XEROX

Inter-Office Memorgndum

To Whom it May Concern Date July 19, 1980
From Lyle Ramshaw Location Palo Alto
Subject Guide to [Ivy[KAltoFonts> Organization CSL

Filed on: [MaxclKFonts>AltoFontGuide.bravo

' [MaxclKFonts>AltoFontGuide.press
[IvyKFonts>Mcemos>AltoFontGuide.bravo
[IvyKFoats>Mcemos>AltoFontGuide.press

In the carly part of 1980, I poked around the InterNet and gathered up all of the Alto fonts that I
could find. With the assistance of Lindscy Halloran, I edited these font to update them to the latest
character code conventions: that is, I put in the third gencration of special characters. I then
shipped all of the resulting Atto fonts onto the dircctory [Ivy][KAltoFonts>. Different versions of a
particular font are distinguished through the use of subdirectories. The purpose of this memo is to
explain what those subdirectories are. If you need an Alto font for, say, TimcsRomanl0, I
reccommend that you List all of the files that match the pattern
[IvyKAltoFonts>*TimesRoman10.al,
and then choose from among them on the basis of the following information.

Criteria for choosing an Alto font:

One important reason to prefer one Alto font over another is acsthetics: you like it because you
like it. I don’t presume to make any judgments on that onc. But the other two important criteria
arc unfortunately inversely correlated: fidelity and legibility. If the screen is to be a faithful model
of the printed page, then characters on the Alto screen should be the same size as the ones coming
off the printer. But, since the Alto display is a low resolution bitmap, it is hard to draw characters
that arc both small and good-looking; in particular, it is hard to get them both thin and good-
looking. Thus, the designers of most Alto fonts establish some compromise between the thin
characters that fidelity demands, and the wide characters that are easicr to read. Different Alto font
artists have assumed different compromise positions over the years; now, you can look over all’
their results and choosc the one that best fits your neceds.

Here is a brief guide to the subdirectories:

[lvyKAltoFonts>Original>

updated versions of [MaxclKAltofonts>

wide, very legible
[lvyKAltoFonts>Thin>

Pellar’s sccond generation fonts

rather thin, not very legible
[IvyKAltoFonts>Rounded Widths>

updates of some fonts that Pellar did for ASD

thinnest of all: cach character has as width the result

of rounding the printing width to the necarest Alto dot.

. . . (continued on ncxt page)

AltoFontGuide 2

[IvyKAltoFonts> (that is, the null subdircctoiy)
Pellar’s third gencration fonts, except for codes above #177
roughly the same width as Original, but a different feel
[IvyKAltoFonts>EightBit>
Pellar’s third generation fonts, complete
roughly the same width as Original, but a diffcrent feel

First generation Alto fonts: <AltoFonts>Original>

The first gencration Alto fonts are very legible, partially because they are fairly wide. When these
Alto fonts were first drawn, there was only one special character: #30=tX was an underline.
Thus, Lindsey and I have added all of the third gencration special characters ourselves, before
sticking them out on the subdirectory <Original>. The only character already in these fonts that we
changed is the single quote, #47. In first gencration fonts, this was a symmetric single quote, but it
is now a closing quote character; we redrew it so that it would look good opposite the opening
quote character, which now appcars at both code #7 and code #140.

Be warned that scveral other characters have changed substantially since first generation days: in
particular, the code #55 (which you get by pushing the key to the right of zero) was a minus sign
in first generation fonts, but is now a hyphen, . it has shrunk substantially. Meanwhile, the
characters ‘+° at #53 and ‘=" at #75 have grown to a full em in width. 'Thus, the updated first
gencration Alto fonts don’t correspond too closely to the printing fonts in some cases.

Why, you ask, didn’t I go through and fix these characters as well, to make them correspond more
closcly to the current printing fonts? My cxcuse is rather involved, and has its origins in the
differences between programs and English text. Since TimesRoman and Helvetica are intended as
text fonts, it was a reasonable decision to change #55 from minus to hyphen, and to rclegate minus
to a control code: hyphens are more common in text. But when programming, minus signs are
much more common; and in addition, most programming languages still think that #55 is a minus
sign. This discrepancy is normally handled by using the font Gacha for programming putposes.
Gacha hasn’t changed since first generation days, and a #55 in Gacha is still a minus sign.

It transpires, however, that there are people in the world (in CSL, in fact) who don’t like the way
that Gacha looks, and prefer to starc at their programs in TimesRoman. For these people, it is
better if the Alto character associated with #55 remain a minus sign, so that it will look balanced
with plus and equal signs. Of course, if you print a program in TimesRoman, you will just have to
live with hyphens instead of minus signs: nothing I can do about that. But I didn’t want to give
anyone the chance to say that my updates had made anything worse. Therefore, I left all of the old
characters in the first generation Alto fonts alone, cxcept for the closing quote. If you want the
screen to look more like what comes off the printer, you should use the third generation Alto fonts
discussed below. If you want to program in TimesRoman, then pull your fonts from <Original.

Second generation Alto fonts: <AltoFonts>Thin>

When Ron Pellar produced Alto fonts for the sccond generation release, he chose to make his
characters much thinner than those in the first generation fonts, and, as a result, these fonts are less
legible. Although thinner, they are still not thin cnough to be totally faithful to the printed page.
Considering how thin they are, I am quitc impressed by their legibility, and by how TimesRoman
on the Alto scrcen really looks TimesRomanish.

Ron had alrcady gone through these fonts and updated them to the third generation. He stores
them fonts on [XEOSKFontCenter>. The only changes that T meant to make to these fonts before
putting them out on the subdirectory <Thin> was to fix obvious bugs that I happened to notice,
such as accents out of place, and missing characters. I may have succumbed to temptation in a few

AltoFontGuide . 3

cascs, however, and changed something which just looked a little wrong. If so, I have probably
assumed the role of the apprentice “fixing” the work of the master (Pellar), and I apologize for any
damage that I have wrought.

The thinnest of all: <AltoFontsDRoundedWidths>

How far can you go if you arc willing to sacrifice style and legibility completely to achieve fidelity?
Since a character in an Alto font is always an integral number of Alto pixels in width, the best that
you could do is to make the width of each Alto character be the result of rounding its printing
width to the nearest integral number of Alto dots. That was the principle behind a set of Alto fonts
that Ron Pellar produced a while back, and stored on [XEOSKASD>Alto>. If you are using these
fonts on your Alto screen, positions on your display and positions on the page will correspond to
within the accumulated roundoff error. Since Ron had not bothered to update these fonts from the
second to the third generation of special characters, Lindsey and I had a little more work to do on
these, before we stuck them out on the subdirectory <RoundedWidths).

Onc warning: to be true to the concept of rounded widths, the accent charcters in these Alto fonts
arc really zero dots wide. This causes problems for some systems, Bravo in particular. Hence, if
you try and use these fonts with Bravo, the accents will come out as black rectangles even though
the characters really are in the font. In all the other Alto fonts, the accents are one do' wide, to
keep Bravo happy. Note that you can select a one dot wide character, although you have to look
closely to do so. The truly zero width accent characters in the rounded widths Alto fonts don’t
bother SIL, by the way; I haven’t checked out other systems.

Third generation Alto fonts: <AltoFonts> and <AltoFontsDEightBit>

As part of the third generation release, Pellar produced an entirely new sct of Alto fonts. These are -
roughly as wide as the <Original> Alto fonts, but have a somewhat different feel. Not only did
they have the third generation special characters when I retrieved them, they also have all of the
other characters like hyphen, plus, and minus looking the way that they look in the printing fonts.
I personally like the appearance of these fonts. Putting these factors together, T chose to put these
fonts on the directory [IvyKAltoFonts> without any qualifying subdirectory; thus, after the
cataclysm, these should be considered the “standard” Alto fonts. :

Now for the details: third generation fonts have special characters not only in the ASCII control
slots, but also associated with eight bit character codes, codes in the range #200 through #377.
These cight bit characters arc used by BravoX, and possibly by other systems, I don’t know. But I
do know that nonc of the standard CSL softwarc for dealing with text or graphics can handle cight
bit characters: it was all written with only seven bit characters in mind. Hence, it scemed pointless
to put the eight bit characters into the new “standard” Alto fonts: for a few years, almost no
programs will let you get at them anyway. Beyond that, the cight bit characters take up valuable
space, and might very well tickle bugs in existing systems. Therefore, before putting these fonts out
on [IvyKAltoFonts>, I removed all of the characters with cight bit codes. If you want a font that
contains the eight bit characters, for BravoX or for some other reason, you can find them on the
subdirectory <FightBit>.

