United States Patent (19

[11] 4,148,098

McCreight et al. (45) Apr. 3, 1979
[54] DATA TRANSFER SYSTEM WITH DISK {571 ABSTRACT

COMMAND VERIFICATION APPARATUS A data processing system includes a disk drive, a disk

[75] Inventors: Edward M. McCreight, Los Altos; drive controller, a main memory and a CPU. Th_e rpain

Charles P. Thacker, Palo Alto, both memory has disk command data stored therein in a

of Calif. chain of disk command blocks (DCB’s). Each DCB

. . contains a first word pointing to the next DCB in the

[73] Assignee: Xerox Corporation, Stamford, Conn. chain, a second word containing status information and

{211 Appl. No.: 806,781 a third word containing command information. A por-

) tion of the command word contains a predetermined

[22] Filed: Jun. 15, 1977 verification word when the DCB is valid. The CPU

includes means for comparing this portion with the

Related U.S. Application Data predetermined verification word as stored in a constant

[63] Continuation-in-part of Ser. No. 733,640, Oct. 18, 1976, memory. It_' the two correspond, the DCB is valid. Each

abandoned, which is a continuation of Ser. No. DCB also inclues a fourth word pointing to a block of

518,555, Oct. 29, 1974, abandoned. main memory in which header data is stored. Header

data defines the address of the recording location of the

[51] Imt. CL?onn. GOG6F 11/00; GO6F 13/00 disk. A fifth word points to a block of main memory in

[521 IJ:S. Cl. .. peennener 3“/2-00. WhiCh ‘abel data is StOI'Cd. Label data deﬁnes the name

[58] Field of Search ... 364/200 MS File, 500 MS F%ei and/or number of the file, as well as itself including a

235/301, 302.3, 3 pointer to the address location on the disk at which the

[56] References Cited next page of the file data is stored. A sixth word of the

DCB points to a block of main memory in which the

U.S. PATENT DOCUMENTS associated page of file data is stored. A seventh word

3,704,363 1171972 Salmassy et al. ..cieniinnnns 364,200 specifies the recording location on the disk (drive,

3,737,861 6/1973 O'Neilletal. 3647200 track, sector) where the actions specified in the com-

3,900,834 8/1975 Caseyetal. 364200 mand word are to be carried out. Each such recording

3,905,023 9/1975 Perpiglia - 32:/ i% location is capable of having stored therein the header,
3,972,023 7/1976 Bodner etal ... 364/ Jabel and file data associated with a specific DCB.

Primary Examiner—Mark E. Nusbaum
Attorney, Agent, or Firm—Barry Paul Smith

10 Claims, 17 Drawing Figures

MAIN DATA TRANSFER BUS 22,
- 1
N/ R B S O, S U
rod b o ‘ 102 28
, | oRivErs || T reaisTer || ;
X AND X i FILE *|REGISTER(T) CONSTANT [
, LPeRITY ; ! v
\ X T (R) 106 "e MEMORY v
’) INSTRUCTION
i : | [REGISTER :
! ! : w07 \
! MAIN { N 120 148 !
1 | memory | L '
: STORE : 1 DECODE :
b | 1 L ALU AND
o~ il 1 CONTROL | |
S N I L 1] '
€'T \ 144 |
H
) —#{REGISTER (L] MEMORY ADD. :
\ REGISTER X
X IR(1,2) !
| IR(3,4) (
il i ~laboRessgus |~~~ ["""~ 1o .
-—
3
3
0d 6 o
AB BSHBS2C Fe4FWsFIs6 6 H Flal D a8

(FROM CONTROL SECTION 14)

20
fl\)\ DISK e vooevice V-~ ™

DRIVE
?)
22
, MAIN DATA TRANSFER BUS , I RN
i 1 103 il
12
ADDRESS BUS DISK
MAIN (: DATA DRIVE | __ _ ___ 170
MEMORY 3/ SECTION |ICONTROLLER CONTROLLER
/
/8 L8
™ M)
0~ (2)\ i w
7 Task N ACTIVEN B 44 }
16 HEE 267 24
| TASK 2 ACTIVE) —~ N/
START] CONTROL [TASK | ACTIVE 47
SECTION | CONTROL LINES |
« WAKEUP-TASK N /
—~— : 26}/)
4 oL WAKEUP-TASK 2 §
WAKEUP-TASK |)
- T 242
| WAKEUP -TASK
/7;_ K ASK ¢ 24,
Y
(9

Justed ‘SN

6L61 ‘€ ‘1dy

L1 JO T 199Yy§

860°8Y1°Y

(TO DISK CONTROLLER I8'

‘ 60
£ TASK-N ACTIVE _
I s A TO 1/0
ACTIVE ! N CONTROLLERS
DECODER ' -
j‘? TASK-1 ACTIVE |,
66 7%
~ 32 ”"IRESET w5
4 P &2
INIT—| RESET | Whe
28 ADD | 80 70 ./ 40 56
f RESET) ¥ ; RESET
PRIORITY CURRENT ADDRESS ADDRESS
"—7—" TASK L bt —, < MODIFIER
ENCODER | 556 |RecisTER | 32 MEMORY (BRANCHING)
e _l} 35/"/ Af RESET |“7¢ N J
24" |24 L2e, 44 CONTROL LINES
n2_W_°* Y Y42
INSTRUCTION 68 |50
WAKEUP - TASK
REQUESTS |-N 49 | MEMORY G ol
{FROM 1/0 CONTROLLERS) 64 -
CLOCK |, 48
76
L 62 PPRRY; ! v NEST ADDRESS
INSTRUCTION]~
GEN 54 -
-{ | | "] rReciSTER FIG 2
CONTROL LINES e UCTION ?%Ds .
- F FUNCTION
Fl=2 |
P | E=&-joecopers
—F=3 ‘ 52
(TO I/O CONTROLLER 18) (TO DATA SECTIONI2))

({})

6L61 ‘¢ v Juded ‘SN

L1 JO T 19934§

860°8Y1Y

U.S. Patent Apr. 3, 1979

Sheet 3 of 17

4,148,098

INSTRUCTION | ¥
MEMORY |
48
46
RSEL ALUF B5 Fl F2 [oAD L [woAaDT |
{5) (4) (3) {4) (4) (1) ()
D%
E CONTROL
e o[
‘73 ‘12 ‘74 Q__. ’
p TO
CONSTANT
MEMORY
vY v v
A B c 520 H 1
Y/
85
—*1 DECODER
¢ 7 52b
|
Fi
* DECODER
710 17
¢ 52¢
) |
RESET F2
™ DECODER

|
¢ 700

FlG. 3

N

7

MAIN DATA TRANSFER BUS

T)
PR - r=———=-=-==1=-==-"" --"*tT----%--"-r--"""=-""f7m- =-=-=--
r 1§ ! 102 ; 28 |
. [orivers]” | | > REGISTER |/ |
' | AND ! | FILE »{REGISTER(T) CONSTANT | g2
PARITY | 7 L
! ! — (R) 106 e MEMORY r
' MEMORY — v/ |
2 DATA BUS , INSTRUCTION) |
! ' | REGISTER ,
: SRl R ¥ — .
; |
b MAIN | | ’/?5 140 120 /148 |
! | mEMORY | ! L o Y / |
t | STORE ‘ ! P P DECODE | ,
| . ™ . . 8 ALU AND
e~ i : Ama " CONTROL [
| * I
Lyl F--- | 144 ;//o ”f |
16", 6l s y :
l SHIFTER | —#{REGISTER(L) MEMORY ADD. ,
\ 7 REGISTER :
' IR(,2) L !
| 2=
! IR(3,4) |
1"~~~ " |aDoReEss BUS |~~~ ——— N
-
5
13
00 (o} (s} o
AB BSsIBS2C FR4FR5Fis6 6 H Fi=l D A=B
~— J

(FROM CONTROL SECTION 14)

~—

FlG. 4

6L61 ‘€ v juded ‘SN

L1 JO ¥ 139YS

860°8V1‘Y

MAIN

DATA
TRANSFER
BUS

LDDATA

22

(-]

BUFFER

180
|/

16

16

BUFFER

/98

S/R

184

DATOUT

BITCLK

S/R

MPX

196

FIG. &5

/186
< DISK DRIVE
DATA —
ENCODER | WFDATA
20/
' réo2
I/
I MPx | eBiToLK
DATA READ CLOCK
Y7 | DECODER |, reap DATA
194 (92

6L61 ‘¢ v judled ‘SN

L1 JO G 199Y§

860°8¥1°V

DATAOUT

4,148,098

.

U.S. Patent Apr. 3, 1979 Sheet 6 of 17
210 1(80
— e =L
| ! ,_BK
BUS(00) ——| l DATA (00) o
- | DATA (01))
S‘l’fs‘(%'z’, ! DATA (02) J
' DATA(03) J
BUS(03) —— ol
BUS(04) —— | DATA(04) o
BUS(05) | DATA(0O5) i
| DATA(06) -
| 210, CLR
1 I |
BUS(06) —— lL :
:3: :g;)) | DATA(08)
BUS (09) —— ; DATA(09)
BUS(10) — | 1 DATA (10) 1l
BUS(I1) ! DATA(IN) J
| I DATA(12) O
LDDATA | DATA (13) -
LODATA 210 LR | DATA(I9)
| | DATA (15) ;
BUS(12) —— i |
BUS(13) —+— I |
BUS(14) —
Bu305)—ﬁ—— l -
I | ~/60
|
e | |
LDDATA — CIR | FIlG 6
e

e— 1 WDDONE

1 BITCLK

(1 |

b CLR!

