produces the numeric (file-by-file) listing

/0 produces only the listing of the binary file sizes

/S includes static variables, which are normally omitted

/U produces the listing of undefined externals

/X produces the alphabetic listing with cross-reference .
The switches may be either upper or lower case, and /S is independent of the other switches. If none of
/A, /F, /N, /0, /U, or /X appears, you will get the /A, /N, and /U listings but no cross-reference.

ListSyms starts by printing> message of the form
ListSyms of [date] -- [inputfile] - _{outputﬁle]
If ListSyms completes normally, it will print a message of the form
12345b characters written on outputfile
List%yms produces a variety of error messages. Currently these are:
[filename] does not exist
indicates ListSyms was unable to open the Syms file.
Syms file too big ) )
indicates insufficient room for reading the Syms file. ListSyms aborts.
Can’t open [filename] )
ListSyms was unable to open the outputfile or one of the BR files required for /U or /X. In the former
case, ListSyms aborts; in the latter, it continues.
filename} is not a proper BR file ) .
One of the BR files mentioned in the Syms file does not have the proper format. ListSyms ignores the file
and continues. .
[filename] is too big to process
One of the BR files was too big to read in. ListSyms ignores it and continues.
Too many BR files )
There were too many BR files to process in the available memory. ListSyms aborts.
No room for bit table . )
There was not enough room to hold the bit table used for /U or /X (or /A if any undefined symbols were
present). ListSyms aborts.

ListSyms is quite fast: it processes BRAVO.Syms in about 20 seconds, and a typical modest program
takes less than 10 seconds.



Cleared version of May 24, 1981
MailCheck _ March 6, 1978 78

MailCheck

This simple subsystem attempts to check for mail for a user at some other host (e.g. Maxc) via the Ethernet.
It displays one of the following messages: :

? This Alto has no Ethernet interface!

7 Can’t find a host named *<host>’: <error message>
7 No response from <host>

?<user> not valid user at <host>: <error message>

? Error: <pup error message>

New mail for <user> on <host>: <date> <sender>
No new mail for <user> on <host>

Various options can be controlled by switches and/or by an entry in your User.Cm.

Valid switches are:

/1 Check mail on Maxcl (default).

/2 Check mail on Maxc2.

<host>/H Check mail on <host>. . .

<user>/U Check mail for <user> (default is the user name obtained from the Alto %%eratmg system).
/R If there is new mail, execute a command line when MailCheck exits. The command line

defaults to "@READMAIL.CM@", ie. to execute the contents of the file
gI%ADMAIL.CM as a command, but this can be changed in the User.Cm as outlined
clow.

In addition, if there may be a section in your User.Cm labeled [MAILCHECK] with the following possible

entries: .

HOST: <host> Sets the default host to check.

USER: <user> Sets the default username to check.

NEWMAIL: <string>  Sets the command line to be executed if there is new mail. Within the command
line, the host name is substituted for "@H" and the user name for "@U"; toput
an "@" in the command line it is neccessary to put two in the string.

For example, you milg<ht add the section:
AILCHECK]

OST: Maxc2
NEWMAIL: CHAT @H MSG.DO/D

Where MSG.DO is a file on your alto disk which contains "MSG<return>".

One useful oEtion is to put Mailcheck.Run inside the eventBooted section of your USER.CM, so that
Maiicheck will be run whenever you boot, e.g.

[EXECUTIVE]

eventBooted: Mailcheck.Run // eventBooted
eventRFC: FTP/OK //eventRFC
é?entClockWrong: SetTime // eventClockWrong

Updates: As of March 1978, Mailcheck no longer does a SetTime v



Cleared version of May 24, 1981
MicroD August 1, 1978 79

MicroD - Dorado/D0 instruction placer

MicroD takes microprograms for the Dorado or D0, assembled by Micro, and completes the assembly

process by assigning absolute locations to the microinstructions. The resulting file can be loaded into aD-

machine by Midas and run. MicroD’s job is to find a way to assign locations to microinstructions in a way

1t{mtd satisfies both the semantics of the source program and the peculiar addressing restrictions of the
ardware. :

This document is deliberately somewhat sketchy, since it assumes that its readers have already absorbed
the necessary "culture” surrounding D-machine microprogramming and just want to know how toconvert
Micro outputd into Midas input. At some future date it may be expanded to be more helpful to peoplejust
getting started.

The simiplest way to use MicroD is to assemble your entire microprogram at once with Micro, producinga
?i? le file xxx.DIB. (DIB stands for "D-machine Intermediate Binary".) Then you invoke MicroD as
ollows:
MicroD xxx ) . .
to produce a listing file xxx.DLS and a final binary file xxx.MB which can be fed to Midas.

MicroD normally produces a listing with the following parts: i

The name and initial contents of each defined R memory location.

The initial contents of each IFU and ALUF memory location.

The label and octal representation of each microinstruction.

A summary of how much of each page of I (microinstruction) memory was used.
MicroD accepts the following global flags which affect the listing:

/N (No listing) - only produce the summary

/C SConmse) - produce everything but the octal contents of I memory )
The following global flags produce additional information, not useful to the ordinary user:

/D (Debug) - print a large amount of debugging information

/T (Trace) - print a trace of the calls on the storage allocator

Normally MicroD produces its output on xxx.DLS and xxx.MB, where xxx is the name of the last (oronly)
input file. You can ;pecify a different name with the local /O switch, e.g.

MicroD xxx yyy/o
to process xxx.DIB but produce yyy.DLS and yyy.MB.

If you wish, you can assemble your microprogram in pieces and let MicroD link the pieces together. (This
can save a large amount of assembly time for large pro%\l;lams.) Suppose your program consists of the
following parts: some definitions defs1.MC and defs2.MC; one large piece of code thisl.MC and
this2.MC; another large piece of code that. MC. Then you can proceed as follows:

Micro saveit/s defs/b defsl defs2
This assembles the definitions, saves Micro’s state on saveit.ST, and produces a file defs.DIB.

Micro saveit/r this/b thisl this2 } ) )
This resumes assembly with the definitions saved in saveit, producing this.DIB. Micro will give you alist
of ;’tllmsieﬁned symbols”, which are references to symbols not defined in thisl or this2 (presumably defined
1n that).

Micro saveit/r that ) ) : . ) . )
This again resumes assembly with the saved definitions, producing that. DIB. Again, Micro will list the
symbols not defined in that T31.‘3_resumalbly defined in thisl or this2).

MicroD myprog/o defs this that )
MicroD will link together any references from this to that (or vice versa) and produce the output files
myprog.DLS and myprog.MB. :

Note that you do not need to do anything special in your source files to declare labels which are exported
(defined here, used elsewhere) or imported (used here, defined elsewhere): Micro assumes that an
undefined symbol is meant to be imported (but gives you the list just so you can check), and Micro
assumes that all labels are exForted. icroD also discards all but the last definition of a name (e.g. the
name ILC is defined in every file as the address of the last microinstruction).



Cleared version of May 24, 1981
MicroD August 1, 1978 80

If you have multiple .DIB files, you can control the listing mode (normal, No listing, or Concise) for each
file individually by using /L gList), /N, or /C as a local switch on the file name. The global switch, ifany,
applies to any input file that lacks a local switch. For example, to get only a concise listing for the second
part of the program in the above example, you can use

MicroD/n myprog/o defs this that/c



Cleared version of May 24, 1981
MoveToKeys January 2, 1979 81

MoveToKeys

The Alto can boot-load a file befinning at any legal disk address. The disk address is su I:I%ied by holding
down a collection of keys simultaneously while pressing the boot button. The MoveToKeys subsystem
simplifies the task of getting a .boot file to begin at a specified physical disk location. To invoke
MoveToKeys, type:

MoveToKeys filename keylist

to the Alto Executive. "filename" is the name of the file whose first pa%e (technically, ga;e 1, notlgage {)P
is to be moved to the disk address corresponding to "keylist". The legal keys are 5,4, 6,7, D, E, K, P, U,
V,0,/,and . (Remember, to type a /" to the Alto Executive, you must quote it.) A typical use of
MoveToKeys is:

MoveToKeys Dumper DU

The file Dumper.boot could then be boot-loaded by holding down the D and U keys while pressing the
boot button.

MoveToKeys will prompt for {)arameters omitted from the command line and will complain if any ofthe
parameters supplied are illegal. (For example, not all subsets of the set of legal keys correspond to legal
disk addresses.) In addition, the global switch /V ("verbose mode") will give you detailed information
about the pages MoveToKeys manipulates. o

MoveToKeys actually works by determining what page resides at the specified disk address and swapging
it with page 1 of the specified file. Depending upon the pages involved, MoveToKeys must patch up
various pointers within the Alto file system to ensure a consistent representation of files and directories. (A
previous version of MoveToKeys did not do this correctly in all cases.)



Cleared version of May 24, 1981
‘Mu: Alto Microassembler March 25, 1978 82

Mu: Alto Microassembler

This document describes the source language and operation of Mu, the Alto microcode assembler. Muis
downward compatible with Debal, the original Alto assembler/debugger, but has a number of additional
features. Mu is implemented in BCPL, and runs on the Alto. :

1. The source language

An Alto microprogram consists of a number of statements and comments. Statements are terminated by
semicolons, and everything between the semicolon and the next Return is treated as a comment.
Statements can thus span several text lines (the current limit is 500 characters). All other controlcharacters
and blanks are ignored. Bravo formatting is also ignored.

Statements are of four basic types: include statements, declarations, address predefinitions, and executable
code. The syntax and semantics of these constructs is as follows:

1.1. Include Statements

Include statements have the form:

# filename;
'l;tlley c;use the contents of the specified file to replace the include statement. Nesting to three levels is
allowed.

1.2. Declarations

Declarations are of three types: symbol definitions, constant definitions, and R memory names.

1.2.1. Symbol Definitions

Symbol definitions have the form:

$name$Lny,ny,n3;

The symbol "name" is defined, with values nj, ny and n3. There is a standard 111)ackage of symbols for the
Alto (AltoConstsxx.Mu, where xx is the curreni microCode version) which should be ’included’ at the
beginning of every source program. For those who must add symbol definitions, the interpretation of the
n’s is given in the appendix. ,

1.2.2. Constant declarations

Normal constants are declared thus:
$name$n;
This declares a 16 bit unsigned constant with value n. The assembler assigns the constant to the first free

location in the constant memory, unless the value has appeared before under another name in which case’
the value of the name is the address of the previously declared constant.



Cleared version of May 24, 1981
Mu: Alto Microassembler March 25, 1978 83

An alternative constant definition is used for mask constants which have a specified bus source field (recall
that the constant memory address is the concatination of the rselect and bus source fields of the
microinstruction). The syntax is:

$name$Mn:v; 4<n<7, 0Kv<2**16

N specifies the desired bus source value, v is the constant value.

1.2.3. R Memoryv declarations

R memory names are defined with:

$name$Rn; (Kn<40B
(100B if your Alto has a RAM board, as most do)

An R location may have several names.

1.3. Address predefinitions

Address predefinitions allow 8roups of instructions to be placed in specified locations in the control
memory, as is required by the OR branching scheme used in the Alto. Their syntax is:

In, k, name, namej, namey, ..., namek-1;

This declaration causes a block of k consecutive locations to be allocated in the instruction memory, and
the names assigned to them. n defines the location of the block, in that if L is the address of the last
locaati%n of the block, L and n = n. Usually, n will be 2**p-1 for some small p. For example, if the
predefinition

13, 4, foo0, fool, foo2, foo3;

is encountered in the source text before any executable statements, the labels foo0-foo3 will be assigned to
control memory locations 0-3. If there are too few names, they are assigned to the low addresses in the
block. If there are too many, they are discarded, and an error is indicated. If there are missing labels, e.g.
"fo00,,f002,;", the locations remain available for the normal instruction allocation process. A predefinition
must be the first mention of the name in the source text (forward references or labels encountered beforea
predefinition of a given name cause an error when the predefinition is encountered.)

A more general variant of the predefinition facility is available. The syntax is:

%mask2, mask], init, L], Ly, ... Ly;

The effect of this is to find a block of instructions starting at location P, where P and maskl = init, and
assign the L’s to "successive’ locations under mask2. For example:

%1, 1,0, x0, x1;
would force x0 to an even instruction, x1 to odd (the normal predefinition for most branches).
%360, 377,17,10, L1, ... L15;
Would place L0 at xx17, L1 at xx37, L2 at xx57, etc.

As before, if there are unused slots (e.t%, ’L12,,1.14°) they are available for reassignment, and MU
complains if there are too many labels for the block.



Cleared version of May 24, 1981
Mu: Alto Microassembler March 25, 1978 - 84

1.4. Executable statements

Executable code statements consist of an optional label followed by a number of clauses separated by
commas, and terminated with a semi-colon

label: clause, clause, clause, ...;
If a label has been predefined, the instruction is placed at the control memory locaion reserved for it.
Otherwise, it is assigned to the lowest unused location. : - .
Clauses are of three types: gotos, nondata functions, and assignments.
Goto
Goto clauses are of the form *:label’, and cause the value of the label to be assembled into the Next
field of the instruction. If the label is undefined, a chain of forward references is constructed which
will be fixed up when the symbol is encountered as a label.

Nondata Functions

Nondata functions must be defined (by a literal symbol definition) before being encountered ina
code clause. This type of clause assembles into the F1, 2, or 3 fields, and represents either abranch
condition or a control function (e.g. BUS =0, TASK).

Data transfers (assignments)

All data transfers are specified by assignments of the form:
dest] « desty« ... «source

This type of clause is assembled by looking up the destinations, checking their legality, and making
the field assignments implied by the symbol types. Each destination imposes definitional
requirements on the source (e.g., ALU output must be defined, Bus must be defined). These
requirements must be satisfied by the source in order for the statement to be legal.

When the source is encountered, it is looked up in the symbol table. If it is legal and satisfies the
definitional requirements imposed by the destinations, the necessary field assignments are made,
and processing continues. If the entire source defines the Bus, and the only remaining requirement
is that the ALU output must be defined (e.g., L«MD), the ALUF field is set to 0 (ALU output =

Bus), and processing continues.

If neither of the above conditions holds, the source can legally be only a bus source concatenated
with an ALU function. The source token is repeatedly broken into two substrings, and each is
looked up in the symbol table. If two substrings can be found which satisfy the re%mements, the
field assignments nngheq by both are made; otherwise, an error is generated. This method of
evaluation is simple, but it has pitfalls. For instance, L«24-T is legal (providing that the constant
"2" has been defined) but L«T+2 is not (the Bus operand must always be on the left). Note that
’L«foo+T+ 1 specifies a bus source of ’foo’ and an ALU function of *+T+1'.

CAVEAT: The T register may be loaded from either the Bus or the output of the ALU, depending
on the ALU function. The assembler does not check to see whether an assignment of the form
T« ALU’ specifies an ALU function that actually loads T from the ALU. For example, the clause
L«T«MD-T is accepted, but its effect is to load T directly from MD. If this is what you intend, it
makg? mﬁtters c'learer if you write 'L«MD-T, T«MD’; 1if it is not what you intend, you are in
trouble. Beware!

The constant "0" is special, in that when one or more clauses in a statement require that the busbe
0, generation of the constant is deferred until the end of the statement. At that point, if any clause



Cleared version of May 24, 1981
Mu: Alto Microassembler March 25, 1978 - 85

Ba}s ct%gsed the R memory to be loaded, the constant is not used, since the hardware forces the busto
in this case.

The destination "SINK" allows a clause to specify a bus source without specification of a
destination. It is useful, for example, in constructs of the form 'SINK + AC0, BUS =0, which puts
ACO on the bus to be tested by the nondata function 'BUS=0". You can also write things like

’SINK «mask constant, L«DISP XOR T, which will cause the value of DISP to be anded on the
bus with the mask constant.