There is also an issuc about naming conventions for thesc fonts. [retricved these fonts from
[XEOSKFontCenter>, the same directory from which I pulled the <Thin> fonts. Rather than use
subdircctories as I have, Ron Pellar chose to distinguish these new Alto fonts by sticking an “E” in
their name: for example, TimesRomanE10.al. T think that this was a lousy decision for scveral
rcasons. 'The characters in thesc fonts are wider than fidelity would demand, and the terms
“expanded” and “cxtended” are used in typography for fonts with a wider face. One might assume
that the “I¥" stands for cither “Expanded” or “Extended”. But if this is what the “E” is supposcd
to imply, then it should come after the point size number, not before it. After all, Condensed,

AltoFontGuide) 4

Regular, and Expanded are all legal face designators in the PARC font software, just like Bold and
Italic. As supporting cvidence for this point of view, let me note that whocver pulled
TimesRomanEl12.al from [XEOS] to put it on the directory [Maxcl|<Printing> chose to rename it to
TimesRomani2E.al (and that person wasn’t me!). On the other hand, it is perfectly conceivable
that the “IY” really designates “Extended” in the sense that the character set is extended to include
the eight bit characters. If this was the intent, it is casicr to sce why the “E” would go before the
number. But, in this case, an analogy with TimesRomanD would lead one to assume that
TimesRomank designated a different family than TimesRoman, which is false: the font on the
printers is TimesRoman without the “E”. In summary, it seems to me that the “E” in the “ont
names is a poor idea; I chose to delete the “E” from the names of all of the third generation Alto
fonts, and to distinguish them with the use of subdirectorics as descibed above.

Circumflexes:

One types a circumflex accent in TimesRoman and Helvetica by typing both a grave accent and an
acute accent. Since the accents in most Alto fonts have a spacing width of one rather than zero
pixels, it makes a difference which of the grave and acute accents you type first. All of the
updated Alto fonts on [Ivy] have been designed with the intent that the circumflex be typed in the
order “tK 1E” rather than the reverse; this order allows the group of three accents to look better.
Just remeiuber that “K before E is the KEy”, while “E beforc K is wrong: EeK!”.

Alto Font Baseclines:

Many of the oldest Alto fonts had their basclines off by one, according to the current conventions
for Alto fonts. This off by one bug has been fixed in all of the updated fonts.

Different Faces:

The fonts produced by Pellar were mostly drawn with Bravo in mind, and Bravo synthesizes its own
bold and italic from the vanilla Alto font. Other systems however, such as Draw, demand that you
supply an Alto font in the face that you desire. There aren’t very many Alto fonts in cither bold or
italic, and nonc in bold-italic. But you can find what there is, updated to the third gencration of
special characters, on [Ivy[KAltofonts>. . The subdirectory <Original> has the most fonts in non-
vanilla faces. '

Different Families:

The text above was mostly written with the families TimesRoman and Helvetica in mind. Several
versions of Alto fonts also exist for Gacha, Hippo, and Math in somc sizes: they have also been
updated and moved to [IvyKAltoFonts>. T put them on the subdirectory that scemed most
appropriate. For other familics, it is gencrally the case that at most one Alto font exists for each
size; in thesc cases, 1 put that font on [Ivy[KAltoFonts> with the null subdirectory.

XEROX

Inter-Office Meniorandum

To Whom it May Concern Date April 1, 1980
From Lyle Ramshaw Location Palo Alto
Subject Ensuing font cataclysm Organization CSIL.

Filed on: [MaxclKFonts>EnsuingCataclysm.bravo
[MaxclKFonts>EnsuingCataclysm.press
[[vyKFonts>Memos>EnsuingCataclysm.bravo
[[vyKFonts>Memos>EnsuingCataclysm.press

The time has come for an update in CSL’s font world. Sometime soon, I plan to replace many of
the printing fonts in Clover’s current font dictionary with new and better versions. The
TimesRoman and Helvetica familics will be replaceu by Ron Pellar’s latest relcase; and an entirely
new set of TEX fonts produced by Don Knuth with Metafont will also make their debut. As the
first step towards effecting this cataclysm, I am pleased to announce the release of a hoard of
updated Alto fonts: every Alto font for TimesRoman and Helvetica that I could find over the
InterNet has been updated to reflect the state of the world after the cataclysm. The details of this
Alto font release are discussed below.

Like most picces of progress, this cataclysm will cause some joy and some pain. I recommend that
everyonc rcad this message, to get a vague sense of what is going to happen. Experts may also wish
to read onc or more of a group of subsidiary memos that discuss various issues related to the
cataclysm in greater detail. Here is a list of all of the documentation rclating to the cataclysm:

EnsuingCataclysm (The text of this message.)
SpecialCharacters

TexFonts

AltoT"ontGuide

UniversityFonts

Each of thesc is available on [MaxclKFonts> and on [IvyKFonts>Memos> in both a “.Press” and a
“.Bravo” version. .

In addition, there are two other items of font documentation that you might want to look at right
after the cataclysm. First, recall that the file [Maxcl]KFonts>CloverFonts.Press always contains a
tabular listing by family name, face, and sizc of all of the fonts currently installed on Clover, and
on thosc printers who share Clover’s font sct (Lilac, Menlo, Kanji, Quake, and Rockhopper among
others). But since the family name of a font doesn’t help you much if you are looking for a
particular character, I will be producing another file called [MaxclKFonts>CloverCharacters.Press.
For cach family of fonts on Clover, this document will have a one page table that shows what
printing character is associated with cach character code. I hope that this file will be an adequate
substitute for a truc Clover font catalogue.

By the way, if you think that [have made some wrong decisions in planning this upcoming
cataclysm, let me know; after all, T am still something of a novice as a font wizard.

EnsuingCataclysm _ 2

Terminology:

For the purposes of this memo, a font is a means by which certain graphical shapes are associated
with certain scven or cight bit numbers, called character codes (always expressed in octal, not
decimal). Part of the design of any font is the specification of the correspondence between
characters and their codes. Our Roman fonts, for the most part, arc extensions of a particular
coding scheme called ASCII (the American Standard Code for Information Interchange). Designed
with teletypes in mind, ASCII scts aside about thirty character codes called the control codes for
actions that a terminal might perform, such as tabbing to the next column, advancing to the next
line, etc. Our Roman fonts have begun to use control codes for printing purposes. I will use the
term special characters to refer to printing characters that have been associated with the ASCII
control codes.

History:

It is helpful to think of the evolution of our fonts over the years in terms of generations. 1 refer to
any font that was produced before October 1978 as a first generation font; their origin is shrouded
in antiquity. The first generation fonts have only onc special character: the ASCII control code
#30==1X is an underlinc (uscd by EARS). Ron Pellar’s first big relcase of fonts in November of
1978 constituted the second generation. These fonts have about twenty special characte:., mostly
various ligatures, accents, spaces, and dashes. Ron finished the third gencration of fonts in January
of 1980. In these fonts, every scven bit code has either a printing role, or an active control
function. In addition, printing roles have been given to about forty codes above # 177, which 1 will
call eight bit codes. The subsidiary memo SpecialCharacters lists the character code assignments of
the various generations of fonts, and discusses some associated issues.

What will happen to Clover?

Almost all of the TimesRoman’s and Helvetica’s currently in Clover’s data basc arc sccond
gencration. After the cataclysm, they will be third generation. This means that there will be a fow
more special characters associated with seven bit codes for you to use and cnjoy. In addition, many
little glitches will (finally!) go away: the rivers after lower-case ‘x’, the too large lower-case ‘o’, ctc.
In addition, there will be other new special characters associated with cight bit codes that probably
won’'t do you any good, but won’t do you any harm either.

Now for the bad news: there is one incompatible feature of this conversion from second to third
generation. In second gencration TimesRoman and Helvetica, the symbol minus sign is associated
with two different control codes: both tN=#16 and *+X=#30. (The character to the right of
zero on the keyboard has code #55; in Timesroman and Helvetica, this code designates a hyphen,
not a minus sign.) Third gencration TimesRoman and Helvetica have stolen the code tN for a
macron, the horizontal bar accent frequently used in dictionaries to indicate a long vowel. Hence,
after the cataclysm, you must use the code tX if you want a minus sign.

In addition, Press files prepared before the cataclysm using tN’s for minuses will not print properly
after the cataclysm. This will have to be dealt with on a file by file basis. One way, of course, is to
reproduce the Press file from more primitive sources, after editing those sources to use the tX code
rather than TN to specify a minus sign. There is an alternative, however: a program could be
written to scan a Press file, and replace all of the *N’s in text strings with 1X’s. Such a program
would automatically massage pre-cataclysm Press files so that they would print correctly after the
cataclysm. I will writc this program if I perceive substantial demand: let me know.

The Math font is rather a different story. When Ron Pellar produced the second gcnveration fohts,
he choose to change many of the character code assignments of the Math font. This blatant
incompatibility with the past gencrated so much protest that CSL decided to keep Clover running

EnsuingCataclysm . 3

with first gencration Math. In fact, Clover is still running with first generation Math. In addition,
Ron was prevailed upon to rescind these character code changes when the third gencration Math
came out. Third gencration Math is exactly like first gencration Math, except for the addition of
some valuable new characters in control slots. Sccond generation Math (described, unfortunately, in
the Novermber 1978 edition of the Alto User’s Handbook) should be forgotten as soon as possible.
The cataclysm will convert Clover from first to third gencration Math; this conversion is believed
to be 100% backward compatible. TFor details of the new characters and the character mapping, sec
the SpecialCharacters memo.

