
To:

From:

Subject:

Filed on:

File

Bob Sproull

XEROX
PALO ALTO RESEARCH CENTER

Computer Sciences Lahoratol),
March 5, 1977

For Xerox Internal Use Only

Font Representations and Formats

<GR-DOCS)FontFormats.Press

This report presents the various standard and device-dependent font formats in use at PARCo

1. Introduction

A font is a collection of character descriptions, indexed by a character code. These
descriptions represent, in one fashion or another, the appearance of the character. The
ultimate purpose of maintaining a font is for use when generating a raster-scanned image of
a document. This image may be created on a display and used for interactive purposes, or it
may be generated by a printing service as part of a "hard copy" function. In both cases, for
purposes of space and device independence, the document itself does not normally contain
the character representations, but only codes used to iCientify the characters that comprise
the document.

It is important to distinguish font representations from font formats.

We use two generically different representations for character shapes. The first, loosely
termed "s'plines" or "spline fonts," represents the outline of the each character shape with a
series of parametric cubic splme curves (see Figure 1). This representation is handy because
it is independent of the particular output device and its resolution: the outlines describe the
desired a earance of the character. The second representation we use is a raster
sometimes oosely termed a bit map), as shown in Figure 2. This representation records,

in some way, a two-dimensional (binary) occupancy map: it tells where the character lies on
a two-dimensional grid. This representation is handy for actually building raster images of
documents: the occupancy map is combined with color information,' often at very high
speed, to generate a larger raster image of the document. The raster character description is
in effect merged into the page raster at the proper position.

When characters are recorded in font jiles, we choose a particular format for the file; quite
a number of different formats have emerged. This is because there are many ways to encode
digitally the information in either an outline or raster representation of a character. The
details of the encoding are often of vital concern when making a particular piece of
hardware or software generate page rasters rapidly.

Fortunately, we can write conversion programs that are able to generate the various
specialized formats from standard formats. When an artist (or a needy user) devotes a
large amount of effort to designing and debugging a font, it should be recorded and
disseminated in one of the standard formats. Clients can then easily convert to one of the
subsidiary formats, or to their own private format

Font Representations and Fonnats

Widths

An important adjunct to the font descriptions themselves is the "widths' file," which
summarizes the dimensions of all characters in the font data base. This summary must be
available to a text editor when it fonnats a document for hard copy: the widths are used to
detennine how many characters will fit on a line and to perfonn justification calculations.
Because the infonnation in this file can be independent of any particular output device, the
hard-copy file produced by the editor can be printed on any of a number of printing
devices.

The widths summary is, in effect, extracted from infonnation recorded in the standard
fonnats of the relevant fonts.

Software

The PARC font descriptions are supponed by a reasonably full set of software:

FRED: Interactive program for building outline font representations. Documentation
is on <AltoDocs>Fred.Press. The program is on <ALTO>Fred.Dm.

PREPRESS: Interactive program for building standard raster font representations. The
program also contains numerous options for converting from standard to subsidiary
fonnats. Documentation is on <AitoDocs>PrePress.Press. . The program is on
. <ALTO>PrePress.Run.

COMPRESS: A program that converts .CU fonnat to EARS (.EP and .EL) fonnats. The
program is on <EARS>Compress.Run.

The reader is invited to consult PrePress documentation for miscellaneous lore relating to
fonts and for "standard operating procedures" for maintaining font files.

People

This document is simply a convenient summary of fonnats and techniques developed by a
large number of individuals. The people behind the fonnats include Patrick Baudelaire,
Peter Deutsch, Diana Merry, Ron Rider, Bob Sproull, Larry Tesler, and Chuck Thacker.

2. Terminology

The tenninology that has developed around fonts is hopelessly inconsistent. This section is
intended to serve as a glossary for the descriptions in the remainder of this document. Be
forewarned that tenninology used elsewhere may not match.

2.1 Characters

Family is the tenn given to a particular design of characters. Examples of families are
"Times Roman," or "Helvetica."

Point size of a character refers to size measurements used in. the printing industry. If text is
n points high, this means that closely-spaced lines of text will fall nl72 inches apart on the
page. Note that the point size does not relate in any consistent way to the geometry of
characters, e.g., to the height of an upper case A.

Face denotes a number of attributes of a particular font: italic. bold, light, condensed,
expanded are all attributes of the font. Sometimes this is called a "style." Sometimes the

2

Font Representations and Formats

face is defined with a three-letter code: the first letter is L for light, M for medium, or B for
bold; the second is R for regular or I for italic; the third is C for condensed, R for regular or
E for expanded.

Rotation refers to the orientation of the character. If a string of characters is intended to be
horizontal, it has rotation zero; if a string runs vertically upward, it has a rotation of 90
degrees.

Font, as we use the term, refers to a collection of characters of the same family, the same
size, the same rotation, and the same face attributes.

Character code refers to a number (usually only 8 bits) that identifies a character. All our
fonts use standard ASCII conventions, when the conventions are meaningfu1. For special­
character fonts (e.g., mathematics, logic design), another mapping must generally be devised.

Origin of a character (sometimes called "the (0,0) point") is conceptually a reference mark
that is used to describe a character's location on a page or display. Thus a directive to
"display an A at x=103, y=204" is interpreted to mean "place an instance of the symbol A on
the display so that the character origin coincides with the coordinate x = 103, y = 204." Figures
1 and 2 show the origin of a sample character.

