L]
United States Patent (9 1] 4,103,330
Thacker [45] Jul. 25, 1978
[54] TASK HANDLING IN A DATA PROCESSING [57] ABSTRACT

APPARATUS A data processing apparatus for processing digital data
[75] Inventor: Charles P, Thacker, Palo Alto, Calif. in accordance with a plurality of predetermined tasks of
731 Assi . X Co . ford,) preassigned priority values and identified by a respec-
(731 ssignee erox Corporation, Stamford, Conn tive plurality of devices connected to the data process-
[21] Appl. No.: 769,254 ing apparatus. Each device is capable of generating the
[22] Filed: Feb. 16, 1977 respective task request signal when requiring service by
the data processing apparatus. The data processing
Related U.S. Application Data apparatus includes a first memory for storing a plurality
(63] Continuation of Ser. No. 518,679, Oct. 29, 1974 of executable instructions, a second memory for storing
nh P NG 225077, et 25, 1A addresses of locations in the first memory, a priority
[S1] Imt. CL2 .o GOG6F 9/20; GOGF 9/18 determining device responsive to the task request sig-
[52] US. Cl .ot 364/200 nals for generating a control signal indicative of the task
[58] 364/200, 900, 300 request signal having the highest current priority value,
56 References Cited and an addressing device responsive to the control sig-
[56] € es Lite nal for providing an address to the second memory, the
U.S. PATENT DOCUMENTS addressed location in the second memory containing the
3,568,157 3/1971 Downing et al. 340/172.5 next address of the first memory to be accessed for
3,582,896 6/1971 Silber 340/172.5 continuation of the processing of the requesting task
3,634,883 1/ lg7§ K.reldlermacher . ;ﬁ/ 172; and thus servicing of the respective device, wherein

g’;gg(s);g 18;: 9;’5 B‘:\II’; e 3 40;33 ; said next address is a part of an executed instruction.

Primary Examiner—Mark E. Nusbaum
Attorney, Agent, or Firm—Barry Paul Smith

11 Claims, 4 Drawing Figures

CLOCK
9
ASK-15 ACTIVE
69 START TASK - AN T01/0
34 ACTIVE 26,5) CONTROLLERS
1 DECODER | L "%
NITIALIZING | | 58 TASK=1 ACTIVE
CIRCUIT o 72-]
&6 RESET 78
32
; 82
T RESET| ,, 1)
2,8 RESET g0 |7 40 56 RESET
PRIORITY CURRENT ADDRESS . ADDRESS
ENCODER [TASK 7 MEMORY [* - MODIFIER
55 R
/k /%_l} RESET 74 44
2%18)5%%0 2%) ~
22
WAKEUP — TASK 68 |s0
, REQUESTS INSTRUCTION 4
(1-15 FROM I/0 CONTROLLERS) MEMORY
64
CLOCK | 48
| /{75 NEXT ADDRESS
cLocK
62 54 \ 46
GEN |~ ~ INSTRUCTION
REGISTER
CONTROL LINES) CTION
47 52

"TasK"
{ TO 1/0 CONTROLLERS 18)

(TO DATA SECTION 12)

2% s
N\ 1/0DEVICE }------—-] /0 DEVICE
[[)
22
MAIN DATA TRANSFER BUS [.
ir 10 103 L
12—]
MAIN ADDRESS BUS DATA 170 o _ I1/0
MEMORY (}# SECTION CONTROLLER] CONTROLLER
/3
_/g/ %)) 85
5 TASK I5-ACTIVE f) A

16 {TASK |- ACTIVE Mg 24

START CONTROL 26 24 q7 (19 05

=™ cecTION |_CONTROL LINES “7) 7

< WAKEUP-TASK 15
P | oI WAKEUP-TASK |
WAKEUP-TASK &
24 =
(@)

FIG./

ared ‘SN

8L61 ‘ST AIng

v JO 1 31994S

0€E€OI’Y

CLOCK

3

(TO I/0 CONTROLLERS 18)

"TASK" ‘

(TO DATA SECTION 12)

TASK-15ACTIVE
69 START TASK - AN T01/0
3¢ ™ Sggg{)’éR ! 115) CONTROLLERS
L —>
INITIALIZING | | 58 TASK—1 ACTIVE
CIRCUIT o 72{
66 | RESET i
- 32 a2
INIT | RESET ’
28 ADD v g, 1P —/
RESET) ¥ 40 36 ¢ RESET
PRIORITY CURRENT ADDRESS ADDRESS
= TASK - e |
ENCODER A REGISTER | ; MEMORY MODIFIER
/./
— - 36 74
RESET 44
291562 /) 2495)
42
4 ya
WAKEUP — TASK 68 |50
REQUESTS INSTRUCTION EE
(1-15 FROM /0 CONTROLLERS) MEMORY
64_|
CLOCK | 48
/(76- NEXT ADDRESS
LOCK
gENC .52 54 ‘ 46
~ | JINsTRUCTION Ir
CONTROL LINES REGISTER
—3 PSTRUCTION F1G.2
|~ 47 DECODERS |92 :