The only other fonts substantially affected by the cataclysm will be the TEX fonts. Don Knuth is
just now using Metafont to complete the design of the final fonts for new cditions and volumes of
The Art of Computer Programming. These new fonts are different enough from the old ones that
they will be treated by the cataclysm as entirely new fonts, rather than simply as new versions. The
old TEX fonts will stay around for a reasonable period in the interests of backward compatibility,
after which they will go away. We are also taking advantage of the cataclysm to change the way
that we handle the sizes of TEX fonts; for details, read the TexFonts mecmo.

Fonts for Altos:

The biggest issue throughout the history of Alto font construction has been that of character width.
Since the Alto display is a low-resolution bitmap, it is difficult to draw small characters that look
good; furthermore, it is especially difficult to draw characters that arc as thin as they are supposed
to be and-look good. In most Alto fonts, therefore, the characters arc actually much thicker than
their nominal size; that is why they all crowd together in Hardcopy mode. But some Alto fonts are
thinner than others.

First generation Alto fonts are those found on the dircctory [MaxclKAltoFonts>; being first
genceration, they have only one special character, an underline in the +X slot. They are also fairly
wide. When Ron Pellar produced the sccond generation of printing fonts, he also produced a set of
Alto fonts that arc substantially narrower. This makes them more faithful to the printed page, but
harder to read. Public opinion in CSL found these sccond generation Alto fonts unacceptable.
Therefore, CSL has continued to use the first generation Alto fonts, even though these fonts were
not updated to include the sccond generation special characters.

For the third gencration release, Ron recently produced an cntirely new sct of Alto fonts that are
roughly as wide as the first generation Alto fonts. In my personal opinion, these third gencration
Alto fonts arc fairly good looking; furthermore, they come in lots of sizes and they have all the
right special characters. On the other hand, it is well known that therc is no accounting for taste,
and that change is intrinsically cvil. Hence, T anticipated substantial pressurc from CSL’ers not to
be torn away from the first generation Alto fonts that they have used for so long.

I decided that the only way to keep everyone happy was to allow everyone to roll their own. In
particular, I took all three gencrations of Alto fonts as well as special set of very thin Alto fonts that
Ron produced for ASD a while back, and brought all of them up to date by adding the third
genceration special characters. These new Alto fonts arc all available now on the directory
[lvyKAltoFonts>. The different versions of cach font are distinguished by the use of subdirectories.
For the names of these subdirectorics and what they mean, recad the AltoFontGuide memo. To
date, I haven’t done anything about the Alto fonts on Maxcl. I propose that, as part of the
cataclysm, the updated first generation Alto fonts be placed on [Maxcl][<AltoFonts> while Pellar’s
third generation Alto. fonts be made available on [Maxcl]<PrintingD>.

By the way, there is one minor detail about these fonts that deserves comment here, concerning the
circumflex accent. To save a character code, the recent TimesRoman and Helvetica fonts have been
designed so that overprinting a character with both the acute accent (found at #13=1K) and the

FEnsuingCataclysm 4

grave accent (found at #5=1E) will rcsult in a reasonable circumflex accent. If the spacing width
of the accent characters were exactly zero, then it wouldn’t matter in which order you put the B
and K. But, to keep Bravo happy, the spacing widths of the accents must strictly positive. In the
printing fonts, the accent widths, although positive, are small enough that the order of the tE and
tK is almost immaterial. In the Alto fonts, however, the accents are one whole Alto pixel wide; as
a result, the order of the tE and 1K accents does matter to the Alto font designer. Furthermore, it
is not just an arbitrary convention! Since the circumflex goes up first and then down, an Alto font
will look better if it was designed to have “tK tE” come out as circumflex than if it was designed
for a “1E tK” circumflex. Therefore, all of the updated Alto fonts on [Ivy] have been built with
the assumption that the acute accent will be typed before the grave accent for a circumflex: just
remember that “K before E is the KEy”, while “E before K is wrong: EeK!”.

University Impact:

This cataclysm will have less of an impact on the universitics in the grant program, since they have
been operating with third gencration fonts from the very beginning. I will take advantage of the
cataclysm, however, to build a new printing font dictionary for the universities that contains the new
sizes and faces that Pellar has produced. In addition, this new dictionary will contain several
random fonts like Sail and Apl that were omitted in the first relcase. Once the updated Alto fonts
have been moved to Maxcl, the universities will be encouraged to switch over to them. [For more
details, sec the last of the auxiliary memos: UniversityFonts.

XEROX

Inter-Office Memorgndum

To Whom it May Concern Date April 17, 1980

From Lyle Ramshaw Location Palo Alto
Subject Kerned Strike Fonts (Revised version) Organization CSL

Filed on: [Maxc1KFonts>KenrnedStrikes.bravo
: [MaxclKFonts>KenrnedStrikes.press

It’s time for a new font format! The Strike format for font files was devised to permit the graceful
usc of BITBLT for writing characters onto the Alto screen; the authoritative description of this
otiginal Strike format can be found in the memo Font Representations and Formats by Bob Sproull,
filed on

[Maxc1[KPrintingDocs>FontlFormats.Press.

The original Strike format, however, has a scrious difficulty: it does not distinguish between the
spacing width of a character, and the width of that character’s bounding box. Let us say that a
character kerns to the left if its raster includes bits in columns to the left of the character’s origin, A
character is said to kern fto the right if its raster includes bits in columns to the right of the end of
its width vector (the origin of the next character). The original Strike format is incapable of
handling characters that kern in cither direction. The newer PARC fonts contain lots of zcro-width
accent characters that arc intended to overprint the following character. These accent characters
overhang the ends of their width vectors by quite a bit, that is, they kern heavily to the right;
hence, conventional Strike format can’t handle them.

There are basically two ways to adjust Strike format so that it can handle characters that kern.
Consider left kerning, for cxample. One possibility might be called the padding approach. The idea
here is to pad every character raster in the strike body with enough blank columns so that all of the
overhanging bits fit into those padding columns.

A padding approach to the left kerning problem would work like this. We would look through the
entire font, and determine the size of the largest left kern of any character; say that it is four
columns. Thus, at least one character’s bounding box includes four columns to the left of the
origin, while no character overhangs to the left of the origin by more than four columns. When
putting character rasters into the Strike array, then, we include four columns for every character to
the left of that character’s origin. We also find a field somewhere carly in the file to put the
number ‘4. A user of the resulting file would paint a character on the display by BitBlt'ing the
entire character raster, padding columns and all. The first column of the destination of the BltBlt
would be given by the formula (<desired origin>—4).

A symmetric padding strategy could be used to handle right kerning. But any padding strategy has
pro‘b'lcms The padding columns appear in every character’s raster; they take up space in the file,
and in memory, and they slow down the process of painting the character, since they are included
in the BitBIts.

‘The other approach to the kerning problem might be called the auxiliary table approach. In this
scheme, we store the character rasters into the strike body by their bounding box dimensions, and
then we use an auxiliary table of small integers to tell the location of the origin relative to the

KernedStrikes (revised version) 2

bounding box, and the length of the width vector. Thé auxiliary table approach scems to be a
better choice than a padding approach. The purpose of this memo is propose a new Strike file
format that uses the auxiliary table approach to handle both left and right kerning. If you object to
the following plan, or have suggestions to improve it, please get in touch with me as soon as
possible. :

History:

The definition of Strike file format in Sproull’s memo Font Representations and Formats suggests
the use of a padding scheme to handle left kerning. As I read it, this memo states that a negative
integer in the xoffset word implies that cvery character raster in the strike is padded by (—xoffset)
columns on the left. To the best of my knowledge, no one ever wrotc any programs that would
correctly produce or consume such a left-padded strike font. In addition, left kerning doesn’t
happen to be necarly as common in PARC fonts as right kerning anyway. We could, of course,
legislate against left kerning completely, and start devoting the xoffset word to a right kerning
scheme. In fact, this is what the current version of PrePress does when the Kerned flag is set in
MakeStrike,

But thinking things over, it secms to be a better plan to take advantage of the fact that no padding
scheme has been widely used, and drop all such sck-mes in favor of a format bascd on the auxiliary
table approach. From now on, if you want to handle kerning, you should use thc new
KernedStrike format, and its auxiliary tables.

Some terminology:

The following section is a substitute for section 7.2 of the Font Representations and Formats memo.
Before we start on that, though, let me review a little terminology from that memo, in case the
reader is rusty. The origin of a charcter is a reference point located at the corner where four pixels
touch. The width vector of a character is a two-dimensional vector that specifics the desired
displacement from the origin of the current character to the origin of the next character in a string.
The components of the width vector arc written Wx and Wy. Wx is always nonnegative; all of the
font formats intended for the Alto screen assume in addition that Wx is an integral number of
pixels, and that all characters have a Wy of zcro. The bounding box of the black pixels in the
character raster is a rectangle with width BBdx and height BBdy. These numbers arc always
nonnegative. They are both zero if the character has no black bits in its raster (such characters are
called empty characers), and arc both positive in all other cases. If we use the origin to define a
Cartesian coordinate system on the plane, the lower left corner of the bounding box is located at
the point <BBox, BBoy>. Thus, the left cdge of the bounding box is located BBox units to the right
of the origin (left if BBox is ncgative), while the bottom of the bounding box is located BBoy units
above the origin (below if BBoy is ncgative). Empty charcters have BBox and BBoy cqual to zero,
by convention. Finally, if all of the characters in the font are supcrimposed with their origins
coincident, the dimensions of the resulting bounding box are called FBBdx, FBBdy, FBBox, and
FBBoy respectively.

