
DO Microcode User's Guide

Oocument:
Date:
Version:

Unassigned
June 1978
1.0

This guide is intended to provide a programmer's look at the DO and at Micro, the
assembler. Each section examines an isolated part of the machine, and contains examples of
efficient coding techniques. Familiarity with the DO Functional Specification and the
Micro documentation is assumed. All comments should be addressed to the editor via
Laurel.

Approval:

XEROX
· SYSTEMS DEVELOPMENT DEPARTMENT

3408 Hillview Avenue I Palo Alto I California 94304

This document is for internal Xerox use only.

Table of Contents

1.0 ALU and Basic Architecture 3

2.0 The Microinstruction and Branching Conditions 5

3.0 Special Functions 8

4.0 Memory and 1/0 10

5.0 Getting Started 13

6.0 Caveats 14

7.0 Style 15

8.0 Sample Programs 16

9.0 Micro/MicroD Error Messages 18

Opening comments

You will never ,get to be a super microcoder until you memorize and understand the
architecture of the machine. It is assumed that you have made some attempt to understand
the DO Functional Specification, and that you are now ready to program. This manual
breaks the machine into small parts and describes the use of each section in detail.
Accompanying each part are some examples of microcode which illustrate the features of the
machine. ·

All numbers in ;this manual should be considered octal. When decimal is required, the
number will be' suffixed with a "D". Any number followed by a "B" is octal.

2

1.0 The ALU: Its Inputs and Output
I

Look at the circled 'Part of the picture at the end of this manual and find the A LU. There
are two inputs, labelled A and B. Notice where each come from. There is one output which
goes back to T and R. The A input comes from the R registers through the cycler/masker.
Also on this bus arr the special-purpose R registers, such as APC, PCF... The B bus comes
from T. Notice the way constants are put on the bus. You can have a constant or T - not
both. Constants ar~ eight bits - all of which must be contained in the left or right half of
the word. !

!
i

Next. find the signal coming in to the top of the ALU, ALUControl. There are two ways of
controlling the ALU's operations: from the ALUF field of the microinstruction. or from a
special box called SALUF. The ALU is really a unit with 64 operations, with 14 of the most
common mapped into the ALUF field of the microinstruction. All 64 functions may be
accessed by loading SALUF.

Here are the ALU operations:
ALUF
o.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

ALUOut =
B
A
A AND B
A ORB
A XOR B
A AND NOT B
A OR NOT B
A XNOR B
A+l
A+B
A+B+l
A-1
A-B
A-B-1
unassigned
use SALUF for ALU function

The cycler/masker is used to manipulate bits from an R register. This provides some
standard shifting and masking operations. The following operations are provided:

LDF[r, pos, size] - right justify the field in r of length "size" beginning at bit "pos"
RSH[r, count] - right shift r by "count"
LSH[r, count] - left shift r by "count"
RCY[r, count] - right cycle r by "count"
LCY[r, count] - left cycle r by "count"
RHMASK[r] - r AND 377C
LHMASK[r] - r AND 177400
ZERO - a way to load a 0 on the bus
DISPATCH(r, pos, size] - see the section on the jump condition

Already you know how to write simple microinstructions for manipulating the ALU. Here
are some examples of legal and illegal instructions:

Legal

T +- (R) + T;
R +- (R) + T;
T+-, R +- (R) + T;
T +- LDF[R, 14, 4] + T;
R +- RHMASK[R] XOR T;

* an A input and a B input
* can store into R or T
* can store in to both
* LDF is a cycler/masker function
* RHMASK is a cycler/masker function

3

R +- (R) + (377C);:
R +- (R) + (177400C);
T +- (zero) + T + I;

I

Illegal

I
T +- T + (37C): ,
R +- R + (177777C);
R +- R + (770C); ;
T +- LDF[R, 14, 4] + (37C);
T +- RHMASK[T];.
R +- T + I;

* constant with lower 8 bits
* constant with upper 8 bits
* this is the only way to add 1 to T. zero is an
* output of the cycler/masker, and A+B+l is
* an A LU function ..

