
This document is for Xerox internal use only

DO Hardware Manual

May 16, 1979

XEROX
Reprographic Technology Group
Electronics Division
Los Angeles

This document is for Xerox internal use only

LO Introduction
1 .1 Notation

1.1.1 Numbers
1.1.2 Special Characters
1.1.3 Terms

Table of Contents .

1.1.4 Register Namine Conyentlons

2.0 Major Subsections
2.1 T1mlng
2.2 Control
2.3 Registers and Data Paths
2.4 Timing

3.0 Arithmetic Section
3.1 Register Summary
3.2 R Memory

3.2.1 R Addr ... Formation
3.2.2 Stkp and SStkp

3.3 T Register
3.4 Constants
3.5 Arithmetic/logic Unit

3.5.1 SALUF
3.5.2 Result Register

3.6 Cycler/Masker
3.6.1 Short Fields
3.6.2 Mesa Field Operations
3.6.3 BitBLT
3.6.3.1 BitBLT Registers
3.6.3.2 Transter Inner Loop
3.6.4 Mesa Instruction and Operand Acc .. s
3.6.4.1 PCX and Newlnst

3.7 Parity Register
3.8 Special Functions
3.9 Miscellaneous Registers

3.9.1 Watchdog Timer
3.9.2 Power Monitoring
3.9.3 RS232 Interface
3.9.4 Printer Interface
3.9.5 Maintenance Panel
3.9.6 Time.ot Day Clock

3.10 Timers

4.0 Control
4.1 Normal Instruction Sequencing
4.2 Conditional Branches
4.3 Subroutines and Tasking
4.4 Dispatches
4.5 Aborted Instructions
4.6 Faults
4.7 Notify
4.8 Writing and Reading Registers
4.9 Reading and Loading the Control Store
4.10 Bootstrapping

5.0 Memory
5.1 Organization
5.2 Memory Reference Instructions

5.2.1 Reference Types
5.2.2 R Addre .. e.
5.2.3 Quadword Overflow
5.2.4 1/0 Register Addresses
5.2.7 Addres. Calculation

5.3 R Interlocking
5.4 The Map
5.5 The Error Pipe
5.6 Error Correction
5.7 Refresh
5.8 Memory Timing
5.9 Storage Card Organization

6.0 Input-Output
6.1 Interface Signals
6.2 Controller Addressing
6.3 Task Wakeup Requests
6.4 Input and Output Operations
6.5110 Attention, 1/0 Strobe, Run

7.0 User Terminals and Controllers
7.1 Terminal To Controller Interface .

7.1.1 Cables and Connector.
7.1 .2 D rivers and Receiver.

7.1 .3 Video and Control Channel
7.1.4 Backchannel

7.2 UTVFC (User Terminal Variable Format Controller)
7.2.1 Introduction
7.2.2 Output Registers
7.2.3 Timing and Sync a.neration
7.2.4 Data Buffering
7.2.5 Cursor
7.2.6 Backchannel
7.2.7 Controller Identification and Diagnostic Input

8.0 Rigid Disk Controller
8.1 Introduction
8.1 Disk Characteristics
8.3 DO-Controller Interface

8.3.1 Output Register.
8.3.2 Input Registers
8.3.3 Seek Control
8.3.4 Disk Commands
8.3.5 Wakeup. and 10 Attention

8.4 Hardware Organization
8.4.1 Timing
8.4.2 Sequence Addre •• aeneration
8.4.3 Format Sequencer
8.4.4 Buffer Control Sequencer

8.5 Basic Sequencer Operations
8.6 Error Correction

Appendix A: Ttme of Day Clock
Appendix B: MC1 and MC2 Microcode
Appendix C: Standard 1/0 Device Interface
Appendix 0: ROC Sequencer Microcode

1

1.0 Introduction

This document describes the DO processor, memory, and input-output system. The DO is a
microprogrammed machine which is customized to some extent to provide efficient emulation
of the Mesa instruction set, and to provide high memory bandwidth for demanding input­
output devices. The DO has a multitasking control structure which multiplexes the processor
among sixteen fixed priority tasks at the microcode level. The lowest priority task is used to
implement the emulator for the Mesa instruction set.

The principal performance parameters of the DO are:

Clock Rate: TBDns. Microinstructions are pipelined, and require four cycles for execution. A new

microinstruction is started every two clock times.

Data Path Width: 16 bits

Arithmetic: 2's complement

Control Store: 4K words of 36 bits

.Main Storage: 22-bit virtual address space provided. 64K-768K words of real memory may be

connected (1M word with 64K RAM chips). Main storage is error corrected over a 64-bit quadword.

1 .1 Notation

Throughout this document, a number of conventions are used, which are described in this
section.

1.1.1 Numbers

Numeric quantities are expressed in decimal unless otherwise specified. The suffix b is used
to indicate octal.

• is used to indicate multiplication, •• is used to indicate exponentiation:

5d3 = 5000 = S·10··3, 3bS = 300000b = 3·8·'5

For large multiples of a power of 2, K is used to designate 2**10, and M is used to
designate 2* *20:

32K = 32'2"10 = 2"15 = 32768,
1M 1'2"20 = 2"20 : 1048576

1.1.2 Special Characters

<x> means "contents of x".

Section 1: Introduction 2

Square brackets (1 are used to indicate indexing or to delimit the arguments of a function:

x(3) ,. <x + 3> means the contents of location x + 3. i.e. the
third element of the vector x

hf{21 means the value returned by the function hf with
argument 2.

Double commas are used to indicate the concatenation of two fields. If x is a 3-bit field and

y is a 5-bit field, then x"y is an eight-bit field with x in its high order bits.

1.1.3 Terms

A word is a sixteen bit quantity. Bit 0 is the most significant bit, bit 1 5 is the least significant
bit. When diagrammed, bit 0 is on the left.

A doub/eword is a thirty-two bit quantity, with bits numbered from 0 to 31. In main storage,
the least significant bits (16-31) of a doubleword are stored in location n, the most significant

bits (0-15) are stored in location n + 1.

A byte is an eight bit quantity. Bit 0 is the most significant bit, bit 7 is the least significant

bit. When diagrammed, bit 0 is on the left.

A field is a contiguous group of bits within a word or larger field. The bits are numbered

from the left. For example, the field consisting of the least significant byte of x is indicated
with x[8:15].

1.1.4 Register Naming Conventions

Registers in the DO (usually) have names that are related to the function performed -by the
register. This section discusses the conventions used for register names in this document
and in the logic diagrams for the machine. Note that these conventions are usually, but not

universally, observed. In cases where clarity is increased by deviating from these

conventions, we have deviated.

In the simplest case, a register holds a single n-bit value. The bits of the register are simply
numbered, for example, H1 (0:15J. In the logic drawings, the field notation is not used, since
these drawings depict individual signals. Instead, the register name and the bit number are
"dotted" to form a signal name, e.g., H1.00, or Stkp.7.

In some cases, a single register will contain subfields which are explicitly named. For
~xo.mple, the field ALUF(0:3J is a subfield of the microinstruction register MIR. In the logic
drawings, the individual bits of a register are given the subfield name (e.g., ALUF.O), since
this is more descriptive of the Signal's function than giving the bit number in the larger
register. Often. a group of signals which have a similar purpose or similar timing are treated
as a register with a number of single-bit subfields. The Result register, which consists of the
signals Overflow, ALUOut = 0, ALUCarry, and ALU<O. is an example. On the logic drawings,

Section 1: Introduction 3

the name "Result[i]" never appears. The Result register is a logical entity provided solely for
clarity of description.

In a number of cases, registers in the 00 hold complemented values, or the values are
complemented as the register is read from one part of the processor to another. In this
document, register names are used as if the register contained high·true values, but the
tables which summarize the registers are explicit about complementation, as are the logic
drawings. For example, we speak of "the H2 register", or "H2[O:1S]" frequently. In fact, H2
holds complemented data, but the descriptions of the ALU functions have been chosen to
provide the necessary inversion. In the logiC drawings, the bits of this register are named
H2.00' through H2.1S' (i.e., low· true names).

4

2.0 Major Subsections

This section describes the major subsections of the DO. Later sections will provide
increased detail. The principal registers and data paths of the processor are shown in figure
2. 1. Figure 2.2 shows the control section, figure 2.3 shows the principal paths associated
with the memory, and figure 2.4 shows miscellaneous control logic. These figures
correspond to the partitioning of the logic onto printed wiring boards. Figure 2.5
summarizes the microinstruction format of the DO. Two formats are used, one for memory
references, one for other instructions.

2.1 Registers and Data Paths

The arithmetic section of the 00 is organized around a 16·bit Arithmetic/Logic Unit (ALU).
The ALU is fed by two registers H1 and H2 which are inaccessible to the programmer.

The H1 register is loaded at t1 from the R bus, which is usually fed from the R memory, but
may also be driven by a number of other registers in the processor. The R bus is driven by
tri·state drivers, and goes to all processor cards.

The H2 register is loaded at t1 from the T RAM or from the F1 and F2 fields of the
microinstruction. F1 and F2 are interpreted as an eight bit constant in this case. The
constant may be placed in either byte of a word; the other byte is zeroed.

H3P

R
16

Cycle Count 4
Mask

R Addre ••
Modifiers

PCF :2
CTASK 0:3
sax :1
o X 0:1

RSEL

16

Section 2: Major Subsections

I-r----[>o RfS:153

ntr I

H2

T
16xHS 16

4
H1

R 0:7

~;;;;;;;;---[>o R£S:151

RASav.

P' . I Stk R
rlnclpa M 1 Ad Add re.sl-~_+-......c.=-_-I

R Sources. M 2Ad Logic
WA S

8

Figure 2.1 Processor Data Paths

5

7

StorAO·StorA6

Section 2: Major Subsections 6

2.2 Control

The DO provides a task switching mechanism which multiplexes the processor among sixteen
fixed priority microcoded tasks. The lowest priority task is used to implement an emulator
for the Mesa instruction set. The highest priority task (task 15) is used for error handling.
Task 14 is permanently assigned to an array of interval timers. and the remaining thirteen
tasks are used to implement the microcoded portions of input-output device controllers.

A hardware device controller requests service from the processor by placing an encoded
version of its associated task's number on three wakeup request lines. If this task number is
greater than the task which is running on the processor, and if there is no higher priority
device requesting a wakeup, the task associated with the requesting device will acquire the
processor when the running task next executes a RETURN instruction. The T register and
the microprogram location counter '(TPC) are task specific, which makes task switching
overhead small. Once a task has acquired the processor, it will keep control until it
executes a RETURN instruction and its wakeup request line is no longer active or there is a
higher priority wakeup request. Microprograms should do RETURNS every few cycles
{maximum TaO} to avoid long latencies for higher priority tasks.

The lowest priority task (task 0) is always requesting a wakeup. This task contains the
microcode for the Mesa emulator. Task 0 will run if there is no higher priority input-output
activity. The highest priority task (task 15) is used for error handling functions. and is given
control by a special mechanism when an error occurs.

The processor provides the facility for each task to modify the saved program counter of
other tasks, and to cause another task to get control of the processor.

The processor does not have an incrementing program counter. Instead, .. each
microinstruction specifies the address of its successor using one or more fields in the
micrOinstruction. There are a number of branch formats. which use a varying amount of the
microinstruction for their specification depending primarily on their degree of locality. The
processor provides a single level of subroutine linkage for each task. When a subroutine
call is executed. the return link is stored in the T?C RAM location associated with the
current task (TPC(current]). When a RETURN is executed, the next microinstruction is
accessed from the location in the control store pointed to by the TPC cell associated with
the hightest priority requesting task (TPC(HT ASK]). This is the reason that RETURNS cause
task switches.

4

CIA

.1 mocl 16

Section 2: Major Subsections

AP IAPCTask
IAlln k
S-Oata

Pa Parlt 800tRea n

TPC-A

4

TPC

88-01

Figure 2.2 Processor Control

CIA

Control
Memory

4K x 36,

7

TA
4

C -Data

16

MIR

Section 2: Major Subsections 8

2.3 Memory and Input-Output

The memory system of the DO supports a 2* *22 word virtual address space and a 768K word
real address space. When 64K RAM chips become available, it will be possible to attach up
to 1 M words of storage. All memory references are made by the processor, including
references made on behalf of 10 controllers.

A special microinstruction format is used to initiate memory references. The instruction
specifies a pair of R registers to be used as a base register, the type of reference, and the
source or destination of the data. Once the memory has been started, references proceed in
parallel with processor activity.

The memory is pipelined, allowing two memory references to be in progress at once.

From the standpoint of the 10 controllers, memory references and input-output operations
are essentially identical, since they use the same busses for data and device address
transfers. There are separate busses for input and output, and these activities may proceed
in parallel if circumstances permit. The processor has an OUTPUT operation which transfers
a single word from an R register to the device register addressed by H2[8:1S], and an INPUT
operation which reads the 10 device register addressed by H2 into an R register.

StorAO·6

Block.1 StorAO-6

Device Input
Data

16

Section 2: Major Subsections

Pipe

RAM

latch

H31
16

8 Card Select

1----+-4---1-, Block Select

h--+ ~ Data to Storage
16 ~Card.

!--=ilr-..,....r--~ Check bits to
,-----, I Storage card.

Odata 1-__, __ ,' Data to outpu~
Device. 16

R Bu.

Control Section:

Me1: 256x40 PROM

MC2: 256x20 PROM

Figure 2.3 Memory Control Data Paths

9

MIR

Section 2: Major Subsections

Main L.evel BltBL. T reglste ... :

S

X L.evel BltBL T Reglste ... :

A~~"'1~ OBX[2:5)
02:5

::::: ~J OBX[O:1]

Note: O8JC(2:5}.nd MWJC(2:5} .'$0 knowrr in combl".tlon
.. Cyr:JeCo"tml

AL. A

A

Mask
PROMs

Timer
Array

Mln(16-SB[2:5), (16-0B[2:5]),

-MNBA)1- 1

10

r----+--Ic""J PCF(O:2]

PCF PCX 3 (PCF{3] controls

1-.;--C=:1 Mask

37-pln connector
Printer Intartace: Q-t:-~

Function
Decoder

5
I ,...._--.

RS232 Interlace:

H2

~S]
7 Data I.oopback

R 14

SetTime to Malnt Paned

IntPandln (to Control)

Figure 2.4 Miscellaneous Logic (MiSe board)

Section 2: Major Subsections 11

Normal Instruction Format:

o 1234 532336 78.9

Il RMOO

1011 12131415161718192021222324252627282930343531 Note: the ••
. Pa rlty .J lilt """' .. ,. ar.

L: MEMINST

ALUF Function B iEL Meanina JC Meanlna

0 H2 0 o F1 F2 0-3 Conditional Branch
1 AL A 1 F1 F2 4 GoTo
2 AL A and H2 2 T 5 . call
3 A,.UA orH2 3 T F1 F2 is a field aescrlDtor 6 Return
4 ALUA xorH2 7 OlsDatch
S ALUA and not H2
6 ALUA or not H2
7 AL A xor not H2
8 ALUA. ,
9 ALUA. H2
'0 ALUA + H2 +'
11 AL A-1
12 AL A-H2
13 ALUA-H2·1
14 unassianed
15 use SAL F

Memory Reference Format:

o RSEL TYPE 3 0 SRC/OEST JA 7

0~1 2 3 4

OF2
MEMINST

532336789 101112131415161718192021222324252627282930343531

OF2 means take
the displacement from
F2 Instead of from T
(F2 is treated as a 4-blt
constant. and the
normal F2 actions are disabled).

I CTASK[0:3] is J
ORed with these Parity
bits

TYPE SRC/OEST
bits

0: • -
1: IOfetch 4 devicedest

2- ReadPIDe R dest (2)

3: Refresh

4: Pfetch1 R dest (2)

5: Pfetch2 R dest (2)

6: Pfetch4 RdeJiIt (2)

7: Inout R dest (1)

8: Pstore' R src (2)

9: Pstore2 R src (2)

10: Pstore4 R src (2)

11: Outout R src (1)

12: IOfetch16 devicedest

13: IOstore4 device src

14: XMaD R src/dest (2)

15: IOstore16 device src

u"'w_~
and writing the
controf .. ,..
See section 4.9

(1): Device address is H2[8:11] orCTask[0:3] .. H2[12:15]

(2): SRCI OEST = 0 means use Stkp for R Address

Figure 2.5 Microinstruction Format

Section 2: Major Subsections 12

2.4 TIming

This section discusses the conventions used to describe the timing of the DO, and gives an
overview of the timing of the basic data paths.

A cycle is the basic unit of time in the machine. Cycles are TED ns. in length. The clock
associated with a particular cycle occurs at the end of the cycle.

-An instruction time is two cycles, since even though most instructions really require four
cycles to finish all their activity, a new instruction may be started every two cycles.

Time within an instruction is counted from the time the instruction is loaded into the MIR
(Microinstruction Register). This is called to.

The period between to and t1 is referred to as cycleO, that between t1 and t2 as cycle', etc.

The timing of normal instruction execution is shown in figure 2.6. During cycleO, the data
sources used in the instruction (usually the Rand/or T registers) are accessed. This data is
loaded into the H1 and H2 registers at t1. During cycle1 and cycle2, the data is operated on
by the ALU, and the result is loaded into the H3P register at t3. During cycle3, data from
H3P is written into Rand T if the instruction specifies loading of these registers.

Calculation of the next instruction's address and the control store fetch for the next
instruction is done during cycleO and cycle' in parallel with execution of an instruction.
Note that t2 for one instruction is usually coincident with to for the next instruction, t3 is
coincident with t', and t4 is coincident with 12.

During execution of a conditional branch instruction, the control store access is begun at to
using an even address, assuming that the test condition is false and that the branch wjll not
be taken. The branch conditions become stable Slightly after t1, and if the condition is true,
an extra cycle is inserted to allow the control store sufficient time to access the odd location.
This is not visible to most of the processor logie, since the CPU control store simply
withholds one clock. (Note: EdgeClockFeed is withheld. RamClockFeed is not. This means that RAM writes

during cycle1 may be done twice, but this is harmless.)

Under certain circumstances, an instruction may be Aborted, as described in section 4.5.
Aborted instructions are repeated automatically unless a fault occurs (section 4.6).

Microinstructions may also be suspended. Suspension occurs when the memory controller
needs to access the R memory. The processor is suspended for one cycle for each word
'~~nsferreC between the memorj ~nd R. Suspension does not with old any clocks. so it is
invisible to 1/0 devices (except for th.e logic that generates wakeup requests). Processor
activities are simply delayed when a cycle is suspended.

Most of the discrete registers in the processor are loaded at 12. The data used to load
these registers is usually taken from the ALUA bus, which becomes stable at -t1 + 45ns.

Section 2: Major Subsections 13

The only registers which are written later than t2 are R, T, and the Result register.

Section 2: Major Subsections

Instruction n:
r MIR Lo.csec:l r H 1 , H2 IGaaec:l

~ t1 U

Normal Instruction flow

r H3P Loaaec:l

t3 t4

I CycleO Cycle1 • Cycle2 Cycle3

---t- Write R,T ---I ~ R..cs R,T --;---- ALU ~ratlon

Instruction n + 1
to t1 t2 t3 t4

CycleO Cycle1· Cycle2

~ Read R,T -+--- ALU O~ratlon

Cycle3

---+- Write R,T---I

Instruction n + 2:

14

~ t1 t2 t3 t4
• Will be extenaec:l by one cycle If a conaltlonal
brancl'lsuccHGS CycleO Cycle1 • Cycle2 Cycle3

~ R..csR,T -+-- ALUO~ratlon

Memory Reference Instruction

r MIR Loaaec:l

to

r H1, H2, H3P r AdO, 1, 21o.csed

loadec:l MIR loeded for next Instruction
t1 t2

CycleO Cycle1 I
~ Read R,T --+- Read ---I

R or 1

Figure 2.6 Instruction Timing

---+- WrlteR,T--j

15

3.0 Arithmetic Section

3.1 Register Summary

Table 3.1 is a summary of all registers and memories which are accessible to the
programmer.

3.2 R Memory

The R Memory is a 256 word by 16 bit memory used for high speed storage in the
processor. The RSEL and RMOD fields of the microinstruction select an R register to be
read or written during an instruction. In addition, a number of discrete registers in the
processor are selected for reading (but not loading) by RSEL and RMOD. Information read
from R is latched in the H1 register (inaccessible to the programmer) at t1, from which it is
passed through the cycler/masker to one of the ALU inputs.

Since a microinstruction requires four cycles for execution, with R writes occupying the last
cycle, and since instructions may be started every two cycles, an R location may be written
by one instruction and read by the next before the write is actually done. The processor
contains logic to bypass the R memory in this case so that the write appears to a
microprogram to be done during the instruction in which it is specified.

A microinstruction generates a single R address. The selected R register may be used as a
data source under control of other fields of the instruction, and is written from the output of
the ALU if LR = 1 .

3.2.1 R Address Formation

The R address is an a-bit quantity. If RMOD = 0, the R address is formed by concatenating
the two most significant bits of the current task number and the (6 bit) RSEL fieid. In
addition RSEL[O: 1] is replaced by the two least significant bits of the current task number if
RSEL[0:1] = O. The effect of this is to divide the 256 word R memory into four 54-word
blocks. Four tasks share a block. Within the block and the four tasks which can directly
address it, task a can address the entire block, tasks 1, 2, and 3 can only address locations
16-63. The idea here is that (1) the emulator task needs to be able to directly address an
entire 64 word block, and (2) up to four 10 controllers of the same type can share microcode
if their task numbers are initialized to 0,1,2,3 mod 4. The microcode is written as if the
device occupied task a of the block of four tasks, and the R addresses (and 10 device
addresses) will be modified according to which of the four tasks is in control.

If RMOD = 1, the R address is modified as follows:

If RSEL[4:5]:: O. 1. or 2. RSEL[4:5] is replaced by the registers PCF[1 :2]. SBX[0:1j. or DBX[0:1]

respectively. This allows these registers to index a 4-word area in R. The PCF register contains the

low order three bits of the Mesa byte program counter. SBX and DBX contain the current source and

destination word numbers for two quadword buffers used by the BitBL T operation.

If RSEL[4:5]:: 3. and RSEL[0:1):: 3. the stackpointer (Stkp) provides the a-bit R address. In this case.

Section 3: A rithmetic Section 16

RSEL{2:3] indicates the amount by which the stac!q:lointer is to be incremented or decremented.

If RSEL{4:5] .3. and RSEL{0:1] .0. 1. or 2. the R memory is disabled for reading, and other R bus
sources are enabled. A number of discrete registers in the processor are read in this way (see Table
3.1). Registers which are less than sixteen bits in length are packed into words as tightly as possible
without crossing word boundaries. The idea here is that these registers may be accessed using shott
fleJd descripton (described later). The function RegShift (F2. 0) is provided to increase the number of
registers which may be selected in this way.

Section 3: A rithmetic Section

Table 3,1

Register Size Loaded Load Load Read
(bits) From Control Time To

R 256x16 H3P LR=1 Cycle3 H1
T 16x16 H3P LT=1 Cycle3 H2
Map 16Kx16 R ><Map R
SALUF:

MA' 1 H2[OS] F2= 11b t2 R[OS] {1}
MB 1 H2[09] F2=11b t2 R[09] {1}
SALUF[0:5] 6 H2[10:15] F2= 11b t2 R[10:15]{1}

Readt:
ALU<O ALUOUTIOO] GB = 11 b t3 R[OO]{1}
ALUcarry ALUOUT 01i GB .. 11b t3 R[01]{1}
ALU#O ALUOUT[01 GB = 11 b t3 Rl02]f~ NoOverflow 1 ALUOUT[03] GB = 11 b t3 R 03]1
Note: Result is also loaded at t3 of all instructions that do

Stkp 8 ALUA[8:15] F2.1 t2 R[8:15]{1}
SStkp 8 Stkp[0:7] {6} t2 R[0:7]
APCTask 4 ALUAlO:3] GB= 10b t2 R[0:3]
APC 12 ALUA 4:15] GB.10b t2 R[4:15]
InCTsk 4 APCTask[O:3] {3} t2 R[0:3]
CIA 12 C·SAddress {3} t2 R(4:15]{1}
CSData 16 C·S GB= 14·17b,H2 t2 RO:15]
Page 4 F2[0:3] F1 =5 t2 R[0:3]
ParIty Errors:

StackOvf {3} {4} t2 R[04]
CS·ParErr {3} {4} t2 R[05]
R·ParErr {3} {4} t2 Rloe]
MemErr {3} {4} t2 R 07]

BootReaon:
RFB[O] TesterBoot {~l boot R[10]
RFB[1] PanelBoot boot . R[11i
RFB[2] WDTBoot boot R[12
RFB[3] GB=6 I~} boot R[13]
RFB[4] PwrBoot 5} boot R[14]
RFB[5] ParityBoot 5} boot R[15]

DB 6 ALUAf10:15] F2=6 t2 R[4:9]
SB 6 ALUA 10:15] F2=5 t2 R[10:15]
MNBR 16 ALUA[0:15] F2= 13b t2 R[0:15]

CycIeControl:
DBX[2:5] 4 ALUA[8:11] F2=4 t2 R[0:3]
MWX 4 ALUA[12:15] F2.4 t2 R[4:7]

PCF 4 O,ALUA(13:15] F2 = 14b t2 R[12:15]
PCX 4 PCF{0:3] {6} t2 R{8:11]
RS232 In 8 {3} R[9:15]
RS232 Out 8 H2[8:15] F1 = 1 t2
Printer In 16 {3} R[O:15]
Printer Out 16 ALUA[0:15] F2 = 17b t2

Memory Syndromes:
Slot A 8 {3~ R[0:7]
Slot B 8 {3 R[8:15]

Notes:
SR. n means RSEL = n, RMOD = 1, GB means Group B Function

RShift (F2 = 0) must be asserted
{1} Register is read in complement form
{2} Cannot be read directly
{3} Cannot be loaded directly

Read
ContrOl

RMOD=O
BSEL = 2,3
)(Map

SR=7
SR=7
SR=7

SR=7
SR=7
SR=7
SR=7

not contain
SR=3
SR=3
SP. .43b
SR.43b
SR=47b
SR.47b
SR=53b
SR=57b

SR=57b
SR=57b
SR=57b
SR=57b

SR=57b
SR =57b
SR=57b
SR=57b
SR=57b
SR=57b

SR=33b*
SR=33b*
SR=37b*

SR=27b
SR .27b

SR=27b
SR=27b
SR.37b

SR=27b*

SR= 13b
SR= 13b

{4} Loaded when an error is detected. Causes a trap to location 1 if nonzero
{5} Loaded when machine is bootstrapped for any reason
{6} Loaded at t2 of all instructions located at 2001b :+ 4*n, n = 0-377b.

17

Section

3.2
3.3
5.4

3.5.1,3.6.3.2
3.5.1,3.6.3.2
3.5.1

3.5.2
3.5.2
3.5.2
3.5.2

F2 • 2 (FreezeResult)
3.2.2
3.2.2
4.3
4.3
4.6
4.1
4.9
4.1

3.7
3.7
3.7
3.7

4.10
4.10
4.10
4.10
4.10
4.10

3.6.3.1
3.6.3.1
3.6.3.1

3.6.2,3.6.3.1
3.6.2,3.6.3.1

3.6.4.1
3.6.4.1
3.9.3
3.9.3
3.9.4
3.9.4

5.5
5.5

Section 3: A rithmetic Section 18

3.2.2 Stkp and SStkp

Stkp (stackpointer) is an a·bit register used to address the R memory indirectly. The
stackpointer is not task·specific, and tasks other than the emulator which use it must save
and restore its value. The stackpointer may be read onto the R bus (in complement form)
and loaded from ALUA as described in Table 3.1. The only way in which a task can address
the entire R memory is via the stackpointer.

When the stackpointer is used to address the R memory (when RSEL{0:1] = 0, RSEL[4:5] = 3),
it may be incremented at t2 under control of RSEL[2:3] and the function StackShift (F2 = 3).
The amount of the increment is shown in Table 3.2.2. The increment is done modulo 16.
Note that the function StackShift is also sent to controllers on the backplane as 10Strobe,
which means that 1/0 microcode cannot increment Stkp by + 2, + 3, or ·3 in one
microinstruction without generating 10Strobe. The Stkp value used to read the R memory is
the value before any increment specified by the instruction is done, the value used to write R
is the incremented value.

RSE1.[2:3]
o
1
2
3
o
1
2
3

Table 3.2.2

StackShift
o
o
o
o
1
1
1
1

Stkp Increment
o
+1
·1
·2
+2
+3
o
-3

There are several R locations that cannot be read or written indirectly via the stackpointer
without causing a fault (see section 4.6). If Stkp = 11 b·17b, or if Stkp = a and the current
microinstruction is reading from the staCk, a StackOvf fault will be caused. The intent here
is to place the Mesa stack in locations '·10b, and use this mechanism to generate th'e Mesa
StackOverflow trap. The size of the stack is set by a PROM on the ALU board. (Note: The

precise condition corresponding to "Instruction Reading Stack" is Meml~t' and ALUF #0 and RSEL{0:1j = 0
and RMOD and RSEL[4:5] = 3. In particular, this means that an instruction must select R as one of the ALU

inputs for StackQvf to be detected.)

The register SStkp (Saved Stkp) is provided to save the value of the stackpointer at the start
of execution of every Mesa bytecode. This is necessary since the bytecode may cause a
trap, and it is essential to be able to reset the state of the machine to its pre-trap value if this
occurs. SStkp is loaded from Stkp at t2 of microinstructions located at 2001 b + 4· n (n = O·
377b). These locations contain the first microinstruction of every bytecode. SStkp may be
read onto the R bus as indicated in Table 3.1,

3.3 T Register

T is a task· specific temporary register (Le. there are 16 copies of T, one per task). T is read
during cycleO of an instruction, and the value read is loaded into H2 and used as one ALU
operand if the 8SEL field of the microinstruction equals 2 or 3. T will be loaded from the

Section 3: A rithmetic Section 19

output of the ALU (actually, from the H3P register) during cycle3 if the microinstruction bit
L T is asserted. There is logic to bypass T so that if a write is specified during one
instruction, the data may be used during the following instruction. This logic addresses T
from CTask during CycleO and from CTO during Cycle1. [Note: Since writes of T are piped across

memory references, CTD (which addresses T for writing) is not clocked if Memlnst = 1. Also, if T is loaded by
a microinstruction immediately preceding a memory reference and read by the instruction immediately following
the memory reference, the reader will get the wrong value, since the ALU output will no longer contain the value
about to be written into T, but bypassing will still be invoked. This situation must be avoided by the

programmer.]

3.4 Constants

The processor provides two forms of constants which may be used as ALU operands. If
BSEL = 0, the eight·bit concatenation of the F1 and F2 fields is loaded into bits 8,'5 of H2 at
t1, and is used as the ALU operand during cycle' and cycle2. Bits 0·7 of H2 are zeroed. If
BSEL = 1, F1 and F2 are placed in bits 0·7 of H2, and bits 8·15 are zeroed. When a constant
is specified in an instruction, the normal actions of F1 and F2 are disabled.

3.5 Arithmetic/Logic Unit

The ALU is a 748181, which can perform a number of arithmetic functions, as well as all the
logical functions of two input variables. The ALU inputs are the output of the H2 register
(which contains the datum selected by the BSEL field of the microinstruction), and the ALUA
bus, which is the output of the cycler/masker. In normal instructions, the H1 and H2
registers are loaded at t1, and the results of the ALU operation are loaded into H3P and the
RESUL T register at t3. The ALUA bus is stable before t2, and is used as the source of data
for a number of the discrete registers in the processor. The control signals for the ALU are
normally taken from the ALUF field of the microinstruction. This four bit field is mapped into
the control signals required by the 748181 by a PROM which implements sixteen of the most
frequently used ALU functions. The functions provided by the ALUF field are:'

Table 3.5

ALUF ALUOut =

o H2
1 ALUA
2 ALUA and H2
3 ALUA or H2
4 ALUA xor H2
5 ALUA and not H2
6 ALUA or not H2
7 ALUA xnor H2
8 ALUA+ Cy1
9 ALUA+H2+CyO

10 ALUA + H2 + Cy1
11 ALUA-Cy1
12 ALUA·H2-CyO
13 ALUA·H2·Cy1
14 unassigned
15 use SALUF for ALU function

In instructions in which the function UseCoutAsCin is not used, CyO = 0 and Cy1 =, in Tables
3.5 and 3.5.1. If UseCoutAsCin is asserted, CyO = Cy1 = Result[1], i.e. the carry bit from

Section 3: A rithmetic Section 20

the last ALU operation is used as the ALU carry in.

3.5.1 SALUF

In addition to the functions provided by the ALUF field, there is an 8-bit register SALUF
which may be loaded from H2[08:15] under control of an F decode, and subsequently used
to execute any function of which the SN745181 is capable. Six bits of this register are used
to supply the six bits required by the ALU chips as described in Table 3.5.1, the remaining
two bits are used by the Bit8L T primitives.

Section 3: Arithmetic Section

Table 3.5.1

H2(10:15] Function
o • ALUA + CyO
1 • ALUA + Cy1
2 • (ALUA or H2') + cye
3 (ALUA or H2') + Cy1
4 • (ALUA or H2) + cye
5 (ALUA or H2) + Cy1
a ·1+CyO
7 . 1 + Cy1
10b (ALUA and H2) + ALUA + CyO
11 b (ALUA and H2) + ALUA + Cy1
12b (ALUA or H2') + (ALUA and H2) + cye
13b (ALUA or H2') + (ALUA and H2) + Cy1
14b • ALUA + H2 + cye
15b • ALUA + H2 + Cy1
16b (ALUA and H2) • 1 + cye
17b • (ALUA and H2) . 1 + Cy1
20b (ALUA and H2') + ALUA + CyO
21b (ALUA and H2') + ALUA + Cy1
22b • ALUA • H2 • 1 + cye
23b • ALUA • H2 • 1 + Cy1
24b (ALUA or H2) + (ALUA and H2') + cye
25b (ALUA or H2) + (ALUA and H2') + Cy1
26b (ALUA and H2') . 1 + cye
27b ·(ALUA and H2') • 1 + Cy1
30b ALUA + ALUA + cye
31b ALUA + ALUA + Cy1
32b (ALUA or H2') + ALUA + cye
33b (ALUA or H2') + ALU.A + Cy1
34b (ALUA or H2) + ALUA + cye
35b (ALUA or H2) + ALUA + Cy1
36b • ALUA • 1 + CyO
37b • ALUA • 1 + Cy1
4Q·41b ALUA'
42-43b ALUA' and H2
44-45b ALUA' and H2'
46-47b zero
5Q·51b ALUA' or H2
52·53b • H2
54·55b • ALUA xor H2'
56·57b • ALUA and H2
6O·61b AI,.UA· or H2'
62·63b • AI,.UA xor H2
64~65b H2'
56·a7b • AI,.UA and H2'
7O·71b 1
72· 73b • ALUA or H2
74·75b • ALUA or H2'
76·77b • ALUA
• Normal ALUF field functions

3.5.2 Result Register

21

The four condition bits ALU<O, ALUCarry, ALU # a and NoOverflow are held in the Result
register, which is normally loaded at t3 of every instruction (this register is not task·specific).
Normally, it is expected that branches on these conditions will be done in the instruction
following the ALU operation which causes the condition. There is a function (FreezeResult,
F2 = 2) which inhibits the loading of the register so that branches which test the ALU result
can be deferred if desired. The Result register is not loaded with the results of an ALU
operation if FreezeResult is executed during that instruction. The function UseCOutAsCin,

Section 3: A rithmetic Section 22

F2 = , 6b, is provided to use ALUCarry as the carry into the ALU.