7.2 (New version) STRIKE format:

There arc four kinds of files in the Strike class: a PlainStrike file (conventional extension .Strike), a
KernedStrike file (conventional cxtension .KS), a PlainStrikeIndex file (conventional extension
StrikeX), and a KernedStrikeIndex file (conventional extension .KSX). In a PlainStrike file, the
individual rasters of the characters arc assembled in ascending order of character code into one large
raster, called the strike. 'I'he baselines of the characters are aligned, and the origin of cach character
is made coincident with the end of the width vector of the preceding character. The PlainStrike file
also contains a table indexed by character code that points to the leftmost column of the raster for
cach character in the strike. Warning: since the rasters in a PlainStrike file arc positioned by their

KernedStrikes (revised version) 3

origins and width vectors, it must be the case that all of the black bits of the character lic between
these two bounds. No character may include bits to the left of its origin (left-kerning) or the right
of the end of its width vector (right-kerning).

A KernedStrike file handles kerned characters, and does so in the following way: the individual
rasters arc put into the strike by their bounding box widths. Just think about taking the bounding
boxes of all of the characters, lining up their basclines, and packing them tightly into one long
raster array; in this format, therc are no blank columns between characters in the strike. A
KernedStrike file has three additional tables, indexed by character code. One gives the position in
the strike of the first column of the character’s raster, which is also the leftmost column of its
bounding box. The other two tables consist of small integers that specify the left-to-right location
of the origin with respect to thc bounding box, and the length of the width vector.

A StrikeIndex is cssentially a table that maps character codes into <strike, coded pairs, together with
the associated strikes. An index can be used to achicve sharing if several character codes map to
the same <strike, code> pair, and hence refer to the same raster. Or it can help to save space, by
grouping the rasters into several strikes to save top and bottom scanlines. [By the way, to the best
of my knowledge, no one has cver used StrikeIndex format.])

PlainStrike and KernedStrike files have the following format:

structure PlainStrike:

[
@StrikeHeader // header common to all Strike files
@StrikeBody // the actual strike
1
structure KernedStrike:
@StrikeHeader // header common to all Strike files
@BoundingBoxBlock // dimensions of the font bounding box
@StrikeBody // the actual strike
@WidthBody // table of width data
|
structure StrikcHeader:
[
format word =
[.
oneBitbit // always =1, meaning “new style”
index bit // =1 means Strikcindex, =0 otherwise
fixed bit // =1 ifall characters have same value of Wx, else =0
kerned bit // =1 if KernedStrike, =0 if PlainStrike
blank bit 12
]
min word // mimimum character code
max word // maximum character code
maxwidth word ~// maximum spacing width of any character = max{Wx}
] .
structure BoundingBoxBlock:
[
FBBox // as defined above

FBBoy // as dcfined above

KernedStrikes (revised version). 4

FBBdx // as defined above
FBBdy // as defined above
]
structure StrikeBody:
[
length word // total number of words in the StrikeBody
ascent word // number of scan-lincs above the baseline, which is
// normally max{BBdy+ BBoy} over the chars in this strike
descent word // number of scan-lincs below the bascline, which is
// normally max{(— BBoy)} over the chars in this strike
xoffset word // always =0 [used to be used for padding schemes)
raster word // number of words per scan-line in the strike
bitmap word raster*height // the bit map, where height = ascent+ descent=FBBdy
xinsegment * min, max 42 word // pointers into the strike, indexed by code
]
structure WidthBody:
[
widthtabl - + min, max+1 @WidthEntry // spacing information, indexed by code

|

structure WidthEntry:

[
spacing word = // the entire spacing word will be =(—1) (both bytes =377b)
// to flag a non-cxistent character, else the bytes are:
[
offsct byte // =BBox - FBBox
width byte // =Wx
]
]

The “bitmap” entry is onc large bit map; there are hcight=ascent--descent scanlines in the
bitmap, cach of which is raster words long. Unless something funny is going on, ascent will be
simply FBBdy+FBBoy, while descent will be simply (—FBBoy).

‘The font includes characters for some of the ASCII codes from min through max inclusive. The
bitmap includes a dummy character associated with the charcter code (max+1), which can be
displayed for any non-existent character.

A PlainStrike works as follows: Given a character code ¢, in the range [min, max], we first
compute: ,

xlLeft « xinscgment t c;

xRight « xinscgment * (c+1);.
If xLeft=xRight, then ¢ is a non-existent character in the current font, and should be replaced by
the raster with code (max-+1). Otherwise, the columns of the bitmap from xLeft through
(xRight—1) inclusive contain the raster for character ¢, and the width of charcter ¢ is
Wx =(xRight—xLeft).

A KernedStrike works a little differently. We first compute xLeft and xRight as above, and also
compute

Spacing « WidthTable * c;.
If Spacing=(—1), then ¢ is a non-cxistent character in the current font, and should be replaced by

KernedStrikes (revised version) 5

the dummy character at (max+1). Otherwise, the columns of the bitmap from xLeft through
(xRight—1) constitute the bounding box of the raster of character ¢. In this case, we decompose
the Spacing valuc into its two bytes:

Offset « Spacing<<WidthEntry.offsct;

Width ¢ Spacing<KWidthEntry.width;.
Now assume that we want to paint the character ¢ starting at destination column xDest. The source
of the BitBIt is columns xLeft through (xRight—1) of the bitmap inclusive. We can compute the
proper destination from xDest, Offset (which =BBox—FBBox), and the FBBox word of the
BoundingBoxBlock: the first column of the destination is (xDest+ Offsct+ FBBox) = (xDest -+ BBox).
Note: the offset portion of the WidthEntry was chosen to be (BBox—FBBox) rather than BBox
itself, since the former quantity is always nonncgative, while the latter quantity can have either sign;
and signed 8-bit numbers arc a pain in the ass. Finally, we replace xDest by (xDest+ Width) to
prepare for the painting of the following character.

Two finc points concerning KernedStrikes: A non-existent character is flagged by a (—1) valuc in
the WidthTable. Since a non-existent character doesn’t have a bounding box, the xLeft and xRight
entrics for such a character will be equal. But there can also be perfectly legal characters for which
xLeft=xRight; in particular, all of the empty characters will have this property: figure space, em
quad, word space, ctc. If you arc painting an empty character, there is no nced to actually perform
the BitBlt, since the rectangle being Blt'ed would Yave zero width. All that must be done is to
replace xDest by (xDest-+-Width) to make the space happen. Sccondly, some extra efficiency can
be gained when using a KernedStrike font by keeping track of the quantity (xDest+ FBBox) in the
character-painting loop, instcad of xDest itself. This moves one addition out of the inner loop.

Finally, it is time to say a few words about Strikelndex format: a StrikeIndex is simply an index at
the front of some StrikeBodies.

structure PlainStrikelndex:

@5StrikeHeader // common hecader
maxascent word // maximum ascent of all the strikes
, // [probably = FBBdy+IBBoy]
maxdescent word // maximum descent of all the strikes
// [probably =(—FBBoy)]
nStrikeBodies word // the number of strike bodies
map t minmax-+1 @mapEntry . // table of <strike, coded pairs, dummy at max 1
bodies 1 1, nStrikeBodics @StrikeBody // the strike bodies themsclves
]
structure KernedStrikelndex:
@StrikeHeader // common hcader
@BoundingBoxBlock // bounding box data for the entire font
maxascent word // maximum ascent of all the strikes
// [probably =FBBdy+FBBoy]
maxdescent word // maximum descent of all the strikes
: /7 [probably =(—FBBoy)]
nStrikeBodies word // the number of strike bodies
map + min,max + 1 @mapEntry // table of <strike, code> pairs, dummy at max+1
bodies 1 1, nStrikeBodics @StrikeBody // the strike bodies themselves »
@WidthBody // table of width data
1

structure mapEntry:

KernedStrikes (revised version) 6

|

missing bit 1 // =1 if character is non-existent, clse =0
strike bit 7 //which strike in range [0:127]

code byte // which code

1

In a StrikeIndex font, all of the StrikeBodies have implicit min values of zero; the max value is
unimportant, as the map will never gencrate a reference outside the range. The individual
StrikeBodies do not have separate pictures for illegal cbaracters; instcad, the (max+1) entry in the
global map defines a single dummy picture. Non-existent characters in the range [min, max] arc
indicated in the global map by a mapEntry that specifics a strike number larger than 127=177b,
that is, by the sign bit of the map entry being 1. In KernedStrikcIndex fonts, non-existent
characters will also be indicated by having a WidthEntry of (—1).

In StrikeIndex fonts, the ascent and descent words in cach StrikeBody give the dimensions of that
particular StrikeBody; thus, they probably are the y dimensions of the bounding box of those
characters that are included in that StrikeBody, rather than of the entire font.

BitBlt rhodes:

There arce cvidently lots of programs in the world that paint charcters on the screen by calling BitBlt
in Replace mode, in which the new bits simply smash whatever used to be at the destination. [f
you want to handlc characters that kern, you simply can’t do this! The bounding boxes of
successive characers may actually overlap, and hence a Replace Blt might overwrite valuable bits. If
you want kerning specified in a KernedStrike font to work, you must use one of the other BitBlt
modes: Paint, Erase, or Invert.

