XEROX

PALO ALTO RESEARCH CENTER
Computer Sciences Laboratory
October 1, 1980

To: File
From: Bob Sproull (revised by Dan Swinchart and Lyle Ramshaw)

Subject: Font Representations and Formats

Filed on: <PrintingDocs>FontFormats.Press
Sources:  <PrintingDocs>FontlFormatsA.Bravo, and
<PrintingDocs>IFont[FormatsB.Bravo

This rcport presents the various standard and device-dependent font formats in use at PARC.
1. Introduction

A font is a collection of character descriptions, indexed by a character code. These descriptions
represent, in one fashion or another, the appearance of the character. The ultimate purpose of
maintaining a font is for use when generating a raster-scanned image of a document. This image
may be crcated on a display and used for interactive purposes, or it may be generated by a printing
service as part of a "hard copy” function. In both cases, for purposes of space and device
independence, the document itself does not normally contain the character representations, but only
codes used to identify the characters that comprise the document.

It is important to distinguish font representations from font formats.

We usce two gencrically different representations for character shapes. The first, Toosely termed
"splines” or "splinc fonts,” represents the outline of the each character shape with a serics of
parametric cubic spliné curves (see Figure 1). This represcntation is handy because it is
independent of the particular output device and its resolution: the outlines describe the desired
appearance of the character. The second representation we use is a raster (somctimes loosely
termed a "bit map"), as shown in Figure 2. This representation records, in some way, a two-
dimensional (binary) occupancy map: it tells where the character lies on a two-dimensional grid.
This representation is handy for actually building raster images of documents: the occupancy map is
combined with color information, often at very high speed, to generate a larger raster image of the
document. The raster character description is in effect merged into the page raster at the proper
position. - .
When characters are recorded in font files, we choose a particular format for the file; quitec a
number of different formats have emerged. This is because there are many ways to encode digitally
the information in cither an outline or raster represcentation of a character. The details of the
encoding . are often of vital concern when making a particular picce of hardware or software
gencrate page rasters rapidly.

Fortunately, we can writc conversion programs that are able to gencrate the various specialized
formats from standard formats. When an artist (or a ncedy user) devotes a large amount of effort to
designing and debugging a font, it should be recorded and disseminated in onc of the standard
formats. Clients can then ecasily convert to one of the subsidiary formats, or to their own private
format.

© Xerox Corporation 1980



Font Representations and Formats 2

Widths

An important adjunct to the font descriptions themselves is the "widths file,” which summarizes the
dimensions of all characters in the font data base. This summary must be available to a text cditor
when it formats a document for hard copy: the widths are used to determine how many characters
will fit on a linc and to perform justification calculations. Because the information in this file can
be independent of any particular output device, the hard-copy file produced by the cditor can be
printed on any of a number of printing devices. The widths summary is, in effect, extracted from
information recorded in the standard formats of the rclevant fonts.

There arc scveral different flavors of width files now in existence. Some of them contain widths
that can be scaled to handle different sizes of a font; others apply to only one size. Some width
files give the height and depth dimensions of the design box of cach character scparately, where
others give only the font bounding box and the individual widths. The type of width file that gives
cach character’s design box is used by the TEX document compiler, and is not discussed in detail in
this memo.

Software
The PARC font descriptions are supported by a reasonably full sct of software:

IRED: Interactive program for building outline font representations. Documentation is on
<PrintingDocs>Fred.Press. The  program is on <ALTO>Fred.Dm. :

PREPRESS: Interactive program for building standard raster font representations. . The
program also contains numerous options for converting from standard to subsidiary formats.
Documentation is on <Altodocs>PrePress.Press.  The program is on <ALTO>PrePress.Run.

COMPRESS (Obsolete): A program that converts .CU format to EARS (EP and .EL) formats.
The program is on <EARS>Compress.Run.

The reader is invited to consult PrePress documentation (<Altodocs>PrePress.Press) for miscellaneous
lore rclating to fonts and for "standard operating procedures” for maintaining font files.

People

This document is simply a convenient summary of formats and techniques developed by a large
number of individuals. Thec people behind the formats include Patrick Baudelaire, Peter Deutsch,
Joe Maleson, Diana Merry, Ron Rider, Bob Sproull, Dan Swinechart, Larry Tesler, and Chuck
Thacker.

2. Terminology

The terminology that has developed around fonts is hopelessly inconsistent. This section is intended
to scrve as a glossary for the descriptions in the remainder of this document. Be forcwarned that
terminology used clsewhere may not match.

2.1 Characters

Family is the term given to a particular design of characters. Examples of families are
"TimesRoman", or "Helvetica".

Point size of a character refers to size measurements used in the printing industry. If text is »
points high, this means that closcly-spaced lines of text will fall #/72 inches apart on the page.
Note that the point size docs not relate in any consistent way to the gecometry of characters, ¢.g., to



Font Representations and Formats 7 3

the height of an upper case A.

Face denotes a number of attributes of a particular font: italic, bold, light, condensed, expanded are
all attributes of the font. Somectimes this is called a "style." Sometimes the face is defined with a
three-letter code: the first letter is L for light, M for medium, or B for bold; the sccond is R for
regular or 1 for italic; the third is C for condensed, R for regular or E for expanded. An optional
fourth character can be used to specify the character coding used in the font: X for Xerox-style, A
for asci, and 0 for other.

Rotation refers to the orientation of the character. If a string of characters is intended to be
horizontal, it has rotation zero; if a string runs vertically upward, it has a rotation of 90 dcgrees.

Font, as we use the term, refers to a collection of characters of the same family, the same size, the
same rotation, and the same face attributes.

Character code refers to a number (usually only 8 bits) that identifies a character. All our fonts use
an approximation to the standard ASCII convention, when that convention is meaningful. For
special-character fonts (c.g., mathematics, logic design), another mapping must gencrally be devised.

Origin of a character (sometimes called "the (0,0) point") is conceptually a reference mark that is
used to describe a character’s location on a page or display. Thus a directive to "display an A at
x=103, y=204" is interpreted to mean "place an instance of the symbol A on the display so that
the character origin coincides with the coordinate x=103, y=204." Figures 1 and 2 show the origin
of a sample character, Note that the origin is located midway between pixels in cach dimension,
not in the center of a pixel

Width of a character is a two-dimensional vector that represents the incremental translation that
should take place to determinc the placement of the origin of the next character to be displayed in
a (conventionally aligned) string of characters. In the cxample of Figure 3, if we assume the x .
direction points to the right and the y direction up, we sce that the width vector has a zero y
component. In this document, we will refer to the components of the width vector as Wx and Wy.

In all our font representations, we associate the width vector with each character code. If this width vector is
used for character positioning, the spacing between the origin of a A (say) and the origin of the next character
is independent of that next character. This is not always desirable: because of the different shapes of
characters, spacing between differing pairs may want to be adjusted slightly to make the text line appear more
pleasing.