The Result register is read onto R(O:3] using RSEL = 7, RMOD =,. The register is read in
complement form. The Result register is loaded at t3 from ALUOUT(OO:03] by the Group B
function Restore (11 b). This function is provided primarily to restore the state of the
machine atter processing of a fault.

Note: Since Result is not task specific. it cannot be used to return a value from a subroutine (since the

RETURN may switch tasks).

3.6 Cycler IMaske r

The cycler/masker is provided for three purposes:

1) To provide efficient implementation of the Mesa ReadField. WriteField, ReadString. WriteString. and

Shift instructions.

2) To provide the capability of rapidly unpacking (and optionally dispatching on the value of) fields in

an R register or other R bus source.

3) To provide an efficient implementation of the BitBL T operation.

The cycler/masker is controlled in a number of ways, which will be described in detail
betow.

3.6.' Short Fields

When BSEL = 3, F1 and F2 are concatenated and used as an a·bit Short Field Descriptor

which is used to control the cycler/masker. In all short field operations, H2 is loaded from
T.

The values of F1 "F2 and their associated operations, as well as the assembler macros used
to perform the short field operations are:

LDF[RBsource.POS,SIZE] is used to right·justify any field. P~S and SIZE are octal constants which specify the

first bit and the width of the field. RBsource is any register which can be placed on the Rbus.

0 17b: 16 1·bit fields starting at bit 0. 1, 15
20b . 36b: 15 2·bit fields starting at bit 0 . 1. 14
37b . 54b: 14 3·bit fields starting at bit 0, 1, 13
55b . 71b: 13 4·bit fields starting at bit 0, 1, 12
72b ·10Sb: 12 5·bit fieldS starting at bit 0, 1, 11

106b ·120b: 11 6·bit fields starting at bit O. 1. 10
121b ·132b: 10 7·bit fields starting at bit O. 1. 9
133b ·l43b: 9 a·bit fields starting at bit O. 1. 8
14Ab -153b: 8 9·bit fields starting at bit O. ~. 7
1540 -162b: 7 lO·Olt flelCS siartmg at on Q. 1. S
163b . 170b: 6 11·bit fields starting at bit O • 1. 5
171b ·175b: 5 12·bit fields starting at bit O. 1, 4-
176b ·201b: 4 13·bit fields starting at bit 0. 1, 2. 3
202b ·204b: 3 14·bit fields starting at bit O. 1, 2
205b ·206b: 2 1S·bit fields starting at bit O. 1

DISPATCH(RBsource.POS.SIZEj is used to load APe with the selected

Section 3: A rithmetic Section

field with SIZE = < 4 bits in preparation for a dispatch operation in the next microinstruction.

207b
227b
246b
264b

·226b: 16
·24Sb: 15
·263b: 14
·300b: 13

1·bit fields starting at bit 0, 1,
2·bit fields starting at bit 0, 1,
3·bit fields starting at bit 0, 1,
4·bit fields starting at bit 0, 1 ,

17
16
15
14

RSH[RBsource,shiftcount] right· shifts RBsource by shiftcount 1 to 15.

uses LOF[RBsource,O,(16 . shiftcount)] codes

LSH[RBsource,shiftcount] left·shifts RBsource by shiftcount 1 to 15.

301b ·317b: 15 left shifts of 1, ... , 15 bits

LCY[RBsource,shiftcount] left· cycles RBsource by shiftcount 1 to 15.

320b ·336b: 15 left cycles of 1, 15 bits

RCY[RBsource,shiftcount] right·cycles RBsource by shiftcount 1 to 15.

uses LCY[RBsource,(16 • shiftcount)] codes

RHMASK(RBsource] is RBsource & 377b

uses LDFtRBsource.8,8] code

LHMASK(RBsource] is RBsource & 177400b

337b: RBsource & 177400b

ZERO is zero

340b: ~ero

23

FixVA[RBsource] is provided to propagate bits 0 and 8 of the high half of a memory base register pair into bits 1
and 9, so that the test for virtual addresses)22 bits will work properly.

341b: RSH[RBSource,1] and 4Q100b

Fields 342·355 are provided to mask the value in H1. The intent is to mask a register containing ·1 to produce
the indicated small constant on ALUA.

342b: RBsource and 2
343b: RBsource and 4
344b: RBsource and 5
345b: RBsource and 6
346b: RBsource and 10b
347b: RBsource and ·2b
350b: RBsource and ·3b
351b: RBsource and ·4b
352b: RBsource and ·5b
353b: RBsource and ·6b
354b: RBsource and ·7b
355b: RBsource and ·10b

Section 3: A rithmetic Section 24

Field 3SS places bits 0-3 into bits 8-11. and masks out the rest of the word.

3SSb: RSH{RBsource.10bj and 360b

The remaining fields have no effect.

3.6.2 Mesa Field Operations

A Mesa field descriptor is an eight bit quantity in. which bits 0:3 indicate the bit number of
the first (leftmost) bit in the field, and bits 4:7 indicate the width of the field in bits minus 1.
The cycler contains logic to optimize the Mesa RF (read field) and WF (write field)
instructions by controlling the cycler/masker directly from a field descriptor.

The RF function (F1 = 14b) causes the cycler to right justify the quantity from R, and masks
out all but the rightmost width bits of the field. Precisely, RF does:

ALUA • H1 LCY{OBX{2:5) + MWX{O'.3j + 1] and MASK{MWX(O:311,

where MASK[x] contains 1's in bits 15-x through 15.

The WFA operation takes a source word from R, shifts it to its correct position in the
destination, and masks out all bits except those in the field. A second microinstruction
containing WFB is then used to insert the field into. the destination word. WF A is F1 .. 11 b,
WFB is F1 .. 13b. Precisely, WFA does:

ALUA .. H1 LCY{15 • (08X[2:5) + MWX(O:3J)] and MASK 1 (OBX[2:5). MWX[O:3ll.

where MASK1 [x,y] contains 1's in bits x through x + y. WFB does:

ALUA .. H1 and not MASK 1 [OBX{2:5). MWX[O:3D.

The CycleControl register is loaded at t2 from ALUA(8:15] by the function CycleControl+­
ALUA (F2 .. 4). CycleControl is not a discrete register, but is the concatenation of 08X[2:5]
and MWX[0:3]. These two registers are also used by the 8itBL T operations. Although
CycleControl can be read onto the R bus (RSEL = 27b, RMOO = 1), tasks other than the
emulator should not attempt to use CycleControl by saving its value, using it for an
operation, then restoring the value, all between task switches. The reason for this is that
when CycleControl is loaded. SBX[0:5] and 08)([0:1] are also loaded with information which
is a function of the S8 and DB registers, so these registers would also have to be saved and
restored. Thus, although it is possible to define a set of conventions for the emulator
microde which would allow another task to save and restore SBX, 08X, and MWX, this would
be a time consuming operation.

Section 3: A rithmetic Section 25

3.6.3 BitBLT

The purpose of the BitBL T (bit boundary block transfer) operation is to move information
from one region of main storage to another, modifying the information at the destination as
the transfer is done. The location of the source and destination areas are specified to a
precision of one bit. The operation moves a number of items which are contiguous fields of
fixed width separated in storage by a fixed increment (width and increment also have a
precision of one bit). An operation of the form dest~dest op src is done, where op is any
logical function.

Since the 9itBL T operation is time consuming, a significant amount of hardware exists in the
processor to optimize its operation. The transfer uses two quadword areas in R, one for the
source and one for the destination. Two six-bit registers (SBX and OBX) are used to index
these buffers; the most significant two bits of these registers select a word within the buffer,
the low four bits point to a bit within the selected word. The R addressing logic uses the
two most significant bits of these registers to index a word in R, the cycler/masker is
controlled by the low four bits of the registers. Each time the inner loop of the microcode
transfers a portion of an item (a "chunk") from source to destination, the registers are
incremented by the number of bits in the chunk. The number of bits transferred by a single
iteration of the inner loop (the chunk width) is determined by hardware which examines the
values of S9 and DB, and transfers as many bits as possible without overflowing a word
boundary or exhausting the item.

The microcode for the BitBL T operation is divided into three major sections:

1) Startup and termination, which sets up the parameters of the instruction in a form suitable for the
microcode. and handles the final state after the transfer is complete.

2) The inner loop. which does the transfer.

3) Routines which refill the source and destination quadword buffers from main storage. and update
counts and addresses.

The operation of the inner loop will be described in a subsequent section.

3_6.3.' BitBL T Registers

The DO contains six registers whose primary purpose is to support BitBLT. The
interconnection of these registers is shown in Figure 2.4, and their characteristics are
summarized in Table 3.1. This section describes them in detail.

The registers are divided into two groups or levels. During each iteration of the two
instruction inner loop of BitBLT, SB, MNBR. and DB (the main level) are clocked at t2 of the
first instruction, and SBX, MWX, and DBX (the "X" level") are clocked at t2 of the second
instruction. SB and DB are 6-bit pointers into two'64 bit (4 word) buffers in R, one for the
source information and the other for the destination information. MNBR contains the
(negative of the) number of bits remaining in the current item. During each iteration of the

1 (

Section 3: A rithmetic Section 26

inner loop, a quantity (MW) is calculated which represents the maximum amount by which
the source and destination pointers may be· advanced without crossing a source or
destination word boundary or exhausting the item. MW is the number of bits (precisely, it is
the number of bits· 1) which will be transferred by one Iteration of the inner loop.

Figure 3.6.1 shows the process in detail. At point A, 58, 08, and MNB~ are loaded with the
correct values for iteration n. From these values, MW for iteration n is calculated. At point
B, S8X and DBX are loaded from 58 and DB, MWX is loaded from MW, and iteration n
begins under control of the X level registers. 8etween points 8 and C, MW (oj. 1) is added to
58, DB, and MNBFl, and these registers are updated at point C in preparation for the next
iteration.

Iteration "·1 -----------+)I~(----------
FIrst Instruction

SBFA

A

Second Instruction

SBFB

1 E .,., MW 10,
next iteration

I.oad DB,SB,MNBR
for Iteration"

FIrst Instruction

SBFA

B

-L.BX_.B
saX-SB
MWX .. MW

Figu re 3.6.1 BitBL T Inner Loop Timing

Iteration"

Second Instruction

BBFB

c

L.a-.B.MW
SS-SS+MW
MNBR-MNBR + MW

The updating of the main level registers is done at the end of the first instruction. of an
iteration by the 8BFA function (F1 = 0). 8BFA also has other effects, described later. The
updating of the X level from MW and the main level is done by the functions 8BFB (F1 = 12b)
or 8BFBX (F1 = 1Sb).

58, 08, and MN8R may be read as R bus source (see Table 3.1). When an item begins, 58,
08, and MN8R are loaded (from ALUA) with the pointers and count for the item, the
quadword buffers in R are filled, and the main loop is entered with an instruction which
includes 88FBX (this advances the main level into the X level in preparation for the first
iteration).

During the first instruction of each iteration. the 88FA function sets up a 3·bit dispatch
based on the values of 58. DB and MN8R for the next iteration. This dispatch determines
whether or not the loop is to terminate, and if so, how. The conditions tested are:

1) If MNBR is about to overflow (Le .• if the most Significant bit of the adder feeding MN8R = 0), the
current item is exhausted.

2) If SB is about to overflow (i.e.. if the adder feeding SB produces a carry), the source quadword
buffer is exhausted and must be refilled.

)1

o

Section 3: A rithmetic Section 27

3) If DB is about to become zero, the destination buffer is filled and must be stored (and possibly
refilled).

4) If none of the above occurs, another iteration should be done.

Note that if the buffers require refill, it is not necessary for the refill microcode to modify any
of the registers, since they will have been set up properly for the iteration following the refill
by the BBFB function in the second instruction of the loop. The various conditions are
encoded into the dispatch value generated by BBF A as follows:

Dispatch Value Meaning

3 Item Exhausted (MNBR about to become zero)
4 sa and DB Exhausted
5 S8 Exhausted
6 DB Exhausted
7 Continue

Values 0-2 cannot occur.

Section 3: A rithmetic Section 28

3.6.3.2 Transfer Inner Loop

The BitBL T inner loop transfers as much of one word as possible between the source and
destination buffers. This number is the minimum of (1) the number of bits required to reach
the next source word boundary (16·SB{2:5]). (2) the number of bits required to reach the
next destination word boundary (16·0B(2:5]). and (3) the number of bits remaining in the
current item (·MNBR). This quantity is calculated by PROMS from the registers SB. DB. and
MNBR, and is loaded into the register MWX (precisely. MWX"MIN(...) .1) when BBFE or
BBFBX is executed. The BBFA function (F1 = 0), left-cycles and masks the source data (from
R) in the cycler masker. The cycle count is SBX·OBX. and the source mask extends from bit
DBX to bit DBX + MWX. Figure 3.6.2 illustrates the source and destination words and the
values of SBX and DBX before and after a Single iteration of the BitBL T loop.

Befo re BitBL T Loop:
sax" 7
Dax II 2
MWX.8

Source:

Destination:

After BitBLT Loop:
SIX" 0
OIX " 11

Source:

Destination:

I
o

I I
o l'

oax

o

o

l' 15 0

sax

oax

15

IXlxl
15 01'

sax

1S

Figure 3.6.2 BitBLT Shifts and Masking

Section 3: A rithmetic Section 29

In addition to the bits that control the ALU, the SALUF register contains two control bits, MA
and MB, which are used by the BitBLT operation. MA controls the data on the T (H2) side of
the ALU during BBFA. If MA = 1 during BBFA, bit positions in the' ALU H2 input word not
covered by the source mask are filled with 1 'so If MA = 0, these bits are filled with a's. This
will occur even though the BSEL field of the instruction specifies T as the input to H2 (T is
disabled by special logic). The idea here is that the first instruction of the BitBL T loop will
specify T .. R OR T, BBFA, DBLGOTO[X,Y,MB] and the word which is placed in T will contain
the proper field of the source, correctly aligned with the destination, filled with 1 's if MA = 1,
or with a's if MA = O. The second instruction of the BitBLT loop will do dest+-t(dest, T) where
f is some bitwise logical function (set up in SALUF before the transfer is begun). If
f(dest,1) = dest (e.g., f = AND), MA should be initialized to 1, which will cause bits in the
destination that are not a part of the operation (i.e., not covered by the source mask) to be
preserved. If, on the other hand, f(dest,O) = dest (e.g., f = OR), MA should be initialized to 0,
again preserving unused destination bits.

MB is a flag bit in SALUF, for which a branch test is provided. The intent is to use MB to
indicate whether or not the bits of the destination covered by the source mask are to be
cleared before combining them with the source data (in n. The first instruction of the
BitBL T loop will contain a branch on MB. If MB = 1, indicating that the destination bits are to
be cleared, the branch will send control to an instruction that does dest"f(dest,T), BBFB. If
the destination bits are not to be cleared, the other arm of the conditional will be an
instruction which does dest"f(dest,n, BBFBX. Both BBFB and BBFBX load the X-level
registers, but BBFB applies the complement of the source mask to the destination data.
BBFBX does not.

To summarize, BBFA does:

1) ALUA.- H1 LeftCycle [SBX·DBX] and MASK (MASK = 1's in bits DBX through OBX + MWX)

2) H2- if MA then not MASK else 0
3) APe.- dispatch value for loop control (see section 3.6.3.1)

4) MNBR'-MNBR+MWX+1
5) SB'-SB+MWX+1

6) DB-DB + MWX + 1

BBF8 and 88F8X do:

1) SBX,-SB

2) DBX-DB
3) MWX-MIN[(16·SB[2:5]), (16·0B[2:5]). ·MNBR]·1

In addition. BBFB (not 9BFBX) does:

4) ALUA.-H1 and not MASK

Section 3: Arithmetic Section 30

3.6.4 Mesa Instruction and Operand Access

The DO contains logic to buffer eight bytes from the instruction stream and deliver them to
the control section as dispatch values. or to the arithmetic unit as data. The data from the
instruction stream is held in a four word area in the R memory. and the four· bit register PCF
is used to index this area. The least significant bit of PCF is used to control the
cycler/masker during a Nextlnst or NextOata function, and PCF[1 :2] replaces the two least
significant bits of the R address when RMOD = 1, RSEL[4:5] = O. PCF[O] is a flag bit which
indicates that the instruction buffer has been exhausted.

The function NextData (F = 17b) is provided to access the next byte of the instruction buffer
in R as an a·bit operand. It does:

1) If PCF{O) = 1, abort the instruction and trap to location 0 (see Section 4.4)

2) ALUA(8:15l" if PCF{3] then H1[8:151 elseH1[O:7]; ALUA(O:7]"O
3) PCF .. PCF + 1

An instruction containing NextOata must specify a CALL in its JC fieid. Normally, CALls
save (CIA +' mod '6) in the return link register TPC. When a NextData or Nextlnst traps,
the increment is disabled by the hardware, so the buffer refill microcode can Simply RETURN
to reexecute the NextlnstlNextData.

The Nextlnst function (F1 .. 16b) is used in the next·to·last microinstruction of a Mesa
bytecode. The last instruction of a bytecode is a special RETURN. Nextlnst starts a
dispatch on the next available byte in the instruction buffer (the byte pOinted to by PCF). It
loads APC with (ALUA or 2001b), providing that HTASK = O. If HTASK #0 (because another
task is requesting a wakeup), APC is loaded with TPC[HTASK], and the RETURN in the
following microinstruction will cause a task switch.

In addition to (conditionally) loading APC, Nextlnst also loads the a·bit ByteCode register
from ALUA[6:13]. When a RETURN instruction with JA.7 = 1 is executed, the 12·bit quantity
(2001b + 4*ByteCode) is written into TPC[CTASK] during CycleO. This feature is provided
so that the RETURN in the last microinstruction of a bytecode can task switch and still
preserve the dispatch address generated by the Nextlnst. When control returns to task 0
after the higher priOrity task has run, execution will resume at the first microinstruction of the
ne:ct bytecode.

In addition to providing normal instruction dispatching, Nextlnst also tests for interruPts
generated by I/O microcode. Bit' 2 of the RS232 output register (IntPending) is inspected
by the logic that generates the mask used by Nextlnst. If IntPending is true, the mask is
forced to O. which will cause control to go to the code for bytecode 0 (Noop). rather than to
the normal next instruction. A branch is provided on IntPending, so that the microcode for
Noop can determine whether it got control due to an interrupt or by executing a zero from
the instruction stream. The intent is that the I/O controlle~ wishing to interrupt the Mesa
emulator will OF! a one into IntPending, which will cause an interrupt at the completion of
the next bytecode. The Noop microcode will clear the bit and cause the interrupt. [Note: Bit

Section 3: A rithmetic Section 31

12 of the RS232 register is used solely for convenience of implementation. Since this register has other
purposes, a copy of it must be kept in R. 1/0 controllers will OR into the copy, then load the real register from

the copy. The Noop code will mask out the bit in the copy, then load the real register to clear IntPending.]

In detail, Nextlnst does:

1) If PCF[O] = 1 abort the instruction and trap to location 0 (see Section 4.4)
2) ALUA[6:13]" if not IntPending then (if PCF[3] then H1[8:15] else H1[O:7]) else 0;
ALUA[0:5]"ALUA[14:15)"0
3) APC[2:9)"if HTASK = 0 then (ALUA or 2001 b) else TPC[HTASK]
4) ByteCode[O:7] .. ALUA[6:13]

5) PCF"PCF + 1

Like NextData's, instructions containing Nextlnst must specify CALL in their JC fields, so that
if they trap, they will be reexecuted when the trap handler returns. Because of the
arrangement of the Nextlnst dispatch bits, the microcode for each Mesa opcode must begin
at address (2001b + 4*Opcode).

3.6.4.1 PCX

The PCX register is provided to hold the low order three bits of the Mesa program counter
for the bytecode currently being executed by the Mesa emulator. If a bytecode causes a
trap, this information must be recovered so that the instruction can be restarted when the
(Mesa) trap handler has corrected the situation that caused the trap. PCX is loaded from
PCF at t2 of all microinstructions located at 2001b + 4*n (n = 0·3nb).

The first instruction of a bytecode will be aborted if the memory system has not finished
mapping an emulator memory reference. The feature is provided so that the effects of faults
will not propagate across instruction boundaries.

3.7 Parity Register

The DO checks parity on every read of the R memory, and on the microinstruction in MIR

[Note: Parity is not checked when the control store is read as data]. In addition, a number of error
conditions are detected by the memory. When any of these errors occur, a fault is caused,
and task 15 gets control as described in Section 4.6.

To allow the fault handling microcode to determine the reason for the fault, a four·bit Parity
register is provided. This register is read as an R bus source using RSEL = 57b, RMOD = 1.

The significant bits are:

Section 3: A rithmetic Section 32

BIt Meaning

4 Stack Overflow
5 Control Store Parity Error
6 R memory Parity Error

7 Memory Fault

This register is cleared when the DO is bootstrapped or when the function Reset Errors
(GroupS = ') is executed.

It is not always possible to recover the R address sr the control store address that caused
the error, sil'}be one microinstruction is executed between the one that generated the error
and the initiation of the fault.

A memory fault may indicate an error, or may be associated with a page fault or write
protect violation. Task' 5 must determine the cause of the fault as described in Section 5.5.

If task , 5 is active and a fault occurs, the machine is bootstrapped.

Section 3: Arithmetic Section 33

3.8 Special Functions

Table 3.8 summarizes the F1 and F2 decodes. With the following exceptions, the F1 and F2
fields are independent and may both be used in a singJe microinstruction:

1) If BBFA (F1 = 0) is used, F2 must be O.
2) LoadPage[F2] uses F2 as a 4-bit constant.
3) Group B (F1 = 7) selects 16 secondary functions encoded in the F2 field.
4) During memory reference instructions, F1's are not available. In addition, if DF2= 1, F2 is used as
a 4-bit displacement rather than as a function.

Table 3.8
Function Decodes

Code F1 F2 Group B
00 BBFA* RegShift unused
01 RS232" H2 Stkp" ALUA Reset Errors

02 LoadTimer[ALUA] FreezeResult IncMPanel

03 AddToTimer[ALUA] StackShift/lOStrobe ClrMPanel

04 unused CycieControl" ALUA GenSRCtock

05 LoadPage[F2] SB .. ALUA ResetWDT

06 unused DB" ALUA Boot

07 Group B SpareF2 Breakpoint

10 no-op BranchShift APC&APCTask" ALUA

11 WFA SALUF .. H2 Restore
12 BBFB no-op ResetFault

13 WFB MNBR .. ALUA UseCTask

14 RF PCF" ALUA WriteCSO&2

15 BBFBX ResetMemErrs WriteCS1

16 Nextlnst UseCOutAsCin ReadCS
17 NextData Printer.. ALUA DOOff

*BBFA requires F2 to be RegShift

Section 3: A rithmetic Section 34

3.9 Miscellaneous Registers

The DO processor includes a number of miscellaneous registers. described in detail in this
section.

3.9.1 Watchdog -Timer

The DO contains a watchdog timer to ensure that infinite loops cannot hang the machine
forever. The timer is a onfrshot multivibrator with a time constant of - 1 00 ms. When the
machine is bootstrapped. the watchdog timer is cleared. The timer is started by the function
ResetWDT (G8 = 5). and once this function has been executed after a bootstrap operation. it
must be executed at least every 100ms. or the DO will be bootstrapped.

3.9.2 Power Monitoring

The DO processor requires only + 5V for its operation, but its power supply provides ·5V,
+ 12V, and + 24V for the main memory and peripherals. The MiSe board contains three
sensors for these voltages which indicate that they are approximately correct. The sensors
are read to the R bus with RSEL = 37b, RMOD .. RegShift .. ,. The bits have the
following significance:

Bit Meaning

5 1 =) +12 ok

6 1 =) +24 ok
7 0 .) ·5 ok

3.9.3 RS232 Interface

The RS232 interface consists of an output register, an input register, and level converters.
All modem control functions will be implemented in microcode. although the hardware
provides assistance in timing the delivery of the primary serial data stream. Connection to
an external modem is made via a 2Spin male D-shell connector on the rear edge of the Misc
board. The output register is loaded from H2 by the function RS232 .. H2 (F1 = 1). Bits 8
through 10 of the output register are transmitted directly on the lines (after level conversion),
but bit 15 is latched as Next8itT oGo and transmitted at the next Send signal generated by a
timer (see section 3.10). The drivers are arranged so that a .. 1" in H2 corresponds to a
negative voltage (mark, or control function OFF) on the lines. Sit '1 of this register is used
for the signal SetTime (see 3.9.6), and bit 12 is the Signal IntPending (see 3.6.4). Sits 0·7
and 13-14 are not used.

The relationship between bits in H2, RS232 standard signal names, and connector pins is as
follows: .

~-

Section 3: Arithmetic Section 35

Bit RS232 Name Connector Pin Number

8 Request To Send 4
9 Spare 11

10 Data Terminal Ready 20
15 Transmitted Data* 2
*Synchronized by timer Send function

RS232 input is handled similarly. The received data is sampled by a timer, and the sampled
bit and a\l other modem status signals are read directly onto the R bus with RSEL = 37b,
RMOD = RegShift = 1. The receivers are arranged so that a low voltage (mark) on the line is
read as a "1" on R. The relationship between R bits, Signal names, and connector pins is:

Bit RS232 Name Connector Pin Number

8 Received Data * 3
9 Clear To Send 5
10 Data Set Ready 6
11 carrier Detect 8
12 TXClock 15
13 RCVClock 16
14 LoopBack for Transmitted Data
15 Ring Indicator 22

*Latched by timer Sample function

In addition to being read onto R, the transmitter and receiver clocks (pins 15 and 16) are
also used by the timer logic to sample and send the transmitted data to a synchronous
modem, as described in section 3.10.

Section 3: A rithmetic Section 36

3.9.4 Printer Interface

The printer interface consists of eight output lines, five input lines, and eight bidirectional trio
state lines. Connection is made to a 37 ·pin female D·shell connector on the rear of the Misc
board.

The output register is loaded from ALUA(O:15] by the function Printer'" ALUA (F1 .. 17b).
The most significant eight bits of this register are sent directly on the lines in pseudo·
differential form (the complement of each bit is also sent, both at TTL levels). Bit 7 of the
output register controls the gating of register bits 8·15 onto the bidirectional data bus. If this
bit is 0, the outputs will be enabled to the bus. The correspondence between ALUA bits,
signal names, and pin numbers on the 37·pin connector is:

ALUA bit

o

2

3

4

5

6

7

8

9
10

11

12

13

14

15

Signal Name

PO.O

PO.O·

PO.1

PO.1'

PO.2

PO.2'

PO.3

PO.3'

PO.4

PO.4'

PO.S

PO.S'

PO.S

PO.S'

PO.7

PO.r

F'O.O

F'0.1

PO.2

F'0.3

F'D.4

F'C.5
F'D.6
PO.7

Pin

20
21

22

23
24

25
26
'lJ
28
29
30
31

32

33
34

35
1

2

3

4

5
6
7

8

The thirteen input lines are read onto the R bus using RSEL = 27b. RMOO = RegShift = 1.

The most significant five bits are simple receivers, the least significant bits are the signals
PO.O·PO.? (the bidirectional bus). The pin connections for the most significant bits are:

FI bit Signal name Pin

0 PI.O 9
1 PI.1 10

2 F'1.2 11

3 PI.3 12

4 P1.4 13

Section 3: A rithmetic Section 37

The cable connector has logic ground on pins 17,18,19,36, and 37. Pins 14 and 15 are
connected to + 12 volts through a 10 ohm, .25watt resistor. An LED is connected across
this resistor so that if excessive current is drawn by external logic, the LED will light. The
intent is to use this voltage to supply a small amount of logic in external interfaces.

During system checkout, the printer interface is used to pass data between the DO and the
Alto used to operate it. A communications protocol for the Alto program (Midas) and a DO
microprogram (the Kernel) has been designed which supports this communication and also
allows the Alto to bootstrap the DO. To perform the bootstrap function, pin 11 (PI.2) is
supplied to the control board as TesterBoot'. Since the machine is bootstrapped when this
signal is made low, no normal interfaces should make use of this signal.

The signals PI.O . PI.4, and PD.O . PD.7 are terminated with 220 ohms to + 5, 330 ohms to
ground.

3.9.5 Maintenance Panel

The maintenance panel is provided to display the results of diagnostic tests when more
sophisticated I/O facilities are malfunctioning, or during the bootstrap process. It consists of
a four-digit LED display mounted on the front of the DO cabinet. Two functions are provided
to display information: ClrMPanel (GB = 3) clears the display to 0000, and IncMPanel (GB
= 2) increments the contents of the panel by one. Since the panel is implemented with slow
circuitry, these functions should not be issued more frequently than every TBD
microinstructions.

The maintenance panel also contains the power control logic for the system. AC power is
controlled by a solid state relay. This relay is operated by a START and a STOP button on
the panel. When START is pressed, the SSR is activated. It is latched on by the DO + 5V
supply. As long as START is depressed, the maintenance panel display is incremented at
high speed, causing it to display 8888 (lamp test). Approximately 150ms. after START is
released, the processor is booted (PaneIBoot). If START is depressed when power is on, the
machine is also booted. When STOP is depressed, or when the function Dooff (G8 = 17b)
is executed, AC power is turned off. [Note: DOOff is integrated by the power-off logic to reject noise.

The correct instruction to tum the system off is "DOOff. Goto[.]"]

The maintenance panel contains an unswitched pilot power supply to operate the SSR and
to charge the battery used by the TOO clock. When this supply is on (indicating that the DO
has AC power), the decimal' point adjacent to the units digit of the display will be lit.

Since hard R or Control Store parity errors will render the processor completely inoperative
(and unable to display failure information in the display), these conditions are handled
specially. When either of these bits are on in the Parity register, the panel is incremented
rapidly (by the hardware), and the center bar of the units and tens digits are disabled.
Control store parity disbles the units digit, displaying 8880, R parity disables the tens digit,

Section 3: A rithmetic Section 38

displaying aaoa.

3.9.6 Time of Day Clock

The maintenance panel contains a time-of-day clock implemented with a TI TMS1000C
(CMOS) microprocessor with a crystal controlled clock. The clock is powered by a battery
which is charged from the pilot supply whenever the system has AC power. The battery will
operate the clock for approximately one week with power disconnected.

Whenever the DO has DC power, the clock emits the time as a serial 32-bit number (at , ms
per bit) once per second. There is a branch condition in the DO to test the state of this line
(TimeOut). The ~ndard microcode will provide conversion to some suitable format and an
interlace to Mesa programs.

The clock is set by sending it a 56-bit quantity as a serial bit stream. Bit 11 of the RS232
output register (SetTime) is reserved for this purpose.

In addition to providing time of day, the clock also accumulates total power-on hours for the
system, and can be set to turn AC power on and boot the system at a predetermined time.
Details of the clock are provided in Appendix A.

3.10 Timers

The DO processor contains logic implementing high resolution timers at the microcode level.
Up to sixteen timers can be established. A wakeup to the timer task (task '4) occurs when
any of the timers expires. A timer consists of one or more slots in a sixteen word Timer
RAM located on the CPU Mise board. Every four machine cycles, the timer control cycles
into the next timer slot. The slot contains a four bit state and an eight bit data field. A state
machine calculates a new state and data field value based on the contents of the slot (and
possibly on other conditions), rewrites the contents of the RAM, and cycles into the next slot.
In general, the action taken for the timer is to decrement the data field and cause a task
wakeup when the field is less than zero. The timer continues to decrement even after the
wakeup is requested, so that accurate timing can be maintained with varying wakeup
latency. The DO can load a timer with an initial value to be counted down, or it can add a
value to the data. The add function is used to implement wakeups at precise intervals by
utilizing the count after wakeup feature. Loading the data field causes a wakeup at an
interval relative to the time that the load was done. Adding to the field causes a wakeup at
an interval relative to the last time the counter underflowed.

Since the timer RAM has 16 slots. and a new slot is accessed every four cycles. the
resolution of the timer is 64 cvcles. The range of a simole timer is 128 *64 cycles or 8192
cycles with a '00% overrange. For timers requiring more range. two or more slots can be
cascaded. When the first slot decrements from ., to ·2, underflow of the timer is saved in a
Carry flag. The slot immediately following can conditionally decrement its data field based
on Carry. The wakeup can be generated on the sign bit of the last slot's data.

Section 3: A rithmetic Section 39

The timer mechanism also provides bit timing for RS·232 communications. The hardware
can be programmed to Sample the received data bit (or Send the transmitted data bit) and
cause a wakeup at appropriate intervals for both asynchronous and synchronous protocols.
The hardware provides double buffered bit·at·a·time access to the RS·232 data.

Table 3.10 lists the 16 states a timer can be in, and the changes to the data and state fields
on each round. There are two functions (LoadTimer and AddToTimer) that load a timer slot
from the ALUA bus. The 16 bits of the ALUA are divided as follows: Bits 0·3 are the new
state (loaded by both LoadTimer and AddToTimer), bits 4-11 are the new data (or data to be
added to the current data) and bits 12·15 are the slot number to be loaded. The timer is
permanently assigned to task 14. When any timer requests a wakeup, the state and data
fields of the slot, along with its slot number are loaded into a register which can be read as
an external R source (Timer), and a wakeup is requested. When the microcode reads the
Timer register, the wakeup request is cleared. Timers which expire while a wakeup request
is pending for some other slot remain in their current state until the register is read (but they
continue to decrement). Thus the output register is a resource which can be held by only
one slot at a time.