Width of a character is a two-dimensional vector that represents the incremental translation
that should take place to determine the placement of the origin of the next character to be
displayed in a (conventionally aligned) string of characters. In the example of Figure 3, if
we assume the x direction points to the right and the y direction up, we see that the width
vector has a zero y component.

In all our font representations, we associate the width vector with each character code: If this width
vector is used for character positioning, the spacing between the origin of a A (say) and the origin of
the next character is independent of that next character. This is not always desirable: because of the
different shapes of characters, spacing between differing pairs may want to be adjusted slightly to make
the text line appear more pleasing.

Bounding box is the term for a rectangle that just barely surrounds the character (see Figure
3). It is characterized by its width and height, and by a two-dimensional vector that
specifies where the lower-left corner of the bounding box is with respect to the origin of the
character inside. These four numbers are named (in this document) BBdx, BBdy, BBox, and
BBoy.

The font bounding box is a bounding box that applies to all characters in the font. That is,
if all the characters in the font were placed with their origins coincident, the smallest
rectangle that encloses every part is the font bounding box. The four parameters of the font
bounding box are named (in this document) FBBdx, FBBdy, FBBox, and FBBoy

The coordinate system assumed for this document is that x points to the right on a
(portrait-oriented) page, and y points up. A mica is a unit of measure, equal to 10· microns
or 112540 inch. Both of these conventions are identical to those used by Press.

Scanning mode refers to the way a raster is laid upon a character description. This in
effect defines a coordinate system in which one direction is measured in scan-lines and the
other direction is measured in bits (along a scan line). To describe the modes, we use a
single number that relates the scanning regime to the conventional (x,y) coordinate system:
the mode is bit-direction-description*4 + scan-line-direction-description, where a
direction-description is:

J. o if the coordinate increases as x increases

3

Font Representations and Formats

1 if the coordinate decreases as x increases
2 if the coordinate increases as y increases
3 if the coordinate decreases as y increases

This convention is identical to the one used by Press and AlS. We use it in this document to
characterize character encodings: if a raster is encoded in mode 8, then the first bit of the
bit stream defining the character will be at the lower left-hand corner of the character; the
next bit will be just above the first, and so on up the page (because the bit-direction­
description is 2); then the next scan-line to the right will be given (because the scan-line­
direction-description is 0).

Note that there is a relation between rotation and scanning mode. For example, a character
encoded with rotation = 0, scanning mode = 3 is identical to one recorded with rotation = 90
degrees, scanning mode = 8.

2.2 File terminology

A file is a homogeneous sequence of data bits. (We at PARC do not have any file systems
that have the concept of "record" as implemented in XDS and IBM operating systems. We
view a file as an unbroken sequence of data.)

A word is 16 bits, a byte is 8 bits. If these are to interpreted as signed integers, the
representation is two's complement.

Several files use the concept of self-relative pointers. The idea is that the pointer specifies
a file position relative to the file position of the pointer itself. The following example may
help clarify the notion of self-relative pointers. Suppose that the character encoding for
character 101b starts at word 1650b of the file, and that a self-relative pointer to that
encoding is at word 105b of the file. Then word 105b of the file will contain 1543b = 1650b-
105b.

2.3 Numbers

Numbers in this document are decimal unless followed by a "b," in which case they are
octal. 12b = 10.

A FloatingPoint number is a two-word structure that contains a sign, an 8-bit exponent and
a 23-bit mantissa. This representation is identical to the 32 most significant bits of the
representation used by the PDP-IO and MAXC. The Alto BCPL subroutine package FLOAT
manipulates these numbers as well. (Further information about the actual encoding of
numbers can be found in PDP-IO documentation or in FLOAT documentation.)

3. File Naming Conventions

A standard naming convention is used for font files. In some cases, programs depend on
adherence to the convention (e.g., extracting width information from EARS fonts). The
convention permits programs to "parse" the font name to discover various parameters. The
convention is:

{family-name-in -full}{point-size }{[BIL]}{[l]}{[CjE]}. { extension}

The optional B stands for "bold;" L for "light," I for "italic," c for "condensed," and E for
"expanded." If a font file applies to all sizes of character (e.g., a spline file), the {point­
size} is omitted. Examples:

4

Font Representations and Formats

Helvetica12.Ep
Helvetica12b.Ep

12-point Helvetica font for EARS
12-point bold Helvetica font for EARS

The {extension}s are chosen to identify the format of the file. Standard extensions are
given below, together with the MAXC directory (inside brackets < » where such files are
traditionally found.

Standard formats:

.xx-SF

.AC

Subsidiary formats:

Fonts.Widths
.SD
.cu

Spline representations edited with FRED. <PRESSFOl'.'TS>
Raster representations, edited or created with PrePress. <PRESSFONTS>

(Usually, though not always, these ~re Alto fonts.)

Summary of widths. <FONTS>
Compact spline representations (sDtemp format). <PRESSFONTS>
"Carnegie-Mellon University" format.