Conversion issues:

I propose the following plan. In the ncar future, some combination of Doug Wyatt and myself will
modity PrcPress 1.12 to produce a PrePress 1.13. This new PrcPress will include a MakeKS
command, that converts a font from .AC format to .KS format, and a RcadKS command, that
converts in the opposite direction. The MakeStrike command will remain, to convert from .AC
format to the original Strike format. However, the Kerned flag will be replaced by a new flag
called ‘Clipped’. And the code that implements the MakeStrike command will be altered to treat
overhanging characters as follows. If any character of the .AC font kerns to the left, the MakeStrike
command will fail, as it docs currently. Characters will be allowed to kern to the right. If the
Clipped flag is true, the portion of the bounding box that overhangs the end of the width vector
will be ignored. If the Clipped flag is false, the width of any right-kerned characters will be
artificially increased just enough to climinate the overhang. Thus, calling MakeStrike on a font with
right kerning will have one of two effects: if Clipped is true, the resulting Strike font will space
correctly but the overhanging portions of characters won’t print. If Clipped is false, the
overhanging portions will print, but the characters will be spaced too far apart. Neither of these
two possibilitics is very pleasant, of course; but if you want kerned characters to work, you should
use .KS format.

Note that the xoffset word of all StrikeBodics produced under the new rules will always be zero, no
matter what file format is involved. Non-zero valucs of xoffset were originally rescrved for
handling kerning by padding schemcs; since padding is now handled by the auxiliary table
approach, the xoffset word is not nceded.

PrePress 1.13 will also include new code to handle the exotic face byte values that are bcing
introduced as part of the upcoming font cataclysm.

KernedStrikes (revised version),)

Once PrePress 1.13 is up and running, we will take all of the .AL fonts on [Ivy]KAltoFonts> and
produce a .KS version for cach of them, sticking all of those fonts on [Ivy[KAltoFonts> as well.
That should give us plenty of KernedStrike fonts to play with, as pcople start to produce software
that uscs the new format.

XEROX

Inter-Office Memorandum

To Whom it May Concern Date July 19, 1980
From Lyle Ramshaw ‘ Location Palo Alto
Subject Special characters over the years Organization CSL

Filed on: [MaxclKFonts>SpecialCharacters.bravo

[MaxclKFonts>SpecialCharacters.press
[IvyKFonts>Memos>SpecialCharacters.bravo
[Ivy[KFonts>Memos>SpecialCharacters.press

This memo discusses the allocation of character codes over the years in the fouts TimesRoman,
Helvetica, and Math, and also deals with some related issues persuant to the July 1980 font
cataclysm. In this memo, I will merely list the assignments of the special character codes Since 1
want the rcader to be able to print this memo before the cataclysm, I was not able to include any
demonstration of what the ncw special characters of the third generation actually look like.

Since the cataclysm has already occurred, there is a new document on [lvyKFonts> called
CloverCharacters.Press. This is a sort of companion to the documentation file CloverFonts.Press on
the same directory. Where CloverFonts simply lists the namcs, sizes, and faces of the fonts on
Clover, CloverCharacters has a one page table for cach family that shows what printing character is -
associated with cach character code. CloverCharacters only discusses the post-cataclysm truth, and
hence docsn’t give the scnse of change and history provided by this memo. On the other hand,
CloverCharacters has pictures instead of words, and CloverCharacters includes all of the families on
Clover, not just TimesRoman, IHelvetica, and Math.

TimesRoman and FHelvetica:

Let’s ignore Math for the present, and concentrate on TimesRoman and Helvetica. Almost cvery
Roman font agrees on the meanings of almost all of the character codes from #40 through #176.
These character codes are defined in PARC Roman fonts by the following rough cquivalent of
ASCIL:

#40=spacc <seec discussion belowd>

#41 = cxclamation point

#42=gsymmetric double quote

#43=number sign, sharp sign, pound sign

#44=dollar sign

#45=per cent sign

#46=ampcrsand

#47=single quotc <sce discussion bclow>

#50=lcft parenthesis

#51=right parenthesis

#52 = asterisk

#53=plus sign

54=comma

#55=minus sign or hyphcn <scc discussion below>

#56=period

57 =slash

SpecialCharacters . 2

#60 through #71=digits 0 through 9
#72=colon
73 =scmicolon
#T74=left angle bracket (not less than sign)
#75=cqual sign
#T6=right angle bracket (not greater than sign)
#T7=question mark
#100=at sign
#101 through #132=upper case A through Z
#133=left square bracket
134 =backslash
#135=right square bracket
#136=up arrow
#137=left arrow
#140=<sec discussion below>
#141 through #172=lower case a through z
#173=left curly bracket
#174=vertical bar
#175=right curly bracket
#176=tilde symbol (not accent).
The history of character sets at PARC has mostly involved the fate of the other ASCII character
codes.

First Generation:

In the first generation fonts:

#40 was the only space therc was

#47 was a symmetric single quote

#55 was a minus sign

7140 was not defined.
In addition, therc was onec special character: #30==1tX was defined to be an underline accent
character. Gacha is an example of a first generation font that has survived to the current day.

Second Generation Changes:

The second generation added nincteen special characters, and affected a few of the basic codes as
well. The changes to the basic characters were:
#40 became a space designed to go between words
#47 became a closing single quote
#55 became a hyphen
#140 was still undefined.
The special characters introduced were:
#2=1B=upsidedown question mark
#3=1C=a ccdilla accent on a lower case ¢
#4=1rD=umlaut accent
#5=1E=grave accent
#6=1F=ff ligature
#T=1G=opening single quote
#10=1H=upsidedown e¢xclamation point
#13=1K=acute accent
#16=tN=minus sign
#17=10=cm quad
#20=1P=tilde accent
#21=1Q=ffi ligaturc

SpecialCharacters 3

#22=R=fll ligature

#23=1S=em dash

#24=1T=1M ligaturc

#25=1U=11 ligature

#26=1tV=en dash

#30=1X=minus sign, duplicating #16

#31=1Y=figure space, a space just as wide as a digit
#34=M"\=en quad.

Third generation:

In the third generation release, the region of character code space from #1 through #37 was pretty
much filled up, and cxtra characters began to find there way into the eight bit character codes,
thosc between #200 and #377. The changes to the basic codes were:

#40 remained a word space

#47 remained a closing single quote

#55 remained a hyphen

#140 now duplicates #7, an opcning single quote.
This last change was an excellent choice from a public relations point of view, since much of Arpa
community was alrcady committed to this cony-ntion.

In third generation fonts, the first 40b character codes are allocated as follows:
#0=ASCII null
#1=1A=hacek accent, upsidedown circumflex
#2 through #10 arc as in sccond generation
#11=11=ASCII tab, used by Bravo
#12=1J=ASCII linc fced, treated spccially by Bravo
#13==tK =acute accent, as in sccond gencration
#14=1L=ASCIl form fccd, page break in Bravo
#15=tM=ASCIl carriage rcturn, used by Bravo
#16=1N=macron accent (!Unlike second genecration!)
#17 through #26 arc as in sccond generation
#27=1W =breve accent
#30=+X=minus sign (no longer duplicated at #16)
#31=1Y =figurc space, as in sccond gencration
#32=17=ASCIl cnd-of-file and Bravo paragraph break
#33=1[=ASCIl Escape, used by Bravo
#34=1"\=cn quad, as in sccond gencration
#35=1]=low dot accent v
#36=1r=duplicate of tilde accent at #20, since #20
has been stolen by some Bravo’s for something
#37=1+«=circle accent.
The change of #16=1N from onc of thc minus signs to a macron accent is the only incompatible
feature of the change from the second to the third generation.

As the previous listing indicates, the seven bit codes are now pretty well filled up; from #40
through #4176 arc the basic codes discussed at the beginning, and #4177 is ASCII delete. Large-
scalec cxpansion of charcter sets must thercfore cither involve introducing new fonts or giving
printing meanings to cight bit character codes. Here is the list of the eight bit codes that Pellar
choose to definc in the third generation fonts:

#200=umlaut on an uppcr case A

#201l =umlaut on an upper casc O

#202=circle accent on an upper case A

#220=1f ligaturc

Speci:alCharacters 4

#221=ffi ligature

#222="ffl ligature

#223=fi ligature

#224=11 ligature

#230=en quad

#231=cm quad

#232="figure space

#233=en dash

#234=em dash

#235=minus sign

#236=cn lcader

#237=5-cm space

#240=umlaut on a lower case a

#241=umlaut on a lower case o

#7242 =cirlece accent on a lower case a

#243=umlaut on a lower case u

#244 =cedilla accent on a lower case ¢

#250=umlaut accent

#7251 =circle accent

#252=gravc accent

#253 =acute accent

#1254 =circumflex accent

#255=tilde accent

#256 =breve accent

- #257 =macron accent

#260=cent sign

#261=Sterling sign

#2065 =star

#2606 =scction sign

#7267 =bullet

#270=dagger

#2711 =double dagger

272 =paragraph sign

#274 =plus-minus sign

#275=upsidedown question mark

#276 =upsidedown exclamation point

#7277 =underscore

#337=non-required hyphen

#350=hacek accent

#351=low dot accent
By the way, the accents associate with the #7250 through #257 and #2350 and # 351 codes are not
zero width; they should only be used by programs that are smart enough to center them over the
accented character.