U.S. Patent Apr. 3, 1979 Sheet 7 of 17 4,148,098

198
HIORDBIT —— — 2+
—_——— —_ ! |
196. | -} il = |
M) ' ——— BUS(00)
| : } ———= BUS(OI)
| . : ———+—= BUS{02)
| 2’{ : ; \—1—.2/8 | BUS(03)
| , —E5
| | izl [1%
I | | — BUS (04)
! f * T vsio
BITCLK Ilc] | : +—= BUS(07)
L | |
T — Y |
| l = !
| 26y | HANEES
' | } : = BUS(08)
I f 1 = BUS(09)
| , I +—= BUS(10)
I f—= BUS(I1)
| | |
| TS
I | | = |
| | l | o BUS(I2)
4 = BUS(I3)
BITCLK ——] T i t—= BUS(14)
| +—» BUS(I5)
DATAIN — — ; _E-T I
- L = |
—_———
WDDONE — KDATAL—
BITCLK ——

U.S. Patent Apr. 3, 1979 Sheet 8 of 17 4,148,098

192
r— = ___.1___' 1’94
RDDATA — | ————— 2
226, | .
I \. P :
| —v aop— |
= |
ROCLK —-Hb_q——:ﬁm | : | DATAIN
I I (O = |
R B I I
M NI SR |
I N .
L |
l {: BITCLK
I l: [|

220 ':
220 220 |
%
: RDATA
I
220]

U.S. Patent Apr.

3, 1979 Sheet 9 of 17 4,148,098

COMMAND REGISTER 230
132
DATA (13) — p—e HEAD
BUS (14) — b—= SEEKONLY
LDADR
BUS(O1) — XFERON
BUS(02) — b—s WDALLOW
BUS (03) — p—=BCLKSRC
BUS (05) SENDADR
SENDADR
2347/ T
LDCOM
236, = W/R
BUS(08) —
BUS(10) — r—D_‘CHECK
BUS(12) —
L + RECNO(!)
4LOAD
cLk- fcie D"
238
]
BUS(09) —
INCRECNO)| BUS(I1) —
_ BUS(13) —
KADR+ — = RECNO ({)
= _JLoap
CLK P-CLR
SYSCLKA—"D J K

U.S. Patent Apr. 3, 1979 ‘Sheet 10 of 17 4,148,098

STATUS UNIT 240

SEEKOK—9 — krer
RDYLAT .
SYSCLKA
202+ | £ |
READY ——v @ ROYLAT _ CLRCLKl . gys(10)
CLK i SRWRDY __ —=BUS(09)
K= @ —BUS(08)
° SEEKOK —=BUS(I1)
v a =
SYSCLKA —CLK _ Inml|
SEQERR —K ¢ @ ~ ROk
;“242 BUS(12) — = BUS(12)
BUS(14)— -~ BUS(14)
ausus;—; - BUS(15)
244
RETAT -_Tp L
KSTATL—1
| D‘ KSTATL
Il BUS(00)
KSECT({)
m BUS(0O1) |

BUS(02)

1 r242 ¥sect@

KSTAT = “’___: KSECT(3)
SYSCLKA—{CLR |
Kg @

BUS(03)

BUS(I3)

ele[Te)

s FIG 10

U.S. Patent Apr. 3, 1979

BITCLK —Do———-LU‘ LOAD

Sheet 11 of 17 4,148,098

WORD TIMING UNIT 250

WAKEST

} CARRY WODDONE

Vose
HIORDBIT ——D—l
BUS (04) JSa
LDCOM CLK
Kz
h4] WAKEKWDT
s 1
s S R J S ol-lworskena
WDDONE ——{CLK —CLK CLK _
K g Kg —K & 9
T 3
WDALLOW
SYSCLKB L SYSCLKA
BLOCK:D: WDAIJ:LOW
WDTSKACT iy e WOINIT
~—{cLK
K

FI1G. 1/

U.S. Patent Apr. 3, 1979 Sheet 12 of 17 4,148,098

STORAGE 7 SEEK GENERATOR 260

+5

KSYSCLK —(SET\RE €], 26
3

STROBED —NSEV/
Dy) Sw—
j’ OKTORUN

+5

T
SET 266
NSET,

ADRACK —P:}_I

L

Q

% wp\

= >

X0 @

—cm

CLRSTAT

":)—-— SEEKOK

FIG. 12

U.S. Patent Apr. 3, 1979 Sheet 13 of 17 4,148,098

ADDRESS MODIFIER 270

NEXT(05)

WDINIT — \

WDTSKACT —____/

'NEXT(06)

NEXT(07)

Y 1T

|

*NEXT(08)

L
RECNO(l)——

SEEKONLY
SRWRDY
K —

F *>NEXT(09)

DSKTSK
WDTSKACT
m—\ﬁ | FIG. 13

U.S. Patent Apr. 3, 1979

+5

Sheet 14 of 17

/—
CLRSTAT —¢

SECTOR / ERROR WAKEUP GENERATOR 280

ERRWAKE
{5
l 284 —/
WAKEKST / T %
—— J
J— CLK)
sch(4)4{> = I
e = B—— 8ecLATE
L-T——
RESET
> 1 1]
| 1y J J | STSKENA
—CLK cLK —CLK
1K AK K z WAKEKST
SYSCLKB
BLOCK —

STSKACT —

FlG. 14

4,148,098

U.S. Patent Apr. 3, 1979 Sheet 15 of

F _DECODER 290

17 4,148,098

292
Z
KWDTAC — = WDTSKACT
KSTAC —o = STSKACT
8LOCK —4 = BLOCK
KDATA~—
———d
[} LDDATA
N
294 297 KAD|R=;,
LDADR
FI(3) — . S— P—d}
— o o= - [R—
ne b = [) e
Fl(Q) b KCLRSTA
° Lo
INCRECND :}—~ CLRSTAT
| KSTAT «— 1
_ STROBED
| JL DSKTSK
KSYSCLK J1>o—i

1

FIG. 15

U.S. Patent Apr. 3, 1979

DATA (14)

Sheet 16 of 17

i
LDADR CLK

4,148,098

L

DATA(04)

DATA(0S5)

DATA(06)

ey) =

L

:

—— KSTAT

DSKTSK

STSKENA —
SECLATE

WODTSKENA—
CARRY —

FIG 16

}—— KSTATL

DATA(OT)

DATA(0B)

DATA(09)

DATA(10)

DATA(11)

DATA(i2)

DATA(15)

SENDADR
HEAD

.—Z}'_‘ VL

_}»——— cYL(4)

Do—~ cYL(s)

cYL(?)

3,_. cvLe)

cYL(8)

RESTOR

U.S. Patent Apr. 3, 1979 Sheet 17 of 17 4,148,098

+5
+5

+5

—" OKTORUN
INS2278

— i

D

OKTORUN | ERGATE
) WRTGATE
wR D)o
WAKEKST —
KFER —

XFERON — FlG 17

4,148,098

1

DATA TRANSFER SYSTEM WITH DISK
COMMAND VERIFICATION APPARATUS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of U.S. ap-
plication Ser. No. 733,640, now abandoned, filed on
Oct. 18, 1976 as a continuation of U.S. application Ser.
No. 518,555, now abandoned, filed on Oct. 29, 1974 in
the names of Edward M. McCreight and Charles P.
Thacker for MICROPROGRAMMABLE DISK OP-
ERATING SYSTEM.

BACKGROUND OF THE INVENTION

This invention relates to data processing systems and,
more particularly, to a data processing system including
a peripheral storage device, such as a disk drive, having
at least one recording medium, such as a recording disk,
and means for writing data onto and reading data from
the recording disk.

Such systems are, of course, well known in the art
and traditionally further include a disk drive controller
coupled to the disk drive and responsive to predeter-
mined instructions and command data for controlling
the writing of data onto and reading of data from the
recording disk, as well as a main memory coupled to the
controller for storing data to be written onto to read
from the disk and the command data. Lastly, a CPU is
included for supplying the predetermined instructions
to the controller and for addressing the main memory.

As is conventional in prior art systems, each record-
ing surface of a disk is divided into a plurality of tracks
and a plurality of sectors. Each sector of track normally
contains both header data (data containing the disk
address of that track-sector) and file data (data corre-
sponding to a page of a particular file of data). In the
past, a file directory has been employed to list the first
page of every file recorded on the disk surface, since the
various pages of a fiie need not be recorded at consecu-
tive sectors, and usually are not. However, the file di-
rectory is itself a file recorded on the disk surface.

The obvious disadvantage of the above arrangement
is that if the file directory were damaged or destroyed
due to a head crash or the like, it is virtually impossible
to use the disk thereafter. The disk might just as well be
discarded and the data contained thereon lost.

Another problem with prior art systems is that some-
times invalid disk command data is accessed from main
memory, such as through an improper or erroneous
addressing or the like. Invalid disk command data might
result in the disk drive controller improperly or incor-
rectly controlling the disk drive.