Subsidiary formats (device-dependent):

.AL

.STRIKE

.EP

.EL

.xH

.vr

Alto-format (CONVERT) font. <ALTOFONTS>
Alto-format font (BITBLT). <ALTOFONTS>
EARS-format portrait font. <FONTS>
EARS-format landscape font. <FONTS>
xGP-format font, for XPRINT. Archived from <FONTS>
vrs-format font. Archived from <FONTS>

4. PrePress File Format

Several of the file formats are variants of a generic file created and modified by PrePress.
The format was designed to be easily extendable to include new sorts of information and to
permit many different fonts to be included in one file. PrePress documentation refers to
this files with names like SD, SDtemp, CD, CDtemp, WD, WDtemp. An index at the head of the
file describes each font segment that is contained within the file. The intention is that a
reader will scan the index to find a pointer to the font he desires. Thus a file is:

structure PrePressFile:
[
index word howeverMany
@IX
stuff word howeverManyAgain
]

IIIndex entry with type = 0 (end of index)

Each index entry begins with a common form of header:

structure IX:
[
type bit 4
length bit 12
]

I/Various type codes are assigned
/ILength of entry in words, counting this one

A particular kind of index entry establishes a correspondence between a code and a string:

structure IXN:

5

Font Representations and Formats

[
@IX
code word
nameLength byte
characters tl,19 byte
]

II Header with type = 1
lithe numeric code
lithe number of characters in the name
II Room for the name

Note that a name entry has a fixed length, although the name itself can be of any length up
to 19. The final 20 bytes in the IXN structure are in the same format as a BCPL string. By
convention, an IXN entry must establish a correspondence between a name and a code before
any index entries that use the code appear.

Each segment of the file will have an index entry that points to it (SplineSegment,
CharacterSegment, or WidthSegment). They all have roughly the same form:

structure STDIX:
[
@IX
family byte
face byte
bc byte
ec byte
size word
rotation word
segmentS A word 2
segmentLength word 2
]

IIHeader with various types
IIFamily name, using a name code
IIEncoding of the face properties
IICode for the "beginning character"
IICode for the "ending character"
IISize of the font segment
IIRotation of the font segment
IIStarting address in file of the font segment
IILength of the segment

The family name is identified by referring to a name-code correspondence established with
an IXN entry. The face is encoded as:

(if bold then 2 elseif light then 4 else 0)+
(if italic then 1 else 0) +
(if condensed then 6 elseif expanded then 12 else 0)

The two entries bc and ec give the character codes for the first and last characters
represented in the segment. This allows partial fonts to occupy less space. Size gives the
size of the font description in micas. Rotation gives the rotation, in minutes. of arc.
segmentSA and segmentLength specify the location of the segment in the file (both entries
are double-word integers, in units of file words): these are included to permit random access
to a large number of segments in one file.

A common special case of a PrePress file is a font file that contains only one segment, and
consequently a very brief index (a name entry, and entry pointing to the segment, and an
End entry). The AC and SD files are examples.

5. Standard Formats

5.1. Outline representation -- SF formaL

The standard format for outline representations is a specially-organized text file. The file is
normally read and written by FRED, the interactive editor for outlines,. and by PrePress, the
program for converting the outline representations to other formats. We designed the SF
format to be based on a text file, and further to be readable by the INTERLISP programming
system, in anticipation of the need to make transformations on outlines once they were

6

Font Representations and Formats

defined (the transformations could be made by hand with a text editor, or by wntmg a
suitable LISP program). This approach has several times saved us from some very messy
effort to repair a damaged binary file--the text file has been a good idea.

The definition of the file follows normal INTERLISP conventions for atoms, numbers, strings,
and lists. (A number is either an integer of the form 123 or an octal number followed by Q.
i.e., 12Q = 10, or a floating-point number with an exponent heralded by E, e.g., 1.23E-4.) In
the description below, vertical bar (I) is used to separate alternatives, and

<...> is a list,
{ ... } is a string,
[...] is a number.

A single SF file may contain definitions for several characters, although the definitions are
independent. The file is a sequence of <character description>s, terminated by the atom
STOP:

<character description) ... <character description) STOP .

Normally, a full font will consist of about 7 SF files. These are conventionally given names
like:

A

family.LCI-SF Lower case, first file
family.Lc2-SF Lower case, continuation file
family.uCl-SF Upper case, first file
family. UC2-SF Lower case, continuation file
family .NUM -SF Numerals
family.sl-SF Special characters, first file
family.S2-SF Special characters,

<character description> is:

«FAMILY {family name})
(CHARACTER [code])

continuation file

(FACE {B I M I R} {R I I} {c I R IE})
(WIDTH [width in x] [width in y])
(FIDUCIAL [dimension in x] [dimension in y])
(VERSION [number] {date})
(MADE-FROM {file name}

[x character origin] [y character origin]
[x fiducial origin] [y fiducial origin])

(SPLINES <closed curve) ... <closed curve»)

Alternatively, a <character description) may specify that some other character is to be
copied into this one (not universally implemented):

«FAMILY {family name})
(CHARACTER [codeD
(USE {family name} [code] {B I M I R } { R I I } { C I R IE}»

Within the top-level list for <character description), a construct of the form (COMME1\T'f
{any string}) may be inserted at will.