Juared ‘SN

8L61 ‘ST AInf

b Jo 71994S

0EEEOI'Y

U.S. Patent

WAKE-15
WAKE-14
WAKE - 13
WAKE-12
WAKE-II
WAKE-10
WAKE-9
WAKE -8

WAKE-7
WAKE—6
WAKE-5
WAKE—-4
WAKE-3
WAKE -2
WAKE- 1|
WAKE-g

4,103,330

July 25, 1978 Sheet 3 of 4
INIT.ADD.
RESET
8od ||| |80
—d-- 80 80a
254(/5) r : 84 AN
— L r-—r G-
T [[TAT!
—T™] t
— g | 3}00 |
| !
=SSy ¢
| T ./3'00’ i
1AM !
— 92
241g) | ! TAG |
2% | , 1
j_v’ [|
J0s 94
Lo | —_ |
| T ’ I 8
E— | 3/0f |
— g / |
! [[
I 30¢ [
_L. 1 [4 |
| ! | LOAD- |
— ™ | [
| -
r
=/ " ___' RESET oo
2%e) 25 96 TASK ! \
CLO/CK i
64 b o e e - - .}\ _____

U.S. Patent July 25,1978 Sheet 4 of 4 4,103,330

]
1

P
1
Iy

/?? 104a

DCT | l]
| 104) 1

DCT 2 !

|
;

2MOOOMO
;”
1
Y]

P
g

|

(9}
-
L]
T
o

|

-
>
I
w

| DCcT 104¢ . |

| !
CT4 —+—m DCT 4 —
| 104d J |

DCT8 — 1 |

—
>
|
[«]

|

4
il

F
;

Plylelelelylw)
—
P
' ’
F-3

f
;

|

'
:
1:

FIG. 4

4,103,330

1

TASK HANDLING IN A DATA PROCESSING
APPARATUS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. application
Ser. No. 518,679, filed on Oct. 29, 1974 in the name of
Charles P. Thacker for TASK HANDLING IN A
MICRO-PROGRAMMED DEVICE.

BACKGROUND OF THE INVENTION

This invention relates to data processing and, more
particularly, to a data processing apparatus for process-
ing digital data in accordance with a plurality of prede-
termined tasks of preassigned priority values.

A data processing apparatus can be thought of as
being generally comprised of a data section and a con-
trol section. The control section supplies the various
processing instructions to be executed by the data sec-
tion in order to perform a sequence of operations consti-
tuting a particular task to be carried out or *“serviced.”
The use of microprogrammed data processing is now
widespread. In such a data processing apparatus, the
instructions stored in an instruction memory of the
control section of the processor would be microinstruc-
tions.

It is known to provide a microprogrammed data
processing apparatus which executes sequences of mi-
croinstructions, i.e. “routines,” each routine being iden-
tified with a particular task to be serviced, wherein the
microinstruction routine identified with the task having
the highest preassigned priority value will preempt all
other routines. Thus, if, during the execution of a rou-
tine for the current highest priority task, a new task
request is received having a higher priority value, then
the old routine is preempted or “interrupted” in favor of
the routine identified with the new task.

As is conventional, sequency through a routine of
microinstructions identified with a particular task is
accomplished by driving a program counter whose
output provides an address to the instruction memory.
In the past, the contents of the program counter for a
particular task would be loaded into a “push-down-
stack” register if that task was interrupted by a task
having a higher priority. If yet another new task having
yet a higher priority was received by the processor, the
program counter contents for the first task would be
pushed down one more register in the stack, with the
contents of the program counter for the second task
now being loaded at the top register of the stack. The
program counter itself would then be active to address
the instruction memory relative to the routine for the
task just received.

Although, when the first task was interrupted, the
contents of its program counter (now in the push-down-
stack) would indicate the next address for the instruc-
tion following the last to be executed prior to interrupt,
yet the routine for the new interrupting task would have
to begin at the very first instruction for that routine and
then run through the entire sequence of instructions for
that routine, unless itself interrupted by a still higher
priority task request. Thus, even though only a particu-
lar segment of the routine for the interrupting new task
need be executed at this time, such segment identifying
a particular function in the overall task to be serviced
and commencing at a location different than the start of
the entire routine for that task, yet the routine would

10

5

20

25

35

40

45

50

55

60

65

2

still have to begin at the first instruction rather than the
particular instruction marking the start of the particular
segment desired for servicing.

It would be desirable, therefore, to provide a data
processing apparatus wherein the routine for any inter-
rupting higher priority task would commence at the
instruction identifying the commencement of the partic-
ular function of the task actually requesting service,
even though this instruction may be other than the first
instruction of the entire routine for that task.