An empty character is one with an empty occupancy map; in particular, an empty character is some
flavor of space.

Bounding box is the term for a rectangle that just barely surrounds the character (see Figure 3). It
is charactcrized by its width and height, and by a two-dimensional vector that specifies where the
lower-left corner of the bounding box is with respect to the origin of the character inside. .These
four numbers are. named (in this document) BBdx, BBdy, BBox, and BBoy.

An cmpty character, by convention, has both BBdx and BBdy cqual to zero. BBox and BBoy make
cven less sense for an empty character; they are often set to zero as well

The font bounding box is a bounding box that applics to a/l characters in the font. That is, if all the
characters in the font were placed with their origins coincident, the smallest rectangle that encloses
every part is the font bounding box. The four paramcters of the font bounding box arc named (in
this document) FBBdx, FBBdy, I'BBox, and FBBoy

Tl}c coordinate system assumed for this document is that x points to the right on a (portrait-
oriented) page, and y points up. A mica is a unit of measure, equal to 10 microns or 1/2540 inch.



Font Representations and Formats 4

Both of thesec conventions are identical to those used by Press.

Scanning mode refers to the way a raster is laid upon a character description. This in effect defines
a coordinate system in which one direction is measured in scan-lines and the other direction is
measured in bits (along a scan line). To describe the modes, we use a single number that relates the
scanning regime to the conventional (x,y) coordinate system: the mode is bit-direction-description*4
+ scan-linc-dircction-description, where a direction-description is:

if the coordinate increases as x increases
if the coordinate decreases as x increases
if the coordinate increases as y increases
if the coordinate decreases as y increases

WO

This convention is identical to the one used by Press and AIS. We use it in this document to
characterize character cncodings: if a raster is encoded in mode 8, then the first bit of the bit stream
defining the character will be at the lower lefi-hand corner of the character; the next bit will be just
above the first, and so on up the page (becausc the bit-direction-description is 2); then the next
scan-linc to the right will be given (because the scan-line-direction-description is 0).

Note that there is a relation between rotation and scanning mode. For example, a character encoded
with rotation=0, scanning mode=13 is identical to one rccorded with rotation =90 degrees, scanning
mode=8.

2.2 File terminology

A file is a homogencous scquence of data bits. (We at PARC do not have any file systems that have
the concept of "record” as implemented in XDS and IBM operating systems. We view a file as an
unbroken sequence of data.)

A word is 16 bits, a byte is 8 bits, If these are to interpreted as signed 'intcgers, the representation is
two’s complement. :

Several files use the concept of self-relative pointers. The idea is that the pointer specifies a file
position relative to the file position of the pointer itself. The following example may help clarify
the notion of sclf-relative pointers. Suppose that the character encoding for character 101b starts at
word 1650b of the file, and that a sclf-relative pointer to that encoding is at word 105b of the file.
Then word 105b of the file will contain 1543b=1650b— 105b.

2.3 Numbers

Numbers in this document are decimal unless followed by a "b,” in which case they are octal..
12b=10.

A FloatingPoint number is a two-word structure that contains a sign, an 8-bit exponent and a 23-bit
mantissa. This representation is identical to the 32 most significant bits of the representation used by
the PDP-10 and MAXC. The Alto BCPL. subroutine package FLOAT manipulates these numbers as well.
(Further information about the actual encoding of numbers can be found in PDP-10 documentation
or in FLOAT documentation.)

3. File Naming Conventions
A standard naming convention is used for font files. In some cases, programs depend on adherence

to the convention (c.g., extracting width information from EARS fonts). The convention permits
programs to “parse” the font name to discover various paramcters. The convention is:



Font Representations and Formats . 5

{family-name-in-full} {point-sizc H[BILI} {[IIH{ [CIE]}. {extension}
The optional B stands for "bold;" L for "light,” 1 for "italic," ¢ for "condensed,” and E for
"expanded.” If a font file applics to all sizes of character (c.g., a spline file), the {point-size} is
omitted.  Examplcs: .

Helvetical2.Ep l2-boint Helvetica font for EARS
Helvetical2b.Ep ~ 12-point bold Helvetica font for EARS

The {extension}s are chosen to identify the formar of the file. Standard extensions arce given below,
together with the MAXC directory (inside brackets < >) where such files arc traditionally found.

Standard formats:
XX-SF Spline representations edited with FRED. <PRESSFONTS>
AC Raster representations, edited or crcated with PrePress. <PRESSFONTS>
(These are usually Alto or Press. printer fonts.)
Subsidiary formats:
Fonts.Widths Summary of widths. <FONTS>
SD Compact spline representations (Sbtemp format). <PRESSFONTS>
.CU ‘ "Carnegic-Mellon University” format.

Subsidiary formats (device-dependenit):

AL Alto-format (CONVERT) font. <ALTOFONTS> and <PRINTING>

STRIKE Alto-format font (BITBLT).

XS Alto-format font (BITBLT) with kerning. <ALTOFONTS> and <PRINTING>
.EP EARS-format portrait font (obsolcte).

.EL EARS-format landscape font (obsolete).

XH XGP-format font, for- XPRINT (obsolcte). Archived from <FONTS>

VT vTs-format font (obsolete). Archived from <FONTS>

.FONTS Dictionary of fonts in .AC format or one of its subsidiary formats, used by

Press ‘printing software
4. PrePress File Format

Several of the file formats are variants of a generic file created and modified by PrePress. The
format was designed to be casily extendable to include new sorts of information and to permit many
different fonts to be included in one file. PrePress documentation refers to this files with names
like SD, SDtemp, CD, CDtemp, WD, WDtemp. An index at the head of the file describes cach font
segment that is contained within the file. The intention is that a reader will scan the index to find a
pointer to the font she desires. Thus a file is: ‘

structure PrePressFile:
index word howcverMany

@ix //Index entry with type=0 (cnd of index)
stuff word howeverManyAgain

]

Each index entry begins with a common form of header:

structure IX:



Font Representations and Formats ‘ 6

“type bit 4 ' //Various type codes are 'assigncd
length bit 12 //Length of entry in words, counting this one
]

A particular kind of index entry establishes a correspondence between a code and a string:

structurc - IXN:

@ix //Header with type =1

code word //The numeric code .
namclength byte //The number of characters in the name
characters 11,19 byte //Room for the name

|

Notc that a name entry has a fixed length, although the name itsclf can be of any length up to 19.
The final 20 bytes in the IXN structure arc in the same format as a BCPL string. By convention, an
IXN entry must establish a correspondence between a name and a code before any index entries that
use the code appear.