The FACE characters stand for:

7

Font Representations and Fonnats

BOLD I MEDIUM I LIGHT
REGULAR I ITALIC
CONDENSED I REGULAR I EXPANDED

It is important to understand the nonnal use of coordinates in a SF file. The coordinates of
knots, for the width, origins in the MADE-FROM description, and in the FIDUCIAL annotation,
are all Alto screen units: these are recorded directly by FRED. However, these coordinates
must ultimately be related to a more standard system common to all characters in the world.
The FIDUCIAL serves this purpose: it gives the distances, in x and y, that correspond to the
point size· of the character. For example, if we use FRED to design a (nominal) 12-point
character, we set the fiducials to the dimension (in Alto screen units) that should be mapped
into 12/72 inch on the final page image.

A <closed-curve> is:

«spline> <spline»

A <spline> is:

([n] <knot list> <weight list> <derivative list> {solution method})

where [n] is the number of knots, <knot list> is:
«[Xl] [Y 1]) ([X2] [Y 2D ... ([Xn] [Y nJ))
<weight list> is either NIL, in which case all knots are weighted equally, or:
([W1] [w2] ... [wnD
and <derivative list> is:
«[Xl'] [Y 1'] [X{~ [Y {] txt'] [Y 1"']) ...

([Xn-1'] [Yn-1'] [Xn_{] [Yn-tl [Xn-1"'] [Yn-1''']))
and {solution method} is:
{ NATURAL I CYCLIC I PSEUDOCYCLIC }

The numbers in this description are handled slightly differently: derivatives and weights are
floating point numbers, character code is octal (e.g. 101Q) or decimal, all other numbers (in
particular knot coordinates) are integers.

5.2 Raster representations -- AC format.

The standard fonnat for raster representations is the AC file, usually edited with the
PrePress font editor. This fonnat is used because it contains more infonnation about
characters than any other font fonnat we have. Consequently, one can always convert to
fonnats that demand less infonnation. By convention, AC files assume a scanning mode of
8. (Note: PrePress "character" files such as CD and CDtemp are in this fonnat.)

The file is a segment of a "PrePress font file" (see section 4 for a general discussion of
PrePress files). The font file contains some identification infonnation, and a directory that
points to a character segment, which itself contains the infonnation about the font. An
index entry that points to a character segment is:

structure CharacterlndexEntry:
[
@STDIX
resolutionS word
resolutionB word
]

/ /Standard header with type = 3,
/ /Resolution in scan-lines/inch * 10
/ /Resolution in bits/inch * 10

8

Font Representations and Formats

This index entry points to a CharacterSegment:

structure CharacterSegment:
[
charData tbc,ec @CharacterData
directory tbc,ec @relFilePos
rasters tbc,ec @rasterDefn
]

structure CharacterData:
[
xwidth @Fraction
YWidth @Fraction
BBox word
BBoy word
BBcIx word
BBdy word
]

IIUseful data about each character
IIRelative file positions of rasters
liThe actual raster encodings

I Ix Width (scan-lines)
Ily Width (bits) .
II Bounding box offsets

IIWidth of bounding box (scan-lines)
IIHeight of bounding box (bits)

The first two entries are signed fractions (a fraction is two words: the first is the integer
part, the second the fractional part) that give the width vector (with reference to the origin
of the character). The four parameters of the bounding box follow. However, BBdy = -1 is
reserved to indicate that a character of this code does not really exist in the font (such a
code is necessary because CharacterData structures are recorded for all character codes in the
range be through ee).

The directory portion is a table that points to the raster definitions of each character in the
range be through ec. Each pointer is 32 bits long (a double-word integer) that gives the
position in the file in words, relative to the beginning of the directory table, of the
rasterDefn for the appropriate character. If a character of the given code is not in the font,
both words of the relFilePos are -1.

A rasterDefn is:

structure rasterDefn:
[
BBdyW bit 6
BBcIx bit 10
raster word BBdvW"SW
] .

I IHeight of raster (in words)
IISame as BBcIx in CharacterData
liThe actual raster bits!

The value of BBdyW is simply k(BBdY+ 15)1161, the number of words required to specify one
scan-line. Each scan-line in the raster encoding begins on a word boundary.

6. Subsidiary Formats

6.1 Fonts. Widths format.

The file Fonts.Widths is used to disseminate width information to all fonnatting and editing
programs. Its basic fonnat is that of a PrePress font file, with index entries that· point to
WidthSegments. An index entry is of the form:

structure WidthIndexEntry:
[
@STDIX IIStandard header, type = 4 ,

9

Font Representations and Fonnats

The interpretation of the size entry in this index is somewhat subtle. If it is noh-zero, then
it is the size of the font, measured in micas. Thus, a 12-point font would have size= 453. In
this case, the width infonnation is said to be absolute. On the other hand, if size is zero,
then the width infonnation will be usable for fonts of any size (Le., we shall scale it by the
actual font size), and the infonnation is said to be fractional. If the data are absolute, then
all dimensions are measured in micas. If they are relative, dimensions cited in the
WidthSegment must be scaled by 2540p/72000, where P is the point size of the desired font,
in order to conven the numbers to micas (You will note that this simply means that entries
are measured in thousandths of the point size). The widths file may contain entries for
both absolute and fractional infonnation for the same font: in this case the absolute
infonnation takes precedence.