2. Operation

The assembler is invoked with:
MU/global-switches sourcefile listfile/L binfile/B statfile/S

Legal global switches are:

/L produce a listing file

/D debug mode

/N do not produce a binary file (overridden by binfile/B)
Iflistfile/L is absent but the /L global switch is set, listing output will be sent to sourcefile.LS.
If binfile/B is absent, binary output is sent to sourcefile. MB.

If statfile/S is absent, statistics for the assembled program are appended to the listing file if there isone;
otherwise, no statistics are generated. The default extension for a /S file is ’.Stats’.

The default extension for sourcefile is *.Mu’.

Error messages will be sent to the listing file if one has been specified, unless debug mode has been set. In
debug mode, errors are sent to the system display area, and a pause occurs at at every error (and atcertain
other times). Typing any character proceeds.

If no listing file has been requested, debug mode is set independent of the global switch.

3. Output file

The assembler produceds Micro format binary output. The string names of the two memories specifiedin
the file are CONSTANT and INSTRUCTION. Only defined locations in these memories are output.
Micro format is compatible with the PRom blowing program, the Raml.oad program, and the
PackMu/LoadRam software. Note that the instruction memory specified in the binary file does not
include the 3 bit F3 field, which exists only in the debugging RAM.

4, Listing file

The listing file contains:

1.) All error messages (unless debug mode is set)



Cleared version of May 24, 1981
Mu: Alto Microassembler March 25, 1978 , 86

2.) A listing of all unused but predefined IQcations and unresolved forward references.

%.) Tavlvo listings of the contents of the constant memory, the first sorted by address and the second
y value. .

4.) A listing of the names assigned to the R memory

5.) A listing of the object and source code (with comments and declarations removed. The 35 bit
instruction is printed out in the following order:

Location: RSel, ALUF, BS, F1, F2, LoadL, LoadT, F3

6.) The microprogram statistics (unless sent to a separate file).



Cleared version of May 24, 1981
Mu: Alto Microassembler March 25, 1978 87

Appendix I: Literal symbol definitions

The value of a symbol is a 3 word quantity. The first word contains a type (6 bits) and a value (10 bits)
which detemines the interpretation of the symbol in all cases except when it is encountered as the sourcein
a data transfer clause (assignment). The second word contains the type and value used in this case.

The third word contains bits specifying the definitional requirements and source attributes applied when
the symbol is encountered in an assignment. The definitional requirements are represented by single bits,
where zero means 'must be defined’ and one means 'don’t care’.

Bit 0: 0if L output must be defined (destination-imposed requirements)
Bit 1: 0if BUS must be defined '
Bit 2: 0if ALU output must be defined "
Bits 3-7: Unused (?
Bit 8: L is defined (Source attributes)
Bit 9. Bus is defined '
Bit 10: ALU output is defined "
Bit 14;: ALU output is defined
if BUS is defined

Assignment processing groceeds by ANDing together the attribute words for all the destinations. The
result contains zeroes in bits 0-2 for things that must be defined and ones elsewhere.

When the source token is encountered, if it is a defined symbol it is tested by checking the definitional
requirements of the destinations against the corresfpondin% attributes in the source. If all destination
requirements are satisfied, the clause is complete. If the on g unsatisfied requirement is ALU definition,
and if the Bus is defined, the ALU function is set to gate the bus through (thereby defining the ALU),and
the clause is complete. If this doesn’t work, or the source token is not a defined symbol, the source stringis
dismembered in a search for two substrings, the first of which defines the Bus (bit 9), and the second of
which defines the ALU output if the Bus is defined (bit 14). If two substrings are found, the implied
assignments are made, and the clause is complete. Otherwise, an error is indicated.

The symbol type(s) determine the fields to be set in the microinstruction: Some types are legal only asan
isolated clause, some are legal only as the source or destination in an assignment. The currently defined
types are:

Type: Legal as: Instruction Field Side Effects:
Receiving Value:
0 Ilegal never
1 Undefined address address
2 Defined address address Next
3 R location« destination RSel Defines Busto be 0
4 «R location source RSel
5 «Constant source RSel, BS
6 Bus source source BS
7 Non-data F1 clause F1
10 Fl« destination F1
11 «L defining F1 source F1 . («LLSH1, etc.)
12 Non-data F2 clause F2
13 F2+« destination F2
14 «DataF2 . source F2 BS«1, RSEL<«0 ,
' «DNS, «ACDEST)
15 Data F2+« - destination F2 S«0, RSEL<«0
(ACDEST«, ACSOURCE«)
16 END clause - Not used by Mu.

17 <L source -
20 L« destination LoadL



Cleared version of May 24, 1981

Mu: Alto Microassembler March 25, 1978 : 88
21 Non-data F3 clause F3

22 F3« destination F3

23 «F3 source F3

24 «ALU functions source ALUF

25 Te destination LoadT

26 «T source ALUF ALUF«1
27 No longer used ,

30 Predefined address

31 «LMRSH, «LMLSH source

32 4-%/Izask constant source

33 « source F2 BS«2
34 «F1 source F1 BS«2
35 XMAR« destination F1,F2 Flel, F2«6

The current symbol definitions are contained in file AltoConsts23.Mu.

5. Revision History

October 24, 1974

"%’ predefinition facility added.

March 4, 1975

This version has changed from previous releases in that the .BM file contains micro format type 5 blocks
which contain address symbols for the constant, instruction, and R memories. Programs which read these
files will be expected to deal with this type of block. ‘

October 11, 1977

Bugs fixed: garbage in listing if statement too long; occasionally scrambled R-register listings; premature
termination at the end of ’insert’ files.

Features: longer statement buffer (500 characters); symbol type 35 for XMAR «; ’.Stats’ file generated
conditionally; checks for loading S-register from shifter; reports length in octal and decimal; strips Bravo
formatting. ,

March 25, 1978

Bug fixed: leaving the semicolon off the end of a predefinition yielded erroneous results with no error
message.

Features: listing file contains constants sorted by value as well as by address; source filename extension -
defaults to . Mu'.



Cleared version of May 24, 1981
Network Executive January 12, 1980 89

Network Executive

NetExec is an Alto command processor for invoking certain subsystems via the Ethernet without using the
local disk. It is useful for rebuilding a smashed disk and for loading diagnostic programs when the disk is
sick. Its user interface is intentionally similar to the standard Alto Executive. :

The pro%(ram is invoked by holding down the <backspace> and <quote> keys while pressing the boot
button. You must continue to hold the keys down until a small square appears in the middle of thescreen,
then you can let go. NetExec and all of the programs invoked Il\)/f’ it are boot-format files kept by ’boot-
servers’ -- programs which implement the Alto boot protocol. Most gateways and some other programs
(such as Peek) contain boot-servers.

When the NetExec arrives, it displays a ">" and blinks its cursor to indicate that it is ready for commands
from the user. In parallel with this it displays a pair of lines near the top of the screen with its name and
version number, a digital clock, and the machine’s internetwork address.

Typing "?7" causes the NetExec to display a list of the boot-files it knows how to invoke. NetExec builds
this list by probing the network for boot servers and asking them what boot files they are willing to give
out. There are also some built-in functions which are listed by "'?" as if they were boot files:

BootDPO Causes NetExec to boot the operating system on DPO0 of the current partition.

FileStat Prompts you for a boot file name and tells you all about it: its boot file number,
the host from which the NetExec will obtain it, and the key combination which
will boot it directly.

Partition prompts you for a disk partition number. If this number is zero, NetExec tells

you the current disk partition. If it is non-zero, it attempts to set the partition to
that number. This command is only available on machines that support multiple
disk partitions: Dorados and D0s.

Probe Causes NetExec_to probe the network looking for boot servers. If it discovers
any new ones, it will add the new boot files to its list. This is done once
automatically when NetExec starts, and whenever the user types an unrecognized

command.

Quit Boots DMT

SetTime Causes NetExec to probe the network looking for a time server. If it discovers
one, it sets the Alto’s clock from it. This is done once automatically when
NetExec starts.

In the future, common subsytems should be stored in a few places throughout the network, not onevery
local disk; perhaps the local disk can be eliminated entirely. Doing so requires a much better integration
of network and OS facilites than currently exists. The NetExec described here is not intended to do this.
There are several limitations in the current implementation:

1) Most boot-files are quite large. Typical boot-servers have space for only the few
most commonly used programs.

2)  Boot-servers typically run in machines with some other primary purpose, such as
gateways, and must not consume too many resources. As a result, booting isslow -
and only one machine can be served at a time. ‘



Cleared version of May 24, 1981 |
OEDIT November 23, 1980 90

OEDIT

The OEDIT program is for looking at and modifying Alto files and Alto Trident files, in octal and other
formats. Call it with QEDIT f1 f2 ... where the f’s are the names of the files dyou want to look at (you are
limited to_about 4 Trident files, 15 or 20 Diablo files). OEDIT will display the contents of the
corresponding words of all the files on the same line, with wrap-around printing if they don’t all fit.

Each filename can be optionally preceded by a disk drive specification as in the following examples:

"tpS:name.ext” means the file "name.ext” on Trident drive number 5, while "DPl:name.ext" means

"name.ext" on Diablo drive 1. The default is "dp0:", which means the standard system disk. EachT-300

disk has up to three distinct Alto file systems; if Trident drive 2 were a T-300 drive, these file systems

]\;/ou%d be referred to as "tp2:", "tp402:", and "tp1002:" (a 2 in the right byte, and either 0, 1, or 2 in theleft
yte).

The files are initiall¥ opened with read-only access. The second and subse?uent files can only be read and
displayed by OEDIT. But OEDIT has commands that write into the first of the specified files, If youwant
to be able to alter the first file, use the /W switch on the OEDIT command. Otherwise, OEDIT will have
to reopen the first file to obtain read/write access the first time that you try to store into it; OEDIT will
request confirmation before reopening the first file.

OEDIT output usually goes to the Alto screen only; the font used is the one stored in the file named
"dp0:gachal0.al" if that file exists, otherwise the standard system font (fixed pitch looks better). Ifyou
would like a permanent record of your OEDIT session, use the /F or /L switch on the OEDIT command,
w&x\c{x wﬁi%l copy the session on the file "dp0:Oedit.Lst". Note that this provides a way to get octal dumps
of Alto files.

When it starts, the program computes the lengths (in bytes and words) of all of the specified files. For
large files this can take upwards of 15 seconds (if the file system hints prove to be wrong), so don’t be
alarmed by the delay.

After typing the lengths, OEDIT waits for commands:
n/ show location n of each file in the standard modes

1If show the next location of each file

* show the previous location of each file

cr show the current location again i

tab show the location pointed to by the last displayed location

n! show locations n to n+40b of each file

> show the next 40b locations of each file

< show the previous 40b locations of each file

nV display the value n itself in both octal and decimal

nF beginning at current location in the first file,

Q find a word containing the value n, show it and its address
quit

The If, 1, tab, £, >, and cr commands can be preceded by a number which is written into the current
location of the first file. Control-W is synonymous with +, and control-V is synonymous with V.

All numbers can be input in a variety of formats, called modes. Each mode is referred to be a one-letter
code (either upper or lower case), as described in the following table:

a double-word octal number
a single-word octal number
an octal byte
S,orC an ASCII byte
a hexadecimal byte
an EBCDIC byte
a double-word decimal number

O m=0



Cleared version of May 24, 1981
OEDIT November 23, 1980 91

N a decimal byte

When inputting a number, you announce the intended mode by giving a mode letter followed by acolon;
the default is "O:". Thus, "0:354" or "0:354" or "354" inputs the integer 354b, while "C:A" inputs the
character code for uptger case A in ASCII._The register that you are loading with this input is a double
word, 32 bit integer; this is necessary since file addresses may exceed 16 bits in length. In situationswhere
only 16 bits make sense, such as specifying the new contents of the current word of the first file, the least
significant 16 bits of the input register are used. Each input mode specifies a new chunk of data to be
shifted in at the right of the input register. Input modes that describe only a byte of data shift this newbyte
in at the right, while modes that describe a double-word of data reset the entire register. Separatemultiple
chunks of input with spaces. For example, "0:40502", "40502", "h:101 h:102", "C:A c:B", "x:41 x:42",
"x:41 c:B", and "d:16706" are all legal ways to describe the input value 40502b (a one-word quantity).

When inputting a number in octal, decimal, or hexadecimal, preceding the digits with a minus sign will
take the two’s complement. In particular, "-1" is an easy way to input a number that has all one bits. Thus,
to give another example, "0:37777600000", "W:-1 W:0", and "h:-1 x:FF w:0" are all ways to specify a
double word quantity consisting of 16 ones followed by 16 zeros.

When inputting a number in octal, decimal, or hexadecimal, preceding the digits with a minus sign will
take the two’s complement. In particular, "-1" is an easy way to input a number that has all one bits.

All addresses are word addresses (even though the file lengths are also shown in bytes.) Furthermore,
addresses are only displayed in octal. The data words in the files can be displayed in modes analogousto
the modes listed above:

0] displays a full-word octal value
H two octal bytes

AS,orC two ASCII bytes

X two hexadecimal bytes

E two EBCDIC bytes

D a full-word signed decimal value
N two decimal bytes

The control character correponding to each output mode is a command to type out the current locationin
that mode. If the control character is Freceded by a number, it means open that location and display itin
the specified mode. When no particular mode is spcified, OEDIT uses a set of modes called the standard
modes. Unless you say otherwise, the standard mode set is OHA. You may add modes to the standardset
by specifying them as global switches on the OEDIT command; you can also remove a mode from the
standard set by preceding that letter with a minus sign in the list of global switches. Thus, if one wanted to
display the files'in hexadecimal, ASCII, and EBCDIC only, one would type "OEDIT/-O-HXE filename".

A note on EBCDIC: the underline character in EBCDIC is represented by left-arrow in ASCII; thecents

symbol in EBCDIC is represented by backslash in ASCII; and the hook symbol in EBCDIC (logical

gegglt(iioq) ii rsegﬁesented by up-arrow in ASCII. All unassigned character codes in EBCDIC arerepreseted
y tilde in .

It is often useful to be able to scan through a portion of a file looking at every d’th word, that is, at a setof
addresses that form an arithmetic progression, and either searching for a particular value in a particular
field, or writing a particular value into a particular field. "This capacity exists_in OEDIT by means of a
special command, invoked by typing "F" or "f" without first giving a number. You will first be prompted
to input a starting address, ending address, and the parameter d (the common difference of the arithmetic
- progression; d must be positive). Then, input a mask that specifies by its one bits the relevant field. Next,
say S for Searching or R for Replacing. Finally, give the new data, with the bits already in the correctfield;
data bits that are obscured by the mask don’t matter. Each number that you are inputting during this

. _process can be in any mode; separate multiple bytes with spaces, and end each numeric argument with

carriage return or escape.



Cleared version of May 24, 1981
Alto microcode overlays October 20, 1976 92

Alto microcode overlays

Large systems which use the Alto control RAM, such as ByteLisp and Mesa, inevitably want to put
more instructions in the RAM than will fit. When this happens, the system implementors can choose
either to implement the additional functions in software, or to change the contents of the RAM
dynamically. The package described here provides for relatively cheap dynamic overlaying of the RAM.

e overlay regime can be very simple (just one overlay in RAM at a time) or complex (a nested allocation
scheme) with no changes in the swapper or the overlays themselves.