Each segment of the file will have an  index entry that points to it (SplineSegment,
CharacterScgment, or WidthSegment). They -all have roughly the same form:

structure STDIX:

[

@ix //Header with various types

family byte //Family name, using a name code

face byte . //Encoding of the face properties

bc byte : //Code for the "beginning character"”

ec byte : //Code for the "ending character"

size word //Size of the font scgment

rotation word //Rotation of the font segment

scgmentSA word 2 //Starting address in file of the font segment
scgmentlength word 2 //Length of the segment

The family name is identified by referring to a name-code correspondence established with an IXN
centry. The face is cncoded as:

(if bold then 2 clscif light then 4 else 0)+

(if italic then 1 clse 0)+

(if condensed then 6 clscif expanded then 12 else 0)+
(if Xerox then 0 clscif ASCIH then 18 clse 36)

This encoding gencrates face byte values in the range from 0 through 53. Codes 54 through 254
inclusive arc used to denote the logical size of a TEX font, the size that the font was designed for
independent of its physical magnification; for an cxplanation of this concept, sce the memo
[MaxclKFonts>TexFonts.Press. A face byte value of IF in the range [54,254] denotes a logical size
of (254—¥)/2 points; thus, logical sizes range from 0 through 100 points in units of half-points.
Face code 255 is rcserved as an escape.

The two entrics be and cc give the character codes for the first and last characters represented in
the scgment. This allows partial fonts to occupy less space. Size gives the size of the font
description in micas. Rotation gives the rotation, in minutes of arc. segmentSA and segmentlength
specify the location of the segment in the file (both entrics arc double-word integers, in units of file
words): these are included to permit random access to a large number of segments in one file.



Font Representations and Formats 7

A common spccial case of a PrePress file is a font file that contains only one segment, and
conscquently a very brief index (a name entry, and entry pointing to the segment, and an End
entry). The AC and sSD files are cxamples.

5. Standard Formats
5.1. Oultline representation — SF formal.

The standard format for outline representations is a specially-organized text file. The file is
normally read and written by FRED, the interactive editor for outlines, and by PrePress, the program
for converting the outline representations to other formats. We designed the SF format to be based
on a text file, and further to be readable by the INTERLISP programming system, in anticipation of
the need to make transformations on outlines once they were defined (the transformations could be
made by hand with a text cditor, or by writing a suitable LISP program). This approach has several
times saved us from some very messy effort to repair a damaged binary file—the text file has been
a good idea. :

The definition of the file follows normal INTERLISP conventions for atoms, numbers, strings, and
lists. (A number is cither an integer of the form 123 or an octal number followed by Q, i.e.,
120=10, or a floating-point number with an cxponent heralded by E, e.g., 1.23E-4.) In the
description below, vertical bar () is used to scparate alternatives, and

.2 is a list,
{..} is a string,
[..] is a number.

A single SF file may contain definitions for scveral characters, although the definitions are
independent.  The file is a sequence of <character descriptionDs, terminated by the atom STOP:

{character description> ... <character description> STOP

Normally, a full font will consist of about 7 SF files. These arc conventionally given names like:

family.LCI1-SF Lower case, first file

family.LC2-SF Lower case, continuation file
family.UCI-SF Upper case, first file
family.UC2-SF Lower case, continuation file
family NUM-SF Numerals

family.S1-SF Special characters, first file -
family.s2-SF Special characters, continuation file

A <character description> is:

((FAMILY  {family name})
(CINARACTER  [codc])
(FACE {B| M| R} {rR |1} {clIRrR]|]ED
(wiprit - [width in x] [width in y])
(FIDUCIAL  [dimension in x] [dimension in y])
(VERSION  [number]  {date})
(MADE-FROM  {filc namc} )
[x character origin] [y character origin]
[x fiducial origin] [y fiducial origin])
(SPLINES  <closed curve> ... <closed curved))

Alternatively, a <character description> may specify that some other character is to be copied into



Font Representations and Formats 8

this one (not universally implemented):

((FAMILY  {family name})
(CHARACTER  [code])
(USE {family namc} fcode] { B | M | R } {RrR |1} {c|RrRIED}D

Within the top-level list for <character description>, a construct of the form (COMMENT {any
string}) may be inserted at will

The FACE characters stand for:

BOLD | MEDIUM | LIGHT °
REGULAR | ITALIC
CONDENSED | REGULAR |.EXPANDED

It is important to understand the normal use of coordinates in a SF file. The coordinates of knots,
for the width, origins in the MADE-FROM description, and in the FIDUCIAL annotation, are all Alto
screen units: these are recorded directly by FRED. However, these coordinates must ultimately be
related to a more standard system common to all characters in the world. The FIDUCIAL serves this
purpose: it gives the distances, in x and y, that correspond to the point size of the character. Tor
example, if we use FRED to design a (nominal) 12-point character, we set the fiducials to the
dimension (in Alto screen units) that should be mapped into 12/72 inch on the final page image.

A <closed-curve> is:
(Kspline> ... <splined)

A <spline> is:

(In] <knot list> <weight list> <derivative list>  {solution method})
where [n] is the number of knots, <knot list> is:

(([X1] [Y1]) ([X2] [YzD ({Xn] [YnD)
<{weight list> is cither NIL, in which case all knots are wecighted equally, or:
Wyl [wyl .o WD
and <dcrivative list> is:
(@1 [y 71 Iy X071 YD e
(Xt T [YpyT X0y [y X1 [Yp D)
and {solution method} is: ’
{ NATURAL | CYCLIC | PSEUDOCYCLIC }

The numbers in this description arc handled slightly differently: derivatives and weights arc floating
point numbers, character code is octal (e.g. 101Q) or decimal, all other numbers (in particular knot
coordinates) are integers.

5.2 Raster representations — AC format.

The standard format for raster representations is the AC file, usually edited with the PrePress font
editor. This format is used becausc it contains more information about characters than any other
font format we have. Conscquently, onc can always convert to formats that demand less
information. By convention, AC files assume a scanning mode of 8.

The file is a segment of a "PrePress font file” (sce section 4 for a general discussion of PrePress
files). The font file contains some identification information, and a directory that points to a
character segment, which itsclf contains the information about the font. An index cntry that points
to a character segment is:



Font Representations and Formats _ 9

structure CharacterIndexEntry:

[

@sTDIX //Standard hecader with type=3.
resolutionX word //Resolution in scan-lines/inch * 10
resolutionY word //Resolution in bits/inch * 10

]

This index ecntry points to a CharacterScgment:
structure CharacterSegment:

charData tbc,ec @CharacterData //Useful data about cach character

dircctory tbe,cc @relFilcPos //Rclative file positions of rasters
rasters tbe,ec @rasterDefn //The actual raster encodings

structure CharacterData;

Wx @Fraction //X Width (scan-lines)

Wy @Fraction //Yy Width (bits)

BBox word //Bounding box offscts

BBoy word :

BBdx word //Width of bounding box (scan-lines)

BBdy word ‘ //Hceight of bounding box (bits) or special code
] .

The first two entrics arc signed fractions (a fraction is two words: the first is the integer part, the
second the fractional part) that give the width vector (with reference to the origin of the character).
The four paramcters of the bounding box follow. However, BBdy= —1 is reserved to indicate that a
character of this code docs not really cxist in the font (such a code is neccessary because -
CharacterData structures are rccorded for all character codes in the range be through ec).