* two B bus sources
* constant is more than 8 bits
* the 8 bits cross a byte-boundary
* LDF uses F field and so does constant
* T is not on the A bus
* no ALU function of this type

4

2.0 The Microinstruction
I

Since you would like to dd more than arithmetic and logical functions, let's look at the non­
memory microinstruction! for other fields that you can use. The fields are:

NORMAL
RMOD
RSEL
ALUF
BSEL
Fl
LR
LT
F2
JC
JA

0 or 1 + depends on if it's a memory operation or not
used for addressing the special R registers
used for R addressing. NOTF,: only 1 R address per m-i.
what the ALU is supposed to do
what is supposed to be on the B bus (T or constant)
special function
load R
load T
special function
jump control - call, goto, return, dispatch
where t~ go next. NOTF.: addressing is 8 bits =>page-relative

You know about RSEL, ALUF, BSEL, and the loading of R and T. Let's first discuss the
branching mechanisms and the control logic of the DO. These use the JC and JA fields.
Each microinstruction must indicate where to go next. If you do not instruct otherwise, a
microinstruciton will be followed by the successor instruction in your program. You can
modify this in many ways. A simple GOTO[label] will cause the JA field to contain the
address of "label".

Conditional Branches

For the programmer's convenience, several branch conditions exist, and alter the flow of
control when tested. There is a programming feature called DBLGOTO which has the form
DBLGOTO[labell, label2, branch-condition]. If branch-condition is true, control will be
transferred to labell, if not the next instruction will be label2. The processor requires that
these two labels be one bit apart in their address. These are guaranteed to get you into
trouble if you do not remember the instruction-placement constraints. The table below
describes the placement constraints for "labell". Labell will occupy an odd location if the
condition is listed in the goes-to-odd column below:

. JC,,JA goes-to-odd goes-to-even BRANCHSHIFT time page
000 ALU#O ALU=O 0 t3 18
001 CARRY NOCARRY 0 t3 18
010 ALU<O ALU>=O 0 t3 18
011 QUADOVF INQUAD 0 t3 45
100 R<O R>=O 0 tl
101 RODD REVEN 0 tl
110 NOA TIEN IOATTEN 0 t3 62
111 MB NOMB 0 tl 24
000 MPCARRY NOMPCARRY 1 t3
001 NOOYF OYF 1 t3 18
010 BPCCHK BPCNOCHK 1 t3
Oll ALU=<O ALU>O 1 t3

Note: GOTO[label 1, branch-condition] is a degenerate case of DBLGOTO with
label2 = current location + 1.

Note the "time" column. This is the time that this condition is available for testing. If t3 is
listed, you should test this condition in the instruction following the instruction which could
generate the condition. Conditions listed as tl can be tested during the current
rn icroi nstruction.

5

l

The BRANCHSHIFf column! deals with special functions (in particular, Fl), and will be
discussed fully in the section on Special Functions.

!
The page column refers to i the page in the DO Functional Specification where more
information about these conditions can be located.

I . .

Following are examples of in~truction placement:

T +- (R) + (377C);
DBLGOTO[Ll, L2, ALU#O];
mumble;
Ll: mumble2;
L2: mumble3;

T +- (R) - T;
DBLGOTO[Ll, L2, ALU>=O];
mumble;
Ll: mumble2;
L2: mumble3;

DBLGOTO[Ll, L2, R <O], LU
mumble:
Ll: mumble2;
L2: mumble3;

Subroutine Calls

* notice test during instruction following operation

* at an odd location (L2 OR 1)
* at an even location

* at an even location
* at an odd location (Ll OR 1)

+- R; * notice test during instruction

* at an odd location (L2 OR 1)
* at an even location

There is a mechanism for one-level subroutines. These are accomplished by an instruction
of the form CALL[label]. When a RETURN is executed, control will be given to the call
instruction+!. CALLs must be on even words.