Users of this package must, of course, still decide when loading microcode is preferable to fallingback
into Nova code. In terms of space, one microinstruction does about 2/3 as much work as a Nova
instruction, and takes 32 bits rather than 16, so (overlaid) microcode takes about 3 times as much core
space for equivalent tasks. The package presented here imposes an additional space overhead which may
amount to as much as 2 * the square of the number of overlays. In terms of speed, loading a
microinstruction takes about as long as executing a Nova instruction, and the package described hereadds
an additional time roughly equal to 1 Nova instruction for each overlay each time a new overlay must be
loaded, so for totally straight-line code the net execution time favors Nova implementation by about a
factor of 2 (i.e. to break even, a given overlay must be executed at least twicekl owever, microcode has
easy access to the state information stored in the processor’s R registers, while Nova code does not(unless
it can all be passed through the AC’s), so this may make microcode execution preferable even in the caseof
straight-line code executed only once.

1. How to use it

Using microcode overlays reguires three steps that differ from normal use of the RAM. The Mu
assembly process is different; the Oram program must be run to construct the data structures necessary for
the swapper; and a small amount of extra initialization is required at runtime.

The first step in constructing overlayable microcode is to decide how to break up one’s microcodeinto
overlays and to identify the entry points to each overlay. (One overlay may have more than one entry
point.) The microcode sources must be broken up into files: a main file that includes all the residentcode,
plus predefinitions (but no code) for all entry points of all overlays; an initialization file (to be describedin
a moment) that supplies dummy code for all entry points; and files for the individual overlays.

The main file must include the following code at the beginning:

10,1,zero; _ Required by the swapper
$ramvec2$Rnn; An S register for the base of the overlay table

[other predefinitions, symbol defs, constants, registers, etc.]
#swapper.mu; The swapper

This code mﬁst occur at the beglmning of the main file because the swapper’s entry point (label "swapper™)
must be predefined as location 1000 in the RAM.

The initialization file must have the following form:
#mainmu; - (or whatever the main file is called)
ent0: T « 0, :swapper;
entl: T « 1, :swapper;
ent2: T « 2, :swapper;
ent3: T « 3, :swapper;

and so)on for all the entry points. (Ent0, etc. should be replaced by the names of the entry points, of
course.



Cleared version of May 24, 1981
Alto microcode overlays October 20, 1976 93

Since microcode is not relocatable in the RAM, all decisions about what overlays can be co-resident
must be made at assembly time.

After assembling the dummy file and each leaf overlay file with Mu in the usual way, run the Oram

subsystem as follows: :

>Oram xx.BR init.MB ov1.MB.... ovm.MB . .
where xx.BR is the BR file on which Oram will write the overlay tables, init. MB is the result of assembling
the initialization file, and ovl.MB through ovm.MB are the results of assembling the leaf overlay files. If
all goes well, Oram will produce a variety of messages ending with

nnn words written on xx.BR )
and return to the Executive. Oram also writes all its messages on a file called Oram.Lst.

When you load your program with Bldr, you must include the file xx.BR produced by Oram, The
data in this file, unlike the initial RAM 1m$§e Eroduced by PackMu, is required throughout the runningof
%our program. You must also load the RWREG library package to obtain the WriteReg procedure used

elow, but this is only needed during initialization.

When loading the RAM during initialization, your program must include the following code:

external [ MCbase; MCtop]  // defined in xx.BR
if (MCbase&1) ne 0 then
[letlen = @MCtop
MoveBlock(MCtop-len-1, MCtop-len, len)
MCbase = MCbase-1

riteReg(nn, MCbase-2)
wh,er'é' nn is the register number in the definition of ramvec2 in the main file.
2. Design details

In the RAM, the entry instructions of each overlay are all in the permanently resident code. Ifthe
overlay is present, the entry instruction is just the first instruction of its code; in this case we say the entry
instruction is "valid". If the overlay is absent, the entry instruction loads T with the entry number and
branches to the swapper (the entry instruction is "invalid"). Thus when an overlafy is loaded, the entry
instructions of all overlays it overlaps must be invalidated. The chief advantage of this approach is that
there is absolutely no time overhead if the overlay is already in the RAM, so it is feasible to overlay very
short sequences (15 instructions, say). _

There is just one global data structure (in core) that describes the overlay structure: a table indexed by
2 * entry number which points to overlay descriptions, described in the next paragraph, and also specifies
where to start execution after the overlay is loaded. (This arrangement permits a single overlay to have
multiple entry points.) The origin of this table is the only thing known to the swapper.

The description of an overlay (in core) must begin at an even location, and has two parts:

1) An invalidation table which specifies how to overwrite entry instructions. Each entry in this table isa
2-word object: the first word is a RAM address, the second word is the upper half of the microinstruction
to write there (the lower half always being "BUS«constant, Load T, branch to swapper"). The last entryis

flagged by having bit 0 of the RAM address set. ) ‘
O 2)A seciuence of instruction blocks. Each block begins with a 2-word header (100000b+R AM address,
:0). The following data are a sequence of instructions where each instruction’s NEXT field specifies where
to load the following one: this sequencing scheme eventually requires the block to end. This sequence is
terminated by a final block consisting of two zero words.

- The swapper is a routine in the resident microcode which expects an entry number in T, loads the
appropriate overlay, and tranches to the entry. It must fetch the overlay’s description from core and then
do the following things:

1) Invalidate the entry instructians of all overlays with which the one being loaded conflicts.

2) Load the code, which must include the entry instructions specified as being newly valid;

3) Branch to the code. The initial RAW load must have all entry instructions invalid.



Cleared version of May 24, 1981
Alto microcode overlays October 20, 1976 , 94

3. Mu/Bldr interface

The third design issue is how best to get the necessary data structures incorporated into Bcpl/Nova
programs. It turns out that it is &ossible to support nested overlays with no chan%es to Mu. Forexample,
suppose that the main body of the microcode is M, and that we have three overlays: X (entry point X1),
which takes all the overlay space, and Y (entry points Y1 and Y2) and Z (entry point Z1), which willboth
fit at the same time. Assemble the following configurations with Mu: M+X, M+Y, and M+Y+Z. Then
an overlay preparation program, Oram, can compute all the necessary tables and produce a .BR file that
can be loaded with the user’s program. : :

It is necessary to be a little careful to arrange that the entry instructions fall in the same locations in all
assemblies. Furthermore, if it is desired that one routine occupy a subset of the RAM locations ofanother,
they must have the same configuration of predefinitions (and, of course, appear at the same place in the
assembly sequence). Here is a sketch for the example:

M contains (somewhere):

10,1Y1:
10.1Y2:
10,1.71;

X contains:
X1: [code for X]

Y contains:
YI1: {code for Y]
Y2: |more code for Y]

Z contains:
Z1: [code for Z]

In general, some of the predefinitions could be omitted if the entry addresses were to be predefined earlier,
for example if they were entries in some kind of opcode dispatch. In addition, there must be another file
W which is assembled with M to produce the initial RAM load:

W contains:
X1: T « 0, :swapper;
Y1: T «1,:swapper;
Y2: T « 2, :swapper;
Z1: T « 3, :swapper;

The pointer table would have the appearance
Xdesc; X1;
Ydesc; Y1;
Ydesc; Y2;
Zdesc; Z1;
and the individual descriptions would be as follows:
Xdesc: Y1, invalidateYandZ
_113(5}&-1 (hi part);

BUS«2 (hi %art);
#100000+71;
BUS«3 (hi part);
g:ode for X]p

0;

Ydesc: #100000+X1; invalidate X
BUS«0 (hi part);
[)c.ode for



Cleared version of May 24, 1981
Alto microcode overlays October 20, 1976 95

0;

Zdesc: #1000004+X1; invalidate X
BUS«0 (hi part);

[)code for Z]

s

Fortpnatel’y, given the .MB files, the Oram subsystem can construct all the tables itself. Oram assumesthat
any instruction in the base file (W) which branches to the swapper is an entry instruction.



Cleared version of May 24, 1981
. Packed RAM images March 17,1979 ' 96

PackMu, Rpram, ReadPram

These two subsystems and one library Kackage make it easy for Alto programs which use the RAMto

check the constant memory and load the RAM as part of their initialization. The first subsystem, PackMu,

takes the output of Mu (a .MB file) and converts it to a "packed RAM image" which is easy to load. The

second subsystem, Rpram, reads a Pﬁfked RAM image, checks the constant memory, and loads theRAM

%.e., it is a microcode loader). is- function is also -available through a pair of library routines
eadPackedRAM and LoadPackedRAM (available on a file called ReadPram.bcpi).

A Sacked RAM image is a .BR file containing 4401b words of data. The first word is ignored. The
next 400b words are the desired contents of the constant memory: a zero word (which Mu cannotgenerate)
means "don’t care”. Constant 0 is reserved for a version number, to help programs check that they are
getting the correct RAM contents. The remaining 4000b words are the contents of the RAM. Each
Instruction occupies two words, first high-order part, then low-order part, e.g. words 0 and 1 go intoRAM
location 0, words 2 and 3 into RAM location 1, and so on.

The invocation format for PackMu is
>PackMu foo.MB foo.BR version staticname . .

Foo.MB is the out%ut from MU. Foo.BR is the file for the packed RAM image. Version (optional) isa

RAM version number which will be written as constant 0 in the ogtlput file; if omitted, it defaults to zero.
~Staticname (optional) is the name for the static in foo.BR which will point to the RAM data; if omitted, it

defaults to RamImage. PackMu prints out

] XXX constants, yyy instructions . .
to indicate the number of constants and instructions read from foo.MB. If foo.MB is somehow illegal,
PackMu prints
ITOT: )
and an error message instead.

The invocation format for Rpram is

>Rpram foo.BR version rambank ) i
where foo0.BR is the output from PackMu and rambank is the bank number (1, 2, or 3) if Alto has the 3K
RAM option. If there are any disagreements between the constants in foo.BR and the actual constant
memory, Rpram prints

Constant nnn is xxx, should be yyy
for each constant that disagrees, and a summary message

nnn constants differ ) . .
at the end of loading (but it still loads the RAM). If version is supplied and disagrees with constant
location 0 in foo.BR, Rpram prints

RamVersion in file is xxx; version expected ismmm = .
If Rpram believes that foo.BR is not a file written by PackMu, it prints

Bad RAM image ) )
If everything is OK, Rpram prints nothing.

To read in a packed RAM image file from a program, use the subroutine ReadPackedR AM(stream,
IvRamV [], rambank [1]). The stream argument should be a word-item input stream positioned at the
beaning of a foo.BR file; IvRamV, if supplied, is taken as the address of a variable in which to store the
value given by the file for constant 0 (i.e. the RAM version). ReadPackedRAM does exactly the same
thing as the Rpram subsystem, including printing disagreement messages on the display, but instead of
printing the summary message it just returns the number of disagreements, or -1 in the case of a badRAM
image file. Rpram essentially just opens foo.BR and calls ReadPackedRAM.

Altemativegil), you may wish to load the RAM image foo.BR with your program. In this case, usethe
subroutine LoadPackedR AM(staticname, IvRamV [], rambank [1]) where staticname is the name you gave
to PackMu. LoadPackedRAM does the same thing as ReadPackedRAM, except it takes the data out of
memory instead of from a file.

On Altos with the 3K RAM, note that since LoadPackedRAM and ReadPackedRAM use two words



Cleared version of May 24, 1981
Packed RAM images March 17, 1979 97

in RAM bank 1 for checking the constant memory, you should load bank 1 last if you have a multi-bank
microprogram.

Maintainer’s notes:
- PackMu uses the library packages GP and ReadMu.
Rpram uses the library package GP.



Cleared version of May 24, 1981
PeekPup May 17, 1976 98

PeekPup

PeekPup is a small subsystem enabling one to geek at Pups going to and from a particular Ethernet host. It
is intended as an aid in debugging new Pup software. :

PeckPup is invoked by the command
PeekPup hostnumber filename

where "hostnumber” is the Ethernet address (octal) of the host whose packets you want to spy on and
"filename" is the name of a file to write the output on. The program then looks for packets whose
Ethernet source or destination address is equal to "hostnumber”, and buffers them in memory. Foreach
Pup so processed, "!I" is disglayed on the screen. PeekPup terminates when any key is pressed, at which
point it interprets the last 200 Pups received and writes the result on the specified file.

The output is mostly self-explanatory. The numbers in the left margin represent a millisecond clock (with
no particular starting value and wrapping around at 32768). For each Pup, a few lines of output are
generated; the information about Pups sent to the host being spied upon is indented further than
information about Pups generated by that host. Pup headers are fully interpreted, and Pup contents are
displayed as either text or a series of octal numbers representing bytes; large Pups get only the initial
portion of their contents displayed, followed by "...".



Cleared version of May 24, 1981
Pressedit September 15, 1980 99

Pressedit

Pressedit is useful for combining Press files together, selecting certain tEages from a Press file, or adding
extra fonts to a Press file. The general command format is illustrated in the following example:

pressedit foo.press « a.press b.press 2 5 c.press 3 to 7 9 TimesRomanl10/f
This means "make a Press file foo.press from all pages of a.press, pages 2 and 5 of the Press file b.press, and
pages 3, 4, 5, 6, 7 and 9 of c.press; add font TimesRomanl0 to the fonts defined in foo.press”. The
resulting file will be arranged in the same order as the component input files.
Examples:
To extract pages 3 and 17 from a Press file long.press, and put them in short.press:
pressedit short.press « long.press 317
To add fontslogo24 and helveticald (o a.press:
pressedit a.press « a.press logo24/f helvetical4/f
Here the arguments on the right hand side of the arrow may be given in any order.
To make a blank, one-page Press file containing all three faces of Timesroman10:
pressedit blanktimes.press « timesromanl(/f timesromanl0i/f timesromanl0b/f
To append to the end of chap3.press all the Press files with names fig3-1.press, fig3-2.press, ﬁg3-3.préss etc:
pressedit chap3.press « chap3.press fig3-*.press
Caution: when you combine files with Pressedit, try not to use different sets of fonts, or the same fontsin
different orders. This will result in proliferation of font sets, making the file more bulky and creating other
minor sources of inefficiency. :
Merging Press files together: Pressedit allows any number of Press files to be merged onto _the pages of
another Press file. is is useful for inserting illustrations in a formatted document. The following

description assumes that the user wishes to add illustration figures figl.press, fig2.press, . . . . fig9.press toa
document file doc.press. .

INlustration files should be of one %zjige. only; Pressedit will ignore all but the first page. The document file
may have any number of pages. ¢ illustrations are placed in position on the appropriate page with the
aid of an ARROW. The document file must have an arrow for every occurrence of an illustration; every

illustration must also have an arrow. Pressedit aligns the pairs of arrows when merging the files, and
removes the two arrows.

In the document file, arrows have the form:
<= =<fig3.press<

In other words, the name of the illustration file is preceeded by the string <= =< and is followed by the
character <. NO SPACES are allowed before the arrow, but you may use tabs to position it if you wish.

In the illustration files, arrows have no file name:

(==K



Cleared version of May 24, 1981
Pressedit September 15, 1980 , 100

Again, no spaces before the arrow, please.
To merge the files, run Pressedit with a /m switch:

pressedit/m foo.press « doc.press figl.press fig2.press ... fig 9.press
This command can of course be typed more concisely as follows:

pressedit/m foo.press « doc.press fig# .press
for the command interpreter to expand. All illustration files must thus be included in the input file list,
preceded by the document file name. The same illustration may be inserted on several pages, usingarrows
in the document file containing the same file name. In such cases, it is not necessary to mention the
illustration file more than once in the command file. For example, if doc.press has an arrow on every page
referring to squiggle.press, it is sufficient to type:
pressedit/m foo.press « doc.press squiggle.press
When merging files, Pressedit uses a special third pass duririg which it types out the page numbers
containing illustrations and the names of merged files. If the merged file was not listed in the command
line or was found not to contain the necessary arrow for positioning, Pressedit will complain, and will omit
the illustration. :
Three limitations
It is not currently possible to merge with selected pages of the document file, thus

pressedit/m foo.press « doc.press 2 to 6 figl.press fig2.press...
Instead you must select the pages and merge in separate operations.