The directory portion is a table that points to the raster dcfinitions of cach- character in the range be
through cc. Each pointer is 32 bits long (a double-word integer) that gives the position in the file
in words, relative to the beginning of the directory table, of the rasterDefn for the appropriate
character. If a character of the given code is not in the font, both words of the relFilcPos are —1.
A rasterDefn is:

structure rasterDefn:

BBdyW bit 6 //Height of raster (in words)
BBdx bit 10 //Samc as BBdx in CharacterData
raster word BBdyW*BBdx //The actual raster bits!

]

The value of BBdyW is simply L(BBdy+15)/16J, the number of words required to specify one scan-
line. Each scan-line in the raster encoding begins on a word boundary.

Important Note: Most Press printing software uses dictionaries of fonts in one of two subsidiary

Jormats derived from AC format. These important derived formats are described in sections 7.3 and
7.4.



Font Representations and Formats 10

6. Subsidiary Formats
6.1 Fonts.Widths Jormat.

The file Fonts.Widths is used to disseminate width information to all formatting and cditing
programs. Its basic format is that of a PrcPress font file, with index cntrics that point to
WidthSegments. An index entry is of the form:

structurc WidthIndcexEntry:

[ : .
@sTDIX //Standard header, type=4
] .

The interpretation of the size entry i this index is somewhat subtle. If it is non-zero, then it is the
size of the font, measured in micas. Thus, a 12-point font would have size=423. In this case, the
width information is said to be absolute. On the other hand, if size is zcro, then the width
information will be usable for fonts of any size (i.e., we shall scale it by the actual font size), and
the information is said to be fractional. If the data arc absolute, then all dimensions are measured
in micas. If they are relative, dimensions cited in the WidthSegment must be scaled by
2540r/72000, where P is the point size of the desired font, in order to convert the numbers to micas
(You will note that this simply mecans that entries are mcasurcd in thousandths of the point size).
The widths file may contain cntries for both absolute and fractional information for the same font;
in this case the absolute information takes precedence.

The index entry points to a WidthSegment, which haé the following format:

structure WidthSegment: -

FBBox word . //X offset for font bounding box
FBBoy word C /7Y offsct for font bounding box
FBBdx word. //X width for font bounding box
FBBdy word //Y height for font bounding box
XwidthFixed bit - //=1 if all X widths cqual
ywidthFixed bit _ //=1 if all Y widths cqual

spare bit 14
widthData word howEverMany

]

The first four numbers are the dimensions of the font bounding box. At the end of the entry comes
(widthData) the width information for individual characters. First comes the X width information.
If the xwidthFixed flag is set, there is only one number given, which applies to all characters in the
font. If the xwidthFixed flag is zero, then there are ec—be+1 words that give the X widths of the
characters with codes from bc to ec inclusive.  Then follows the Y width information,
correspondingly encoded. In order to identify "non-existent” characters in the range bc to ec, a
width (either absolute or fractional) of 100000b (the most negative number) signals a non-existent
character.

Note: The widths file should really be able to deal with device-dependent widths as well: this is a tremendous help with
photocomposers, etc.  Consequently, a WidthIndexEntry should really include a deviceCode, which identifics (by
correspondence with some string in a IXN entry) the relevant device. If the device is PRESS, then the font would be
assumed to be standard across a varicty of devices; a width entry with an exact match of device name would take
precedence over standard (PRESS) widths.

6.2. Compact outline representations — SD fornat.

Because the SF files that describe outline representations are somewhat bulky "and tiresome to



Font Representations and Formats 11

interpret, there is an alternative format: Sp. This format is created from the SF files by the PrePress
READSF command ‘(i.c., SD files are in the same format as is sDtemp). The file is in the general
"PrePress font file" format, with an index entry:

structure SplincIndexEntry:

@s1DIX ' //Standard header, type=2
]

The size entry in the index must be zero. This index cntry points to a SplineSegment:

structure SplincSegment:

splineData tbc,cc @SplineData . //Uscful information about cach character
dircctory tbc,cc @rell<ilcPos //Directory pointing to spline encodings
splines tbe,cc @splineCodcs //The cncodings of each character

The information about each character is:
structure SplineData:

wx @FloatingPoint //Width in x dircction

Wy @FloatingPoint //Width in Y direction

BBox @IFloatingPoint : //Left edge of bounding box

BBoy @FloatingPoint ‘ //Bottom edge of bounding box

Rightx @FloatingPoint //Right cdge of bounding box (=BBox-+BBdx)
TopY @FloatingPoint : //Top edge of bounding box (=BBoy+BBdy)

All of these coordinates arc relative to the origin of the character, and usc the convention that 1.0 is
cqual to the point size of the final character. Consequently, most are usually fractional. A special
(illegal) value of wx is used to flag SplineData structures that correspond to non-cxistent characters
in the font (this problem arises because there are SplineData structures for all characters be through
ec, even though they may not all exist). The special value is 0 in the first word, and —1 in the
second word.

The interpretation of the directory is precisely the same as for AC files.

The encoding of cach character (splineCodes) is essentially a list of commands to a scan-conversion
algorithm, such as the one used in PICO. Five different kinds of entrics may appear:

structure SMoveTo:

codeMoveTo word //Command code =1
X @IloatingPoint
Y @FloatingPoint

structure SDrawTo:

codeDrawTo word . //Command code =2
X @FloatingPoint
Y @JFloatingPoint

]



Font Representations and Formats ' 12

structure SDrawCurve:

codeDrawCurve word *//Command code =3
X @lIloatingPoint

Y’ @FloatingPoint

X”/2 @FloatingPoint

Y’/2 @FloatingPoint

X’/6 (@FloatingPoint

Y”’/6 @FloatingPoint

structure  SNewObject:

codeNewObject word //Command code =-—1

structure SEndDefinition:

codeEndDefinition word //Command code =-2

]
Each closed curve is specified with a sequence that begins with SMoveTo, and uscs subsequent
SDrawTo and SDrawCurve entrics to trace the outline. An entircly new object is initiated with
SNewObject (this is presently unnccesssary, and unimplemented). The entire character is
terminated with SEndDefinition.
The SDrawCurve cntry gives the parameters for a parametric cubic splinc:

x = Xy + X 1+ (X/2) £+ (xX7/6) £

=Yy + Y 1+ (Y/2) 2 + (¥/6) 8

where ¢ ranges from 0 to 1, and (Xg» Yo) is the starting point of the curve.
The sD files created by PrePress from SF files have an additional property: each SDrawCurve entry
defines a curve scgment that is monotonic in both x and y directions. This simplifies scan-

conversion for both portrait and landscape printing devices, provided the font characters are rotated
a multiple of 90 degrees (or 0 degress, of coursc).