State

o

2

3

•
S

6

7

8

9

10

11

12

13

'4

1S

Section 3: A rithmetic Section

Table 3.10

Action

if Carry then Oata"Oata·1,Carry"(Cata.o&cany)

if Carry then Oata"Cata·1
if Oata<o & not WakePending then
[Wakeup;State ... !

if Carry then Oata"Oata-1
if Oata = O&Carry then Send
if Oata<O &. not WakePending then
[Wakeup;State-4!

if cany then Oata"Oata-1
jf Oata = O&Carry then Sample
if Oata<O & not WakePending then
[Wakeup;State-4!

do nothing

Oata-Cata-1; jf Oata<O & not WakePending then
[Wakeup;State-S!

if RC=O then State-13

if RC = 0 then State-9

Oata-Cata-1 ;Cry-Oata. 0

if XC = 0 then [Send;State-1]

if XC. 1 then State-10

Oata"Cata·'
if Oata = 0 then Send
if Oata<O & not WakePending then
[Wakeup;State-S]

Data-Oata·'
if Data = 0 then Sample
if Oata<O & not WakePending then
[Wakeup;State-S]

if RC.: then [Sample;State"'!

if RCaO then State-'4

Here is how they are us.:d:

Use

Middle

Most Significant

Slow Async Xmit

Slow Async Rcv

Idle

Simple TImer

Fast Async Start Bit

Slow Async Start Bit

Wait for Reload

Least Significant

Sync Xmit

Sync Xmit

Fast Async Xmit

Fast Asyne Rev

Sync Rev

Sync Rev

40

S.I

Carry

Carry

Carry

Carry

RC

RC

XC

XC

RC

RC

A simple short timer starts in state 5, decrements until it goes negative, then requests a
wakeup. When the wakeup is accepted, it switches to state 8.

A two stage timer starts in state 9. The following slot is in state 1. When the first slot
causes Carry, the following slot decrements. When the second slot underflows, a wakeup is

Section 3: A rithmetic Section 41

requested. When it is accepted, the second slot's state goes to state 4.

A multiple stage timer is like a two stage timer except that additional slots in state 0 are
placed between the first and the last slots (which are initialized to states 9 and 1
respectively).

A fast asynchronous RS-232 receiver starts in state 6, looking for the start bit. When it
occurs, it switches to state 13, and changes into a timer. When the timer elapses (one half
of a bit time later), the line is sampled, and a wakeup occurs (switching to state 8 when
accepted). If the sample is still a 0, the start bit is found, and the program adds one bit time
to the timer, resetting it to state 13. The timer then times out to the middle of the next data
bit and wakes up again. The R$·232 data bit can be read as one of the bits of the RS·232
interface.

A slow asynchronous RS-232 receiver initializes one slot to state 7, and the next slot to state
3. When the start bit arrives, the first slot changes to state 9 and starts counting down. The
next slot counts carries in state 3 until it gets to 0, whereupon it samples the line, and wakes
up. Succeeding bits are timed by a state 9/3 slot pair.

A fast asynchronous transmitter uses state 12. The data bit (NextBitToGo) is double
buffered. NextBitToGo is part of the RS232 output register, loaded from H2 by the function
RS232*".

A slow asynchronous transmitter uses a 9/2 pair of slots.

A synchronous RS232 receiver waits for the low to high transition of the receive clock (RC)
in state 14, then samples the data and goes to state 1. The data field of the slot should be
initialized with a negative value, which causes an immediate wakeup. The program resets it
to state 15, where it waits until it detects the high to low transition of the clock, and then
reverts to state 14. .

A synchronous RS-232 transmitter uses states 10 and 11 like the receiver uses 14 and 15.

The state numbers are arranged so that the most significant 2 bits address a 4 input
multiplexer wired so that its output ("Sel" in the table above) reflects the Carry bit (Carry) for
states 0·3, the Receive Data line (RD) for state 4·7, the transmit clock (XC) for states 8·11
and the Receive Clock (RC) for states 12:15. The state machine has 8 inputs: 4 state bits,
the output of the Sel multiplexer, Data = 0, Data<O and WakePending. It outputs a new state,
the control signals to sample the RS232 input line, send the next RS232 output bit, request a
wakeup, set the Carry bit, and to decrement the data field.

42

4.0 Control

4.1 Normal Instruction Sequencing

"Normal" instructions are those which do not do conditional branches, dispatches,
subroutine calls or returns. Normal instructions are coded with a Goto (JC = 4) in the Jump
Control field of the microinstruction. These instructions calculate the address of their
successor by concatenating the contents of the four bit Page register with the 8 bits of the
Jump Address (JA) field in the current microinstruction. Thus a normal instruction's
successor can be any location within the current 256 word page. Crossing pages is done
with the function LoadPage{F2], which loads the Page register with the F2 field at t2.
Accessing the Control Store for fetching the next instruction is overlapped with execution of
the current instruction. Since the successor of an instruction which loads Page is fetched
before the Page register is modified, the next instruction will be on the current page, its
successor will be on the new page .

..•.• LOAOPAGE[3].GOTO(X]; ·'nstn.Jction on page n
x: GOTQM; • Also on page n
Y: ·Y is on page 3

At t2, MIR is loaded with the instruction, the Current Instruction Address register CIA is
loaded with the address of the instruction, and execution of the instruction begins.
Execution usually requires four cycles, designated cycleO-cycle3, but another instruction is
started at t2 (at the end of cycle1). Figure 2.5 illustrates the timing of instructions.

4.2 Conditional Branches

Branches are two-way tests which send control to one of two locations whose addresses
differ only in their low order bit. Branch conditions are encoded in the JC[1 :2]"JA[07] field.
There is a function (BranchShift. F2 = 10b) which changes the interpretation of the "JC/JA
field. doubling the number of available branch conditions. Table 4.2 summarizes these
conditions. When a branch is specified in an instruction, the condition becomes bit 11 of
the next instruction address. When the branch condition is true. instruction execution is
extended by one cycle as described in section 2.4.

JC[1,2]"JA(7]
o
1

2

3
4

5
6
7
o
1

2

3
4

5

Section 4: Control 43

Table 4.2
Branch Conditions

BranchShift Condition
o ALU#O (Tests ALU result from previous instruction)

o carry (Tests ALU result from previous instruction)

o
o
o
o
o
o

ALU<O (Tests ALU result from previous instruction)

NoH2BitS (Tests value placed in H2.S by the current instruction)

R<O (Tests value placed in H1.0 by the current instruction)

R Odd (Tests value placed in H1.15 by the current instruction)
NoAttn (Flag from 1/0 controllers)

MB (bit in SALUF)

IntPending (Interrupt test)

NoOvf (Tests ALU result from previous instruction)

BPCChk (Tests PCF[Oj)

Spare

OWO (Tests result of Pfetch2/Pstore2 in the previous instruction)

TimeOut (Tests data from TOO clock)

4.3 Subroutines and Tasking

JC = 5 specifies a subroutine Call. The address of the successor is calculated exactly as in
a Goto, but in addition, (CIA + 1) is written into the Task Program Counter (TPC) RAM
location for the current task during cycle O. [Note: Only the low four bits of CIA are incremented.]

This will be the Return Address for the subroutine.

At t2 of every instruction, the Alternate Program Counter register APC is loaded with
TPC[HTask] except as noted below. HTask is the number of the highest priority task
requesting a wake-up. The read of TPC is done during cycle'. If CTask = HTask, the
return address will be loaded into APC at t2. If the next instruction specifies a Return

(JC = 6), the address for its successor will be the contents of APC. Since the write of TPC
with the return address is done during cycle 0 of the call, and the read of TPC is done in
cycle', the first instruction of a subroutine can do a Return. Thus one instruction
subroutines are allowed.

If CTask is not the same as HTask, APC will not contain the return address for the task
which is running, but will have a return address for the highest priority requesting task and
control will pass to the task whose return address is in APC. Thus a subroutine return can
cause a task switch. When APC is loaded with TPC(HTask], the APCTask register is loaded
with HTask. When the Return is executed, CTask is loaded from APCTask, thus completing
the TASK function.

All subroutine returns will cause a TASK unless the function UseCTask is executed in the
instruction immediately preceding the Return. UseCTask forces the read of TPC to be
TPC[CTask] instead of TPC(HTask], thus APC will be loaded with the return address of the
current task irrespective of the wake-up logic. UseCTask also loads CTask into APCTask so
that the task number is not changed with the Return. APCTask always contains the task
number corresponding to the contents of APC.

Section 4: Control 44

Subroutine return is the only way to cause a TASK. Long sequences of instructions which
do not call subroutines can do TASKs by replacing two normal instructions (with Gotos) into
a Call/Return pair.

Without Task: With Task:

X: .••• -.GOTOM; X: CALLM;
Y: OOTO(Z]; X .;. 1: "Returns to here

Z: Y: Return;

Multi-level subroutines can be done with explicit save/restore of the return address in an R
location. ihe APC and APCTask registers can be read as an external R source (see Table
3.1). The UseCTask function forces APC&APCTask to be loaded with TPC[CTask]&CTask.
This combination is used to save the return address. Another function is available to load
APC&APCTask with the data on ALUA, which can then be used as the return address. This
explicit loading of APC and APCTask overides the normal TPC[HTask] load. The coding for
this is as follows:

Subr1:

Subr2:

....... CaU(Subr1];

...... UseCTask;
T" APC&APCTask;

R"T.CaIl(Subr2);

APC&APCTask~R;

..... Return;

....... Return;

*1 st level call
"1st level returns to here

"Forces APC to be loaded with return address.
"Save return address in T

"Save return address in R and call 2nd level
"2nd level returns to here

"Load saved return address into APC
"Return to main level

"Return to 1st level

The Page register is loaded from the top 4 bits of APC when a Return is executed. Cross­
page subroutine calling can be done with the LoadPage[F2] function .

...... L.OAOPAGE[3j;

...... ,CALL[SubrOnPage3j;

4.4 Dispatches

"Caller on page n
"Subroutine on page 3
-Returns to page n

Dispatches provide a way of doing a multi·way branch. When a dispatch is specified. the
'.·a!u9 (usually ,A.LUA) is loaded into .A,PC at t2. and the bits involved replace the Pagel JA bits

1) A number of the short field operations extract a field from an R location or other R bus source, and

load it into APC. The instruction following this must contain a Dispatch directive (JC = 7). This will
cause the lower 4 bits of the address to be taken from APC, with the remaing address bits coming from

Page(O:3] .. JA(O:3j. This results in a 16 way (or fewer) branch.

2) The Nexttnst function loads APe with the start address of the microcode for each of the 256 Mesa

Section 4: Control 45

bytecodes. The instruction following the Nextlnst must specify a Return. and all 12 address bits will
come from APC (See 3.6.4).

3) The function BBFA does a dispatch based on the number of bits remaining in the current quadword

buffer in R. The sucessor of the BBFA must specify Dispatch in the JC field.

4.5 Aborted instructions

There are several reasons for aborting an ir:tstruction:

1) A NextData or Nextlnst operation attempts to read a byte from the quadword indexed by PCF when
PCF[O] = 1.
2) The memory is busy and a memory reference instruction is attempted.
3) An R location for which a memory reference is pending is specified in an instruction.

4) A Fault occurs.

In general, aborting an instruction means that all irreversible actions that the processor
would have taken will not be done. The net effect is that the instruction is not executed at
all, including the load of MIA. Thus the instruction will be re-executed, since MIA did not
change. There are two exceptions to this: The first is that TPC is written with CIA + 1 if
the aborted instruction specifies a Call. This does not cause any ill effects.

The other exception is that in case 1 above, MIA is loaded, not with the successor specified
by the instruction, but rather with ControIStore[O]. In addition, CIA is written into TPC. This
is esssentially an unanticipated subroutine call to location 0 (a trap). The trap routine
starting at location a refills the instruction buffer and restarts the instruction by executing a
Return.

In cases 2 and 3 above, all register loads are inhibited, which will cause the instruction to be
repeated endlessly until the memory becomes free or the A location is filled or used by the
memory.

4.6 Faults

A fault occurs when the memory detects a page fault, write protect violation, or input data
parity error, when an internal bus parity error is detected by the processor, or when the
Breakpoint function is executed. Faults are expected to be infrequent, and are handled by
a special mechanism since they occur asynchronously with respect to normal
microinstruction sequencing.

When a fault occurs, the current instruction is aborted and the signal Fault is generated at
to. The next address logic is disabled, and a fetch of location 1 is forced. Fault causes the
loading of CIA to be inhibited. thus freezing the location of the instruction which was
executing when fault occured. A similar action freezes the Aesult register. There are two
versions of the current task register which normally have the same contents, but become
different while Fault is asserted. The internal CTask register, InCTsk, remains set to
whatever task number was running when fault occurred. The InCTask register may be read
as an external A bus source, but CTask cannot. CTask is used to modify the R addresses
and to address T, and is set to 15 by Fault. Fault also disables the Page register's

Section 4: Control 46

contribution to the control store address, which forces all instructions of the fault handling
microcode to be on page 0 until the FlesetErrors function is executed. (Note: There is a

ResetFault function, which only resets Fault, while the function ResetEtrors both resets Fault and clears the

Parity register. Since the Parity register must be cleared before Fault is reset (to avoid another fault), ResetFault

is obsolete and should not be used.]

The fault trap code starting at location , must first save APC&APCTask since it will be
overwritten at t2, and then save CIA&CTask (the Internal CTask) as well as the Flesult and
Parity registers. If the fault was due to a stack overflow, the code must set the stackpointer
to a legal value (not 0 or "·17b). Then the fault code does a Notify (see below) to force
task,5 to run, accompanied by the FlesetErrors function. ResetErrors turns off Fault, clears
the Parity register, and releases the freeze on CIA Flesult., and the Page register. At this
point, Task , 5 is running normally and can examine all the saved state to determine what
action needs to be taken. When task '5 is finished, it returns to the running program using
the APC&APCTask +- ALUA function as well as the function Flestore. Restore loads
APC&APCTask with ALUA and loads the Flesult register with H2.

The return sequence is:

T .. SavedResultRegister;

APC&APCTask"SavedCIA&CTask;

APC&APCTask"SavedAPC&APCTask,Restore,Retum;

The first instruction presets T to the saved condition code. The second loads the desired
return address and task number into APC. The third specifies Fleturn, thus the next
instruction address will come from APC, and CTask will be loaded with APCTask. At the
same time as the fetch of the instruction that was aborted when the fault started, APC and
APCTask are loaded with the value that they had before the fault, and the contents of the
Flesult register are restored at t3.

The fault handling code cannot do anything which could result in a fault. In partic.ular, it
cannot do any memory references, but must send messages to lower priority tasks to do any
logging or recovery required as a result of the fault.

4.7 Notify

Notify is used to start another task at an arbitrary location. It is done by loading APC and
APCTask with the address and Task number desired, followed by a Return directive. The
next instruction after the return will be in the new task, regardless of HTask.

4.8 Writing and Reading Registers

;'<='C dnd APCTask can be written with a function. and read as an external R source. CiA
ana': Task cannot be written expiicltl'y out can oe reaa as an R ous source (CIA is reao In
complement form). Page can be loaded with a function and read as an external R bus
source. TPC cannot be written explicitly except by doing a Call. TPC for the current task
can be read by doing UseCTask, followed by reading APe. TPC for another task can be
read only by notifying the task at a location containing code to read TPC, then notifying back
to the original task.

Section 4: Control 47

4.9 Reading and Loading the Control Store

Data for writing into the control store comes from a 16 bit register eSln which is loaded from
ALUA at t2 of every instruction which does not load APC, and from a 4. bit extension to that
register which is loaded from H2 every t2. There are two functions which write the three
sections of the control store as follows:

T .. Data for bits 32·35;
ALUA .. Data for bits 00-15;
APC .. Address;

WriteCSO&2;
ALUA .. Data for bits 16-31;
APC .. Address;

WriteCS1;

There is an additional register CSData, which can be read as an external R bus source,
which is used in reading the control store. The ReadCS function reads the control store
location whose address is in APe (same as write). The contents of H2 during the read
determine which of the 3 sections of control store data are loaded into eSData. A a in H2
causes bits 0-'5 to be read into eSData. A' causes bits , 6·31 to be read, and a 3 causes
bits 32·35 to be read into CSData[OO:03].

When an instruction is loaded into the control store, the bits RSEL.O and RSEL.1 must be
complemented.

The read and write operations require two more cycles than an ordinary instruction, since
these operations must address two locations in the control store (the location to be read or
written and the next instruction). An internal state bit, CSOp, is provided to stretch the write
and read operations appropriately.

CSOp is cleared at t2 of every instruction which does not include the functions WriteCSO&2,
WriteCS" or ReadCS. In instructions which include one of these functions, CSOp is
complemented at t2.

When a control store function is done, if CSOp = 0, the effects are:

1) The write or read operation is done as specified, using APC as the control store address.
2) Loading of MIR, CIA, and CTask is inhibited

3) CSOp is set

If CSOp = 1 when a control store function is done,

1) The write or read operation is inhibited
2) The successor ins:rl;::;,;on :s retched, uSing Pags .. JA for the address

3) MIR, CIA, and CTask are loaded normally

4) CSOp is cleared

,

The single write or read microinstruction is thus executed twice, with the read or write taking

Section 4: Control 48

place during the first execution. Microinstructions that read or write the control store must
be coded with a RETURN in the JC field, but unlike other RETURNs, the JA field is
significant. For this reason, the successor of an instruction that reads or writes the control
store must be placed at an even location unless the contents of the return link (TPC) are
unimportant. This is because RETURNs with JA.7 a 1 write into TPC (see 3.6.4).

4.10 Bootstrapping

The machine can be bootstrapped by the START button or by the TOO clock, from the test
hardware, from the watchdog timer, by a function (800t), or when a parity error occurs while
task 15 is running. When the boot signal is asserted, a small state machine takes control
and loads 1024 microinstructions into the Control Store from a 2k x 16 EPROM. Control is
then transferred to location O. Since the boot ROM is 32 bits wide, while the control store is
36 bits wide, 4 bits of control store do not come from the ROM. Instead, the are loaded with
a constant. The bits are:

~SEL4 and ~SEL5. which are forced to be 1's. This restricts boot code to only 16 ~ locations. but
allows reading of external R sources.

JA[O:1]. which are forced to 00. This means that boot code occupies only the first 64 locations of each

page at the control store.

The boot state machine uses APe as the source of address for loading the control store, and
APC is implemented as a counter. The counter bits are wired so that APC[4:11] counts
modulo 64, then increments APC[O:3]. At the time the machine is bootstrapped, the
BootReason register (Table 3.1) is loaded with the reason for the boot, so that the microcode
can take special action based on this information if it wishes.

49

5.0 Memory

5.1 Organization

The memory is organized as a pipeline composed of two stages, MC1 and MC2. Each stage
has a microprogrammed controller which governs the activities of the stage, and a number
of data registers which are managed by the controller. Figure 2.3 shows the data paths
associated with the memory.

The controller for MC1 contains 256 4Q·bit control words, the controller for MC2 contains
256 20·bit words. Most of the complexity of the memory system is contained in these
controllers, and for this reason, their microcode, annotated with comments, is included as
Appendix 8.

MC, is responsible for mapping and for controlling main storage cycles. It controls the
following items:

Map memory cycles
Main storage cycles
R memory cycles (but R memory writes by MC2 have priority)
Loading of the storage card data input registers (from H4)
Loading of the storage card data output registers (from the RAM chips)
The Idata bus and the H31 register
The IMux and the H4 register

MC2 is responsible for the transport of fetched data from the storage card data output
registers to the appropriate destination. MC2 controls:

Reading of the storage card data registers
The H3U register
The ECC buffer
The H3C register
The Odata register
R write cycles

5.2 Memory Reference Instructions

Memory reference microinstructions have special timing and a special format (see figure 2.5)
in which the ALUF, 8SEL, LA, LT, and F1 fields are replaced by a TYPE and SAC/DEST
field. Once a memory reference has been started by executing a memory reference
microi!,)struction, the processor and the memory operate in parallel. The memory will
eventually transfer data from the source to the destination indicated by the instruction which
st=.rted ~he reference. A single memory reference instruction specifies all the information
required to complete a reference, including the reference type, the source and destination
for the data, and the virtual address.

Section 5: Memory 50

5.2.1 Reference Types

The DO provides fifteen different memory operations. selected by the TYPE field of the
microinstruction. They are:

F'Fetch 1/2/4, PStore 1/2/4:
These operations transfer single. double, or quad words between memory and R. The formation of the
memory address is described in section 5.2.5. When multiword operations are specified, the least
significant bit(s) of the address are ignored by the hardware, so the data for an n-word transfer must
be aligned. modulo n in memory. An exception to this rule occurs when doublewords are transferred to
or from the stack. Unless the doubleword crosses a quadword boundary, the reference is done as
specified, even if the words are not aligned.

The formation of the initial R address is described in section 5.2.2. When more th.an one word is
transferred, sequential R locations are used. It is not essential that R locations be double- or quad·
aligned for the memory to transfer correctly, but if they are not, the R interlock mechanism (section 5.3)

may be defeateci.

Input, Output
These operations transfer single words beween an I/O device register (section 5.2.4) and an R register.

100000h 4/16, IOSt0re4/16:
These operations transfer four or sixteen word blocks between memory and an I/O device register. The

data must be quad- or hex-aligned in memory ..

)(Map:

This operation reads and writes the map. It calculates the virtual address in the normal manner, but
does not cycle the main memory. Instead, it writes the contents of the inital R location specified by the
instruction into the map entry corr~nding to the virtual address. then writes the original contents of
the map entry into the next three R locations. The format of the data in these registers is shown in
figure 5.2.1.

ReadF'ipe:
See section 5.5

Refresh:
See section 5.7

Data Written
To Map

Data Read
From Map

LOG WP DIRTY REF I
SE

Section 5: Memory 51

R Address:

REAL PAGE NUMBER n

.LK.1 MAIN ROW ADDRESS· n+1 .

.LK.1 MAIN COLUMN ADDRSS" n+2 .
LOG WP DIRTY R;FI CARD" FL!<.O SE • . .

I
n+3

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• Read in complement form

Figure 5.2.1 XMap R Register Format

5.2.2 R addresses

The ten operations that transfer data to or from the R memory generate an initial R address
at t2 of the memory reference instruction. This is the address that will be used for the first R
access done by the operation. If the operation transfers more than one word, sequential R
locations will be accessed.

The initial R address is (SRC/OEST or CT ASK * 16) if SRC/OEST # O. CT ASK is ORed into
the high four bits so that up to four 1/0 controllers of the same type operating at four task
levels (0,1.2.3 mod 4) can share microcode while using different groups of up to 16 R
registers per controller.

If SRC/OEST = O. Stkp (possibly incremented or decremented by 1) is used for the initial R
address. The amount by whicn SCKP is incremented or decremented to form the initiai H
~c:!ress is determined by the ":"'9r'2+i')~ '":">'" anr:i lr;: "! ""ber c:f VJ")rds involved so that the

PFetch1/2, PStore'/2. Input and Output operations will do pushes and pops to the Mesa
stack. Stkp itself is also modified by these operations. Table 5.2.2 shows the initial R
address and the amount by which Stkp is changed for each operation (n is the initial value
of the Stkp).

Section 5: Memory 52

Table 5.2.2

Operation Final Stkp Initial
R Addr •••

Pfetch1 n+1 n+1

Pstore1 n·1 n

Ptetch2 n+2 n+1

Pstore2 n·2 n·1

Input n+1 n+1
Output n·1 n

All Other n n

5.2.3 Quadword Overflow

When a PFetch2 or PStore2 is done to the stack, the hardware inspects the low order two
bits of the virtual address. If these bits are 11, indicating that the reference crosses a
quadword boundary, the memory reference is not done. and the flag OWO is set (OWO
remains set until the next memory reference is started). A branch condition exists to test
OWO in the microinstruction following the memory reference, so that the operation can be
reexecuted as two single word operations. When quadword overflow occurs, the
stackpointer is still updated as shown in Table 5.2.2.

5.2.4 I/O Register Addresses

The operations that transfer data to and from I/O devices generate an I/O register address
at t2 of the memory reference instruction. This address is latched in the laddr register. and
sent to the controllers on the backplane. For the 10Fetch and 10Store operations. this
address is (SRC/OEST or CT ASK -16). For Input and Output. the address is (H2[S:1.5] or
CT ASK -16). H2 is normally loaded at t1 from T. but if DF2 = 1. H2 is loaded from the F2 field
of the instruction. If DF2 = O. F2 may be used normally, as may the JC and JA fields of the
instruction.

5.2.5 Address Calculation

The 24·bit virtual address required by the memory is the sum of a 16·bit displacement
0[0: 15] and a 24·bit base pointer which is contained in a pair of R registers. Figure 5.2.5
shows the formation of an address. The base registers must be set up in advance such that
if BP[0:23] is a base pointer, BP[8:23] is held in register r, and R register (r or 1) hOlds
BP(O:7] in bits 0-7. and BP[O:7] + 1 in bits 8·15. This arrangement makes it possible to do R
... .:d~;::ssing in the same '.vay for memory and non-memory microir..::.ti ~~tions. and allows the
24·bit address to be calculated with a '6·bit rather than a 24·bit add. Since a number of
references will usually be done for each base register load. the calculation required to set up
a base register should be insignificant.

The processor calculates the virtual address in two steps. During cycleO of a memory

Section 5: Memory 53

reference instruction, H1 is loaded from R[r] (which contains BP[8:23]), and H2 is loaded
with the displacement. The displacement is taken from T if DF2 = 0, from F2 if DF2 = 1 (F2 is
placed in bits 12·15, and the other 12 bits are zeroed). The R address used to access r is
formed in a similar manner for memory and non· memory instructions, except that the RMOD

bit of the instruction has another meaning (DF2) in the memory case, so it is not possible to
select a base register pair using an indexed R address or with the stackpointer.

During the second cycle, H1 + H2 is calculated in the ALU, and R[r or 1] is simultaneously
accessed. The carry from the 16·bit addition is used to select the left or right byte of
register R[r or 1] (BP[0:7] or BP[0:7] + 1) for delivery to the memory controller. Note that if
RSEL[5] = 1 during a memory reference instruction, the odd base register will be used for
both halves of the base pointer. This feature is useful when calculating the address to be
used to refresh the memory, but is probably not useful otherwise.

At the end of the instruction (at t2), the calculation of the virtual address will be complete,
and the memory will be started (unless the instruction is aborted for some reason). Note that
there is no way for a memory reference instruction to specify a write into R or T, so no part
of a memory reference instruction overlaps the following instruction.

If the instruction preceding a memory reference specifies a write of R or T, the data is held
in H3P until the first non· memory instruction is executed, at which time H3P will be written
into R or T (during cycle1). This introduces several programming restrictions which must be
observed for proper operation:

1) An R register specified as the source of data for a Pstore4 must be written before the instruction

preceding the memory reference. since the processor may not be able to deposit the data in R before

the memory controller needs it. This is also true of the source of data for a PStore1/2 if the PStore

might be followed immediately by another memory reference. e.g. as the result of a task switch.

2) At least one non· memory instruction must be executed between the loading of the odd R location of

a base register pair and a memory reference instruction which uses the base pair. since the loading of

R will be deferred until after the memory reference instruction. and bypassing does not work properly in

this case.

3) During cycleO of a memory reference instruction. Rand T bypassing are done in the same way they

are for a non·memory instruction. This means that if the even base register or T (the displacement)

was loaded by the preceding il)struction. the output of the ALU. rather than R or T. will be used to load

H1 or H2. If the memory reference instruction is not aborted. these values are correct and all will go

well. but if it is aborted. the output of the ALU will be the sum of the even base register and the

displacement when the memory reference is finally executed. This quantity will be added to the base or

displacement. yielding an incorrect virtual address. There is special logic in the processor which keeps

H2 from being loaded in the cycleO following an aborted instruction, which eliminates the problem for

the displacement from T, out there is no suer, iogic for H1. Accordingly, it is illegal to load the even

that (1) the memory reference will not be aborted. or (2) the memory reference uses DF2 addressing

with a displacement of zero (in this case. bypassing occurs. but the output of the ALU is the sum of

the even base register and zero. which gives the correct result).

4) If several memory references are done with no intervening non·memory instructions. the comments

above apply to the base registers used by all the references. since register writes are pipelined across

Section 5: Memory 54

all the references <even references done in another task if a task switch occurs).

5) If an R register or T is loaded in the instruction preceding a memory reference, it cannot be read in
the instruction immediately following the reference, since the write will not be done until cycle1 of the

read instruction, but bypassing will be invoked during cycleo. The bypassed value is not the value
written, but the ~It of the base regisler addition done by the memory reference.

Usually, this is a disadvantage, but there is one circumstance where the results are beneficial. This is
the "bypass kludge".

Assume that a base register is set up pointing to a structure, and it is necessary to reference the nth
item of the structure. then to modify the base register to point to this item (examples are a base

register holding a program counter during a JUMP instruction, or a base register used to chase down a
pointer chain). The following code provides this function efficiently:

T .. n;

PFetch1 (Base, dest];
Base .. T, goto(. + 2. nocarry];
BaseHi .. BueHi + 400c + 1;

-displacement
-fetch the item
-update the low base register
-update the high base if 64k boundary crossed

This code works because T was loaded immediately before the memory reference, and the write is
piped across the reference. When the instruction Base" T is executed, bypassing is invoked. and the

data written into Base is (Base + n). Also, the carry. flag holds the result of the Base + n addition, so a
test for 64k boundary crossing can be done, and the high half of the base register updated if
necessary.

In summary, the following are illegal:

Base .. x;
BueHi .. Y;

PFetch1(Base. dest]; -high base loaded in preceding instruction

T .. Displacement;
BaseHi .. y;
Base .. x;

PFetch1 (Base. dest]; -low base loaded . displacement nonzero

Source .. x; -this will occur after the PStore1 is done ...
PStore1(Base. Source]. return; -and the next instruction may be a memory reference in

another task

The following are legal:

T .. displacement;
PFetch1 (Base. destJ;

Saserii ~ '1;

Base .. x;
PFetch1 (Base. dest. 0]; -DF2 addressing with zero displacement

Source .. x;
PStore1 (Base. source1; -ok to load source for PStore1/2 in preceding instruction

Section 5: Memo ry 55

The virtual address in the DO contains only 22 significant bits due to the limited size of the
map, although a full 24 bits are provided by the virtual address calculation. If bit 1 of the
virtual address is nonzero (i.e. bits 1 or 9 of the base register), the memory controller will
report a bounds fault when a memory reference is attempted using the base register. When
the high base register is set up, bit 0 should be ORed into bit 1, and bit 8 should be ORed
into bit 9. The FixVA short field descriptor is provided to facilitate this operation.

* Not used to
acce .. map. but
bounds checked

Section 5: Memory

Odd Baae RlI9ister

I~I I I I" I I ~~~rt" <OM byt. __ 0",""
from Baae • Displacement

1_ Even Base Register _I
• Displacement

Ij*1 , , , , I 1°, I I , , I , IS, , I I , I 11~ 24.bit Virtual Address

° 78 23

7-bit Map 7-blt Map
Column Row
Addre .. Address

8-blt Word Add r .. s
~ Map ·wlthln a page

9 bits 4Ft.

(Map

12-blt real page

(0:3]) number

(Map(4:1S]l

VI
I 20·bit Real Address

I I Main Row I Main Col. I L
Address (7) Address Word within quad.word

I I L Block Select (2)(6)

L Card Select (3)

Figure 5.2.5 Address Calculation

56

Section 5: Memory 57

5.3 A Interlocking

The worst·case time between the execution of a memory reference microinstruction which
uses R and the data transfer which it causes can be quite long if the effec1s of errors are
accounted for. Between the time the reference is started and the time the memory controller
takes or delivers the R data, the processor must not be allowed to read an R location for
which a fetch is pending, nor write an R location for which a store is pending. So that
programs need not always observe the worst case times, logic is provided which compares
the R addresses in MC1 and MC2 with the R address generated by the processor, and aborts
the ,current microinstruction if the processor attempts to reference an R location for which B:
memory access is pending.

The preCise conditions for aborting an instruction due to R conflicts are:

Memlnst' and RA = PA and [(Ftype and ALUF #0) or (Stype and LR)), where RA is the R address

generated by the processor during cycleO (the 'read address'), PA is the R address in MC1 or MC2 (the

'pipe address'), and Ftype and Stype are the reference type in the pipe stage. Note that ALUF#O
means 'processor is reading R'. Ftype operations are PFetch 1,2,4, ReadPipe, XMap, and Input. Stype

operations are PStore1,2,4, and Output.

The comparisons are done during cycleO for both MC1 and MC2 if the stage is active. At
t1, the results are latched and used to abort the instruction during cycle1 if there is a
conflict.

When a multiword is transferred to or from the memory, all R locations containing the item
should be interlocked. Since there are only two address comparators, one for MC1 and one
for MC2, R locations used for multiwords must be double· or quadword aligned for the
interlock comparators to function. When the memory reference in MC1 or MC2 is a PFetch2
or PStore2, the low bit of the addresses are not checked, so an instruction can access either
word of the doubleword and cause interlock. Quadword references are similar . the low
order two bits are omitted from the comparison.

Note that the interlock comparators are not activated during memory reference instructions.
This means that if a base register is fetched into R and then used in a memory reference
instruction without being explicitly read first, the old version of the base register will be used
if the base register has not been filled by the memory. This situation must be avoided by
the programmer.

The organization of the memory and the Mesa stack has two other potential problems:

1; When a value IS puShed onto the staCK. the stackpolnter IS not up<.lated unhl 12 0; the instruction,
alter the comparisons with the '!j·:;~":;ses In Me' :nd r\lC~' hav~ 'l"en tione 118, PS!ore is cending

from the staCk, this could cause the value on tne stack to be overwritten before the memory has had a

chance to store it.

2) When a PFetch2 is pending to the stack, it is possible for the processor to read the R location
which will eventually get the second word of a doubleword (the qua'ntity being fetched to the top of the

stack) without the interlock comparators recognizing the situation (since the R addresses may not be

Section 5: Memory 58

doubleword aligned).

To ensure that these situations cannot cause trouble, there are two additional conditions
which cause a microinstruction to be aborted:

A non·memory reference microinstruction is aborted if (1) it attempts to increment the stackpointer
when a PStore1 or PStore 2 is pending from the stack. or (2) if it attempts to decrement the
stackpointer when a PFetch2 is pending to the stack.

Note that this means that when the microcode does a doubleword fetch to the stack, it must
pop the value (read it and decrement the stackpointer) reather than simply reading the value,
or the check will be defeated.

5.4 The Map

Address translation in the DO is done by a 16K by 16 bit table lookup map located on the
memory control card. The map receives bits 2·15 of the 24-bit virtual address from the ALU
card. and produces the most significant 12 bits of the real address. plus four flag bits.

The virtual address is time multiplexed in two cycles over the 7·bit StorA bus. The map row
address is sent first, in the first Me, cycle. During the second Me, cycle, the map column
address (which was latched at t2) is sent to the map. If the reference type requires a map
cycle, the controller will have delivered RAS and CAS to the map chips, and the map data
will become stable -170ns after t2 of the memory reference instruction.