It would be desirable, therefore, to provide a data
processing system which is capable of sustained opera-
tion notwithstanding the damage or destruction of a file
directory recorded on the disk or other recording me-
dium. It would further be desirable to be able to recon-
struct a damaged or destroyed file directory from the
remaining data recorded on the disk. It would also be
desirable to be able to verify the validity of command
data accessed from the main memory prior to use
thereof by the controller in the event that it may be
invalid.

SUMMARY OF THE INVENTION

In accordance with one aspect of the present inven-
tion, a data processing system is provided comprising a

20

25

30

40

45

50

55

65

2

peripheral storage device having at least one recording
medium and means for writing data onto and reading
data from said recording medium; a controller coupled
to said peripheral storage device and responsive to pre-
determined instructions and command data for control-
ling the writing of data onto and reading of data from
said recording medium; a main memory storage device
coupled to said controller and having a plurality of
addressable storage locations, at least some of said stor-
age locations capable of storing data to be written onto
or that has been read from said recording medium, and
at least some other of said storage locations capable of
storing said command data, said command data when
valid including a portion thereof defining a predeter-
mined verification word; and a central processing unit
coupled to said controller and to said main memory
storage device and including means for supplying said
predetermined instructions to said controller, means for
addressing the storage locations of said main memory
storage device, and means for examining said portion of
said command data to verify the validity of said com-
mand data.

In accordance with the preferred embodiment, the
means for examining includes constant memory means
having said predetermined verification word stored
therein, and means for comparing said portion of said
command data with said predetermined verification
word stored in said constant memory means in order to
verify the validity of said command data.

In accordance with another aspect of the present
invention, a data processing system is provided com-
prising a peripheral storage device having at least one
recording medium and means for writing data onto and
reading data from said recording medium; a controller
coupled to said peripheral storage device and respon-
sive to predetermined instructions and command data
for controlling the writing of data onto and reading of
data from said recording medium; a main memory stor-
age device coupled to said controller and having a plu-
rality of addressable storage locations, at least some of
said storage locations capable of storing data to be writ-
ten onto or that has been read from said recording me-
dium, and at least some other of said storage locations
capable of storing said command data as a chain of
command data blocks, each command data block con-
taining a first word pointing to the next command data
block in the chain, a second word pointing to a block of
said main memory storage device capable of storing
label data defining the name and/or number of a file of
data to be written onto or read from said recording
medium, and a third word pointing to a block of said
main memory storage device capable of storing a page
of said file data; and a central processing unit coupled to
said controller and to said main memory storage device
and including means for supplying said predetermined
instructions to said controller, and means for addressing
the storage locations of said main memory storage de-
vice.

In accordance with the preferred embodiment, the
peripheral storage device includes a disk drive, and
each distinct recording location on the disk is divided
into three blocks, each of which can be read, verified
against predetermined data stored in the main memory,
or written, independent of the others. The first block is
called the header block, and is generally used to verify
that the disk positioning mechanisms are functioning
correctly. The second block is called the label block,
and as alluded to above, holds data describing the name

4,148,098

3

and structure of the file, a portion of whose data is
recorded in the third block, called the data block. Each
block of label data preferably contains a pointer to the
recording location on the disk of the next page of the
file. Accordingly, it is possible not only to be able to
continue to use the disk if primarily just the file direc-
tory is damaged or destroyed, but also to reconstruct
the file directory by reading the label data in each sector
of each track.

These and other aspects and advantages of the pres-
ent invention will be more completely described below
with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram representation of an exem-
plary data processing system of the present invention;

FIG. 2 is a schematic block diagram representation of
the control section of the CPU depicted in FIG. 1;

FIG. 3 is a more detailed block diagram representa-
tion of the instruction register and decoders depicted in
FIG. 2.

FIG. 4 is a schematic block diagram representation of
the data section of the CPU and the main memory de-
picted in FIG. 1;

FIG. 5 is a block diagram of the data paths of the disk
drive controller shown in FIG. 1;

FIG. 6 is a schematic drawing of the write buffer and
shift register shown in FIG. §;

FIG. 7 is a schematic drawing of the read buffer and
shift register shown in FIG. 5;

FIG. 8 is a schematic drawing of the encoder, de-
coder, and multiplexers shown in FIG. §;

FIG. 9 is a schematic drawing of the command regis-
ter of the disk drive controller shown in FIG. 1;

FIG. 10 is a schematic drawing of the status unit of
the disk drive controller shown in FIG. 1;

FIG. 11 is a schematic drawing of the word timing
unit of the disk drive controller shown in FIG. 1;

FIG. 12 is a schematic drawing of the strobe/seek
generator of the disk drive controller shown in FIG. 1;

FIG. 13 is a schematic drawing of the address modi-
fier of the disk drive controller shown in FIG. 1;

FIG. 14 is a schematic drawing of the sector/error
wakeup generator of the disk drive controller shown in
FIG. 1;

FIG. 15 is a schematic drawing of the F decoder of
the disk drive controller shown in FIG. 1;

FIGS. 16 and 17 are schematic drawings of logic
elements which generate various signals used by the
disk drive and the disk drive controller shown in FIG.
1.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring to FIG. 1, a data processing system of the
present invention is shown. The system includes a cen-
tral processing unit (CPU) 10 that is comprised of a data
section 12 and a control section 14. The system also
includes a main memory 16 to be described below and a
plurality of input-output (I/O) controllers 18, ¢.g., “M”
1/0 controllers designated 18(;) through 18(as). Each of
the 1/0 controllers 18 is connected to a respective one
or more of a plurality of 1/O devices 20 for controlling
same. At least one of the I/0 controllers 18, e.g. con-
troller 18(y), is a disk drive controller for controlling one
or more disk drives 20(1). Examples of other typical I/O
devices that may be employed as 1/0 devices 20 in the
system of FIG. 1 are display devices, keyboards and

—_—

0

15

20

30

35

40

45

30

60

65

4

cursor control devices (sometimes each referred to as a
“mouse”’). The depiction of only one disk drive control-
ler 18(;) and one associated disk drive 20 is, of course,
only exemplary.

Information is transferred to and from the data sec-
tion 12 of the CPU 10 by means of a main data transfer
bus 22. The information is desirably transferred in bit-
parallel format. Typical CPU’s are designed to operate
in 8-bit or 16-bit format, i.e., 8-bit or 16-bit quantities are
transferred to and from the data section 12 along the bus
22, which would then be comprised of either at least
eight or at least sixteen parallel lines. Information may
be transferred on the data bus 22 between the main
memory 16 and the data section 12, between the I/0
controllers 18 and the data section 12, as well as be-
tween each of the I/0 controllers 18 and the main mem-
ory 16.

Each of the 1/0O controllers 18, including the disk
drive controller 18(1), is capable of generating one or
more task request signals in the form of *‘wake-up”
commands whenever the particular controller 18 re-
quires one or more services to be performed by the
CPU 10. The specific nature of two wakeup-task re-
quest signals that are preferably generated by the disk
drive controller 18(;y will be described in more detail
below. The wakeup-task request signals from the con-
trollers 18 are applied on respective lines 24(1-24(n).
The two wakeup-task requests from the disk drive con-
troller 18(), arbitrarily designated wakeup-tasks 1 and
2, are applied on lines 24¢) and 24(z) to the control sec-
tion 14 of the CPU 10. In order for each controller 18 to
be informed when the CPU 10 is executing instructions
relating to the requested service, the control section 14
includes means to be described below for applying a
“task-active™ status signal back to the controller. These
task-active status signals are applied on lines 26 from the
control section 14 to the controllers 18, as shown in
FIG. 1. There are two task-active lines associated with
the disk drive controller 18(1), i.e. task 1 active on line
26(1) and task 2 active on line 26(2).

Reference is now had to FIG. 2 where the control
section 14 of the CPU 10 will be described. At the
outset, it must be stated generally that the control sec-
tion 14 applies instructions to the data section for execu-
tion thereby. Additionally instructions are applied to
the various 1/0 controllers 18 for execution thereby.
The instructions are forwarded in accordance with a
particular sequence or routine to be carried out and
identified with a particular task to be serviced. The
control section 14 includes means to be described below
for determining which of a plurality of wakeup-task
request signals that may have been applied to the con-
trol section 14 has the highest current priority value.
More specifically, each of the plurality of tasks to be
serviced is. preassigned a unique priority value. Thus,
performing a requested service for the disk drive con-
troller 18(;y may be of higher priority than performing a
requested service for I/O controller 18(a5. The control
section 14 then forwards instructions associated with
the highest current task to be serviced to the data sec-
tion 12 and respective 1/0 controller 18 for execution.

Referring now in more detail to FIG. 2, the control
section 14 includes a priority encoder 28 which has task
request inputs connected to the N task request lines 24,
As explained above, wakeup-task request signals for
task 1-N are provided from the I/Q controllers 18.
Additionally, a wakeup-task request signal for task ¢,
which requests servicing the main program, is always

4,148,098

5

present, as will be explained in more detail below. The
priority encoder 28 includes circuitry (not shown) for
generating a multi-bit control signal on a respective
plurality of lines 30 (only one shown) related to the
highest priority wakeup-task request signal currently
applied as an input to the encoder 28. The priority en-
coder 28 includes a further input for receiving a
RESET signal on a line 32 from an initialize circuit 34
to be described in more detail below.