Example:

SUBR: R +- (R) + T + 1;
T +- RHMASK[R], RETURN;

INIT: R +- (4C);
T +- (37C);
CALL[SUBR];
MUMBLE;

Dispatch

* next instruction will be "MUMBLE"

DISPATCH is a cycler/masker function which allows the next instruction to be one of
sixteen possible addresses. The lower four bits of APC are selected via DISPATCH[r, pos,
size]. A trivial example of dispatch is as follows:

D: DISPATCH[RTMP, 12, 4];
DISP[DO];
SET[DLOC, 20];

* dispatch on bits I2:16 of rtrnp
* set up label for dispatch
* nail down the dispatch table

DO: GOTO[X], RNEXT +- (OC), AT[DLOC, O]; * these don't all have to be
adjacent
DI: RNEXT +-(IC), AT[DLOC, I];

GOTO[X], t +- LDF[RNEXT, 3, I];

6

02: GOTO(X], · RNEXT +- (2C), AT[DLOC, 2];
03: GOTO[X], RNEXT +- (JC), AT[DLOC, 3];
04: GOTO[X], RNEXT +- (;4C), AT[DLOC, 4];
05: GOTO[X], RNEXT +- (5C), AT[DLOC, 5];
06: GOTO[X], RNEXT +- (6C), AT[DLOC, 6];
07: GOTO[X], RNEXT +- (7C), AT[DLOC, 7];
010: GOTO[X], RNEXT +- (lOC), AT[DLOC, 10];
Dll: GOTO[X], RNEXT +- (llC), AT[DLOC, ll];
012: GOTO[X], RNEXT +- (12C), AT[DLOC, 12];
013: GOTO[X], RNEXT +-(DC), AT(OLOC, 13];
014: GOTO[X], RNEXT +- (14C), AT[OLOC, 14];
015: GOTO[X], RNEXT +- (15C), AT[OLOC, 15];
016: GOTO[X], RNEXT +- (16C), AT[OLOC, 16];
017: GOTO[X], RNEXT +- (17C), AT[OLOC, 17];

Changing Pages

As noted above, a micro-instruction does not know what page it is on, and can only jump to
addresses on its current page. 1here are ways to circumvent this at assembly-time and at
run-time.

Assembly-time
ONPAGE[xx] - directs assembler to put this instruction on page xx.
AT[nn] - the assembler assumes that it has been given a 12 bit address, and puts this
instruction on the page indicated by the top four bits, and the offset of the last eight
bits. '

Run-time
LOAOPAGE[n] - this is to be done before every branch that will be on a different
page. This includes GOTO, OBLGOTO, CALL, DISPATCH.

Notify

When one wants to jump to a specific location in a specific task, APCTASK&APC are
loaded with the desired information, and a RETURN is executed.

R +- (20C);
R +- (R) OR (160000C);
APCTASK&APC +- R;
RETURN;

Ll T +- (OC), A T[20];

* set up the location you want to get to
* OR in the task number = 16

After execution of the first block of code, control will be transferred to Ll with task 16
active.

7

3.0 Functions

The F-field decodes are as follows:
CODE Fl ~ GROUP B

00
01
02
03
04
05
06
07
10
11

. 12
13
14
15
16
17

BBFA
RS232'""
LOADTIMER
ADDTOTIMER
unused
LOADPAGE
unused
GROUP B
no-op
WFA
BBFB
WFB
RF
BBFBX
NEXTINST
NEXTOP
(NEXTDATA)

REGSHIFf
STKP'""
FREEZERESULT
STACKSHIFT
CYCLECONTROL'""
SB'""
OB;-
NEWINST
BRA NCHSH IFT
SALUF ...
no-op
MNBR'""
PCF;­
RESETMEMERRS
USECOUTASCIN
PRINTER'""

unused
RESETERRORS
INCMPANEL
CLEARMPANEL
GENSRCLOCK
RESETWDT
BOOT
SETFAULT
A PC&A PCT ASK'""
RESTORE
RESETFAULT
USECTASK
WRITECS0&2
WRITECSl
READCS
unused

Functions can be best be explained by division into categories. Following each group name
will be the pages in the DO Functional Specification where more information in available.
The only function groups expected to be of use to the programmer are: Useful, ALU. and
Sneaky. The rest of the functions should remain unused by most code. In addition, registers
used for the Mesa emulator and BitBLT should be avoided.