The Real Page address occupies bits 4-15 of a map entry, and is distributed as follows:

Bits 4·6 are decoded into one of eight card Select lines and sent to the storage cards.

Bits 7 and 8 are decoded into one of four Block Select lines and sent to the storage cards.

Bits 9·15 are the main Row Address. and are sent to the storage cards over the StorA bus under
control ot the preRowAd signal generated by MC1.

The remaining six address bits required by the storage cards are latched on the ALU card at
t2 of the instruction which began the sequence. These bits are sent to the storage cards
one cycle after the row address, also on the StorA bus.

The flag bits in the map occupy bits 0·3 of a map entry. LogSnglErr (bit 0) and WriteProtect
(bit 1) are written only when a map entry is loaded, but Dirty (bit 2) and Referenced (bit 3)
will be set by MC1 during references of the appropriate type. These bits may also be written
as part of map loading (by the XMap operation). The flag bits and the reference type
,:s~:~:":iine whether a reference is permitted. A PROM in MC1 exa~i!1es the flag bits and the
reference type, and produces a signal (Me1 Fault) which is tested by Me1 to determine if a
reference is legal. The combination WriteProtect = Dirty = 1, Referenced = 0 (which
cannot normally occur) is used to indicate Vacant, i.e., no real page is assigned to this
virtual page.

Section 5: Memory 59

The map is read and written by the processor with the XMap operation. This operation uses
a block of four R registers. It reads the data from the map entry corresponding to the virtual
address supplied to the operation into the last three registers, then writes the first word of
the block into the map entry. .

R Address:

MC2 MC2 MC1 MC1 H4 Map 1 1 MAP ROW ADDRESS" ErA- ErS- ErA- ErS- PE Snd n

MC2 MC2 MC1 MC1 H4 Map 1 1 MAP COLUMN ADDRESS-ErA- ErS- ErA- ErS- PE I Snd n+1

MC2 MC2 MC1 MC1 H4 Map 1 1 TASK- REFERENCE TV PE -ErA- ErS- ErA- ErS- PE Bnd n+2

MC2 MC2 MC1 MC1 H4 Map 1 1 ~L!<.1 MAIN ROW ADDRESS-ErA- ErB- ErA- ErS- PE Bnd n+3

MC2 MC2 MC1 MC1 H4 Map 1 1 ~LK.1 MAIN COLUMN ADDRSS' ErA- ErS- ErA- ErS- PE Bnd -
n+4

MC2 MC2' MC1 MC1 H4 Map 1 1 LOG WP DIRTY REF CARD* rL!<.o ErA- ErB- ErA- Ere- PE Bnd SE • . - -~

n+5

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- Read in complement form

Figure 5.5 ReadPipe R Register Format

5.5 The Error Pipe

A number of errors are possible during a memory reference. Errors detected by MC1 are:

Page Faults (an attempt to access a page whose map entry has 0 = WP = 1, Ref = 0).

WriteProtect violations (an attempt to store into a page whose map entry has WP= 1).

Input Bus Parity Errors (also called H4Parity Errors): These can only occur on INPUT or IOStore
operations.
Bounds faults (Virtual address)22 bits).

Errors detected by MC2 are:

Double bit memory errors
Single bit memory errors. Single errors are ignored if the operation is IOFetch (corrected data is sent
t: the c!')~troller). anc ,:-.':!! cr.i~. ;JC::':H 0;-: a P~ctc:--. ;f ~:i": '_,JgSngl=:;:, Ji: ,~. :)11 ir: th~ map entry for ~he

referenced page.

When an error occurs, the memory controller finishes the reference if it can, sets the Fault
flag. which will cause task 15 to run and deal with the error, and becomes idle. In all cases,
it is essential to recover the following information about the reference:

The reference type

Pipe Ram
Address:

(0)

(2)

(4)

(6)

(7)

Section 5: Memory

The number of the task which initiated the reference.
The virtual address
The real address and map flags

The stage that detected the error (MC'/MC2)

If the error is a single or double memory error. the syndrome.
If the reference is an INPUT or IOStore. the H4 parity error flag

60

All of these items with the exception of the last two are contained in the error pipe memory.
This memory is a 16 word by a·bit RAM (although only 12 words are used) which is
controlled by MC1.

When MC1 is started. if the reference type is anything other than Refresh, Output, or
ReadPipe (which cannot cause errors), a 'pipe slot' bit is assigned to the reference. This bit
determines which half of the pipe RAM will be used to hold information about the reference,
and is assigned by complementing the bit assigned to the preceding reference. During the
time MC, is processing the reference. the pipe RAM is written.

If an error is detected by MC1, Fault is set, and MC1 will not start another reference until the
processor has had time to start the fault handling microcode. In addition to setting Fault,
MC1 also sets MC1 ErA or MC, ErB, depending on which pipe slot was used for the
reference.

If MC1 is error free, it starts MC2 if the reference is a Pfetch, IOfetch, Output, or Pstore1/2.
The pipe slot bit is passed to MC2 so that if an error is detected, it can be reported by MC2.
If MC2 detects an error, it sets MC2ErA or MC2ErB, depending on the pipe slot bit, and also
loads the syndrome into one of two a·bit registers, again depending on the pipe slot bit. An
Output operation cannot cause an error in MC2.

If an error occurs, task 15 can recover the information in the pipe RAM with a Re~dPipe
operation, which will dump the contents of the pipe RAM into six contiguous R registers.
Figure 5.5 shows the format of a pipe entry. The data in the Pipe RAM is returned in the low
byte of the six registers, while the high byte contains the flag bits that indicate the source of
the error (these bits appear identically in all six words). If the function ResetMemErrs is
executed as part of the ReadPipe instruction. the B pipe entry is delivered. If not, the A
entry is delivered. ResetMemErrs clears the flag bits returned in the left byte of the
ReadPipe. so the A pipe entry should be read by the fault handler first.

The register containing the A and 8 syndromes may be read as an external R source. The A
syndrome is in the left byte. the 8 syndrome is in the right byte.

'3 c: ~rro r Correction

The DO memory is correc~ed over a 54·bit quadword. The check code generation (during
sto~es), syndrome generatIon. and correction if necessary (during fetches) are done word.
serially as the data are transported through the memory controller.

SO
S1
S2
S3
S4
S5
S6
S7

Section 5: Memory 61

During PFetch operations, uncorrected data are transported into R on the assumption that
there is no error. When the entire quadword has been transported, the syndrome is
calculated, and if this assumption is correct, the processor is allowed to access the data. If
correction is required, the data (which were saved in a buffer during the transport), are
corrected on-the-fly, and sent to R a second time.

During IOFetch operations, corrected data are sent to the device from the output of the
buffer. If a double-bit error is detected during transport, the signal OFault is sent to the
controller. so that it can terminate its operation if appropriate.

)

Data errors generate processor faults as described in section 5.5. Single errors during I/O
fetches are corrected. but no fault is generated. since this would degrade the bandwidth.
Single errors detected during PFetches will generate a fault only if the LogSnglErr bit is on
in the map entry for the page. Correction will always occur. however.

The H-matrix for the Hamming code used in the DO is shown in figure 5.6. This code
provides single error correction and double error detection. the decoding rule with which
the bit in error is determined given the syndrome S[0:7] is as follows:

1) If S[O:7] = 0, there is no error
2) If the syndrome contains exactly one "1" bit, the associated check bit is in error.
3) If the syndrome contains an odd number of "1" bits and 8[4:6] = 3, 5, 6, or 7, there is a single
error. 8(4:6] = 3 indicates an error in bits 0-15, 8[4:6] = 5 indicates an error in bits 16-31, S[4:6] =
6 indicates an error in bits 32-47, and S[4:6] = 7 indicates an error in bits 48-63. The bit within the
word is given by S[3] , 8[2], S[1], S[O] , treated as a 4 bit number.
4) Otherwise, a double or multiple error exists.

o 1 2 3 4 5 6 7 891 1 1 1 111 1 1 1 222 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6
o 1 2 3 456 789 0 1 2 345 6 789 0 1 2 3 456 7 8 901 2 3 456 7 8 901 234 5 6 7 8 9 0 1 2 3

x
xx x x xx xx xx xx xx xx xx xx xx xx xx xx xx xx

XXXX XXXX xxxx XXXX . x x x x xxxx XXXX XXXX
xxxxxxxx xxxxxxxx XXXXXXXX xxxxxxxx

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx
x x x x x x x x x x xx xx x xx x x x xx x x x x x xx x x x

Figure 5.6 Error Correction H-Matrix

Section 5: Memory 82

5.7 Refresh

The refresh operation is done by a task in the processor driven by a timer. A single
execution of the Refresh operation refreshes four rows in both the map and main storage
chips, so there need be only 32 Refresh operations done every 2ms (63usec/operation).
The operation uses the 7 ·bit main column address register on the ALU card to supply the
refresh address. This counter is loaded from bits 7·13 of the processor ALU output at t3 of
the memory reference instruction, and is sent on the StorAO·6 lines two cycles after the Me1
control bit PreRowAd is asserted. The column counter is normally incremented after it is
used (to provide for page mode operations), so no special provisions are required to
increment it.

The refresh operation calculates a virtual address in the normal way (as do all memory
reference instructions), but only bits 7·13 of the low order word are used. For this reason,
the microcode should keep the refresh address in a single (odd) R register, increment the
register by 16 when it is awakened (since the low order two bits are not used), then initiate
the refresh operation with a displacement of O.

5.8 Memory TIming

Figure 5.8 shows the timing of all memory reference operations. The time is in machine
cycles, and to of the figure corresponds to 12 of the memory reference. This chart is a
summary of Appendix B, and shows only the normal case for each reference. For the
timings when errors occur, refer to the appendix.

Section 5: Memory 64

5.9 Storage Card Organization

The real address space of the DO is 1 megaword, divided into eight 128k regions. The
backplane of the processor is wired such that the first 8 slots after the CPU can
accommodate a memory card or a.., 10 device. Each slot corresponds to a fixed region (the
first slot covers 0·1281<, the second 1281< to 2S6k and so forth). Currently, only 96k storage
cards exist. Provision is made for a future 128k storage card when RAM density is increased
beyond the current 16k bits per chip limit. Since the slot covers the entire 128k region, and
a card can have as little as 64k of memory, there are holes in the real address space if 64k
or 96k cards are used. In fact, since an 10 device can be plugged into a memory slot, the
holes can be as large as 128k. The processor determines the configuration of real memory
at boot time and provides the software with a map showing the location of the holes. The
system software must accommodate malfunctioning sections of real memory, so minimal
extra work will be needed to cope with the holes. This scheme introduces the following
configuration rule: Storage Cards must be plugged into the first 8 slots (this is enforced by
keying the cards physically). 1/0 cards may be plugged into any slot, but there may be no
gaps between any cards.

The 96k storage card is shown in block diagram form in figure 5.9 The card is divided into
three 16k x 32 banks (plus 4 Error Correction bits per bank). For any memory cycle to the
card, two of the three banks will be started, thus memory is cycled in 64 bit quadwords.
Consider the 128k region of the address space covered by the card to be composed of four
32k blocks (blocks correspond to 32k sections of the real address space; banks correspond
to physical arrays of RAM chips on the storage card). Block 0, when addressed; will cause
banks 0 and 1 to be cycled. A cycle to block 1 will use banks 0 and 2, while block 2 will use
banks , and 2. Block 3 is the 32k hole.

For each block, one of the two banks contains the even doubleword involved in the memory
cycle while the other contains the odd doubleword. Bank 0 contains even double wQrds for
blocks 0 and 1. Sank 2 contains odd doublewords for blocks 1 and 2. Bank' contains odd
doublewords fer block 0, but contains even doublewords for block 2. The chart in figure 5.9
shows all of this in a readable form. The basic idea is that Bank 0 always contains even
doublewords, bank 2 always contains odd doublewords, and bank , contains both even and
odd doublewords.

The piped control section of the memory system allows the storage card to be considered as
th~ee independent pieces, Input Transport, Memory Cycle, and Output Transport. Input
transport data arriving from the processor for a write cycle on the '6 bit bus is buffered and
held in registers which are strobed in the sequence: low bits of even OW, high bits of even
DW low bits of odd OW. high bits of odd OW. Since bank 0 always gets even DWs. its input
registers are clocked in the first two cycles of every transport. Similar!y. the input registers
for oanK 2 are clocked on the 3rd and 4th cycles. Since the real address bits (and therefore
the card and block number) are not available until mapping is finished (which is after the first
two cycles of transport), bank 1 cannot determine whether to load even DWs or Odd DWs
until the 3rd cycle. Therefore it loads all even DWs, and then loads the odd DW on top of it
if block a was the addressed block (ie. if bank 1 contains odd DW's for the addressed
region).

Section 5: Memory 65

ErrorCorrection bits are transported with the 4th data word. 8ank 0 always latches the
upper 4 bits, bank 2 always latches the lower 4 bits. 8ank 1 has two-way input multiplexing
which selects between the upper and the lower bits as a function of 8lockSel0. If 810ckSei0
is asserted, bank 1 latches the lower bits. Otherwise, it latches the upper bits.

The memory control in the processor decodes the top 3 bits of the real address from the
map to determine which of the 8 cards will be run. The decoder outputs are wired to the
corresponding slot, so that no on-card decoding is needed on the storage card. The block
bits (real address bits 4 and· 5) are also decoded, but every card gets all four SelectBank
signals 580-583 (note that the 96k card does not use 583, and the 64k card uses neither
582 or 583). The card ands the SelCard signal with the S8 signals to produce 810ckSe10,
810ckSel1 and 810ckSe12. Two of the three 810ckSeI signals are ored together and nanded
with buffered RAS to produce 8ankRAS' signals for each of the 3 banks. A similar circuit
creates 8ankCAS' and 8ankWrite' for three banks. For refresh, the processor enables all
CardSeI lines as well as all three S8 lines, so all chips get the refresh cycle.

While A1-A6 for the chips need only buffering for fan-out, AO needs additional gating to
select between the halves of the chip used for each of the two blocks for which the bank
contains data. During RAS, the backplane AO signal is sent to all chips. During CAS, one of
the two banks gets a 1 in AO, while the other gets a O. The memory control card will force
the backplane AO to a 0 during CAS and provide the CASA signal (an early version of CAS)
to enable this logic.

For a read cycle, the Card/8ank selection Circuitry and the addressing logic works the same
way as it does for a write. When the data comes out of the RAM chips, the 96 output bits
are multiplexed down to the 64 bits that actually contribute data and are latched. The
multiplexing depends on the fact that tlie even DW can only come from bank 0 or bank 1,
while the odd DW can only come from bank 1 or bank 2, so only two way multiplexing is
necessary.

Once these bits are stored in the output register, MC2 controls the transfer of data to the
processor. The 64 bits are muxed to 16 by a set of 4 way multiplexers with tri-state outputs.
The enable for the outputs is a latched version of CardSel. MC2 controls the select inputs to
the multiplexor sending the data into the processor in the order it was transported during a
store. The EC bits have two way muxing similar to the data bits. All 8 bits are transported
with the first word of data going in to the processor.

All input signals to the card are buffered to present 1 load to the bus (exceptions: SelCard
has loading of 5, but is private to each card, clkOutputReg has a loading of 2. It can be
driven with a high current driver and so should not cause .problems). The drivers for the
. .'\OS RAMs are fanned out to 1" ,.;nI1.)5 USJnY an S senes gate i;J2 ... 4 cnips per bank/2
~;i·.eiS = 18 chips/criver) wit{-. a ;:)c. 't;;;) Jampirl~ resi~to~ (0 f1'l!zHj,i.::;; undershoot. Data
outputs from the RAM chips drive two loads (two inputs of 25S09s). The only outputs from
the card are the output data bits (which are tri·state outputs of 5253s) and the EC output
bits (8T96s).

Section 5: Memory

Data In r- oo 00
Bank 0 Data

~

16 I.- 16K x 16

rtI- cont."...,." ow. for bloclca 0 & 1 .1.5
r- 1IS

r+- 16K x 16
16

U '"- 31

- 00 00
Bank 1 Data

H- 16K x 16
16 I.- 15 ..,." OW's to, blOCk 2 15
~ 18 odd OW. fo, blOCk 0 18

l+- 16K X 16
16 -- 31 31

~ 00 00
Bank 2 Data r+-
16K x 16 16 ~

~ conta/". odd OW. for bloclca 1 & 2 1~
~ 18 16

4-
16 '-- 31

16K x 16
31

ECln [O:~J -
c::J-t-

BankOEC
16kx 4 LI.-
Bank 1 EC

~ 16kx 4
.EC In [4:71

c::J-t-
~

Bank 2 EC
16k x 4

'"-

CJ- A1 [>0 Bank2A1 -• • • •
A6 [>0 • hnk2A6 •

!;CAS' [>0 CAS Bank2CAS'

RAS' [>0 Bank2RAS'

L BikSet2

BlkS,t1

I -"-
Bank2Write' I

L-j~-..... -----1V

66

r--,

16 H-
16 ... 16

r--,

16 ~
16 ...

'-- Data Out
'--
r---
~ 16

I
Read 0
Re~

~

f-+
Enabled by L.CardSel

16

16 16

I
~

16 r+-
16 16

~

4
4

4
BlkSetJ

--1 I"'"

i 4
4

Blks.lcl

a/ockO

Sa"kO Even

a,nlet Odd

Sanle2)(

ECOut (0:3]

~-:J
Enabt eel by I.CardSet

ECOut [4:71

~
Enabt eel by L.CardSe'

a/ocle1

Even

)(

Odd

aJ clc2

)(

a,nk2 RAS/CAS/W,ft./ AOoA6
shown as typical of al/ three
banles

Figure 5.9

Storage Card Organization

67

6.0 Input-Output

The preceding section discussed the memory and I/O operations available to a
microprogram. This section will discuss the interface between the processor/memory
system and I/O controllers.

I/O controllerS in the DO are intimately associated with microcoded tasks in the processor.
When the controller requires service (typically to request or deliver data from a device), it
generates a wakeup request, which will (eventually) cause its associated task in the
processor to run and provide the requested service. All memory requests are made by the
processor, although the actual transfer of data will often occur directly between the memory
and the controller. The processor can exchange status information or data with a controller
using INPUT and OUTPUT instructions. There are also two lines, shared by all controllers,
which allow a single bit of status to be transferred between the microprogram and the
controller without incurring the delays introduced by the memory system when INPUT and
OUTPUT operations are done.

The interface between a controller and the processor/memory consists of a fixed set of
signals which use well-defined signalling protocols. Use of some of the signals is optional,
but all controllers must provide a minimum set of capabilities.

Subsequent sections will discuss the interface signals, the way in which controller
addressing is done, how wakeup requests are made, the sequence of events in data
transfers, and the special signals in the interface.

Appendix C shows the logic required to implement the minimum set of functions required in
all controllers.

6.1 Interface Signals

Table 6.1 lists all signals available to I/O controllers. These signals are grouped into six
categories based on their function. Subsequent sections describe their functions in detail.

Section 6: Input-Output

Table 6.1

Signal Name Number of

Un ..
Input or Outputl

DriverlRcvr type1
Use

Signa that eetaOIIah the controller address:
SRln' IS

SROuf OS
SRCIocX IS

Signals aasociated with wakeup request
Phase1Next' 1 IS
WakeP1' OW,IS
WakeP2' OW,IS

WakeP3' OW.IS

Controller add,... in

Controller add.... out

Cock for controller address

generation:

Wakeup state machine control
Wakeup Request

Wakeup Request

Wakeup Request

Data input signals (processor/memory (.. controller):

IAddr(O:7] 8 IP

IValid' IP

IData(O:15] 16 OT

IData(16] OT

Data output signals (processor/memory

AdvancePipe' 1 . IP

MC2StartXPort IP

OValid' 1 IP

OOata{0:1S] 16 IP

OOata{16] 1 IP

OFault' 1 IP

Single-bit communication path signals:

IOAttn' 1 OW

IOStrobe IP

Clocks and processor status signals:

CTask[O:3] 4 IP

RUN 1 IP

edgeClockFeed' IS

RamClockFeed' IS

..)

Input Address
Input Address Valid

Input Data
Input Data Parity

eontroller):

Address pipeline

Address pipeline

Indicates output data is valid

Output Data

OUtput Data Parity

OUtput Fault

Attention signal to processor

Strobe from processor

Task eurrently running on processor

Low if processor not ready

Clock
Clock

68

1) Although signals are named relative to the proeessor (i.e. Output means data to a eontroller), these signals

are specified relative to the controller as follows:

IP: Each board will receive this input line with one PNP input load
IS: Each board will receive this input line with one Sehottky TTL load
Oe:· ~. Each board '.viii drive this li"e with on~ Schott~y TTL output (totem. pole)

OT: Each board will drive thiS outout line with one Schottky tri·state outout

OW: Eacn coard will drive thiS ilne Wlll'1 ene SN74S38 Wire·or anver

All signals in the machine begin to change on the rising edge of EdgeClock' (which is
delayed from the backplane signal EdgeClockFeed' by two S levels). Signals generated in
the processor will become stable no later that -3Ons after EdgeClock' rises, and signals
generated by controllers should be stable 30ns before the clock rises. EdgeClockFeed' on

Section 6: Input-Output 69

the backpanel is low for 25% of a cycle, RamClockFeed' is low for 50% of a cycle, and the
rising edges of these signals are conicident (within skew limits).

6.2 Controller Addressing

Each controller in a DO system is associated with a task in the processor. A single controller
may have up to sixteen internal registers which may be read or written by the
processor/memory. The functional assignment of the registers within a controller is
unspecified with the exception of INPUT register 0, which will return a 16-bit identification
number unique to the board type when it is read. 'Alhen the processor executes a memory
or I/O operation directed to a particular controller, it specifies an eight-bit I/O Address. The
most significant four bits of this address are the task number, the low order four bits select
one of the sixteen registers within the controller. Since there will be many types of
controller, it is not possible to build the task number into each controller when it is designed,
nor is it desirable to establish the task number with switches when the controller is installed.
Instead, the task number is assigned dynamically by the processor using the SRln', SROut',
and SRClock lines.

Each controller will provide a four-bit CAddr shift register, which holds the task number
associated with the controller. The input of this register is SRln', the output is SROut', and
the clock is connected to SRClock (the register clocks on the positive-going clock
transition). SROut' from one card slot is wired to SRln' on the next card, and the SRClock
lines are connected together. Storage cards jumper SRln' to SROut', and SRln' for the slot
closest to the processor (slot 5) is connected to H2.15.

The processor can set an address into each controller by serially placing a bit pattern in
H2.15 and executing the function GenSRClock, which sends one clock to all the shift
registers. For a 12-slot system, 48 clocks are required to initialize all possible controllers.
The backplane is built so that slots 5-12 can accept either storage cards or I/O controllers,
slots 13-16 can accept only I/O controllers. Subject to this limitation, storage cards and
controllers can be mixed in any order, as long as there are no gaps between cards.

At bootstrap time, the microcode will load a fixed initialization pattern (which makes all
controller addresses unique) into the register, then read register 0 in each device to
determine the type of controller (if one is present). Load d~vices may be located in this
manner, and the processor may then change the. assignment of controllers to correspond to
the proper task priority arrangements for the particular microcode and peripheral
configuration present.

3.3 :ask Wakeup Requ~st 3

When an 10 device needs service from its associated task in the processor, it generates a
wakeup request. In each controller, the CAddr' register holds the complement of the number
of the task associated with the controller. The number of the task is also its priority. A
wakeup request sequence requires two distinct phases. During the first phase (phase 1),
each controller which needs service ORs an encoded version of the two most significant bits

Section 6: Input-Output 70

of its task number onto the WakeP1, WakeP2, and WakeP3 lines as follows (the WakeP lines
are low true on the backplane):

Task Number CAddr[0:3] WakeP1 WakeP2 WakeP3

Q.3
4.7

8-11

12-15

OOxx

o 1 x x

1 0 x x
1 1 x x

o
1

o
o

o
o
1

o

o
o
o

At the end of phase 1, the processor will encode the WakeP lines into a two-bit number
corresponding the the most significant bits of the highest priority requesting task:

PTO = WakeP2 OR WakeP3

PT1 = WakeP3 or (WakeP1 and not WakeP2)

At the same time, all controllers will examine the WakeP lines, and those which see lines
corresponding to requests made by higher priority controllers will not participate in the
second phase of the request sequence.

During the second phase of a request sequence (phase 2), the controlers which are still
participating will OR a similarly encoded version of the least significant two bits of their task
number onto the WakeP lines:

Task Number CAddr[0:3] WakeP1 WakeP2 WakeP3

4.8.12 xxOO 0 0 0
1.5.9.13 x x 0 1 1 0 0
2.5.10.14 x x 1 0 0 1 0
3.7.11 x x 1 1 0 0

The processor encodes these lines using the same process as in the first phase. The
resulting two bits and the two bits which were saved from the first phase are latched in the
processor. These bits are the task number of the highest priority requesting task (HTask).

The timing of the wakeup logiC is shown in figure 6.2 The signal Phase1 Next' is supplied to
all controllers by the processor to synchronize the processor and controller logiC.
Phase' Next will always be exactly one cycle in length (although since EdgeClock may be
withheld by the branch logic. the duration of a cycle is sometimes doubled). Request phase
, occupies the cycle immediately following Phase' Next. and request phase 2 occupies all
su:!:e~uent cycles unitl the next 0ccu::-ence of Phase1 Next. Normally. phase 2 will also be
one cvcle in length. but if orocessor cycles are suspended. Phase1 Next will be deferred. and
phase 2 will be extended. Controllers must present valid data on the WakeP lines even if
suspension occurs. Note that the delay between the time that a controlier asserts or
removes the wakeup request and the time the processor responds by running the task is a
minimum of three instruction times. Designs for controllers and their associated microcode
must take this latency into account.

Section 6: Input-Output 7'

-------- Old Task Running ---------- --- New Task Running ---

I CycleO I Cycle1

~hase1Next I Phase1

Request arrives
In this cycle

I CycleO I Cvcle1 I CycleO I Cvcle1 CycleO I Cycle1 I S(yCleO

I Phase2 I . l [rocessor l Processor fetches L MIR .. flret instruction
fetches CS[TPC[HTask)] If of new task
TPC[HTask] this instruction Is RETURN

APC .. TPC[HTask]

Tpc·A latches
HTask

Proce .. or latches
msbol Htask

Figure 6.2 Wakeup Latency

6.3 Input and Output Operations

<;ycle1

Data is read from device controllers with INPUT or 10$tore operations. From the point of
view of the controller, these operations are indistinguishable, since they result in the same
sequence of signals.

An input operation is started when the processor starts MC' and places the 1/0 address on
the IAddr lines. Some number of cycles later (the number depends on the operation), the
memory controller will assert IValid. The controller that recognized the address will return
data in the cycle following the one in which IVaiid is asserted. The parity bit (IOata[16]) must
be returned in the same cycle as the data.

Output is more complex, since transport of data to the controllers is controlled by MC2. not
MC1 .. An output operation begins in the same way as an input, with the loading of IAddr.
Some number of cycles later. MC1 has completed its work and MC2 is started. At this time,
the processor issues AdvancePipe. and may change IAddr. The controller is expected to
use AdvancePipe to latch the data from IAddr in an internal register which is essentially a
part of MC2.

Since the transport of data from MC2 can overlap the time at which MC2 is started for the
next reference (probably for a different address). a third stage in the address pipeline is
required. The memory controller issues the Signal MC2StartXport just prior to the time it will
tc;::~ :c deliver data to the c~;-.~~:;n,3r .. :.;~C the controller is expected to ~se this signal to
:.::~,:~, ~r'8 outjJut of the registe~ .::c,,::'.c(j b:. i\dvanceD;p::; ir, yet anothG~ ~egister. This final
·register is the one that the controller compares with CAddr to determine if it is the
destination for an output operation. When the memory finally has data to deliver, it asserts
the signal OValid. The controller should use OValid to latch the OData lines (OValid should,
of course. be used to qualify EdgeClock). If the memory delivers OFault in the same cycle
as the one in which OVaiid is delivered, it indicates that a double error has been detected.

Section 6: Input-Output 72

The controller may use this signal in whatever way it wants. The memory will deliver the odd
parity bit OData[16] in the cycle follo,!"ing the data. Controllers may choose to ignore the
parity bit if data integrity is not crucial (e.g. data for a display).

6.6 I/O Attention, I/O Strobe, RUN

In many cases, the microcode for an 10 device controller will use a tight loop to transfer data
to or from a controller. Some devices may need to inform the processor of exceptional
conditions which should terminate or modify such a loop. To provide this capability, the
processor delivers the number of the task which has control of the processor on the
CTask[O:3] lines. 10 device controllers may receive these lines and return the (wire-ored)
signal 10Attn' to the processor. At t1 of each microinstruction, 10Attn' is latched in the
processor, and a branch condition is provided to test its value. Each board will drive the
JOAttn' line with a single wire-or driver (SN74S38).

Note: Since the time for CTask(O:3] to reach the controller and be returned to the processor as IOAttn' is longer
than one cycle. microprograms should not test the value of IOAttn in any instruction following a RETURN, since
the RETURN may cause a task switch.

The 10Strobe signal allows the processor to send a single bit of information to the controller
without incurring the delay associated with the OUTPUT operation. The function IOStrobe
makes this line true for one cycle. Each controller can AND this line with a signal that
indicates that its associated task is running (CTask = CAddr), and use the resulting signal
for any purpose it wishes.

A reset signal is distributed to all 10 controllers. This Signal, RUN, is cleared during a
bootstrap operation, and if the -+ 5V supply drops below approximately 4.7V. In particular,
this line should terminate writing on magnetic media devices.. All controllers should reset
and quiesce themselves when this line is dropped, and also when an OUTPUT operation with
data = 0 is directed to the devices's control register (the microcode will reset the 10 system
by doing for i = 0 to 255 do OUTPUT{i,O)} After RUN becomes high, device controllers should
refrain from requesting wakeups until explicitly enabled by their microcode.

Device controllers may implement other task-specific reset operations via OUTPUT
instructions if they need them.

73

7.0 User Terminals and Controllers

7.1 Terminal to Controller Interface

So that a number of different controller and terminal types may be freely interconnected in
~O-based systems, a common interface between terminals and controllers has been defined.
This interface assumes that a terminal contains a raster-scanned bitmap display and one or
more low bandwidth input devices (keyboard, pointing device, etc.). The controller transmits
digital video and sync to the terminal over six pairs of a seven-pair cable. The input data is
transmitted to the controller serially over the seventh pair (the "backchannel"). Video and
control (sync) are time-multiplexed, and four bits are transmitted in parallel to reduce the
bandwidth required on the cable.

While the description in the following sections assumes a display having one bit per pixel,
the basic signalling mechanism may be extended to support gray-level or color displays.

7.1.1 Cables and Connectors

The interface cable is Belden # 9507 or equivalent. This cable consists of seven twisted
pairs of· #24 AWG stranded, vinyl insulated wire, surrounded by a foil shield with a stranded
drain wire and an overall vinyl jacket. The outside diameter of the cable is .290".

Six of the seven pairs are laid in a spiral around the seventh pair (the red/black pair). As a
result, the electrical length of the red/black pair is much less than that of the remaining
pairs. Since the interface depends on having minimum skew betwee~ the six pairs used for
the high speed section, the red/black pair is used for the backchannel.

The interface connector is a 15 pin Cannon "0" series or equivalent unit (several sources
exist). The controller contains a male connector, the terminal contains a female connector.

7.1.2 0 rive rs and Receive rs

Figure 7.1.1 shows the drivers and receivers used in the interface. ECl 10K differential
drivers with 220 ohm pulldown resistors to ·5.2v are used to drive each pair. The receiving
end of each pair is terminated in 100 ohms, and differential ECl receivers are used to
recover the data.

7.1.3 Video and Control Channel

i-filS S~-:';LJon of the interface uses Sir: pailS i!'i the ca.!):;::_ rour bits or data are transmitted in
parallel from the controller to the terminal, accompanied by two clock signals. The four data
bits are interpreted as video or control by the terminal, depending on the phase of the clock.
Figure 7 _, _3 shows the timing relationships in the interface. The controller places data on
the data lines on the falling edge on ClkA. The data are sampled by the terminal on the
rising edge of ClkA. If elkS = 1 at this time, the nibble is interpreted as four bits of video.

Section 7: User Terminals and Controllers 74

If ClkS = 0, the nibble is interpreted as sync and control information. ClkA and ClkS are
transmitted in quadrature so that the terminal can reconstitute a clock at the video bit rate.

When video data is serialized by the terminal, bit 0 is transmitted first, bit 3 is transmitted
last. A logic 0 corresponds to a blanked display.

[Note: aso display specifications refer to bit 0 as the "least significant bit" of a nibble, and
state that this bit is transmitted first. In DO memory, bitmaps are stored such that the most
significant bit is transmitted first, but since the DO convention is that bit 0 is the msb, the bit
numbers in 050 specifications are the same as DO bit numbering.]

When a nibble is interpreted as control information, bit 2 is reserved for horizontal sync, bit 3
is reserved for vertical sync. The interpretation of bits 0 and 1 is not defined; different types
of terminal may use them for different purposes.

7.1.4 Backchannel

Data from low bandwidth input devices at the terminal are transmitted serially over this line.
The data are clocked by the terminal on the falling edge of the horizontal sync pulse, and
will be sampled by the controller during the subsequent scan line. Data are transmitted in a
frame composed of a single "start" bit (a logic one), followed by a number of data bits. A
frame is transmitted when any input signal at the t.rminal changes state. The idle state of
the line is logic zero.

Since different types of terminals may have differing amounts of information to transmit, the
format of a frame is not defined. The controller microcode must provide whatever
capabilities are required by a particular terminal.