Now then, the control signal developed on lines 30 is
applied to respective inputs of a current task register 36
which responds to such control signal for generating a
multi-bit address signal that is applied in bit-parallel
format on a respective plurality of lines 38 from the
register 36 to respective inputs of an address memory
40. The address memory 40 includes a plurality of stor-
age locations, preferably defined by a respective plural-
ity of multi-bit registers (not shown). There are prefera-
bly N such registers included in the address memory 40,
each one being addressed by a unique multi-bit code
defined by the address signal applied thereto from the
current-task register 36 on lines 38.

Each one of the N registers in the address memory 40
is associated with a respective one of the N tasks to be
performed, as defined above. In actuality, each of the
address memory registers is capable of storing the next
address of an executable microinstruction stored in a
microinstruction memory 42. In this respect, each of the
N address memory registers may be thought of as a
program counter for its respective task to be serviced
relative to the corresponding microinstruction routine
stored in the instruction memory 42.

Each instruction stored in the memory 42 is accessed
in response to a corresponding address signal applied on
address lines 44 from the address memory 40. Each
instruction includes an instruction field preferably com-
prised of twenty-two bits, and a next-address field pref-
erably comprised of ten bits. The specific constitution of
the 22-bit instruction field will be described in more
detail below in connection with FIG. 3. The instruction
field is loaded into an instruction register 46 on lines 48
and is then applied through appropriate decoders 52
(also to be described in more detail below in connection
with FIG. 3) to the data section 12 of the CPU. Certain
of these decoded instructions are also forwarded to the
disk drive controller 181), as will be discussed below in
connection with FIG. 3 and other Figures. The next-
address field is fed back on lines 50 to the currently
addressed register in the address memory 40. In this
manner, each of the N registers in the memory 40 will
always contain the address of the next microinstruction
stored in the instruction memory 42 to be executed in
accordance with the particular task to be serviced.

A portion of the twenty-two bit instruction field of
each microinstruction may be dedicated to various spe-
cial functions, some of which are applied on control
lines 47 to respective ones of the /O controllers 18 for
controlling same, and some of which are applied on
control lines 49 to address modifier circuits 56 (to be
described below) for branching. In accordance with the
preferred embodiment, there is a four-bit special func-
tion “sub-field” in the instruction field of each microin-
struction (hereinafter referred to as the “F1” sub-field),
wherein two of the sixteen four-bit codes capable of
being defined (e.g. F1=2, F1=3) are respectively rep-
resentative of “TASK” and “BLOCK” functions. A
TASK signal component of an accessed instruction,
upon being decoded by an appropriate one of the de-

—

0

20

25

40

50

55

65

6

coders 52, is applied on a line 54 to the current task
register register 36 for enabling same to load an address
signal, representing the current highest priority task
requesting service. This address signal is then applied to
the address memory 40. A decoded BLOCK signal is
applied on a line 55 to the current task register 36 for
disabling same.

It will be appreciated that a TASK signal can be
presented in any desired microinstruction during any
routine to be executed. Normally, a TASK signal would
be generated at least once during each microinstruction
routine in order to enable any higher priority task
awaiting service to interrupt the current routine in
order to be serviced by the CPU 10. If a particular task
to be serviced has a microinstruction routine that
carries out a plurality of different functions that can be
independently serviced, then a TASK signal would
normally be written into the last microinstruction of
each segment of the routine identified with a particular
one of such functions.

Continuing with a description of FIG. 2, the control
section 14 of the CPU 10 further includes conventional
address modifier circuits 56 which, in a known manner,
are responsive to instructions on control lines 49 for
modifying the next-address signal being fed back on
lines 50 from the instruction memory 42 to the address
memory 40. As is conventional, such address modifiers
are used for branching. Specific details of the address
modifier 56 may be had by reference to copending U.S.
application Ser. No. 769,254 filed on Feb. 16, 1977 as a
continuation of now abandoned U.S. application Ser.
No. 518,679 filed on Oct. 29, 1974 by Charles P.
Thacker and assigned to the assignee of the present
invention, both such applications being hereby incorpo-
rated by reference.

The multi-bit address signal developed at the output
of the current task register 36, in addition to being ap-
plied to the address memory 40 on lines 38, is also ap-
plied on lines 58 to a task-active decoder 60. The de-
coder 60 responds to the address signal output of the
register 36 and generates one of the N TASK-ACTIVE
signals alluded to earlier on its respective line 26, depen-
dent upon the current highest priority task to be ser-
viced. The decoder 60 includes a delay circuit for delay-
ing the application of a TASK-ACTIVE signal to the
respective 1/0 controller 18 by one clock cycle of the
processor. In this manner, the appropriate TASK-
ACTIVE signal will be generated at a time correspond-
ing to the execution of instructions related to the task
being serviced.

The control section 14 as shown in FIG. 2 also in-
cludes a clock generator 62 for generating appropriate
CLOCK signals for application to the current-task reg-
ister 36 on a line 64, the task-active decoder 60 on a line
66, the address memory 40 on a line 68, and the initial-
ization circuit 34 on a line 69.

Still referring to FIG. 2, the initialization circuit 34 is
responsive to 2 START signal generated when the
system is reset by the operator. Upon receipt of the
START signal, conventional circuitry in the circuit 34
causes a RESET signal to be generated which is applied
to the priority encoder 28 on line 32, to the current task
register 36 on a line 70, to the task-active decoder 60 on
a line 72, to the instruction memory 42 on a line 74, to
the instruction register 46 and decoders 52 on a line 76,
and to the address modifier 56 on a line 78. Upon receipt
of a RESET signal, these various components of the
control section 14 are reset.

4,148,098

7

The initialization circuit 14, in response to a START
signal, also generates a multi-bit initialization address
signal on a respective plurality of lines 80. In a preferred
embodiment of the invention, “N” equals sixteen and

thus the initialization address signal is a four-bit signal 35

that is initially zero, i.e., 0000, and is incremented by one
at the rate of the CLOCK signal pulses applied on line
69. The RESET signal is maintained for sixteen cycles,
i.e. sixteen CLOCK signal pulses, at which time the
initialization address on lines 80 will increment from
zero (0000) to fifteen (1111). As will be described be-
low, the address signal output of the current task regis-
ter 36 during initialization is identical to the initializa-
tion address signal. During initialization, the address
signal output of the current task register 36 is applied
through an AND-gate 82, which is enabled by a
RESET signal from the initialization circuit 34, to the
address memory 40. In this manner, the address signal
(0000) will be loaded into register number zero in the
address memory 40, the address signal one (0000) into
register number one, and so on. This process initializes
the address memory by setting the various registers
therein at their respective starting values.

Further details of the control section 14 of the CPU
10 may be had through a review of the aforementioned
copending U.S. applications Ser. Nos. 769,254 and
518,679.

Referring now to FIG. 4, the basic elements of the
data section 12 of the CPU 10 are a register file 102, T
register 105, L register 110, memory address register
(MAR) 114, and instruction register 116. The registers
106, 110, 114 and 116 are connected to the register file
102 and to an arithmetic and logic unit (ALU) 120 by
means of the main data transfer bus 22, which is desir-
ably 16 bits in width.

Data is typically put onto the bus 22 from the register
file 102 which is preferably implemented by a group of
32 registers whose contents are read or loaded as se-
lected by a specific microinstruction field. Data may
also be entered on the bus 22 from a constant memory
128 which is preferably implemented by any commer-
cially available 256-word read only memory (ROM)
which holds arbitrary 16-bit constants. Data may be
available as well from the I/O devices 20, such as the
disk drive 20(;). Other data is available from the main
memory 16 and portions of instructions are entered on
the bus 22 from the instruction register 116. The main
memory 16 will be described in more detail below.

Data may be transferred from the bus 22 to the I/O
controllers 18, the main memory 16, the instruction
register 116, the T register 106, or even the L register
110 through the ALU 120. Data transfers are under the
control of microinstructions which are executed from
the instruction memory 42, which is desirably imple-
mented by a conventional 1024 word X 32-bit program-
mable read-only-memory (PROM).

The specific nature of the 22-bit instruction field of a
32-bit microinstruction accessed from the instruction
memory 42 will now be described with reference to
FIG. 3. As shown, the 22-bit instruction field loaded
into the instruction register 46 includes seven “‘sub-
fields” as follows:

BIT(S) SIGNAL MEANING
0-2 A REGISTER (R) SELECT
3.4 B REGISTER (R) SELECT
5-8 c ALU FUNCTION

9-11 D BUS DATA SOURCE

—

s

35

45

50

55

65

-continued
BIT(S) SIGNAL MEANING
12-15 E FUNCTION 1
16-19 G FUNCTION 2
20 H LOAD L
21 | LOAD T

The R Select field (bits 04, signals A and B) specifies
one of the 32 registers which comprise the register file
102 to be loaded or read under control of the bus source
field, or, in conjunction with the bus source field (bits
9-11, signal D), one of the 256 locations to be read from
the constant memory 128. The low order two bits of the
R address (but not the constant memory address) may
be taken from fields in the instruction register 116, i.e.
IR(1,2) and/or IR (3,4), as applied through a conven-
tional multiplexer 125 (FIG. 4). This enables the main
microprogram, i.e. task ¢, to address certain registers in
the R file 102 more easily.