Some thoughts about the eight bit characters:

From the CSL point of vicw, it is rather unfortunate that interesting characters are now beginning
to be associated with eight bit character codes. Much of CSL’s software world was written with
only seven bit character codes in mind, and probably won’t be changed in the ncar future.
Consider Tex for example: this document compiler is used by a community of pecople at PARC.
But Tex was written on a PDP-10, and has the assumption that character codes arc scven bits long
burned into its guts. This means that whatever pretty new characters Pellar sticks up in the cight
bit region will probably never be accessible from Tex.

SpecialCharacters . 5

Above and beyond this long term worry, these cight bit characters have affected the plan for the
font cataclysm. As described in the AltoFontGuide memo, I chose to strip the cight bit characters
out of the standard Alto fonts. In addition, there are two different Fonts.Widths files for use after
the cataclysm: ‘the standard one ([Ivy[KFonts>Fonts.Widths) has the ecight bit characters stripped
out, while the other ([IvyKFonts>EightBit>Fonts.Widths) has them left in. Producing this stripped-
down width dictionary demanded a little hacking on my part, but consider the alternative. The only
other choice would have been to go over every program in the CSI. software world that reads
Fonts. Widths, and check that they can correctly discard width information about characters with
cight bit character codes. And just consider the list of affected programs: Bravo 7.5, S1L,
PressEdit, Laurcl—even Pub! The complexity of having two different width dictionaries around
pales into insignificance before the unpleasantness of hacking on Pub.

On the other hand, I plan to leave all of the cight bit characters in the dictionary of printing fonts.
The printing servers and such font systems as Prepress have alrcady been checked out on cight bit
characters, and handle them correctly..

Math:

We bring this memo to a close by recounting the sad history of the Math font. The first generation
of the M:’h font had the character map:
#40=printing symbol for a space
#t41=dagger
#42=decgrec symbol
#43=infinity symbol, lazy eight
#44=cent sign
#45=division sign, elementary school version
#46=logical and, an A without the bar, lattice mect
#47=cqual sign with dot above
50=<unassigned>
51 =<unassigned>
#52=high dot
53 =plus-or-minus sign
#54=contains as an clement, such that
#55=minus-or-plus sign
#56=threc dots mecaning therefore
#5T=slash in a circle
#60=circle
#61=box
#62=trianglc with flat side on the bottom
#63=diamond
#64=plus in a circle
#65=minus in a circle
#66=multiplcation x in a circle
#67=angle sign
#70=star
#71=high dot, darker than #52
#72=scction sign
#73=black slug
#T74=1css than or cqual sign
#75=not cqual sign
#T6=grcater than or equal sign
#77=upsidedown question mark
#100=in care of
#101l=for all, upsidedown A

SpecialCharacters

#102=is an eclement of

#103 =blackboard boldface C, the complex numbers
#104=nabla, upsidedown upper case Greek delta
#105=there exists, backwards E

#106=double dagger

#107=is a proper subset of

#110=is not a proper subset of

#111=is a subset of

#112=contains as a proper subset

#113=docs not contain as a proper subsect
#1l4=contains as a subsct

#115=printing symbol for carriage return

#116=is not an element of

#117=the null set

#120=is proportional to _
#121 =right and left arrows with right on top, reversible reaction
#122 =blackboard boldface R, the recal numbers
#123=wavy cquals

#124=is perpendicular to

#125 =union

#126=logical or, a V shape, latticc join
#127=three bar cqual

#130=a multiplication x

#131=arrow starting out rightwards, then pointing down
#132=solid triangle pointing rightward

#133=curly left angle bracket

134 ==thick slash

#135=curly right angle bracket

#136 =down arrow

137 =right arrow

140 = <unuscd>

141 =aleph

#142=wavy right arrow

#143 =copyright symbol, small C in a circle

144 =partial sign

#145=cqual sign with top bar wavy
#146=double-hcaded arrow

#147=double shafted right arrow

#150=slashed h, for Planck’s constant

151 =1left ceiling bracket

7152 =right ceiling bracket

#153 =1ecft floor bracket

#154=right floor bracket

#155=double vertical bar

156 =logical ncgation sign

#157=small circle operator, composition

#160="T on its side, vertical bar on the left
#161l=double shafted T on its side, vertical bar on the left
#162=registcred trademark symbol, small R in a circle
#163 =northcast arrow

#1064 =northwest arrow

165 =southwest arrow

166 =southcast arrow

#167=much lcss than sign

SpecialCharacters 7

#170=much grecater than sign

#171 =interscction

#172=T on its side, vertical bar on the right

#173=the fraction 1/4

#174=the fraction 1/2

#175=the fraction 3/4

#176=right and left arrows with one-sided heads, left on top.

When Ron Pellar prepared the sccond generation of Math, he added a few new characters:

#2=1B=less than sign ‘

#3=1rC=grcater than sign

#4=1D=a onc point space, for use in cquations

#50=a prime, thin enough to be doubled up.

#51=upper case Greek pi, to reduce the need for Hippo.
In addition to making these additions, Ron decided to try replacing thirteen of the original
characters with more useful printing roles. 'This incompatibility generated such storms of protest
that Ron decided to rescind these replacements in the third generation of Math. If you really want
to know what these characters were, you should look at the November 1978 or September 1979
cedition of the Alto User’s Handbook, the Bravo font page. Unfortunately, that page was prepared
using sccond gencration Math. I am not going to mention those replacement characiers here,
because it is my fond hope that all memory of them should vanish from off the face of the earth.

On to third gencration Math! The following list describes the character code assignments of third
generation Math where they differ from the first generation:

“#l=1rA=upper casc Greek pi
#2=1B=Ilcss than

#3=1C=greater than

#4=1D=a one point space
#5=1E=symbol for pound Sterling
#6=1F=integral sign

#T7=1G=contour integral sign

#10 through #12 unassigned

#13=1K =paragraph symbol

#14 through #16 unassigned
#17=10=bullct

#20 through #22 unassigned
#23=1S=upper casc Greck sigma

#24 and #25 unassigned

#26=1V=threc dots meaning bccause
#27 through +#37 unassighed

#40 through #47 as in first generation
#50=primec as in second gcneration
#51=radical symbol, squarc root symbol
#52 through #137 as in first generation
#140 unassigned

#141 through #176 as in first generation.

Concluding remarks:

All cexisting Alto fonts for TimesRoman, Helvetica, and Math have been brought up to date with
the third generation special characters, and put on the dircctory [IvyKAltoFonts>; sce the
AltoFontGuide memo. Clover was running with second gencration TimesRoman and Helvetica and
first generation Math; the cataclysm has brought all three families up to the third gencration.

XEROX

Inter-Office Memorandum

To Whom it May Concern Date July 19, 1980

From Lyle Ramshaw Location Palo Alto
Subject Cataclysm impact on TEX fonts Organization CSL

Filed on: [Maxcl|KFonts>TexFFonts.bravo

- [MaxclKFonts>TexFonts.press
[TvyKFFonts>Memos>TexIonts.bravo
[IvyKFonts>Mcemos>TexFonts.press

Don Knuth just finished up the Metafont design of the family of fonts that will be used in the near
future to typesct the second cdition of Volume Il of The Art of Computer Programming 1
originally toped to make those fonts available to PARC users of TEX as part of the font cataclysm
announced on April 1, 1980. Unfortunately, I am not going to meet that deadline: the non-TEX
portions of that font cataclysm happcned on July 18, 1980, but the TEX portions won’t happen for
a little while yet. This documnt discusses the plans for the TEX font cataclysm that will occur later
on. As part of this later update, we are planning to improve the manner in which font size is
handled for Tex fonts.

Physical Size versus Logical Size:

What is the difference between a 9 point and a 12 point font in the same family? In the world of
PARC font software, these two fonts are very closely related: in particular, you can get the 12
point font by merely scaling up the 9 point font by 1/3 in each dimension. Ot you can get the 9
point by scaling the 12 point down by 25%. To put it another way, different sizes of the samc
family at PARC are strictly proportionally rclated. This proportionality has scveral advantages:
first, the rasters for the characters can be produced by scaling their spline definitions, and then scan
converting. In addition, a single table of width information can be scaled appropriately to give the
widths of any size font in thc family.

On the other hand, strictly proportional scaling is only an approximation to what a typographer
really desires. It turns out that, as the height of a font decrcases, the widths of characters should
decrease less than proportionally. The thickness of the character strokes and the sizes of the serifs
should also change non-proportionally as the height changes. The designers of the PARC software
world realized this, of course, but chose to stick with strictly proportional scaling anyway, because of
the programming bencfits it provides. While proportional scaling is not perfect, it provides good
results as long as the splines are not scaled up or down too far. When fonts of onc family are
needed that cover a wide range of sizes, the range can be broken into subranges, and a different set
of splines produced for cach subrange. In fact, this has alrcady happened: TimesRomanD) and
HelveticaD are font familics whose splines were drawn with the larger sizes in mind.