SUMMARY OF THE INVENTION

In furtherance of this desirability, a data processing
apparatus is provided for processing digital data in ac-
cordance with a plurality of predetermined tasks of
preassigned priority values and identified by a respec-
tive plurality of task request signals in order to service
a respective plurality of devices connected to said appa-
ratus, each device capable of generating the respective
one of said task request signals when requiring service
by said apparatus.

In accordance with the invention, the data processing
apparatus comprises first memory means for storing a
plurality of executable instructions, second memory
means for storing addresses of said first memory means,
priority determining means responsive to the task re-
quest signals for generating a control signal indicative
of the task request signal having the highest current
priority value, means responsive to said control signal
for providing an address to said second memory means,
the addressed location in said second memory means
containing the next address of said first memory means
to be accessed for continuation of the processing of the
requesting task and thus servicing of the respective
device, wherein said next address is a part of an exe-
cuted instruction, and means for addressing said first
memory means at said next address.

In accordance with the preferred embodiment, the
secondary memory means has a plurality of storage
registers respectively associated with the plurality of
tasks to be performed. Each register, in storing the next
address of the instruction routine identified with the
respective task, represents its program counter which is
always set to the address of the next instruction in the
routine. Any of these registers in the second memory
means can be addressed in any order or sequence, de-
pendent only upon the highest priority task to be per-
formed at any particular time. In this manner, the com-
plete sequence of instructions for a new task of highest
current priority need not be executed, but rather only
those instructions commencing with the instruction
identified by the next address stored in the register, i.e.,
one instruction after where that routine last left off
when previously serviced.

Further in accordance with the preferred embodi-
ment, the data processing apparatus is micropro-
grammed by said instructions which are microinstruc-
tions.

These and other aspects and advantages of the pres-
ent invention will be more completely described below
with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a block diagram representation of an exem-
plary data processing system utilizing the data process-
ing apparatus of the present invention;

4,103,330

3

FIG. 2 is a block diagram representation of the con-
trol section of the data processing apparatus of the pres-
ent invention;

FIG. 3 is a schematic diagram of the priority encoder
depicted in FIG. 2; and

FIG. 4 is a schematic diagram of the task-active de-
coder depicted in FIG. 2.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring to FIG. 1, an exemplary data processing
system is disclosed including the data processing appa-
ratus of the present invention therein. More specifically,
the data processing apparatus, hereinafter referred to as
the central processing unit (CPU) 10 is comprised of a
data section 12 and a control section 14. The exemplary
system depicted in FIG. 1 also includes a main memory
16 which may be of conventional nature and a plurality
of input-output (I/0) controllers 18, e.g., 15 I/O con-
trollers designated 18,;,through 185 Each of the 1/O
controllers 18 is connected to a respective one of a
plurality of I/0O devices 20 for controlling same. Exam-
ples of typical 1/0 devices are disk drives, displays,
keyboards, etc. The depiction of 15 I/O devices 20 and
associated controllers 18 is, of course, only an exem-
plary number.

As is conventional in data processing systems of the
general type depicted in FIG. 1, information is trans-
ferred to and from the data section 12 of the CPU 10 by
means of a main data transfer bus 22. The information is
typically transferred in bit-parallel format. Typical
CPU’s are designed to operate in 8-bit or 16-bit format,
i.e., 8-bit or 16-bit quantities are transferred to and from
the data section 12 along the bus 22, which would then
be comprised of either at least eight or at least 16 paral-
lel lines. Information may be transferred on the data bus
22 between the main memory 16 and the data section 12,
as well as between each of the I/O controllers 18 and
the data section 12, as is conventional. Locations in
main memory 16 are addressed by an address signal
applied on an address bus 13 from the data section 12.

The specific nature of the main memory 16, data
section 12 of the CPU 10 and the data bus 22 form no
part of the present invention and will not be described
in detail herein. If desired, however, examples of typical
components of this nature that may be employed in the
system of FIG. 1 are disclosed in the aforementioned
parent application, Ser. No. 518,679, which is hereby
incorporated by reference.

As for the 1/0 controllers 18, these also can be any
well known conventional type consistent with the par-
ticular 1/0O device 20 they control. In view of the pres-
ent invention, the only criteria required of these con-
trollers is that they provide a task request signal in the
form of a *“wake-up” command whenever the particular
controller 18 requires servicing by the CPU 10. For
example, if the I/O device 20 is a keyboard and a
character key has been depressed, the controller 18,
would apply a wake-up command to the CPU 10 in-
forming it that it requires some service, i.e., a sequence
of instructions related to the depressing of a character
key is to be executed.