Useful functions:
APCTASK&APC'"" - used to directly load this register from ALUA. This is the

recommended way to do a notify of a different task at a different location. It
is usually followed by a RETURN.

USECTASK - forces the next instruction to be taken from the current task. This
usually preceeds a RETURN, and prohibits task switching.

LOAOPAGE - uses F2 for an argument. This statement should preceed all CALLs or
GOTOs which reference a different page.

ALU functions (p. 17-18):
FREEZERESULT - inhibits loading of RESULT register. This is used to save the

output of the ALU from one instruciton to the next.
USECOUTASCIN - use carry out as carry in.
SALUF'"" - can expand the ALU to its full capabilities.

Sneaky functions: THESE GET SET WITHOUT YOUR KNOWLEDGE!!!!!!!
REGSHIFT - Set by accessing certain R registers (PRINTER, DB, SB, MNBR) and

invoking BBFB.
STACKSHIFT - Set when operations like STACK&+l are used
BRA NCHSHIFT - Set by certain branch conditions: M PCARR Y, NOOVF, BPCCl-IK,

ALU=<O.

BitBL T (p. 22):
BBFA - sets up 3 bit dispatch based on SB, DB, MNBR for the next instruction
BBFB - update of the x level from MW. SETS REGSHIFT!
BBFBX - update of the main level from MW
SB'"" - loaded from A bus
DB'"" - loaded from A bus
MN BR'"" - loaded from A bus

8

Mesa (p. 20-22):·
STKP +- - loaded from A bus
WFA - Mesa Write Field
WFB - same
RF - Mesa Read Field controlli~g the cycler/masker directly from field descriptor
NEXTINST
NEINST
NEXTOP
PCF+- - loaded from A bus

/

CYCLECONTROL+- - loaded from A bus. This is a way for controlling the
cycler/masker. It also loads SBX[0:5], DBX[O:l].

Auxiliary Registers (p. 27-30):
RS232 +- - from B bus
PRINTER+- - loaded from A bus

Modification of Control Store (p. 39-40):
WRITECS0&2 - preceeded by APCTASK&APC +- x, where x is the address you want

to write in. Word 0 is written from A bus, word 2 from B bus.
WRITECSI - item on A bus written to word 1 in location in APCTASK&APC
READCS - reads a word from the control store. For the values 0, 1, 3 of T,

you get word 0, 1, and 2 from control store into CSData.

Timer functions (p. 30-33):
LOADTIMER - loads a timer from ALUA; bits[0:3] state, [4:11] data, [12:15] slot
ADDTOTIMER - increments a timer from ALUA

Maintenance panel:
CLEA RM PANEL - clears the maintenance panel
INCMPANEL - increments the maintenance panel

System functions:
RESETERRORS (p.38) - clears the freeze on CIA, RESULT and resets PARITY and the

fault logic
RESETMEMERRS - clears the memory error logic
RESETFAULT -
RESTORE (p.38) - loads RESULT regiser from H2, loads APCTASK&APC from

ALUA. This is to restore the machine state after a FAULT.
GENSRCLOCK - clock out bits to the 10 controllers
RESETWDT (p.27) - reset Watchdog timer
BOOT - initiate a software boot
SETFAULT - cause a fault to occur

9

4.0 Memory Use

This section is an amplification and cotrection of the DO Functional Specifications of
January 16, 1978. Its purpose is to provi'de an interim guide to the proper use of memory
and 10 operations. You should assume that any topic not covered here is considered correct
in the manual. If you follow the guideljnes listed, you should not run into any trouble.
Ignoring them will get you into funny situations which involve timing problems,
interlocking and bypassing. The three main topics to be discussed here will be quadword
alignment, bypassing, and the memory !interlock feature.