6.3 CU format.

The cuU format was once our standard format for raster representations; some vestigial softwarc in
fact still uses this format. It has the great virtue of simplicity, but is rather bulky and lacks some
crucial information. ' .

The file has the structure:

structure CU:

H word : //Hcight of font (number of scan lincs)
WW word //"Word width" of font
character t1,howeverMany //Character codings

Each character is a separate encoding with a character code, a width (in bits) for the character, and
a raster. Every character in the file is placed within a raster of the same size; this raster size is thus



Font Representations and Formats 13

analogous to the font bounding box, but is actually somewhat larger because the width of the box is
a multiple of 16,

structure CUChar:

AscliCode word- //ASCIl character code .

Width word //Width of character in bits

raster word 1I*WW - //The actual cncoding of the raster
]

The raster is a sequence of scan-lines, cach encoded in Ww words. The first scan-line is at the
"top" of the character. Within a scan-line, bits are given from left to right (more significant bits to
less significant bits). Characters are,. in general, "at the left” in the font bounding box; white space
is provided on the right.

This font format omits some uscful information: the location of the origin within the bounding box.
There is a convention used to remedy this lack: the lower leftmost 1 bit in the encoding of upper
case A (ASCll code 101b=65 decimal) is at the origin.

7. Subsidiary formats — device dependent

7.1 AL format.

The AL format is designed to simplify the use of the Alto CONVERT instruction for creating displays
(sce the Alto Hardware Manual for a description of CONVERT).

structure AL: -

[ .

Height word . //Height of font (scan-lincs)
proportional bit o //True if proportionally spaced font
baseline bit 7 //(sece below)

maxWidth bit 8 //Width of widest character

pointers 10,nCharsX
charData word howEverMany

]

The Height entry must be > FBBdy. The bascline entry equals the height of the font bounding box
above the origin (=FBBoy+FBBdy). If the AL font dates from a somewhat carlier vintage, the baseline
may be rccorded as 0. :

, //Sclf-relative  pointers to XW entrics

The pointers table contains sclf-relative pointers to character encodings. Each character encoding in.
the charData region can describe at most 16 (horizontal) bits of character data; if the character
requires more data bits, an “cxtension character” is used to contain the rest of the data. Characters
may have as many cxtensions as ncccssary.

By convention, the first 377b entrics in the pointers table are assumed to be sclf-relative pointers for
the corresponding ASCIl characters codes. Following thesc entries are cntrics for any necessary
extension characters.

The data for a character cncoding is represented as:

structure XiHdata:

bitData word xi1 //Top scan-line first
XW word ) : //(scc below)



[Font Representations and Formats ' 14

11D byte //(sce below)
XII byte : //Number of scan-lines of bit data
] .

In order to conserve space, the bit data omits all-zcro words at the top and bottom of the character.
The 11D entry records the number of scan-lines at the top of the character (relative to the font
bounding box) that are omitted. (Technically, HD = FBBdy+ FBBoy—(BBdy+ BBoy).)

The Xw word is interpreted in one of two ways. If the width of the character is 16 or fewer bits,
then Xw is (2*width)+1. Otherwise, the character must require an extension character, and XW
contains 2*xCode, where xCode is the character code of the extension character. The final
extension character will have an XW- that contains (2* width of final extension)+ 1, rather than the
total width. The self-relative pointers in the pointers table point to the Xw word.

By convention, the first character er{coding in the charData region is a "dummy" to which all non-
existent character codes point. This dummy has XH=0, HD=0, and xw=1.

7.2. PLAINSTRIKE and KERNEDSTRIKE format.

The STRIKE formats were devised to permit graceful use of BITBLT for writing characters onto the
Alto screen. Like .AL format, the STRIKE formats can only handle fonts with zero rotation, that is,
with nonnegative X widths and zero Y widths.

There arc four kinds of files in the Strike class: a PlainStrike file (conventional extension .Strike), a
KernedStrike file (conventional extension .KS), a PlainStrikcIndex file (conventional extension
StrikeX), and a KernedStrikelndex file (conventional extension .KSX). In a PlainStrike file, the
individual rasters of the characters are assembled in ascending order of character code into onc large
raster, called the strike. The baselines of the characters are aligned, and the origin of cach character
is made coincident with the end of the width vector of the preceding character. The PlainStrike file
also contains a table indexed by character code that points to the leftmost column of the raster for
cach character in the strike. Warning: since the rasters in a PlainStrike file arc positioned by their
origins and width vectors, it must be the case that all of the black bits of the character lic between
these two bounds. No character may include bits to the left of its origin (left-kerning) or to the
right of the end of its width vector (right-kerning).

A KernedStrike file handles kerned characters, and does so in the following way: the individual
rasters are put into the strike by their bounding box widths. Just think about taking the bounding
boxes of all of the characters, lining up their basclines, and packing them tightly into one long
raster array; in this format, there are no blank columns between characters in the strike. A
KernedStrike file has three additional tables, indexed by character code. One gives the position in
the strike of the first column of the character’s raster, which is also the leftmost column of its
bounding box. The other two tables consist of small integers that specify the left-to-right location
of the origin with respect to the bounding box, and the length of the width vector.

A Strikelndex is essentially a table that maps character codes into <strike, code> pairs, together with
the associated strikes. An index can be used to achicve sharing if several character codes map to
the same <strike, code> pair, and hence refer to the same raster. Or it can help to save space, by
grouping the rasters into scveral strikes to save top and bottom scanlines. [By the way, to the best
of my knowledge, no onc has cver used a StrikeIndex format.]

PlainStrike and KernedStrike files have the following format:



Font Representations and Formats ' 15

structure PlainStrike:

[
@StrikecHeader
@StrikeBody

1

structurce KernedStrike:
[
@StrikcHeader
@BoundingBoxBlock
@StrikeBody
@WidthBody

]

structure StrikeHeader:

[

format word =
[
oneBit bit
index bit
fixed bit
kerned bit
blank bit 12
1

min word

max word

maxwidth word

]

// header common to all Strike files
// the actual strike

// hcader common to all Strike files

// dimensions of the font bounding box
// the actual strike

// table of width data

// always =1, meaning “new style”

// =1 means StrikeIndex, =0 otherwise

// =1if all characters have same value of Wx, clse =0
// =1if KernedStrike, =0 if PlainStrike

// mimimum character code
// maximum character code
// maximum spacing width of any character = max{Wx}

structure BoundingBoxBlock:

[
FBBox

FBBoy
FBBdx
FBBdy

]

structurc StrikeBody:

[

length word
ascent word

descent word

xoffset word
raster word

// as defined above
// as dcfined above
// as dcfined above
// as defined above

// total number of words in the StrikeBody

// number of scan-lines above the bascline, which is

// mnormally max{BBdy+ BBoy} over the chars in this strike
// number of scan-lines below the bascline, which is

// normally max{(— BBoy)} over the chars in this strike

// always =0 [used to be used for padding schemes]

// number of words per scan-line in the strike

bitmap word raster*hcight // the bit map, where height=ascent+ descent= FFBBdy
xinsegment t min, max+2 word // pointers into the strike, indexed by code
]

structure Width Body:
[



Font Representations and Formats 16

widthtable t min, max+ 1 @WidthEntry // spacing information, indexed by code
]
structure WidthEntry:
[ .
spacing word = - // the entire spacing word will be =(—1) (both bytes =377b)
// to flag a non-existent character, else the bytes are:
[ .
offsct byte , // =BBox—FBBox
width byte ' /7 =Wx
]

The “bitmap” entry is onec large bit map; there arc height=ascent+descent scanlines in the
bitmap, cach of which is raster words long. Unless something funny is going on, ascent will be
simply FBBdy+FBBoy, while descent will be simply (—FBBoy).