IHlustrations may include any legal Press entities, but at present there are likely to be difficulties with very
large images.

Certain illustration files will give Pressedit problems, and will result in the message "negative origin." This
means that the illustration was drawn near the top of the page, and is now being inserted near the bottom,
causing the "origin" to move off the bottom of the document dpatge. This happens only in rare cases of Press
files created with obsolete versions of Draw. If you should encounter this problem, ]glet an up-to-date
version of Draw, read the Draw file in and write it out as a new Press file: the problem will go away.

Page Numbers
Pressedit will add page numbers to the output file if you use the /p switch:
pressedit/p foo.press « doc.press

The /p switch may be used on partial and multiple input files. It will omit the Apgge number on the first

page, and number the remaining pages starting at 2. Numbers appear about 3/4 inch down from thetop

and 1 1/4 inches in from the right. To change these default options, append any of the following

paramenters to your command line:

xxx/0 omit numbers on the first xxx pages. (default 1) xxx/s start numbering at xxx (default 2) xxx/x x
. coordinate of number, in 100ths of an inch (default about 675), measured from the left edge of the paper.

xxx/y y coordinate of number (default about 1025) measured from the BOTTOM edge of the paper.

Thus to start numbering on the third page (i.e. omitting the first two), numbering from 17, with the
number positioned at x = 6.5 inches and y = 10 inches, use the following command:

pressedit/p foo.press « doc.press 2/0 17/s 650/x 10007y



Cleared version of May 24, 1981
Pressedit September 15, 1980 101

Any and all of the page-numbering paramenters may be omitted if the default value is OK.



Cleared version of May 24, 1981
RAMLOAD April 1, 1975 102

RAMLOAD

RAMLOAD is a program that acts as a microcode loader, using the output of the microcode assembler
Mu. Since there are now two types of microcode memory for the ALTO, some distinction must be made.
Hereafer, ROM means some combination of roms on the ALTO control board, and add-on goodies which
hang on the end of the control board like debuggers with 512 words of ram. RAM means the extraboard
with 1K of ram which plugs into a slot in the processor.

RAMLOAD gets its parameters from the command line and default values. If you do not specify a
parameter, the default is used. In addition there are some global switches which do other useful thingsas
explained below:

GLOBAL SWITCHES (of the form RAMLOAD/switchlist)

/R compare the micro binary file against the contents of the RAM and display differences.

/v compare the micro binary file against the contents of the ROM and display differences.
/C céqf?pare the micro binary file against the contents of the constant memory and display
ifferences.
/T Test the RAM and extra R registers by writing random numbers and then reading them back
displaying differences and addresses.
/0 Same as /T but do not test the R registers. )
/N Do not request Confirming <CR> for any operation.

LOCAL SWITCHES (of the form foo/switch)
/F ~ use foo as the name of the micro binary file. Default is "BINFILE."

/M use foo as the name of the instruction memory in the micro binary file. Default is
"INSTRUCTION", , )

/C use foo as the name of the constant memory in the micro binary file. Default is
"CONSTANT".

A% foo is an_octal number. Use it as the boot locus vector. Bit 15 corresponds to task 0

%emulator). 0 means run task in the RAM. Default is # 177777 - keep all tasks in ROM.

00 is an octal number, representing the base address of a 5 word area in the RAM which
RAMLOAD can use for utility purposes. Default is the top 5 words (#1772). See warnings
below about restrictions for specific operations. .

/S foo is an octal number interpreted as the beginning address of the emulator main loop
(START for microcode hackers). Default is the current START address, # 20.

Note that l%lobal switches /V, /C, and /T do the same things that ;V, ;C, and ;T do in DEBAL.
RAMLOAD in effect does a ;L, and also sets the boot locus vector. The /R global switch was added
because it was easy and people might want to see if the microcode got smashed after a fiasco.

/A

When RAMLOAD is called, it will first display what it thinks it is supposed to do as governed by the
switches and defaults, and wait for a confirming carriage return. When this is received, 1t will attemptto
open the micro binary file. If this is unsuccessful, it will put out a message to that effect. Next, operations
specified by global switches will be performed (If the micro binary file could not be opened, the only tests
possible are /T and /0). If no global switches were set, the program will assume you wanted to load, and
do so without waiting for confirmation. Loading is a three step og_eration in which the first step, settingthe
boot locus vector, does not reﬁuire an open micro binary file. This allows a user to change the bootlocus
vector without reloading the RAM, by specifying a nonexsistant file name for the micro binary file. The

rogram will report the value the vector is set to. Steps two and three, unsnarling the micro binary fileand
oading its contents, obviously require an open file and will cause RAMLOAD to bomb if there is none.
When the loadin oEeration is complete, the number of instructions loaded, and the highest address willbe
reported ala DEBAL. Next the program will ask if you want to boot, thus movm% the tasks specified inthe
boot locus vector into the newly loaded microcode in the RAM. If you confirm, and if you have an
Ethernet board, the machine will do a software initiated boot. If you do not have an Ethernet, the bootwill
be a NOP, and a FINISH is executed. Hitting the boot button after the program is finished will work for
those hermits who do not have Ethernets.



Cleared version of May 24, 1981
RAMLOAD April 1, 1975 103

The routine which reads the micro binary file expects the limited subset of block-types that DEBAL puts
out. Ifit encounters an unusual block-type (3, 5, or 6), it will endeavor to do the leglgt thing, and continue
on. When it is finished reading, if any unusual tyfes were encountered, it will list how many of each it
read. If the microcode was assembled using DEBAL, this is cause for grave doubts about the correctnessof
the file, since DEBAL will not currently generate these types.

Where the 5 word utility area is specified can have profound (ie. potentially disasterous) effects on the
machine’s operation if you are currently running from the RAM. While it is possible to load the RAM
while executing in it, this is living very dangerously. However, if you must, observe the following caveats:

* if gom(;itant memory is being checked, and you are executing out of the low 256 locations, you are
ead.

* the 5 word utility area must be specified in a place you will not be executing from during the
RAMLOAD program. RAMLOAD always saves any word in RAM it modifies for utility
purposes, and restores it when it is done, but while in use, it can have an arbitrary value.

A number of things can cause fatal errors during execution. If one happens, an error message is writtenin
the system display area, and the program is aborted.



Cleared version of May 24, 1981 -
SCAVENGER May 24, 1976 104

SCAVENGER

A subsystem for checking and correcting disk packs is available as SCAVENGER. Invoke it with no
parameters and it will give you an opportunity to (1) change disks and (2) prevent it from altering your disk
seriously (see below).

The scavenger does the following:

1. Corrects header blocks, prompting for confirmation. )

2. Corrects check sum errors, by re-writing whatever came in, prompting for confirmation.

3. Discovers all well-formed files and all free pages. Any disk page (except page 0) that is neither free
nor part of a well-formed file is considered bad.

4. Makes the serial numbers of all well-formed files are distinct.

5. Corrects the system’s notion of what pages are free.

6. Corrects the system’s latest serial number. . .

7. Corrects the directory to contain precisely the well-formed files. If a directory entry points intoa
chain of bad pages it attempts to salvage the file. If need be a directory is created from scratch.

8. Links all bad, unsalvaged pages together as part of the file Garbage.$. i

9. Descri}:es al(l1 changes to the disk in the file ScavengerLog, even those which were not actually

erformed.

10. Corrects leader page information. Changes to leader pages should not cause alarm. The

information there is used as a hint by various systems.

The data in bad pages is not changed so you can attempt to reconstruct a lost file by suitable operationson
Garbage.$, consulting ScavengerLog to interpret its contents.

A hopelessly smashed disk may be put back in shape by the following: o

1. Invoke scavenger on a good disk and answer yes to "Do you want to change disks?"

2. Replace the good disk with the bad one. -

3. Answer yes to "Is the new disk ready?” when the yellow ready light comes on.

4. Answer yes to "May 1 alter your disk to corrct errors?” .

5. If FTP lives on your disk, the scavenger will offer to invoke it rather than retuning to the executive.
Once gou are in FTP you can receive critcal files (like Executive.Run or SysFont.Al) or evacuate
your disk by sending files elsewhere. If the scavenger does not offer FTP, it is not there andyou
will have to do some more disk suffling to retreive files; i.e. invoke FTP from a good disk and
change disks after you are in. ,

You should take precautions to avoid losing vital files (such as QUICKing your disk to another disk pack
prior to running SCAVENGER).



Cleared version of May 24, 1981
SCAVENGER May 24, 1976 105

PARC information

The following, more or less independent, procedure can be used to recover vital files that might have been
lost during scavenging.
1. Invoke on a good disk.
2. At an early point in the dialogue replace the good dlSk with the bad one and wait for the yellow
ready light to come on.
3. Rettl?eve) e needed files from MAXC (Executive.Run and FTP are the minimum required, I
ink.
4. Quit out of FTP. )
5. Run the scavenger. It will correct the DiskDescriptor file which became inaccurate during this
process.



Cleared version of May 24, 1981
SWAT March 16, 1980 ‘ 106

Swat, a BCPL-oriented debugger

Swat is a debugger meant to be used with the Alto operating system. While many of its features are BCPL
oriented, it can be used on any Alto program. This document describes version 28 of Swat, which is
compatible with Operating System versions 17 and greater. ‘

1. History

Swat was designed and built by Jim Morris and Alan Brown duringPthe summer of 1973. Bob Sproull
added the error file mechanism and parity error logging du . u W. an

dded th fil hanis d g rity e logging d rm%1976 eter Deutsch rewrote thecommand
processor and added the command file facility in early 1977. David Boggs rengvated the program, adding
mulitple proceed break points and TeleSwat, and Ed Taft added the help facility in late 1978. Everyone
a%rees that the human interface is awful. Each person who has worked on Swat has added several more
obscure commands while they were at it.

2. How it works

Swat is an external debugésr: with the exception of a small piece of "resident’ code in your address space, it
lives in a separate space. When Swat is invoked, the resident saves your state on the file Swatee, and swaps
in Swat. References to your memory from within Swat go to the Swatee file. When you tell Swatto
;SJroceed, it saves itself on the file Swat, swaps you (the Swatee) in and resumes you. Your state at the time

wat got control is displayed in a window at the bottom of the screen. "ACO", "PC", etc are built-in
symbols with which you can manipulate it.

3. Invocation
Swat may be applied to any program running under the operating system after it has been installed (see
Installation below). There are six ways of getting its attention:

(1) Hold down the <control> and <left-shift> keys and then
press the <Swat> key.

(2) Have your program execute the op-code 77400B.
(3) Invoke the Resume/S command (see below).

(4) Boot the file Dumper.Boot, normally by booting with the "DU™
keys depressed.

(5) Type <programName>/! to the Alto command processor.

(6) Call the function CallSwat. Up to 2 arguments will be printed
as BCPL strings. Thus CallSwat(""No more memory")



Cleared version of May 24, 1981
SWAT March 16, 1980 107

4. Commands

The command scanner has suffix action symbols, all of which are control characters (e.g. +C).. "n" isany
BCPL expression (see Expressions below), "$" is escape except where noted, "cr" means carriage return,
"If'" means line-feed. You can abort whatever Swat is doing at any time and get back to the top level
command scanner by pressing the <Swat> key.

4.1. Help facility

Most debuggers have a terse and obscure command syntax, and Swat is no different. In fact it’s worse
since it doesn’t follow DDT conventions. Typing "?" prompts you for a command character which Swat
looks fp u;l tllie tfllle "Swat.help". Responding "7 to its prompt gives you a small table of contents forthe
rest of the help file.

4.2. Displaying cells

addresstD prints the contents of n in decimal

addresst] prints the contents of n as two 8-bit bytes
addresstN prints the contents of n as an instruction
addresstO prints the contents of n in octal

addresstS prints the contents of n as a pair of characters
addresstV prints address in octal and decimal

The last cell printed is called the open cell. 1O, tD, tI, N, or *S alone re-prints the open cell in the
a%propriate format. If you wish to print out a number of cells, beginning with the open cell, say n$tD,
n$tl, etc. The last cell printed becomes the open cell.

If(+)) opens and prints the contents of the next cell (after the open one) in the same mode.

W opens and prints the cell before the open cell.
A opens and prints the cell pointed at by the open cell.
1E opens and prints the cell at the effective address of the open cell.

The last cell that was opened by any command except LF or tW is called the last open cell. Often you are

stepping through code, follow a pointer with 1E or 1A, look around, decide it’s not interesting and wishto

tr)esume where you were before following the pointer. You can get back to last open cell plus or minusone
y:

$IE($+) open and print last open cell+1.
$cr ($tM) open and print last open cell,
W open and print last open cell-1

4.3. Changing c=lls

The contents of the open cell (if there is one) may be changed bly t)%ping an expression for the new value
follovied by a cr, If or *W. AS$B followed by cr, If or +W stores A Ishift 8 4+ B into the open cell.



Cleared version of May 24, 1981
SWAT March 16,1980 108

4.4. Searching _
nt= searches from the open cell+1 for a cell whose contents is n. Prints and opens that cell.

n$r = se:lalrches from the open cell+1 for a cell whose effective address is n. Prints and opens that
cell.

A search terminates at the end of memory (location 176777b -- the 1/0 area is not touched) and can take
quite a while: abort by hitting <swat>. The argument for a search command is defaulted to the last value
searched for if omitted.

4.5. Running the program

1P resumes the program, i.e. proceeds.
addresstGresumes the program at address, i.e. goes there.

<{procName>§<e1>$...§<en>*C calls the BCPL procedure "procName" with parameters <el>,.... en>
(n<6). If you wish one of the arguments to be a BCPL-format string, merely enclose itin
quotes. Thus OpenFile$"Com.Cm."+C will return a stream on the file. AC2 is assumed to
contain a legal stack frame pointer and ’procName’ will allocate a new frame on top of it.
Often AC2 is not valid (e.g., Swat interrupted the program in the middle of allocating a
frame), and calling a procedure at this point may not work. Most of the time Swat can
detect this and warn you.

+U ~ restores the user’s screen. Hitting the <swat> key brings back Swat.
+K forces the user program to abort, just as if you had typed <left-shif><swat> while it was
running. .

4.6. Break Points

A Break point can be referred to by its address or by the index assigned by Swat when the break pointwas
set. When printing or deleting a breakpoint, Swat reaches out into the user’s address space to check that
the break is still there.

addresstB sets a break at address
1B set a break at the open cell
0$addresstB deletes the break at address

proceedCnt$addresstB sets a multiple-proceed break point at address. The breakpoint will take effect
when it has been hit proceedCnt times, and then it will be deleted. Passing
through a multiple proceed break point without stopping takes about 200 us.

index$tB deletes the break with index index

0$$+B deletes all breaks

$$tB prints all broken locations.

$*P removés the current break and proceeds.

address$$+P sets a one-shot break point at address and then proceeds. A one-shot break point

is one that is removed after it is hit.



Cleared version of May 24, 1981
SWAT March 16, 1980 109

stackIndex$tP sets a break at a BCPL return point in the stack somewhere and proceeds from
the present break. The parameter n specifies the frame number, where the most
recent (top) frame is 0. Thus if +T typed out 0:GOO+56 1:HAM+5, 1$1P
would set a break at HAM + 6 and proceed.

4.7. Stack Study

%eénghaptﬁr 10 of the BCPL manual and section 4.8 of the Operating System manual for the details ofa
stack.