Words and phrases in italics are meant to convey a special meaning. If one wanted to avoid
trouble, verbs should be read as "must".

!

Comments on style

Since the memory operates in parallel with the processor, there are certain hardware features
that have been provided that will prevent you from accessing a location which is an operand
in the memory operation which is running concurrently, if these features are used correctly.
When an instruction following a memory operation attempts to use data from that
operation, the instruction aborts (this means that time freezes until the operation is
complete). Efficient microcoders will not write code in this manner, but will use the cycles
between a memory operation and use of the data for other necessary code. A forthcoming
section will list the maximum execution time for memory and 10 instructions.

Quadword alignment

Memory operations dealing with transference of more than one word should adhere to
double- or quadword alignment. The memory instruction has two fields involving R
registers: the base register field and the SRC/DEST field. The base registers should be an
even and odd word pair. The even word is the page and displacement, and the odd word
contains the upper bits of the virtual address.

If the base pointer is denoted BP[0:23], bits 0:7 in the odd register hold BP[0:7], and
bits 8:15 hold the BP[0:7]+1. This is incorrect in the manual.

You should also remember the caution in section 5.5 about bits 0.1 and 8,9 of the
base register. For safe use, these four bits should be set to 0 by the programmer.

Jn general, you should always have aligned registers and memory. You can transfer data to a
non-quad (or double) aligned R register, but it will defeat the interlock(see below). If the
memory is not quad or double aligned, the memory will pick the smallest outer bound
matching your request and transfer those words to you. For example, executing a PFetch4
with a memory address of 2 will not give you words 2,3,4, and 5. It will give you 0,1,2, and
3.

Do not use register 0 in any task block for a SRC/DEST. This forces use of the
stack.

The signal QUADOVF is generated only in the following situation: The stack is
used for a PFetch2. or PStore2 with memory address equal to 3 mod 4. This is not a
general signal which occurs whenever you cross a quadword boundary.

Bypassing

A non-memory instruction is broken into four cycles: cycle 0 reads the R registers or T,

10

cycles l and 2 are taken by the ALU operation, and cycle 3 writes R or T. Since another
instruction begins at the beginning of cycle 2, data needed for this instruction will not have
been written when the read occurs. The hardware notices this, grabs the needed data for the
current instruction, and does the write during cycle l. The bypass is only good for the
following instruction. Bypassing only allows data to be used from one instruction to the
next; it does not imply storing.

If the instruction following a store is a memory instruction, the write will be delayed for
another two cycles. This means that the store will not take place until cycle l of the
instruction following the memory operaton .. As an example, consider a sequence of three
instructons, the middle one being the memory operation. A memory instruction reads R
registers in cycle 0 for bits 8:23 of the virtual address, and in cycle 1 for. the upper bits.
Since the R memory cannot be read and written in the same cycle, the second read required
by the memory operation forces the write of instruction 1 to occur in cycle 1 of the third
instruction. The bypass of data from instruction 1 to instruction 2 will work, and give data
to the memory operation for its cycle 0 read, but not its cycle l read. This is why you can
load an even base register before a memory operation, but not an odd base register.

Read Write-can't take place because of read for memory
1-------1-------1-------1-------1

Read Read
1-------1-------1

Read Write - from above is done here
1-------1-------1-------1-------1

Memory Interlock

The memory interlock is provided to protect you from accessing data which may not have
been operated on by a preceeding memory operation. Use of quad or double word aligned
registers will make this work smoothly; nonaligned registers defeat the interlock. The actual
R register address is compared (with appropriate low order bits omitted if the operation is
double or quad) with R addresses in MCI and MC2, and the instruction is aborted until the
memory is finished. If you like to gamble, you can use non-aligned registers and access
those protected by the interlock in the next instruction, but wait until some time later to
access the other registers.