Each 170 controller 18 is identified by a unique task
request (“wake-up”) signal that is applied along a line 24
to the control section 14 of the CPU 10 when that con-
troller requires servicing. In order for the controller 18
to be informed when the CPU 10 is executing instruc-
tions relating to the requested service, the control sec-

10

25

30

40

45

50

65

4

tion 14 includes means to be described below for apply-
ing a “task-active” status signal back to the controller.
These task-active status signals are applied on lines 26
from the control section 14 to the controllers 18, as
shown in FIG. 1.

Reference is now had to FIG. 2 where the unique
control section 14 of the CPU 10 will be described. At
the outset, it must be stated generally that the control
section 14 applies instructions to the data section in
order for them to be executed. Further, the instructions
are forwarded in accordance with a particular sequence
or routine to be carried out and identified with a partic-
ular task to be serviced. Still further, the control section
14 includes means to be described below for determin-
ing which of a plurality of task request signals that may
have been applied to the control section 14 has the
highest current priority value. More specifically, each
of the plurality of tasks to be serviced is preassigned a
unique priority value. Thus, servicing 1/0 controller
18, may be of higher priority than servicing 1/0 con-
troller 18,5 The control section 14 then forwards in-
structions to the data section for execution that are
associated with the highest current task to be serviced.

Referring now in more detail to FIG. 2, the control
section 14 includes a priority encoder 28 which has 16
task request inputs connected to the 16 task request lines
24. As explained above, task request signals for tasks
1-15 are provided from the respective I/0 controllers
18. Additionally, a task request signal for task ¢, which
requests servicing the main program, is always present,
as will be explained in more detail below. The priority
encoder 28 includes circuitry (also to be described be-
low) for generating a multi-bit control signal on a re-
spective plurality of lines 30 (only one shown) related to
the highest priority task request signal current applied
as an input to the encoder 28. The priority encoder 28
includes a further input for receiving a RESET signal
on a line 32 from an initialize circuit 34 to be described
in more detail below. The priority encoder 28 also will
be described in more detail below in connection with
FIG. 3.

Now then, the control signal developed on lines 30 is
applied to respective inputs of a current task register 36
which responds to such control signal for generating a
multi-bit address signal that is applied in bit-parallel
format on a respective plurality of lines 38 from the
register 36 to respective inputs of an address memory
40. The address memory 40 includes a plurality of stor-
age locations, preferably defined by a respective plural-
ity of multi-bit registers (not shown). There are prefera-
bly 16 such registers included in the address memory 40,
each one being addressed by a unique multi-bit code
defined by the address signal applied thereto from the
current-task register 36 on lines 38. The current task-
register 36 will be described in more detail below in
connection with FIG. 3.

Each one of the 16 registers in the address memory 40
is associated with a respective one of the 16 tasks to be
performed, as defined above. In actuality, each of the
address memory registers is capable of storing the next
address of an executable microinstruction stored in a
microinstruction memory 42. In this respect, each of the
sixteen address memory registers may be thought of as
a program counter for its respective task to be serviced
relative to the corresponding microinstruction routine
stored in the instruction memory 42.

Each instruction stored in the memory 42 is accessed
in response to a corresponding address signal applied on

4,103,330

5

address lines 44 from the address memory 40. Each
instruction includes an instruction field preferably com-
prised of 22 bits, and a next-address field preferably
comprised of 10 bits. The instruction field is loaded into
an instruction register 46 on lines 48 and is then applied
through appropriate decoders 52 to the data section 12
of the CPU. The next-address field is fed back on lines
50 to the currently addressed register in the address
memory 40. In this manner, each of the 16 registers in
the memory 40 will always contain the address of the
next microinstruction stored in the instruction memory
42 to be executed in accordance with the particular task
to be serviced. This is an important feature of the pres-
ent invention for reasons to be described below.

A portion of the 22-bit instruction field of each micro-
instruction may be dedicated to various special func-
tions some of which are applied on control lines 47 to
respective ones of the 1/0 controllers 18 for controlling
same. In accordance with the preferred embodiment,
there is at least one four-bit special function “sub-field”
in the instruction field of each microinstruction,
wherein one of the four-bit codes capable of being de-
fined is representative of a “TASK” function. A TASK
signal component of an accessed instruction, upon being
decoded by an appropriate one of the decoders 52, is
applied on a line 54 to the current task register 36 for
enabling same to load an address signal, representing
the current highest priority task requesting service. This
address signal is then applied to the address memory 40.

It will be appreciated that a TASK signal can be
presented in any desired microinstruction during any
routine to be executed. Normally, a TASK signal would
be generated at least once during each microinstruction
routine in order to enable any higher priority task
awaiting service to interrupt the current routine in
order to be serviced by the CPU 10. If a particular task
to be serviced has a microinstruction routine that
carries out a plurality of different functions that can be
independently serviced, than a TASK signal would
normally be written into the last microinstruction of
each segment of the routine identified with a particular
one of such functions.