12T prints the current PC and all return addresses in the call stack (symbolically), until an
Inconsistency in the stack (usually signaling its end) is encountered. After each return
address is listed the parameters passed to the procedure that will be returned to. "2:43752
137 0 Foo+45--(14 177777)" means the 2nd most recent frame at 43752, of length 137 is
%rocedure Foo in bank 0, called with arguments 14 and -1 (fine point: 14 and 177777 arethe
1st two local variables in Foo’s frame, which Foo could have modified before Swat was

called, in which case they won’t be the values passed at call time).

ntT traces a stack beginning with the frame at location n.

indextF prints the parameters of the nth latest stack frame and sets the pseudo symbol "$" (not
escape) equal to the base of that frame. If tT displayed something like 0:FOO+3,
1:BLETCH+10.... 'Il_”lype 11F to see the parameters that were passed to BLETCH. § is setto
phes baie of BLETCH’s frame (i.e., $ points at the frame’s back link: the first local variableis
m d>+4. )

4.8. Symbol table

1Y frompts you for the name of a symbol file. Tyge the name of the subsystem that’s running.
fit can’t find a file with the name you typed, Swat appends ".syms" to it and looks up the
resultingFﬁle name before reporting failure. If BLDR created the file FOO.RUN it also
created FOO.SYMS, which gives the locations of all the static names. Only statics can be
used in Swat. There are permanent built-in symbols for the interestin Eage-l and high

memory locations, BCPL runtime routines, and the user’s state variables (AC(-3, PC, etc.).

4.9. Save/Restore

See 'Resumable files’ below for more details:
1L prompts you for a file name on which it saves the current Swatee.

+Q prompts you for a file name which it installs as the current Swatee.

4.10. The Spy Facility

The spy can be used to estimate where the time is going on a percentage basis. It samples the PC every
30-milliseconds.

0)) Type tX and Swat will display how much user memory it needs for the metering code and tables.
) Probe around to find a block of storage of the required size, and tell Swat by typing
ntX

where n is the first word of the block.



Cleared version of May 24, 1981
SWAT March 16, 1980 110

3) .Proceed to run the program.
@) Once Swat gets control again you can type
$1X
to display the results and terminate the spying activity, or
$$1X
to display the results so far and continue the spying.

4.11. Miscellaneous

$rY Prompts for the name of a (text) file from which Swat commands should be taken. Reading
will continue across "proceeds” from breakpoints, but will be aborted if Swat is invoked by
the keyboard (controlXleft-shift><swat>) or by the standard break-point trap (77400B).

$$1Y Puts Swat into TeleSwat server mode. The keyboard is ignored: to regain local control hit
the <Swat> key. For more on TeleSwat see the sections on Address Spaces and TeleSwat.

ntR Prints the value of R or S register n. You must have a RAM for this to work.

$R Prints all of the R and S registers.

$$1Z  Repeats the message that was displayed when Swat was invoked. This is sometimes usefulif
an error message has scrolled away as a result of poking around.

4.12. Address Spaces

+Z prompts for the target address space. Swat can treat any file created by Outld, any bank of memory,
and any host in the internet (with the host’s cooperation) as the Swatee: the address space into which you
peer with Swat. The syntax for address spaces is:

filename this is Swatee’ for normal debugging, but can be any file created by OutlLd
(sysOut files (+L) are in this category), or Dumper.

Bank0 Swat itself.

Bankl...3 the extended memory banks. These are only legal on AltoIl XMs. No check is

made that a bank actually exists. If it doesn’t, or if it hasn’t been written into
since the Alto was powered up, you are likely to get parity errors.

[host] a host that implements the server half of the TeleSwat protocol (usually.another
Swat). [host] can be either a name: [Boggs], or an internet address: [3#241#].
The square brackets are required: this 1s how Swat decides that you mean a

[host] rather than a file.
4.13. Examples
Xr01tD prints the value of X in octal, then decimal.
func+ 3N IfIf prints instructions 3, 4, and 5 of func.
1107 sets location 1 to 7.

labeltB sets a break at label



Cleared version of May 24, 1981

SWAT March 16, 1980 111
7562+B sets a break at location 7562B

SQRT$16tC calls the (user) function SQRT (the returned value is printed)

label +3tG transfers to the third instruction after label.

0T prints the PC

0tF prints the parameters of the most recent call

2@F prints the parameters of the third most recently called procedure; then

$r0 prints the saved stack pointer (frame!0)

$+110 prints the return address (frame!l)

$§+610 prints the first local (if the procedure has 2 parameters).

5. Expressions

Expressions are as in BCPL with the following exceptions

3

means exclusive OR

\ means REMAINDER

| means LSHIFT for positive arguments, RSHIFT for negative
means NOT

A string of digits is interpreted as octal unless suffixed by a
$ (not escape) is the base of the last opened stack frame (see 1F above). Initially it is the last frame.

static name>, "t" followed immediately by a static name, means use the address of the static, not its
value, even if it is a procedure- or label-type static.

. is the last opened cell

PC is the address of the cell containing the user PC. This is the address at which Swat will resume Swatee-
when you say 1P.

ACl,...,AC3 are the addresses of the user’s accumulators.

CRY is the address of the user’s carry bit.

INT = on = non zero ifinterrupts where on when the Swat trap happened.
. No functlon calls in expressions.

No relational operators (e.g. EQ)

No conditional expressions

No lv operator (weil...see +<static name> above)



_ Cleared version of May 24, 1981
SWAT March 16, 1980 112

5.1. Examples

170 prints the cell before the currently open cell.
.+110 is like line-feed.

AC1t06 sets AC1lto 6

PCr072

1P is like 721G

PCrO IfIfIfIf prints the PCand the AC’s

The conventions for expression evaluation are not truly BCPL-like. "Ft0" will print the first instruction of
F if BLDR thought it was a procedure or label, but print the contents of static cell F if BLDR thoughtit

was a variable. If F started life as a variable, but had a procedure assigned to it you must call it by
"@F+C" instead of "F1+C".

6. Resumable Files

The file Swatee is a snapshot of a Tunning program and can be saved for subsegent resumption or
examination. You can create a copy of Swatee by usinf COPY or, if you are in Swat, typing 1L and giving
a file name. This copies Swatee to the named file and appends some information internal to Swat -- the
current symbol table and break point data.

There are several ways to restart resumable files:
1)  Press the boot button while holding down the keys for the file.
2) Type the command (it is interpreted by the Exec)
RESUME file
If"file" is omitted Swatee is assumed.
RESUME/S file
writes file onto Swatee and invokes Swat.

3) While in Swat, type 1Q and give a file name. The file is copied onto Swatee and Swat’s
internal information is restored to whatever was saved by the 1L command that created
the file. If the file was created in some way other than L, the internal information is
reset to an empty state.

7. TeleSwat

Swat implements a simple Puﬁ? protocol, TeleSwat, by which it can treat a machine anywhere in the
internet as the Swatee Fwith e consent and cooperation of the other machine). The Swatee is made
receptive to control from the network by typing $$1Y. The controlling Swat’s attention is directed at itby
specifying the Swatee’s network address as the target virtual memory (see the tZ command). When you
tell the Swatee to proceed (1P, 1G, +U), you loose control: your Swat starts probing the Swatee once per
second, but if the Swatee never returns, you must get help from someone at the other end. Each timea

acket is sent, the cursor is inverted to let you know somethm% is happening. Executing the opcode
97412b is equivalent to CallSwat(stringl [], string2 [}) followed by $$tY.



Cleared version of May 24, 1981
SWAT March 16, 1980 113

8. Desperation Debugging

If the resident is broken so you can’t use <Left-Shif<ControD><Swat> to get to Swat to see what went
wrong, then you are desperate. Press the boot button- while holding down the keys for the file
Dumper.Boot (the OS and InstallSwat conspire to make this be "DU" normally). This writes the existing
memory onto Swatee with the exception of pa%e 0 which is lost éDumper lands in page 0 when you bootit).
Also the display word (420b) is cleared. Finally, Swat is invoked. ‘

9. Error Message Printing

Swat contains some facilities to aid in printing error messages. Because the Swat resident is almostalways
resent when a program is running, an error message can be printed by simulating a Swat "break," and
etting the Swat program decipher the error specification and print a reasonable message.

If Swat is invoked by the 77403b trap instruction, the contents of ACO are taken to be a pointer to aBCPL
string for a file name; AC1 is a pointer to table [ errCode%ClearBit; pl; p2; p3; p4.... ], where errCode (Ole
errCode le 32000.) is an error code, the p’s are "parameters," and ClearBit is either 100000b (clear the Swat
screen before printing the message} or 0 (do not clear).

The intended use is with a BCPL procedure like:
let BravoError(code, pl, p2, nil, nil, nil) be

code = code%UserClearScreenBit
(table [ 77403B; 1401B ]))("'bravo.errors”, lv code)
// do a "finish" here if fatal error

The error messages file is a sequence of error messages, searched in a dumb fashion. An error message is:

a. An unsigned decimal error number (digits only)
b. Followed optionally lzg:
Always clear the screen before printing the message

M (see below)

L Log the error via the Ethernet.
c. Followed by a {space>. )
d. Followed by text for the message, including carriage returns, etc.

If you wish to refer to a parameter, give:

followed by a digit to specify the parameter number 1-9

followed optionally bty "IKoffse>" which treats parameter as a
number, adds offset to it, and sets parameter to the
contents of the resulting address (i.e. a vector ref).

followed by a character to say how to print the parameter:
O = octal
D = decimal )
S = string (parameter is pointer to BCPL string)

(example: $1D will print parameter 1 in decimal)

The quote character is <escape>.
e. Followed by $$.

After the message is typed, if M was specified, the message "Type <control>K to kill, or <control>P to
proceed.” is typed out.



Cleared version of May 24, 1981
SWAT March 16, 1980 114

10. Parity Error Information

When the Alto detects a parity error, Swat is usually invoked to print a message about the details of the
error. It then attempts to "log" the error with an Ethernet server responsible for keeping maintenance
information. If the server is not operating, or if your Alto is not connected to an Ethernet with such a
server, simply strike the <Swat> key, and the familiar " # " will appear.

In many cases, you will want to continue execution of your program after a parity error is detected. Siinply
type <controDP to Swat.

11. Installation

Get the file InstallSwat.Run. Then invoke it to create Swat (the debugger), Swatee (the swap file for the
user’s memory image), and Dumper.Boot (the desperation debugger invoker). InstallSwat.Run may be
deleted after it has been run once. Use the Exec’s BootKeys command to discover the keys to depress for
Dumper.Boot; normally they are "DU".

InstallSwat.run is the Swat program. When invoked it, it hooks up to the current o&)eratin system,

%lr;itigllizeszs itself, and then Outlds all of core including the OS (suitablI))I Junted and slightly patched) onto
¢ file dwat.

12. Caveats

1. Swat has about 1k of resident code in high memory. This code is not changed when new subsystems
come in. Therefore re-boot if it seems to be in a bad state. Swat can get itself into a bad state too.
SYSINing (+Q) Swatee is a very effective general purgative; ignore the warn1n§ message - its doing exactly
what you want it to. If all else fails, make sure you have a clean copy of the OS, and then reinstall Swatby
running InstallSwat.run.

2. Instructions 77400B - 77777B are used by Swat. The actions of some of these (¢.g. 77401B) are
pubéished; you get what you deserve if you use the unpublished ones. Location 567B (in the trap vector)is
used.

3. Interrupt channel 8 (00400B) is used by the resident for keyboard interrupts (getting to swat via a
<controlD<left-shift><swat> key combinationg. '

4. A program fetching data from a broken location will get 774xxB.

5. While most interrupt routines are reasonably polite and always resume the interrupted code where itleft
off, the politeness of Swat’s keyboard interrupt is entirely in the hands of the person at the controls. Ifhe
re-starts by saying 1P, all goes well; but he may say G or 1C. Therefore

a) You should disable the keyboard interrupt by anding 77377B into 453B during critical sectionsof
code (once they are debugged).

b) Expect occasional anomalies after +C or +G is used.
6. The mappings between symbols and addresses are naive about BCPL’s block structure.
a)Ifa symb‘ol is defined twice or more you get the lowest address.

b) An address is mapped into a procedure name plus a displacement for symbolic type out (e.g. for



Cleared version of May 24, 1981
SWAT March 16, 1980 115

+T). If procedure A is defined inside procedure B, most of B’s addresses will be typed as if
they were A’s.

7. If a disk error prevents swapping, the offending disk control block and label are displayed in the "boot-
lights" manner.

8. Locations 700b through 707b are used to save the machine state before each swap.
9. If a file created on a different disk is resumed by booting, invoking Swat may not work because Swatand

Swatee mafi not reside at the same disk addresses on the different disks. This difficulty does not occur if
the Exec’s RESUME command is used, since it will fix up the addresses before resuming it.



Cleared version of May 24, 1981
Trident disk software June 14, 1980 - 116

Software and Ultilities for Trident Disks:
Tfs and Tfu

1. Introduction

This document describes B_c[pl-based software for operating any of the family of Trident disk drives
attached to an Alto using a "Trident controller card” (the software presently deals with the T-80 and T-300
models). Hardware and diagnostic information can be found in the document "Trident disk for the Alto"
(on <AltoDocs>AltoTrident.press), by Roger Bates.

A "Shugart controller card" also exists, for connecting to Shugart model SA-4004 and SA-4008 disk drives.
The Shugart controller is microprogram compatible with the Trident controller, and the Trident software
can operate it as well. In this document, all references to Trident disks apply to Shugart disks as well,
except where noted otherwise.

The software documentation is divided into three parts: (1) a brief "how-to" section describing the
software package available for operating the Trident; ?2 a section describing the utility program Tfu; and
53) a section describing the software package in more detail. There is a short revision history at the end.
Documentation for the Triex program, formerly included here, has been eliminated. Triex is nowneeded
only for hardware checkout and is not required during normal operation.)

The Tfs package and utilities all assume that the disk is to be formatted with 1024 data words per sector.
The maximum capacity of each disk is given in the following table.

Disk Tracks Heads Sectors Total g)ages Total words
T-80 815 5 9 36,67 37,555,200
T-300 815 19 9 139,675 142,709,760
SA-4004 202 4 8 6,464 6,619,136
SA-4008 202 8 8 12,928 13,238,272

For all disks except the T-300, it is possible to construct a single Alto-format file system utilizing the full
disk capacity. Due to the restriction of virtual disk addresses to 16 bits, a single file system may utilize only
a?%lllt 7 perae;nlg of a T-300 disk, and it is necessary to construct multiple file systems in order to makeuse
of the entire disk.

‘Because of bandwidth limitations, it is unwise to operate the Trident disk while the Alto display is on.
Although the Tfs package will save the display state, turn it off, run the disk, and restore the display for
every transfer, the user may prefer to turn the display off himself. The Tfs management of the display
causes the screen to flash objectionably whenever frequent calls to Tfs are underway.

The present version runs only under Operating System version 16 or newer.

2. Trident File System (Tfs) software package

The software for glperating the Trident disk is contained in <Alto>Tfs.dm, and consists of the following
relocatable files: TfsInit.br, TfsBase.br, TfsA.br, TfsWrite.br TfsCreate.br, TfsClose.br, TfsDDMgr.br,
TfsNewDisk.br, TfsSwat.br, and TriConMc.br. The definitions file Tfs.d is also included.

Source files are contained in <AltoSource>TfsSources.dm. Included also are the Trident microcodesource
files, TriConMc.mu and TriConBody.mu. These are needed if you want to load other microcode into the
Ram along with the Trident microcode.



Cleared version of May 24, 1981
Trident disk software June 14, 1980 117

The LoadRam.br file, formerly included as part of the Tfs, is now available as a separate package.

2.1. Initializing the microcode

Operating the Trident requires special microcode that must be loaded into the RAM before disk activity
can start. The procedure LoadRam will load the RAM from a table loaded into your program (it is
actually part of TriConMe.br). It will then "boot” the Alto in order to start the appropriate micro-tasksin
the RAM. (This booting process is "silent" -- it does not re-load Alto memory from the file Sys.Boot, but
instead lets your program continue.) The standard way to call LoadRam to load the Trident diskmicrocode
is:

external DiskRamImage
external LoadRam

let result=LoadRam(DiskRamImage, true) //Load and boot
if result Is 0 then

sg"The Alto has no RAM or no Ethernet board.")
XVQ 'I;Cannot operate Trident")
nis

After LoadRam has returned successfully, the code of LoadRam and TriConMc may be overlaid with data
-- they are no longer needed.