Section 7: User Terminals and Controllers 75

Controller Cable Terminal Interprelatlon:
Cable: Cable:

DA15P As As
Connector ECl Receiver Data: Control:

DA15S
ECl Driver Connector Belden #9507

EE C4 b ct> First Not
1000hm video Specified

------~[:)O EE~~~~~'~tO~ao~ _______ G~B~~A!~~~ __ ~
.S.2v 0 O~~OOhm

3
4

2200hm
(2)

1
2

2200hm
(2)

~------------~13

ECl Receiver 14

1000hm

Data2
NData2

Data
NData3

ClkA
N Ika

BROWN
BlA K

BLUE
BLACK

YEllOW
BlA K

5
6

3
4

WHITE 11
~~~ ________ ~B~l~A~K __ ~12 

. OataOut RED 13 

1000hm 

1000hm 

1000hm 

1000hm 

1000hm 

:.lll::og=r.:i~C.liGl.:.r:.:.ou~ni!ld:l.-____ -lODt-______________ ... O""R""A""IN ____ ~OD Logic Ground 

bit 

Second Not 
video Specified 
bit 

Third Horizontal 
video Sync 
bit 

Fou rth Vertical 
video Sync 
bit 

ClockA 

ClockS 

Figu re 7.1.1 Terminal Interface Drivers, Cable, and Receivers 

~ One Nibble ---;.I. 
---J ~ One Pixel I 

Pixel Rate Clock 

C!OCkA. 

ClockB 

I _ .... 

Controller will 
present data 

L._~_-' L ___ n._ .• J----· 1... .. __ . __ 
t --J..t __ t_-----'t t 
Terminal will 
sample data 

~----~I ______ -~----~ 
L !! Clocl<9 is low Ylhen (:'O~k ~ -ises. the terminal will interpret 

the nibble as 4 control bits. If clockS is high. the terminal 

will Interpret the nibble as video data. 

Figure 7.1.3 Terminal Interface Timing 



Section 7: User Terminals and Controllers 76 

7.2 UTVFC (User Terminal Variable Format Controller) 

7.2.1 Introduction 

The UTVFC occupies a single DO board, and supports up to four user terminals utilizing the 
interface and protocol described in section 7.1. The major subsections of the board are 
shown in figure 7.2.1. The UTVFC provides horizontal sync for all channels, data buffering 
for up to 1024 bits per scan line for each channel, a 32 x 32 bit hardware cursor for two of 
the channels, receivers for the backchannel associated with each terminal, and the logic 
necessary to interface th~ DO I/O system. The video bit rate, horizontal line rate, number of 
words per scan line and vertical field rate for all four channels must be identical. The bit 
rate is set by a crystal oscillator, the line rate is determined by the horizontal control RAM, 
which must be initialized by the processor, and the vertical field rate is determined by the 
controlier microcode, which must count scan lines. The microcode is also responsible for 
accumulating the serial backchannel message. 

The UTVFC also contains proviSions for single' stepping the video clock, and reading a 
number of internal signals. 

Register Add r.ss 
Oevice Address 
Control Signals 

Clock Gene rato r 
Control 
Sync Generation 

TOClkA, TOClkB 

I-----<=::J T1ClkA, T1ClkB 

i2ClkA, T2Clk8 

T3ClkA, T3ClkB 

4 Channel Data Buffer 
and Add ressing 

I---<-'-.-J TOOataO·3· 

T10ataO·3 

T20ataO·3 

I---C~ T30ataO·3 Cursor Mixing 

Sync Multiplexing 

COOO·3 

C100·3 

)olo'I'===--t Back 
C~i.lII:&I&lIIIolj,,-! Channel 

)oio&===--t M u x 

Device 10 

10Attn' 

.---'-----' 

Device Address 
Recognition 

2 Channel 
Cursor Logic 

IOata.OO·1S Diagnostic I-~=:;';":'::f.-,-r~ 
DO Interface Input Data 

Figure 7 .2.1 UTVFC Major Subsections 



Section 7: User Terminals and Controllers 77 

7.2.2 Output Registers 

Figure 7.2.2 shows the assignment of output register addresses in the UTYFC. Eleven of the 
sixteen possible registers available to a controller are used. The function of each register is 
discussed briefly here~ and more fully in following sections. These registers cannot be read 
directly, but most can be read indirectly via the diagnostic interface. 

Register 0 is the control register. The most significant byte of the control register holds the 
two unassigned bits that are sent to each terminal as part of a control nibble. Bits 8, , 4, and 
, 5 control the clock generator and enable controller wakeup requests. Bits 9 and , 0 control 
the polarity of the video for channels 0 and " and bits "., 3 control terminal blanking during 
vertical retrace and the generation of vertical sync. 

Register , is the data buffer starting address register. This register must be initialized by the 
microcode with 64c1·Nwrds (the number of memory words per scan line) as a function of the 
terminal type. Bits 0 and , should be 11 during normal operation; they are provided for 
diagnostic control and to initialize the horizontal control RAM. 

Register 2 is the horizontal control RAM location addressed by AAR[O:7). The horizontal 
control RAM is loaded only during controller initialization. 

DOing an OUTPUT to register 3 does not cause data to be transferred from the DO, but loads 
IAR from START. 

Registers 4 and 5 are the cursor control registers for channels 0 and ,. These registers are 
loaded by the microcode during every scan line preceding a line in which the cursor is 
visible. 

Registers 6 and 7 are the cursor memory locations addressed by COAddr and C1 Addr. It is 
only necessary to load the cursor memory when the cursor bitmap is changed. 

Registers 10b through 14b are the data buffers for the four display channels. These buffers 
are loaded with data to be serialized as video. 



Section 7: User Terminals and Controllers 78 

0: 
Control Register" OutD(O:15] 

~ PPBckGnd 

Inc Clr 
NC TO HC 

1 : 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Buffer Start .. OutD[0:7] 

Force Fore. 
IAR AAR ( Start.x ) 
Load'i Load 0 I 1 I 2 I 3 I 4 15 

o 2 3 4 5 6 7 

2: 
Horizontal Control Ram [AAR[O:7]] .. OutD[12:15] 

SetC HS Switch ML 
Phaaj 

I I 
12 13 14 15 

3: 
IAR[0:5] .. Start[O:5] 

4: an Une NumlMr co Cursor X (2', complement) 
(COAddr.x) En til 

Cursor 0" OutD[0:15] COAddr.x 
0 2 4 5 6 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

5: 
Cursor 1 .. OutD[0:15] 

Scan L.ine Number C1 Cursor X (2's complement) ) 
Enal (C1Addr.x) I C1Addr.x I C1BltPoI 

0 I 1 I 2 I 3 I 4 1 I I I 5 I 6 I 7 011 

o 3 4 5 6 7 8 9 10 11. 12 13 14 15 

6: 

Cursor Memory 0 [COAddr[0:7]] .. OutD[12:15] 

7: 
Cursor Memory 1 [C1 Addr[0:7]] .. OutD[12:15] 

10: 

BufO [IAR[0:5]] .. OutD[0:15], 1AR .. JAR + 1 

, 1 : 

Buf1 [JAR[0:5]] .. OutD[0:1 5], IAR .. JAR + 1 

12: 

Buf2 [IAR[0:5]] .. OutD(O:15], JAR .. IAR + 1 

, 3: 

Buf3 [IAR[O:S] ... OutD[O:' 5], IAR ... IAR +' 
Figure 7.2.2 Output Register Functions 



Section 7: User Terminals and Controllers 79 

7.2.3 Timing and Sync Generation 

The basic frequency source in the UTVFC is a crystal oscillator which operates at the video 
bit rate. This frequency is divided by four in a two· bit Gray code counter to form the signals 
ClkA, ClkS, and NClk (nibble clock). Most register transfers within that portion of the UTYFC 
synchronized to the video rate occur on the fall of NClk. The Gray counter sequence is: 

ClkA 

o 
o 
1 
1 

ClkB 
o 
1 
1 
o 

NClk 

o 
o 
o 
1 

Note that ClkA and ClkS are in quadrature, and that NClk falls when ClkA rises, which 
causes the data to the terminal to change in accordance with the terminal protocol. 
Internally, ClkS runs continuously, but the signal DropClockS will cause it to be suppressed 
at the terminal cable drivers. 

The DO microprogram can control the clock generator using the AllowWU, IncNC, and ClrNC 
bits of the control register. If AllowWU is true, the crystal oscillator is enabled. If AllowWU 
is false, the oscillator is disabled. While the oscillator is disabled, an OUTPUT to the control 
register with ClrNC true resets the Gray counter, and OUTPUT with IncNC true increments 
the counter. Four OUTPUTS generate one Nclk. 

The logic that generates the synchronization signals and controls transmission of data to the 
terminal is shown in figure 7.2.3. The horizontal control RAM is the principal source of 
control signals. This RAM is addressed by the Active Address Register (AAR), which also 
addresses the data buffer whose contents are currently being sent to the terminals. Each 
scan line is divided into two segments by the signal ControlPhase. When ControlPhase is 
false, data are sent to the terminals. As each nibble is transmitted, AAR is incremented, 
which accesses the next address in the horizontal control RAM. During this segment of the 
scan line, the signals HS and Switch are forced to zero by the multiplexer on the input of the 
horizontal control register. Only the signals ML (associated with vertical sync generation) 
and SetCPhase are determined by the RAM contents. 

When a RAM location with SetCPhase = 1 is accessed, the ControlPhase flip-flop is set. 
ControlPhase forces the data being sent to the terminal to zero (blanking the display), and 
also switches the horizontal control register input multiplexer so that the signals HS and 
Switch are determined by the contents of the RAM. AAR continues to increment until a RAM 
location with Switch = 1 is accessed. When ·Switch occurs, ControlPhase is cleared. 
AAR[O:7] is loaded from StartiG:5],.O. and the cycle repeats. At switch time. the 
sync'1rcn;:ec control register :5 loaded from the comroi re;iste; ;(, preparation for the ;-.ext 

scan line. Switch also complements the Even/Odd Line flip flop, which causes the roles of 
the inactive and active data buffers to be reversed. 

During ControlPhase, a horizontal sync signal will be sent to the terminal. The width of the 
sync pulse and its relationship to the blanking interval are determined by the contents of the 



Seetion 7: User Terminals and Controllers 80 

horizontal control RAM. Figure 7.2.4 shows the timing of events in the vicinity of a horizontal 
sync pulse in detail. The signal (HS or VS) sets the SendControl flip flop which causes 
DropClockB to be set one nibble time later. DropClockB causes the terminal to interpret the 
data lines as control information. SendControl is used in the data section of the UTVFC to 
gate HS and VS to the data lines (the bits in the most signifi~t byte of the control register 
are also sent). When (HS or VS) becomes false, SendControl is extended for one extra 
nibble time to allow the control register in the terminal to be cleared. 

Generation of vertical sync is the responsibility of the UTVFC microprogram. Both interlaced 
and non·interlaced displays may be driven by the UTVFC. The microcode must change the 
PPVS bit in the control register during the scan line preceding the one in which VS is to 
change. The state of the Odd Field bit determines whether VS will change on the falling 
edge of HS (Odd Field = '), or on the falling edge of ML (Odd Field = 0). 

The UTVFC requests a wakeup at the beginning of every horizontal line (at the fall of 
SWITCH). The wakeup request remains set until explicitly cleared by the IOStrobe function, 
except that a wakeup request will not be issued if the UTVFC's task is running. The 
AllowWU bit in the control register unconditionally disables wakeup requests. 



Section 7: User Terminals and Controllers 

EvenLlne 

ControlPh e' OddUne CQ ..... .I..¥:=:.:.:.:.-

.W'",vp=:Q I Cont rolPh"e 

Horizontal Control 
Ram 256x4 

Ik' 

Horizontal Control 
Rister 

.:;:A,.:;:A~RoI.l. ~ • .:..7 __ -I A 

o 
1-~~""-I1 

o 

OutD.12·15 o 

Output Addr ... = 2 

GND o 
1-----11 

o 
1------11 

ControlPhaae 

Control Reglater 

OutD.O·7 Terminal Control Blta 

P8ckGndO 
~OniZedCR 

8ckGndO 
PBckGnd1 Bckj;ind1 
PPBlank PBlank 
PPVS PreVS 

H 
v 

ControlPhaae 
PBla,.::.nk~ __ -I 

81 

NClk' 

BlankTermlnal 

NClk' 

VS 
PreOFleld Odd Field 

~OddField and HS) or 1::1 AllowWU 'r S~ venFleld and MLl1' CL' ClkCR' 

I 
Switch' ---

OutPUt Add,.. • • 0 

Rat' 

Figure 7.2.3 Control and Sync Generation 

NClk'rises: I 

NClk' 

SetCPhase 
____ ~rl~ ______________________________________ __ 

SWitch 

ControlPhase 

_ P!!an~= 1_ 

BiankTermin~ P!.!an~= 0_ 

HS I 
I 
'¥ 

Synchronized CR .. CR 
AAR .. Start 
WakeReq .. 1 

SendControl _________ 1-_______ --11 t 
DropClockB 

Output 
Drivers 
Enablac 

Ir-----------, 
-------~-------~ ~----~-----

J 
~~:~~::: I V I V I V I V 1 V 1 V 1 BIB 1 BIB 1 BIB 1 B I. SIS 1 SIS lSI SIS 1 SIB I BIB 1 B 1 V 1 V 1 V 1 V 1 

V • Video 
B,. B"nk (0) 
S = Sync and control Figure 7.2.4 Data and Control Multiplexing 



Section 7: User Terminals and Controllers 82 

7.2.4 Data Buffering 

The UTVFC contains two data buffers, each of which holds a full scan line for four terminals. 
One buffer is loaded by the DO while the other is being transmitted to the displays. The 
signal Switch, which is generated by the control logic at the end of each scan line, ping. 
pongs . the buffers. Figure 7.2.5 shows the data buffers and their interconnection. 

There are two address registers for the data buffers. IAR, the Inactive Address Register, 
addresses the buffer currently being loaded by the 00. AAR, the Active Address Register, 
addresses the buffer being read to the terminals. AAR also addresses the horizontal control 
RAM. 

IAR is a six·bit register. It supplies the most significant bits of the inactive buffer address; 
the low two bits are functions of Oaddr.6 and Oaddr.7. IAR is incremented by one each time 
the DO delivers a word to the inactive data buffer. IAR is loaded from the register START 
when IAR = 63d and the DO delivers a word to the buffer. START should contain 64d minus 
the number of words to be displayed on a scan line, so if IAR initially contains the value in 
START and the DO delivers (64d·ST ART) words during a scan line, IAR will end up with its 
initial value. This makes it unnecessary for the DO to modify IAR unless START is changed. 
A bit in START (ForceIARLoad') forces IAR to be loaded from START each time the DO 
delivers a word to the buffer. This is provided for testing and initialization. 

AAR is an eight bit register. It is incremented by NClk. AAR is loaded with 4*START by 
Switch. There is a bit in START (ForceAARLoad) which loads AAR on every NClk. This is 
provided for testing, and to initialize the Horizontal Control RAM. 

During each scan line, the processor delivers the data for the next scan line for the first 

terminal, then delivers a full scan line for the second terminal, and so forth. When the data 
are being transmitted to the terminals, the first nibble for all four terminals is read, thel) the 
second nibble, and so on. To accomplish this, each four-bit section of both buffers is 
independently addressable, and there is logic at the input and at the output of the buffers to 
shift the data appropriately. 

When the DO delivers a 16·bit word to the buffer, the data are cycled so that the most 
significant nibble for terminal n is placed in buffer n. In addition, the low order two bi~ of 
the buffer address are set as a function of the terminal number so that nibble n of the data 

.' for all terminals is stored in buffer location n. The buffer address is then incremented by 4 
(by incrementing IAR by 1). This operation results in the data being located in the buffer as 
shown in figure 7.2.6. 

When data are removed from the buffer. the words are accessed sequentially (since each 
word contains one nibble for each at the four terminals), but the data must be cycled to 
remove the cycle introduced when the buffer was loaded. This is done by the output shifter. 



Section 7: User Terminals and Controllers 

Bit Numb.r: 

Buffer 
Location 

3 

2 

1 

o 

Buffer: 
BO B1 B2 B3 

o 3 4 7 8 11 12 1! 
T1 T2 T3 TO 
N3 N3 N3 N3 

T2 T3 TO T1 
N2 N2 N2 N2 

T3 TO T1 N2 
N1 N1 N1 N1 

TO T1 T2 T3 
NO NO NO NO 

Tx = Terminal x 

Ny. Nibble y 

Figure 7.2.6 Buffer Contents as a function of location 

83 

Control information is multiplexed with the video data between the first and second rank of 
the output shifter. The first rank of the shifter is disabled by SendControl, and the terminal 
control bits, HS, and VS are tri-stated onto these lines. The second rank of the shifter is 
composed of multiplexer· latches that drive the data line level converters for channels 2 and 
3 directly. Channels 0 and 1 have hardware to mix the cursor with the video data between 
the Shifter register and the line drivers. 

Channels 0 and 1 also have logic to control the polarity of the background video. If the 
BckGndO/1 bit in the control register is zero, the associated channel will display white for 
zero bits in memory. The cursor is ORed with the video data before the background polarity 
is selected, so ones in the cursor memory always correspond to a polarity opposite of that of 
the background. For channels 2 and 3. zeros in memory correspond to a blanked display. 
The PP91ank bit in the control register causes the terminal to be blanked by disabling the 
line drivers (but the line drivers are enabled when control is transmitted). Because -of the 
delay introduced by cursor mixing, the data and clocks for channels 0 and 1 have an extra 
level of latching, which delays them by one nibble relative to channels 2 and 3. This is only 
important for terminals (e.g. color terminals) that use more than one channel to drive a 
single display. 



Input Shifter: 

OutO 
nibble: 
nO: O· 3 
n1: 4- 7 
n2: 8011 
n3:12·15 

n3 

xy J 

0 
Buf1 Bn 

3 

0 
Buf2Bn 

3 

0 
Buf3Bn 

3 

OutO.aO·07 

Section 7: User Terminals and Controllers. 84 
Buffer: 

a z AAR.6,7 

x.Oaddr.6 

y = Oadctr.7 

z.Oaddr.6xorOec:ldr.7 

42S6x4 Rame 

Output Shifte r 
First Rank: 

Fi rat rank outputs 
are disabled by 
SendControl 

o 1.n 0 

Output Shifter 
Second Rank, 
Cable Drivers: 

Cursor mixing on channels a and 1 only 

25S09's are clocked by NClk' 

4 ~4=-,...._.:.:0~B~O:ol.n:. ON01.n 
L-,.~;;;';:;"'-.,....I OBO.n 

Nibble selected for 
AAR.6,7 • 0,1,2.3: 

4 

4 

4 

AAR.a·s 
IAR.C·S 

EvenUne 

AAR.O·S 
IAR.O·S 

OddLjne 

2 

081.n 

OB2.n 

2 

083.n 

2 

EvenLine lenaote') 
Start 
Holding Register 

ForcelARLoad' 

ForceAARLoad' 

Start.a·S 

6 

Inactive Address Register 
IAR 

AAR.O·S 

TO: 0,1,2,3 

BckGndO 
SendControl 

OB3.n I ~ ON23.n 
082.n 

AAR.7' 

T10atan 

MC124 

B1.n a 
ON12.n T2: 2,3,0,1 

OB2.n T2Datan 

~B3.n 10 
1 ON30.n 

BO.n . 

AAR.7 I 
AAR.6 
SendControl 

BlankTerminal' '1"'0.. 
~D~rO~D~C~J~k~8~~---i ~'--~~ 
==~--"J/' 

/IIClk 

Start.O·S AAR.O· 7 

Gnd 5 

C ~D' 
ClkStart I JAR = 770 or =orcetARLoad ~/II.:.:c.:::Jk:""-l1 Switch or ForceAARLoad OurQut Address = 1 

EdgeClock 
and (LDIAR or (Oactdr.4 and OMsF)) 

Figure 7 .2.5 Data Buffers and Addressing 



Section 7: User Terminals and Controllers 85 

7.2.5 Cursor 

Channels 0 and 1 of the UTVFC contain logic to generate 32x32 bit cursors (see figure 
7.2.7). A 256x4 RAM holds the cursor video pattern for each channel. This RAM is 
addressed by CxAddr[0:7]. Bits 0·4 of this register select one of 32 eight·nibble cursor 
segments to be displayed on a particular scan line. In the scan line preceding the one in 
which cursor segment S is to be displayed, the microcode will load the cursor control 
register with S in bits 0·4, with a one in bit 5 to enable the cursor logic, and with the 
negative of the x coordinate of the leftmost bit of the cursor in bits 6·15. During the next 
control phase, this quantity is loaded into the cursor x position counter. During the 
subsequent scan line, the x position counter is incremented by NClk until its most significant 
five bits are zero, at which time CxShift becomes true. During the next eight nibble times, 
the cursor RAM outputs are enabled, and the eight nibbles of cursor segment S are loaded 
into the output register (at all other times, the cursor RAM outputs are forced to zero). The 
final shift required to place the cursor on the scan line with a precision of one bit is provided 
by the cursor shifter, controlled by the low two bits of the x holding register. Up to three bits 
of a given nibble may be shifted so that they must be merged with the following nibble; 
these bits are recirculated through the output register. The cursor video (CxDO·3) is ORed 
with the main video as described in figure 7.2.4. 

The cursor memory must be loaded during vertical retrace, since the value in the x position 
counter used to address the cursor RAM can only be set if PBlank = 1. During this time, the 
x position counter is loaded from the x holding register, so the microprogram can load an 
address into CxAddr[0:7], then write the data for that location into the cursor RAM (a total of 
512 OUTPUT operations are required to load the RAM with the full 32x32 cursor). 



Section 7: User Terminals and Controllers 86 

X.Holdlng Reg. 

2x 
S374 B~n~k~~~~~ 

ClkA :C~IoI.Q.:~ 
elk' 

5 

Ou 0.0 ·15 

S374 

1-J'=2;",.,o~u;,:.rB==ltPo. 

f 
OutlJUt Add,... .... ,5 

01 

c:.. .... SllHtet 

. 0 

Cursor RAM 

Output Register PNlb. 
xO Nib. 

NI 1 S374 PN .1 Nib. 3 

F9342 Nib. PNlb.2 
NI PHlb. 

Nib. PHlb.2 0 NI .1 4 
Nib. PNlb.3 x01 
NI 3 Ib.O 

Nlb.1 3 
OutD.1 ·15 4 

PHlb.3 0 
Nlb.O 
Nlb.1 x 

Nlb.2 3 
CxEnbl 

xShlft 
OlsableCurs' 

Nlb.O 0 
N 1 
Nib. 
Nib. 3 

Cl5ill Po§ I 
,21 

Figure 7.2.7 Cursor Logic (channels a and 1 only) 



Section 7: User Terminals and Controllers 87 

7.2.6 Backchannel 

The state of the backchannel message bit from the terminal is provided on the IOAttn line. 
IOAttn will be true if the message bit is a logical one. The terminal that is selected to deliver 
its message is determined by IAddr.6-7. The intent is that the microcode will send the first 
block of data to a terminal with a memory operation (which will set IAddr.6-7 to the terminal 
number), then branch on IOAttn before doing a task switch or other memory reference. 
Since IOAttn must be sampled every scan line, this means that the microcode may have to 
do an innocuous memory operation to set the terminal number if it has no data to deliver. 

7.2.7 Cont roller Identification and Diagnostic Input 

The UTVFC provides only one Input register. This register is transmitted when any of the 
sixteen registers available to the UTVFC's task are accessed. The format of the register is 
shown in figure 7.2.8. The most significant byte of the register contains 2, the UTVFC's 
unique 10 number. Bits 8 through 12 are determined by wiring on the platform containing 
the crystal oscillator, and indicate the frequency of the bitclock. Bits 13-14 are 10, and bit 
15 is the Test Bit. 

The Test Bit is the output of a forty-bit shift register whose inputs are connected to a 
number of internal signals in the controller (refer to the logic diagrams). When an INPUT is 
done from a register with address >3 (mod 16) these bits are loaded into the shift register. 
When an INPUT is done with address (4, the register is shifted. The intent is that a (Mesa) 
program can be written that controls the UTVFC clock and checks most of the internal logic 
of the UTVFC via this path. 

o o o o o , o Bltclock Rat. 

o 2 3 4 5 6 7 8 9 10 11 

Figure 7.2.8 Input Register Format 

12 13 

o 
I 

14 

Tnt I Bit 
I . 

15 



88 

8.0 Rigid Disk Controller 

S.1 Introduction 

The Fligid Disk Controller (ROC) is capable of operating up to four Shugart SA4000 disks. 
The FlOC controls disk formatting, data buffering, error checking and ECC syndrome 
generation, data transfers to and from the DO, and generation of wakeup requests for the 
disk microcode. The ROC also contains self·test logic with which a program can simulate 
the disk drive and exercise the controller on a clock·by-clock basis. 

8.2 Disk Characteristics 

The prinCipal characteristics of the SA4OQO disk are shown in Table 8.1. The unformatted 
capacity of the disk is 29.1 Mbytes. The useful data capacity after formatting is 45248 
sectors • 512 bytes/sector = 23.1 Mbytes. Each sector is formatted into three records, a 
header, a label, and a data record. Details of sector formatting are shown in Table 8.2. 
Each record in a sector may be independently read, written, verified, or not accessed, 
subject to limitations imposed by a command decoding PROM in the controller and to the 
restriction (imposed by read· amplifier recovery time) that a record cannot be read following a 
write to the preceding record. 

Number of tracks 
Number of surfaces 
Heads/ surface 
Bytes/track 
Sectors/track 
Total sectors 

202 
4 
2 
18000 
28 
45248 

Table 8.1 

Transfer rate (peak) 7.1 Mb/sec (2.2 us/word) 
Rotation time 20ms 
Seek time (min/avg/max) 20/65/140 rns 



Section 8: Rigid Disk Controller 

0: 
General Reset (data is ignored) 

1 : 
Drive/Head Register 

2: 
ErrReset (data is ignored) 

3: 
DevOpReg 

4: 

Buffer[MemBufAdr]+-

5: 

TestReg 

-- 6: 
MemBufAdr 

7: 

Primeldata (data is ignored) 

0: 
Controller 10 0 0 

J 
0 1 1 

1 : 
Status 0 0 

, 
0 11 

12b: 
Data 
Loopback 

Seq Step 
Adr 
Xfer' 

0 17b: 
+-Suffer[MemBuf Ad r] 

1 

0 

1 
2 

0 
, 

2 

Dlr 

2 

1 

, 

. 

0 

3 

0 

3 

Fit 
Clr 

3 

Output Registers 

AllolII Seek Olr Inh Header 
Wakt Hdr 

Abrt Write, Read 

4 5 6 7 8 9 

Test Rdy Wrt 
Mode Fault 

7 8 9 

I 
8 9 

Input Registers 

0 
Srv Srv , 0 0 Late Late' 

J I I 
14 5 6 7 8 9 

0 
Srv Srv Rate Sect TrkO 
Late Late' Err 0 , 

14 5 6 7 8 9 

Drive Drive Drive Drive Hd Hd 
Sel Sel Sel Sel Sel Sel 
1 2 3 4 8 4 

14 5 6 7 8 9 

89 

OriveSeI HeedSeI 

0,10,1,2,3 

10 11 12 113 14 15 

Label Data 

Write, Read, Ver Write, Re.d, Ver 

10 11 12 13 14 15 

Seek TrkO Indel Sect Rd Oev 
Com~ Pul •• Oat. Clk 

10 11 12 13 14 15 

MemBufAddr 

I I I I I I 
110 11 12 113 14 15 

0 0 
Wake , , , 
Req 

J I I I 
110 11 12 13 14 15 

SeeK Dev But Rd Wrt 0 
Com~ Sel Err Err Fault Fault 

OK 

10 11 12 13 14 15 

Hd Hd Rd Wrt Wrt Wrt 
Sel Sel Gate Gate Data Clk 

2 1 

110 11 12 13 14 15 

Figure 8.3 ROC OutDut and InDut ReQisters 



Section 8: Rigid Disk Controller 90 

Table 8.2 • Sector Format (as written) 

Use: Bytes: 

Preamble 13 a's 
Sync 1 00001010 
Header 4 
HeaderCRC 2 
Postamble 5 The write gate is on only during the first byte 

Preamble 10 a's 
Sync 1 00001010 
Label 16 
Label CRC 2 
Postamble 5 The write gate is on only during the first byte 

Preamble 10 O's 
Sync 1 00001010 
Data 512 
cataECC 4 
Postamble 3 The write gate is on only during the first byte 

Recovery gap 53 
Total Sector 642 

8.3 00 • Controller Interface 

The DO and the ROC communicate using seven of the sixteen output registers and four of 
the sixteen input registers available to a controller. Figure 8.3 shows these registers. In the 
descriptions that follow, page references refer to the ROC logic diagrams. 

8.3.1 Output Registers 

The registers used to transmit information from the DO to the ROC are: 

0: GeneraiReset (see "ErrReset" below). 

1: Drive/Head: This register is buffered and sent directly to the drive(s). Values of the head field )7 
select up to 8 optional fixed heads. After a drive change (or a Write Fault). -2 sectors must pass 
before the signal DevSeIOK becomes true (p13). DevSelOK inhibits writing. 

2: ErrReset: The ROC may be reset in several ways. RUN' OR GeneraiReset = Reset, which sets 
the IOStrobe f·f (p2), clears the Wakeup Counter (p3), the AllowWake f·f and the Seek Counter (the 
counter is loaded with 17b) (p4), portions of the "Format Sequencer (p5) and the Buffer ContrOl 
Sequencer (pe) the DevSelOK counter (p13), and the Read Gate (p14). Reset OR ErrReset also clears 

the WriteFault f·f in the drive, the RateError t·f (p13), the IntOp register (04), the ReadError f·f (p11), 
and the Error Register and OFault f·f (p12). 



Section 8: Rigid Disk Controller 91 

3: DevOpRegLd: The DevOp register holds disk commands and the AliowWake bit (which must be 

set at each OUTPUT if wakeups are to be enabled). The command bits in the DevOp register are 

discussed below. 

4: BufOataLd: Data directed to this register is written into Buffer[MemBufAdr). 

5: TestRegLd: This register allows a program to simulate all signals generated by the disk. For normal 
. operation, bit 7 of this register should be cleared. 

6: MemBufAdrLd: This register holds the current pointer into the ROC's data buffer. 