Continuing with a description of FIG. 2, the control
section 14 of the CPU 10 further includes conventional
address modifier circuits 56 which, in a known manner,
are capable of modifying the next-address signal being
fed back on lines 50 from the instruction memory 42 to
the address memory 40. As is conventional, such ad-
dress modifiers are used for branching. The specific
nature of the address modifier 56 forms no part of the
present invention and thus shall not be described in
detail. Nonetheless, such details, if desired, may be had
from a review of the aforementioned parent application,
Ser. No. 518,679.

The multi-bit address signal developed at the output
of the current task register 36, in addition to being ap-
plied to the address memory 40 on lines 38, is alsc ap-
plied on lines 58 to a task-active decoder 60. The de-
coder 60 responds to the address signal output of the
register 36 and generates one of the fifteen TASK-
ACTIVE signals alluded to earlier on its respective line
26, dependent upon the current highest priority task to
be serviced. As will be seen below, the decoder 60
includes a delay circuit for delaying the application of a
TASK-ACTIVE signal to the respective 1/0 controller
18 by one clock cycle of the processor. In this manner,
the appropriate TASK-ACTIVE signal will be gener-
ated at a time corresponding to the execution of instruc-

20

25

30

35

40

45

60

65

6

tions related to the task being serviced. The task-active
decoder 60 will be described in more detail below in
connection with FIG. 4.

The data section 12 as shown in FIG. 2 also includes
a clock generator 62 for generating appropriate
CLOCK signals for application of the current-task reg-
ister 36 on a line 64, the task-active decoder 60 on line
66, the address memory 40 on line 68, and the initializa-
tion circuit 34 on a line 69.

Still referring to FIG. 2, the initialization circuit 34 is
responsive to a START signal generated when the
system is turned on by the operator. Upon receipt of the
START signal, conventional circuitry in the circuit 34
causes a RESET signal to be generated which is applied
to the priority encoder 28 on line 32, to the current task
register 36 on a line 70, to the task-active decoder 60 on
a line 72, to the instruction memory 42 on a line 74, to
the instruction register 46 and decoders 52 on a line 76,
and to the address modifier 56 on a line 78. Upon receipt
of RESET signal, these various components of the
control section 14 are reset.

The initialization circuit 14, in response to a START
signal, also generates a multi-bit initialization address
signal on a respective plurality of lines 80. This signal is
preferably a four-bit signal that is initially zero, ie.,
0000, and is incremented by one at the rate of the
CLOCK signal pulses applied on line 69. The RESET
signal is maintained for 16 cycles, i.e. 16 CLOCK signal
pulses, at which time the initialization address on lines
80 will increment from zero (0000) to 15 (111 1). As will
be described below, the address signal output of the
current task register 36 during initialization is identical
to the initialization address signal. During initialization,
the address signal output of the current task register 36
is applied through an AND-gate 82, which is enabled by
a RESET signal from the intitialization circuit 34, to the
address memory 40. In this manner, the address signal
(0000) will be loaded into the register number zero in
the address memory 40, the address signal one (0001)
into register number one, and so on. This process initial-
izes the address memory by setting the various registers
therein at their respective starting values. This concept
will be described in more detail below in connection
with FIG. 3.

Referring now to FIG. 3, the priority encoder 28
preferably comprises two 8-bit-to-3-bit encoders 84 and
86, thereby deferring a composite 16-bit-to-4-bit en-
coder. The encoders 84 and 86 may each be a model
9318 encoder manufactured by Fairchild. Each of the
encoders 84 and 86 are adapted to receive eight of the
16 task request signals. The task request signal for task
¢ shall hereinafter be referred to as WAKE-§, for task
1 as WAKE-1, and so on. Thus, the lines 244, -24,, are
coupled to respective inputs of the encoder 86, and lines
24(;-24,,5) are coupled to respective inputs of the en-
coder 84. Any one or more of the task request signals
may be present at any instant of time. The WAKE-¢$
signal is always present (low level) since it is coupled to
ground. Thus task ¢, i.e., the main microprogram, is
always requesting service.

The encoders 84 and 86 each generate a 4-bit output
code on lines 30a-30d (decoder 84) and on lines 30e-30g
(decoder 86) for application to the current task register
36. This code identifies the highest priority task request
signal that is pending at any instant of time. The en-
coder 84 supplies 4 bits and the encoder 86 supplies the
remaining 3 bits on output lines 30e-30g. The fourth
output line of encoder 86 is unused and is therefore

4,103,330

7

interpreted as having the value zero by the current task
register 36.