The ALU Function field controls the ALU 120. The
ALU 120 can do a total of 48 arithmetic and logical
operations. The 4-bit field is mapped by a PROM 140
into the 16 most useful functions. These functions are
disclosed and described in more detail in the aforemen-
tioned parent applications Ser. Nos. 518,555 and
733,640, both of which are hereby incorporated by
reference. One of these functions is to “Exclusive OR”
a first signal supplied to the ALU from the main mem-
ory 16 on bus 22 with a second signal supplied to the
ALU from the T register on lines 107 (FIG. 4). This
function has significance in verifying the validity of disk
command data accessed from the main memory 16, as
will be explained in more detail below.

The bus data source field (bits 9-11, signal D), upon
being decoded by BS decoder 52a, specifies one of 8
data sources for the bus 22 follows:

OUTPUT

BS DECODER 522 SOURCE OF DATA

Read R Register 102

Load R Register 102

Nothing (—1)

Kstat (16 bits of disk status)
Kdata (16 bits of disk data)
Memory data (from main memory 16)
Input device data (4 bits, remain-
der of word is 1) : MOUSE (if
used as one of 1/0 devices 20)

7 Disp (low order 8 bits of
instruction register 116, sign
extended)

- V. S N .]

Output 1, i.e. Load R, is not logically a source, but
since the register file (R) 102 is gated to the bus 22
during both reading and writing, it is included in the
source specifiers.

The two function fields F1 and F2 specify the address
modifiers, register load signals (other than those for the
registers 102, 106 and 110) and other special conditions
required. The first eight conditions specified by each
field after being decoded by F decoders 52b and 52¢ are
interpretated identically by all tasks, but the interpreta-
tion of the second eight decoded conditions depends on
the active task. The first eight task-independent func-
tions are given below, whereas the latter eight task-
dependent (also referred to as “task-specific™) functions
will be described later.

4,148,098

9
OUTPUT
F1 DECODER
52b NAME MEANING

0 — No activity

1 MAR « Load MAR 114 from ALU
120 output; start main
memory 16 reference

2 TASK Switch tasks if higher
priority wakeup pending

k] BLOCK Disable current task
wakeup until reenabled
by hardware generated
condition

4 «L Ish1 Left shift L (one place)

5 «—L rsh 1 Right shift L {one place)

6 «—Llcy 8 Cycle L (8 places)

7 «—CONSTANT BUS constant ROM loca-

tion addressed by R
SELECT BUS SOURCE

Outputs 4-6 are modified by functions fields F2=11
and F2=12, such fields to be described in detail later.

OUTPUT
F2 DECODER
52C NAME MEANING
0 —_ No Activity
1 BUS=0 NEXT « NEXT OR (BUS=0)
2 SHO NEXT « NEXT OR (SHIFTER
OUTPUT.0)
3 SH=0 NEXT «— NEXT OR (SHIFTER
OUTPUT =0)
4 BUS NEXT « NEXT OR BUS (06)
-BUS (15)
5 ALUCY NEXT « NEXT OR LALUCO
(THE CARRY USED IS THAT
" PRODUCED BY THE ALU
FUNCTION WHICH LAST
LOADED THE L REGISTER 110
6 STORE
CONS-
7 TANT SAME AS Ft=7

The ALU 120 is restricted by the mapping of its 4-bit

[

0

25

30

field by the PROM 140 so that only sixteen arithemetic 40

and logical functions may be performed. The output of
the ALU 120 is transferred to the L and memory ad-
dress registers 110 and 114. The T register 106 may also
be loaded from the output of the ALU 120 under certain
conditions. The L register 110 is connected to a shifter
144 which is capable of left and right shifts by one place,
and cycles of eight. Double-length shifts may also be
formed. The output of the shifter 144 is transferable to
the register file 102. The output of the MAR register
114 is decoded by a decode and control unit 148 and
transferred along the address bus 13 to the main mem-
ory 16, and more particularly to a main memory store
17 of the main memory 16. Details of the main memory
16 and its main memory store 17 will be described be-
low.

As indicated above, microinstructions are executed
one at a time in each processing cycle. Generally speak-
ing, with respect to the data section 12 of the CPU 10,
a microinstruction consists of taking a piece of data
from a source register in the register file 102, operating
upon it, and loading the results into another register.
For example, a microinstruction may dictate that the
contents of the 23rd register in the register file 102 be
transferred by way of the bus 22 to the T register 106.
This microinstruction would be in the form of having
the R select equalling 23 and having the load T bit set.
An addition operation may take as many as three micro-
instructions. If it is desired to add the contents of the

45

50

55

65

10
22nd register of the register file 102 with the 23rd regis-
ter and transfer the results to the 30th register, three
microinstructions are, in fact, necessary. The first mi-
croinstruction would read the contents of the 22nd
register into the T register 106; the second microin-
struction would read the contents of the 23rd register
through the ALU 120 and into the L register 110 and
simultaneously would define an addition operation in
the ALU function field so that the ALU 120 would
perform addition (the result stored in the L register 110
at the end of the second microinstruction would thus be
the sum of the contents of the 22nd register and the
contents of the 23rd register); the third microinstruction
would transfer the contents of the L register 110
through the shifter 144 back into the appropriate desti-
nation in the register file 102.

The microinstruction is structured so that a parallel-
ism of different operations may be directed by a given
instruction. This segmentation is achieved by the defini-
tion of specific fields within the instruction as is repre-
sented in in FIG. 3. A given instruction is selected from
the instruction memory 42 and is transferred to the
microinstruction register 46 where it is stored as shown
in FIG. 2. In the preferred embodiment of the invention
and as indicated above, seven fields comprising an in-
struction width of 22 bits dictate the processing opera-
tions to be performed. Five bits (signals A and B) are
used to select the location in the register file 102 which
are to be involved during a given instruction period. If
the register file 2 is not to be involved within a particu-
lar processing cycle, this RSELECT (RSEL) field has a
value of zero. A 4-bit arithmetic and logic unit function
field ALUF (signal C) specifies one of 16 logical opera-
tions, including addition and subtraction, which the
ALU 120 can pérform. A 3-bit bus source ficld BS
(signal D) determines which of the previously identified
eight possible data sources are gated onto the 16-bit bus
22 during the particular microinstruction period.

The Read R and Load R bus sources are typically
used in almost every microcinstruction. With the value
of two, the BS field specifies that nothing is to be placed
on the bus 22. The Kstat source causes status informa-
tion stored within the disk drive controller 18()) to be
placed on the bus 22. Kdata causes 16 bits of disk data
stored within the disk drive controller to be placed on
the bus. Memory data identifies data which would re-
sult from a fetch from a particular location in the main
memory store 17. The indicator device data could possi-
bly be represented by four external control bits. Disp
would be the lower 8-bits of the instruction register 116,
with bits 0-7 made equal to bit 8 (sign extension). This
particular bus source specification allows for the defini-
tion of microcode which provides fast processing. As
has been already mentioned, the register file 102 is gated
to the bus 22 during both the reading and the writing of
the file 102. Thus, Load R source is included in the
source specifiers.

Whenever the register file 102 is selected for reading
or writing, data is necessarily placed on the bus 22.
Therefore, the bus 22 contains data whenever a write
operation is performed on the files 102, even though
some other transfer in parallel may be made. Writing
into the file 102, then, uses the Load R condition in the
BS field. If writing into the file 102 is not specified with
this field, then there would be no other use for this field
during that microinstruction. With this implementation,
during an instruction which writes data into the register

4,148,098

11

file 102, the contents of the bus 22 will be represented as
zero at that time, even though data was originally on
the bus 22. This latter condition is implemented by the
address memory 40 (FIG. 2) whose inputs are con-
nected to the instruction register 116 and the bus 22
under the control of the signal ZERO BUS. The bus 22
is zero when the ZERO BUS signal is true, which signal
is generated whenever the microinstruction specifies
that the register file 102 be loaded.

The advantages of using special function fields F1
and F2 can be illustrated by the function of loading the
memory address register (MAR) 114. This is a function
that is performed moderately often in a microprogram,
conceivably every five microinstructions. This fre-
quency of use is not such that it would justify a special
bit in the instruction, but often enough so that it should
be specified as a task-independent function. Therefore,
Load MAR is in the first set of eight function F1’s, i.e.
F1=1. Similar rational is applied to the implementation
of the remaining functions within the set of functions.

The left shift (F1=4), right shift (F1=5) and cycle
(F1=6) fuctions control the shifter 144 which is respon-
sive to the output of the L register 110. Sixteen bits of
data are transferred from the L register 110 to the
shifter 144 in parallel and 16 bits which are inputted to
the shifter 144 can be left shifted, right shifted, or cycled
by 8 with the result of the operation being transferred to
the register file 102 to be stored. By the use of the func-
tion F1, values 4, 5, or 6, these task independent func-
tions may be specified.

Tasks may be switched to higher priority wake-up
requests by the use of the function 1, value 2 (F1=2).
Current task wake-up may be disabled by the use of the
function 1, value 3 (F1=3). The function 1, value 7
instructs that a literal constant be fetched from the con-
stant memory 128. There are preferably up to 256 literal
constants stored in the constant memory 128, the ad-
dressing of which requires 8 bits. One of these literal
constants is a 16-bit word defining a “seal” in the high
order 8 bits thereof that should appear in each disk
command block (DCB) stored in main memory 16. This
is an important aspect of the present invention and will
be described in more detail below.