7: PrimelOata: This "register" must be accessed with an OUTPUT by the microcode before reading 

the first word of each sector from the data buffer. It loads the Idata register (p6) from the data buffer 
and increments MemBufAdr (p7). The data transmitted by the OUtPUT is ignored. 

8.3.2 Input Registers 

The four ROC input registers are: 

0: Controller 10: This register returns the controller 10 (1407b). It is valid only immediately after a 
reset, since it contains the ServiceLate and WakeRequest bits. The WakeReq f·f will be set by the 

SectorWake sgnal at the next sector pulse, making 10 = 1417b (although since AliowWake = 0, no request 

will be made to the 00). 

1: Status: This register contains the controller and drive status. The significance of the bits is as 
follows: 

bits 0-4: 0 

bit 5*: ServiceLate: This bit is set if DevOp is loaded during the header or label field, or if 

(16 words have been delivered to the buffer when the header sync byte is found [Precisely, if 
MemBufAdr(2:3) = 0 when sync is found). 

bit 6*: ServiceLate': This bit is here to ease the problem of Idata Parity generation. 

bit 7*: RateError: This bit is set if the Buffer Control Sequencer bit "RateErrorPossible" is 

set and the '2' bit of the Wakeup counter = 1. RateErrorPossible is only asserted during the 
data transfer phase of a WriteOata or VerifyOata operation;' during these operations, if the 

processor falls more than one wakeup behind the disk's need for data, a rate error will be 
indicated. 

bit 8: SectorO: This bit is true for the duration of physical sector 0, i.e., from index to the 

next sector pulse. 

bit 9: TrackO: This is a signal from the drive. asserted when the heads are at TrackO. 

bit 10: Seek Complete: ThiS IS a Signal from the drive. inaicating that a previous seek has 

completed. After this signal becomes true, tne microcode must wait an additional 28 sector 

times (2Oms) for the head arm to settle before doing a data transfer. 

bit 11: DevSeIOK: This signal indicates that a drive is selected, is ready, does not have a 
WriteFault, and has delivered at least two sector pulses since selection. 



Section 8: Rigid Disk Controller 92 

bit 12-: BufErr: This bit is set during a write if data taken from the ROC's buffer has bad 
parity. 

bit 13-: RdErr: This bit is set if the CRC fails during a header read (unless InhHdrAbrt a 1). 

or during a label read or verify. or if the ecc indicates an error during a data read or verify. 

bit 14-: WriteFault This is a signal from the drive. indicating that a problem that would 
cause errors during a write exists. 

bit 15-: OFault: This line is a latched version of the OFault line from the DO. which indicates 
that a double-bit error was detected during a memory reference. 

Bits marked with • set Abort and remain set until explicitly cleared by ErrReset or GeneraJReset.. 

12b: This register provides loopback for all signals transmitted to the drive. The sampling pOint for 
these signals is the disk cable. so all the controller logic may be tested (even without a disk). 

17b: This register presents Butfer{MemBufAdrj. When accessed. MemBufAdr is incremented and the 
Idata register is loaded from the buffer. 

8.3.3 Seek Control 

The head positioning in the SA4000 is done by a stepping motor driven by pulses from the 
controller. The direction of head motion is controlled by a single bit. The drive contains a 
"buffered step" option which absorbs these step pulses more rapidly than the motor can 
move, and drives the motor at the correct rate; the ROC requires this option. Stepping is 
performed by two bits of the OevOp register. When an OUTPUT is done to the DevOp 
register with the seek bit (bit 5) equal to one, a single step pulse is issued to the drive. The 
value of DevOp.06 determines the direction; a one implies an inward step, i.e. toward higher 
track numbers. The ROC contains logiC to generate step pulses of the proper width. The 
disk microcode must not issue OUTPUTs with seek = 1 more frequently that every 16 
microinstructions, or this logic will be defeated. During a seek sequence, when the 
microcode has delivered the last seek pulse, it must clear the seek bit in the DevOp register, 
since this bit inhibits sector wakeups. and also forces the Format and Buffer Control 
sequencers to be idle independent of the command fields of DevOp. The Direction bit 
should not be changed for -2us after the last seek pulse is sent, or the disk will be 
confused. 

8.3.4 Disk Commands 

The ROC is capable of executing four basic commands during each record of a sector: 
P?eac. i:i which data is transferred from the disk to memory. Write. which :s the inverse, 
Verify, in which data from memory is compared with the data on the disk, and NoOp. which 
does nothing. If an operation in a record fails due to an error or to a non-compare on a 
Verify operation. the Abort flip-flop is set, and commands for subsequent records will be 
converted to Nops. During the header field. Verify is the only operation provided; the 
microprogram must supply data to be checked, and if if operations on subsequent records 



Section 8: Rigid Disk Controller 93 

are desired even if the check fails, the InhHdrAbrt bit in DevOp must be set. The label 
record is handled similarly. The microprogram must always supply data to be verified, but if 
the command is Read, the setting of Abort is inhibited. (Note that the operations on the header and 

label records are logically identical, but different mechanisms are provided to obtain the desired effect). 

The basic commands are implemented by two automata, the Format Sequencer (section 
8.4.3) and the Buffer Control Sequencer (section 8.4.4). The combination of legal commands 
for all records is determined by a PROM that examines the IntOp register and maps the 
commands into starting addresses for the sequencers if the combination is legal, or into 
Nops if the combination of commands is not legal. [Note: there is no way for the microcode to 

determine that an illegal command has been supplied to the controller]. The command sequences that 
are currently implemented in the RDC are: 

Header Label Data 
Nop Nop Nop 

Verify Nop Nop 

Verify Write Nop 

Verify Write Write 
Verify Read Nop 

Verity Read Read 
Verify Read Verity 

Verify Read Write 
Verify Verify Nop 
Verify Verify Read 

Verify Verify Verify 

Verify Verify Write 
Write Nop Nop 

8.3.5 Wakeups and 10 Attention 

Wakeups are initiated by the RDC under two circumstances: A sector wake is generated at 
the end of the data record (-58 us before the physical sector pulse) if the basic sequencer 
operation (section 8.5) is Nop, Read, or Write [Note ~hat Verify Data does not generate a sector 

wakeup. Instead. it generates an extra data wakeup, which is logically the same]. When the seek bit in the 
DevOp register is set, sector wakeups are inhibited. Sector wakeups originate in the Format 
Sequencer. 

Data wakeups are generated by the Buffer Control Sequencer. The exact timing for data 
wakeups depends on the record and the operation, and is described in section 8.4.7. Data 
wakeup requests are accumulated in a four-bit up-down counter that is constrained to count 
between a and , 7b. When the Buffer Control Sequencer issues a wakeup request, the 
counter is incremented; when the DO issues an 10 Strobe. the counter is decremented. The 
actual wakeup request is transmitted to the DO if the disk task is not running and if the 
wakeup counter is nonzero. 

When the disk task is running, 10 Attention is transmitted to the DO if the RateError or Abort 
bits are true [Note that Abort does not appear in the status register. The only way that a verification error 

can be inferred is to see IOAttn true, then read the status register and check that the other reasons for setting 

- \ 



Section 8: Rigid Disk Controller 94 

Abort are not true). 



Section 8: Rigid Disk Controller 

Odata(p2) 

DO Interface 
Wakeups 

1-----1 I/O Strobe 
(p1,2,3) 

Sequence 
Address 
Generation, 
DeyOp Register 
(p4) 

Data Buffer 

(256w x 17) 

16 (pS) 

MemBufAdr 

DevBufAdr 

(p7) 

Figure 8.4 

ROC 0 rganization 

Read Data 

Idata (pS) 

Idata 
Mux, 
Parity 

(p16) 

Diag· 
nostlc 
Control 

(p15) 

95 

Disk 
Interface 
(p13,14) 

Disk 



Section 8: Rigid Disk Co~troller 96 

Current State 
4 

ByteClkEnbl ~ Byteelk' 
Dey IkFeec! V---.:.;;"'""---

e7,e8 Proms: 

Inputs: 

SectorMarkSO 1 a a 0 0 0 0 0 
SyncTime x a 0 x x x 1 1 
X'erTime x 0 0 1 1 1 
SYncOK x x x x x x 0 1 
Cu rrentstate x 14·5 e 14 H.·S 6 14 X x 

7·13 7-13 
Outputs: 

BvteClkEnable 1 a 1 0 1 1 1 
SvncFound 1 

oJlClfl- 1 1 
XferOata 0 1 1 
NextState 15 n .. 1 n .. 1 n .. 1 7 15 0 

SectorMark I r- Normal + XferTime --j I I ~vncTime. $1' 
S'LncTime. no 

ncOK 
SyncOK 

Figure 8.4.1: ROC Timing 



For Adr.O-7 

Section 8: Rigid Disk Controller 

256x28 
PROM 

58 AdrXfer = 
SectorMark or 
(SequenceEnd and SeqCnt_2') 

dFo 
5 

Adr.o-6 

eClk' 

I.ter 
BrOn nc 
Se uenceEnd 

ect rWake 
ClrOevO ' 
XferTime 

ncTi 
OataTlme" 

RCShlft" 
16 CRCWrlte" 

R Check" 
WrlteGate nbl" 
Read ate" 
EC lear 
E hlft 
EC Write 
EC heck 

SyncFound 

" = Forced to 0 by Re.et 

Figure 8,4,3: ROC Format Sequencer 

97 

Adr.7 



Section 8: Rigid Disk Controller 

25fSx1e 
PROM 

4 

Adr.1·3 

counter 

Buf 

Register 

OataWake 
IrMemButAdr' 

IncOevBufAdr 

WriteBut 
R teErrorPosslble 

IMeF .OMeF) 

Output Enable 

(lMeF .OMeF)' 

Figure 8.4.4: ROC Buffer Control Sequencer 

98 

BufS!C!Adr.7 

o 



'---' 

Section 8: Rigid Disk Controller 99 

8.4 Hardware Organization 

The overall organization of the ROC is shown in figure 8.4. The page numbers in the figure 
refer to pages in the logic diagrams. The ROC contains a single data buffer of 256 16-bit 
words plus a parity bit. The buffer is addressed by two pointer registers, one used by the DO 
(MemBufAdr), and one used by the controller (DevBufAdr). During a disk write, data flows 
from the DO via the Odata bus into the Odata register, then into the buffer. As the disk 
reQuires data, it is transferred from the buffer to the output holding register, then into the 
shift register, where it is serialized and sent to the disk. During a read, data is deserialized 
in the shift register, placed in the input holding register, and sent to the buffer as new data 
arrives. From the buffer it is sent to the Idata register, then to the DO via the Idata bus. 

The DO has highest priority for buffer access. When it needs to read or write the buffer, the 
Buffer Control Sequencer clock is witheld for a cycle [note that this implies that if 16 word transfers 

are done by the disk microcode, the DO's efective clock rate (including cycles lost for BranchBurp) cannot be 
slower than -125 ns, since the disk transfers a word every 2.2 us, and the Buffer Control Sequencer must be 

able to access the buffer once per word]. 

During a write or verify operation, data from the DO is parity-checked by serial logic 
associated with the shift register. During a read, this logic generates the parity bit that will 
be sent to the DO. 

The ROC writes and checks a 16-bit CRC on the header and label records, and a 32-bit ECC 
on the data record. The CRC and the ECC are generated and checked by logic in the 
controller. If the ECC fails, the final syndrome can be recovered by the disk microcode so 
that a program can correct the data record. 

8.4.1 Timing 

The derivation of the timing signals in the ROC is shown in figure 8.4.1. The basic clock is 
the disk PLOClock, which is read from a timing track unless the disk is reading, when it is 
derived from the recorded data. After level conversion, the clock is gated with the output of 
a counter which ensures that when ReadGate .. 0, the clock is disabled for four cycles to 
avoid any discontinuities. 

DevClk occurs once per bit (1.1 us); the disk ByteClk (which occurs every 8 bits) is 
generated by a PROM/register automaton. This logic also creates the XferData and 
~_oa:Re: Si;;:-:2Is which 
S~''1C~O'Jr~ Si:;!'l~t. 

"r"''''''' "".,,...~ ',.I ........ ~~. I .... J ,'_ ....... [I"~S': signals !'~'!e ;"'':'~t:~ll tirring]. and the 



Section 8: Rigid Disk Controller 100 

8.4.2 Sequence Address Generation 

The operations that will be performed during each of the three records of a sector are 
controlled by a two-bit and two three-bit fields of the OevOp register. The disk microcode 
must load this register with a command before the physicai sector pulse occurs (-58 usec 
after the sector wakeup). When SectorMarkSP occurs, the eight bits of the OevOp register 
are mapped into six bits. and loaded into the IntOp register. The mapping is performed so 
that the commands for each record will be encoded into a single bit. The encoding is: 

IntOp bit OevOp bit 

HdrWrt ~ WriteHeader (CevOp.08) 
HdrRd .. ReadHeader (OevOp.09) 

LbIWrt ~ WriteLabet (OevOp.10) 
LbiRd ~ ReadLabel (OevOp.11) OR VerifyLabet (0e~.12) 

OataWrt ~ WriteOata (OevOp.13) OR Verify Data (DevOp.15) 
DataRd .. ReadOata (OevOp.14) OR VerifyOata (OevOp.15) 

The six bits of the IntOp register and two bits of a counter that indicate the record about to 
be processed (SeqCnt.O,1) are mapped by a 256 x 4 PROM (911) into a four·bit Sequence 
Starting Address, SeqAdr.O·3. This address is used to determine the starting address of the 
code for the record in the Buffer Control and Format Sequencers. 

8.4.3 Format Sequencer 

The Format Sequencer is shown in figure 8.4.3. This logic controls the formatting of 

data on the disk, and is synchronous with the disk ByteClk. The sequencer is 

implemented as a finite state machine controlled by a 256x28 PROM. The PROM 

produces the most significant seven bits of the next sequencer address to be 

accessed, five bits of data used to load a counter described below, a test bit, an~ 

fifteen control bits. 

The flow of control in the format sequencer is determined by the BrOnSync bit. The 

least significant PROM address bit. ForSeqAdr.7 = [(ForCntCry and BrOnSync') or 

(SyncFound and BrOnSync) or (FirstSequenceLocation)]. 

The format sequencer counter is loaded whenever ForSeqAdr.7 ... 1. This counter 

contains five bits, and is loaded from five bits of the sequencer PROM (dForCnt{O:4]). 

The counter is incremented by ByteCLK, which also clocks the sequencer output 

register. 

The starting address of the sequence associated with a particular physical record is 

loaded into the address register at the start of the record. This address is 

SeqAdr{O:3]"OOOO. but the PROM location accessed is odd because of the inversion in 

the least significant bit of the address. 



Section 8: Rigid Disk Controller 

The sequencer will access the location corresponding to the first location of the 

sequence, and (because this address is odd) the counter will be loaded from the count 

field of the PROM. 

When the sequencer is executing an instruction from an odd location of the PROM, the 

counter will have just been loaded. If the count value # 37b, the next instruction will 

be taken from an even location. If the counter was loaded with 37b, the next location 

will be taken from an odd location (since the counter will be producing a carry, forcing 

ForSeqAdr.7 to one). 

When the sequencer is used to time events during a record, the normal situation is that 

an odd location (e.g. X) will·point to an even/odd instruction pair (Y and Y + 1) and the 

count field of X will contain 37b minus the number of ByteClk times that the sequencer 

is to execute instruction Y. The Next Address field of instruction Y will point to itself, 

so it will be executed repeatedly until the counter = 37b, at which time location Y + 1 

will be accessed. Location Y + 1 will contain a new address and count, and the 

sequence will continue. 

As mentioned earlier, if the odd location of a pair contains37b in its count field, it will 

go directly to the odd location of the new pair, since the counter will produce a carry 

as soon as it is loaded. 

When reading from the disk, the start of the sector is not precisely positioned, since 

the read clock (ByteClk) must be acquired by a phase-locked loop. The start of each 

record is indicated by a unique 'sync pattern' written before the data, and there is logic 

to detect this pattern. When the sequencer is generating SyncTime, this logic is 

enabled, and the BrOnSync bit is provided to test the SyncFound signal that if 

generates. Once the sync pattern has been acquired, the sequencer is precisely 

aligned with the disk data, and can therefore determine when to generate the control 

signals associated with the transfer. 

8.4.4 Buffer Control Sequencer 

The buffer control sequencer is shown in figure 8.4.4. This logic controls the transfer 

of information between the data buffer and the two device holding registers. This 

sequencer is synchronous with the processor. It is implemented as a finite state 

machine controlled by a 256x16 PROM The outDut bits of the !';eouencer are divided 

into three fields as follows: 

1) BufSeqAdr[O:7]: This field selects the· next address from the 256 word 

PROM. The three most significant bits of this register are loaded from 

SeqAdr[1 :3] at the start of every disk record (Header, Label, Data, and 

101 



Section 8: Rigid Disk Controller 102 

Recovery Gap), providing that SeqAdr.O = O. If SeqAdr.O = " indicating that 

no data transfer will be done during the record, these bits are cleared. 

BufSeqAdr[O:3] are not changed during a record. BufSeqAdr[3:e] are loaded 

with zero at the start of every record. The least significant address bit, 

BufSeqAdr.7, is normally true, but may be made false by [(XferDataS and 

BrXfer) or (Counter:s 1 Sd and BrCry)]. BrXfer and BrCry are two control bits 

that provide a conditional branch capability. XferOataS is a processor­

synchronous version of the XferOata signal from the Format Sequencer. It is 

set when XferData is asserted (indicating that a transfer between the buffer and 

one of the device data registers is required), and cleared when the Buffer 

Control Sequencer asserts IncOev8ufAdr. XferOataS is also cleared by 

Sequence End. 

2) Counter Control and Branch Bits. The Buffer Control Sequencer contains a 

four-bit counter that may be loaded, incremented, cleared, and tested for carry 

under control of five sequencer output bits. The counter and its control bits 

are local to the sequencer, and are not used anywhere else in the ROC. 

3) Buffer and Wakeup Control bits. These six bits are the outputs of the 

sequencer used to control the data buffer and the wakeup logic. The bits are: 

Oa18 Walte: Increments the wakeup request counter. 

ClrMemBufAdr: Clears the buffer address register used for DO-buffer transfers. 

IncOevBuf Adr: Increments the buffer address register used for device-buffer transfers. 

This register is also cleared by the ClrOevOpS bit from the Format Sequencer .. 

OeV"Suf: During disk writes. loads the buffer holding register. When the serializer 

needs a word, it will be loaded from this holding register under control of the Format 

Sequencermming Generator. 

WriteBuf: During disk reads, this bit causes the data in the sarializer's output holding 

register to be written Into the buffer. 

Rate Error Possible: See section 8.3.2 

8.5 Basic Sequencer Operations 

The Format and Buffer Control sequencers in the ROC are capable of eleven basic 
operations. The Sequence Starting Address PROM (911) determines which operations will 
be executed based on the current record number and on the command in the IntOp register. 
Each operation transfers data between the disk and particular buffer locations, causes 
wakeups at defined times, and leaves the device buffer pointer at a fixed location when the 
operation is completed. In what follows; the number of an operation is the value of 



Section 8: Rigid Disk Controller 103 

SeqAdr[O:3]; recall that if SeqAdr.O = 1, the Buffer Control Sequencer does not participate 
in the operation, but instead executes routine 0 (seek). The descriptions assume that the 
DevBufAdr register (the buffer pointer) is cleared before a sector starts. The eleven routines 
are summarized here. The contents of the buffer control and format sequencer proms are 
shown in Appendix 0: 

0: Seek: This operation transfers no data and requests no wakeups (sector wakeups will be disabled 
as long as this operation is in the DevOp register). 

1: Write Header: This operation writes two words from buffer locations 0 and 1 onto the disk. It 
then increments the buffer pointer by 2, leaving it at location 4. No wakeups are generated by this 
operation. 

2: Read/Verify Header: This operation first transfers two words from buffer locations 0 and 1 to the 
output holding register (this is the data to be compared with disk data). The microcode is assumed to 
have loaded the buffer before the operation started. It then takes two words from the input holding 
register (the data read from the disk). and places them into buffer locations 2 and 3. The operation 
leaves the buffer pointer at location 4. When the operation is complete. a wakeup is requested. 

3: Write Label: This operation transfers data from buffer locations 4 through 11d to the disk. It then 
increments the buffer pOinter four more times. leaving it at location 16d. No wakeups are requested by 
this operation. . 

4: Read/Verify Label: This operation first transfers two words from buffer locations 4 and 5 to the 
output holding register. At the end of this section. the device shift register will contain the first word to 
be verified. and the output holding register will contain the second word. At the next six XferOataS 
times. a word will be transferred from the buffer to the output holding register, a word will be 
transferred from the input holding register to the same location in the buffer. and the buffer pointer will 
be incremented. At the end of this section, the first six label words will be in locations 6 through 11d. 
and a wakeup will be requested. At the next two XferDataS times. a word will be transferred into the 

. buffer. getting the last two label words. 14nally. the pointer will be incremented by two, and a wakeup 
will be requested. The label read from the disk will be in buffer locations 6·13d. and the buffer pointer 
will be at 16d. 

5: Write Data: This operation transfers the first data word to the disk from buffer location 1~, then 
requests a wakeup. It then transfers sixteen words to the disk with RateErrorPossible = O. Then.. it 
repeats a loop in which it requests a wakeup. then transfers 16 words. During this loop. 
RateErrorPossible = 1. All transfers from the buffer to the disk are done in response to the XferOataS 
bit from the Format SequencerlTiming Generator. 

6: Read Data: First, this operation increments the buffer pOinter (to 17d). It then transfers 17d words 
from the disk to the buffer, and requests a wakeup. From this point until the end of the record. it 
loops transferring 16d words into the buffer and requesting a wakeup. 

7: Verify Data: The sequence of events during this operation is identical to that for Write Data. 

10b: Nop Header: This operation does no data transfers and requests no wakeups. Only the Format 
Sequencer participates . it is used only to time the duration of the record. 

11t: Nop Label: Same 8::' No::: :-ieader (except IO(lger ,-eccra). 

12b. Nop Data: This operation times the length of the Data Record and generates a sector wakeup at 
the end of the field. It has no other function. 

17b: Recovery Gap: This is a Format Sequencer operation used to wait for the next phySical sector 
pulse. 



Section a: Rigid Disk Controller 104 

o 
0at.Tlme ~ (writing') 
WriteGate' V-

Figure a.6a: ECC Logic 

31 30 29 21 20 11 10 9 8 o 

Figure a.6b: Configuration During Writing 

Pattern: x 21 + 1 
11 2 

Displacement: x + x • 1 

DevRdData :L8J!--~)11 II1111 Ii )1 i ! ! I ! I! II ~ 
31 I 30 29 121 20 ~ 1 I ( Zero ) ~ Error Pattern -....,.... 

(10 bits) (11 bits) 

'CiLIIIIIIII;;J 
10 9 8 0 f 

OevRS0ata I 

Figure a.6c: Configuration During Reading 



Section 8: Rigid Disk Controller 105 

8.6 Error Correction 

The header and label fields of a sector are error·checked using a F9401 CRC generator that 
writes a 16·bit CRC following the record. The CRC is not available to the disk 
microprogram . the only indication of an error is the RdErr bit of the status register. 

Error correction of the data on the SA4000 is done by appending a number of check bits to 
the data record. The correction must be done by a program, given a syndrome generated 
by logic in the controller. The code used is a binary cyclic code known as a Fire code. A 
cyclic· code is characterized by its generator polynomial g(x); for the Fire codes, g(x) has the 
tonn: 

g(x) = P(x) (xC. 1 ), 

where P(x) is an irreducible polynomial of degree m and order e, and c is not divisible bye. 
(xc.1) is referred to as the pattern polynomial, and P(x) is the displacement polynomial. The 
length n of the code is LCM(e,c), the number of check bits is (m + c), and the number of 
information bits is k = n·m·c. Such a code can correct a burst error of up to m bits. 

The particular code used in the ROC has: 

g(x) = (x11 + x2 + 1) (X21 + 1). 

The order of P(x) is 2047, m = 11, and c = 21. The number of check bits is therefore 32, and 
the length of the code is n = 42987 bits. The maximum number of information bits is 42955, 
or 2684 words. 

The choice of generator polynomial and the associated hardware design are originally due to 
R. Bates, and are employed in the Alto Trident disk controller [see Bates, R. "TRIDENT disk -for the 

ALTO" ,PARe CSL memo, 11 August 1976]. The theoretical background for Fire (and other) codes 
is developed in Peterson, W., "Error Correcting Codes", MIT Press, 1961. The correction 
procedure suggested here is a variation of that suggested by Peterson in section 10.6. 

The hardware used to mechanize the code is shown in Figure 8.6a. Figure 8.6b shows the 
configuration provided when data is being written on the disk, and Figure 8.6c shows the 
configuration during reading. During writing, the data is premultipliecf by x32 (to make room 
for the 32 check bits at the end of the record), and divided by g(x). After the data portion of 
the record has been written, the shift register holds the remainder from the division of M(x) 
by g(x). where M(x) is the polynomial representation of the data record. At this time. the 
faeaoacK patns are dlsabied and the remainder (the check bits) is written on the disk. 

During readilig, the shift register is reconfigured as shown in Figure 8.6c, and two 
independent divisions by P(x) and (xc.1) are performed. When the data record has been 
processed, the shift registers are reconfigured with the feedback paths disabled, and the 
resulting syndrome is shifted into the data shift register, then sent to the ROC's data buffer. 
The syndrome is placed in words 23b (syndrome bits 0·15), and 24b (bits 16·31), where they 



Section 8: Rigid Disk Controller 106 

can be accessed by the microdcode if an error occurs. 

If no error occurs during reading, both the pattern register and the displacement register will 
contain zero. If a correctable error occurs, both these registers will be nonzero. The 
correction procedure must be done by a program using the syndrome recovered from the 
hardware. For clarity in what follows, it will be described as if it were done in the 
displacement and pattern registers. 

The first part of the correction procedure isolates the burst pattern. The contents of the 
pattern register are cycled until the least significant ten bits are zero. If this does not occur 