Still referring to FIG. 3, the current task register 36
comprises a bank of four inverted-input OR-gates 88,
90, 92 and 94. A first input of each of these gates is
connected to a respective one of the four initialization
address lines 80. Thus, the first initialization address line
80¢ is connected to the first input of gate 88 for applying
an initialization address bit TAT thereto, the address line
80b is connected to the first input of gate 90 for applying
the address bit TA2 thereto, the address line 80c is con-
nected to the first input of gate 92 for applying the
address bit TAd thereto, and the address line 80d is con-
nected to the first input of the gate 94 for applying the
address bit [AS thereto. Additionally, the control signal
bits on lines 302-30d are respectively applied to a sec-
ond input of each of the gates 88-94, and the control bits
on lines 30e-30g are respectively applied to a third input
of each of the gates 88-92. The gate 94 only has two
inputs.

When any of the input signals to each gate 88-94 is
low, a high level (true) signal will be generated at its
output. The state of the outputs of the gates 88-94 is
loaded in parallel into a four-bit register 96 (forming
part of the current task-register 36) upon receipt of a
low level LOAD command at an appropriate input
terminal thereof. The value stored in the register 96
represents the address for address memory 40 corre-
sponding to the current highest priority task requesting
service, as identified by the control signal on lines 30.
This 4-bit address signal is applied on four output lines
384-384 from the register 96.

A low level COAD command is generated at the
output of a two input NAND-gate 98 when and only if
both inputs are high. A first input of the gate 98 is con-
nected to the clock generator 62 on line 64 for receiving
CLOCK signals therefrom, and the second input of the
gate 98 is connected to an inverted-input OR-gate 100.
A first of two inputs of the gate 100 is adapted to re-
ceive a TASK signal as applied on line 54 from a respec-
tive decoder 54 and through an inverter (not shown).
The second input of the gate 100 is adapted to receive a
RESET signal as applied on line 70 from the initialize
circuit 34 and through another inverter (not shown).
Thus, a low level LOAD signal will be present when,
during the occurence of a CLOCK signal, either or
both the RESET signal or TASK signal is low.

As stated eariler, the 4-bit address signal from the
current task register 36 is applied on lines 38 to the
address memory 40. As also stated earlier, the address
memory 4 preferably is comprised of 16 registers (not
shown), each of which is preferably 12 bits in length.
Each 12-bit register is capable of being addressed by a
unique 4-bit address code applied in parallel on the lines
38. The address memory 40 receives the 10-bit next-
address field of an instruction called out of the memory
42 and fedback on lines 50, and such next address is
loaded into the particular one of the 16 12-bit registers
associated with the task being serviced, as identified by
the 4-bit address code from register 36. Two of the 12
bits of each register are not used for next address stor-
age. The individual bits of the address code on lines 38
are identified as CT1 (line 384q), CT2 (line 3856), CT4
(line 38¢) and CTS8 (line 384).

The next-address signal stored in a particular register
in the memory 40 is accessed from the memory 40 upon
receipt of the unique 4-bit address code (CT1-CT8). As
soon as the addressed instruction is accessed from the

—

0

20

25

35

40

45

53

65

8

memory 42, the new next-address field thereof is loaded
back into the same register of memory 40. The signifi-
cance of this relationship is important and will be de-
scribed in more detail below.

Any suitable, conventional address memory capable
of functioning in the manner expected of memory 40 as
above described may be utilized in accordance with this
invention. A presently preferred memory arrangement
is disclosed in the aforementioned parent application,
Ser. No. 518,679. Further, any suitable, conventional
microinstruction memory 42, instruction register 46 and
decoders 52 capable of functioning in the manner
above-described can be utilized. As with memory 40,
presently preferred devices of this nature are disclosed
in application Ser. No. 518,679. As the specific nature of
these components form no part of the present invention,
they will not be described in detail herein.

Reference is now had to FIG. 4 where the task-active
decoder 60 will be described. The task-active decoder
60 includes a latching circuit (DCT) 102 having four
input lines 582-584 respectively adapted to receive the
four bits (CT1-CT8) of the address signal from the
current task register 36. The purpose of the latching
circuit 102 is to delay the application of a TASK-
ACTIVE signal to its respective 1/0O controller 18 by
one clock cycle of the processor so that the proper
TASK-ACTIVE signal will be true during the time
microinstructions related thereto are being executed by
the CPU 10.

There are four output lines (1042-104d) from the
latching circuit 102 that are respectively adapted to
carry output signals DCT1-DCTS. These latter signals
are identical to signals CT1-CT8, but are delayed in
time, as explained above. The decoder 60 further com-
prises a pair of 4-bit-to-8-bit decoders 106 and 108.
These decoders may each be constituted by a model
3205 decoder manufactured by the Intel Corporation,
and the latching circuit 102 may be constituted by the
model SN74174 latch manufactured by Texas Instru-
ments, Inc.