When exiting a program that has micro-tasks active in the RAM, it is helpful to "silently” boot the Altoso
that all micro-tasks are returned to the ROM. If this is not done, subsequent use of the RAM may cause
some running micro-task to run awry. To achieve the "silent boot,” simply call the procedure
TFSSilentBoot() at *finish’ time or as part of a user finish procedure’.

For further information, consult the LoadRam package documentation.

2.2. Initializing the Trident drive

Once the RAM has been loaded, the Trident disk can be initialized. The procedure TESInit will do this,
provided that a legal file structure has previously been established on the drive (see Tfu Erase, below). The
procedure returns a "disk object," a handle which can be used to invoke all the disk routines. Thisdisk
object (or "disk" for short) can be passed to various Alto Operating System procedures in order to open
streams on Trident disk files, delete Trident disk files, etc.

tridentDisk = TFSInit(zone, allocate [false], driveNumber [0], ddMgr [0], freshDisk [false])

zone You must provide a free-storage pool from which memory for the disk object and possibly
for a buffer window on the disk bit table can be seized. The zone must obey the normal
conventions (see Alto Operating System Manual); zones created by InitializeZone are fine.

allocate This flag is true if you wish the machinery for allocating or de-allocating disk space
enabled. Ifit is enabled, a small DDMgr object and a 1024-word buffer will be extracted
from the zone in order to buffer the bit table (unless you supply a ddMgr argument,
described below).

driveNumber This argument, which defaults to 0, s&eciﬁes the number of the Trident disk drive being
initialized, If the drive is a T-300, the left-hand byte specifies the number of the file
system to be accessed on that drive, in the range 0 to 2. (For further information, consult
the section entitled *Disk Format’.)

ddMgr This argument, which defaults to 0, supplies a handle on a ’DiskDescriptor Manager’



Cleared version of May 24, 1981
Trident disk software June 14,1980 : , 118

(DDMgr) object, whose responsibility it is to manage paﬁes of the DiskDescriptor (bit
table), which, on the Trident, must be paged into and out of memory due to its
considerable size. If this argument is defaulted, a separate DDMgr will be created upon
each call to TFSInit, at a cost of a little over 1024 words. If you intend to have multiple
Trident drives open simultaneously, you may conserve memory by first issuing the call
‘’ddMgr = TFSCreateDDMgr(zone)' and then passing the returned pointer as the ddMgr
argument in each call to TFSInit, thereby permitting the single ddMgr to be shared among
all drives. (This argument is ignored unless the allocate argument is true.) :

freshDisk Normally, TFSInit attempts to open and read in the DiskDescriptor file in order to obtain
information about the file system. However, if freshDisk is true, this operation isinhibited
and the corresponding portions of the disk object are set up with default values. This
operation is essential for creating a virgin file system.

tridentDisk The procedure returns a disk object, or 0 if the Trident cannot be operated for some
reason. The most likely reasons are: ,

1. No Trident disk controller plugged into the Alto.
2. No such disk unit, or disk unit not on-line.

3. Can’t find SysDir, can’t Qgen DiskDescriptor, or DiskDescriptor format is incompatible.
(These errors can’t happen if freshDisk is true.)

Important: If the AC power to drive 0 is turned off or no drive 0 is connected, it is not
ﬁOSSlble to operate any drive. (Drive 0 need not be on-line, however.) This is due toa
ardware bug that has been deemed too difficult to fix.

After TFSInit has been executed, the code can be overlaid, as it is not used for normal disk operation.

2.3. Closing the Trident disk

When all operations on the disk are completed, the TFSClose ﬁpcedure will insure that any important
state saved in Alto memory is correctly written on the disk. is step can be omitted if the ’allocate’
argument to TFSInit was false (assuming you don’t mind the loss of the storage that was extracted from
’zone’ by TFSInit).

TFSClose(tridentDisk, dontFree [false])

The second argument is optional (default=false), and if true will not permit the DiskDescriptor Manager
(DDMgr) to be destroyed. This option is useful in conjunction with the *’ddMgr’ argument to TFSInit.

2.4. Example

Following is an example that uses the Trident disk system and demonstrates the procedures described
above. Note that the calls on operating system disk stream routines all pass a private zone¢ to use forstream
structures, rather than the default sysZone. The reason is that streams on Trident disks require large
buffers (1024 words) which quickly exhaust the available space in sysZone. In addition, the stream
rout(iinefi \xllll cgpiume more stack space when operating the Trident disk than they do when operating the
standard Alto disk.

Since the Alto OS does not know about Trident disks, a call to Swat will not properly wait for all Trident
transfers to complete, with consequent undefined results. This problem is easily remedied through use of
an assembly-language Swat context-switching procedure TFSSwat, which is included as part of the TFS
package. The example shows how it is set up.

//Example.bepl -- TFS Example
//Bldr Example TfsBase TfsA TfsWrite TfsCreate TfsClose TfsDDMgr



Cleared version of May 24, 1981

Trident disk software June 14, 1980

// TfsSwat Tfslnit LoadRam TriConMc
get "streams.d”

external
TFSInit
TFSClose
TFSSilentBoot
LoadRam
DiskRamimage

OpenFile
Closes
Puts
DeleteFile

InitializeZone
SetEndCode
TFSSwatContextProc
IvUserFinishProc
IvSwatContextProc

static [ savedUFP; savedSCP; TFSdisk = 0]
let Trylt() be

let driveNumber=0
let zonevec= vec 3000
let TFSzone = InitializeZone(zonevec, 3000)

//1Initialize the RAM: .
let res=IoadRam(DiskRamImage, tru?
if res Is 0 then [ Ws("Cannot load the RAM."); finish ]

//Set up to cleanly finish or call swat
savedUFP = @lvUserFinishProc
@1vUserFinishProc = MyFinish
savedSCP = @lvSwatContextProc
@lvSwatContextProc = TFSSwatContextProc

//1Initialize the disk:
TFSdisk = TFSInit(TFSzone, true, driveNumber)
if TFSdisk eq 0 then
[ Ws(""Cannot operate Trident disk"); finish ]

//Reclaim space used by initialization code:

SetEndCode(TFSInit) //Overlay TFSinit, LoadRam, TriConMc

//Now we are ready to operate the disk:
DeleteFile("Old.Bad", 0, 0, TFSzone, 0, TFSdisk)

let s=OpenFile(""New.Good", ksTgpeReadWrite, 0,0,0,0,

TFSzone, 0, TFSdisk

fori=1t0 1000 do
for j=1 to 1000 do Puts(s, $a) //Write a million bytes!

Closes(s)

119



Cleared version of May 24, 1981
Trident disk software June 14, 1980 120

finish

and MyFinish() be

if TFSdisk ne 0 then TFSClose(TFSdisk)
@1vUserFinishProc = savedU
@lvSwatContextProc = savedSCP
TFSSilentBoot() :

3. Trident File Utility, Tfu

The Tfu utility (saved on <Alto>Tfu.Run) is used to certify a new Trident pack for operation, to initializea
pack with a virgin file system, and to perform various file copying, deleting, and directory listing
operations.

Commands are given to Tfu on the command line: immediately following the word "Tfu" is a sub-
command name (only enough characters of a sub-command are needed in order to distinguish it from
other sub-commands), followed by optional arguments. Several subcommands may appear on one
command line, separated by vertical bars. Thus "TFU Drive 1 | Erase” will erase drive 1. There must bea
space on each side of the vertical bar.

All information shown on the display by Tfu is also written into file Tfu.log (on the Diablo disk). Certain
commands pause and type "Continue?" after each screenful; type any character to proceed.

In wlgat fol(liows, an "Xfile" argument is a filename, perhaps preceded by a string that specifies which disk
is to be used: :

DP0:name.extension  -- use standard Alto (Diablo) disk
TPn:name.extension  -- use Trident drive n (n=0to07)
name.extension -- use default disk (Trident)

The "default disk" is always a Trident drive; the identity of the drive is set with the Drive command.
TFU DRIVE driveNumber

This command sets the default Trident drive number to use for the remainder of the command
line. The default drive is effectively an ’argument’ to the CERTIFY, ERASE, DIRECTORY,
CONVERT, and BADSPOTS commands. (On a T-300, file systems 0, 1, and 2 are specified as
"TPx’, "TP40x’, and 'TP100x’, where ’x’ is the actual unit number.)

TFU CERTIFY [passes]

This command initializes the headers on a virgin Trident disk pack, then runs the specified number

of passes (default 10) over the entire pack, testing it using random data. Any sector exhibiting an

uncorrectable ECC error, or correctable ECC errors on two or more separate occasions, is

permanently marked unusable in the pack’s bad page list. This information will survive acrossall

'slp‘psequent normal file system operations (including TFU ERASE), but may be clobbered by the
riex program.

This command should be executed on every new Trident pack before performing any other
operations (such as TFU ERASE). 10 passes of TFU CERTIFY are adequate for reasonably
thorough testing, though more are recommended for CPacks to be used in applications requiring
high reliability. The running time per pass for TFU CERTIFY is approximately 3 minutes on a
Trident T-80, 9 minutes on a T-300, and 1.5 minutes on a Shugart SA-4008.



Cleared version of May 24, 1981
Trident disk software June 14, 1980 121

TFU CERTIFY may be terminated prematurely by striking any character to get its attention, then
typing Q. Subsequent runs of TFU CERTIFY will not clobber the existing bad page information
but rather will append to it. It is recommended (though not necessary) that TFU CERTIFY be
executed before each TFU ERASE so as to pick up any new bad spots that may have developed.

TFU CERTIFY ordinarily asks 1{ou to confirm wiping out the disk before going ahead and doing
so; however, the /N global switch may be used to indicate that no confirmation is necessary. '

TFU BADSPOTS
Displays the addresses of all known bad spots on the disk pack mounted on the default drive.
TFU RESETBADSPOTS

Resets the bad spot table of the disk pack mounted on the default drive. (Note that TFU
CERTIFY appends to the ex1stin%ubad spot table.) There should normally be no need to execute
this command, but it may be useful, for example, after a disk pack is cleaned, if the known bad
spots were caused by dirt.

TFU ERASE [tracks]

This command initializes (or reinitializes) a file system on the pack mounted on the default Trident
drive, after asking you to confirm your destructive intentions (overridden by the /N globalswitch).
The tracks argument specifies how manly "tracks" of the drive are to be included in the filesystem;
it defaults to the maximum possible. If smaller numbers are used, the initialization is
correspondingly faster. In any case, tracks beyond the one specified are available for use outside
the confines of the file system. (Note that one "track" is 45 pages; this corresponds to onecylinder
on a T-80 and to nothing in particular on other disks.)

The disk cFack should previously have been initialized and tested by means of the TFU CERTIFY
command.

The DiskDescriptor file is normally located in the middle of the file system so as to minimize
average head movement between DiskDescriptor and file pages. However, this does limit the
maximum size contiguous file that can be created to a little less than half the file sEstem. If you
wish to create a contiguous file larger than that, use the /B local switch (i.e., TFU ERASE/B) to
force the DiskDescriptor to be located at the beginning of the file system instead.

TFU COPY Xfile « Xfile
This command copies a file in the direction of the arrow. The destination file may be optionally
followed by the switch /C, in which case (provided it is a Trident disk file), the file will be
allocated on the disk at consecutive disk addresses. (Note: More precisely, an attempt will bemade
to perform such an allocation. If the attempt fails, you will sometimes get an error message. The
best way to verify that a file is contiguous is to use the "address" command, below.)

TFU CREATEFILE Xfile pages
This command creates a contiguous file named Xfile with length "pages.”

TFU DELETE Xfile Xfile ...
This command deletes the given file(s).

TFU RENAME Xfile « Xfile
This command renames a file.

TFU DIRECTORY [Xfile]



Cleared version of May 24, 1981
Trident disk software June 14, 1980 122

This command lists the directory of the default Trident drive on the file Xfile; if Xfile is omitted,
%alg% %lltlliy/{‘/{m be shown on the display. A somewhat more verbose listing can be obtained with

TFU ADDRESS Xfile

This command reads the entire file and displays a list (in octal) of virtual disk addresses of the file
pages. v :

TFU CONVERT

An incompatible change in the format of DiskDescriptor was made in the Tfs release of July 24,
1977. The current Tfs software will refuse to access Trident disks written in the old format
specifically, TFSInit will return zero). The TFU CONVERT command reformats the
iskDescriptor to conform to current conventions (it is a no-op if applied to a disk that hasalready
been converted). Once you have converted all your Trident disks, you should take care to get rid
of all programs loaded with the old Tfs, since the old Tfs did NOT check for version compatibility.

TFU EXERCISE passes drive drive drive ...

This command embarks on a lengthy "exercise" procedure; it is repeated ’passes’ times
(default=10), and uses the disk drives listed after *passes’ (if none are specified, all drives thatare
on-line are used). It operates by making a series of files (test.001, test.002 etc.) on the disk packs,
and performing various cop¥ing, deleting, writing and positioning operations. The files are deleted
when the exercise finishes. It is not essential that the packs be fully erased initially; the procedure
for building test files will try to fill up the disk, just short of overflowing. Each pass of the test
takes approximately 20 minutes per T-80, 60 minutes per T-300, and 10 minutes per SA-4008.

One or more of the following global switches may be specified (i.e., a command of the form
TFU/switch EXER...):

/W Use a systematic data pattern when writing files, rather than arbitrary garbage.

/C Carefully check the data read from the disk (implies /W). Use of this switch makes the test
run considerably slower than normal.

/D Leave the display on during Trident disk transfers. This causes data late errors to occurand
tl%e)reby exercises the error recovery logic. (It also slows down the test by at least a factor of

/E  Turn the Ethernet on during Trident disk transfers, with results similar to /D.

4. The Tfs software package in more detail

If fprogrammers wish to interface the the Trident disk at levels lower than Operating System streams, the
Tfs package provides an additional interface. The "disk" object created by TFSInit has a number of
abstract operations defined on it, which the Tfs package implements. Documentation for these operations
can be found in the Alto Operating System Manual in the section labeled "Disks and Bfs." The catalog of
available procedures is:

In TfsBase.Br and TfsA.Br:
ActOnDiskPagfs(disk, CAs, DAs, ....)
RealDiskDA(disk, vda, ....)

VirtualDiskDA(disk, ....) -
InitializeDiskC Z((dl'sk, cbz, ...
DoDiskCommand(disk, cb, ...)
GetDiskCb(disk, cbz, ...)



Cleared version of May 24, 1981
Trident disk software June 14, 1980 123

In TfsWrite.Br: '
WriteDiskPages&disk, CAs, DAs, ...)
AssignDiskPage(disk, vda)*

In TfsCreate.Br
CreateDiskFile(disk, name, ....)*
DeleteDiskPages(disk, CA, ....)*
ReleaseDiskPage(disk, vda)*

In TfsClose.Br
CloseDisk(disk, dontFree)

The items with *s following may be invoked only if the disk object was created with the ’allocate’
argument set to true. WnteDlskPacfes m?ﬁ be invoked even if ’allocate’ is false, provided it neverallocates
new disk space. It should be noted that the standard Alto Streams package invokes WriteDiskPages even
for files opened for reading only, and that TFSInit uses Streams to read in the DiskDescriptor. Hence itis
necessary that all of the Tfs modules (TfsBase, TfsA, TfsWrite, TfsCreate, and TfsDDMgr) be loaded in
order to avoid undefined ’external’ references. However, after initialization is complete, the space
occupied by TfsCreate and TfsDDMgr may be reclaimed if you do not intend to allocate or delete pages,
?lpd 1fsWrite may be discarded if you are not using streams but rather are calling ActOnDiskPages
rectly. '

The TfsWrite and TfsCreate modules require that TfsDDMgr.Br (or some equivalent) be loaded. This
module provides the standard primitives necessary for managing the DiskDescriptor. The DDMegr is an
‘object’, so it may be replaced by one of your own devising so long as it provides equivalent operations. An
example of this would be to manage pages of the DiskDescriptor as part of a more general virtualmemory
mechanism (perhaps through use of the Alto VMem package). A complete description of the required
DDMgr operations may be found as comments at the beginning of TisDDMgr.Bepl.