The font includes characters for some of the ASCII codes from min through max inclusive. The
bitmap includes a dummy character associated with the charcter code (max+1), which can be
displayed for any non-existent character.

A PlainStrike works as follows: Given a character code c,-in the range [min, max], wc first
compute: :

xLeft « xinsegment 1t c;

xRight « xinsegment * (c+1);.
If xLeft=xRight, then c is a non-existent character in the current font, and should be replaced by
the raster with code (max+1). -Otherwise, the columns of the bitmap from xLeft through
(xRight—1) inclusive contain the raster for character ¢, and the width of charcter ¢ is
Wx = (xRight —xLeft).

A KernedStrike works a little differently. We first compute xLeft and xRight as above, and also
compute

Spacing « WidthTable * c;.
If Spacing=(—1), then c is a non-existent character in the current font, and should be replaced by
the dummy character at (max+1). Otherwise, the columns of the bitmap from xLeft through
(xRight—1) constitute the bounding box of the raster of character c. In this case, we decompose
the Spacing value into its two bytes:

Offset « Spacing<<KWidthEntry.offset;

Width ¢« Spacing<<WidthEntry.width;.
Now assume that we want to paint the character ¢ starting at destination column xDest. The source
of the BitBIt is columns xLeft through (xRight—1) of the bitmap inclusive. We can compute the
proper destination from xDest, Offset (which =BBox—~FBBox), and the FBBox word of the
BoundingBoxBlock: the first column of the destination is (xDest+ Offset+ FBBox) = (xDest+ BBox).
Note: the offsct portion of the WidthEntry was chosen to be (BBox—FBBox) rather than BBox
itsclf, since the former quantity is always nonnegative, while the latter quantity can have either sign;
and signed 8-bit numbers arc a pain in the ass. Finally, we replace xDest by (xDest+ Width) to
prepare for the painting of the following character.

Two fine points concerning KernedStrikes: A non-existent character is flagged by a (—1) valuc in
the WidthTable. Since a non-cxistent character doesn’t have a bounding box, the xl.cft and xRight
entries for such a character will be equal. But there can also be perfectly legal characters for which



Font Representations and Formats ' 17

xLeft=xRight; in particular, all of the empty characters will have this property: figure space, em
quad, word space, ctc. If you arc painting an empty character, there is no need to actually perform
the BitBIt, since the rectangle being Blt'ed would have zero width,  All that must be done is to
replace x1Dest by (xDest+ Width) to make the space happen.  Secondly, some extra cfficiency can
be gained when using a KernedStrike font by kecping track of the quantity (xDest+-FBBox) in the
character-painting loop, instcad of xDest itself. This moves one addition out of the inner loop.

Finally, it is time to say a few words about Strikelndex format: a Strikelndex is simply an index at
the front of some StrikeBodics.

structure PlainStrikeIndex:

@Strikelleader . : ) // common header
maxascent word // maximum ascent of all the strikes
// [probably = FBBdy- FBBoy]
maxdcscent word // maximum descent of all thestrikes
) // [probably =(—FBBoy)]
nStrikeBodies word // the number of strike bodies
map t min,max+1 @mapEntry // table of <strike, code> pairs, dummy at max+1 .
bodics 1 1, nStrikeBodies @StrikeBody // the strike bodics themselves
] \
structure KernedStrikeIndex:
@StrikeHeader // common header
@DBoundingBoxBlock // bounding box data for the ¢ntire font
maxascent word // maximum ascent of all the strikes
// [probably =FBBdy+ FBBoy]
maxdcscent word ) // maximum descent of all the strikes
’ // [probably =(—FBBoy)]
nStrikcBodics word // the number of strike bodies
map * min,max +1 @mapEntry . // table of <strike, code> pairs, dummy at max+1
bodics T 1, nStrikeBodies @StrikeBody // the strike bodics themselves
@WidthBody // table of width data
]
structure mapEntry:
[
missing bit 1 - // =1 if character is non-cxistent, else =0
strike bit 7 // which strike, a number in the range [0:127]
code byte // which character code in that strike
]

In a Strikelndex font, all of the StrikeBodics have implicit min values of zero; the max value is
unimportant, as thc map will never generate a reference outside the range. The individual
StrikeBodics do not have scparate pictures for illegal characters; instead, the (max+1) entry in the
global map defines a single dummy picture. Non-existent characters in the range [min, max] are
indicated in the global map by a mapkintry that specifies a strikc number larger than 127=177b,
that is, by the sign bit of thec map cntry being 1. In KernedStrikeIndex fonts, non-existent
characters will also be indicated by having a WidthEntry of (—1).



Font Representations and Formats _ 18

In StrikeIndex fonts, the ascent and descent words in cach StrikeBody give the dimensions of that
particular StrikeBody; thus, they probably are the y dimensions of the bounding box of those
characters that arc included in that StrikeBody, rather than of the entire font.

Note on BitBlt modes:

There are cvidently lots of programs in the world that paint charcters on the screen by calling BitBlt
in Replace mode, in which the new bits simply smash whatever used to be at the destination. [f
you want to handle characters that kern, you simply can’t do this! The bounding boxes of
successive characers may actually overlap, and hence a Replace Blt might overwrite valuable bits. [f
you want kcrning specified in a KernedStrike font to work, you must usc onc of the othcr BitBlt
modes:  Paint, Frase, or Invert.

7.3 Compact ("Orbitized") format for raster representations

Both the PRESS and the SPRUCE printing systems usc dictionaries whose font formats have been
compacted by eliminating the requirement that scan lines begin on word boundaries. The storage
for a character can be thought of as a stream of bits, with the first bit of each scan line following
the last bit of the preceding one, irrespective of word boundarics. The encoding is identical to the
AC format encodmg of scction 5.2, except for the type and the raster definition. For convenicence,
we repeat the entire specification here. An index entry that points to a compacted, or "Orbitized",
character segment is:

structure CompactedCharacterIndexEntry: // identical to type 3 except for type

@sTDIX //Standard header with type=S5.
resolutionX word //Resolution in scan-lines/inch * 10
resolutionY word : //Resolution in bits/inch * 10

]

This index entry points to a CompactedCharacterSegment:
structure CompactedCharacterSegment: // identical to type 3 format except raster encodings

charData tbc,ec @CharacterData //Useful data about cach character

directory tbc,cc @relFilePos //Relative file positions of rasters

rasters tbc,ec @compactedRasterDefn //The actual raster encodings (These vary in length,
//  thus could not actually be indexed)

]
structure CharacterData: // identical to standard type 3 AC format
Wx @Fraction //x Width (scan-lines)
Wy @Fraction® //Y Width (bits)
BBox word //Bounding box offscts
BRoy word
BBdx word //Width of bounding box (scan-lines)
BBdy word //Height of bounding box (bits)
] .