Examples

Proper use of the memory will look like the following:

RV[rbaseEven, 10];
RY[rbaseOdd, 11];
RV[rsrc2, 12];
RV[rsrc4, 14];
RV[rbaseEven2, 20];
RY[rbase0dd2, 21];
RV[rtmp]; ·

I. rbaseOdd ~ valuel;
rbaseEven ~ value2;
PFetch2[rbaseEven, rsrc2];
t ~ rsrc2;

2. rbaseOdd ~ valuel;
rbaseEven ~ value2;
PFetch4[rbaseEven, rsrc4];

* set up Odd register first
* set up even register - bypass will get proper
* value to mem op in cycle 0
* when memory done, this instr will be executed

11

3.

t ~ rsrc4;

rbaseOdd ~ value!;
rbaseEven ~ value2;
PFetch2[rbaseEven. rsrc2];
rbase0dd2 i- value3;
rtmp ~ t;
PFetch2[rbaseEven2. rsrc2];

Improper use of memory:

1.

2.

3a.

3b.

rbaseEven ~ value2;
rbaseOdd ~ val uel;
PFetch2[rbaseEven. rsrc2];

rsrc2 ~ value3;
PStore2[rbaseEven. rsrc2];

rtmp ~ value3;
MemOp[rbaseEven. rsrc2];
t ~ rtmp;

t ~ value3;
MemOp[rbaseEven. rsrc2];
rtmp ~ t;

* this ~ould also be rbaseEven2 ~ mumble
* need 'this to be sure store is accomplished

* mem op needs this in cycle I, but bypass
* only works for cycle 0

* set up a register to be stored
* rsrc2 ;will not have been written when this
* begins (note I. page 47)

* this will not work because of the bypassing
* mentioned above. Writing of rtmp is in cycle
* I of this instruction

* same 'reasons as 3a.

12 .

5.0 Getting Started

Most of the information which you will need will be present on Iris. We have a directory
called DO. This is the first place you should go and look for any programs or
documentation that you need. There is also a microcoder's distribution list which is on
[maxc]<secretary>dOusers.dl. You will receive notification of new programs or updates via
this distribution list.

There are two files on [iris]<DO>which can be used to create a microcoder's disk. If you
have a virgin disk, you should obtain a copy of <alto>newdisk.cm from your local file
server. After running this, get [lris]<DO>newmidasdisk.cm or <DO>newsimdisk.cm. This
will give you all files you need to use for microcoding. For a disk already containing an
operating system, FTP, Chat, Bravo, and other basic programs, you need to run
[lris]<DO>midasdisk.cm or <DO>simdisk.cm. This will provide you with enough Mesa to
run the simulator, and all needed microcode files.

The first document to be read is the DO Processor Functional Specification, an old copy of
which is on [maxc]<Thacker>manual.press. This explains the hardware and also gives you
pictures of the architecture which are useful to look at while coding. After reading this, you
should get the DO Assembler manual ([maxc]<DlDocs>dOassem.ears) to familiarize yourself
with the microcode syntax. At this time, you should be able to write a simple program.

Given that you've now written a program, you need to assemble it. Actual· assembly is
accomplished by two programs: Micro and MicroD ([iris]<dO>micro.run, microd.run).
Micro is the main assembler; MicroD's function is instruction placement in the microstore.
Micro is a very general microcode assembler, and it accepts language features from a file
called DOlang.mc ([iris]<dO>DOlang.mc). This file is assembled with each of your
microcode files. If your file is named Test, you would assemble it in the following manner:

Micro DOlang Test

Assuming you got no errors, you would then proceed with

MicroD Test

At this time you have a file called Test.mb which is ready for loading into the DO or for use
with the simulator. ·

Since we don't have a multitude of DO's yet, we need to be able to debug our programs on an
Alto. This is possible via the DO Simulator ([iris]<dO>s.bcd). There is a very readable
document on how to use the simulator, [iris]<dO>s.press. The simulator closely tracks the
DO and any changes made to it. Once your program runs through the simulator, you can be
very confident that it will work on the DO. The simulator has a feature for running in non­
overlap mode which is most useful for debugging.