The index entry points to a WidthSegment, which has the following fonnat:

structure WidthSegment:
[
FBBox word
FBBoy word
FBBdx word
FBBdy word
YWidthFixed bit
xwidthFixed bit
spare bit 14
widthData word howEverMany
J

I Ix offset for font bounding box
IIY offset for font bounding box
I Ix width for font bounding box
IIY height for font bounding box
I 1= 1 if all Y widths equal
I 1= 1 if all x widths equal

The first four numbers are the dimensions of the font bounding box. At the end of the
entry comes (widthData) the width infonnation for individual characters. First comes the x
width infonnation. If the xWidthFixed flag is set, there is only one number given, which
applies to all characters in the font. If the xwidthFixed flag is zero, then there are ec-bc+ 1
words that give the x widths of the characters with codes from bc to ec inclusive. Then
follows the Y width infonnation, correspondingly encoded. In order to identify "non­
existent" characters in the range bc to ec, a width (either absolute or fractional) of lOOOOOb
(the most negative number) signals a non-existent character.

Note: The widths file should really be able to deal with device-dependent widths as well: this is a tremendous
help with photocomposers, etc. Consequently, a WidthlndexEntry should really include a deviceCode, which
identifies (by correspondence with some string in a IXN entry) the relevant device. If the device is PRESS, then
the font would be assumed to be standard across a variety of devices; a width entry with an exact match of
device name would take precedence over standard (PRESS) widths.

6.2. Compact outline representations -- SD format.

Because the SF files that describe outline representations are somewhat bulky and tiresome to
interpret, there is an alternative fonnat: SD. This fonnat is created from the SF files by the
PrePress READSF command (Le., SD files are in the same fonnat as is sDtemp). The file is in
the general "PrePress font file" fonnat, with an index entry:

structure SplinelndexEntry:
[
@STDIX
]

IIStandard header, type = 2

The size entry in the index must be zero. This index entry points to a SplineSegment:

10

Font Representations and Formats

structure SplineSegment:
[
spline Data 'tbc,ec @SplineData
directory 'tbc,ec @relFilePos
splines 'tbc,ec @splineCodes
]

The information about each character is:

structure SplineData:
[
xwidth @F1oatingPoint
YWidth @F1oatingPoint
BBox @F1oatingPoint
BBoy @F1oatingPoint
Rightx @F1oatingPoint
TOpY @F1oatingPoint
]

IIUseful information about each character
IIDirectory pointing to spline encodings
liThe encodings of each character

IIWidth in x direction
IIWidth in Y direction
IILeft edge of bounding box
1/ Bottom edge of bounding box
IIRight edge of bounding box (= BBox + BBdx)
IITop edge of bounding box (= BBoy + BBdy)

All of these coordinates are relative to the origin of the character, and use the convention
that 1.0 is equal to the point size of the final character. Consequently, most are usually
fractional. A special (illegal) value of xwidth is used to flag SplineData structures that
correspond to non-existent characters in the font (this problem arises because there are
SplineData structures for all characters bc through ec, even though they may not all exist).
The special value is 0 in the first word. and -1 in the second word.

The interpretation of the directory is precisely the same as for AC files.

The encoding of each character (splineCodes) is essentially a list of commands to a scan­
conversion algorithm, such as the one used in PICO. Five different kinds of entries may
appear:

structure SMoveTo:
[
codeMoveTo word
x @F1oatingPoint
Y @FloatingPoint
]

structure SDrawTo:
[
codeDrawTo wor d
x @F1oatingPoint
Y @F1oatingPoint
]

structure SDrawCurve:
[
codeDrawCurve word
x' @F1oatingPoint
Y' @F1oatingPoint
x" 12 @F1oatingPoint
y" 12 @F1oatingPoint
x'" 16 @F1oatingPoint
Y'" 16 @F1oatingPoint
]

IICommand code = 1

II Command code =2

IICommand code = 3

11

Font Representations and Fonnats

structure SNewObject:
[
codeNewObject word IICommand code =-1
]

structure SEndDefinition:
[
codeEndDefinition word IICommand code =-2
]

Each closed curve is specified with a sequence that begins with SMoveTo, and· uses
subsequent SDrawTo and SDrawCurve entries to trace the outline. An entirely new object is
initiated with SNewObject (this is presently unnecesssary, and unimplemented). The entire
character is terminated with SEndDefinition.

The SDrawCurve entry gives the parameters for a parametric cubic spline:

x = Xo + x' t + (x"l2) [2 + (x'''/6) 13

y = Yo + Y' [+ (Y"I2) [2 + (Y"'/6) t3

where t ranges from 0 to 1, and (Xo' Yo) is the starting point of the curve.

The SD files created by PrePress from SF files have an additional property: each SDrawCurve
entry defines a curve segment that is monotonic in both x and y directions. This simplifies
scan-conversion for both portrait and landscape printing devices, provided the font
characters are rotated a multiple of 90 degrees (or 0 degress, of course).

6.3 cu format.

The CU format was once our standard format for raster representations; some vestigial
software in fact still uses this fonnat. It has the great virtue of simplicity, but is rather
bulky and lacks some crucial information.

The file has the structure:

structure CU:
[
H word
ww word
character t 1,howeverMany
]

IIHeight of font (number of scan lines)
II"Word width" of font
IICharacter codings

Each character is a separate encoding with a character code, a width (in bits) for the
character, and a raster. Every character in the file is placed within a raster of the same size:
this raster size is thus analogous to the font bounding box, but is actually somewhat larger
because the width of the box is a multiple of 16.

structure CuChar:
[
AscnCode word
Width word
raster word H*WW
]

II ASCII character code
IIWidth of character in bits
liThe actual encoding of the raster

12

Font Representations and Formats

The raster is a sequence of scan-lines, each encoded in ww words. The first scan-line is at
the "top" of the character. Within a scan-line, bits are given from left to right (more
significant bits to less significant bits). Characters are, in general, "at the left" in the font
bounding box; white space is provided on the right.