In addition to the standard "actions" defined in Disks.d, Tfs permits the following. These actions are
defined in Tfs.d and are available only on Trident disks.

DCreadLnD Read header, read label, no data.

DCreadnD Check header, check label, no data.

DCwriteLnD  Check header, write label, no data.
These actions neither read nor write the data record and therefore do not require a buffer to be provided.
this argument (pageBuf) is present, it is assumed to point to a 1024-word buffer that will be used tocreate
the leader page for the file. This feature may be used to save stack space in CreateDisk file and/or to write

interesting data into the TEortion of the leader page not used by the file system (only the first 256 wordsare
used by the file system; the remainder has no standard interpretation).

CreateDiskFile has a s§ecia1 feature for operating the Trident disks -- an optional seventh argument. If

VirtualDiskDA returns filllnDA as the virtual address for a real disk address that is either illegal oroutside
the confines of the file system.

The procedures for creating and destroying the disk object, TFSInit and TFSClose, were explained above.
The procedure TFSWriteDiskDescriptor% isk) will write out onto the disk all vital information about the
disk that is presently saved in memory. If you write programs that run the disk for extremely long periods
of time, it is wise to write the disk descriptor occasionally. - The only automatic call on
TFSWriteDiskDescriptor is performed by TFSClose.

TfsInit.Br contains a procedure TFSDiskModel(diskg that ‘returns the model number of the drive
referenced by the disk handle (80 = T-80, 300 = T-300, 4004 = SA-4004, 4008 = SA-4008). Thisis
useful in deciding whether to open a second. or third file system on a T-300,



Cleared version of May 24, 1981
Trident disk software ~ June 14, 1980 | 124

A lower level of access is permitted with the routines InitializeDiskCBZ, GetDiskCb, and
DoDiskCommand, analogous to the Bfs routines described in the Operating System Manual. Users of
these routines may wish to retrieve source files for the Tfs g)acka e and examine the definitions in Tfs.D.
and the actual disk operation in some detail. Sources are on <AltoSource>TfsSources.Dm.

4.1. TFSNewDisk

The TFSNewDisk procedure, defined in TfsNewDisk.Br, "erases" a disk (formatting it and making allits
pages appear free) and creates a virgin Alto file system (SysDir and DiskDescriptor). It is called by:

success = TFSNewDisk(zone, driveNumber [0], diskSize [default], ddVDA [diskSize/2])

The zone passed to TFSNewDisk must be capable of supplying about 3500 words of storage. If the driveis
a T-300, the driveNumber may include a file system number (0 to 2) in its left byte, as is the case for .
TFSInit. The diskSize argument is the number of disk pz;%es to be included in the file system; it defaultsto
the maximum possible, which is all of any disk besides a T-300 or a little less than half of a T-300. ddVDA
isl tge virtual 1tsﬁ< address at which to locate the DiskDescriptor file; see the TFU ERASE command for
elaboration on this.

TFSNewDisk returns true if successful.

4.2. DiskFindHole

The procedure DiskFindHole, in DiskFindHole.Br, can be used to locate a "hole"” of available space inthe
disk bit table. The call:

virtualDA = DiskFindHole(disk, nPages)

will attemgt to locate a contiguous hole nPages long. If it fails, the procedure returns -1, otherwise the
virtual disk address of the first page of the hole.

In order to create a contiguous file, it is first necessary to create the minimal file with a leader pa%%at the
given disk address and then to use Operating System or Tfs routines to extend the file properly. The first
step is achieved by calling

ReleaseDiskPage(disk, AssignDiskPage(disk, vda-1))

where *vda’ is the desired disk address (i.e., the result returned by DiskFindHole). This value will control
the selection of an initial disk address for the leader page. Once the file is created, it is wise to extend itto
its final length immediately, as other disk allocations might encroach on the "hole" that was located.

For example, if we are using the Operating System, we might proceed as follows:

let nPages =433 //Number of data pages needed.
let vda= DiskFindHole(ldisk, nPages+2)

q //(+2= 1 forleader, 1 for last page)
test vda

eq -1
ifso \%’s("Canngt find a hole big enough™) ]
ifnot ReleaseDiskPage(disk, AssignDiskPage(disk,vda-1))

let s=OpenFile("New.Contiguous",ksTypeWriteOnly,0,verNew,0,0,0,
FSzone, 0, disk) :

PositionPage(s, nPages) //Make the file the right length

Closes(s)



Cleared version of May 24, 1981
Trident disk software June 14, 1980 125

5. File structure on the Trident disk

The file structure built on the Trident disk by Tfs (Trident File System) is as exact a copy of the Alto file
structure built Bfs (Basic File System) as is possible. Certain exceptions are present due to hardware and
microcode differences. The Alto Operating System Reference Manual should be consulted for all file
formats and internal information not presented here.

5.1. Disk Format

The Trident or Shugart disk drives are set up to run with the following parameters:

Disk Cylinders  Heads Sectors
T-80 815 5 9
T-300 815 19 9
SA-4004 202 4 8
SA-4008 202 8 8

TFU CERTIFY will format each sector of the disk in the standard Tfs format:

header words per sector: 2
label words per sector: 10
data words per sector: 1024

Thus, for example, a T-80 disk will have 9*5*815 = 36,675 sectors = 37,555,200 words. Sector 0 willnot
be used by Tfs.” All but sector 0 will be available to the file system.

Ordinarily, Tfs utilizes only the first 383 cylinders (= 65,493 sectors = 67,064,032 words) of a T-300 disk.
This is the largest integral number of cylinders that can be addressed using a 16-bit virtual disk address.
The 16-bit virtual address limitation is deeply embedded in all existing higher-level Alto file system
software, so changing the Tfs interface to permit a larger virtual address space would be impractical.

Instead, Tfs permits one to obtain another, entirely independent disk object for referencing the second 383
cylinders of the same T-300, thereb g)ermitting a separate, self-contained file system to be constructed.

his is done by passing a ’1” in the left byte of the ’driveNumber’ argument to TFSInit or TFSNewDisk
(that is, drive *#400° refers to the second file system on a T-300 pack mounted on drive 0). A third file
system (number *2’, drive *#1000%) may also be constructed, but it contains only 49 cylinders (= 8379
pages, only 6 percent of the disk’s total capacity), so doing so is probably not worthwhile.

5.2. Disk Header and Label

On the Trident, a real disk address requires two words to express, rather than the single word on the
Diablo 31. Also, microcode considerations gave rise to a reordering of the entries in the Label. Theresult
is that both the header and label formats are different for the Trident. The Trident format follows. Ifyou
are interested in this level of detail, the file Tfs.d (contained within <Alto>Tfs.dm) should be consulted.

// disk header
structure DH:

track word

head byte
sector byte

// disk label
structure DL.:

%]eid word IFID



Cleared version of May 24, 1981
Trident disk software June 14, 1980 126

packID word
numChars word
pageNumber word
previous @DH
next @DH

Inanifest IDL = size DL/16

5.3. Disk Descriptor

Every valid Tfs disk has on it two files which must contain the state information necessary to maintain the
integrity of the file system. The Tfs system directory, "SysDir.", is identical in format and purpose withits
Bfs counterpart. However the Tfs disk descriptor file, "DiskDescriptor.”, while identical in purpose, is
formatted differently to allow easy manipulation of the bit table (which, for the Trident, has to be pagedin
and out of memory). This difference in format should not be evident to even low-level Trident users
(unless you write your own DDMgr), but is mentioned here for completeness.

5.4. Bad Page Table

Tfs and Tfu observe the standard Alto file system convention of recording -2’s in the labels of all known
bad pages. However, if this were the only location of such information, "erasing” a disk (to create avirgin
file system) would require two passes over the entire disk: one to collect the addresses of all known bad
pages and one to mark all remaining pages deleted. This would require an excessive amount of time,
particularly on a T-300. c

A duplicate table of known bad pages is therefore recorded on physical page zero (= cylinder 0, head0,
sector 0) of the disk. This page is not available to the file system for other reasons having to do with end-
of-file detection. The format of the table is given by the BPL structure, which is defined in Tfs.d. Note
that the entries are REAL disk addresses and can therefore refer to angf 8age on the disk regardless of
whether or not such a pa%e is accessible through the file system. (A T-300 has only one bad page table,
even if it contains several file systems.)

The TFU CERTIFY command is responsible for testing the pack and building the bad page table. The
TFSNewDisk procedure (called by TFU ERASE) is careful not to clobber this information but rather to
propagate it to the other places where it is needed (namely, the disk bit table and the labels of the bad
pages themselves). As a result, the bad page information, once initialized, will survive across all normal
operations on the disk, including "erase" operations.

There does not presently exist any facility for manually apgending to this list when new bad pagfes are
discovered. E)égerience to date with the Trident disks (which provide correction for error bursts of upto
11 bits in len has shown that such a facility is probably not needed. Thorough testing of disks (using
TFU CERTI is recommended before putting them into regular use, however.

6. Revision History

July 24, 1977
Incompatibilities:

The format of DiskDescriptor has changed. The new Tfs cannot access old disks or vice versa. See
description under "TFU CONVERT".

There is now another file, TfsA.Br, that is logically part of TfsBase.Br and must be loaded along with it. It
contains assembly-language code formerly included as "tables™ in TfsBase.Br.



Cleared version of May 24, 1981
Trident disk software June 14, 1980 127

New Features:

Partial support for T-300 disks.

Conforms to new conventions for maintaining addresses of known bad pages.
TFSInit checks for valid SysDir leader page and DiskDescriptor version.

Count of bit table discrepancies added to DiskDescriptor. (These are pages falsely claimed to be freein
the bit table.)

VirtualDisk DA returns filllnDA for illegal real disk addresses.
Additional Trident-specific disk actions.

Tfs is now entirely reentrant, so it is safe for the Idle() procedure to give control to another process thatin
turn calls Tfs procedures.

October 21, 1977
Incompatibilitie_s:

The former TfsWrite module has been broken into four pieces: TfsWrite, TfsCreate, TfsClose, and
TfsDDMgr. In most applications, all four must be loaded.

The ’sharedBT’ argument to TFSInit has been reglaced by a ’ddMgr’ argument. The mechanism for
sharing a bit table buffer among multiple drives has been entirely changed. (Programs that omit this
argument are unaffected by the change.) :

The TFSCreateVDA static has been removed. In its place is a new procedure TFSSetStartingVDA(disk,
vda) that serves the same purpose.

The syntax of the TFU EXERCISE command has been changed. It is now "TFU EXERCISE <passes>
<list of drives>’, and <list of drives> defaults to all drives that are on-line.

New features:

Ccloénglete support for T-300 disks. In conjunction with this, the TFSDiskModel procedure has been
added.

It is now possible for DiskDescriptor pages to be managed externally (perhaps through some sort of virtual
memory mechanism) by use of a user-defined ‘DiskDescriptor Manager’ object.

TFSSilentBoot procedure added.

November 9, 1977

Incompatibilities: None.

New features:

TFU CERTIFY and TFU BADSPOTS commands added. TFU CERTIFY initializes the headers on a
virgin disk pack and then runs repeated tests over the entire pack, permanently recording any bad spots
that it finds. This command replaces all the normal uses of the Triex program, documentation for which
has been removed.

Microcode modified for more efficient reading on Alto-IIs (by about 25%).

February 26, 1978



Cleared version of May 24, 1981 ,
Trident disk software June 14, 1980 128

Incompatibilities: Software updated to new time standard; will not run under OS versions earlier than 14.
New features: Microcode source now in two parts, to facilitate combining it with other microprograms.
December 15, 1978 ' _

Incompatibilities: some of the TFS DDMgr procedures renamed (used internally).

New features: returnIfNoCb argument to TFSGetCb; ddVDA argument to TFSNewDisk; TFU
ERASE/B option to maximize contiguous free storage; TFU RESETBADSPOTS command added; TFS
and TFU should run on Dorado. :

June 25, 1979

Incompatibilities: none.

Changes: Optional "hintLastPage” aifument added to ActOnDiskPages, WriteDiskPages, and
DeleteDiskPages; several minor bugs fixed.

July 17, 1979

Incompatibilities: The structure of a DSK (and therefore a TFSDSK) changed, so proirams that get
"Tfs.d" must be recompiled; TFSSetStartingVDA(disk, vda) procedure removed--instead use
ReleaseDiskPage(disk, AssignDiskPage(disk, vda-lg))

Changes: New operations InitializeDiskCBZ, DoDiskCommand, and GetDiskCb added to the DSK object
in preparation for OS 17. Note that the new TFS will work under earlier versions of the OS, but the old
TFS will not work under OS 17.

November 24, 1979

Incompatibilities: The manner in which the TFS turns the display off and on has been changed so thatit
works correctly even if the caller accesses the disk at the DoDiskCommand/GetDiskCb level, and even if
there are multiple contexts making calls to the TFS. Existing software that uses the low-level procedures
may require modification.

The microcode has been modified, so recompilation is required of any microprograms that include
TriConMc.mu or TriConBody.mu as a component. (The interface to the microcode has changed slightly;
consult the revised documentation in <AltoDocs>AltoTrident.press.)

Changes: This release includes some substantial changes in error recovery at both the microcode and the
software level. Formerly there were problems that could cause the software to get hung up underextreme
conditions such as operating the disk with the display on.

Unrecoverable disk errors are now reported with more complete information. (This requires new versions
of Swat and Sys.errors, being released simultaneously.) Additionally, if the currently-selected drive goes
not-ready, TFS generates an error rather than hanging indefinitely. Finally, attempting to write on aread-
only drive gives rise to a distinct error.

TFU has been cleaned up somewhat. It always generates a typescript in file TFU.log (this replaces the
former TFU.ExerciseLog). Disk drive names are now standardized: TPO for Trident drive 0, DP0 for
Diablo drive 0. TFU DELETE can take multiple arguments. TFU RENAME command has been added.
June 14, 1980

Incompatibilities: none.

Changes: The software is now capable of dealing with Shugart SA-4004 and SA-4008 disk drives,

interfaced through a Shugart controller card. e TFSDiskModel procedure has been changed
appropriately.



Cleared version of May 24, 1981
Trident disk software June 14, 1980 129

Note: This version of the software must be compiled with the OS 18 system definitions files (Disks.d, etc.),
but may be operated under OS releases as old as OS 16.



Cleared version of May 24, 1981 ,
VIEWDATA September 9, 1977 : 130

ViewData -- 2D projections of 3D data on Display Screen

ViewData is a BCPL subsystem that will draw a picture of a file of data on your dispaly screen, and allow
you to interactively control your point of view on the data. It handles only a two-dimensional array of
single-word values (i.c. a three-dimensional surface, a function of two variables evaluated over aregular
finite grid). Here is a list of features:

1) ViewData accepts input in the simplest possible file format: an o;fgtional header of any number of
words (with any contents, which are ignored), followed by a block of (signed) data words of any size,
with any dimensions.

%) ViewData takes all parameters from a dialog with the user via keyboard and mouse. By specifyin
ifferent header sizes and dimension sizes, the user can exercise limited control over the selection o
data from his file.