Now then, the DCT1 signal is applied on line 1044 to
first inputs of each of the decoders 106 and 108, the
DCT?2 signal on line 1045 to second inputs of these
decoders, the DCT4 signal to third inputs of these de-
coders, and the DCTS8 signal to fourth inputs of the
decoders 106 and 108. Each decoder 106 and 108 also
has a reset input adapted to receive a RESET signal
applied thereto on line 72 from the initialization circuit
K2

Depending on the 4-bit code DCT1-DCT8 as deter-
mined by the address signal code CT1-CTS8, a respec-
tive one of the fifteen TASK-ACTIVE signals will be
generated for application to its respective /O control-
ler 18. It will be noted that only seven TASK-ACTIVE
lines are used from the decoder 108 since task ¢ is the
main microprogram and does not require a TASK-
ACTIVE indication.

The operation of the data processing apparatus of the
present invention will now be described with reference
to FIGS. 1-4. As soon as the apparatus is turned on, the
START signal is generated which causes the initialize
circuit 34 to generate an initialization address (TA-
1-TA8) and a RESET signal. The RESET signal resets
the priority encoder 28, the current task register 36, the
task-active decoder 60, the instruction memory 42, the
instruction register 46, the decoders 52, and the address
modifier 56. The initialization address TAT-TAS is then
loaded into the current task register 36 and immediately

4,103,330

9

output as address signal CT1-CT8, due to the low level
RESET signal at the gate 100. This address starts at
zero, i.e., 0000, which addresses register number zero in
address memory 40, and is itself loaded into such regis-
ter through the gate 82, as enabled by the RESET sig-
nal. The initialization address TAT-TA8 will then incre-
ment to one (0001) at the next CLOCK signal pulse
received by the circuit 34 on line 69. The address signal
CT1-CT8 will then be one (0001) which will address
register number one in memory 40 and additionally be
loaded therein. This procedure is repeated fourteen
more times in order for address codes 2-15, ie.,
CT1-CT8 is 0010-1111, to address the respective regis-
ters 2-15 in the memory 40 and then be loaded therein.
Of course, the address codes CT1-CT8 will be loaded
into the four least significant bit positions of each regis-
ter in the memory 40.

At the termination of this initialization procedure,
i.e., 16 cycles, the RESET signal will go false. Let us
assume that at this occurrence none of the I/0 control-
lers 18 are requesting service. Consequently, the only
task request signal that will be true will be task ¢, i.e.,
WAKE-$. Thus, the processor 10 will begin executing
instructions related to the main microprogram routine.
This occurs by applying a control signal on lines 30
representing that task ¢ is the current highest priority
task requesting service. The current task register 38 will
then generate an address signal code (CT1-CT8) on
lines 38 which would be 0000 in order to address regis-
ter number zero in the memory 40. That register has
been preloaded with count zero, i.e., 000000000000, due
to the initialization routine described above. Conse-
quently, this register number zero in the memory 40,
which is in essence a program counter, will then be
stepped by CLOCK signals applied thereto on line 68
from the clock generator 62.

Each time the register-0 is incremented, a new ad-
dress is applied on lines 44 to address the instruction
memory 42 in order to access the respective microin-
struction. When so accessed, the next-address field (10-
bits) of the microinstruction is fed back on lines 50 and
loaded into register-0 in memory 40. This next address
identifies the successor microinstruction in the routine
for task ¢ to be executed. The instruction field of the
microinstruction is fed through the register 46 and de-
coders 52 to the data section 14 for execution thereof.

Suppose that after the first instruction in the routine
for task ¢ is accessed out of memory 42 and executed,
the 1/0 controller 185, requires some servicing. The
task ¢ routine will continue until an instruction is ac-
cessed having a “TASK” signal present in its instruc-
tion field. This signal is decoded by an appropriate one
of the decoders 52 and then applied along lines 54
through an inverter and to one input of the gate 100.
This causes the current task register 36 to be loaded
with the value 15 (1111) which is the number of the
current highest priority task requesting surface, as as-
sumed above. The address code CT1-CT8 will then
have the value 1111 applied on lines 58 to the task-
active decoder 60.

More specifically, after the first executed task ¢ in-
struction, the I/0 controller 18,5 required service and
applied a low WAKE-15 signal to the priority encoder
28. The encoder 28 would then have determined task 15
to be of higher priority than task ¢ and sent a control
signal having the value 1111 on lines 30 to the current
task register 36. The latter would, upon receipt of a
TASK signal on line 54 as indicated above, have been

10

20

25

35

40

45

50

60

65

10

loaded with this code 1111. This code is applied on lines
38 to the address memory 40, causing register number
15 therein to be accessed. Since this would be the first
time task 15 is serviced, the register number 15 in mem-
ory 40 would have been preloaded to an initial starting
value of 000000001111 by the initialization procedure
above described. The CPU 10 will then execute micro-
instructions associated with the task 15.