within one complete cycle (21 shifts), an uncorrectable error has occured. Let the number 
of shifts required to isolate the error pattern be So' The error pattern (which will eventually 
be xORed with the data record is now in the most significant eleven bits of the pattern 
register. 

To find the pOSition of the error burst. the displacement register is clocked with the input 
equal to zero until its contents are equal to the most significant eleven bits of the pattern 
register. This will occur within 2047 Shifts; let the number of shifts required to satisfy the 
condition be s,. [Note: The implementation chosen premultlplies the diSJ)lacement polynomial by x", which 
is equivalent to providing eleven shifts of the pattern register in advance. When S, is determined. it must be 

corrected by doing $, .. (S, + '1) mod 2047.] 

The location d of the error burst relative to the beginning of the record is now determined 
[note that the "beginning" of the record is the beginning of the longest message the code is ::apable of 
correcting, 42987 bits. We are using a shortened form of the code. with zeros at the beginning of the 

messages. This does not change anything]. We know that: 

So = d mod c 
S1 = d mod e 

{c = 21), and 
(e = 2047). 

Since c and e are relatively prime, they can be used as the moduli mi of a modular number 
system, and the Chinese Remainder Theorem [see Knuth, 0., "The Art of Computer Programming", vol. 

2. p249] guarantees that d is unique. To calculate d. we use: 

AO and A, are constants such that Ai -Mimi = 1 mod mp and M is mo -m,. R. Bates has 
supplied these constants; they are Ao = 19, A, = 195. so: 

d = [ So (19*2047) + S, (195*21) ] mod 42987 

d is the displacement from the beginning of the record. To determine the location relative to 
the end of the record, use 42987 . d. Once the displacement is determined in this way, the 
burst pattern determined earlier is xORed with the appropriate bits of the record. 



/ 

APPENDIX A 

Time of Day Clock 



;This is the program for the Time Of Day Clock in the MSI - DO. 
;It Runs on a TI TMS1000C microprocessor. 

;The programs outer loop runs once per second. 
;Each time through the loop. it generates a one instruction time 
; long pulse on OneSecondPulseR (for testing). 
; It increments a 32 bit counter TimeOfDay once per outer loop time. 

;The microprocessor has one of its K inputs tied to the 5 volt supply of the 
DO. If the power to the DO is on (PowerOnK). the program increments 

; PowerOnTime in the same manner as Time Of Day (32 bit count of the 
; number of seconds). 

;The program compares the TimeOfDay to another variable. A1armClockTime 
; If TimeOfDay z A1armClockTime. the program will 
; set the TurnProcessorOn R output (which will generate a 1 second pulse). 
;It will also set the AlarmClockLatch R output. which will stay on until 
; explicitly cleared. 

;The current TimeOfOay is broadcast bit serially on the OutputData R output of 
the TMS1000. The data is broadcast once a second and consists of one start 
bit (a 1), 56 data bits (of which only the last 32 are significant), and 
943 stop bits (as). 
A bit time is one millisecond. Since the message is 1000 bits long. 
at one ms per bit. this is one second per transmission. 
The time is broadcast msb first. 

;During the time the program is broadcasting Time of Day. it also 
accumulates a message. bit serially, on the Input Data K input. 
The input data is sampled at the end of a bit time (ie the program sets 
the R output. waits 1 millisecond. then samples the input data). 
The input message is 56 bits and consists of a 16 bit password. 
an a bit command field and a 32 bit Data field. After all 56 bits are 
accumulated. the program checks the password field. 
If it contains A1F5 (hex) [Sesame]. the message is considered valid 
and the command field is acted upon. 
An invalid message is ignored. and the program reverts to sending Time of Day. 
no matter what it had previously been directed to transmit. 
No messsages are gathered or sent unless the DO has power. 

;The command field of a message is interpreted as follows 
Bit a TimeOfOay ~ Data 
Bit 1 PowerOnHours ~ Data 
Bit 2 AlarmClockTime ~ Data 
Bit 3 Fudge ~ Data (low 16 bits) See below for explanation of Fudge'· 
Bit 4 Clear A1armC1ockLatch 
Bit 5 Transmit PowerOnTime instead of TimeOfDay 
Bit 6 Transmit A1armC10ckTime instead of TimeOfDay 
Bit 7 Clear PowerOnLatch (Obsolete function) 

;Bit 5 and 6 of the command field alter the data that is broadcast. They are 
used to read out PowerOnTime and AlarmC10ckTime. Note that bits 0:15 
of the 56 bit output message are the value of Fudge when bit 5 of 
the command field is set (ie you get both fudge in 8:23 and PowerOnTime 
in 24:55). 

; The effect of bits 5 and 6 is continued until reset by another command 
;'(with as in 5 and 6) 

;The program is written so that all branches result in exactly equal number 
of instruction executed. The time base is thus the TMS1000's clock, 
which is crystal controlled at 1 MHz. Because the crystal may not have 
enough calibration accuracy. the program maintains a variable (Fudge) 
which is used to adjust the time base. Fudge is counted down to 0 
at the end of the main loop. The nominal vaiue of Fuage (a 16 bit numoer) 
is 8000 (hex). By changing the value of Fudge. the DO can adjust the 
time base of the microprocessor. Fudge's accuracy is 2 instructions 
(ie setting Fudge to 13 will cause 26 more instructions to execute). 
The TMS1000C takes 6 cycles per instruction, so each Fudge count 
at 1 Mhz is 12 usec. 

:To safeguard against invalid data due to loss of power or other causes. 
; the program checks a 16 bit variable MasterLock against a constant 



(A1F5. the same Sesame as the input password). If MasterLock is not Sesame. 
The program will zero out TimeOfDay. MasterLock is set to Sesame upon 
receipt of a valid command. The intention is that when the microprocessor 
has a hiccup or power failure. the registers will be scrambled. The program 
detects this and causes time to be frozen at 00001 until a valid 
command is received 

;The algorithm. in pseudo code is: 
;forever do 

begin 
TimeOfDay ~ TimeOfDay + 1 
R.TurnProcessorOn ~ if AlarmClockTime = TimeOfDay then 1 else 0 
if K.PowerOn then 

begin 
PowerOnTime ~ PowerOnTime + 1 
R.OutputOutputData ~ 0 !Start Bit 
BitOel ayO 
for NibNum a 13 to 0 by -1 do 

begin 
OutputNibb1e ~ case ReadOut of 

case 2: PowerOnTime(NibNum] 
case 4: AlarmClockTime[NibNum] 
default: TimeOfDay(NibNum] 

for BitNum = 3 to 0 by -1 do 
begin 

R.OutputData ~ OutputNibble AND 8 !send msb 
OutputNibble ~ OutputNibble lshifi 1 
BitDelay(} 
InputNibble ~ (InputNibble lshift 1) + K.lnputData 

end !BitL.oop 
Input(NibNum] ~ InputNibble 

end !NibLoop -
R.OutputData ~ 1 !Stop Bits 
if Input.Password = Sesame then 

begin 
if Input.Command AND 128 then TimeOfDay ~ Input.Oata 
if Input.Command AND 064 then PowerOnTime ~ Input.Data 
if Input.Command AND 032 then Fudge ~ Input.Data & 177777b 
ReadOut ~ Input.Command & 17b 
MasterLock ~ Sesame 

end !ValidMessage 
if MasterLock # Sesame then TimeOfDay ~ 0 

end !Power On 
Oelay(XXX) !Round out time to an even second 
Oelay(Fudge) 

end 

:last modified May 15. 1979 2:53 PM by CPT 
:This program is assembled using a variant version of BCA (available from CT) 
:The output file from BCA ("tod.mb") is then run through FIXTODMB.RUN. which produces 
:"todprom.mb" and "todprom.list". Todprom.mb is then put into a 2708 EPROM. 

2 



APPENDIXB 

MC1 and MC2 Microcode 

(These are descriptions of MC1 revision E, MC2 revision D) 



~FETCH4 

I F,:,0 
1 

M C1: Current Q 
Next Q 0 

1 Next.O MC 
MC 
MC 
MC 
MC 
Me 
pre 
pre 

1 Next. 1 
1 Next.2 
1 Next.3 
1 Next.4 
1 Next.S 
MC 1 Next 6 

tMC 1 Next.7 

MC 
MC 
MC 

1TestH4Par 
1Ta.tFault 
1 Ta.tQWC 

1SetFauit MC 
Pre 
MC 
MC 

10adMe 1 
1StartMC2 
1 IkOut .. ut 

ux~Cdat 1M 
H4 .. 'Mux 

,oRAS Ma 
Ma 
Ma 
MC 
MC 
Pre 
Sto 
Sto 
MC 

:oC .a,S 
oW rite 
1R.f 
15tora 
RowAd 
rRAS 
rCAS 
1WriteMam 

1 Pi .... 1 
1Ploe.2 
1Ploe.3 
dPloe 

MC 
MC 
MC 
Loa 
R~ Ploa 

dH31 
N .. l'IRR 

1 WriteR 

Loa 
MC 
MC 
R~ H31 

nPhes.O Ge 
IVa 
MC 
MC 
MC 

lid 
1SXoort 
1 oadO 
1 LoadW 

MC2 

0 
1 
2 
3 
4 
5 
6 
7 

8 
9 a 
36 

10 
11" 

• a 33 a 
34 • 
13 
14 

15" a • a • 
16" a a • • • 
17" 
25" • 
26" 
35" • 
27 • a • 
28 • • 
32 

21 • • • 
22 • • a 23 • • 
24 • • • • • • 
20" 

37 
~A 

39 
19" 

12 
18 
29 
3 
31 

I 
Prom Bit Numb.r 
(" indicate. low 
true In prom) 

Current 
Next 

2Next.0 0 
2Next.l 1 
2Next.2 2 
2Next.3 3 
2Next.4 4 

e 
e 

f 

IOFETCH4 

I FX2 
I F 4 

I FX6 

R 

IOF1 r-
ult 

F 

a 

• • 

• • 

• • 
• • 

a 

• a 

! 

Operation: 10 FETCH 4 

(1) If there Is a r.quest pending, MC1 will go 
directly to the first Instruction of the next sequence 

(2) MC2 may stili b. transferring data when anoth.r MC2 
operation starts. 

(3) If MC11s waiting to start MC2, MC2 will go directly 
to the first instruction of the new sequence. 

(4) If a fault occurs, control goes to location f (TWO) which 
walts 5 cycle. to ensu re that the processor takes the fault. 

FO 
1(3) 

n:O ! 
R r 
e 

n#n 

FF2 
1(3) 

no fault 

e 

fault 

s 

MC 
MC 
MC 
MC 
MC 
MC 
MC 
pre 

2Next.S 5 00 1111 
Word add ress to storage ea rds 

MC 
MC 
MC 
MC 

\1C 
MC 

2Next.6 
MC2Next.7 

2TestSE 
2TestOE 
2Hc,ldIfSNEO 
2Se,tFoult 

2Star:Xccrt 
2Hold 

Phas.O Chk 
Loa dSvndrome 

2NeedsR 

6 
7 

a 
9 
10 
i ~ 

. = ! -
16" 

12" 
13 

18" MC 
MC 
MC 
MC 

2NeedsRlfSNEO 1 
2Write dat 17 
2preLoadOdata 14 

transport 
from storage 
cards 

In 11 

• 
• 

I • 
•• • • • 
• 

• 

• • • • • 
II dev- I 
Lata 

first Cd at word ready 

• 
, 
•• 

generates OFault 
if a double bit error is present 

9/24178 
memop01.sil 



RPe I j'2 0" MC1: 11 0 .... Operation: REAO .. PO 

•• _C Nurrent CqlJ~I~l:RR;;+:==[EIiI"~~''':.''''-.''-_ ,.,..' .... n Ill!< "r:; .... " ... 

MC: '!U "fiIT 
MC I." 

M\.i 

M\.i: 

I ..... -

H4':!!!Y!. 

8 

1:! 
14 

., 

I 

I-

~rom BIt Number 
( Indicate. low 
true In prom) 

Ii 

9/24178 

memopo2.sil 



M C1: Current 
Next 

1 Next.O 
1Next.1 
1Next.~_ 

1 Next.3 
1 Next.4 
1Next.5 

MC 
MC 
MC 
MC 
MC 
MC 
pre 
pre 

MC;;1Nellt.6 
MC;;1Next.7 

MC 
MC 
MC 

1 Te.tH4Par 
1TestFauit 
1 Te.tOWc 

1SetFauit MC 
Pre 
MC 
MC 

10adM 1 
1StartMC2 
1ClkOutout 

x"'Cdat IMu 
H4 ... IMux 

pRAS Ma 
Ma 
Ma 
MC 
MC 
Pre 
Sto 
Sto 
MC 

oCAS 
oW rite 
1Ref 
1 Store 
RowAd 
rRAs 
)~AS 

1WriteMem 

1Ploe.1 
1Ptoe.2 
1 Ptoe.3 
dPlae 

MC 
MC 
MC 
Loa 
R ... Plae 

'.oa dH31 
1 NeedsR 
1WrlteR 

"C 
MC 
R ... H31 

nPhaseO Ge 
IVa 
MC 
MC 
MC 

lid 
1SXoort 
1.oadO 
1 LoadW 

0 
1 
2 
3 
-4 
0 
6 
7 

8 
9 
36 

10 
11· 
33 
34 

13 
14 

15· 
16· 
17· 
25· 
26· 
35· 
27 
28 
32 

21 
22 
23 
24 
2 • 

37 
38 
39 
19" 

12 
18 
29 
30 
31 

Operation: REFRESH 

•• 

• • • • • • • • • ••• 

• • • • 
• • • • •• • • • • •• 

"----... ---..... ----'----- Main Column address on $torAO'6 

Prom Bit Number 
(. Indicates low 
true in prom) 

5/4/78 

memop03.Sil 



M C1: Current 
Next 

1 Next.O 
1 Next. 1 
1 Next.2 
1Naxt.~_ 

1 Naxt.4 
1 Naxt.5 

MC 
MC 
MC 
MC 
Me 
MC 
pra 
pre 

MC1 Next. 6 
Me 1 Nellt.7 

MC 
MC 
MC 

1 TeetH4Psr 
1 TestFault 
1 TeetQWO 

1SatFauit MC 
Pre 
MC 
MC 

loadM~1 
1StartMC2 
1 Ik utDut 

x"Cdat IMu 
H4 .. fMux 

.oRAS Ma 
Ma 
Ma 
MC 
MC 
Pre 
Sto 
Sto 
MC 

. OCA5 
oW rite 
1Ref 
1Store 
RowAd 
rRAS 

Ire: AS 
1WrlteMem 

1Ploa.1 
1PI_.2 
1PI_. 

MC 
MC 
MC 
Lo 
R .. 
adP~ 
PI_ 

aaH31 La 
Me 
MC 
R .. 

1 NeadsA 
1 WriteR 
H31 

nPhaseO Ga 
IVa 
MC 
MC 
MC 

lid 
1 SXoort 
1 _Dad 
1 LoadW 

0 
1 
2 
3 
4 
5 

6 

8 
9 
38 

10 
11 • 
33 
34 

13 
14 

15" 
16" 
17" 
25" 
26" 
35" 
27 
28 
32 

21 
22 
23 
24 
2 " 

37 
38 
19 
19" 

12 
18 
29 
30 
31 

I 

rr 
P 

P 0 

00 001 

• 
• 

• • • • 

• • • • • 
• • • •• 

• 
• • • • 

• • 

• •• 
• • • 

• • 
• • • • • • 

Prom Bit Number 
(e Indicates low 

MC2' 
true in prom) 

" 
Current 

Naxt 
2Next.O MC 

MC 
MC 
MC 
MC 
MC 
MC 
pre 

2Next 1 
2Next.2c 
2Next.3 
2Next.4 
2Next.5 
2Next 6 
M 2Nellt.7 

:2TestSE MC 
MC 
MC 
Me 

2L~SjOE 
2HoldlfSNE 
2Se,Fault 

2StartXoort Me 
MC :2Hold 

kPhasaO 
IdSvndrome 

Ch 
Loa 

2N .. dSR 

0 
1 
2 
3 
4 
5 
e! 
7 

a 
9 
10 
11 

15 
16" 

12" 
13 

18" MC 
MC 
MC 
MC 

2NeedsRlfSNEO 1 
;2cWriteCdat 17 
2oreLoadOdata 14 

Transport from 

Storage Cards 

I 
I 

e 
e 

abort 

10 

I'" 

• 

• 

PF CH1,2,4 
PFX 

PFX4 
PFX8 

R 

e 
1 

1 

.1 

• .t •• 

• 
• 

• • • • 
• 
• 

Operation: Pfetch' ,2,4 

faul 
113 

F (F .. TWO) 

• 

• • 

• • 

• • 
• • 

• 
• • 

PFO r 
~ n .. O S 

R 
e 

I 

Note 1: MC2WrltaCdat has two functions. Here,lt is selecting 

H3C or H3U as tha source of R bus data. 

During OUTPUT: OValid Is ganaratad In tha cycla following 

(MC2Next.4 and MC2WrlteCdatl. Forthls ruson, MC2Next.4 must 

ba zero when MC2WrlteCdat Is a ... rted to avoid generating OValid. 

Fti I ff:2B 

fIi 
I Ff~B 

n#O no fault fault 

r 5_ 
e F (F .. FAULTWAIT) 

e ee ee - (note 1) 

• • 
,. 

• • • • • • 

• • • • • 
• • • • • - (nota 11 

L.. MC2Ad is raloadad by MC2HoldlfSNEO 

(MC2Ad is on the ALU cardl 9/24/78 

memop04.0S·06.sil 



M C1: Current 
Next 

1 Next.O 
1 Next. 1 
1 Next.2 
1 Next.3 
1 Next.4 
1 Next.S 

Me 
Me 
Me 
Me 
Me 
Me 
pre 
pre 

MC 1 Next.6 
MC 1 Next.7 

Me 
Me 
Me 

1THtH4Par 
1TaetFauit 
1 TestQWC: 

1SetFauit Me 
Pre 
Me 
Me 

10adM 1 
1StartM 2 
1~lkOutDut 

x"Cdat IMu 
H4 "'Mux 

DRAS Ma 
Ma 
Ma 
Me 
Me 
Pre 
Sto 
Sto 
Me 

DCAS 
DWrite 
1 Ref 
1 Store 
RowAd 
rRAS 
rCAS 
1WriteMem 

1 PIDe.1 
1Plge.2 
1PI"e.3 

Me 
Me 
Me 
Lo 
R .. 

adPIDa 
PIDe 

adH31 Lo 
Me 
Me 
R .. 

1 NeedsR 
1 WriteR 
H31 

nPhaseO Ge 
IVa 
Me 
Me 
Me 

lid 
1 SXoort 
1 _oadO 
1 LoadW 

om 8it Number Pr 
(" 
tru 

Indicates low 
ein prom) 

0 
1 
2 
3 
4 
5 
45 
7 

8 
9 
36 

10 
11" 
33 
34 

13 
14 

15" 
16" 
17" 
25" 
26" 
35" 
27 
28 
32 

21 
22 
23 
24 
20" 

37 
38 
39 
19" 

12 
18 
29 
3D 
31 

J 

o 1 

• 

• • 

• 

• 

Operation: INPUT 

MC2 R conflict 
R r 

R 0 R 

1 1 0 1 

• 

• 

• • 
• 
• 

• - Used here to clock H4PsrityError flip-flop 

L Goestoloca tion 21f 
H4 Parity Er ror (see 10 Store 4) 

- H410aded 

Note. Pipe gets Type/task only. other 
words are garbage 

9/24178 

memop07.sl1 



j 10 

flL 
Operation: PSTORE 1,2 

PS11 r-
abort fault Me,: Current 

Next 
~1Next.0 

1 Next. 1 
1 Next.2 
1 Next.3 
1 Next.4 
1 Next.S 

M 
M 
M 
M 
M 
M 
P 
p 

reMC 1 Nert. 6 
reMC 1Next.7 

~C1TeetH4Par M 
M 
M 

1 Te.tFault 
1 TeetOWC 

C1SetFault M 
P 
M 
M 

reioadMC1 
C1StartM 2 

IC1 IkOutDut 

Mux"Cdat I 
H 4 .. IMux 

aoRAS M 
M 
M 
M 
M 
P 
S 
S 
M 

a,,<;AS 
aoWrite 
C1Ref 
C1Store 
reRowAd 
torRAS 
tor( AS 

1WrlteMem 

C1Ploe.1 M 
M 
M 
l. 
R 

C1 Ploe.2 
Ie 1 PffiA.3 
oadPloe 
.. Pioe 

oadH31 l. 
M 
M 
R 

~c 1N .. deR 
.C 1 WriteR 
.. M I 

enPllaseO G 
I 
M 
M 
M 

Valid 
C1 SlIoort 

1.oadO 
C1l.oadW 

0 
1 
'.:! 

3 
4 
5 
6 
7 

8 
9 

IS 

10 
11· 
33 
34 

13 
14 

15· 
16· 
~7· 

25" 
26· 
3S· 
27 
28 

2 

21 
22 
23 
24 
20· 

37 
-38 
39 
19· 

12 
1a 
29 
3 
31 

I 

A F 
A F 

00 010 1 1 

• 
• 

• 
• 

• • • • • 
• • • •• 

• 
• 

• 
• • • 

• • 

• •• 
• • • 

• • 
• • • • • • 

Prom Sit Number 
(0 Indicate. low 

M C2: 
true in prom) 

Current 

~2Next.O 

C2Next.1 
2Next.2 

~2Next 3 
~2Next.4 

2N-xt 5 
C2Next.6 

M 
M 
M 
M 
M 
M 
M 
P reM 2Nert 7 

IC2TeetSl" M 
M 
M 
M 

.C2TestOE 
C2HctdttSNE 
C2Se(Fautt 

·;~C:!St.J r': X!:jor~ 
.C2Hotd M 

hkPII .. eeO C 
l. oadSvndrome 

IC2NeedAR 

Next 
0 
1 
2 

-3 
4 
5 
6 
7 

8 
9 
10 
11 

~5 

18" 

12" 
1 

1a· M 
M 
M 
M 

C2NeedsRlfSNEIJ 1 
:2W rite :dat 17 

C20re oadOdala 14 

1 

0 

1 1 1 1 1 1 1 1 1 110 

• • 

• • • • 
• • • • 

·1· • • • • • • • •• 
! 

• • • • • • • • • • • • • • • • • • • • • • 
• 

• 
• • • • 

• • 
• • 

!H4 .. R/! 

~ Cdat rspss P 

E 

o 1 I. 
0 ,ni, 

• 
I t I 

• • • • • • ... • • 
• 

• 
•• • • 

I 

a 
0 

00 

•• 

• 

t-ll 
Fetch error 

e 
F 

• 

• • 

f 
F 

00 

• 

• • 

• • 

• • 
• • 

• 
• • 

- Cannot cau.e H4 ParltyError, since 

EnlnputParChk i. fal.e during PSTORE1,2 

Single errors on the read are not checked or 

logged. since the data will be overw ritten immediately. 

• MC2 doe. R acc •••. Write is inlllbited on the Al.U card 

L first Cd at word ready 

9/24178 

Memop08·09.sil 



C1: Current 
Next 

1Next.0 
1 Next. 1 
1 Next.2 
1 Next.3 
1 Next.4 
1 Next.5 

Me 
Me 
Me 
Me 
Me 
Me 
pre 
pre 

M( 1Next.S 
M( 1Next.7 

Me 
Me 
Me 

1TeatH4Par 
1 TeatFault 
1 Te.tQWO 

1SetFauit Me 
Pre 
Me 
Me 

10adMt 1 
'\ St_artM_<: 2 
1CI~OutDut 

ux"Cdat 1M 
H4 .. 'Mux 

10RAS Ma 
Ma 
Ma 
Me 
Me 
Pre 
Sto 
Sto 
Me 

IPCAS 
IpWrlte 
1 Ref 
1 Store 
RowAd 
rRAS 

)11: AS 
1WrlteMem 

1 Pipe. 1 
1Plpe.2 
1Ploe.3 

Me 
Me 
Me 
Lo 
R .. 

adPlpe 
PIDe 

dH31 
1 Ne.daR 
1WriteR 
H31 

nPhaaeO G. 
IVa 
MC 
Me 
Me 

""--. 

lid 
1SXDort 
1 oadO 
1 LoadW 

Prom Bit Number 
(" Indlcat.alow 
true In prom) 

0 
1 
2 
3 
4 
5 
6 
7 

8 
9 
36 

10 
11" 
33 
34 

13 
14 

15" 
16" 
17" 
25" 
26" 
35" 
27 
28 
32 

21 
22 
23 
24 
20' 

37 
_:i8 
39 
19" 

12 
18 
29 
3 
31 

U F 
U F 0 

0 110 

• 

• • 

• • • • • • 
• • • • • • • 

• 
• 

• • • • •• 
• • • • • 

• • • 
• • • 

• • • • • • • • 

• • • • 

• 
• • • • 

• • 
• • 

I Read R I 

jS43 

u 
U 

• 
• 

• 

jS411 

Fault 
f 
I-I-

0 

• 

• 

• 
• 

• 
• 
• 
• 

Operation: PSTORE 4 

FAULTWAIT 

9/24178 

memop10.sil 



Operation: Output 

c M 1: Currut ~~ 

Me' 
Nut ~ IA .. 

Me H 

Me' ... 
Iotc H 
Me ... 10 

::=.iB rU!I 

Dr.MC1 1UL7 

, ... R 

~HIM! 
g 
311 

~= 
It 

I· 

~ 
lie :lIrC !Sot -IUuw."",,_ 13 

14 

u_, !J. 

5" 
Ma_ t. 
Me: ,. 
Me re to 

Me' 

WC1 1_.1 
Me' i_.~ 

10K 1_.3 

liII"'ii I" 

Laa~H31 

, .. IWrltall 

A~ 131 ... 
I"! ... _, ..... 
IVai 
10K SXaort 
M( =-.M( 

Prom lit Number J 
(" indicate. low r true In prom) 

MC2: 
Current 

Next 
MC2Next.O 0 
MC2Next.1 1 
MC2Next,2 2 
MC2Next.3 3 
MC2Next.4 4 11 Note: MC2Next.4 anel MC2WriteCOat = > OValid in the Next cycle 
MC2Next.5 5 
MC2Ne"t.6 I'! 
praM Nen 7 7 

MC2Ta8tS~ 1'1 
MC2Ta.tO," 9 
MC2HoldlfSNEO 10 I I 
MC2SetFauit 11 

\~C2S~a:"~X=ort 15 • 
MC2Hoitl 16" •• • • • 
ChkPhaReO 12" 
LoadSvndrome 13 

MC2NeedRR 18" • 
MC2Neeel!lRlfSNEO 1 
MC~Writa( dat 17 • 
MC2DreLoadOdata 14 

I OValid = 1 9/24178 

Memop11.sil 



Operation: 10 FeTCH 16 

F3 IOF2 r 
M C1: Current a 

Next 10 
1 Next.O MC 

MC 
MC 
MC 
MC 
MC 
pra 
pre 

1 Next. 1 
1Next.2 
1Naxt.3 
1 Naxt.4 
1Naxt.5 
MC1Naxt.6 
M 1 NaXl.7 

MC 
MC 
MC 

1TastH4Par 
1TestFauit 
1 TastOWO 

1SetFauit MC 
Pre 
MC 
MC 

loadMC1 
1~tartMC2 
11; IkOutout 

x ... Cdat IMu 
H4 "IMux 

oRAS Ma 
Ma 
Ma 
MC 
MC 
Pre 
Sto 
Sto 
MC 

pCAS 
oW rite 
1Ref 
1 Store 
RowAd 
rRAS 
rCAS 
1WrlteMam 

1 Plpe.1 
1Ploe.2 
1 Ploe.3 
dPloe 

MC 
MC 
MC 
Loa 
R .. Ploe 

dH31 
1 NeedsR 
1WrlteR 

Loa 
MC 
MC 
R .. H31 

nPhaseO Ge 
IVa 
MC 
MC 
MC 

lid 
1SXoort 
1 _cadD 
1 LoadW 

MC2. 

0 
1 
2 
3 
4 
5 
6 
7 

8 
9 • 
36 

10 
11' 
33 • 
34 • 
13 
14 

15' • • • • • • 
16" • • • • • • 
17· 
25· • 
26' 
35· • • 
27 • • • • 
28 • • 
32 

21 • •• 
22 • • • 
23 • • 
24 • • • • • • 
20· 

37 
38 
39 
19" 

12 
18 
29 
3 
31 

I 
Prom Bit Number 
(. Indicates low 
true In prom) 

Current e 
e 

0 

• • 
• • • 

• • • • • • • • • • • 

• • 
• • • • • • • • • • • • • • • • • 

E F X GY 
E F X GY 

MC2Next. 
MC2Next.1 
MC2Next.2 
MC2Next.3 
MC2Next.4 
MC2Next.5 
MC2Nut.6 
preMC2Nex .7 

Next 
o 
1 
2 
3 
4 
5 ee ee ee ee 
6 
7 

MC2Tes SE 8 
MC2TestDE 9 
MC2Hc,ldlfSNEO 10 
·v'C2SHFault 1 ~ 

"-:~~~ .. 
. ; ;...:~,:: ·c 

ChkPhaseO 
Load ndrome 

MC2NeedsR 1· 
MC2N.edsRlfSNEO 1 
MC2W rite d t 17 
MC2 reLoadOdata 14 

e e1e e1e e1e e 

• • • 

• • • • • • • • 

• • • • • • • • • • • • • • • 

l first Cd at word ready 

fault 

I-~ 

• 

• • 

• • 

• • 
• • 

• 
• • 

I Double errors 

e 
X Y 

• • • 

FAULTWAIT 

Final 
n=O 

R 
e 

• 

Final 
S n#O 

• 

• 

• 
9/24/78 
memop12.sil 

no fault fau t 

s 
e 



M C1: Currant 
Naxt 

1 Naxt.O 
1 Naxt. 1 
1 Naxt.2 
1 Naxt.3 
1 Naxt.4 
1 Naxt.5 

MC 
Me 
Me 
Me 
Me 
Me 
pre 
pre 

Mf;1Naxt.8 
Mt 1NaJtt.7 

Me 
Me 
Me 

1Taatl-l4Par 
1T .. tFault 
1 TaatOWC 

1SatFauit Me 
Pre 
Me 
Me 

loadMC1 
1StartM 2 
1ClkOutout 

x-Cdat IMu 
H4<-I Mux 

.0RAS Ma 
Ma 
Ma 
MC 
Me 
Pre 
Sto 
Sto 
Me 

cCAS 
oW rite 
1 Raf 
1Stora 
RowAd 
rRAS 
rCAS 
1WritaMam 

1Ploa.1 Me 
Me 
Me 
I.oa 
R .. 

1Ploa.2 
11'108.3 
dPioa 

Ploa 

H31 
1 NaedsR 

Load 
Me 
Me 
R ..... 

1WrttaR 
131 

nPhasaO Ge 
IVa 
Me 
MC 
Me 

lid 
1SXoort 
1 oadO 
1 LoadW 

_0 
1 
2 
3 
4 
5 
e 
7 

8 
9 
38 

10 
n-
33 
34 

13 
14 

15-
16" 
17-
25" 
2S-
35" 
27 
28 
32 

21 
22 
23 
24 
20-

37 
38 
39 
19-

12 
18 
29 
3 
31 

Prom Bit Numoar 
(. Indlcat .. low 
true in prom) 

Operation: 10 STORE 4 

I5W-
1-14 Parity arror Fault 

F 2 f 
F a 1-~ .... 

FAULTWAIT 

• • 

• • • • 

• I • • 
• • • •• 

I • • • I I I I 

I 

I 

• 
I I I • I • 

I 
• I • 

I I • • I 

I • • I I 

I • I 

I • • 
• • I 

I I 

•• • • - Load 1-131 to clock H31Parity flip-flop 

• 
•• • • 

I I 
• I • • 

• • 
I H4.-d ev I 

data L On a parity arror, an extra cycl. is 
takan. and control goaa to location 2 

5/4/78 

mamop13.Sil 



--

Operation: XMAP 

ru 
M C1: Current R r 

Next R R 
1 Next.O 
1 Nexl. 1 
1Next.2 
1 Next.3 
1 Next. 4 
1 Next.5 

MC 
MC 
MC 
MC 
MC 
Me 
pre 
pre 

MC1Next.6 
MC1Next.7 

MC 
MC 
MC 

1Te.tH4Par 
1 Te.tFault 
1 Te.tOWO 

1SetFauit MC 
Pre 
MC 
MC 

10adM 1 
1StartMC2 
1c IkOutout 

x"Cdat IMu 
H4 .. IMux 

oRAS Ma 
Ma 
Ma 
MC 
MC 
Pre 
Sto 
Sto 
MC 

oCAS 
oWnte 
1Ref 
1 Store 
RowAd 
rRAS 
rCAS 
1WrlteMem 

1 Ploe.1 MC 
MC 
MC 
Loa 
R .. 

1Ploe.2 
1 Pioe.3 
dP!PIt 

PiPit 

dH31 
1 NeedsR 

'.oa 
MC 
MC 
R .. 

1WriteR 
H3L 

nPhaseO Ge 
IVa 
MC 
MC 
MC 

lid 
1 SXoort 
1 LoadD 
1 LoadW 

0 
1 
2 
3 
4 
5 
6 
7 

8 
9 
36 

10 
11· 
33 
34 

13 
14 

15· • • • • • • • • • • 
16" • • • • • • • • • 
17· • 
25· • 
26· • 
35" • 
27 
28 
32 

21 • • • • • • 
22 • • • • • 
23 • • • 
24 • • • • • • 
20· • • • 
37 
38 • • • • • 
39 • • • 
19· 

12 
18 
29 
30 
31 

1 Phase 1 12 3 

Prom Bit Number 
(" indicates low 
true in prom) 

The operation proceeds in three phase.: 

1) Load the pipe from the map entry for the select.d VA. 

2) Read one word from R into H4, and write it into the map. 

3) Dump the pipe into the next 3 R registers. Only the entries 

which contain map data are dumped. 

9/24/78 

memop14.sl1 



M C1: Current 
Nut 

1 Next.O 
1 Next. 1 
1 Next.2 
1 Next.3 
1 Next.4 
1 Next.5 

MC 
Me 
Me 
Me 
Me 
Me 
pre 
pre 

M 1 Next.6 
MC 1 Next. 7 

Me 
Me 
Me 

1Te.tH4Par 
1 T •• tFlu It 
1 r •• toWO 

1 SetFlult Me 
Pre 
Me 
Me 

IOldMC 1 
1StartMC2 
1 lk utDUt 

ux"Cdat 1M 
H4 .. IMux 

loR AS Ma 
Ma 
Ma 
Me 
Me 
or 
Sto 
Sto 
Me 

loCAS 
loWrit& 
1 Ref 
1Stor. 

.RowAd 
rAAs 
rCAS 
1WrltaMem 

1 P1I:!e.1 
1 Plae.2 
1 Ploe.3 

Me 
Me 
Me 
La 
R .. 

adPlce 
Ploe 

dH31 
1N_dsA 

Loa 
MC 
Me 
R .. 

1 WriteR 
H31 

nPhaseO Ge 
IVa 
Me 
Me 
Me 

lid 
1SXoort 
1 LaadO 
1 aldW 

0 , 
2 
3 
4 
5 
6 
7 

8 
9 
36 

10 
'1" 
33 
34 

13 
14 

15" 
16" 
17" 
25" 
26" 
35" 
27 
28 
32 

21 
22 
23 
24 
20" 

37 
38 
39 
19" 

12 
18 
29 
30 
31 

Operation: IOStor.16 

II" 
F 

• • 

• • 

• • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • • • • • 

• 
• 

• • • • • • • • • • • • • • • •• • • • 
• • • • •• • • • • • • 

• • • • 
• • • 

• • • 
• • • • • • • • 

• • • • • • • • • • • • • • • • 

• • • • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

• • • • • • • • 
• • • • • • • • 

fault 

• 

• • 

• • 

• • 
• • 

• 
• • 

9/24/78 
rn.mop15.sil 



APPENDIXC 

Standard 1/0 Interface 



Shift 
Addrea Reg;'t., 

4 S175 2 addr.O' 
00 00 3 addr. 

5 00' a dr.1' 01 01 ad r.1 
01' 10 ddr.2' 02 02 11 ad r.2 
02' 1 addr.3' 03 03 14 r. 

b19Q3' 
K 

S04 
(Mey u •• any Inv.rtlftfJ element) 

18laddr.O' 

1 6 laddr.1 

67 laddr.2 14 laddr.2' 

1 7 laddr.3 12 laddr.3' 

S240 

IE !addr.4 178r3 !addr.4' 
3 
4 f 

6 

19 
d 

7 

5241 

IlD Ivalld' 4~1e 
5240 

IValid 

[J]!J OValid' 6 8r.14 
5240 

OVaiid 

IE OFault' 11~9 
5241 

IOFault' 

25S09 
00 

00 
BO 917 

7 01 Q1 
B1 
02 

02 
10 

B2 
03 

03 
15 

B3 

!k1' 

HI 

GND 

11 

500 

Input 
Add,... eom,.,. 

15 
1 

13 
14 
12 
11 
1 

9 

4 

5 

12 

13 

XOS85 
YO x>Y 
X1 

X= Y1 
X2 X<Y Y2 
X3 918 
Y3 
> = < 

432 

6 1M.' 

SOO 

110M.' 

SOO 

~G~N~D ______ a~~~1~2~ ____ ~H~i 
~S240 



GND 

utD.OS 
OutD.oe 

61 Ocata.11 utD.10 
OutD.11 
OutD.12 

Odata.12 OutD.13 
utD.14 

Odata.13 OutD.15 

57 Odata.14 

53 Odata.15 

Ed a Ik1' 

GND 

[f[J Odata. 1 § 17 ~..,l31-. _______ .:.0~u~tD~':..I1.l1i.6 
t,::?rS241 

[l[J RUN 15 ~..,l51-. _______ .:.:IR.:.:u::.:n.:.-_ 

~S241 

HI 

'-9-' EdaeClockFeec' 

8 RamClkFeed1 

11 RamClockFeeC' 

Designer 
10 INTERFACE OData/Clocks 

Flta 
DOI002.sil DPPStaff 



11 3 

532 5240 
S 

1 :2 Phaae1Next' 5 Phase 1 Next 

5240 WelceR u s, 
Walee Ene"'e 

Phaae1Nextl' 3 25S09 ....... =I&O--=~~'!"'"'-;. ... DO 2 Phaae1' 

HM715gg 2' G1 P2 LT ~~ QO 1 G1 
G1P1 5 Q1 

GND 10 Q1H--..¥.~~=::--~'~1HB1 
~r"='··d~d~r~.O::o:·-"'""":i1~1'"'1AO Q2 .. 3~~==:":,,,~G:2.:;P.2_~!-:!-ID2 10 G2 
i!-~'~~-o+Ji~A1 4 G2P1 12 Q2 
;:Ca~d~d:-:r~.1;'·_""""i1ii2HA2 Q3 5 G3P2 14 B2 
~C~ad~d:-:r~.2h·_""""i1~3HA3 Q4 6 G3P1 13 D3 Q3 15 G3 
....:8Cl;;;d;;,;r""3;.,·_ ...... '.,4'"'1A4 Q5 7 G123 B3 b11 

b18~; 9 G23 S8 CK 

CS· 11 9 
_ •• _151 Phea.1 N.xt 
~ _Ed~~~~.~Clk~1~· ___ ~ 

S20 
'6 ICTaak.' 

Caddr.1' 5 

'2 ICTask.3' D 
d>S~2=-4 -, ...;.;=-::.:.::-=-~~ . , Sd -'",,':""--1 

_C""a;;,;d;,;d;.;,rol.:.3;.· __ '~3...,1 r -/' 
I.../' 586 

1 
'3 

2 

13 

dTx' 

4 5175 2 Tr naml' 
..... --~ DO :.~:3:::;TZra~n~.~m~it!: 

~M~.;'· __________ --I5~01 Q1 ~ __ ~O~M2·~F_' __ _ 
01·~6~.;:0fi=M~F __ 

1M' 

Ed 
HI 

02 10+' ~*IM~.~F .. ' __ _ 
02' 111M F 

03 Q3 
d1703' 4 

K 

, 1 IOAttn' 

Rev O.t. 
a t"ICI l .. t"I/~O 

172 



APPENDIXD 

ROC Buffer Control and Format Sequencers 

--



The following code is for the Buffer Control Sequencer. The l's and 
O' s are the address and data bits (x z don't care). The sequences 
have been given as programs to the right of the bits. 

Data Bits Are: 

0-3: 
4-7: 
8-11: 
12-15: 

Address: 

BufNxtAdr(3:6] 
dBre.2. dIne. delC', dLdC' 
dBre. dBrX, dOtW, dClrMem8ufAdr' 
dlncOev8ufAdr, dOev~uf, dWrtBuf, dREP 

Data: 

000 0000 X a 0000 0011 0001 0000 NOOataTransfer: goto(.]; 

001 0000 X • 0001 0011 0001 0000 WriteHeader: goto(.+l]; 

001 0001 1 ,. 0010 1010 0001 0000 Cnt ~ 1110. goto( .+l]; 

001 0010 1 a 0010 0011 0101 0000 WaitLoop: goto[.+l,., XferDataS]; 
001 0010 a ,. 0011 0111 1001 1100 Dev ~ Buf, IncBufAdr, IncCtr. 
goto[CntDone,CntWait.CntCry]; 

001 0011 1 ,. 0010 0011 0001 0000 CntWa it: goto[Wa itLoop] ; 
001 0011 0 = 0100 0011 0001 1000 CntOone: goto(.+l], IncBufAdr; 

001 0100 1 = 0101 0011 0001 1000 goto(.+l], IncBufAdr; 
001 0101 1 = 0101 0011 0001 0000 goto(.]; 

010 0000 x a 0001 0011 0001 0000 Read/VerifyHeader: goto[ . +l]; 

010 0001 1 • 0010 1010 0001 0000 Cnt ~ 1110, goto[.+l]; 

;2-word loop transfers data to device holding register 
010 0010 1 • 0010 0011 0101 0000 Wa i tLoop: goto(. +1. ., XferOataS]; 
010 0010 0 ,. 0011 0111 1001 1100 IncCtr, IncBufAdr, Dev ~ Buf , 
goto[CntDone.CntWait.CntCry]; 

010 0011 1 a 0010 0011 0001 0000 CntWait : goto(WaitLoop]; 
010 0011 0 a 0100 1010 0001 0000 CntOone: goto(.+l], Cnt ~ 1110 ; 

;2-word loop transfers data from device holding register to buffer 
010 0100 1 • 0100 0011 0101 0000 WaitLoopA : goto(.+!. .', XferDataS]; 
010 0100 0 a 0101 0111 1001 1010 IncCtr. IncBufAdr, WrtBuf. 
goto[CntOoneA.CntWaitA.CntCry]; 

010 0101 1 = 0100 0011 0001 0000 CntWaitA:goto[WaitLoopA); 
010 0101 a • 0110 0011 0001 0000 CntOoneA: goto[.+l]; 

;Wait for one more XferOataS. and generate a wakeup 
010 0110 1 a 0110 0011 0101 0000 goto[.+1. . ,XferOataS); 