This font format omits some useful information: the location of the origin within the
bounding box. There is a convention used to remedy this lack: the lower leftmost 1 bit in
the encoding of upper case A (ASCII code 101 b = 65 decimal) is at the origin.

7. Subsidiary formats •• device dependent

7.1 AL Jonnat.

The AL format is designed to simplify the use of the Alto CONVERT instruction for creating
displays (see the Alto Hardware Manual for a description of CONVERT).

structure AL:
[
Height word
proportional bit
baseline bit 7
maxWidth bit 8
pointers to,nCharsX
charData word howEverMany
]

IIHeight of font (scan-lines)
I IT rue if proportionally spaced font
II (see below)
IIWidth of widest character
IISelf-relative pointers to xw entries

The Height entry must be > FBBdy. The baseline entry equals the height of the font
bounding box above the origin (=FBBoy+FBBdy). If the AL font dates from a somewhat earlier
vintage, the baseline may be recorded as O.

The pointers table contains self-relative pointers to character encodings. Each character
encoding in the charData region can describe at most 16 (horizontal) bits of character data;
if the character requires more data bits, an "extension character" is used to contain the rest
of the data. Characters may have as many extensions as necessary. .

By convention, the first 377b entries in the pointers table are assumed to be self-relative
pointers for the corresponding ASCII characters codes. Following these entries are entries for
any necessary extension characters.

The data for a character encoding is represented as:

structure XHdata:
[
bitData word XH
xw word
HD byte
xHbyte
]

IITop scan-line first
II(see below)
II(see below)
IINumber of scan-lines of bit data

In order to conserve space, the bit data omits all-zero words at the top and bottom of the
character. The HD entry records the number of scan-lines at the top of the character
(relative to the font bounding box) that are omitted. (Technically, HD = FBBdy+FBBoy­
(BBdy + BBoy).)

13

Font Representations and Fonnats

The xw word is interpreted in one of two ways. If the width of the character is 16 or fewer
bits, then xw is (2*width) + 1. Otherwise, the character must require an extension character,
and xw contains 2*xCode, where xCode is the character code of the extension character.
The final extension character will have an xw that contains (2* width of final extension) + 1,
rather than the total width. The self-relative pointers in the pointers table point to the xw
word. .

By convention, the first character encoding in the charData region is a "dummy" to which
all non-existent character codes point. This dummy has XH = 0, HD = 0, and xw = 1.

7.2. STRIKE fonnat.

The STRIKE fonnat was devised to pennit graceful use of BITBLT for writing characters onto
the Alto screen.

There are two kinds of font files: a STRIKE (conventional extension . Strike) and a
STRIKEINDEX (conventional extension .strikeX). A Strike is very Simply a bunch of
characters that are grouped together in a bit map and given a table of x-positions of each
character. A Strikelndex is essentially a map that maps character codes into (strike, code)
pairs, together with the associated strikes. An index can thus be used to achieve sharing
because several character codes may map to the same (strike, code) pair. Or it can help save
space, because the characters of a font may be grouped into several strikes in order to save
top and bottom scan-lines; the index can then establish the proper correspondence.

First, the simple "Strike" fonnat that most people would use:

structure STRIKE:
[
@StrikeHeader
@StrikeBody
]

structure StrikeHeader:
[
fonnat word = [

oneBit bit
index bit
fixed bit

blank bit 13
]
min word
max word
maxwidth word
]

structure StrikeBody:
[
length word
ascent word
descent word
xoffset word
raster word
bitmap word raster*height

I I header of standard fonnat
I I the actual strike

I 1= 1 to mean new style fonts
I 1= 0 for simple strike, 1 for index
I 1= 1 if all chars have width maxwidth

I I minimum ASCII code
I I maximum ASCII code
I I width of widest character

I I number of words in this StrikeBody
II in scan-lines (=FBBdy+ FBBoy)
I I in scan-lines (=-FBBoy)
II in bits «0 for kerning, else 0) (=FBBox)
II # words per scan-line in bit map
I I the bitmap

14

xinsegment t min,max + 2 word
I I define: height = (ascent + descent) = FBBdy
I I index t ASCII into the strike
I I dummy at max + 1

Font Representations and Fonnats

(Note: When a Strike Body is in memory, separate pointers to xinsegment and bitmap would
probably be kept. The reason for keeping the xinsegment entry last is that in the
StrikeIndex fonn, below, we don't know the value of max and hence could not compute the
address of the bit map.)

The "bitmap" entry is a bit map -- there are height = ascent + descent scan-lines, each of
which is raster words long. The font defmes pictures for characters corresponding to ASCII
codes min through max. Given a code c, with min < _ c 5.. max, we get:

xLeft .- xinsegment t c
xWidth .- (xinsegment t (c+ 1»- xLeft

If xWidth is 0, there is no picture for the character (Le., the character does not exist in this

15

font). Otherwise, the portion of the bit map corresponding to xLeft < x 5.. xLeft + xWidth-1
contains the picture for the character.

Each font is blessed with a dummy picture that can be displayed for all illegal characters -­
it is given code = max + 1.