If task 15 fails to complete the particular function
embodied in its routine that is associated with the re-
quested service before being itself interrupted by a
higher priority task request, it will be appreciated that
when the last microinstruction was accessed out of the
memory 42 for task-15, the next-address field thereof
was loaded into register-15 in memory 40. Conse-
quently, when task 15 is later returned to for completion
of the requested service, the routine will begin at the
instruction following the last instruction in that routine
to be executed.

It is an important aspect of the present invention that
if task-15, for example, completed one of a number of
functions in its routine that initiated the request for
service so that the task request signal for task 15, i.e.,
WAKE-15 would be removed, if later the succeeding
function in the task 15 routine had to serviced, the ad-
dress memory 40 would start addressing the instruction
memory 42 at the beginning of the sequence of instruc-
tions relating to the new succeeding function, and not at
the beginning of the entire routine, as had been the case
in the past. Thus, if the new succeeding function in task
15 to be performed is located halfway through the task-
15 microinstruction routine, the memory 40 will know
to address it directly and immediately since the last
instruction of the sequence relating to the first function
serviced contained in its next address field the address
for the first instruction for the new succeeding function,
and such next address was loaded into the register-15 in
the memory 40. The next addresses in the 16 registers in
memory 40 thus “point” to the exact instruction in the
corresponding routine that is to be executed next when
that routine is next serviced.

Although the present invention has been described
with respect to a presently preferred embodiment, it
will be appreciated by those skilled in the art that vari-
ous modifications, substitutions, etc. may be made with-
out departing from the spirit and scope of the invention
as defined in and by the following claims.

What is claimed is:

1. A data processing apparatus for processing digital
data in accordance with a plurality of predetermined
tasks of preassigned priority values and identified by a
respective plurality of task request signals in order to
service a respective plurality of devices connected to
said apparatus, each device capable of generating the
respective one of said task request signals when requir-
ing service by said apparatus, said apparatus compris-
ing:

first memory means for storing a plurality of execut-

able instructions each containing the address of a
successor instruction;

means for addressing said first memory means to

provide for the execution of selected instructions,
said addressing means including second memory
means organized to contain next addresses of said
first memory means in respective locations thereof,
each of said locations being dedicated to one of said
predetermined tasks;

means for executing said selected instructions;

4,103,330

11

means coupled to said addressing means for selecting
said locations in said second memory means
whereby a particular next address is selected for
addressing said first memory means;

means coupled to said first memory means for loading

the address of a successor instruction contained in
an addressed instruction into the dedicated location
in said second memory means such that the succes-
sor instruction may be subsequently selected for
execution; and

priority determining means responsive to said task

request signals for providing a control signal to said
selecting means enabling said selecting means to
select the location in said second memory means
dedicated to the task with the highest current pri-
ority value.

2. The apparatus of claim 1, wherein said instructions
are microinstructions.

3. The apparatus of claim 1, further comprising means
coupled to said selecting means and responsive to the
selection of a location in said second memory means by
said selecting means for applying a task-active signal to
the respective one of said plurality of devices associated
with the task to which said selected location is dedi-
cated.

4. The apparatus of claim 3, wherein said means for
applying includes means for delaying the application of
said task-active signal to the said respective one of said
devices by a predetermined time period.

5. The apparatus of claim 4, wherein said instructions
are microinstructions.

6. A data processing apparatus for processing digital
data in accordance with a plurality of predetermined
tasks of preassigned priority values and identified by a
respective plurality of devices connected to said appara-
tus, each device capable of generating the respective
one of said task request signals when requiring service
by said apparatus, said apparatus comprising:

first memory means for storing a plurality of execut-

able instructions;

10

20

25

30

35

45

50

55

65

12

second memory means for storing addresses of loca-

tions in said first memory means;

priority determining means responsive to said task

request signals for generating a control signal in-
dicative of the task request signal having the high-
est current priority value;

means responsive to said control signal for providing

an address to said second memory means, the ad-
dressed location in said second memory means
containing the next address of said first memory
means to be accessed, wherein said next address is
a part of an executed instruction that was loaded
into the addressed location of said second memory
means;

means for addressing said first memory means at said

next address; and

means for executing the addressed instruction for

continuation of the processing of the requested task
and thus servicing the respective device.

7. The apparatus of claim 6, wherein said instructions
are microinstructions.

8. The apparatus of claim 6, wherein said priority
determining means, upon receipt of a new task request
signal having a higher priority value than the current
task being serviced, modifies said control signal in order
to cause said providing means to address a different
location in said second memory means corresponding to
said new task, said different location containing the next
address of said first memory means to be accessed for
continuation of the processing of said new task.

9. The apparatus of claim 8, further comprising means
for storing in said second memory means the subsequent
next address to be accessed in said first memory means
at the location currently being addressed by said pro-
viding means.

10. The apparatus of claim 9, wherein said subsequent
next address is a part of the instruction being executed.

11. The apparatus of claim 10, wherein said instruc-

tions are microinstructions.
*® L] * * *

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