ala 0110 0 = 0111 0011 0001 0000 goto(.+l]; 

010 0111 1 = 1000 0011 0011 0000 

010 1000 = 1000 0011 0001 0000 

DataWake. goto[ .+l]; 

goto( . ]; 



Data Bits Are: 

BufNxtAdr[3:6] 
dBrC.2. dInC. dC1C·. dLdC' 

0-3: 
4-7: 
8-11: 
12-15: 

dBrC. dBrX. dDtW. dClrMemBufAdr' 
dlncDevBufAdr. dDev~Buf. dWrtBuf. dREP 

Address; Data: 

all 0000 x ~ 0001 0011 0001 0000 WriteLabel: goto[.+l]; 

011 0001 1 = 0010 0010 0001 0000 Cnt ~ 1100. goto[.+l]; 

;4-word loop to transfer the first four label words to the device holding register from the 
buffer 
all 0010 1 = 0010 0011 0101 0000 WaitLoop: goto[.+l •.• XferDataS]; 
all 0010 a = 0011 0111 1001 1100 IncCtr. IncBufAdr. Dev ~ Buf. goto[CntDone. CntWait. 
CntCry]; 

all 0011 1 0010 0011 0001 0000 CntWait: goto[WaitLoop]: 
011 0011 a 0100 0010 0001 0000 CntDone: Cnt ~ 1100, goto[.+l]; 

:4-word loop to transfer the second four label words to the device holding register from the 
buffer 
011 0100 1 cOlaO 0011 0101 0000 WaitLoopA: goto[.+l •.• XferDataS]; 
all 0100 a 0101 0111 1001 1100 IncCtr. IncBufAdr, Dev ~ Buf. goto[CntDoneA. CntWaitA. 
CntCry] ; 

all 0101 1 ~ 0100 0011 0001 0000 CntWaitA: goto[WaitLoopA]; 
all 0101 a = 0110 0010 0001 0000 CntDoneA: Cnt ~ 1100. goto[.+l]; 

;4 cycles are spent incrementing the device buffer address 
011 0110 1 = 0110 0111 1001 1000 IncCtr. IncBufAdr. goto[.+l •.• CntCry]; 
all 0110 a = 0111 0011 0001 0000 goto[.+l]; 

011 0111 1 = 0111 0011 0001 0000 goto[.+l]; 

2 



Data Bits Are: 

BufNxtAdr(3:6] 
dBrC.Z. dInC. dC1C·. dLdC' 

0-3: 
4-7: 
8-11 : 
12-15: 

dBrC. dBrX. dOtW. dClrMem8ufAdr' 
dlncOevSufAdr, dOev-Suf. dWrt8~f. dREP 

Address: Data: 

100 0000 x a 0001 0011 0001 0000 Read/Verifylabel: gotoe .• 1]; 

100 0001 1 ~ 0010 1010 0001 0000 Cnt ~ 1110, goto( .• l]i 

;Z-word loop transfers the first two words from the buffer to the device holding register. 
100 0010 1 = 0010 0011 0101 0000 WaitLoop: goto( .• 1 •.• XferDataS]; 
100 0010 a a 0011 0111 1001 1100 IncCtr.lncBufAdr. Oev ~ Buf. goto(CntOone. CntWait. 
CntCry) : 

100 ODilia 0010 0011 0001 0000 CntWait: goto(WaitLoop]: 
100 0011 0 = 0100 0010 0001 0000 CntOone: Cnt ~ 1100. goto( .• l]: 

;4-word loop sends a word to the device holding register. then reads a word from 
:the device holding register into the buffer. 
100 0100 1 • 0100 0011 0101 0000 WaitloopA: goto( .• l •. ,XferOataS]; 
100 0100 0 0101 0111 1001 0100 IncCtr, Oev ~ Buf, gotO(CntOoneA. CntWaitA, CntCry]: 

100 0101 1 • 0100 0011 0001 1010 CntWaitA: IncBufAdr. WrtBuf. goto(WaitloopA]: 
100 0101 0 a 0110 1010 0001 1010 CntOoneA: Cnt ~ 1110. IncBufAdr, WrtBuf, goto( .• l]; 

;Z-word loop sends a word to the device holding register. then reads a word from 
:the device holding register into the buffer. 
100 0110 1 • 0110 0011 0101 0000 WaitLoopB: goto( .• l •.• XferDataS]: 
100 0110 0 = 0111 0111 1001 0100 IncCtr, Oev ~ Buf. goto(CntOoneS, CntWaitB, CntCry]; 

100 0111 1 • 0110 0011 0001 1010 CntWaitB: IncBufAdr. WrtBuf. goto(WaitLoopS]; 
100 0111 0 • 1000 0011 0001 1010 CntOoneS: IncBufAdr. WrtBut. goto( .• l]: 

100 1000 1 • 1001 0011 0001 0000 goto( .• l]: 

;Cause a wakeup 
100 1001 1 • 1010 1010 0011 0000 Cnt ~ 1110, OataWake, goto( .• l]; 

;2-word loop transfers the final two words from the device holding register to the buffer. 
100 1010 1 = 1010 0011 0101 0000 WaitLoopC: goto[:+l •. ,XferOataS]; 
100 1010 0 • 1011 0111 1001 1010 IncCtr. IncButAdr. WrtBuf, goto[CntOoneC, CntWaitC," 
CntCry) ; 

100 1011 1 • 1010 0011 0001 0000 CntWaitC: goto(WaitloopC]: 
100 1011 a • 1100 0011 0001 0000 CntOoneC: goto[.+l]; 

;Wait for one more XferOataS. cause a wakeup. and increment the buffer address by Z. 
100 1100 1 • 1100 0011 0101 0000 goto[.+l,.,XferOataS]; 
100 1100 a • 1101 0011 0011 1000 OataWake, IncBufAdr, goto[.+l]; 

100 1101 1 = 1110 0011 0001 1000 

100 1110 1 = 1110 0011 0001 0000 

IncBufAdr, goto(.+l]; 

goto(.]; 

3 



Data Bits Are: 

BufNxtAdr[3:6] 
dBrC.2. dInC. dC1C·. dLdC' 

0-3: 
4-7: 
8-11: 
12-15: 

dBrC. dBrX. dOtW. dClrMemBufAdr' 
dIncOevBufAdr, dOev.Buf. dWrtBuf. dREP 

Address: Data: 

101 0000 x 0001 0011 0001 0000 WriteOata: goto[.+l]; 

101 0001 1 = 0010 0011 0001 0000 goto[.+lJ; 

;Send one word to the device holding register 
101 0010 1 • 0010 0011 0101 0000 WaitLoop: goto[.+l •.• XferOataS); 
101 0010 0 = 0011 0011 0001 1100 IncBufAdr. Oev • Buf. goto[.+l); 

;Wakeup. set up count 
101 0011 1 = 0100 0001 0011 0000 Cnt. 0000. OataWake. goto[.+l]; 

;Send 16 words with REP equal zero. 
101 0100 1 0100 0011 0101 0000 FirstLoop: goto[.+l ..• XferOataS); 
101 0100 0 0101 0111 1001 1100 IncCtr. IncBufAdr. Dev .. Buf. goto[CntDone. CntWait. 
Cntery] ; 

101 0101 1 = 0100 0011 0001 0000 CntWait: goto[FirstLoop); 
101 0101 a = 0110 0011 0001 0000 CntOone: goto[MainSetup]; 

;Cause a wakeup. send 16words (forever) REP equals 1. 
101 0110 1 0111 0001 0011 0001 MainSetup: Cnt ~ 0000. OataWake. REP. goto[.+l); 

101 0111 1 = 0111 0011 0101 0001 MainLoop: goto[.+l ... XferOataS); 
101 0111 a = 1000 0111 1001 1101 IncCtr. IncBufAdr. Dev ~ Buf. REP. goto[CntDoneA. 
CntWaitA. CntCry]; 

101 1000 1 = 0111 0011 0001 0001 CntWaitA: REP. goto[MainLoop]; 
101 1000 a = 0110 0011 0001 0001 CntOoneA: REP. goto[MainSetup); 

4 



Data B its Are: 

0-3: 
4-7 : 
8-11: 
12-15: 

Address: 

BufNxtAdr(3:6] 
dBrC.2. dInC. dC1C', dLdC' 
dBrC, dBrX. dDtW, dClrMemBufAdr' 
dlncOevSufAdr. dDev~Buf, dWrtBuf, dREP 

Data: 

110 0000 x • 0001 0011 0001 0000 ReadData: goto(,"l]; 

;Wait for XferOata and increment the buffer address, but don't write the buffer. 
110 0001 1 = 0001 0011 0101 0000 gota[.+l .. ,XferOataS]; 
110 0001 0 = 0010 0010 0001 1000 Cnt ~ 1100. tncBufAdr, goto(.+l]; 

;4-word loop transfers data from the device holding register to the buffer - no wakeups yet. 
110 0010 1" 0010 0011 0101 0000 WaitLoop: goto(.+l,.,XferDataS]; 
110 0010 0 0011 0111 1001 1010 tncCtr. IncBufAdr. WrtBuf, goto(CntDone. CntWait, 
CntCry] ; 

110 0011 1 = 0010 0011 0001 0000 CntWait: goto(WaitLoop]; 
110 0011 a = 0100 0010 0001 0000 CntDone: Cnt p 1100, goto(.+l]; 

; 4-wo rd loop transfers data from the device holding register to the buffer - no wakeups yet. 
110 0100 1 = 0100 0011 0101 0000 Wa itLoopA: goto(.+l ... XferOataS]; 
110 0100 0 • 0101 0111 1001 1010 IncCtr. IncBufAdr. WrtBuf. goto[CntDoneA. CntWaitA. 
CntCry] ; 

110 0101 1 .. 0100 0011 0001 0000 CntWaitA: goto(Wa itLoopA]; 
110 0101 o .. 0110 0010 0001 0000 CntDoneA: Cnt p 1100. goto(.+l]; 

;4-word loop transfers data from the device holding register to the buffer - no wakeups yet. 
110 0110 1 .. 0110 0011 0101 0000 WaitLoopB: goto(.+l •. ,XferOataS]; 
110 0110 0 = 0111 0111 1001 1010 IncCtr, IncSufAdr. WrtSuf, goto(CntDoneB, CntWaitS. 
CntCry] ; 

110 0111 1 • 0110 0011 0001 0000 CntWaitS: goto(WaitLoopB]; 
110 0111 a .. 1000 0010 0001 0000 CntDoneB: Cnt p 1100, goto(.+l]; 

;4-word loop 
110 1000 1 
110 1000 0 • 
CntCry] ; 

transfers data from the device holding register to the buffer - no wakeups yet. 
1000 0011 0101 0000 WaitLoopC: goto[.+l .. ,XferOataS]; 
1001 0111 1001 1010 IncCtr, IncBufAdr, WrtBuf, gota(CntOoneC. CntWaitC, 

110 1001 1 • 1000 0011 0001 0000 CntWaitC: goto[WaitLoopC]; 
110 1001 0 .. 1010 0011 0001 0000 CntDoneC: goto(.+l]; 

;transfer one more word ... 
110 1010 1 = 1010 0011 0101 0000 
110 1010 0 • 1011 0011 0001 1010 

goto(.~l .. ,XferOataS]; 
IncBufAdr, WrtBuf, goto[.+l]; 

;cause a wakeup and set up for 16 word loop 
110 1011 1 = 1100 0001 0011 0000 Cnt p 0000, DataWake. goto(.+l]; 

;16-word loop writes words to the buffer, then causes a wakeup (forever). 
110 1100 1 = 1100 0011 0101 0000 MainLoop: goto(."l .. ,HerOataS]; 
110 1100 0 1101 0111 1001 1010 IncCtr, IncBufAdr. WrtBuf. goto[CntDoneO. CntWaitD. 
CntCry] ; 

110 1101 
110 1101 0 

1100 0011 0001 0000 CntWaitO: goto[MainLoop]; 
1100 0001 0011 0000 CntDoneD: Cnt ~ 0000. DataWake. goto[MainLoop]: 

5 



"-

Data Bits Are; 

BufNxtAdr[3:6] 
dBrC.Z. dInC. dC1C', dLdC' 

0-3; 
4-7; 
8-11; 
lZ-15: 

dBrC. dBrX. dDtW. dClrMemSufAdr' 
d!ncDeyBufAdr, dDeY~Buf, dWrtBuf, dREP 

Address: Data; 

111 0000 x = 0001 0011 0001 0000 VerifyData: goto[.+l]; 

111 0001 1 = 0010 0011 0001 0000 goto[ .+1]; 

;Send one word to the device holding register. 
111 0010 1 = 0010 0011 0101 0000 WaitLoop: goto[.+l •.• XferDataS]; 
111 0010 0 = 0011 0011 0001 1100 IncBufAdr. Dey • Buf. goto[.+l]; 

;Cause a wakeup. set up for 16-word loop. 
111 0011 1 = 0100 0001 0011 0000 Cnt • 0000. DataWake, goto[.+l]; 

: 16-wo rd loop ... 
111 0100 1 0100 0011 0101 0000 WaitLoopA: goto[.+l ..• XferDataS]; 
111 0100 0 0101 0111 1001 1100 IncCtr. IncBufAdr. Dev • Buf, goto[CntDone, CntWait. 
CntCry] ; 

111 0101 1 = 0100 0011 0001 OOOOCntWait: goto[WaitLoopA]; 
111 0101 0 = 0110 0011 0001 0000 CntDone: goto[MainLoopSetup]; 

;Cause a wakeup. set up for 16-word main loop, which transfers forever. 
111 0110 1 0111 0001 0011 0001 MainLoopSetup: Cnt • 0000. DataWake. goto[.+l]; 

111 0111 1 = 0111 0011 0101 0001 MainLoop: goto[.+l •.• XferDataS]; 
111 0111 0 1000 0111 1001 1101 IncCtr, IncBufAdr. Dev • Buf, goto[CntDoneA. CntWaitA, 
CntCry] ; 

111 1000 1 = 0111 0011 0001 0001 CntWaitA: goto[MainLoop]; 
111 1000 0 = 0110 0011 0001 0001 CntDoneA: goto[MainLoopSetup]; 

6 



The following listing is for the Format Sequencer. 
The (decimal) location in the memory is given. followed by 
the contents of the memory in the following order: 

ForNxtAdr.0-6 (7 bits) 
dForCnt.0-4 (5 bits) 
dBrOnSync 
dSequenceEnd 
dSectorWake 
dC1rOevOp' 
dXferTi_ 
dSyncT1_ 
dOataTime 
dCRCSb1ft 
dCRCWr1tt 
dCRCCbeck 
dWrittGat. 
dReadGate 
dECCC1.ar 
dECCSbift 
dECCWrite 
ddECCCheck 
(28 bits total) 

For each location. the control bits (marked with • above) are shown in text form. 
The quantities in parentheses are the address of the instruction that will be executed 
following the current instruction. and (if the current address is even) the number of 
cycles that the sequencer will remain at that location. 

The Basic Sequencer Operation is given at the start of each sequence. 

Seek: 
000: 0000000 xxx xx 0001 0000 0000 0000 (000) 
001: 0000000 xxxxx 0001 0000 0000 0000 (000) 
002: 0000001 xxxxx 0001 0000 0000 0000 (002) 
003: 0000010 11111 0101 0000 0000 0000 (005.000) SeqEnd 
004: 0000010 xxxxx xxOl 0000 0000 0000 (004) 
005: 0000011 xxxxx 0101 0000 0000 0000 (006) SeqEnd 
006: 0000011 xxxxx 0001 0000 0000 0000 (006) 
007: 0000011 xxxxx 0001 0000 0000 0000 (ooe) 
008: 0000100 xxxxx xxOl xxxx xxxx xxxx (008) 
009: xxxxxxx xxxxx xxOl xxxx xxxx xxxx (000) 
010: 0000101 xxxxx xxOl xxxx xxxx xxxx (010) 
011: xxxxxxx xxxxx xxOl xxxx xxxx xxx x (000) 
012: 0000110 xxxxx 0001 1010 0001 0100 (012) XfrTime OataTime ReadGate ECCShift 
013: 0000111 00000 0001 1010 0001 0100 (014.031) XfrTime OataTime ReadGate ECCShift 
014: 0000111 xxxxx 0001 1010 0001 0100 (014) XfrTime OataTime ReadGate ECCShift 
015: 1000010 00000 0001 1010 0001 0100 ( 132.031) XfrTime OataTime ReadGate ECCSh1ft 
016: 0001000 xxxxx 0001 0000 0000 0000 (016) 

Write Header: 
017: 0001001 11111 0001 0000 0010 0000 (019.000) WriteGate 
018: 0001001 xxxxx xxOl 0000 0010 0000 (018) WriteGate 
019: 0001010 10110 0000 0000 0010 0000 (020.009) ClrOevOp WriteGate 
020: 0001010 xxxxx 0001 0000 0010 0000 (020) WriteGate 
021: 0001011 11111 0001 1000 0010 0000 (023.000) XfrTime WriteGate 
022: 0001011 xxxxx 0001 1000 0010 0000 (022) XfrTime WriteGate 
023: 0001100 11110 0001 1100 0010 0000 (024.001) XfrTime SyncTime WriteGate 
024: 0001100 xxxxx 0001 1100 0010 0000 (024) XfrTime SyncTime WriteGate 
025: 0001101 11110 0001 1011 0010 0100 (02S.001) XfrTime OataTime CRCShift WriteGate ECCShift 
O2S: 0001101 xxxxx 0001 1011 0010 0100 (026) XfrTime OataTime CRCShi~t WritaGate ECCShift 
027: 0001110 11110 0001 0011 0010 0100 (028.001) OataTime CRCShift WriteGate ECCShift 
028: 0001110 xxxxx 0001 0011 0010 0100 (028) OataTime CRCShift WriteGate ECCShift 
029; 0001111 11110 0001 0001 1010 0000 (030.001) CRCShift CRCWrite WriteGate 
030: 0001111 xxxxx 0001 0001 1010 0000 (030) CRCShift CRCWrite WriteGate 
031: 0000001 11110 0001 0000 0010 0000 (002.001) WriteGate 
032: 0010000 xxxxx 0001 0000 0000 0000 (032) 

Read Header: 
033: 0010001 11111 0001 0000 0000 0000 (035.000) 
034: 0010001 xxxxx xxOl 0000 0000 0000 (034) 
035: 0010010 11110 0000 0000 0001 0000 (036,001) ClrOevOp ReadGate 

1 



8 

036: 0010010 xxx xx 0001 0000 0001 0000 (036) ReadGate 
037: 0010011 11011 0001 0000 0001 0000 (038.004) ReadGate 
038: 0010011 xxxxx 0001 0000 0001 0000 (038) ReadGate 
039: 0010100 11110 0001 1000 0001 0000 (040.001) XfrTime ReadGate 
040: 0010100 XXXltX 0001 1000 0001 0000 (040) XtrTime ReadGate 
041: 0010101 xxxxx 1001 0100 0001 0000 (04Z) BrSync SyncTime ReadGate 
04Z: 0010101 xxx xx 1001 0100 0001 0000 (04Z) BrSync SyncTime ReadGate 
043: 0010110' 11100 0001 1011 0001 0100 (044.003) XfrTime OataTime CRCShift ReadGate ECCShift 
044: 0010110 xxx xx 0001 1011 0001 0100 (044) XfrTime OataTime CRCShift ReadGate ECCShift 
045: 0010111 11110 0001 1001 0001 0100 (046.001) XfrTime CRCShift ReadGate ECCShift 
046: 0010111 xxxxx 0001 1001 0001 0100 (046) XfrTime CRCShift ReadGate ECCShift 
047: 0000001 11110 0001 0000 0101 0000 (OOZ.OOl) CRCCheck ReadGate 
048: 0011000 xxxxx xxOl xxxx xxxx xxxx (048) 

Write Label: 
049: 0011001 11000 0001 0000 0010 0000 (050.007) WriteGate 
050: 0011001 xxxxx 0001 0000 0010 0000 (050) WriteGate 
051: 0011010 11111 0001 1000 0010 0000 (053.000) XfrTime WriteGate 
05Z: 0011010 xxxxx 0001 1000 0010 0000 (05Z) XfrTime WriteGate -' 053: 0011011 11110 0001 1100 0010 0000 (054.001) XfrTime SyncTime WriteGate , 

.. -"" 054: 0011011 xxxxx 0001 1100 0010 0000 (054) XfrTime SyncTime WriteGate 
055: 0011100 10010 0001 1011 0010 0100 (056.013) XfrTime OataTime CRCShift WriteGate ECCShift 
056: 0011100 xxxxx 0001 1011 0010 0100 (056) XfrTime OataTime CRCShift WriteGate ECCShift 
057: 0011101 11110 0001 0011 0010 0100 (058.001) DataTime CRCShift WriteGate ECCShift 
058: 0011101 xxxxx 0001 0011 0010 0100 (058) OataTime CRCShift WriteGate ECCShift 
059: 0011110 11110 0001 0001 1010 0000 (060.001) CRCSh1ft CRCWrite WriteGate 
060: 0011110 xxxxx 0001 0001 1010 0000 (060) CRCShitt CRCWrite WriteGate 
061: 0000001 11110 0001 0000 0010 0000 (OOZ.OOl) WriteGate 
062: 0011111 xxx xx xxOl xxxx xxxx xxxx (062) 
063: xxxxxxx xxxxx xxOl xxxx xxxx xxxx (000) 
064: 0100000 xxxxx xxOl xxxx xxx x xxxx (064) 

Read/Verify Label: 
065: 0100001 11111 0001 0000 0000 0000 (067.000) 
066: 0100001 xxxxx xxOl xxxx xxxx xxxx (066) 
067: 0100010 11100 0001 0000 0001 0000 (068.003) ReadGate 
068: 0100010 xxx xx 0001 0000 0001 0000 (068) ReadGate 
069: 0100011 11110 0001 1000 0001 0000 (070.001) XfrTime ReadGate 
070: 0100011 xxxxx 0001 1000 0001 0000 (070) XfrTime ReadGate 
071: 0100100 xxx xx 1001 0100 0001 0000 ( 072) BrSync SyncTime ReadGate 
072: 0100100 xxx xx 1001 0100 0001 0000 (072) BrSync SyncTime ReadGate 
073: 0100101 10000 0001 1011 0001 0100 (074.015) XfrTime DataTime CRCShitt ReadGate ECCShift 
074: 0100101 xxx xx 0001 1011 0001 0100 (074) XfrTime OataTime CRCShift ReadGate ECCShift 
075: 0100110 11110 0001 1001 0001 0100 (076.001) XfrTime CRCShift ReadGate ECCShift 
076: 0100110 xxxxx 0001 1001 0001 0100 (076) XfrTime CRCShift ReadGate ECCShift . 
077: 0000001 11110 0001 0000 0101 0000 (OOZ,OOl) CRCCheck ReadGate 
078: 0100111 xxxxx 0001 1010 0001 0100 (078) XfrTime DataTime ReadGate ECCShift 
079: 1110000 00000 0001 1010 0001 0100 (224,031) XfrTime DataTime ReadGate ECCShift 
080: 0101000 xxx xx xxOl xxxx xxxx xxx x (080) 

Write Data: 
081: 0101001 11000 0001 0000 0010 1100 (082,007) WriteGate ECClr ECCShift 
082: 0101001 xxxxx 0001 0000 0010 1100 (082) WriteGate ECClr ECCShift 
083: 0101010 11111 0001 1000 0010 0000 (085.000) XfrTime WriteGate 
084: 0101010 xxxxx 0001 1000 0010 0000 (084) XfrTime WriteGate 
085: 0101011 11110 0001 1100 0010 0000 (086.001) XfrTime SyncTime WriteGate 
086: 0101011 xxxxx 0001 1100 0010 0000 (086) XfrTime SyncTime WriteGate 
087: 0101100 00000 0001 1010 0010 0100 (088,031) XfrTime DataTime WriteGate ECCShift 
088: 0101100 xxxxx 0001 1010 0010 0100 (088) XfrTime DataTime WriteGate ECCShift 
089: 0101101 00000 0001 1010 0010 0100 (090.031) XfrTime DataTime WriteGate ECCShift 
C90: ('101101 xxxxx 0001 1010 0010 0100 (090) XfrTime DataTime WriteGate ECCShift 
091: 0101110 00000 0001 1010 0010 0100 (092.031) XfrTime DataTime WriteGate ECCSh ift 
1192· (.l01110 xxxxx 0001 1010 0010 0100 (092] XfrTlme DataTime WriteGate ECCShift 
.j'93. ;;lJl111 00000 0001 1010 0010 0100 (094.031) XfrTime DataTime WriteGate ECCSrift 
094: 0101111 xxxxx 0001 1010 0010 0100 (094) XfrTime DataTime WriteGate ECCSh ift 
095: 1100010 00000 0001 1010 0010 0100 (196.031) XfrTime OataTime WriteGate ECCShift 
096: 0110000 xxxxx xx01 xxxx xxxx xxxx (096) 

Read Data: 
097: 0110001 11111 0001 0000 0000 0000 (099.000) 
098: 0110001 xxxxx xxOl xxxx xxxx xxxx (098) 
099: 0110010 11010 0001 0000 0001 1100 (100.005) ReadGate ECClr ECCShift 



100: 
101: 
102: 
103 : 
104: 
106: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 

0110010 xxxxx 0001 0000 0001 1100 (100) 
0110011 xxxxx 1001 0100 0001 0000 (102) 
0110011 xxxxx 1001 0100 0001 0000 (102) 
0110100 11111 0001 0010 0001 0100 (106.000) 
0110100 xxxxx 0001 0010 0001 0100 (104) 
0110101 00001 0001 1010 0001 0100 (106.030) 
0110101 xxxxx 0001 1010 0001 0100 (106) 
0110110 00000 0001 1010 0001 0100 (108.031) 
0110110 xxxxx 0001 1010 0001 0100 (108) 
0110111 00000 0001 1010 0001 0100 (110.031) 
0110111 xxxxx 0001 1010 0001 0100 (110) 
0000110 00000 0001 1010 0001 0100 (012.031) 
0111000 xxxxx xxOl xxxx xxxx xxxx (112)-

Verify Data: 
113: 0111001 11111 0001 0000 0000 0000 (115.000) 
114: 0111001 xxxxx xxOl xxxx xxxx xxxx (114) 
115: 0111010 11100 0001 0000 0001 1100 (116.003) 
116: 0111010 xxxxx 0001 0000 0001 1100 (116) 
117: 0111011 11110 0001 1000 0001 0000 (118.001) 
118: 0111011 xxxxx 0001 1000 0001 0000 (118) 
119: 0111100 xxxxx 1001 0100 0001 0000 (120) 
120: 0111100 xxxxx 1001 0100 0001 0000 (120) 
121: 0111101 00000 0001 1010 0001 0100 (122.031) 
122: 0111101 xxxxx 0001 1010 0001 0100 (122) 
123: 0111110 00000 0001 1010 0001 0100 (124.031) 
124: 0111110 xxxxx 0001 1010 0001 0100 (124) 
125: 0111111 00000 0001 1010 0001 0100 (126.031) 
126: 0111111 xxxxx 0001 1010 0001 0100 (126) 
127: 0100111 00000 0001 1010 0001 0100 (078.031) 
128: 1000000 xxxxx 0001 0000 0000 0000 (128) 

Nop He.der: 
129: 1000001 01100 0001 0000 0000 0000 (130.019) 
130: 1000001 xxxxx 0001 0000 0000 0000 (130) 
131: 0000001 11110 0000 0000 0000 0000 (002.001) 
132: 1000010 xxxxx 0001 1010 0001 0100 (132) 
133: 1000011 00000 0001 1010 0001 0100 (134.031) 
134: 1000011 xxxxx 0001 1010 0001 0100 (134) 
135: 1000100 00000 0001 1010 0001 0100 (136.031) 
136: 1000100 xxxxx 0001 1010 0001 0100 (136) 
137: 1000101 00000 0001 1010 0001 0100 (138.031) 
138: 1000101 xxxxx 0001 1010 0001 0100 (138) 
139: 1000110 00000 0001 1010 0001 0100 (140.031) 
140: 1000110 xxxxx 0001 1010 0001 0100 (140) 
141: 1000111 00000 0001 1010 0001 0100 (142.031) 
142: 1000111 xxxxx 0001 1010 0001 0100 (142) 
143: 1001001 00000 0001 1010 0001 0100 (146.031) 
144: 1001000 xxxxx xxOl xxxx xxxx xxxx (144) 

Nop Labe': 
145: 0000001 
146: 1001001 
147: 1001010 
148: 1001010 
149: 1001011 
150: 1001011 
151: 1001100 
152: 1001100 
153: 1001101 
154: 1001101 
155: 1001110 
156: 1001110 
157: 1001111 
ECCChk 

00001 0001 0000 0000 0000 (002.030) 
xxxxx 0001 1010 0001 0100 (146) 
00000 0001 1010 0001 0100 (148.031) 
xxxxx 0001 1010 0001 0100 (148) 
00000 0001 1010 0001 0100 (150.031) 
xxxxx 0001 1010 0001 0100 (150) 
00000 0001 1010 0001 0100 (152.031) 
xxx xx 0001 1010 0001 0100 (152) 
00000 0001 1010 0001 0100 (154,031) 
xxxxx 0001 1010 0001 0100 (154) 
11100 0001 1000 0001 0100 (156.003) 
xxxxx 0001 1000 0001 0100 (156) 
11100 0001 1000 0001 1111 (158.003) 

ReadGate ECClr ECCSh1ft 
BrSync SyncTime ReadGate 
BrSync SyncTime ReadGate 
DataTime ReadGate ECCShift 
OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCSh1ft 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCSh1ft 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 

ReadGate ECClr ECCShift 
ReadGate ECClr ECCShift 
XfrTime ReadGatf 
XfrTime ReadGate 
BrSync SyncTime ReadGate 
BrSync SyncTime ReadGate 
XfrTime OataTime ReadGate 
XfrTime OataTime ReadGate 
XfrTime OataTime ReadGate 
XfrTime OataTime ReadGate 
XfrTime OataTime ReadGate 
XfrTime OataTime ReadGate 
XfrTime OataTime ReadGate 

C1rOevOp 

ECCShift 
ECCShift 
ECCShift 
ECCShift 
ECCShift 
ECCShift 
ECCShift 

XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 

XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift • 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime OataTime ReadGate ECCShift 
XfrTime ReadGate ECCShift 
XfrTime ReadGate ECCShift 
XfrTime ReadGate ECClr ECCShift ECC~rite 

158: 1001111 
159: 0000010 
160: 1010000 

xxxxx 0001 1000 0000 1111 (158) XfrTime ECClr ECCShift ECC~rite ECCChk 
11111 0111 0000 0000 0000 (005.000) SeqEnd SectWk 
xxxxx xxOl xxxx xxxx xxxx (160) 

NOp Data: 
161: 1010001 00000 0001 0000 0000 0000 (16Z.031) 
162: 1010001 xxxxx 0001 0000 0000 0000 (162) 

9 



10 

163: 1010010 00000 0001 0000 0000 0000 (164.031) 
164: 1010010 xxxxx 0001 0000 0000 0000 (164 ) 
165: 1010011 00000 0001 0000 0000 0000 (166.031) 
166: 1010011 xxxxx 0001 0000 0000 0000 ( 166) 
167: 1010100 00000 0001 0000 0000 0000 (168.031) 
168: 1010100 xxxxx 0001 0000 0000 0000 (168) 
169: 1010101 00000 0001 0000 0000 0000 (170.031) 
170: 1010101 xxxxx 0001 0000 0000 0000 (170) 
171: 1010110 00000 0001 0000 0000 0000 (172.031) 
172: 1010110 xxxxx 0001 0000 0000 0000 ( 172) 
173: 1010111 00000 0001 0000 0000 0000 (174.031) 
174: 1010111 xxxxx 0001 0000 0000 0000 (174 ) 
175: 1011001 00000 0001 0000 0000 0000 ( 178.031) 
176: 1011000 xxxxx 0001 0000 0000 0000 (176) 

177: 1011000 xxxxx 0001 0000 0000 0000 (176) 
178: 1011001 xxxxx 0001 0000 0000 0000 (178) 
179: 1011010 00000 0001 0000 0000 0000 (180.031) 
180: 1011010 xxxxx 0001 0000 0000 0000 (180) 
181: 1011011 00000 0001 0000 0000 0000 (182.031) 
182: 1011011 xxxxx 0001 0000 0000 0000 (182 ) 
183: 1011100 00000 0001 0000 0000 0000 (184.031) 
184: 1011100 xxxxx 0001 0000 0000 0000 (184) 
185: 1011101 00000 0001 0000 0000 0000 (186.031) 
186: 1011101 xxxxx 0001 0000 0000 0000 (186) 
187: 1011110 00000 0001 0000 0000 0000 (188.031) 
188: 1011110 xxxxx 0001 0000 0000 0000 (188) 
189: 1011111 01111 0001 0000 0000 0000 (190.016) 
190: 1011111 xxxxx 0001 0000 0000 0000 (190) 
191 : 1100000 01111 0001 0000 0000 0000 (192.016) 
192: 1100000 xxxxx 0001 0000 0000 0000 (192) 

193: 1100001 00000 0001 0000 0000 0000 ( 194.031) 
194: 1100001 xxxxx 0001 0000 0000 0000 (194) 
195: 0000001 10001 0011 0000 0000 0000 (002.014) SectWk 
196: 1100010 xxxxx 0001 1010 0010 0100 (196) XfrTime DataTime WriteGate ECCShift 
197: 1100011 00000 0001 1010 0010 0100 (198.031) XfrTime DataTime WriteGate ECCShift 
198: 1100011 xxxxx 0001 1010 0010 0100 (198) XfrTime DataTime WriteGate ECCShift 
199: 1100100 00000 0001 1010 0010 0100 (200.031) XfrTime DataTime Wr1teGate ECCShift 
200: 1100100 xxxxx 0001 1010 0010 0100 (200) XfrTime DataTime WriteGate ECCShift 
20 1: 1100101 00000 0001 1010 0010 0100 (202.031) XfrTime DataTime WriteGate ECCShift 
202: 1100101 xxxxx 0001 1010 0010 0100 (202) XfrTime DataTime WriteGate ECCShift 
203: 1100110 00000 0001 1010 0010 0100 (204.031) XfrTime DataT1me WriteGate ECCShift 
204: 1100110 xxxxx 0001 1010 0010 0100 (204) XfrTime DataTime WriteGate ECCShift 
205: 1100111 00000 0001 1010 0010 0100 (206.031) XfrTime DataTime WriteGate ECCShift· 
206: 1100111 xxxxx 0001 1010 0010 0100 (206) XfrTime DataTime WriteGate ECCShift 
207: 1101000 00000 0001 1010 0010 0100 (208.031) XfrTime DataTime WriteGate ECCShift 
208: 1101000 xxxxx 0001 1010 0010 0100 (208) XfrTime DataTime WriteGate ECCShift 

209: 1101001 00000 0001 1010 0010 0100 (210.031) XfrTime DataTime WriteGate ECCShift 
210: 1101001 xxxxx 0001 1010 0010 0100 (210) XfrTime DataTime WriteGate ECCShift 
211 : 1101010 00000 0001 1010 0010 0100 (212.031) XfrTime DataTime WriteGate ECCShift 
212: 1101010 xxxxx 0001 1010 0010 0100 (212) XfrTime DataTime WriteGate ECCShift 
213: 1101011 00000 0001 1010 0010 0100 (214.031) XfrTime DataTime WriteGate ECCShift 
214: 1101011 xxxxx 0001 1010 0010 0100 (214) XfrTime DataTime WriteGate ECCShift 
215: 1101100 00000 0001 1010 0010 0100 (216.031) XfrTime DataTime WriteGate ECCShift 
216: 1101100 xxxxx 0001 1010 0010 0100 (216) XfrTime DataTime WriteGate ECCShift 
217: 1101101 00010 0001 1010 0010 0100 (218,029) XfrTime DataTime WriteGate ECCShift 
218: 1101101 xxxxx 0001 1010 0010 0100 (218) XfrTime DataTime WriteGate ECCShift 
219: 1101110 11110 0001 0010 0010 0100 (220.001) DataTime WriteGate ECCShift 
220· 1101110 xxxxx 0001 0010 0010 0100 (220 ) DataTime WriteGate ECCShift 
221: i101111 11100 0001 0000 0010 1110 (222.003) WriteGate ECClr ECCShift ECCWrite 
222: 1101111 xxxxx 0001 0000 0010 1110 (222) WriteGate ECClr ECCShift ECCWrite 
~~.:.: 

...... "'1'1"" 11111 0101 0000 ill: 10 0000 (005.000; SeqEnd WriteGate I." li Ul.iu 11,,; 

224: 1110000 xxxxx 0001 1010 0001 0100 (224) XfrTime DataTime ReadGate ECCShift 

225: 1110001 00000 0001 1010 0001 0100 (226.031) Xf.rTime DataTime ReadGate ECCShift 
226: 1110001 xxxxx 0001 1010 0001 0100 (226) XfrTime DataTime ReadGate ECCShift 
227: 1110010 00000 0001 1010 0001 0100 (228.031) XfrTime DataTime ReadGate ECCShift 
228: 11100 10 xxxxx 0001 1010 0001 0100 (228) XfrTime DataTime ReadGate ECCShift 
229: 1110011 00000 0001 1010 0001 0100 (230.031) XfrTime DataTime ReadGate ECCShift 
230: 1110011 xxx xx 0001 1010 0001 0100 (230) XfrTime DataTime ReadGate ECCShift 



11 

231: 1110100 00000 0001 1010 0001 0100 (232.031) XfrTime OataTime ReadGate ECCShift 
232: 1110100 xxxxx 0001 1010 0001 0100 (232) XfrTime OataTime ReadGate ECCShift 
233: 1110101 00000 0001 1010 0001 0100 (234.031) XfrTime OataTime ReadGate ECCShift 
234: 1110101 xxxxx 0001 1010 0001 0100 (234) XfrTime OataTime ReadGate ECCShift 
235: 1110110 00000 0001 1010 0001 0100 (236.031) XfrTime OataTime ReadGate ECCShift 
236: 1110110 XXXXX 0001 1010 0001 0100 (236) XfrTime OataTime ReadGate ECCShift 
237: 1110111 00000 0001 1010 0001 0100 (238.031) XfrTime OataTime ReadGate ECCShift 
238: 1110111 xxxxx 0001 1010 0001 0100 (238) XfrTime OataTime ReadGate ECCShift 
239: 1111001 00000 0001 1010 0001 0100 (242.031) XfrTime OataTime ReadGate ECCShift 
240: 1111000 xxxxx 0001 0000 0000 0000 (240) 

Recovery G4P: 
241: 1111000 xxxxx 0001 0000 0000 0000 (240) 
242: 1111001 xxxxx 0001 1010 0001 0100 (242) XfrTime OataTime ReadGate ECCShift 
243 : 1111010 00000 0001 1010 0001 0100 (244.031) XfrTime OataTime ReadGate ECCShift 
244: 1111010 xxxxx 0001 1010 0001 0100 (244) XfrTime OataTime ReadGate ECCShift 
245: 1111011 00000 0001 1010 0001 0100 (246.031) XfrTime OataTime ReadGate ECCShift 
246: 1111011 xxxxx 0001 1010 0001 0100 (246) XfrTime OataTime ReadGate ECCShift 
247: 1111100 00010 0001 1010 0001 0100 (248.029) XfrTime OataTime ReadGate ECCShift 
248: 1111100 xxxxx 0001 1010 0001 0100 (248 ) XfrTime OataTime ReadGate ECCShift 
249: 1111101 11110 0001 0010 0001 0100 (250.001) OataTime ReadGate ECCShift 
250: 1111101 xxxxx 0001 0010 0001 0100 (250) OataTime ReadGato ECCShift 
251: 1111110 11100 0001 0000 0001 0100 (252.003) ReadGate ECCShift 
252: 1111110 xxxxx 0001 0000 0001 0100 (252) ReadGate ECCShift 
253: 1111111 11100 0001 0000 0001 1111 (254.003) ReadGate ECClr ECCShift ECCWrite ECCChk 
254: 1111111 xxxxx 0001 0000 0000 1111 (254 ) ECC1r ECCShift ECCWrite ECCChk 
255: 0000010 11111 0101 0000 0000 0000 (005.000) Seq End 


	0000
	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	A-00
	A-01
	A-02
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-00
	C-01
	C-02
	C-03
	D-00
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11