A compactedRasterDefn is:
structure compactedRasterDefn:

negHeight ' //Negative of the character height, in bits



Font Representations and Formats 19

widthMinusl //Width of the character, less 1, in bits
raster word n, //The actual raster bits!

The value of n, the number of words occupied by raster bits, is the floor of (height*width+15)/16.
7.4 Compacted rasters with multiple width specifications

In order for the producer and the printer of a PRESS format file to agree on the appecarance of each
page, they must agree on the widths of the characters to be printed. This agreement is achieved by
providing the producer programs with WIDTIIS format files corresponding to the raster files used by
the printers. '

On infrequent occasion, the widths specified for existing characters in existing fonts must be
changed. Once the ncw WIDTHS and raster files have been promulgated, all newly-created PRESS
format files will again print correctly, but older files will no longer be rendered accurately.

To improve this situation, it is possible to create a font dictionary whose entries include for each
font a single sct of raster definitions, along with a collection of width specifications, each
accompanied by an expiration date. The printer spaces characters based on the widths that were in
cffect at the time indicated by the PRESS file's creation date (stored in its document directory). If
the new rasters are predominantly narrower, or at least not too much wider, than the characters they
replace, the result of printing an ‘old PRESS file is usually satisfactory.

The PrePress system contains a special command for introducing a new set of rasters for a font,
retaining both all of the old widths along with the new ones. The administrators at a site may
choose to support this capability, -or to ignore it.

This format requircs- modification of the STDIX structure. Its rasters arc in the compacted
representation described in the preceding section. A font file for a printer may contain any
combination of type 5 (compacted) and type 6 (compacted, multiple widths) font formats. The
index entry for a font with multiple widths is:

structure Mu]tipleChaI'acterIndexEntfy:

[

@1x //Header, type=6.

family byte //Family name, using a name code

face byte //Encoding of the face properties

bec byte //Code for the "beginning character”

cc byte //Code for the "ending character”

size word //8ize of the font segment .

rotation word
resolutionS word
resolutionB word

numScgs word
scgstl,numsScgs:

segmentSA word 2
scgmentlength word 2
expirationDate word 2

]
]

//Rotation of the font scgment
//Resolution in scan-lines/inch * 10
//Resolution in bits/inch * 10

//Number of width segments

//Arranged in order from newest to oldest

// Only the newest entry includes rasters
//Starting address in file of the font segment
//Length of the segment

//Date after which these widths are no longer valid,
// in Alto file date format

The scgment corresponding to segstl is a CompactedCharacterSegment, as described in the



Font Representations and Formats 20

preceding scction.  Its widths represent the current values; its cxpiration date is set well into the
future. Segments corresponding to segst2 through scgsfnumch,s represent incrcasingly older width
values; they have the form:

structure OldWidthchment:

[ .
charDatatbc,cc @CharacterData
1

The raster-specific information in this specification is identical for all scgments; the width entries
that define the spacing characteristics will differ.

//Useful data about cach character

7.5 EL and EP formal for EARS fonts (obsolete)

Font formats for the EARS system are compressed (all other raster representation formats mentioned
in this document use no compression). The extension .EP is used, by convention, to denote
"portrait” fonts (font strings will run horizontally on the page if it is oriented as a portrait). Thc EL
extension is uscd for "landscape™” fonts.

Both. sorts of font have the same format (remember that EARS scans in mode 8):

structurc ELEP:

[

@Reccord0 //Gencral information
@Rccordl //Character information
Record2 w01dhovachany //Actual character cncodings
@Rccord3 //Font specification table

|

structure Record0:

MRLILcngth word
maxWidth word

//Length of Record2 (in words)
//Maximum character width (scan-lines)
// max (over all RccordlEntry’s) of Width

maxHeight word
TTrYTab word
defaultl*'SN word
reserved word 3
blank word 56
I

structure Recordl:

[ . ,
characterData 10,127 @Rccord1Entry
]

structurc Record1Entry:

[
FontAddress word

FontLength word
Width word

W word

It word

bascline word
codingType word

//Maximum character height (bits) FBBdy
//How many bits or scan-lines for a tab
//Dcfault font set number (PSPOOL)
//Used. by PSPOOL

//Descriptions of cach character

//Address (in words) into Record2 of encoding

// (relative to beginning of Record2)
//Number of words of encoding in Record2

//"Width" of character (amount to "space" over)

//Width of bounding box BBdx
//Height of bounding box BBdy

// BBoy (portrait) or BBox (landscape)
//(sce below)



Font Representations and Formats . 21

alignment word // FBBdx+FBBox—BBox (landscape only)

]

The codingType is 0 if the character does not really exist in the font. It is <0 if the encoding within
Record2 is RLI (run length increments). It is >0 if the ecncoding is a matrix (in this case, the value
of codinglype is the height of the matrix in bytes).

Record2 contains the encodings of the rasters for the individual characters (as pointed to by
Recordl and Record3 entries). If the encoding is a matrix, the cntry in Record2 in an
uncompressed raster for the character (scanning mode=38), with (1) the height rounded up to the
next multiple of 8 bits, and (2) a possible 1-byte padding at the end of the matrix encoding to make
the entry an integral number of 16-bit words long. For cxample, the K of Figure 4 would have a
matrix encoding of: ' .