The ascent is a measure of the number of scan-lines in the bit map that are above the
putative baseline of the font; descent is the number of scan-lines below the baseline. The
xoffset is an offset to be applied to the "destination x" of all characters: if a character is to
be "placed" at (x,y), the destination x given to BITBLT should be x + xoffset; this feature is for
kerned characters.

A Strike Index is simply an index at the front of some StrikeBodies:

structure STRIKEINDEX:
[
@StrikeHeader
maxascent word
max descent word
nStrikeBodies word
map tmin,max + 1 @mapEntry

bodies t l,nStrikeBodies @StrikeBody
J

structure mapEntry:
[
strike byte
code byte
]

I I common header
I I max ascent of all strikes
I I max descent of all strikes
I I number of strike bodies
I I map to (strike, code)
II dummy at max+l
I I the strike bodies.

I I which strike
I I which code

In this case, the StrikeBodies all have implicit values min = 0; the max value is unimportant,
as the map will never generate a reference outside the range. The individual StrikeBodies do
not have separate pictures for illegal characters; instead max + 1 in the index maps to a
dummy picture. Undefined characters in the range min to max are identified by mapping to
a strike number >127, i.e. by the sign bit of the map entry being 1.

7.3 EL and EP format for EARS fonts

Font formats for the EARS system are compressed (all other raster representation fonnats
mentioned in this document use no compression). The extension .EP is used, by convention,

Font Representations and Formats

to denote "portrait" fonts (font strings will run horizontally on the page if it is oriented as a
portrait). The EL extension is used for "landscape" fonts.

Both sorts of font have the same format (remember that EARS scans in mode 8):

structure ELEP:
[
@RecordO
@Recordl
Record2 word howEverMany
@Record3
]

structure RecordO:
[
MRLILength word
maxWidth word

maxHeight word
TIYTab word
defaultFSN word
reserved word 3
blank word 56
]

structure Recordl:
[
characterData to,l27 @Record1Entry
]

structure RecordlEntry:
[
FontAddress word

FontLength word
Width word
w word
H word
baseline word
codingType word
alignment word
]

IIGeneral information
IICharacter information
II Actual character encodings
II Font specification table

IILength of Record2 (in words)
IIMaximum character width (scan-lines)
II max (over all RecordlEntry's) of Width
II Maximum character height (bits) FBBdy
IIHow many bits or scan-lines for a tab
IIDefault font set number (PSPOOL)
IIUsed by PSPOOL

IIDescriptions of each character

II Address (in words) into Record2 of encoding
II (relative to beginning of Record2)
liN umber of words of encoding in Record2
II"Width" of character (amount to "space" over)
IIWidth of bounding box BBdx
IIHeight of bounding box BBdy
II BBoy (portrait) or BBox (landscape)
II (see below)
II FBBdx + FBBox-BBox (landscape only)

The codingType is 0 if the character does not really exist in the font. It is <0 if the
encoding within Record2 is RLI (run length increments). It is)0 if the encoding is a matrix
(in this case, the value of codingType is the height of the matrix in bytes).

Record2 contains the encodings of the rasters for the individual characters (as pointed to by
Recordl and Record3 entries). If the encoding is a matrix, the entry in Record2 in an
uncompressed raster for the character (scanning mode = 8), with (1) the height rounded up to
the next multiple of 8 bits, and (2) a possible I-byte padding at the end of the matrix
encoding to make the entry an integral number of 16-bit words long. For example, the K of
Figure 4 would have a matrix encoding of:

100004b
177777b

(first scan-line, rounded up to 16 bits high)
(second scan-line, ...)

16

Font Representations and FOmlats

177777b
103004b
001400b
003600b
006300b
0l4140b
130064b
160034b
140014b
100004b (last scan-line)

Most characters will be encoded in Record2 with a more economical scheme: RLI. This is a
compression scheme that reduces font storage for high-resolution characters (compression of
3.5:1 is typical for a 12-point font at 500 bits/inch). We shall describe RLI by referring to
Figure 4. Each scan-line could be coded as a series of number pairs, where the first number
of each pair represents a number of "white" bits to be followed by the number of "black"
bits specified by the second number of the pair. With this scheme, the first scan-line of the
K would be represented by the two pairs (0,1) and (12,1). We can omit the parentheses and
write simply 0,1,12,1. The entire K is encoded into runs as· follows:

Scan-line Runs RU

0 0,1,12,1 (R) 0,1,12,1
1 0,14 (R) 0,14
2 0,14 (I) 0,0
3 0,1,4,2,6,1 (R) 0,1,4,2,6,1
4 6,2 (R) 6,2
5 5,4 (I) -1,2
6 4,2,2,2 (R) 4,2,2,2
7 3,2,4,2 (I) -1,0,2,0
8 0,1,1,2,6,2,1,1 (R) 0,1,1,2,6,2,1,1
9 0,3,8,3 (R) 0,3,8,3
10 0,2,10,2 (I) 0,-1,2,-1
11 0,1,12,1 (I) 0,-1,2,-1

The second column gives simply the runs. The third column gives the run-length-increment
format: a given scan-line is represented as increments on the runs for the previous scan­
line, provided there are the same number of runs as in the previous scan-line. Thus scan­
line 10 is represented by the increments 0,-1,2,-1, which are added to the runs for scan-line
9 (0,3,8,3) to yield runs 0,2,10,2 for scan-line 10. For high resolution characters (our
example is not high resolution), the incremental mode (I) dominates.