On the DO, microcode programs will be run and debugged with a program called Midas.
Midas has its own documentation which you should read on [iris]<dO>midas.press. The
Midas system is in the form of a "dump" file and is on [iris]<dO>midasrun.dm. If most of ·
the information in this memo is new to you, don't bother getting into Midas yet.

13

6.0 Caveats

You must execute a TASK function every 12 microinstructions to insure that data from
higher priority devices is not lost.

NEVER use more than sixteen R registers for a given task.

If you are writing microcode which will be incorporated into a release. you must "check
out" a prefix from me. This prefix will occur before your labels and register names.

Anyone who does not follow the above rules will receive no help from me whatsoever.

14

7.0 Suggested programming style

It is highly unlikely that you will be the only person reading your code, so below are some
suggestions which will make your fellow coder's life easier.

!

As mentioned in the Caveat section, if this piece of code will ever be in a microcode release.
you must check out a prefix from me. This prefix is to be used in front of all R register
names and labels. Given that they all begin with this prefix, they can still be named
something which suggests their function. It is possible to define many names for a
particular R register (by executing as many RV's as are necessary), and if your code can be
sectioned in a reasonable manner. you may want to try this technique.

If you use names which are a concatenation of two or more syllables, you might consider
using lower case letters and having the next syllable begin with upper case. This produces
quite readable text. If you use lower case, you must call Micro with the "/u" switch on the
command line.

The micro-assembler, Micro, makes it quite easy to define constants and assign English-like
names to arbitrary sets of bits. There are two facilities for accomplishing this. The macro
MC[name, number] defines a constant; i.e., every time the assembler finds ''name", it
substitutes the number appended with a "C". SET[name, number] will give you the number
without a "C" which is suitable for use as a parameter.

Examples:

MC[bitMask, 200];
MC[sectorMask, 16400];

SET[myPage, 3];
SET[dispLoc, 200];

* used for expressions like RTM P~(RTMP) OR (bitMask);
* T~(DiskAddr) AND (sectorMask);

* use this as a parameter as in ONPAGE[myPage];
* DISP[dispLoc];

It should be noted that constants formed in this manner must still adhere to the eight bit
limit discussed in the section on constants.

It is suggested that you begin each of your modules with a SETTASK and an ONPAGE.
Parameterization will make these easy to change later on. You should also begin your
modules with a "notify" to get you to the proper task and location for the start of your
code.

15

8.0 · Sample programs

file: [iris]<dO>sample.mc
This file consists of sample programs, which are each prefaced
with what I hope they will illustrate. The sections can each
be broken out (code between TITLE and END) and be assembled
and run through the Simulator, if you wish.

TITLE[Samplel];
* This code takes the number in R register RNum and multiplies
* it by 10. This is accomplished by multiplying it first by
* 8, multiplying a copy of it by 2, and adding the results.

RV[RNum];
RV[RTemp]; *just a temporary register

INIT: RNum +- (4C); *initialize it
START: T +- RNum; *need to copy it into T to get it to RTemp

RTemp +- T; *RTemp = RNum
RTemp +- LSH[RTemp, 3]; *RTemp = 8*RNum
RNum +- LSH[RNum, 1]; *RNum = 2*RNum
T +- RTemp; *put in T so we can add them
RNum +- (RNum) + T;
GOTO[STA RT];

END.

%
Now we try and make the above a bit more efficient.
% .

TITLE[Sam ple2];

RV[RNum];
RV[RTemp];

INIT: T +- RNum +- (4C); *loading T is free
TIMESIO: RTemp +- T;

T +- RTemp +- LSH[RTemp, 3];
RNum +- (LSH[RNum, 1]) + T; *shifting is on A-bus
GOTO[TIMESlO];

END.