The constant memory 128, in the preferred embodi-
ment, may be implemented by a 256 X 16 PROM avail-
able from Microsystems International, type MD 6300,
and is gated to the bus 22 by F1=7, F2=T or BS = 4
fields. The constant memory 128 is addressed by the
8-bit concatenation of RSELECT (signals A-B) and BS
(signal D), as shown in FIG. 4. The intent in enabling
constants with BS = 4 is to provide a masking facility,
particularly for the input device signal MOUSE and
DISP bus source. This is facilitated because the proces-
sor bus 22 is arranged electrically such that it “ANDS”
if more than one source is gated to it.

Up to 32 such mask constants can be provided for
each of the 4 bus sources Z 4. For example, specific
locations in memory are identified by constants repre-
senting their address to enable the microcode to com-
municate with the main program. Also, these constants
may be used to implement masks, patterns and bits that
the program wishes to contain. Otherwise, such features
would have to be stored in the instruction memory 42
which would require an extra 16-bit field.

The gating of the constant memory 128 onto the bus
22 can occur simultaneously with the specification of
another function by the other function field which does
not enable the gating of the constant to the bus 22. If, for

—

5

30

45

55

60

12
example, the rest of the instructions dictate that the F2
field be used for a branch, then the assembler will assign
F1=7. Otherwise, it will assign F2=7.

The function 2’s are normally branch conditions.
Each of the F2 values specify the condition that must be
satisfied for branches to occur. Specifically, the nota-
tion NEXT indicates the next address bus 50 (FIG. 2),
which transfers the address of the next microinstruc-
tion. The left arrow (<) means “gets”. Therefore,
F2=1 indicates that NEXT gets NEXT or (bus equals
&). This indicates that a branch will occur if the bus 50
equals ¢, or the output of the shifter 144 is less than ¢ or
equal to ¢, or will branch to the location specified by
the bus 50. An address when generated allows a jump to
the location addressed in the instruction memory 42 or
abranch if the ALU 120 produces a carry out on the last
operation from which it was used.

F2=6 provides for a STORE which says that the
data that is currently on the bus 22 be written into the
main memory store 17 during this microinstruction
cycle. Since the main memory store 17 is much slower
than the cycling of the processor itself, it takes four
cycles before a STORE is performed. In the first cycle,
the address register 114 is loaded, on the next two cy-
cles, operations may be performed elsewhere in the
processor, and in the fourth cycle, data is actually
stored in the main memory store 17.

Task dependent (specific) functions are provided by
function values in the F1 and F2 fields which are
greater than 7, i.e. between 10 and 17. The following
table gives for each of tasks ¢, 1 and 2 a number in the
priority scheme and their specific functions. The re-
maining tasks 3-N are not set forth herein since they
form no part of the present invention. Details of these
tasks, however, if desired, may be obtained through a
review of parent applications Ser. Nos. 518,555 and
733,640.

F1 {TASK SPECIFIC)

CPU-0 KSEC-1 KWD-2
10: SWMODE — -
11 WRTRAM STROBE STROBE
12: RDRAM KSTAT — KSTAT «
13: — INCRECNO INCRECNO
14: — CLRSTAT CLRSTAT
15: — KCOMM « KCOMM —
16: — KADR « KADR «—
17: START KDATA «— KDATA

F2 (TASK SPECIFIC)

CPU-0 KSEC-1 KWD-2
10: BUSODD INIT INIT
11: MAGIC RWC RWC
12: DNS RECNO RECNO
13: ACEST XFRDAT XFRDAT
14: IR SWRNRDY SWRNRDY
15: . IDISP NFER NFER
16: ACSOURCE STROBON STROBON

17: — _ .

As discussed above, task ¢ is the main microprogram
and always in requesting service. Tasks 1 and 2 are
generated by the disk drive controller 18¢;). Task 1is a
sector task (KSEC) and task 2 a word task (KWD).
Specific details of the main microprogram, task ¢, may
be had from a review of Appendix A hereto, as well as
the above-referenced parent applications Ser. Nos.
518,555 and 733,640. The two microcoded tasks 1 and 2
will be described below with reference to the disk drive
controller 18() and disk drive 20¢y), and further more

4,148,098

13

specific details thereof may be had from a review of
Appendix A hereto and parent applications Ser. Nos.
518,555 and 733,640.

The disk drive controller 18(1y is preferably designed
to accommodate and control a variety of disk drives. In
the exemplary system of FIG. 1, a Diablo Model 31 or
44 disk drive may be used as the disk drive 20(1). The
Diablo Model 31 disk drive has a single removable
recording disk whereas the Diablo Model 44 disk drive
has both a single fixed and a single removable recording
disk. In both drives, there are two electromagnetic
read/write heads, one for each disk recording surface.
Information is desirably recorded on each disk record-
ing surface in a 12-sector format. The Diablo Model 31
has 203 tracks per disk surface and the Diablo Model 44
has 406 tracks per disk surface. Further details of the
specifications of each of these two exemplary disk
drives are disclosed in the aforementioned parent appli-
cations Ser. Nos. 518,555 and 733,640. It will be appre-
ciated that other suitable disk drives may be employed
in the data processing system of FIG. 1.

The disk drive controller 18(1)is capable of recording
three independent blocks of data in each sector of each
track on a disk recording surface. Each block is fol-
Jowed by a single “checksum” word to facilitate error
detection. The first block of data is desirably two, 16-bit
words long and is intended to define the address of the
recording position, i.e. the disk surface and the track
and sector location thereon. This first block is called the
“header” block. In accordance with a unique aspect of
the present invention, the second block of data capable
of being recorded by the disk drive controller 18(1) on
each sector of each track is a “label” block, which is
desirably eight, 16-bit words in length. The unique func-
tion and purpose of this block will be described below.
The third block of data capable of being recorded in
each track sector is a “data” block and is preferably 256,
16-bit words in length. The data block contains a
“page” of a particular data “file” to be stored in that
track sector.

Each of these three blocks may be independently
written, read or checked, except that writing, once
begun, must continue until the end of the data block.
When a block is checked, information on the disk is
compared word for word with a specified block of main
memory store 17. During checking, a main memory
word containing ¢ has special sigificance. When this
word is encountered, the matching word read from the
disk is stored in its place and does not take part in the
check. This feature permits a combination of reading
and checking to occur in the same block.

The label block recorded in each track sector con-
tains a number of bits defining the name and/or number
of the “file” of the data in the data block recorded in
that sector. As mentioned above, the file data in each
data block represents a “page” of data from the file. A
special reserved file number is used to indicate that a
page is “free” and is not contained in any existing filed.
Each label block also contains a number of bits defining
a pointer to the storage location on the disk of the next
page of the particular file. In accordance with the pre-
ferred embodiment, each 8 word X 16 bit = 128 bit
label contains the following fields:

bits ¢-15: Pointer to next page of file

bits 80-127: File name and/or number

By recording a block of label data in each sector of
every track with the above information therein, an im-
portant redundancy is established. Thus, if the “file

25

35

45

60

65

14

directory” recorded on a disk surface is destroyed or
damaged due to head crash or the like, the location of
each file can nonetheless be ascertained by reading the
non-damaged data on the disk. The file directory can
then be reconstructed and re-recorded simply by read-
ing the label data recorded in each track sector. This
benefit of the invention embraces the system with the
desired attribute of “security.” As another benefit, the
presence in each sector of a label block that can be read
just prior to writing file data onto that sector provides a
last instant check just before such write operation that
the page of file data to be written corresponds to the
proper file, as identified by the label block. This benefit
embraces the added security with the desired attribute
of “efficiency.” A third benefit of the label block of this
invention has to do with the manner in which it is stored
and accessed from the main memory store 17, and such
benefit will be described below.

The main program communicates with the disk drive
controller 18(;) via a four-word block of main memory
store 17 beginning at location KBLK. The first word is
interpreted as a pointer to a chain of disk command
blocks (DCB’s). If the first word contains ¢, the disk
drive controller 18(1) will remain idle. Otherwise, the
disk drive controller 18(1) will commence execution of
the command contained in the first DCB. When a com-
mand is completed successfully, the disk drive control-
ler 18y stores in KBLK a pointer to the next command
in the chain and the cycle repeats. If a command termi-
nates in error, a ¢ is immediately stored in KBLK and
the disk drive controller 18)idles. At the beginning of
each track sector, status information, including the
number of the current sector, is stored in KBLK + 1.
This can be used by the main program to sense the
readiness of the disk drive 20(1) and to schedule disk
data transfers, for example.

When the disk drive controller 18(;) begins executing
a command, it stores the disk address of that command
in KBLK +2. This information is later used by the disk
drive controller 18(1) to decide whether seek operations
or disk switches are necessary. It can be used by the
main program for scheduling disk arm motion. If the
main program stores an illegal disk address (suchas —1)
in this word, the disk drive controller 18(;; will perform
a seek at the beginning of the next disk operation. This
is useful, for example, when the operating system wants
to force a restore operation. The disk drive controller
18(3) also communicates with the main program by in-
terrupts. At the beginning of each sector, interrupts are
initiated on the channels specified by the bits in
KBLK +3.