The RLI infomlation is encoded as follows. The character encoding starts in Record2 at the
location specified by Recordl and Record3 entries; RU information is recorded for each
scan-line (starting with the left-most scan-line, scan-line 0 in our example). Runs appear
in 8-bit bytes, where the first bit of a byte is a flag which is set to mark the last run for a
scan-line. Thus, scan-line 9 is represented by the 4 8-bit bytes 0, 3, lOb and 203b; these are
packed into words as 3b and 4203b. Because of this encoding, runs are limited to the range
0-127; if a longer run is needed, two runs may be spliced with a zero-length connector (e.g.,
100,0,100,10 is equivalent to 200,10). A limit of 8 runs is imposed for each scan-line
(characters requiring more than 8 runs can be represented in matrix format).

The increments for RLI are specified in 4-bit groups in which the first bit is used as a flag
and the remaining 3 bits are 2's complement increments (range -4 to 3). As with runs, the
flag bit for the last increment of the scan-line is set In addition, the flag bit of the first
increment on the scan-line is set (this allows. runs to be differentiated from increments,

17

Font Representations and Formats

because there are always at least 2 runs per scan-line). For example, the increments to scan­
line 10 are encoded as the 4-bit quantities lOb, 7b, 2b, 17b; these are packed into 8-bit bytes
as 207b, 57b; or into a 16-bit word as 103457b. Note that if increments do not fall in the
range -4 to 3, you can always use a run representation rather than an increment
representation.

This encoding will produce an integral number of 8-bit bytes for each character.
Consequently, a character may be followed by a I-byte padding in order to stard the
subsequent character at a word (16-bit) boundary.

Record3 is a very compact description of each character, and is actually examined by. the
RCG hardware:

structure Record3:
[
fontSpecTable 1'0,127 @CharSummary
]

structure CharSummary:
[
baseline bit 13
matrix bit
endOfPage bit
notEndOfLine bit
Width word
w bit 10

Hb bit 7
fontAddress bit 15
]

7.4 XH format XGP fonts for XPRINT

IITwo's complement baseline (0 for landscape)
IITrue if encoding is a matrix (not RLI)

II Amount to space over to next character
II Bounding box width -1

1 Ik(Height+ 7)/81 -1
IIRelative address in Record 2 of encoding

The XH format was devised to simplify the inner loop of XPRINT, a program for printing
text on the XGP. The XGP scans in mode 3. The file has the format:

structure XH:
[
nChars word
nData word
H word
w word

liThe number of characters in the font
IINumber of words of font data
II Height of the font (in scan-lines)
IIMaximum width (in words) of any character

18

pointers 1'O,nChars-l word
widths 1'O,nChars-l word
data word nData

IISelf-relative pointers to charData (see below)
IIWidth to space to next character
II Character encodings (see below)

]

nChars is usually 128 or 256. The height H must be > FBBdy. A width of zero identifies a
non-existent character; any width up to 12 w is legal.

The character encodings are represented as follows:

structure charData:
[

Font Representations and Fonnats

t 1,k(width + 11)/121 @biock
]

structure block:
[
t l,H [bitData bit 12

validBits bit 4]

I lEach block defines up to 12 bits

IIUp to 12 bits of character data
IINumber of bits in bitData that are valid

Thus a character is defined by successive blocks of H words; each block defines up to 12
horizontal bit positions of the character. The first word in the block defines the top scan­
line, the next word the next scan-line, etc. Words of the block" define up to 12 bits of
character data: the validBits field contains the number of valid bits in the word (1 is
minimum; 12 is maximum). All blocks except the last have validBits= 12.

19

Font Representations and Formats 20

ASCII Character Codes

underline 30b A 10lb a 141b
space 40b B lOlb b 142b
! 41b C 103b c 143b
" 42b D 104b d 144b
43b E 105b e 145b
$ 44b F lO6b f 146b
% 45b G 107b g 147b
& 46b H llOb h 150b , 47b I llib i 151b
(50b J ll2b j 152b
) 51b K 113b k l53b
* 52b L ll4b 1 l54b
+ 53b M ll5b m l55b

54b N ll6b n lS6b
5Sb 0 ll7b 0 l57b
S6b P l20b p l60b

/ 57b Q l2lb q l6lb
0 60b R l22b r I62b
1 6Ib S l23b s I63b
2 62b T l24b t I64b
3 63b U I25b u 165b
4 64b V l26b v I66b
5 65b W I27b w I67b
6 66b X 130b x l70b
7 67b y 13Ib y I71b
8 70b Z 132b z 172b
9 71b [133b { I73b

72b \ 134b I I74b
, 73b] 135b } I75b
< 74b t 136b I76b
= 75b +- 137b
> 76b ' (left quote) 140b
? 77b
@ lOOb

+ +

Figure 1. Outline representation
+ Origin
+ Origin of next character

Width =+. +

BBdy

BBoy

(

(BBox
BBdx)

+

Figure 3. Bounding box conventions.
In the example, BBdx = 13, BBdy = 24,
BBox = ·4, and BBoy = ·13

•

+

•••••••• •••••••• •••••••• ••••••••
+

Figure 2. Raster representation

Figure 4. RLI coding example.