In Metafont, however, the width, stroke thickness, and scrif sizes of cach font arc sct independently
to achieve the best typographic result. There is no assumption of proportionality. As an immediate
consequence, the widths of cach different size of cach Tex font must be stored scparately: this
cxplains why Fonts.Widths files for Tex fonts arc so large.

The non-proportionality of the Tex fonts wouldn’t be as much of a hassle if it weren’t combined

TexFonts 2

with another factor: pcople’s desire to print magnified documents. Suppose that you are preparing
a proccedings article that should appear in 9 point type. Also supposc that the printers of this
proceedings will photographically reduccs whatever masters you give them, say by 25%. If you are
working with PARC fonts, you can allow for this reduction by choosing to print your document in
12 point type. Reducing 12 point TimesRoman by 25% will produce 9 point TimesRoman. But
with Metafont, this is no longer the case. If you want the final result to be CMR 9, the stuff
coming off the Dover should be CMR 9 scaling up to be 12 points in height, which is not the same
as CMR 12.

The real truth is that fonts produced by Metafont have two different sizes: their logical size, and
their physical size. The logical size is the size that Metafont should have in mind when it decides
how to draw the character; the physical size is the actual height of the font as it comes off the
printer. For the purposes of this memo, let’s measurc logical and physical size in logical points and
physical points respectively. Note that printing with a font with sizes 10 logical points and 20
physical points, and then photographically reducing by 50%, is a way to make a Dover give you 768
pixels per logical inch instead of only 384. Of course, the price that you pay is that the Dover now
prints on paper that is only 4.25 by 5.5 logical inches!

This conflict between logical size and physical size was already felt with the old Tex fonts, the oncs
currently on Clover. In addition to the regular CIIR, there is a family called SLIDESCMR; the
font SLIDESCMR 10 has sizes 10 logical points, and 14 physical points. Notc that what has
happened here, and in the TimesRoman and TimesRomanl) example, is that onc kind of size
information is being encoded as part of the family name of the font. You have to do something a
little bit exotic, since PARC font softwarce only has onc size field, and encoding in the family name
is one casy thing. In the case of TimesRomanD, the size field gives the physical size, while the
presence or absence of a D in the family name tells something about the logical size. In the case of
SLIDESCMR, however, this convention is reversed: the size ficld tells you the logical size while
the family name indicatcs the physical size.

Once the problem is described in these terms, it secms clear that it would be better to make a
uniform convention about the use of the single size field provided by PARC software. We hereby
propose that the size ficld should be used cxclusively for the physical size of the associated font.
Thus, TimesRoman and TimesRomanD are retroactively declared to be doing the right thing, while
SLIDESCMR is retroactively declared a mistake. This convention has several advantages. For onc
thing, it makes it possible to producc a width table for CMR in 10 logical points that can be scaled
in the standard PARC way to give the widths for any physical size. 1n addition, when the printing
servers do font substitution, their matching algorithms assume that the size field really describes
how big the font will bc when coming off the printer.

We will take it as given, then, that the PARC size field for a font shall be used for the physical size.
Note that this physical sizec need not be an integral number of points by the way. Supposc that you
are setting math with Tex, using the standard logical sizes of 10, 7, and 5 points. If you want to
magnify your output so that it can later be reduced by 25%, you want to usc physical sizes 13.33,
9.33, and 6.67 points respectively. These fractional point sizes are likely to confuse humans, but,
fortunately, they don’t confuse most PARC programs: font sizes are actually mcasured by the
softwarc in micas instcad of points, and micas arc small enough that rounding to the necarcst mica is
irrelevant. Unfortunately, PressEdit is a source of difficulty here, since PressHdit docs not
implement the feature of Press file format which allows font sizes to be specified in micas. We will
cither fix PressEdit or implement a functional substitute before the TEX cataclysm occurs.

This example of fractional sizes above indicates that the user of Tex doesn’t want to be concerned
with the physical sizes of fonts. We propose that instead, the Tex user will specify the logical sizes
and a magnification factor, where the magnification factor is a floating point number that cxpresses
the ratio between physical and logical size. We plan to generate varying scts of TEX fonts in

TexFonts 3

varying magnifications: a full set at 1.0 (which is honest, afterall, and the universitics would like); a
fulll sct at 1.1 (which makes CMR 10 the same physical size as TimesRoman 10), a partial set at
1.32 (which makes CMR 10 like TimesRoman 12), and a partial sct at 1.54 (which makes CMR 10
like TimesRoman 14). The Tex user will specify the magnification factor by using the magnification
parameter of TEX which is built-in as parameter 13, and accessible through “\chparl3”. Thus,
when a user specifies a font with the command “\font a«CMR10”, the system will choose the
family CMR in 10 logical points and (10*magnification) physical points. There will also by a
“Ntruefont” macro that assumes a magnification of 1.0, just as the truc distance units do.

Having chosen to put the physical size of the Tex fonts in the PARC size field, we are left with the
job of encoding the family, face, and logical size of the Tex fonts in the remaining two positions:
the PARC family name and the PARC face byte. What arc these remaining PARC ficlds like?
Well, the family namc is a string that is mapped by an index at the beginning of each font
dictionary or Press file into a corresponding cight bit code. The face byte is an cight bit ficld, of
which PARC fonts currently use only the 18 different values from 0 through 21b, where these 18
possibilities correspond via a fixed mapping with the 18 different possible combinations of:
[Light, Medium, or Bold][Regular or Italicl[Condensed, Regular, or Expanded].
(Update: A recent change suggested by CMU has added one more component to the face byte
field: a three-valued component that distinguishes between different possible character code
conventions. Thus, the 54 different face bytes in the range [0,53]=[0b,65b] arc now sp:ken for.

We can encode information in the PARC family name by just putting it into the string.
Unfortunately, if we encode the Tex family, face, and logical size all in the family name, we will
generate a huge number of family names; this could become a severe problem in the future, since
no font dictionary can talk about more than 256 diffcrent families. This desire to limit the
explosion of family names suggests that we should try and use the PARC face byte for something,

The first possibility that comes to mind is to use the PARC face byte to encode the Tex face.
Unfortunately, Tex fonts come in all sorts of (by PARC standards) bizarre faces, including “Slanted
Sans Serif Quotation”, “Unslanted Ttalic”, and the like. Thus, to encode the Tex face in the PARC
face byte, it would be necessary to extend the fixed PARC face code. Given the arbitrariness of the
Tex faces, the only way to extend the code would be to start a list somewhere, allocating face byte
values to Tex faces as they arisc. That list would become a critical sheet of paper, by the way, since
any facc code once assigned can never be changed, and can never be used for any other purpose.
In fact, it scems undcsirable to have to associate code valucs with arbitrary faces statically when the
PARC family name mechanisim allows codes values to be associated with strings dynamically. But
putting the Tex face into the PARC face byte would be a feasible scheme, at least. I we did that,
we would be left with the task of encoding the family and the logical size into the family name.
since there are likely to be fewer magnification factors than logical sizes, it would probably be
better, actually, to encode the Tex family and magnification factor into the PARC family name:
this would suggest family names such as “ComputerModern-1.54” and the like.

At present, however, 1 am leaning in favor of a different encoding scheme. The old Tex fonts had
alrecady chosen to encode the Tex face into the PARC family name, and that seems to work out
rather well. Having handled the Tex family and face with the PARC family name, we arce left with
the chore of shochorning the Tex logical size into the PARC face byte. 1 proposc that face values
in the range [54, 254]=[66b, 376b] be devoted to mcasuring the logical sizes of Tex fonts: the
amount by which the face byte exceeds 54 will be the logical size of the Tex font measured in half-
points. (This will allow logical sizcs from zero through 100 points inclusive; the face bytc value
255 will be left as an escapce valuc.) For an example, the new version of the font Computer
Modern Bold at 10 logical points and 14 physical points would be described by PARC software as
having family “CMB”, size 14 points, and face 74=54--2*10.

This perhaps cxotic scheme has scveral advantages over the first scheme discussed: the Tex face,

TexFonts . 4

which is basically a string, will be handled by the PARC mecchanism best equipped to handle
strings. The Tex logical size, which is a number, will be stored as a number instcad of encoded into
a string. Of course, allowing large values for face bytes will have some impact on PARC software,
but a quick survey of knowedgeable pcople indicates that that impact will be smaller than you
might think. The program PrePress alrcady knows about these numeric face codes: face byte
values in the appropriate range are input and output as floating point sizes in units of points. Both
of the printing servers Spruce and Press, it turns out, don’t do anything with face codes except
comparc them for equality; hence, no changes to cither of those systems should be necessary. If
you are a font wizard, and you sce a rcason why this encoding scheme won’t work, please let me
know. If I hear no bitches, it shall be donc as I have said.

Compatibility with the Past:

The other major issuc to be considered is compatibility with the past. The new Tex fonts are
substantially different from the old ones. More than the fine detail of the character shapes has
changed. The widths have changed a lot. The feel of the fonts has also changed, subtly in some
cases, and blatantly in others: the upper case script alphabet in CMSY, for cxample, has been
drastically redone.