The functions of these main memory store locations
may be summarized as follows:

KBLK: Pointer to first disk command block

KBLK + 1: Status at beginning of current sector

KBLK +2: Disk address of most-recently started disk

command

KBLK + 3: Sector interrupt bit mask

Each DCB contains ten, 16 bit words which together
describe a disk transfer operation to the disk drive con-
troller 18(1), and which are also used by the controller
18(1) to record the status of that operation. The first
word in each DCB is a pointer to the next DCB in this
chain. A ¢ means that this is the last DCB in the chain.
When the command is complete, the disk drive control-
ler 18(y) stores its status in the second word. The third
word contains the command itself, telling the disk drive
controller 18(1) what to do. The fourth word contains a

4,148,098

15

pointer to the block of main memory from/to which the
disk header block will be transferred. The fifth word
contains a similar pointer for the label block. The sixth
word contains a similar pointer for the data block. The
seventh and eighth words of each DCB control the
initiation of interrupts when the command block is fin-
ished. If the command terminates without error, inter-
rupts are initiated on the channels specified by the bits
in DCB+6 (the seventh word). However, if the com-
mand terminates with an error, the bits in DCB + 7 (the
eight word) are used instead. The ninth word is prefera-
bly unused by the disk drive controller 18;), and may be
used by the main program to facilitate chained disk
operations. The tenth word, contains the disk address at
which the current operation is to take place.

The ten words of each DCB may be summarized as
follows:

DCB: Pointer to next command block (DCB)

DCB+ 1: Status

DCB +2: Command

DCB+ 3: Header block pointer

DCB +4: Label block pointer

DCB +5: Data block pointer

DCB+6: Command complete no-error interrupt bit

mask
DCB+7:
mask

DCB+ 10: Currently unused

DCB+11: Disk address

A disk address word A (from DCB+ 11) desirably
contains the following fields (ranges being expressed in
octal radix):

Command complete error interrupt bit

5

20

25

30

Field

Range

Significance

35

A[0-3)
Al4-12]

Al13]
Al14]

A[15]

0-13

0-625 for Model 44
0-312 for Model 31
0-1

0~1 for Model 44

0 for Model 31

0-1

Sector number
Track number

Head number
Disk number (see
also C[15])

(0 is removable
pack on Model 44)
0 normally, 1 if

track O is to be
addressed via a
hardware “restore”
operation

A disk command word C (from DCB+2) desirably
contains the following fields:

Field Range Significance

110 SEAL-checked to verify that this
is a valid disk command

1 if Header block read i

1 if Header block to be checked

2 or 3 if Label block to be written
0 if Label block to be read

1 if Label block to be checked

2 or 3 if Label block to be written
0 if Data block to be read

1 if Data block to be checked

2 or 3 if Data block to be written
0 normally

1 if the command is to terminate
immediately after the correct
track position is reached (before
any data is transferred)

XOR’ed with A[14] to yield hardware
disk number

C[0-7]

C[8-9] 0-3

Cl10-11] 0-3
cl12-13 0-3

Cl14] 0-1

C[15] 0-1

45

50

53

65

16
A disk status word S (from DCB+-1) desirably has
the following fields:

Field Values Significance

S{0-3} 0-13 Current sector number

S{4-7] 17 (One can tell whether status has
been stored by setting this field
initially to 0 and then checking
for non-zero)

S[8) 0-1 1 means seek failed, possibly due
to illegal track address

S[9} 0-1 1 means seek in progress

S[10] 0-1 1 means disk unit not ready

S[11] 0-1 1 means data or sector processing
was late during the last sector.
Data and current sector number un-
reliable

5{12] 0-t 1 means disk interface was not
transferring data last sector

5{13] 0-1 I means checking sum error
Command allowed to proceed

S{14-15] 0-3 0 means command completed correctly

1 means hardware error (see S[8-11])
or sector overflow
2 means check error. Command term-
inated instantly.

' 3 means disk command specified
illegal sector.

As alluded to earlier, a “seal” is defined in the con-
stant memory 128 at one address location thereof, and is
a single 8-bit word, i.e. the high order 8-bits of a con-
stant memory word. This seal is used to verify the valid-
ity of a block of disk command data (DCB). More spe-
cifically, and as indicated above, the 8 high order bits
(¢-7) of the disk command word C of a valid DCB
should contain the 8-bit seal therein exactly correspond-
ing in value to the 8-bit seal in the constant memory 128.

In verifying the validity of a disk command block, the
8-bit seal from the constant memory 128 is “Exclusive-
ORed” under program control with the high order
8-bits of the command word C. If the high order 8-bits
contain the identical value of the seal in constant mem-
ory 128, then the resultant of the Exclusive OR opera-
tion will be eight binary zeros. The program checks,
therefore, for the presence of eight binary zeros and, if
such is detected, the disk command block has been
verified as valid. Further specific details on how the
above-described verification operation is performed are
disclosed in the exemplary microcode included in Ap-
pendix A hereto. Generally speaking, however, the
16-bit word from the constant memory 128 containing
the 8-bit seal is first loaded from the bus 22 into the
T-register 106 and is then supplied along lines 107 into
the ALU 120. The ALU 120 additionally receives from
the bus 22 the disk command word C accessed from
main memory store 17. The ALU 120 is then pro-
grammed to perform the Exclusive-OR function al-
luded to above. With respect to the high order 8-bits of
each of these two words, the high order 8-bits of the
resultant 16-bit word should contain all binary zeros. If
not, it means that an invalid disk command block has
been accessed.

The disk drive controller 18(1yin accordance with the
invention, allows one to chain disk reads through re-
spective label blocks, i.e., the label block for sector n
contains part of the DCB for reading N+1, etc.

A preferred disk drive controller 18(;)is implemented
by the logic shown in FIGS. 4-16 and the microcode
tasks alluded to above, namely the sector task (KSEC)
and the word task (KWD). The data paths in the disk

4,148,098

17

drive controller 18(;) are shown in FIG. 5. Data is
loaded from the bus 22 into a buffer 180 where it is
buffered before being loaded into a shift register 184.
The register provides a serial transfer of data indicated
by the output signal DATOUT which is phase encoded
into the signal WRDATA by a data encoder 186. An
oscillator 188 clocks the data through the encoder 186
to the disk drive 20(1), for writing on a disk surface.

Data is read from adisk surface and decoded by a data
decoder 192 whose output is multiplexed by a multi-
plexer 194 under control of the DATOUT signal from
the shift register 184. The output of the multiplexer is
shifted through a shift register 196 under control of the
signal BITCLK for loading in a buffer 198. The signal
BITCLK is a clock signal developed by a multiplexer
202 which is responsive to a clock signal approximately
equal to one half the frequency of the signal generated
from the oscillator 188 for the data encoder 186 and to
the clock signal READCLOCK which enables the data
decoder 192. Under control of the signal BITCLK, the
buffer 198 transfers groups of 16 bits of data to the bus
22 in parallel.

In FIG. 6 is shown the buffer 180 which is loaded by
the 16 bits from the bus 22 under control of the
LDDATA signal. The buffer 180 is comprised of
latches 210, preferably type 74174 by Texas Instru-
ments. The output of the buffer 180 is shifted out of the
shift register 184 as represented by the signal DATOUT
under control of BITCLK and WDDONE signals. The
shift register 184 is desirably implemented by two 8-bit
shift registers 212, type 74166 by Texas Instruments.
The shift register 196 is shown in FIG. 7 as being com-
prised of two shift register elements 216, preferably
type 74164 by Texas Instruments. The output of the
shift register 196 is received by the buffer 198 which is
comprised of four latches 118, desirably type 8T'10 by
Signetics.

As shown in FIG. 8, the data encoder 186 phase
encodes the signal DATOUT into the output signal
WRDATA by meaus of the gating structure 220 under
control of clock signals from the output of the flip-flop
222 and the crystal oscillator 188. Since the output of
the crystal oscillator 188 clocks the flip-flop 222, the
output of the flip-flop 222 is at one half the frequency of
the frequency characterizing the output of the oscillator
188. The flip-flop 222 provides information about which
half of the bit cell is being processed. In the flip mode,
one half of the bit cell is identified; in the flop mode, the
other half of the bit cell is identified. Thereby, a pulse is
generated at the output of the gating structure 220 if the
Q output of the flip-flop 222 is active. If the Q output is
not active, then a pulse will only be generated if the
DATOUT signal is active.

The RDDATA is decoded by the decoder 192 under
control of the signal RDCLK. The decoder 192 is pref-
erably implemented by a j-k type flip-flop 226, whose Q
output is connected to the multiplexer 194. The multi-
plexer 194, under control of the DATOUT signal, gen-
erates the input signal DATAIN to the shift register
196. The multiplexer 194 is desirably implemented by a
dual 4-line to 1-selector, type 745153 by Texas Instru-
ments. The multiplexer 202 is desirably implemented by
the same type of selector.

Referring to FIG. 9, command signals in the disk
drive controller 18;)are generated by a command regis-
ter 230. The elements 232 and 234 are latches, prefera-
bly of the type 3404 by Intel, which provide the indi-
cated signals under control of LDADR and LDCOM,

20

25

40

45

S0

55

60

65

18
respectively. The elements 236 and 238 are latches pref-
erably of the type 74195 by Texas Instruments, which
provide additional command signals, including the
read/write signal W/R.