100004b : (first scan-line, rounded up to 16 bits high)
1777770 (second scan-line, ...)
1777776 :

103004b

001400b

003600b

006300b

014140b

130064b

160034b

140014b

100004b (last scan-ling)

Most characters will be encoded in Record2 with a more cconomical scheme: RLL. This is a
compression scheme that reduccs font storage for high-resolution characters (compression of 3.5:1 is
typical for a 12-point font at 500 bits/inch). We shall describe RLI by referring to Figure 4. Each '
scan-line could be coded as a serics of number pairs, where the first number of cach pair represents
a number of "white" bits to be followed by the number of "black™ bits specified by the second
number of the pair. With this scheme, the first scan-line of the K would be represented by the two
pairs (0,1) and (12,1).. We can omit the parentheses and write simply 0,1,12,1. The entire K is
encoded into runs as follows:

Scan-line . Runs RLI

0 0,1,12,1 R) 01,121

1 0,14 (R) 014

2 0,14 )] 0,0

3 0,1,4,2,6,1 (R) 0,14,2,6,1
4 6,2 (R) \

5 5,4 ¢)) -12

6 42272 (R) 4222

7 3242 (¢)) -1,0,2,0

8 0,1,1,2,6,2,1,1 (R) 01126211
9 0,3,8,3 (R) 0,33,3

10 0,2,10,2 (I 0,—1,2,—1
11 0,1,12,1 N 0,—12,—1

The second column gives simply the runs. The third column gives the run-length-increment format:
a given scan-line is represented as increments on the runs for the previous scan-line, provided there
are the same number of runs as in the previous scan-line. Thus scan-line 10 is represented by the
increments 0,—1,2,— I, which arc added to the runs for scan-linec 9 (0.3,8.3) to yicld runs 0,2,10,2
for scan-line 10. For high resolution characters (our cxample is not high resolution), the



Font Representations and Formats , 22

incremental mode (I) dominates,

The RLI information is encoded as follows. The character encoding starts in Record2 at the location
specified by Recordl and Record3 entries; RLI information is recorded for cach scan-line (starting
with the left-most scan-line, scan-linc 0 in our cxample). Runs appear in 8-bit bytes, where the first
bit of a bytc is a flag which is set to mark the last run for a scan-line. Thus, scan-line 9 is
represented by the 4 8-bit bytes 0, 3, 10b and 203b; these are packed into words as 3b and 4203b.
Because of this encoding, runs are limited to the range 0-127; if a longer run is nceded, two runs
may be spliced with a zero-length connector (e.g., 100,0,100,10 is cquivalent to 200,10). A limit of 8
runs is imposed for cach scan-line (characters requiring more than 8 runs can be represented in
matrix format).

The increments for RII arc specified in 4-bit groups in which the first bit is used as a flag and the
remaining 3 bits are 2’s complement increments (range —4 to 3). As with runs, the flag bit for the
last increment of the scan-line is set. In addition, the flag bit of the first increment on the scan-line
is set (this allows runs to be differentiated from increments, because there are always at least 2 runs
per scan-linc). For example, the increments to scan-line 10 arc encoded as the 4-bit quantities 10b,
70, 2b, 17b; these arc packed into 8-bit bytes as 207b, 57b; or into a 16-bit word as 103457b. Note
that if increments do not fall in the range —4 to 3, you can always use a run representation rather
than an increment representation.,

This encoding will produce an integral number of 8-bit bytes for each character. Conscquently, a
character may be followed by a 1-byte padding in order to stard the subsequent character at a word
(16-bit) boundary.

Record3 is a very compact descrlpuon of cach character, and is actually cxamined by the RCG
hardware:

structure Record3:

[ . .
fontSpecTable 10,127 @CharSummary
]

structure CharSummary:

bascline bit 13 //Two’s complement bascline (0 for landscape)
matrix bit //True if encoding is a matrix (not RLI)
endOfPage bit

notEndOfLine bit

Width word . //Amount to space over to next character

W bit 10 . //Bounding box width —1

Hb bit 7 //L(Height+7)/84 —1 ' X
fontAddress bit 15 //Relative address in Record 2 of encoding

]

7.6 XII formal XGP fonis for XPRINT (excruciatingly obsolete)

The x11 format was devised to simplify the inner loop of XPRINT, a program for printing text on the
XGP. The XGP scans in mode 3. The file has the format:

structurc XH:

nChars word //The number of characters in the font
nData word //Number of words of font data
11 word //Height of the font (in scan-lines)

w word . : ' //Maximum width (in words) of any character



Font Representations and Formats 23

pointers 10.nChars— 1 word //Sclf-relative pointers to charData (sce below)

widths t0,nChars— 1 word //Width to space to next character
data word nData //Character encodings (sec below)
]

nChars is usually 128 or 256. The height II must be > FBBdy. A width of zero identifies a non-
cxistent character; any width up to 12 W is legal.

The character encodings are represented as follows:

structure charData:

[ : .
+1,L(width+11)/12.1 @block //Each block defines up to 12 bits
] : ' : :
structure block:
[ .
+1,11 [ bitData bit 12 //Up to 12 bits of character data :
validBits bit 4 ] //Number of bits in bitData that arc valid

Thus a character is defined by successive blocks of 11 words; cach block defines up to 12 horizontal
bit positions of the character. The first word in the block defines the top scan-line, the next word
the next scan-line, etc. Words of the block dcfine up to 12 bits of character data: the validBits ficld
contains the number of valid bits in the word (1 is minimum; 12 is maximum). All blocks except
the last have validBits=12. :



Font Representations and Formats

. Character Codes of First Generation I'onts (somewhat obsolete)

(For the up-to-date story about character code assignments, see the memo
[MaxclKFonts>SpecialCharacters.Press)

underline A 101b a
space 40b B 101b b
! 41b C 103b C
" 42b D 104b d
# 43b E 105b e
$ 44b F 106b f
% 45b G 107b g
& 46b H 110b h
’ 47b I 111b i

( S50b T 112b j

) 51b K 113b k
* 52b L 114b 1

+ 53b M 115b m
, 54b N 116b n
- 55b O 117b o
. 56b P 120b p
/ 57b Q 121b q
0 60b R 122b r
1 61b - S 123b s

2 62b T 124b t

3 63b U 125b u
4 64b A" 126b v
5 65b W 127b A
6 66b X - 130b X
7 67b. Y 131b y
8 70b 4 132b z
9 71b [ 133b {
: 720 \ 134b |

: 73b ] 135b }
< 74b 1 136b ~
= 75b « 137

> .76b > (Ieft quote) 140b

? 770

@ 100b

30b



L

9
c °
e B ] T’ g
= i< -] S
+ = BEE EZA o
S B b I o
%] I3 L] B3 c
“ O el 3
a3 o el o
=9 A 3]
ox b B3 3
BOEERNANEENSNANSNERATEN 9 EoDCCoDRITESIA o
OEREEEESEEERINNERNNANDE o EoumpmuBaaiana N
o] ' RN REENE NN <
+ = ®
o S
oru u@
= i
2
i
4 g &
on
2
BE T T T ] A offes]
mn1u.ar T cm @
Znanag X S + -
- HFFBEW.MJ] @ O = | mapgaanaw
S _....E-.,..T...ﬂ . oM Xy M S EasEnng
= o 1] s o I o x = anami N
+ o 5 T | BoSSs=a T Q59 ax
=] = R b | of @ th
& S + Shm x SEo®@
e g S| o T .0 +
S 24 ] B3 @ S2 5 u
S 5 1T oaa @ 3a " 5!
2 2 11 E@_| @mE <
o o JEa
£ c + P bt @
= 5 N o 4 o x
+ nw n ) N, 3£ 0o
£ € < o) - ’ oT o
- 2935 o o) rem
e | —_—4
© a0}
= 0= o
o+ +
i



	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