%
Moving right along, let's look at branching. The important
things to remember about branching are that ALU conditions
are available at t3 (after cycle 2) and are saved, while R
conditions are available at tl, and are destroyed after this
time. ·

In the next program, we're going to use two subroutines. GETVAL is
totally mythical - assume it gets a number from somewhere and puts
it in T. TIMESIO is the above code made into a subroutine. The
following program reads a count via GETVAL, then calls GETVAL to
give it numbers which it makes positive if they aren't, and then
multiplies them by 10. When finished with that loop, it goes back
up to get another count.
%

16

TITLE[Sample3];

RV[RNum];
R V[RCount];
RV[RTemp];

START: CALL[GETVAL];
RCount +- T;
GOTO[DONE, R<O], LU +- RCount; *way to put something on bus

* could have tested on T above via
* GOTO[DONE, ALU<O];

AGAIN: NOP; *see below for explanation
CALL[GETVAL];
RNum +- T;

* again, could have tested on T as above
GOTO[MULR, R>=O], LU +- RNum; *if it's positive, jump
RNum +- (RNum) XOR (lOOOOOC); *make it positive

MULR: CALL[TIMESlO];
RCount +- (RCount) - (IC); *decrement count DBLGOTO[AGAIN, DONE.

ALU#O];
DONE: GOTO[START];

TIMESlO: T +- RNum;
RTemp +- T;
T +- RTemp +- LSH[RTemp, 3];
RETURN, RNum +- (LSH[RNum, l]) + T;

END. •

%
Many errors can be avoided by understanding the branching logic.
CAL L's always have to be at even locations. DBL BRA NCH and DBLGOTO
go to odd locations if true, and even if false. The DBLGOTO
which is right before the label DONE is supposed to go to AGAIN
if true, and DONE if false. At AGAIN, we really want to do a
CALL[GETVAL], but since the branching logic dictates that AGAIN
be placed at an odd location, we have to put in a NOP.
%

17

9.0 Error Messages

Micro occasionally produces rather baroque error messages. The following are the ones most
commonly received when beginning:

RREGISTER+B Undefined - a missing set of parentheses ~round the "A" field of
the the ALU function in the instruction. This comes from a statement like T +­
RTEMP + (IC), where the above message would be RTEMP+B Undefined.

Field RSEL2 already used - this usually results from referring to two R registers in
the same statement. There is only space for one in the micro-instruction. RTEMP
+- (RADDR) + {T) is illegal.

Illegal constant - a constant in a microinstruction can only be 8 bits, either the
upper or lower 8. If you need a constant which is longer you need to do it in two
instructions.

· T +B Undefined - you are trying to put two things on the B bus. Look at the
diagram of the DO. An instruction of the form T +- T + (377C) is not possible, since
T is on the B bus, and so is the constant.

Field BS already set - Bsel is 0 or 1 for a constant, and 3 for the cycler/masker.
Thus, RTEMP +- RSH[RTEMP, 1] AND (2C) would produce this message. This
statement also produces "Fl.used.twice".

MicroD is the part of the assembler which places the instructions in their final locations.
Any messages received from MicroD are because of placement constraints. The following
are the most common:

Attempted to link LabelX with LabelY - you probably have two DBLGOTOs which
require LabelX or LabelY to be on an even location for one and an odd location for
the other: e.g. DBL TOGO[LabelX, LabelY, alu#O];

DBLGOTO[LabelX, LabelZ, alu>=O];

Impossible allocation constraints - Most likely there are two CALLs in sequence.

A printout of all locations on two pages - This probably results from doing a
CALL to a different page not being preceeded by a LOADPAGE.

18

H3P

TA
4

R
16

Cycle Count ~­

H2 8:15

ALUF

T
16x16

R

4

.56 x 16+1

SALUF

--1 Parity

ALUControl

ALUOut

[OJ

H2

<--'l--"12:::.' _ __._-l B'
1 :7

H1
ALLJl--'--'-"-v~:1~3_.__~--1

Cyder/

Masi< er A

Result

Map Row Addr

7

StorAO-StorA6

ALUA r---i

Mask c==i~7+'1-6------I------------'
f-----------,t---------==.:.:._--L.-.--'

SSlkp 16

R Acidress
Modifiers

Principnl
R Sources

R
Address

__ ___,Logic

H 0:7

RA Save

1---T-'----+_RA 01-------+-/1
r~A=WA 8

8