In FIG. 10, a status unit 240 is shown whose logic
elements provide status bits for the disk drive 20q).
Elements 242 are j-k flip-flops and elements 244 are
latches, desirably type 8T10 by Signetics.

Referring now to FIG. 11, a word timing unit 250 is
shown which provides the timing signals WDDONE
(word done), WAKEKWDT (word display task
wakeup), and WDINIT (word initialization). The logi-
cal elements shown include a synchronous 4-bit counter
254, preferably type 74161 by Texas Instruments. A
strobe/seek generator 260 is shown in FIG. 12 to pro-
vide the STROBE and SEEKOK signals which are
required by the disk drive 20 for head positioning.
The logic elements 264 and 266 are 1-shot multivibra-
tors, desirably type 74123 by Texas Instruments, which
provide upper and lower limits to the STROBE signal.
The signals ADRACK, LAI and SKINC are gener-
ated by the disk drive 20(1).

The NEXT address for the next microinstruction
may also be modified by the disk drive controller 20()
by means of an address modifier 270, shown in FIG. 13.
The logic shown, which includes two multiplexers 274
desirably of the type 8231 by Signetics, allow the setting
of the next field bits NEXT (05)-NEXT (09) to 1 after
an error condition is detected and as soon as the word
task active signal WDTSKACT is generated. The reset-
ting of these bits to 1 returns control back to the begin-
ning of the sector.

Sector and error wakeup requests are generated by
the generator 280 shown in FIG. 14. The 1-shot multivi-
brator 282 initiates immediate action by the sector task
(KSEC) if the disk drive becomes unready and, in the
event that the disk drive 20()) continues in that state,
simulated sector marks are generated from the clear
error indication signal CLRSTAT. When the disk drive
20y is ready, the signal READY would disable the
generation of simulated sector marks. The j-k flip-flop
284 and a 1-shot multivibrator 286 serve as a timer to
ensure timely sector task processing. The signal SE-
CLATE is an error signal indicating that such process-
ing has not been in time. The remainder of the logic
shown provides for additional synchronization for de-
veloping the wakeup sector task signal WAKEKST.

FIG. 15 depicts a decoder 290 for decoding the 4-bit
F1 signal E (FIG. 3) applied thereto on control lines 47
(FIG. 2) into_the _respective command signals
LDDATA, LDCOM CLRSTAT under the condition
of a disk task represented by the signal DSKTSK. The
logic elements 292 and 294 are latches preferably of the
type 3404 by Intel and the decoder element 297 is pref-
erably of the type 3205 by Intel.

FIG. 16 shows the implementation of various signals
used by the disk drive controller 18(1) and FIG. 16
shows the generation of additional control signals used
by the controller 18(1).

The logic comprising the disk drive controller 18;)
communicates with the CPU 10 in four ways: first, by
task request wakeup signals for the sector and word
tasks i.e. KSEC and KWD); second, by five task-
specific F2 functions which modify the next microin-
struction address; third, by seven task-specific F1 func-
tions, four of which activate bus destination registers,
and the remaining three of which provide useful pulses;

4,148,098
19 20
and fourth, by two bus sources. The following tables
describe the effects of these.

F1 Value Name Effect

17 KDATA « The KDATA register is loaded
from BUS (0-15). This register
is the data output register to
the disk, and is also used to
hold the disk address during
KADR «— and seek commands. When
used as a disk address it has
the format of word A.

16 KADR « This causes the KADR « register to
be loaded from BUS(8-14). This
register has the format of word C.

In addition, it causes the head
address bit to be loaded from
KDATA « (13).

15 KCOM « This causes the KCOM « register to
be loaded from BUS(1-5). The
KCOM + register has the following
interpretation:

(1) XFEROFF = 1 inhibits data
transmission to/from

(2) WDINHIB = prevents the disk
word task from

awakening.

(3) BCLKSRC = | means take bit
clock from disk input

or crystal clock, as

appropriatte. =0 forces

use of crystal clock.

(4) WFFO = 0 holds the disk bit
counter at —1 until a

1-bit is read. =1

aliows the bit counter

to proceed normally.

(5) SENDADR = | causes KDATA « (4-12)
and KDATA «- (15) to be
transmitted to disk unit

as seek address.

=0 inhibits such
transmission.
14 CLRSTAT Causes all error latches in disk
controller hardware to reset
13 INCRECNO Advances the shift registers

holding the KADR register so that
they present the number and
read/write/check status of the next
block (header, label, data) to the
hardware.

12 KSTAT KSTAT (12-15) are loaded from BUS
(12-15). (Actuaily, BUS (13) is
‘OR’ed into KSTAT(13).) This
enables the microcode to enter
conditions it detects into the
status register.

11 STROBE Initiates a disk seek operation.
The KDATA « register must have been
loaded previously, and the SENDADR
bit of the KCOMM « register pre-
viously set to 1.

F2 Value Name Effect
10 INIT NEXT « NEXT OR (IF WDTASKACT AND
WDINIT) THEN 37 ELSE 0)
11 RWC NEXT «— NEXT OR (IF current record

to be written THEN 3 ELSE IF
current record to be checked
THEN 2 ELSE 0)
12 RECNO NEXT «— NEXT OR MAP (current
record number) where
MAP(@Q) — 0
MAP(]) «- 2
MAP(Q2) — 3
MAP(3) « 1
13 XFRDAT NEXT «— NEXT OR (IF current command
wants data transfer THEN 1 ELSE 0)
14 SWRNRDY NEXT « NEXT OR (IF disk not ready
to accept command THEN | ELSE 0)
15 NFER NEXT « NEXT OR (IF fatal error in
latches THEN 0 ELSE 1)

4,148,098

21

-continued

22

16 STROBON NEXT « NEXT OR (IF seek strobe

still on THEN 1 ELSE 0).

A memory reference to the main memory 16 is initi-
ated by executing F1=6, MAR . Referring again to
FIG. 4, the main memory store 17 is connected to the
bus 22 by 2 memory data bus 21 through a conventional
driver and parity device 19. The device 19 provides for
the transfer of data to and from the main memory store
17 with a parity check upon the fetching fo data from
the store 17.

The microcode referred to herein as dictating the
enabling of various signals and processing is disclosed
and flowcharted in Appendix A, attached to the instant
application file but not printed herewith. The microas-
sembler MU for the processor in this preferred embodi-
ment is implemented in BCPL and is also described in
. Appendix A.

Although the invention has been described with re-
spect to a presently preferred embodiment, it will be
appreciated by those skilled in the art that various sub-
stitutions, modifications, etc. may be made without
departing from the spirit and scope of the invention as
defined by the following claims.

What is claimed is:

1. A data processing system comprising:

a peripheral storage device having at least one re-
cording medium and means for writing data onto
and reading data from said recording medium;

a controller coupled to said peripheral storage device
and responsive to predetermined instructions and
command data for controlling the writing of data
onto and reading of data from said recording me-
dium;

a main memory storage device coupled to said con-
troller and having a plurality of addressable storage
locations, at least some of said storage locations
capable of storing data to be written onto or that
has been read from said recording medium, and at
least some other of said storage locations capable of
storing said command data, said command data
including a portion thereof defining a verification
word; and

a central processing unit coupled to said controller
and to said main memory storage device and in-
cluding (a) means for supplying said predetermined
instructions to said controller, (b) means for ad-
dressing the storage locations of said main memory
storage device, (c) means for examining said por-
tion of command data accessed from said main
memory storage device in order to verify the valid-
ity of said accessed command data, said means for
examining comprising constant memory means

5

25

35

40

45

50

.55

65

having a predetermined verification word stored
therein and means for comparing said portion of
said accessed command data with said predeter-
mined verification word, said accessed command
data being verified as valid only when the verifica-
tion word in said first portion thereof matches said
predetermined verification word, and (d) means for
supplying to said controller command data verified
as valid.

2. The data processing system of claim 1, wherein
said means for comparing includes an arithmetic logic
unit adapted to receive said portion of said command
data as a first signal and said predetermined verification
word from said constant memory means as a second
signal, and means for controlling said arithmetic logic
unit to perform an Exclusive-OR operation upon said
first and second signals whereby said command data is
verified as valid if a resultant third signal has the value
of zero.

3. The data processing system of claim 1, wherein
said peripheral storage device is a disk drive and said
controller is a disk drive controller.

4. The data processing system of claim 1, wherein
said command data is stored in said main memory stor-
age device as a chain of command data blocks, each
block containing a word pointing to the next block in
the chain.

§. The data processing system of claim 4, wherein
each command data block includes a command word,
said portion of said command data being included as
part of the command word of each command data
block.

6. The data processing system of claim 5, wherein
each command word is 16-bits in length and said por-
tion of said command data includes the high order 8-bits
of each 16-bit command word.

7. The data processing system of claim 6, wherein
said peripheral storage device is a disk drive and said
controller is a disk drive controller.

8. The data processing system of claim 7, wherein
each command data block contains a word pointing to a
section of the main memory storage device containing
data to be written onto said recording medium or into
which data read from said recording medium is to
stored.

9. The data processing system of claim 7, wherein
each command data block contains a disk address word.

10. The data processing system of claim 7, wherein

each command data block contains a disk status word.
t » * * .

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28