Whenever ¢ font revision occurs that involves changes in character widths, there is the possibility of
old Press files not printing properly. Since the old Tex fonts have been around for more than a
year now, there are probably a fair number of Press files in existence that depend upon those old
fonts. As the standard PARC fonts got thinner and thinner over the years, one mechanism cevolved
for handling this problem. Those printers that run Spruce can save multiple tables of width
information for a font in their font dictionaries. In addition, every Press file is now stamped with
its date of creation. When Spruce receives a Press file, it checks this date; it then prints the file
using the current rasters for the font, but spacing those rasters according to the widths that were in
cffect when that Press file was created. As a result, old Press files come out with different character
shapes, but the lines still look justified.

Unfortunately, we can’t use this multiple widths mechanism to handle the Tex font portion of the
upcoming cataclysm because of the consequences of the logical and physical size decisions made
above. Even if we could, the fonts have changed enough so that the results of printing an old Press
file with the old widths and the new rasters might not satisfy you. But we can’t do it anyway:
existing Press files that arc asking for CMR at 10 logical points and 10 physical points arc asking
for CMR with size 10 and face 0. According to the new conventions, you must ask instead for
CMR with size 10 and face 74=54+2*10. Thus, the old Tex fonts and the new Tex fonts don’t
match, according to the tests of the printing servers. Thercfore, we propose the following: we will
simply lecave the old fonts on the printer untouched for a while, to achieve some backward
compatibility. After this period, the old fonts will go away, so that we can recapture the space that
they require. I would guess that the old Tex fonts will stay on Clover for at least a few months
after the cataclysm at least, but not for too much longer. 1 hope that most Tex uscrs have been
smart enough to save their Tex sources, so that dealing with old Press files won’t be too big a
problem. If you are the type of person who throws away Tex sources, consider yourself warned.

Even though the bulk of the old Tex fonts can stay in Clover’s data base without any bad
consequences other than making it bigger, the SLIDESCM* fonts arc a different case. They arc
using up family names for what is, in the ncw scheme of things, no good purpose. I would like to
throw thosc fonts away as part of the cataclysm, even though this would constitute a gross
incompatibility with the past. My sensc is that they have not been extensively used. And of course,
the post-cataclysm Tex and Clover will have roughly equivalent fonts that fit into the scheme
detailed above. 1If you object to the sudden disappearance of the SLIDESCM* fonts, please let me
know. :

TexFonts 5

One more minor issue to go! In general, it is impossible” to use Tex fonts in Bravo. The standard
Fonts.Widths file docsn’t include the widths for Tex fonts, because they are too bulky to make that
desirable. In addition, Tex fonts in gencral don’t come equipped with Alto versions. Since the
mathematical symbols in CMSY scemed too important to pass up, Lco Guibas took the 10 point
version of the old CMSY and produced an Alto font for it, calling the result SYMBOL. Some
undctermined number of Bravo users have now become dependent on the SYMBOL font. The
script alphabet that is part of CMSY is one of the things that has changed the most in the new Tex
fonts. My current plan is to leave the SYMBOL font alone; after all, someone might actually like
those funny scrint characters!

Printer Dover

Spruce version 11.0 -- spooler version 11.0

File: <Fonts>UNIVERSITYFONTS.PRESS!2
Creation date: July 20, 1980 12:10 AM

For: gorin

3 total sheets = 2 pages, 1 copy.

Problems encountered:
Font LOGO18 substituted for font LOGO24.

XEROX

Inter-Office Merﬁorandum

To Whom it May Concern Date July 19, 1980
From Lyle Ramshaw v Location Palo Alto
Subject New fonts for the Universities Organization CSL

Filed on: [MaxclKFonts>UniversityFonts.bravo
[MaxclKFonts>UniversityFonts.press
[vyKIFFonts>DMemos>UniversityFonts.bravo
[IvyKFonts>Memos>UniversityFonts.press

The July font cataclysm won’t have as much impact at the universities as it will at PARC, since the
universities have been running with some version of the third gencration fonts from the very
beginning. But I am planning to take advantcse of the cataclysm as a chance to give the
universitics a new and more complete releasec of fonts.

Printing fonts:

Besides adding new special characters in the third generation of fonts, Pellar has also broadened the
scope of font sizes and faces that he is supporting. For cxample, the third generation release
includes TimesRoman and Helvetica in 6, 7, 8, 9, 10, 11, 12, and 14 points in plain, bold, italic, and
bold-italic, and 18 point in plain, bold, and italic. The 14 point fonts in particular should be
popular for overhead transparencies and the like.

[n addition to some ncw sizes of old fonts, T also plan to include several random fonts that were not
included in the original release, but which the universitics might like to have. [f anyone has
particular requests, please let me know. So far, in answer to requests from Stanford, 1 have the
following comments. I will be glad to provide Sigma in 20; Logo in 24; Math and Hippo in 12, 14,
and 18; Sail in 6 and 8; APL in 8 and 10; and Elitc in 10. Cream is available in 10 and 12, in alt
four faces; 1 might as well include them all.

By the way, this font release will also include the vector drawing fonts that Carnegic-Mellon
produced for use with the ReDraw program; this should make it easier for the other universitics to
get curves without jaggies out of their Dovers.

TEX fonts:

Unfortunately, the July cataclysm did not include any of the updates to the TEX fonts that I was
originally planning on. It just scemed smarter to break the cataclysm into two parts, so as to get
some part at least to happen as soon as possible.

When I have recovered from the July cataclysm, I will start working on gencrating new TEX fonts
for CSL from Knuth’s latest Metafont sources. My current plan is to gencratc complete sets at
magnifications of 1.0 and 1.1, and partial sets at several larger magnifications. When all of this is
done, T will add make these new TEX fonts available to the universities as well, in still another font
relcase. 'The universitics will be able to save some work if they just pull and use the TEX fouts that
1 produce for PARC, rather than producing their own with Mectafont. On the other hand, if you
pull my fonts, you will be more or less forced to handle the logical and physical sizes of TIEX fonts

UniversityFFonts 2

in the same way that I have chosen to do so. The right way to handle magnification in TEX and
have the resulting Press files print on Dovers is a rather subtle thing to sce. If you don’t like my
plans as cxpressed in the TexFonts memo, or if you don’t understand them, then please bug me
about them. I hope to start implementing my plan before too long, and plans are always easicst to
change while they are still plans.

Alto fonts:

The university liasons do not have access to [Ivy], and bence cannot go to that source for Alto fonts.
I have put the Alto fonts that you probably want onto the Maxc directorics <AltoFonts> and
<{Printing>. Most of them arc on <AltoFonts>, in fact. I only used <Printing> to solve the following
problem: many people seem to be addicted to the Original-style Alto fonts for Helvetica and
TimesRoman, rather than the new fonts that Ron Pellar has produced. TFFurthermore, they are used
to finding the Original guys on <AltoFonts>. Thus, for the entire TimesRoman and Helvetica
familics, and in three other places where there were conflicts (Hippol2, 1.ogo24, and Mathl0), T put
the Pellar version on <Printing> and the Original version (if any) on <AltoFonts>. Since you are
young at heart, flexible, and eager to press on to the future, I suggest that you go with the Pellar
version wherever there is any choice. If, after reading the AltoIFontGuide memo, you decide that
you would like access to some other sct of Alto fonts, super-thin ones for cxample, just let me
know.

In any case, alf of the Alto fonts are stored on Maxcl in all three possible flavors: AL, .KS, and
Strike. The KS format, in case you are unaware, is a new strike format that allows characters to
kern; sce the KernedStrikes memo on [MaxclKFonts>.

Space on Maxcl:

As font dictionaries get larger and larger, it will become more of a problem to have the university
grant font dictionary sitting on Maxcl, cating up disk space. If the university liasons are willing, I
would like to set up a scheme at some point whercby T could put these large files on Maxcl and
send out a message about it with the expectation that the universitics would pull the file relatively
promptly. When all university liasons had given me the word that they had the file safcly in their
grasp, I would delete the copy of Maxcl. In this way, we could use Maxcl only as a temporary
storage medium, a part of the transportation process.

Random comment on # 140;

Rumor has it that the universities have been having some difficulty with the discrepancies between
the PARC character code conventions and those in use ¢lsewhere. One small step in the right
dircction is being taken by the official third generation font release (although this feature may not
have made it into the original font set that T sent the universitics). In the new TimesRoman and
Helvetica fonts, character code # 140, which most of the world thinks of as left single quote but
which used to be undefined in PARC fonts, now duplicates #7, which is the PARC standard for
left single quote. [Let’'s herc it for consistency and all that!

	AltoFontGuide-1
	AltoFontGuide-2
	AltoFontGuide-3
	AltoFontGuide-4
	FontCataclysm-1
	FontCataclysm-2
	FontCataclysm-3
	FontCataclysm-4
	Kerning-1
	Kerning-2
	Kerning-3
	Kerning-4
	Kerning-5
	Kerning-6
	Kerning-7
	SpecialChars-1
	SpecialChars-2
	SpecialChars-3
	SpecialChars-4
	SpecialChars-5
	SpecialChars-6
	SpecialChars-7
	TexFonts-1
	TexFonts-2
	TexFonts-3
	TexFonts-4
	TexFonts-5
	TexFonts-6
	UniversityFonts-1
	UniversityFonts-2