3) ViewData takes all graphical parameters from screen points clicked with the mouse. A point of view
is specified by clicking the screen positions of three corners of the data array. Zooming is
accomplished by clicking opposite corners of the rectangle to be expanded. Prompts appear below the
plot region to indicate what points and/or switches to click.

4) ViewData contains a call to DCBPress to allow generation of a one-page output file with a pictureof
your data. This can be annotated by Markup and printed by an appropnate server. With PressEdit, it
can be editted into a report. ‘

5) _Vie\ijata uses the new PlotStream package (to be released soon) to provide a display interface
which is transparent to the average programmer; thus the program is easily modified to better suityour
data viewing requirements. .

6) ViewData is reasonably small, especially if one deletes unneeded routines from the various files
which are loaded with it (MathUtil, SDialog, UtilStr, PlotStream, FractionProduct, DCBPress).

Getting and Running Viewdata:

Use FTP to retreive viewdata.run. If you need some sample data, use the FTP Load command to get
Test.Data from ViewData.Dm (stored with sources). Execute ViewData and default all the parameters
with CR to get a sample display. Using the mouse, follow the instructions of the prompts to zoom, redraw
in a new orientation, or overview (zoom back out to the highest level). After you finish by pressing all
three mouse buttons at once, you have the options of producing a press file, restarting (possibly with anew
data file), or quitting, .



Cleared version of May 24, 1981
New Disks May 24, 1981 131

Making a new Alto disk

This document describes procedures for creating a new disk, either by copying a "Basic disk" or by using
the File Transfer Program. It may be helpful to refer to documentation for Copydisk and FTP.

L.

The normal way to obtain a new, clean disk is to copy one of the Basic Alto Disks (Non-Programmer’s,
BCPL Programmer’s, Mesa Programmer’s, or Proofreader’s) using ch:ydisk. Images of these basic disks
are kept in the <BootFiles> directories of various file servers; at PARC the desired server is Ivy. The disk
image file names are NonProg.bfs, BCPLProg.bfs, MesaProg.bfs, and Proofreader.bfs. Put a blank diskin
your Alto and type:

>NetExec

>CopyDisk )

*Copy from: [fileServer]<BasicDisks>fileName.bfs
Copy to: dp0

where fileServer is the file server name and fileName is the disk image file name, as explained above.
Copydisk will copy the basic disk image onto your disk, overwriting its previous contents.

An alternative way of building a new disk from scratch is to erase it by means of the Install procedure, then
use FTP to retrieve the subsystems and other files that you need. This procedure is required if you are
building a non-standard disk (for example, a double-disk system or a Dolphin or Dorado partition).

First, bootstrap the NetExec by booting the Alto with the BS and single-quote keys depressed. Then type:
>NewOS.boot |

This will load a c%py of the OS from the network. When it starts up, it will ask you if you want to install
the OS; respond ’Y".

Install will ask if you want the long dialog; respond Y’. Then it will ask if you want to erase a disk. Reply
"Y’. It will ask you for the name of the local file server (at PARC this should be "Maxc’) and the name of
the directory on that server from which to obtain files (the correct response to the latter question isusually
’Alto’). Finally, it will ask the usual questions about your name, the disk name, and the password.

When Install has finished initializing the disk it will run FTP to obtain the Executive. Now, to obtain
current versions of the ’basic’ software type

>Mip fileServer ret/c <alto>newdisk.cm

>@newdisk.cm@

where ’fileServer’ is the name of your local file server.

After this has completed, to obtain additional software for a ’basic non-programmer’s disk’ type
>@npdisk.cm@

To obtain additional software for a "basic BCPL programmer’s disk’ type
>@pdisk.cm@

To obtain additional software for a "basic Mesa programmer’s disk’ type
>@mesadisk.cm@ : :

IL

You can copy files from your old disk to the new one in two ways. One is to put them onto a file server
and retrieve them with FTP. If there are many, it is a good idea to package them into a dump file. The



Cleared version of May 24, 1981
New Disks May 24, 1981 ‘ : 132

gghker way is to copy them from the old disk on one Alto to the new disk on another Alto. On your new’
18k, type
>ftp

On the Alto with the old disk, type
>ftp <Host name> store/c {filenamel> <filename2> ...

<Host name> is the name of the Alto which has the new disk.

The easiest way to specify and transfer lots of files 'be.tWeeni two giisks isto put both disks into a double-disk
Alto and use Neptune; see the Neptune documentation for details.

Another method is to use DDS (if you have it on your old disk) to select the desired files, then issue the
<Send to ...> command and type in the name of the Alto with your new disk, which should be running

Without DDS, a way to specify lots of files is to obtain a file with all your file names by typing
>*<control-X><control-UX<return><return>

This will automatically invoke Bravo and read in ’line.cm’. You may then edit line.cm to exclude the files
which you do not want to transfer and insert the necessary FTP commands, thereby creating acommand
file which may be invoked in the usual way. For example, at the beginning of the file insert

ftp <Host name> store/c ‘

then delete everything except the files which you want to transfer. 'P’ut the command string onto a file.
’%l}it OCEEt of BRAVO and type ' '
00

where *foo’ is the name of the file which you just created with BRAVO. The selected files will be sentto
the waiting Alto with the new disk.

Executing either variant of procedure I to erase and initialize your disk, followed by procedure 1I to
transfer ail of your files using FTP, is a good way to compact a fractured disk. -



Cleared version of May 24, 1981
For PARC Alto Users May 24, 1981 133

1. PARC Information

1.1. Getting Started

dE;iih administrative group in Parc handles disk pack allocation differently. Ask your secretary how to geta
isk. '

A set ((i)f BASIC ALTO DISK images is maintained on [Ivy]<BasicDisks>, as discussed in the "NewDisk"
procedure.

1.2. MAXC Directories for Alto Software

The CALTODOCS directory contains documentation for the subsystems and subroutine packages.

The <ALTO> directory contains current versions of all the Alto fro rams. Programs are normally keptin
executable form; thus the CopyDisk program appears as <ALTO>CopyDisk.Run. In addition _to the
executable file, some programs also have a symbol file on <ALTO>. e symbol file for CopyDisk is
CALTO>CopyDisk.Syms. This file is useful to the author when something goes wrong with asubsystem,
but it is not normally needed by users. Subsystems which need more than one file, either because they
have overlays or because they need data files, should have the individual files stored, together with a
command file which may be run to retrieve each file via FTP. The command file should have the
extension .CM. Definition files have the extension .D. These files are useful only to programmers.

Subroutine packages are kept on KALTO> with an extension of .BR or as "dump"” files (extension .DM)if
several files belong together as a package.

The CALTOSOURCED directory contains the source files for the subsystems and subroutine packages. It
also contains the PUB files for the documentation which is on SALTODOCS>.

1.3. Alto Software Maintenance Procedure

The maintainer of a subsystem or subroutine package handles a new or revised release in the following
manner:

A. C(g) a dunﬁg file with a name of the form SubsystemName.DM and the following contents to
<ALTOSOURCES: |

1) The source files from which the subsystem may be created.

2) The command files which are needed to create the subsystem from the enclosed source, unless
the creation procedure is "obvious." The following are the usual ingredients:

a) A command file containing_statements to compile the enclosed source. Compiler
messages should be written to a file. For example:

BCPL/F FOO.BCPL.

The filename should be in the format, COMPILEsubsysName.CM.

b) A command file to load the files which were produced in step a. For example:
BLDR FOO

The filename should be in the format, LOADsubsysName.CM.



Cleared version of May 24, 1981 »
- For PARC Alto Users May 24,1981 134

If the subsystem is small, the two command files may be combined into one. The
name should be in the format, CREATEsubsysName.CM. The following example
will create the package for subsystem FOO.

BCPL/F FOO.BCPL; BLDR FOO -

El?lA command file containing statements to save all relevant files in subsysName.DM, e.g.
e file DUMPFOO.CM would contain; ‘

DUMP FOO.DM FOO.BCPL CREATEFOO.CM DUMPFOO.CM

B. When you have a change to make to documentation, or wish to introduce new documentation into the
system, the following three steps are required:

1. Retrieve the relevant .PUB file from <ALTOSOURCE). The file name is in the format,
sys.PUB, where ’sys’ is the name of the subsystem or subroutine acka%)e. If you are creating brand new
documentation, start with the file CALTOSOURCE>ALTODO TEMPLATE.PUB, which contains the
necessary Pub incantations and some instructions to authors. :

2. Edit the pub file. Pass it to PUB-- a.TTY version of the documentation will be produced.

3. When you are finished, copy the pub file back to KALTOSOURCE>, and copy the .TTY
version to CALTODOCS>. :

Please be sure to copy the pub files from CALTOSOURCE> afresh each time you edit them, because they
may have been edited to produce expurgated versions (for distribution outside PARC), to produceindexes,
remedy formatting problems, etc.

Please try to avoid needless references to PARC or Maxc facilities. Other sites maintain copies ofrelease
directories such as CALTO> on their own file servers; and users at those sites are encouraged NOT to goto
Maxc for their software.

C. Copy files needed for the new release to CALTOD.

D. It was formerly the custom to notify all interested parties of the new version of the software, bysending
a message either to AltoUsers'PA (for subsystems o I§eneral interest) or AltoBCPLProgrammers-PA (for
BCPL packages of interest only to programmers). However, this should now be done only for major
releases. The subject of the message should be the name of the subsystem or subroutine package. Tryto
keep the message short.

All Xerox users with MAXC accounts can connect to the ALTO-related directories without giving a
%assword. Software maintainers are cautioned to alter only files for which they will take responsibility.
eel free to archive old versions, but please leave the current version of all files. (If you can’t find
something, it may have been archived forcibly due to disuse; browse the archive directory using the
INTERROGATE command before creating version 1 of some previously-existing program.)

1.4. Alto Documentation

Formal documentation is provided in two forms: a "perusal” form, which can be conveniently tYped atan
Alto using CHAT (or from some other MAXC terminal) or perused with Bravo on an Alto, and a
"notebook” form, which can only be printed on a Press printer, and may have fancy iltustrations or fontsin
it. ‘

A. The "perusal” documentation is always stored on CALTODOCS) under a file name like sys.TTY, where
"sys" is the name of the subystem or package you are interested in. For example, the documentation fora

subroutine package, FOO, would be found on <CALTODOCS>FOO.TTY. ere is one exception to this

rule: for very simple subsystems the documentation is in CALTODOCS>SMALLSUBSYSTEMS.TTY. (If

¥ou can’t find the .TTY file you want, it might be archived; check the archive directory using the
NTERROGATE command.)



‘ Cleared version of May 24, 1981
For PARC Alto Users May 24, 1981 135

B. The "notebook" documentation is packaged in larger packages to reduce storage overhead and to
provide more manageable sets of documentation for printing. Currently, the following files are maintained
in notebook-style:

Alto User’s Handbook. This document is available only as a printed, bound manual. It contains
the Non-Programmer’s Guide to the Alto, and manuals for Bravo, Markup, Draw, and

A number of subsystems have their own separate Press documentation, stored as
<ALTODOQCS>*.PRESS. (Exception: the SIL and Design Automation documentation is
stored as <SIL>SIL.PRESS.)

OS.PRESS. Operating System manual.
BCPL.PRESS. BCPL manual.

SUBSYSTEMS.PRESS. Documentation for most Alto subsystems. These are arranged
alphabetically, with headings to indicate which system is being described. A directory at
the front of the file contains documentation about very simple subsystems. The last
section of this manual contains special information relating to Altos at PARC--where to
find the software, how to maintain it, etc.

PACKAGES.PRESS. This contains documentation for the software packages available for the
Alto. A directory at the front of the file contains documentation about very simple
packages. .
ALTOHARDWARE.PRESS. This is the "hardware" manual for the Alto.
These files are formatted, and should therefore be printed with

@PRESS fileName PRESS

1.5. Command Files

In addition to the subsystems, packages, and definition files, the following command files may be foundon
the <ALTO> directory:

NEWDISK.CM: creates a minimal system on a new disk. See the NewDisk procedure, in the Alto
Subsystems manual.

MESADISK.CM: creates a Basic Mesa Disk. NEWDISK.CM must be run first.

NPDISK.CM: creates a Non Programmer’s Disk. NEWDISK.CM must be run first.
PDISK.CM.: creates a BCPL Programmer’s Disk. NEWDISK.CM must be run first.
PROOFDISK.CM: creates a ProofReader’s Disk. NEWDISK.CM must be run first.



INDEX

<ALTO>
<ALTODOCS>
<ALTOSOURCE>
<controDP

Analyze
AS

BCPL
BLDR
Boot Files
BootBase
BootFrom
Booting
BootKeys
BRAV

Build
BUILDBOOT
CallSubSys
CHAT
CLEANDIR

ComCm
command processing

C(C);)y
COPYDISK
CREATEFILE

DDS

Delete

disk

Bisleoot.Run .
isplay protoco

DI\I/)ITyp

Documentation
DPRINT
DRAW

Dump '
Dump Format
Dumper.Boot

EMPRESS
ERP

EtherBoot

EtherBoot loader
EXECUTIVE
Executive Commands

FileStat
FIND
font files
FTP

IFS

illustrator
Install
InstallSwat.Run

LISTSYMS
Load

Cleared version of May 24, 1981

May 24, 1981

..................
..................
..................

..................

....................
..................
..................
------------------
...................
..................
..................
..................
..................

..................

------------------
------------------

..................

------------------
..................
..................
..................
..................
..................
..................
..................
------------------
------------------
..................

------------------
..................
..................
..................
..................

..................

..................
------------------
..................

..................

..................

------------------

51, 56

136



Cleared version of May 24, 1981

INDEX May 24, 1981 137
Login e e 54, 65
MAILCHECK e e e 3,78
MARKUP e 3
Maxc = e 14
memory diagnostic ... ... ... . 0., 2
Mesabedfile ... L oo, 56
Mesaimagefile . ... . ... .. . ... ... 56
MesaBanks L 55
MICRO e 3
microcode assembler .. ... ... .o, 3,82
microcode loader . ... ... 96, 102
MICROD e e 3
MOVETOKEYS ... . . i it ii i, 3
MU e e 3,4, 82,96, 102
Neptune L e e 3
NetDelays o e e e 4
NETEXEC e, 3,55
newdisk e e e 131
NEWDISK e 5
NEWOS.BOOT ... . oo 3
OEDIT e e 3,90
ORAM e e 3
PACKMU e 3,96
PARC Information . ... .............. 133
PARCALTOS ... . ..... I, 5

ALY €ITOT i e e e e e e e e e 114

EEK e, 2,39
PEEKPUP e 3,98
PEEKSUM o, 2,39
PREPRESS e 3
Pressfile e 4,99
Pressfiles L e 3
PRESSEDIT ... . . e e 3,99
PROOFREADER . ... ... . . . . v . 4
PuLP .................. 98
PUPTelnet . . e e 2,14
Quit e e 54
RAM e 3,4, 96,102
RAMLOAD e 4,102
ReadPram = . . . e 96
READPRESS e e e 4
Release e e e 54
RemCm . e 51 ,
Rename e 54
Resume e e e 55, 106, 112
Route e 4
RPRAM e e 3,96
RunMesa.run ... e e 56
SaveState L e e e 12
SCAVENGER . it i i i i i i 4, 55,104
SetTime e e e e 54
SIL e, 4

Software Maintenance Procedure 133



INDEX

StandardRam
Subsystem Lookup
SWAT

Swatee
SYS.BOOT

TeleSwat

TES .

TFU .
Trident disk software
TRIEX

Type

User.Cm
VIEWDATA
WriteDirectory

Cleared version of May 24, 1981

May 24, 1981

..................
------------------
------------------
------------------
...................

..................
------------------
..................

..................

54
5

138



